Science.gov

Sample records for regulate neural development

  1. Epigenetic Regulation in Neural Crest Development

    PubMed Central

    Hu, Na; Strobl-Mazzulla, Pablo H.; Bronner, Marianne E.

    2014-01-01

    The neural crest is a migratory and multipotent cell population that plays a crucial many aspects of embryonic development. In all vertebrate embryos, these cells emerge from the dorsal neural tube then migrate long distances to different regions of the body, where they contribute to formation of many cell types and structures. These include much of the peripheral nervous system, craniofacial skeleton, smooth muscle, and pigmentation of the skin. The best-studied regulatory events guiding neural crest development are mediated by transcription factors and signaling molecules. In recent years, however, growing evidence supports an important role for epigenetic regulation as an additional mechanism for controlling the timing and level of gene expression at different stages of neural crest development. Here, we summarize the process of neural crest formation, with focus on the role of epigenetic regulation in neural crest specification, migration, and differentiation as well as in neural crest related birth defects and diseases. PMID:25446277

  2. Harnessing the power of the endosome to regulate neural development

    PubMed Central

    Yap, Chan Choo; Winckler, Bettina

    2012-01-01

    Endocytosis and endosomal trafficking play a multitude of roles in cellular function beyond regulating entry of essential nutrients. In this review, we discuss the cell biological principles of endosomal trafficking, the neuronal adaptations to endosomal organization, and the role of endosomal trafficking in neural development. In particular, we consider how cell fate decisions, polarity, migration, and axon outgrowth and guidance are influenced by five endosomal tricks: dynamic modulation of receptor levels by endocytosis and recycling, cargo-specific responses via cargo-specific endocytic regulators, cell type-specific endocytic regulation, ligand-specific endocytic regulation, and endosomal regulation of ligand processing and trafficking. PMID:22578496

  3. Thyroid hormone and retinoic acid interact to regulate zebrafish craniofacial neural crest development.

    PubMed

    Bohnsack, Brenda L; Kahana, Alon

    2013-01-15

    Craniofacial and ocular morphogenesis require proper regulation of cranial neural crest migration, proliferation, survival and differentiation. Although alterations in maternal thyroid hormone (TH) are associated with congenital craniofacial anomalies, the role of TH on the neural crest has not been previously described. Using zebrafish, we demonstrate that pharmacologic and genetic alterations in TH signaling disrupt cranial neural crest migration, proliferation, and survival, leading to craniofacial, extraocular muscle, and ocular developmental abnormalities. In the rostral cranial neural crest that gives rise to the periocular mesenchyme and the frontonasal process, retinoic acid (RA) rescued migratory defects induced by decreased TH signaling. In the caudal cranial neural crest, TH and RA had reciprocal effects on anterior and posterior pharyngeal arch development. The interactions between TH and RA signaling were partially mediated by the retinoid X receptor. We conclude that TH regulates both rostral and caudal cranial neural crest. Further, coordinated interactions of TH and RA are required for proper craniofacial and ocular development.

  4. Thyroid Hormone and Retinoic Acid Interact to Regulate Zebrafish Craniofacial Neural Crest Development

    PubMed Central

    Bohnsack, Brenda L.; Kahana, Alon

    2012-01-01

    Craniofacial and ocular morphogenesis requires proper regulation of cranial neural crest migration, proliferation, survival and differentiation. Although alterations in maternal thyroid hormone (TH) are associated with congenital craniofacial anomalies, the role of TH on the neural crest has not been previously described. Using zebrafish, we demonstrate that pharmacologic and genetic alterations in TH signaling disrupt cranial neural crest migration, proliferation, and survival, leading to craniofacial, extraocular muscle, and ocular developmental abnormalities. In the rostral cranial neural crest that gives rise to the periocular mesenchyme and the frontonasal process, retinoic acid (RA) rescued migratory defects induced by decreased TH signaling. In the caudal cranial neural crest, TH and RA had reciprocal effects on anterior and posterior pharyngeal arch development. The interactions between TH and RA signaling were partially mediated by the retinoid X receptor. We conclude that TH regulates both rostral and caudal cranial neural crest. Further, coordinated interactions of TH and RA are required for proper craniofacial and ocular development. PMID:23165295

  5. Discovery of transcription factors and other candidate regulators of neural crest development

    PubMed Central

    Adams, MS; Gammill, LS; Bronner-Fraser, M

    2011-01-01

    Neural crest cells migrate long distances and form divergent derivatives in vertebrate embryos. Despite previous efforts to identify genes upregulated in neural crest populations, transcription factors have proved to be elusive due to relatively low expression levels and often transient expression. We screened newly induced neural crest cells for early target genes with the aim of identifying transcriptional regulators and other developmentally important genes. This yielded numerous candidate regulators, including fourteen transcription factors, many of which were not previously associated with neural crest development. Quantitative real-time PCR confirmed upregulation of several transcription factors in newly induced neural crest populations in vitro. In a secondary screen by in situ hybridization, we verified the expression of >100 genes in the neural crest. We note that several of the transcription factors and other genes from the screen are expressed in other migratory cell populations and have been implicated in diverse forms of cancer. PMID:18351660

  6. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    SciTech Connect

    Wang, Guang; Li, Yan; Wang, Xiao-yu; Han, Zhe; Chuai, Manli; Wang, Li-jing; Ho Lee, Kenneth Ka; Geng, Jian-guo; Yang, Xuesong

    2013-05-01

    Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes to block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1{sup +} migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug{sup +} pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1{sup +} migrating NCCs but reduced Pax7 expression and fewer Slug{sup +} pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube

  7. Mesodermal expression of integrin α5β1 regulates neural crest development and cardiovascular morphogenesis

    PubMed Central

    Liang, Dong; Wang, Xia; Mittal, Ashok; Dhiman, Sonam; Hou, Shuan-Yu; Degenhardt, Karl; Astrof, Sophie

    2014-01-01

    Integrin α5-null embryos die in mid-gestation from severe defects in cardiovascular morphogenesis, which stem from defective development of the neural crest, heart and vasculature. To investigate the role of integrin α5β1 in cardiovascular development, we used the Mesp1Cre knock-in strain of mice to ablate integrin α5 in the anterior mesoderm, which gives rise to all of the cardiac and many of the vascular and muscle lineages in the anterior portion of the embryo. Surprisingly, we found that mutant embryos displayed numerous defects related to the abnormal development of the neural crest such as cleft palate, ventricular septal defect, abnormal development of hypoglossal nerves, and defective remodeling of the aortic arch arteries. We found that defects in arch artery remodeling stem from the role of mesodermal integrin α5β1 in neural crest proliferation and differentiation into vascular smooth muscle cells, while proliferation of pharyngeal mesoderm and differentiation of mesodermal derivatives into vascular smooth muscle cells was not defective. Taken together our studies demonstrate a requisite role for mesodermal integrin α5β1 in signaling between the mesoderm and the neural crest, thereby regulating neural crest-dependent morphogenesis of essential embryonic structures. PMID:25242040

  8. Ankrd11 is a chromatin regulator involved in autism that is essential for neural development.

    PubMed

    Gallagher, Denis; Voronova, Anastassia; Zander, Mark A; Cancino, Gonzalo I; Bramall, Alexa; Krause, Matthew P; Abad, Clemer; Tekin, Mustafa; Neilsen, Paul M; Callen, David F; Scherer, Stephen W; Keller, Gordon M; Kaplan, David R; Walz, Katherina; Miller, Freda D

    2015-01-12

    Ankrd11 is a potential chromatin regulator implicated in neural development and autism spectrum disorder (ASD) with no known function in the brain. Here, we show that knockdown of Ankrd11 in developing murine or human cortical neural precursors caused decreased proliferation, reduced neurogenesis, and aberrant neuronal positioning. Similar cellular phenotypes and aberrant ASD-like behaviors were observed in Yoda mice carrying a point mutation in the Ankrd11 HDAC-binding domain. Consistent with a role for Ankrd11 in histone acetylation, Ankrd11 was associated with chromatin and colocalized with HDAC3, and expression and histone acetylation of Ankrd11 target genes were altered in Yoda neural precursors. Moreover, the Ankrd11 knockdown-mediated decrease in precursor proliferation was rescued by inhibiting histone acetyltransferase activity or expressing HDAC3. Thus, Ankrd11 is a crucial chromatin regulator that controls histone acetylation and gene expression during neural development, thereby providing a likely explanation for its association with cognitive dysfunction and ASD.

  9. cnrip1 is a regulator of eye and neural development in Xenopus laevis.

    PubMed

    Zheng, Xiaona; Suzuki, Toshiyasu; Takahashi, Chika; Nishida, Eisuke; Kusakabe, Morioh

    2015-04-01

    Cannabinoid receptor interacting protein 1 (CNRIP1), which has been originally identified as the binding partner of cannabinoid receptor 1 (CNR1), is evolutionarily conserved throughout vertebrates, but its physiological function has been unknown. Here, we identify a developmental role of CNRIP1 using Xenopus laevis embryos. During early embryogenesis, expression of Xenopus laevis cnrip1 is highly restricted to the animal region of gastrulae where neural and eye induction occur, and afterward it is seen in neural and other tissues with a temporally and spatially regulated pattern. Morpholino-mediated knockdown experiments indicate that cnrip1 has an essential role in early eye and neural development by regulating the onset of expression of key transcription factor genes, sox2, otx2, pax6 and rax. Also, over-expression experiments suggest that cnrip1 has a potential to expand sox2, otx2, pax6 and rax expression. These results suggest an instructive role of Xenopus laevis cnrip1 in early eye and neural development. Furthermore, Xenopus laevis cnr1 knockdown leads to eye defects, which are partly similar to, but milder than, those caused by cnrip1 knockdown, suggesting a possible functional similarity between CNRIP1 and CNR1. This study is the first characterization of an in vivo role of CNRIP1 in the context of whole organisms.

  10. Zebrafish Zic2a and Zic2b regulate neural crest and craniofacial development.

    PubMed

    Teslaa, Jessica J; Keller, Abigail N; Nyholm, Molly K; Grinblat, Yevgenya

    2013-08-01

    Holoprosencephaly (HPE), the most common malformation of the human forebrain, is associated with defects of the craniofacial skeleton. ZIC2, a zinc-finger transcription factor, is strongly linked to HPE and to a characteristic set of dysmorphic facial features in humans. We have previously identified important functions for zebrafish Zic2 in the developing forebrain. Here, we demonstrate that ZIC2 orthologs zic2a and zic2b also regulate the forming zebrafish craniofacial skeleton, including the jaw and neurocranial cartilages, and use the zebrafish to study Zic2-regulated processes that may contribute to the complex etiology of HPE. Using temporally controlled Zic2a overexpression, we show that the developing craniofacial cartilages are sensitive to Zic2 elevation prior to 24hpf. This window of sensitivity overlaps the critical expansion and migration of the neural crest (NC) cells, which migrate from the developing neural tube to populate vertebrate craniofacial structures. We demonstrate that zic2b influences the induction of NC at the neural plate border, while both zic2a and zic2b regulate NC migratory onset and strongly contribute to chromatophore development. Both Zic2 depletion and early ectopic Zic2 expression cause moderate, incompletely penetrant mispatterning of the NC-derived jaw precursors at 24hpf, yet by 2dpf these changes in Zic2 expression result in profoundly mispatterned chondrogenic condensations. We attribute this discrepancy to an additional role for Zic2a and Zic2b in patterning the forebrain primordium, an important signaling source during craniofacial development. This hypothesis is supported by evidence that transplanted Zic2-deficient cells can contribute to craniofacial cartilages in a wild-type background. Collectively, these data suggest that zebrafish Zic2 plays a dual role during craniofacial development, contributing to two disparate aspects of craniofacial morphogenesis: (1) neural crest induction and migration, and (2) early

  11. Heparan sulfate in the regulation of neural differentiation and glioma development.

    PubMed

    Xiong, Anqi; Kundu, Soumi; Forsberg-Nilsson, Karin

    2014-11-01

    Heparan sulfate proteoglycans (HSPGs) are the main components of the extracellular matrix, where they interact with a large number of physiologically important macromolecules. The sulfation pattern of heparan sulfate (HS) chains determines the interaction potential of the proteoglycans. Enzymes of the biosynthetic and degradation pathways for HS chains are thus important regulators in processes ranging from embryonic development to tissue homeostasis, but also for tumor development. Formation of the nervous system is also critically dependent on intact HSPGs, and several studies have outlined the role of HS in neural induction from embryonic stem cells. High-grade glioma is the most common malignant primary brain tumor among adults, and the outcome is poor. Neural stem cells and glioma stem cells have several common traits, such as sustained proliferation and a highly efficient migratory capacity in the brain. There are also similarities between the neurogenic niche where adult neural stem cells reside, and the tumorigenic niche. These include interactions with the extracellular matrix, and many of the matrix components are deregulated in glioma, e.g. HSPGs and enzymes implementing the biosynthesis and modification of HS. In this article, we will present how HS-regulated pathways are involved in neural differentiation, and discuss their impact on brain development. We will also review and critically discuss the important role of structural modifications of HS in glioma growth and invasion. We propose that targeting invasive mechanisms of glioma cells through modulation of HS structure and HS-mediated pathways may be an attractive alternative to other therapeutic attempts, which so far have only marginally increased survival for glioma patients. PMID:25284049

  12. Regulation of Patched by Sonic Hedgehog in the Developing Neural Tube

    NASA Astrophysics Data System (ADS)

    Marigo, Valeria; Tabin, Clifford J.

    1996-09-01

    Ventral cell fates in the central nervous system are induced by Sonic hedgehog, a homolog of hedgehog, a secreted Drosophila protein. In the central nervous system, Sonic hedgehog has been identified as the signal inducing floor plate, motor neurons, and dopaminergic neurons. Sonic hedgehog is also involved in the induction of ventral cell type in the developing somites. ptc is a key gene in the Drosophila hedgehog signaling pathway where it is involved in transducing the hedgehog signal and is also a transcriptional target of the signal. PTC, a vertebrate homolog of this Drosophila gene, is genetically downstream of Sonic hedgehog (Shh) in the limb bud. We analyze PTC expression during chicken neural and somite development and find it expressed in all regions of these tissues known to be responsive to Sonic hedgehog signal. As in the limb bud, ectopic expression of Sonic hedgehog leads to ectopic induction of PTC in the neural tube and paraxial mesoderm. This conservation of regulation allows us to use PTC as a marker for Sonic hedgehog response. The pattern of PTC expression suggests that Sonic hedgehog may play an inductive role in more dorsal regions of the neural tube than have been previously demonstrated. Examination of the pattern of PTC expression also suggests that PTC may act in a negative feedback loop to attenuate hedgehog signaling.

  13. Regulation of patched by sonic hedgehog in the developing neural tube.

    PubMed Central

    Marigo, V; Tabin, C J

    1996-01-01

    Ventral cell fates in the central nervous system are induced by Sonic hedgehog, a homolog of hedgehog, a secreted Drosophila protein. In the central nervous system, Sonic hedgehog has been identified as the signal inducing floor plate, motor neurons, and dopaminergic neurons. Sonic hedgehog is also involved in the induction of ventral cell type in the developing somites. ptc is a key gene in the Drosophila hedgehog signaling pathway where it is involved in transducing the hedgehog signal and is also a transcriptional target of the signal. PTC, a vertebrate homolog of this Drosophila gene, is genetically downstream of Sonic hedgehog (Shh) in the limb bud. We analyze PTC expression during chicken neural and somite development and find it expressed in all regions of these tissues known to be responsive to Sonic hedgehog signal. As in the limb bud, ectopic expression of Sonic hedgehog leads to ectopic induction of PTC in the neural tube and paraxial mesoderm. This conservation of regulation allows us to use PTC as a marker for Sonic hedgehog response. The pattern of PTC expression suggests that Sonic hedgehog may play an inductive role in more dorsal regions of the neural tube than have been previously demonstrated. Examination of the pattern of PTC expression also suggests that PTC may act in a negative feedback loop to attenuate hedgehog signaling. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8790332

  14. Epigenetic regulation of the neural transcriptome and alcohol interference during development

    PubMed Central

    Resendiz, Marisol; Mason, Stephen; Lo, Chiao-Ling; Zhou, Feng C.

    2014-01-01

    Alcohol intoxicated cells broadly alter their metabolites – among them methyl and acetic acid can alter the DNA and histone epigenetic codes. Together with the promiscuous effect of alcohol on enzyme activities (including DNA methyltransferases) and the downstream effect on microRNA and transposable elements, alcohol is well placed to affect intrinsic transcriptional programs of developing cells. Considering that the developmental consequences of early alcohol exposure so profoundly affect neural systems, it is not unfounded to reason that alcohol exploits transcriptional regulators to challenge canonical gene expression and in effect, intrinsic developmental pathways to achieve widespread damage in the developing nervous system. To fully evaluate the role of epigenetic regulation in alcohol-related developmental disease, it is important to first gather the targets of epigenetic players in neurodevelopmental models. Here, we attempt to review the cellular and genomic windows of opportunity for alcohol to act on intrinsic neurodevelopmental programs. We also discuss some established targets of fetal alcohol exposure and propose pathways for future study. Overall, this review hopes to illustrate the known epigenetic program and its alterations in normal neural stem cell development and further, aims to depict how alcohol, through neuroepigenetics, may lead to neurodevelopmental deficits observed in fetal alcohol spectrum disorders. PMID:25206361

  15. Jarid1b targets genes regulating development and is involved in neural differentiation

    PubMed Central

    Schmitz, Sandra U; Albert, Mareike; Malatesta, Martina; Morey, Lluis; Johansen, Jens V; Bak, Mads; Tommerup, Niels; Abarrategui, Iratxe; Helin, Kristian

    2011-01-01

    H3K4 methylation is associated with active transcription and in combination with H3K27me3 thought to keep genes regulating development in a poised state. The contribution of enzymes regulating trimethylation of lysine 4 at histone 3 (H3K4me3) levels to embryonic stem cell (ESC) self-renewal and differentiation is just starting to emerge. Here, we show that the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) is dispensable for ESC self-renewal, but essential for ESC differentiation along the neural lineage. By genome-wide location analysis, we demonstrate that Jarid1b localizes predominantly to transcription start sites of genes encoding developmental regulators, of which more than half are also bound by Polycomb group proteins. Virtually all Jarid1b target genes are associated with H3K4me3 and depletion of Jarid1b in ESCs leads to a global increase of H3K4me3 levels. During neural differentiation, Jarid1b-depleted ESCs fail to efficiently silence lineage-inappropriate genes, specifically stem and germ cell genes. Our results delineate an essential role for Jarid1b-mediated transcriptional control during ESC differentiation. PMID:22020125

  16. Endocytic recycling protein EHD1 regulates primary cilia morphogenesis and SHH signaling during neural tube development

    PubMed Central

    Bhattacharyya, Sohinee; Rainey, Mark A; Arya, Priyanka; Dutta, Samikshan; George, Manju; Storck, Matthew D.; McComb, Rodney D.; Muirhead, David; Todd, Gordon L.; Gould, Karen; Datta, Kaustubh; Waes, Janee Gelineau-van; Band, Vimla; Band, Hamid

    2016-01-01

    Members of the four-member C-terminal EPS15-Homology Domain-containing (EHD) protein family play crucial roles in endocytic recycling of cell surface receptors from endosomes to the plasma membrane. In this study, we show that Ehd1 gene knockout in mice on a predominantly B6 background is embryonic lethal. Ehd1-null embryos die at mid-gestation with a failure to complete key developmental processes including neural tube closure, axial turning and patterning of the neural tube. We found that Ehd1-null embryos display short and stubby cilia on the developing neuroepithelium at embryonic day 9.5 (E9.5). Loss of EHD1 also deregulates the ciliary SHH signaling with Ehd1-null embryos displaying features indicative of increased SHH signaling, including a significant downregulation in the formation of the GLI3 repressor and increase in the ventral neuronal markers specified by SHH. Using Ehd1-null MEFS we found that EHD1 protein co-localizes with the SHH receptor Smoothened in the primary cilia upon ligand stimulation. Under the same conditions, EHD1 was shown to co-traffic with Smoothened into the developing primary cilia and we identify EHD1 as a direct binding partner of Smoothened. Overall, our studies identify the endocytic recycling regulator EHD1 as a novel regulator of the primary cilium-associated trafficking of Smoothened and Hedgehog signaling. PMID:26884322

  17. The endocannabinoid system and the regulation of neural development: potential implications in psychiatric disorders.

    PubMed

    Galve-Roperh, Ismael; Palazuelos, Javier; Aguado, Tania; Guzmán, Manuel

    2009-10-01

    During brain development, functional neurogenesis is achieved by the concerted action of various steps that include the expansion of progenitor cells, neuronal specification, and establishment of appropriate synapses. Brain patterning and regionalization is regulated by a variety of extracellular signals and morphogens that, together with neuronal activity, orchestrate and regulate progenitor proliferation, differentiation, and neuronal maturation. In the adult brain, CB(1) cannabinoid receptors are expressed at very high levels in selective areas and are engaged by endocannabinoids, which act as retrograde messengers controlling neuronal function and preventing excessive synaptic activity. In addition, the endocannabinoid system is present at early developmental stages of nervous system formation. Recent studies have provided novel information on the role of this endogenous neuromodulatory system in the control of neuronal specification and maturation. Thus, cannabinoid receptors and locally produced endocannabinoids regulate neural progenitor proliferation and pyramidal specification of projecting neurons. CB(1) receptors also control axonal navigation, migration, and positioning of interneurons and excitatory neurons. Loss of function studies by genetic ablation or pharmacological blockade of CB(1) receptors interferes with long-range subcortical projections and, likewise, prenatal cannabinoid exposure induces different functional alterations in the adult brain. Potential implications of these new findings, such as the participation of the endocannabinoid system in the pathogenesis of neurodevelopmental disorders (e.g., schizophrenia) and the regulation of neurogenesis in brain depression, are discussed herein.

  18. AP2γ regulates neural and epidermal development downstream of the BMP pathway at early stages of ectodermal patterning

    PubMed Central

    Qiao, Yunbo; Zhu, Yue; Sheng, Nengyin; Chen, Jun; Tao, Ran; Zhu, Qingqing; Zhang, Ting; Qian, Cheng; Jing, Naihe

    2012-01-01

    Bone morphogenetic protein (BMP) inhibits neural specification and induces epidermal differentiation during ectodermal patterning. However, the mechanism of this process is not well understood. Here we show that AP2γ, a transcription factor activator protein (AP)-2 family member, is upregulated by BMP4 during neural differentiation of pluripotent stem cells. Knockdown of AP2γ facilitates mouse embryonic stem cell (ESC) neural fate determination and impairs epidermal differentiation, whereas AP2γ overexpression inhibits neural conversion and promotes epidermal commitment. In the early chick embryo, AP2γ is expressed in the entire epiblast before HH stage 3 and gradually shifts to the putative epidermal ectoderm during HH stage 4. In the future neural plate AP2γ inhibits excessive neural expansion and it also promotes epidermal development in the surface ectoderm. Moreover, AP2γ knockdown in ESCs and chick embryos partially rescued the neural inhibition and epidermal induction effects of BMP4. Mechanistic studies showed that BMP4 directly regulates AP2γ expression through Smad1 binding to the AP2γ promoter. Taken together, we propose that during the early stages of ectodermal patterning in the chick embryo, AP2γ acts downstream of the BMP pathway to restrict precocious neural expansion in the prospective neural plate and initiates epidermal differentiation in the future epidermal ectoderm. PMID:22945355

  19. miR-430 regulates oriented cell division during neural tube development in zebrafish.

    PubMed

    Takacs, Carter M; Giraldez, Antonio J

    2016-01-15

    MicroRNAs have emerged as critical regulators of gene expression. Originally shown to regulate developmental timing, microRNAs have since been implicated in a wide range of cellular functions including cell identity, migration and signaling. miRNA-430, the earliest expressed microRNA during zebrafish embryogenesis, is required to undergo morphogenesis and has previously been shown to regulate maternal mRNA clearance, Nodal signaling, and germ cell migration. The functions of miR-430 in brain morphogenesis, however, remain unclear. Herein we find that miR-430 instructs oriented cell divisions in the neural rod required for neural midline formation. Loss of miR-430 function results in mitotic spindle misorientation in the neural rod, failed neuroepithelial integration after cell division, and ectopic cell accumulation in the dorsal neural tube. We propose that miR-430, independently of canonical apicobasal and planar cell polarity (PCP) pathways, coordinates the stereotypical cell divisions that instruct neural tube morphogenesis.

  20. BLOS2 negatively regulates Notch signaling during neural and hematopoietic stem and progenitor cell development

    PubMed Central

    Zhou, Wenwen; He, Qiuping; Zhang, Chunxia; He, Xin; Cui, Zongbin; Liu, Feng; Li, Wei

    2016-01-01

    Notch signaling plays a crucial role in controling the proliferation and differentiation of stem and progenitor cells during embryogenesis or organogenesis, but its regulation is incompletely understood. BLOS2, encoded by the Bloc1s2 gene, is a shared subunit of two lysosomal trafficking complexes, biogenesis of lysosome-related organelles complex-1 (BLOC-1) and BLOC-1-related complex (BORC). Bloc1s2−/− mice were embryonic lethal and exhibited defects in cortical development and hematopoiesis. Loss of BLOS2 resulted in elevated Notch signaling, which consequently increased the proliferation of neural progenitor cells and inhibited neuronal differentiation in cortices. Likewise, ablation of bloc1s2 in zebrafish or mice led to increased hematopoietic stem and progenitor cell production in the aorta-gonad-mesonephros region. BLOS2 physically interacted with Notch1 in endo-lysosomal trafficking of Notch1. Our findings suggest that BLOS2 is a novel negative player in regulating Notch signaling through lysosomal trafficking to control multiple stem and progenitor cell homeostasis in vertebrates. DOI: http://dx.doi.org/10.7554/eLife.18108.001 PMID:27719760

  1. Receptor Tyrosine Kinase Signaling: Regulating Neural Crest Development One Phosphate at a Time

    PubMed Central

    Fantauzzo, Katherine A.; Soriano, Philippe

    2015-01-01

    Receptor tyrosine kinases (RTKs) bind to a subset of growth factors on the surface of cells and elicit responses with broad roles in developmental and postnatal cellular processes. Receptors in this subclass consist of an extracellular ligand-binding domain, a single transmembrane domain, and an intracellular domain harboring a catalytic tyrosine kinase and regulatory sequences that are phosphorylated either by the receptor itself or various interacting proteins. Once activated, RTKs bind signaling molecules and recruit effector proteins to mediate downstream cellular responses through various intracellular signaling pathways. In this chapter, we will highlight the role of a subset of RTK families in regulating the activity of neural crest cells (NCCs) and the development of their derivatives in mammalian systems. NCCs are migratory, multipotent cells that can be subdivided into four axial populations, cranial, cardiac, vagal and trunk. These cells migrate throughout the vertebrate embryo along defined pathways and give rise to unique cell types and structures. Interestingly, individual RTK families often have specific functions in a subpopulation of NCCs that contribute to the diversity of these cells and their derivatives in the mammalian embryo. We will additionally discuss current methods used to investigate RTK signaling, including genetic, biochemical, large-scale proteomic and biosensor approaches, which can be applied to study intracellular signaling pathways active downstream of this receptor subclass during NCC development. PMID:25662260

  2. Fat1 interacts with Fat4 to regulate neural tube closure, neural progenitor proliferation and apical constriction during mouse brain development.

    PubMed

    Badouel, Caroline; Zander, Mark A; Liscio, Nicole; Bagherie-Lachidan, Mazdak; Sopko, Richelle; Coyaud, Etienne; Raught, Brian; Miller, Freda D; McNeill, Helen

    2015-08-15

    Mammalian brain development requires coordination between neural precursor proliferation, differentiation and cellular organization to create the intricate neuronal networks of the adult brain. Here, we examined the role of the atypical cadherins Fat1 and Fat4 in this process. We show that mutation of Fat1 in mouse embryos causes defects in cranial neural tube closure, accompanied by an increase in the proliferation of cortical precursors and altered apical junctions, with perturbations in apical constriction and actin accumulation. Similarly, knockdown of Fat1 in cortical precursors by in utero electroporation leads to overproliferation of radial glial precursors. Fat1 interacts genetically with the related cadherin Fat4 to regulate these processes. Proteomic analysis reveals that Fat1 and Fat4 bind different sets of actin-regulating and junctional proteins. In vitro data suggest that Fat1 and Fat4 form cis-heterodimers, providing a mechanism for bringing together their diverse interactors. We propose a model in which Fat1 and Fat4 binding coordinates distinct pathways at apical junctions to regulate neural progenitor proliferation, neural tube closure and apical constriction.

  3. Fat1 interacts with Fat4 to regulate neural tube closure, neural progenitor proliferation and apical constriction during mouse brain development

    PubMed Central

    Badouel, Caroline; Zander, Mark A.; Liscio, Nicole; Bagherie-Lachidan, Mazdak; Sopko, Richelle; Coyaud, Etienne; Raught, Brian; Miller, Freda D.; McNeill, Helen

    2015-01-01

    Mammalian brain development requires coordination between neural precursor proliferation, differentiation and cellular organization to create the intricate neuronal networks of the adult brain. Here, we examined the role of the atypical cadherins Fat1 and Fat4 in this process. We show that mutation of Fat1 in mouse embryos causes defects in cranial neural tube closure, accompanied by an increase in the proliferation of cortical precursors and altered apical junctions, with perturbations in apical constriction and actin accumulation. Similarly, knockdown of Fat1 in cortical precursors by in utero electroporation leads to overproliferation of radial glial precursors. Fat1 interacts genetically with the related cadherin Fat4 to regulate these processes. Proteomic analysis reveals that Fat1 and Fat4 bind different sets of actin-regulating and junctional proteins. In vitro data suggest that Fat1 and Fat4 form cis-heterodimers, providing a mechanism for bringing together their diverse interactors. We propose a model in which Fat1 and Fat4 binding coordinates distinct pathways at apical junctions to regulate neural progenitor proliferation, neural tube closure and apical constriction. PMID:26209645

  4. Semaphorin3A/neuropilin-1 signaling acts as a molecular switch regulating neural crest migration during cornea development

    PubMed Central

    Lwigale, Peter Y.; Bronner-Fraser, Marianne

    2009-01-01

    Cranial neural crest cells migrate into the periocular region and later contribute to various ocular tissues including the cornea, ciliary body and iris. After reaching the eye, they initially pause before migrating over the lens to form the cornea. Interestingly, removal of the lens leads to premature invasion and abnormal differentiation of the cornea. In exploring the molecular mechanisms underlying this effect, we find that semaphorin3A (Sema3A) is expressed in the lens placode and epithelium continuously throughout eye development. Interestingly, neuropilin-1 (Npn-1) is expressed by periocular neural crest but down-regulated, in a manner independent of the lens, by the subpopulation that migrates into the eye and gives rise to the cornea endothelium and stroma. In contrast, Npn-1 expressing neural crest remain in the periocular region and contribute to the anterior uvea and ocular blood vessels. Introduction of a peptide that inhibits Sema3A/Npn-1 signaling results in premature entry of neural crest cells over the lens that phenocopies lens ablation. Furthermore, Sema3A inhibits periocular neural crest migration in vitro. Taken together, our data reveal a novel and essential role of Sema3A/Npn-1 signaling in coordinating periocular neural crest migration that is vital for proper ocular development. PMID:19833121

  5. N-cadherin-based adherens junction regulates the maintenance, proliferation, and differentiation of neural progenitor cells during development

    PubMed Central

    Miyamoto, Yasunori; Sakane, Fumi; Hashimoto, Kei

    2015-01-01

    This review addresses our current understanding of the regulatory mechanism by which N-cadherin, a classical cadherin, affects neural progenitor cells (NPCs) during development. N-cadherin is responsible for the integrity of adherens junctions (AJs), which develop in the sub-apical region of NPCs in the neural tube and brain cortex. The apical domain, which contains the sub-apical region, is involved in the switching from symmetric proliferative division to asymmetric neurogenic division of NPCs. In addition, N-cadherin-based AJ is deeply involved in the apico-basal polarity of NPCs and the regulation of Wnt-β-catenin, hedgehog (Hh), and Notch signaling. In this review, we discuss the roles of N-cadherin in the maintenance, proliferation, and differentiation of NPCs through components of AJ, β-catenin and αE-catenin. PMID:25869655

  6. N-cadherin-based adherens junction regulates the maintenance, proliferation, and differentiation of neural progenitor cells during development.

    PubMed

    Miyamoto, Yasunori; Sakane, Fumi; Hashimoto, Kei

    2015-01-01

    This review addresses our current understanding of the regulatory mechanism by which N-cadherin, a classical cadherin, affects neural progenitor cells (NPCs) during development. N-cadherin is responsible for the integrity of adherens junctions (AJs), which develop in the sub-apical region of NPCs in the neural tube and brain cortex. The apical domain, which contains the sub-apical region, is involved in the switching from symmetric proliferative division to asymmetric neurogenic division of NPCs. In addition, N-cadherin-based AJ is deeply involved in the apico-basal polarity of NPCs and the regulation of Wnt-β-catenin, hedgehog (Hh), and Notch signaling. In this review, we discuss the roles of N-cadherin in the maintenance, proliferation, and differentiation of NPCs through components of AJ, β-catenin and αE-catenin. PMID:25869655

  7. The Niche Factor Syndecan-1 Regulates the Maintenance and Proliferation of Neural Progenitor Cells during Mammalian Cortical Development

    PubMed Central

    Wang, Qingjie; Yang, Landi; Alexander, Caroline; Temple, Sally

    2012-01-01

    Neural progenitor cells (NPCs) divide and differentiate in a precisely regulated manner over time to achieve the remarkable expansion and assembly of the layered mammalian cerebral cortex. Both intrinsic signaling pathways and environmental factors control the behavior of NPCs during cortical development. Heparan sulphate proteoglycans (HSPG) are critical environmental regulators that help modulate and integrate environmental cues and downstream intracellular signals. Syndecan-1 (Sdc1), a major transmembrane HSPG, is highly enriched in the early neural germinal zone, but its function in modulating NPC behavior and cortical development has not been explored. In this study we investigate the expression pattern and function of Sdc1 in the developing mouse cerebral cortex. We found that Sdc1 is highly expressed by cortical NPCs. Knockdown of Sdc1 in vivo by in utero electroporation reduces NPC proliferation and causes their premature differentiation, corroborated in isolated cells in vitro. We found that Sdc1 knockdown leads to reduced levels of β-catenin, indicating reduced canonical Wnt signaling. Consistent with this, GSK3β inhibition helps rescue the Sdc1 knockdown phenotype, partially restoring NPC number and proliferation. Moreover, exogenous Wnt protein promotes cortical NPC proliferation, but this is prevented by Sdc1 knockdown. Thus, Sdc1 in the germinal niche is a key HSPG regulating the maintenance and proliferation of NPCs during cortical neurogenesis, in part by modulating the ability of NPCs to respond to Wnt ligands. PMID:22936997

  8. Regulation of pre-otic brain development by the cephalic neural crest.

    PubMed

    Creuzet, Sophie E

    2009-09-15

    Emergence of the neural crest (NC) is considered an essential asset in the evolution of the chordate phylum, as specific vertebrate traits such as peripheral nervous system, cephalic skeletal tissues, and head development are linked to the NC and its derivatives. It has been proposed that the emergence of the NC was responsible for the formation of a "new head" characterized by the spectacular development of the forebrain and associated sense organs. It was previously shown that removal of the cephalic NC (CNC) prevents the formation of the facial structures but also results in anencephaly. This article reports on the molecular mechanisms whereby the CNC controls cephalic neurulation and brain morphogenesis. This study demonstrates that molecular variations of Gremlin and Noggin level in CNC account for morphological changes in brain size and development. CNC cells act in these processes through a multi-step control and exert cumulative effects counteracting bone morphogenetic protein signaling produced by the neighboring tissues (e.g., adjacent neuroepithelium, ventro-medial mesoderm, superficial ectoderm). These data provide an explanation for the fact that acquisition of the NC during the protochordate-to-vertebrate transition has coincided with a large increase of brain vesicles. PMID:19720987

  9. Temporal coherency between receptor expression, neural activity and AP-1-dependent transcription regulates Drosophila motoneuron dendrite development

    PubMed Central

    Vonhoff, Fernando; Kuehn, Claudia; Blumenstock, Sonja; Sanyal, Subhabrata; Duch, Carsten

    2013-01-01

    Neural activity has profound effects on the development of dendritic structure. Mechanisms that link neural activity to nuclear gene expression include activity-regulated factors, such as CREB, Crest or Mef2, as well as activity-regulated immediate-early genes, such as fos and jun. This study investigates the role of the transcriptional regulator AP-1, a Fos-Jun heterodimer, in activity-dependent dendritic structure development. We combine genetic manipulation, imaging and quantitative dendritic architecture analysis in a Drosophila single neuron model, the individually identified motoneuron MN5. First, Dα7 nicotinic acetylcholine receptors (nAChRs) and AP-1 are required for normal MN5 dendritic growth. Second, AP-1 functions downstream of activity during MN5 dendritic growth. Third, using a newly engineered AP-1 reporter we demonstrate that AP-1 transcriptional activity is downstream of Dα7 nAChRs and Calcium/calmodulin-dependent protein kinase II (CaMKII) signaling. Fourth, AP-1 can have opposite effects on dendritic development, depending on the timing of activation. Enhancing excitability or AP-1 activity after MN5 cholinergic synapses and primary dendrites have formed causes dendritic branching, whereas premature AP-1 expression or induced activity prior to excitatory synapse formation disrupts dendritic growth. Finally, AP-1 transcriptional activity and dendritic growth are affected by MN5 firing only during development but not in the adult. Our results highlight the importance of timing in the growth and plasticity of neuronal dendrites by defining a developmental period of activity-dependent AP-1 induction that is temporally locked to cholinergic synapse formation and dendritic refinement, thus significantly refining prior models derived from chronic expression studies. PMID:23293292

  10. Matrix regulators in neural stem cells functions

    PubMed Central

    Wade, Anna; McKinney, Andrew; Phillips, Joanna J.

    2014-01-01

    Background Neural stem/progenitor cells (NSPCs) reside within a complex and dynamic extracellular microenvironment, or niche. This niche regulates fundamental aspects of their behavior during normal neural development and repair. Precise yet dynamic regulation of NSPC self-renewal, migration, and differentiation is critical and must persist over the life of an organism. Scope of Review In this review, we summarize some of the major components of the NSPC niche and provide examples of how cues from the extracellular matrix regulate NSPC behaviors. We use proteoglycans to illustrate the many diverse roles of the niche in providing temporal and spatial regulation of cellular behavior. Major Conclusions The NSPC niche is comprised of multiple components that include; soluble ligands, such as growth factors, morphogens, chemokines, and neurotransmitters, the extracellular matrix, and cellular components. As illustrated by proteoglycans, a major component of the extracellular matrix, the NSPC niche provides temporal and spatial regulation of NSPC behaviors. General Significance The factors that control NSPC behavior are vital to understand as we attempt to modulate normal neural development and repair. Furthermore, an improved understanding of how these factors regulate cell proliferation, migration, and differentiation, crucial for malignancy, may reveal novel anti-tumor strategies. PMID:24447567

  11. MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex

    PubMed Central

    Zhang, Wei; Kim, Paul Jong; Chen, Zhongcan; Lokman, Hidayat; Qiu, Lifeng; Zhang, Ke; Rozen, Steven George; Tan, Eng King; Je, Hyunsoo Shawn; Zeng, Li

    2016-01-01

    During the development, tight regulation of the expansion of neural progenitor cells (NPCs) and their differentiation into neurons is crucial for normal cortical formation and function. In this study, we demonstrate that microRNA (miR)-128 regulates the proliferation and differentiation of NPCs by repressing pericentriolar material 1 (PCM1). Specifically, overexpression of miR-128 reduced NPC proliferation but promoted NPC differentiation into neurons both in vivo and in vitro. In contrast, the reduction of endogenous miR-128 elicited the opposite effects. Overexpression of miR-128 suppressed the translation of PCM1, and knockdown of endogenous PCM1 phenocopied the observed effects of miR-128 overexpression. Furthermore, concomitant overexpression of PCM1 and miR-128 in NPCs rescued the phenotype associated with miR-128 overexpression, enhancing neurogenesis but inhibiting proliferation, both in vitro and in utero. Taken together, these results demonstrate a novel mechanism by which miR-128 regulates the proliferation and differentiation of NPCs in the developing neocortex. DOI: http://dx.doi.org/10.7554/eLife.11324.001 PMID:26883496

  12. S-phase duration is the main target of cell cycle regulation in neural progenitors of developing ferret neocortex.

    PubMed

    Turrero García, Miguel; Chang, YoonJeung; Arai, Yoko; Huttner, Wieland B

    2016-02-15

    The evolutionary expansion of the neocortex primarily reflects increases in abundance and proliferative capacity of cortical progenitors and in the length of the neurogenic period during development. Cell cycle parameters of neocortical progenitors are an important determinant of cortical development. The ferret (Mustela putorius furo), a gyrencephalic mammal, has gained increasing importance as a model for studying corticogenesis. Here, we have studied the abundance, proliferation, and cell cycle parameters of different neural progenitor types, defined by their differential expression of the transcription factors Pax6 and Tbr2, in the various germinal zones of developing ferret neocortex. We focused our analyses on postnatal day 1, a late stage of cortical neurogenesis when upper-layer neurons are produced. Based on cumulative 5-ethynyl-2'-deoxyuridine (EdU) labeling as well as Ki67 and proliferating cell nuclear antigen (PCNA) immunofluorescence, we determined the duration of the various cell cycle phases of the different neocortical progenitor subpopulations. Ferret neocortical progenitors were found to exhibit longer cell cycles than those of rodents and little variation in the duration of G1 among distinct progenitor types, also in contrast to rodents. Remarkably, the main difference in cell cycle parameters among the various progenitor types was the duration of S-phase, which became shorter as progenitors progressively changed transcription factor expression from patterns characteristic of self-renewal to those of neuron production. Hence, S-phase duration emerges as major target of cell cycle regulation in cortical progenitors of this gyrencephalic mammal.

  13. Focal adhesion kinase protein regulates Wnt3a gene expression to control cell fate specification in the developing neural plate

    PubMed Central

    Fonar, Yuri; Gutkovich, Yoni E.; Root, Heather; Malyarova, Anastasia; Aamar, Emil; Golubovskaya, Vita M.; Elias, Sarah; Elkouby, Yaniv M.; Frank, Dale

    2011-01-01

    Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase protein localized to regions called focal adhesions, which are contact points between cells and the extracellular matrix. FAK protein acts as a scaffold to transfer adhesion-dependent and growth factor signals into the cell. Increased FAK expression is linked to aggressive metastatic and invasive tumors. However, little is known about its normal embryonic function. FAK protein knockdown during early Xenopus laevis development anteriorizes the embryo. Morphant embryos express increased levels of anterior neural markers, with reciprocally reduced posterior neural marker expression. Posterior neural plate folding and convergence-extension is also inhibited. This anteriorized phenotype resembles that of embryos knocked down zygotically for canonical Wnt signaling. FAK and Wnt3a genes are both expressed in the neural plate, and Wnt3a expression is FAK dependent. Ectopic Wnt expression rescues this FAK morphant anteriorized phenotype. Wnt3a thus acts downstream of FAK to balance anterior–posterior cell fate specification in the developing neural plate. Wnt3a gene expression is also FAK dependent in human breast cancer cells, suggesting that this FAK–Wnt linkage is highly conserved. This unique observation connects the FAK- and Wnt-signaling pathways, both of which act to promote cancer when aberrantly activated in mammalian cells. PMID:21551070

  14. Sonic hedgehog signaling coordinates the proliferation and differentiation of neural stem/progenitor cells by regulating cell cycle kinetics during development of the neocortex.

    PubMed

    Komada, Munekazu

    2012-06-01

    Sonic hedgehog (Shh) acts as a morphogen in normal development of various vertebrate tissues and organs. Shh signaling is essential for patterning and cell-fate specification, particularly in the central nervous system. Shh signaling plays different roles depending on its concentration, area, and timing of exposure. During the development of the neocortex, a low level of Shh is expressed in the neural stem/progenitor cells as well as in mature neurons in the dorsal telencephalon. Shh signaling in neocortex development has been shown to regulate cell cycle kinetics of radial glial cells and intermediate progenitor cells, thereby maintaining the proliferation, survival and differentiation of neurons in the neocortex. During the development of the telencephalon, endogenous Shh signaling is involved in the transition of slow-cycling neural stem cells to fast-cycling neural progenitor cells. It seems that high-level Shh signaling in the ventral telencephalon is essential for ventral specification, while low-level Shh signaling in the dorsal telencephalon plays important roles in the fine-tuning of cell cycle kinetics. The Shh levels and multiple functions of Shh signaling are important for proper corticogenesis in the developing brain. The present paper discusses the roles of Shh signaling in the proliferation and differentiation of neural stem/progenitor cells.

  15. Neural circuits: Interacting interneurons regulate fear learning.

    PubMed

    Ozawa, Takaaki; Johansen, Joshua P

    2014-08-01

    A recent study has found that, during associative fear learning, different sensory stimuli activate subsets of inhibitory interneurons in distinct ways to dynamically regulate glutamatergic neural activity and behavioral memory formation. PMID:25093560

  16. Neural network regulation driven by autonomous neural firings

    NASA Astrophysics Data System (ADS)

    Cho, Myoung Won

    2016-07-01

    Biological neurons naturally fire spontaneously due to the existence of a noisy current. Such autonomous firings may provide a driving force for network formation because synaptic connections can be modified due to neural firings. Here, we study the effect of autonomous firings on network formation. For the temporally asymmetric Hebbian learning, bidirectional connections lose their balance easily and become unidirectional ones. Defining the difference between reciprocal connections as new variables, we could express the learning dynamics as if Ising model spins interact with each other in magnetism. We present a theoretical method to estimate the interaction between the new variables in a neural system. We apply the method to some network systems and find some tendencies of autonomous neural network regulation.

  17. A Nonsynonymous Mutation in the Transcriptional Regulator lbh Is Associated with Cichlid Craniofacial Adaptation and Neural Crest Cell Development

    PubMed Central

    Powder, Kara E.; Cousin, Hélène; McLinden, Gretchen P.; Craig Albertson, R.

    2014-01-01

    Since the time of Darwin, biologists have sought to understand the origins and maintenance of life’s diversity of form. However, the nature of the exact DNA mutations and molecular mechanisms that result in morphological differences between species remains unclear. Here, we characterize a nonsynonymous mutation in a transcriptional coactivator, limb bud and heart homolog (lbh), which is associated with adaptive variation in the lower jaw of cichlid fishes. Using both zebrafish and Xenopus, we demonstrate that lbh mediates migration of cranial neural crest cells, the cellular source of the craniofacial skeleton. A single amino acid change that is alternatively fixed in cichlids with differing facial morphologies results in discrete shifts in migration patterns of this multipotent cell type that are consistent with both embryological and adult craniofacial phenotypes. Among animals, this polymorphism in lbh represents a rare example of a coding change that is associated with continuous morphological variation. This work offers novel insights into the development and evolution of the craniofacial skeleton, underscores the evolutionary potential of neural crest cells, and extends our understanding of the genetic nature of mutations that underlie divergence in complex phenotypes. PMID:25234704

  18. The neural bases of emotion regulation.

    PubMed

    Etkin, Amit; Büchel, Christian; Gross, James J

    2015-11-01

    Emotions are powerful determinants of behaviour, thought and experience, and they may be regulated in various ways. Neuroimaging studies have implicated several brain regions in emotion regulation, including the ventral anterior cingulate and ventromedial prefrontal cortices, as well as the lateral prefrontal and parietal cortices. Drawing on computational approaches to value-based decision-making and reinforcement learning, we propose a unifying conceptual framework for understanding the neural bases of diverse forms of emotion regulation. PMID:26481098

  19. Neural regulation of hematopoiesis, inflammation and cancer

    PubMed Central

    Hanoun, Maher; Maryanovich, Maria; Arnal-Estapé, Anna; Frenette, Paul S.

    2015-01-01

    Although the function of the autonomic nervous system (ANS) in mediating the “flight-or-fight” response was recognized decades ago, the crucial role of peripheral innervation in regulating cell behavior and response to the microenvironment has only recently emerged. In the hematopoietic system, the ANS regulates stem cell niche homeostasis, regeneration and fine-tunes the inflammatory response. Additionally, emerging data suggest that cancer cells take advantage of innervating neural circuitry to promote their progression. These new discoveries outline the need to redesign therapeutic strategies to target this underappreciated stromal constituent. Here, we review the importance of neural signaling in hematopoietic homeostasis, inflammation and cancer. PMID:25905810

  20. Regulation of the neural niche by the soluble molecule Akhirin.

    PubMed

    Acharjee, Uzzal Kumar; Felemban, Athary Abdulhaleem; Riyadh, Asrafuzzaman M; Ohta, Kunimasa

    2016-06-01

    Though the adult central nervous system has been considered a comparatively static tissue with little turnover, it is well established today that new neural cells are generated throughout life. Neural stem/progenitor cells (NS/PCs) can self-renew and generate all types of neural cells. The proliferation of NS/PCs, and differentiation and fate determination of PCs are regulated by extrinsic factors such as growth factors, neurotrophins, and morphogens. Although several extrinsic factors that influence neurogenesis have already been reported, little is known about the role of soluble molecules in neural niche regulation. In this review, we will introduce the soluble molecule Akhirin and discuss its role in the eye and spinal cord during development.

  1. Neural-Network-Development Program

    NASA Technical Reports Server (NTRS)

    Phillips, Todd A.

    1993-01-01

    NETS, software tool for development and evaluation of neural networks, provides simulation of neural-network algorithms plus computing environment for development of such algorithms. Uses back-propagation learning method for all of networks it creates. Enables user to customize patterns of connections between layers of network. Also provides features for saving, during learning process, values of weights, providing more-precise control over learning process. Written in ANSI standard C language. Machine-independent version (MSC-21588) includes only code for command-line-interface version of NETS 3.0.

  2. miR-381 Regulates Neural Stem Cell Proliferation and Differentiation via Regulating Hes1 Expression

    PubMed Central

    Liu, Baoquan; Yang, Chunxiao; Nie, Xuedan; Wang, Xiaokun; Zheng, Jiaolin; Wang, Yue; Zhu, Yulan

    2015-01-01

    Neural stem cells are self-renewing, multipotent and undifferentiated precursors that retain the capacity for differentiation into both glial (astrocytes and oligodendrocytes) and neuronal lineages. Neural stem cells offer cell-based therapies for neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease and spinal cord injuries. However, their cellular behavior is poorly understood. MicroRNAs (miRNAs) are a class of small noncoding RNAs involved in cell development, proliferation and differentiation through regulating gene expression at post-transcriptional level. The role of miR–381 in the development of neural stem cells remains unknown. In this study, we showed that overexpression of miR–381 promoted neural stem cells proliferation. It induced the neural stem cells differentiation to neurons and inhibited their differentiation to astrocytes. Furthermore, we identified HES1 as a direct target of miR–381 in neural stem cells. Moreover, re-expression of HES1 impaired miR-381-induced promotion of neural stem cells proliferation and induce neural stem cells differentiation to neurons. In conclusion, miR–381 played important role in neural stem cells proliferation and differentiation. PMID:26431046

  3. Self-regulation via neural simulation.

    PubMed

    Gilead, Michael; Boccagno, Chelsea; Silverman, Melanie; Hassin, Ran R; Weber, Jochen; Ochsner, Kevin N

    2016-09-01

    Can taking the perspective of other people modify our own affective responses to stimuli? To address this question, we examined the neurobiological mechanisms supporting the ability to take another person's perspective and thereby emotionally experience the world as they would. We measured participants' neural activity as they attempted to predict the emotional responses of two individuals that differed in terms of their proneness to experience negative affect. Results showed that behavioral and neural signatures of negative affect (amygdala activity and a distributed multivoxel pattern reflecting affective negativity) simulated the presumed affective state of the target person. Furthermore, the anterior medial prefrontal cortex (mPFC)-a region implicated in mental state inference-exhibited a perspective-dependent pattern of connectivity with the amygdala, and the multivoxel pattern of activity within the mPFC differentiated between the two targets. We discuss the implications of these findings for research on perspective-taking and self-regulation. PMID:27551094

  4. CDK7 and miR-210 Co-regulate Cell-Cycle Progression of Neural Progenitors in the Developing Neocortex.

    PubMed

    Abdullah, Aisha I; Zhang, Haijun; Nie, Yanzhen; Tang, Wei; Sun, Tao

    2016-07-12

    The molecular mechanisms regulating neural progenitor (NP) proliferation are fundamental in establishing the cytoarchitecture of the mammalian neocortex. The rate of cell-cycle progression and a fine-tuned balance between cell-cycle re-entry and exit determine the numbers of both NPs and neurons as well as postmitotic neuronal laminar distribution in the cortical wall. Here, we demonstrate that the microRNA (miRNA) miR-210 is required for normal mouse NP cell-cycle progression. Overexpression of miR-210 promotes premature cell-cycle exit and terminal differentiation in NPs, resulting in an increase in early-born postmitotic neurons. Conversely, miR-210 knockdown promotes an increase in the radial glial cell population and delayed differentiation, resulting in an increase in late-born postmitotic neurons. Moreover, the cyclin-dependent kinase CDK7 is regulated by miR-210 and is necessary for normal NP cell-cycle progression. Our findings demonstrate that miRNAs are essential for normal NP proliferation and cell-cycle progress during neocortical development. PMID:27411104

  5. Perineuronal net, CSPG receptor and their regulation of neural plasticity.

    PubMed

    Miao, Qing-Long; Ye, Qian; Zhang, Xiao-Hui

    2014-08-25

    Perineuronal nets (PNNs) are reticular structures resulting from the aggregation of extracellular matrix (ECM) molecules around the cell body and proximal neurite of specific population of neurons in the central nervous system (CNS). Since the first description of PNNs by Camillo Golgi in 1883, the molecular composition, developmental formation and potential functions of these specialized extracellular matrix structures have only been intensively studied over the last few decades. The main components of PNNs are hyaluronan (HA), chondroitin sulfate proteoglycans (CSPGs) of the lectican family, link proteins and tenascin-R. PNNs appear late in neural development, inversely correlating with the level of neural plasticity. PNNs have long been hypothesized to play a role in stabilizing the extracellular milieu, which secures the characteristic features of enveloped neurons and protects them from the influence of malicious agents. Aberrant PNN signaling can lead to CNS dysfunctions like epilepsy, stroke and Alzheimer's disease. On the other hand, PNNs create a barrier which constrains the neural plasticity and counteracts the regeneration after nerve injury. Digestion of PNNs with chondroitinase ABC accelerates functional recovery from the spinal cord injury and restores activity-dependent mechanisms for modifying neuronal connections in the adult animals, indicating that PNN is an important regulator of neural plasticity. Here, we review recent progress in the studies on the formation of PNNs during early development and the identification of CSPG receptor - an essential molecular component of PNN signaling, along with a discussion on their unique regulatory roles in neural plasticity.

  6. Neural regulation of intestinal nutrient absorption.

    PubMed

    Mourad, Fadi H; Saadé, Nayef E

    2011-10-01

    The nervous system and the gastrointestinal (GI) tract share several common features including reciprocal interconnections and several neurotransmitters and peptides known as gut peptides, neuropeptides or hormones. The processes of digestion, secretion of digestive enzymes and then absorption are regulated by the neuro-endocrine system. Luminal glucose enhances its own absorption through a neuronal reflex that involves capsaicin sensitive primary afferent (CSPA) fibres. Absorbed glucose stimulates insulin release that activates hepatoenteric neural pathways leading to an increase in the expression of glucose transporters. Adrenergic innervation increases glucose absorption through α1 and β receptors and decreases absorption through activation of α2 receptors. The vagus nerve plays an important role in the regulation of diurnal variation in transporter expression and in anticipation to food intake. Vagal CSPAs exert tonic inhibitory effects on amino acid absorption. It also plays an important role in the mediation of the inhibitory effect of intestinal amino acids on their own absorption at the level of proximal or distal segment. However, chronic extrinsic denervation leads to a decrease in intestinal amino acid absorption. Conversely, adrenergic agonists as well as activation of CSPA fibres enhance peptides uptake through the peptide transporter PEPT1. Finally, intestinal innervation plays a minimal role in the absorption of fat digestion products. Intestinal absorption of nutrients is a basic vital mechanism that depends essentially on the function of intestinal mucosa. However, intrinsic and extrinsic neural mechanisms that rely on several redundant loops are involved in immediate and long-term control of the outcome of intestinal function.

  7. Ulk4 Regulates Neural Stem Cell Pool.

    PubMed

    Liu, Min; Guan, Zhenlong; Shen, Qin; Flinter, Frances; Domínguez, Laura; Ahn, Joo Wook; Collier, David A; O'Brien, Timothy; Shen, Sanbing

    2016-09-01

    The size of neural stem cell (NSC) pool at birth determines the starting point of adult neurogenesis. Aberrant neurogenesis is associated with major mental illness, in which ULK4 is proposed as a rare risk factor. Little is known about factors regulating the NSC pool, or function of the ULK4. Here, we showed that Ulk4(tm1a/tm1a) mice displayed a dramatically reduced NSC pool at birth. Ulk4 was expressed in a cell cycle-dependent manner and peaked in G2/M phases. Targeted disruption of the Ulk4 perturbed mid-neurogenesis and significantly reduced cerebral cortex in postnatal mice. Pathway analyses of dysregulated genes in Ulk4(tm1a/tm1a) mice revealed Ulk4 as a key regulator of cell cycle and NSC proliferation, partially through regulation of the Wnt signaling. In addition, we identified hemizygous deletion of ULK4 gene in 1.2/1,000 patients with pleiotropic symptoms including severe language delay and learning difficulties. ULK4, therefore, may significantly contribute to neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Stem Cells 2016;34:2318-2331.

  8. Ulk4 Regulates Neural Stem Cell Pool.

    PubMed

    Liu, Min; Guan, Zhenlong; Shen, Qin; Flinter, Frances; Domínguez, Laura; Ahn, Joo Wook; Collier, David A; O'Brien, Timothy; Shen, Sanbing

    2016-09-01

    The size of neural stem cell (NSC) pool at birth determines the starting point of adult neurogenesis. Aberrant neurogenesis is associated with major mental illness, in which ULK4 is proposed as a rare risk factor. Little is known about factors regulating the NSC pool, or function of the ULK4. Here, we showed that Ulk4(tm1a/tm1a) mice displayed a dramatically reduced NSC pool at birth. Ulk4 was expressed in a cell cycle-dependent manner and peaked in G2/M phases. Targeted disruption of the Ulk4 perturbed mid-neurogenesis and significantly reduced cerebral cortex in postnatal mice. Pathway analyses of dysregulated genes in Ulk4(tm1a/tm1a) mice revealed Ulk4 as a key regulator of cell cycle and NSC proliferation, partially through regulation of the Wnt signaling. In addition, we identified hemizygous deletion of ULK4 gene in 1.2/1,000 patients with pleiotropic symptoms including severe language delay and learning difficulties. ULK4, therefore, may significantly contribute to neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Stem Cells 2016;34:2318-2331. PMID:27300315

  9. Ancestral network module regulating prdm1 expression in the lamprey neural plate border

    PubMed Central

    Nikitina, Natalya; Tong, Leslie; Bronner-Fraser, Marianne

    2012-01-01

    prdm1 is an important transcriptional regulator that plays diverse roles during development of a wide variety of vertebrate and invertebrate species. prdm1 is required for neural crest specification in zebrafish, but not in mouse embryos. The role of this gene in neural crest formation in other species has not been examined, and its regulation during embryonic development is poorly understood. Here, we investigate the expression pattern, function and the upstream regulatory inputs into prdm1 during lamprey neural crest development. prdm1 is strongly expressed in the lamprey neural plate border, suggesting a conserved ancestral role of this gene in the neural crest formation. We found that lamprey neural plate border expression of prdm1 is activated by Ap-2 and Msx, but is independent of Pax3/7 and Zic. PMID:21932309

  10. Cardiovascular Development and the Colonizing Cardiac Neural Crest Lineage

    PubMed Central

    Snider, Paige; Olaopa, Michael; Firulli, Anthony B.

    2008-01-01

    Although it is well established that transgenic manipulation of mammalian neural crest-related gene expression and microsurgical removal of premigratory chicken and Xenopus embryonic cardiac neural crest progenitors results in a wide spectrum of both structural and functional congenital heart defects, the actual functional mechanism of the cardiac neural crest cells within the heart is poorly understood. Neural crest cell migration and appropriate colonization of the pharyngeal arches and outflow tract septum is thought to be highly dependent on genes that regulate cell-autonomous polarized movement (i.e., gap junctions, cadherins, and noncanonical Wnt1 pathway regulators). Once the migratory cardiac neural crest subpopulation finally reaches the heart, they have traditionally been thought to participate in septation of the common outflow tract into separate aortic and pulmonary arteries. However, several studies have suggested these colonizing neural crest cells may also play additional unexpected roles during cardiovascular development and may even contribute to a crest-derived stem cell population. Studies in both mice and chick suggest they can also enter the heart from the venous inflow as well as the usual arterial outflow region, and may contribute to the adult semilunar and atrioventricular valves as well as part of the cardiac conduction system. Furthermore, although they are not usually thought to give rise to the cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio) can contribute to the myocardium and may have different functions in a species-dependent context. Intriguingly, both ablation of chick and Xenopus premigratory neural crest cells, and a transgenic deletion of mouse neural crest cell migration or disruption of the normal mammalian neural crest gene expression profiles, disrupts ventral myocardial function and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac neural crest secrete factor/s that

  11. Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders

    PubMed Central

    Wilcox, Claire E.; Pommy, Jessica M.; Adinoff, Bryon

    2016-01-01

    Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders

  12. Neural regulation of pupariation in tsetse larvae.

    PubMed

    Zdárek, J; Denlinger, D L

    1992-12-01

    A neural mechanism coordinates pupariation behavior and tanning in the tsetse larva. At parturition, the mature larva has already received sufficient ecdysteroid to commit the epidermal cells to metamorphosis but, before sclerotization and tanning of the cuticle can begin, the larva must first select a pupariation site and then proceed through a stereotypic sequence of pupariation behavior that culminates in the formation of a smooth, ovoid puparium. Both pupariation behavior and tanning are inhibited by the central nervous system (CNS) during the wandering phase. This central inhibition is maintained by sensory input originating in the extreme posterior region of the body. At the transition from wandering to pupariation, the posterior signal that induces inhibition of pupariation behavior is removed and the larva begins the contractions associated with pupariation, but the CNS inhibition of tanning persists. At this point, separation of the body into two halves by ligation or nerve transection prevents tanning of the anterior half (containing the CNS), whereas the denervated integument of the posterior half tans completely. Transection of nerves to the midline of the body produces larvae with a tanning pattern that ends abruptly along a sagittal plane, implying that the central control of this process is uncoupled between the left and right regions of the CNS. A few minutes later, when the final shape of the puparium is completed, the CNS inhibition is lifted and the tanning process begins. At this time, separation of the body into two halves by ligation or nerve transection has no inhibitory effects on either part. Exogenous ecdysteroids fail to release the CNS inhibition, and hemolymph containing the pupariation factors from Sarcophaga bullata have no accelerating effects on tsetse pupariation. These results imply that regulation of metamorphosis in the insect integument is not the exclusive domain of blood-borne hormones.

  13. SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos.

    PubMed

    Wu, Mary Y; Ramel, Marie-Christine; Howell, Michael; Hill, Caroline S

    2011-01-01

    Bone morphogenetic protein (BMP) gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate border formation and

  14. Neural Network Development Tool (NETS)

    NASA Technical Reports Server (NTRS)

    Baffes, Paul T.

    1990-01-01

    Artificial neural networks formed from hundreds or thousands of simulated neurons, connected in manner similar to that in human brain. Such network models learning behavior. Using NETS involves translating problem to be solved into input/output pairs, designing network configuration, and training network. Written in C.

  15. Neural progenitor cells regulate microglia functions and activity.

    PubMed

    Mosher, Kira I; Andres, Robert H; Fukuhara, Takeshi; Bieri, Gregor; Hasegawa-Moriyama, Maiko; He, Yingbo; Guzman, Raphael; Wyss-Coray, Tony

    2012-11-01

    We found mouse neural progenitor cells (NPCs) to have a secretory protein profile distinct from other brain cells and to modulate microglial activation, proliferation and phagocytosis. NPC-derived vascular endothelial growth factor was necessary and sufficient to exert at least some of these effects in mice. Thus, neural precursor cells may not only be shaped by microglia, but also regulate microglia functions and activity.

  16. Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating Gbx2 expression in the pharyngeal ectoderm

    PubMed Central

    Calmont, Amélie; Ivins, Sarah; Van Bueren, Kelly Lammerts; Papangeli, Irinna; Kyriakopoulou, Vanessa; Andrews, William D.; Martin, James F.; Moon, Anne M.; Illingworth, Elizabeth A.; Basson, M. Albert; Scambler, Peter J.

    2009-01-01

    Summary Elucidating the gene regulatory networks that govern pharyngeal arch artery (PAA) development is an important goal, as such knowledge can help to identify new genes involved in cardiovascular disease. The transcription factor Tbx1 plays a vital role in PAA development and is a major contributor to cardiovascular disease associated with DiGeorge syndrome. In this report, we used various genetic approaches to reveal part of a signalling network by which Tbx1 controls PAA development in mice. We investigated the crucial role played by the homeobox-containing transcription factor Gbx2 downstream of Tbx1. We found that PAA formation requires the pharyngeal surface ectoderm as a key signalling centre from which Gbx2, in response to Tbx1, triggers essential directional cues to the adjacent cardiac neural crest cells (cNCCs) en route to the caudal PAAs. Abrogation of this signal generates cNCC patterning defects leading to PAA abnormalities. Finally, we showed that the Slit/Robo signalling pathway is activated during cNCC migration and that components of this pathway are affected in Gbx2 and Tbx1 mutant embryos at the time of PAA development. We propose that the spatiotemporal control of this tightly orchestrated network of genes participates in crucial aspects of PAA development. PMID:19700621

  17. NrCAM regulating neural systems and addiction related behaviors

    PubMed Central

    Ishiguro, Hiroki; Hall, Frank S.; Horiuchi, Yasue; Sakurai, Takeshi; Hishimoto, Akitoyo; Grumet, Martin; Uhl, George R.; Onaivi, Emmanuel S.; Arinami, Tadao

    2012-01-01

    We have previously shown that a haplotype associated with decreased NrCAM expression in brain is protective against addiction vulnerability for polysubstance abuse in humans and that Nrcam knockout mice do not develop conditioned place preferences for morphine, cocaine, or amphetamine. In order to gain insight into NrCAM involvement in addiction vulnerability, which may involve specific neural circuits underlying behavioral characteristics relevant to addiction, we evaluated several behavioral phenotypes in Nrcam knockout mice. Consistent with a potential general reduction in motivational function, Nrcam knockout mice demonstrated less curiosity for novel objects and for an unfamiliar conspecific, showed also less anxiety in the zero maze. Nrcam heterozygote knockout mice reduced alcohol preference and buried fewer marbles in home cage. These observations provide further support for a role of NrCAM in substance abuse including alcoholism vulnerability, possibly through its effects on behavioral traits that may affect addiction vulnerability, including novelty seeking, obsessive compulsion and responses to aversive or anxiety-provoking stimuli. Additionally, in order to prove glutamate homeostasis hypothesis of addiction, we analyzed glutamatergic molecules regulated by NRCAM. Glutaminase appears to be involved in NrCAM-related molecular pathway in two different tissues from human and mouse. An inhibitor of the enzyme, PLG, treatment produced, at least, some of the phenotypes of mice shown in alcohol preference and in anxiety-like behavior. Thus, NrCAM could affect addiction-related behaviors via at least partial modulation of some glutamatargic pathways and neural function in brain. PMID:22780223

  18. Neural Crest Development in Fetal Alcohol Syndrome

    PubMed Central

    Smith, Susan M.; Garic, Ana; Flentke, George R.; Berres, Mark E.

    2016-01-01

    Fetal alcohol spectrum disorder (FASD) is a leading cause of neurodevelopmental disability. Some affected individuals possess distinctive craniofacial deficits, but many more lack overt facial changes. An understanding of the mechanisms underlying these deficits would inform their diagnostic utility. Our understanding of these mechanisms is challenged because ethanol lacks a single receptor when redirecting cellular activity. This review summarizes our current understanding of how ethanol alters neural crest development. Ample evidence shows that ethanol causes the “classic” fetal alcohol syndrome (FAS) face (short palpebral fissures, elongated upper lip, deficient philtrum) because it suppresses prechordal plate outgrowth, thereby reducing neuroectoderm and neural crest induction and causing holoprosencephaly. Prenatal alcohol exposure (PAE) at premigratory stages elicits a different facial appearance, indicating FASD may represent a spectrum of facial outcomes. PAE at this premigratory period initiates a calcium transient that activates CaMKII and destabilizes transcriptionally active β-catenin, thereby initiating apoptosis within neural crest populations. Contributing to neural crest vulnerability are their low antioxidant responses. Ethanol-treated neural crest produce reactive oxygen species, and free radical scavengers attenuate their production and prevent apoptosis. Ethanol also significantly impairs neural crest migration, causing cytoskeletal rearrangements that destabilize focal adhesion formation; their directional migratory capacity is also lost. Genetic factors further modify vulnerability to ethanol-induced craniofacial dysmorphology, and include genes important for neural crest development including shh signaling, PDFGA, vangl2, and ribosomal biogenesis. Because facial and brain development are mechanistically and functionally linked, research into ethanol’s effects on neural crest also informs our understanding of ethanol’s CNS pathologies

  19. Neural crest development in fetal alcohol syndrome.

    PubMed

    Smith, Susan M; Garic, Ana; Flentke, George R; Berres, Mark E

    2014-09-01

    Fetal alcohol spectrum disorder (FASD) is a leading cause of neurodevelopmental disability. Some affected individuals possess distinctive craniofacial deficits, but many more lack overt facial changes. An understanding of the mechanisms underlying these deficits would inform their diagnostic utility. Our understanding of these mechanisms is challenged because ethanol lacks a single receptor when redirecting cellular activity. This review summarizes our current understanding of how ethanol alters neural crest development. Ample evidence shows that ethanol causes the "classic" fetal alcohol syndrome (FAS) face (short palpebral fissures, elongated upper lip, deficient philtrum) because it suppresses prechordal plate outgrowth, thereby reducing neuroectoderm and neural crest induction and causing holoprosencephaly. Prenatal alcohol exposure (PAE) at premigratory stages elicits a different facial appearance, indicating FASD may represent a spectrum of facial outcomes. PAE at this premigratory period initiates a calcium transient that activates CaMKII and destabilizes transcriptionally active β-catenin, thereby initiating apoptosis within neural crest populations. Contributing to neural crest vulnerability are their low antioxidant responses. Ethanol-treated neural crest produce reactive oxygen species and free radical scavengers attenuate their production and prevent apoptosis. Ethanol also significantly impairs neural crest migration, causing cytoskeletal rearrangements that destabilize focal adhesion formation; their directional migratory capacity is also lost. Genetic factors further modify vulnerability to ethanol-induced craniofacial dysmorphology and include genes important for neural crest development, including shh signaling, PDFGA, vangl2, and ribosomal biogenesis. Because facial and brain development are mechanistically and functionally linked, research into ethanol's effects on neural crest also informs our understanding of ethanol's CNS pathologies.

  20. Neural crest development in fetal alcohol syndrome.

    PubMed

    Smith, Susan M; Garic, Ana; Flentke, George R; Berres, Mark E

    2014-09-01

    Fetal alcohol spectrum disorder (FASD) is a leading cause of neurodevelopmental disability. Some affected individuals possess distinctive craniofacial deficits, but many more lack overt facial changes. An understanding of the mechanisms underlying these deficits would inform their diagnostic utility. Our understanding of these mechanisms is challenged because ethanol lacks a single receptor when redirecting cellular activity. This review summarizes our current understanding of how ethanol alters neural crest development. Ample evidence shows that ethanol causes the "classic" fetal alcohol syndrome (FAS) face (short palpebral fissures, elongated upper lip, deficient philtrum) because it suppresses prechordal plate outgrowth, thereby reducing neuroectoderm and neural crest induction and causing holoprosencephaly. Prenatal alcohol exposure (PAE) at premigratory stages elicits a different facial appearance, indicating FASD may represent a spectrum of facial outcomes. PAE at this premigratory period initiates a calcium transient that activates CaMKII and destabilizes transcriptionally active β-catenin, thereby initiating apoptosis within neural crest populations. Contributing to neural crest vulnerability are their low antioxidant responses. Ethanol-treated neural crest produce reactive oxygen species and free radical scavengers attenuate their production and prevent apoptosis. Ethanol also significantly impairs neural crest migration, causing cytoskeletal rearrangements that destabilize focal adhesion formation; their directional migratory capacity is also lost. Genetic factors further modify vulnerability to ethanol-induced craniofacial dysmorphology and include genes important for neural crest development, including shh signaling, PDFGA, vangl2, and ribosomal biogenesis. Because facial and brain development are mechanistically and functionally linked, research into ethanol's effects on neural crest also informs our understanding of ethanol's CNS pathologies. PMID

  1. Neural networks for combined control of capacitor banks and voltage regulators in distribution systems

    SciTech Connect

    Gu, Z.; Rizy, D.T.

    1996-02-01

    A neural network for controlling shunt capacitor banks and feeder voltage regulators in electric distribution systems is presented. The objective of the neural controller is to minimize total I{sup 2}R losses and maintain all bus voltages within standard limits. The performance of the neural network for different input selections and training data is discussed and compared. Two different input selections are tried, one using the previous control states of the capacitors and regulator along with measured line flows and voltage which is equivalent to having feedback and the other with measured line flows and voltage without previous control settings. The results indicate that the neural net controller with feedback can outperform the one without. Also, proper selection of a training data set that adequately covers the operating space of the distribution system is important for achieving satisfactory performance with the neural controller. The neural controller is tested on a radially configured distribution system with 30 buses, 5 switchable capacitor banks an d one nine tap line regulator to demonstrate the performance characteristics associated with these principles. Monte Carlo simulations show that a carefully designed and relatively compact neural network with a small but carefully developed training set can perform quite well under slight and extreme variation of loading conditions.

  2. Neural differentiation and synaptogenesis in retinal development

    PubMed Central

    Fan, Wen-juan; Li, Xue; Yao, Huan-ling; Deng, Jie-xin; Liu, Hong-liang; Cui, Zhan-jun; Wang, Qiang; Wu, Ping; Deng, Jin-bo

    2016-01-01

    To investigate the pattern of neural differentiation and synaptogenesis in the mouse retina, immunolabeling, BrdU assay and transmission electron microscopy were used. We show that the neuroblastic cell layer is the germinal zone for neural differentiation and retinal lamination. Ganglion cells differentiated initially at embryonic day 13 (E13), and at E18 horizontal cells appeared in the neuroblastic cell layer. Neural stem cells in the outer neuroblastic cell layer differentiated into photoreceptor cells as early as postnatal day 0 (P0), and neural stem cells in the inner neuroblastic cell layer differentiated into bipolar cells at P7. Synapses in the retina were mainly located in the outer and inner plexiform layers. At P7, synaptophysin immunostaining appeared in presynaptic terminals in the outer and inner plexiform layers with button-like structures. After P14, presynaptic buttons were concentrated in outer and inner plexiform layers with strong staining. These data indicate that neural differentiation and synaptogenesis in the retina play important roles in the formation of retinal neural circuitry. Our study showed that the period before P14, especially between P0 and P14, represents a critical period during retinal development. Mouse eye opening occurs during that period, suggesting that cell differentiation and synaptic formation lead to the attainment of visual function. PMID:27073386

  3. Spatiotemporal integration of developmental cues in neural development

    PubMed Central

    Borodinsky, Laura N.; Belgacem, Yesser H.; Swapna, Immani; Visina, Olesya; Balashova, Olga A.; Sequerra, Eduardo B.; Tu, Michelle K.; Levin, Jacqueline B.; Spencer, Kira A.; Castro, Patricio A.; Hamilton, Andrew M.; Shim, Sangwoo

    2014-01-01

    Nervous system development relies on the generation of neurons, their differentiation and establishment of synaptic connections. These events exhibit remarkable plasticity and are regulated by many developmental cues. Here we review the mechanisms of three classes of these cues: morphogenetic proteins, electrical activity and the environment. We focus on second messenger dynamics and their role as integrators of the action of diverse cues, enabling plasticity in the process of neural development. PMID:25484201

  4. Early adversity, neural development, and inflammation.

    PubMed

    Chiang, Jessica J; Taylor, Shelley E; Bower, Julienne E

    2015-12-01

    Early adversity is a risk factor for poor mental and physical health. Although altered neural development is believed to be one pathway linking early adversity to psychopathology, it has rarely been considered a pathway linking early adversity to poor physical health. However, this is a viable pathway because the central nervous system is known to interact with the immune system via the hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system (ANS). In support of this pathway, early adversity has been linked to changes in neural development (particularly of the amygdala, hippocampus, and prefrontal cortex), HPA axis and ANS dysregulation, and higher levels of inflammation. Inflammation, in turn, can be detrimental to physical health when prolonged. In this review, we present these studies and consider how altered neural development may be a pathway by which early adversity increases inflammation and thus risk for adverse physical health outcomes.

  5. Barratt Impulsivity and Neural Regulation of Physiological Arousal

    PubMed Central

    Zhang, Sheng; Hu, Sien; Hu, Jianping; Wu, Po-Lun; Chao, Herta H.; Li, Chiang-shan R.

    2015-01-01

    Background Theories of personality have posited an increased arousal response to external stimulation in impulsive individuals. However, there is a dearth of studies addressing the neural basis of this association. Methods We recorded skin conductance in 26 individuals who were assessed with Barratt Impulsivity Scale (BIS-11) and performed a stop signal task during functional magnetic resonance imaging. Imaging data were processed and modeled with Statistical Parametric Mapping. We used linear regressions to examine correlations between impulsivity and skin conductance response (SCR) to salient events, identify the neural substrates of arousal regulation, and examine the relationship between the regulatory mechanism and impulsivity. Results Across subjects, higher impulsivity is associated with greater SCR to stop trials. Activity of the ventromedial prefrontal cortex (vmPFC) negatively correlated to and Granger caused skin conductance time course. Furthermore, higher impulsivity is associated with a lesser strength of Granger causality of vmPFC activity on skin conductance, consistent with diminished control of physiological arousal to external stimulation. When men (n = 14) and women (n = 12) were examined separately, however, there was evidence suggesting association between impulsivity and vmPFC regulation of arousal only in women. Conclusions Together, these findings confirmed the link between Barratt impulsivity and heightened arousal to salient stimuli in both genders and suggested the neural bases of altered regulation of arousal in impulsive women. More research is needed to explore the neural processes of arousal regulation in impulsive individuals and in clinical conditions that implicate poor impulse control. PMID:26079873

  6. Neural Mechanisms of Emotion Regulation in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Richey, J. Anthony; Damiano, Cara R.; Sabatino, Antoinette; Rittenberg, Alison; Petty, Chris; Bizzell, Josh; Voyvodic, James; Heller, Aaron S.; Coffman, Marika C.; Smoski, Moria; Davidson, Richard J.; Dichter, Gabriel S.

    2015-01-01

    Autism spectrum disorder (ASD) is characterized by high rates of comorbid internalizing and externalizing disorders. One mechanistic account of these comorbidities is that ASD is characterized by impaired emotion regulation (ER) that results in deficits modulating emotional responses. We assessed neural activation during cognitive reappraisal of…

  7. Receptor regulation of osmolyte homeostasis in neural cells.

    PubMed

    Fisher, Stephen K; Heacock, Anne M; Keep, Richard F; Foster, Daniel J

    2010-09-15

    The capacity of cells to correct their volume in response to hyposmotic stress via the efflux of inorganic and organic osmolytes is well documented. However, the ability of cell-surface receptors, in particular G-protein-coupled receptors (GPCRs), to regulate this homeostatic mechanism has received much less attention. Mechanisms that underlie the regulation of cell volume are of particular importance to cells in the central nervous system because of the physical restrictions of the skull and the adverse impact that even small increases in cell volume can have on their function. Increases in brain volume are seen in hyponatraemia, which can arise from a variety of aetiologies and is the most frequently diagnosed electrolyte disorder in clinical practice. In this review we summarize recent evidence that the activation of GPCRs facilitates the volume-dependent efflux of osmolytes from neural cells and permits them to more efficiently respond to small, physiologically relevant, reductions in osmolarity. The characteristics of receptor-regulated osmolyte efflux, the signalling pathways involved and the physiological significance of receptor activation are discussed. In addition, we propose that GPCRs may also regulate the re-uptake of osmolytes into neural cells, but that the influx of organic and inorganic osmolytes is differentially regulated. The ability of neural cells to closely regulate osmolyte homeostasis through receptor-mediated alterations in both efflux and influx mechanisms may explain, in part at least, why the brain selectively retains its complement of inorganic osmolytes during chronic hyponatraemia, whereas its organic osmolytes are depleted. PMID:20498228

  8. Nuclear receptors and microRNAs: Who regulates the regulators in neural stem cells?

    PubMed

    Eendebak, Robert J A H; Lucassen, Paul J; Fitzsimons, Carlos P

    2011-03-01

    In this mini-review, we focus on regulatory loops between nuclear receptors and microRNAs, an emerging class of small RNA regulators of gene expression. Evidence supporting interactions between microRNAs and nuclear receptors in the regulation of gene expression networks is discussed in relation to its possible role in neural stem cell self renewal and differentiation. Furthermore, we discuss possible disturbances of the regulatory loops between microRNAs and nuclear receptors in human neurodegenerative disease. Finally, we discuss the possible use of nuclear receptors as pharmacological entry points to regulate neural stem cell self-renewal and differentiation.

  9. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    PubMed Central

    Hurst, Jillian H; Mumaw, Jennifer; Machacek, David W; Sturkie, Carla; Callihan, Phillip; Stice, Steve L; Hooks, Shelley B

    2008-01-01

    Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP) cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA) and Sphingosine-1-phosphate (S1P) receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR)- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors. PMID:19077254

  10. The evolution and development of neural superposition.

    PubMed

    Agi, Egemen; Langen, Marion; Altschuler, Steven J; Wu, Lani F; Zimmermann, Timo; Hiesinger, Peter Robin

    2014-01-01

    Visual systems have a rich history as model systems for the discovery and understanding of basic principles underlying neuronal connectivity. The compound eyes of insects consist of up to thousands of small unit eyes that are connected by photoreceptor axons to set up a visual map in the brain. The photoreceptor axon terminals thereby represent neighboring points seen in the environment in neighboring synaptic units in the brain. Neural superposition is a special case of such a wiring principle, where photoreceptors from different unit eyes that receive the same input converge upon the same synaptic units in the brain. This wiring principle is remarkable, because each photoreceptor in a single unit eye receives different input and each individual axon, among thousands others in the brain, must be sorted together with those few axons that have the same input. Key aspects of neural superposition have been described as early as 1907. Since then neuroscientists, evolutionary and developmental biologists have been fascinated by how such a complicated wiring principle could evolve, how it is genetically encoded, and how it is developmentally realized. In this review article, we will discuss current ideas about the evolutionary origin and developmental program of neural superposition. Our goal is to identify in what way the special case of neural superposition can help us answer more general questions about the evolution and development of genetically "hard-wired" synaptic connectivity in the brain.

  11. The Evolution and Development of Neural Superposition

    PubMed Central

    Agi, Egemen; Langen, Marion; Altschuler, Steven J.; Wu, Lani F.; Zimmermann, Timo

    2014-01-01

    Visual systems have a rich history as model systems for the discovery and understanding of basic principles underlying neuronal connectivity. The compound eyes of insects consist of up to thousands of small unit eyes that are connected by photoreceptor axons to set up a visual map in the brain. The photoreceptor axon terminals thereby represent neighboring points seen in the environment in neighboring synaptic units in the brain. Neural superposition is a special case of such a wiring principle, where photoreceptors from different unit eyes that receive the same input converge upon the same synaptic units in the brain. This wiring principle is remarkable, because each photoreceptor in a single unit eye receives different input and each individual axon, among thousands others in the brain, must be sorted together with those few axons that have the same input. Key aspects of neural superposition have been described as early as 1907. Since then neuroscientists, evolutionary and developmental biologists have been fascinated by how such a complicated wiring principle could evolve, how it is genetically encoded, and how it is developmentally realized. In this review article, we will discuss current ideas about the evolutionary origin and developmental program of neural superposition. Our goal is to identify in what way the special case of neural superposition can help us answer more general questions about the evolution and development of genetically “hard-wired” synaptic connectivity in the brain. PMID:24912630

  12. A neural basis for melanocortin-4 receptor regulated appetite

    PubMed Central

    Garfield, Alastair S.; Li, Chia; Madara, Joseph C.; Shah, Bhavik P.; Webber, Emily; Steger, Jennifer S.; Campbell, John N.; Gavrilova, Oksana; Lee, Charlotte E.; Olson, David P.; Elmquist, Joel K.; Tannous, Bakhos A.; Krashes, Michael J.; Lowell, Bradford B.

    2015-01-01

    Pro-opiomelanocortin (POMC)- and agouti-related peptide (AgRP)-expressing neurons are oppositely regulated by caloric depletion and co-ordinately stimulate and inhibit homeostatic satiety, respectively. This bimodality is principally underscored by the antagonistic actions of these ligands at downstream melanocortin-4 receptors (MC4R) within the paraventricular nucleus of the hypothalamus. Although this population is critical to energy balance the underlying neural circuitry remains unknown. Enabled by mice expressing Cre-recombinase in MC4R neurons, we demonstrate bidirectional control of feeding following real-time activation and inhibition of PVHMC4R neurons and further identify these cells as a functional exponent of ARCAgRP neuron-driven hunger. Moreover, we reveal this function to be mediated by a PVHMC4R→lateral parabrachial nucleus (LPBN) pathway. Activation of this circuit encodes positive valence, but only in calorically depleted mice. Thus, the satiating and appetitive nature of PVHMC4R→LPBN neurons supports the principles of drive reduction and highlights this circuit as a promising target for anti-obesity drug development. PMID:25915476

  13. Low Density Lipoprotein Receptor Related Proteins as Regulators of Neural Stem and Progenitor Cell Function

    PubMed Central

    Landowski, Lila M.; Young, Kaylene M.

    2016-01-01

    The central nervous system (CNS) is a highly organised structure. Many signalling systems work in concert to ensure that neural stem cells are appropriately directed to generate progenitor cells, which in turn mature into functional cell types including projection neurons, interneurons, astrocytes, and oligodendrocytes. Herein we explore the role of the low density lipoprotein (LDL) receptor family, in particular family members LRP1 and LRP2, in regulating the behaviour of neural stem and progenitor cells during development and adulthood. The ability of LRP1 and LRP2 to bind a diverse and extensive range of ligands, regulate ligand endocytosis, recruit nonreceptor tyrosine kinases for direct signal transduction and signal in conjunction with other receptors, enables them to modulate many crucial neural cell functions. PMID:26949399

  14. Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone.

    PubMed

    Gee, Stephen T; Milgram, Sharon L; Kramer, Kenneth L; Conlon, Frank L; Moody, Sally A

    2011-01-01

    Yes-associated protein 65 (YAP) contains multiple protein-protein interaction domains and functions as both a transcriptional co-activator and as a scaffolding protein. Mouse embryos lacking YAP did not survive past embryonic day 8.5 and showed signs of defective yolk sac vasculogenesis, chorioallantoic fusion, and anterior-posterior (A-P) axis elongation. Given that the YAP knockout mouse defects might be due in part to nutritional deficiencies, we sought to better characterize a role for YAP during early development using embryos that develop externally. YAP morpholino (MO)-mediated loss-of-function in both frog and fish resulted in incomplete epiboly at gastrulation and impaired axis formation, similar to the mouse phenotype. In frog, germ layer specific genes were expressed, but they were temporally delayed. YAP MO-mediated partial knockdown in frog allowed a shortened axis to form. YAP gain-of-function in Xenopus expanded the progenitor populations in the neural plate (sox2(+)) and neural plate border zone (pax3(+)), while inhibiting the expression of later markers of tissues derived from the neural plate border zone (neural crest, pre-placodal ectoderm, hatching gland), as well as epidermis and somitic muscle. YAP directly regulates pax3 expression via association with TEAD1 (N-TEF) at a highly conserved, previously undescribed, TEAD-binding site within the 5' regulatory region of pax3. Structure/function analyses revealed that the PDZ-binding motif of YAP contributes to the inhibition of epidermal and somitic muscle differentiation, but a complete, intact YAP protein is required for expansion of the neural plate and neural plate border zone progenitor pools. These results provide a thorough analysis of YAP mediated gene expression changes in loss- and gain-of-function experiments. Furthermore, this is the first report to use YAP structure-function analyzes to determine which portion of YAP is involved in specific gene expression changes and the first to show

  15. Enteric neural crest cells regulate vertebrate stomach patterning and differentiation.

    PubMed

    Faure, Sandrine; McKey, Jennifer; Sagnol, Sébastien; de Santa Barbara, Pascal

    2015-01-15

    In vertebrates, the digestive tract develops from a uniform structure where reciprocal epithelial-mesenchymal interactions pattern this complex organ into regions with specific morphologies and functions. Concomitant with these early patterning events, the primitive GI tract is colonized by the vagal enteric neural crest cells (vENCCs), a population of cells that will give rise to the enteric nervous system (ENS), the intrinsic innervation of the GI tract. The influence of vENCCs on early patterning and differentiation of the GI tract has never been evaluated. In this study, we report that a crucial number of vENCCs is required for proper chick stomach development, patterning and differentiation. We show that reducing the number of vENCCs by performing vENCC ablations induces sustained activation of the BMP and Notch pathways in the stomach mesenchyme and impairs smooth muscle development. A reduction in vENCCs also leads to the transdifferentiation of the stomach into a stomach-intestinal mixed phenotype. In addition, sustained Notch signaling activity in the stomach mesenchyme phenocopies the defects observed in vENCC-ablated stomachs, indicating that inhibition of the Notch signaling pathway is essential for stomach patterning and differentiation. Finally, we report that a crucial number of vENCCs is also required for maintenance of stomach identity and differentiation through inhibition of the Notch signaling pathway. Altogether, our data reveal that, through the regulation of mesenchyme identity, vENCCs act as a new mediator in the mesenchymal-epithelial interactions that control stomach development.

  16. Syndecan 4 interacts genetically with Vangl2 to regulate neural tube closure and planar cell polarity

    PubMed Central

    Escobedo, Noelia; Contreras, Osvaldo; Muñoz, Rosana; Farías, Marjorie; Carrasco, Héctor; Hill, Charlotte; Tran, Uyen; Pryor, Sophie E.; Wessely, Oliver; Copp, Andrew J.; Larraín, Juan

    2013-01-01

    Syndecan 4 (Sdc4) is a cell-surface heparan sulfate proteoglycan (HSPG) that regulates gastrulation, neural tube closure and directed neural crest migration in Xenopus development. To determine whether Sdc4 participates in Wnt/PCP signaling during mouse development, we evaluated a possible interaction between a null mutation of Sdc4 and the loop-tail allele of Vangl2. Sdc4 is expressed in multiple tissues, but particularly in the non-neural ectoderm, hindgut and otic vesicles. Sdc4;Vangl2Lp compound mutant mice have defective spinal neural tube closure, disrupted orientation of the stereocilia bundles in the cochlea and delayed wound healing, demonstrating a strong genetic interaction. In Xenopus, co-injection of suboptimal amounts of Sdc4 and Vangl2 morpholinos resulted in a significantly greater proportion of embryos with defective neural tube closure than each individual morpholino alone. To probe the mechanism of this interaction, we overexpressed or knocked down Vangl2 function in HEK293 cells. The Sdc4 and Vangl2 proteins colocalize, and Vangl2, particularly the Vangl2Lp mutant form, diminishes Sdc4 protein levels. Conversely, Vangl2 knockdown enhances Sdc4 protein levels. Overall HSPG steady-state levels were regulated by Vangl2, suggesting a molecular mechanism for the genetic interaction in which Vangl2Lp/+ enhances the Sdc4-null phenotype. This could be mediated via heparan sulfate residues, as Vangl2Lp/+ embryos fail to initiate neural tube closure and develop craniorachischisis (usually seen only in Vangl2Lp/Lp) when cultured in the presence of chlorate, a sulfation inhibitor. These results demonstrate that Sdc4 can participate in the Wnt/PCP pathway, unveiling its importance during neural tube closure in mammalian embryos. PMID:23760952

  17. SoxD Transcription Factors: Multifaceted Players of Neural Development

    PubMed Central

    Ji, Eun Hye; Kim, Jaesang

    2016-01-01

    SoxD transcription factor subfamily includes three members, Sox5, Sox6, and Sox13. Like other Sox genes, they contain the High-Mobility-Group (HMG) box as the DNA binding domain but in addition feature the subgroup-specific leucine zipper motif. SoxD genes are expressed in diverse cell types in multiple organs during embryogenesis and in adulthood. Among the cells expressing them are those present in the developing nervous system including neural stem (or progenitor) cells as well as differentiating neurons and oligodendrocytes. SoxD transcription factors do not contain distinct activator or repressor domain, and they are believed to function in modulation of other transcription factors in promoter-specific manners. This brief review article will attempt to summarize the latest studies on the function of SoxD genes in embryogenesis with a particular emphasis on the regulation of neural development. PMID:27426080

  18. The Neural Correlates of Emotion Regulation by Implementation Intentions

    PubMed Central

    Hallam, Glyn P.; Webb, Thomas L.; Sheeran, Paschal; Miles, Eleanor; Wilkinson, Iain D.; Hunter, Michael D.; Barker, Anthony T.; Woodruff, Peter W. R.; Totterdell, Peter; Lindquist, Kristen A.; Farrow, Tom F. D.

    2015-01-01

    Several studies have investigated the neural basis of effortful emotion regulation (ER) but the neural basis of automatic ER has been less comprehensively explored. The present study investigated the neural basis of automatic ER supported by ‘implementation intentions’. 40 healthy participants underwent fMRI while viewing emotion-eliciting images and used either a previously-taught effortful ER strategy, in the form of a goal intention (e.g., try to take a detached perspective), or a more automatic ER strategy, in the form of an implementation intention (e.g., “If I see something disgusting, then I will think these are just pixels on the screen!”), to regulate their emotional response. Whereas goal intention ER strategies were associated with activation of brain areas previously reported to be involved in effortful ER (including dorsolateral prefrontal cortex), ER strategies based on an implementation intention strategy were associated with activation of right inferior frontal gyrus and ventro-parietal cortex, which may reflect the attentional control processes automatically captured by the cue for action contained within the implementation intention. Goal intentions were also associated with less effective modulation of left amygdala, supporting the increased efficacy of ER under implementation intention instructions, which showed coupling of orbitofrontal cortex and amygdala. The findings support previous behavioural studies in suggesting that forming an implementation intention enables people to enact goal-directed responses with less effort and more efficiency. PMID:25798822

  19. Development of programmable artificial neural networks

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J.

    1993-01-01

    Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed to mate the adaptability of the ANN with the speed and precision of the digital computer. This method was successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.

  20. Distinct enhancers at the Pax3 locus can function redundantly to regulate neural tube and neural crest expressions.

    PubMed

    Degenhardt, Karl R; Milewski, Rita C; Padmanabhan, Arun; Miller, Mayumi; Singh, Manvendra K; Lang, Deborah; Engleka, Kurt A; Wu, Meilin; Li, Jun; Zhou, Diane; Antonucci, Nicole; Li, Li; Epstein, Jonathan A

    2010-03-15

    Pax3 is a transcription factor expressed in somitic mesoderm, dorsal neural tube and pre-migratory neural crest during embryonic development. We have previously identified cis-acting enhancer elements within the proximal upstream genomic region of Pax3 that are sufficient to direct functional expression of Pax3 in neural crest. These elements direct expression of a reporter gene to pre-migratory neural crest in transgenic mice, and transgenic expression of a Pax3 cDNA using these elements is sufficient to rescue neural crest development in mice otherwise lacking endogenous Pax3. We show here that deletion of these enhancer sequences by homologous recombination is insufficient to abrogate neural crest expression of Pax3 and results in viable mice. We identify a distinct enhancer in the fourth intron that is also capable of mediating neural crest expression in transgenic mice and zebrafish. Our analysis suggests the existence of functionally redundant neural crest enhancer modules for Pax3.

  1. A conserved role for non-neural ectoderm cells in early neural development.

    PubMed

    Cajal, Marieke; Creuzet, Sophie E; Papanayotou, Costis; Sabéran-Djoneidi, Délara; Chuva de Sousa Lopes, Susana M; Zwijsen, An; Collignon, Jérôme; Camus, Anne

    2014-11-01

    During the early steps of head development, ectodermal patterning leads to the emergence of distinct non-neural and neural progenitor cells. The induction of the preplacodal ectoderm and the neural crest depends on well-studied signalling interactions between the non-neural ectoderm fated to become epidermis and the prospective neural plate. By contrast, the involvement of the non-neural ectoderm in the morphogenetic events leading to the development and patterning of the central nervous system has been studied less extensively. Here, we show that the removal of the rostral non-neural ectoderm abutting the prospective neural plate at late gastrulation stage leads, in mouse and chick embryos, to morphological defects in forebrain and craniofacial tissues. In particular, this ablation compromises the development of the telencephalon without affecting that of the diencephalon. Further investigations of ablated mouse embryos established that signalling centres crucial for forebrain regionalization, namely the axial mesendoderm and the anterior neural ridge, form normally. Moreover, changes in cell death or cell proliferation could not explain the specific loss of telencephalic tissue. Finally, we provide evidence that the removal of rostral tissues triggers misregulation of the BMP, WNT and FGF signalling pathways that may affect telencephalon development. This study opens new perspectives on the role of the neural/non-neural interface and reveals its functional relevance across higher vertebrates.

  2. Cdon promotes neural crest migration by regulating N-cadherin localization.

    PubMed

    Powell, Davalyn R; Williams, Jason S; Hernandez-Lagunas, Laura; Salcedo, Ernesto; O'Brien, Jenean H; Artinger, Kristin Bruk

    2015-11-15

    Neural crest cells (NCCs) are essential embryonic progenitor cells that are unique to vertebrates and form a remarkably complex and coordinated system of highly motile cells. Migration of NCCs occurs along specific pathways within the embryo in response to both environmental cues and cell-cell interactions within the neural crest population. Here, we demonstrate a novel role for the putative Sonic hedgehog (Shh) receptor and cell adhesion regulator, cdon, in zebrafish neural crest migration. cdon is expressed in developing premigratory NCCs but is downregulated once the cells become migratory. Knockdown of cdon results in aberrant migration of trunk NCCs: crestin positive cells can emigrate out of the neural tube but stall shortly after the initiation of migration. Live cell imaging analysis demonstrates reduced directedness of migration, increased velocity and mispositioned cell protrusions. In addition, transplantation analysis suggests that cdon is required cell-autonomously for directed NCC migration in the trunk. Interestingly, N-cadherin is mislocalized following cdon knockdown suggesting that the role of cdon in NCCs is to regulate N-cadherin localization. Our results reveal a novel role for cdon in zebrafish neural crest migration, and suggest a mechanism by which Cdon is required to localize N-cadherin to the cell membrane in migratory NCCs for directed migration.

  3. Cdon promotes neural crest migration by regulating N-cadherin localization.

    PubMed

    Powell, Davalyn R; Williams, Jason S; Hernandez-Lagunas, Laura; Salcedo, Ernesto; O'Brien, Jenean H; Artinger, Kristin Bruk

    2015-11-15

    Neural crest cells (NCCs) are essential embryonic progenitor cells that are unique to vertebrates and form a remarkably complex and coordinated system of highly motile cells. Migration of NCCs occurs along specific pathways within the embryo in response to both environmental cues and cell-cell interactions within the neural crest population. Here, we demonstrate a novel role for the putative Sonic hedgehog (Shh) receptor and cell adhesion regulator, cdon, in zebrafish neural crest migration. cdon is expressed in developing premigratory NCCs but is downregulated once the cells become migratory. Knockdown of cdon results in aberrant migration of trunk NCCs: crestin positive cells can emigrate out of the neural tube but stall shortly after the initiation of migration. Live cell imaging analysis demonstrates reduced directedness of migration, increased velocity and mispositioned cell protrusions. In addition, transplantation analysis suggests that cdon is required cell-autonomously for directed NCC migration in the trunk. Interestingly, N-cadherin is mislocalized following cdon knockdown suggesting that the role of cdon in NCCs is to regulate N-cadherin localization. Our results reveal a novel role for cdon in zebrafish neural crest migration, and suggest a mechanism by which Cdon is required to localize N-cadherin to the cell membrane in migratory NCCs for directed migration. PMID:26256768

  4. Transcriptional regulation of cranial sensory placode development

    PubMed Central

    Moody, Sally A.; LaMantia, Anthony-Samuel

    2015-01-01

    Cranial sensory placodes derive from discrete patches of the head ectoderm, and give rise to numerous sensory structures. During gastrulation, a specialized “neural border zone” forms around the neural plate in response to interactions between the neural and non-neural ectoderm and signals from adjacent mesodermal and/or endodermal tissues. This zone subsequently gives rise to two distinct precursor populations of the peripheral nervous system: the neural crest and the pre-placodal ectoderm (PPE). The PPE is a common field from which all cranial sensory placodes arise (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, otic). Members of the Six family of transcription factors are major regulators of PPE specification, in partnership with co-factor proteins such as Eya. Six gene activity also maintains tissue boundaries between the PPE, neural crest and epidermis by repressing genes that specify the fates of those adjacent ectodermally-derived domains. As the embryo acquires anterior-posterior identity, the PPE becomes transcriptionally regionalized, and it subsequently subdivides into specific placodes with distinct developmental fates in response to signaling from adjacent tissues. Each placode is characterized by a unique transcriptional program that leads to the differentiation of highly specialized cells, such as neurosecretory cells, somatic sensory receptor cells, chemosensory neurons, peripheral glia and supporting cells. In this review, we summarize the transcriptional and signaling factors that regulate key steps of placode development, influence subsequent sensory neuron specification, and discuss what is known about mutations in some of the essential PPE genes that underlie human congenital syndromes. PMID:25662264

  5. Identifying Regulators of Morphogenesis Common to Vertebrate Neural Tube Closure and Caenorhabditis elegans Gastrulation.

    PubMed

    Sullivan-Brown, Jessica L; Tandon, Panna; Bird, Kim E; Dickinson, Daniel J; Tintori, Sophia C; Heppert, Jennifer K; Meserve, Joy H; Trogden, Kathryn P; Orlowski, Sara K; Conlon, Frank L; Goldstein, Bob

    2016-01-01

    Neural tube defects including spina bifida are common and severe congenital disorders. In mice, mutations in more than 200 genes can result in neural tube defects. We hypothesized that this large gene set might include genes whose homologs contribute to morphogenesis in diverse animals. To test this hypothesis, we screened a set of Caenorhabditis elegans homologs for roles in gastrulation, a topologically similar process to vertebrate neural tube closure. Both C. elegans gastrulation and vertebrate neural tube closure involve the internalization of surface cells, requiring tissue-specific gene regulation, actomyosin-driven apical constriction, and establishment and maintenance of adhesions between specific cells. Our screen identified several neural tube defect gene homologs that are required for gastrulation in C. elegans, including the transcription factor sptf-3. Disruption of sptf-3 in C. elegans reduced the expression of early endodermally expressed genes as well as genes expressed in other early cell lineages, establishing sptf-3 as a key contributor to multiple well-studied C. elegans cell fate specification pathways. We also identified members of the actin regulatory WAVE complex (wve-1, gex-2, gex-3, abi-1, and nuo-3a). Disruption of WAVE complex members reduced the narrowing of endodermal cells' apical surfaces. Although WAVE complex members are expressed broadly in C. elegans, we found that expression of a vertebrate WAVE complex member, nckap1, is enriched in the developing neural tube of Xenopus. We show that nckap1 contributes to neural tube closure in Xenopus. This work identifies in vivo roles for homologs of mammalian neural tube defect genes in two manipulable genetic model systems.

  6. Making an Effort to Feel Positive: Insecure Attachment in Infancy Predicts the Neural Underpinnings of Emotion Regulation in Adulthood

    ERIC Educational Resources Information Center

    Moutsiana, Christina; Fearon, Pasco; Murray, Lynne; Cooper, Peter; Goodyer, Ian; Johnstone, Tom; Halligan, Sarah

    2014-01-01

    Background: Animal research indicates that the neural substrates of emotion regulation may be persistently altered by early environmental exposures. If similar processes operate in human development then this is significant, as the capacity to regulate emotional states is fundamental to human adaptation. Methods: We utilised a 22-year longitudinal…

  7. Neural correlates of conscious self-regulation of emotion.

    PubMed

    Beauregard, M; Lévesque, J; Bourgouin, P

    2001-09-15

    A fundamental question about the relationship between cognition and emotion concerns the neural substrate underlying emotional self-regulation. To address this issue, brain activation was measured in normal male subjects while they either responded in a normal manner to erotic film excerpts or voluntarily attempted to inhibit the sexual arousal induced by viewing erotic stimuli. Results demonstrated that the sexual arousal experienced, in response to the erotic film excerpts, was associated with activation in "limbic" and paralimbic structures, such as the right amygdala, right anterior temporal pole, and hypothalamus. In addition, the attempted inhibition of the sexual arousal generated by viewing the erotic stimuli was associated with activation of the right superior frontal gyrus and right anterior cingulate gyrus. No activation was found in limbic areas. These findings reinforce the view that emotional self-regulation is normally implemented by a neural circuit comprising various prefrontal regions and subcortical limbic structures. They also suggest that humans have the capacity to influence the electrochemical dynamics of their brains, by voluntarily changing the nature of the mind processes unfolding in the psychological space. PMID:11549754

  8. Regulation of cell protrusions by small GTPases during fusion of the neural folds

    PubMed Central

    Rolo, Ana; Savery, Dawn; Escuin, Sarah; de Castro, Sandra C; Armer, Hannah EJ; Munro, Peter MG; Molè, Matteo A; Greene, Nicholas DE; Copp, Andrew J

    2016-01-01

    Epithelial fusion is a crucial process in embryonic development, and its failure underlies several clinically important birth defects. For example, failure of neural fold fusion during neurulation leads to open neural tube defects including spina bifida. Using mouse embryos, we show that cell protrusions emanating from the apposed neural fold tips, at the interface between the neuroepithelium and the surface ectoderm, are required for completion of neural tube closure. By genetically ablating the cytoskeletal regulators Rac1 or Cdc42 in the dorsal neuroepithelium, or in the surface ectoderm, we show that these protrusions originate from surface ectodermal cells and that Rac1 is necessary for the formation of membrane ruffles which typify late closure stages, whereas Cdc42 is required for the predominance of filopodia in early neurulation. This study provides evidence for the essential role and molecular regulation of membrane protrusions prior to fusion of a key organ primordium in mammalian development. DOI: http://dx.doi.org/10.7554/eLife.13273.001 PMID:27114066

  9. Development of nanowire arrays for neural probe

    NASA Astrophysics Data System (ADS)

    Abraham, Jose K.; Xie, Jining; Varadan, Vijay K.

    2005-05-01

    It is already established that functional electrical stimulation is an effective way to restore many functions of the brain in disabled individuals. The electrical stimulation can be done by using an array of electrodes. Neural probes stimulate or sense the biopotentials mainly through the exposed metal sites. These sites should be smaller relative to the spatial potential distribution so that any potential averaging in the sensing area can be avoided. At the same time, the decrease in size of these sensing sites is limited due to the increase in impedance levels and the thermal noise while decreasing its size. It is known that current density in a planar electrode is not uniform and a higher current density can be observer around the perimeter of the electrodes. Electrical measurements conducted on many nanotubes and nanowires have already proved that it could be possible to use for current density applications and the drawbacks of the present design in neural probes can be overcome by incorporating many nanotechnology solutions. In this paper we present the design and development of nanowire arrays for the neural probe for the multisite contact which has the ability to collect and analyze isolated single unit activity. An array of vertically grown nanowires is used as contact site and many of such arrays can be used for stimulating as well as recording sites. The nanolevel interaction and wireless communication solution can extend to applications involving the treatment of many neurological disorders including Parkinson"s disease, Alzheimer"s disease, spinal injuries and the treatment of blindness and paralyzed patients with minimal or no invasive surgical procedures.

  10. Neural regulation of cancer: from mechanobiology to inflammation

    PubMed Central

    Kim, Tae-Hyung; Rowat, Amy C; Sloan, Erica K

    2016-01-01

    Despite recent progress in cancer research, the exact nature of malignant transformation and its progression is still not fully understood. Particularly metastasis, which accounts for most cancer death, is a very complex process, and new treatment strategies require a more comprehensive understanding of underlying regulatory mechanisms. Recently, the sympathetic nervous system (SNS) has been implicated in cancer progression and beta-blockers have been identified as a novel strategy to limit metastasis. This review discusses evidence that SNS signaling regulates metastasis by modulating the physical characteristics of tumor cells, tumor-associated immune cells and the extracellular matrix (ECM). Altered mechanotype is an emerging hallmark of cancer cells that is linked to invasive phenotype and treatment resistance. Mechanotype also influences crosstalk between tumor cells and their environment, and may thus have a critical role in cancer progression. First, we discuss how neural signaling regulates metastasis and how SNS signaling regulates both biochemical and mechanical properties of tumor cells, immune cells and the ECM. We then review our current knowledge of the mechanobiology of cancer with a focus on metastasis. Next, we discuss links between SNS activity and tumor-associated inflammation, the mechanical properties of immune cells, and how the physical properties of the ECM regulate cancer and metastasis. Finally, we discuss the potential for clinical translation of our knowledge of cancer mechanobiology to improve diagnosis and treatment. PMID:27350878

  11. Neural regulation of cancer: from mechanobiology to inflammation.

    PubMed

    Kim, Tae-Hyung; Rowat, Amy C; Sloan, Erica K

    2016-05-01

    Despite recent progress in cancer research, the exact nature of malignant transformation and its progression is still not fully understood. Particularly metastasis, which accounts for most cancer death, is a very complex process, and new treatment strategies require a more comprehensive understanding of underlying regulatory mechanisms. Recently, the sympathetic nervous system (SNS) has been implicated in cancer progression and beta-blockers have been identified as a novel strategy to limit metastasis. This review discusses evidence that SNS signaling regulates metastasis by modulating the physical characteristics of tumor cells, tumor-associated immune cells and the extracellular matrix (ECM). Altered mechanotype is an emerging hallmark of cancer cells that is linked to invasive phenotype and treatment resistance. Mechanotype also influences crosstalk between tumor cells and their environment, and may thus have a critical role in cancer progression. First, we discuss how neural signaling regulates metastasis and how SNS signaling regulates both biochemical and mechanical properties of tumor cells, immune cells and the ECM. We then review our current knowledge of the mechanobiology of cancer with a focus on metastasis. Next, we discuss links between SNS activity and tumor-associated inflammation, the mechanical properties of immune cells, and how the physical properties of the ECM regulate cancer and metastasis. Finally, we discuss the potential for clinical translation of our knowledge of cancer mechanobiology to improve diagnosis and treatment. PMID:27350878

  12. Endothelial cells regulate neural crest and second heart field morphogenesis

    PubMed Central

    Milgrom-Hoffman, Michal; Michailovici, Inbal; Ferrara, Napoleone; Zelzer, Elazar; Tzahor, Eldad

    2014-01-01

    ABSTRACT Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio–craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1) in the mesoderm results in early embryonic lethality, severe deformation of the cardio–craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1) along with changes in the extracellular matrix (ECM) composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio–craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1. PMID:24996922

  13. Dscam-Mediated Cell Recognition Regulates Neural Circuit Formation

    PubMed Central

    Hattori, Daisuke; Millard, S. Sean; Wojtowicz, Woj M.; Zipursky, S. Lawrence

    2009-01-01

    The Dscam family of immunoglobulin cell surface proteins mediates recognition events between neurons that play an essential role in the establishment of neural circuits. The Drosophila Dscam1 locus encodes tens of thousands of cell surface proteins via alternative splicing. These isoforms exhibit exquisite isoform-specific binding in vitro that mediates homophilic repulsion in vivo. These properties provide the molecular basis for self-avoidance, an essential developmental mechanism that allows axonal and dendritic processes to uniformly cover their synaptic fields. In a mechanistically similar fashion, homophilic repulsion mediated by Drosophila Dscam2 prevents processes from the same class of cells from occupying overlapping synaptic fields through a process called tiling. Genetic studies in the mouse visual system support the view that vertebrate DSCAM also promotes both self-avoidance and tiling. By contrast, DSCAM and DSCAM-L promote layer-specific targeting in the chick visual system, presumably through promoting homophilic adhesion. The fly and mouse studies underscore the importance of homophilic repulsion in regulating neural circuit assembly, whereas the chick studies suggest that DSCA Mproteins may mediate a variety of different recognition events during wiring in a context-dependent fashion. PMID:18837673

  14. Genetic regulation of vertebrate eye development.

    PubMed

    Zagozewski, J L; Zhang, Q; Eisenstat, D D

    2014-11-01

    Eye development is a complex and highly regulated process that consists of several overlapping stages: (i) specification then splitting of the eye field from the developing forebrain; (ii) genesis and patterning of the optic vesicle; (iii) regionalization of the optic cup into neural retina and retina pigment epithelium; and (iv) specification and differentiation of all seven retinal cell types that develop from a pool of retinal progenitor cells in a precise temporal and spatial manner: retinal ganglion cells, horizontal cells, cone photoreceptors, amacrine cells, bipolar cells, rod photoreceptors and Müller glia. Genetic regulation of the stages of eye development includes both extrinsic (such as morphogens, growth factors) and intrinsic factors (primarily transcription factors of the homeobox and basic helix-loop helix families). In the following review, we will provide an overview of the stages of eye development highlighting the role of several important transcription factors in both normal developmental processes and in inherited human eye diseases.

  15. Effects of Spaceflight on Drosophila Neural Development

    NASA Technical Reports Server (NTRS)

    Keshishian, Haig S.

    1997-01-01

    The major goal from the animal side, however, has been achieved, namely to develop Drosophila lines where we can assay individual neuromuscular endings directly without dissection. This was achieved by means of using the GAL4-UAS system, where we have succeeded in establishing stocks of flies where the key neuromuscular connections can be assayed directly in undissected larvae by means of the expression of endogenously fluorescent reporters in the specific motor endings. The green fluorescent protein (GFP) as a reporter allows scoring of neural anatomy en-masse in whole mount using fluorescent microscopy without the need for either dissection or specific labeling. Two stocks have been developed. The first, which we developed first, uses the S65T mutant form, which has a dramatically brighter expression than the native protein. This animal will use GAL4 drivers with expression under the control of the elav gene, and which will ensure expression in all neurons of the embryo and larva. The second transgenic animal we have developed is of a novel kind, and makes use of dicistronic design, so that two copies of the protein will be expressed per insert. We have also developed a tricistronic form, but this has not yet been transformed into flies, and we do not imagine that this third line will be ready in time for the flight.

  16. Dynamic expression of LIM cofactors in the developing mouse neural tube.

    PubMed

    Ostendorff, Heather P; Tursun, Baris; Cornils, Kerstin; Schlüter, Anne; Drung, Alexander; Güngör, Cenap; Bach, Ingolf

    2006-03-01

    The developmental regulation of LIM homeodomain transcription factors (LIM-HD) by the LIM domain-binding cofactors CLIM/Ldb/NLI and RLIM has been demonstrated. Whereas CLIM cofactors are thought to be required for at least some of the in vivo functions of LIM-HD proteins, the ubiquitin ligase RLIM functions as a negative regulator by its ability to target CLIM cofactors for proteasomal degradation. In this report, we have investigated and compared the protein expression of both factors in the developing mouse neural tube. We co-localize both proteins in many tissues and, although widely expressed, we detect high levels of both cofactors in specific neural tube regions, e.g., in the ventral neural tube, where motor neurons reside. The mostly ubiquitous distribution of RLIM- and CLIM-encoding mRNA differs from the more specific expression of both cofactors at the protein level, indicating post-transcriptional regulation. Furthermore, we show that both cofactors not only co-localize with each other but also with Isl and Lhx3 LIM-HD proteins in developing ventral neural tube neurons. Our results demonstrate the dynamic expression of cofactors participating in the regulation of LIM-HD proteins during the development of the neural tube in mice and suggest additional post-transcriptional regulation in the nuclear LIM-HD protein network.

  17. Insulin-like factor regulates neural induction through an IGF1 receptor-independent mechanism

    PubMed Central

    Haramoto, Yoshikazu; Takahashi, Shuji; Oshima, Tomomi; Onuma, Yasuko; Ito, Yuzuru; Asashima, Makoto

    2015-01-01

    Insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) signalling is required for normal embryonic growth and development. Previous reports indicated that the IGF/IGF1R/MAPK pathway contributes to neural induction and the IGF/IGF1R/PI3K/Akt pathway to eye development. Here, we report the isolation of insulin3 encoding a novel insulin-like ligand involved in neural induction. Insulin3 has a similar structure to pro-insulin and mature IGF ligands, but cannot activate the IGF1 receptor. However, similar to IGFs, Insulin3 induced the gene expression of an anterior neural marker, otx2, and enlarged anterior head structures by inhibiting Wnt signalling. Insulin3 are predominantly localised to the endoplasmic reticulum when otx2 is induced by insulin3. Insulin3 reduced extracellular Wnts and cell surface localised Lrp6. These results suggest that Insulin3 is a novel cell-autonomous inhibitor of Wnt signalling. This study provides the first evidence that an insulin-like factor regulates neural induction through an IGF1R-independent mechanism. PMID:26112133

  18. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension

    PubMed Central

    Anderson, Matthew J.; Schimmang, Thomas; Lewandoski, Mark

    2016-01-01

    During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is

  19. Neural Regulation of Pancreatic Cancer: A Novel Target for Intervention

    PubMed Central

    Chang, Aeson; Kim-Fuchs, Corina; Le, Caroline P.; Hollande, Frédéric; Sloan, Erica K.

    2015-01-01

    The tumor microenvironment is known to play a pivotal role in driving cancer progression and governing response to therapy. This is of significance in pancreatic cancer where the unique pancreatic tumor microenvironment, characterized by its pronounced desmoplasia and fibrosis, drives early stages of tumor progression and dissemination, and contributes to its associated low survival rates. Several molecular factors that regulate interactions between pancreatic tumors and their surrounding stroma are beginning to be identified. Yet broader physiological factors that influence these interactions remain unclear. Here, we discuss a series of preclinical and mechanistic studies that highlight the important role chronic stress plays as a physiological regulator of neural-tumor interactions in driving the progression of pancreatic cancer. These studies propose several approaches to target stress signaling via the β-adrenergic signaling pathway in order to slow pancreatic tumor growth and metastasis. They also provide evidence to support the use of β-blockers as a novel therapeutic intervention to complement current clinical strategies to improve cancer outcome in patients with pancreatic cancer. PMID:26193320

  20. Early postnatal stress and neural circuit underlying emotional regulation.

    PubMed

    Matsumoto, Machiko; Yoshioka, Mitsuhiro; Togashi, Hiroko

    2009-01-01

    Several lines of evidence have shown that traumatic events during the early postnatal period precipitate long-lasting alterations in the functional properties underlying emotional expression that are attributable to the pathophysiology of stress-related disorders. In this chapter, we summarize our recent work elucidating whether early postnatal stress alters the neural circuits underlying emotional regulation. Rats exposed to footshock stress (FS) during the second (2W) or the third (3W) postnatal week were subjected to unconditioned and conditioned stresses at the postadolescent period (10-12 weeks). No differences in locomotor activity or hippocampal synaptic changes were observed between the FS-groups and non-FS controls during exposure to open field stress. Fear-related freezing behavior during exposure to contextual fear conditioning (CFC) was markedly attenuated in the 2W-FS group, presumably due to disturbance of the retention for fear memory, an effect that was attributable to synaptic changes in the hippocampal CA1 field. The 3W-FS group exhibited attenuation of the decreases in freezing behavior induced by CFC extinction trials. The deficits in extinction was abolished by repeated treatment with the partial N-methyl-d-aspartate receptor agonist d-cycloserine, suggesting that aversive stress exposure during the third postnatal week impaired extinction of context-dependent fear memory. Taken together, the altered behavior observed in adulthood is likely the result of neurodevelopmental perturbations elicited by early life stress. Thus, a "critical period" exists for neural circuits involved in emotional expression that may contribute to lifelong susceptibility to stress.

  1. Bone Morphogenetic Protein 4 Signalling in Neural Stem and Progenitor Cells during Development and after Injury

    PubMed Central

    Cole, Alistair E.; Murray, Simon S.; Xiao, Junhua

    2016-01-01

    Substantial progress has been made in identifying the extracellular signalling pathways that regulate neural stem and precursor cell biology in the central nervous system (CNS). The bone morphogenetic proteins (BMPs), in particular BMP4, are key players regulating neuronal and glial cell development from neural precursor cells in the embryonic, postnatal, and injured CNS. Here we review recent studies on BMP4 signalling in the generation of neurons, astrocytes, and oligodendroglial cells in the CNS. We also discuss putative mechanisms that BMP4 may utilise to influence glial cell development following CNS injury and highlight some questions for further research. PMID:27293450

  2. Drosophila neural stem cells in brain development and tumor formation.

    PubMed

    Jiang, Yanrui; Reichert, Heinrich

    2014-01-01

    Neuroblasts, the neural stem cells in Drosophila, generate the complex neural structure of the central nervous system. Significant progress has been made in understanding the mechanisms regulating the self-renewal, proliferation, and differentiation in Drosophila neuroblast lineages. Deregulation of these mechanisms can lead to severe developmental defects and the formation of malignant brain tumors. Here, the authors review the molecular genetics of Drosophila neuroblasts and discuss some recent advances in stem cell and cancer biology using this model system.

  3. Regulation of Nematostella neural progenitors by SoxB, Notch and bHLH genes.

    PubMed

    Richards, Gemma Sian; Rentzsch, Fabian

    2015-10-01

    Notch signalling, SoxB and Group A bHLH 'proneural' genes are conserved regulators of the neurogenic program in many bilaterians. However, the ancestry of their functions and interactions is not well understood. We address this question in the sea anemone Nematostella vectensis, a representative of the Cnidaria, the sister clade to the Bilateria. It has previously been found that the SoxB orthologue NvSoxB(2) is expressed in neural progenitor cells (NPCs) in Nematostella and promotes the development of both neurons and nematocytes, whereas Notch signalling has been implicated in the negative regulation of neurons and the positive regulation of nematocytes. Here, we clarify the role of Notch by reporting that inhibition of Notch signalling increases the numbers of both neurons and nematocytes, as well as increasing the number of NvSoxB(2)-expressing cells. This suggests that Notch restricts neurogenesis by limiting the generation of NPCs. We then characterise NvAth-like (Atonal/Neurogenin family) as a positive regulator of neurogenesis that is co-expressed with NvSoxB(2) in a subset of dividing NPCs, while we find that NvAshA (Achaete-scute family) and NvSoxB(2) are co-expressed in non-dividing cells only. Reciprocal knockdown experiments reveal a mutual requirement for NvSoxB(2) and NvAth-like in neural differentiation; however, the primary expression of each gene is independent of the other. Together, these data demonstrate that Notch signalling and NvSoxB(2) regulate Nematostella neural progenitors via parallel yet interacting mechanisms; with different aspects of these interactions being shared with Drosophila and/or vertebrate neurogenesis. PMID:26443634

  4. Regulation of Nematostella neural progenitors by SoxB, Notch and bHLH genes

    PubMed Central

    Richards, Gemma Sian; Rentzsch, Fabian

    2015-01-01

    Notch signalling, SoxB and Group A bHLH ‘proneural’ genes are conserved regulators of the neurogenic program in many bilaterians. However, the ancestry of their functions and interactions is not well understood. We address this question in the sea anemone Nematostella vectensis, a representative of the Cnidaria, the sister clade to the Bilateria. It has previously been found that the SoxB orthologue NvSoxB(2) is expressed in neural progenitor cells (NPCs) in Nematostella and promotes the development of both neurons and nematocytes, whereas Notch signalling has been implicated in the negative regulation of neurons and the positive regulation of nematocytes. Here, we clarify the role of Notch by reporting that inhibition of Notch signalling increases the numbers of both neurons and nematocytes, as well as increasing the number of NvSoxB(2)-expressing cells. This suggests that Notch restricts neurogenesis by limiting the generation of NPCs. We then characterise NvAth-like (Atonal/Neurogenin family) as a positive regulator of neurogenesis that is co-expressed with NvSoxB(2) in a subset of dividing NPCs, while we find that NvAshA (Achaete-scute family) and NvSoxB(2) are co-expressed in non-dividing cells only. Reciprocal knockdown experiments reveal a mutual requirement for NvSoxB(2) and NvAth-like in neural differentiation; however, the primary expression of each gene is independent of the other. Together, these data demonstrate that Notch signalling and NvSoxB(2) regulate Nematostella neural progenitors via parallel yet interacting mechanisms; with different aspects of these interactions being shared with Drosophila and/or vertebrate neurogenesis. PMID:26443634

  5. A neural circuit mechanism for regulating vocal variability during song learning in zebra finches.

    PubMed

    Garst-Orozco, Jonathan; Babadi, Baktash; Ölveczky, Bence P

    2014-01-01

    Motor skill learning is characterized by improved performance and reduced motor variability. The neural mechanisms that couple skill level and variability, however, are not known. The zebra finch, a songbird, presents a unique opportunity to address this question because production of learned song and induction of vocal variability are instantiated in distinct circuits that converge on a motor cortex analogue controlling vocal output. To probe the interplay between learning and variability, we made intracellular recordings from neurons in this area, characterizing how their inputs from the functionally distinct pathways change throughout song development. We found that inputs that drive stereotyped song-patterns are strengthened and pruned, while inputs that induce variability remain unchanged. A simple network model showed that strengthening and pruning of action-specific connections reduces the sensitivity of motor control circuits to variable input and neural 'noise'. This identifies a simple and general mechanism for learning-related regulation of motor variability.

  6. Advances in Artificial Neural Networks - Methodological Development and Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...

  7. Compassion-based emotion regulation up-regulates experienced positive affect and associated neural networks

    PubMed Central

    Singer, Tania

    2015-01-01

    Emotion regulation research has primarily focused on techniques that attenuate or modulate the impact of emotional stimuli. Recent evidence suggests that this mode regulation can be problematic in the context of regulation of emotion elicited by the suffering of others, resulting in reduced emotional connectedness. Here, we investigated the effects of an alternative emotion regulation technique based on the up-regulation of positive affect via Compassion-meditation on experiential and neural affective responses to depictions of individuals in distress, and compared these with the established emotion regulation strategy of Reappraisal. Using fMRI, we scanned 15 expert practitioners of Compassion-meditation either passively viewing, or using Compassion-meditation or Reappraisal to modulate their emotional reactions to film clips depicting people in distress. Both strategies effectively, but differentially regulated experienced affect, with Compassion primarily increasing positive and Reappraisal primarily decreasing negative affect. Imaging results showed that Compassion, relative to both passive-viewing and Reappraisal increased activation in regions involved in affiliation, positive affect and reward processing including ventral striatum and medial orbitfrontal cortex. This network was shown to be active prior to stimulus presentation, suggesting that the regulatory mechanism of Compassion is the stimulus-independent endogenous generation of positive affect. PMID:25698699

  8. Compassion-based emotion regulation up-regulates experienced positive affect and associated neural networks.

    PubMed

    Engen, Haakon G; Singer, Tania

    2015-09-01

    Emotion regulation research has primarily focused on techniques that attenuate or modulate the impact of emotional stimuli. Recent evidence suggests that this mode regulation can be problematic in the context of regulation of emotion elicited by the suffering of others, resulting in reduced emotional connectedness. Here, we investigated the effects of an alternative emotion regulation technique based on the up-regulation of positive affect via Compassion-meditation on experiential and neural affective responses to depictions of individuals in distress, and compared these with the established emotion regulation strategy of Reappraisal. Using fMRI, we scanned 15 expert practitioners of Compassion-meditation either passively viewing, or using Compassion-meditation or Reappraisal to modulate their emotional reactions to film clips depicting people in distress. Both strategies effectively, but differentially regulated experienced affect, with Compassion primarily increasing positive and Reappraisal primarily decreasing negative affect. Imaging results showed that Compassion, relative to both passive-viewing and Reappraisal increased activation in regions involved in affiliation, positive affect and reward processing including ventral striatum and medial orbitfrontal cortex. This network was shown to be active prior to stimulus presentation, suggesting that the regulatory mechanism of Compassion is the stimulus-independent endogenous generation of positive affect. PMID:25698699

  9. Compassion-based emotion regulation up-regulates experienced positive affect and associated neural networks.

    PubMed

    Engen, Haakon G; Singer, Tania

    2015-09-01

    Emotion regulation research has primarily focused on techniques that attenuate or modulate the impact of emotional stimuli. Recent evidence suggests that this mode regulation can be problematic in the context of regulation of emotion elicited by the suffering of others, resulting in reduced emotional connectedness. Here, we investigated the effects of an alternative emotion regulation technique based on the up-regulation of positive affect via Compassion-meditation on experiential and neural affective responses to depictions of individuals in distress, and compared these with the established emotion regulation strategy of Reappraisal. Using fMRI, we scanned 15 expert practitioners of Compassion-meditation either passively viewing, or using Compassion-meditation or Reappraisal to modulate their emotional reactions to film clips depicting people in distress. Both strategies effectively, but differentially regulated experienced affect, with Compassion primarily increasing positive and Reappraisal primarily decreasing negative affect. Imaging results showed that Compassion, relative to both passive-viewing and Reappraisal increased activation in regions involved in affiliation, positive affect and reward processing including ventral striatum and medial orbitfrontal cortex. This network was shown to be active prior to stimulus presentation, suggesting that the regulatory mechanism of Compassion is the stimulus-independent endogenous generation of positive affect.

  10. Neural network of cognitive emotion regulation — An ALE meta-analysis and MACM analysis

    PubMed Central

    Kohn, N.; Eickhoff, S.B.; Scheller, M.; Laird, A.R.; Fox, P.T.; Habel, U.

    2016-01-01

    Cognitive regulation of emotions is a fundamental prerequisite for intact social functioning which impacts on both well being and psychopathology. The neural underpinnings of this process have been studied intensively in recent years, without, however, a general consensus. We here quantitatively summarize the published literature on cognitive emotion regulation using activation likelihood estimation in fMRI and PET (23 studies/479 subjects). In addition, we assessed the particular functional contribution of identified regions and their interactions using quantitative functional inference and meta-analytic connectivity modeling, respectively. In doing so, we developed a model for the core brain network involved in emotion regulation of emotional reactivity. According to this, the superior temporal gyrus, angular gyrus and (pre) supplementary motor area should be involved in execution of regulation initiated by frontal areas. The dorsolateral prefrontal cortex may be related to regulation of cognitive processes such as attention, while the ventrolateral prefrontal cortex may not necessarily reflect the regulatory process per se, but signals salience and therefore the need to regulate. We also identified a cluster in the anterior middle cingulate cortex as a region, which is anatomically and functionally in an ideal position to influence behavior and subcortical structures related to affect generation. Hence this area may play a central, integrative role in emotion regulation. By focusing on regions commonly active across multiple studies, this proposed model should provide important a priori information for the assessment of dysregulated emotion regulation in psychiatric disorders. PMID:24220041

  11. Taurine Induces Proliferation of Neural Stem Cells and Synapse Development in the Developing Mouse Brain

    PubMed Central

    Shivaraj, Mattu Chetana; Marcy, Guillaume; Low, Guoliang; Ryu, Jae Ryun; Zhao, Xianfeng; Rosales, Francisco J.; Goh, Eyleen L. K.

    2012-01-01

    Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippocampal slices derived from P5 mice brains. Taurine increased cell proliferation without having a significant effect on neural differentiation both in cultured P5 NPCs as well as cultured hippocampal slices and in vivo. Expression level analysis of synaptic proteins revealed that taurine increases the expression of Synapsin 1 and PSD 95. We also found that taurine stimulates the phosphorylation of ERK1/2 indicating a possible role of the ERK pathway in mediating the changes that we observed, especially in proliferation. Taken together, our results demonstrate a role for taurine in neural stem/progenitor cell proliferation in developing brain and suggest the involvement of the ERK1/2 pathways in mediating these actions. Our study also shows that taurine influences the levels of proteins associated with synapse development. This is the first evidence showing the effect of taurine on early postnatal neuronal development using a combination of in vitro, ex-vivo and in vivo systems. PMID:22916184

  12. Neural crest derivatives in ocular development: discerning the eye of the storm.

    PubMed

    Williams, Antionette L; Bohnsack, Brenda L

    2015-06-01

    Neural crest cells (NCCs) are vertebrate-specific transient, multipotent, migratory stem cells that play a crucial role in many aspects of embryonic development. These cells emerge from the dorsal neural tube and subsequently migrate to different regions of the body, contributing to the formation of diverse cell lineages and structures, including much of the peripheral nervous system, craniofacial skeleton, smooth muscle, skin pigmentation, and multiple ocular and periocular structures. Indeed, abnormalities in neural crest development cause craniofacial defects and ocular anomalies, such as Axenfeld-Rieger syndrome and primary congenital glaucoma. Thus, understanding the molecular regulation of neural crest development is important to enhance our knowledge of the basis for congenital eye diseases, reflecting the contributions of these progenitors to multiple cell lineages. Particularly, understanding the underpinnings of neural crest formation will help to discern the complexities of eye development, as these NCCs are involved in every aspect of this process. In this review, we summarize the role of ocular NCCs in eye development, particularly focusing on congenital eye diseases associated with anterior segment defects and the interplay between three prominent molecules, PITX2, CYP1B1, and retinoic acid, which act in concert to specify a population of neural crest-derived mesenchymal progenitors for migration and differentiation, to give rise to distinct anterior segment tissues. We also describe recent findings implicating this stem cell population in ocular coloboma formation, and introduce recent evidence suggesting the involvement of NCCs in optic fissure closure and vascular development.

  13. Pubertal development and regulation.

    PubMed

    Abreu, Ana Paula; Kaiser, Ursula B

    2016-03-01

    Puberty marks the end of childhood and is a period when individuals undergo physiological and psychological changes to achieve sexual maturation and fertility. The hypothalamic-pituitary-gonadal axis controls puberty and reproduction and is tightly regulated by a complex network of excitatory and inhibitory factors. This axis is active in the embryonic and early postnatal stages of life and is subsequently restrained during childhood, and its reactivation culminates in puberty initiation. The mechanisms underlying this reactivation are not completely known. The age of puberty onset varies between individuals and the timing of puberty initiation is associated with several health outcomes in adult life. In this Series paper, we discuss pubertal markers, epidemiological trends of puberty initiation over time, and the mechanisms whereby genetic, metabolic, and other factors control secretion of gonadotropin-releasing hormone to determine initiation of puberty.

  14. What is the Ultimate Goal in Neural Regulation of Cardiovascular Function?

    ERIC Educational Resources Information Center

    Prakash, E. S.; Madanmohan; Pal, Gopal Krushna

    2004-01-01

    We used the following multiple-choice question after a series of lectures in cardiovascular physiology in the first year of an undergraduate medical curriculum (n = 66) to assess whether students had understood the neural regulation of cardiovascular function. In health, neural cardiovascular mechanisms are geared toward maintaining A) cardiac…

  15. Neural Mechanisms of Emotion Regulation in Childhood Anxiety

    ERIC Educational Resources Information Center

    Hum, Kathryn M.; Manassis, Katharina; Lewis, Marc D.

    2013-01-01

    Background: The present study was designed to examine the cortical processes that mediate cognitive regulation in response to emotion-eliciting stimuli in anxious children. Methods: Electroencephalographic (EEG) activity was recorded from clinically anxious children ("n" = 29) and typically developing children ("n" = 34).…

  16. FGF signaling transforms non-neural ectoderm into neural crest.

    PubMed

    Yardley, Nathan; García-Castro, Martín I

    2012-12-15

    The neural crest arises at the border between the neural plate and the adjacent non-neural ectoderm. It has been suggested that both neural and non-neural ectoderm can contribute to the neural crest. Several studies have examined the molecular mechanisms that regulate neural crest induction in neuralized tissues or the neural plate border. Here, using the chick as a model system, we address the molecular mechanisms by which non-neural ectoderm generates neural crest. We report that in response to FGF the non-neural ectoderm can ectopically express several early neural crest markers (Pax7, Msx1, Dlx5, Sox9, FoxD3, Snail2, and Sox10). Importantly this response to FGF signaling can occur without inducing ectopic mesodermal tissues. Furthermore, the non-neural ectoderm responds to FGF by expressing the prospective neural marker Sox3, but it does not express definitive markers of neural or anterior neural (Sox2 and Otx2) tissues. These results suggest that the non-neural ectoderm can launch the neural crest program in the absence of mesoderm, without acquiring definitive neural character. Finally, we report that prior to the upregulation of these neural crest markers, the non-neural ectoderm upregulates both BMP and Wnt molecules in response to FGF. Our results provide the first effort to understand the molecular events leading to neural crest development via the non-neural ectoderm in amniotes and present a distinct response to FGF signaling. PMID:23000357

  17. Misexpression of BRE gene in the developing chick neural tube affects neurulation and somitogenesis

    PubMed Central

    Wang, Guang; Li, Yan; Wang, Xiao-Yu; Chuai, Manli; Yeuk-Hon Chan, John; Lei, Jian; Münsterberg, Andrea; Lee, Kenneth Ka Ho; Yang, Xuesong

    2015-01-01

    The brain and reproductive expression (BRE) gene is expressed in numerous adult tissues and especially in the nervous and reproductive systems. However, little is known about BRE expression in the developing embryo or about its role in embryonic development. In this study, we used in situ hybridization to reveal the spatiotemporal expression pattern for BRE in chick embryo during development. To determine the importance of BRE in neurogenesis, we overexpressed BRE and also silenced BRE expression specifically in the neural tube. We established that overexpressing BRE in the neural tube indirectly accelerated Pax7+ somite development and directly increased HNK-1+ neural crest cell (NCC) migration and TuJ-1+ neurite outgrowth. These altered morphogenetic processes were associated with changes in the cell cycle of NCCs and neural tube cells. The inverse effect was obtained when BRE expression was silenced in the neural tube. We also determined that BMP4 and Shh expression in the neural tube was affected by misexpression of BRE. This provides a possible mechanism for how altering BRE expression was able to affect somitogenesis, neurogenesis, and NCC migration. In summary, our results demonstrate that BRE plays an important role in regulating neurogenesis and indirectly somite differentiation during early chick embryo development. PMID:25568339

  18. FGF2 and insulin signaling converge to regulate cyclin D expression in multipotent neural stem cells.

    PubMed

    Adepoju, Adedamola; Micali, Nicola; Ogawa, Kazuya; Hoeppner, Daniel J; McKay, Ronald D G

    2014-03-01

    The ex vivo expansion of stem cells is making major contribution to biomedical research. The multipotent nature of neural precursors acutely isolated from the developing central nervous system has been established in a series of studies. Understanding the mechanisms regulating cell expansion in tissue culture would support their expanded use either in cell therapies or to define disease mechanisms. Basic fibroblast growth factor (FGF2) and insulin, ligands for tyrosine kinase receptors, are sufficient to sustain neural stem cells (NSCs) in culture. Interestingly, real-time imaging shows that these cells become multipotent every time they are passaged. Here, we analyze the role of FGF2 and insulin in the brief period when multipotent cells are present. FGF2 signaling results in the phosphorylation of Erk1/2, and activation of c-Fos and c-Jun that lead to elevated cyclin D mRNA levels. Insulin signals through the PI3k/Akt pathway to regulate cyclins at the post-transcriptional level. This precise Boolean regulation extends our understanding of the proliferation of multipotent NSCs and provides a basis for further analysis of proliferation control in the cell states defined by real-time mapping of the cell lineages that form the central nervous system.

  19. The epigenetic switches for neural development and psychiatric disorders.

    PubMed

    Lv, Jingwen; Xin, Yongjuan; Zhou, Wenhao; Qiu, Zilong

    2013-07-20

    The most remarkable feature of the nervous system is that the development and functions of the brain are largely reshaped by postnatal experiences, in joint with genetic landscapes. The nature vs. nurture argument reminds us that both genetic and epigenetic information is indispensable for the normal function of the brain. The epigenetic regulatory mechanisms in the central nervous system have been revealed over last a decade. Moreover, the mutations of epigenetic modulator genes have been shown to be implicated in neuropsychiatric disorders, such as autism spectrum disorders. The epigenetic study has initiated in the neuroscience field for a relative short period of time. In this review, we will summarize recent discoveries about epigenetic regulation on neural development, synaptic plasticity, learning and memory, as well as neuropsychiatric disorders. Although the comprehensive view of how epigenetic regulation contributes to the function of the brain is still not completed, the notion that brain, the most complicated organ of organisms, is profoundly shaped by epigenetic switches is widely accepted.

  20. The epigenetic switches for neural development and psychiatric disorders.

    PubMed

    Lv, Jingwen; Xin, Yongjuan; Zhou, Wenhao; Qiu, Zilong

    2013-07-20

    The most remarkable feature of the nervous system is that the development and functions of the brain are largely reshaped by postnatal experiences, in joint with genetic landscapes. The nature vs. nurture argument reminds us that both genetic and epigenetic information is indispensable for the normal function of the brain. The epigenetic regulatory mechanisms in the central nervous system have been revealed over last a decade. Moreover, the mutations of epigenetic modulator genes have been shown to be implicated in neuropsychiatric disorders, such as autism spectrum disorders. The epigenetic study has initiated in the neuroscience field for a relative short period of time. In this review, we will summarize recent discoveries about epigenetic regulation on neural development, synaptic plasticity, learning and memory, as well as neuropsychiatric disorders. Although the comprehensive view of how epigenetic regulation contributes to the function of the brain is still not completed, the notion that brain, the most complicated organ of organisms, is profoundly shaped by epigenetic switches is widely accepted. PMID:23876774

  1. Neural activation associated with the cognitive emotion regulation of sadness in healthy children.

    PubMed

    Belden, Andy C; Luby, Joan L; Pagliaccio, David; Barch, Deanna M

    2014-07-01

    When used effectively, cognitive reappraisal of distressing events is a highly adaptive cognitive emotion regulation (CER) strategy, with impairments in cognitive reappraisal associated with greater risk for psychopathology. Despite extensive literature examining the neural correlates of cognitive reappraisal in healthy and psychiatrically ill adults, there is a dearth of data to inform the neural bases of CER in children, a key gap in the literature necessary to map the developmental trajectory of cognitive reappraisal. In this fMRI study, psychiatrically healthy schoolchildren were instructed to use cognitive reappraisal to modulate their emotional reactions and responses of negative affect after viewing sad photos. Consistent with the adult literature, when actively engaged in reappraisal compared to passively viewing sad photos, children showed increased activation in the vlPFC, dlPFC, and dmPFC as well as in parietal and temporal lobe regions. When children used cognitive reappraisal to minimize their experience of negative affect after viewing sad stimuli they exhibited dampened amygdala responses. Results are discussed in relation to the importance of identifying and characterizing neural processes underlying adaptive CER strategies in typically developing children in order to understand how these systems go awry and relate to the risk and occurrence of affective disorders.

  2. Apoptosis regulates notochord development in Xenopus

    PubMed Central

    Malikova, Marina; Van Stry, Melanie

    2009-01-01

    The notochord is the defining characteristic of the chordate embryo, and plays critical roles as a signaling center and as the primitive skeleton. In this study we show that early notochord development in Xenopus embryos is regulated by apoptosis. We find apoptotic cells in the notochord beginning at the neural groove stage and increasing in number as the embryo develops. These dying cells are distributed in an anterior to posterior pattern that is correlated with notochord extension through vacuolization. In axial mesoderm explants, inhibition of this apoptosis causes the length of the notochord to approximately double compared to controls. In embryos however, inhibition of apoptosis decreases the length of the notochord and it is severely kinked. This kinking also spreads from the anterior with developmental stage such that by the tadpole stage, the notochord lacks any recognizable structure, although notochord markers are expressed in a normal temporal pattern. Extension of the somites and neural plate mirror that of the notochord in these embryos, and the somites are severely disorganized. These data indicate that apoptosis is required for normal notochord development during the formation of the anterior-posterior axis, and its role in this process is discussed. PMID:17920580

  3. Redox-based regulation of neural stem cell function and Nrf2.

    PubMed

    Madhavan, Lalitha

    2015-08-01

    Neural stem cells (NSCs) play vital roles in the development and maintenance of brain tissues throughout life. They can also potentially act as powerful sources of regeneration and repair during pathology to replace degenerating cells and counteract deleterious changes in the tissue microenvironment. However, both aging and neurodegeneration involve an up-regulation of processes, such as oxidative stress, inflammation, somatic mutations, and reduction in growth factors in neural tissues, which threaten the robust functioning of NSCs. Nevertheless, recent evidence also indicates that NSCs may possess the intrinsic capability to cope with such stressors in their microenvironment. Whereas the mechanisms governing the responses of NSCs to stress are diverse, a common theme that is emerging suggests that underlying changes in intracellular redox status are crucial. Here we discuss such redox-based regulation of NSCs, particularly in relation to nuclear erythroid factor 2-like 2 (Nrf2), which is a key cellular stress resistance factor, and its implications for successfully harnessing NSC therapeutic potential towards developing cell-based therapeutics for nervous system disorders.

  4. Regulation of viability, differentiation and death of human melanoma cells carrying neural stem cell biomarkers: a possibility for neural trans-differentiation.

    PubMed

    Ivanov, Vladimir N; Hei, Tom K

    2015-07-01

    During embryonic development, melanoblasts, the precursors of melanocytes, emerge from a subpopulation of the neural crest stem cells and migrate to colonize skin. Melanomas arise during melanoblast differentiation into melanocytes and from young proliferating melanocytes through somatic mutagenesis and epigenetic regulations. In the present study, we used several human melanoma cell lines from the sequential phases of melanoma development (radial growth phase, vertical growth phase and metastatic phase) to compare: (i) the frequency and efficiency of the induction of cell death via apoptosis and necroptosis; (ii) the presence of neural and cancer stem cell biomarkers as well as death receptors, DR5 and FAS, in both adherent and spheroid cultures of melanoma cells; (iii) anti-apoptotic effects of the endogenous production of cytokines and (iv) the ability of melanoma cells to perform neural trans-differentiation. We demonstrated that programed necrosis or necroptosis, could be induced in two metastatic melanoma lines, FEMX and OM431, while the mitochondrial pathway of apoptosis was prevalent in a vast majority of melanoma lines. All melanoma lines used in the current study expressed substantial levels of pluripotency markers, SOX2 and NANOG. There was a trend for increasing expression of Nestin, an early neuroprogenitor marker, during melanoma progression. Most of the melanoma lines, including WM35, FEMX and A375, can grow as a spheroid culture in serum-free media with supplements. It was possible to induce neural trans-differentiation of 1205Lu and OM431 melanoma cells in serum-free media supplemented with insulin. This was confirmed by the expression of neuronal markers, doublecortin and β3-Tubulin, by significant growth of neurites and by the negative regulation of this process by a dominant-negative Rac1N17. These results suggest a relative plasticity of differentiated melanoma cells and a possibility for their neural trans-differentiation without the

  5. Mechanism of cell fate choice between neural and mesodermal development during early embryogenesis.

    PubMed

    Takemoto, Tatsuya

    2013-06-01

    During early embryogenesis, Sox2 expression distinguishes the neural plate from other embryonic domains, suggesting that the mechanism underlying the activation of the Sox2 gene is highly relevant to the development of this tissue. At the earliest stages of neural plate development, the Sox2 enhancer N1 regulates Sox2 expression in the extending posterior end of the neural plate. The N1 enhancer is initially activated in the axial stem cells, bipotential precursors of both neural and mesodermal lineages, therefore the activation does not immediately lead to Sox2 expression. A population of axial stem cells that remains in the superficial layer starts expressing Sox2, whereas another population that migrates through the primitive streak loses the N1 activity and becomes mesoderm. Multiple signaling cascades and transcription factors, including Wnt, fibroblast growth factor (FGF), bone morphogenetic protein (BMP) and Tbx6, are responsible for the regulation of Sox2 expression in axial stem cells to guide the development of the posterior neural plate and paraxial mesoderm.

  6. Quantum neural networks: Current status and prospects for development

    NASA Astrophysics Data System (ADS)

    Altaisky, M. V.; Kaputkina, N. E.; Krylov, V. A.

    2014-11-01

    The idea of quantum artificial neural networks, first formulated in [34], unites the artificial neural network concept with the quantum computation paradigm. Quantum artificial neural networks were first systematically considered in the PhD thesis by T. Menneer (1998). Based on the works of Menneer and Narayanan [42, 43], Kouda, Matsui, and Nishimura [35, 36], Altaisky [2, 68], Zhou [67], and others, quantum-inspired learning algorithms for neural networks were developed, and are now used in various training programs and computer games [29, 30]. The first practically realizable scaled hardware-implemented model of the quantum artificial neural network is obtained by D-Wave Systems, Inc. [33]. It is a quantum Hopfield network implemented on the basis of superconducting quantum interference devices (SQUIDs). In this work we analyze possibilities and underlying principles of an alternative way to implement quantum neural networks on the basis of quantum dots. A possibility of using quantum neural network algorithms in automated control systems, associative memory devices, and in modeling biological and social networks is examined.

  7. Chromatin Remodeling Inactivates Activity Genes and Regulates Neural Coding

    PubMed Central

    Hill, Kelly K.; Hemberg, Martin; Reddy, Naveen C.; Cho, Ha Y.; Guthrie, Arden N.; Oldenborg, Anna; Heiney, Shane A.; Ohmae, Shogo; Medina, Javier F.; Holy, Timothy E.; Bonni, Azad

    2016-01-01

    Activity-dependent transcription influences neuronal connectivity, but the roles and mechanisms of inactivation of activity-dependent genes have remained poorly understood. Genome-wide analyses in the mouse cerebellum revealed that the nucleosome remodeling and deacetylase (NuRD) complex deposits the histone variant H2A.z at promoters of activity-dependent genes, thereby triggering their inactivation. Purification of translating mRNAs from synchronously developing granule neurons (Sync-TRAP) showed that conditional knockout of the core NuRD subunit Chd4 impairs inactivation of activity-dependent genes when neurons undergo dendrite pruning. Chd4 knockout or expression of NuRD-regulated activity genes impairs dendrite pruning. Imaging of behaving mice revealed hyperresponsivity of granule neurons to sensorimotor stimuli upon Chd4 knockout. Our findings define an epigenetic mechanism that inactivates activity-dependent transcription and regulates dendrite patterning and sensorimotor encoding in the brain. PMID:27418512

  8. Early regulative ability of the neuroepithelium to form cardiac neural crest

    PubMed Central

    Ezin, Akouavi M.; Sechrist, John W.; Zah, Angela; Bronner, Marianne; Fraser, Scott E.

    2010-01-01

    The cardiac neural crest (arising from the level of hindbrain rhombomeres 6–8) contributes to the septation of the cardiac outflow tract and the formation of aortic arches. Removal of this population after neural tube closure results in severe septation defects in the chick, reminiscent of human birth defects. Because neural crest cells from other axial levels have regenerative capacity, we asked whether the cardiac neural crest might also regenerate at early stages in a manner that declines with time. Accordingly, we find that ablation of presumptive cardiac crest at stage 7, as the neural folds elevate, results in reformation of migrating cardiac neural crest by stage 13. Fate mapping reveals that the new population derives largely from the neuroepithelium ventral and rostral to the ablation. The stage of ablation dictates the competence of residual tissue to regulate and regenerate, as this capacity is lost by stage 9, consistent with previous reports. These findings suggest that there is a temporal window during which the presumptive cardiac neural crest has the capacity to regulate and regenerate, but this regenerative ability is lost earlier than in other neural crest populations. PMID:21047505

  9. Dimensions of early experience and neural development: deprivation and threat.

    PubMed

    Sheridan, Margaret A; McLaughlin, Katie A

    2014-11-01

    Over the past decade, a growing area of research has focused on adverse childhood experiences (ACEs) and their impacts on neural and developmental outcomes. Work in the field to-date has generally conceptualized ACEs in terms of exposure to stress while overlooking the underlying dimensions of environmental experience that may distinctly impact neural development. Here, we propose a novel framework that differentiates between deprivation (absence of expected cognitive and social input) and threat (presence of a threat to one's physical integrity). We draw support for the neural basis of this distinction from studies on fear learning and sensory deprivation in animals to highlight potential mechanisms through which experiences of threat and deprivation could affect neural structure and function in humans. PMID:25305194

  10. Dimensions of early experience and neural development: deprivation and threat.

    PubMed

    Sheridan, Margaret A; McLaughlin, Katie A

    2014-11-01

    Over the past decade, a growing area of research has focused on adverse childhood experiences (ACEs) and their impacts on neural and developmental outcomes. Work in the field to-date has generally conceptualized ACEs in terms of exposure to stress while overlooking the underlying dimensions of environmental experience that may distinctly impact neural development. Here, we propose a novel framework that differentiates between deprivation (absence of expected cognitive and social input) and threat (presence of a threat to one's physical integrity). We draw support for the neural basis of this distinction from studies on fear learning and sensory deprivation in animals to highlight potential mechanisms through which experiences of threat and deprivation could affect neural structure and function in humans.

  11. Molecular control of brain size: Regulators of neural stem cell life, death and beyond

    SciTech Connect

    Joseph, Bertrand; Hermanson, Ola

    2010-05-01

    The proper development of the brain and other organs depends on multiple parameters, including strictly controlled expansion of specific progenitor pools. The regulation of such expansion events includes enzymatic activities that govern the correct number of specific cells to be generated via an orchestrated control of cell proliferation, cell cycle exit, differentiation, cell death etc. Certain proteins in turn exert direct control of these enzymatic activities and thus progenitor pool expansion and organ size. The members of the Cip/Kip family (p21Cip1/p27Kip1/p57Kip2) are well-known regulators of cell cycle exit that interact with and inhibit the activity of cyclin-CDK complexes, whereas members of the p53/p63/p73 family are traditionally associated with regulation of cell death. It has however become clear that the roles for these proteins are not as clear-cut as initially thought. In this review, we discuss the roles for proteins of the Cip/Kip and p53/p63/p73 families in the regulation of cell cycle control, differentiation, and death of neural stem cells. We suggest that these proteins act as molecular interfaces, or 'pilots', to assure the correct assembly of protein complexes with enzymatic activities at the right place at the right time, thereby regulating essential decisions in multiple cellular events.

  12. p73 regulates maintenance of neural stem cell

    SciTech Connect

    Agostini, Massimiliano; Tucci, Paola; Bano, Daniele; Nicotera, Pierluigi; McKeon, Frank; Melino, Gerry

    2010-12-03

    Research highlights: {yields} TAp73 is expressed in neural stem cells and its expression increases following their differentiation. {yields} Neural stem cells from p73 null mice have a reduced proliferative potential. {yields} p73-deficient neural stem cells show reduced expression of members of the Sox-2 and Notch gene families. {yields} Neurogenic areas are reduced in the brains of embryonic and adult p73-/- mice. -- Abstract: p73, a member of the p53 family, is a transcription factor that plays a key role in many biological processes. In the present study, we show that TAp73 is expressed in neural stem cells (NSC) and its expression increases following their differentiation. NSC from p73 null mice have a reduced proliferative potential, together with reduced expression of members of the Sox-2 and Notch gene families known to be important for NSC proliferation. In parallel with this in vitro data, the width of the neurogenic areas was reduced in the brains of embryonic and adult p73-/- mice. These data suggest that p73, and in particular TAp73, is important for maintenance of the NSC pool.

  13. Morphogenic role for acetylcholinesterase in axonal outgrowth during neural development.

    PubMed Central

    Bigbee, J W; Sharma, K V; Gupta, J J; Dupree, J L

    1999-01-01

    Acetylcholinesterase (AChE) is the enzyme that hydrolyzes the neurotransmitter acetylcholine at cholinergic synapses and neuromuscular junctions. However, results from our laboratory and others indicate that AChE has an extrasynaptic, noncholinergic role during neural development. This article is a review of our findings demonstrating the morphogenic role of AChE, using a neuronal cell culture model. We also discuss how these data suggest that AChE has a cell adhesive function during neural development. These results could have additional significance as AChE is the target enzyme of agricultural organophosphate and carbamate pesticides as well as the commonly used household organophosphate chlorpyrifos (Dursban). Prenatal exposure to these agents could have adverse effects on neural development by interfering with the morphogenic function of AChE. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 PMID:10229710

  14. Growth and splitting of neural sequences in songbird vocal development

    PubMed Central

    Okubo, Tatsuo S.; Mackevicius, Emily L.; Payne, Hannah L.; Lynch, Galen F.; Fee, Michale S.

    2015-01-01

    Neural sequences are a fundamental feature of brain dynamics underlying diverse behaviors, but the mechanisms by which they develop during learning remain unknown. Songbirds learn vocalizations composed of syllables; in adult birds, each syllable is produced by a different sequence of action potential bursts in the premotor cortical area HVC. Here we carried out recordings of large populations of HVC neurons in singing juvenile birds throughout learning to examine the emergence of neural sequences. Early in vocal development, HVC neurons begin producing rhythmic bursts, temporally locked to a ‘prototype’ syllable. Different neurons are active at different latencies relative to syllable onset to form a continuous sequence. Through development, as new syllables emerge from the prototype syllable, initially highly overlapping burst sequences become increasingly distinct. We propose a mechanistic model in which multiple neural sequences can emerge from the growth and splitting of a common precursor sequence. PMID:26618871

  15. NFAT transcription factors regulate survival, proliferation, migration, and differentiation of neural precursor cells.

    PubMed

    Serrano-Pérez, María C; Fernández, Miriam; Neria, Fernando; Berjón-Otero, Mónica; Doncel-Pérez, Ernesto; Cano, Eva; Tranque, Pedro

    2015-06-01

    The study of factors that regulate the survival, proliferation, and differentiation of neural precursor cells (NPCs) is essential to understand neural development as well as brain regeneration. The Nuclear Factor of Activated T Cells (NFAT) is a family of transcription factors that can affect these processes besides playing key roles during development, such as stimulating axonal growth in neurons, maturation of immune system cells, heart valve formation, and differentiation of skeletal muscle and bone. Interestingly, NFAT signaling can also promote cell differentiation in adults, participating in tissue regeneration. The goal of the present study is to evaluate the expression of NFAT isoforms in NPCs, and to investigate its possible role in NPC survival, proliferation, migration, and differentiation. Our findings indicate that NFAT proteins are active not only in neurogenic brain regions such as hippocampus and subventricular zone (SVZ), but also in cultured NPCs. The inhibition of NFAT activation with the peptide VIVIT reduced neurosphere size and cell density in NPC cultures by decreasing proliferation and increasing cell death. VIVIT also decreased NPC migration and differentiation of astrocytes and neurons from NPCs. In addition, we identified NFATc3 as a predominant NFAT isoform in NPC cultures, finding that a constitutively-active form of NFATc3 expressed by adenoviral infection reduces NPC proliferation, stimulates migration, and is a potent inducer of NPC differentiation into astrocytes and neurons. In summary, our work uncovers active roles for NFAT signaling in NPC survival, proliferation and differentiation, and highlights its therapeutic potential for tissue regeneration.

  16. Neural regulation of [3H]saxitoxin binding site numbers in rat neonatal muscle.

    PubMed Central

    Bambrick, L L; Gordon, T

    1988-01-01

    1. Neural regulation of the density of sodium (Na+) channels in rat muscle was studied by measuring specific binding of tritiated saxitoxin ([3H]STX) to muscles from rat hindlimbs during normal development and in rats in which neuromuscular function was interrupted by sciatic nerve section or neuromuscular blockade with botulinum toxin (BoTX). 2. The normal developmental increase in [3H]STX binding site numbers followed a simple exponential with a time constant of 12 days. The most rapid incorporation of channels coincided with the onset of accelerated muscle growth and increased neuromuscular activity at 2 weeks of age. 3. Elimination of neuromuscular activity retarded muscle growth and inhibited the normal incorporation of Na+ channels into neonatal muscle. Muscles denervation was more effective than BoTX paralysis: denervation at 2 weeks of age prevented the normal 3-fold increase in the binding site density between 2 and 3 weeks of age while age-matched BoTX-treated muscles incorporated an average of 66% of the normal Na+ channel incorporation. 4. Denervation and BoTX treatment were equally effective in reducing the numbers of [3H]STX binding sites in adult muscle. A reduction of 30% in binding sites brought the numbers to levels which corresponded with levels normally seen in muscles at 3 weeks of neonatal development. 5. It was concluded that the neural influence on incorporation of Na+ channels into membranes of neonatal muscle is, at least in part, mediated by neuromuscular activity. PMID:2855740

  17. An overview on development of neural network technology

    NASA Technical Reports Server (NTRS)

    Lin, Chun-Shin

    1993-01-01

    The study has been to obtain a bird's-eye view of the current neural network technology and the neural network research activities in NASA. The purpose was two fold. One was to provide a reference document for NASA researchers who want to apply neural network techniques to solve their problems. Another one was to report out survey results regarding NASA research activities and provide a view on what NASA is doing, what potential difficulty exists and what NASA can/should do. In a ten week study period, we interviewed ten neural network researchers in the Langley Research Center and sent out 36 survey forms to researchers at the Johnson Space Center, Lewis Research Center, Ames Research Center and Jet Propulsion Laboratory. We also sent out 60 similar forms to educators and corporation researchers to collect general opinions regarding this field. Twenty-eight survey forms, 11 from NASA researchers and 17 from outside, were returned. Survey results were reported in our final report. In the final report, we first provided an overview on the neural network technology. We reviewed ten neural network structures, discussed the applications in five major areas, and compared the analog, digital and hybrid electronic implementation of neural networks. In the second part, we summarized known NASA neural network research studies and reported the results of the questionnaire survey. Survey results show that most studies are still in the development and feasibility study stage. We compared the techniques, application areas, researchers' opinions on this technology, and many aspects between NASA and non-NASA groups. We also summarized their opinions on difficulties encountered. Applications are considered the top research priority by most researchers. Hardware development and learning algorithm improvement are the next. The lack of financial and management support is among the difficulties in research study. All researchers agree that the use of neural networks could result in

  18. Cyfip1 Regulates Presynaptic Activity during Development

    PubMed Central

    Hsiao, Kuangfu; Harony-Nicolas, Hala; Buxbaum, Joseph D.

    2016-01-01

    Copy number variations encompassing the gene encoding Cyfip1 have been associated with a variety of human diseases, including autism and schizophrenia. Here we show that juvenile mice hemizygous for Cyfip1 have altered presynaptic function, enhanced protein translation, and increased levels of F-actin. In developing hippocampus, reduced Cyfip1 levels serve to decrease paired pulse facilitation and increase miniature EPSC frequency without a change in amplitude. Higher-resolution examination shows these changes to be caused primarily by an increase in presynaptic terminal size and enhanced vesicle release probability. Short hairpin-mediated knockdown of Cyfip1 coupled with expression of mutant Cyfip1 proteins indicates that the presynaptic alterations are caused by dysregulation of the WAVE regulatory complex. Such dysregulation occurs downstream of Rac1 as acute exposure to Rac1 inhibitors rescues presynaptic responses in culture and in hippocampal slices. The data serve to highlight an early and essential role for Cyfip1 in the generation of normally functioning synapses and suggest a means by which changes in Cyfip1 levels could impact the generation of neural networks and contribute to abnormal and maladaptive behaviors. SIGNIFICANCE STATEMENT Several developmental brain disorders have been associated with gene duplications and deletions that serve to increase or decrease levels of encoded proteins. Cyfip1 is one such protein, but the role it plays in brain development is poorly understood. We asked whether decreased Cyfip1 levels altered the function of developing synapses. The data show that synapses with reduced Cyfip1 are larger and release neurotransmitter more rapidly. These effects are due to Cyfip1's role in actin polymerization and are reversed by expression of a Cyfip1 mutant protein retaining actin regulatory function or by inhibiting Rac1. Thus, Cyfip1 has a more prominent early role regulating presynaptic activity during a stage of development when

  19. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    PubMed Central

    2009-01-01

    Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves. PMID:19939265

  20. The Interleukin 3 Gene (IL3) Contributes to Human Brain Volume Variation by Regulating Proliferation and Survival of Neural Progenitors

    PubMed Central

    Huang, Liang; Nho, Kwangsik; Deng, Min; Chen, Qiang; Weinberger, Daniel R.; Vasquez, Alejandro Arias; Rijpkema, Mark; Mattay, Venkata S.; Saykin, Andrew J.; Shen, Li; Fernández, Guillén; Franke, Barbara; Chen, Jing-chun; Chen, Xiang-ning; Wang, Jin-kai; Xiao, Xiao; Qi, Xue-bin; Xiang, Kun; Peng, Ying-Mei; Cao, Xiang-yu; Li, Yi; Shi, Xiao-dong; Gan, Lin; Su, Bing

    2012-01-01

    One of the most significant evolutionary changes underlying the highly developed cognitive abilities of humans is the greatly enlarged brain volume. In addition to being far greater than in most other species, the volume of the human brain exhibits extensive variation and distinct sexual dimorphism in the general population. However, little is known about the genetic mechanisms underlying normal variation as well as the observed sex difference in human brain volume. Here we show that interleukin-3 (IL3) is strongly associated with brain volume variation in four genetically divergent populations. We identified a sequence polymorphism (rs31480) in the IL3 promoter which alters the expression of IL3 by affecting the binding affinity of transcription factor SP1. Further analysis indicated that IL3 and its receptors are continuously expressed in the developing mouse brain, reaching highest levels at postnatal day 1–4. Furthermore, we found IL3 receptor alpha (IL3RA) was mainly expressed in neural progenitors and neurons, and IL3 could promote proliferation and survival of the neural progenitors. The expression level of IL3 thus played pivotal roles in the expansion and maintenance of the neural progenitor pool and the number of surviving neurons. Moreover, we found that IL3 activated both estrogen receptors, but estrogen didn’t directly regulate the expression of IL3. Our results demonstrate that genetic variation in the IL3 promoter regulates human brain volume and reveals novel roles of IL3 in regulating brain development. PMID:23226269

  1. Genetic Regulation of Prostate Development

    PubMed Central

    Meeks, Joshua; Schaeffer, Edward M

    2011-01-01

    Prostatic development is a dynamic process in which basic mechanisms of epithelial outgrowth and epithelial-mesenchymal interaction are initiated by androgens and androgen receptor signaling. Even in adulthood, the prostate's function remains tightly regulated by androgens--without them, pathologic diseases including hyperplastic and malignant growth which together plague nearly 50% of aging males does not occur. Unraveling the etiology of these pathologic processes is a complex and important goal. In fact, many insights into these processes have come from an intimate understanding of the complex signaling networks that regulate physiologic prostatic growth in development. This review aims to highlight important key molecules such as Nkx3.1, sonic hedgehog and Sox9 as well as key signaling pathways including the Fibroblast growth factor and Wnt pathways. These molecules and pathways are critical for prostate development with both know and postulated roles in prostatic pathology. PMID:20930191

  2. A neural circuit mechanism for regulating vocal variability during song learning in zebra finches

    PubMed Central

    Garst-Orozco, Jonathan; Babadi, Baktash; Ölveczky, Bence P

    2014-01-01

    Motor skill learning is characterized by improved performance and reduced motor variability. The neural mechanisms that couple skill level and variability, however, are not known. The zebra finch, a songbird, presents a unique opportunity to address this question because production of learned song and induction of vocal variability are instantiated in distinct circuits that converge on a motor cortex analogue controlling vocal output. To probe the interplay between learning and variability, we made intracellular recordings from neurons in this area, characterizing how their inputs from the functionally distinct pathways change throughout song development. We found that inputs that drive stereotyped song-patterns are strengthened and pruned, while inputs that induce variability remain unchanged. A simple network model showed that strengthening and pruning of action-specific connections reduces the sensitivity of motor control circuits to variable input and neural ‘noise’. This identifies a simple and general mechanism for learning-related regulation of motor variability. DOI: http://dx.doi.org/10.7554/eLife.03697.001 PMID:25497835

  3. The role of gap junction proteins in the development of neural network functional topology.

    PubMed

    Anava, S; Saad, Y; Ayali, A

    2013-10-01

    Gap junctions (GJs) provide a common form of intercellular communication in most animal cells and tissues, from Hydra to human, including electrical synaptic signalling. Cell coupling via GJs has an important role in development in general, and in neural network development in particular. However, quantitative studies monitoring GJ proteins throughout nervous system development are few. Direct investigations demonstrating a role for GJ proteins by way of experimental manipulation of their expression are also rare. In the current work we focused on the role of invertebrate GJ proteins (innexins) in the in vitro development of neural network functional topology, using two-dimensional neural culture preparations derived from the frontal ganglion of the desert locust, Schistocerca gregaria. Immunocytochemistry and quantitative real-time PCR revealed a dynamic expression pattern of the innexins during development of the cultured networks. Changes were observed both in the levels and in the localization of expression. Down-regulating the expression of innexins, by using double-strand RNA for the first time in locust neural cultures, induced clear changes in network morphology, as well as inhibition of synaptogenesis, thus suggesting a role for GJs during the development of the functional topology of neuronal networks.

  4. Regulation of Compound Leaf Development

    PubMed Central

    Wang, Yuan; Chen, Rujin

    2013-01-01

    Leaf morphology is one of the most variable, yet inheritable, traits in the plant kingdom. How plants develop a variety of forms and shapes is a major biological question. Here, we discuss some recent progress in understanding the development of compound or dissected leaves in model species, such as tomato (Solanum lycopersicum), Cardamine hirsuta and Medicago truncatula, with an emphasis on recent discoveries in legumes. We also discuss progress in gene regulations and hormonal actions in compound leaf development. These studies facilitate our understanding of the underlying regulatory mechanisms and put forward a prospective in compound leaf studies. PMID:27135488

  5. FGF-receptor signalling controls neural cell diversity in the zebrafish hindbrain by regulating olig2 and sox9.

    PubMed

    Esain, Virginie; Postlethwait, John H; Charnay, Patrick; Ghislain, Julien

    2010-01-01

    The mechanisms underlying the generation of neural cell diversity are the subject of intense investigation, which has highlighted the involvement of different signalling molecules including Shh, BMP and Wnt. By contrast, relatively little is known about FGF in this process. In this report we identify an FGF-receptor-dependent pathway in zebrafish hindbrain neural progenitors that give rise to somatic motoneurons, oligodendrocyte progenitors and differentiating astroglia. Using a combination of chemical and genetic approaches to conditionally inactivate FGF-receptor signalling, we investigate the role of this pathway. We show that FGF-receptor signalling is not essential for the survival or maintenance of hindbrain neural progenitors but controls their fate by coordinately regulating key transcription factors. First, by cooperating with Shh, FGF-receptor signalling controls the expression of olig2, a patterning gene essential for the specification of somatic motoneurons and oligodendrocytes. Second, FGF-receptor signalling controls the development of both oligodendrocyte progenitors and astroglia through the regulation of sox9, a gliogenic transcription factor the function of which we show to be conserved in the zebrafish hindbrain. Overall, for the first time in vivo, our results reveal a mechanism of FGF in the control of neural cell diversity. PMID:20023158

  6. Development Switch in Neural Circuitry Underlying Odor-Malaise Learning

    ERIC Educational Resources Information Center

    Lunday, Lauren; Miner, Cathrine; Roth, Tania L.; Sullivan, Regina M.; Shionoya, Kiseko; Moriceau, Stephanie

    2006-01-01

    Fetal and infant rats can learn to avoid odors paired with illness before development of brain areas supporting this learning in adults, suggesting an alternate learning circuit. Here we begin to document the transition from the infant to adult neural circuit underlying odor-malaise avoidance learning using LiCl (0.3 M; 1% of body weight, ip) and…

  7. A Constructive Neural-Network Approach to Modeling Psychological Development

    ERIC Educational Resources Information Center

    Shultz, Thomas R.

    2012-01-01

    This article reviews a particular computational modeling approach to the study of psychological development--that of constructive neural networks. This approach is applied to a variety of developmental domains and issues, including Piagetian tasks, shift learning, language acquisition, number comparison, habituation of visual attention, concept…

  8. Regulation of endogenous neural stem/progenitor cells for neural repair-factors that promote neurogenesis and gliogenesis in the normal and damaged brain.

    PubMed

    Christie, Kimberly J; Turnley, Ann M

    2012-01-01

    Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb (OB) and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream (RMS) to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioral outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem/precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation. PMID:23346046

  9. Sox2-mediated regulation of adult neural crest precursors and skin repair.

    PubMed

    Johnston, Adam P W; Naska, Sibel; Jones, Karen; Jinno, Hiroyuki; Kaplan, David R; Miller, Freda D

    2013-01-01

    Nerve-derived neural crest cells are essential for regeneration in certain animals, such as newts. Here, we asked whether they play a similar role during mammalian tissue repair, focusing on Sox2-positive neural crest precursors in skin. In adult skin, Sox2 was expressed in nerve-terminal-associated neural crest precursor cells (NCPCs) around the hair follicle bulge, and following injury was induced in nerve-derived cells, likely dedifferentiated Schwann cell precursors. At later times postinjury, Sox2-positive cells were scattered throughout the regenerating dermis, and lineage tracing showed that these were all neural-crest-derived NCPCs. These Sox2-positive NCPCs were functionally important, since acute deletion of Sox2 prior to injury caused a decrease of NCPCs in the wound and aberrant skin repair. These data demonstrate that Sox2 regulates skin repair, likely by controlling NCPCs, and raise the possibility that nerve-derived NCPCs may play a general role in mammalian tissue repair.

  10. Function of Armcx3 and Armc10/SVH Genes in the Regulation of Progenitor Proliferation and Neural Differentiation in the Chicken Spinal Cord.

    PubMed

    Mirra, Serena; Ulloa, Fausto; Gutierrez-Vallejo, Irene; Martì, Elisa; Soriano, Eduardo

    2016-01-01

    The eutherian X-chromosome specific family of Armcx genes has been described as originating by retrotransposition from Armc10/SVH, a single Arm-containing somatic gene. Armcx3 and Armc10/SVH are characterized by high expression in the central nervous system and they play an important role in the regulation of mitochondrial distribution and transport in neurons. In addition, Armcx/Arm10 genes have several Armadillo repeats in their sequence. In this study we address the potential role of this gene family in neural development by using the chick neural tube as a model. We show that Armc10/SVH is expressed in the chicken spinal cord, and knocking-down Armc10/SVH by sh-RNAi electroporation in spinal cord reduces proliferation of neural precursor cells (NPCs). Moreover, we analyzed the effects of murine Armcx3 and Armc10 overexpression, showing that both proteins regulate progenitor proliferation, while Armcx3 overexpression also specifically controls neural maturation. We show that the phenotypes found following Armcx3 overexpression require its mitochondrial localization, suggesting a novel link between mitochondrial dynamics and regulation of neural development. Furthermore, we found that both Armcx3 and Armc10 may act as inhibitors of Wnt-β-catenin signaling. Our results highlight both common and differential functions of Armcx/Armc10 genes in neural development in the spinal cord. PMID:26973462

  11. Regulation of transcription factors by nitric oxide in neurons and in neural-derived tumor cells.

    PubMed

    Contestabile, Antonio

    2008-04-01

    Nitric oxide (NO), a diffusible molecule acting as an intercellular and intracellular messenger in many tissues, plays multiple roles in the nervous system. In addition to regulating proliferation, survival and differentiation of neurons, NO is also involved in synaptic activity, neural plasticity and memory formation. Long-lasting effects of NO, a simple and unstable molecule, occur through regulation of transcription factors and modulation of gene expression. cAMP-response-element-binding (CREB) protein is an important transcription factor that regulates the expression of several genes involved in survival and neuroprotection as well as in synaptic plasticity and memory formation. Nitric oxide promotes survival and differentiation of neural cells, both activating through cGMP signaling CREB phosphorylation-dependent transcriptional activity and promoting S-nitrosylation of nuclear proteins that favor CREB binding to its promoters on target genes. Among oncogenic transcription factors, N-Myc is important in neurogenesis and in regulating proliferation of neural-derived tumor cells, such as neuroblastomas and medulloblastomas. Nitric oxide negatively regulates the proliferation of neuronal precursors, as well as the proliferation of neuroblastoma cells, by downregulating N-Myc expression through cGMP signaling. Other oncogenic transcription factors, such as c-fos and c-jun, zinc-finger transcription factors, such as egr-1, and NF-kappaB are regulated by NO signaling in cGMP-dependent way or through nitrosative conformational changes. The present survey of how NO signaling influences neural cells through regulation of transcription factors allows us to predict that better knowledge of these interactions will provide a better understanding of the physiological role of NO in the nervous system in order to conceive novel therapies for neural-derived tumors.

  12. Regulation of transcription factors by nitric oxide in neurons and in neural-derived tumor cells.

    PubMed

    Contestabile, Antonio

    2008-04-01

    Nitric oxide (NO), a diffusible molecule acting as an intercellular and intracellular messenger in many tissues, plays multiple roles in the nervous system. In addition to regulating proliferation, survival and differentiation of neurons, NO is also involved in synaptic activity, neural plasticity and memory formation. Long-lasting effects of NO, a simple and unstable molecule, occur through regulation of transcription factors and modulation of gene expression. cAMP-response-element-binding (CREB) protein is an important transcription factor that regulates the expression of several genes involved in survival and neuroprotection as well as in synaptic plasticity and memory formation. Nitric oxide promotes survival and differentiation of neural cells, both activating through cGMP signaling CREB phosphorylation-dependent transcriptional activity and promoting S-nitrosylation of nuclear proteins that favor CREB binding to its promoters on target genes. Among oncogenic transcription factors, N-Myc is important in neurogenesis and in regulating proliferation of neural-derived tumor cells, such as neuroblastomas and medulloblastomas. Nitric oxide negatively regulates the proliferation of neuronal precursors, as well as the proliferation of neuroblastoma cells, by downregulating N-Myc expression through cGMP signaling. Other oncogenic transcription factors, such as c-fos and c-jun, zinc-finger transcription factors, such as egr-1, and NF-kappaB are regulated by NO signaling in cGMP-dependent way or through nitrosative conformational changes. The present survey of how NO signaling influences neural cells through regulation of transcription factors allows us to predict that better knowledge of these interactions will provide a better understanding of the physiological role of NO in the nervous system in order to conceive novel therapies for neural-derived tumors. PMID:18308460

  13. Matrix metalloproteinases in neural development: a phylogenetically diverse perspective

    PubMed Central

    Small, Christopher D.; Crawford, Bryan D.

    2016-01-01

    The matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases originally characterized as secreted proteases responsible for degrading extracellular matrix proteins. Their canonical role in matrix remodelling is of significant importance in neural development and regeneration, but emerging roles for MMPs, especially in signal transduction pathways, are also of obvious importance in a neural context. Misregulation of MMP activity is a hallmark of many neuropathologies, and members of every branch of the MMP family have been implicated in aspects of neural development and disease. However, while extraordinary research efforts have been made to elucidate the molecular mechanisms involving MMPs, methodological constraints and complexities of the research models have impeded progress. Here we discuss the current state of our understanding of the roles of MMPs in neural development using recent examples and advocate a phylogenetically diverse approach to MMP research as a means to both circumvent the challenges associated with specific model organisms, and to provide a broader evolutionary context from which to synthesize an understanding of the underlying biology. PMID:27127457

  14. Elongator Protein 3 (Elp3) stabilizes Snail1 and regulates neural crest migration in Xenopus

    PubMed Central

    Yang, Xiangcai; Li, Jiejing; Zeng, Wanli; Li, Chaocui; Mao, Bingyu

    2016-01-01

    Elongator protein 3 (Elp3) is the enzymatic unit of the elongator protein complex, a histone acetyltransferase complex involved in transcriptional elongation. It has long been shown to play an important role in cell migration; however, the underlying mechanism is unknown. Here, we showed that Elp3 is expressed in pre-migratory and migrating neural crest cells in Xenopus embryos, and knockdown of Elp3 inhibited neural crest cell migration. Interestingly, Elp3 binds Snail1 through its zinc-finger domain and inhibits its ubiquitination by β-Trcp without interfering with the Snail1/Trcp interaction. We showed evidence that Elp3-mediated stabilization of Snail1 was likely involved in the activation of N-cadherin in neural crest cells to regulate their migratory ability. Our findings provide a new mechanism for the function of Elp3 in cell migration through stabilizing Snail1, a master regulator of cell motility. PMID:27189455

  15. LRP2 mediates folate uptake in the developing neural tube.

    PubMed

    Kur, Esther; Mecklenburg, Nora; Cabrera, Robert M; Willnow, Thomas E; Hammes, Annette

    2014-05-15

    The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2) is a multifunctional cell-surface receptor expressed in the embryonic neuroepithelium. Loss of LRP2 in the developing murine central nervous system (CNS) causes impaired closure of the rostral neural tube at embryonic stage (E) 9.0. Similar neural tube defects (NTDs) have previously been attributed to impaired folate metabolism in mice. We therefore asked whether LRP2 might be required for the delivery of folate to neuroepithelial cells during neurulation. Uptake assays in whole-embryo cultures showed that LRP2-deficient neuroepithelial cells are unable to mediate the uptake of folate bound to soluble folate receptor 1 (sFOLR1). Consequently, folate concentrations are significantly reduced in Lrp2(-/-) embryos compared with control littermates. Moreover, the folic-acid-dependent gene Alx3 is significantly downregulated in Lrp2 mutants. In conclusion, we show that LRP2 is essential for cellular folate uptake in the developing neural tube, a crucial step for proper neural tube closure.

  16. Splanchnic neural regulation of somatostatin secretion in the isolated perfused human pancreas.

    PubMed Central

    Brunicardi, F C; Elahi, D; Andersen, D K

    1994-01-01

    OBJECTIVE: The somatostatin-secreting delta cells in the islets of Langerhans appear to be regulated by neural mechanisms that have not been defined clearly. In this study, the celiac neural bundle of the human pancreas was electrically stimulated in the presence and absence of selective neural antagonists. SUMMARY BACKGROUND DATA: The authors previously reported on studies of the splanchnic neural regulation of insulin, glucagon, and pancreatic polypeptide secretion. In these studies, alpha-adrenergic fibers appeared to have a predominant effect, strongly inhibiting the secretion of insulin, glucagon, and pancreatic polypeptide secretion. Cholinergic fibers appeared to stimulate strongly, although beta-adrenergic fibers weakly stimulated, the secretion of these hormones. Investigations of neural regulatory mechanisms governing human somatostatin release in vitro have not been previously reported. METHODS: Pancreata were obtained from eight cadaveric organ donors. The isolated perfused human pancreas technique was used to assess the regulation of somatostatin secretion by the various neural fibers contained within the celiac plexus. The secretory response of somatostatin was examined in the presence of 16.7 mmol/L glucose, with and without neural stimulation, and specific neural antagonists. RESULTS: The basal somatostatin secretion was 88 +/- 26 fmol/g/min and increased 131 +/- 23% (n = 8, p < 0.01) in response to 16.7 mmol/L glucose. The augmentation seen with glucose was inhibited 66 +/- 22% (n = 8, p < 0.05) during celiac neural bundle stimulation. Alpha-adrenergic blockade resulted in a 90 +/- 30% (n = 6, p < 0.01) augmentation of somatostatin release. Beta-adrenergic blockade caused a 13 +/- 2% (n = 6, p < 0.05) suppression of somatostatin release. Complete adrenergic blockade resulted in a 25 +/- 23% (n = 5, p = not significant) inhibition of somatostatin release. Cholinergic blockade resulted in a 40 +/- 10% (n = 6, p < 0.02) suppression of somatostatin

  17. Neural crest and somitic mesoderm as paradigms to investigate cell fate decisions during development.

    PubMed

    Nitzan, Erez; Kalcheim, Chaya

    2013-01-01

    The dorsal domains of the neural tube and somites are transient embryonic epithelia; they constitute the source of neural crest progenitors that generate the peripheral nervous system, pigment cells and ectomesenchyme, and of the dermomyotome that develops into myocytes, dermis and vascular cells, respectively. Based on the variety of derivatives produced by each type of epithelium, a classical yet still highly relevant question is whether these embryonic epithelia are composed of homogeneous multipotent progenitors or, alternatively, of subsets of fate-restricted cells. Growing evidence substantiates the notion that both the dorsal tube and the dermomyotome are heterogeneous epithelia composed of multipotent as well as fate-restricted precursors that emerge as such in a spatio-temporally regulated manner. Elucidation of the state of commitment of the precedent progenitors is of utmost significance for deciphering the mechanisms that regulate fate segregation during embryogenesis. In addition, it will contribute to understanding the nature of well documented neural crest-somite interactions shown to modulate the timing of neural crest cell emigration, their segmental migration, and myogenesis.

  18. Redox Regulation of Plant Development

    PubMed Central

    Considine, Michael J.

    2014-01-01

    Abstract Significance: We provide a conceptual framework for the interactions between the cellular redox signaling hub and the phytohormone signaling network that controls plant growth and development to maximize plant productivity under stress-free situations, while limiting growth and altering development on exposure to stress. Recent Advances: Enhanced cellular oxidation plays a key role in the regulation of plant growth and stress responses. Oxidative signals or cycles of oxidation and reduction are crucial for the alleviation of dormancy and quiescence, activating the cell cycle and triggering genetic and epigenetic control that underpin growth and differentiation responses to changing environmental conditions. Critical Issues: The redox signaling hub interfaces directly with the phytohormone network in the synergistic control of growth and its modulation in response to environmental stress, but a few components have been identified. Accumulating evidence points to a complex interplay of phytohormone and redox controls that operate at multiple levels. For simplicity, we focus here on redox-dependent processes that control root growth and development and bud burst. Future Directions: The multiple roles of reactive oxygen species in the control of plant growth and development have been identified, but increasing emphasis should now be placed on the functions of redox-regulated proteins, along with the central roles of reductants such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin in the regulation of the genetic and epigenetic factors that modulate the growth and vigor of crop plants, particularly within an agricultural context. Antioxid. Redox Signal. 21, 1305–1326. PMID:24180689

  19. Canonical Wnt activity regulates trunk neural crest delamination linking BMP/noggin signaling with G1/S transition.

    PubMed

    Burstyn-Cohen, Tal; Stanleigh, Jonathan; Sela-Donenfeld, Dalit; Kalcheim, Chaya

    2004-11-01

    Delamination of premigratory neural crest cells depends on a balance between BMP/noggin and on successful G1/S transition. Here, we report that BMP regulates G1/S transition and consequent crest delamination through canonical Wnt signaling. Noggin overexpression inhibits G1/S transition and blocking G1/S abrogates BMP-induced delamination; moreover, transcription of Wnt1 is stimulated by BMP and by the developing somites, which concomitantly inhibit noggin production. Interfering with beta-catenin and LEF/TCF inhibits G1/S transition, neural crest delamination and transcription of various BMP-dependent genes, which include Cad6B, Pax3 and Msx1, but not that of Slug, Sox9 or FoxD3. Hence, we propose that developing somites inhibit noggin transcription in the dorsal tube, resulting in activation of BMP and consequent Wnt1 production. Canonical Wnt signaling in turn stimulates G1/S transition and generation of neural crest cell motility independently of its proposed role in earlier neural crest specification. PMID:15456730

  20. Neural Networks Involved in Voluntary and Involuntary Vocal Pitch Regulation in Experienced Singers

    ERIC Educational Resources Information Center

    Zarate, Jean Mary; Wood, Sean; Zatorre, Robert J.

    2010-01-01

    In an fMRI experiment, we tested experienced singers with singing tasks to investigate neural correlates of voluntary and involuntary vocal pitch regulation. We shifted the pitch of auditory feedback (plus or minus 25 or 200 cents), and singers either: (1) ignored the shift and maintained their vocal pitch or (2) changed their vocal pitch to…

  1. Neural Development Under Conditions of Spaceflight

    NASA Technical Reports Server (NTRS)

    Kosik, Kenneth S.; Steward, Oswald; Temple, Meredith D.; Denslow, Maria J.

    2003-01-01

    One of the key tasks the developing brain must learn is how to navigate within the environment. This skill depends on the brain's ability to establish memories of places and things in the environment so that it can form cognitive maps. Earth's gravity defines the plane of orientation of the spatial environment in which animals navigate, and cognitive maps are based on this plane of orientation. Given that experience during early development plays a key role in the development of other aspects of brain function, experience in a gravitational environment is likely to be essential for the proper organization of brain regions mediating learning and memory of spatial information. Since the hippocampus is the brain region responsible for cognitive mapping abilities, this study evaluated the development of hippocampal structure and function in rats that spent part of their early development in microgravity. Litters of male and female Sprague-Dawley rats were launched into space aboard the Space Shuttle Columbia on either postnatal day eight (P8) or 14 (P14) and remained in space for 16 days. Upon return to Earth, the rats were tested for their ability to remember spatial information and navigate using a variety of tests (the Morris water maze, a modified radial arm maze, and an open field apparatus). These rats were then tested physiologically to determine whether they exhibited normal synaptic plasticity in the hippocampus. In a separate group of rats (flight and controls), the hippocampus was analyzed using anatomical, molecular biological, and biochemical techniques immediately postlanding. There were remarkably few differences between the flight groups and their Earth-bound controls in either the navigation and spatial memory tasks or activity-induced synaptic plasticity. Microscopic and immunocytochemical analyses of the brain also did not reveal differences between flight animals and ground-based controls. These data suggest that, within the developmental window

  2. Theoretical models of neural circuit development.

    PubMed

    Simpson, Hugh D; Mortimer, Duncan; Goodhill, Geoffrey J

    2009-01-01

    Proper wiring up of the nervous system is critical to the development of organisms capable of complex and adaptable behaviors. Besides the many experimental advances in determining the cellular and molecular machinery that carries out this remarkable task precisely and robustly, theoretical approaches have also proven to be useful tools in analyzing this machinery. A quantitative understanding of these processes can allow us to make predictions, test hypotheses, and appraise established concepts in a new light. Three areas that have been fruitful in this regard are axon guidance, retinotectal mapping, and activity-dependent development. This chapter reviews some of the contributions made by mathematical modeling in these areas, illustrated by important examples of models in each section. For axon guidance, we discuss models of how growth cones respond to their environment, and how this environment can place constraints on growth cone behavior. Retinotectal mapping looks at computational models for how topography can be generated in populations of neurons based on molecular gradients and other mechanisms such as competition. In activity-dependent development, we discuss theoretical approaches largely based on Hebbian synaptic plasticity rules, and how they can generate maps in the visual cortex very similar to those seen in vivo. We show how theoretical approaches have substantially contributed to the advancement of developmental neuroscience, and discuss future directions for mathematical modeling in the field. PMID:19427515

  3. Priming the Cellular Glycocalyx for Neural Development

    PubMed Central

    2015-01-01

    Glycans are important contributors to the development and function of the nervous system with enormous potential as therapeutic targets. However, a general lack of tools for tailoring the presentation of specific glycan structures on the surfaces of cells has left them largely unexplored in the biomedical context. In this Viewpoint, we briefly summarize the distinct challenges and complexities of the Glycome. We also highlight an emerging concept of cell surface engineering using synthetic nanoscale mimetics of native glycoconjugates to harness some of the unique biology of glycans, with an eye toward advancing stem cell-based neuroregenerative therapies. PMID:25210831

  4. A neural theory of cognitive development.

    PubMed

    Johnston, V S; Partridge, D; Lopez, P D

    1983-02-01

    A physiologically based model of the neocortex has been developed in an attempt to elucidate possible structural and functional mechanisms of the mammalian cortex and account for a wide range of low level cognitive behavior. The model has been constrained by diverse empirical data. At the level of structural details, neuroanatomical and neurophysiological data have been considered and at the level of gross behavior, psychological data has been used. From the theory that groups of reverberating neurons provide a short term memory mechanism and that primary drive reduction triggers consolidation of a memory, a mechanism for selective learning has been developed. Fundamental to the model is the postulate of a novelty drive mechanism that functions in a manner analogous to the more widely accepted primary drives (e.g. hunger and fear). This paper examines the novelty drive mechanism and demonstrates its utility in accounting for a wide range of habituation behaviors. The success of the model is evaluated by comparing its behavior to appropriate empirical data. Finally, it is argued that a computer program is both a theory and a model, and that important advantages accrue from such a viewpoint. PMID:6834866

  5. A Robust Single Primate Neuroepithelial Cell Clonal Expansion System for Neural Tube Development and Disease Studies

    PubMed Central

    Zhu, Xiaoqing; Li, Bo; Ai, Zongyong; Xiang, Zheng; Zhang, Kunshang; Qiu, Xiaoyan; Chen, Yongchang; Li, Yuemin; Rizak, Joshua D.; Niu, Yuyu; Hu, Xintian; Sun, Yi Eve; Ji, Weizhi; Li, Tianqing

    2015-01-01

    Summary Developing a model of primate neural tube (NT) development is important to promote many NT disorder studies in model organisms. Here, we report a robust and stable system to allow for clonal expansion of single monkey neuroepithelial stem cells (NESCs) to develop into miniature NT-like structures. Single NESCs can produce functional neurons in vitro, survive, and extensively regenerate neuron axons in monkey brain. NT formation and NESC maintenance depend on high metabolism activity and Wnt signaling. NESCs are regionally restricted to a telencephalic fate. Moreover, single NESCs can turn into radial glial progenitors (RGPCs). The transition is accurately regulated by Wnt signaling through regulation of Notch signaling and adhesion molecules. Finally, using the “NESC-TO-NTs” system, we model the functions of folic acid (FA) on NT closure and demonstrate that FA can regulate multiple mechanisms to prevent NT defects. Our system is ideal for studying NT development and diseases. PMID:26584544

  6. Neural networks as mechanisms to regulate division of labor.

    PubMed

    Lichocki, Paweł; Tarapore, Danesh; Keller, Laurent; Floreano, Dario

    2012-03-01

    In social insects, workers perform a multitude of tasks, such as foraging, nest construction, and brood rearing, without central control of how work is allocated among individuals. It has been suggested that workers choose a task by responding to stimuli gathered from the environment. Response-threshold models assume that individuals in a colony vary in the stimulus intensity (response threshold) at which they begin to perform the corresponding task. Here we highlight the limitations of these models with respect to colony performance in task allocation. First, we show with analysis and quantitative simulations that the deterministic response-threshold model constrains the workers' behavioral flexibility under some stimulus conditions. Next, we show that the probabilistic response-threshold model fails to explain precise colony responses to varying stimuli. Both of these limitations would be detrimental to colony performance when dynamic and precise task allocation is needed. To address these problems, we propose extensions of the response-threshold model by adding variables that weigh stimuli. We test the extended response-threshold model in a foraging scenario and show in simulations that it results in an efficient task allocation. Finally, we show that response-threshold models can be formulated as artificial neural networks, which consequently provide a comprehensive framework for modeling task allocation in social insects. PMID:22322226

  7. Effect of gravity on vestibular neural development

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Tomko, D. L.

    1998-01-01

    The timing, molecular basis, and morphophysiological and behavioral consequences of the interaction between external environment and the internal genetic pool that shapes the nervous system over a lifetime remain important questions in basic neuroscientific research. Space station offers the opportunity to study this interaction over several life cycles in a variety of organisms. This short review considers past work in altered gravity, particularly on the vestibular system, as the basis for proposing future research on space station, and discusses the equipment necessary to achieve goals. It is stressed that, in keeping with the international investment being made in this research endeavor, both the questions asked and the technologies to be developed should be bold. Advantage must be taken of this unique research environment to expand the frontiers of neuroscience. Copyright 1998 Published by Elsevier Science B.V.

  8. Development of common neural representations for distinct numerical problems

    PubMed Central

    Chang, Ting-Ting; Rosenberg-Lee, Miriam; Metcalfe, Arron W. S.; Chen, Tianwen; Menon, Vinod

    2015-01-01

    How the brain develops representations for abstract cognitive problems is a major unaddressed question in neuroscience. Here we tackle this fundamental question using arithmetic problem solving, a cognitive domain important for the development of mathematical reasoning. We first examined whether adults demonstrate common neural representations for addition and subtraction problems, two complementary arithmetic operations that manipulate the same quantities. We then examined how the common neural representations for the two problem types change with development. Whole-brain multivoxel representational similarity (MRS) analysis was conducted to examine common coding of addition and subtraction problems in children and adults. We found that adults exhibited significant levels of MRS between the two problem types, not only in the intra-parietal sulcus (IPS) region of the posterior parietal cortex (PPC), but also in ventral temporal-occipital, anterior temporal and dorsolateral prefrontal cortices. Relative to adults, children showed significantly reduced levels of MRS in these same regions. In contrast, no brain areas showed significantly greater MRS between problem types in children. Our findings provide novel evidence that the emergence of arithmetic problem solving skills from childhood to adulthood is characterized by maturation of common neural representations between distinct numerical operations, and involve distributed brain regions important for representing and manipulating numerical quantity. More broadly, our findings demonstrate that representational analysis provides a powerful approach for uncovering fundamental mechanisms by which children develop proficiencies that are a hallmark of human cognition. PMID:26160287

  9. Zebrafish Thsd7a is a neural protein required for angiogenic patterning during development.

    PubMed

    Wang, Chieh-Huei; Chen, I-Hui; Kuo, Meng-Wei; Su, Pei-Tsu; Lai, Zih-Yin; Wang, Chian-Huei; Huang, Wei-Chang; Hoffman, Jana; Kuo, Calvin J; You, May-Su; Chuang, Yung-Jen

    2011-06-01

    Angiogenesis is a highly organized process under the control of guidance cues that direct endothelial cell (EC) migration. Recently, many molecules that were initially described as regulators of neural guidance were subsequently shown to also direct EC migration. Here, we report a novel protein, thrombospondin type I domain containing 7A (Thsd7a), that is a neural molecule required for directed EC migration during embryonic angiogenesis in zebrafish. Thsd7a is a vertebrate conserved protein. Zebrafish thsd7a transcript was detected along the ventral edge of the neural tube in the developing zebrafish embryos, correlating with the growth path of angiogenic intersegmental vessels (ISVs). Morpholino-knockdown of Thsd7a caused a lateral deviation of angiogenic ECs below the thsd7a-expressing sites, resulting in aberrant ISV patterning. Collectively, our study shows that zebrafish Thsd7a is a neural protein required for ISV angiogenesis, and suggests an important role of Thsd7a in the neurovascular interaction during zebrafish development.

  10. Design development of a neural network-based telemetry monitor

    NASA Technical Reports Server (NTRS)

    Lembeck, Michael F.

    1992-01-01

    This paper identifies the requirements and describes an architectural framework for an artificial neural network-based system that is capable of fulfilling monitoring and control requirements of future aerospace missions. Incorporated into this framework are a newly developed training algorithm and the concept of cooperative network architectures. The feasibility of such an approach is demonstrated for its ability to identify faults in low frequency waveforms.

  11. Distinct regulatory mechanisms act to establish and maintain Pax3 expression in the developing neural tube.

    PubMed

    Moore, Steven; Ribes, Vanessa; Terriente, Javier; Wilkinson, David; Relaix, Frédéric; Briscoe, James

    2013-01-01

    Pattern formation in developing tissues is driven by the interaction of extrinsic signals with intrinsic transcriptional networks that together establish spatially and temporally restricted profiles of gene expression. How this process is orchestrated at the molecular level by genomic cis-regulatory modules is one of the central questions in developmental biology. Here we have addressed this by analysing the regulation of Pax3 expression in the context of the developing spinal cord. Pax3 is induced early during neural development in progenitors of the dorsal spinal cord and is maintained as pattern is subsequently elaborated, resulting in the segregation of the tissue into dorsal and ventral subdivisions. We used a combination of comparative genomics and transgenic assays to define and dissect several functional cis-regulatory modules associated with the Pax3 locus. We provide evidence that the coordinated activity of two modules establishes and refines Pax3 expression during neural tube development. Mutational analyses of the initiating element revealed that in addition to Wnt signaling, Nkx family homeodomain repressors restrict Pax3 transcription to the presumptive dorsal neural tube. Subsequently, a second module mediates direct positive autoregulation and feedback to maintain Pax3 expression. Together, these data indicate a mechanism by which transient external signals are converted into a sustained expression domain by the activities of distinct regulatory elements. This transcriptional logic differs from the cross-repression that is responsible for the spatiotemporal patterns of gene expression in the ventral neural tube, suggesting that a variety of circuits are deployed within the neural tube regulatory network to establish and elaborate pattern formation.

  12. Development of Methodologies for IV and V of Neural Networks

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Darrah, Marjorie

    2003-01-01

    Non-deterministic systems often rely upon neural network (NN) technology to "lean" to manage flight systems under controlled conditions using carefully chosen training sets. How can these adaptive systems be certified to ensure that they will become increasingly efficient and behave appropriately in real-time situations? The bulk of Independent Verification and Validation (IV&V) research of non-deterministic software control systems such as Adaptive Flight Controllers (AFC's) addresses NNs in well-behaved and constrained environments such as simulations and strict process control. However, neither substantive research, nor effective IV&V techniques have been found to address AFC's learning in real-time and adapting to live flight conditions. Adaptive flight control systems offer good extensibility into commercial aviation as well as military aviation and transportation. Consequently, this area of IV&V represents an area of growing interest and urgency. ISR proposes to further the current body of knowledge to meet two objectives: Research the current IV&V methods and assess where these methods may be applied toward a methodology for the V&V of Neural Network; and identify effective methods for IV&V of NNs that learn in real-time, including developing a prototype test bed for IV&V of AFC's. Currently. no practical method exists. lSR will meet these objectives through the tasks identified and described below. First, ISR will conduct a literature review of current IV&V technology. TO do this, ISR will collect the existing body of research on IV&V of non-deterministic systems and neural network. ISR will also develop the framework for disseminating this information through specialized training. This effort will focus on developing NASA's capability to conduct IV&V of neural network systems and to provide training to meet the increasing need for IV&V expertise in such systems.

  13. The DLK signalling pathway--a double-edged sword in neural development and regeneration.

    PubMed

    Tedeschi, Andrea; Bradke, Frank

    2013-07-01

    Dual leucine zipper kinase (DLK), a mitogen-activated protein kinase kinase kinase, controls axon growth, apoptosis and neuron degeneration during neural development, as well as neurodegeneration after various insults to the adult nervous system. Interestingly, recent studies have also highlighted a role of DLK in promoting axon regeneration in diverse model systems. Invertebrates and vertebrates, cold- and warm-blooded animals, as well as central and peripheral mammalian nervous systems all differ in their ability to regenerate injured axons. Here, we discuss how DLK-dependent signalling regulates apparently contradictory functions during neural development and regeneration in different species. In addition, we outline strategies to fine-tune DLK function, either alone or together with other approaches, to promote axon regeneration in the adult mammalian central nervous system. PMID:23681442

  14. Sall1 regulates cortical neurogenesis and laminar fate specification in mice: implications for neural abnormalities in Townes-Brocks syndrome

    PubMed Central

    Harrison, Susan J.; Nishinakamura, Ryuichi; Jones, Kevin R.; Monaghan, A. Paula

    2012-01-01

    SUMMARY Progenitor cells in the cerebral cortex undergo dynamic cellular and molecular changes during development. Sall1 is a putative transcription factor that is highly expressed in progenitor cells during development. In humans, the autosomal dominant developmental disorder Townes-Brocks syndrome (TBS) is associated with mutations of the SALL1 gene. TBS is characterized by renal, anal, limb and auditory abnormalities. Although neural deficits have not been recognized as a diagnostic characteristic of the disease, ∼10% of patients exhibit neural or behavioral abnormalities. We demonstrate that, in addition to being expressed in peripheral organs, Sall1 is robustly expressed in progenitor cells of the central nervous system in mice. Both classical- and conditional-knockout mouse studies indicate that the cerebral cortex is particularly sensitive to loss of Sall1. In the absence of Sall1, both the surface area and depth of the cerebral cortex were decreased at embryonic day 18.5 (E18.5). These deficiencies are associated with changes in progenitor cell properties during development. In early cortical progenitor cells, Sall1 promotes proliferative over neurogenic division, whereas, at later developmental stages, Sall1 regulates the production and differentiation of intermediate progenitor cells. Furthermore, Sall1 influences the temporal specification of cortical laminae. These findings present novel insights into the function of Sall1 in the developing mouse cortex and provide avenues for future research into potential neural deficits in individuals with TBS. PMID:22228756

  15. p73 is an essential regulator of neural stem cell maintenance in embryonal and adult CNS neurogenesis.

    PubMed

    Talos, F; Abraham, A; Vaseva, A V; Holembowski, L; Tsirka, S E; Scheel, A; Bode, D; Dobbelstein, M; Brück, W; Moll, U M

    2010-12-01

    The p53 family member p73 is essential for brain development, but its precise role and scope remain unclear. Global p73 deficiency determines an overt and highly penetrant brain phenotype marked by cortical hypoplasia with ensuing hydrocephalus and hippocampal dysgenesis. The ΔNp73 isoform is known to function as a prosurvival factor of mature postmitotic neurons. In this study, we define a novel essential role of p73 in the regulation of the neural stem cell compartment. In both embryonic and adult neurogenesis, p73 has a critical role in maintaining an adequate neurogenic pool by promoting self-renewal and proliferation and inhibiting premature senescence of neural stem and early progenitor cells. Thus, products of the p73 gene locus are essential maintenance factors in the central nervous system, whose broad action stretches across the entire differentiation arch from stem cells to mature postmitotic neurons.

  16. Akhirin regulates the proliferation and differentiation of neural stem cells in intact and injured mouse spinal cord.

    PubMed

    Abdulhaleem, Felemban Athary M; Song, Xiaohong; Kawano, Rie; Uezono, Naohiro; Ito, Ayako; Ahmed, Giasuddin; Hossain, Mahmud; Nakashima, Kinichi; Tanaka, Hideaki; Ohta, Kunimasa

    2015-05-01

    Although the central nervous system is considered a comparatively static tissue with limited cell turnover, cells with stem cell properties have been isolated from most neural tissues. The spinal cord ependymal cells show neural stem cell potential in vitro and in vivo in injured spinal cord. However, very little is known regarding the ependymal niche in the mouse spinal cord. We previously reported that a secreted factor, chick Akhirin, is expressed in the ciliary marginal zone of the eye, where it works as a heterophilic cell-adhesion molecule. Here, we describe a new crucial function for mouse Akhirin (M-AKH) in regulating the proliferation and differentiation of progenitors in the mouse spinal cord. During embryonic spinal cord development, M-AKH is transiently expressed in the central canal ependymal cells, which possess latent neural stem cell properties. Targeted inactivation of the AKH gene in mice causes a reduction in the size of the spinal cord and decreases BrdU incorporation in the spinal cord. Remarkably, the expression patterns of ependymal niche molecules in AKH knockout (AKH-/-) mice are different from those of AKH+/+, both in vitro and in vivo. Furthermore, we provide evidence that AKH expression in the central canal is rapidly upregulated in the injured spinal cord. Taken together, these results indicate that M-AKH plays a crucial role in mouse spinal cord formation by regulating the ependymal niche in the central canal.

  17. Neurocognitive bases of emotion regulation development in adolescence.

    PubMed

    Ahmed, Saz P; Bittencourt-Hewitt, Amanda; Sebastian, Catherine L

    2015-10-01

    Emotion regulation is the ability to recruit processes to influence emotion generation. In recent years there has been mounting interest in how emotions are regulated at behavioural and neural levels, as well as in the relevance of emotional dysregulation to psychopathology. During adolescence, brain regions involved in affect generation and regulation, including the limbic system and prefrontal cortex, undergo protracted structural and functional development. Adolescence is also a time of increasing vulnerability to internalising and externalising psychopathologies associated with poor emotion regulation, including depression, anxiety and antisocial behaviour. It is therefore of particular interest to understand how emotion regulation develops over this time, and how this relates to ongoing brain development. However, to date relatively little research has addressed these questions directly. This review will discuss existing research in these areas in both typical adolescence and in adolescent psychopathology, and will highlight opportunities for future research. In particular, it is important to consider the social context in which adolescent emotion regulation develops. It is possible that while adolescence may be a time of vulnerability to emotional dysregulation, scaffolding the development of emotion regulation during this time may be a fruitful preventative target for psychopathology. PMID:26340451

  18. Neurocognitive bases of emotion regulation development in adolescence.

    PubMed

    Ahmed, Saz P; Bittencourt-Hewitt, Amanda; Sebastian, Catherine L

    2015-10-01

    Emotion regulation is the ability to recruit processes to influence emotion generation. In recent years there has been mounting interest in how emotions are regulated at behavioural and neural levels, as well as in the relevance of emotional dysregulation to psychopathology. During adolescence, brain regions involved in affect generation and regulation, including the limbic system and prefrontal cortex, undergo protracted structural and functional development. Adolescence is also a time of increasing vulnerability to internalising and externalising psychopathologies associated with poor emotion regulation, including depression, anxiety and antisocial behaviour. It is therefore of particular interest to understand how emotion regulation develops over this time, and how this relates to ongoing brain development. However, to date relatively little research has addressed these questions directly. This review will discuss existing research in these areas in both typical adolescence and in adolescent psychopathology, and will highlight opportunities for future research. In particular, it is important to consider the social context in which adolescent emotion regulation develops. It is possible that while adolescence may be a time of vulnerability to emotional dysregulation, scaffolding the development of emotion regulation during this time may be a fruitful preventative target for psychopathology.

  19. Neural regulation of acetylcholine receptors in rat neonatal muscle.

    PubMed Central

    Bambrick, L L; Gordon, T

    1992-01-01

    1. The neuronal regulation of the developmental decline in skeletal muscle acetylcholine (ACh) receptors was studied by comparing the effects of sciatic nerve section or of neuromuscular blockade with botulinum toxin (BoTX) on this decline in neonatal and adult rats, using 125I-alpha-bungarotoxin (125I-BTX) as a ligand for the receptor alpha-subunit. 2. The decline in 125I-BTX binding site concentration in neonatal rat triceps surae muscle homogenates towards low, adult levels followed a simple exponential with a time constant of 8 days. This decline occurred while the muscle is still rapidly growing, before the postnatal increase in numbers of sodium channels. It also preceded the decline in muscle ACh receptor alpha-subunit mRNA, reported in other studies, suggesting that subunit levels are not regulated only by mRNA availability. 3. Muscle denervation in the first two weeks of life prevented this developmental decline. Denervation increased the concentration of 125I-BTX binding sites but the magnitude of this increase became progressively smaller as the muscle matured, showing that removal of innervation during adult life does not revert the muscle, in toto, to its pre-innervation state. 4. Blockade of neuromuscular activity with BoTX increased 125I-BTX binding sites to a lesser extent than muscle denervation during neonatal life. This lesser effect of BoTX blockade contrasts with the equal effects of BoTX blockade and denervation in the adult. PMID:1522519

  20. Developing neural stem cell-based treatments for neurodegenerative diseases.

    PubMed

    Byrne, James A

    2014-05-30

    Owing to the aging of the population, our society now faces an impending wave of age-related neurodegenerative pathologies, the most significant of which is Alzheimer's disease. Currently, no effective therapies for Alzheimer's disease have been developed. However, recent advances in the fields of neural stem cells and human induced pluripotent stem cells now provide us with the first real hope for a cure. The recent discovery by Blurton-Jones and colleagues that neural stem cells can effectively deliver disease-modifying therapeutic proteins throughout the brains of our best rodent models of Alzheimer's disease, combined with recent advances in human nuclear reprogramming, stem cell research, and highly customized genetic engineering, may represent a potentially revolutionary personalized cellular therapeutic approach capable of effectively curing, ameliorating, and/or slowing the progression of Alzheimer's disease.

  1. Development-on-chip: in vitro neural tube patterning with a microfluidic device

    PubMed Central

    Soundararajan, Prabakaran; Chennampally, Phaneendra; Cox, Gregory A.

    2016-01-01

    Embryogenesis is a highly regulated process in which the precise spatial and temporal release of soluble cues directs differentiation of multipotent stem cells into discrete populations of specialized adult cell types. In the spinal cord, neural progenitor cells are directed to differentiate into adult neurons through the action of mediators released from nearby organizing centers, such as the floor plate and paraxial mesoderm. These signals combine to create spatiotemporal diffusional landscapes that precisely regulate the development of the central nervous system (CNS). Currently, in vivo and ex vivo studies of these signaling factors present some inherent ambiguity. In vitro methods are preferred for their enhanced experimental clarity but often lack the technical sophistication required for biological realism. In this article, we present a versatile microfluidic platform capable of mimicking the spatial and temporal chemical environments found in vivo during neural tube development. Simultaneous opposing and/or orthogonal gradients of developmental morphogens can be maintained, resulting in neural tube patterning analogous to that observed in vivo. PMID:27246712

  2. Incidental regulation of attraction: the neural basis of the derogation of attractive alternatives in romantic relationships.

    PubMed

    Meyer, Meghan L; Berkman, Elliot T; Karremans, Johan C; Lieberman, Matthew D

    2011-04-01

    Although a great deal of research addresses the neural basis of deliberate and intentional emotion-regulation strategies, less attention has been paid to the neural mechanisms involved in implicit forms of emotion regulation. Behavioural research suggests that romantically involved participants implicitly derogate the attractiveness of alternative partners, and the present study sought to examine the neural basis of this effect. Romantically committed participants in the present study were scanned with functional magnetic resonance imaging (fMRI) while indicating whether they would consider each of a series of attractive (or unattractive) opposite-sex others as a hypothetical dating partner both while under cognitive load and no cognitive load. Successful derogation of attractive others during the no cognitive load compared to the cognitive load trials corresponded with increased activation in the ventrolateral prefrontal cortex (VLPFC) and posterior dorsomedial prefrontal cortex (pDMPFC), and decreased activation in the ventral striatum, a pattern similar to those reported in deliberate emotion-regulation studies. Activation in the VLPFC and pDMPFC was not significant in the cognitive load condition, indicating that while the derogation effect may be implicit, it nonetheless requires cognitive resources. Additionally, activation in the right VLPFC correlated with participants' level of relationship investment. These findings suggest that the RVLPFC may play a particularly important role in implicitly regulating the emotions that threaten the stability of a romantic relationship. PMID:21432689

  3. Incidental regulation of attraction: The neural basis of the derogation of attractive alternatives in romantic relationships

    PubMed Central

    Meyer, Meghan L.; Berkman, Elliot T.; Karremans, Johan C.; Lieberman, Matthew D.

    2011-01-01

    Although a great deal of research addresses the neural basis of deliberate and intentional emotion-regulation strategies, less attention has been paid to the neural mechanisms involved in implicit forms of emotion regulation. Behavioural research suggests that romantically involved participants implicitly derogate the attractiveness of alternative partners, and the present study sought to examine the neural basis of this effect. Romantically committed participants in the present study were scanned with functional magnetic resonance imaging (fMRI) while indicating whether they would consider each of a series of attractive (or unattractive) opposite-sex others as a hypothetical dating partner both while under cognitive load and no cognitive load. Successful derogation of attractive others during the no cognitive load compared to the cognitive load trials corresponded with increased activation in the ventrolateral prefrontal cortex (VLPFC) and posterior dorsomedial prefrontal cortex (pDMPFC), and decreased activation in the ventral striatum, a pattern similar to those reported in deliberate emotion-regulation studies. Activation in the VLPFC and pDMPFC was not significant in the cognitive load condition, indicating that while the derogation effect may be implicit, it nonetheless requires cognitive resources. Additionally, activation in the right VLPFC correlated with participants’ level of relationship investment. These findings suggest that the RVLPFC may play a particularly important role in implicitly regulating the emotions that threaten the stability of a romantic relationship. PMID:21432689

  4. Caldesmon regulates actin dynamics to influence cranial neural crest migration in Xenopus.

    PubMed

    Nie, Shuyi; Kee, Yun; Bronner-Fraser, Marianne

    2011-09-01

    Caldesmon (CaD) is an important actin modulator that associates with actin filaments to regulate cell morphology and motility. Although extensively studied in cultured cells, there is little functional information regarding the role of CaD in migrating cells in vivo. Here we show that nonmuscle CaD is highly expressed in both premigratory and migrating cranial neural crest cells of Xenopus embryos. Depletion of CaD with antisense morpholino oligonucleotides causes cranial neural crest cells to migrate a significantly shorter distance, prevents their segregation into distinct migratory streams, and later results in severe defects in cartilage formation. Demonstrating specificity, these effects are rescued by adding back exogenous CaD. Interestingly, CaD proteins with mutations in the Ca(2+)-calmodulin-binding sites or ErK/Cdk1 phosphorylation sites fail to rescue the knockdown phenotypes, whereas mutation of the PAK phosphorylation site is able to rescue them. Analysis of neural crest explants reveals that CaD is required for the dynamic arrangements of actin and, thus, for cell shape changes and process formation. Taken together, these results suggest that the actin-modulating activity of CaD may underlie its critical function and is regulated by distinct signaling pathways during normal neural crest migration. PMID:21795398

  5. Developmental time rather than local environment regulates the schedule of epithelial polarization in the zebrafish neural rod

    PubMed Central

    2013-01-01

    Background Morphogenesis requires developmental processes to occur both at the right time and in the right place. During neural tube formation in the zebrafish embryo, the generation of the apical specializations of the lumen must occur in the center of the neural rod after the neural cells have undergone convergence, invagination and interdigitation across the midline. How this coordination is achieved is uncertain. One possibility is that environmental signaling at the midline of the neural rod controls the schedule of apical polarization. Alternatively, polarization could be regulated by a timing mechanism and then independent morphogenetic processes ensure the cells are in the correct spatial location. Results Ectopic transplantation demonstrates the local environment of the neural midline is not required for neural cell polarization. Neural cells can self-organize into epithelial cysts in ectopic locations in the embryo and also in three-dimensional gel cultures. Heterochronic transplants demonstrate that the schedule of polarization and the specialized cell divisions characteristic of the neural rod are more strongly regulated by time than local environmental signals. The cells’ schedule for polarization is set prior to gastrulation, is stable through several rounds of cell division and appears independent of the morphogenetic movements of gastrulation and neurulation. Conclusions Time rather than local environment regulates the schedule of epithelial polarization in zebrafish neural rod. PMID:23521850

  6. Identification and molecular regulation of neural stem cells in the olfactory epithelium

    SciTech Connect

    Beites, Crestina L.; Kawauchi, Shimako; Crocker, Candice E.; Calof, Anne L. . E-mail: alcalof@uci.edu

    2005-06-10

    The sensory neurons that subserve olfaction, olfactory receptor neurons (ORNs), are regenerated throughout life, making the neuroepithelium in which they reside [the olfactory epithelium (OE)] an excellent model for studying how intrinsic and extrinsic factors regulate stem cell dynamics and neurogenesis during development and regeneration. Numerous studies indicate that transcription factors and signaling molecules together regulate generation of ORNs from stem and progenitor cells during development, and work on regenerative neurogenesis indicates that these same factors may operate at postnatal ages as well. This review describes our current knowledge of the identity of the OE neural stem cell; the different cell types that are thought to be the progeny (directly or indirectly) of this stem cell; and the factors that influence cell differentiation in the OE neuronal lineage. We review data suggesting that (1) the ORN lineage contains three distinct proliferating cell types-a stem cell and two populations of transit amplifying cells; (2) in established OE, these three cell types are present within the basal cell compartment of the epithelium; and (3) the stem cell that gives rise ultimately to ORNs may also generate two glial cell types of the primary olfactory pathway: sustentacular cells (SUS), which lie within OE proper; and olfactory ensheathing cells (OEC), which envelope the olfactory nerve. In addition, we describe factors that are both made by and found within the microenvironment of OE stem and progenitor cells, and which exert crucial growth regulatory effects on these cells. Thus, as with other regenerating tissues, the basis of regeneration in the OE appears be a population of stem cells, which resides within a microenvironment (niche) consisting of factors crucial for maintenance of its capacity for proliferation and differentiation.

  7. Doublesex Regulates the Connectivity of a Neural Circuit Controlling Drosophila Male Courtship Song.

    PubMed

    Shirangi, Troy R; Wong, Allan M; Truman, James W; Stern, David L

    2016-06-20

    It is unclear how regulatory genes establish neural circuits that compose sex-specific behaviors. The Drosophila melanogaster male courtship song provides a powerful model to study this problem. Courting males vibrate a wing to sing bouts of pulses and hums, called pulse and sine song, respectively. We report the discovery of male-specific thoracic interneurons-the TN1A neurons-that are required specifically for sine song. The TN1A neurons can drive the activity of a sex-non-specific wing motoneuron, hg1, which is also required for sine song. The male-specific connection between the TN1A neurons and the hg1 motoneuron is regulated by the sexual differentiation gene doublesex. We find that doublesex is required in the TN1A neurons during development to increase the density of the TN1A arbors that interact with dendrites of the hg1 motoneuron. Our findings demonstrate how a sexual differentiation gene can build a sex-specific circuit motif by modulating neuronal arborization. PMID:27326931

  8. Meis3 is required for neural crest invasion of the gut during zebrafish enteric nervous system development.

    PubMed

    Uribe, Rosa A; Bronner, Marianne E

    2015-11-01

    During development, vagal neural crest cells fated to contribute to the enteric nervous system migrate ventrally away from the neural tube toward and along the primitive gut. The molecular mechanisms that regulate their early migration en route to and entry into the gut remain elusive. Here we show that the transcription factor meis3 is expressed along vagal neural crest pathways. Meis3 loss of function results in a reduction in migration efficiency, cell number, and the mitotic activity of neural crest cells in the vicinity of the gut but has no effect on neural crest or gut specification. Later, during enteric nervous system differentiation, Meis3-depleted embryos exhibit colonic aganglionosis, a disorder in which the hindgut is devoid of neurons. Accordingly, the expression of Shh pathway components, previously shown to have a role in the etiology of Hirschsprung's disease, was misregulated within the gut after loss of Meis3. Taken together, these findings support a model in which Meis3 is required for neural crest proliferation, migration into, and colonization of the gut such that its loss leads to severe defects in enteric nervous system development.

  9. Meis3 is required for neural crest invasion of the gut during zebrafish enteric nervous system development

    PubMed Central

    Uribe, Rosa A.; Bronner, Marianne E.

    2015-01-01

    During development, vagal neural crest cells fated to contribute to the enteric nervous system migrate ventrally away from the neural tube toward and along the primitive gut. The molecular mechanisms that regulate their early migration en route to and entry into the gut remain elusive. Here we show that the transcription factor meis3 is expressed along vagal neural crest pathways. Meis3 loss of function results in a reduction in migration efficiency, cell number, and the mitotic activity of neural crest cells in the vicinity of the gut but has no effect on neural crest or gut specification. Later, during enteric nervous system differentiation, Meis3-depleted embryos exhibit colonic aganglionosis, a disorder in which the hindgut is devoid of neurons. Accordingly, the expression of Shh pathway components, previously shown to have a role in the etiology of Hirschsprung’s disease, was misregulated within the gut after loss of Meis3. Taken together, these findings support a model in which Meis3 is required for neural crest proliferation, migration into, and colonization of the gut such that its loss leads to severe defects in enteric nervous system development. PMID:26354419

  10. Olig1 expression pattern in neural cells during rat spinal cord development

    PubMed Central

    Qi, Qi; Zhang, Yuxin; Shen, Lin; Wang, Rui; Zhou, Jiansheng; Lü, Hezuo; Hu, Jianguo

    2016-01-01

    Purpose Our purpose was to systematically investigate the expression pattern and role of Olig1 in neural cells during rat spinal cord development. Animals and methods Spinal cord tissues were dissected from Sprague–Dawley rats at embryonic day 14.5 (E14.5) and E18.5, postnatal day 0 (P0), P3, P7, postnatal 2 weeks (P2W), P4W, and adults (more than 2 months after birth), respectively. The expression of Olig1 was determined by Western blot and immunostaining. To observe expression of Olig1 in different neural cell types, a double immunohistochemical staining was performed using antibodies against Olig1 with O4, β-tubulin, glial fibrillary acidic protein (GFAP), and myelin basic protein, respectively. Results The expression of Olig1 protein shows a significant level change in rat spinal cord at different developmental time points. Starting with E14.5, the expression gradually increased and peaked at E18.5. Olig1 decreased gradually from P3 and reached its lowest level on P7. However, interestingly, the Olig1 expression increased again from P2W, until adulthood. Olig1 was coexpressed with O4-positive oligodendrocyte progenitor cells (OPCs) and β-tubulin-positive neurons at all time points during development. Olig1 was also coexpressed transiently with GFAP-positive astrocytes at only E14.5. Olig1 was localized in the cytoplasm of O4- and β-tubulin-positive cells during the period from E14.5 to adult. Conclusion The expression of Olig1 in OPCs and neurons at all time points during development and in astrocytes at E14.5 suggests that Olig1 may play an important role in the generation and maturation of specific neural cells during development of spinal cord. Our results contribute to understanding the mechanism underlying developmental regulation of neural cells by Olig1. PMID:27143892

  11. Nuclear receptor NR5A2 controls neural stem cell fate decisions during development

    PubMed Central

    Stergiopoulos, Athanasios; Politis, Panagiotis K.

    2016-01-01

    The enormous complexity of mammalian central nervous system (CNS) is generated by highly synchronized actions of diverse factors and signalling molecules in neural stem/progenitor cells (NSCs). However, the molecular mechanisms that integrate extrinsic and intrinsic signals to control proliferation versus differentiation decisions of NSCs are not well-understood. Here we identify nuclear receptor NR5A2 as a central node in these regulatory networks and key player in neural development. Overexpression and loss-of-function experiments in primary NSCs and mouse embryos suggest that NR5A2 synchronizes cell-cycle exit with induction of neurogenesis and inhibition of astrogliogenesis by direct regulatory effects on Ink4/Arf locus, Prox1, a downstream target of proneural genes, as well as Notch1 and JAK/STAT signalling pathways. Upstream of NR5a2, proneural genes, as well as Notch1 and JAK/STAT pathways control NR5a2 endogenous expression. Collectively, these observations render NR5A2 a critical regulator of neural development and target gene for NSC-based treatments of CNS-related diseases. PMID:27447294

  12. An Amino Terminal Phosphorylation Motif Regulates Intranuclear Compartmentalization of Olig2 in Neural Progenitor Cells

    PubMed Central

    Meijer, Dimphna H.; Sun, Yu; Liu, Tao; Kane, Michael F.; Alberta, John A.; Adelmant, Guillaume; Kupp, Robert; Marto, Jarrod A.; Rowitch, David H.; Nakatani, Yoshihiro

    2014-01-01

    The bHLH transcription factor Olig2 is expressed in cycling neural progenitor cells but also in terminally differentiated, myelinating oligodendrocytes. Sustained expression of Olig2 is counterintuitive because all known functions of the protein in expansion of neural progenitors and specification of oligodendrocyte progenitors are completed with the formation of mature white matter. How are the biological functions of Olig2 suppressed in terminally differentiated oligodendrocytes? In previous studies, we have shown that a triple serine motif in the amino terminus of Olig2 is phosphorylated in cycling neural progenitors but not in their differentiated progeny. We now show that phosphorylation of the triple serine motif regulates intranuclear compartmentalization of murine Olig2. Phosphorylated Olig2 is preferentially localized to a transcriptionally active “open” chromatin compartment together with coregulator proteins essential for regulation of gene expression. Unphosphorylated Olig2, as seen in mature white matter, is localized mainly within a transcriptionally inactive, chromatin fraction characterized by condensed and inaccessible DNA. Of special note is the observation that the p53 tumor suppressor protein is confined to the open chromatin fraction. Proximity ligation assays show that phosphorylation brings Olig2 within 30 nm of p53 within the open chromatin compartment. The data thus shed light on previously noted promitogenic functions of phosphorylated Olig2, which reflect, at least in part, an oppositional relationship with p53 functions. PMID:24948806

  13. An amino terminal phosphorylation motif regulates intranuclear compartmentalization of Olig2 in neural progenitor cells.

    PubMed

    Meijer, Dimphna H; Sun, Yu; Liu, Tao; Kane, Michael F; Alberta, John A; Adelmant, Guillaume; Kupp, Robert; Marto, Jarrod A; Rowitch, David H; Nakatani, Yoshihiro; Stiles, Charles D; Mehta, Shwetal

    2014-06-18

    The bHLH transcription factor Olig2 is expressed in cycling neural progenitor cells but also in terminally differentiated, myelinating oligodendrocytes. Sustained expression of Olig2 is counterintuitive because all known functions of the protein in expansion of neural progenitors and specification of oligodendrocyte progenitors are completed with the formation of mature white matter. How are the biological functions of Olig2 suppressed in terminally differentiated oligodendrocytes? In previous studies, we have shown that a triple serine motif in the amino terminus of Olig2 is phosphorylated in cycling neural progenitors but not in their differentiated progeny. We now show that phosphorylation of the triple serine motif regulates intranuclear compartmentalization of murine Olig2. Phosphorylated Olig2 is preferentially localized to a transcriptionally active "open" chromatin compartment together with coregulator proteins essential for regulation of gene expression. Unphosphorylated Olig2, as seen in mature white matter, is localized mainly within a transcriptionally inactive, chromatin fraction characterized by condensed and inaccessible DNA. Of special note is the observation that the p53 tumor suppressor protein is confined to the open chromatin fraction. Proximity ligation assays show that phosphorylation brings Olig2 within 30 nm of p53 within the open chromatin compartment. The data thus shed light on previously noted promitogenic functions of phosphorylated Olig2, which reflect, at least in part, an oppositional relationship with p53 functions. PMID:24948806

  14. Neural crest development: the interplay between morphogenesis and cell differentiation.

    PubMed

    Erickson, C A; Reedy, M V

    1998-01-01

    The final pattern of tissues established during embryogenesis reflects the outcome of two developmental processes: differentiation and morphogenesis. Avian neural crest cells are an excellent system in which to study this interaction. In the first phase of neural crest cell migration, neural crest cells separate from the neural epithelium via an epithelial-mesenchymal transformation. We present three models to account for this process: (1) separation by asymmetric mitosis, (2) separation by generating tractional force in order to rupture cell adhesions and (3) loss of expression or function of cell-cell adhesion molecules that keep the presumptive neural crest cells tethered to the neural epithelium. Evidence is presented that the segregation of the neural crest lineage apart from the neural epithelium is caused by the epithelial-mesenchymal transformation. Once they have detached from the neural tube, neural crest cells take two pathways in the trunk of the chick embryo: (1) the ventral path between the neural tube and somite, where neural crest cells give rise to neurons and glial cells of the peripheral nervous systems, and (2) the dorsolateral path between the ectoderm and dermamyotome of the somite, where they differentiate into pigment cells of the skin. We present data to suggest that the migration and differentiation along the ventral path is controlled primarily by environmental cues, which we refer to as the environment-directed model of neural crest morphogenesis. Conversely, only melanoblasts can migrate into the dorsolateral space, and the ability to invade that path is dependent upon their early specification as melanoblasts. We call this the phenotype-directed model for neural crest cell migration and suggest that this latter model for the positioning of neural crest derivatives in the embryo may be more common than previously suspected. These observations invite a re-examination of patterning of other crest derivates, which previously were believed

  15. Visualization and Manipulation of Neural Activity in the Developing Vertebrate Nervous System

    PubMed Central

    Zhang, Jiayi; Ackman, James B.; Dhande, Onkar S.; Crair, Michael C.

    2011-01-01

    Neural activity during vertebrate development has been unambiguously shown to play a critical role in sculpting circuit formation and function. Patterned neural activity in various parts of the developing nervous system is thought to modulate neurite outgrowth, axon targeting, and synapse refinement. The nature and role of patterned neural activity during development has been classically studied with in vitro preparations using pharmacological manipulations. In this review we discuss newly available and developing molecular–genetic tools for the visualization and manipulation of neural activity patterns specifically during development. PMID:22121343

  16. Ongoing neural development of affective theory of mind in adolescence

    PubMed Central

    Weigelt, Sarah; Döhnel, Katrin; Smolka, Michael N.; Kliegel, Matthias

    2014-01-01

    Affective Theory of Mind (ToM), an important aspect of ToM, involves the understanding of affective mental states. This ability is critical in the developmental phase of adolescence, which is often related with socio-emotional problems. Using a developmentally sensitive behavioral task in combination with functional magnetic resonance imaging, the present study investigated the neural development of affective ToM throughout adolescence. Eighteen adolescent (ages 12–14 years) and 18 young adult women (aged 19–25 years) were scanned while evaluating complex affective mental states depicted by actors in video clips. The ventromedial prefrontal cortex (vmPFC) showed significantly stronger activation in adolescents in comparison to adults in the affective ToM condition. Current results indicate that the vmPFC might be involved in the development of affective ToM processing in adolescence. PMID:23716712

  17. A Software Package for Neural Network Applications Development

    NASA Technical Reports Server (NTRS)

    Baran, Robert H.

    1993-01-01

    Original Backprop (Version 1.2) is an MS-DOS package of four stand-alone C-language programs that enable users to develop neural network solutions to a variety of practical problems. Original Backprop generates three-layer, feed-forward (series-coupled) networks which map fixed-length input vectors into fixed length output vectors through an intermediate (hidden) layer of binary threshold units. Version 1.2 can handle up to 200 input vectors at a time, each having up to 128 real-valued components. The first subprogram, TSET, appends a number (up to 16) of classification bits to each input, thus creating a training set of input output pairs. The second subprogram, BACKPROP, creates a trilayer network to do the prescribed mapping and modifies the weights of its connections incrementally until the training set is leaned. The learning algorithm is the 'back-propagating error correction procedures first described by F. Rosenblatt in 1961. The third subprogram, VIEWNET, lets the trained network be examined, tested, and 'pruned' (by the deletion of unnecessary hidden units). The fourth subprogram, DONET, makes a TSR routine by which the finished product of the neural net design-and-training exercise can be consulted under other MS-DOS applications.

  18. Early stages of neural crest ontogeny: formation and regulation of cell delamination.

    PubMed

    Kalcheim, Chaya; Burstyn-Cohen, Tal

    2005-01-01

    Long standing research of the Neural Crest embodies the most fundamental questions of Developmental Biology. Understanding the mechanisms responsible for specification, delamination, migration and phenotypic differentiation of this highly diversifying group of progenitors has been a challenge for many researchers over the years and continues to attract newcomers into the field. Only a few leaps were more significant than the discovery and successful exploitation of the quail-chick model by Nicole Le Douarin and colleagues from the Institute of Embryology at Nogent-sur-Marne. The accurate fate mapping of the neural crest performed at virtually all axial levels was followed by the determination of its developmental potentialities as initially analysed at a population level and then followed by many other significant findings. Altogether, these results paved the way to innumerable questions which brought us from an organismic view to mechanistic approaches. Among them, elucidation of functions played by identified genes is now rapidly underway. Emerging results lead the way back to an integrated understanding of the nature of interactions between the developing neural crest and neighbouring structures. The Nogent Institute thus performed an authentic "tour de force" in bringing the Neural Crest to the forefront of Developmental Biology. The present review is dedicated to the pivotal contributions of Nicole Le Douarin and her collaborators and to unforgettable memories that one of the authors bears from the time spent in the Nogent Institute. We summarize here recent advances in our understanding of early stages of crest ontogeny that comprise specification of epithelial progenitors to a neural crest fate and the onset of neural crest migration. Particular emphasis is given to signaling by BMP and Wnt molecules, to the role of the cell cycle in generating cell movement and to possible interactions between both mechanisms.

  19. The neural correlates of regulating another person's emotions: an exploratory fMRI study

    PubMed Central

    Hallam, Glyn P.; Webb, Thomas L.; Sheeran, Paschal; Miles, Eleanor; Niven, Karen; Wilkinson, Iain D.; Hunter, Michael D.; Woodruff, Peter W. R.; Totterdell, Peter; Farrow, Tom F. D.

    2014-01-01

    Studies investigating the neurophysiological basis of intrapersonal emotion regulation (control of one's own emotional experience) report that the frontal cortex exerts a modulatory effect on limbic structures such as the amygdala and insula. However, no imaging study to date has examined the neurophysiological processes involved in interpersonal emotion regulation, where the goal is explicitly to regulate another person's emotion. Twenty healthy participants (10 males) underwent fMRI while regulating their own or another person's emotions. Intrapersonal and interpersonal emotion regulation tasks recruited an overlapping network of brain regions including bilateral lateral frontal cortex, pre-supplementary motor area, and left temporo-parietal junction. Activations unique to the interpersonal condition suggest that both affective (emotional simulation) and cognitive (mentalizing) aspects of empathy may be involved in the process of interpersonal emotion regulation. These findings provide an initial insight into the neural correlates of regulating another person's emotions and may be relevant to understanding mental health issues that involve problems with social interaction. PMID:24936178

  20. Programming of the appetite-regulating neural network: a link between maternal overnutrition and the programming of obesity?

    PubMed

    Mühlhäusler, B S

    2007-01-01

    The concept of a functional foetal "appetite regulatory neural network" is a new and potentially critical one. There is a growing body of evidence showing that the nutritional environment to which the foetus is exposed during prenatal and perinatal development has long-term consequences for the function of the appetite-regulating neural network and therefore the way in which an individual regulates energy balance throughout later life. This is of particular importance in the context of evidence obtained from a wide range of epidemiological studies, which have shown that individuals exposed to an elevated nutrient supply before birth have an increased risk of becoming obese as children and adults. This review summarises the key pieces of experimental evidence, by our group and others, that have contributed to our current understanding of the programming of appetite, and highlights the important questions that are yet to be answered. It is clear that this area of research has the potential to generate, within the next few years, interventions that could begin to alleviate the adverse long-term consequences of being exposed to an elevated nutrient supply before birth.

  1. Enhanced emotion regulation capacity and its neural substrates in those exposed to moderate childhood adversity

    PubMed Central

    Schweizer, Susanne; Walsh, Nicholas D.; Stretton, Jason; Dunn, Valerie J.; Goodyer, Ian M.; Dalgleish, Tim

    2016-01-01

    Individuals exposed to childhood adversities (CA) present with emotion regulation (ER) difficulties in later life, which have been identified as risk and maintenance factors for psychopathologies. However, it is unclear if CA negatively impacts on ER capacity per se or whether observed regulation difficulties are a function of the challenging circumstances in which ER is being deployed. In this longitudinal study, we aimed to clarify this association by investigating the behavioral and neural effects of exposure to common moderate CA (mCA) on a laboratory measure of ER capacity in late adolescence/young adulthood. Our population-derived samples of adolescents/young adults (N = 53) were administered a film-based ER-task during functional magnetic resonance imaging that allowed evaluation of ER across mCA-exposure. mCA-exposure was associated with enhanced ER capacity over both positive and negative affect. At the neural level, the better ER of negative material in those exposed to mCA was associated with reduced recruitment of ER-related brain regions, including the prefrontal cortex and temporal gyrus. In addition mCA-exposure was associated with a greater down-regulation of the amygdala during ER of negative material. The implications of these findings for our understanding of the effects of mCA on the emergence of resilience in adolescence are discussed. PMID:26341903

  2. Operational point of neural cardiovascular regulation in humans up to 6 months in space.

    PubMed

    Verheyden, B; Liu, J; Beckers, F; Aubert, A E

    2010-03-01

    Entering weightlessness affects central circulation in humans by enhancing venous return and cardiac output. We tested whether the operational point of neural cardiovascular regulation in space sets accordingly to adopt a level close to that found in the ground-based horizontal position. Heart rate (HR), finger blood and brachial blood pressure (BP), and respiratory frequency were collected in 11 astronauts from nine space missions. Recordings were made in supine and standing positions at least 10 days before launch and during spaceflight (days 5-19, 45-67, 77-116, 146-180). Cross-correlation analyses of HR and systolic BP were used to measure three complementary aspects of cardiac baroreflex modulation: 1) baroreflex sensitivity, 2) number of effective baroreflex estimates, and 3) baroreflex time delay. A fixed breathing protocol was performed to measure respiratory sinus arrhythmia and low-frequency power of systolic BP variability. We found that HR and mean arterial pressure did not differ from preflight supine values for up to 6 mo in space. Respiration frequency tended to decrease during prolonged spaceflight. Concerning neural markers of cardiovascular regulation, we observed in-flight adaptations toward homeostatic conditions similar to those found in the ground-based supine position. Surprisingly, this was not the case for baroreflex time delay distribution, which had somewhat longer latencies in space. Except for this finding, our results confirm that the operational point of neural cardiovascular regulation in space sets to a level close to that of an Earth-based supine position. This adaptation level suggests that circulation is chronically relaxed for at least 6 mo in space. PMID:20075261

  3. Neural peptidase endothelin-converting enzyme 1 regulates endothelin 1–induced pruritus

    PubMed Central

    Kido-Nakahara, Makiko; Buddenkotte, Jörg; Kempkes, Cordula; Ikoma, Akihiko; Cevikbas, Ferda; Akiyama, Tasuku; Nunes, Frank; Seeliger, Stephan; Hasdemir, Burcu; Mess, Christian; Buhl, Timo; Sulk, Mathias; Müller, Frank-Ulrich; Metze, Dieter; Bunnett, Nigel W.; Bhargava, Aditi; Carstens, Earl; Furue, Masutaka; Steinhoff, Martin

    2014-01-01

    In humans, pruritus (itch) is a common but poorly understood symptom in numerous skin and systemic diseases. Endothelin 1 (ET-1) evokes histamine-independent pruritus in mammals through activation of its cognate G protein–coupled receptor endothelin A receptor (ETAR). Here, we have identified neural endothelin–converting enzyme 1 (ECE-1) as a key regulator of ET-1–induced pruritus and neural signaling of itch. We show here that ETAR, ET-1, and ECE-1 are expressed and colocalize in murine dorsal root ganglia (DRG) neurons and human skin nerves. In murine DRG neurons, ET-1 induced internalization of ETAR within ECE-1–containing endosomes. ECE-1 inhibition slowed ETAR recycling yet prolonged ET-1–induced activation of ERK1/2, but not p38. In a murine itch model, ET-1–induced scratching behavior was substantially augmented by pharmacological ECE-1 inhibition and abrogated by treatment with an ERK1/2 inhibitor. Using iontophoresis, we demonstrated that ET-1 is a potent, partially histamine-independent pruritogen in humans. Immunohistochemical evaluation of skin from prurigo nodularis patients confirmed an upregulation of the ET-1/ETAR/ECE-1/ERK1/2 axis in patients with chronic itch. Together, our data identify the neural peptidase ECE-1 as a negative regulator of itch on sensory nerves by directly regulating ET-1–induced pruritus in humans and mice. Furthermore, these results implicate the ET-1/ECE-1/ERK1/2 pathway as a therapeutic target to treat pruritus in humans. PMID:24812665

  4. Axolotls with an under- or oversupply of neural crest can regulate the sizes of their dorsal root ganglia to normal levels.

    PubMed

    Zarzosa, Ana; Grassme, Kathrin; Tanaka, Elly; Taniguchi, Yuka; Bramke, Silvia; Kurth, Thomas; Epperlein, Hans

    2014-10-01

    How animals adjust the size of their organs is a fundamental, enduring question in biology. Here we manipulate the amount of neural crest (NC) precursors for the dorsal root ganglia (DRG) in axolotl. We produce embryos with an under- or over-supply of pre-migratory NC in order to find out if DRG can regulate their sizes during development. Axolotl embryos are perfectly suitable for this research. Firstly, they are optimal for microsurgical manipulations and tissue repair. Secondly, they possess, unlike most other vertebrates, only one neural crest string located on top of the neural tube. This condition and position enables NC cells to migrate to either side of the embryo and participate in the regulation of NC cell distribution. We show that size compensation of DRG in axolotl occurs in 2 cm juveniles after undersupply of NC (up-regulation) and in 5 cm juveniles after oversupply of NC (down-regulation). The size of DRG is likely to be regulated locally within the DRG and not via adaptations of the pre-migratory NC or during NC cell migration. Ipsi- and contralateral NC cell migration occurs both in embryos with one and two neural folds, and contralateral migration of NC is the only source for contralateral DRG formation in embryos with only one neural fold. Compensatory size increase is accompanied by an increase in cell division of a DRG precursor pool (PCNA+/SOX2-), rather than by DRG neurons or glial cells. During compensatory size decrease, increased apoptosis and reduced proliferation of DRG cells are observed. PMID:25111151

  5. Growth hormone (GH), brain development and neural stem cells.

    PubMed

    Waters, M J; Blackmore, D G

    2011-12-01

    A range of observations support a role for GH in development and function of the brain. These include altered brain structure in GH receptor null mice, and impaired cognition in GH deficient rodents and in a subgroup of GH receptor defective patients (Laron dwarfs). GH has been shown to alter neurogenesis, myelin synthesis and dendritic branching, and both the GH receptor and GH itself are expressed widely in the brain. We have found a population of neural stem cells which are activated by GH infusion, and which give rise to neurons in mice. These stem cells are activated by voluntary exercise in a GH-dependent manner. Given the findings that local synthesis of GH occurs in the hippocampus in response to a memory task, and that GH replacement improves memory and cognition in rodents and humans, these new observations warrant a reappraisal of the clinical importance of GH replacement in GH deficient states.

  6. The effects of allostatic load on neural systems subserving motivation, mood regulation, and social affiliation.

    PubMed

    Beauchaine, Theodore P; Neuhaus, Emily; Zalewski, Maureen; Crowell, Sheila E; Potapova, Natalia

    2011-11-01

    The term allostasis, which is defined as stability through change, has been invoked repeatedly by developmental psychopathologists to describe long-lasting and in some cases permanent functional alterations in limbic-hypothalamic-pituitary-adrenal axis responding following recurrent and/or prolonged exposure to stress. Increasingly, allostatic load models have also been invoked to describe psychological sequelae of abuse, neglect, and other forms of maltreatment. In contrast, neural adaptations to stress, including those incurred by monoamine systems implicated in (a) mood and emotion regulation, (b) behavioral approach, and (c) social affiliation and attachment, are usually not included in models of allostasis. Rather, structural and functional alterations in these systems, which are exquisitely sensitive to prolonged stress exposure, are usually explained as stress mediators, neural plasticity, and/or programming effects. Considering these mechanisms as distinct from allostasis is somewhat artificial given overlapping functions and intricate coregulation of monoamines and the limbic-hypothalamic-pituitary-adrenal axis. It also fractionates literatures that should be mutually informative. In this article, we describe structural and functional alterations in serotonergic, dopaminergic, and noradrenergic neural systems following both acute and prolonged exposure to stress. Through increases in behavioral impulsivity, trait anxiety, mood and emotion dysregulation, and asociality, alterations in monoamine functioning have profound effects on personality, attachment relationships, and the emergence of psychopathology. PMID:22018077

  7. Molecular Evolution of Drosophila Germline Stem Cell and Neural Stem Cell Regulating Genes

    PubMed Central

    Choi, Jae Young; Aquadro, Charles F.

    2015-01-01

    Here, we study the molecular evolution of a near complete set of genes that had functional evidence in the regulation of the Drosophila germline and neural stem cell. Some of these genes have previously been shown to be rapidly evolving by positive selection raising the possibility that stem cell genes as a group have elevated signatures of positive selection. Using recent Drosophila comparative genome sequences and population genomic sequences of Drosophila melanogaster, we have investigated both long- and short-term evolution occurring across these two different stem cell systems, and compared them with a carefully chosen random set of genes to represent the background rate of evolution. Our results showed an excess of genes with evidence of a recent selective sweep in both germline and neural stem cells in D. melanogaster. However compared with their control genes, both stem cell systems had no significant excess of genes with long-term recurrent positive selection in D. melanogaster, or across orthologous sequences from the melanogaster group. The evidence of long-term positive selection was limited to a subset of genes with specific functions in both the germline and neural stem cell system. PMID:26507797

  8. Acquiring neural signals for developing a perception and cognition model

    NASA Astrophysics Data System (ADS)

    Li, Wei; Li, Yunyi; Chen, Genshe; Shen, Dan; Blasch, Erik; Pham, Khanh; Lynch, Robert

    2012-06-01

    The understanding of how humans process information, determine salience, and combine seemingly unrelated information is essential to automated processing of large amounts of information that is partially relevant, or of unknown relevance. Recent neurological science research in human perception, and in information science regarding contextbased modeling, provides us with a theoretical basis for using a bottom-up approach for automating the management of large amounts of information in ways directly useful for human operators. However, integration of human intelligence into a game theoretic framework for dynamic and adaptive decision support needs a perception and cognition model. For the purpose of cognitive modeling, we present a brain-computer-interface (BCI) based humanoid robot system to acquire brainwaves during human mental activities of imagining a humanoid robot-walking behavior. We use the neural signals to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the perception and cognition model. The BCI system consists of a data acquisition unit with an electroencephalograph (EEG), a humanoid robot, and a charge couple CCD camera. An EEG electrode cup acquires brainwaves from the skin surface on scalp. The humanoid robot has 20 degrees of freedom (DOFs); 12 DOFs located on hips, knees, and ankles for humanoid robot walking, 6 DOFs on shoulders and arms for arms motion, and 2 DOFs for head yaw and pitch motion. The CCD camera takes video clips of the human subject's hand postures to identify mental activities that are correlated to the robot-walking behaviors. We use the neural signals to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the perception and cognition model.

  9. The Development of Animal Behavior: From Lorenz to Neural Nets

    NASA Astrophysics Data System (ADS)

    Bolhuis, Johan J.

    In the study of behavioral development both causal and functional approaches have been used, and they often overlap. The concept of ontogenetic adaptations suggests that each developmental phase involves unique adaptations to the environment of the developing animal. The functional concept of optimal outbreeding has led to further experimental evidence and theoretical models concerning the role of sexual imprinting in the evolutionary process of sexual selection. From a causal perspective it has been proposed that behavioral ontogeny involves the development of various kinds of perceptual, motor, and central mechanisms and the formation of connections among them. This framework has been tested for a number of complex behavior systems such as hunger and dustbathing. Imprinting is often seen as a model system for behavioral development in general. Recent advances in imprinting research have been the result of an interdisciplinary effort involving ethology, neuroscience, and experimental psychology, with a continual interplay between these approaches. The imprinting results are consistent with Lorenz' early intuitive suggestions and are also reflected in the architecture of recent neural net models.

  10. The development of animal behavior: from Lorenz to neural nets.

    PubMed

    Bolhuis, J J

    1999-03-01

    In the study of behavioral development both causal and functional approaches have been used, and they often overlap. The concept of ontogenetic adaptations suggests that each developmental phase involves unique adaptations to the environment of the developing animal. The functional concept of optimal outbreeding has led to further experimental evidence and theoretical models concerning the role of sexual imprinting in the evolutionary process of sexual selection. From a causal perspective it has been proposed that behavioral ontogeny involves the development of various kinds of perceptual, motor, and central mechanisms and the formation of connections among them. This framework has been tested for a number of complex behavior systems such as hunger and dustbathing. Imprinting is often seen as a model system for behavioral development in general. Recent advances in imprinting research have been the result of an interdisciplinary effort involving ethology, neuroscience, and experimental psychology, with a continual interplay between these approaches. The imprinting results are consistent with Lorenz' early intuitive suggestions and are also reflected in the architecture of recent neural net models.

  11. Prototype to product—developing a commercially viable neural prosthesis

    NASA Astrophysics Data System (ADS)

    Seligman, Peter

    2009-12-01

    The Cochlear implant or 'Bionic ear' is a device that enables people who do not get sufficient benefit from a hearing aid to communicate with the hearing world. The Cochlear implant is not an amplifier, but a device that electrically stimulates the auditory nerve in a way that crudely mimics normal hearing, thus providing a hearing percept. Many recipients are able to understand running speech without the help of lipreading. Cochlear implants have reached a stage of maturity where there are now 170 000 recipients implanted worldwide. The commercial development of these devices has occurred over the last 30 years. This development has been multidisciplinary, including audiologists, engineers, both mechanical and electrical, histologists, materials scientists, physiologists, surgeons and speech pathologists. This paper will trace the development of the device we have today, from the engineering perspective. The special challenges of designing an active device that will work in the human body for a lifetime will be outlined. These challenges include biocompatibility, extreme reliability, safety, patient fitting and surgical issues. It is emphasized that the successful development of a neural prosthesis requires the partnership of academia and industry.

  12. Neural crest deletion of Dlx3 leads to major dentin defects through down-regulation of Dspp.

    PubMed

    Duverger, Olivier; Zah, Angela; Isaac, Juliane; Sun, Hong-Wei; Bartels, Anne K; Lian, Jane B; Berdal, Ariane; Hwang, Joonsung; Morasso, Maria I

    2012-04-01

    During development, Dlx3 is expressed in ectodermal appendages such as hair and teeth. Thus far, the evidence that Dlx3 plays a crucial role in tooth development comes from reports showing that autosomal dominant mutations in DLX3 result in severe enamel and dentin defects leading to abscesses and infections. However, the normal function of DLX3 in odontogenesis remains unknown. Here, we use a mouse model to demonstrate that the absence of Dlx3 in the neural crest results in major impairment of odontoblast differentiation and dentin production. Mutant mice develop brittle teeth with hypoplastic dentin and molars with an enlarged pulp chamber and underdeveloped roots. Using this mouse model, we found that dentin sialophosphoprotein (Dspp), a major component of the dentin matrix, is strongly down-regulated in odontoblasts lacking Dlx3. Using ChIP-seq, we further demonstrate the direct binding of Dlx3 to the Dspp promoter in vivo. Luciferase reporter assays determined that Dlx3 positively regulates Dspp expression. This establishes a regulatory pathway where the transcription factor Dlx3 is essential in dentin formation by directly regulating a crucial matrix protein.

  13. Ajuba LIM proteins are Snail/Slug corepressors required for neural crest development in Xenopus

    PubMed Central

    Langer, Ellen M.; Feng, Yunfeng; Zhaoyuan, Hou; Rauscher, Frank J.; Kroll, Kristen L.; Longmore, Gregory D.

    2008-01-01

    Snail family transcriptional repressors regulate epithelial mesenchymal transitions during physiological and pathological processes. A conserved SNAG repression domain present in all vertebrate Snail proteins is necessary for repressor complex assembly. Here, we identify the Ajuba family of LIM proteins as functional corepressors of the Snail family via an interaction with the SNAG domain. Ajuba LIM proteins interact with Snail in the nucleus on endogenous E-cadherin promoters and contribute to Snail-dependent repression of E-cadherin. Using Xenopus neural crest as a model of in vivo Snail- or Slug-induced EMT, we demonstrate that Ajuba LIM proteins contribute to neural crest development as Snail/Slug corepressors and are required for in vivo Snail/Slug function. Because Ajuba LIM proteins are also components of adherens junction and contribute to their assembly or stability, their functional interaction with Snail proteins in the nucleus suggests that Ajuba LIM proteins are important regulators of epithelia dynamics communicating surface events with nuclear responses. PMID:18331720

  14. Forward and backward arm cycling are regulated by equivalent neural mechanisms.

    PubMed

    Zehr, E Paul; Hundza, Sandra R

    2005-01-01

    It was shown some time ago that cutaneous reflexes were phase-reversed when comparing forward and backward treadmill walking. Activity of central-pattern-generating networks (CPG) regulating neural activity for locomotion was suggested as a mechanism involved in this "program reversal." We have been investigating the neural control of arm movements and the role for CPG mechanisms in regulating rhythmic arm cycling. The purpose of this study was to evaluate the pattern of muscle activity and reflex modulation when comparing forward and backward arm cycling. During rhythmic arm cycling (forward and backward), cutaneous reflexes were evoked with trains (5 x 1.0 ms pulses at 300 Hz) of electrical stimulation delivered to the superficial radial (SR) nerve at the wrist. Electromyographic (EMG) recordings were made bilaterally from muscles acting at the shoulder, elbow, and wrist. Analysis was conducted on specific sections of the movement cycle after phase-averaging contingent on the timing of stimulation in the movement cycle. EMG patterns for rhythmic arm cycling are similar during both forward and backward motion. Cutaneous reflex amplitudes were similarly modulated at both early and middle latency irrespective of arm cycling direction. That is, at similar phases in the movement cycle, responses of corresponding sign and amplitude were seen regardless of movement direction. The results are generally parallel to the observations seen in leg muscles after stimulation of cutaneous nerves in the foot during forward and backward walking and provide further evidence for CPG activity contributing to neural activation and reflex modulation during rhythmic arm movement.

  15. Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents.

    PubMed

    Nobrega, Antonio C L; O'Leary, Donal; Silva, Bruno Moreira; Marongiu, Elisabetta; Piepoli, Massimo F; Crisafulli, Antonio

    2014-01-01

    During dynamic exercise, mechanisms controlling the cardiovascular apparatus operate to provide adequate oxygen to fulfill metabolic demand of exercising muscles and to guarantee metabolic end-products washout. Moreover, arterial blood pressure is regulated to maintain adequate perfusion of the vital organs without excessive pressure variations. The autonomic nervous system adjustments are characterized by a parasympathetic withdrawal and a sympathetic activation. In this review, we briefly summarize neural reflexes operating during dynamic exercise. The main focus of the present review will be on the central command, the arterial baroreflex and chemoreflex, and the exercise pressure reflex. The regulation and integration of these reflexes operating during dynamic exercise and their possible role in the pathophysiology of some cardiovascular diseases are also discussed. PMID:24818143

  16. Mechanical regulation of cardiac development

    PubMed Central

    Lindsey, Stephanie E.; Butcher, Jonathan T.; Yalcin, Huseyin C.

    2014-01-01

    Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development. PMID:25191277

  17. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

    PubMed

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-01

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases. PMID:26699507

  18. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

    PubMed

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-01

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases.

  19. Neural reflex regulation of systemic inflammation: potential new targets for sepsis therapy

    PubMed Central

    Fernandez, Ricardo; Nardocci, Gino; Navarro, Cristina; Reyes, Edison P.; Acuña-Castillo, Claudio; Cortes, Paula P.

    2014-01-01

    Sepsis progresses to multiple organ dysfunction due to the uncontrolled release of inflammatory mediators, and a growing body of evidence shows that neural signals play a significant role in modulating the immune response. Thus, similar toall other physiological systems, the immune system is both connected to and regulated by the central nervous system. The efferent arc consists of the activation of the hypothalamic–pituitary–adrenal axis, sympathetic activation, the cholinergic anti-inflammatory reflex, and the local release of physiological neuromodulators. Immunosensory activity is centered on the production of pro-inflammatory cytokines, signals that are conveyed to the brain through different pathways. The activation of peripheral sensory nerves, i.e., vagal paraganglia by the vagus nerve, and carotid body (CB) chemoreceptors by the carotid/sinus nerve are broadly discussed here. Despite cytokine receptor expression in vagal afferent fibers, pro-inflammatory cytokines have no significant effect on vagus nerve activity. Thus, the CB may be the source of immunosensory inputs and incoming neural signals and, in fact, sense inflammatory mediators, playing a protective role during sepsis. Considering that CB stimulation increases sympathetic activity and adrenal glucocorticoids release, the electrical stimulation of arterial chemoreceptors may be suitable therapeutic approach for regulating systemic inflammation. PMID:25566088

  20. Neural emotion regulation circuitry underlying anxiolytic effects of perceived control over pain.

    PubMed

    Salomons, Tim V; Nusslock, Robin; Detloff, Allison; Johnstone, Tom; Davidson, Richard J

    2015-02-01

    Anxiolytic effects of perceived control have been observed across species. In humans, neuroimaging studies have suggested that perceived control and cognitive reappraisal reduce negative affect through similar mechanisms. An important limitation of extant neuroimaging studies of perceived control in terms of directly testing this hypothesis, however, is the use of within-subject designs, which confound participants' affective response to controllable and uncontrollable stress. To compare neural and affective responses when participants were exposed to either uncontrollable or controllable stress, two groups of participants received an identical series of stressors (thermal pain stimuli). One group ("controllable") was led to believe they had behavioral control over the pain stimuli, whereas another ("uncontrollable") believed they had no control. Controllable pain was associated with decreased state anxiety, decreased activation in amygdala, and increased activation in nucleus accumbens. In participants who perceived control over the pain, reduced state anxiety was associated with increased functional connectivity between each of these regions and ventral lateral/ventral medial pFC. The location of pFC findings is consistent with regions found to be critical for the anxiolytic effects of perceived control in rodents. Furthermore, interactions observed between pFC and both amygdala and nucleus accumbens are remarkably similar to neural mechanisms of emotion regulation through reappraisal in humans. These results suggest that perceived control reduces negative affect through a general mechanism involved in the cognitive regulation of emotion.

  1. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor

    PubMed Central

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-01

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light–oxygen–voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na+-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na+ currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases. PMID:26699507

  2. Neural reflex regulation of systemic inflammation: potential new targets for sepsis therapy.

    PubMed

    Fernandez, Ricardo; Nardocci, Gino; Navarro, Cristina; Reyes, Edison P; Acuña-Castillo, Claudio; Cortes, Paula P

    2014-01-01

    Sepsis progresses to multiple organ dysfunction due to the uncontrolled release of inflammatory mediators, and a growing body of evidence shows that neural signals play a significant role in modulating the immune response. Thus, similar toall other physiological systems, the immune system is both connected to and regulated by the central nervous system. The efferent arc consists of the activation of the hypothalamic-pituitary-adrenal axis, sympathetic activation, the cholinergic anti-inflammatory reflex, and the local release of physiological neuromodulators. Immunosensory activity is centered on the production of pro-inflammatory cytokines, signals that are conveyed to the brain through different pathways. The activation of peripheral sensory nerves, i.e., vagal paraganglia by the vagus nerve, and carotid body (CB) chemoreceptors by the carotid/sinus nerve are broadly discussed here. Despite cytokine receptor expression in vagal afferent fibers, pro-inflammatory cytokines have no significant effect on vagus nerve activity. Thus, the CB may be the source of immunosensory inputs and incoming neural signals and, in fact, sense inflammatory mediators, playing a protective role during sepsis. Considering that CB stimulation increases sympathetic activity and adrenal glucocorticoids release, the electrical stimulation of arterial chemoreceptors may be suitable therapeutic approach for regulating systemic inflammation.

  3. Neural Emotion Regulation Circuitry Underlying Anxiolytic Effects of Perceived Control Over Pain

    PubMed Central

    Salomons, Tim V.; Nusslock, Robin; Detloff, Allison; Johnstone, Tom; Davidson, Richard J.

    2014-01-01

    Anxiolytic effects of perceived control have been observed across species. In humans, neuroimaging studies have suggested that perceived control and cognitive reappraisal reduce negative affect through similar mechanisms. An important limitation of extant neuroimaging studies of perceived control in terms of directly testing this hypothesis, however, is the use of within subjects-designs, which confound participants' affective response to controllable and uncontrollable stress. To compare neural and affective responses when participants were exposed to either uncontrollable or controllable stress, two groups of participants received an identical series of stressors (thermal pain stimuli). One group (“controllable”) was led to believe they had behavioral control over the pain stimuli while another (“uncontrollable”) believed they had no control. Controllable pain was associated with decreased state anxiety, decreased activation in amygdala and increased activation in nucleus accumbens (NAcc). In participants who perceived control over the pain, reduced state anxiety was associated with increased functional connectivity between each of these regions and ventral lateral/ventral medial prefrontal cortex (PFC). The location of PFC findings is consistent with regions found to be critical for the anxiolytic effects of perceived control in rodents. Furthermore, interactions observed between PFC and both amygdala and NAcc are remarkably similar to neural mechanisms of emotion regulation through reappraisal in humans. These results suggest that perceived control reduces negative affect through a general mechanism involved in the cognitive regulation of emotion. PMID:25208742

  4. The long non-coding RNA Dali is an epigenetic regulator of neural differentiation

    PubMed Central

    Chalei, Vladislava; Sansom, Stephen N; Kong, Lesheng; Lee, Sheena; Montiel, Juan F; Vance, Keith W; Ponting, Chris P

    2014-01-01

    Many intergenic long noncoding RNA (lncRNA) loci regulate the expression of adjacent protein coding genes. Less clear is whether intergenic lncRNAs commonly regulate transcription by modulating chromatin at genomically distant loci. Here, we report both genomically local and distal RNA-dependent roles of Dali, a conserved central nervous system expressed intergenic lncRNA. Dali is transcribed downstream of the Pou3f3 transcription factor gene and its depletion disrupts the differentiation of neuroblastoma cells. Locally, Dali transcript regulates transcription of the Pou3f3 locus. Distally, it preferentially targets active promoters and regulates expression of neural differentiation genes, in part through physical association with the POU3F3 protein. Dali interacts with the DNMT1 DNA methyltransferase in mouse and human and regulates DNA methylation status of CpG island-associated promoters in trans. These results demonstrate, for the first time, that a single intergenic lncRNA controls the activity and methylation of genomically distal regulatory elements to modulate large-scale transcriptional programmes. DOI: http://dx.doi.org/10.7554/eLife.04530.001 PMID:25415054

  5. The long non-coding RNA Dali is an epigenetic regulator of neural differentiation.

    PubMed

    Chalei, Vladislava; Sansom, Stephen N; Kong, Lesheng; Lee, Sheena; Montiel, Juan F; Vance, Keith W; Ponting, Chris P

    2014-11-21

    Many intergenic long noncoding RNA (lncRNA) loci regulate the expression of adjacent protein coding genes. Less clear is whether intergenic lncRNAs commonly regulate transcription by modulating chromatin at genomically distant loci. Here, we report both genomically local and distal RNA-dependent roles of Dali, a conserved central nervous system expressed intergenic lncRNA. Dali is transcribed downstream of the Pou3f3 transcription factor gene and its depletion disrupts the differentiation of neuroblastoma cells. Locally, Dali transcript regulates transcription of the Pou3f3 locus. Distally, it preferentially targets active promoters and regulates expression of neural differentiation genes, in part through physical association with the POU3F3 protein. Dali interacts with the DNMT1 DNA methyltransferase in mouse and human and regulates DNA methylation status of CpG island-associated promoters in trans. These results demonstrate, for the first time, that a single intergenic lncRNA controls the activity and methylation of genomically distal regulatory elements to modulate large-scale transcriptional programmes.

  6. Regulation of aleurone development in cereal grains.

    PubMed

    Becraft, Philip W; Yi, Gibum

    2011-03-01

    The aleurone layer of cereal grains is important biologically as well as nutritionally and economically. Here, current knowledge on the regulation of aleurone development is reviewed. Recent reports suggest that the control of aleurone development is more complex than earlier models portrayed. Multiple levels of genetic regulation control aleurone cell fate, differentiation, and organization. The hormones auxin and cytokinin can also influence aleurone development. New technical advances promise to facilitate future progress.

  7. Interactive effect of light colours and temporal synergism of circadian neural oscillations in reproductive regulation of Japanese quail.

    PubMed

    Yadav, Suneeta; Chaturvedi, Chandra Mohini

    2016-09-01

    Avian literature reports the modulation of 'photoperiodic gonadal responses' by the temporal phase relation of serotonergic and dopaminergic oscillations in Japanese quail. But, the modulation of 'light colour responses' by the temporal synergism of neural oscillations is not yet known. Hence the present study was designed to investigate the interaction of the light colour (blue, red) and the phase relation of neural oscillations in the reproductive regulation of Japanese quail. Three week old male Japanese quail were divided into two groups and maintained under a long day length condition (16L:8D) and were exposed to a 30 lux intensity of blue LED (light emitting diode) (B LED) and a red LED light (R LED). At the age of 15.5weeks, quail of one subgroup of B LED were injected with serotonin precursor (5-HTP) and dopamine precursor (l-DOPA) 12hrs apart (B LED+12-hr) and those of the R LED group were injected with the same drugs (5mg/100g body weight over a period of thirteen days) but 8hrs apart (R LED+8-hr). The remaining subgroups of both the light colour groups (B LED & R LED) received normal saline twice daily and served as controls. Cloacal gland volume was recorded weekly until 35.5weeks of age when the study was terminated and reproductive parameters (testicular volume, GSI, seminiferous tubule diameter and plasma testosterone) were assessed. Results indicate that the 8-hr temporal phase relation of neural oscillations suppresses reproductive activity even during the photosensitive phase of the red light exposed quail (R LED+8-hr) compare to the R LED controls. On the other hand, the 12-hr temporal phase relation stimulates the gonadal development of the B LED+12-hr quail compared to the B LED controls which after completing one cycle entered into a regressive phase and remained sexually quiescent. These experiments suggest that the temporal phase relations of circadian neural oscillations, in addition to modulating the classical photoperiodic responses, may

  8. Interactive effect of light colours and temporal synergism of circadian neural oscillations in reproductive regulation of Japanese quail.

    PubMed

    Yadav, Suneeta; Chaturvedi, Chandra Mohini

    2016-09-01

    Avian literature reports the modulation of 'photoperiodic gonadal responses' by the temporal phase relation of serotonergic and dopaminergic oscillations in Japanese quail. But, the modulation of 'light colour responses' by the temporal synergism of neural oscillations is not yet known. Hence the present study was designed to investigate the interaction of the light colour (blue, red) and the phase relation of neural oscillations in the reproductive regulation of Japanese quail. Three week old male Japanese quail were divided into two groups and maintained under a long day length condition (16L:8D) and were exposed to a 30 lux intensity of blue LED (light emitting diode) (B LED) and a red LED light (R LED). At the age of 15.5weeks, quail of one subgroup of B LED were injected with serotonin precursor (5-HTP) and dopamine precursor (l-DOPA) 12hrs apart (B LED+12-hr) and those of the R LED group were injected with the same drugs (5mg/100g body weight over a period of thirteen days) but 8hrs apart (R LED+8-hr). The remaining subgroups of both the light colour groups (B LED & R LED) received normal saline twice daily and served as controls. Cloacal gland volume was recorded weekly until 35.5weeks of age when the study was terminated and reproductive parameters (testicular volume, GSI, seminiferous tubule diameter and plasma testosterone) were assessed. Results indicate that the 8-hr temporal phase relation of neural oscillations suppresses reproductive activity even during the photosensitive phase of the red light exposed quail (R LED+8-hr) compare to the R LED controls. On the other hand, the 12-hr temporal phase relation stimulates the gonadal development of the B LED+12-hr quail compared to the B LED controls which after completing one cycle entered into a regressive phase and remained sexually quiescent. These experiments suggest that the temporal phase relations of circadian neural oscillations, in addition to modulating the classical photoperiodic responses, may

  9. Cell type-dependent Erk-Akt pathway crosstalk regulates the proliferation of fetal neural progenitor cells.

    PubMed

    Rhim, Ji Heon; Luo, Xiangjian; Gao, Dongbing; Xu, Xiaoyun; Zhou, Tieling; Li, Fuhai; Wang, Ping; Wong, Stephen T C; Xia, Xiaofeng

    2016-01-01

    Neural progenitor (NP) cells are the multipotent cells that produce neurons and glia in the central nervous system. Compounds regulating their proliferation are key to both understanding brain development and unlocking their potential in regenerative repair. We discuss a chemical screen that unexpectedly identified inhibitors of Erk signaling potently promoting the self-renewing divisions of fetal NP cells. This occurred through crosstalk between Erk and Akt signaling cascades. The crosstalk mechanism is cell type-specific, and is not detected in adult NP cells as well as brain tumor cells. The mechanism was also shown to be independent from the GSK-3 signaling pathway, which has been reported to be a major regulator of NP cell homeostasis and inhibitors to which were also identified in the screen. In vitro Erk inhibition led to the prolonged rapid expansion of fetal NP cells while retaining their multipotency. In vivo inhibitor administration significantly inhibited the neuronal differentiation, and resulted in increased proliferative progenitor cells in the ventricular/subventricular zone (VZ/SVZ) of the embryonic cortex. Our results uncovered a novel regulating pathway for NP cell proliferation in the developing brain. The discovery provides a pharmacological basis for in vitro expansion and in vivo manipulation of NP cells. PMID:27211495

  10. Cell type-dependent Erk-Akt pathway crosstalk regulates the proliferation of fetal neural progenitor cells

    PubMed Central

    Rhim, Ji heon; Luo, Xiangjian; Gao, Dongbing; Xu, Xiaoyun; Zhou, Tieling; Li, Fuhai; Wang, Ping; Wong, Stephen T. C.; Xia, Xiaofeng

    2016-01-01

    Neural progenitor (NP) cells are the multipotent cells that produce neurons and glia in the central nervous system. Compounds regulating their proliferation are key to both understanding brain development and unlocking their potential in regenerative repair. We discuss a chemical screen that unexpectedly identified inhibitors of Erk signaling potently promoting the self-renewing divisions of fetal NP cells. This occurred through crosstalk between Erk and Akt signaling cascades. The crosstalk mechanism is cell type-specific, and is not detected in adult NP cells as well as brain tumor cells. The mechanism was also shown to be independent from the GSK-3 signaling pathway, which has been reported to be a major regulator of NP cell homeostasis and inhibitors to which were also identified in the screen. In vitro Erk inhibition led to the prolonged rapid expansion of fetal NP cells while retaining their multipotency. In vivo inhibitor administration significantly inhibited the neuronal differentiation, and resulted in increased proliferative progenitor cells in the ventricular/subventricular zone (VZ/SVZ) of the embryonic cortex. Our results uncovered a novel regulating pathway for NP cell proliferation in the developing brain. The discovery provides a pharmacological basis for in vitro expansion and in vivo manipulation of NP cells. PMID:27211495

  11. Neurosteroid regulation of CNS development

    PubMed Central

    Mellon, Synthia H.

    2007-01-01

    Neurosteroids are a relatively new class of neuroactive compounds, brought to prominence in the past two decades. Despite knowing of their presence in the nervous system of various species for over twenty years and knowing of their functions as GABAA and NMDA ligands, new and unexpected functions of these compounds are continuously being identified. Absence or reduced concentrations of neurosteroids during development and in adults may be associated with neurodevelopmental, psychiatric, or behavioral disorders. Treatment with physiologic or pharmacologic concentrations of these compounds may also promote neurogenesis, neuronal survival, myelination, increased memory, and reduced neurotoxicity. This review highlights what is currently known about the neurodevelopmental functions and mechanisms of action of four distinct neurosteroids – pregnenolone, progesterone, allopregnanolone and dehydroepiandrosterone. PMID:17651807

  12. Cholinesterases in neural development: new findings and toxicologic implications.

    PubMed Central

    Brimijoin, S; Koenigsberger, C

    1999-01-01

    Developing animals are more sensitive than adults to acute cholinergic toxicity from anticholinesterases, including organophosphorus pesticides, when administered in a laboratory setting. It is also possible that these agents adversely affect the process of neural development itself, leading to permanent deficits in the architecture of the central and peripheral nervous systems. Recent observations indicate that organophosphorus exposure can affect DNA synthesis and cell survival in neonatal rat brain. New evidence that acetylcholinesterase may have a direct role in neuronal differentiation provides additional grounds for interest in the developmental toxicity of anticholinesterases. For example, correlative anatomic studies show that transient bursts of acetylcholinesterase expression often coincide with periods of axonal outgrowth in maturing avian, rodent, and primate brain. Some selective cholinesterase inhibitors effectively suppress neurite outgrowth in model systems like differentiating neuroblastoma cells and explanted sensory ganglia. When enzyme expression is altered by genetic engineering, acetylcholinesterase levels on the outer surface of transfected neurons correlate with ability to extend neurites. Certain of these "morphogenic" effects may depend on protein-protein interactions rather than catalytic acetylcholinesterase activity. Nonetheless, it remains possible that some pesticides interfere with important developmental functions of the cholinesterase enzyme family. Images Figure 1 Figure 3 PMID:10229707

  13. Embryonic cerebrospinal fluid in brain development: neural progenitor control.

    PubMed

    Gato, Angel; Alonso, M Isabel; Martín, Cristina; Carnicero, Estela; Moro, José Antonio; De la Mano, Aníbal; Fernández, José M F; Lamus, Francisco; Desmond, Mary E

    2014-08-28

    Due to the effort of several research teams across the world, today we have a solid base of knowledge on the liquid contained in the brain cavities, its composition, and biological roles. Although the cerebrospinal fluid (CSF) is among the most relevant parts of the central nervous system from the physiological point of view, it seems that it is not a permanent and stable entity because its composition and biological properties evolve across life. So, we can talk about different CSFs during the vertebrate life span. In this review, we focus on the CSF in an interesting period, early in vertebrate development before the formation of the choroid plexus. This specific entity is called "embryonic CSF." Based on the structure of the compartment, CSF composition, origin and circulation, and its interaction with neuroepithelial precursor cells (the target cells) we can conclude that embryonic CSF is different from the CSF in later developmental stages and from the adult CSF. This article presents arguments that support the singularity of the embryonic CSF, mainly focusing on its influence on neural precursor behavior during development and in adult life. PMID:25165044

  14. Embryonic cerebrospinal fluid in brain development: neural progenitor control

    PubMed Central

    Gato, Angel; Alonso, M. Isabel; Martín, Cristina; Carnicero, Estela; Moro, José Antonio; De la Mano, Aníbal; Fernández, José M. F.; Lamus, Francisco; Desmond, Mary E.

    2014-01-01

    Due to the effort of several research teams across the world, today we have a solid base of knowledge on the liquid contained in the brain cavities, its composition, and biological roles. Although the cerebrospinal fluid (CSF) is among the most relevant parts of the central nervous system from the physiological point of view, it seems that it is not a permanent and stable entity because its composition and biological properties evolve across life. So, we can talk about different CSFs during the vertebrate life span. In this review, we focus on the CSF in an interesting period, early in vertebrate development before the formation of the choroid plexus. This specific entity is called “embryonic CSF.” Based on the structure of the compartment, CSF composition, origin and circulation, and its interaction with neuroepithelial precursor cells (the target cells) we can conclude that embryonic CSF is different from the CSF in later developmental stages and from the adult CSF. This article presents arguments that support the singularity of the embryonic CSF, mainly focusing on its influence on neural precursor behavior during development and in adult life. PMID:25165044

  15. Development of a neural net paradigm that predicts simulator sickness

    SciTech Connect

    Allgood, G.O.

    1993-03-01

    A disease exists that affects pilots and aircrew members who use Navy Operational Flight Training Systems. This malady, commonly referred to as simulator sickness and whose symptomatology closely aligns with that of motion sickness, can compromise the use of these systems because of a reduced utilization factor, negative transfer of training, and reduction in combat readiness. A report is submitted that develops an artificial neural network (ANN) and behavioral model that predicts the onset and level of simulator sickness in the pilots and aircrews who sue these systems. It is proposed that the paradigm could be implemented in real time as a biofeedback monitor to reduce the risk to users of these systems. The model captures the neurophysiological impact of use (human-machine interaction) by developing a structure that maps the associative and nonassociative behavioral patterns (learned expectations) and vestibular (otolith and semicircular canals of the inner ear) and tactile interaction, derived from system acceleration profiles, onto an abstract space that predicts simulator sickness for a given training flight.

  16. Development vs. behavior: a role for neural adaptation in evolution?

    PubMed

    Ghysen, Alain; Dambly-Chaudière, Christine

    2016-01-01

    We examine the evolution of sensory organ patterning in the lateral line system of fish. Based on recent studies of how this system develops in zebrafish, and on comparative analyses between zebrafish and tuna, we argue that the evolution of lateral line patterns is mostly determined by variations in the underlying developmental processes, independent of any selective pressure. Yet the development of major developmental innovations is so directly linked to their exploitation that it is hard not to think of them as selected for, i.e., adaptive. We propose that adaptation resides mostly in how the nervous system adjusts to new morphologies to make them functional, i.e., that species are neurally adapted to whatever morphology is provided to them by their own developmental program. We show that recent data on behavioral differences between cave forms (blind) and surface forms (eyed) of the mexican fish Astyanax fasciatus support this view, and we propose that this species might provide a unique opportunity to assess the nature of adaptation and of selection in animal evolution. PMID:27389980

  17. Embryonic cerebrospinal fluid in brain development: neural progenitor control.

    PubMed

    Gato, Angel; Alonso, M Isabel; Martín, Cristina; Carnicero, Estela; Moro, José Antonio; De la Mano, Aníbal; Fernández, José M F; Lamus, Francisco; Desmond, Mary E

    2014-08-28

    Due to the effort of several research teams across the world, today we have a solid base of knowledge on the liquid contained in the brain cavities, its composition, and biological roles. Although the cerebrospinal fluid (CSF) is among the most relevant parts of the central nervous system from the physiological point of view, it seems that it is not a permanent and stable entity because its composition and biological properties evolve across life. So, we can talk about different CSFs during the vertebrate life span. In this review, we focus on the CSF in an interesting period, early in vertebrate development before the formation of the choroid plexus. This specific entity is called "embryonic CSF." Based on the structure of the compartment, CSF composition, origin and circulation, and its interaction with neuroepithelial precursor cells (the target cells) we can conclude that embryonic CSF is different from the CSF in later developmental stages and from the adult CSF. This article presents arguments that support the singularity of the embryonic CSF, mainly focusing on its influence on neural precursor behavior during development and in adult life.

  18. Adolescent development of context-dependent stimulus-reward association memory and its neural correlates

    PubMed Central

    Voss, Joel L.; O’Neil, Jonathan T.; Kharitonova, Maria; Briggs-Gowan, Margaret J.; Wakschlag, Lauren S.

    2015-01-01

    Expression of learned stimulus-reward associations based on context is essential for regulation of behavior to meet situational demands. Contextual regulation improves during development, although the developmental progression of relevant neural and cognitive processes is not fully specified. We therefore measured neural correlates of flexible, contextual expression of stimulus-reward associations in pre/early-adolescent children (ages 9–13 years) and young adults (ages 19–22 years). After reinforcement learning using standard parameters, a contextual reversal manipulation was used whereby contextual cues indicated that stimulus-reward associations were the same as previously reinforced for some trials (consistent trials) or were reversed on other trials (inconsistent trials). Subjects were thus required to respond according to original stimulus-reward associations vs. reversed associations based on trial-specific contextual cues. Children and young adults did not differ in reinforcement learning or in relevant functional magnetic resonance imaging (fMRI) correlates. In contrast, adults outperformed children during contextual reversal, with better performance specifically for inconsistent trials. fMRI signals corresponding to this selective advantage included greater activity in lateral prefrontal cortex (LPFC), hippocampus, and dorsal striatum for young adults relative to children. Flexible expression of stimulus-reward associations based on context thus improves via adolescent development, as does recruitment of brain regions involved in reward learning and contextual expression of memory. HighlightsEarly-adolescent children and young adults were equivalent in reinforcement learning.Adults outperformed children in contextual expression of stimulus-reward associations.Adult advantages correlated with increased activity of relevant brain regions.Specific neurocognitive developmental changes support better contextual regulation. PMID:26578926

  19. TGFβ signaling regulates the choice between pluripotent and neural fates during reprogramming of human urine derived cells

    PubMed Central

    Wang, Lihui; Li, Xirui; Huang, Wenhao; Zhou, Tiancheng; Wang, Haitao; Lin, Aiping; Hutchins, Andrew Paul; Su, Zhenghui; Chen, Qianyu; Pei, Duanqing; Pan, Guangjin

    2016-01-01

    Human urine cells (HUCs) can be reprogrammed into neural progenitor cells (NPCs) or induced pluripotent stem cells (iPSCs) with defined factors and a small molecule cocktail, but the underlying fate choice remains unresolved. Here, through sequential removal of individual compound from small molecule cocktail, we showed that A8301, a TGFβ signaling inhibitor, is sufficient to switch the cell fate from iPSCs into NPCs in OSKM-mediated HUCs reprogramming. However, TGFβ exposure at early stage inhibits HUCs reprogramming by promoting EMT. Base on these data, we developed an optimized approach for generation of NPCs or iPSCs from HUCs with significantly improved efficiency by regulating TGFβ activity at different reprogramming stages. This approach provides a simplified and improved way for HUCs reprogramming, thus would be valuable for banking human iPSCs or NPCs from people with different genetic background. PMID:26935433

  20. Gene Regulation Networks for Modeling Drosophila Development

    NASA Technical Reports Server (NTRS)

    Mjolsness, E.

    1999-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila Melanogaster.

  1. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function.

    PubMed

    Garza-Lombó, Carla; Gonsebatt, María E

    2016-01-01

    The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging. PMID:27378854

  2. Mammalian Target of Rapamycin: Its Role in Early Neural Development and in Adult and Aged Brain Function

    PubMed Central

    Garza-Lombó, Carla; Gonsebatt, María E.

    2016-01-01

    The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging. PMID:27378854

  3. Shale gas development: a smart regulation framework.

    PubMed

    Konschnik, Katherine E; Boling, Mark K

    2014-01-01

    Advances in directional drilling and hydraulic fracturing have sparked a natural gas boom from shale formations in the United States. Regulators face a rapidly changing industry comprised of hundreds of players, operating tens of thousands of wells across 30 states. They are often challenged to respond by budget cuts, a brain drain to industry, regulations designed for conventional gas developments, insufficient information, and deeply polarized debates about hydraulic fracturing and its regulation. As a result, shale gas governance remains a halting patchwork of rules, undermining opportunities to effectively characterize and mitigate development risk. The situation is dynamic, with research and incremental regulatory advances underway. Into this mix, we offer the CO/RE framework--characterization of risk, optimization of mitigation strategies, regulation, and enforcement--to design tailored governance strategies. We then apply CO/RE to three types of shale gas risks, to illustrate its potential utility to regulators.

  4. Neural indicators of emotion regulation via acceptance vs reappraisal in remitted major depressive disorder.

    PubMed

    Smoski, Moria J; Keng, Shian-Ling; Ji, Jie Lisa; Moore, Tyler; Minkel, Jared; Dichter, Gabriel S

    2015-09-01

    Mood disorders are characterized by impaired emotion regulation abilities, reflected in alterations in frontolimbic brain functioning during regulation. However, little is known about differences in brain function when comparing regulatory strategies. Reappraisal and emotional acceptance are effective in downregulating negative affect, and are components of effective depression psychotherapies. Investigating neural mechanisms of reappraisal vs emotional acceptance in remitted major depressive disorder (rMDD) may yield novel mechanistic insights into depression risk and prevention. Thirty-seven individuals (18 rMDD, 19 controls) were assessed during a functional magnetic resonance imaging task requiring reappraisal, emotional acceptance or no explicit regulation while viewing sad images. Lower negative affect was reported following reappraisal than acceptance, and was lower following acceptance than no explicit regulation. In controls, the acceptance > reappraisal contrast revealed greater activation in left insular cortex and right prefrontal gyrus, and less activation in several other prefrontal regions. Compared with controls, the rMDD group had greater paracingulate and right midfrontal gyrus (BA 8) activation during reappraisal relative to acceptance. Compared with reappraisal, acceptance is associated with activation in regions linked to somatic and emotion awareness, although this activation is associated with less reduction in negative affect. Additionally, a history of MDD moderated these effects.

  5. Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation

    PubMed Central

    Song, Juhyun; Oh, Yumi; Kim, Jong Youl; Cho, Kyoung Joo

    2016-01-01

    Purpose Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. Materials and Methods This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. Results Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. Conclusion Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders. PMID:27593875

  6. Olfactory regulation of the sexual behavior and reproductive physiology of the laboratory mouse: effects and neural mechanisms.

    PubMed

    Kelliher, Kevin R; Wersinger, Scott R

    2009-01-01

    In many species, chemical compounds emitted by conspecifics exert profound effects on reproductive physiology and sexual behavior. This is particularly true in the mouse, where such cues advance and delay puberty, suppress and facilitate estrous cycles, and cause the early termination of pregnancy. They also facilitate sexual behavior and inform mate selection. The mouse has a rich and complex repertoire of social behaviors. The technologies of molecular genetics are well developed in the mouse. Gene expression can be experimentally manipulated in the mouse relatively easily and in a time- and tissue-specific manner. Thus, the mouse is an excellent model in which to investigate the genetic, neural, and hormonal bases by which chemical compounds released by other mice affect physiology and behavior. These chemical cues are detected and processed by the olfactory system and other specialized but less well characterized sensory organs. The sensory information reaches brain regions that regulate hormone levels as well as those that are involved in behavior and alters the function of these brain regions. The effects of these chemical compounds have important implications for the laboratory animal facility as well as for researchers. We begin with an overview of the basic structure and function of the olfactory system and of the connections among brain regions that receive olfactory stimuli. We discuss the effects of chemosensory cues on the behavior and physiology of the organism along with what is known about the neural and hormonal mechanisms underlying these effects. We also describe some of the implications for the laboratory animal facility.

  7. Evolution of the VEGF-regulated vascular network from a neural guidance system.

    PubMed

    Ponnambalam, Sreenivasan; Alberghina, Mario

    2011-06-01

    The vascular network is closely linked to the neural system, and an interdependence is displayed in healthy and in pathophysiological responses. How has close apposition of two such functionally different systems occurred? Here, we present a hypothesis for the evolution of the vascular network from an ancestral neural guidance system. Biological cornerstones of this hypothesis are the vascular endothelial growth factor (VEGF) protein family and cognate receptors. The primary sequences of such proteins are conserved from invertebrates, such as worms and flies that lack discernible vascular systems compared to mammals, but all these systems have sophisticated neuronal wiring involving such molecules. Ancestral VEGFs and receptors (VEGFRs) could have been used to develop and maintain the nervous system in primitive eukaryotes. During evolution, the demands of increased morphological complexity required systems for transporting molecules and cells, i.e., biological conductive tubes. We propose that the VEGF-VEGFR axis was subverted by evolution to mediate the formation of biological tubes necessary for transport of fluids, e.g., blood. Increasingly, there is evidence that aberrant VEGF-mediated responses are also linked to neuronal dysfunctions ranging from motor neuron disease, stroke, Parkinson's disease, Alzheimer's disease, ischemic brain disease, epilepsy, multiple sclerosis, and neuronal repair after injury, as well as common vascular diseases (e.g., retinal disease). Manipulation and correction of the VEGF response in different neural tissues could be an effective strategy to treat different neurological diseases.

  8. MicroRNAs in neural cell development and brain diseases.

    PubMed

    Feng, Wei; Feng, Yue

    2011-12-01

    MicroRNAs play important roles in post-transcriptional regulation of gene expression by inhibiting protein translation and/or promoting mRNA degradation. Importantly, biogenesis of microRNAs displays specific temporal and spatial profiles in distinct cell and tissue types and hence affects a broad spectrum of biological functions in normal cell growth and tumor development. Recent discoveries have revealed sophisticated mechanisms that control microRNA production and homeostasis in response to developmental and extracellular signals. Moreover, a link between dysregulation of microRNAs and human brain disorders has become increasingly evident. In this review, we focus on recent advances in understanding the regulation of microRNA biogenesis and function in neuronal and glial development in the mammalian brain, and dysregulation of the microRNA pathway in neurodevelopmental and neurodegenerative diseases.

  9. Overlapping neural substrates between intentional and incidental down-regulation of negative emotions.

    PubMed

    Payer, Doris E; Baicy, Kate; Lieberman, Matthew D; London, Edythe D

    2012-04-01

    Emotion regulation can be achieved in various ways, but few studies have evaluated the extent to which the neurocognitive substrates of these distinct operations overlap. In the study reported here, functional magnetic resonance imaging (fMRI) was used to measure activity in the amygdala and prefrontal cortex of 10 participants who completed two independent tasks of emotion regulation-reappraisal, measuring intentional emotion regulation, and affect labeling, measuring incidental emotion regulation-with the objective of identifying potential overlap in the neural substrates underlying each task. Analyses focused on a priori regions of interest in the amygdala and inferior frontal gyrus (IFG). For both tasks, fMRI showed decreased amygdala activation during emotion regulation compared with emotion conditions. During reappraisal, this decrease in amygdala activation was accompanied by a proportional decrease in emotional intensity ratings; during affect labeling, the decrease in amygdala activation correlated with self-reported aggression. Importantly, across participants, the magnitude of decrease in amygdala activation during reappraisal correlated with the magnitude of decrease during affect labeling, even though the tasks were administered on separate days, and values indexing amygdala activation during each task were extracted independently of one another. In addition, IFG-amygdala connectivity, assessed via psychophysiological interaction analysis, overlapped between tasks in two regions within the right IFG. The results suggest that the two tasks recruit overlapping regions of prefrontal cortex, resulting in similar reductions in amygdala activation, regardless of the strategy employed. Intentional and incidental forms of emotion regulation, despite their phenomenological differences, may therefore converge on a common neurocognitive pathway.

  10. Cranial neural crest-derived mesenchymal proliferation is regulated by Msx1-mediated p19(INK4d) expression during odontogenesis.

    PubMed

    Han, Jun; Ito, Yoshihiro; Yeo, Jae Yong; Sucov, Henry M; Maas, Richard; Chai, Yang

    2003-09-01

    Neural crest cells are multipotential progenitors that contribute to various cell and tissue types during embryogenesis. Here, we have investigated the molecular and cellular mechanism by which the fate of neural crest cell is regulated during tooth development. Using a two- component genetic system for indelibly marking the progeny of neural crest cells, we provide in vivo evidence of a deficiency of CNC-derived dental mesenchyme in Msx1 null mutant mouse embryos. The deficiency of the CNC results from an elevated CDK inhibitor p19(INK4d) activity and the disruption of cell proliferation. Interestingly, in the absence of Msx1, the CNC-derived dental mesenchyme misdifferentiates and possesses properties consistent with a neuronal fate, possibly through a default mechanism. Attenuation of p19(INK4d) in Msx1 null mutant mandibular explants restores mitotic activity in the dental mesenchyme, demonstrating the functional significance of Msx1-mediated p19(INK4d) expression in regulating CNC cell proliferation during odontogenesis. Collectively, our results demonstrate that homeobox gene Msx1 regulates the fate of CNC cells by controlling the progression of the cell cycle. Genetic mutation of Msx1 may alternatively instruct the fate of these progenitor cells during craniofacial development.

  11. Neural correlates of gesture processing across human development.

    PubMed

    Wakefield, Elizabeth M; James, Thomas W; James, Karin H

    2013-01-01

    Co-speech gesture facilitates learning to a greater degree in children than in adults, suggesting that the mechanisms underlying the processing of co-speech gesture differ as a function of development. We suggest that this may be partially due to children's lack of experience producing gesture, leading to differences in the recruitment of sensorimotor networks when comparing adults to children. Here, we investigated the neural substrates of gesture processing in a cross-sectional sample of 5-, 7.5-, and 10-year-old children and adults and focused on relative recruitment of a sensorimotor system that included the precentral gyrus (PCG) and the posterior middle temporal gyrus (pMTG). Children and adults were presented with videos in which communication occurred through different combinations of speech and gesture during a functional magnetic resonance imaging (fMRI) session. Results demonstrated that the PCG and pMTG were recruited to different extents in the two populations. We interpret these novel findings as supporting the idea that gesture perception (pMTG) is affected by a history of gesture production (PCG), revealing the importance of considering gesture processing as a sensorimotor process. PMID:23662858

  12. Development of novel microfluidic platforms for neural stem cell research

    NASA Astrophysics Data System (ADS)

    Chung, Bonggeun

    This dissertation describes the development and characterization of novel microfluidic platforms to study proliferation, differentiation, migration, and apoptosis of neural stem cells (NSCs). NSCs hold tremendous promise for fundamental biological studies and cell-based therapies in human disorders. NSCs are defined as cells that can self-renew yet maintain the ability to generate the three principal cell types of the central nervous system such as neurons, astrocytes, and oligodendrocytes. NSCs therefore have therapeutic possibilities in multiple neurodevelopmental and neurodegenerative diseases. Despite their promise, cell-based therapies are limited by the inability to precisely control their behavior in culture. Compared to traditional culture tools, microfluidic platforms can provide much greater control over cell microenvironments and optimize proliferation and differentiation conditions of cells exposed to combinatorial mixtures of growth factors. Human NSCs were cultured for more than 1 week in the microfluidic device while constantly exposed to a continuous gradient of a growth factor mixture. NSCs proliferated and differentiated in a graded and proportional fashion that varied directly with growth factor concentration. In parallel to the study of growth and differentiation of NSCs, we are interested in proliferation and apoptosis of mouse NSCs exposed to morphogen gradients. Morphogen gradients are fundamental to animal brain development. Nonetheless, much controversy remains about the mechanisms by which morphogen gradients act on the developing brain. To overcome limitations of in-vitro models of gradients, we have developed a hybrid microfluidic platform that can mimic morphogen gradient profiles. Bone morphogenetic protein (BMP) activity in the developing cortex is graded and cortical NSC responses to BMPs are highly dependent on concentration and gradient slope of BMPs. To make novel microfluidic devices integrated with multiple functions, we have

  13. Development of neural basis for chinese orthographic neighborhood size effect.

    PubMed

    Zhao, Jing; Li, Qing-Lin; Ding, Guo-Sheng; Bi, Hong-Yan

    2016-02-01

    The brain activity of orthographic neighborhood size (N size) effect in Chinese character naming has been studied in adults, meanwhile behavioral studies have revealed a developmental trend of Chinese N-size effect in developing readers. However, it is unclear whether and how the neural mechanism of N-size effect changes in Chinese children along with development. Here we address this issue using functional magnetic resonance imaging. Forty-four students from the 3(rd) , 5(th) , and 7(th) grades were scanned during silent naming of Chinese characters. After scanning, all participants took part in an overt naming test outside the scanner, and results of the naming task showed that the 3(rd) graders named characters from large neighborhoods faster than those from small neighborhoods, revealing a facilitatory N-size effect; the 5(th) graders showed null N-size effect while the 7(th) graders showed an inhibitory N-size effect. Neuroimaging results revealed that only the 3(rd) graders exhibited a significant N-size effect in the left middle occipital activity, with greater activation for large N-size characters. Results of 5(th) and 7(th) graders showed significant N-size effects in the left middle frontal gyrus, in which 5(th) graders induced greater activation in large N-size condition than in small N-size condition, while 7(th) graders exhibited an opposite effect which was similar to the adult pattern reported in a previous study. The current findings suggested the transition from broadly tuned to finely tuned orthographic representation with reading development, and the inhibition from neighbors' phonology for higher graders. Hum Brain Mapp 37:632-647, 2016. © 2015 Wiley Periodicals, Inc. PMID:26777875

  14. FDA regulation of invasive neural recording electrodes: a daunting task for medical innovators.

    PubMed

    Welle, Cristin; Krauthamer, Victor

    2012-03-01

    The U.S. Food and Drug Administration (FDA) is charged with assuring the safety and effectiveness of medical devices. Before any medical device can be brought to market, it must comply with all federal regulations regarding FDA processes for clearance or approval. Navigating the FDA regulatory process may seem like a daunting task to the innovator of a novel medical device who has little experience with the FDA regulatory process or device commercialization. This review introduces the basics of the FDA regulatory premarket process, with a focus on issues relating to chronically implanted recording devices in the central or peripheral nervous system. Topics of device classification and regulatory pathways, the use of standards and guidance documents, and optimal time lines for interaction with the FDA are discussed. Additionally, this article summarizes the regulatory research on neural implant safety and reliability conducted by the FDA's Office of Science and Engineering Laboratories (OSEL) in collaboration with Defense Advanced Research Projects Agency (DARPA) Reliable Neural Technology (RE-NET) Program. For a more detailed explanation of the medical device regulatory process, please refer to several excellent reviews of the FDA's regulatory pathways for medical devices [1]-[4].

  15. Modeling the effect of sleep regulation on a neural mass model.

    PubMed

    Costa, Michael Schellenberger; Born, Jan; Claussen, Jens Christian; Martinetz, Thomas

    2016-08-01

    In mammals, sleep is categorized by two main sleep stages, rapid eye movement (REM) and non-REM (NREM) sleep that are known to fulfill different functional roles, the most notable being the consolidation of memory. While REM sleep is characterized by brain activity similar to wakefulness, the EEG activity changes drastically with the emergence of K-complexes, sleep spindles and slow oscillations during NREM sleep. These changes are regulated by circadian and ultradian rhythms, which emerge from an intricate interplay between multiple neuronal populations in the brainstem, forebrain and hypothalamus and the resulting varying levels of neuromodulators. Recently, there has been progress in the understanding of those rhythms both from a physiological as well as theoretical perspective. However, how these neuromodulators affect the generation of the different EEG patterns and their temporal dynamics is poorly understood. Here, we build upon previous work on a neural mass model of the sleeping cortex and investigate the effect of those neuromodulators on the dynamics of the cortex and the corresponding transition between wakefulness and the different sleep stages. We show that our simplified model is sufficient to generate the essential features of human EEG over a full day. This approach builds a bridge between sleep regulatory networks and EEG generating neural mass models and provides a valuable tool for model validation. PMID:27066796

  16. Neural mechanisms regulating different forms of risk-related decision-making: Insights from animal models.

    PubMed

    Orsini, Caitlin A; Moorman, David E; Young, Jared W; Setlow, Barry; Floresco, Stan B

    2015-11-01

    Over the past 20 years there has been a growing interest in the neural underpinnings of cost/benefit decision-making. Recent studies with animal models have made considerable advances in our understanding of how different prefrontal, striatal, limbic and monoaminergic circuits interact to promote efficient risk/reward decision-making, and how dysfunction in these circuits underlies aberrant decision-making observed in numerous psychiatric disorders. This review will highlight recent findings from studies exploring these questions using a variety of behavioral assays, as well as molecular, pharmacological, neurophysiological, and translational approaches. We begin with a discussion of how neural systems related to decision subcomponents may interact to generate more complex decisions involving risk and uncertainty. This is followed by an overview of interactions between prefrontal-amygdala-dopamine and habenular circuits in regulating choice between certain and uncertain rewards and how different modes of dopamine transmission may contribute to these processes. These data will be compared with results from other studies investigating the contribution of some of these systems to guiding decision-making related to rewards vs. punishment. Lastly, we provide a brief summary of impairments in risk-related decision-making associated with psychiatric disorders, highlighting recent translational studies in laboratory animals.

  17. Time-lapse imaging of neural development: Zebrafish lead the way into the fourth dimension

    PubMed Central

    Rieger, Sandra; Wang, Fang; Sagasti, Alvaro

    2011-01-01

    Time-lapse imaging is often the only way to appreciate fully the many dynamic cell movements critical to neural development. Zebrafish possess many advantages that make them the best vertebrate model organism for live imaging of dynamic development events. This review will discuss technical considerations of time-lapse imaging experiments in zebrafish, describe selected examples of imaging studies in zebrafish that revealed new features or principles of neural development, and consider the promise and challenges of future time-lapse studies of neural development in zebrafish embryos and adults. PMID:21305690

  18. Microcephaly disease gene Wdr62 regulates mitotic progression of embryonic neural stem cells and brain size.

    PubMed

    Chen, Jian-Fu; Zhang, Ying; Wilde, Jonathan; Hansen, Kirk C; Lai, Fan; Niswander, Lee

    2014-05-30

    Human genetic studies have established a link between a class of centrosome proteins and microcephaly. Current studies of microcephaly focus on defective centrosome/spindle orientation. Mutations in WDR62 are associated with microcephaly and other cortical abnormalities in humans. Here we create a mouse model of Wdr62 deficiency and find that the mice exhibit reduced brain size due to decreased neural progenitor cells (NPCs). Wdr62 depleted cells show spindle instability, spindle assembly checkpoint (SAC) activation, mitotic arrest and cell death. Mechanistically, Wdr62 associates and genetically interacts with Aurora A to regulate spindle formation, mitotic progression and brain size. Our results suggest that Wdr62 interacts with Aurora A to control mitotic progression, and loss of these interactions leads to mitotic delay and cell death of NPCs, which could be a potential cause of human microcephaly.

  19. Major transcriptome re-organisation and abrupt changes in signalling, cell cycle and chromatin regulation at neural differentiation in vivo.

    PubMed

    Olivera-Martinez, Isabel; Schurch, Nick; Li, Roman A; Song, Junfang; Halley, Pamela A; Das, Raman M; Burt, Dave W; Barton, Geoffrey J; Storey, Kate G

    2014-08-01

    Here, we exploit the spatial separation of temporal events of neural differentiation in the elongating chick body axis to provide the first analysis of transcriptome change in progressively more differentiated neural cell populations in vivo. Microarray data, validated against direct RNA sequencing, identified: (1) a gene cohort characteristic of the multi-potent stem zone epiblast, which contains neuro-mesodermal progenitors that progressively generate the spinal cord; (2) a major transcriptome re-organisation as cells then adopt a neural fate; and (3) increasing diversity as neural patterning and neuron production begin. Focussing on the transition from multi-potent to neural state cells, we capture changes in major signalling pathways, uncover novel Wnt and Notch signalling dynamics, and implicate new pathways (mevalonate pathway/steroid biogenesis and TGFβ). This analysis further predicts changes in cellular processes, cell cycle, RNA-processing and protein turnover as cells acquire neural fate. We show that these changes are conserved across species and provide biological evidence for reduced proteasome efficiency and a novel lengthening of S phase. This latter step may provide time for epigenetic events to mediate large-scale transcriptome re-organisation; consistent with this, we uncover simultaneous downregulation of major chromatin modifiers as the neural programme is established. We further demonstrate that transcription of one such gene, HDAC1, is dependent on FGF signalling, making a novel link between signals that control neural differentiation and transcription of a core regulator of chromatin organisation. Our work implicates new signalling pathways and dynamics, cellular processes and epigenetic modifiers in neural differentiation in vivo, identifying multiple new potential cellular and molecular mechanisms that direct differentiation. PMID:25063452

  20. Effects of negative air ions on activity of neural substrates involved in autonomic regulation in rats

    NASA Astrophysics Data System (ADS)

    Suzuki, Satoko; Yanagita, Shinya; Amemiya, Seiichiro; Kato, Yumi; Kubota, Natsuko; Ryushi, Tomoo; Kita, Ichiro

    2008-07-01

    The neural mechanism by which negative air ions (NAI) mediate the regulation of autonomic nervous system activity is still unknown. We examined the effects of NAI on physiological responses, such as blood pressure (BP), heart rate (HR), and heart rate variability (HRV) as well as neuronal activity, in the paraventricular nucleus of the hypothalamus (PVN), locus coeruleus (LC), nucleus ambiguus (NA), and nucleus of the solitary tract (NTS) with c-Fos immunohistochemistry in anesthetized, spontaneously breathing rats. In addition, we performed cervical vagotomy to reveal the afferent pathway involved in mediating the effects of NAI on autonomic regulation. NAI significantly decreased BP and HR, and increased HF power of the HRV spectrum. Significant decreases in c-Fos positive nuclei in the PVN and LC, and enhancement of c-Fos expression in the NA and NTS were induced by NAI. After vagotomy, these physiological and neuronal responses to NAI were not observed. These findings suggest that NAI can modulate autonomic regulation through inhibition of neuronal activity in PVN and LC as well as activation of NA neurons, and that these effects of NAI might be mediated via the vagus nerves.

  1. Cadherins as regulators for the emergence of neural nets from embryonic divisions.

    PubMed

    Redies, Christoph; Treubert-Zimmermann, Ullrich; Luo, Jiankai

    2003-01-01

    Cadherins are a large family of cell adhesion molecules that are expressed in a spatially restricted fashion during vertebrate CNS development. Each cadherin shows a characteristic expression pattern that differs from that of other cadherins. Early in development, the cadherin expression domains relate to the neuromeric organization of the vertebrate CNS. Later, as functional structures (brain nuclei, cortical regions, fiber tracts and synapses) emerge, the expression patterns of each cadherin become restricted to subsets of these structures that form parts of specific neural nets. Cadherins thus represent a system of potentially adhesive cues that play a role in the emergence of neural nets from embryonic CNS divisions. We review descriptive and experimental evidence for such a role of cadherins in CNS development. It is argued that descriptive studies (i.e., the mapping of gene expression) and functional studies (i.e., experimental manipulation of gene expression) are equally important for generating specific and firm ideas on the function of genes in brain development.

  2. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development.

    PubMed

    Noda, Kazuo; Kitami, Megumi; Kitami, Kohei; Kaku, Masaru; Komatsu, Yoshihiro

    2016-05-10

    The primary cilium is a cellular organelle that coordinates signaling pathways critical for cell proliferation, differentiation, survival, and homeostasis. Intraflagellar transport (IFT) plays a pivotal role in assembling primary cilia. Disruption and/or dysfunction of IFT components can cause multiple diseases, including skeletal dysplasia. However, the mechanism by which IFT regulates skeletogenesis remains elusive. Here, we show that a neural crest-specific deletion of intraflagellar transport 20 (Ift20) in mice compromises ciliogenesis and intracellular transport of collagen, which leads to osteopenia in the facial region. Whereas platelet-derived growth factor receptor alpha (PDGFRα) was present on the surface of primary cilia in wild-type osteoblasts, disruption of Ift20 down-regulated PDGFRα production, which caused suppression of PDGF-Akt signaling, resulting in decreased osteogenic proliferation and increased cell death. Although osteogenic differentiation in cranial neural crest (CNC)-derived cells occurred normally in Ift20-mutant cells, the process of mineralization was severely attenuated due to delayed secretion of type I collagen. In control osteoblasts, procollagen was easily transported from the endoplasmic reticulum (ER) to the Golgi apparatus. By contrast, despite having similar levels of collagen type 1 alpha 1 (Col1a1) expression, Ift20 mutants did not secrete procollagen because of dysfunctional ER-to-Golgi trafficking. These data suggest that in the multipotent stem cells of CNCs, IFT20 is indispensable for regulating not only ciliogenesis but also collagen intracellular trafficking. Our study introduces a unique perspective on the canonical and noncanonical functions of IFT20 in craniofacial skeletal development. PMID:27118846

  3. CRANIAL NEURAL CREST CELLS ON THE MOVE: THEIR ROLES IN CRANIOFACIAL DEVELOPMENT

    PubMed Central

    Cordero, Dwight R.; Brugmann, Samantha; Chu, Yvonne; Bajpai, Ruchi; Jame, Maryam; Helms, Jill A.

    2010-01-01

    The craniofacial region is assembled through the active migration of cells and the rearrangement and sculpting of facial prominences and pharyngeal arches, which consequently make it particularly susceptible to a large number of birth defects. Genetic, molecular, and cellular processes must be temporally and spatially regulated to culminate in the three-dimension structures of the face. The starting constituent for the majority of skeletal and connective tissues in the face is a pluripotent population of cells, the cranial neural crest cells (NCCs). In this review we discuss the newest scientific findings in the development of the craniofacial complex as related to NCCs. Furthermore, we present recent findings on NCC diseases called neurocristopathies and, in doing so, provide clinicians with new tools for understanding a growing number of craniofacial genetic disorders. PMID:21271641

  4. Variation in the schedules of somite and neural development in frogs

    PubMed Central

    Sáenz-Ponce, Natalia; Mitgutsch, Christian; del Pino, Eugenia M.

    2012-01-01

    The timing of notochord, somite, and neural development was analyzed in the embryos of six different frog species, which have been divided into two groups, according to their developmental speed. Rapid developing species investigated were Xenopus laevis (Pipidae), Engystomops coloradorum, and Engystomops randi (Leiuperidae). The slow developers were Epipedobates machalilla and Epipedobates tricolor (Dendrobatidae) and Gastrotheca riobambae (Hemiphractidae). Blastopore closure, notochord formation, somite development, neural tube closure, and the formation of cranial neural crest cell-streams were detected by light and scanning electron microscopy and by immuno-histochemical detection of somite and neural crest marker proteins. The data were analyzed using event pairing to determine common developmental aspects and their relationship to life-history traits. In embryos of rapidly developing frogs, elongation of the notochord occurred earlier relative to the time point of blastopore closure in comparison with slowly developing species. The development of cranial neural crest cell-streams relative to somite formation is accelerated in rapidly developing frogs, and it is delayed in slowly developing frogs. The timing of neural tube closure seemed to be temporally uncoupled with somite formation. We propose that these changes are achieved through differential timing of developmental modules that begin with the elongation of the notochord during gastrulation in the rapidly developing species. The differences might be related to the necessity of developing a free-living tadpole quickly in rapid developers. PMID:23184997

  5. Regulation of BDNF chromatin status and promoter accessibility in a neural correlate of associative learning

    PubMed Central

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Keifer, Joyce

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) gene expression critically controls learning and its aberrant regulation is implicated in Alzheimer's disease and a host of neurodevelopmental disorders. The BDNF gene is target of known DNA regulatory mechanisms but details of its activity-dependent regulation are not fully characterized. We performed a comprehensive analysis of the epigenetic regulation of the turtle BDNF gene (tBDNF) during a neural correlate of associative learning using an in vitro model of eye blink classical conditioning. Shortly after conditioning onset, the results from ChIP-qPCR show conditioning-dependent increases in methyl-CpG-binding protein 2 (MeCP2) and repressor basic helix-loop-helix binding protein 2 (BHLHB2) binding to tBDNF promoter II that corresponds with transcriptional repression. In contrast, enhanced binding of ten-eleven translocation protein 1 (Tet1), extracellular signal-regulated kinase 1/2 (ERK1/2), and cAMP response element-binding protein (CREB) to promoter III corresponds with transcriptional activation. These actions are accompanied by rapid modifications in histone methylation and phosphorylation status of RNA polymerase II (RNAP II). Significantly, these remarkably coordinated changes in epigenetic factors for two alternatively regulated tBDNF promoters during conditioning are controlled by Tet1 and ERK1/2. Our findings indicate that Tet1 and ERK1/2 are critical partners that, through complementary functions, control learning-dependent tBDNF promoter accessibility required for rapid transcription and acquisition of classical conditioning. PMID:26336984

  6. Behavioural and neural correlates of self-focused emotion regulation in social anxiety disorder

    PubMed Central

    Gaebler, Michael; Daniels, Judith K.; Lamke, Jan-Peter; Fydrich, Thomas; Walter, Henrik

    2014-01-01

    Background In healthy individuals, voluntary modification of self-relevance has proven effective in regulating subjective emotional experience as well as physiologic responses evoked by emotive stimuli. As social anxiety disorder (SAD) is characterized by both altered emotional and self-related processing, we tested if emotion regulation through self-focused reappraisal is effective in individuals with SAD. Methods While undergoing 3 T functional magnetic resonance imaging, individuals with SAD and matched healthy controls either passively viewed neutral and aversive pictures or actively increased or decreased their negative emotional experience through the modification of self-relevance or personal distance to aversive pictures. Participants rated all pictures with regard to the intensity of elicited emotions and self-relatedness. Results We included 21 individuals with SAD and 23 controls in our study. Individuals with SAD reported significantly stronger emotional intensity across conditions and showed a nonsignificant tendency to judge pictures as more self-related than controls. Compared with controls, individuals with SAD showed an overactivation in bilateral temporoparietal regions and in the posterior midcingulate cortex during the passive viewing of aversive compared with neutral pictures. During instructed emotion regulation, activation patterns normalized and no significant group differences were detected. Limitations As no positive pictures were presented, results might be limited to the regulation of negative emotion. Conclusion During passive viewing of aversive images, individuals with SAD showed evidence of neural hyperreactivity that may be interpreted as increased bodily self-consciousness and heightened perspective-taking. During voluntary increase and decrease of negative emotional intensity, group differences disappeared, suggesting self-focused reappraisal as a successful emotion regulation strategy for individuals with SAD. PMID:24690369

  7. Honduras geothermal development: Regulations and opportunities

    SciTech Connect

    Goff, S.J.; Winchester, W.W.

    1994-09-01

    The US Department of Energy (DOE) through the Assistant Secretary for Policy, Planning, and Evaluation funded a project to review and evaluate existing power sector laws and regulations in Honduras. Also included in the scope of the project was a review of regulations pertaining to the privatization of state-run companies. We paid particular attention to regulations which might influence opportunities to develop and commercialize Honduras` geothermal resources. We believe that Honduras is well on the road to attracting foreign investment and has planned or has already in place much of the infrastructure and legal guarantees which encourage the influx of private funds from abroad. In addition, in light of current power rationing and Honduras` new and increasing awareness of the negative effects of power sector development on the environment, geothermal energy development is even more attractive. Combined, these factors create a variety of opportunities. The potential for private sector development of geothermal positive.

  8. Transcriptional Profiling of Hypoxic Neural Stem Cells Identifies Calcineurin-NFATc4 Signaling as a Major Regulator of Neural Stem Cell Biology.

    PubMed

    Moreno, Marta; Fernández, Virginia; Monllau, Josep M; Borrell, Víctor; Lerin, Carles; de la Iglesia, Núria

    2015-08-11

    Neural stem cells (NSCs) reside in a hypoxic microenvironment within the brain. However, the crucial transcription factors (TFs) that regulate NSC biology under physiologic hypoxia are poorly understood. Here we have performed gene set enrichment analysis (GSEA) of microarray datasets from hypoxic versus normoxic NSCs with the aim of identifying pathways and TFs that are activated under oxygen concentrations mimicking normal brain tissue microenvironment. Integration of TF target (TFT) and pathway enrichment analysis identified the calcium-regulated TF NFATc4 as a major candidate to regulate hypoxic NSC functions. Nfatc4 expression was coordinately upregulated by top hypoxia-activated TFs, while NFATc4 target genes were enriched in hypoxic NSCs. Loss-of-function analyses further revealed that the calcineurin-NFATc4 signaling axis acts as a major regulator of NSC self-renewal and proliferation in vitro and in vivo by promoting the expression of TFs, including Id2, that contribute to the maintenance of the NSC state.

  9. Endocrine Pancreas Development and Regeneration: Noncanonical Ideas From Neural Stem Cell Biology.

    PubMed

    Masjkur, Jimmy; Poser, Steven W; Nikolakopoulou, Polyxeni; Chrousos, George; McKay, Ronald D; Bornstein, Stefan R; Jones, Peter M; Androutsellis-Theotokis, Andreas

    2016-02-01

    Loss of insulin-producing pancreatic islet β-cells is a hallmark of type 1 diabetes. Several experimental paradigms demonstrate that these cells can, in principle, be regenerated from multiple endogenous sources using signaling pathways that are also used during pancreas development. A thorough understanding of these pathways will provide improved opportunities for therapeutic intervention. It is now appreciated that signaling pathways should not be seen as "on" or "off" but that the degree of activity may result in wildly different cellular outcomes. In addition to the degree of operation of a signaling pathway, noncanonical branches also play important roles. Thus, a pathway, once considered as "off" or "low" may actually be highly operational but may be using noncanonical branches. Such branches are only now revealing themselves as new tools to assay them are being generated. A formidable source of noncanonical signal transduction concepts is neural stem cells because these cells appear to have acquired unusual signaling interpretations to allow them to maintain their unique dual properties (self-renewal and multipotency). We discuss how such findings from the neural field can provide a blueprint for the identification of new molecular mechanisms regulating pancreatic biology, with a focus on Notch, Hes/Hey, and hedgehog pathways.

  10. Endocrine Pancreas Development and Regeneration: Noncanonical Ideas From Neural Stem Cell Biology.

    PubMed

    Masjkur, Jimmy; Poser, Steven W; Nikolakopoulou, Polyxeni; Chrousos, George; McKay, Ronald D; Bornstein, Stefan R; Jones, Peter M; Androutsellis-Theotokis, Andreas

    2016-02-01

    Loss of insulin-producing pancreatic islet β-cells is a hallmark of type 1 diabetes. Several experimental paradigms demonstrate that these cells can, in principle, be regenerated from multiple endogenous sources using signaling pathways that are also used during pancreas development. A thorough understanding of these pathways will provide improved opportunities for therapeutic intervention. It is now appreciated that signaling pathways should not be seen as "on" or "off" but that the degree of activity may result in wildly different cellular outcomes. In addition to the degree of operation of a signaling pathway, noncanonical branches also play important roles. Thus, a pathway, once considered as "off" or "low" may actually be highly operational but may be using noncanonical branches. Such branches are only now revealing themselves as new tools to assay them are being generated. A formidable source of noncanonical signal transduction concepts is neural stem cells because these cells appear to have acquired unusual signaling interpretations to allow them to maintain their unique dual properties (self-renewal and multipotency). We discuss how such findings from the neural field can provide a blueprint for the identification of new molecular mechanisms regulating pancreatic biology, with a focus on Notch, Hes/Hey, and hedgehog pathways. PMID:26798118

  11. An oil fraction neural sensor developed using electrical capacitance tomography sensor data.

    PubMed

    Zainal-Mokhtar, Khursiah; Mohamad-Saleh, Junita

    2013-08-26

    This paper presents novel research on the development of a generic intelligent oil fraction sensor based on Electrical Capacitance Tomography (ECT) data. An artificial Neural Network (ANN) has been employed as the intelligent system to sense and estimate oil fractions from the cross-sections of two-component flows comprising oil and gas in a pipeline. Previous works only focused on estimating the oil fraction in the pipeline based on fixed ECT sensor parameters. With fixed ECT design sensors, an oil fraction neural sensor can be trained to deal with ECT data based on the particular sensor parameters, hence the neural sensor is not generic. This work focuses on development of a generic neural oil fraction sensor based on training a Multi-Layer Perceptron (MLP) ANN with various ECT sensor parameters. On average, the proposed oil fraction neural sensor has shown to be able to give a mean absolute error of 3.05% for various ECT sensor sizes.

  12. An Oil Fraction Neural Sensor Developed Using Electrical capacitance Tomography Sensor Data

    PubMed Central

    Zainal-Mokhtar, Khursiah; Mohamad-Saleh, Junita

    2013-01-01

    This paper presents novel research on the development of a generic intelligent oil fraction sensor based on Electrical capacitance Tomography (ECT) data. An artificial Neural Network (ANN) has been employed as the intelligent system to sense and estimate oil fractions from the cross-sections of two-component flows comprising oil and gas in a pipeline. Previous works only focused on estimating the oil fraction in the pipeline based on fixed ECT sensor parameters. With fixed ECT design sensors, an oil fraction neural sensor can be trained to deal with ECT data based on the particular sensor parameters, hence the neural sensor is not generic. This work focuses on development of a generic neural oil fraction sensor based on training a Multi-Layer Perceptron (MLP) ANN with various ECT sensor parameters. On average, the proposed oil fraction neural sensor has shown to be able to give a mean absolute error of 3.05% for various ECT sensor sizes. PMID:24064598

  13. Orion Suit Loop Variable Pressure Regulator Development

    NASA Technical Reports Server (NTRS)

    Mosher, Michael; Lewis, John F.; Campbell, Melissa

    2012-01-01

    The Orion Multi Purpose Crew Vehicle (MPCV) integrates the cabin and pressure suits with the core life support systems to provide life support during contingency depressurized cabin operations. To provide the multiple suit pressures between nominal pressurized cabin suited operations, suit leak checks, depressurized cabin suited operations, and elevated suit pressure for denitrification, a variable pressure regulator is needed. This paper documents the development of the suit loop regulator for Orion.

  14. Orion Suit Loop Variable Pressure Regulator Development

    NASA Technical Reports Server (NTRS)

    Mosher, Michael; Vassallo, Andrew; Lewis, John F.; Campbell, Melissa

    2014-01-01

    The Orion Multi Purpose Crew Vehicle (MPCV) integrates the cabin and pressure suits with the core life support systems to provide life support during contingency depressurized cabin operations. To provide the multipule suit pressures between nominal pressurized cabin suited operations, suit leak checks, depressurized cabin suited operations, and elevated suit pressure for denitrification, a variable pressure regulator is needed. This paper documents the development and integrated testing of the suit loop regulator for Orion.

  15. Pbx-dependent regulation of lbx gene expression in developing zebrafish embryos.

    PubMed

    Lukowski, Chris M; Drummond, Danna Lynne; Waskiewicz, Andrew J

    2011-12-01

    Ladybird (Lbx) homeodomain transcription factors function in neural and muscle development--roles conserved from Drosophila to vertebrates. Lbx expression in mice specifies neural cell types, including dorsally located interneurons and association neurons, within the neural tube. Little, however, is known about the regulation of vertebrate lbx family genes. Here we describe the expression pattern of three zebrafish ladybird genes via mRNA in situ hybridization. Zebrafish lbx genes are expressed in distinct but overlapping regions within the developing neural tube, with strong expression within the hindbrain and spinal cord. The Hox family of transcription factors, in cooperation with cofactors such as Pbx and Meis, regulate hindbrain segmentation during embryogenesis. We have identified a novel regulatory interaction in which lbx1 genes are strongly downregulated in Pbx-depleted embryos. Further, we have produced a transgenic zebrafish line expressing dTomato and EGFP under the control of an lbx1b enhancer--a useful tool to acertain neuron location, migration, and morphology. Using this transgenic strain, we have identified a minimal neural lbx1b enhancer that contains key regulatory elements for expression of this transcription factor.

  16. Development of Ensemble Neural Network Convection Parameterizations for Climate Models

    SciTech Connect

    Fox-Rabinovitz, M. S.; Krasnopolsky, V. M.

    2012-05-02

    The novel neural network (NN) approach has been formulated and used for development of a NN ensemble stochastic convection parametrization for climate models. This fast parametrization is built based on data from Cloud Resolving Model (CRM) simulations initialized with and forced by TOGA-COARE data. The SAM (System for Atmospheric Modeling), developed by D. Randall, M. Khairoutdinov, and their collaborators, has been used for CRM simulations. The observational data are also used for validation of model simulations. The SAM-simulated data have been averaged and projected onto the GCM space of atmospheric states to implicitly define a stochastic convection parametrization. This parametrization is emulated using an ensemble of NNs. An ensemble of NNs with different NN parameters has been trained and tested. The inherent uncertainty of the stochastic convection parametrization derived in such a way is estimated. Due to these inherent uncertainties, NN ensemble is used to constitute a stochastic NN convection parametrization. The developed NN convection parametrization have been validated in a diagnostic CAM (CAM-NN) run vs. the control CAM run. Actually, CAM inputs have been used, at every time step of the control/original CAM integration, for parallel calculations of the NN convection parametrization (CAM-NN) to produce its outputs as a diagnostic byproduct. Total precipitation (P) and cloudiness (CLD) time series, diurnal cycles, and P and CLD distributions for the large Tropical Pacific Ocean for the parallel CAM-NN and CAM runs show similarity and consistency with the NCEP reanalysis. The P and CLD distributions for the tropical area for the parallel runs have been analyzed first for the TOGA-COARE boreal winter season (November 1992 through February 1993) and then for the winter seasons of the follow-up parallel decadal simulations. The obtained results are encouraging and practically meaningful. They show the validity of the NN approach. This constitutes an

  17. Neural tube defects and abnormal brain development in F52-deficient mice.

    PubMed Central

    Wu, M; Chen, D F; Sasaoka, T; Tonegawa, S

    1996-01-01

    F52 is a myristoylated, alanine-rich substrate for protein kinase C. We have generated F52-deficient mice by the gene targeting technique. These mutant mice manifest severe neural tube defects that are not associated with other complex malformations, a phenotype reminiscent of common human neural tube defects. The neural tube defects observed include both exencephaly and spina bifida, and the phenotype exhibits partial penetrance with about 60% of homozygous embryos developing neural tube defects. Exencephaly is the prominent type of defect and leads to high prenatal lethality. Neural tube defects are observed in a smaller percentage of heterozygous embryos (about 10%). Abnormal brain development and tail formation occur in homozygous mutants and are likely to be secondary to the neural tube defects. Disruption of F52 in mice therefore identifies a gene whose mutation results in isolated neural tube defects and may provide an animal model for common human neural tube defects. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8700893

  18. RNA binding proteins, neural development and the addictions

    PubMed Central

    Bryant, Camron D.; Yazdani, Neema

    2016-01-01

    Transcriptional and post-transcriptional regulation of gene expression defines the neurobiological mechanisms that bridge genetic and environmental risk factors with neurobehavioral dysfunction underlying the addictions. More than 1000 genes in the eukaryotic genome code for multifunctional RNA binding proteins (RBPs) that can regulate all levels of RNA biogenesis. More than 50% of these RBPs are expressed in the brain where they regulate alternative splicing, transport, localization, stability, and translation of RNAs during development and adulthood. RBP dysfunction can exert global effects on their targetomes that underlie neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease as well as neurodevelopmental disorders, including autism and schizophrenia. Here, we consider the evidence that RBPs influence key molecular targets, neurodevelopment, synaptic plasticity, and neurobehavioral dysfunction underlying the addictions. Increasingly well-powered genome-wide association studies in humans and mammalian model organisms combined with ever more precise transcriptomic and proteomic approaches will continue to uncover novel and possibly selective roles for RBPs in the addictions. Key challenges include identifying the biological functions of the dynamic RBP targetomes from specific cell types throughout subcellular space (e.g., the nuclear spliceome versus the synaptic translatome) and time and manipulating RBP programs through post-transcriptional modifications to prevent or reverse aberrant neurodevelopment and plasticity underlying the addictions. PMID:26643147

  19. RNA-binding proteins, neural development and the addictions.

    PubMed

    Bryant, C D; Yazdani, N

    2016-01-01

    Transcriptional and post-transcriptional regulation of gene expression defines the neurobiological mechanisms that bridge genetic and environmental risk factors with neurobehavioral dysfunction underlying the addictions. More than 1000 genes in the eukaryotic genome code for multifunctional RNA-binding proteins (RBPs) that can regulate all levels of RNA biogenesis. More than 50% of these RBPs are expressed in the brain where they regulate alternative splicing, transport, localization, stability and translation of RNAs during development and adulthood. Dysfunction of RBPs can exert global effects on their targetomes that underlie neurodegenerative disorders such as Alzheimer's and Parkinson's diseases as well as neurodevelopmental disorders, including autism and schizophrenia. Here, we consider the evidence that RBPs influence key molecular targets, neurodevelopment, synaptic plasticity and neurobehavioral dysfunction underlying the addictions. Increasingly well-powered genome-wide association studies in humans and mammalian model organisms combined with ever more precise transcriptomic and proteomic approaches will continue to uncover novel and possibly selective roles for RBPs in the addictions. Key challenges include identifying the biological functions of the dynamic RBP targetomes from specific cell types throughout subcellular space (e.g. the nuclear spliceome vs. the synaptic translatome) and time and manipulating RBP programs through post-transcriptional modifications to prevent or reverse aberrant neurodevelopment and plasticity underlying the addictions.

  20. Multimodal imaging of the self-regulating developing brain.

    PubMed

    Fjell, Anders M; Walhovd, Kristine Beate; Brown, Timothy T; Kuperman, Joshua M; Chung, Yoonho; Hagler, Donald J; Venkatraman, Vijay; Roddey, J Cooper; Erhart, Matthew; McCabe, Connor; Akshoomoff, Natacha; Amaral, David G; Bloss, Cinnamon S; Libiger, Ondrej; Darst, Burcu F; Schork, Nicholas J; Casey, B J; Chang, Linda; Ernst, Thomas M; Gruen, Jeffrey R; Kaufmann, Walter E; Kenet, Tal; Frazier, Jean; Murray, Sarah S; Sowell, Elizabeth R; van Zijl, Peter; Mostofsky, Stewart; Jernigan, Terry L; Dale, Anders M

    2012-11-27

    Self-regulation refers to the ability to control behavior, cognition, and emotions, and self-regulation failure is related to a range of neuropsychiatric problems. It is poorly understood how structural maturation of the brain brings about the gradual improvement in self-regulation during childhood. In a large-scale multicenter effort, 735 children (4-21 y) underwent structural MRI for quantification of cortical thickness and surface area and diffusion tensor imaging for quantification of the quality of major fiber connections. Brain development was related to a standardized measure of cognitive control (the flanker task from the National Institutes of Health Toolbox), a critical component of self-regulation. Ability to inhibit responses and impose cognitive control increased rapidly during preteen years. Surface area of the anterior cingulate cortex accounted for a significant proportion of the variance in cognitive performance. This finding is intriguing, because characteristics of the anterior cingulum are shown to be related to impulse, attention, and executive problems in neurodevelopmental disorders, indicating a neural foundation for self-regulation abilities along a continuum from normality to pathology. The relationship was strongest in the younger children. Properties of large-fiber connections added to the picture by explaining additional variance in cognitive control. Although cognitive control was related to surface area of the anterior cingulate independently of basic processes of mental speed, the relationship between white matter quality and cognitive control could be fully accounted for by speed. The results underscore the need for integration of different aspects of brain maturation to understand the foundations of cognitive development. PMID:23150548

  1. Multimodal imaging of the self-regulating developing brain

    PubMed Central

    Fjell, Anders M.; Walhovd, Kristine Beate; Brown, Timothy T.; Kuperman, Joshua M.; Chung, Yoonho; Hagler, Donald J.; Venkatraman, Vijay; Roddey, J. Cooper; Erhart, Matthew; McCabe, Connor; Akshoomoff, Natacha; Amaral, David G.; Bloss, Cinnamon S.; Libiger, Ondrej; Darst, Burcu F.; Schork, Nicholas J.; Casey, B. J.; Chang, Linda; Ernst, Thomas M.; Gruen, Jeffrey R.; Kaufmann, Walter E.; Kenet, Tal; Frazier, Jean; Murray, Sarah S.; Sowell, Elizabeth R.; van Zijl, Peter; Mostofsky, Stewart; Jernigan, Terry L.; Dale, Anders M.; Jernigan, Terry L.; McCabe, Connor; Chang, Linda; Akshoomoff, Natacha; Newman, Erik; Dale, Anders M.; Ernst, Thomas; Dale, Anders M.; Van Zijl, Peter; Kuperman, Joshua; Murray, Sarah; Bloss, Cinnamon; Schork, Nicholas J.; Appelbaum, Mark; Gamst, Anthony; Thompson, Wesley; Bartsch, Hauke; Jernigan, Terry L.; Dale, Anders M.; Akshoomoff, Natacha; Chang, Linda; Ernst, Thomas; Keating, Brian; Amaral, David; Sowell, Elizabeth; Kaufmann, Walter; Van Zijl, Peter; Mostofsky, Stewart; Casey, B.J.; Ruberry, Erika J.; Powers, Alisa; Rosen, Bruce; Kenet, Tal; Frazier, Jean; Kennedy, David; Gruen, Jeffrey

    2012-01-01

    Self-regulation refers to the ability to control behavior, cognition, and emotions, and self-regulation failure is related to a range of neuropsychiatric problems. It is poorly understood how structural maturation of the brain brings about the gradual improvement in self-regulation during childhood. In a large-scale multicenter effort, 735 children (4–21 y) underwent structural MRI for quantification of cortical thickness and surface area and diffusion tensor imaging for quantification of the quality of major fiber connections. Brain development was related to a standardized measure of cognitive control (the flanker task from the National Institutes of Health Toolbox), a critical component of self-regulation. Ability to inhibit responses and impose cognitive control increased rapidly during preteen years. Surface area of the anterior cingulate cortex accounted for a significant proportion of the variance in cognitive performance. This finding is intriguing, because characteristics of the anterior cingulum are shown to be related to impulse, attention, and executive problems in neurodevelopmental disorders, indicating a neural foundation for self-regulation abilities along a continuum from normality to pathology. The relationship was strongest in the younger children. Properties of large-fiber connections added to the picture by explaining additional variance in cognitive control. Although cognitive control was related to surface area of the anterior cingulate independently of basic processes of mental speed, the relationship between white matter quality and cognitive control could be fully accounted for by speed. The results underscore the need for integration of different aspects of brain maturation to understand the foundations of cognitive development. PMID:23150548

  2. Regulation of bone morphogenetic proteins in early embryonic development

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yukiyo; Oelgeschläger, Michael

    2004-11-01

    Bone morphogenetic proteins (BMPs), a large subgroup of the TGF-β family of secreted growth factors, control fundamental events in early embryonic development, organogenesis and adult tissue homeostasis. The plethora of dose-dependent cellular processes regulated by BMP signalling demand a tight regulation of BMP activity. Over the last decade, a number of proteins have been identified that bind BMPs in the extracellular space and regulate the interaction of BMPs with their cognate receptors, including the secreted BMP antagonist Chordin. In the early vertebrate embryo, the localized secretion of BMP antagonists from the dorsal blastopore lip establishes a functional BMP signalling gradient that is required for the determination of the dorsoventral or back to belly body axis. In particular, inhibition of BMP activity is essential for the formation of neural tissue in the development of vertebrate and invertebrate embryos. Here we review recent studies that have provided new insight into the regulation of BMP signalling in the extracellular space. In particular, we discuss the recently identified Twisted gastrulation protein that modulates, in concert with metalloproteinases of the Tolloid family, the interaction of Chordin with BMP and a family of proteins that share structural similarities with Chordin in the respective BMP binding domains. In addition, genetic and functional studies in zebrafish and frog provide compelling evidence that the secreted protein Sizzled functionally interacts with the Chd BMP pathway, despite being expressed ventrally in the early gastrula-stage embryo. These intriguing discoveries may have important implications, not only for our current concept of early embryonic patterning, but also for the regulation of BMP activity at later developmental stages and tissue homeostasis in the adult.

  3. Destabilizing LSD1 by Jade-2 promotes neurogenesis: an antibraking system in neural development.

    PubMed

    Han, Xiao; Gui, Bin; Xiong, Cong; Zhao, Linnan; Liang, Jing; Sun, Luyang; Yang, Xiaohan; Yu, Wenhua; Si, Wenzhe; Yan, Ruorong; Yi, Xia; Zhang, Di; Li, Wanjin; Li, Lifang; Yang, Jianguo; Wang, Yan; Sun, Yi Eve; Zhang, Dai; Meng, Anming; Shang, Yongfeng

    2014-08-01

    Histone H3K4 demethylase LSD1 plays an important role in stem cell biology, especially in the maintenance of the silencing of differentiation genes. However, how the function of LSD1 is regulated and the differentiation genes are derepressed are not understood. Here, we report that elimination of LSD1 promotes embryonic stem cell (ESC) differentiation toward neural lineage. We showed that the destabilization of LSD1 occurs posttranscriptionally via the ubiquitin-proteasome pathway by an E3 ubiquitin ligase, Jade-2. We demonstrated that Jade-2 is a major LSD1 negative regulator during neurogenesis in vitro and in vivo in both mouse developing cerebral cortices and zebra fish embryos. Apparently, Jade-2-mediated degradation of LSD1 acts as an antibraking system and serves as a quick adaptive mechanism for re-establishing epigenetic landscape without more laborious transcriptional regulations. As a potential anticancer strategy, Jade-2-mediated LSD1 degradation could potentially be used in neuroblastoma cells to induce differentiation toward postmitotic neurons.

  4. Ghrelin regulates cell cycle-related gene expression in cultured hippocampal neural stem cells.

    PubMed

    Chung, Hyunju; Park, Seungjoon

    2016-08-01

    We have previously demonstrated that ghrelin stimulates the cellular proliferation of cultured adult rat hippocampal neural stem cells (NSCs). However, little is known about the molecular mechanisms by which ghrelin regulates cell cycle progression. The purpose of this study was to investigate the potential effects of ghrelin on cell cycle regulatory molecules in cultured hippocampal NSCs. Ghrelin treatment increased proliferation assessed by CCK-8 proliferation assay. The expression levels of proliferating cell nuclear antigen and cell division control 2, well-known cell-proliferating markers, were also increased by ghrelin. Fluorescence-activated cell sorting analysis revealed that ghrelin promoted progression of cell cycle from G0/G1 to S phase, whereas this progression was attenuated by the pretreatment with specific inhibitors of MEK/extracellular signal-regulated kinase 1/2, phosphoinositide 3-kinase/Akt, mammalian target of rapamycin, and janus kinase 2/signal transducer and activator of transcription 3. Ghrelin-induced proliferative effect was associated with increased expression of E2F1 transcription factor in the nucleus, as determined by Western blotting and immunofluorescence. We also found that ghrelin caused an increase in protein levels of positive regulators of cell cycle, such as cyclin A and cyclin-dependent kinase (CDK) 2. Moreover, p27(KIP1) and p57(KIP2) protein levels were reduced when cell were exposed to ghrelin, suggesting downregulation of CDK inhibitors may contribute to proliferative effect of ghrelin. Our data suggest that ghrelin targets both cell cycle positive and negative regulators to stimulate proliferation of cultured hippocampal NSCs. PMID:27325242

  5. Investigation of Frizzled-5 during embryonic neural development in mouse

    PubMed Central

    Burns, Carole J.; Zhang, Jianmin; Brown, Erinn C.; Van Bibber, Alyssa M.; Van Es, Johan; Clevers, Hans; Ishikawa, Tomo-o; Taketo, M. Mark; Vetter, Monica L.; Fuhrmann, Sabine

    2008-01-01

    Recent studies revealed that the Wnt receptor Frizzled-5 (Fzd5) is required for eye and retina development in zebrafish and Xenopus, however, its role during mammalian eye development is unknown. In the mouse embryo, Fzd5 is prominently expressed in the pituitary, distal optic vesicle and optic stalk, then later in the progenitor zone of the developing retina. To elucidate the role of Fzd5 during eye development, we analyzed embryos with a germline disruption of the Fzd5 gene at E10.25, just before embryos die due to defects in yolk sac angiogenesis. We observed severe defects in optic cup morphogenesis and lens development. However, in embryos with conditional inactivation of Fzd5 using Six3-Cre we observed no obvious early eye defects. Analysis of Axin2 mRNA expression and TCF/LEF-responsive reporter activation demonstrate that Fzd5 does not regulate the Wnt/β-catenin pathway in the eye. Thus, the function of Fzd5 during eye development appears to be species-dependent. PMID:18489003

  6. Development of neural crest cells expressing nerve growth factor receptors

    SciTech Connect

    Greiner, C.A.

    1987-01-01

    The present study examines the ontogeny of the nerve growth factor receptor of neural crest cells in vitro and the phenotypic nature of the neural crest cells expressing this receptor. /sup 125/I-NGF binding assays and autoradiographic and immunofluorescence techniques have demonstrated the presence of a subpopulation of quail neural crest cells that express specific NGF receptors after 3-4 days in vitro. This subpopulations represents approximately 28% of the cells in 5-day primary cultures and 30-35% of the cells in secondary cultures; these cells generally exhibited a flattened, phase-dark morphology. Approximately one-third of these cells also labeled with a 2 hr pulse of /sup 3/H thymidine. Catecholamine-containing neural crest cells generally lacked NGF receptors. NGF receptor-positive cells also failed to demonstrate somatostatin-, neuron-specific enolase-, or S-100-like immunoreactivity. Melanocytes do not appear to express NGF receptors. Exogenous nerve growth factor did not influence the morphology or mitotic status of the cells in culture.

  7. Role of the neural crest in face and brain development.

    PubMed

    Le Douarin, Nicole M; Brito, José M; Creuzet, Sophie

    2007-10-01

    Since the time of Ramon y Cajal, very significant progress has been accomplished in our knowledge of the fate of the early neural primordium. The origin of the peripheral nervous system from the transient and pluripotent embryonic structure, the neural crest has been fully deciphered using appropriate cell marking techniques. Most of the pioneer work in this field was carried out in lower vertebrates up to 1950 and later on in the avian embryo. New techniques which allow the genetic labelling of embryonic cells by transgenesis are now applied in mammals and fish. One of the highlights of neural crest studies was its paramount role in head and face morphogenesis. Work pursued in our laboratory for the last fifteen years or so has analysed at both cellular and molecular levels the contribution of the NCCs to the construction of the facial and cranial structures. Recently, we have found that the cephalic neural crest plays also a key role in the formation of the fore- and mid-brain.

  8. Neural Network Models and Mechanisms of Strategy Development.

    ERIC Educational Resources Information Center

    Bray, Norman W.; Reilly, Kevin D.; Villa, Mark F.; Grupe, Lisa A.

    1997-01-01

    Reviews research on external memory strategies, provides a rationale for using neural network models, and discusses their application to intellectual and developmental differences in the external memory strategies of typical and atypical children, including those with mental retardation. Examines mechanisms of intellectual differences and…

  9. Human Embryonic Stem Cells: A Model for the Study of Neural Development and Neurological Diseases

    PubMed Central

    Prajumwongs, Piya; Weeranantanapan, Oratai; Jaroonwitchawan, Thiranut; Noisa, Parinya

    2016-01-01

    Although the mechanism of neurogenesis has been well documented in other organisms, there might be fundamental differences between human and those species referring to species-specific context. Based on principles learned from other systems, it is found that the signaling pathways required for neural induction and specification of human embryonic stem cells (hESCs) recapitulated those in the early embryo development in vivo at certain degree. This underscores the usefulness of hESCs in understanding early human neural development and reinforces the need to integrate the principles of developmental biology and hESC biology for an efficient neural differentiation. PMID:27239201

  10. The Early Development of the Autonomic Nervous System Provides a Neural Platform for Social Behavior: A Polyvagal Perspective

    PubMed Central

    Porges, Stephen W.; Furman, Senta A.

    2010-01-01

    We present a biobehavioral model that explains the neurobiological mechanisms through which measures of vagal regulation of the heart (e.g., respiratory sinus arrhythmia) are related to infant self-regulatory and social engagement skills. The model describes the sequential development of the neural structures that provide a newborn infant with the ability to regulate physiological state in response to a dynamically changing postpartum environment. Initially, the newborn uses primitive brainstem-visceral circuits via ingestive behaviors as the primary mechanism to regulate physiological state. However, as cortical regulation of the brainstem improves during the first year of life, reciprocal social behavior displaces feeding as the primary regulator of physiological state. The model emphasizes two sequential phases in neurophysiological development as the fetus transitions to postpartum biological and social challenges: 1) the development of the myelinated vagal system during the last trimester, and 2) the development of cortical regulation of the brainstem areas regulating the vagus during the first year postpartum. PMID:21516219

  11. β-Neurexins Control Neural Circuits by Regulating Synaptic Endocannabinoid Signaling

    PubMed Central

    Anderson, Garret R.; Aoto, Jason; Tabuchi, Katsuhiko; Földy, Csaba; Covy, Jason; Yee, Ada Xin; Wu, Dick; Lee, Sung-Jin; Chen, Lu; Malenka, Robert C.; Südhof, Thomas C.

    2015-01-01

    α- and β-neurexins are presynaptic cell-adhesion molecules implicated in autism and schizophrenia. We find that although β-neurexins are expressed at much lower levels than α-neurexins, conditional knockout of β-neurexins with continued expression of α-neurexins dramatically decreased neurotransmitter release at excitatory synapses in cultured cortical neurons. The β-neurexin knockout phenotype was attenuated by CB1-receptor inhibition which blocks presynaptic endocannabinoid signaling or by 2-arachidonoylglycerol synthesis inhibition which impairs postsynaptic endocannabinoid release. In synapses formed by CA1-region pyramidal neurons onto burst-firing subiculum neurons, presynaptic in vivo knockout of β-neurexins aggravated endocannabinoid-mediated inhibition of synaptic transmission and blocked LTP; presynaptic CB1-receptor antagonists or postsynaptic 2-arachidonoylglycerol synthesis inhibition again reversed this block. Moreover, conditional knockout of β-neurexins in CA1-region neurons impaired contextual fear memories. Thus, our data suggest that presynaptic β-neurexins control synaptic strength in excitatory synapses by regulating postsynaptic 2-arachidonoylglycerol synthesis, revealing an unexpected role for β-neurexins in the endocannabinoid-dependent regulation of neural circuits. PMID:26213384

  12. Post-transcriptional regulation of gene expression in neural stem cells.

    PubMed

    Kim, Do-Yeon

    2016-06-01

    Expression of each gene can be controlled at several steps during the flow of genetic information from DNA to protein. Tight regulation of gene expression is especially important for stem cells because of their greater ripple effects, compared with terminally differentiated cells. Dysregulation of gene expression arising in stem cells can be perpetuated within the stem cell pool via self-renewal throughout life. In addition, transcript profiles within stem cells can determine the selective advantage or disadvantage of each cell, leading to changes in cell fate, such as a tendency for proliferation, death, and differentiation. The identification of neural stem/progenitor cells (NSPCs) and greater understanding of their cellular physiology have raised the possibility of using NSPCs to replace damaged or injured neurons. However, an accurate grasp of gene expression control must take precedence in order to use NSPCs in therapies for neurological diseases. Recently, accumulating evidence has demonstrated the importance of post-transcriptional regulation in NSPC fate decisions. In this review, we will summarize and discuss the recent findings on key mRNA modulators and their vital roles in NSPC homeostasis. Copyright © 2016 John Wiley & Sons, Ltd.

  13. β-Neurexins Control Neural Circuits by Regulating Synaptic Endocannabinoid Signaling.

    PubMed

    Anderson, Garret R; Aoto, Jason; Tabuchi, Katsuhiko; Földy, Csaba; Covy, Jason; Yee, Ada Xin; Wu, Dick; Lee, Sung-Jin; Chen, Lu; Malenka, Robert C; Südhof, Thomas C

    2015-07-30

    α- and β-neurexins are presynaptic cell-adhesion molecules implicated in autism and schizophrenia. We find that, although β-neurexins are expressed at much lower levels than α-neurexins, conditional knockout of β-neurexins with continued expression of α-neurexins dramatically decreased neurotransmitter release at excitatory synapses in cultured cortical neurons. The β-neurexin knockout phenotype was attenuated by CB1-receptor inhibition, which blocks presynaptic endocannabinoid signaling, or by 2-arachidonoylglycerol synthesis inhibition, which impairs postsynaptic endocannabinoid release. In synapses formed by CA1-region pyramidal neurons onto burst-firing subiculum neurons, presynaptic in vivo knockout of β-neurexins aggravated endocannabinoid-mediated inhibition of synaptic transmission and blocked LTP; presynaptic CB1-receptor antagonists or postsynaptic 2-arachidonoylglycerol synthesis inhibition again reversed this block. Moreover, conditional knockout of β-neurexins in CA1-region neurons impaired contextual fear memories. Thus, our data suggest that presynaptic β-neurexins control synaptic strength in excitatory synapses by regulating postsynaptic 2-arachidonoylglycerol synthesis, revealing an unexpected role for β-neurexins in the endocannabinoid-dependent regulation of neural circuits. PMID:26213384

  14. The vasopressin 1b receptor and the neural regulation of social behavior

    PubMed Central

    Stevenson, Erica L.; Caldwell, Heather K.

    2011-01-01

    To date, much of the work in rodents implicating vasopressin (Avp) in the regulation of social behavior has focused on its action via the Avp 1a receptor (Avpr1a). However, there is mounting evidence that the Avp 1b receptor (Avpr1b) also plays a significant role in Avp's modulation of social behavior. The Avpr1b is heavily expressed on the anterior pituitary cortiocotrophs where it acts as an important modulator of the endocrine stress response. In the brain, the Avpr1b is prominent in the CA2 region of the hippocampus, but can also be found in areas such as the paraventicular nucleus of the hypothalamus and the olfactory bulb. Studies that have employed genetic knockouts or pharmacological manipulation of the Avpr1b point to the importance of central Avpr1b in the modulation of social behavior. However, there continues to be a knowledge gap in our understanding of where in the brain this is occurring, as well as how and if the central actions of Avp acting via the Avpr1b interact with the stress axis. In this review we focus on the genetic and pharmacological studies that have implicated the Avpr1b in the neural regulation of social behaviors, including social forms of aggressive behavior, social memory, and social motivation. PMID:22178035

  15. P53 regulates disruption of neuronal development in the adult hippocampus after irradiation

    PubMed Central

    Li, Y-Q; Cheng, ZW-C; Liu, SK-W; Aubert, I; Wong, C S

    2016-01-01

    Inhibition of hippocampal neurogenesis is implicated in neurocognitive dysfunction after cranial irradiation for brain tumors. How irradiation results in impaired neuronal development remains poorly understood. The Trp53 (p53) gene is known to regulate cellular DNA damage response after irradiation. Whether it has a role in disruption of late neuronal development remains unknown. Here we characterized the effects of p53 on neuronal development in adult mouse hippocampus after irradiation. Different bromodeoxyuridine incorporation paradigms and a transplantation study were used for cell fate mapping. Compared with wild-type mice, we observed profound inhibition of hippocampal neurogenesis after irradiation in mice deficient in p53 despite the absence of acute apoptosis of neuroblasts. The putative neural stem cells were apoptosis resistant after irradiation regardless of p53 genotype. Cell fate mapping using different bromodeoxyuridine incorporation paradigms revealed enhanced activation of neural stem cells and their consequential exhaustion in the absence of p53 after irradiation. Both p53-knockout and wild-type mice demonstrated similar extent of microglial activation in the hippocampus after irradiation. Impairment of neuronal differentiation of neural progenitors transplanted in irradiated hippocampus was not altered by p53 genotype of the recipient mice. We conclude that by inhibiting neural progenitor activation, p53 serves to mitigate disruption of neuronal development after irradiation independent of apoptosis and perturbation of the neural stem cell niche. These findings suggest for the first time that p53 may have a key role in late effects in brain after irradiation. PMID:27752364

  16. The Chromatin Regulator Brpf1 Regulates Embryo Development and Cell Proliferation*

    PubMed Central

    You, Linya; Yan, Kezhi; Zou, Jinfeng; Zhao, Hong; Bertos, Nicholas R.; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-01-01

    With hundreds of chromatin regulators identified in mammals, an emerging issue is how they modulate biological and pathological processes. BRPF1 (bromodomain- and PHD finger-containing protein 1) is a unique chromatin regulator possessing two PHD fingers, one bromodomain and a PWWP domain for recognizing multiple histone modifications. In addition, it binds to the acetyltransferases MOZ, MORF, and HBO1 (also known as KAT6A, KAT6B, and KAT7, respectively) to promote complex formation, restrict substrate specificity, and enhance enzymatic activity. We have recently showed that ablation of the mouse Brpf1 gene causes embryonic lethality at E9.5. Here we present systematic analyses of the mutant animals and demonstrate that the ablation leads to vascular defects in the placenta, yolk sac, and embryo proper, as well as abnormal neural tube closure. At the cellular level, Brpf1 loss inhibits proliferation of embryonic fibroblasts and hematopoietic progenitors. Molecularly, the loss reduces transcription of a ribosomal protein L10 (Rpl10)-like gene and the cell cycle inhibitor p27, and increases expression of the cell-cycle inhibitor p16 and a novel protein homologous to Scp3, a synaptonemal complex protein critical for chromosome association and embryo survival. These results uncover a crucial role of Brpf1 in controlling mouse embryo development and regulating cellular and gene expression programs. PMID:25773539

  17. The chromatin regulator Brpf1 regulates embryo development and cell proliferation.

    PubMed

    You, Linya; Yan, Kezhi; Zou, Jinfeng; Zhao, Hong; Bertos, Nicholas R; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-05-01

    With hundreds of chromatin regulators identified in mammals, an emerging issue is how they modulate biological and pathological processes. BRPF1 (bromodomain- and PHD finger-containing protein 1) is a unique chromatin regulator possessing two PHD fingers, one bromodomain and a PWWP domain for recognizing multiple histone modifications. In addition, it binds to the acetyltransferases MOZ, MORF, and HBO1 (also known as KAT6A, KAT6B, and KAT7, respectively) to promote complex formation, restrict substrate specificity, and enhance enzymatic activity. We have recently showed that ablation of the mouse Brpf1 gene causes embryonic lethality at E9.5. Here we present systematic analyses of the mutant animals and demonstrate that the ablation leads to vascular defects in the placenta, yolk sac, and embryo proper, as well as abnormal neural tube closure. At the cellular level, Brpf1 loss inhibits proliferation of embryonic fibroblasts and hematopoietic progenitors. Molecularly, the loss reduces transcription of a ribosomal protein L10 (Rpl10)-like gene and the cell cycle inhibitor p27, and increases expression of the cell-cycle inhibitor p16 and a novel protein homologous to Scp3, a synaptonemal complex protein critical for chromosome association and embryo survival. These results uncover a crucial role of Brpf1 in controlling mouse embryo development and regulating cellular and gene expression programs.

  18. Kcnip1 a Ca²⁺-dependent transcriptional repressor regulates the size of the neural plate in Xenopus.

    PubMed

    Néant, Isabelle; Mellström, Britt; Gonzalez, Paz; Naranjo, Jose R; Moreau, Marc; Leclerc, Catherine

    2015-09-01

    In amphibian embryos, our previous work has demonstrated that calcium transients occurring in the dorsal ectoderm at the onset of gastrulation are necessary and sufficient to engage the ectodermal cells into a neural fate by inducing neural specific genes. Some of these genes are direct targets of calcium. Here we search for a direct transcriptional mechanism by which calcium signals are acting. The only known mechanism responsible for a direct action of calcium on gene transcription involves an EF-hand Ca²⁺ binding protein which belongs to a group of four proteins (Kcnip1 to 4). Kcnip protein can act in a Ca²⁺-dependent manner as a transcriptional repressor by binding to a specific DNA sequence, the Downstream Regulatory Element (DRE) site. In Xenopus, among the four kcnips, we show that only kcnip1 is timely and spatially present in the presumptive neural territories and is able to bind DRE sites in a Ca²⁺-dependent manner. The loss of function of kcnip1 results in the expansion of the neural plate through an increased proliferation of neural progenitors. Later on, this leads to an impairment in the development of anterior neural structures. We propose that, in the embryo, at the onset of neurogenesis Kcnip1 is the Ca²⁺-dependent transcriptional repressor that controls the size of the neural plate. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

  19. Neogenin and RGMa control neural tube closure and neuroepithelial morphology by regulating cell polarity.

    PubMed

    Kee, Nigel; Wilson, Nicole; De Vries, Melissa; Bradford, DanaKai; Key, Brian; Cooper, Helen M

    2008-11-26

    In humans, neural tube closure defects occur in 1:1000 pregnancies. The design of new strategies for the prevention of such common defects would benefit from an improved understanding of the molecular events underlying neurulation. Neural fold elevation is a key morphological process that acts during neurulation to drive neural tube closure. However, to date, the molecular pathways underpinning neural fold elevation have not been elucidated. Here, we use morpholino knock-down technology to demonstrate that Repulsive Guidance Molecule (RGMa)-Neogenin interactions are essential for effective neural fold elevation during Xenopus neurulation and that loss of these molecules results in disrupted neural tube closure. We demonstrate that Neogenin and RGMa are required for establishing the morphology of deep layer cells in the neural plate throughout neurulation. We also show that loss of Neogenin severely disrupts the microtubule network within the deep layer cells suggesting that Neogenin-dependent microtubule organization within the deep cells is essential for radial intercalation with the overlying superficial cell layer, thereby driving neural fold elevation. In addition, we show that sustained Neogenin activity is also necessary for the establishment of the apicobasally polarized pseudostratified neuroepithelium of the neural tube. Therefore, our study identifies a novel signaling pathway essential for radial intercalation and epithelialization during neural fold elevation and neural tube morphogenesis.

  20. MHC-class-II are expressed in a subpopulation of human neural stem cells in vitro in an IFNγ–independent fashion and during development

    PubMed Central

    Vagaska, B.; New, S. E. P.; Alvarez-Gonzalez, C.; D’Acquisto, F.; Gomez, S. G.; Bulstrode, N. W.; Madrigal, A.; Ferretti, P.

    2016-01-01

    Expression of major histocompatibility antigens class-2 (MHC-II) under non-inflammatory conditions is not usually associated with the nervous system. Comparative analysis of immunogenicity of human embryonic/fetal brain-derived neural stem cells (hNSCs) and human mesenchymal stem cells with neurogenic potential from umbilical cord (UC-MSCs) and paediatric adipose tissue (ADSCs), while highlighting differences in their immunogenicity, led us to discover subsets of neural cells co-expressing the neural marker SOX2 and MHC-II antigen in vivo during human CNS development. MHC-II proteins in hNSCs are functional, and differently regulated upon differentiation along different lineages. Mimicking an inflammatory response using the inflammatory cytokine IFNγ induced MHC-II up-regulation in both astrocytes and hNSCs, but not in UC-MSCs and ADSCs, either undifferentiated or differentiated, though IFNγ receptor expression was comparable. Together, hypoimmunogenicity of both UC-MSCs and ADSCs supports their suitability for allogeneic therapy, while significant immunogenicity of hNSCs and their progeny may at least in part underlie negative effects reported in some patients following embryonic neural cell grafts. Crucially, we show for the first time that MHC-II expression in developing human brains is not restricted to microglia as previously suggested, but is present in discrete subsets of neural progenitors and appears to be regulated independently of inflammatory stimuli. PMID:27080443

  1. Advanced Power Regulator Developed for Spacecraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The majority of new satellites generate electrical power using photovoltaic solar arrays and store energy in batteries for use during eclipse periods. Careful regulation of battery charging during insolation can greatly increase the expected lifetime of the satellite. The battery charge regulator is usually custom designed for each satellite and its specific mission. Economic competition in the small satellite market requires battery charge regulators that are lightweight, efficient, inexpensive, and modular enough to be used in a wide variety of satellites. A new battery charge regulator topology has been developed at the NASA Lewis Research Center to address these needs. The new regulator topology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. A transformer-isolated buck converter is connected such that the high input line is connected in series with the output. This "bypass connection" biases the converter's output onto the solar array voltage. Because of this biasing, the converter only processes the fraction of power necessary to charge the battery above the solar array voltage. Likewise, the same converter hookup can be used to regulate the battery output to the spacecraft power bus with similar fractional power processing.

  2. Sustainable development in British land use regulation

    SciTech Connect

    Basiago, A.D.

    1995-12-01

    Sustainable development is a new international theory of development founded on principles of futurity, environment, equity and participation. It is the legacy of twenty years of international environmental law that has established a doctrine of global trusteeship. Sustainable development has entered British land use regulation through the Maastricth Treaty; the EU`s Fifth Environmental Action Program; as well as the British government`s Planning Policy Guidance notes on land use principles, local plans, transport and historic preservation, and its white papers. The Earth Summit accord Agenda 21 is a blueprint on how to make development socially, economically and environmentally sustainable. Under its terms, Britain has prepared a national sustainable development strategy for the UN`s Commission on Sustainable Development. It features Local Agenda 21 strategies in which local authorities develop policies for sustainable development and establish partnerships with other sectors. In this paper, the Local Agenda 21 strategies of seven local authorities are evaluated according to the paradigm introduced in Agenda 21 and elaborated by Kahn that describes sustainable development as a dynamic system of integrated and interlinked economic, social and environmental sustainability. The author concludes that sustainable development in British land use regulation is guided by notions of economic development, social justice and environmental planning and not by the dynamic, integrated model of Agenda 21. 46 refs., 3 figs.

  3. Novel α-tubulin mutation disrupts neural development and tubulin proteostasis.

    PubMed

    Gartz Hanson, M; Aiken, Jayne; Sietsema, Daniel V; Sept, David; Bates, Emily A; Niswander, Lee; Moore, Jeffrey K

    2016-01-15

    Mutations in the microtubule cytoskeleton are linked to cognitive and locomotor defects during development, and neurodegeneration in adults. How these mutations impact microtubules, and how this alters function at the level of neurons is an important area of investigation. Using a forward genetic screen in mice, we identified a missense mutation in Tuba1a α-tubulin that disrupts cortical and motor neuron development. Homozygous mutant mice exhibit cortical dysgenesis reminiscent of human tubulinopathies. Motor neurons fail to innervate target muscles in the limbs and show synapse defects at proximal targets. To directly examine effects on tubulin function, we created analogous mutations in the α-tubulin isotypes in budding yeast. These mutations sensitize yeast cells to microtubule stresses including depolymerizing drugs and low temperatures. Furthermore, we find that mutant α-tubulin is depleted from the cell lysate and from microtubules, thereby altering ratios of α-tubulin isotypes. Tubulin-binding cofactors suppress the effects of the mutation, indicating an important role for these cofactors in regulating the quality of the α-tubulin pool. Together, our results give new insights into the functions of Tuba1a, mechanisms for regulating tubulin proteostasis, and how compromising these may lead to neural defects.

  4. A dopamine-modulated neural circuit regulating aversive taste memory in Drosophila.

    PubMed

    Masek, Pavel; Worden, Kurtresha; Aso, Yoshinori; Rubin, Gerald M; Keene, Alex C

    2015-06-01

    Taste memories allow animals to modulate feeding behavior in accordance with past experience and avoid the consumption of potentially harmful food [1]. We have developed a single-fly taste memory assay to functionally interrogate the neural circuitry encoding taste memories [2]. Here, we screen a collection of Split-GAL4 lines that label small populations of neurons associated with the fly memory center-the mushroom bodies (MBs) [3]. Genetic silencing of PPL1 dopamine neurons disrupts conditioned, but not naive, feeding behavior, suggesting these neurons are selectively involved in the conditioned taste response. We identify two PPL1 subpopulations that innervate the MB α lobe and are essential for aversive taste memory. Thermogenetic activation of these dopamine neurons during training induces memory, indicating these neurons are sufficient for the reinforcing properties of bitter tastant to the MBs. Silencing of either the intrinsic MB neurons or the output neurons from the α lobe disrupts taste conditioning. Thermogenetic manipulation of these output neurons alters naive feeding response, suggesting that dopamine neurons modulate the threshold of response to appetitive tastants. Taken together, these findings detail a neural mechanism underlying the formation of taste memory and provide a functional model for dopamine-dependent plasticity in Drosophila.

  5. The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium

    PubMed Central

    Grego-Bessa, Joaquim; Bloomekatz, Joshua; Castel, Pau; Omelchenko, Tatiana; Baselga, José; Anderson, Kathryn V

    2016-01-01

    Epithelial morphogenesis and stability are essential for normal development and organ homeostasis. The mouse neural plate is a cuboidal epithelium that remodels into a columnar pseudostratified epithelium over the course of 24 hr. Here we show that the transition to a columnar epithelium fails in mutant embryos that lack the tumor suppressor PTEN, although proliferation, patterning and apical-basal polarity markers are normal in the mutants. The Pten phenotype is mimicked by constitutive activation of PI3 kinase and is rescued by the removal of PDK1 (PDPK1), but does not depend on the downstream kinases AKT and mTORC1. High resolution imaging shows that PTEN is required for stabilization of planar cell packing in the neural plate and for the formation of stable apical-basal microtubule arrays. The data suggest that appropriate levels of membrane-associated PDPK1 are required for stabilization of apical junctions, which promotes cell elongation, during epithelial morphogenesis. DOI: http://dx.doi.org/10.7554/eLife.12034.001 PMID:26809587

  6. The development of neural synchrony reflects late maturation and restructuring of functional networks in humans

    PubMed Central

    Uhlhaas, Peter J.; Roux, Frederic; Singer, Wolf; Haenschel, Corinna; Sireteanu, Ruxandra; Rodriguez, Eugenio

    2009-01-01

    Brain development is characterized by maturational processes that span the period from childhood through adolescence to adulthood, but little is known whether and how developmental processes differ during these phases. We analyzed the development of functional networks by measuring neural synchrony in EEG recordings during a Gestalt perception task in 68 participants ranging in age from 6 to 21 years. Until early adolescence, developmental improvements in cognitive performance were accompanied by increases in neural synchrony. This developmental phase was followed by an unexpected decrease in neural synchrony that occurred during late adolescence and was associated with reduced performance. After this period of destabilization, we observed a reorganization of synchronization patterns that was accompanied by pronounced increases in gamma-band power and in theta and beta phase synchrony. These findings provide evidence for the relationship between neural synchrony and late brain development that has important implications for the understanding of adolescence as a critical period of brain maturation. PMID:19478071

  7. Utilising reinforcement learning to develop strategies for driving auditory neural implants

    NASA Astrophysics Data System (ADS)

    Lee, Geoffrey W.; Zambetta, Fabio; Li, Xiaodong; Paolini, Antonio G.

    2016-08-01

    Objective. In this paper we propose a novel application of reinforcement learning to the area of auditory neural stimulation. We aim to develop a simulation environment which is based off real neurological responses to auditory and electrical stimulation in the cochlear nucleus (CN) and inferior colliculus (IC) of an animal model. Using this simulator we implement closed loop reinforcement learning algorithms to determine which methods are most effective at learning effective acoustic neural stimulation strategies. Approach. By recording a comprehensive set of acoustic frequency presentations and neural responses from a set of animals we created a large database of neural responses to acoustic stimulation. Extensive electrical stimulation in the CN and the recording of neural responses in the IC provides a mapping of how the auditory system responds to electrical stimuli. The combined dataset is used as the foundation for the simulator, which is used to implement and test learning algorithms. Main results. Reinforcement learning, utilising a modified n-Armed Bandit solution, is implemented to demonstrate the model’s function. We show the ability to effectively learn stimulation patterns which mimic the cochlea’s ability to covert acoustic frequencies to neural activity. Time taken to learn effective replication using neural stimulation takes less than 20 min under continuous testing. Significance. These results show the utility of reinforcement learning in the field of neural stimulation. These results can be coupled with existing sound processing technologies to develop new auditory prosthetics that are adaptable to the recipients current auditory pathway. The same process can theoretically be abstracted to other sensory and motor systems to develop similar electrical replication of neural signals.

  8. Adrenergic innervation of the developing chick heart: neural crest ablations to produce sympathetically aneural hearts

    SciTech Connect

    Kirby, M.; Stewart, D.

    1984-11-01

    Ablation of various regions of premigratory trunk neural crest which gives rise to the sympathetic trunks was used to remove sympathetic cardiac innervation. Neuronal uptake of (/sup 3/H)-norepinephrine was used as an index of neuronal development in the chick atrium. Following ablation of neural crest over somites 10-15 or 15-20, uptake was significantly decreased in the atrium at 16 and 17 days of development. Ablation of neural crest over somites 5-10 and 20-25 caused no decrease in (/sup 3/H)-norepinephrine uptake. Removal of neural crest over somites 5-25 or 10-20 caused approximately equal depletions of (/sup 3/H)-norepinephrine uptake in the atrium. Cardiac norepinephrine concentration was significantly depressed following ablation of neural crest over somites 5-25 but not over somites 10-20. Light-microscopic and histofluorescent preparations confirmed the absence of sympathetic trunks in the region of the normal origin of the sympathetic cardiac nerves following neural crest ablation over somites 10-20. The neural tube and dorsal root ganglia were damaged in the area of the neural-crest ablation; however, all of these structures were normal cranial and caudal to the lesioned area. Development of most of the embryos as well as the morphology of all of the hearts was normal following the lesion. These results indicate that it is possible to produce sympathetically aneural hearts by neural-crest ablation; however, sympathetic cardiac nerves account for an insignificant amount of cardiac norepinephrine.

  9. Childhood Adversity and Neural Development: Deprivation and Threat as Distinct Dimensions of Early Experience

    PubMed Central

    McLaughlin, Katie A.; Sheridan, Margaret A.; Lambert, Hilary K.

    2014-01-01

    A growing body of research has examined the impact of childhood adversity on neural structure and function. Advances in our understanding of the neurodevelopmental consequences of adverse early environments require the identification of dimensions of environmental experience that influence neural development differently and mechanisms other than the frequently-invoked stress pathways. We propose a novel conceptual framework that differentiates between deprivation (absence of expected environmental inputs and complexity) and threat (presence of experiences that represent a threat to one’s physical integrity) and make predictions grounded in basic neuroscience principles about their distinct effects on neural development. We review animal research on fear learning and sensory deprivation as well as human research on childhood adversity and neural development to support these predictions. We argue that these previously undifferentiated dimensions of experience exert strong and distinct influences on neural development that cannot be fully explained by prevailing models focusing only on stress pathways. Our aim is not to exhaustively review existing evidence on childhood adversity and neural development, but to provide a novel framework to guide future research. PMID:25454359

  10. Childhood adversity and neural development: deprivation and threat as distinct dimensions of early experience.

    PubMed

    McLaughlin, Katie A; Sheridan, Margaret A; Lambert, Hilary K

    2014-11-01

    A growing body of research has examined the impact of childhood adversity on neural structure and function. Advances in our understanding of the neurodevelopmental consequences of adverse early environments require the identification of dimensions of environmental experience that influence neural development differently and mechanisms other than the frequently-invoked stress pathways. We propose a novel conceptual framework that differentiates between deprivation (absence of expected environmental inputs and complexity) and threat (presence of experiences that represent a threat to one's physical integrity) and make predictions grounded in basic neuroscience principles about their distinct effects on neural development. We review animal research on fear learning and sensory deprivation as well as human research on childhood adversity and neural development to support these predictions. We argue that these previously undifferentiated dimensions of experience exert strong and distinct influences on neural development that cannot be fully explained by prevailing models focusing only on stress pathways. Our aim is not to exhaustively review existing evidence on childhood adversity and neural development, but to provide a novel framework to guide future research.

  11. Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle development to changes in retinoic acid and IGF signaling.

    PubMed

    Bohnsack, Brenda L; Gallina, Donika; Kahana, Alon

    2011-01-01

    1-Phenyl 2-thiourea (PTU) is a tyrosinase inhibitor commonly used to block pigmentation and aid visualization of zebrafish development. At the standard concentration of 0.003% (200 µM), PTU inhibits melanogenesis and reportedly has minimal other effects on zebrafish embryogenesis. We found that 0.003% PTU altered retinoic acid and insulin-like growth factor (IGF) regulation of neural crest and mesodermal components of craniofacial development. Reduction of retinoic acid synthesis by the pan-aldehyde dehydrogenase inhibitor diethylbenzaldehyde, only when combined with 0.003% PTU, resulted in extraocular muscle disorganization. PTU also decreased retinoic acid-induced teratogenic effects on pharyngeal arch and jaw cartilage despite morphologically normal appearing PTU-treated controls. Furthermore, 0.003% PTU in combination with inhibition of IGF signaling through either morpholino knockdown or pharmacologic inhibition of tyrosine kinase receptor phosphorylation, disrupted jaw development and extraocular muscle organization. PTU in and of itself inhibited neural crest development at higher concentrations (0.03%) and had the greatest inhibitory effect when added prior to 22 hours post fertilization (hpf). Addition of 0.003% PTU between 4 and 20 hpf decreased thyroxine (T4) in thyroid follicles in the nasopharynx of 96 hpf embryos. Treatment with exogenous triiodothyronine (T3) and T4 improved, but did not completely rescue, PTU-induced neural crest defects. Thus, PTU should be used with caution when studying zebrafish embryogenesis as it alters the threshold of different signaling pathways important during craniofacial development. The effects of PTU on neural crest development are partially caused by thyroid hormone signaling.

  12. Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle development to changes in retinoic acid and IGF signaling.

    PubMed

    Bohnsack, Brenda L; Gallina, Donika; Kahana, Alon

    2011-01-01

    1-Phenyl 2-thiourea (PTU) is a tyrosinase inhibitor commonly used to block pigmentation and aid visualization of zebrafish development. At the standard concentration of 0.003% (200 µM), PTU inhibits melanogenesis and reportedly has minimal other effects on zebrafish embryogenesis. We found that 0.003% PTU altered retinoic acid and insulin-like growth factor (IGF) regulation of neural crest and mesodermal components of craniofacial development. Reduction of retinoic acid synthesis by the pan-aldehyde dehydrogenase inhibitor diethylbenzaldehyde, only when combined with 0.003% PTU, resulted in extraocular muscle disorganization. PTU also decreased retinoic acid-induced teratogenic effects on pharyngeal arch and jaw cartilage despite morphologically normal appearing PTU-treated controls. Furthermore, 0.003% PTU in combination with inhibition of IGF signaling through either morpholino knockdown or pharmacologic inhibition of tyrosine kinase receptor phosphorylation, disrupted jaw development and extraocular muscle organization. PTU in and of itself inhibited neural crest development at higher concentrations (0.03%) and had the greatest inhibitory effect when added prior to 22 hours post fertilization (hpf). Addition of 0.003% PTU between 4 and 20 hpf decreased thyroxine (T4) in thyroid follicles in the nasopharynx of 96 hpf embryos. Treatment with exogenous triiodothyronine (T3) and T4 improved, but did not completely rescue, PTU-induced neural crest defects. Thus, PTU should be used with caution when studying zebrafish embryogenesis as it alters the threshold of different signaling pathways important during craniofacial development. The effects of PTU on neural crest development are partially caused by thyroid hormone signaling. PMID:21886774

  13. Circular RNAs: Novel Regulators of Neuronal Development.

    PubMed

    van Rossum, Daniëlle; Verheijen, Bert M; Pasterkamp, R Jeroen

    2016-01-01

    Circular RNAs (circRNAs) are highly stable, circularized long non-coding RNAs. circRNAs are conserved across species and appear to be specifically enriched in the nervous system. Recent studies show that many circRNAs are expressed in a tissue- and developmental-stage-specific manner, reveal a striking regulation of circRNAs during neuronal development, and detect their presence at synaptic sites. The exact functions of circRNAs remain poorly understood, but evidence from analysis of some circRNA molecules suggests that they could substantially contribute to the regulation of gene expression, particularly in architecturally complex and polarized cells such as neurons. Emerging evidence also indicates that circRNAs are involved in the development and progression of various neurological disorders. In this review, we summarize the molecular characteristics of circRNAs and discuss their proposed functions and mechanism-of-action in developing neurons. PMID:27616979

  14. Circular RNAs: Novel Regulators of Neuronal Development

    PubMed Central

    van Rossum, Daniëlle; Verheijen, Bert M.; Pasterkamp, R. Jeroen

    2016-01-01

    Circular RNAs (circRNAs) are highly stable, circularized long non-coding RNAs. circRNAs are conserved across species and appear to be specifically enriched in the nervous system. Recent studies show that many circRNAs are expressed in a tissue- and developmental-stage-specific manner, reveal a striking regulation of circRNAs during neuronal development, and detect their presence at synaptic sites. The exact functions of circRNAs remain poorly understood, but evidence from analysis of some circRNA molecules suggests that they could substantially contribute to the regulation of gene expression, particularly in architecturally complex and polarized cells such as neurons. Emerging evidence also indicates that circRNAs are involved in the development and progression of various neurological disorders. In this review, we summarize the molecular characteristics of circRNAs and discuss their proposed functions and mechanism-of-action in developing neurons. PMID:27616979

  15. Circular RNAs: Novel Regulators of Neuronal Development

    PubMed Central

    van Rossum, Daniëlle; Verheijen, Bert M.; Pasterkamp, R. Jeroen

    2016-01-01

    Circular RNAs (circRNAs) are highly stable, circularized long non-coding RNAs. circRNAs are conserved across species and appear to be specifically enriched in the nervous system. Recent studies show that many circRNAs are expressed in a tissue- and developmental-stage-specific manner, reveal a striking regulation of circRNAs during neuronal development, and detect their presence at synaptic sites. The exact functions of circRNAs remain poorly understood, but evidence from analysis of some circRNA molecules suggests that they could substantially contribute to the regulation of gene expression, particularly in architecturally complex and polarized cells such as neurons. Emerging evidence also indicates that circRNAs are involved in the development and progression of various neurological disorders. In this review, we summarize the molecular characteristics of circRNAs and discuss their proposed functions and mechanism-of-action in developing neurons.

  16. Accelerating bioelectric functional development of neural stem cells by graphene coupling: Implications for neural interfacing with conductive materials.

    PubMed

    Guo, Rongrong; Zhang, Shasha; Xiao, Miao; Qian, Fuping; He, Zuhong; Li, Dan; Zhang, Xiaoli; Li, Huawei; Yang, Xiaowei; Wang, Ming; Chai, Renjie; Tang, Mingliang

    2016-11-01

    In order to govern cell-specific behaviors in tissue engineering for neural repair and regeneration, a better understanding of material-cell interactions, especially the bioelectric functions, is extremely important. Graphene has been reported to be a potential candidate for use as a scaffold and neural interfacing material. However, the bioelectric evolvement of cell membranes on these conductive graphene substrates remains largely uninvestigated. In this study, we used a neural stem cell (NSC) model to explore the possible changes in membrane bioelectric properties - including resting membrane potentials and action potentials - and cell behaviors on graphene films under both proliferation and differentiation conditions. We used a combination of single-cell electrophysiological recordings and traditional cell biology techniques. Graphene did not affect the basic membrane electrical parameters (capacitance and input resistance), but resting membrane potentials of cells on graphene substrates were more strongly negative under both proliferation and differentiation conditions. Also, NSCs and their progeny on graphene substrates exhibited increased firing of action potentials during development compared to controls. However, graphene only slightly affected the electric characterizations of mature NSC progeny. The modulation of passive and active bioelectric properties on the graphene substrate was accompanied by enhanced NSC differentiation. Furthermore, spine density, synapse proteins expressions and synaptic activity were all increased in graphene group. Modeling of the electric field on conductive graphene substrates suggests that the electric field produced by the electronegative cell membrane is much higher on graphene substrates than that on control, and this might explain the observed changes of bioelectric development by graphene coupling. Our results indicate that graphene is able to accelerate NSC maturation during development, especially with regard to

  17. Accelerating bioelectric functional development of neural stem cells by graphene coupling: Implications for neural interfacing with conductive materials.

    PubMed

    Guo, Rongrong; Zhang, Shasha; Xiao, Miao; Qian, Fuping; He, Zuhong; Li, Dan; Zhang, Xiaoli; Li, Huawei; Yang, Xiaowei; Wang, Ming; Chai, Renjie; Tang, Mingliang

    2016-11-01

    In order to govern cell-specific behaviors in tissue engineering for neural repair and regeneration, a better understanding of material-cell interactions, especially the bioelectric functions, is extremely important. Graphene has been reported to be a potential candidate for use as a scaffold and neural interfacing material. However, the bioelectric evolvement of cell membranes on these conductive graphene substrates remains largely uninvestigated. In this study, we used a neural stem cell (NSC) model to explore the possible changes in membrane bioelectric properties - including resting membrane potentials and action potentials - and cell behaviors on graphene films under both proliferation and differentiation conditions. We used a combination of single-cell electrophysiological recordings and traditional cell biology techniques. Graphene did not affect the basic membrane electrical parameters (capacitance and input resistance), but resting membrane potentials of cells on graphene substrates were more strongly negative under both proliferation and differentiation conditions. Also, NSCs and their progeny on graphene substrates exhibited increased firing of action potentials during development compared to controls. However, graphene only slightly affected the electric characterizations of mature NSC progeny. The modulation of passive and active bioelectric properties on the graphene substrate was accompanied by enhanced NSC differentiation. Furthermore, spine density, synapse proteins expressions and synaptic activity were all increased in graphene group. Modeling of the electric field on conductive graphene substrates suggests that the electric field produced by the electronegative cell membrane is much higher on graphene substrates than that on control, and this might explain the observed changes of bioelectric development by graphene coupling. Our results indicate that graphene is able to accelerate NSC maturation during development, especially with regard to

  18. Endogenous Gradients of Resting Potential Instructively Pattern Embryonic Neural Tissue via Notch Signaling and Regulation of Proliferation

    PubMed Central

    Pai, Vaibhav P.; Lemire, Joan M.; Paré, Jean-François; Lin, Gufa; Chen, Ying

    2015-01-01

    Biophysical forces play important roles throughout embryogenesis, but the roles of spatial differences in cellular resting potentials during large-scale brain morphogenesis remain unknown. Here, we implicate endogenous bioelectricity as an instructive factor during brain patterning in Xenopus laevis. Early frog embryos exhibit a characteristic hyperpolarization of cells lining the neural tube; disruption of this spatial gradient of the transmembrane potential (Vmem) diminishes or eliminates the expression of early brain markers, and causes anatomical mispatterning of the brain, including absent or malformed regions. This effect is mediated by voltage-gated calcium signaling and gap-junctional communication. In addition to cell-autonomous effects, we show that hyperpolarization of transmembrane potential (Vmem) in ventral cells outside the brain induces upregulation of neural cell proliferation at long range. Misexpression of the constitutively active form of Notch, a suppressor of neural induction, impairs the normal hyperpolarization pattern and neural patterning; forced hyperpolarization by misexpression of specific ion channels rescues brain defects induced by activated Notch signaling. Strikingly, hyperpolarizing posterior or ventral cells induces the production of ectopic neural tissue considerably outside the neural field. The hyperpolarization signal also synergizes with canonical reprogramming factors (POU and HB4), directing undifferentiated cells toward neural fate in vivo. These data identify a new functional role for bioelectric signaling in brain patterning, reveal interactions between Vmem and key biochemical pathways (Notch and Ca2+ signaling) as the molecular mechanism by which spatial differences of Vmem regulate organogenesis of the vertebrate brain, and suggest voltage modulation as a tractable strategy for intervention in certain classes of birth defects. PMID:25762681

  19. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex

    PubMed Central

    Lacoste, Baptiste; Comin, Cesar H.; Ben-Zvi, Ayal; Kaeser, Pascal S.; Xu, Xiaoyin; Costa, Luciano da F.; Gu, Chenghua

    2014-01-01

    SUMMARY Neurovascular interactions are essential for proper brain function. While the effect of neural activity on cerebral blood flow has been extensively studied, whether neural activity influences vascular patterning remains elusive. Here, we demonstrate that neural activity promotes the formation of vascular networks in the early postnatal mouse barrel cortex. Using a combination of genetics, imaging, and computational tools to allow simultaneous analysis of neuronal and vascular components, we found that vascular density and branching were decreased in the barrel cortex when sensory input was reduced by either a complete deafferentation, a genetic impairment of neurotransmitter release at thalamocortical synapses, or a selective reduction of sensory-related neural activity by whisker plucking. In contrast, enhancement of neural activity by whisker stimulation led to an increase in vascular density and branching. The finding that neural activity is necessary and sufficient to trigger alterations of vascular networks reveals a novel feature of neurovascular interactions. PMID:25155955

  20. Shroom3 functions downstream of planar cell polarity to regulate myosin II distribution and cellular organization during neural tube closure

    PubMed Central

    McGreevy, Erica M.; Vijayraghavan, Deepthi; Davidson, Lance A.; Hildebrand, Jeffrey D.

    2015-01-01

    ABSTRACT Neural tube closure is a critical developmental event that relies on actomyosin contractility to facilitate specific processes such as apical constriction, tissue bending, and directional cell rearrangements. These complicated processes require the coordinated activities of Rho-Kinase (Rock), to regulate cytoskeletal dynamics and actomyosin contractility, and the Planar Cell Polarity (PCP) pathway, to direct the polarized cellular behaviors that drive convergent extension (CE) movements. Here we investigate the role of Shroom3 as a direct linker between PCP and actomyosin contractility during mouse neural tube morphogenesis. In embryos, simultaneous depletion of Shroom3 and the PCP components Vangl2 or Wnt5a results in an increased liability to NTDs and CE failure. We further show that these pathways intersect at Dishevelled, as Shroom3 and Dishevelled 2 co-distribute and form a physical complex in cells. We observed that multiple components of the Shroom3 pathway are planar polarized along mediolateral cell junctions in the neural plate of E8.5 embryos in a Shroom3 and PCP-dependent manner. Finally, we demonstrate that Shroom3 mutant embryos exhibit defects in planar cell arrangement during neural tube closure, suggesting a role for Shroom3 activity in CE. These findings support a model in which the Shroom3 and PCP pathways interact to control CE and polarized bending of the neural plate and provide a clear illustration of the complex genetic basis of NTDs. PMID:25596276

  1. Mechanisms of brain evolution: regulation of neural progenitor cell diversity and cell cycle length.

    PubMed

    Borrell, Victor; Calegari, Federico

    2014-09-01

    In the last few years, several studies have revisited long-held assumptions in the field of brain development and evolution providing us with a fundamentally new vision on the mechanisms controlling its size and shape, hence function. Among these studies, some described hitherto unforeseeable subtypes of neural progenitors while others reinterpreted long-known observations about their cell cycle in alternative new ways. Most remarkably, this knowledge combined has allowed the generation of mammalian model organisms in which brain size and folding has been selectively increased giving us the means to understand the mechanisms underlying the evolution of the most complex and sophisticated organ. Here we review the key findings made in this area and make a few conjectures about their evolutionary meaning including the likelihood of Martians conquering our planet. PMID:24786671

  2. Energy-conserving development regulations: current practice

    SciTech Connect

    Not Available

    1980-05-01

    Almost every aspect of land development has an effect on energy use, from minute architectural details to broad considerations of urban density. Energy-efficiency depends in part on how development is planned and carried out. Conventional development regulations, such as zoning ordinances and subdivision regulations, can be adapted in many ways to promote energy conservation at the community level. This report is about energy-efficient site and neighborhood design. It examines recent experiences of local governments that have adopted new development regulations or amended existing ones to promote energy conservation, more efficient generation and distribution, or a switch to alternative, renewable sources. Although much has been written in recent years about saving energy through community design, actual experience in applying these new ideas is still limited. To date, most communities have focused their efforts on studying the problem, documenting consumption patterns, and writing reports and plans. Only a handful have amended their land-use controls for the express purpose of saving energy. This study identifies 13 of these pioneering communities, after undertaking a survey of over 1400 local, regional, and state planning agencies. It takes a look at their experiences, to learn what has been done, how well it has worked, and what problems have been encountered.

  3. Maternal DNA Methylation Regulates Early Trophoblast Development

    PubMed Central

    Branco, Miguel R.; King, Michelle; Perez-Garcia, Vicente; Bogutz, Aaron B.; Caley, Matthew; Fineberg, Elena; Lefebvre, Louis; Cook, Simon J.; Dean, Wendy; Hemberger, Myriam; Reik, Wolf

    2016-01-01

    Summary Critical roles for DNA methylation in embryonic development are well established, but less is known about its roles during trophoblast development, the extraembryonic lineage that gives rise to the placenta. We dissected the role of DNA methylation in trophoblast development by performing mRNA and DNA methylation profiling of Dnmt3a/3b mutants. We find that oocyte-derived methylation plays a major role in regulating trophoblast development but that imprinting of the key placental regulator Ascl2 is only partially responsible for these effects. We have identified several methylation-regulated genes associated with trophoblast differentiation that are involved in cell adhesion and migration, potentially affecting trophoblast invasion. Specifically, trophoblast-specific DNA methylation is linked to the silencing of Scml2, a Polycomb Repressive Complex 1 protein that drives loss of cell adhesion in methylation-deficient trophoblast. Our results reveal that maternal DNA methylation controls multiple differentiation-related and physiological processes in trophoblast via both imprinting-dependent and -independent mechanisms. PMID:26812015

  4. Cranial muscles in amphibians: development, novelties and the role of cranial neural crest cells.

    PubMed

    Schmidt, Jennifer; Piekarski, Nadine; Olsson, Lennart

    2013-01-01

    Our research on the evolution of the vertebrate head focuses on understanding the developmental origins of morphological novelties. Using a broad comparative approach in amphibians, and comparisons with the well-studied quail-chicken system, we investigate how evolutionarily conserved or variable different aspects of head development are. Here we review research on the often overlooked development of cranial muscles, and on its dependence on cranial cartilage development. In general, cranial muscle cell migration and the spatiotemporal pattern of cranial muscle formation appears to be very conserved among the few species of vertebrates that have been studied. However, fate-mapping of somites in the Mexican axolotl revealed differences in the specific formation of hypobranchial muscles (tongue muscles) in comparison to the chicken. The proper development of cranial muscles has been shown to be strongly dependent on the mostly neural crest-derived cartilage elements in the larval head of amphibians. For example, a morpholino-based knock-down of the transcription factor FoxN3 in Xenopus laevis has drastic indirect effects on cranial muscle patterning, although the direct function of the gene is mostly connected to neural crest development. Furthermore, extirpation of single migratory streams of cranial neural crest cells in combination with fate-mapping in a frog shows that individual cranial muscles and their neural crest-derived connective tissue attachments originate from the same visceral arch, even when the muscles attach to skeletal components that are derived from a different arch. The same pattern has also been found in the chicken embryo, the only other species that has been thoroughly investigated, and thus might be a conserved pattern in vertebrates that reflects the fundamental nature of a mechanism that keeps the segmental order of the head in place despite drastic changes in adult anatomy. There is a need for detailed comparative fate-mapping of pre

  5. Cranial muscles in amphibians: development, novelties and the role of cranial neural crest cells

    PubMed Central

    Schmidt, Jennifer; Piekarski, Nadine; Olsson, Lennart

    2013-01-01

    Our research on the evolution of the vertebrate head focuses on understanding the developmental origins of morphological novelties. Using a broad comparative approach in amphibians, and comparisons with the well-studied quail-chicken system, we investigate how evolutionarily conserved or variable different aspects of head development are. Here we review research on the often overlooked development of cranial muscles, and on its dependence on cranial cartilage development. In general, cranial muscle cell migration and the spatiotemporal pattern of cranial muscle formation appears to be very conserved among the few species of vertebrates that have been studied. However, fate-mapping of somites in the Mexican axolotl revealed differences in the specific formation of hypobranchial muscles (tongue muscles) in comparison to the chicken. The proper development of cranial muscles has been shown to be strongly dependent on the mostly neural crest-derived cartilage elements in the larval head of amphibians. For example, a morpholino-based knock-down of the transcription factor FoxN3 in Xenopus laevis has drastic indirect effects on cranial muscle patterning, although the direct function of the gene is mostly connected to neural crest development. Furthermore, extirpation of single migratory streams of cranial neural crest cells in combination with fate-mapping in a frog shows that individual cranial muscles and their neural crest-derived connective tissue attachments originate from the same visceral arch, even when the muscles attach to skeletal components that are derived from a different arch. The same pattern has also been found in the chicken embryo, the only other species that has been thoroughly investigated, and thus might be a conserved pattern in vertebrates that reflects the fundamental nature of a mechanism that keeps the segmental order of the head in place despite drastic changes in adult anatomy. There is a need for detailed comparative fate-mapping of pre

  6. Cranial muscles in amphibians: development, novelties and the role of cranial neural crest cells.

    PubMed

    Schmidt, Jennifer; Piekarski, Nadine; Olsson, Lennart

    2013-01-01

    Our research on the evolution of the vertebrate head focuses on understanding the developmental origins of morphological novelties. Using a broad comparative approach in amphibians, and comparisons with the well-studied quail-chicken system, we investigate how evolutionarily conserved or variable different aspects of head development are. Here we review research on the often overlooked development of cranial muscles, and on its dependence on cranial cartilage development. In general, cranial muscle cell migration and the spatiotemporal pattern of cranial muscle formation appears to be very conserved among the few species of vertebrates that have been studied. However, fate-mapping of somites in the Mexican axolotl revealed differences in the specific formation of hypobranchial muscles (tongue muscles) in comparison to the chicken. The proper development of cranial muscles has been shown to be strongly dependent on the mostly neural crest-derived cartilage elements in the larval head of amphibians. For example, a morpholino-based knock-down of the transcription factor FoxN3 in Xenopus laevis has drastic indirect effects on cranial muscle patterning, although the direct function of the gene is mostly connected to neural crest development. Furthermore, extirpation of single migratory streams of cranial neural crest cells in combination with fate-mapping in a frog shows that individual cranial muscles and their neural crest-derived connective tissue attachments originate from the same visceral arch, even when the muscles attach to skeletal components that are derived from a different arch. The same pattern has also been found in the chicken embryo, the only other species that has been thoroughly investigated, and thus might be a conserved pattern in vertebrates that reflects the fundamental nature of a mechanism that keeps the segmental order of the head in place despite drastic changes in adult anatomy. There is a need for detailed comparative fate-mapping of pre

  7. Advanced Power Regulator Developed for Spacecraft

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The majority of new satellites generate electrical power using photovoltaic solar arrays and store energy in batteries for use during eclipse periods. Careful regulation of battery charging during insolation can greatly increase the expected lifetime of the satellite. The battery charge regulator is usually custom designed for each satellite and its specific mission. Economic competition in the small satellite market requires battery charge regulators that are lightweight, efficient, inexpensive, and modular enough to be used in a wide variety of satellites. A new battery charge regulator topology has been developed at the NASA Lewis Research Center to address these needs. The new regulator topology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. A transformer-isolated buck converter is connected such that the high input line is connected in series with the output. This "bypass connection" biases the converter's output onto the solar array voltage. Because of this biasing, the converter only processes the fraction of power necessary to charge the battery above the solar array voltage. Likewise, the same converter hookup can be used to regulate the battery output to the spacecraft power bus with similar fractional power processing. The advantages of this scheme are: 1) Because only a fraction of the power is processed through the dc-dc converter, the single- stage conversion efficiency is 94 to 98 percent; 2) Costly, high-efficiency dc-dc converters are not necessary for high end-to-end system efficiency; 3) The system is highly fault tolerant because the bypass connection will still deliver power if the dc-dc converter fails; and 4) The converters can easily be connected in parallel, allowing higher power systems to be built from a common building block. This new technology will be spaceflight tested in the Photovoltaic Regulator Kit Experiment

  8. Sex-specific neural circuits of emotion regulation in the centromedial amygdala

    PubMed Central

    Wu, Yan; Li, Huandong; Zhou, Yuan; Yu, Jian; Zhang, Yuanchao; Song, Ming; Qin, Wen; Yu, Chunshui; Jiang, Tianzi

    2016-01-01

    Sex-related differences in emotion regulation (ER) in the frequency power distribution within the human amygdala, a brain region involved in emotion processing, have been reported. However, how sex differences in ER are manifested in the brain networks which are seeded on the amygdala subregions is unclear. The goal of this study was to investigate this issue from a brain network perspective. Utilizing resting-state functional connectivity (RSFC) analysis, we found that the sex-specific functional connectivity patterns associated with ER trait level were only seeded in the centromedial amygdala (CM). Women with a higher trait-level ER had a stronger negative RSFC between the right CM and the medial superior frontal gyrus (mSFG), and stronger positive RSFC between the right CM and the anterior insula (AI) and the superior temporal gyrus (STG). But men with a higher trait-level ER was associated with weaker negative RSFC of the right CM-mSFG and positive RSFCs of the right CM-left AI, right CM-right AI/STG, and right CM-left STG. These results provide evidence for the sex-related effects in ER based on CM and indicate that men and women may differ in the neural circuits associated with emotion representation and integration. PMID:27004933

  9. Hypoxic preconditioning involves system Xc- regulation in mouse neural stem cells.

    PubMed

    Sims, Brian; Clarke, Melinda; Francillion, Ludwig; Kindred, Elijah; Hopkins, Elana Shuford; Sontheimer, Harald

    2012-03-01

    In animals, hypoxic preconditioning has been used as a form of neuroprotection. The exact mechanism involved in neuroprotective hypoxic preconditioning has not been described, yet could be valuable for possible neuroprotective strategies. The overexpression of the cystine-glutamate exchanger, system Xc-, has been demonstrated as being neuroprotective (Shih, Erb et al. 2006). Here, using immunohistochemistry, we demonstrate that C57BL/6 mice exposed to hypoxia showed an increase in system Xc- expression, with the highest level of intensity in the hippocampus. Western Blot analysis also showed an almost 2-fold increase in system Xc- protein in hypoxia-exposed versus control mice. The mRNA for the regulatory subunit of system Xc-, xCT, and the xCT/actin ratio were also increased under hypoxic conditions. Experiments using hypoxia-inducible factor (HIF-1α) siRNA showed a statistically significant decrease in HIF-1α and system Xc- expression. Under hypoxic conditions, system Xc- activity, as determined by cystine uptake, increased 2-fold. Importantly, hypoxic preconditioning was attenuated in neural stem cells by pharmacological inhibition of system Xc- activity with S4-carboxyphenylglycine. These data provide the first evidence of hypoxic regulation of the cystine glutamate exchanger system Xc-.

  10. Training of Working Memory Impacts Neural Processing of Vocal Pitch Regulation

    PubMed Central

    Li, Weifeng; Guo, Zhiqiang; Jones, Jeffery A.; Huang, Xiyan; Chen, Xi; Liu, Peng; Chen, Shaozhen; Liu, Hanjun

    2015-01-01

    Working memory training can improve the performance of tasks that were not trained. Whether auditory-motor integration for voice control can benefit from working memory training, however, remains unclear. The present event-related potential (ERP) study examined the impact of working memory training on the auditory-motor processing of vocal pitch. Trained participants underwent adaptive working memory training using a digit span backwards paradigm, while control participants did not receive any training. Before and after training, both trained and control participants were exposed to frequency-altered auditory feedback while producing vocalizations. After training, trained participants exhibited significantly decreased N1 amplitudes and increased P2 amplitudes in response to pitch errors in voice auditory feedback. In addition, there was a significant positive correlation between the degree of improvement in working memory capacity and the post-pre difference in P2 amplitudes. Training-related changes in the vocal compensation, however, were not observed. There was no systematic change in either vocal or cortical responses for control participants. These findings provide evidence that working memory training impacts the cortical processing of feedback errors in vocal pitch regulation. This enhanced cortical processing may be the result of increased neural efficiency in the detection of pitch errors between the intended and actual feedback. PMID:26553373

  11. Sex-specific neural circuits of emotion regulation in the centromedial amygdala.

    PubMed

    Wu, Yan; Li, Huandong; Zhou, Yuan; Yu, Jian; Zhang, Yuanchao; Song, Ming; Qin, Wen; Yu, Chunshui; Jiang, Tianzi

    2016-01-01

    Sex-related differences in emotion regulation (ER) in the frequency power distribution within the human amygdala, a brain region involved in emotion processing, have been reported. However, how sex differences in ER are manifested in the brain networks which are seeded on the amygdala subregions is unclear. The goal of this study was to investigate this issue from a brain network perspective. Utilizing resting-state functional connectivity (RSFC) analysis, we found that the sex-specific functional connectivity patterns associated with ER trait level were only seeded in the centromedial amygdala (CM). Women with a higher trait-level ER had a stronger negative RSFC between the right CM and the medial superior frontal gyrus (mSFG), and stronger positive RSFC between the right CM and the anterior insula (AI) and the superior temporal gyrus (STG). But men with a higher trait-level ER was associated with weaker negative RSFC of the right CM-mSFG and positive RSFCs of the right CM-left AI, right CM-right AI/STG, and right CM-left STG. These results provide evidence for the sex-related effects in ER based on CM and indicate that men and women may differ in the neural circuits associated with emotion representation and integration. PMID:27004933

  12. On site assessment of cardiac function and neural regulation in amateur half marathon runners

    PubMed Central

    Dalla Vecchia, Laura; Traversi, Egidio; Porta, Alberto; Lucini, Daniela; Pagani, Massimo

    2014-01-01

    Objective Strenuous exercise variably modifies cardiovascular function. Only few data are available on intermediate levels of effort. We therefore planned a study in order to address the hypothesis that a half marathon distance would result in transient changes of cardiac mechanics, neural regulation and biochemical profile suggestive of a complex, integrated adaptation. Methods We enrolled 35 amateur athletes (42±7 years). Supine and standing heart rate variability and a complete echocardiographic evaluation were assessed on site after the completion of a half marathon (postrace) and about 1 month after (baseline). Biochemical tests were also measured postrace. Results Compared to baseline, the postrace left ventricular end-diastolic volume was smaller, peak velocity of E wave was lower, peak velocity of A wave higher, and accordingly the E/A ratio lower. The postrace heart and respiratory rate were higher and variance of RR interval lower, together with a clear shift towards a sympathetic predominance in supine position and a preserved response to orthostasis. At baseline, athletes were characterised by a lower, although still predominant, sympathetic drive with a preserved physiological response to standing. Conclusions Immediately after a half marathon there are clear marks that an elevated sympathetic cardiac drive outlasts the performance, together with decreased left ventricular diastolic volumes and slight modifications of the left ventricular filling pattern without additional signs of diastolic dysfunction or indices of transient left or right ventricular systolic abnormalities. Furthermore, no biochemical indices of any permanent cardiac damage were found. PMID:25332775

  13. Phosphorylation Regulates Id2 Degradation and Mediates the Proliferation of Neural Precursor Cells

    PubMed Central

    Sullivan, Jaclyn M.; Havrda, Matthew C.; Kettenbach, Arminja N.; Paolella, Brenton R.; Zhang, Zhonghua; Gerber, Scott A.; Israel, Mark A.

    2016-01-01

    Inhibitor of DNA binding proteins (Id1-Id4) function to inhibit differentiation and promote proliferation of many different cell types. Among the Id family members, Id2 has been most extensively studied in the central nervous system (CNS). Id2 contributes to cultured neural precursor cell (NPC) proliferation as well as to the proliferation of CNS tumors such as glioblastoma that are likely to arise from NPC-like cells. We identified three phosphorylation sites near the N-terminus of Id2 in NPCs. To interrogate the importance of Id2 phosphorylation, Id2−/− NPCs were modified to express wild type (WT) Id2 or an Id2 mutant protein that could not be phosphorylated at the identified sites. We observed that NPCs expressing this mutant lacking phosphorylation near the N-terminus had higher steady-state levels of Id2 when compared to NPCs expressing WT Id2. This elevated level was the result of a longer half-life and reduced proteasome-mediated degradation. Moreover, NPCs expressing constitutively de-phosphorylated Id2 proliferated more rapidly than NPCs expressing WT Id2, a finding consistent with the well-characterized function of Id2 in driving proliferation. Observing that phosphorylation of Id2 modulates the degradation of this important cell-cycle regulator, we sought to identify a phosphatase that would stabilize Id2 enhancing its activity in NPCs and extended our analysis to include human glioblastoma-derived stem cells (GSCs). We found that expression of the phosphatase PP2A altered Id2 levels. Our findings suggest that inhibition of PP2A may be a novel strategy to regulate the proliferation of normal NPCs and malignant GSCs by decreasing Id2 levels. PMID:26756672

  14. β1-Integrin and integrin linked kinase regulate astrocytic differentiation of neural stem cells.

    PubMed

    Pan, Liuliu; North, Hilary A; Sahni, Vibhu; Jeong, Su Ji; Mcguire, Tammy L; Berns, Eric J; Stupp, Samuel I; Kessler, John A

    2014-01-01

    Astrogliosis with glial scar formation after damage to the nervous system is a major impediment to axonal regeneration and functional recovery. The present study examined the role of β1-integrin signaling in regulating astrocytic differentiation of neural stem cells. In the adult spinal cord β1-integrin is expressed predominantly in the ependymal region where ependymal stem cells (ESCs) reside. β1-integrin signaling suppressed astrocytic differentiation of both cultured ESCs and subventricular zone (SVZ) progenitor cells. Conditional knockout of β1-integrin enhanced astrogliogenesis both by cultured ESCs and by SVZ progenitor cells. Previous studies have shown that injection into the injured spinal cord of a self-assembling peptide amphiphile that displays an IKVAV epitope (IKVAV-PA) limits glial scar formation and enhances functional recovery. Here we find that injection of IKVAV-PA induced high levels of β1-integrin in ESCs in vivo, and that conditional knockout of β1-integrin abolished the astroglial suppressive effects of IKVAV-PA in vitro. Injection into an injured spinal cord of PAs expressing two other epitopes known to interact with β1-integrin, a Tenascin C epitope and the fibronectin epitope RGD, improved functional recovery comparable to the effects of IKVAV-PA. Finally we found that the effects of β1-integrin signaling on astrogliosis are mediated by integrin linked kinase (ILK). These observations demonstrate an important role for β1-integrin/ILK signaling in regulating astrogliosis from ESCs and suggest ILK as a potential target for limiting glial scar formation after nervous system injury.

  15. NFIB-Mediated Repression of the Epigenetic Factor Ezh2 Regulates Cortical Development

    PubMed Central

    Barry, Guy; Harvey, Tracey J.; McLeay, Robert; Smith, Aaron G.; Harris, Lachlan; Mason, Sharon; Stringer, Brett W.; Day, Bryan W.; Wray, Naomi R.; Gronostajski, Richard M.; Bailey, Timothy L.; Boyd, Andrew W.

    2014-01-01

    Epigenetic mechanisms are essential in regulating neural progenitor cell self-renewal, with the chromatin-modifying protein Enhancer of zeste homolog 2 (EZH2) emerging as a central player in promoting progenitor cell self-renewal during cortical development. Despite this, how Ezh2 is itself regulated remains unclear. Here, we demonstrate that the transcription factor nuclear factor IB (NFIB) plays a key role in this process. Nfib−/− mice exhibit an increased number of proliferative ventricular zone cells that express progenitor cell markers and upregulation of EZH2 expression within the neocortex and hippocampus. NFIB binds to the Ezh2 promoter and overexpression of NFIB represses Ezh2 transcription. Finally, key downstream targets of EZH2-mediated epigenetic repression are misregulated in Nfib−/− mice. Collectively, these results suggest that the downregulation of Ezh2 transcription by NFIB is an important component of the process of neural progenitor cell differentiation during cortical development. PMID:24553933

  16. Neural mechanisms of face perception, their emergence over development, and their breakdown.

    PubMed

    Behrmann, Marlene; Scherf, K Suzanne; Avidan, Galia

    2016-07-01

    Face perception is probably the most developed visual perceptual skill in humans, most likely as a result of its unique evolutionary and social significance. Much recent research has converged to identify a host of relevant psychological mechanisms that support face recognition. In parallel, there has been substantial progress in uncovering the neural mechanisms that mediate rapid and accurate face perception, with specific emphasis on a broadly distributed neural circuit, comprised of multiple nodes whose joint activity supports face perception. This article focuses specifically on the neural underpinnings of face recognition, and reviews recent structural and functional imaging studies that elucidate the neural basis of this ability. In addition, the article covers some of the recent investigations that characterize the emergence of the neural basis of face recognition over the course of development, and explores the relationship between these changes and increasing behavioural competence. This paper also describes studies that characterize the nature of the breakdown of face recognition in individuals who are impaired in face recognition, either as a result of brain damage acquired at some point or as a result of the failure to master face recognition over the course of development. Finally, information regarding similarities between the neural circuits for face perception in humans and in nonhuman primates is briefly covered, as is the contribution of subcortical regions to face perception. WIREs Cogn Sci 2016, 7:247-263. doi: 10.1002/wcs.1388 For further resources related to this article, please visit the WIREs website. PMID:27196333

  17. FoxP2 regulates neurogenesis during embryonic cortical development.

    PubMed

    Tsui, David; Vessey, John P; Tomita, Hideaki; Kaplan, David R; Miller, Freda D

    2013-01-01

    The transcription factor FoxP2 has been associated with the development of human speech but the underlying cellular function of FoxP2 is still unclear. Here we provide evidence that FoxP2 regulates genesis of some intermediate progenitors and neurons in the mammalian cortex, one of the key centers for human speech. Specifically, knockdown of FoxP2 in embryonic cortical precursors inhibits neurogenesis, at least in part by inhibiting the transition from radial glial precursors to neurogenic intermediate progenitors. Moreover, overexpression of human, but not mouse, FoxP2 enhances the genesis of intermediate progenitors and neurons. In contrast, expression of a human FoxP2 mutant that causes vocalization deficits decreases neurogenesis, suggesting that in the murine system human FoxP2 acts as a gain-of-function protein, while a human FoxP2 mutant acts as a dominant-inhibitory protein. These results support the idea that FoxP2 regulates the transition from neural precursors to transit-amplifying progenitors and ultimately neurons, and shed light upon the molecular changes that might contribute to evolution of the mammalian cortex.

  18. Tissue Interactions Regulating Tooth Development and Renewal.

    PubMed

    Balic, Anamaria; Thesleff, Irma

    2015-01-01

    Reciprocal interactions between epithelial and mesenchymal tissues play a fundamental role in the morphogenesis of teeth and regulate all aspects of tooth development. Extensive studies on mouse tooth development over the past 25 years have uncovered the molecular details of the signaling networks mediating these interactions (reviewed by Jussila & Thesleff, 2012; Lan, Jia, & Jiang, 2014). Five conserved signaling pathways, namely, the Wnt, BMP, FGF, Shh, and Eda, are involved in the mediation of the successive reciprocal epithelial-mesenchymal cross talk which follows the general principle of morphogenetic interactions (Davidson, 1993). The pathways regulate the expression of transcription factors which confer the identity of dental epithelium and mesenchyme. The signals and transcription factors are integrated in complex signaling networks whose fine-tuning allows the generation of the variation in tooth morphologies. In this review, we describe the principles and molecular mechanisms of the epithelial-mesenchymal interactions regulating successive stages of tooth formation: (i) the initiation of tooth development, with special reference to the shift of tooth-forming potential from epithelium to mesenchyme; (ii) the morphogenesis of the tooth crown, focusing on the roles of epithelial signaling centers; (iii) the differentiation of odontoblasts and ameloblasts, which produce dentin and enamel, respectively; and (iv) the maintenance of dental stem cells, which support the continuous growth of teeth. PMID:26589925

  19. Tissue Interactions Regulating Tooth Development and Renewal.

    PubMed

    Balic, Anamaria; Thesleff, Irma

    2015-01-01

    Reciprocal interactions between epithelial and mesenchymal tissues play a fundamental role in the morphogenesis of teeth and regulate all aspects of tooth development. Extensive studies on mouse tooth development over the past 25 years have uncovered the molecular details of the signaling networks mediating these interactions (reviewed by Jussila & Thesleff, 2012; Lan, Jia, & Jiang, 2014). Five conserved signaling pathways, namely, the Wnt, BMP, FGF, Shh, and Eda, are involved in the mediation of the successive reciprocal epithelial-mesenchymal cross talk which follows the general principle of morphogenetic interactions (Davidson, 1993). The pathways regulate the expression of transcription factors which confer the identity of dental epithelium and mesenchyme. The signals and transcription factors are integrated in complex signaling networks whose fine-tuning allows the generation of the variation in tooth morphologies. In this review, we describe the principles and molecular mechanisms of the epithelial-mesenchymal interactions regulating successive stages of tooth formation: (i) the initiation of tooth development, with special reference to the shift of tooth-forming potential from epithelium to mesenchyme; (ii) the morphogenesis of the tooth crown, focusing on the roles of epithelial signaling centers; (iii) the differentiation of odontoblasts and ameloblasts, which produce dentin and enamel, respectively; and (iv) the maintenance of dental stem cells, which support the continuous growth of teeth.

  20. α6 integrin subunit regulates cerebellar development

    PubMed Central

    Marchetti, Giovanni; De Arcangelis, Adèle; Pfister, Véronique; Georges-Labouesse, Elisabeth

    2013-01-01

    Mutations in genes encoding several basal lamina components as well as their cellular receptors disrupt normal deposition and remodeling of the cortical basement membrane resulting in a disorganized cerebral and cerebellar cortex. The α6 integrin was the first α subunit associated with cortical lamination defects and formation of neural ectopias. In order to understand the precise role of α6 integrin in the central nervous system (CNS), we have generated mutant mice carrying specific deletion of α6 integrin in neuronal and glia precursors by crossing α6 conditional knockout mice with Nestin-Cre line. Cerebral cortex development occurred properly in the resulting α6fl/fl;nestin-Cre mutant animals. Interestingly, however, cerebellum displayed foliation pattern defects although granule cell (GC) proliferation and migration were not affected. Intriguingly, analysis of Bergmann glial (BG) scaffold revealed abnormalities in fibers morphology associated with reduced processes outgrowth and altered actin cytoskeleton. Overall, these data show that α6 integrin receptors are required in BG cells to provide a proper fissure formation during cerebellum morphogenesis. PMID:23722246

  1. Epigenetic regulation of Sox4 during palate development

    PubMed Central

    Seelan, Ratnam S; Mukhopadhyay, Partha; Warner, Dennis R; Webb, Cynthia L; Pisano, Michele; Greene, Robert M

    2013-01-01

    Aim Identification of genes that contribute to secondary palate development provide a better understanding of the etiology of palatal clefts. Gene-expression profiling of the murine palate from gestational days 12–14 (GD12–14), a critical period in palate development, identified Sox4 as a differentially expressed gene. In this study, we have examined if the differential expression of Sox4 in the palate is due to changes in DNA methylation. Materials & methods In situ hybridization analysis was used to localize the expression of Sox4 in the developing murine secondary palate. CpG methylation profiling of a 1.8-kb upstream region of Sox4 in the secondary palate from GD12–14 and transfection analysis in murine embryonic maxillary mesenchymal cells using Sox4 deletion, mutant and in vitro methylated plasmid constructs were used to identify critical CpG residues regulating Sox4 expression in the palate. Results Spatiotemporal analysis revealed that Sox4 is expressed in the medial edge epithelium and presumptive rugae-forming regions of the palate from GD12 to GD13. Following palatal shelf fusion on GD14, Sox4 was expressed exclusively in the epithelia of the palatal rugae, structures that serve as signaling centers for the anteroposterior extension of the palate, and that are thought to serve as neural stem cell niches. Methylation of a 1.8-kb region upstream of Sox4, containing the putative promoter, completely eliminated promoter activity. CpG methylation profiling of the 1.8-kb region identified a CpG-poor region (DMR4) that exhibited significant differential methylation during palate development, consistent with changes in Sox4 mRNA expression. Changes in the methylation of DMR4 were attributed primarily to CpGs 83 and 85. Conclusion Our studies indicate that Sox4 is an epigenetically regulated gene that likely integrates multiple signaling systems for mediating palatal fusion, palatal extension and/or the maintenance of the neural stem cell niche in the rugae

  2. Dissecting CNBP, a zinc-finger protein required for neural crest development, in its structural and functional domains.

    PubMed

    Armas, Pablo; Agüero, Tristán H; Borgognone, Mariana; Aybar, Manuel J; Calcaterra, Nora B

    2008-10-17

    regulation of CNBP biochemical activities during neural crest development.

  3. Sox2 acts as a rheostat of epithelial to mesenchymal transition during neural crest development

    PubMed Central

    Mandalos, Nikolaos; Rhinn, Muriel; Granchi, Zoraide; Karampelas, Ioannis; Mitsiadis, Thimios; Economides, Aris N.; Dollé, Pascal; Remboutsika, Eumorphia

    2014-01-01

    Precise control of self-renewal and differentiation of progenitor cells into the cranial neural crest (CNC) pool ensures proper head development, guided by signaling pathways such as BMPs, FGFs, Shh and Notch. Here, we show that murine Sox2 plays an essential role in controlling progenitor cell behavior during craniofacial development. A “Conditional by Inversion” Sox2 allele (Sox2COIN) has been employed to generate an epiblast ablation of Sox2 function (Sox2EpINV). Sox2EpINV/+(H) haploinsufficient and conditional (Sox2EpINV/mosaic) mutant embryos proceed beyond gastrulation and die around E11. These mutant embryos exhibit severe anterior malformations, with hydrocephaly and frontonasal truncations, which could be attributed to the deregulation of CNC progenitor cells during their epithelial to mesenchymal transition. This irregularity results in an exacerbated and aberrant migration of Sox10+ NCC in the branchial arches and frontonasal process of the Sox2 mutant embryos. These results suggest a novel role for Sox2 as a regulator of the epithelial to mesenchymal transitions (EMT) that are important for the cell flow in the developing head. PMID:25309446

  4. Neural networks modelling of nitrogen export: model development and application to unmonitored boreal forest watersheds.

    PubMed

    Li, X; Nour, M H; Smith, D W; Prepas, E E

    2010-04-14

    In remotely located boreal forest watersheds, monitoring nitrogen (N) export in stream discharge often is not feasible because of high costs and site inaccessibility. Therefore, modelling tools that can predict N export in unmonitored watersheds are urgently needed to support management decisions for these watersheds. The hydrological and biogeochemical processes that regulate N export in streams draining watersheds are complex and not fully understood, which makes artificial neural network (ANN) modelling suitable for such an application. This study developed ANN models to predict N export from watersheds relying only on easily accessible climate data and remote sensing (RS) data from the public domain. The models were able to predict the daily N export (g/km2/d) in five watersheds ranging in size from 5-130 km2 with reasonable accuracy. Similarity indices were developed between any two studied watersheds to quantify watershed similarity and guide the transferability of models from monitored watersheds to unmonitored ones. To demonstrate the applicability of the ANN models to unmonitored watersheds, the calibrated ANN models were used to predict N export in different watersheds (unmonitored watersheds in this perspective) without further calibration. The similarity index based upon a rainfall index, a peatland index and a RS normalized difference water index showed the best correlation with the transferability of the models. This study represents an important first step towards transferring ANN models developed for one watershed to unmonitored watersheds using similarity indices that rely on freely available climate and RS data.

  5. A hybrid microfluidic system for regulation of neural differentiation in induced pluripotent stem cells.

    PubMed

    Hesari, Zahra; Soleimani, Massoud; Atyabi, Fatemeh; Sharifdini, Meysam; Nadri, Samad; Warkiani, Majid Ebrahimi; Zare, Mehrak; Dinarvand, Rassoul

    2016-06-01

    Controlling cellular orientation, proliferation, and differentiation is valuable in designing organ replacements and directing tissue regeneration. In the present study, we developed a hybrid microfluidic system to produce a dynamic microenvironment by placing aligned PDMS microgrooves on surface of biodegradable polymers as physical guidance cues for controlling the neural differentiation of human induced pluripotent stem cells (hiPSCs). The neuronal differentiation capacity of cultured hiPSCs in the microfluidic system and other control groups was investigated using quantitative real time PCR (qPCR) and immunocytochemistry. The functionally of differentiated hiPSCs inside hybrid system's scaffolds was also evaluated on the rat hemisected spinal cord in acute phase. Implanted cell's fate was examined using tissue freeze section and the functional recovery was evaluated according to the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale. Our results confirmed the differentiation of hiPSCs to neuronal cells on the microfluidic device where the expression of neuronal-specific genes was significantly higher compared to those cultured on the other systems such as plain tissue culture dishes and scaffolds without fluidic channels. Although survival and integration of implanted hiPSCs did not lead to a significant functional recovery, we believe that combination of fluidic channels with nanofiber scaffolds provides a great microenvironment for neural tissue engineering, and can be used as a powerful tool for in situ monitoring of differentiation potential of various kinds of stem cells. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1534-1543, 2016. PMID:26914600

  6. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  7. The PAF1 complex component Leo1 is essential for cardiac and neural crest development in zebrafish.

    PubMed

    Nguyen, Catherine T; Langenbacher, Adam; Hsieh, Michael; Chen, Jau-Nian

    2010-05-01

    Leo1 is a component of the Polymerase-Associated Factor 1 (PAF1) complex, an evolutionarily conserved protein complex involved in gene transcription regulation and chromatin remodeling. The role of leo1 in vertebrate embryogenesis has not previously been examined. Here, we report that zebrafish leo1 encodes a nuclear protein that has a similar molecular structure to Leo1 proteins from other species. From a genetic screen, we identified a zebrafish mutant defective in the leo1 gene. The truncated Leo1(LA1186) protein lacks a nuclear localization signal and is distributed mostly in the cytoplasm. Phenotypic analysis showed that while the initial patterning of the primitive heart tube is not affected in leo1(LA1186) mutant embryos, the differentiation of cardiomyocytes at the atrioventricular boundary is aberrant, suggesting a requirement for Leo1 in cardiac differentiation. In addition, the expression levels of markers for neural crest-derived cells such as crestin, gch2, dct and mitfa are greatly reduced in leo1(LA1186) mutants, indicating a requirement for Leo1 in maintaining the neural crest population. Consistent with this finding, melanocyte and xanthophore populations are severely reduced, craniofacial cartilage is barely detectable, and mbp-positive glial cells are absent in leo1(LA1186) mutants after three days of development. Taken together, these results provide the first genetic evidence of the requirement for Leo1 in the development of the heart and neural crest cell populations.

  8. Associations among Pubertal Development, Empathic Ability, and Neural Responses While Witnessing Peer Rejection in Adolescence

    ERIC Educational Resources Information Center

    Masten, Carrie L.; Eisenberger, Naomi I.; Pfeifer, Jennifer H.; Colich, Natalie L.; Dapretto, Mirella

    2013-01-01

    Links among concurrent and longitudinal changes in pubertal development and empathic ability from ages 10 to 13 and neural responses while witnessing peer rejection at age 13 were examined in 16 participants. More advanced pubertal development at age 13, and greater longitudinal increases in pubertal development, related to increased activity in…

  9. Development of neural systems for reading in the monolingual and bilingual brain: new insights from functional near infrared spectroscopy neuroimaging.

    PubMed

    Jasińska, K K; Petitto, L A

    2014-01-01

    What neural changes underlie reading development in monolingual and bilingual children? We examined neural activation patterns of younger (ages 6-8) and older (ages 8-10) children and adults to see whether early-life language experience influences the development of neural systems for reading. Using functional Near Infrared Spectroscopy, we observed an age-related shift in neural recruitment of language areas (left inferior frontal gyrus [LIFG], superior temporal gyrus [STG]). Bilinguals showed a greater extent and variability of neural activation in bilateral IFG and STG, and higher cognitive areas (dorsolateral prefrontal cortex, rostrolateral prefrontal cortex). This bilingual "neural signature" reveals the extent that neural systems underlying reading development can be modified through differences in early-life language experience.

  10. AMBRA1-regulated autophagy in vertebrate development.

    PubMed

    Antonioli, Manuela; Albiero, Federica; Fimia, Gian María; Piacentini, Mauro

    2015-01-01

    Autophagy is a catabolic process that mediates the lysosomal turn over of organelles and macromolecules, and is strongly activated in stress conditions to ensure cell survival. Autophagy core genes are highly conserved from yeast to mammals, with an increasing number of positive and negative regulators that have evolved in higher eukaryotes. Autophagy takes part in different stages of development, as revealed by alterations in cell proliferation, differentiation and survival during the embryogenesis of organisms carrying mutations in autophagy genes. These defects are ascribed to the ability of autophagy to provide elements for new synthesis or energy production in limiting conditions during embryogenesis, as well as to contribute to the profound cell remodeling that occurs during differentiation. However, many differences have been observed in the phenotypes of autophagy mutant organisms, indicating that these genes have acquired specific functions in particular tissues, which may reflect the ability of autophagy to crosstalk with the main developmental processes. In this review, we discuss the role of upstream regulators of autophagy in the development of different model systems, focusing, in particular, on AMBRA1 (autophagy/beclin-1 regulator-1) and its role in the central nervous system. PMID:26374532

  11. Brassinosteroids Regulate Root Growth, Development, and Symbiosis.

    PubMed

    Wei, Zhuoyun; Li, Jia

    2016-01-01

    Brassinosteroids (BRs) are natural plant hormones critical for growth and development. BR deficient or signaling mutants show significantly shortened root phenotypes. However, for a long time, it was thought that these phenotypes were solely caused by reduced cell elongation in the mutant roots. Functions of BRs in regulating root development have been largely neglected. Nonetheless, recent detailed analyses, revealed that BRs are not only involved in root cell elongation but are also involved in many aspects of root development, such as maintenance of meristem size, root hair formation, lateral root initiation, gravitropic response, mycorrhiza formation, and nodulation in legume species. In this review, current findings on the functions of BRs in mediating root growth, development, and symbiosis are discussed.

  12. Polycomb repressive complex PRC2 regulates Xenopus retina development downstream of Wnt/β-catenin signaling

    PubMed Central

    Aldiri, Issam; Moore, Kathryn B.; Hutcheson, David A.; Zhang, Jianmin; Vetter, Monica L.

    2013-01-01

    The histone methyltransferase complex PRC2 controls key steps in developmental transitions and cell fate choices; however, its roles in vertebrate eye development remain unknown. Here, we report that in Xenopus, PRC2 regulates the progression of retinal progenitors from proliferation to differentiation. We show that the PRC2 core components are enriched in retinal progenitors and downregulated in differentiated cells. Knockdown of the PRC2 core component Ezh2 leads to reduced retinal progenitor proliferation, in part due to upregulation of the Cdk inhibitor p15Ink4b. In addition, although PRC2 knockdown does not alter eye patterning, retinal progenitor gene expression or expression of the neural competence factor Sox2, it does cause suppression of proneural bHLH gene expression, indicating that PRC2 is crucial for the initiation of neural differentiation in the retina. Consistent with this, knocking down or blocking PRC2 function constrains the generation of most retinal neural cell types and promotes a Müller glial cell fate decision. We also show that Wnt/β-catenin signaling acting through the receptor Frizzled 5, but independent of Sox2, regulates expression of key PRC2 subunits in the developing retina. This is consistent with a role for this pathway in coordinating proliferation and the transition to neurogenesis in the Xenopus retina. Our data establish PRC2 as a regulator of proliferation and differentiation during eye development. PMID:23739135

  13. REST Regulates Non–Cell-Autonomous Neuronal Differentiation and Maturation of Neural Progenitor Cells via Secretogranin II

    PubMed Central

    Kim, Hyung Joon; Denli, Ahmet M.; Wright, Rebecca; Baul, Tithi D.; Clemenson, Gregory D.; Morcos, Ari S.; Zhao, Chunmei; Schafer, Simon T.

    2015-01-01

    RE-1 silencing transcription factor (REST), a master negative regulator of neuronal differentiation, controls neurogenesis by preventing the differentiation of neural stem cells. Here we focused on the role of REST in the early steps of differentiation and maturation of adult hippocampal progenitors (AHPs). REST knockdown promoted differentiation and affected the maturation of rat AHPs. Surprisingly, REST knockdown cells enhanced the differentiation of neighboring wild-type AHPs, suggesting that REST may play a non–cell-autonomous role. Gene expression analysis identified Secretogranin II (Scg2) as the major secreted REST target responsible for the non–cell-autonomous phenotype. Loss-of-function of Scg2 inhibited differentiation in vitro, and exogenous SCG2 partially rescued this phenotype. Knockdown of REST in neural progenitors in mice led to precocious maturation into neurons at the expense of mushroom spines in vivo. In summary, we found that, in addition to its cell-autonomous function, REST regulates differentiation and maturation of AHPs non–cell-autonomously via SCG2. SIGNIFICANCE STATEMENT Our results reveal that REST regulates differentiation and maturation of neural progenitor cells in vitro by orchestrating both cell-intrinsic and non–cell-autonomous factors and that Scg2 is a major secretory target of REST with a differentiation-enhancing activity in a paracrine manner. In vivo, REST depletion causes accelerated differentiation of newborn neurons at the expense of spine defects, suggesting a potential role for REST in the timing of the maturation of granule neurons. PMID:26538656

  14. Meninges harbor cells expressing neural precursor markers during development and adulthood.

    PubMed

    Bifari, Francesco; Berton, Valeria; Pino, Annachiara; Kusalo, Marijana; Malpeli, Giorgio; Di Chio, Marzia; Bersan, Emanuela; Amato, Eliana; Scarpa, Aldo; Krampera, Mauro; Fumagalli, Guido; Decimo, Ilaria

    2015-01-01

    Brain and skull developments are tightly synchronized, allowing the cranial bones to dynamically adapt to the brain shape. At the brain-skull interface, meninges produce the trophic signals necessary for normal corticogenesis and bone development. Meninges harbor different cell populations, including cells forming the endosteum of the cranial vault. Recently, we and other groups have described the presence in meninges of a cell population endowed with neural differentiation potential in vitro and, after transplantation, in vivo. However, whether meninges may be a niche for neural progenitor cells during embryonic development and in adulthood remains to be determined. In this work we provide the first description of the distribution of neural precursor markers in rat meninges during development up to adulthood. We conclude that meninges share common properties with the classical neural stem cell niche, as they: (i) are a highly proliferating tissue; (ii) host cells expressing neural precursor markers such as nestin, vimentin, Sox2 and doublecortin; and (iii) are enriched in extracellular matrix components (e.g., fractones) known to bind and concentrate growth factors. This study underlines the importance of meninges as a potential niche for endogenous precursor cells during development and in adulthood.

  15. Sp8 regulates inner ear development.

    PubMed

    Chung, Hyeyoung A; Medina-Ruiz, Sofia; Harland, Richard M

    2014-04-29

    A forward genetic screen of N-ethyl-N-nitrosourea mutagenized Xenopus tropicalis has identified an inner ear mutant named eclipse (ecl). Mutants developed enlarged otic vesicles and various defects of otoconia development; they also showed abnormal circular and inverted swimming patterns. Positional cloning identified specificity protein 8 (sp8), which was previously found to regulate limb and brain development. Two different loss-of-function approaches using transcription activator-like effector nucleases and morpholino oligonucleotides confirmed that the ecl mutant phenotype is caused by down-regulation of sp8. Depletion of sp8 resulted in otic dysmorphogenesis, such as uncompartmentalized and enlarged otic vesicles, epithelial dilation with abnormal sensory end organs. When overexpressed, sp8 was sufficient to induce ectopic otic vesicles possessing sensory hair cells, neurofilament innervation in a thickened sensory epithelium, and otoconia, all of which are found in the endogenous otic vesicle. We propose that sp8 is an important factor for initiation and elaboration of inner ear development.

  16. Sp8 regulates inner ear development.

    PubMed

    Chung, Hyeyoung A; Medina-Ruiz, Sofia; Harland, Richard M

    2014-04-29

    A forward genetic screen of N-ethyl-N-nitrosourea mutagenized Xenopus tropicalis has identified an inner ear mutant named eclipse (ecl). Mutants developed enlarged otic vesicles and various defects of otoconia development; they also showed abnormal circular and inverted swimming patterns. Positional cloning identified specificity protein 8 (sp8), which was previously found to regulate limb and brain development. Two different loss-of-function approaches using transcription activator-like effector nucleases and morpholino oligonucleotides confirmed that the ecl mutant phenotype is caused by down-regulation of sp8. Depletion of sp8 resulted in otic dysmorphogenesis, such as uncompartmentalized and enlarged otic vesicles, epithelial dilation with abnormal sensory end organs. When overexpressed, sp8 was sufficient to induce ectopic otic vesicles possessing sensory hair cells, neurofilament innervation in a thickened sensory epithelium, and otoconia, all of which are found in the endogenous otic vesicle. We propose that sp8 is an important factor for initiation and elaboration of inner ear development. PMID:24722637

  17. Excessive Sensory Stimulation during Development Alters Neural Plasticity and Vulnerability to Cocaine in Mice.

    PubMed

    Ravinder, Shilpa; Donckels, Elizabeth A; Ramirez, Julian S B; Christakis, Dimitri A; Ramirez, Jan-Marino; Ferguson, Susan M

    2016-01-01

    Early life experiences affect the formation of neuronal networks, which can have a profound impact on brain function and behavior later in life. Previous work has shown that mice exposed to excessive sensory stimulation during development are hyperactive and novelty seeking, and display impaired cognition compared with controls. In this study, we addressed the issue of whether excessive sensory stimulation during development could alter behaviors related to addiction and underlying circuitry in CD-1 mice. We found that the reinforcing properties of cocaine were significantly enhanced in mice exposed to excessive sensory stimulation. Moreover, although these mice displayed hyperactivity that became more pronounced over time, they showed impaired persistence of cocaine-induced locomotor sensitization. These behavioral effects were associated with alterations in glutamatergic transmission in the nucleus accumbens and amygdala. Together, these findings suggest that excessive sensory stimulation in early life significantly alters drug reward and the neural circuits that regulate addiction and attention deficit hyperactivity. These observations highlight the consequences of early life experiences and may have important implications for children growing up in today's complex technological environment. PMID:27588306

  18. Excessive Sensory Stimulation during Development Alters Neural Plasticity and Vulnerability to Cocaine in Mice

    PubMed Central

    Ravinder, Shilpa; Christakis, Dimitri A.

    2016-01-01

    Abstract Early life experiences affect the formation of neuronal networks, which can have a profound impact on brain function and behavior later in life. Previous work has shown that mice exposed to excessive sensory stimulation during development are hyperactive and novelty seeking, and display impaired cognition compared with controls. In this study, we addressed the issue of whether excessive sensory stimulation during development could alter behaviors related to addiction and underlying circuitry in CD-1 mice. We found that the reinforcing properties of cocaine were significantly enhanced in mice exposed to excessive sensory stimulation. Moreover, although these mice displayed hyperactivity that became more pronounced over time, they showed impaired persistence of cocaine-induced locomotor sensitization. These behavioral effects were associated with alterations in glutamatergic transmission in the nucleus accumbens and amygdala. Together, these findings suggest that excessive sensory stimulation in early life significantly alters drug reward and the neural circuits that regulate addiction and attention deficit hyperactivity. These observations highlight the consequences of early life experiences and may have important implications for children growing up in today’s complex technological environment. PMID:27588306

  19. Transcriptional Profiling of Hypoxic Neural Stem Cells Identifies Calcineurin-NFATc4 Signaling as a Major Regulator of Neural Stem Cell Biology

    PubMed Central

    Moreno, Marta; Fernández, Virginia; Monllau, Josep M.; Borrell, Víctor; Lerin, Carles; de la Iglesia, Núria

    2015-01-01

    Summary Neural stem cells (NSCs) reside in a hypoxic microenvironment within the brain. However, the crucial transcription factors (TFs) that regulate NSC biology under physiologic hypoxia are poorly understood. Here we have performed gene set enrichment analysis (GSEA) of microarray datasets from hypoxic versus normoxic NSCs with the aim of identifying pathways and TFs that are activated under oxygen concentrations mimicking normal brain tissue microenvironment. Integration of TF target (TFT) and pathway enrichment analysis identified the calcium-regulated TF NFATc4 as a major candidate to regulate hypoxic NSC functions. Nfatc4 expression was coordinately upregulated by top hypoxia-activated TFs, while NFATc4 target genes were enriched in hypoxic NSCs. Loss-of-function analyses further revealed that the calcineurin-NFATc4 signaling axis acts as a major regulator of NSC self-renewal and proliferation in vitro and in vivo by promoting the expression of TFs, including Id2, that contribute to the maintenance of the NSC state. PMID:26235896

  20. Midkine and pleiotrophin in neural development and cancer.

    PubMed

    Kadomatsu, Kenji; Muramatsu, Takashi

    2004-02-20

    The midkine (MK) family consists of only two members, namely heparin-binding growth factors MK and pleiotrophin (PTN). During embryogenesis, MK is highly expressed in the mid-gestational period, whereas PTN expression reaches the maximum level around birth. Both proteins are localized in the radial glial processes of the embryonic brain, along which neural stem cells migrate and differentiate. Zebrafish and Xenopus MK can induce neural tissues. In addition, deposits of MK and/or PTN are found in neurodegenerative diseases, such as Alzheimer's disease and multiple system atrophy. Both molecules are induced in reactive astrocytes by ischemic insults. In this context, it is interesting that LDL receptor-related protein is a receptor for MK and PTN, and this receptor has been implicated in the pathogenesis of Alzheimer's disease. MK and PTN share receptors, and show similar biological activities that include fibrinolytic, anti-apoptotic, mitogenic, transforming, angiogenic, and chemotactic ones. These activities explain how these molecules are involved in carcinogenesis. MK is detected in human carcinoma specimens from pre-cancerous stages to advanced stages. Strong expression of PTN is also detected in several carcinomas, although, in general, MK is expressed more intensely and in a wide range of carcinomas than PTN. The blood MK level is frequently elevated in advanced human carcinomas, decreases after surgical removal of the tumors, and is correlated with prognostic factors. Thus, it is a good market for evaluating the progress of carcinomas. Furthermore, antisense oligonucleotides for MK and ribozymes for PTN show anti-tumor activity. Therefore, MK and PTN are candidate molecular targets for therapy for human carcinomas.

  1. RE1 silencing transcription factor/neuron-restrictive silencing factor regulates expansion of adult mouse subventricular zone-derived neural stem/progenitor cells in vitro.

    PubMed

    Soldati, Chiara; Caramanica, Pasquale; Burney, Matthew J; Toselli, Camilla; Bithell, Angela; Augusti-Tocco, Gabriella; Stanton, Lawrence W; Biagioni, Stefano; Buckley, Noel J; Cacci, Emanuele

    2015-08-01

    Adult neural stem cell (aNSC) activity is tuned by external stimuli through the recruitment of transcription factors. This study examines the RE1 silencing transcription factor (REST) in neural stem/progenitor cells isolated from the subventricular zone of adult mouse brain and provides the first extensive characterization of REST-mediated control of the cellular and molecular properties. This study shows that REST knockdown affects the capacity of progenitor cells to generate neurospheres, reduces cell proliferation, and triggers cell differentiation despite the presence of growth factors. Genome- and transcriptome-wide analyses show that REST binding sites are significantly enriched in genes associated with synaptic transmission and nervous system development and function. Seeking candidate regulators of aNSC function, this study identifies a member of the bone morphogenetic protein (BMP) family, BMP6, the mRNA and protein of which increased after REST knockdown. The results of this study extend previous findings, demonstrating a reciprocal control of REST expression by BMPs. Administration of exogenous BMP6 inhibits aNSC proliferation and induces the expression of the astrocytic marker glial fibrillary acidic protein, highlighting its antimitogenic and prodifferentiative effects. This study suggests that BMP6 produced in a REST-regulated manner together with other signals can contribute to regulation of NSC maintenance and fate. PMID:25691247

  2. RE1 silencing transcription factor/neuron-restrictive silencing factor regulates expansion of adult mouse subventricular zone-derived neural stem/progenitor cells in vitro.

    PubMed

    Soldati, Chiara; Caramanica, Pasquale; Burney, Matthew J; Toselli, Camilla; Bithell, Angela; Augusti-Tocco, Gabriella; Stanton, Lawrence W; Biagioni, Stefano; Buckley, Noel J; Cacci, Emanuele

    2015-08-01

    Adult neural stem cell (aNSC) activity is tuned by external stimuli through the recruitment of transcription factors. This study examines the RE1 silencing transcription factor (REST) in neural stem/progenitor cells isolated from the subventricular zone of adult mouse brain and provides the first extensive characterization of REST-mediated control of the cellular and molecular properties. This study shows that REST knockdown affects the capacity of progenitor cells to generate neurospheres, reduces cell proliferation, and triggers cell differentiation despite the presence of growth factors. Genome- and transcriptome-wide analyses show that REST binding sites are significantly enriched in genes associated with synaptic transmission and nervous system development and function. Seeking candidate regulators of aNSC function, this study identifies a member of the bone morphogenetic protein (BMP) family, BMP6, the mRNA and protein of which increased after REST knockdown. The results of this study extend previous findings, demonstrating a reciprocal control of REST expression by BMPs. Administration of exogenous BMP6 inhibits aNSC proliferation and induces the expression of the astrocytic marker glial fibrillary acidic protein, highlighting its antimitogenic and prodifferentiative effects. This study suggests that BMP6 produced in a REST-regulated manner together with other signals can contribute to regulation of NSC maintenance and fate.

  3. Development of Fast-Running Simulation Methodology Using Neural Networks for Load Follow Operation

    SciTech Connect

    Seong, Seung-Hwan; Park, Heui-Youn; Kim, Dong-Hoon; Suh, Yong-Suk; Hur, Seop; Koo, In-Soo; Lee, Un-Chul; Jang, Jin-Wook; Shin, Yong-Chul

    2002-05-15

    A new fast-running analytic model has been developed for analyzing the load follow operation. The new model was based on the neural network theory, which has the capability of modeling the input/output relationships of a nonlinear system. The new model is made up of two error back-propagation neural networks and procedures to calculate core parameters, such as the distributions and density of xenon in a quasi-steady-state core like load follow operation. One neural network is designed to retrieve the axial offset of power distribution, and the other is for reactivity corresponding to a given core condition. The training data sets for learning the neural networks in the new model are generated with a three-dimensional nodal code and, also, the measured data of the first-day test of load follow operation. Using the new model, the simulation results of the 5-day load follow test in a pressurized water reactor show a good agreement between the simulation data and the actual measured data. Required computing time for simulating a load follow operation is comparable to that of a fast-running lumped model. Moreover, the new model does not require additional engineering factors to compensate for the difference between the actual measurements and analysis results because the neural network has the inherent learning capability of neural networks to new situations.

  4. Neural crest potential for tooth development in a urodele amphibian: developmental and evolutionary significance.

    PubMed

    Graveson, A C; Smith, M M; Hall, B K

    1997-08-01

    Tooth development in urodele amphibians occurs from a restricted region of anterior cranial neural crest. An in vitro culture system was used to test the odontogenic potential of more caudal regions of neural crest, including an "intermediate region" of neural folds which has never previously been tested for either fate or potential. Explants of different axial levels of neural crest with stomodaeal ectoderm and endoderm demonstrated that odontogenic potential extends not only further caudally than the axial level fated to produce teeth, but also beyond that with potential to produce cartilage. Our results show that chondrogenic potential is found only within the most rostral portion of the intermediate region, but that odontogenic potential extends to its most caudal limit. This separation of skeletogenic cell lineages in the neural crest necessitates a reevaluation of the designations of "cranial" and "trunk" and a reconsideration of the evolutionary implications of developmentally distinct crest-derived mesenchyme populations. The proposal that odontogenic potential extends into the trunk neural crest may be explained as conserved from a phylogenetically older, more extensive skeletogenic ability which produced the exoskeleton of more basal vertebrates. PMID:9245509

  5. Behavioral differences in aggressive children linked with neural mechanisms of emotion regulation.

    PubMed

    Lewis, Marc D; Granic, Isabela; Lamm, Connie

    2006-12-01

    Children with aggressive behavior problems may have difficulties regulating negative emotions, resulting in harmful patterns of interpersonal behavior at home and in the schoolyard. Ventral and dorsal regions of the prefrontal cortex (PFC) have been associated with response inhibition and self-control-key components of emotion regulation. Our research program aims to explore differences among aggressive and normal children in the activation of these cortical regions during emotional episodes, to the extent possible using electrophysiological techniques, to identify diagnostic subtypes, gain insights into their interpersonal difficulties, and help develop effective treatment strategies. This report reviews several recent studies investigating individual and developmental differences in cortical mechanisms of emotion regulation, corresponding with different patterns of interpersonal behavior. Our methods include event-related potentials (ERPs) and cortical source modeling, using dense-array electroencephalography (EEG) technology, as well as videotaped observations of parent-child interactions, with both normal and aggressive children. By relating patterns of brain activation to observed behavioral differences, we find (i) a steady decrease in cortical activation subserving self-regulation across childhood and adolescence, (ii) different cortical activation patterns as well as behavioral constellations distinguishing subtypes of aggressive children, and (iii) robust correlations between the activation of cortical mediators of emotion regulation and flexibility in parent-child emotional communication in children referred for aggressive behavior problems. These findings point toward models of developmental psychopathology based on the interplay among biological, psychological, and social factors. PMID:17347349

  6. Neural regulation of the kidney function in rats with cisplatin induced renal failure

    PubMed Central

    Goulding, Niamh E.; Johns, Edward J.

    2015-01-01

    Aim: Chronic kidney disease (CKD) is often associated with a disturbed cardiovascular homeostasis. This investigation explored the role of the renal innervation in mediating deranged baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory function in cisplatin-induced renal failure. Methods: Rats were either intact or bilaterally renally denervated 4 days prior to receiving cisplatin (5 mg/kg i.p.) and entered a chronic metabolic study for 8 days. At day 8, other groups of rats were prepared for acute measurement of RSNA or renal function with either intact or denervated kidneys. Results: Following the cisplatin challenge, creatinine clearance was 50% lower while fractional sodium excretion and renal cortical and medullary TGF-β1 concentrations were 3–4 fold higher in both intact and renally denervated rats compared to control rats. In cisplatin-treated rats, the maximal gain of the high-pressure baroreflex curve was only 20% that of control rats, but following renal denervation not different from that of renally denervated control rats. Volume expansion reduced RSNA by 50% in control and in cisplatin-treated rats but only following bilateral renal denervation. The volume expansion mediated natriuresis/diuresis was absent in the cisplatin-treated rats but was normalized following renal denervation. Conclusions: Cisplatin-induced renal injury impaired renal function and caused a sympatho-excitation with blunting of high and low pressure baroreflex regulation of RSNA, which was dependent on the renal innervation. It is suggested that in man with CKD there is a dysregulation of the neural control of the kidney mediated by its sensory innervation. PMID:26175693

  7. Hirschsprung's disease and variants in genes that regulate enteric neural crest cell proliferation, migration and differentiation.

    PubMed

    Carter, Tonia C; Kay, Denise M; Browne, Marilyn L; Liu, Aiyi; Romitti, Paul A; Kuehn, Devon; Conley, Mary R; Caggana, Michele; Druschel, Charlotte M; Brody, Lawrence C; Mills, James L

    2012-08-01

    Hirschsprung's disease (HSCR) results from failed colonization of the embryonic gut by enteric neural crest cells (ENCCs); colonization requires RET proto-oncogene (RET) signaling. We sequenced RET to identify coding and splice-site variants in a population-based case group and we tested for associations between HSCR and common variants in RET and candidate genes (ASCL1, homeobox B5 (HOXB5), L1 cell adhesion molecule (L1CAM), paired-like homeobox 2b (PHOX2B), PROK1 and PROKR1) chosen because they are involved in ENCC proliferation, migration and differentiation in animal models. We conducted a nested case-control study of 304 HSCR cases and 1215 controls. Among 38 (12.5%) cases with 34 RET coding and splice-site variants, 18 variants were previously unreported. We confirmed associations with common variants in HOXB5 and PHOX2B but the associations with variants in ASCL1, L1CAM and PROK1 were not significant after multiple comparisons adjustment. RET variants were strongly associated with HSCR (P-values between 10(-3) and 10(-31)) but this differed by race/ethnicity: associations were absent in African-Americans. Our population-based study not only identified novel RET variants in HSCR cases, it showed that common RET variants may not contribute to HSCR in all race/ethnic groups. The findings for HOXB5 and PHOX2B provide supportive evidence that genes regulating ENCC proliferation, migration and differentiation could be risk factors for HSCR.

  8. The roof plate boundary is a bi-directional organiser of dorsal neural tube and choroid plexus development.

    PubMed

    Broom, Emma R; Gilthorpe, Jonathan D; Butts, Thomas; Campo-Paysaa, Florent; Wingate, Richard J T

    2012-11-01

    The roof plate is a signalling centre positioned at the dorsal midline of the central nervous system and generates dorsalising morphogenic signals along the length of the neuraxis. Within cranial ventricles, the roof plate gives rise to choroid plexus, which regulates the internal environment of the developing and adult brain and spinal cord via the secretion of cerebrospinal fluid. Using the fourth ventricle as our model, we show that the organiser properties of the roof plate are determined by its boundaries with the adjacent neuroepithelium. Through a combination of in ovo transplantation, co-culture and electroporation techniques in chick embryos between embryonic days 3 and 6, we demonstrate that organiser properties are maintained by interactions between the non-neural roof plate and the neural rhombic lip. At the molecular level, this interaction is mediated by Delta-Notch signalling and upregulation of the chick homologue of Hes1: chairy2. Gain- and loss-of-function approaches reveal that cdelta1 is both necessary and sufficient for organiser function. Our results also demonstrate that while chairy2 is specifically required for the maintenance of the organiser, its ectopic expression is not sufficient to recapitulate organiser properties. Expression of atonal1 in the rhombic lip adjacent at the roof plate boundary is acutely dependent on both boundary cell interactions and Delta-Notch signalling. Correspondingly, the roof plate boundary organiser also signals to the roof plate itself to specify the expression of early choroid plexus markers. Thus, the roof plate boundary organiser signals bi-directionally to acutely coordinate the development of adjacent neural and non-neural tissues.

  9. The roof plate boundary is a bi-directional organiser of dorsal neural tube and choroid plexus development

    PubMed Central

    Broom, Emma R.; Gilthorpe, Jonathan D.; Butts, Thomas; Campo-Paysaa, Florent; Wingate, Richard J. T.

    2012-01-01

    The roof plate is a signalling centre positioned at the dorsal midline of the central nervous system and generates dorsalising morphogenic signals along the length of the neuraxis. Within cranial ventricles, the roof plate gives rise to choroid plexus, which regulates the internal environment of the developing and adult brain and spinal cord via the secretion of cerebrospinal fluid. Using the fourth ventricle as our model, we show that the organiser properties of the roof plate are determined by its boundaries with the adjacent neuroepithelium. Through a combination of in ovo transplantation, co-culture and electroporation techniques in chick embryos between embryonic days 3 and 6, we demonstrate that organiser properties are maintained by interactions between the non-neural roof plate and the neural rhombic lip. At the molecular level, this interaction is mediated by Delta-Notch signalling and upregulation of the chick homologue of Hes1: chairy2. Gain- and loss-of-function approaches reveal that cdelta1 is both necessary and sufficient for organiser function. Our results also demonstrate that while chairy2 is specifically required for the maintenance of the organiser, its ectopic expression is not sufficient to recapitulate organiser properties. Expression of atonal1 in the rhombic lip adjacent at the roof plate boundary is acutely dependent on both boundary cell interactions and Delta-Notch signalling. Correspondingly, the roof plate boundary organiser also signals to the roof plate itself to specify the expression of early choroid plexus markers. Thus, the roof plate boundary organiser signals bi-directionally to acutely coordinate the development of adjacent neural and non-neural tissues. PMID:23052907

  10. Neural network controller development for a magnetically suspended flywheel energy storage system

    NASA Technical Reports Server (NTRS)

    Fittro, Roger L.; Pang, Da-Chen; Anand, Davinder K.

    1994-01-01

    A neural network controller has been developed to accommodate disturbances and nonlinearities and improve the robustness of a magnetically suspended flywheel energy storage system. The controller is trained using the back propagation-through-time technique incorporated with a time-averaging scheme. The resulting nonlinear neural network controller improves system performance by adapting flywheel stiffness and damping based on operating speed. In addition, a hybrid multi-layered neural network controller is developed off-line which is capable of improving system performance even further. All of the research presented in this paper was implemented via a magnetic bearing computer simulation. However, careful attention was paid to developing a practical methodology which will make future application to the actual bearing system fairly straightforward.

  11. EphA4 and EfnB2a maintain rhombomere coherence by independently regulating intercalation of progenitor cells in the zebrafish neural keel.

    PubMed

    Kemp, Hilary A; Cooke, Julie E; Moens, Cecilia B

    2009-03-15

    During vertebrate development, the hindbrain is transiently segmented into 7 distinct rhombomeres (r). Hindbrain segmentation takes place within the context of the complex morphogenesis required for neurulation, which in zebrafish involves a characteristic cross-midline division that distributes progenitor cells bilaterally in the forming neural tube. The Eph receptor tyrosine kinase EphA4 and the membrane-bound Ephrin (Efn) ligand EfnB2a, which are expressed in complementary segments in the early hindbrain, are required for rhombomere boundary formation. We showed previously that EphA4 promotes cell-cell affinity within r3 and r5, and proposed that preferential adhesion within rhombomeres contributes to boundary formation. Here we show that EfnB2a is similarly required in r4 for normal cell affinity and that EphA4 and EfnB2a regulate cell affinity independently within their respective rhombomeres. Live imaging of cell sorting in mosaic embryos shows that both proteins function during cross-midline cell divisions in the hindbrain neural keel. Consistent with this, mosaic EfnB2a over-expression causes widespread cell sorting and disrupts hindbrain organization, but only if induced at or before neural keel stage. We propose a model in which Eph and Efn-dependent cell affinity within rhombomeres serve to maintain rhombomere organization during the potentially disruptive process of teleost neurulation.

  12. Pten Regulates Epithelial Cytodifferentiation during Prostate Development

    PubMed Central

    Lokody, Isabel B.; Francis, Jeffrey C.; Gardiner, Jennifer R.; Erler, Janine T.; Swain, Amanda

    2015-01-01

    Gene expression and functional studies have indicated that the molecular programmes involved in prostate development are also active in prostate cancer. PTEN has been implicated in human prostate cancer and is frequently mutated in this disease. Here, using the Nkx3.1:Cre mouse strain and a genetic deletion approach, we investigate the role of Pten specifically in the developing mouse prostate epithelia. In contrast to its role in other developing organs, this gene is dispensable for the initial developmental processes such as budding and branching. However, as cytodifferentiation progresses, abnormal luminal cells fill the ductal lumens together with augmented epithelial proliferation. This phenotype resembles the hyperplasia seen in postnatal Pten deletion models that develop neoplasia at later stages. Consistent with this, gene expression analysis showed a number of genes affected that are shared with Pten mutant prostate cancer models, including a decrease in androgen receptor regulated genes. In depth analysis of the phenotype of these mice during development revealed that loss of Pten leads to the precocious differentiation of epithelial cells towards a luminal cell fate. This study provides novel insight into the role of Pten in prostate development as part of the process of coordinating the differentiation and proliferation of cell types in time and space to form a functional organ. PMID:26076167

  13. Phosphorylation of Sox9 is required for neural crest delamination and is regulated downstream of BMP and canonical Wnt signaling.

    PubMed

    Liu, Jessica A J; Wu, Ming-Hoi; Yan, Carol H; Chau, Bolton K H; So, Henry; Ng, Alvis; Chan, Alan; Cheah, Kathryn S E; Briscoe, James; Cheung, Martin

    2013-02-19

    Coordination of neural crest cell (NCC) induction and delamination is orchestrated by several transcription factors. Among these, Sry-related HMG box-9 (Sox9) and Snail2 have been implicated in both the induction of NCC identity and, together with phoshorylation, NCC delamination. How phosphorylation effects this function has not been clear. Here we show, in the developing chick neural tube, that phosphorylation of Sox9 on S64 and S181 facilitates its SUMOylation, and the phosphorylated forms of Sox9 are essential for trunk neural crest delamination. Both phosphorylation and to a lesser extent SUMOylation, of Sox9 are required to cooperate with Snail2 to promote delamination. Moreover, bone morphogenetic protein and canonical Wnt signaling induce phosphorylation of Sox9, thereby connecting extracellular signals with the delamination of NCCs. Together the data suggest a model in which extracellular signals initiate phosphorylation of Sox9 and its cooperation with Snail2 to induce NCC delamination. PMID:23382206

  14. Phosphorylation of Sox9 is required for neural crest delamination and is regulated downstream of BMP and canonical Wnt signaling

    PubMed Central

    Liu, Jessica A. J.; Wu, Ming-Hoi; Yan, Carol H.; Chau, Bolton K. H.; So, Henry; Chan, Alan; Cheah, Kathryn S. E.; Briscoe, James; Cheung, Martin

    2013-01-01

    Coordination of neural crest cell (NCC) induction and delamination is orchestrated by several transcription factors. Among these, Sry-related HMG box-9 (Sox9) and Snail2 have been implicated in both the induction of NCC identity and, together with phoshorylation, NCC delamination. How phosphorylation effects this function has not been clear. Here we show, in the developing chick neural tube, that phosphorylation of Sox9 on S64 and S181 facilitates its SUMOylation, and the phosphorylated forms of Sox9 are essential for trunk neural crest delamination. Both phosphorylation and to a lesser extent SUMOylation, of Sox9 are required to cooperate with Snail2 to promote delamination. Moreover, bone morphogenetic protein and canonical Wnt signaling induce phosphorylation of Sox9, thereby connecting extracellular signals with the delamination of NCCs. Together the data suggest a model in which extracellular signals initiate phosphorylation of Sox9 and its cooperation with Snail2 to induce NCC delamination. PMID:23382206

  15. Genetic and hormonal regulation of cambial development.

    PubMed

    Ursache, Robertas; Nieminen, Kaisa; Helariutta, Ykä

    2013-01-01

    The stems and roots of most dicot plants increase in diameter by radial growth, due to the activity of secondary meristems. Two types of meristems function in secondary plant body formation: the vascular cambium, which gives rise to secondary xylem and phloem, and the cork cambium, which produces a bark layer that replaces the epidermis and protects the plant stem from mechanical damage and pathogens. Cambial development, the initiation and activity of the vascular cambium, leads to an accumulation of wood, the secondary xylem tissue. The thick, cellulose-rich cell walls of wood provide a source of cellulose and have the potential to be used as a raw material for sustainable and renewable energy production. In this review, we will discuss what is known about the mechanisms regulating the cambium and secondary tissue development.

  16. Hippocampal representation of related and opposing memories develop within distinct, hierarchically organized neural schemas.

    PubMed

    McKenzie, Sam; Frank, Andrea J; Kinsky, Nathaniel R; Porter, Blake; Rivière, Pamela D; Eichenbaum, Howard

    2014-07-01

    Recent evidence suggests that the hippocampus may integrate overlapping memories into relational representations, or schemas, that link indirectly related events and support flexible memory expression. Here we explored the nature of hippocampal neural population representations for multiple features of events and the locations and contexts in which they occurred. Hippocampal networks developed hierarchical organizations of associated elements of related but separately acquired memories within a context, and distinct organizations for memories where the contexts differentiated object-reward associations. These findings reveal neural mechanisms for the development and organization of relational representations.

  17. Differentiation of human neural progenitor cells regulated by Wnt-3a.

    PubMed

    Hübner, Rayk; Schmöle, Anne-Caroline; Liedmann, Andrea; Frech, Moritz J; Rolfs, Arndt; Luo, Jiankai

    2010-09-24

    Wnt ligands play pivotal roles in the control of cell growth and differentiation during central nervous system development via the Wnt signaling pathway. In this study, we investigated the effects of Wnt-3a and β-catenin on the differentiation of ReNcell VM human neural progenitor cells. After overexpression of Wnt-3a or mutant-stabilized β-catenin in ReNcell VM cells, their effects on TCF-mediated transcription, Wnt target gene expression and differentiation into neuronal and glial cells were investigated. Our results show that activation of Wnt/β-catenin signaling increases TCF-mediated transcription and the expression of the Wnt target genes Axin2, LEF1 and CyclinD1 in ReNcell VM cells. In contrast to mutant-stabilized β-catenin, Wnt-3a increases neurogenesis during the differentiation of ReNcell VM cells. Thus, our data suggest that neurogenesis induced by Wnt-3a is independent of the transcriptional activity of Wnt/β-catenin pathway in ReNcell VM cells. PMID:20735988

  18. Typical neural representations of action verbs develop without vision.

    PubMed

    Bedny, M; Caramazza, A; Pascual-Leone, A; Saxe, R

    2012-02-01

    Many empiricist theories hold that concepts are composed of sensory-motor primitives. For example, the meaning of the word "run" is in part a visual image of running. If action concepts are partly visual, then the concepts of congenitally blind individuals should be altered in that they lack these visual features. We compared semantic judgments and neural activity during action verb comprehension in congenitally blind and sighted individuals. Participants made similarity judgments about pairs of nouns and verbs that varied in the visual motion they conveyed. Blind adults showed the same pattern of similarity judgments as sighted adults. We identified the left middle temporal gyrus (lMTG) brain region that putatively stores visual-motion features relevant to action verbs. The functional profile and location of this region was identical in sighted and congenitally blind individuals. Furthermore, the lMTG was more active for all verbs than nouns, irrespective of visual-motion features. We conclude that the lMTG contains abstract representations of verb meanings rather than visual-motion images. Our data suggest that conceptual brain regions are not altered by the sensory modality of learning.

  19. Alternative knowledge acquisition: Developing a pulse coded neural network

    SciTech Connect

    Dress, W.B.

    1987-01-01

    After a Rip-van-Winkle nap of more than 20 years, the ideas of biologically motivated computing are re-emerging. Instrumental to this awakening have been the highly publicized contributions of John Hopfield and major advances in the neurosciences. In 1982, Hopfield showed how a system of maximally coupled neutron-like elements described by a Hamiltonian formalism (a linear, conservative system) could behave in a manner startlingly suggestive of the way humans might go about solving problems and retrieving memories. Continuing advances in the neurosciences are providing a coherent basis in suggesting how nature's neurons might function. A particular model is described for an artificial neural system designed to interact with (learn from and manipulate) a simulated (or real) environment. The model is based on early work by Iben Browning. The Browning model, designed to investigate computer-based intelligence, contains a particular simplification based on observations of frequency coding of information in the brain and information flow from receptors to the brain and back to effectors. The ability to act on and react to the environment was seen as an important principle, leading to self-organization of the system.

  20. DISC1-binding proteins in neural development, signalling and schizophrenia

    PubMed Central

    Bradshaw, Nicholas J.; Porteous, David J.

    2012-01-01

    In the decade since Disrupted in Schizophrenia 1 (DISC1) was first identified it has become one of the most convincing risk genes for major mental illness. As a multi-functional scaffold protein, DISC1 has multiple identified protein interaction partners that highlight pathologically relevant molecular pathways with potential for pharmaceutical intervention. Amongst these are proteins involved in neuronal migration (e.g. APP, Dixdc1, LIS1, NDE1, NDEL1), neural progenitor proliferation (GSK3β), neurosignalling (Girdin, GSK3β, PDE4) and synaptic function (Kal7, TNIK). Furthermore, emerging evidence of genetic association (NDEL1, PCM1, PDE4B) and copy number variation (NDE1) implicate several DISC1-binding partners as risk factors for schizophrenia in their own right. Thus, a picture begins to emerge of DISC1 as a key hub for multiple critical developmental pathways within the brain, disruption of which can lead to a variety of psychiatric illness phenotypes. This article is part of a Special Issue entitled ‘Schizophrenia’. PMID:21195721

  1. Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control.

    PubMed

    Raft, Steven; Groves, Andrew K

    2015-01-01

    The vertebrate inner ear is composed of multiple sensory receptor epithelia, each of which is specialized for detection of sound, gravity, or angular acceleration. Each receptor epithelium contains mechanosensitive hair cells, which are connected to the brainstem by bipolar sensory neurons. Hair cells and their associated neurons are derived from the embryonic rudiment of the inner ear epithelium, but the precise spatial and temporal patterns of their generation, as well as the signals that coordinate these events, have only recently begun to be understood. Gene expression, lineage tracing, and mutant analyses suggest that both neurons and hair cells are generated from a common domain of neural and sensory competence in the embryonic inner ear rudiment. Members of the Shh, Wnt, and FGF families, together with retinoic acid signals, regulate transcription factor genes within the inner ear rudiment to establish the axial identity of the ear and regionalize neurogenic activity. Close-range signaling, such as that of the Notch pathway, specifies the fate of sensory regions and individual cell types. We also describe positive and negative interactions between basic helix-loop-helix and SoxB family transcription factors that specify either neuronal or sensory fates in a context-dependent manner. Finally, we review recent work on inner ear development in zebrafish, which demonstrates that the relative timing of neurogenesis and sensory epithelial formation is not phylogenetically constrained.

  2. Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression.

    PubMed

    Marqués-Torrejón, M Ángeles; Porlan, Eva; Banito, Ana; Gómez-Ibarlucea, Esther; Lopez-Contreras, Andrés J; Fernández-Capetillo, Oscar; Vidal, Anxo; Gil, Jesús; Torres, Josema; Fariñas, Isabel

    2013-01-01

    In the adult brain, continual neurogenesis of olfactory neurons is sustained by the existence of neural stem cells (NSCs) in the subependymal niche. Elimination of the cyclin-dependent kinase inhibitor 1A (p21) leads to premature exhaustion of the subependymal NSC pool, suggesting a relationship between cell cycle control and long-term self-renewal, but the molecular mechanisms underlying NSC maintenance by p21 remain unexplored. Here we identify a function of p21 in the direct regulation of the expression of pluripotency factor Sox2, a key regulator of the specification and maintenance of neural progenitors. We observe that p21 directly binds a Sox2 enhancer and negatively regulates Sox2 expression in NSCs. Augmented levels of Sox2 in p21 null cells induce replicative stress and a DNA damage response that leads to cell growth arrest mediated by increased levels of p19(Arf) and p53. Our results show a regulation of NSC expansion driven by a p21/Sox2/p53 axis.

  3. Amphioxus SARM involved in neural development may function as a suppressor of TLR signaling.

    PubMed

    Yuan, Shaochun; Wu, Kui; Yang, Manyi; Xu, Liqun; Huang, Ling; Liu, Huiling; Tao, Xin; Huang, Shengfeng; Xu, Anlong

    2010-06-15

    Among five Toll/IL-1R resistance adaptors, sterile alpha and Toll/IL-1R resistance motif containing protein (SARM) is the only one conserved from Caenorhabditis elegans to human. However, its physiologic roles are hardly understood, and its involvement in TLR signaling remains debatable. In this study, we first demonstrated a predominant expression of amphioxus SARM (Branchiostoma belcheri tsingtauense SARM) in neural cells during embryogenesis and its predominant expression in the digestive system from larva to adult, suggesting its primitive role in neural development and a potential physiologic role in immunity. We further found that B. belcheri tsingtauense SARM was localized in mitochondria and could attenuate the TLR signaling via interacting with amphioxus MyD88 and tumor necrosis receptor associated factor 6. Thus, amphioxus SARM appears unique in that it may play dual functions in neural development and innate immunity by targeting amphioxus TLR signaling.

  4. A real-time virtual integration environment for the design and development of neural prosthetic systems.

    PubMed

    Bishop, William; Armiger, Robert; Burck, James; Bridges, Michael; Hauschild, Markus; Englehart, Kevin; Scheme, Erik; Vogelstein, R Jacob; Beaty, James; Harshbarger, Stuart

    2008-01-01

    We have developed a virtual integration environment (VIE) for the development of neural prosthetic systems. The VIE is a software environment that modularizes the core functions of a neural prosthetic system--receiving signals, decoding signals and controlling a real or simulated device. Complete prosthetic systems can be quickly assembled by linking pre-existing modules together through standard interfaces. Systems can be simulated in real-time, and simulated components can be swapped out for real hardware. This paper is the first of two companion papers that describe the VIE and its use. In this paper, we first describe the architecture of the VIE and review implemented modules. We then describe the use of the VIE for the real-time validation of neural decode algorithms from pre-recorded data, the use of the VIE in closed loop primate experiments and the use of the VIE in the clinic.

  5. Development and application of a microfabricated multimodal neural catheter for neuroscience.

    PubMed

    Li, Chunyan; Wu, Zhizhen; Limnuson, Kanokwan; Cheyuo, Cletus; Wang, Ping; Ahn, Chong H; Narayan, Raj K; Hartings, Jed A

    2016-02-01

    We present a microfabricated neural catheter for real-time continuous monitoring of multiple physiological, biochemical and electrophysiological variables that are critical to the diagnosis and treatment of evolving brain injury. The first generation neural catheter was realized by polyimide-based micromachining and a spiral rolling packaging method. The mechanical design and electrical operation of the microsensors were optimized and tailored for multimodal monitoring in rat brain such that the potential thermal, chemical and electrical crosstalk among the microsensors as well as errors from micro-environmental fluctuations are minimized. In vitro cytotoxicity analyses suggest that the developed neural catheters are minimally toxic to rat cortical neuronal cultures. In addition, in vivo histopathology results showed neither acute nor chronic inflammation for 7 days post implantation. The performance of the neural catheter was assessed in an in vivo needle prick model as a translational replica of a "mini" traumatic brain injury. It successfully monitored the expected transient brain oxygen, temperature, regional cerebral blood flow, and DC potential changes during the passage of spreading depolarization waves. We envisage that the developed multimodal neural catheter can be used to decipher the causes and consequences of secondary brain injury processes with high spatial and temporal resolution while reducing the potential for iatrogenic injury inherent to current use of multiple invasive probes. PMID:26780443

  6. Strategies influence neural activity for feedback learning across child and adolescent development.

    PubMed

    Peters, Sabine; Koolschijn, P Cédric M P; Crone, Eveline A; Van Duijvenvoorde, Anna C K; Raijmakers, Maartje E J

    2014-09-01

    Learning from feedback is an important aspect of executive functioning that shows profound improvements during childhood and adolescence. This is accompanied by neural changes in the feedback-learning network, which includes pre-supplementary motor area (pre- SMA)/anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), superior parietal cortex (SPC), and the basal ganglia. However, there can be considerable differences within age ranges in performance that are ascribed to differences in strategy use. This is problematic for traditional approaches of analyzing developmental data, in which age groups are assumed to be homogenous in strategy use. In this study, we used latent variable models to investigate if underlying strategy groups could be detected for a feedback-learning task and whether there were differences in neural activation patterns between strategies. In a sample of 268 participants between ages 8 to 25 years, we observed four underlying strategy groups, which were cut across age groups and varied in the optimality of executive functioning. These strategy groups also differed in neural activity during learning; especially the most optimal performing group showed more activity in DLPFC, SPC and pre-SMA/ACC compared to the other groups. However, age differences remained an important contributor to neural activation, even when correcting for strategy. These findings contribute to the debate of age versus performance predictors of neural development, and highlight the importance of studying individual differences in strategy use when studying development.

  7. Genetic regulation of mammalian gonad development.

    PubMed

    Eggers, Stefanie; Ohnesorg, Thomas; Sinclair, Andrew

    2014-11-01

    Sex-specific gonadal development starts with formation of the bipotential gonad, which then differentiates into either a mature testis or an ovary. This process is dependent on activation of either the testis-specific or the ovary-specific pathway while the opposite pathway is continuously repressed. A network of transcription factors tightly regulates initiation and maintenance of these distinct pathways; disruption of these networks can lead to disorders of sex development in humans and male-to-female or female-to-male sex reversal in mice. Sry is the Y-linked master switch that is both required and sufficient to drive the testis-determining pathway. Another key component of the testis pathway is Sox9, which acts immediately downstream of Sry. In contrast to the testis pathway, no single sex-determining factor has been identified in the ovary pathway; however, multiple genes, such as Foxl2, Rspo1, Ctnnb1, and Wnt4, seem to work synergistically and in parallel to ensure proper ovary development. Our understanding of the regulatory networks that underpin testis and ovary development has grown substantially over the past two decades.

  8. Neural activity to a partner's facial expression predicts self-regulation after conflict

    PubMed Central

    Hooker, Christine I.; Gyurak, Anett; Verosky, Sara; Miyakawa, Asako; Ayduk, Özlem

    2009-01-01

    Introduction Failure to self-regulate after an interpersonal conflict can result in persistent negative mood and maladaptive behaviors. Research indicates that lateral prefrontal cortex (LPFC) activity is related to the regulation of emotional experience in response to lab-based affective challenges, such as viewing emotional pictures. This suggests that compromised LPFC function may be a risk-factor for mood and behavior problems after an interpersonal stressor. However, it remains unclear whether LPFC activity to a lab-based affective challenge predicts self-regulation in real-life. Method We investigated whether LPFC activity to a lab-based affective challenge (negative facial expressions of a partner) predicts self-regulation after a real-life affective challenge (interpersonal conflict). During an fMRI scan, healthy, adult participants in committed, dating relationships (N = 27) viewed positive, negative, and neutral facial expressions of their partners. In an online daily-diary, participants reported conflict occurrence, level of negative mood, rumination, and substance-use. Results LPFC activity in response to the lab-based affective challenge predicted self-regulation after an interpersonal conflict in daily life. When there was no interpersonal conflict, LPFC activity was not related to the change in mood or behavior the next day. However, when an interpersonal conflict did occur, ventral LPFC (VLPFC) activity predicted the change in mood and behavior the next day, such that lower VLPFC activity was related to higher levels of negative mood, rumination, and substance-use. Conclusions Low LPFC function may be a vulnerability and high LPFC function may be a protective factor for the development of mood and behavior problems after an interpersonal stressor. PMID:20004365

  9. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro.

    PubMed

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J

    2015-09-15

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (<10) of presynaptic inputs, whereas a small set of hub-like neurons have large numbers of synaptic connections (>40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology.

  10. Transcriptional Regulation of Mononuclear Phagocyte Development

    PubMed Central

    Tussiwand, Roxane; Gautier, Emmanuel L.

    2015-01-01

    Mononuclear phagocytes (MP) are a quite unique subset of hematopoietic cells, which comprise dendritic cells (DC), monocytes as well as monocyte-derived and tissue-resident macrophages. These cells are extremely diverse with regard to their origin, their phenotype as well as their function. Developmentally, DC and monocytes are constantly replenished from a bone marrow hematopoietic progenitor. The ontogeny of macrophages is more complex and is temporally linked and specified by the organ where they reside, occurring early during embryonic or perinatal life. The functional heterogeneity of MPs is certainly a consequence of the tissue of residence and also reflects the diverse ontogeny of the subsets. In this review, we will highlight the developmental pathways of murine MP, with a particular emphasis on the transcriptional factors that regulate their development and function. Finally, we will discuss and point out open questions in the field. PMID:26539196

  11. Identification of Mytilus edulis genetic regulators during early development.

    PubMed

    Bassim, Sleiman; Tanguy, Arnaud; Genard, Bertrand; Moraga, Dario; Tremblay, Rejean

    2014-11-01

    Understanding the mechanisms that enable growth and survival of an organism while driving it to the full range of its adaptation is fundamental to the issues of biodiversity and evolution, particularly regarding global climatic changes. Here we report the Illumina RNA-sequencing (RNA-seq) and de novo assembly of the blue mussel Mytilus edulis transcriptome during early development. This study is based on high-throughput data, which associates genome-wide differentially expressed transcript (DET) patterns with early activation of developmental processes. Approximately 50,383 high-quality contigs were assembled. Over 8000 transcripts were associated with functional proteins from public databases. Coding and non-coding genes served to design customized microarrays targeting every developmental stage, which encompass major transitions in tissue organization. Consequently, multi-processing pattern exploration protocols applied to 3633 DETs helped discover 12 unique coordinated eigengenes supposedly implicated in various physiological and morphological changes that larvae undergo during early development. Moreover, dynamic Bayesian networks (DBNs) provided key insights to understand stage-specific molecular mechanisms activated throughout ontogeny. In addition, delayed and contemporaneous interactions between DETs were coerced with 16 relevant regulators that interrelated in non-random genetic regulatory networks (GRNs). Genes associated with mechanisms of neural and muscular development have been characterized and further included in dynamic networks necessary in growth and functional morphology. This is the first large-scale study being dedicated to M. edulis throughout early ontogeny. Integration between RNA-seq and microarray data enabled a high-throughput exploration of hidden processes essential in growth and survival of microscopic mussel larvae. Our integrative approach will support a holistic understanding of systems biology and will help establish new links

  12. PSD-95 is post-transcriptionally repressed during early neural development by PTBP1 and PTBP2.

    PubMed

    Zheng, Sika; Gray, Erin E; Chawla, Geetanjali; Porse, Bo Torben; O'Dell, Thomas J; Black, Douglas L

    2012-03-01

    Postsynaptic density protein 95 (PSD-95) is essential for synaptic maturation and plasticity. Although its synaptic regulation has been widely studied, the control of PSD-95 cellular expression is not understood. We found that Psd-95 was controlled post-transcriptionally during neural development. Psd-95 was transcribed early in mouse embryonic brain, but most of its product transcripts were degraded. The polypyrimidine tract binding proteins PTBP1 and PTBP2 repressed Psd-95 (also known as Dlg4) exon 18 splicing, leading to premature translation termination and nonsense-mediated mRNA decay. The loss of first PTBP1 and then of PTBP2 during embryonic development allowed splicing of exon 18 and expression of PSD-95 late in neuronal maturation. Re-expression of PTBP1 or PTBP2 in differentiated neurons inhibited PSD-95 expression and impaired the development of glutamatergic synapses. Thus, expression of PSD-95 during early neural development is controlled at the RNA level by two PTB proteins whose sequential downregulation is necessary for synapse maturation. PMID:22246437

  13. Mecp2 regulates neural cell differentiation by suppressing the Id1 to Her2 axis in zebrafish.

    PubMed

    Gao, Hai; Bu, Ye; Wu, Qing; Wang, Xu; Chang, Nannan; Lei, Lei; Chen, Shilin; Liu, Dong; Zhu, Xiaojun; Hu, Keping; Xiong, Jing-Wei

    2015-06-15

    Rett syndrome (RTT) is a progressive neurological disorder caused by mutations in the X-linked protein methyl-CpG-binding protein 2 (MeCP2). The endogenous function of MeCP2 during neural differentiation is still unclear. Here, we report that mecp2 is required for brain development in zebrafish. Mecp2 was broadly expressed initially in embryos and enriched later in the brain. Either morpholino knockdown or genetic depletion of mecp2 inhibited neuronal differentiation, whereas its overexpression promoted neuronal differentiation, suggesting an essential role of mecp2 in directing neural precursors into differentiated neurons. Mechanistically, her2 (the zebrafish ortholog of mammalian Hes5) was upregulated in mecp2 morphants in an Id1-dependent manner. Moreover, knockdown of either her2 or id1 fully rescued neuronal differentiation in mecp2 morphants. These results suggest that Mecp2 plays an important role in neural cell development by suppressing the Id1-Her2 axis, and provide new evidence that embryonic neural defects contribute to the later motor and cognitive dysfunctions in RTT.

  14. Regulation of Carotenoid Biosynthesis During Fruit Development.

    PubMed

    Lado, Joanna; Zacarías, Lorenzo; Rodrigo, María Jesús

    2016-01-01

    Carotenoids are recognized as the main pigments in most fruit crops, providing colours that range from yellow and pink to deep orange and red. Moreover, the edible portion of widely consumed fruits or their derived products represent a major dietary source of carotenoids for animals and humans. Therefore, these pigments are crucial compounds contributing to fruit aesthetic and nutritional quality but may also have protecting and ecophysiological functions in coloured fruits. Among plant organs, fruits display one of the most heterogeneous carotenoids patterns in terms of diversity and abundance. In this chapter a comprehensive list of the carotenoid content and profile in the most commonly cultivated fleshy fruits is reported. The proposed fruit classification systems attending to carotenoid composition are revised and discussed. The regulation of carotenoids in fruits can be rather complex due to the dramatic changes in content and composition during ripening, which are also dependent on the fruit tissue and the developmental stage. In addition, carotenoid accumulation is a dynamic process, associated with the development of chromoplasts during ripening. As a general rule, carotenoid accumulation is highly controlled at the transcriptional level of the structural and accessory proteins of the biosynthetic and degradation pathways, but other mechanisms such as post-transcriptional modifications or the development of sink structures have been recently revealed as crucial factors in determining the levels and stability of these pigments. In this chapter common key metabolic reactions regulating carotenoid composition in fruit tissues are described in addition to others that are restricted to certain species and generate unique carotenoids patterns. The existence of fruit-specific isoforms for key steps such as the phytoene synthase, lycopene β-cyclases or catabolic carotenoid cleavage dioxygenases has allowed an independent regulation of the pathway in fruit tissues

  15. Modeling anterior development in mice: diet as modulator of risk for neural tube defects.

    PubMed

    Kappen, Claudia

    2013-11-01

    Head morphogenesis is a complex process that is controlled by multiple signaling centers. The most common defects of cranial development are craniofacial defects, such as cleft lip and cleft palate, and neural tube defects, such as anencephaly and encephalocoele in humans. More than 400 genes that contribute to proper neural tube closure have been identified in experimental animals, but only very few causative gene mutations have been identified in humans, supporting the notion that environmental influences are critical. The intrauterine environment is influenced by maternal nutrition, and hence, maternal diet can modulate the risk for cranial and neural tube defects. This article reviews recent progress toward a better understanding of nutrients during pregnancy, with particular focus on mouse models for defective neural tube closure. At least four major patterns of nutrient responses are apparent, suggesting that multiple pathways are involved in the response, and likely in the underlying pathogenesis of the defects. Folic acid has been the most widely studied nutrient, and the diverse responses of the mouse models to folic acid supplementation indicate that folic acid is not universally beneficial, but that the effect is dependent on genetic configuration. If this is the case for other nutrients as well, efforts to prevent neural tube defects with nutritional supplementation may need to become more specifically targeted than previously appreciated. Mouse models are indispensable for a better understanding of nutrient-gene interactions in normal pregnancies, as well as in those affected by metabolic diseases, such as diabetes and obesity.

  16. Modeling Anterior Development in Mice: Diet as Modulator of Risk for Neural Tube Defects

    PubMed Central

    Kappen, Claudia

    2014-01-01

    Head morphogenesis is a complex process that is controlled by multiple signaling centers. The most common defects of cranial development are craniofacial defects, such as cleft lip and cleft palate, and neural tube defects, such as anencephaly and encephalocoele in humans. More than 400 genes that contribute to proper neural tube closure have been identified in experimental animals, but only very few causative gene mutations have been identified in humans, supporting the notion that environmental influences are critical. The intrauterine environment is influenced by maternal nutrition, and hence, maternal diet can modulate the risk for cranial and neural tube defects. This article reviews recent progress toward a better understanding of nutrients during pregnancy, with particular focus on mouse models for defective neural tube closure. At least four major patterns of nutrient responses are apparent, suggesting that multiple pathways are involved in the response, and likely in the underlying pathogenesis of the defects. Folic acid has been the most widely studied nutrient, and the diverse responses of the mouse models to folic acid supplementation indicate that folic acid is not universally beneficial, but that the effect is dependent on genetic configuration. If this is the case for other nutrients as well, efforts to prevent neural tube defects with nutritional supplementation may need to become more specifically targeted than previously appreciated. Mouse models are indispensable for a better understanding of nutrient–gene interactions in normal pregnancies, as well as in those affected by metabolic diseases, such as diabetes and obesity. PMID:24124024

  17. TECHNICAL NOTE: The development of a PZT-based microdrive for neural signal recording

    NASA Astrophysics Data System (ADS)

    Park, Sangkyu; Yoon, Euisung; Lee, Sukchan; Shin, Hee-sup; Park, Hyunjun; Kim, Byungkyu; Kim, Daesoo; Park, Jongoh; Park, Sukho

    2008-04-01

    A hand-controlled microdrive has been used to obtain neural signals from rodents such as rats and mice. However, it places severe physical stress on the rodents during its manipulation, and this stress leads to alertness in the mice and low efficiency in obtaining neural signals from the mice. To overcome this issue, we developed a novel microdrive, which allows one to adjust the electrodes by a piezoelectric device (PZT) with high precision. Its mass is light enough to install on the mouse's head. The proposed microdrive has three H-type PZT actuators and their guiding structure. The operation principle of the microdrive is based on the well known inchworm mechanism. When the three PZT actuators are synchronized, linear motion of the electrode is produced along the guiding structure. The electrodes used for the recording of the neural signals from neuron cells were fixed at one of the PZT actuators. Our proposed microdrive has an accuracy of about 400 nm and a long stroke of about 5 mm. In response to formalin-induced pain, single unit activities are robustly measured at the thalamus with electrodes whose vertical depth is adjusted by the microdrive under urethane anesthesia. In addition, the microdrive was efficient in detecting neural signals from mice that were moving freely. Thus, the present study suggests that the PZT-based microdrive could be an alternative for the efficient detection of neural signals from mice during behavioral states without any stress to the mice.

  18. SIGNALS AND REGULATORS THAT GOVERN STREPTOMYCES DEVELOPMENT

    PubMed Central

    McCormick, Joseph R.; Flärdh, Klas

    2012-01-01

    Streptomyces coelicolor is the genetically best characterized species of a populous genus belonging to the Gram-positive Actinobacteria. Streptomycetes are filamentous soil organisms, well known for the production of a plethora of biologically active secondary metabolic compounds. The Streptomyces developmental life cycle is uniquely complex, and involves coordinated multicellular development with both physiological and morphological differentiation of several cell types, culminating in production of secondary metabolites and dispersal of mature spores. This review presents a current appreciation of the signaling mechanisms used to orchestrate the decision to undergo morphological differentiation, and the regulators and regulatory networks that direct the intriguing development of multigenomic hyphae, first to form specialized aerial hyphae, and then to convert them into chains of dormant spores. This current view of S. coelicolor development is destined for rapid evolution as data from “-omics” studies shed light on gene regulatory networks, new genetic screens identify hitherto unknown players, and the resolution of our insights into the underlying cell biological processes steadily improve. PMID:22092088

  19. Regulation of adipose cell development in utero.

    PubMed

    Martin, R J; Hausman, G J; Hausman, D B

    1998-12-01

    The condition of obesity is impacted by increases in fat cell number, fat cell size, or a combination of the two. It is generally believed that fat cell number is dependent on the age of onset and the degree of obesity. This review provides an update on intrauterine growth of fetal adipose tissue, the earliest period of proliferation onset, and the factors that interact to enhance or suppress development. Fetal adipose tissue development is regulated by the complex interaction of maternal, endocrine, and paracrine influences that initiate specific changes in angiogenesis, adipogenesis, and metabolism. Developmental stages and metabolic processes influenced by specific hormones and paracrine factors have been identified through examination of the offspring of obese and diabetic pregnancies, hormonal manipulation during late pregnancy in animal models, and the use of cell culture. Collectively, the results of the studies cited herein delineate the basis for imprinting or conditioning of fetal preadipocytes at the paracrine/autocrine level and a role of thyroxine, glucocorticoids, and other hormones in fetal adipose tissue development and metabolism.

  20. Expression and Localization of Neural Cell Adhesion Molecule and Polysialic Acid during Chick Corneal Development

    PubMed Central

    Schwend, Tyler; Conrad, Gary W.

    2012-01-01

    Purpose. To assay for expression and localization of neural cell adhesion molecule (NCAM) and polysialic acid (polySia) in the chick cornea during embryonic and postnatal development. Methods. Real time quantitative PCR and Western blot analyses were used to determine NCAM expression and polysiaylation in embryonic, hatchling, and adult chick corneas. Immunofluorescence staining for NCAM and polySia was conducted on cryosections of embryonic and adult corneas, whole embryonic corneas, and trigeminal neurons. Results. NCAM and ST8SiaII mRNA transcripts peaked by embryonic day (E)9, remained steady between E10 and E14 and slowly decreased thereafter during embryonic development. Both gene transcripts showed > 190-fold decline in the adult chick cornea compared with E9. In contrast, ST8SiaIV expression gradually decreased 26.5-fold from E6 to E19, increased thereafter, and rose to the early embryonic level in the adult cornea. Western blot analysis revealed NCAM was polysialylated and its expression developmentally changed. Other polysiaylated proteins aside from NCAM were also detected by Western blot analysis. Five NCAM isoforms including NCAM-120, NCAM-180 and three soluble NCAM isoforms with low molecular weights (87–96 kDa) were present in chick corneas, with NCAM-120 being the predominate isoform. NCAM was localized to the epithelium, stroma, and stromal extracellular matrix (ECM) of the embryonic cornea. In stroma, NCAM expression shifted from anterior to posterior stroma during embryonic development and eventually became undetectable in 20-week-old adult cornea. Additionally, both NCAM and polySia were detected on embryonic corneal and pericorneal nerves. Conclusions. NCAM and polySia are expressed and developmentally regulated in chick corneas. Both membrane-associated and soluble NCAM isoforms are expressed in chick corneas. The distributions of NCAM and polySia in cornea and on corneal nerves suggest their potential functions in corneal innervation. PMID

  1. Regulation of neural stem cell in the human SVZ by trophic and morphogenic factors

    PubMed Central

    Alvarez-Palazuelos, Lucia E.; Robles-Cervantes, Martha S.; Castillo-Velazquez, Gabriel; Rivas-Souza, Mario; Guzman-Muniz, Jorge; Moy-Lopez, Norma; Gonzalez-Castaneda, Rocio E.; Luquin, Sonia; Gonzalez-Perez, Oscar

    2011-01-01

    The subventricular zone (SVZ), lining the lateral ventricular system, is the largest germinal region in mammals. In there, neural stem cells express markers related to astoglial lineage that give rise to new neurons and oligodendrocytes in vivo. In the adult human brain, in vitro evidence has also shown that astrocytic cells isolated from the SVZ can generate new neurons and oligodendrocytes. These proliferative cells are strongly controlled by a number of signals and molecules that modulate, activate or repress the cell division, renewal, proliferation and fate of neural stem cells. In this review, we summarize the cellular composition of the adult human SVZ (hSVZ) and discuss the increasing evidence showing that some trophic modulators strongly control the function of neural stem cells in the SVZ. PMID:22053150

  2. Use of short hairpin RNA expression vectors to study mammalian neural development.

    PubMed

    Yu, Jenn-Yah; Wang, Tsu-Wei; Vojtek, Anne B; Parent, Jack M; Turner, David L

    2005-01-01

    The use of RNA interference (RNAi) in mammalian cells has become a powerful tool for the analysis of gene function. Here we discuss the use of DNA vectors to produce short hairpin RNAs (shRNAs) and inhibit gene expression in mammalian neural progenitors and neurons. Protocols are presented for introducing shRNA vectors into mouse P19 cells differentiated as neurons in vitro and for electroporation of shRNA vectors into primary neural progenitors from the embryonic mouse dorsal telencephalon (prospective cerebral cortex). Transfected primary cortical progenitors can be differentiated in vitro either in dissociated culture or organotypic slice culture. The use of shRNA vectors for RNAi provides a versatile approach to understand gene function during mammalian neural development.

  3. Development of a neural network for early detection of renal osteodystrophy

    NASA Astrophysics Data System (ADS)

    Cheng, Shirley N.; Chan, Heang-Ping; Adler, Ronald; Niklason, Loren T.; Chang, Chair-Li

    1991-07-01

    Bone erosion presenting as subperiosteal resorption on the phalanges of the hand is an early manifestation of hyperparathyroidism associated with chronic renal failure. At present, the diagnosis is made by trained radiologists through visual inspection of hand radiographs. In this study, a neural network is being developed to assess the feasibility of computer-aided detection of these changes. A two-pass approach is adopted. The digitized image is first compressed by a Laplacian pyramid compact code. The first neural network locates the region of interest using vertical projections along the phalanges and then the horizontal projections across the phalanges. A second neural network is used to classify texture variations of trabecular patterns in the region using a concurrence matrix as the input to a two-dimensional sensor layer to detect the degree of associated osteopenia. Preliminary results demonstrate the feasibility of this approach.

  4. Evolutionary conservation of mechanisms for neural regionalization, proliferation and interconnection in brain development

    PubMed Central

    Reichert, Heinrich

    2008-01-01

    Comparative studies of brain development in vertebrate and invertebrate model systems demonstrate remarkable similarities in expression and action of developmental control genes during embryonic patterning, neural proliferation and circuit formation in the brain. Thus, comparable sets of developmental control genes are involved in specifying the early brain primordium as well as in regionalized patterning along its anteroposterior and dorsoventral axes. Furthermore, similar cellular and molecular mechanisms underlie the formation and proliferation of neural stem cell-like progenitors that generate the neurons in the central nervous systems. Finally, neural identity and some complex circuit interconnections in specific brain domains appear to be comparable in vertebrates and invertebrates and may depend on similar developmental control genes. PMID:18755655

  5. Molecular Mechanisms Regulating the Dendritic Development of Newborn Olfactory Bulb Interneurons in a Sensory Experience-Dependent Manner

    PubMed Central

    Yoshihara, Sei-ichi; Takahashi, Hiroo; Tsuboi, Akio

    2016-01-01

    Inhibitory interneurons in the olfactory bulb are generated continuously throughout life in the subventricular zone and differentiate into periglomerular and granule cells. Neural circuits that undergo reorganization by newborn olfactory bulb interneurons are necessary for odor detection, odor discrimination, olfactory memory, and innate olfactory responses. Although sensory experience has been shown to regulate development in a variety of species and in various structures, including the retina, cortex, and hippocampus, little is known about how sensory experience regulates the dendritic development of newborn olfactory bulb interneurons. Recent studies revealed that the 5T4 oncofetal trophoblast glycoprotein and the neuronal Per/Arnt/Sim domain protein 4 (Npas4) transcription factor regulate dendritic branching and dendritic spine formation, respectively, in olfactory bulb interneurons. Here, we summarize the molecular mechanisms that underlie the sensory input-dependent development of newborn interneurons and the formation of functional neural circuitry in the olfactory bulb. PMID:26793053

  6. Biological modeling of complex chemotaxis behaviors for C. elegans under speed regulation--a dynamic neural networks approach.

    PubMed

    Xu, Jian-Xin; Deng, Xin

    2013-08-01

    In this paper, the modeling of several complex chemotaxis behaviors of C. elegans is explored, which include food attraction, toxin avoidance, and locomotion speed regulation. We first model the chemotaxis behaviors of food attraction and toxin avoidance separately. Then, an integrated chemotaxis behavioral model is proposed, which performs the two chemotaxis behaviors simultaneously. The novelty and the uniqueness of the proposed chemotaxis behavioral models are characterized by several attributes. First, all the chemotaxis behavioral model sare on biological basis, namely, the proposed chemotaxis behavior models are constructed by extracting the neural wire diagram from sensory neurons to motor neurons, where sensory neurons are specific for chemotaxis behaviors. Second, the chemotaxis behavioral models are able to perform turning and speed regulation. Third, chemotaxis behaviors are characterized by a set of switching logic functions that decide the orientation and speed. All models are implemented using dynamic neural networks (DNN) and trained using the real time recurrent learning (RTRL) algorithm. By incorporating a speed regulation mechanism, C. elegans can stop spontaneously when approaching food source or leaving away from toxin. The testing results and the comparison with experiment results verify that the proposed chemotaxis behavioral models can well mimic the chemotaxis behaviors of C. elegans in different environments.

  7. MicroRNA-130b targets Fmr1 and regulates embryonic neural progenitor cell proliferation and differentiation

    SciTech Connect

    Gong, Xi; Zhang, Kunshan; Wang, Yanlu; Wang, Junbang; Cui, Yaru; Li, Siguang; Luo, Yuping

    2013-10-04

    Highlights: •We found that the 3′ UTR of the Fmr1 mRNA is a target of miR-130b. •MiR-130b suppresses the expression of Fmr1 in mouse embryonic stem cell. •MiR-130b alters the proliferation of mouse embryonic stem cell. •MiR-130b alters fate specification of mouse embryonic stem cell. -- Abstract: Fragile X syndrome, one of the most common forms of inherited mental retardation, is caused by expansion of the CGG repeat in the 5′-untranslated region of the X-linked Fmr1 gene, which results in transcriptional silencing and loss of expression of its encoded protein FMRP. The loss of FMRP increases proliferation and alters fate specification in adult neural progenitor cells (aNPCs). However, little is known about Fmr1 mRNA regulation at the transcriptional and post-transcriptional levels. In the present study, we report that miR-130b regulated Fmr1 expression by directly targeting its 3′-untranslated region (3′ UTR). Up-regulation of miR-130b in mouse embryonic neural progenitor cells (eNPCs) decreased Fmr1 expression, markedly increased eNPC proliferation and altered the differentiation tendency of eNPCs, suggesting that antagonizing miR-130b may be a new therapeutic entry point for treating Fragile X syndrome.

  8. RKIP Regulates Neural Cell Apoptosis Induced by Exposure to Microwave Radiation Partly Through the MEK/ERK/CREB Pathway.

    PubMed

    Zuo, Hongyan; Lin, Tao; Wang, Dewen; Peng, Ruiyun; Wang, Shuiming; Gao, Yabing; Xu, Xinping; Zhao, Li; Wang, Shaoxia; Su, Zhentao

    2015-01-01

    In the present study, we investigated whether Raf-1 kinase inhibitory protein (RKIP) is important for neural cell apoptosis induced by microwave exposure and explored the role of MEK/ERK/CREB pathway regulated by RKIP in the apoptosis. Differentiated PC12 cells were exposed to continuous microwave radiation at 2.856 GHz for 5 min with average power density of 30 mW/cm(2). RKIP sense and anti-sense recombinant plasmids were constructed and transfected into PC12 cells, respectively. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) staining and caspase-3 activity assay were used to detect cell apoptosis. The results showed that RKIP was downregulated after microwave exposure while the MEK/ERK/CREB signaling pathway was activated excessively. Moreover, the ratio of Bcl-2/Bax decreased, activity of caspase-3 increased, and thus apoptotic DNA fragmentation increased. RKIP overexpression significantly inhibited the phosphorylation of MEK, ERK, and CREB, while RKIP downregulation had the reverse effect. Furthermore, U0126 was found to antagonize the changes caused by RKIP downregulation after exposure to radiation. In conclusion, RKIP plays an important role in the neural cell apoptosis induced by microwave radiation, and the regulation of cell apoptosis by RKIP is partly through the MEK/ERK/CREB pathway. This suggests that RKIP may act as a key regulator of neuronal damage caused by microwave radiation.

  9. cables1 is required for embryonic neural development: molecular, cellular, and behavioral evidence from the zebrafish.

    PubMed

    Groeneweg, Jolijn W; White, Yvonne A R; Kokel, David; Peterson, Randall T; Zukerberg, Lawrence R; Berin, Inna; Rueda, Bo R; Wood, Antony W

    2011-01-01

    In vitro studies have suggested that the Cables1 gene regulates epithelial cell proliferation, whereas other studies suggest a role in promoting neural differentiation. In efforts to clarify the functions of Cables1 in vivo, we conducted gain- and loss-of-function studies targeting its ortholog (cables1) in the zebrafish embryo. Similar to rodents, zebrafish cables1 mRNA expression is detected most robustly in embryonic neural tissues. Antisense knockdown of cables1 leads to increased numbers of apoptotic cells, particularly in brain tissue, in addition to a distinct behavioral phenotype, characterized by hyperactivity in response to stimulation. Apoptosis and the behavioral abnormality could be rescued by co-expression of a morpholino-resistant cables1 construct. Suppression of p53 expression in cables1 morphants partially rescued both apoptosis and the behavioral phenotype, suggesting that the phenotype of cables1 morphants is due in part to p53-dependent apoptosis. Alterations in the expression patterns of several neural transcription factors were observed in cables1 morphants during early neurulation, suggesting that cables1 is required for early neural differentiation. Ectopic overexpression of cables1 strongly disrupted embryonic morphogenesis, while overexpression of a cables1 mutant lacking the C-terminal cyclin box had little effect, suggesting functional importance of the cyclin box. Lastly, marked reductions in p35, but not Cdk5, were observed in cables1 morphants. Collectively, these data suggest that cables1 is important for neural differentiation during embryogenesis, in a mechanism that likely involves interactions with the Cdk5/p35 kinase pathway.

  10. Epitranscriptional regulation of cardiovascular development and disease.

    PubMed

    Dorn, Gerald W; Matkovich, Scot J

    2015-04-15

    Development, homeostasis and responses to stress in the heart all depend on appropriate control of mRNA expression programmes, which may be enacted at the level of DNA sequence, DNA accessibility and RNA-mediated control of mRNA output. Diverse mechanisms underlie promoter-driven transcription of coding mRNAs and their translation into protein, and the ways in which sequence alteration of DNA can make an impact on these processes have been studied for some time. The field of epigenetics explores changes in DNA structure that influence its accessibility by transcriptional machinery, and we are continuing to develop our understanding of how these processes modify cardiac RNA production. In this topical review, we do not focus on how DNA sequence and methylation, and histone interactions, may alter its accessibility, but rather on newly described mechanisms by which some transcribed RNAs may alter initial transcription or downstream processing of other RNAs, involving both short non-coding RNAs (microRNAs) and long non-coding RNAs (lncRNAs). Here we present examples of how these two classes of non-coding RNAs mediate widespread effects on cardiac transcription and protein output in processes for which we use the broad term 'epitranscriptional regulation' and that are complementary to the DNA methylation and histone modification events studied by classical epigenetics.

  11. Scaling Pattern to Variations in Size during Development of the Vertebrate Neural Tube.

    PubMed

    Uygur, Aysu; Young, John; Huycke, Tyler R; Koska, Mervenaz; Briscoe, James; Tabin, Clifford J

    2016-04-18

    Anatomical proportions are robustly maintained in individuals that vary enormously in size, both within a species and between members of related taxa. However, the mechanisms underlying scaling are still poorly understood. We have examined this phenomenon in the context of the patterning of the ventral neural tube in response to a gradient of the morphogen Sonic hedgehog (SHH) in the chick and zebra finch, two species that differ in size during the time of neural tube patterning. We find that scaling is achieved, at least in part, by altering the sensitivity of the target cells to SHH and appears to be achieved by modulating the ratio of the repressive and activating transcriptional regulators, GLI2 and GLI3. This mechanism contrasts with previous experimental and theoretical analyses of morphogenic scaling that have focused on compensatory changes in the morphogen gradient itself. PMID:27093082

  12. dNTP deficiency induced by HU via inhibiting ribonucleotide reductase affects neural tube development.

    PubMed

    Guan, Zhen; Wang, Xiuwei; Dong, Yanting; Xu, Lin; Zhu, Zhiqiang; Wang, Jianhua; Zhang, Ting; Niu, Bo

    2015-02-01

    Exposure to environmental toxic chemicals in utero during the neural tube development period can cause developmental disorders. To evaluate the disruption of neural tube development programming, the murine neural tube defects (NTDs) model was induced by interrupting folate metabolism using methotrexate in our previous study. The present study aimed to examine the effects of dNTP deficiency induced by hydroxyurea (HU), a specific ribonucleotide reductase (RNR) inhibitor, during murine neural tube development. Pregnant C57BL/6J mice were intraperitoneally injected with various doses of HU on gestation day (GD) 7.5, and the embryos were checked on GD 11.5. RNR activity and deoxynucleoside triphosphate (dNTP) levels were measured in the optimal dose. Additionally, DNA damage was examined by comet analysis and terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling (TUNEL) assay. Cellular behaviors in NTDs embryos were evaluated with phosphorylation of histone H3 (PH-3) and caspase-3 using immunohistochemistry and western blot analysis. The results showed that NTDs were observed mostly with HU treatment at an optimal dose of 225 mg/kg b/w. RNR activity was inhibited and dNTP levels were decreased in HU-treated embryos with NTDs. Additionally, increased DNA damage, decreased proliferation, and increased caspase-3 were significant in NTDs embryos compared to the controls. Results indicated that HU induced murine NTDs model by disturbing dNTP metabolism and further led to the abnormal cell balance between proliferation and apoptosis.

  13. Neucrin, a novel secreted antagonist of canonical Wnt signaling, plays roles in developing neural tissues in zebrafish.

    PubMed

    Miyake, Ayumi; Nihno, Satoka; Murakoshi, Yuino; Satsuka, Ayano; Nakayama, Yoshiaki; Itoh, Nobuyuki

    2012-01-01

    Wnt signaling plays crucial roles in neural development. We previously identified Neucrin, a neural-specific secreted antagonist of canonical Wnt/β-catenin signaling, in humans and mice. Neucrin has one cysteine-rich domain, in which the positions of 10 cysteine residues are similar to those in the second cysteine-rich domain of Dickkopfs, secreted Wnt antagonists. Here, we have identified zebrafish neucrin to understand its roles in vivo. Zebrafish Neucrin also has one cysteine-rich domain, which is significantly similar to that of mouse Neucrin. Zebrafish neucrin was also predominantly expressed in developing neural tissues. To examine roles of neucrin in neural development, we analyzed neucrin knockdown embryos. Neural development in zebrafish embryos was impaired by the knockdown of neucrin. The knockdown of neucrin caused increased expression of the Wnt/β-catenin target genes. In contrast, overexpression of neucrin reduced the expression of the Wnt/β-catenin target genes. The knockdown of neucrin affected specification of dorsal region in the midbrain and hindbrain. The knockdown of neucrin also suppressed neuronal differentiation and caused increased cell proliferation and apoptosis in developing neural tissues. Neucrin is a unique secreted Wnt antagonist that is predominantly expressed in developing neural tissues and plays roles in neural development in zebrafish.

  14. Neural Correlates of Socioeconomic Status in the Developing Human Brain

    ERIC Educational Resources Information Center

    Noble, Kimberly G.; Houston, Suzanne M.; Kan, Eric; Sowell, Elizabeth R.

    2012-01-01

    Socioeconomic disparities in childhood are associated with remarkable differences in cognitive and socio-emotional development during a time when dramatic changes are occurring in the brain. Yet, the neurobiological pathways through which socioeconomic status (SES) shapes development remain poorly understood. Behavioral evidence suggests that…

  15. Music and Cognitive Development: From Notes to Neural Networks

    ERIC Educational Resources Information Center

    Shore, Rebecca Ann

    2010-01-01

    This article investigates research on early childhood development and on both listening to music and participation in music activities by young children. Research is reviewed that explores possible relationships between various music-related experiences and cognitive development, from the "Mozart Effect" studies to participation in piano lessons…

  16. The miR-20-Rest-Wnt signaling axis regulates neural progenitor cell differentiation

    PubMed Central

    Cui, Yi; Han, Jin; Xiao, Zhifeng; Chen, Tong; Wang, Bin; Chen, Bing; Liu, Sumei; Han, Sufang; Fang, Yongxiang; Wei, Jianshu; Wang, Xiujie; Ma, Xu; Dai, Jianwu

    2016-01-01

    Increasing evidence suggests that three dimensional (3-D) cell cultures are an improvement over traditional two dimensional (2-D) cell cultures. Current researches have extensively focused on the study of utilizing biomaterial-based 3-D culture systems to study and direct stem-cell fate both in vitro and in vivo. Here in our study, we screened the differential expression patterns of miRNAs between 2-D cultured and 3-D cultured NPCs using microarray analysis. Among these differentially expressed miRNAs, miR-20 was found to increase during differentiation of NPCs. Specifically, the facilitative effect on neural differentiation of miR-20 is mediated, at least in part by directly target the Rest gene, which is essential for preventing neural differentiation and maintaining NPCs self-renewal. Furthermore, the expression of miR-20 was decreased when the WNT pathway was inhibited by knock down of β-catenin or by exogenous Dkk protein, whereas it increased when the WNT pathway was activated by exogenous Wnt3a protein. Overall, miR-20, Rest and Wnt signaling are suggested to be involved in a regulatory circuit that can modulate the neural differention of NPCs. This novel regulatory circuit provides additional insight into how microRNAs interact with signaling molecules during neural differentiation of NPCs, allowing for fine-tuning of intricate cellular processes. PMID:26996236

  17. Protease nexin-1 regulates retinal vascular development.

    PubMed

    Selbonne, Sonia; Francois, Deborah; Raoul, William; Boulaftali, Yacine; Sennlaub, Florian; Jandrot-Perrus, Martine; Bouton, Marie-Christine; Arocas, Véronique

    2015-10-01

    We recently identified protease nexin-1 (PN-1) or serpinE2, as a possibly underestimated player in maintaining angiogenic balance. Here, we used the well-characterized postnatal vascular development of newborn mouse retina to further investigate the role and the mechanism of action of PN-1 in physiological angiogenesis. The development of retinal vasculature was analysed by endothelial cell staining with isolectin B4. PN-1-deficient (PN-1(-/-)) retina displayed increased vascularization in the postnatal period, with elevated capillary thickness and density, compared to their wild-type littermate (WT). Moreover, PN-1(-/-) retina presented more veins/arteries than WT retina. The kinetics of retinal vasculature development, retinal VEGF expression and overall retinal structure were similar in WT and PN-1(-/-) mice, but we observed a hyperproliferation of vascular cells in PN-1(-/-) retina. Expression of PN-1 was analysed by immunoblotting and X-Gal staining of retinas from mice expressing beta-galactosidase under a PN-1 promoter. PN-1 was highly expressed in the first week following birth and then progressively decreased to a low level in adult retina where it localized on the retinal arteries. PCR arrays performed on mouse retinal RNA identified two angiogenesis-related factors, midkine and Smad5, that were overexpressed in PN-1(-/-) newborn mice and this was confirmed by RT-PCR. Both the higher vascularization and the overexpression of midkine and Smad5 mRNA were also observed in gastrocnemius muscle of PN-1(-/-) mice, suggesting that PN-1 interferes with these pathways. Together, our results demonstrate that PN-1 strongly limits physiological angiogenesis and suggest that modulation of PN-1 expression could represent a new way to regulate angiogenesis.

  18. Associations Among Pubertal Development, Empathic Ability, and Neural Responses While Witnessing Peer Rejection in Adolescence

    PubMed Central

    Masten, Carrie L.; Eisenberger, Naomi I.; Pfeifer, Jennifer H.; Colich, Natalie L.; Dapretto, Mirella

    2012-01-01

    Links among concurrent and longitudinal changes in pubertal development and empathic ability from age 10 to 13 and neural responses while witnessing peer rejection at age 13 were examined in 16 participants. More advanced pubertal development at age 13, and greater longitudinal increases in pubertal development, related to increased activity in regions underlying cognitive aspects of empathy. Likewise, at age 13 greater perspective taking related to activity in cognitive empathy-related regions; however, affective components of empathy (empathic concern and personal distress) were additionally associated with activity in affective pain-related regions. Longitudinal increases in empathic ability related to cognitive and affective empathy-related circuitry. Findings provide preliminary evidence that physical and cognitive-emotional development relate to adolescents’ neural responses when witnessing peer rejection. PMID:23379360

  19. Imidacloprid Exposure Suppresses Neural Crest Cells Generation during Early Chick Embryo Development.

    PubMed

    Wang, Chao-Jie; Wang, Guang; Wang, Xiao-Yu; Liu, Meng; Chuai, Manli; Lee, Kenneth Ka Ho; He, Xiao-Song; Lu, Da-Xiang; Yang, Xuesong

    2016-06-15

    Imidacloprid is a neonicotinoid pesticide that is widely used in the control pests found on crops and fleas on pets. However, it is still unclear whether imidacloprid exposure could affect early embryo development-despite some studies having been conducted on the gametes. In this study, we demonstrated that imidacloprid exposure could lead to abnormal craniofacial osteogenesis in the developing chick embryo. Cranial neural crest cells (NCCs) are the progenitor cells of the chick cranial skull. We found that the imidacloprid exposure retards the development of gastrulating chick embryos. HNK-1, PAX7, and Ap-2α immunohistological stainings indicated that cranial NCCs generation was inhibited after imidacloprid exposure. Double immunofluorescent staining (Ap-2α and PHIS3 or PAX7 and c-Caspase3) revealed that imidacloprid exposure inhibited both NCC proliferation and apoptosis. In addition, it inhibited NCCs production by repressing Msx1 and BMP4 expression in the developing neural tube and by altering expression of EMT-related adhesion molecules (Cad6B, E-Cadherin, and N-cadherin) in the developing neural crests. We also determined that imidacloprid exposure suppressed cranial NCCs migration and their ability to differentiate. In sum, we have provided experimental evidence that imidacloprid exposure during embryogenesis disrupts NCCs development, which in turn causes defective cranial bone development.

  20. Optical Calibration Process Developed for Neural-Network-Based Optical Nondestructive Evaluation Method

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2004-01-01

    A completely optical calibration process has been developed at Glenn for calibrating a neural-network-based nondestructive evaluation (NDE) method. The NDE method itself detects very small changes in the characteristic patterns or vibration mode shapes of vibrating structures as discussed in many references. The mode shapes or characteristic patterns are recorded using television or electronic holography and change when a structure experiences, for example, cracking, debonds, or variations in fastener properties. An artificial neural network can be trained to be very sensitive to changes in the mode shapes, but quantifying or calibrating that sensitivity in a consistent, meaningful, and deliverable manner has been challenging. The standard calibration approach has been difficult to implement, where the response to damage of the trained neural network is compared with the responses of vibration-measurement sensors. In particular, the vibration-measurement sensors are intrusive, insufficiently sensitive, and not numerous enough. In response to these difficulties, a completely optical alternative to the standard calibration approach was proposed and tested successfully. Specifically, the vibration mode to be monitored for structural damage was intentionally contaminated with known amounts of another mode, and the response of the trained neural network was measured as a function of the peak-to-peak amplitude of the contaminating mode. The neural network calibration technique essentially uses the vibration mode shapes of the undamaged structure as standards against which the changed mode shapes are compared. The published response of the network can be made nearly independent of the contaminating mode, if enough vibration modes are used to train the net. The sensitivity of the neural network can be adjusted for the environment in which the test is to be conducted. The response of a neural network trained with measured vibration patterns for use on a vibration isolation

  1. Neural Correlates of Children's Theory of Mind Development

    ERIC Educational Resources Information Center

    Liu, David; Sabbagh, Mark A.; Gehring, William J.; Wellman, Henry M.

    2009-01-01

    Young children show significant changes in their mental-state understanding as marked by their performance on false-belief tasks. This study provides evidence for activity in the prefrontal cortex associated with the development of this ability. Event-related brain potentials (ERPs) were recorded as adults (N = 24) and 4-, 5-, and 6-year-old…

  2. The Neural Development of an Abstract Concept of Number

    ERIC Educational Resources Information Center

    Cantlon, Jessica F.; Libertus, Melissa E.; Pinel, Philippe; Dehaene, Stanislas; Brannon, Elizabeth M.; Pelphrey, Kevin A.

    2009-01-01

    As literate adults, we appreciate numerical values as abstract entities that can be represented by a numeral, a word, a number of lines on a scorecard, or a sequence of chimes from a clock. This abstract, notation-independent appreciation of numbers develops gradually over the first several years of life. Here, using functional magnetic resonance…

  3. Neural Development of Networks for Audiovisual Speech Comprehension

    ERIC Educational Resources Information Center

    Dick, Anthony Steven; Solodkin, Ana; Small, Steven L.

    2010-01-01

    Everyday conversation is both an auditory and a visual phenomenon. While visual speech information enhances comprehension for the listener, evidence suggests that the ability to benefit from this information improves with development. A number of brain regions have been implicated in audiovisual speech comprehension, but the extent to which the…

  4. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals

    PubMed Central

    Gao, Xiao-Bing; Hermes, Gretchen

    2015-01-01

    The neuronal system that resides in the perifornical and lateral hypothalamus (Pf/LH) and synthesizes the neuropeptide hypocretin/orexin participates in critical brain functions across species from fish to human. The hypocretin system regulates neural activity responsible for daily functions (such as sleep/wake homeostasis, energy balance, appetite, etc.) and long-term behavioral changes (such as reward seeking and addiction, stress response, etc.) in animals. The most recent evidence suggests that the hypocretin system undergoes substantial plastic changes in response to both daily fluctuations (such as food intake and sleep-wake regulation) and long-term changes (such as cocaine seeking) in neuronal activity in the brain. The understanding of these changes in the hypocretin system is essential in addressing the role of the hypocretin system in normal physiological functions and pathological conditions in animals and humans. In this review, the evidence demonstrating that neural plasticity occurs in hypocretin-containing neurons in the Pf/LH will be presented and possible physiological, behavioral, and mental health implications of these findings will be discussed. PMID:26539086

  5. Development of echolocation calls and neural selectivity for echolocation calls in the pallid bat.

    PubMed

    Razak, Khaleel A; Fuzessery, Zoltan M

    2015-10-01

    Studies of birdsongs and neural selectivity for songs have provided important insights into principles of concurrent behavioral and auditory system development. Relatively little is known about mammalian auditory system development in terms of vocalizations or other behaviorally relevant sounds. This review suggests echolocating bats are suitable mammalian model systems to understand development of auditory behaviors. The simplicity of echolocation calls with known behavioral relevance and strong neural selectivity provides a platform to address how natural experience shapes cortical receptive field (RF) mechanisms. We summarize recent studies in the pallid bat that followed development of echolocation calls and cortical processing of such calls. We also discuss similar studies in the mustached bat for comparison. These studies suggest: (1) there are different developmental sensitive periods for different acoustic features of the same vocalization. The underlying basis is the capacity for some components of the RF to be modified independent of others. Some RF computations and maps involved in call processing are present even before the cochlea is mature and well before use of echolocation in flight. Others develop over a much longer time course. (2) Normal experience is required not just for refinement, but also for maintenance, of response properties that develop in an experience independent manner. (3) Experience utilizes millisecond range changes in timing of inhibitory and excitatory RF components as substrates to shape vocalization selectivity. We suggest that bat species and call diversity provide a unique opportunity to address developmental constraints in the evolution of neural mechanisms of vocalization processing.

  6. Development of echolocation calls and neural selectivity for echolocation calls in the pallid bat

    PubMed Central

    Razak, Khaleel A.; Fuzessery, Zoltan M.

    2014-01-01

    Studies of birdsongs and neural selectivity for songs have provided important insights into principles of concurrent behavioral and auditory system development. Relatively little is known about mammalian auditory system development in terms of vocalizations, or other behaviorally relevant sounds. This review suggests echolocating bats are suitable mammalian model systems to understand development of auditory behaviors. The simplicity of echolocation calls with known behavioral relevance and strong neural selectivity provides a platform to address how natural experience shapes cortical receptive field (RF) mechanisms. We summarize recent studies in the pallid bat that followed development of echolocation calls and cortical processing of such calls. We also discuss similar studies in the mustached bat for comparison. These studies suggest: (1) there are different developmental sensitive periods for different acoustic features of the same vocalization. The underlying basis is the capacity for some components of the RF to be modified independent of others. Some RF computations and maps involved in call processing are present even before the cochlea is mature and well before use of echolocation in flight. Others develop over a much longer time course. (2) Normal experience is required not just for refinement, but also for maintenance, of response properties that develop in an experience independent manner. (3) Experience utilizes millisecond range changes in timing of inhibitory and excitatory RF components as substrates to shape vocalization selectivity. We suggest that bat species and call diversity provide a unique opportunity to address developmental constraints in the evolution of neural mechanisms of vocalization processing. PMID:25142131

  7. Development of echolocation calls and neural selectivity for echolocation calls in the pallid bat.

    PubMed

    Razak, Khaleel A; Fuzessery, Zoltan M

    2015-10-01

    Studies of birdsongs and neural selectivity for songs have provided important insights into principles of concurrent behavioral and auditory system development. Relatively little is known about mammalian auditory system development in terms of vocalizations or other behaviorally relevant sounds. This review suggests echolocating bats are suitable mammalian model systems to understand development of auditory behaviors. The simplicity of echolocation calls with known behavioral relevance and strong neural selectivity provides a platform to address how natural experience shapes cortical receptive field (RF) mechanisms. We summarize recent studies in the pallid bat that followed development of echolocation calls and cortical processing of such calls. We also discuss similar studies in the mustached bat for comparison. These studies suggest: (1) there are different developmental sensitive periods for different acoustic features of the same vocalization. The underlying basis is the capacity for some components of the RF to be modified independent of others. Some RF computations and maps involved in call processing are present even before the cochlea is mature and well before use of echolocation in flight. Others develop over a much longer time course. (2) Normal experience is required not just for refinement, but also for maintenance, of response properties that develop in an experience independent manner. (3) Experience utilizes millisecond range changes in timing of inhibitory and excitatory RF components as substrates to shape vocalization selectivity. We suggest that bat species and call diversity provide a unique opportunity to address developmental constraints in the evolution of neural mechanisms of vocalization processing. PMID:25142131

  8. Single-Cell Memory Regulates a Neural Circuit for Sensory Behavior.

    PubMed

    Kobayashi, Kyogo; Nakano, Shunji; Amano, Mutsuki; Tsuboi, Daisuke; Nishioka, Tomoki; Ikeda, Shingo; Yokoyama, Genta; Kaibuchi, Kozo; Mori, Ikue

    2016-01-01

    Unveiling the molecular and cellular mechanisms underlying memory has been a challenge for the past few decades. Although synaptic plasticity is proven to be essential for memory formation, the significance of "single-cell memory" still remains elusive. Here, we exploited a primary culture system for the analysis of C. elegans neurons and show that a single thermosensory neuron has an ability to form, retain, and reset a temperature memory. Genetic and proteomic analyses found that the expression of the single-cell memory exhibits inter-individual variability, which is controlled by the evolutionarily conserved CaMKI/IV and Raf pathway. The variable responses of a sensory neuron influenced the neural activity of downstream interneurons, suggesting that modulation of the sensory neurons ultimately determines the behavioral output in C. elegans. Our results provide proof of single-cell memory and suggest that the individual differences in neural responses at the single-cell level can confer individuality.

  9. Ets Factors Regulate Neural Stem Cell Depletion and Gliogenesis in Ras Pathway Glioma.

    PubMed

    Breunig, Joshua J; Levy, Rachelle; Antonuk, C Danielle; Molina, Jessica; Dutra-Clarke, Marina; Park, Hannah; Akhtar, Aslam Abbasi; Kim, Gi Bum; Hu, Xin; Bannykh, Serguei I; Verhaak, Roel G W; Danielpour, Moise

    2015-07-14

    As the list of putative driver mutations in glioma grows, we are just beginning to elucidate the effects of dysregulated developmental signaling pathways on the transformation of neural cells. We have employed a postnatal, mosaic, autochthonous glioma model that captures the first hours and days of gliomagenesis in more resolution than conventional genetically engineered mouse models of cancer. We provide evidence that disruption of the Nf1-Ras pathway in the ventricular zone at multiple signaling nodes uniformly results in rapid neural stem cell depletion, progenitor hyperproliferation, and gliogenic lineage restriction. Abolishing Ets subfamily activity, which is upregulated downstream of Ras, rescues these phenotypes and blocks glioma initiation. Thus, the Nf1-Ras-Ets axis might be one of the select molecular pathways that are perturbed for initiation and maintenance in glioma.

  10. Gender specificity in the neural regulation of the response to stress: new leads from classical paradigms.

    PubMed

    Patchev, V K; Almeida, O F

    1998-02-01

    Pronounced gender-related differences are observable in the regulation of the limbic-hypothalamic-pituitary-adrenal (LHPA) activity under basal and stress-related conditions, and by circulating glucocorticoid levels. This article reviews recent studies that have unequivocally demonstrated that these differences emerge from the organizational effects of gonadal steroids during early brain development. Although largely masked by the dominating role of glucocorticoids in maintaining feedback thresholds, gonadal steroids continue to exert gender-specific activational effects on the LHPA axis through adulthood. The importance of these modulatory effects of gonadal steroids may be reflected in gender differences in the incidence of psychopathologies that are accompanied by symptoms of LHPA dysregulation. One goal of this review is to highlight the need for further investigations into the (still elusive) cellular and molecular mechanisms underlying the activational effects of sex steroids, which may provide leads for neuroprotective hormone replacement strategies.

  11. A GABAergic inhibitory neural circuit regulates visual reversal learning in Drosophila.

    PubMed

    Ren, Qingzhong; Li, Hao; Wu, Yanying; Ren, Jing; Guo, Aike

    2012-08-22

    Inflexible cognition and behavior are prominent features of prefrontal cortex damage and several neuropsychiatric disorders. The ability to flexibly adapt cognitive processing and behavior to dynamically changing environmental contingencies has been studied using the reversal learning paradigm in mammals, but the complexity of the brain circuits precludes a detailed analysis of the underlying neural mechanism. Here we study the neural circuitry mechanism supporting flexible behavior in a genetically tractable model organism, Drosophila melanogaster. Combining quantitative behavior analysis and genetic manipulation, we found that inhibition from a single pair of giant GABAergic neurons, the anterior paired lateral (APL) neurons, onto the mushroom bodies (MBs) selectively facilitates behavioral flexibility during visual reversal learning. This effect was mediated by ionotropic GABA(A) receptors in the MB. Moreover, flies with perturbed MB output recapitulated the poor reversal performance of flies with dysfunctional APL neurons. Importantly, we observed that flies with dysfunctional APL-MB circuit performed normally in simple forms of visual learning, including initial learning, extinction, and differential conditioning. Finally, we showed that acute disruption of the APL-MB circuit is sufficient to impair visual reversal learning. Together, these data suggest that the APL-MB circuit plays an essential role in the resolution of conflicting reinforcement contingencies and reveals an inhibitory neural mechanism underlying flexible behavior in Drosophila.

  12. Lulu Regulates Shroom-Induced Apical Constriction during Neural Tube Closure

    PubMed Central

    Chu, Chih-Wen; Gerstenzang, Emma; Ossipova, Olga; Sokol, Sergei Y.

    2013-01-01

    Apical constriction is an essential cell behavior during neural tube closure, but its underlying mechanisms are not fully understood. Lulu, or EPB4.1l5, is a FERM domain protein that has been implicated in apical constriction and actomyosin contractility in mouse embryos and cultured cells. Interference with the function of Lulu in Xenopus embryos by a specific antisense morpholino oligonucleotide or a carboxy-terminal fragment of Lulu impaired apical constriction during neural plate hinge formation. This effect was likely due to lack of actomyosin contractility in superficial neuroectodermal cells. By contrast, overexpression of Lulu RNA in embryonic ectoderm cells triggered ectopic apico-basal elongation and apical constriction, accompanied by the apical recruitment of F-actin. Depletion of endogenous Lulu disrupted the localization and activity of Shroom3, a PDZ-containing actin-binding protein that has also been implicated in apical constriction. Furthermore, Lulu and Shroom3 RNAs cooperated in triggering ectopic apical constriction in embryonic ectoderm. Our findings reveal that Lulu is essential for Shroom3-dependent apical constriction during vertebrate neural tube closure. PMID:24282618

  13. Non-coding RNAs as Emerging Regulators of Neural Injury Responses and Regeneration.

    PubMed

    Zhou, Songlin; Ding, Fei; Gu, Xiaosong

    2016-06-01

    Non-coding RNAs (ncRNAs) are a large cluster of RNAs that do not encode proteins, but have multiple functions in diverse cellular processes. Mounting evidence indicates the involvement of ncRNAs in the physiology and pathophysiology of the central and peripheral nervous systems. It has been shown that numerous ncRNAs, especially microRNAs and long non-coding RNAs, are differentially expressed after insults such as acquired brain injury, spinal cord injury, and peripheral nerve injury. These ncRNAs affect neuronal survival, neurite regrowth, and glial phenotype primarily by targeting specific mRNAs, resulting in translation repression or degradation of the mRNAs. An increasing number of studies have investigated the regulatory roles of microRNAs and long non-coding RNAs in neural injury and regeneration, and thus a new research field is emerging. In this review, we highlight current progress in the field in an attempt to provide further insight into post-transcriptional changes occurring after neural injury, and to facilitate the potential use of ncRNAs for improving neural regeneration. We also suggest potential directions for future studies.

  14. Impact of endocrine-disrupting chemicals on neural development and the onset of neurological disorders.

    PubMed

    Kajta, Małgorzata; Wójtowicz, Anna K

    2013-01-01

    Even though high doses of organic pollutants are toxic, relatively low concentrations have been reported to cause long-term alterations in functioning of individual organisms, populations and even next generations. Among these pollutants are dioxins, polychlorinated biphenyls, pesticides, brominated flame retardants, plasticizers (bisphenol A, nonylphenol, and phthalates) as well as personal care products and drugs. In addition to toxic effects, they are able to interfere with hormone receptors, hormone synthesis or hormone conversion. Because these chemicals alter hormone-dependent processes and disrupt functioning of the endocrine glands, they have been classified as endocrine-disrupting chemicals (EDCs). Because certain EDCs are able to alter neural transmission and the formation of neural networks, the term neural-disrupting chemicals has been introduced, thus implicating EDCs in the etiology of neurological disorders. Recently, public concern has been focused on the effects of EDCs on brain function, concomitantly with an increase in neuropsychiatric disorders, including autism, attention deficit and hyperactivity disorder as well as learning disabilities and aggressiveness. Several lines of evidence suggest that exposure to EDCs is associated with depression and could result in neural degeneration. EDCs act via several classes of receptors with the best documented mechanisms being reported for nuclear steroid and xenobiotic receptors. Low doses of EDCs have been postulated to cause incomplete methylation of specific gene regions in the young brain and to impair neural development and brain functions across generations. Efforts are needed to develop systematic epidemiological studies and to investigate the mechanisms of action of EDCs in order to fully understand their effects on wildlife and humans.

  15. Neural substrates of child irritability in typically-developing and psychiatric populations

    PubMed Central

    Perlman, Susan B.; Jones, Brianna M.; Wakschlag, Lauren S.; Axelson, David; Birmaher, Boris; Phillips, Mary L.

    2015-01-01

    Irritability is an aspect of the negative affectivity domain of temperament, but in severe and dysregulated forms is a symptom of a range of psychopathologies. Better understanding of the neural underpinnings of irritability, outside the context of specific disorders, can help to understand normative variation but also characterize its clinical salience in psychopathology diagnosis. This study assessed brain activation during reward and frustration, domains of behavioral deficits in childhood irritability. Children (age 6–9) presenting in mental health clinics for extreme and impairing irritability (n=26) were compared to healthy children (n=28). Using developmentally-sensitive methods, neural activation was measured via a negative mood induction paradigm during fMRI scanning. The clinical group displayed more activation of the anterior cingulate and middle frontal gyrus during reward, but less activation during frustration, than healthy comparison children. The opposite pattern was found in the posterior cingulate. Further, in clinical subjects, parent report of irritability was dimensionally related to decreased activation of the anterior cingulate and striatum during frustration. The results of this study indicate neural dysfunction within brain regions related to reward processing, error monitoring, and emotion regulation underlying clinically impairing irritability. Results are discussed in the context of a growing field of neuroimaging research investigating irritable children. PMID:26218424

  16. Spatiotemporal recapitulation of central nervous system development by murine embryonic stem cell-derived neural stem/progenitor cells.

    PubMed

    Okada, Yohei; Matsumoto, Arifumi; Shimazaki, Takuya; Enoki, Ryosuke; Koizumi, Amane; Ishii, Seiji; Itoyama, Yasuto; Sobue, Gen; Okano, Hideyuki

    2008-12-01

    Neural stem/progenitor cells (NS/PCs) can generate a wide variety of neural cells. However, their fates are generally restricted, depending on the time and location of NS/PC origin. Here we demonstrate that we can recapitulate the spatiotemporal regulation of central nervous system (CNS) development in vitro by using a neurosphere-based culture system of embryonic stem (ES) cell-derived NS/PCs. This ES cell-derived neurosphere system enables the efficient derivation of highly neurogenic fibroblast growth factor-responsive NS/PCs with early temporal identities and high cell-fate plasticity. Over repeated passages, these NS/PCs exhibit temporal progression, becoming epidermal growth factor-responsive gliogenic NS/PCs with late temporal identities; this change is accompanied by an alteration in the epigenetic status of the glial fibrillary acidic protein promoter, similar to that observed in the developing brain. Moreover, the rostrocaudal and dorsoventral spatial identities of the NS/PCs can be successfully regulated by sequential administration of several morphogens. These NS/PCs can differentiate into early-born projection neurons, including cholinergic, catecholaminergic, serotonergic, and motor neurons, that exhibit action potentials in vitro. Finally, these NS/PCs differentiate into neurons that form synaptic contacts with host neurons after their transplantation into wild-type and disease model animals. Thus, this culture system can be used to obtain specific neurons from ES cells, is a simple and powerful tool for investigating the underlying mechanisms of CNS development, and is applicable to regenerative treatment for neurological disorders. PMID:18757299

  17. Developing and using expert systems and neural networks in medicine: a review on benefits and challenges.

    PubMed

    Sheikhtaheri, Abbas; Sadoughi, Farahnaz; Hashemi Dehaghi, Zahra

    2014-09-01

    Complicacy of clinical decisions justifies utilization of information systems such as artificial intelligence (e.g. expert systems and neural networks) to achieve better decisions, however, application of these systems in the medical domain faces some challenges. We aimed at to review the applications of these systems in the medical domain and discuss about such challenges. Following a brief introduction of expert systems and neural networks by representing few examples, the challenges of these systems in the medical domain are discussed. We found that the applications of expert systems and artificial neural networks have been increased in the medical domain. These systems have shown many advantages such as utilization of experts' knowledge, gaining rare knowledge, more time for assessment of the decision, more consistent decisions, and shorter decision-making process. In spite of all these advantages, there are challenges ahead of developing and using such systems including maintenance, required experts, inputting patients' data into the system, problems for knowledge acquisition, problems in modeling medical knowledge, evaluation and validation of system performance, wrong recommendations and responsibility, limited domains of such systems and necessity of integrating such systems into the routine work flows. We concluded that expert systems and neural networks can be successfully used in medicine; however, there are many concerns and questions to be answered through future studies and discussions.

  18. Induction of Excess Centrosomes in Neural Progenitor Cells during the Development of Radiation-Induced Microcephaly

    PubMed Central

    Shimada, Mikio; Matsuzaki, Fumio; Kato, Akihiro; Kobayashi, Junya; Matsumoto, Tomohiro; Komatsu, Kenshi

    2016-01-01

    The embryonic brain is one of the tissues most vulnerable to ionizing radiation. In this study, we showed that ionizing radiation induces apoptosis in the neural progenitors of the mouse cerebral cortex, and that the surviving progenitor cells subsequently develop a considerable amount of supernumerary centrosomes. When mouse embryos at Day 13.5 were exposed to γ-rays, brains sizes were reduced markedly in a dose-dependent manner, and these size reductions persisted until birth. Immunostaining with caspase-3 antibodies showed that apoptosis occurred in 35% and 40% of neural progenitor cells at 4 h after exposure to 1 and 2 Gy, respectively, and this was accompanied by a disruption of the apical layer in which mitotic spindles were positioned in unirradiated mice. At 24 h after 1 Gy irradiation, the apoptotic cells were completely eliminated and proliferation was restored to a level similar to that of unirradiated cells, but numerous spindles were localized outside the apical layer. Similarly, abnormal cytokinesis, which included multipolar division and centrosome clustering, was observed in 19% and 24% of the surviving neural progenitor cells at 48 h after irradiation with 1 and 2 Gy, respectively. Because these cytokinesis aberrations derived from excess centrosomes result in growth delay and mitotic catastrophe-mediated cell elimination, our findings suggest that, in addition to apoptosis at an early stage of radiation exposure, radiation-induced centrosome overduplication could contribute to the depletion of neural progenitors and thereby lead to microcephaly. PMID:27367050

  19. Induction of Excess Centrosomes in Neural Progenitor Cells during the Development of Radiation-Induced Microcephaly.

    PubMed

    Shimada, Mikio; Matsuzaki, Fumio; Kato, Akihiro; Kobayashi, Junya; Matsumoto, Tomohiro; Komatsu, Kenshi

    2016-01-01

    The embryonic brain is one of the tissues most vulnerable to ionizing radiation. In this study, we showed that ionizing radiation induces apoptosis in the neural progenitors of the mouse cerebral cortex, and that the surviving progenitor cells subsequently develop a considerable amount of supernumerary centrosomes. When mouse embryos at Day 13.5 were exposed to γ-rays, brains sizes were reduced markedly in a dose-dependent manner, and these size reductions persisted until birth. Immunostaining with caspase-3 antibodies showed that apoptosis occurred in 35% and 40% of neural progenitor cells at 4 h after exposure to 1 and 2 Gy, respectively, and this was accompanied by a disruption of the apical layer in which mitotic spindles were positioned in unirradiated mice. At 24 h after 1 Gy irradiation, the apoptotic cells were completely eliminated and proliferation was restored to a level similar to that of unirradiated cells, but numerous spindles were localized outside the apical layer. Similarly, abnormal cytokinesis, which included multipolar division and centrosome clustering, was observed in 19% and 24% of the surviving neural progenitor cells at 48 h after irradiation with 1 and 2 Gy, respectively. Because these cytokinesis aberrations derived from excess centrosomes result in growth delay and mitotic catastrophe-mediated cell elimination, our findings suggest that, in addition to apoptosis at an early stage of radiation exposure, radiation-induced centrosome overduplication could contribute to the depletion of neural progenitors and thereby lead to microcephaly. PMID:27367050

  20. The tumor suppressor Nf2 regulates corpus callosum development by inhibiting the transcriptional coactivator Yap

    PubMed Central

    Lavado, Alfonso; Ware, Michelle; Paré, Joshua; Cao, Xinwei

    2014-01-01

    The corpus callosum connects cerebral hemispheres and is the largest axon tract in the mammalian brain. Callosal malformations are among the most common congenital brain anomalies and are associated with a wide range of neuropsychological deficits. Crossing of the midline by callosal axons relies on a proper midline environment that harbors guidepost cells emitting guidance cues to instruct callosal axon navigation. Little is known about what controls the formation of the midline environment. We find that two components of the Hippo pathway, the tumor suppressor Nf2 (Merlin) and the transcriptional coactivator Yap (Yap1), regulate guidepost development and expression of the guidance cue Slit2 in mouse. During normal brain development, Nf2 suppresses Yap activity in neural progenitor cells to promote guidepost cell differentiation and prevent ectopic Slit2 expression. Loss of Nf2 causes malformation of midline guideposts and Slit2 upregulation, resulting in callosal agenesis. Slit2 heterozygosity and Yap deletion both restore callosal formation in Nf2 mutants. Furthermore, selectively elevating Yap activity in midline neural progenitors is sufficient to disrupt guidepost formation, upregulate Slit2 and prevent midline crossing. The Hippo pathway is known for its role in controlling organ growth and tumorigenesis. Our study identifies a novel role of this pathway in axon guidance. Moreover, by linking axon pathfinding and neural progenitor behaviors, our results provide an example of the intricate coordination between growth and wiring during brain development. PMID:25336744

  1. The tumor suppressor Nf2 regulates corpus callosum development by inhibiting the transcriptional coactivator Yap.

    PubMed

    Lavado, Alfonso; Ware, Michelle; Paré, Joshua; Cao, Xinwei

    2014-11-01

    The corpus callosum connects cerebral hemispheres and is the largest axon tract in the mammalian brain. Callosal malformations are among the most common congenital brain anomalies and are associated with a wide range of neuropsychological deficits. Crossing of the midline by callosal axons relies on a proper midline environment that harbors guidepost cells emitting guidance cues to instruct callosal axon navigation. Little is known about what controls the formation of the midline environment. We find that two components of the Hippo pathway, the tumor suppressor Nf2 (Merlin) and the transcriptional coactivator Yap (Yap1), regulate guidepost development and expression of the guidance cue Slit2 in mouse. During normal brain development, Nf2 suppresses Yap activity in neural progenitor cells to promote guidepost cell differentiation and prevent ectopic Slit2 expression. Loss of Nf2 causes malformation of midline guideposts and Slit2 upregulation, resulting in callosal agenesis. Slit2 heterozygosity and Yap deletion both restore callosal formation in Nf2 mutants. Furthermore, selectively elevating Yap activity in midline neural progenitors is sufficient to disrupt guidepost formation, upregulate Slit2 and prevent midline crossing. The Hippo pathway is known for its role in controlling organ growth and tumorigenesis. Our study identifies a novel role of this pathway in axon guidance. Moreover, by linking axon pathfinding and neural progenitor behaviors, our results provide an example of the intricate coordination between growth and wiring during brain development.

  2. Common fragile sites, extremely large genes, neural development and cancer.

    PubMed

    Smith, David I; Zhu, Yu; McAvoy, Sarah; Kuhn, Robert

    2006-01-28

    Common fragile sites (CFSs) are large regions of profound genomic instability found in all individuals. They are biologically significant due to their role in a number of genomic alterations that are frequently found in many different types of cancer. The first CFS to be cloned and characterized was FRA3B, the most active CFS in the human genome. Instability within this region extends for over 4.0 Mbs and contained within the center of this CFS is the FHIT gene spanning 1.5 Mbs of genomic sequence. There are frequent deletions and other alterations within this gene in multiple tumor types and the protein encoded by this gene has been demonstrated to function as a tumor suppressor in vitro and in vivo. In spite of this, FHIT is not a traditional mutational target in cancer and many tumors have large intronic deletions without any exonic alterations. There are several other very large genes found within CFS regions including Parkin (1.37 Mbs in FRA6E), GRID2 (1.47 Mbs within 4q22.3), and WWOX (1.11 Mbs within FRA16D). These genes also appear to function as tumor suppressors but are not traditional mutational targets in cancer. Each of these genes is highly conserved and the regions spanning them are CFSs in mice. We have now examined lists of the largest human genes and found forty that span over one megabase. Many of these are derived from chromosomal bands containing CFSs. BACs within these genes are being utilized as FISH probes to determine if these are also CFS genes. Thus far we have identified the following as CFS genes: CNTNAP2 (2.3 Mbs in FRA7I), DMD (2.09 Mbs in FRAXC), LRP1B (1.9 Mbs in FRA2F), CTNNA3 (1.78 Mbs in FRA10D), DAB1 (1.55 Mbs in FRA1B), and IL1RAPL1 (1.36 Mbs in FRAXC). Although, these genes are also not traditional mutational targets in cancer they do exhibit loss of expression in multiple tumor types suggesting that they may also function as tumor suppressors. Many of the large CFS genes are involved in neurological development. Parkin is

  3. Neural development of networks for audiovisual speech comprehension

    PubMed Central

    Dick, Anthony Steven; Solodkin, Ana; Small, Steven L.

    2009-01-01

    Everyday conversation is both an auditory and a visual phenomenon. While visual speech information enhances comprehension for the listener, evidence suggests that the ability to benefit from this information improves with development. A number of brain regions have been implicated in audiovisual speech comprehension, but the extent to which the neurobiological substrate in the child compares to the adult is unknown. In particular, developmental differences in the network for audiovisual speech comprehension could manifest though the incorporation of additional brain regions, or through different patterns of effective connectivity. In the present study we used functional magnetic resonance imaging and structural equation modeling (SEM) to characterize the developmental changes in network interactions for audiovisual speech comprehension. The brain response was recorded while children 8- to 11-years-old and adults passively listened to stories under audiovisual (AV) and auditory-only (A) conditions. Results showed that in children and adults, AV comprehension activated the same fronto-temporo-parietal network of regions known for their contribution to speech production and perception. However, the SEM network analysis revealed age-related differences in the functional interactions among these regions. In particular, the influence of the posterior inferior frontal gyrus/ventral premotor cortex on supramarginal gyrus differed across age groups during AV, but not A speech. This functional pathway might be important for relating motor and sensory information used by the listener to identify speech sounds. Further, its development might reflect changes in the mechanisms that relate visual speech information to articulatory speech representations through experience producing and perceiving speech. PMID:19781755

  4. The Hectd1 Ubiquitin Ligase is Required for Development of the Head Mesenchyme and Neural Tube Closure

    PubMed Central

    Zohn, Irene E.; Anderson, Kathryn V.; Niswander, Lee

    2009-01-01

    Closure of the cranial neural tube depends on normal development of the head mesenchyme. Homozygous-mutant embryos for the ENU-induced open mind (opm) mutation exhibit exencephaly associated with defects in head mesenchyme development and dorsal-lateral hinge point formation. The head mesenchyme in opm mutant embryos is denser than in wildtype embryos and displays an abnormal cellular organization. Since cells that originate from both the cephalic paraxial mesoderm and the neural crest populate the head mesenchyme, we explored the origin of the abnormal head mesenchyme. opm mutant embryos show apparently normal development of neural crest-derived structures. Furthermore, the abnormal head mesenchyme in opm mutant embryos is not derived from the neural crest, but instead expresses molecular markers of cephalic mesoderm. We also report the identification of the opm mutation in the ubiquitously expressed Hectd1 E3 ubiquitin ligase. Two different Hectd1 alleles cause incompletely penetrant neural tube defects in heterozygous animals, indicating that Hectd1 function is required at a critical threshold for neural tube closure. This low penetrance of neural tube defects in embryos heterozygous for Hectd1 mutations suggests that Hectd1 should be considered as candidate susceptibility gene in human neural tube defects. PMID:17442300

  5. MicroRNA GENE EXPRESSION SIGNATURES IN THE DEVELOPING NEURAL TUBE

    PubMed Central

    Mukhopadhyay, Partha; Brock, Guy; Appana, Savitri; Webb, Cynthia; Greene, Robert M.; Pisano, M. Michele

    2011-01-01

    BACKGROUND Neurulation requires precise, spatio-temporal expression of numerous genes and coordinated interaction of signal transduction and gene regulatory networks, disruption of which may contribute to the etiology of neural tube (NT) defects. MicroRNAs are key modulators of cell and tissue differentiation. In order to define potential roles of miRNAs in development of the murine NT, miRNA microarray analysis was conducted to establish expression profiles, and identify miRNA target genes and functional gene networks. METHODS miRNA expression profiles in murine embryonic NTs derived from gestational days 8.5, 9.0 and 9.5 were defined and compared utilizing miRXplore™ microarrays from Miltenyi Biotech GmbH. Gene expression changes were verified by TaqMan™ quantitative Real-Time PCR. clValid R package and the UPGMA (hierarchical) clustering method were utilized for cluster analysis of the microarray data. Functional associations among selected miRNAs were examined via Ingenuity Pathway Analysis. RESULTS miRXplore™ chips enabled examination of 609 murine miRNAs. Expression of approximately 12% of these was detected in murine embryonic NTs. Clustering analysis revealed several developmentally regulated expression clusters among these expressed genes. Target analysis of differentially expressed miRNAs enabled identification of numerous target genes associated with cellular processes essential for normal NT development. Utilization of Ingenuity Pathway Analysis revealed interactive biological networks which connected differentially expressed miRNAs with their target genes, and highlighted functional relationships. CONCLUSIONS The present study defined unique gene expression signatures of a range of miRNAs in the developing NT during the critical period of NT morphogenesis. Analysis of miRNA target genes and gene interaction pathways revealed that specific miRNAs may direct expression of numerous genes encoding proteins which have been shown to be indispensable

  6. Chibby functions in Xenopus ciliary assembly, embryonic development, and the regulation of gene expression

    PubMed Central

    Shi, Jianli; Zhao, Ying; Galati, Domenico; Winey, Mark; Klymkowsky, Michael W.

    2015-01-01

    Wnt signaling and ciliogenesis are core features of embryonic development in a range of metazoans. Chibby (Cby), a basal-body associated protein, regulates β-catenin-mediated Wnt signaling in the mouse but not Drosophila. Here we present an analysis of Cby’s embryonic expression and morphant phenotypes in Xenopus laevis. Cby RNA is supplied maternally, negatively regulated by Snail2 but not Twist1, preferentially expressed in the neuroectoderm, and regulates β-catenin-mediated gene expression. Reducing Cby levels reduced the density of multiciliated cells, the number of basal bodies per multiciliated cell, and the numbers of neural tube primary cilia; it also led to abnormal development of the neural crest, central nervous system, and pronephros, all defects that were rescued by a Cby-GFP chimera. Reduction of Cby led to an increase in Wnt8a and decreases in Gli2, Gli3, and Shh RNA levels. Many, but not all, morphant phenotypes were significantly reversed by the Wnt inhibitor SFRP2. These observations extend our understanding of Cby’s role in mediating the network of interactions between ciliogenesis, signaling systems and tissue patterning. PMID:25220153

  7. Hbp1 regulates the timing of neuronal differentiation during cortical development by controlling cell cycle progression.

    PubMed

    Watanabe, Naoki; Kageyama, Ryoichiro; Ohtsuka, Toshiyuki

    2015-07-01

    In the developing mammalian brain, neural stem cells (NSCs) initially expand the progenitor pool by symmetric divisions. NSCs then shift from symmetric to asymmetric division and commence neurogenesis. Although the precise mechanisms regulating the developmental timing of this transition have not been fully elucidated, gradual elongation in the length of the cell cycle and coinciding accumulation of determinants that promote neuronal differentiation might function as a biological clock that regulates the onset of asymmetric division and neurogenesis. We conducted gene expression profiling of embryonic NSCs in the cortical regions and found that expression of high mobility group box transcription factor 1 (Hbp1) was upregulated during neurogenic stages. Induced conditional knockout mice of Hbp1, generated by crossing with Nestin-CreER(T2) mice, exhibited a remarkable dilatation of the telencephalic vesicles with a tangentially expanded ventricular zone and a thinner cortical plate containing reduced numbers of neurons. In these Hbp1-deficient mouse embryos, neural stem/progenitor cells continued to divide with a shorter cell cycle length. Moreover, downstream target genes of the Wnt signaling, such as cyclin D1 (Ccnd1) and c-jun (Jun), were upregulated in the germinal zone of the cortical regions. These results indicate that Hbp1 plays a crucial role in regulating the timing of cortical neurogenesis by elongating the cell cycle and that it is essential for normal cortical development.

  8. Stronger neural dynamics capture changes in infants’ visual working memory capacity over development

    PubMed Central

    Perone, Sammy; Simmering, Vanessa R.; Spencer, John P.

    2012-01-01

    Visual working memory (VWM) capacity has been studied extensively in adults, and methodological advances have enabled researchers to probe capacity limits in infancy using a preferential looking paradigm. Evidence suggests that capacity increases rapidly between 6 and 10 months of age. To understand how the VWM system develops, we must understand the relationship between the looking behavior used to study VWM and underlying cognitive processes. We present a dynamic neural field model that captures both real-time and developmental processes underlying performance. Three simulation experiments show how looking is linked to VWM processes during infancy and how developmental changes in performance could arise through increasing neural connectivity. These results provide insight into the sources of capacity limits and VWM development more generally. PMID:22010897

  9. Significant expansion of the REST/NRSF cistrome in human versus mouse embryonic stem cells: potential implications for neural development.

    PubMed

    Rockowitz, Shira; Zheng, Deyou

    2015-07-13

    Recent studies have employed cross-species comparisons of transcription factor binding, reporting significant regulatory network 'rewiring' between species. Here, we address how a transcriptional repressor targets and regulates neural genes differentially between human and mouse embryonic stem cells (ESCs). We find that the transcription factor, Repressor Element 1 Silencing Transcription factor (REST; also called neuron restrictive silencer factor) binds to a core group of ∼1200 syntenic genomic regions in both species, with these conserved sites highly enriched with co-factors, selective histone modifications and DNA hypomethylation. Genes with conserved REST binding are enriched with neural functions and more likely to be upregulated upon REST depletion. Interestingly, we identified twice as many REST peaks in human ESCs compared to mouse ESCs. Human REST cistrome expansion involves additional peaks in genes targeted by REST in both species and human-specific gene targets. Genes with expanded REST occupancy in humans are enriched for learning or memory functions. Analysis of neurological disorder associated genes reveals that Amyotrophic Lateral Sclerosis and oxidative stress genes are particularly enriched with human-specific REST binding. Overall, our results demonstrate that there is substantial rewiring of human and mouse REST cistromes, and that REST may have human-specific roles in brain development and functions. PMID:25990720

  10. Significant expansion of the REST/NRSF cistrome in human versus mouse embryonic stem cells: potential implications for neural development

    PubMed Central

    Rockowitz, Shira; Zheng, Deyou

    2015-01-01

    Recent studies have employed cross-species comparisons of transcription factor binding, reporting significant regulatory network ‘rewiring’ between species. Here, we address how a transcriptional repressor targets and regulates neural genes differentially between human and mouse embryonic stem cells (ESCs). We find that the transcription factor, Repressor Element 1 Silencing Transcription factor (REST; also called neuron restrictive silencer factor) binds to a core group of ∼1200 syntenic genomic regions in both species, with these conserved sites highly enriched with co-factors, selective histone modifications and DNA hypomethylation. Genes with conserved REST binding are enriched with neural functions and more likely to be upregulated upon REST depletion. Interestingly, we identified twice as many REST peaks in human ESCs compared to mouse ESCs. Human REST cistrome expansion involves additional peaks in genes targeted by REST in both species and human-specific gene targets. Genes with expanded REST occupancy in humans are enriched for learning or memory functions. Analysis of neurological disorder associated genes reveals that Amyotrophic Lateral Sclerosis and oxidative stress genes are particularly enriched with human-specific REST binding. Overall, our results demonstrate that there is substantial rewiring of human and mouse REST cistromes, and that REST may have human-specific roles in brain development and functions. PMID:25990720

  11. Neural tube defects.

    PubMed

    Greene, Nicholas D E; Copp, Andrew J

    2014-01-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies. PMID:25032496

  12. Top-down attention regulates the neural expression of audiovisual integration.

    PubMed

    Morís Fernández, Luis; Visser, Maya; Ventura-Campos, Noelia; Ávila, César; Soto-Faraco, Salvador

    2015-10-01

    The interplay between attention and multisensory integration has proven to be a difficult question to tackle. There are almost as many studies showing that multisensory integration occurs independently from the focus of attention as studies implying that attention has a profound effect on integration. Addressing the neural expression of multisensory integration for attended vs. unattended stimuli can help disentangle this apparent contradiction. In the present study, we examine if selective attention to sound pitch influences the expression of audiovisual integration in both behavior and neural activity. Participants were asked to attend to one of two auditory speech streams while watching a pair of talking lips that could be congruent or incongruent with the attended speech stream. We measured behavioral and neural responses (fMRI) to multisensory stimuli under attended and unattended conditions while physical stimulation was kept constant. Our results indicate that participants recognized words more accurately from an auditory stream that was both attended and audiovisually (AV) congruent, thus reflecting a benefit due to AV integration. On the other hand, no enhancement was found for AV congruency when it was unattended. Furthermore, the fMRI results indicated that activity in the superior temporal sulcus (an area known to be related to multisensory integration) was contingent on attention as well as on audiovisual congruency. This attentional modulation extended beyond heteromodal areas to affect processing in areas classically recognized as unisensory, such as the superior temporal gyrus or the extrastriate cortex, and to non-sensory areas such as the motor cortex. Interestingly, attention to audiovisual incongruence triggered responses in brain areas related to conflict processing (i.e., the anterior cingulate cortex and the anterior insula). Based on these results, we hypothesize that AV speech integration can take place automatically only when both

  13. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring.

    PubMed

    Wang, Yanyan; Surzenko, Natalia; Friday, Walter B; Zeisel, Steven H

    2016-04-01

    Maternal diets low in choline, an essential nutrient, increase the risk of neural tube defects and lead to low performance on cognitive tests in children. However, the consequences of maternal dietary choline deficiency for the development and structural organization of the cerebral cortex remain unknown. In this study, we fed mouse dams either control (CT) or low-choline (LC) diets and investigated the effects of choline on cortical development in the offspring. As a result of a low choline supply between embryonic day (E)11 and E17 of gestation, the number of 2 types of cortical neural progenitor cells (NPCs)-radial glial cells and intermediate progenitor cells-was reduced in fetal brains (P< 0.01). Furthermore, the number of upper layer cortical neurons was decreased in the offspring of dams fed an LC diet at both E17 (P< 0.001) and 4 mo of age (P< 0.001). These effects of LC maternal diet were mediated by a decrease in epidermal growth factor receptor (EGFR) signaling in NPCs related to the disruption of EGFR posttranscriptional regulation. Our findings describe a novel mechanism whereby low maternal dietary intake of choline alters brain development.-Wang, Y., Surzenko, N., Friday, W. B., Zeisel, S. H. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring. PMID:26700730

  14. Transcriptional Regulation of Heart Development in Zebrafish

    PubMed Central

    Lu, Fei; Langenbacher, Adam D.; Chen, Jau-Nian

    2016-01-01

    Cardiac transcription factors orchestrate the complex cellular and molecular events required to produce a functioning heart. Misregulation of the cardiac transcription program leads to embryonic developmental defects and is associated with human congenital heart diseases. Recent studies have expanded our understanding of the regulation of cardiac gene expression at an additional layer, involving the coordination of epigenetic and transcriptional regulators. In this review, we highlight and discuss discoveries made possible by the genetic and embryological tools available in the zebrafish model organism, with a focus on the novel functions of cardiac transcription factors and epigenetic and transcriptional regulatory proteins during cardiogenesis. PMID:27148546

  15. Neural correlates of expected risks and returns in risky choice across development.

    PubMed

    van Duijvenvoorde, Anna C K; Huizenga, Hilde M; Somerville, Leah H; Delgado, Mauricio R; Powers, Alisa; Weeda, Wouter D; Casey, B J; Weber, Elke U; Figner, Bernd

    2015-01-28

    Adolescence is often described as a period of increased risk taking relative to both childhood and adulthood. This inflection in risky choice behavior has been attributed to a neurobiological imbalance between earlier developing motivational systems and later developing top-down control regions. Yet few studies have decomposed risky choice to investigate the underlying mechanisms or tracked their differential developmental trajectory. The current study uses a risk-return decomposition to more precisely assess the development of processes underlying risky choice and to link them more directly to specific neural mechanisms. This decomposition specifies the influence of changing risks (outcome variability) and changing returns (expected value) on the choices of children, adolescents, and adults in a dynamic risky choice task, the Columbia Card Task. Behaviorally, risk aversion increased across age groups, with adults uniformly risk averse and adolescents showing substantial individual differences in risk sensitivity, ranging from risk seeking to risk averse. Neurally, we observed an adolescent peak in risk-related activation in the anterior insula and dorsal medial PFC. Return sensitivity, on the other hand, increased monotonically across age groups and was associated with increased activation in the ventral medial PFC and posterior cingulate cortex with age. Our results implicate adolescence as a developmental phase of increased neural risk sensitivity. Importantly, this work shows that using a behaviorally validated decision-making framework allows a precise operationalization of key constructs underlying risky choice that inform the interpretation of results.

  16. Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development

    NASA Technical Reports Server (NTRS)

    Norga, Koenraad K.; Gurganus, Marjorie C.; Dilda, Christy L.; Yamamoto, Akihiko; Lyman, Richard F.; Patel, Prajal H.; Rubin, Gerald M.; Hoskins, Roger A.; Mackay, Trudy F.; Bellen, Hugo J.

    2003-01-01

    BACKGROUND: The identification of the function of all genes that contribute to specific biological processes and complex traits is one of the major challenges in the postgenomic era. One approach is to employ forward genetic screens in genetically tractable model organisms. In Drosophila melanogaster, P element-mediated insertional mutagenesis is a versatile tool for the dissection of molecular pathways, and there is an ongoing effort to tag every gene with a P element insertion. However, the vast majority of P element insertion lines are viable and fertile as homozygotes and do not exhibit obvious phenotypic defects, perhaps because of the tendency for P elements to insert 5' of transcription units. Quantitative genetic analysis of subtle effects of P element mutations that have been induced in an isogenic background may be a highly efficient method for functional genome annotation. RESULTS: Here, we have tested the efficacy of this strategy by assessing the extent to which screening for quantitative effects of P elements on sensory bristle number can identify genes affecting neural development. We find that such quantitative screens uncover an unusually large number of genes that are known to function in neural development, as well as genes with yet uncharacterized effects on neural development, and novel loci. CONCLUSIONS: Our findings establish the use of quantitative trait analysis for functional genome annotation through forward genetics. Similar analyses of quantitative effects of P element insertions will facilitate our understanding of the genes affecting many other complex traits in Drosophila.

  17. Dynamics of modularity of neural activity in the brain during development

    NASA Astrophysics Data System (ADS)

    Deem, Michael; Chen, Man

    2014-03-01

    Theory suggests that more modular systems can have better response functions at short times. This theory suggests that greater cognitive performance may be achieved for more modular neural activity, and that modularity of neural activity may, therefore, likely increase with development in children. We study the relationship between age and modularity of brain neural activity in developing children. The value of modularity calculated from fMRI data is observed to increase during childhood development and peak in young adulthood. We interpret these results as evidence of selection for plasticity in the cognitive function of the human brain. We present a model to illustrate how modularity can provide greater cognitive performance at short times and enhance fast, low-level, automatic cognitive processes. Conversely, high-level, effortful, conscious cognitive processes may not benefit from modularity. We use quasispecies theory to predict how the average modularity evolves with age, given a fitness function extracted from the model. We suggest further experiments exploring the effect of modularity on cognitive performance and suggest that modularity may be a potential biomarker for injury, rehabilitation, or disease.

  18. Neural stem cells in the adult ciliary epithelium express GFAP and are regulated by Wnt signaling

    SciTech Connect

    Das, Ani V.; Zhao Xing; James, Jackson; Kim, Min; Cowan, Kenneth H.; Ahmad, Iqbal . E-mail: iahmad@unmc.edu

    2006-01-13

    The identification of neural stem cells with retinal potential in the ciliary epithelium (CE) of the adult mammals is of considerable interest because of their potential for replacing or rescuing degenerating retinal neurons in disease or injury. The evaluation of such a potential requires characterization of these cells with regard to their phenotypic properties, potential, and regulatory mechanisms. Here, we demonstrate that rat CE stem cells/progenitors in neurosphere culture display astrocytic nature in terms of expressing glial intermediate neurofilament protein, GFAP. The GFAP-expressing CE stem cells/progenitors form neurospheres in proliferating conditions and generate neurons when shifted to differentiating conditions. These cells express components of the canonical Wnt pathway and its activation promotes their proliferation. Furthermore, we demonstrate that the activation of the canonical Wnt pathway influences neuronal differentiation of CE stem cells/progenitors in a context dependent manner. Our observations suggest that CE stem cells/progenitors share phenotypic properties and regulatory mechanism(s) with neural stem cells elsewhere in the adult CNS.

  19. Transplantation of Human Neural Stem Cells in a Parkinsonian Model Exerts Neuroprotection via Regulation of the Host Microenvironment.

    PubMed

    Zuo, Fu-Xing; Bao, Xin-Jie; Sun, Xi-Cai; Wu, Jun; Bai, Qing-Ran; Chen, Guo; Li, Xue-Yuan; Zhou, Qiang-Yi; Yang, Yuan-Fan; Shen, Qin; Wang, Ren-Zhi

    2015-11-05

    Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons and consequent dopamine (DA) deficit, and current treatment still remains a challenge. Although neural stem cells (NSCs) have been evaluated as appealing graft sources, mechanisms underlying the beneficial phenomena are not well understood. Here, we investigate whether human NSCs (hNSCs) transplantation could provide neuroprotection against DA depletion by recruiting endogenous cells to establish a favorable niche. Adult mice subjected to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were transplanted with hNSCs or vehicle into the striatum. Behavioral and histological analyses demonstrated significant neurorescue response observed in hNSCs-treated animals compared with the control mice. In transplanted animals, grafted cells survived, proliferated, and migrated within the astrocytic scaffold. Notably, more local astrocytes underwent de-differentiation, acquiring the properties of NSCs or neural precursor cells (NPCs) in mice given hNSCs. Additionally, we also detected significantly higher expression of host-derived growth factors in hNSCs-transplanted mice compared with the control animals, together with inhibition of local microglia and proinflammatory cytokines. Overall, our results indicate that hNSCs transplantation exerts neuroprotection in MPTP-insulted mice via regulating the host niche. Harnessing synergistic interaction between the grafts and host cells may help optimize cell-based therapies for PD.

  20. Molecular manipulation targeting regulation of dopaminergic differentiation and proliferation of neural stem cells or pluripotent stem cells.

    PubMed

    Ding, Yin-Xiu; Wei, Li-Chun; Wang, Ya-Zhou; Cao, Rong; Wang, Xi; Chen, Liang-Wei

    2011-06-01

    Parkinson's disease (PD) is a severe deliberating neurological disease caused by progressive degenerative death of dopaminergic neurons in the substantia nigra of midbrain. While cell replacement strategy by transplantation of neural stem cells and inducement of dopaminergic neurons is recommended for the treatment of PD, understanding the differentiation mechanism and controlled proliferation of grafted stem cells remain major concerns in their clinical application. Here we review recent studies on molecular signaling pathways in regulation of dopaminergic differentiation and proliferation of stem cells, particularly Wnt/beta-catenin signaling in stimulating formation of the dopaminergic phenotype, Notch signaling in inhibiting stem cell differentiation, and Sonic hedgehog functioning in neural stem cell proliferation and neuronal cell production. Activation of oncogenes involved in uncontrolled proliferation or tumorigenicity of stem cells is also discussed. It is proposed that a selective molecular manipulation targeting strategy will greatly benefit cell replacement therapy for PD by effectively promoting dopaminergic neuronal cell generation and reducing risk of tumorigenicity of in vivo stem cell applications.

  1. Cytoplasmic p53 and Activated Bax Regulate p53-dependent, Transcription-independent Neural Precursor Cell Apoptosis

    PubMed Central

    Geng, Ying; Walls, K.C.; Ghosh, Arindam P.; Akhtar, Rizwan S.; Klocke, Barbara J.; Roth, Kevin A.

    2010-01-01

    The prodeath effects of p53 are typically mediated via its transcriptional upregulation of proapoptotic Bcl-2 family members, including PUMA, Noxa, and/or Bax. We previously reported that staurosporine (STS), a broad-spectrum kinase inhibitor and prototypical apoptosis-inducing agent, produced p53-dependent, Bax-dependent, neural precursor cell (NPC) apoptosis, but that this effect occurred independently of new gene transcription and PUMA expression. To further characterize the mechanism by which p53 regulates NPC death, we used primary cerebellar NPCs derived from wild-type, p53-deficient, and Bax-deficient neonatal mice and the mouse cerebellar neural stem cell line, C17.2. We found that STS rapidly increased p53 cytoplasmic immunoreactivity in neuritic-like processes in C17.2 cells, which preceded Bax activation and caspase-3 cleavage. Confocal microscopy analysis of STS-treated cells revealed partial colocalization of p53 with the mitochondrial marker pyruvate dehydrogenase as well as with conformationally altered “activated” Bax, suggesting an interaction between these proapoptotic molecules in triggering apoptotic death. Nucleophosmin (NPM), a CRM1-dependent nuclear chaperone, also exhibited partial colocalization with both activated Bax and p53 following STS treatment. These observations suggest that cytoplasmic p53 can trigger transcription-independent NPC apoptosis through its potential interaction with NPM and activated Bax. (J Histochem Cytochem 58:265–275, 2010) PMID:19901272

  2. Clique of functional hubs orchestrates population bursts in developmentally regulated neural networks

    NASA Astrophysics Data System (ADS)

    Torcini, Alessandro; Luccioli, Stefano; Bonifazi, Paolo; Ben-Jacob, Eshel; Barzilai, Ari

    2015-03-01

    It has recently been discovered that single neuron stimulation can impact network dynamics in immature and adult neuronal circuits. Here we report a novel mechanism which can explain in developing neuronal circuits, typically composed of only excitatory cells, the peculiar role played by a few specific neurons in promoting/arresting the population activity. For this purpose, we consider a standard neuronal network model, with short-term synaptic plasticity, whose population activity is characterized by bursting behavior. The addition of developmentally regulated constraints on single neuron excitability and connectivity leads to the emergence of functional hub neurons, whose stimulation/deletion is critical for the network activity. Functional hubs form a clique, where a precise sequential activation of the neurons is essential to ignite collective events without any need for a specific topological architecture. Unsupervised time-lagged firings of supra-threshold cells, in connection with coordinated entrainments of near-threshold neurons, are the key ingredients to orchestrate population activity. This work is part of the activity of the Joint Italian-Israeli Laboratory on Integrative Network Neuroscience supported by the Italian Ministry of Foreign Affairs.

  3. Magnitude and Chronometry of Neural Mechanisms of Emotion Regulation in Subtypes of Aggressive Children

    ERIC Educational Resources Information Center

    Lamm, Connie; Granic, Isabela; Zelazo, Philip David; Lewis, Marc D.

    2011-01-01

    Emotion regulation is a key social skill and children who fail to master it are at risk for clinical disorders. Specific styles of emotion regulation have been associated with particular patterns of prefrontal activation. We investigated whether anxious aggressive children would reveal a different pattern of cortical activation than non-anxious…

  4. Gastrointestinal hormones (anorexigenic peptide YY and orexigenic ghrelin) influence neural tube development.

    PubMed

    Yuzuriha, Hideki; Inui, Akio; Asakawa, Akihiro; Ueno, Naohiko; Kasuga, Masato; Meguid, Michael M; Miyazaki, Jun-ichi; Ninomiya, Maiko; Herzog, Herbert; Fujimiya, Mineko

    2007-07-01

    Gastrointestinal (GI) hormones play an important role in GI secretion, motility, and eating behaviors. It was recently suggested that GI hormones may have a trophic role in GI tract. Here we demonstrate that two principal GI hormones, anorexigenic peptide YY (PYY) and orexigenic ghrelin, affect neural tube development. Chronic administration into the pregnant mice or transgenic overexpression of PYY led to a neural tube defect (NTD) in the embryos that was blocked by ghrelin. PYY Y1 receptor antagonist prevented the occurrence of NTD induced not only by PYY but also by vitamin A, a well-known teratogen in humans and animals. Y1 receptor deficiency also engendered NTDs, indicating the need to maintain normal Y1 receptor signaling. The present study is the first linking GI hormones to the leading cause of infant mortality and provides a novel insight for neurogenesis in which materno-fetal communication through GI hormones appears to be important. PMID:17400914

  5. The role of Foxi family transcription factors in otic placode and neural crest cell development

    PubMed Central

    Edlund, Renée K.; Birol, Onur; Groves, Andrew K.

    2015-01-01

    The mammalian outer, middle and inner ears have different embryonic origins and evolved at different times in the vertebrate lineage. The outer ear is derived from first and second branchial arch ectoderm and mesoderm, the middle ear ossicles are derived from neural crest mesenchymal cells that invade the first and second branchial arches, whereas the inner ear and its associated vestibule-acoustic (VIIIth) ganglion are derived from the otic placode. In this review, we discuss recent findings in the development of these structures and describe the contributions of members of a Forkhead transcription factor family, the Foxi family to their formation. Foxi transcription factors are critical for formation of the otic placode, survival of the branchial arch neural crest, and developmental remodeling of the branchial arch ectoderm. PMID:25662269

  6. Coordinated changes in dendritic arborization and synaptic strength during neural circuit development

    PubMed Central

    Peng, Yi-Rong; He, Shan; Marie, Helene; Zeng, Si-Yu; Ma, Jun; Tan, Zhu-Jun; Lee, Soo Yeun; Malenka, Robert C.; Yu, Xiang

    2009-01-01

    Neural circuit development requires concurrent morphological and functional changes. Here we identify coordinated and inversely correlated changes in dendritic morphology and mEPSC amplitude following increased neural activity. We show that over-expression of β-catenin, a molecule that increases total dendritic length, mimics the effects of increased neuronal activity by scaling down mEPSC amplitudes, while postsynaptic expression of a protein that sequesters β-catenin reverses the effects of activity on reducing mEPSC amplitudes. These results were confirmed immunocytochemically as changes in the size and density of surface synaptic AMPA receptor clusters. In individual neurons there was an inverse linear relationship between total dendritic length and average mEPSC amplitude. Importantly, β-catenin over-expression in vivo promoted dendritic growth and reduced mEPSC amplitudes. Together, these results demonstrate that coordinated changes in dendritic morphology and unitary excitatory synaptic strength may serve as an important intrinsic mechanism that helps prevent neurons from over-excitation during neural circuit development. PMID:19146814

  7. Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease

    PubMed Central

    Voytek, Bradley; Knight, Robert T.

    2015-01-01

    Perception, cognition, and social interaction depend upon coordinated neural activity. This coordination operates within noisy, overlapping, and distributed neural networks operating at multiple timescales. These networks are built upon a structural scaffolding with intrinsic neuroplasticity that changes with development, aging, disease, and personal experience. In this paper we begin from the perspective that successful interregional communication relies upon the transient synchronization between distinct low frequency (<80 Hz) oscillations, allowing for brief windows of communication via phase-coordinated local neuronal spiking. From this, we construct a theoretical framework for dynamic network communication, arguing that these networks reflect a balance between oscillatory coupling and local population spiking activity, and that these two levels of activity interact. We theorize that when oscillatory coupling is too strong, spike timing within the local neuronal population becomes too synchronous; when oscillatory coupling is too weak, spike timing is too disorganized. Each results in specific disruptions to neural communication. These alterations in communication dynamics may underlie cognitive changes associated with healthy development and aging, in addition to neurological and psychiatric disorders. A number of neurological and psychiatric disorders—including Parkinson’s disease, autism, depression, schizophrenia, and anxiety—are associated with abnormalities in oscillatory activity. Although aging, psychiatric and neurological disease, and experience differ in the biological changes to structural grey or white matter, neurotransmission, and gene expression, our framework suggests that any resultant cognitive and behavioral changes in normal or disordered states, or their treatment, is a product of how these physical processes affect dynamic network communication. PMID:26005114

  8. Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease.

    PubMed

    Voytek, Bradley; Knight, Robert T

    2015-06-15

    Perception, cognition, and social interaction depend upon coordinated neural activity. This coordination operates within noisy, overlapping, and distributed neural networks operating at multiple timescales. These networks are built upon a structural scaffolding with intrinsic neuroplasticity that changes with development, aging, disease, and personal experience. In this article, we begin from the perspective that successful interregional communication relies upon the transient synchronization between distinct low-frequency (<80 Hz) oscillations, allowing for brief windows of communication via phase-coordinated local neuronal spiking. From this, we construct a theoretical framework for dynamic network communication, arguing that these networks reflect a balance between oscillatory coupling and local population spiking activity and that these two levels of activity interact. We theorize that when oscillatory coupling is too strong, spike timing within the local neuronal population becomes too synchronous; when oscillatory coupling is too weak, spike timing is too disorganized. Each results in specific disruptions to neural communication. These alterations in communication dynamics may underlie cognitive changes associated with healthy development and aging, in addition to neurological and psychiatric disorders. A number of neurological and psychiatric disorders-including Parkinson's disease, autism, depression, schizophrenia, and anxiety-are associated with abnormalities in oscillatory activity. Although aging, psychiatric and neurological disease, and experience differ in the biological changes to structural gray or white matter, neurotransmission, and gene expression, our framework suggests that any resultant cognitive and behavioral changes in normal or disordered states or their treatment are a product of how these physical processes affect dynamic network communication.

  9. Early Divergence of Central and Peripheral Neural Retina Precursors During Vertebrate Eye Development

    PubMed Central

    Venters, Sara J.; Mikawa, Takashi; Hyer, Jeanette

    2015-01-01

    During development of the vertebrate eye, optic tissue is progressively compartmentalized into functionally distinct tissues. From the central to the peripheral optic cup, the original optic neuroepithelial tissue compartmentalizes, forming retina, ciliary body and iris. The retina can be further sub-divided into peripheral and central compartments, where the central domain is specialized for higher visual acuity, having a higher ratio and density of cone photoreceptors in most species. Classically, models depict a segregation of the early optic cup into only two domains, neural and non-neural. Recent studies, however, uncovered discrete precursors for central and peripheral retina in the optic vesicle, indicating that the neural retina cannot be considered as a single unit with homogeneous specification and development. Instead, central and peripheral retina may be subject to distinct developmental pathways that underlie their specialization. This review focuses on lineage relationships in the retina and revisits the historical context for segregation of central and peripheral retina precursors before overt eye morphogenesis. PMID:25329498

  10. Essential roles for the splicing regulator nSR100/SRRM4 during nervous system development

    PubMed Central

    Quesnel-Vallières, Mathieu; Irimia, Manuel

    2015-01-01

    Alternative splicing (AS) generates vast transcriptomic complexity in the vertebrate nervous system. However, the extent to which trans-acting splicing regulators and their target AS regulatory networks contribute to nervous system development is not well understood. To address these questions, we generated mice lacking the vertebrate- and neural-specific Ser/Arg repeat-related protein of 100 kDa (nSR100/SRRM4). Loss of nSR100 impairs development of the central and peripheral nervous systems in part by disrupting neurite outgrowth, cortical layering in the forebrain, and axon guidance in the corpus callosum. Accompanying these developmental defects are widespread changes in AS that primarily result in shifts to nonneural patterns for different classes of splicing events. The main component of the altered AS program comprises 3- to 27-nucleotide (nt) neural microexons, an emerging class of highly conserved AS events associated with the regulation of protein interaction networks in developing neurons and neurological disorders. Remarkably, inclusion of a 6-nt, nSR100-activated microexon in Unc13b transcripts is sufficient to rescue a neuritogenesis defect in nSR100 mutant primary neurons. These results thus reveal critical in vivo neurodevelopmental functions of nSR100 and further link these functions to a conserved program of neuronal microexon splicing. PMID:25838543

  11. Physical forces regulate plant development and morphogenesis

    PubMed Central

    Sampathkumar, Arun; Yan, An; Krupinski, Pawel; Meyerowitz, Elliot M.

    2014-01-01

    Plant cells in tissues experience mechanical stress not only as a result of high turgor, but also through interaction with their neighbors. Cells can expand at different rates and in different directions from neighbors with which they share a cell wall. This in connection with specific tissue shapes and properties of the cell wall material can lead to intricate stress patterns throughout the tissue. Two cellular responses to mechanical stress are a microtubule cytoskeletal response that directs new wall synthesis so as to resist stress, and a hormone transporter response that regulates transport of the hormone auxin, a regulator of cell expansion. Shape changes in plant tissues affect the pattern of stresses in the tissues, and at the same time, via the cellular stress responses, the pattern of stresses controls cell growth, which in turn changes tissue shape, and stress pattern. This feedback loop controls plant morphogenesis, and explains several previously mysterious aspects of plant growth. PMID:24845680

  12. Physical forces regulate plant development and morphogenesis.

    PubMed

    Sampathkumar, Arun; Yan, An; Krupinski, Pawel; Meyerowitz, Elliot M

    2014-05-19

    Plant cells in tissues experience mechanical stress not only as a result of high turgor, but also through interaction with their neighbors. Cells can expand at different rates and in different directions from neighbors with which they share a cell wall. This in connection with specific tissue shapes and properties of the cell wall material can lead to intricate stress patterns throughout the tissue. Two cellular responses to mechanical stress are a microtubule cytoskeletal response that directs new wall synthesis so as to resist stress, and a hormone transporter response that regulates transport of the hormone auxin, a regulator of cell expansion. Shape changes in plant tissues affect the pattern of stresses in the tissues, and at the same time, via the cellular stress responses, the pattern of stresses controls cell growth, which in turn changes tissue shape, and stress pattern. This feedback loop controls plant morphogenesis, and explains several previously mysterious aspects of plant growth. PMID:24845680