Sample records for regulate vascular development

  1. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling.

    PubMed

    Bertozzi, Cara C; Schmaier, Alec A; Mericko, Patricia; Hess, Paul R; Zou, Zhiying; Chen, Mei; Chen, Chiu-Yu; Xu, Bin; Lu, Min-min; Zhou, Diane; Sebzda, Eric; Santore, Matthew T; Merianos, Demetri J; Stadtfeld, Matthias; Flake, Alan W; Graf, Thomas; Skoda, Radek; Maltzman, Jonathan S; Koretzky, Gary A; Kahn, Mark L

    2010-07-29

    Although platelets appear by embryonic day 10.5 in the developing mouse, an embryonic role for these cells has not been identified. The SYK-SLP-76 signaling pathway is required in blood cells to regulate embryonic blood-lymphatic vascular separation, but the cell type and molecular mechanism underlying this regulatory pathway are not known. In the present study we demonstrate that platelets regulate lymphatic vascular development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2 (CLEC-2) receptors. PODOPLANIN (PDPN), a transmembrane protein expressed on the surface of lymphatic endothelial cells, is required in nonhematopoietic cells for blood-lymphatic separation. Genetic loss of the PDPN receptor CLEC-2 ablates PDPN binding by platelets and confers embryonic lymphatic vascular defects like those seen in animals lacking PDPN or SLP-76. Platelet factor 4-Cre-mediated deletion of Slp-76 is sufficient to confer lymphatic vascular defects, identifying platelets as the cell type in which SLP-76 signaling is required to regulate lymphatic vascular development. Consistent with these genetic findings, we observe SLP-76-dependent platelet aggregate formation on the surface of lymphatic endothelial cells in vivo and ex vivo. These studies identify a nonhemostatic pathway in which platelet CLEC-2 receptors bind lymphatic endothelial PDPN and activate SLP-76 signaling to regulate embryonic vascular development.

  2. Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases.

    PubMed

    Uchida, Naoyuki; Tasaka, Masao

    2013-12-01

    Plant vasculatures are complex tissues consisting of (pro)cambium, phloem, and xylem. The (pro)cambium serves as vascular stem cells that produce all vascular cells. The Arabidopsis ERECTA (ER) receptor kinase is known to regulate the architecture of inflorescence stems. It was recently reported that the er mutation enhances a vascular phenotype induced by a mutation of TDR/PXY, which plays a significant role in procambial proliferation, suggesting that ER participates in vascular development. However, detailed molecular mechanisms of the ER-dependent vascular regulation are largely unknown. Here, this work found that ER and its paralogue, ER-LIKE1, were redundantly involved in procambial development of inflorescence stems. Interestingly, their activity in the phloem was sufficient for vascular regulation. Furthermore, two endodermis-derived peptide hormones, EPFL4 and EPFL6, were redundantly involved in such regulation. It has been previously reported that EPFL4 and EPFL6 act as ligands of phloem-expressed ER for stem elongation. Therefore, these findings indicate that cell-cell communication between the endodermis and the phloem plays an important role in procambial development as well as stem elongation. Interestingly, similar EPFL-ER modules control two distinct developmental events by slightly changing their components: the EPFL4/6-ER module for stem elongation and the EPFL4/6-ER/ERL1 module for vascular development.

  3. FGF-dependent metabolic control of vascular development

    PubMed Central

    Yu, Pengchun; Alves, Tiago C.; Fang, Jennifer S.; Xie, Yi; Zhu, Jie; Chen, Zehua; De Smet, Frederik; Zhang, Jiasheng; Jin, Suk-Won; Sun, Lele; Sun, Hongye; Kibbey, Richard G.; Hirschi, Karen K.; Hay, Nissim; Carmeliet, Peter; Chittenden, Thomas W.; Eichmann, Anne; Potente, Michael; Simons, Michael

    2017-01-01

    Blood and lymphatic vasculatures are intimately involved in tissue oxygenation and fluid homeostasis maintenance. Assembly of these vascular networks involves sprouting, migration and proliferation of endothelial cells. Recent studies have suggested that changes in cellular metabolism are of importance to these processes1. While much is known about vascular endothelial growth factor (VEGF)-dependent regulation of vascular development and metabolism2,3, little is understood about the role of fibroblast growth factors (FGFs) in this context4. Here we identify FGF receptor (FGFR) signaling as a critical regulator of vascular development. This is achieved by FGF-dependent control of c-MYC (MYC) expression that, in turn, regulates expression of the glycolytic enzyme hexokinase 2 (HK2). A decrease in HK2 levels in the absence of FGF signaling inputs results in decreased glycolysis leading to impaired endothelial cell proliferation and migration. Pan-endothelial- and lymphatic-specific Hk2 knockouts phenocopy blood and/or lymphatic vascular defects seen in Fgfr1/r3 double mutant mice while HK2 overexpression partially rescues the defects caused by suppression of FGF signaling. Thus, FGF-dependent regulation of endothelial glycolysis is a pivotal process in developmental and adult vascular growth and development. PMID:28467822

  4. FGF-dependent metabolic control of vascular development.

    PubMed

    Yu, Pengchun; Wilhelm, Kerstin; Dubrac, Alexandre; Tung, Joe K; Alves, Tiago C; Fang, Jennifer S; Xie, Yi; Zhu, Jie; Chen, Zehua; De Smet, Frederik; Zhang, Jiasheng; Jin, Suk-Won; Sun, Lele; Sun, Hongye; Kibbey, Richard G; Hirschi, Karen K; Hay, Nissim; Carmeliet, Peter; Chittenden, Thomas W; Eichmann, Anne; Potente, Michael; Simons, Michael

    2017-05-11

    Blood and lymphatic vasculatures are intimately involved in tissue oxygenation and fluid homeostasis maintenance. Assembly of these vascular networks involves sprouting, migration and proliferation of endothelial cells. Recent studies have suggested that changes in cellular metabolism are important to these processes. Although much is known about vascular endothelial growth factor (VEGF)-dependent regulation of vascular development and metabolism, little is understood about the role of fibroblast growth factors (FGFs) in this context. Here we identify FGF receptor (FGFR) signalling as a critical regulator of vascular development. This is achieved by FGF-dependent control of c-MYC (MYC) expression that, in turn, regulates expression of the glycolytic enzyme hexokinase 2 (HK2). A decrease in HK2 levels in the absence of FGF signalling inputs results in decreased glycolysis, leading to impaired endothelial cell proliferation and migration. Pan-endothelial- and lymphatic-specific Hk2 knockouts phenocopy blood and/or lymphatic vascular defects seen in Fgfr1/Fgfr3 double mutant mice, while HK2 overexpression partly rescues the defects caused by suppression of FGF signalling. Thus, FGF-dependent regulation of endothelial glycolysis is a pivotal process in developmental and adult vascular growth and development.

  5. VEGF signaling inside vascular endothelial cells and beyond

    PubMed Central

    Eichmann, Anne; Simons, Michael

    2014-01-01

    Vascular endothelial growth factor-A (VEGF-A) has long been recognized as the key regulator of vascular development and function in health and disease. VEGF is a secreted polypeptide that binds to transmembrane tyrosine kinase VEGF receptors on the plasma membrane, inducing their dimerization, activation and assembly of a membrane-proximal signaling complex. Recent studies have revealed that many key events of VEGFR signaling occur inside the endothelial cell and are regulated by endosomal receptor trafficking. Plasma membrane VEGFR interacting molecules, including vascular guidance receptors Neuropilins and Ephrins also regulate VEGFR endocytosis and trafficking. VEGF signaling is increasingly recognized for its roles outside of the vascular system, notably during neural development, and blood vessels regulate epithelial branching morphogenesis. We review here recent advances in our understanding of VEGF signaling and its biological roles. PMID:22366328

  6. VEGF signaling inside vascular endothelial cells and beyond.

    PubMed

    Eichmann, Anne; Simons, Michael

    2012-04-01

    Vascular endothelial growth factor-A (VEGF-A) has long been recognized as the key regulator of vascular development and function in health and disease. VEGF is a secreted polypeptide that binds to transmembrane tyrosine kinase VEGF receptors on the plasma membrane, inducing their dimerization, activation and assembly of a membrane-proximal signaling complex. Recent studies have revealed that many key events of VEGFR signaling occur inside the endothelial cell and are regulated by endosomal receptor trafficking. Plasma membrane VEGFR interacting molecules, including vascular guidance receptors Neuropilins and Ephrins also regulate VEGFR endocytosis and trafficking. VEGF signaling is increasingly recognized for its roles outside of the vascular system, notably during neural development, and blood vessels regulate epithelial branching morphogenesis. We review here recent advances in our understanding of VEGF signaling and its biological roles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development.

    PubMed

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H; Nagao, Masashi; Warman, Matthew L; Olsen, Bjorn R

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature.

  8. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development

    PubMed Central

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H.; Nagao, Masashi; Warman, Matthew L.; Olsen, Bjorn R.

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  9. MiR-144 regulates hematopoiesis and vascular development by targeting meis1 during zebrafish development.

    PubMed

    Su, Zhenhong; Si, Wenxia; Li, Lei; Zhou, Bisheng; Li, Xiuchun; Xu, Yan; Xu, Chengqi; Jia, Haibo; Wang, Qing K

    2014-04-01

    Hematopoiesis is a dynamic process by which peripheral blood lineages are developed. It is a process tightly regulated by many intrinsic and extrinsic factors, including transcriptional factors and signaling molecules. However, the epigenetic regulation of hematopoiesis, for example, regulation via microRNAs (miRNAs), remains incompletely understood. Here we show that miR-144 regulates hematopoiesis and vascular development in zebrafish. Overexpression of miR-144 inhibited primitive hematopoiesis as demonstrated by a reduced number of circulating blood cells, reduced o-dianisidine staining of hemoglobin, and reduced expression of hbαe1, hbβe1, gata1 and pu.1. Overexpression of miR-144 also inhibited definitive hematopoiesis as shown by reduced expression of runx1 and c-myb. Mechanistically, miR-144 regulates hematopoiesis by repressing expression of meis1 involved in hematopoiesis. Both real-time RT-PCR and Western blot analyses showed that overexpression of miR-144 repressed expression of meis1. Bioinformatic analysis predicts a target binding sequence for miR-144 at the 3'-UTR of meis1. Deletion of the miR-144 target sequence eliminated the repression of meis1 expression mediated by miR-144. The miR-144-mediated abnormal phenotypes were partially rescued by co-injection of meis1 mRNA and could be almost completely rescued by injection of both meis1 and gata1 mRNA. Finally, because meis1 is involved in vascular development, we tested the effect of miR-144 on vascular development. Overexpression of miR-144 resulted in abnormal vascular development of intersegmental vessels in transgenic zebrafish with Flk1p-EGFP, and the defect was rescued by co-injection of meis1 mRNA. These findings establish miR-144 as a novel miRNA that regulates hematopoiesis and vascular development by repressing expression of meis1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Vascular pattern of the dentate gyrus is regulated by neural progenitors.

    PubMed

    Pombero, Ana; Garcia-Lopez, Raquel; Estirado, Alicia; Martinez, Salvador

    2018-05-01

    Neurogenesis is a vital process that begins during early embryonic development and continues until adulthood, though in the latter case, it is restricted to the subventricular zone and the subgranular zone of the dentate gyrus (DG). In particular, the DG's neurogenic properties are structurally and functionally unique, which may be related to its singular vascular pattern. Neurogenesis and angiogenesis share molecular signals and act synergistically, supporting the concept of a neurogenic niche as a functional unit between neural precursors cells and their environment, in which the blood vessels play an important role. Whereas it is well known that vascular development controls neural proliferation in the embryonary and in the adult brain, by releasing neurotrophic factors; the potential influence of neural cells on vascular components during angiogenesis is largely unknown. We have demonstrated that the reduction of neural progenitors leads to a significant impairment of vascular development. Since VEGF is a potential regulator in the neurogenesis-angiogenesis crosstalk, we were interested in assessing the possible role of this molecule in the hippocampal neurovascular development. Our results showed that VEGF is the molecule involved in the regulation of vascular development by neural progenitor cells in the DG.

  11. The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development.

    PubMed

    Kazanskaya, Olga; Ohkawara, Bisei; Heroult, Melanie; Wu, Wei; Maltry, Nicole; Augustin, Hellmut G; Niehrs, Christof

    2008-11-01

    The vertebrate embryonic vasculature develops from angioblasts, which are specified from mesodermal precursors and develop in close association with blood cells. The signals that regulate embryonic vasculogenesis and angiogenesis are incompletely understood. Here, we show that R-spondin 3 (Rspo3), a member of a novel family of secreted proteins in vertebrates that activate Wnt/beta-catenin signaling, plays a key role in these processes. In Xenopus embryos, morpholino antisense knockdown of Rspo3 induces vascular defects because Rspo3 is essential for regulating the balance between angioblast and blood cell specification. In mice, targeted disruption of Rspo3 leads to embryonic lethality caused by vascular defects. Specifically in the placenta, remodeling of the vascular plexus is impaired. In human endothelial cells, R-spondin signaling promotes proliferation and sprouting angiogenesis in vitro, indicating that Rspo3 can regulate endothelial cells directly. We show that vascular endothelial growth factor is an immediate early response gene and a mediator of R-spondin signaling. The results identify Rspo3 as a novel, evolutionarily conserved angiogenic factor in embryogenesis.

  12. The Role of Adenosine A2A Receptor, CYP450s, and PPARs in the Regulation of Vascular Tone

    PubMed Central

    Khayat, Maan T.

    2017-01-01

    Adenosine is an endogenous mediator involved in a myriad of physiologic functions, including vascular tone regulation. It is also implicated in some pathologic conditions. Four distinct receptor subtypes mediate the effects of adenosine, such as its role in the regulation of the vascular tone. Vascular tone regulation is a complex and continuous process which involves many mechanisms and mediators that are not fully disclosed. The vascular endothelium plays a pivotal role in regulating blood flow to and from all body organs. Also, the vascular endothelium is not merely a physical barrier; it is a complex tissue with numerous functions. Among adenosine receptors, A2A receptor subtype (A2AAR) stands out as the primary receptor responsible for the vasodilatory effects of adenosine. This review focuses on important effectors of the vascular endothelium, including adenosine, adenosine receptors, EETs (epoxyeicosatrienoic acids), HETEs (hydroxyeicosatetraenoic acids), PPARs (peroxisome proliferator-activated receptors), and KATP channels. Given the impact of vascular tone regulation in cardiovascular physiology and pathophysiology, better understanding of the mechanisms affecting it could have a significant potential for developing therapeutic agents for cardiovascular diseases. PMID:28884118

  13. Endothelial and Smooth Muscle Cell Ion Channels in Pulmonary Vasoconstriction and Vascular Remodeling

    PubMed Central

    Makino, Ayako; Firth, Amy L.; Yuan, Jason X.-J.

    2017-01-01

    The pulmonary circulation is a low resistance and low pressure system. Sustained pulmonary vasoconstriction and excessive vascular remodeling often occur under pathophysiological conditions such as in patients with pulmonary hypertension. Pulmonary vasoconstriction is a consequence of smooth muscle contraction. Many factors released from the endothelium contribute to regulating pulmonary vascular tone, while the extracellular matrix in the adventitia is the major determinant of vascular wall compliance. Pulmonary vascular remodeling is characterized by adventitial and medial hypertrophy due to fibroblast and smooth muscle cell proliferation, neointimal proliferation, intimal, and plexiform lesions that obliterate the lumen, muscularization of precapillary arterioles, and in situ thrombosis. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction, while increased release of mitogenic factors, upregulation (or downregulation) of ion channels and transporters, and abnormalities in intracellular signaling cascades are key to the remodeling of the pulmonary vasculature. Changes in the expression, function, and regulation of ion channels in PASMC and pulmonary arterial endothelial cells play an important role in the regulation of vascular tone and development of vascular remodeling. This article will focus on describing the ion channels and transporters that are involved in the regulation of pulmonary vascular function and structure and illustrating the potential pathogenic role of ion channels and transporters in the development of pulmonary vascular disease. PMID:23733654

  14. Soluble VEGF isoforms are essential for establishingepiphyseal vascularization and regulating chondrocyte development and survival

    PubMed Central

    Maes, Christa; Stockmans, Ingrid; Moermans, Karen; Van Looveren, Riet; Smets, Nico; Carmeliet, Peter; Bouillon, Roger; Carmeliet, Geert

    2004-01-01

    VEGF is crucial for metaphyseal bone vascularization. In contrast, the angiogenic factors required for vascularization of epiphyseal cartilage are unknown, although this represents a developmentally and clinically important aspect of bone growth. The VEGF gene is alternatively transcribed into VEGF120, VEGF164, and VEGF188 isoforms that differ in matrix association and receptor binding. Their role in bone development was studied in mice expressing single isoforms. Here we report that expression of only VEGF164 or only VEGF188 (in VEGF188/188 mice) was sufficient for metaphyseal development. VEGF188/188 mice, however, showed dwarfism, disrupted development of growth plates and secondary ossification centers, and knee joint dysplasia. This phenotype was at least partly due to impaired vascularization surrounding the epiphysis, resulting in ectopically increased hypoxia and massive chondrocyte apoptosis in the interior of the epiphyseal cartilage. In addition to the vascular defect, we provide in vitro evidence that the VEGF188 isoform alone is also insufficient to regulate chondrocyte proliferation and survival responses to hypoxia. Consistent herewith, chondrocytes in or close to the hypoxic zone in VEGF188/188 mice showed increased proliferation and decreased differentiation. These findings indicate that the insoluble VEGF188 isoform is insufficient for establishing epiphyseal vascularization and regulating cartilage development during endochondral bone formation. PMID:14722611

  15. Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival.

    PubMed

    Maes, Christa; Stockmans, Ingrid; Moermans, Karen; Van Looveren, Riet; Smets, Nico; Carmeliet, Peter; Bouillon, Roger; Carmeliet, Geert

    2004-01-01

    VEGF is crucial for metaphyseal bone vascularization. In contrast, the angiogenic factors required for vascularization of epiphyseal cartilage are unknown, although this represents a developmentally and clinically important aspect of bone growth. The VEGF gene is alternatively transcribed into VEGF(120), VEGF(164), and VEGF(188) isoforms that differ in matrix association and receptor binding. Their role in bone development was studied in mice expressing single isoforms. Here we report that expression of only VEGF(164) or only VEGF(188) (in VEGF(188/188) mice) was sufficient for metaphyseal development. VEGF(188/188) mice, however, showed dwarfism, disrupted development of growth plates and secondary ossification centers, and knee joint dysplasia. This phenotype was at least partly due to impaired vascularization surrounding the epiphysis, resulting in ectopically increased hypoxia and massive chondrocyte apoptosis in the interior of the epiphyseal cartilage. In addition to the vascular defect, we provide in vitro evidence that the VEGF(188) isoform alone is also insufficient to regulate chondrocyte proliferation and survival responses to hypoxia. Consistent herewith, chondrocytes in or close to the hypoxic zone in VEGF(188/188) mice showed increased proliferation and decreased differentiation. These findings indicate that the insoluble VEGF(188) isoform is insufficient for establishing epiphyseal vascularization and regulating cartilage development during endochondral bone formation.

  16. Genetic and epigenetic mechanisms in the early development of the vascular system

    PubMed Central

    Ribatti, Domenico

    2006-01-01

    The cardiovascular system plays a critical role in vertebrate development and homeostasis. Vascular development is a highly organized sequence of events that requires the correct spatial and temporal expression of specific sets of genes leading to the development of a primary vascular network. There have been intensive efforts to determine the molecular mechanisms regulating vascular growth and development, and much of the rationale for this has stemmed from the increasing clinical importance and therapeutic potential of modulating vascular formation during various disease states. PMID:16441559

  17. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders

    PubMed Central

    Brozovich, F.V.; Nicholson, C.J.; Degen, C.V.; Gao, Yuan Z.; Aggarwal, M.

    2016-01-01

    The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function. PMID:27037223

  18. Angiopoietin–Tie signalling in the cardiovascular and lymphatic systems

    PubMed Central

    Eklund, Lauri; Kangas, Jaakko; Saharinen, Pipsa

    2016-01-01

    Endothelial cells that form the inner layer of blood and lymphatic vessels are important regulators of vascular functions and centrally involved in the pathogenesis of vascular diseases. In addition to the vascular endothelial growth factor (VEGF) receptor pathway, the angiopoietin (Ang)–Tie system is a second endothelial cell specific ligand–receptor signalling system necessary for embryonic cardiovascular and lymphatic development. The Ang–Tie system also regulates postnatal angiogenesis, vessel remodelling, vascular permeability and inflammation to maintain vascular homoeostasis in adult physiology. This system is implicated in numerous diseases where the vasculature has an important contribution, such as cancer, sepsis, diabetes, atherosclerosis and ocular diseases. Furthermore, mutations in the TIE2 signalling pathway cause defects in vascular morphogenesis, resulting in venous malformations and primary congenital glaucoma. Here, we review recent advances in the understanding of the Ang–Tie signalling system, including cross-talk with the vascular endothelial protein tyrosine phosphatase (VE-PTP) and the integrin cell adhesion receptors, focusing on the Ang–Tie system in vascular development and pathogenesis of vascular diseases. PMID:27941161

  19. Myeloid Wnt ligands are required for normal development of dermal lymphatic vasculature.

    PubMed

    Muley, Ajit; Odaka, Yoshi; Lewkowich, Ian P; Vemaraju, Shruti; Yamaguchi, Terry P; Shawber, Carrie; Dickie, Belinda H; Lang, Richard A

    2017-01-01

    Resident tissue myeloid cells play a role in many aspects of physiology including development of the vascular systems. In the blood vasculature, myeloid cells use VEGFC to promote angiogenesis and can use Wnt ligands to control vascular branching and to promote vascular regression. Here we show that myeloid cells also regulate development of the dermal lymphatic vasculature using Wnt ligands. Using myeloid-specific deletion of the WNT transporter Wntless we show that myeloid Wnt ligands are active at two distinct stages of development of the dermal lymphatics. As lymphatic progenitors are emigrating from the cardinal vein and intersomitic vessels, myeloid Wnt ligands regulate both their numbers and migration distance. Later in lymphatic development, myeloid Wnt ligands regulate proliferation of lymphatic endothelial cells (LEC) and thus control lymphatic vessel caliber. Myeloid-specific deletion of WNT co-receptor Lrp5 or Wnt5a gain-of-function also produce elevated caliber in dermal lymphatic capillaries. These data thus suggest that myeloid cells produce Wnt ligands to regulate lymphatic development and use Wnt pathway co-receptors to regulate the balance of Wnt ligand activity during the macrophage-LEC interaction.

  20. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation.

    PubMed

    Etchells, J Peter; Provost, Claire M; Mishra, Laxmi; Turner, Simon R

    2013-05-01

    In plants, the cambium and procambium are meristems from which vascular tissue is derived. In contrast to most plant cells, stem cells within these tissues are thin and extremely long. They are particularly unusual as they divide down their long axis in a highly ordered manner, parallel to the tangential axis of the stem. CLAVATA3-LIKE/ESR-RELATED 41 (CLE41) and PHLOEM INTERCALATED WITH XYLEM (PXY) are a multifunctional ligand-receptor pair that regulate vascular cell division, vascular organisation and xylem differentiation in vascular tissue. A transcription factor gene, WUSCHEL HOMEOBOX RELATED 4 (WOX4) has been shown to act downstream of PXY. Here we show that WOX4 acts redundantly with WOX14 in the regulation of vascular cell division, but that these genes have no function in regulating vascular organisation. Furthermore, we identify an interaction between PXY and the receptor kinase ERECTA (ER) that affects the organisation of the vascular tissue but not the rate of cell division, suggesting that cell division and vascular organisation are genetically separable. Our observations also support a model whereby tissue organisation and cell division are integrated via PXY and ER signalling, which together coordinate development of different cell types that are essential for normal stem formation.

  1. Long Noncoding RNA-GAS5: A Novel Regulator of Hypertension-Induced Vascular Remodeling.

    PubMed

    Wang, Yang-Ning-Zhi; Shan, Kun; Yao, Mu-Di; Yao, Jin; Wang, Jia-Jian; Li, Xiang; Liu, Ban; Zhang, Yang-Yang; Ji, Yong; Jiang, Qin; Yan, Biao

    2016-09-01

    Vascular remodeling is an important pathological feature of hypertension, leading to increased vascular resistance and reduced compliance. Endothelial cell (EC) and vascular smooth muscle cell (VSMC) dysfunction is involved in vascular remodeling. Long noncoding RNAs are potential regulators of EC and VSMC function. Herein, we determined whether long noncoding RNA-growth arrest-specific 5 (GAS5) is involved in hypertension-related vascular remodeling. We revealed that GAS5 knockdown aggravated hypertension-induced microvascular dysfunction as shown by increased retinal neovascularization and capillary leakage. GAS5 regulated the remodeling of arteries, including caudal arteries, carotid arteries, renal arteries, and thoracic arteries. GAS5 was mainly expressed in ECs and VSMCs, and its expression was significantly downregulated in hypertension. GAS5 knockdown affected endothelial activation, endothelial proliferation, VSMC phenotypic conversion, and EC-VSMC communication in vivo and in vitro. Mechanistically, GAS5 regulated EC and VSMC function through β-catenin signaling. This study identified GAS5 as a critical regulator in hypertension and demonstrated the potential of gene therapy and drug development for treating hypertension. © 2016 American Heart Association, Inc.

  2. FoxO1 transcriptional activities in VEGF expression and beyond: a key regulator in functional angiogenesis?

    PubMed

    Ren, Bin

    2018-04-24

    FoxO1 has emerged as an important regulator of angiogenesis. Recent work published in this Journal shows that FoxO1 regulates VEGF expression in keratinocytes and is required for angiogenesis in wound healing. Since FoxO1 also regulates CD36 transcription, and endothelial cell differentiation and vascular maturation, this transcription factor may be essential for the formation of functional vascular networks via coupling the regulation of CD36 in vascular endothelial cells under physiological and pathological conditions. Although many outstanding questions remain to be answered, the mechanisms by which FoxO1 regulates VEGF in keratinocytes provide insight into the development of functional angiogenesis and further our understanding of vascular biology. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  3. Vascular effects of aldosterone: sorting out the receptors and the ligands.

    PubMed

    Feldman, Ross D; Gros, Robert

    2013-12-01

    Aldosterone has actions far beyond its role as a renal regulator of sodium reabsorption, and broader mechanisms of action than simply a transcriptional regulator. Aldosterone has a number of vascular effects, including regulation of vascular reactivity and vascular growth and/or development. Aldosterone-mediated effects on vascular reactivity reflect a balance between its endothelial-dependent vasodilator effects and its direct smooth muscle vasoconstrictor effects. The endothelial vasodilator effects of aldosterone are mediated by phosphatidylinositol 3-kinase-dependent activation of nitric oxide synthase. G-Protein oestrogen receptor (GPER) is a recently recognized G-protein coupled receptor (GPCR) that is activated by steroid hormones. It was first recognized as the GPCR mediating the rapid effects of oestrogens. Activation of GPER also mediates at least some of the vascular effects of aldosterone in smooth muscle and endothelial cells. In vascular endothelial cells, aldosterone activation of GPER mediates vasodilation. In contrast, activation of endothelial mineralocorticoid receptors has been linked to enhanced vasoconstrictor and/or impaired vasodilator responses. © 2013 Wiley Publishing Asia Pty Ltd.

  4. Mapping and Quantification of Vascular Branching in Plants, Animals and Humans by VESGEN Software

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Vickerman, Mary B.; Keith, Patricia A.

    2010-01-01

    Humans face daunting challenges in the successful exploration and colonization of space, including adverse alterations in gravity and radiation. The Earth-determined biology of humans, animals and plants is significantly modified in such extraterrestrial environments. One physiological requirement shared by humans with larger plants and animals is a complex, highly branching vascular system that is dynamically responsive to cellular metabolism, immunological protection and specialized cellular/tissue function. The VESsel GENeration (VESGEN) Analysis has been developed as a mature beta version, pre-release research software for mapping and quantification of the fractal-based complexity of vascular branching. Alterations in vascular branching pattern can provide informative read-outs of altered vascular regulation. Originally developed for biomedical applications in angiogenesis, VESGEN 2D has provided novel insights into the cytokine, transgenic and therapeutic regulation of angiogenesis, lymphangiogenesis and other microvascular remodeling phenomena. Vascular trees, networks and tree-network composites are mapped and quantified. Applications include disease progression from clinical ophthalmic images of the human retina; experimental regulation of vascular remodeling in the mouse retina; avian and mouse coronary vasculature, and other experimental models in vivo. We envision that altered branching in the leaves of plants studied on ISS such as Arabidopsis thaliana cans also be analyzed.

  5. Mapping and Quantification of Vascular Branching in Plants, Animals and Humans by VESGEN Software

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, P. A.; Vickerman, M. B.; Keith, P. A.

    2010-01-01

    Humans face daunting challenges in the successful exploration and colonization of space, including adverse alterations in gravity and radiation. The Earth-determined biology of plants, animals and humans is significantly modified in such extraterrestrial environments. One physiological requirement shared by larger plants and animals with humans is a complex, highly branching vascular system that is dynamically responsive to cellular metabolism, immunological protection and specialized cellular/tissue function. VESsel GENeration (VESGEN) Analysis has been developed as a mature beta version, pre-release research software for mapping and quantification of the fractal-based complexity of vascular branching. Alterations in vascular branching pattern can provide informative read-outs of altered vascular regulation. Originally developed for biomedical applications in angiogenesis, VESGEN 2D has provided novel insights into the cytokine, transgenic and therapeutic regulation of angiogenesis, lymphangiogenesis and other microvascular remodeling phenomena. Vascular trees, networks and tree-network composites are mapped and quantified. Applications include disease progression from clinical ophthalmic images of the human retina; experimental regulation of vascular remodeling in the mouse retina; avian and mouse coronary vasculature, and other experimental models in vivo. We envision that altered branching in the leaves of plants studied on ISS such as Arabidopsis thaliana cans also be analyzed.

  6. S1P1 inhibits sprouting angiogenesis during vascular development.

    PubMed

    Ben Shoham, Adi; Malkinson, Guy; Krief, Sharon; Shwartz, Yulia; Ely, Yona; Ferrara, Napoleone; Yaniv, Karina; Zelzer, Elazar

    2012-10-01

    Coordination between the vascular system and forming organs is essential for proper embryonic development. The vasculature expands by sprouting angiogenesis, during which tip cells form filopodia that incorporate into capillary loops. Although several molecules, such as vascular endothelial growth factor A (Vegfa), are known to induce sprouting, the mechanism that terminates this process to ensure neovessel stability is still unknown. Sphingosine-1-phosphate receptor 1 (S1P(1)) has been shown to mediate interaction between endothelial and mural cells during vascular maturation. In vitro studies have identified S1P(1) as a pro-angiogenic factor. Here, we show that S1P(1) acts as an endothelial cell (EC)-autonomous negative regulator of sprouting angiogenesis during vascular development. Severe aberrations in vessel size and excessive sprouting found in limbs of S1P(1)-null mouse embryos before vessel maturation imply a previously unknown, mural cell-independent role for S1P(1) as an anti-angiogenic factor. A similar phenotype observed when S1P(1) expression was blocked specifically in ECs indicates that the effect of S1P(1) on sprouting is EC-autonomous. Comparable vascular abnormalities in S1p(1) knockdown zebrafish embryos suggest cross-species evolutionary conservation of this mechanism. Finally, genetic interaction between S1P(1) and Vegfa suggests that these factors interplay to regulate vascular development, as Vegfa promotes sprouting whereas S1P(1) inhibits it to prevent excessive sprouting and fusion of neovessels. More broadly, because S1P, the ligand of S1P(1), is blood-borne, our findings suggest a new mode of regulation of angiogenesis, whereby blood flow closes a negative feedback loop that inhibits sprouting angiogenesis once the vascular bed is established and functional.

  7. VESGEN Software for Mapping and Quantification of Vascular Regulators

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Vickerman, Mary B.; Keith, Patricia A.

    2012-01-01

    VESsel GENeration (VESGEN) Analysis is an automated software that maps and quantifies effects of vascular regulators on vascular morphology by analyzing important vessel parameters. Quantification parameters include vessel diameter, length, branch points, density, and fractal dimension. For vascular trees, measurements are reported as dependent functions of vessel branching generation. VESGEN maps and quantifies vascular morphological events according to fractal-based vascular branching generation. It also relies on careful imaging of branching and networked vascular form. It was developed as a plug-in for ImageJ (National Institutes of Health, USA). VESGEN uses image-processing concepts of 8-neighbor pixel connectivity, skeleton, and distance map to analyze 2D, black-and-white (binary) images of vascular trees, networks, and tree-network composites. VESGEN maps typically 5 to 12 (or more) generations of vascular branching, starting from a single parent vessel. These generations are tracked and measured for critical vascular parameters that include vessel diameter, length, density and number, and tortuosity per branching generation. The effects of vascular therapeutics and regulators on vascular morphology and branching tested in human clinical or laboratory animal experimental studies are quantified by comparing vascular parameters with control groups. VESGEN provides a user interface to both guide and allow control over the users vascular analysis process. An option is provided to select a morphological tissue type of vascular trees, network or tree-network composites, which determines the general collections of algorithms, intermediate images, and output images and measurements that will be produced.

  8. Myocardin Regulates Vascular Smooth Muscle Cell Inflammatory Activation and Disease

    PubMed Central

    Ackers-Johnson, Matthew; Talasila, Amarnath; Sage, Andrew P; Long, Xiaochun; Bot, Ilze; Morrell, Nicholas W; Bennett, Martin R; Miano, Joseph M.; Sinha, Sanjay

    2015-01-01

    Objective Atherosclerosis, the cause of 50% of deaths in westernised societies, is widely regarded as a chronic vascular inflammatory disease. Vascular smooth muscle cell (VSMC) inflammatory activation in response to local pro-inflammatory stimuli contributes to disease progression and is a pervasive feature in developing atherosclerotic plaques. Therefore, it is of considerable therapeutic importance to identify mechanisms that regulate the VSMC inflammatory response. Approach and Results We report that myocardin, a powerful myogenic transcriptional coactivator, negatively regulates VSMC inflammatory activation and vascular disease. Myocardin levels are reduced during atherosclerosis, in association with phenotypic switching of smooth muscle cells. Myocardin deficiency accelerates atherogenesis in hypercholesterolemic ApoE−/− mice. Conversely, increased myocardin expression potently abrogates the induction of an array of inflammatory cytokines, chemokines and adhesion molecules in VSMCs. Expression of myocardin in VSMCs reduces lipid uptake, macrophage interaction, chemotaxis and macrophage-endothelial tethering in vitro, and attenuates monocyte accumulation within developing lesions in vivo. These results demonstrate that endogenous levels of myocardin are a critical regulator of vessel inflammation. Conclusions We propose myocardin as a guardian of the contractile, non-inflammatory VSMC phenotype, with loss of myocardin representing a critical permissive step in the process of phenotypic transition and inflammatory activation, at the onset of vascular disease. PMID:25614278

  9. Death receptors DR6 and TROY regulate brain vascular development.

    PubMed

    Tam, Stephen J; Richmond, David L; Kaminker, Joshua S; Modrusan, Zora; Martin-McNulty, Baby; Cao, Tim C; Weimer, Robby M; Carano, Richard A D; van Bruggen, Nick; Watts, Ryan J

    2012-02-14

    Signaling events that regulate central nervous system (CNS) angiogenesis and blood-brain barrier (BBB) formation are only beginning to be elucidated. By evaluating the gene expression profile of mouse vasculature, we identified DR6/TNFRSF21 and TROY/TNFRSF19 as regulators of CNS-specific angiogenesis in both zebrafish and mice. Furthermore, these two death receptors interact both genetically and physically and are required for vascular endothelial growth factor (VEGF)-mediated JNK activation and subsequent human brain endothelial sprouting in vitro. Increasing beta-catenin levels in brain endothelium upregulate DR6 and TROY, indicating that these death receptors are downstream target genes of Wnt/beta-catenin signaling, which has been shown to be required for BBB development. These findings define a role for death receptors DR6 and TROY in CNS-specific vascular development. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. The use of a whole animal biophotonic model as a screen for the angiogenic potential of estrogenic compounds

    USDA-ARS?s Scientific Manuscript database

    Vascular endothelial growth factor (VEGF) is essential for normal vascular growth and development during wound repair. VEGF is estrogen responsive and capable of regulating its own receptor, vascular endothelial growth factor receptor-2 (VEGFR-2). Several agricultural pesticides (e.g., methoxychlor)...

  11. Endothelial follistatin-like-1 regulates the postnatal development of the pulmonary vasculature by modulating BMP/Smad signaling

    PubMed Central

    Tania, Navessa P.; Maarsingh, Harm; T. Bos, I. Sophie; Mattiotti, Andrea; Prakash, Stuti; Timens, Wim; Gunst, Quinn D.; Jimenez-Borreguero, Luis J.; Schmidt, Martina; van den Hoff, Maurice J.B.; Gosens, Reinoud

    2017-01-01

    Bone morphogenetic protein (BMP) signaling regulates vascular smooth muscle maturation, endothelial cell proliferation, and tube formation. The endogenous BMP antagonist Follistatin-like 1 (Fstl1) is highly expressed in pulmonary vascular endothelium of the developing mouse lung, suggesting a role in pulmonary vascular formation and vascular homeostasis. The aim of this study was to investigate the role of Fstl1 in the pulmonary vascular endothelium. To this aim, Fstl1 was conditionally deleted from endothelial and endothelial-derived cells using Tie2-cre driven Fstl1-KO mice (Fstl1-eKO mice). Endothelial-specific Fstl1 deletion was postnatally lethal, as ∼70% of Fstl1-eKO mice died at three weeks after birth. Deletion of Fstl1 from endothelium resulted in a reduction of right ventricular output at three weeks after birth compared with controls. This was associated with pulmonary vascular remodeling, as the percentage of actin-positive small pulmonary vessels was increased at three weeks in Fstl1-eKO mice compared with controls. Endothelial deletion of Fstl1 resulted in activation of Smad1/5/8 signaling and increased BMP/Smad-regulated gene expression of Jagged1, Endoglin, and Gata2 at one week after birth compared with controls. In addition, potent vasoconstrictor Endothelin-1, the expression of which is driven by Gata2, was increased in expression, both on the mRNA and protein levels, at one week after birth compared with controls. At three weeks, Jagged1 was reduced in the Fstl1-eKO mice whereas Endoglin and Endothelin-1 were unchanged. In conclusion, loss of endothelial Fstl1 in the lung is associated with elevated BMP-regulated genes, impaired small pulmonary vascular remodeling, and decreased right ventricular output. PMID:28680581

  12. Endothelial follistatin-like-1 regulates the postnatal development of the pulmonary vasculature by modulating BMP/Smad signaling.

    PubMed

    Tania, Navessa P; Maarsingh, Harm; T Bos, I Sophie; Mattiotti, Andrea; Prakash, Stuti; Timens, Wim; Gunst, Quinn D; Jimenez-Borreguero, Luis J; Schmidt, Martina; van den Hoff, Maurice J B; Gosens, Reinoud

    2017-03-01

    Bone morphogenetic protein (BMP) signaling regulates vascular smooth muscle maturation, endothelial cell proliferation, and tube formation. The endogenous BMP antagonist Follistatin-like 1 (Fstl1) is highly expressed in pulmonary vascular endothelium of the developing mouse lung, suggesting a role in pulmonary vascular formation and vascular homeostasis. The aim of this study was to investigate the role of Fstl1 in the pulmonary vascular endothelium. To this aim, Fstl1 was conditionally deleted from endothelial and endothelial-derived cells using Tie2-cre driven Fstl1 -KO mice ( Fstl1 -eKO mice). Endothelial-specific Fstl1 deletion was postnatally lethal, as ∼70% of Fstl1 -eKO mice died at three weeks after birth. Deletion of Fstl1 from endothelium resulted in a reduction of right ventricular output at three weeks after birth compared with controls. This was associated with pulmonary vascular remodeling, as the percentage of actin-positive small pulmonary vessels was increased at three weeks in Fstl1 -eKO mice compared with controls. Endothelial deletion of Fstl1 resulted in activation of Smad1/5/8 signaling and increased BMP/Smad-regulated gene expression of Jagged1, Endoglin, and Gata2 at one week after birth compared with controls. In addition, potent vasoconstrictor Endothelin-1, the expression of which is driven by Gata2, was increased in expression, both on the mRNA and protein levels, at one week after birth compared with controls. At three weeks, Jagged1 was reduced in the Fstl1 -eKO mice whereas Endoglin and Endothelin-1 were unchanged. In conclusion, loss of endothelial Fstl1 in the lung is associated with elevated BMP-regulated genes, impaired small pulmonary vascular remodeling, and decreased right ventricular output.

  13. Vascular development of the grapevine (Vitis vinifera L.) inflorescence rachis in response to flower number, plant growth regulators and defoliation.

    PubMed

    Gourieroux, Aude M; Holzapfel, Bruno P; McCully, Margaret E; Scollary, Geoffrey R; Rogiers, Suzy Y

    2017-09-01

    The grapevine inflorescence is a determinate panicle and as buds emerge, shoot, flower and rachis development occur simultaneously. The growth and architecture of the rachis is determined by genetic and environmental factors but here we examined the role of flower and leaf number as well as hormones on its elongation and vascular development. The consequences of rachis morphology and vascular area on berry size and composition were also assessed. One week prior to anthesis, Merlot and Cabernet Sauvignon field vines were exposed to manual flower removal, exogenous plant growth regulators or pre-bloom leaf removal. Manual removal of half the flowers along the vertical axis of the inflorescence resulted in a shorter rachis in both cultivars. Conversely, inflorescences treated with gibberellic acid (GA 3 ) and the synthetic cytokinin, 6-benzylaminopurine (BAP) resulted in a longer rachis while pre-bloom removal of all leaves on the inflorescence-bearing shoot did not alter rachis length relative to untreated inflorescences. Across the treatments, the cross-sectional areas of the conducting xylem and phloem in the rachis were positively correlated to rachis girth, flower number at anthesis, bunch berry number, bunch berry fresh mass and bunch sugar content at harvest. Conversely, average berry size and sugar content were not linked to rachis vascular area. These data indicate that the morphological and vascular development of the rachis was more responsive to flower number and plant growth regulators than to leaf removal.

  14. CYCD3 D-type cyclins regulate cambial cell proliferation and secondary growth in Arabidopsis

    PubMed Central

    Collins, Carl; Maruthi, N. M.; Jahn, Courtney E.

    2015-01-01

    A major proportion of plant biomass is derived from the activity of the cambium, a lateral meristem responsible for vascular tissue formation and radial organ enlargement in a process termed secondary growth. In contrast to our relatively good understanding of the regulation of primary meristems, remarkably little is known concerning the mechanisms controlling secondary growth, particularly how cambial cell divisions are regulated and integrated with vascular differentiation. A genetic loss-of-function approach was used here to reveal a rate-limiting role for the Arabidopsis CYCLIN D3 (CYCD3) subgroup of cell-cycle genes in the control of cambial cell proliferation and secondary growth, providing conclusive evidence of a direct link between the cell cycle and vascular development. It is shown that all three CYCD3 genes are specifically expressed in the cambium throughout vascular development. Analysis of a triple loss-of-function CYCD3 mutant revealed a requirement for CYCD3 in promoting the cambial cell cycle since mutant stems and hypocotyls showed a marked reduction in diameter linked to reduced mitotic activity in the cambium. Conversely, loss of CYCD3 provoked an increase in xylem cell size and the expression of differentiation markers, showing that CYCD3 is required to restrain the differentiation of xylem precursor cells. Together, our data show that tight control of cambial cell division through developmental- and cell type-specific regulation of CYCD3 is required for normal vascular development, constituting part of a novel mechanism controlling organ growth in higher plants. PMID:26022252

  15. Differential roles of NADPH oxidases in vascular physiology and pathophysiology

    PubMed Central

    Amanso, Angelica M.; Griendling, Kathy K.

    2012-01-01

    Reactive oxygen species (ROS) are produced by all vascular cells and regulate the major physiological functions of the vasculature. Production and removal of ROS are tightly controlled and occur in discrete subcellular locations, allowing for specific, compartmentalized signaling. Among the many sources of ROS in the vessel wall, NADPH oxidases are implicated in physiological functions such as control of vasomotor tone, regulation of extracellular matrix and phenotypic modulation of vascular smooth muscle cells. They are involved in the response to injury, whether as an oxygen sensor during hypoxia, as a regulator of protein processing, as an angiogenic stimulus, or as a mechanism of wound healing. These enzymes have also been linked to processes leading to disease development, including migration, proliferation, hypertrophy, apoptosis and autophagy. As a result, NADPH oxidases participate in atherogenesis, systemic and pulmonary hypertension and diabetic vascular disease. The role of ROS in each of these processes and diseases is complex, and a more full understanding of the sources, targets, cell-specific responses and counterbalancing mechanisms is critical for the rational development of future therapeutics. PMID:22202108

  16. Temporal and Embryonic Lineage-Dependent Regulation of Human Vascular SMC Development by NOTCH3

    PubMed Central

    Granata, Alessandra; Bernard, William G.; Zhao, Ning; Mccafferty, John; Lilly, Brenda

    2015-01-01

    Vascular smooth muscle cells (SMCs), which arise from multiple embryonic progenitors, have unique lineage-specific properties and this diversity may contribute to spatial patterns of vascular diseases. We developed in vitro methods to generate distinct vascular SMC subtypes from human pluripotent stem cells, allowing us to explore their intrinsic differences and the mechanisms involved in SMC development. Since Notch signaling is thought to be one of the several key regulators of SMC differentiation and function, we profiled the expression of Notch receptors, ligands, and downstream elements during the development of origin-specific SMC subtypes. NOTCH3 expression in our in vitro model varied in a lineage- and developmental stage-specific manner so that the highest expression in mature SMCs was in those derived from paraxial mesoderm (PM). This pattern was consistent with the high expression level of NOTCH3 observed in the 8–9 week human fetal descending aorta, which is populated by SMCs of PM origin. Silencing NOTCH3 in mature SMCs in vitro reduced SMC markers in cells of PM origin preferentially. Conversely, during early development, NOTCH3 was highly expressed in vitro in SMCs of neuroectoderm (NE) origin. Inhibition of NOTCH3 in early development resulted in a significant downregulation of specific SMC markers exclusively in the NE lineage. Corresponding to this prediction, the Notch3-null mouse showed reduced expression of Acta2 in the neural crest-derived SMCs of the aortic arch. Thus, Notch3 signaling emerges as one of the key regulators of vascular SMC differentiation and maturation in vitro and in vivo in a lineage- and temporal-dependent manner. PMID:25539150

  17. Dietary potassium regulates vascular calcification and arterial stiffness.

    PubMed

    Sun, Yong; Byon, Chang Hyun; Yang, Youfeng; Bradley, Wayne E; Dell'Italia, Louis J; Sanders, Paul W; Agarwal, Anupam; Wu, Hui; Chen, Yabing

    2017-10-05

    Vascular calcification is a risk factor that predicts adverse cardiovascular complications of several diseases including atherosclerosis. Reduced dietary potassium intake has been linked to cardiovascular diseases such as hypertension and incidental stroke, although the underlying molecular mechanisms remain largely unknown. Using the ApoE-deficient mouse model, we demonstrated for the first time to our knowledge that reduced dietary potassium (0.3%) promoted atherosclerotic vascular calcification and increased aortic stiffness, compared with normal (0.7%) potassium-fed mice. In contrast, increased dietary potassium (2.1%) attenuated vascular calcification and aortic stiffness. Mechanistically, reduction in the potassium concentration to the lower limit of the physiological range increased intracellular calcium, which activated a cAMP response element-binding protein (CREB) signal that subsequently enhanced autophagy and promoted vascular smooth muscle cell (VSMC) calcification. Inhibition of calcium signals and knockdown of either CREB or ATG7, an autophagy regulator, attenuated VSMC calcification induced by low potassium. Consistently, elevated autophagy and CREB signaling were demonstrated in the calcified arteries from low potassium diet-fed mice as well as aortic arteries exposed to low potassium ex vivo. These studies established a potentially novel causative role of dietary potassium intake in regulating atherosclerotic vascular calcification and stiffness, and uncovered mechanisms that offer opportunities to develop therapeutic strategies to control vascular disease.

  18. Dietary potassium regulates vascular calcification and arterial stiffness

    PubMed Central

    Sun, Yong; Byon, Chang Hyun; Yang, Youfeng; Bradley, Wayne E.; Dell’Italia, Louis J.; Agarwal, Anupam; Wu, Hui

    2017-01-01

    Vascular calcification is a risk factor that predicts adverse cardiovascular complications of several diseases including atherosclerosis. Reduced dietary potassium intake has been linked to cardiovascular diseases such as hypertension and incidental stroke, although the underlying molecular mechanisms remain largely unknown. Using the ApoE-deficient mouse model, we demonstrated for the first time to our knowledge that reduced dietary potassium (0.3%) promoted atherosclerotic vascular calcification and increased aortic stiffness, compared with normal (0.7%) potassium–fed mice. In contrast, increased dietary potassium (2.1%) attenuated vascular calcification and aortic stiffness. Mechanistically, reduction in the potassium concentration to the lower limit of the physiological range increased intracellular calcium, which activated a cAMP response element–binding protein (CREB) signal that subsequently enhanced autophagy and promoted vascular smooth muscle cell (VSMC) calcification. Inhibition of calcium signals and knockdown of either CREB or ATG7, an autophagy regulator, attenuated VSMC calcification induced by low potassium. Consistently, elevated autophagy and CREB signaling were demonstrated in the calcified arteries from low potassium diet–fed mice as well as aortic arteries exposed to low potassium ex vivo. These studies established a potentially novel causative role of dietary potassium intake in regulating atherosclerotic vascular calcification and stiffness, and uncovered mechanisms that offer opportunities to develop therapeutic strategies to control vascular disease. PMID:28978809

  19. Evolution of plant conducting cells: perspectives from key regulators of vascular cell differentiation.

    PubMed

    Ohtani, Misato; Akiyoshi, Nobuhiro; Takenaka, Yuto; Sano, Ryosuke; Demura, Taku

    2017-01-01

    One crucial problem that plants faced during their evolution, particularly during the transition to growth on land, was how to transport water, nutrients, metabolites, and small signaling molecules within a large, multicellular body. As a solution to this problem, land plants developed specific tissues for conducting molecules, called water-conducting cells (WCCs) and food-conducting cells (FCCs). The well-developed WCCs and FCCs in extant plants are the tracheary elements and sieve elements, respectively, which are found in vascular plants. Recent molecular genetic studies revealed that transcriptional networks regulate the differentiation of tracheary and sieve elements, and that the networks governing WCC differentiation are largely conserved among land plant species. In this review, we discuss the molecular evolution of plant conducting cells. By focusing on the evolution of the key transcription factors that regulate vascular cell differentiation, the NAC transcription factor VASCULAR-RELATED NAC-DOMAIN for WCCs and the MYB-coiled-coil (CC)-type transcription factor ALTERED PHLOEM DEVELOPMENT for sieve elements, we describe how land plants evolved molecular systems to produce the specialized cells that function as WCCs and FCCs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. A Computational Model Predicting Disruption of Blood Vessel Development

    EPA Science Inventory

    Vascular development is a complex process regulated by dynamic biological networks that vary in topology and state across different tissues and developmental stages. Signals regulating de novo blood vessel formation (vasculogenesis) and remodeling (angiogenesis) come from a varie...

  1. Adverse Outcome Pathway (AOP) framework for embryonic vascular disruption and developmental defects (SOT)

    EPA Science Inventory

    Vascular development commences with de novo assembly of a primary capillary plexus (vasculogenesis) followed by its expansion (angiogenesis) and maturation (angio-adaptation) into a hierarchical system of arteries and veins. These processes are tightly regulated by genetic signal...

  2. Transforming growth factor β family members in regulation of vascular function: in the light of vascular conditional knockouts.

    PubMed

    Jakobsson, Lars; van Meeteren, Laurens A

    2013-05-15

    Blood vessels are composed of endothelial cells, mural cells (smooth muscle cells and pericytes) and their shared basement membrane. During embryonic development a multitude of signaling components orchestrate the formation of new vessels. The process is highly dependent on correct dosage, spacing and timing of these signaling molecules. As vessels mature some cascades remain active, albeit at very low levels, and may be reactivated upon demand. Members of the Transforming growth factor β (TGF-β) protein family are strongly engaged in developmental angiogenesis but are also regulators of vascular integrity in the adult. In humans various genetic alterations within this protein family cause vascular disorders, involving disintegration of vascular integrity. Here we summarize and discuss recent data gathered from conditional and endothelial cell specific genetic loss-of-function of members of the TGF-β family in the mouse. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. The expression dynamics of mechanosensitive genes in extra-embryonic vasculature after heart starts to beat in chick embryo.

    PubMed

    Rajendran, Saranya; Sundaresan, Lakshmikirupa; Rajendran, Krithika; Selvaraj, Monica; Gupta, Ravi; Chatterjee, Suvro

    2016-02-11

    Fluid flow plays an important role in vascular development. However, the detailed mechanisms, particularly the link between flow and modulation of gene expression during vascular development, remain unexplored. In chick embryo, the key events of vascular development from initiation of heart beat to establishment of effective blood flow occur between the stages HH10 and HH13. Therefore, we propose a novel in vivo model to study the flow experienced by developing endothelium. Using this model, we aimed to capture the transcriptome dynamics of the pre- and post-flow conditions. RNA was isolated from extra embryonic area vasculosa (EE-AV) pooled from three chick embryos between HH10-HH13 and RNA sequencing was performed. The whole transcriptome sequencing of chick identified up-regulation of some of the previously well-known mechanosensitive genes including NFR2, HAND1, CTGF and KDR. GO analyses of the up-regulated genes revealed enrichment of several biological processes including heart development, extracellular matrix organization, cell-matrix adhesion, cell migration, blood vessel development, patterning of blood vessels, collagen fibril organization. Genes encoding for gap junctions proteins which are involved in vascular remodeling and arterial-venous differentiation, and genes involved in cell-cell adhesion, and ECM interactions were significantly up-regulated. Validation of selected genes through semi quantitative PCR was performed. The study indicates that shear stress plays a major role in development. Through appropriate validation, this platform can serve as an in vivo model to study conditions of disturbed flow in pathology as well as normal flow during development.

  4. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Se-Hee; Schmitt, Christopher E.; Woolls, Melissa J.

    Highlights: ► VEGF-A signaling regulates the segregation of axial vessels. ► VEGF-A signaling is mediated by PKC and ERK in this process. ► Ectopic activation of ERK is sufficient to rescue defects in vessel segregation. -- Abstract: Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A)more » signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3 K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process.« less

  5. P2 receptors in cardiovascular regulation and disease

    PubMed Central

    Erlinge, David

    2007-01-01

    The role of ATP as an extracellular signalling molecule is now well established and evidence is accumulating that ATP and other nucleotides (ADP, UTP and UDP) play important roles in cardiovascular physiology and pathophysiology, acting via P2X (ion channel) and P2Y (G protein-coupled) receptors. In this article we consider the dual role of ATP in regulation of vascular tone, released as a cotransmitter from sympathetic nerves or released in the vascular lumen in response to changes in blood flow and hypoxia. Further, purinergic long-term trophic and inflammatory signalling is described in cell proliferation, differentiation, migration and death in angiogenesis, vascular remodelling, restenosis and atherosclerosis. The effects on haemostasis and cardiac regulation is reviewed. The involvement of ATP in vascular diseases such as thrombosis, hypertension and diabetes will also be discussed, as well as various heart conditions. The purinergic system may be of similar importance as the sympathetic and renin-angiotensin-aldosterone systems in cardiovascular regulation and pathophysiology. The extracellular nucleotides and their cardiovascular P2 receptors are now entering the phase of clinical development. PMID:18368530

  6. Regulation of programmed cell death or apoptosis in atherosclerosis.

    PubMed

    Geng, Y J

    1997-01-01

    Intimal thickening caused by accumulation of cells, lipids, and connective tissue characterizes atherosclerosis, an arterial disease that leads to cardiac and cerebral infarction. Apoptosis, or genetically programmed cell death, is important for the development and morphogenesis of organs and tissues. As in other tissues, cells of cardiovascular tissues can undergo apoptosis. Increased apoptosis has been found in both human and animal atherosclerotic lesions, mediating tissue turnover and lesion development. In addition to vascular cells, many activated immune cells, mainly macrophages and T cells, are present in atherosclerotic lesions, where these cells produce biologically active substances such as the proinflammatory cytokines tumor necrosis factor, interleukin-1 (IL-1), and interferon-gamma. Simultaneous exposure to these cytokines may trigger apoptosis of vascular smooth muscle cells. The products of death-regulating genes including Fas/Fas ligand, members of IL-1 beta cysteinyl protease (caspase) family, the tumor suppressive gene p53, and the protooncogene c-myc have been found in vascular cells and may participate in the regulation of vascular apoptosis during the development of atherosclerosis. Abnormal occurrence of apoptosis may take place in atherosclerotic lesions, including attenuation or acceleration of the apoptotic death process. The former may cause an increase in the cellularity of the lesions, and the latter can reduce cellular components important for maintaining the integrity and stability of the plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of patients with atherosclerosis and its major complications, heart attack and stroke.

  7. Inhibition of Vascular Endothelial Growth Factor Receptor Signal Transduction Blocks Follicle Progression but Does Not Necessarily Disrupt Vascular Development in Perinatal Rat Ovaries1

    PubMed Central

    McFee, Renee M.; Artac, Robin A.; McFee, Ryann M.; Clopton, Debra T.; Smith, Robyn A. Longfellow; Rozell, Timothy G.; Cupp, Andrea S.

    2009-01-01

    We hypothesized that vascular endothelial growth factor A (VEGFA) angiogenic isoforms and their receptors, FLT1 and KDR, regulate follicular progression in the perinatal rat ovary. Each VEGFA angiogenic isoform has unique functions (based on its exons) that affect diffusibility, cell migration, branching, and development of large vessels. The Vegfa angiogenic isoforms (Vegfa_120, Vegfa_164, and Vegfa_188) were detected in developing rat ovaries, and quantitative RT-PCR determined that Vegfa_120 and Vegfa_164 mRNA was more abundant after birth, while Vegfa_188 mRNA was highest at Embryonic Day 16. VEGFA and its receptors were localized to pregranulosa and granulosa cells of all follicle stages and to theca cells of advanced-stage follicles. To determine the role of VEGFA in developing ovaries, Postnatal Day 3/4 rat ovaries were cultured with 8 μM VEGFR-TKI, a tyrosine kinase inhibitor that blocks FLT1 and KDR. Ovaries treated with VEGFR-TKI had vascular development reduced by 94% (P < 0.0001), with more primordial follicles (stage 0), fewer early primary, transitional, and secondary follicles (stages 1, 3, and 4, respectively), and greater total follicle numbers compared with control ovaries (P < 0.005). V1, an inhibitor specific for KDR, was utilized to determine the effects of only KDR inhibition. Treatment with 30 μM V1 had no effect on vascular density; however, treated ovaries had fewer early primary, transitional, and secondary follicles and more primary follicles (stage 2) compared with control ovaries (P < 0.05). We conclude that VEGFA may be involved in primordial follicle activation and in follicle maturation and survival, which are regulated through vascular-dependent and vascular-independent mechanisms. PMID:19605787

  8. Gap Junction Regulation of Vascular Tone: Implications of Modulatory Intercellular Communication During Gestation

    PubMed Central

    Ampey, Bryan C.; Morschauser, Timothy J.; Lampe, Paul D.

    2017-01-01

    In the vasculature, gap junctions (GJ) play a multifaceted role by serving as direct conduits for cell–cell intercellular communication via the facilitated diffusion of signaling molecules. GJs are essential for the control of gene expression and coordinated vascular development in addition to vascular function. The coupling of endothelial cells to each other, as well as with vascular smooth muscle cells via GJs, plays a relevant role in the control of vasomotor tone, tissue perfusion and arterial blood pressure. The regulation of cell-signaling is paramount to cardiovascular adaptations of pregnancy. Pregnancy requires highly developed cell-to-cell coupling, which is affected partly through the formation of intercellular GJs by Cx43, a gap junction protein, within adjacent cell membranes to help facilitate the increase of uterine blood flow (UBF) in order to ensure adequate perfusion for nutrient and oxygen delivery to the placenta and thus the fetus. One mode of communication that plays a critical role in regulating Cx43 is the release of endothelial-derived vasodilators such as prostacyclin (PGI2) and nitric oxide (NO) and their respective signaling mechanisms involving second messengers (cAMP and cGMP, respectively) that are likely to be important in maintaining UBF. Therefore, the assertion we present in this review is that GJs play an integral if not a central role in maintaining UBF by controlling rises in vasodilators (PGI2 and NO) via cyclic nucleotides. In this review, we discuss: (1) GJ structure and regulation; (2) second messenger regulation of GJ phosphorylation and formation; (3) pregnancy-induced changes in cell-signaling; and (4) the role of uterine arterial endothelial GJs during gestation. These topics integrate the current knowledge of this scientific field with interpretations and hypotheses regarding the vascular effects that are mediated by GJs and their relationship with vasodilatory vascular adaptations required for modulating the dramatic physiological rises in uteroplacental perfusion and blood flow observed during normal pregnancy. PMID:25015806

  9. Endothelial Snail Regulates Capillary Branching Morphogenesis via Vascular Endothelial Growth Factor Receptor 3 Expression

    PubMed Central

    Park, Jeong Ae; Kim, Dong Young; Kim, Young-Myeong; Kwon, Young-Guen

    2015-01-01

    Vascular branching morphogenesis is activated and maintained by several signaling pathways. Among them, vascular endothelial growth factor receptor 2 (VEGFR2) signaling is largely presented in arteries, and VEGFR3 signaling is in veins and capillaries. Recent reports have documented that Snail, a well-known epithelial-to-mesenchymal transition protein, is expressed in endothelial cells, where it regulates sprouting angiogenesis and embryonic vascular development. Here, we identified Snail as a regulator of VEGFR3 expression during capillary branching morphogenesis. Snail was dramatically upregulated in sprouting vessels in the developing retinal vasculature, including the leading-edged vessels and vertical sprouting vessels for capillary extension toward the deep retina. Results from in vitro functional studies demonstrate that Snail expression colocalized with VEGFR3 and upregulated VEGFR3 mRNA by directly binding to the VEGFR3 promoter via cooperating with early growth response protein-1. Snail knockdown in postnatal mice attenuated the formation of the deep capillary plexus, not only by impairing vertical sprouting vessels but also by downregulating VEGFR3 expression. Collectively, these data suggest that the Snail-VEGFR3 axis controls capillary extension, especially in vessels expressing VEGFR2 at low levels. PMID:26147525

  10. Cellular and molecular mechanisms regulating vascular tone. Part 1: basic mechanisms controlling cytosolic Ca2+ concentration and the Ca2+-dependent regulation of vascular tone.

    PubMed

    Akata, Takashi

    2007-01-01

    General anesthetics cause hemodynamic instability and alter blood flow to various organs. There is mounting evidence that most general anesthetics, at clinical concentrations, influence a wide variety of cellular and molecular mechanisms regulating the contractile state of vascular smooth muscle cells (i.e., vascular tone). In addition, in current anesthetic practice, various types of vasoactive agents are often used to control vascular reactivity and to sustain tissue blood flow in high-risk surgical patients with impaired vital organ function and/or hemodynamic instability. Understanding the physiological mechanisms involved in the regulation of vascular tone thus would be beneficial for anesthesiologists. This review, in two parts, provides an overview of current knowledge about the cellular and molecular mechanisms regulating vascular tone-i.e., targets for general anesthetics, as well as for vasoactive drugs that are used in intraoperative circulatory management. This first part of the two-part review focuses on basic mechanisms regulating cytosolic Ca2+ concentration and the Ca2+-dependent regulation of vascular tone.

  11. Mechanosensitive β-catenin signaling regulates lymphatic vascular development

    PubMed Central

    Cha, Boksik; Srinivasan, R. Sathish

    2016-01-01

    The Wnt/β-catenin signaling is an evolutionarily conserved pathway that plays a pivotal role in embryonic development and adult homeostasis. However, we have limited information about the involvement of Wnt/β-catenin signaling in the lymphatic vascular system that regulates fluid homeostasis by absorbing interstitial fluid and returning it to blood circulation. In this recent publication we report that canonical Wnt/β-catenin signaling is highly active and critical for the formation of lymphovenus valves (LVVs) and lymphatic valves (LVs). β-catenin directly associates with the regulatory elements of the lymphedema-associated transcription factor, FOXC2 and activates its expression in an oscillatory shear stress (OSS)-dependent manner. The phenotype of β-catenin null embryos was rescued by FOXC2 overexpression. These results suggest that Wnt/β-catenin signaling is a mechanotransducer that links fluid force with lymphatic vascular development. [BMB Reports 2016; 49(8): 403-404] PMID:27418286

  12. Forskolin Modifies Retinal Vascular Development in Mrp4-Knockout Mice

    PubMed Central

    Matsumiya, Wataru; Kusuhara, Sentaro; Hayashibe, Keiko; Maruyama, Kazuichi; Kusuhara, Hiroyuki; Tagami, Mizuki; Schuetz, John D.; Negi, Akira

    2012-01-01

    Purpose. Multidrug resistance protein 4 (MRP4) effluxes a wide variety of endogenous compounds, including cyclic adenosine monophosphate (cAMP), and is exclusively expressed in vascular endothelial cells (ECs) of the retina. This study aimed to investigate the role of MRP4 in retinal vascular development. Methods. The retinal vascular phenotype of Mrp4−/− mice was examined by whole-mount immunohistochemistry at P3, P6, and P14. The retinas from P6 pups that received an intraperitoneal injection of either solvent control or forskolin, an inducer of intracellular cAMP formation, at P4 and P5 were analyzed in terms of their vascular formation (vascular length, vascular branching, vascular density, and the number of tip cells), cell proliferation and apoptosis, and vessel stability. Results. The Mrp4−/− mice exhibited no overt abnormalities in the development of the retinal vasculature, but retinal vascular development in the Mrp4−/− mice was suppressed in response to forskolin administration. There was a significant decrease in the vascular length, vascular branching, and vascular density, and inhibited tip cell formation at the vascular front. The forskolin-treated Mrp4−/− mice showed an increased number of Ki67-positive and cleaved caspase 3–positive ECs, a significant decrease in the amount of pericyte coverage, and a reduced number of empty sleeves. In pups exposed to hyperoxia (75% oxygen) from P7 to P12, the Mrp4−/− mice showed a significant increase in the unvascularized retinal area. Conclusions. Mrp4−/− mice exhibited suppressed retinal vascular development in response to forskolin treatment. Thus, Mrp4 might have protective roles in retinal vascular development by regulating the intracellular cAMP level. PMID:23154460

  13. Forskolin modifies retinal vascular development in Mrp4-knockout mice.

    PubMed

    Matsumiya, Wataru; Kusuhara, Sentaro; Hayashibe, Keiko; Maruyama, Kazuichi; Kusuhara, Hiroyuki; Tagami, Mizuki; Schuetz, John D; Negi, Akira

    2012-12-07

    Multidrug resistance protein 4 (MRP4) effluxes a wide variety of endogenous compounds, including cyclic adenosine monophosphate (cAMP), and is exclusively expressed in vascular endothelial cells (ECs) of the retina. This study aimed to investigate the role of MRP4 in retinal vascular development. The retinal vascular phenotype of Mrp4(-/-) mice was examined by whole-mount immunohistochemistry at P3, P6, and P14. The retinas from P6 pups that received an intraperitoneal injection of either solvent control or forskolin, an inducer of intracellular cAMP formation, at P4 and P5 were analyzed in terms of their vascular formation (vascular length, vascular branching, vascular density, and the number of tip cells), cell proliferation and apoptosis, and vessel stability. The Mrp4(-/-) mice exhibited no overt abnormalities in the development of the retinal vasculature, but retinal vascular development in the Mrp4(-/-) mice was suppressed in response to forskolin administration. There was a significant decrease in the vascular length, vascular branching, and vascular density, and inhibited tip cell formation at the vascular front. The forskolin-treated Mrp4(-/-) mice showed an increased number of Ki67-positive and cleaved caspase 3-positive ECs, a significant decrease in the amount of pericyte coverage, and a reduced number of empty sleeves. In pups exposed to hyperoxia (75% oxygen) from P7 to P12, the Mrp4(-/-) mice showed a significant increase in the unvascularized retinal area. Mrp4(-/-) mice exhibited suppressed retinal vascular development in response to forskolin treatment. Thus, Mrp4 might have protective roles in retinal vascular development by regulating the intracellular cAMP level.

  14. The power of VEGF (vascular endothelial growth factor) family molecules.

    PubMed

    Thomas, Jean-Leon; Eichmann, Anne

    2013-05-01

    Vascular endothelial growth factors (VEGFs) and their high-affinity tyrosine kinase VEGF receptors (VEGFRs) are key regulators of both angiogenesis and neurogenesis. The current issue of CMLS discusses recent literature and work implementing these signals in nervous system development, maintenance and disease pathology.

  15. The Role of PGC-1α in Vascular Regulation: Implications for Atherosclerosis

    PubMed Central

    Kadlec, Andrew O.; Chabowski, Dawid S.; Ait-Aissa, Karima; Gutterman, David D.

    2016-01-01

    Mitochondrial dysfunction results in high levels of oxidative stress and mitochondrial damage, leading to disruption of endothelial homeostasis. Recent discoveries have clarified several pathways whereby mitochondrial dysregulation contributes to endothelial dysfunction and vascular disease burden. One such pathway centers around PGC-1α, a transcriptional coactivator linked to mitochondrial biogenesis and antioxidant defense, among other functions. Although primarily investigated for its therapeutic potential in obesity and skeletal muscle differentiation, the ability of PGC-1α to alter a multitude of cellular functions has sparked interest in its role in the vasculature. Within this context, recent studies demonstrate that PGC-1α plays a key role in endothelial cell and smooth muscle cell regulation through effects on oxidative stress, apoptosis, inflammation, and cell proliferation. The ability of PGC-1α to impact these parameters is relevant to vascular disease progression, particularly in relation to atherosclerosis. Upregulation of PGC-1α can prevent the development of, and even encourage regression of, atherosclerotic lesions. Therefore, PGC-1α is poised to serve as a promising target in vascular disease. This review details recent findings related to PGC-1α in vascular regulation, regulation of PGC-1α itself, the role of PGC-1α in atherosclerosis, and therapies that target this key protein. PMID:27312223

  16. Notch Signaling in Vascular Smooth Muscle Cells

    PubMed Central

    Baeten, J.T.; Lilly, B.

    2018-01-01

    The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease. PMID:28212801

  17. Tumor Vessel Development and Expansion in Ewing's Sarcoma: A Review of the Vasculogenesis Process and Clinical Trials with Vascular-Targeting Agents

    PubMed Central

    Stewart, Keri S.; Kleinerman, Eugenie S.

    2011-01-01

    Ewing's sarcoma accounts for a disproportionately high portion of the overall pediatric mortality rate compared to its rare incidence in the pediatric population. Little progress has been made since the introduction of traditional chemotherapies, and understanding the biology of the tumor is critical for developing new therapies. Ewing's sarcomas rely on a functional vascular supply, which is formed by a combination of angiogenesis and vasculogenesis. Recent insights into the molecular regulation of bone marrow (BM) cell participation in vascular development have identified VEGF, SDF-1α, and DLL4 as critical players in the vasculogenesis process. Clinical trials using vascular targeting agents, specifically targeting VEGF or DLL4, are underway. PMID:21785569

  18. Fluid shear stress regulates vascular remodeling via VEGFR-3 activation, although independently of its ligand, VEGF-C, in the uterus during pregnancy

    PubMed Central

    Park, Yang-Gyu; Choi, Jawun; Jung, Hye-Kang; Song, In Kyu; Shin, Yongwhan; Park, Sang-Youel; Seol, Jae-Won

    2017-01-01

    Early pregnancy is characterized by an increase in the blood volume of the uterus for embryonic development, thereby exerting fluid shear stress (FSS) on the vascular walls. The uterus experiences vascular remodeling to accommodate the increased blood flow. The blood flow-induced FSS elevates the expression of vascular endothelial growth factors (VEGFs) and their receptors, and regulates vascular remodeling through the activation of VEGF receptor-3 (VEGFR-3). However, the mechanisms responsible for FSS-induced VEGFR-3 expression in the uterus during pregnancy are unclear. In this study, we demonstrate that vascular remodeling in the uterus during pregnancy is regulated by FSS-induced VEGFR-3 expression. We examined the association between VEGFR-3 and FSS through in vivo and in vitro experiments. In vivo experiments revealed VEGFR-3 expression in the CD31-positive region of the uterus of pregnant mice; VEGF-C (ligand for VEGFR-3) was undetected in the uterus. These results confirmed that VEGFR-3 expression in the endometrium is independent of its ligand. In vitro studies experiments revealed that FSS induced morphological changes and increased VEGFR-3 expression in human uterine microvascular endothelial cells. Thus, VEGFR-3 activation by FSS is associated with vascular remodeling to allow increased blood flow in the uterus during pregnancy. PMID:28849193

  19. Fluid shear stress regulates vascular remodeling via VEGFR-3 activation, although independently of its ligand, VEGF-C, in the uterus during pregnancy.

    PubMed

    Park, Yang-Gyu; Choi, Jawun; Jung, Hye-Kang; Song, In Kyu; Shin, Yongwhan; Park, Sang-Youel; Seol, Jae-Won

    2017-10-01

    Early pregnancy is characterized by an increase in the blood volume of the uterus for embryonic development, thereby exerting fluid shear stress (FSS) on the vascular walls. The uterus experiences vascular remodeling to accommodate the increased blood flow. The blood flow‑induced FSS elevates the expression of vascular endothelial growth factors (VEGFs) and their receptors, and regulates vascular remodeling through the activation of VEGF receptor-3 (VEGFR-3). However, the mechanisms responsible for FSS-induced VEGFR-3 expression in the uterus during pregnancy are unclear. In this study, we demonstrate that vascular remodeling in the uterus during pregnancy is regulated by FSS-induced VEGFR-3 expression. We examined the association between VEGFR-3 and FSS through in vivo and in vitro experiments. In vivo experiments revealed VEGFR-3 expression in the CD31-positive region of the uterus of pregnant mice; VEGF-C (ligand for VEGFR‑3) was undetected in the uterus. These results confirmed that VEGFR-3 expression in the endometrium is independent of its ligand. In vitro studies experiments revealed that FSS induced morphological changes and increased VEGFR-3 expression in human uterine microvascular endothelial cells. Thus, VEGFR-3 activation by FSS is associated with vascular remodeling to allow increased blood flow in the uterus during pregnancy.

  20. Role of Nitric Oxide Isoforms in Vascular and Alveolar Development and Lung Injury in Vascular Endothelial Growth Factor Overexpressing Neonatal Mice Lungs.

    PubMed

    Syed, Mansoor A; Choo-Wing, Rayman; Homer, Robert J; Bhandari, Vineet

    2016-01-01

    The role of vascular endothelial growth factor (VEGF)-induced 3 different nitric oxide synthase (NOS) isoforms in lung development and injury in the newborn (NB) lung are not known. We hypothesized that VEGF-induced specific NOS pathways are critical regulators of lung development and injury. We studied NB wild type (WT), lung epithelial cell-targeted VEGF165 doxycycline-inducible overexpressing transgenic (VEGFTG), VEGFTG treated with a NOS1 inhibitor (L-NIO), VEGFTG x NOS2-/- and VEGFTG x NOS3+/- mice in room air (RA) for 7 postnatal (PN) days. Lung morphometry (chord length), vascular markers (Ang1, Ang2, Notch2, vWF, CD31 and VE-cadherin), cell proliferation (Ki67), vascular permeability, injury and oxidative stress markers (hemosiderin, nitrotyrosine and 8-OHdG) were evaluated. VEGF overexpression in RA led to increased chord length and vascular markers at PN7, which were significantly decreased to control values in VEGFTG x NOS2-/- and VEGFTG x NOS3+/- lungs. However, we found no noticeable effect on chord length and vascular markers in the VEGFTG / NOS1 inhibited group. In the NB VEGFTG mouse model, we found VEGF-induced vascular permeability in the NB murine lung was partially dependent on NOS2 and NOS3-signaling pathways. In addition, the inhibition of NOS2 and NOS3 resulted in a significant decrease in VEGF-induced hemosiderin, nitrotyrosine- and 8-OHdG positive cells at PN7. NOS1 inhibition had no significant effect. Our data showed that the complete absence of NOS2 and partial deficiency of NOS3 confers protection against VEGF-induced pathologic lung vascular and alveolar developmental changes, as well as injury markers. Inhibition of NOS1 does not have any modulating role on VEGF-induced changes in the NB lung. Overall, our data suggests that there is a significant differential regulation in the NOS-mediated effects of VEGF overexpression in the developing mouse lung.

  1. Stromal vascular cells and adipogenesis: Cells within adipose depots regulate adipogenesis

    USDA-ARS?s Scientific Manuscript database

    A collection of investigations indicate the importance of adipose tissue stromal/stem cells to vasculogenesis and angiogenesis during adipogenesis. Early in development the stromal-vascular (S-V) elements control and dictate the extent of adipogenesis in a depot dependent manner. For instance, the...

  2. NADPH Oxidases in Vascular Pathology

    PubMed Central

    Konior, Anna; Schramm, Agata; Czesnikiewicz-Guzik, Marta

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of “kindling radicals,” which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the expression and activity of NADPH oxidases in the vessel wall. Recent Advances: There are seven isoforms in mammals: Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2. Nox1, Nox2, Nox4, and Nox5 are expressed in endothelium, vascular smooth muscle cells, fibroblasts, or perivascular adipocytes. Other homologues have not been found or are expressed at very low levels; their roles have not been established. Nox1/Nox2 promote the development of endothelial dysfunction, hypertension, and inflammation. Nox4 may have a role in protecting the vasculature during stress; however, when its activity is increased, it may be detrimental. Calcium-dependent Nox5 has been implicated in oxidative damage in human atherosclerosis. Critical Issues: NADPH oxidase-derived ROS play a role in vascular pathology as well as in the maintenance of normal physiological vascular function. We also discuss recently elucidated mechanisms such as the role of NADPH oxidases in vascular protection, vascular inflammation, pulmonary hypertension, tumor angiogenesis, and central nervous system regulation of vascular function and hypertension. Future Directions: Understanding the role of individual oxidases and interactions between homologues in vascular disease is critical for efficient pharmacological regulation of vascular NADPH oxidases in both the laboratory and clinical practice. Antioxid. Redox Signal. 20, 2794–2814. PMID:24180474

  3. Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease

    PubMed Central

    Araldi, Elisa; Chamorro-Jorganes, Aranzazu; van Solingen, Coen; Fernández-Hernando, Carlos; Suárez, Yajaira

    2013-01-01

    Atherosclerosis (also known as arteriosclerotic vascular disease) is a chronic inflammatory disease of the arterial wall, characterized by the formation of lipid-laden lesions. The activation of endothelial cells at atherosclerotic lesion–prone sites in the arterial tree results in the up-regulation of cell adhesion molecules and chemokines, which mediate the recruitment of circulating monocytes. Accumulation of monocytes and monocyte-derived phagocytes in the wall of large arteries leads to chronic inflammation and the development and progression of atherosclerosis. The lesion experiences the following steps: foam cell formation, fatty streak accumulation, migration and proliferation of vascular smooth muscle cells, and fibrous cap formation. Finally, the rupture of the unstable fibrous cap causes thrombosis in complications of advanced lesions that leads to unstable coronary syndromes, myocardial infarction and stroke. MicroRNAs have recently emerged as a novel class of gene regulators at the post-transcriptional level. Several functions of vascular cells, such as cell differentiation, contraction, migration, proliferation and inflammation that are involved in angiogenesis, neointimal formation and lipid metabolism underlying various vascular diseases, have been found to be regulated by microRNAs and are described in the present review as well as their potential therapeutic application. PMID:23713860

  4. The Fractal-based Analysis of the Regulation of Vascular Remodeling in the Quail Chorioallantoic Membrane

    NASA Technical Reports Server (NTRS)

    Smith, Genee S.

    2004-01-01

    Critical to the advancement of space exploration is the safety and well being of astronauts while in space. This study focuses on the second highest of NASA-defined risk categories for human space exploration, cardiovascular alterations. Current research of this problem is being tackled by investigating angiogenesis through vascular remodeling. Angiogenesis is the growth and formation of new blood vessels. Angiogenesis is an important part of maintaining normal development and bodily functions. The loss of control of this process, either insufficient or excessive vascular growth, is considered a common denominator in many diseases, such as cancer, diabetes, and coronary artery disease. Objectives are presently being met by observing the effects of various regulators, like thrombospondin 1 (TSP-1) and a novel vessel tortuosity factor (TF), through the use of the chorioallantoic membrane (CAM) of Japanese quail embryos, which enables the direct optical imaging of 2-dimensional vascular branching trees. Research within the CAM is being performed to deduce numerous methods of regulating vessel growth. This project centers on the ability of a novel vessel regulator to affect angiogenesis. For example, it is hypothesized that the TSP-1 will inhibit the growth of CAM vasculature. Fractal/VESGEN-based techniques and PTV analysis are the methodologies used to investigate vascular differentiation. This tactic is used to quantify results and measure the growth patterns and morphology of blood vessels. The regulatory mechanisms posed by this vessel regulator can be deduced by alterations found within the vasculature patterns of quail embryos.

  5. Molecular Pathways of Notch Signaling in Vascular Smooth Muscle Cells

    PubMed Central

    Boucher, Joshua; Gridley, Thomas; Liaw, Lucy

    2012-01-01

    Notch signaling in the cardiovascular system is important during embryonic development, vascular repair of injury, and vascular pathology in humans. The vascular smooth muscle cell (VSMC) expresses multiple Notch receptors throughout its life cycle, and responds to Notch ligands as a regulatory mechanism of differentiation, recruitment to growing vessels, and maturation. The goal of this review is to provide an overview of the current understanding of the molecular basis for Notch regulation of VSMC phenotype. Further, we will explore Notch interaction with other signaling pathways important in VSMC. PMID:22509166

  6. Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury

    PubMed Central

    Ashino, Takashi; Yamamoto, Masayuki; Numazawa, Satoshi

    2016-01-01

    Abnormal increases in vascular smooth muscle cells (VSMCs) in the intimal region after a vascular injury is a key event in developing neointimal hyperplasia. To maintain vascular function, proliferation and apoptosis of VSMCs is tightly controlled during vascular remodeling. NF-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) system, a key component of the oxidative stress response that acts in maintaining homeostasis, plays an important role in neointimal hyperplasia after a vascular injury; however, the role of Nrf2/Keap1 in VSMC apoptosis has not been clarified. Here we report that 14 days after arterial injury in mice, TUNEL-positive VSMCs are detected in both the neointimal and medial layers. These layers contain cells expressing high levels of Nrf2 but low Keap1 expression. In VSMCs, Keap1 depletion induces features of apoptosis, such as positive TUNEL staining and annexin V binding. These changes are associated with an increased expression of nuclear Nrf2. Simultaneous Nrf2 depletion inhibits Keap1 depletion-induced apoptosis. At 14 days after the vascular injury, Nrf2-deficient mice demonstrated fewer TUNEL-positive cells and increased neointimal formation in the neointimal and medial areas. The results suggest that the Nrf2/Keap1 system regulates VSMC apoptosis during neointimal formation, thereby inhibiting neointimal hyperplasia after a vascular injury. PMID:27198574

  7. Cytoplasmic YY1 Is Associated with Increased Smooth Muscle-Specific Gene Expression

    PubMed Central

    Favot, Laure; Hall, Susan M.; Haworth, Sheila G.; Kemp, Paul R.

    2005-01-01

    Immediately after birth the adluminal vascular SMCs of the pulmonary elastic arteries undergo transient actin cytoskeletal remodeling as well as cellular de-differentiation and proliferation. Vascular smooth muscle phenotype is regulated by serum response factor, which is itself regulated in part by the negative regulator YY1. We therefore studied the subcellular localization of YY1 in arteries of normal newborn piglets and piglets affected by neonatal pulmonary hypertension. We found that YY1 localization changed during development and that expression of γ-smooth muscle actin correlated with expression of cytoplasmic rather than nuclear YY1. Analysis of the regulation of YY1 localization in vitro demonstrated that polymerized γ-actin sequestered EGFP-YY1 in the cytoplasm and that YY1 activation of c-myc promoter activity was inhibited by LIM kinase, which increases actin polymerization. Consistent with these data siRNA-mediated down-regulation of YY1 in C2C12 cells increased SM22-α expression and inhibited cell proliferation. Thus, actin polymerization controls subcellular YY1 localization, which contributes to vascular SMC proliferation and differentiation in normal pulmonary artery development. In the absence of actin depolymerization, YY1 does not relocate to the nucleus, and this lack of relocation may contribute to the pathobiology of pulmonary hypertension. PMID:16314465

  8. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching

    PubMed Central

    Suchting, Steven; Freitas, Catarina; le Noble, Ferdinand; Benedito, Rui; Bréant, Christiane; Duarte, Antonio; Eichmann, Anne

    2007-01-01

    Delta-like 4 (Dll4) is a transmembrane ligand for Notch receptors that is expressed in arterial blood vessels and sprouting endothelial cells. Here we show that Dll4 regulates vessel branching during development by inhibiting endothelial tip cell formation. Heterozygous deletion of dll4 or pharmacological inhibition of Notch signaling using γ-secretase inhibitor revealed a striking vascular phenotype, with greatly increased numbers of filopodia-extending endothelial tip cells and increased expression of tip cell marker genes compared with controls. Filopodia extension in dll4+/− retinal vessels required the vascular growth factor VEGF and was inhibited when VEGF signaling was blocked. Although VEGF expression was not significantly altered in dll4+/− retinas, dll4+/− vessels showed increased expression of VEGF receptor 2 and decreased expression of VEGF receptor 1 compared with wild-type, suggesting they could be more responsive to VEGF stimulation. In addition, expression of dll4 in wild-type tip cells was itself decreased when VEGF signaling was blocked, indicating that dll4 may act downstream of VEGF as a “brake” on VEGF-mediated angiogenic sprouting. Taken together, these data reveal Dll4 as a negative regulator of vascular sprouting and vessel branching that is required for normal vascular network formation during development. PMID:17296941

  9. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching.

    PubMed

    Suchting, Steven; Freitas, Catarina; le Noble, Ferdinand; Benedito, Rui; Bréant, Christiane; Duarte, Antonio; Eichmann, Anne

    2007-02-27

    Delta-like 4 (Dll4) is a transmembrane ligand for Notch receptors that is expressed in arterial blood vessels and sprouting endothelial cells. Here we show that Dll4 regulates vessel branching during development by inhibiting endothelial tip cell formation. Heterozygous deletion of dll4 or pharmacological inhibition of Notch signaling using gamma-secretase inhibitor revealed a striking vascular phenotype, with greatly increased numbers of filopodia-extending endothelial tip cells and increased expression of tip cell marker genes compared with controls. Filopodia extension in dll4(+/-) retinal vessels required the vascular growth factor VEGF and was inhibited when VEGF signaling was blocked. Although VEGF expression was not significantly altered in dll4(+/-) retinas, dll4(+/-) vessels showed increased expression of VEGF receptor 2 and decreased expression of VEGF receptor 1 compared with wild-type, suggesting they could be more responsive to VEGF stimulation. In addition, expression of dll4 in wild-type tip cells was itself decreased when VEGF signaling was blocked, indicating that dll4 may act downstream of VEGF as a "brake" on VEGF-mediated angiogenic sprouting. Taken together, these data reveal Dll4 as a negative regulator of vascular sprouting and vessel branching that is required for normal vascular network formation during development.

  10. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling

    PubMed Central

    Franco, Claudio A; Jones, Martin L; Bernabeu, Miguel O; Vion, Anne-Clemence; Barbacena, Pedro; Fan, Jieqing; Mathivet, Thomas; Fonseca, Catarina G; Ragab, Anan; Yamaguchi, Terry P; Coveney, Peter V; Lang, Richard A; Gerhardt, Holger

    2016-01-01

    Endothelial cells respond to molecular and physical forces in development and vascular homeostasis. Deregulation of endothelial responses to flow-induced shear is believed to contribute to many aspects of cardiovascular diseases including atherosclerosis. However, how molecular signals and shear-mediated physical forces integrate to regulate vascular patterning is poorly understood. Here we show that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/Wnt11 renders endothelial cells more sensitive to shear, resulting in axial polarization and migration against flow at lower shear levels. Integration of flow modelling and polarity analysis in entire vascular networks demonstrates that polarization against flow is achieved differentially in artery, vein, capillaries and the primitive sprouting front. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus. DOI: http://dx.doi.org/10.7554/eLife.07727.001 PMID:26845523

  11. Von Hippel-Lindau protein in the RPE is essential for normal ocular growth and vascular development.

    PubMed

    Lange, Clemens A K; Luhmann, Ulrich F O; Mowat, Freya M; Georgiadis, Anastasios; West, Emma L; Abrahams, Sabu; Sayed, Haroon; Powner, Michael B; Fruttiger, Marcus; Smith, Alexander J; Sowden, Jane C; Maxwell, Patrick H; Ali, Robin R; Bainbridge, James W B

    2012-07-01

    Molecular oxygen is essential for the development, growth and survival of multicellular organisms. Hypoxic microenvironments and oxygen gradients are generated physiologically during embryogenesis and organogenesis. In the eye, oxygen plays a crucial role in both physiological vascular development and common blinding diseases. The retinal pigment epithelium (RPE) is a monolayer of cells essential for normal ocular development and in the mature retina provides support for overlying photoreceptors and their vascular supply. Hypoxia at the level of the RPE is closely implicated in pathogenesis of age-related macular degeneration. Adaptive tissue responses to hypoxia are orchestrated by sophisticated oxygen sensing mechanisms. In particular, the von Hippel-Lindau tumour suppressor protein (pVhl) controls hypoxia-inducible transcription factor (HIF)-mediated adaptation. However, the role of Vhl/Hif1a in the RPE in the development of the eye and its vasculature is unknown. In this study we explored the function of Vhl and Hif1a in the developing RPE using a tissue-specific conditional-knockout approach. We found that deletion of Vhl in the RPE results in RPE apoptosis, aniridia and microphthalmia. Increased levels of Hif1a, Hif2a, Epo and Vegf are associated with a highly disorganised retinal vasculature, chorioretinal anastomoses and the persistence of embryonic vascular structures into adulthood. Additional inactivation of Hif1a in the RPE rescues the RPE morphology, aniridia, microphthalmia and anterior vasoproliferation, but does not rescue retinal vasoproliferation. These data demonstrate that Vhl-dependent regulation of Hif1a in the RPE is essential for normal RPE and iris development, ocular growth and vascular development in the anterior chamber, whereas Vhl-dependent regulation of other downstream pathways is crucial for normal development and maintenance of the retinal vasculature.

  12. Regulatory mechanisms for specification and patterning of plant vascular tissues.

    PubMed

    Caño-Delgado, Ana; Lee, Ji-Young; Demura, Taku

    2010-01-01

    Plant vascular tissues, the conduits of water, nutrients, and small molecules, play important roles in plant growth and development. Vascular tissues have allowed plants to successfully adapt to various environmental conditions since they evolved 450 Mya. The majority of plant biomass, an important source of renewable energy, comes from the xylem of the vascular tissues. Efforts have been made to identify the underlying mechanisms of cell specification and patterning of plant vascular tissues and their proliferation. The formation of the plant vascular system is a complex process that integrates signaling and gene regulation at transcriptional and posttranscriptional levels. Recently, a wealth of molecular genetic studies and the advent of cell biology and genomic tools have enabled important progress toward understanding its underlying mechanisms. Here, we provide a comprehensive review of the cell and developmental processes of plant vascular tissue and resources recently available for studying them that will enable the discovery of new ways to develop sustainable energy using plant biomass.

  13. Nanostructures to modulate vascular inflammation: Multifunctional nanoparticles for quantifiable siRNA delivery and molecular imaging

    NASA Astrophysics Data System (ADS)

    Kaneda, Megan Marie

    Early steps in the progression of inflammatory diseases such as atherosclerosis involve the recruitment of leukocytes to the vascular endothelium through the expression or up-regulation of adhesion molecules. These adhesion molecules are critical mediators of leukocyte attachment and subsequent extravasation through transendothelial migration. One of these adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) is particularly attractive as a marker of early atherosclerotic activity due to its low expression level on normal endothelium and up-regulation prior to and during the development of early lesions. With this in mind, the purpose of this thesis was to develop nanostructures for the detection and down-regulation of adhesion molecules by the vascular endothelium. To detect early inflammation we designed a perfluorocarbon nanoparticle (PFC-NP) probe, which was used for in vivo targeting of VCAM-1. Nanoparticles were detected ex vivo by the magnetic resonance (MR) signature from the fluorine core of the particle. Nanoparticles accumulated in tissues characterized by early inflammatory processes. To down-regulate VCAM-1 expression by vascular endothelial cells, cationic PFC-NP were produced through the addition of the cationic lipid 1,2-Dioleoyl-3-Trimethylammonium-Propane. Cationic PFC-NP were able to deliver anti-VCAM-1 siRNA to endothelial cells through a non-standard lipid raft mediated endocytic pathway. VCAM-1 levels were significantly reduced in treated cells indicating that this delivery mechanism may be advantageous for delivery of cargo into the cytoplasm. Using the fluorine signature from the core of the cationic PFC-NP, we were able to quantify and localize this siRNA delivery agent both in vitro and in vivo. The ability to quantify the local concentrations of these particles could be of great benefit for estimating local drug concentrations and developing new pharmacokinetic and pharmacodynamic paradigms to describe this new class of nucleotide agents.

  14. Dynamically and epigenetically coordinated GATA/ETS/SOX transcription factor expression is indispensable for endothelial cell differentiation

    PubMed Central

    Nakaki, Ryo; Shimamura, Teppei; Matsunaga, Taichi; Yamamizu, Kohei; Katayama, Shiori; Suehiro, Jun-ichi; Osawa, Tsuyoshi; Aburatani, Hiroyuki; Kodama, Tatsuhiko; Wada, Youichiro; Yamashita, Jun K.

    2017-01-01

    Abstract Although studies of the differentiation from mouse embryonic stem (ES) cells to vascular endothelial cells (ECs) provide an excellent model for investigating the molecular mechanisms underlying vascular development, temporal dynamics of gene expression and chromatin modifications have not been well studied. Herein, using transcriptomic and epigenomic analyses based on H3K4me3 and H3K27me3 modifications at a genome-wide scale, we analysed the EC differentiation steps from ES cells and crucial epigenetic modifications unique to ECs. We determined that Gata2, Fli1, Sox7 and Sox18 are master regulators of EC that are induced following expression of the haemangioblast commitment pioneer factor, Etv2. These master regulator gene loci were repressed by H3K27me3 throughout the mesoderm period but rapidly transitioned to histone modification switching from H3K27me3 to H3K4me3 after treatment with vascular endothelial growth factor. SiRNA knockdown experiments indicated that these regulators are indispensable not only for proper EC differentiation but also for blocking the commitment to other closely aligned lineages. Collectively, our detailed epigenetic analysis may provide an advanced model for understanding temporal regulation of chromatin signatures and resulting gene expression profiles during EC commitment. These studies may inform the future development of methods to stimulate the vascular endothelium for regenerative medicine. PMID:28334937

  15. The SK3 channel promotes placental vascularization by enhancing secretion of angiogenic factors.

    PubMed

    Rada, Cara C; Murray, Grace; England, Sarah K

    2014-11-15

    Proper placental perfusion is essential for fetal exchange of oxygen, nutrients, and waste with the maternal circulation. Impairment of uteroplacental vascular function can lead to pregnancy complications, including preeclampsia and intrauterine growth restriction (IUGR). Potassium channels have been recognized as regulators of vascular proliferation, angiogenesis, and secretion of vasoactive factors, and their dysfunction may underlie pregnancy-related vascular diseases. Overexpression of one channel in particular, the small-conductance calcium-activated potassium channel 3 (SK3), is known to increase vascularization in mice, and mice overexpressing the SK3 channel (SK3(T/T) mice) have a high rate of fetal demise and IUGR. Here, we show that overexpression of SK3 causes fetal loss through abnormal placental vascularization. We previously reported that, at pregnancy day 14, placentas isolated from SK3(T/T) mice are smaller than those obtained from wild-type mice. In this study, histological analysis reveals that SK3(T/-) placentas at this stage have abnormal placental morphology, and microcomputed tomography shows that these placentas have significantly larger and more blood vessels than those from wild-type mice. To identify the mechanism by which these vascularization defects occur, we measured levels of vascular endothelial growth factor (VEGF), placental growth factor, and the soluble form of VEGF receptor 1 (sFlt-1), which must be tightly regulated to ensure proper placental development. Our data reveal that overexpression of SK3 alters systemic and placental ratios of the angiogenic factor VEGF to antiangiogenic factor sFlt-1 throughout pregnancy. Additionally, we observe increased expression of hypoxia-inducing factor 2α in SK3(T/-) placentas. We conclude that the SK3 channel modulates placental vascular development and fetal health by altering VEGF signaling. Copyright © 2014 the American Physiological Society.

  16. Nestin in the epididymis is expressed in vascular wall cells and is regulated during postnatal development and in case of testosterone deficiency.

    PubMed

    Reckmann, Ansgar N; Tomczyk, Claudia U M; Davidoff, Michail S; Michurina, Tatyana V; Arnhold, Stefan; Müller, Dieter; Mietens, Andrea; Middendorff, Ralf

    2018-01-01

    Vascular smooth muscle cells (SMCs), distinguished by the expression of the neuronal stem cell marker nestin, may represent stem cell-like progenitor cells in various organs including the testis. We investigated epididymal tissues of adult nestin-GFP mice, rats after Leydig cell depletion via ethane dimethane sulfonate (EDS), rats and mice during postnatal development and human tissues. By use of Clarity, a histochemical method to illustrate a three-dimensional picture, we could demonstrate nestin-GFP positive cells within the vascular network. We localized nestin in the epididymis in proliferating vascular SMCs by colocalization with both smooth muscle actin and PCNA, and it was distinct from CD31-positive endothelial cells. The same nestin localization was found in the human epididymis. However, nestin was not found in SMCs of the epididymal duct. Nestin expression is high during postnatal development of mouse and rat and down-regulated towards adulthood when testosterone levels increase. Nestin increases dramatically in rats after Leydig cell ablation with EDS and subsequently low testosterone levels. Interestingly, during this period, the expression of androgen receptor in the epididymis is low and increases until nestin reaches normal levels of adulthood. Here we show that nestin, a common marker for neuronal stem cells, is also expressed in the vasculature of the epididymis. Our results give new insights into the yet underestimated role of proliferating nestin-expressing vascular SMCs during postnatal development and repair of the epididymis.

  17. Hedgehog and Resident Vascular Stem Cell Fate

    PubMed Central

    Mooney, Ciaran J.; Hakimjavadi, Roya; Fitzpatrick, Emma; Kennedy, Eimear; Walls, Dermot; Morrow, David; Redmond, Eileen M.; Cahill, Paul A.

    2015-01-01

    The Hedgehog pathway is a pivotal morphogenic driver during embryonic development and a key regulator of adult stem cell self-renewal. The discovery of resident multipotent vascular stem cells and adventitial progenitors within the vessel wall has transformed our understanding of the origin of medial and neointimal vascular smooth muscle cells (SMCs) during vessel repair in response to injury, lesion formation, and overall disease progression. This review highlights the importance of components of the Hh and Notch signalling pathways within the medial and adventitial regions of adult vessels, their recapitulation following vascular injury and disease progression, and their putative role in the maintenance and differentiation of resident vascular stem cells to vascular lineages from discrete niches within the vessel wall. PMID:26064136

  18. Vascular Cells in Blood Vessel Wall Development and Disease.

    PubMed

    Mazurek, R; Dave, J M; Chandran, R R; Misra, A; Sheikh, A Q; Greif, D M

    2017-01-01

    The vessel wall is composed of distinct cellular layers, yet communication among individual cells within and between layers results in a dynamic and versatile structure. The morphogenesis of the normal vascular wall involves a highly regulated process of cell proliferation, migration, and differentiation. The use of modern developmental biological and genetic approaches has markedly enriched our understanding of the molecular and cellular mechanisms underlying these developmental events. Additionally, the application of similar approaches to study diverse vascular diseases has resulted in paradigm-shifting insights into pathogenesis. Further investigations into the biology of vascular cells in development and disease promise to have major ramifications on therapeutic strategies to combat pathologies of the vasculature. © 2017 Elsevier Inc. All rights reserved.

  19. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates.

    PubMed

    Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2015-12-01

    This review aims to summarize recent data concerning the structure and role of the members of the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) families in the context of early development, organogenesis and regeneration, with a particular emphasis on the role of these factors in the development of invertebrates. Homologs of VEGF and/or VEGFR have been found in all Eumetazoa, in both Radiata and Bilateria, where they are expressed in the descendants of different germ layers and play a pivotal role in the development of animals with and without a vascular system. VEGF is a well-known angiogenesis regulator, but this factor also control cell migration during neurogenesis and the development of branching organs (the trachea) in invertebrate and vertebrate species. A possible explanation for the origin of Vegf/Vegfr in the animal kingdom and a pathway of Vegf/Vegfr evolution are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Orphan nuclear receptor Nur77 is a novel negative regulator of endothelin-1 expression in vascular endothelial cells.

    PubMed

    Qin, Qing; Chen, Ming; Yi, Bing; You, Xiaohua; Yang, Ping; Sun, Jianxin

    2014-12-01

    Endothelin-1 (ET-1) produced by vascular endothelial cells plays essential roles in the regulation of vascular tone and development of cardiovascular diseases. The objective of this study is to identify novel regulators implicated in the regulation of ET-1 expression in vascular endothelial cells (ECs). By using quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), we show that either ectopic expression of orphan nuclear receptor Nur77 or pharmacological activation of Nur77 by 6-mercaptopurine (6-MP) substantially inhibits ET-1 expression in human umbilical vein endothelial cells (HUVECs), under both basal and thrombin-stimulated conditions. Furthermore, thrombin-stimulated ET expression is significantly augmented in both Nur77 knockdown ECs and aort from Nur77 knockout mice, suggesting that Nur77 is a negative regulator of ET-1 expression. Inhibition of ET-1 expression by Nur77 occurs at gene transcriptional levels, since Nur77 potently inhibits ET-1 promoter activity, without affecting ET-1 mRNA stability. As shown in electrophoretic mobility shift assay (EMSA), Nur77 overexpression markedly inhibits both basal and thrombin-stimulated transcriptional activity of AP-1. Mechanistically, we demonstrate that Nur77 specially interacts with c-Jun and inhibits AP-1 dependent c-Jun promoter activity, which leads to a decreased expression of c-Jun, a critical component involved in both AP-1 transcriptional activity and ET-1 expression in ECs. These findings demonstrate that Nur77 is a novel negative regulator of ET-1 expression in vascular ECs through an inhibitory interaction with the c-Jun/AP-1 pathway. Activation of Nur77 may represent a useful therapeutic strategy for preventing certain cardiovascular diseases, such as atherosclerosis and pulmonary artery hypertension. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. VESGEN Mapping of Bioactive Protection against Intestinal Inflammation: Application to Human Spaceflight and ISS Experiments

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, P. A.; Chen, X.; Kelly, C. P.; Reinecker, H. C.

    2011-01-01

    Challenges to successful space exploration and colonization include adverse physiological reactions to micro gravity and space radiation factors. Constant remodeling of the microvasculature is critical for tissue preservation, wound healing, and recovery after ischemia. Regulation of the vascular system in the intestine is particularly important to enable nutrient absorption while maintaining barrier function and mucosal defense against micro biota. Although tremendous progress has been made in understanding the molecular circuits regulating neovascularization, our knowledge of the adaptations of the vascular system to environmental challenges in the intestine remains incomplete. This is in part because of the lack of methods to observe and quantify the complex processes associated with vascular responses in vivo. Developed by GRC as a mature beta version, pre-release research software, VESsel GENeration Analysis (VESGEN) maps and quantifies the fractal-based complexity of vascular branching for novel insights into the cytokine, transgenic and therapeutic regulation of angiogenesis, lymphangiogenesis and microvascular remodeling. Here we demonstrate that VESGEN can be used to characterize the dynamic vascular responses to acute intestinal inflammation and mucosal recovery from in vivo confocal microscopic 3D image series. We induced transient intestinal inflammation in mice by DSS treatment and investigated whether the ability of the pro biotic yeast Saccharomyces boulardii (Sb) to protect against intestinal inflammation was due to regulation of vascular remodeling. A primary characteristic of inflammation is excessive neovascularization (angiogenesis) resulting in fragile vessels prone to bleeding. Morphological parameters for triplicate specimens revealed that Sb treatment greatly reduced the inflammatory response of vascular networks by an average of 78%. This resulted from Sb inhibition of vascular endothelial growth factor receptor signaling, a major angiogenesis signaling pathway. It needs to be determined whether pro biotic yeast represents a promising approach to GI protection in space. GRC performed only the VESGEN post-testing analysis.

  2. Genome-wide direct target analysis reveals a role for SHORT-ROOT in root vascular patterning through cytokinin homeostasis.

    PubMed

    Cui, Hongchang; Hao, Yueling; Kovtun, Mikhail; Stolc, Viktor; Deng, Xing-Wang; Sakakibara, Hitoshi; Kojima, Mikiko

    2011-11-01

    SHORT-ROOT (SHR) is a key regulator of root growth and development in Arabidopsis (Arabidopsis thaliana). Made in the stele, the SHR protein moves into an adjacent cell layer, where it specifies endodermal cell fate; it is also essential for apical meristem maintenance, ground tissue patterning, vascular differentiation, and lateral root formation. Much has been learned about the mechanism by which SHR controls radial patterning, but how it regulates other aspects of root morphogenesis is still unclear. To dissect the SHR developmental pathway, we have determined the genome-wide locations of SHR direct targets using a chromatin immunoprecipitation followed by microarray analysis method. K-means clustering analysis not only identified additional quiescent center-specific SHR targets but also revealed a direct role for SHR in gene regulation in the pericycle and xylem. Using cell type-specific markers, we showed that in shr, the phloem and the phloem-associated pericycle expanded, whereas the xylem and xylem-associated pericycle diminished. Interestingly, we found that cytokinin level was elevated in shr and that exogenous cytokinin conferred a shr-like vascular patterning phenotype in wild-type root. By chromatin immunoprecipitation-polymerase chain reaction and reverse transcription-polymerase chain reaction assays, we showed that SHR regulates cytokinin homeostasis by directly controlling the transcription of cytokinin oxidase 3, a cytokinin catabolism enzyme preferentially expressed in the stele. Finally, overexpression of a cytokinin oxidase in shr alleviated its vascular patterning defect. On the basis of these results, we suggest that one mechanism by which SHR controls vascular patterning is the regulation of cytokinin homeostasis.

  3. Canonical WNT signaling components in vascular development and barrier formation.

    PubMed

    Zhou, Yulian; Wang, Yanshu; Tischfield, Max; Williams, John; Smallwood, Philip M; Rattner, Amir; Taketo, Makoto M; Nathans, Jeremy

    2014-09-01

    Canonical WNT signaling is required for proper vascularization of the CNS during embryonic development. Here, we used mice with targeted mutations in genes encoding canonical WNT pathway members to evaluate the exact contribution of these components in CNS vascular development and in specification of the blood-brain barrier (BBB) and blood-retina barrier (BRB). We determined that vasculature in various CNS regions is differentially sensitive to perturbations in canonical WNT signaling. The closely related WNT signaling coreceptors LDL receptor-related protein 5 (LRP5) and LRP6 had redundant functions in brain vascular development and barrier maintenance; however, loss of LRP5 alone dramatically altered development of the retinal vasculature. The BBB in the cerebellum and pons/interpeduncular nuclei was highly sensitive to decrements in canonical WNT signaling, and WNT signaling was required to maintain plasticity of barrier properties in mature CNS vasculature. Brain and retinal vascular defects resulting from ablation of Norrin/Frizzled4 signaling were ameliorated by stabilizing β-catenin, while inhibition of β-catenin-dependent transcription recapitulated the vascular development and barrier defects associated with loss of receptor, coreceptor, or ligand, indicating that Norrin/Frizzled4 signaling acts predominantly through β-catenin-dependent transcriptional regulation. Together, these data strongly support a model in which identical or nearly identical canonical WNT signaling mechanisms mediate neural tube and retinal vascularization and maintain the BBB and BRB.

  4. In Vivo Analysis of the Neurovascular Niche in the Developing Xenopus Brain

    PubMed Central

    Li, Jianli

    2017-01-01

    Abstract The neurovascular niche is a specialized microenvironment formed by the interactions between neural progenitor cells (NPCs) and the vasculature. While it is thought to regulate adult neurogenesis by signaling through vascular-derived soluble cues or contacted-mediated cues, less is known about the neurovascular niche during development. In Xenopus laevis tadpole brain, NPCs line the ventricle and extend radial processes tipped with endfeet to the vascularized pial surface. Using in vivo labeling and time-lapse imaging in tadpoles, we find that intracardial injection of fluorescent tracers rapidly labels Sox2/3-expressing NPCs and that vascular-circulating molecules are endocytosed by NPC endfeet. Confocal imaging indicates that about half of the endfeet appear to appose the vasculature, and time-lapse analysis of NPC proliferation and endfeet-vascular interactions suggest that proliferative activity does not correlate with stable vascular apposition. Together, these findings characterize the neurovascular niche in the developing brain and suggest that, while signaling to NPCs may occur through vascular-derived soluble cues, stable contact between NPC endfeet and the vasculature is not required for developmental neurogenesis. PMID:28795134

  5. Theoretical models for coronary vascular biomechanics: Progress & challenges

    PubMed Central

    Waters, Sarah L.; Alastruey, Jordi; Beard, Daniel A.; Bovendeerd, Peter H.M.; Davies, Peter F.; Jayaraman, Girija; Jensen, Oliver E.; Lee, Jack; Parker, Kim H.; Popel, Aleksander S.; Secomb, Timothy W.; Siebes, Maria; Sherwin, Spencer J.; Shipley, Rebecca J.; Smith, Nicolas P.; van de Vosse, Frans N.

    2013-01-01

    A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological conditions. Heart function is critically dependent on the delivery of an adequate blood supply to the myocardium via the coronary vasculature. Key to this critical function of the coronary vasculature is system dynamics that emerge via the interactions of the numerous constituent components at a range of spatial and temporal scales. Here, we focus on several components for which theoretical approaches can be applied, including vascular structure and mechanics, blood flow and mass transport, flow regulation, angiogenesis and vascular remodelling, and vascular cellular mechanics. For each component, we summarise the current state of the art in model development, and discuss areas requiring further research. We highlight the major challenges associated with integrating the component models to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies. PMID:21040741

  6. WNT5A-JNK regulation of vascular insulin resistance in human obesity.

    PubMed

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2016-12-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m 2 ) and five metabolically normal non-obese (BMI 26±2 kg/m 2 ) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. © The Author(s) 2016.

  7. WNT5A-JNK regulation of vascular insulin resistance in human obesity

    PubMed Central

    Farb, Melissa G; Karki, Shakun; Park, Song-Young; Saggese, Samantha M; Carmine, Brian; Hess, Donald T; Apovian, Caroline; Fetterman, Jessica L; Bretón-Romero, Rosa; Hamburg, Naomi M; Fuster, José J; Zuriaga, María A; Walsh, Kenneth; Gokce, Noyan

    2017-01-01

    Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m2) and five metabolically normal non-obese (BMI 26±2 kg/m2) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease. PMID:27688298

  8. odd skipped related1 reveals a novel role for endoderm in regulating kidney vs. vascular cell fate

    PubMed Central

    Mudumana, Sudha P.; Hentschel, Dirk; Liu, Yan; Vasilyev, Aleksandr; Drummond, Iain A.

    2009-01-01

    Summary The kidney and vasculature are intimately linked functionally and during development, where nephric and blood/vascular progenitor cells occupy adjacent bands of mesoderm in zebrafish and frog embryos. Developmental mechanisms underlying the differentiation of kidney vs. blood/vascular lineages remain unknown. The odd skipped related1 (osr1) gene encodes a zinc finger transcription factor that is expressed in the germ ring mesendoderm and subsequently in the endoderm and intermediate mesoderm, prior to the expression of definitive kidney or blood/vascular markers. Knockdown of osr1 in zebrafish embryos resulted in a complete, segment-specific loss of anterior kidney progenitors and a compensatory increase in the number of angioblast cells in the same trunk region. Histology revealed a subsequent absence of kidney tubules, enlarged cardinal vein, and expansion of the posterior venous plexus. Altered kidney vs. vascular development correlated with expanded endoderm development in osr1 knockdowns. Combined osr1 loss of function and blockade of endoderm development by knockdown of sox32/casanova rescued anterior kidney development. The results indicate that osr1 activity is required to limit endoderm differentiation from mesendoderm and, in the absence of osr1, excess endoderm alters mesoderm differentiation, shifting the balance from kidney toward vascular development. PMID:18787069

  9. Metalloproteinases and atherothrombosis: MMP-10 mediates vascular remodeling promoted by inflammatory stimuli.

    PubMed

    Rodriguez, Jose A; Orbe, Josune; Martinez de Lizarrondo, Sara; Calvayrac, Olivier; Rodriguez, Cristina; Martinez-Gonzalez, Jose; Paramo, Jose A

    2008-01-01

    Atherosclerosis is the common pathophysiological substrate of ischemic vascular diseases and their thrombotic complications. The unbalance between matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) has been hypothesized to be involved in the growth, destabilization, and eventual rupture of atherosclerotic lesions. Different MMPs have been assigned relevant roles in the pathology of vascular diseases and MMP-10 (stromelysin-2) has been involved in vascular development and atherogenesis. This article examines the pathophysiological role of MMPs, particularly MMP-10, in the onset and progression of vascular diseases and their regulation by pro-inflammatory stimuli. MMP-10 over-expression has been shown to compromise vascular integrity and it has been associated with aortic aneurysms. MMP-10 is induced by C-reactive protein in endothelial cells, and it is over-expressed in atherosclerotic lesions. Additionally, higher MMP-10 serum levels are associated with inflammatory markers, increased carotid intima-media thickness and the presence of atherosclerotic plaques. We have cloned the promoter region of the MMP-10 gene and studied the effect of inflammatory stimuli on MMP-10 transcriptional regulation, providing evidences further supporting the involvement of MMP-10 in the pathophysiology of atherothrombosis.

  10. The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems.

    PubMed

    Robischon, Marcel; Du, Juan; Miura, Eriko; Groover, Andrew

    2011-03-01

    The secondary growth of a woody stem requires the formation of a vascular cambium at an appropriate position and proper patterning of the vascular tissues derived from the cambium. Class III homeodomain-leucine zipper (HD ZIP) transcription factors have been implicated in polarity determination and patterning in lateral organs and primary vascular tissues and in the initiation and function of shoot apical meristems. We report here the functional characterization of a Populus class III HD ZIP gene, popREVOLUTA (PRE), that demonstrates another role for class III HD ZIPs in regulating the development of cambia and secondary vascular tissues. PRE is orthologous to Arabidopsis (Arabidopsis thaliana) REVOLUTA and is expressed in both the shoot apical meristem and in the cambial zone and secondary vascular tissues. Transgenic Populus expressing a microRNA-resistant form of PRE presents unstable phenotypic abnormalities affecting both primary and secondary growth. Surprisingly, phenotypic changes include abnormal formation of cambia within cortical parenchyma that can produce secondary vascular tissues in reverse polarity. Genes misexpressed in PRE mutants include transcription factors and auxin-related genes previously implicated in class III HD ZIP functions during primary growth. Together, these results suggest that PRE plays a fundamental role in the initiation of the cambium and in regulating the patterning of secondary vascular tissues.

  11. OCTOPUS-LIKE 2, a novel player in Arabidopsis root and vascular development, reveals a key role for OCTOPUS family genes in root metaphloem sieve tube differentiation.

    PubMed

    Ruiz Sola, M Aguila; Coiro, Mario; Crivelli, Simona; Zeeman, Samuel C; Schmidt Kjølner Hansen, Signe; Truernit, Elisabeth

    2017-12-01

    Protophloem and metaphloem sieve tubes are essential for transporting carbohydrates and signalling molecules towards sink tissues. OCTOPUS (OPS) was previously identified as an important regulator of protophloem differentiation in Arabidopsis roots. Here, we investigated the role of OCTOPUS-LIKE 2 (OPL2), a gene homologous to OPS. OPL2 expression patterns were analysed, and functional equivalence of OPS and OPL2 was tested. Mutant and double mutant phenotypes were investigated. OPS and OPL2 displayed overlapping expression patterns and a high degree of functional overlap. A mutation in OPL2 revealed redundant functions of OPS and OPL2 in developmental processes in which OPS was known to play a role, notably cotyledon vascular patterning and protophloem development. Moreover, we also uncovered redundant roles for OPS and OPL2 in leaf vascular patterning and, most interestingly, metaphloem sieve tube differentiation. Our results reveal a novel OPS-like protein that, together with OPS, is an important regulator of vascular patterning, root growth and phloem development. OPS and OPL2 are the first genes identified that play a role in metaphloem sieve tube differentiation. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. Endoplasmic Reticulum Stress in Arterial Smooth Muscle Cells: A Novel Regulator of Vascular Disease

    PubMed Central

    Furmanik, Malgorzata; Shanahan, Catherine M.

    2017-01-01

    Cardiovascular disease continues to be the leading cause of death in industrialised societies. The idea that the arterial smooth muscle cell (ASMC) plays a key role in regulating many vascular pathologies has been gaining importance, as has the realisation that not enough is known about the pathological cellular mechanisms regulating ASMC function in vascular remodelling. In the past decade endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) have been recognised as a stress response underlying many physiological and pathological processes in various vascular cell types. Here we summarise what is known about how ER stress signalling regulates phenotypic switching, trans/dedifferentiation and apoptosis of ASMCs and contributes to atherosclerosis, hypertension, aneurysms and vascular calcification.

  13. Neural guidance molecules regulate vascular remodeling and vessel navigation.

    PubMed

    Eichmann, Anne; Makinen, Taija; Alitalo, Kari

    2005-05-01

    The development of the embryonic blood vascular and lymphatic systems requires the coordinated action of several transcription factors and growth factors that target endothelial and periendothelial cells. However, according to recent studies, the precise "wiring" of the vascular system does not occur without an ordered series of guidance decisions involving several molecules initially discovered for axons in the nervous system, including ephrins, netrins, slits, and semaphorins. Here, we summarize the new advances in our understanding of the roles of these axonal pathfinding molecules in vascular remodeling and vessel guidance, indicating that neuronal axons and vessel sprouts use common molecular mechanisms for navigation in the body.

  14. Genome-Wide Direct Target Analysis Reveals a Role for SHORT-ROOT in Root Vascular Patterning through Cytokinin Homeostasis1[W][OA

    PubMed Central

    Cui, Hongchang; Hao, Yueling; Kovtun, Mikhail; Stolc, Viktor; Deng, Xing-Wang; Sakakibara, Hitoshi; Kojima, Mikiko

    2011-01-01

    SHORT-ROOT (SHR) is a key regulator of root growth and development in Arabidopsis (Arabidopsis thaliana). Made in the stele, the SHR protein moves into an adjacent cell layer, where it specifies endodermal cell fate; it is also essential for apical meristem maintenance, ground tissue patterning, vascular differentiation, and lateral root formation. Much has been learned about the mechanism by which SHR controls radial patterning, but how it regulates other aspects of root morphogenesis is still unclear. To dissect the SHR developmental pathway, we have determined the genome-wide locations of SHR direct targets using a chromatin immunoprecipitation followed by microarray analysis method. K-means clustering analysis not only identified additional quiescent center-specific SHR targets but also revealed a direct role for SHR in gene regulation in the pericycle and xylem. Using cell type-specific markers, we showed that in shr, the phloem and the phloem-associated pericycle expanded, whereas the xylem and xylem-associated pericycle diminished. Interestingly, we found that cytokinin level was elevated in shr and that exogenous cytokinin conferred a shr-like vascular patterning phenotype in wild-type root. By chromatin immunoprecipitation-polymerase chain reaction and reverse transcription-polymerase chain reaction assays, we showed that SHR regulates cytokinin homeostasis by directly controlling the transcription of cytokinin oxidase 3, a cytokinin catabolism enzyme preferentially expressed in the stele. Finally, overexpression of a cytokinin oxidase in shr alleviated its vascular patterning defect. On the basis of these results, we suggest that one mechanism by which SHR controls vascular patterning is the regulation of cytokinin homeostasis. PMID:21951467

  15. The Decay of Stem Cell Nourishment at the Niche

    PubMed Central

    de Mora, Jaime Font

    2013-01-01

    Abstract One of the main features of human aging is the loss of adult stem cell homeostasis. Organs that are very dependent on adult stem cells show increased susceptibility to aging, particularly organs that present a vascular stem cell niche. Reduced regenerative capacity in tissues correlates with reduced stem cell function, which parallels a loss of microvascular density (rarefraction) and plasticity. Moreover, the age-related loss of microvascular plasticity and rarefaction has significance beyond metabolic support for tissues because stem cell niches are regulated co-ordinately with the vascular cells. In addition, microvascular rarefaction is related to increased inflammatory signals that may negatively regulate the stem cell population. Thus, the processes of microvascular rarefaction, adult stem cell dysfunction, and inflammation underlie the cycle of physiological decline that we call aging. Observations from new mouse models and humans are discussed here to support the vascular aging theory. We develop a novel theory to explain the complexity of aging in mammals and perhaps in other organisms. The connection between vascular endothelial tissue and organismal aging provides a potential evolutionary conserved mechanism that is an ideal target for the development of therapies to prevent or delay age-related processes in humans. PMID:23937078

  16. Signaling pathways effecting crosstalk between cartilage and adjacent tissues: Seminars in cell and developmental biology: The biology and pathology of cartilage.

    PubMed

    Maes, Christa

    2017-02-01

    Endochondral ossification, the mechanism responsible for the development of the long bones, is dependent on an extremely stringent coordination between the processes of chondrocyte maturation in the growth plate, vascular expansion in the surrounding tissues, and osteoblast differentiation and osteogenesis in the perichondrium and the developing bone center. The synchronization of these processes occurring in adjacent tissues is regulated through vigorous crosstalk between chondrocytes, endothelial cells and osteoblast lineage cells. Our knowledge about the molecular constituents of these bidirectional communications is undoubtedly incomplete, but certainly some signaling pathways effective in cartilage have been recognized to play key roles in steering vascularization and osteogenesis in the perichondrial tissues. These include hypoxia-driven signaling pathways, governed by the hypoxia-inducible factors (HIFs) and vascular endothelial growth factor (VEGF), which are absolutely essential for the survival and functioning of chondrocytes in the avascular growth plate, at least in part by regulating the oxygenation of developing cartilage through the stimulation of angiogenesis in the surrounding tissues. A second coordinating signal emanating from cartilage and regulating developmental processes in the adjacent perichondrium is Indian Hedgehog (IHH). IHH, produced by pre-hypertrophic and early hypertrophic chondrocytes in the growth plate, induces the differentiation of adjacent perichondrial progenitor cells into osteoblasts, thereby harmonizing the site and time of bone formation with the developmental progression of chondrogenesis. Both signaling pathways represent vital mediators of the tightly organized conversion of avascular cartilage into vascularized and mineralized bone during endochondral ossification. Copyright © 2016. Published by Elsevier Ltd.

  17. SRF selectively controls tip cell invasive behavior in angiogenesis.

    PubMed

    Franco, Claudio A; Blanc, Jocelyne; Parlakian, Ara; Blanco, Raquel; Aspalter, Irene M; Kazakova, Natalia; Diguet, Nicolas; Mylonas, Elena; Gao-Li, Jacqueline; Vaahtokari, Anne; Penard-Lacronique, Virgine; Fruttiger, Markus; Rosewell, Ian; Mericskay, Mathias; Gerhardt, Holger; Li, Zhenlin

    2013-06-01

    Efficient angiogenic sprouting is essential for embryonic, postnatal and tumor development. Serum response factor (SRF) is known to be important for embryonic vascular development. Here, we studied the effect of inducible endothelial-specific deletion of Srf in postnatal and adult mice. We find that endothelial SRF activity is vital for postnatal growth and survival, and is equally required for developmental and pathological angiogenesis, including during tumor growth. Our results demonstrate that SRF is selectively required for endothelial filopodia formation and cell contractility during sprouting angiogenesis, but seems dispensable for vascular remodeling. At the molecular level, we observe that vascular endothelial growth factor A induces nuclear accumulation of myocardin-related transcription factors (MRTFs) and regulates MRTF/SRF-dependent target genes including Myl9, which is important for endothelial cell migration in vitro. We conclude that SRF has a unique function in regulating migratory tip cell behavior during sprouting angiogenesis. We hypothesize that targeting the SRF pathway could provide an opportunity to selectively target tip cell filopodia-driven angiogenesis to restrict tumor growth.

  18. Hippo signaling pathway in cardiovascular development and diseases.

    PubMed

    Wang, Yong-yu; Yu, Wei; Zhou, Bin

    2017-07-20

    Cardiovascular diseases have become the leading cause of death in the world. Understanding the development of cardiovascular system and the pathogenesis of cardiovascular diseases will promote the generation of novel preventive and therapeutic strategy. The Hippo pathway is a recently identified signaling cascade that plays a critical role in organ size control, cell proliferation, apoptosis and fate determination of stem cells. Gene knockout and transgenic mouse models have revealed that the Hippo signaling pathway is involved in heart development, cardiomyocyte proliferation, apoptosis, hypertrophy and cardiac regeneration. The Hippo signaling pathway also regulates vascular development, differentiation and various functions of vascular cells. Dysregulation of the Hippo signaling pathway leads to different kinds of cardiovascular diseases, such as myocardial infarction, cardiac hypertrophy, neointima formation and atherosclerosis. In this review, we briefly summarize current research on the roles and regulation mechanisms of the Hippo signaling pathway in cardiovascular development and diseases.

  19. Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock.

    PubMed

    Collin, Solène; Sennoun, Nacira; Dron, Anne-Gaëlle; de la Bourdonnaye, Mathilde; Montemont, Chantal; Asfar, Pierre; Lacolley, Patrick; Meziani, Ferhat; Levy, Bruno

    2011-05-01

    To study the activation and expression of vascular (aorta and small mesenteric arteries) potassium channels during septic shock with or without modulation of the NO pathway. Septic shock was induced in rats by peritonitis. Selective inhibitors of vascular K(ATP) (PNU-37883A) or BK(Ca) [iberiotoxin (IbTX)] channels were used to demonstrate their involvement in vascular hyporeactivity. Vascular response to phenylephrine was measured on aorta and small mesenteric arteries mounted on a wire myograph. Vascular expression of potassium channels was studied by PCR and Western blot, in the presence or absence of 1400W, an inducible NO synthase (iNOS) inhibitor. Aortic activation of the transcriptional factor nuclear factor-kappaB (NF-κB) was assessed by electrophoretic mobility shift assay. Arterial pressure as well as in vivo and ex vivo vascular reactivity were reduced by sepsis and improved by PNU-37883A but not by IbTX. Sepsis was associated with an up-regulation of mRNA and protein expression of vascular K(ATP) channels, while expression of vascular BK(Ca) channels remained unchanged. Selective iNOS inhibition blunted the sepsis-induced increase in aortic NO, decreased NF-κB activation, and down-regulated vascular K(ATP) channel expression. Vascular K(ATP) but not BK(Ca) channels are activated, over-expressed, and partially regulated by NO via NF-κB activation during septic shock. Their selective inhibition restores arterial pressure and vascular reactivity and decreases lactate concentration. The present data suggest that selective vascular K(ATP) channel inhibitors offer potential therapeutic perspectives for septic shock.

  20. Vascular Cambium Development

    PubMed Central

    Nieminen, Kaisa; Blomster, Tiina; Helariutta, Ykä; Mähönen, Ari Pekka

    2015-01-01

    Secondary phloem and xylem tissues are produced through the activity of vascular cambium, the cylindrical secondary meristem which arises among the primary plant tissues. Most dicotyledonous species undergo secondary development, among them Arabidopsis. Despite its small size and herbaceous nature, Arabidopsis displays prominent secondary growth in several organs, including the root, hypocotyl and shoot. Together with the vast genetic resources and molecular research methods available for it, this has made Arabidopsis a versatile and accessible model organism for studying cambial development and wood formation. In this review, we discuss and compare the development and function of the vascular cambium in the Arabidopsis root, hypocotyl, and shoot. We describe the current understanding of the molecular regulation of vascular cambium and compare it to the function of primary meristems. We conclude with a look at the future prospects of cambium research, including opportunities provided by phenotyping and modelling approaches, complemented by studies of natural variation and comparative genetic studies in perennial and woody plant species. PMID:26078728

  1. ETS transcription factor ETV2/ER71/Etsrp in hematopoietic and vascular development, injury, and regeneration.

    PubMed

    Zhao, Haiyong; Xu, Canxin; Lee, Tae-Jin; Liu, Fang; Choi, Kyunghee

    2017-04-01

    The major goal in regenerative medicine is to repair and restore injured, diseased or aged tissue function, thereby promoting general health. As such, the field of regenerative medicine has great translational potential in undertaking many of the health concerns and needs that we currently face. In particular, hematopoietic and vascular systems supply oxygen and nutrients and thus play critical roles in tissue development and tissue regeneration. Additionally, tissue vasculature serves as a tissue stem cell niche and thus contributes to tissue homeostasis. Notably, hematopoietic and vascular systems are sensitive to injury and subject to regeneration. As such, successful hematopoietic and vascular regeneration is prerequisite for efficient tissue repair and organismal survival and health. Recent studies have established that the interplay among the ETS transcription factor ETV2, vascular endothelial growth factor, and its receptor VEGFR2/FLK1 is essential for hematopoietic and vascular development. Emerging studies also support the role of these three factors and possible interplay in hematopoietic and vascular regeneration. Comprehensive understanding of the molecular mechanisms involved in the regulation and function of these three factors may lead to more effective approaches in promoting tissue repair and regeneration. Developmental Dynamics 246:318-327, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. 20170312 - Adverse Outcome Pathway (AOP) framework for ...

    EPA Pesticide Factsheets

    Vascular development commences with de novo assembly of a primary capillary plexus (vasculogenesis) followed by its expansion (angiogenesis) and maturation (angio-adaptation) into a hierarchical system of arteries and veins. These processes are tightly regulated by genetic signals and environmental factors linked to morphogenesis and microphysiology. Gestational exposure to some chemicals disrupts vascular development leading to adverse outcomes. To broadly assess consequences of gestational toxicant exposure on vascular development, an Adverse Outcome Pathway (AOP) framework was constructed that integrates data from ToxCast high-throughput screening (HTS) assays with pathway-level information from the literature and public databases. The AOP-based model resolved the ToxCast library (1065 compounds) into a matrix based on several dozen molecular functions critical for developmental angiogenesis. A sample of 38 ToxCast chemicals selected across the matrix tested model performance. Putative vascular disrupting chemical (pVDC) bioactivity was assessed by multiple laboratories utilizing diverse angiogenesis assays, including: transgenic zebrafish, complex human cell co-cultures, engineered microscale systems, and human-synthetic models. The ToxCast pVDC signature predicted vascular disruption in a manner that was chemical-specific and assay-dependent. An AOP for developmental vascular toxicity was constructed that focuses on inhibition of VEGF receptor (VEGFR2). Thi

  3. Adverse Outcome Pathway (AOP) framework for embryonic ...

    EPA Pesticide Factsheets

    Vascular development commences with de novo assembly of a primary capillary plexus (vasculogenesis) followed by its expansion (angiogenesis) and maturation (angio-adaptation) into a hierarchical system of arteries and veins. These processes are tightly regulated by genetic signals and environmental factors linked to morphogenesis and microphysiology. Gestational exposure to some chemicals disrupts vascular development leading to adverse outcomes. To broadly assess consequences of gestational toxicant exposure on vascular development, an Adverse Outcome Pathway (AOP) framework was constructed that integrates data from ToxCast high-throughput screening (HTS) assays with pathway-level information from the literature and public databases. The AOP-based model resolved the ToxCast library (1065 compounds) into a matrix based on several dozen molecular functions critical for developmental angiogenesis. A sample of 38 ToxCast chemicals selected across the matrix tested model performance. Putative vascular disrupting chemical (pVDC) bioactivity was assessed by multiple laboratories utilizing diverse angiogenesis assays, including: transgenic zebrafish, complex human cell co-cultures, engineered microscale systems, and human-synthetic models. The ToxCast pVDC signature predicted vascular disruption in a manner that was chemical-specific and assay-dependent. An AOP for developmental vascular toxicity was constructed that focuses on inhibition of VEGF receptor (VEGFR2). Thi

  4. Prostate Angiogenesis in Development and Inflammation

    PubMed Central

    Wong, Letitia; Gipp, Jerry; Carr, Jason; Loftus, Christopher; Benck, Molly; Lee, Sanghee; Mehta, Vatsal; Vezina, Chad; Bushman, Wade

    2014-01-01

    BACKGROUND Prostatic inflammation is an important factor in development and progression of BPH/LUTS. This study was performed to characterize the normal development and vascular anatomy of the mouse prostate and then examine, for the first time, the effects of prostatic inflammation on the prostate vasculature. METHODS Adult mice were perfused with India ink to visualize the prostatic vascular anatomy. Immunostaining was performed on the E16.5 UGS and the P5, P20 and adult prostate to characterize vascular development. Uropathogenic E. coli 1677 was instilled transurethrally into adult male mice to induce prostate inflammation. RT-PCR and BrdU labeling was performed to assay anigogenic factor expression and endothelial proliferation, respectively. RESULTS An artery on the ventral surface of the bladder trifurcates near the bladder neck to supply the prostate lobes and seminal vesicle. Development of the prostatic vascular system is associated with endothelial proliferation and robust expression of pro-angiogenic factors Pecam1, Tie1, Tek, Angpt1, Angpt2, Fgf2, Vegfa, Vegfc, Figf. Bacterial-induced prostatic inflammation induced endothelial cell proliferation and increased vascular density but surprisingly decreased pro-angiogenic factor expression. CONCLUSIONS The striking decrease in pro-angiogenic factor mRNA expression associated with endothelial proliferation and increased vascular density during inflammation suggests that endothelial response to injury is not a recapitulation of normal development and may be initiated and regulated by different regulatory mechanisms. PMID:24293357

  5. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles

    PubMed Central

    Tykocki, Nathan R.; Boerman, Erika M.; Jackson, William F.

    2017-01-01

    Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body’s tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. PMID:28333380

  6. Pericyte Derived Sphinogosine 1-Phosphate Induces the Expression of Adhesion Proteins and Modulates the Retinal Endothelial Cell Barrier

    PubMed Central

    McGuire, P.G.; Rangasamy, S.; Maestas, J.; Das, A.

    2011-01-01

    Objective The mechanisms that regulate the physical interaction of pericytes and endothelial cells and the effects of these interactions on interendothelial cell junctions are not well understood. We determined the extent to which vascular pericytes could regulate pericyte-endothelial adhesion and the consequences that this disruption might have on the function of the endothelial barrier. Methods and Results Human retinal microvascular endothelial cells were co-cultured with pericytes, and the effect on the monolayer resistance of endothelial cells and expression of the cell junction molecules N-cadherin and VE-cadherin were measured. The molecules responsible for the effect of pericytes or pericyte conditioned media on the endothelial resistance and cell junction molecules were further analyzed. Our results indicate that pericytes increase the barrier properties of endothelial cell monolayers. This barrier function is maintained through the secretion of pericyte-derived sphingosine 1-phosphate (S1P). S1P aids in maintenance of microvascular stability by up-regulating the expression of N-cadherin and VE-cadherin, and down-regulating the expression of angiopoietin 2. Conclusion Under normal circumstances, the retinal vascular pericytes maintain pericyte-endothelial contacts and vascular barrier function through the secretion of S1P. Alteration of pericyte-derived S1P production may be an important mechanism in the development of diseases characterized by vascular dysfunction and increased permeability. PMID:21940944

  7. Genetic and hormonal regulation of cambial development.

    PubMed

    Ursache, Robertas; Nieminen, Kaisa; Helariutta, Ykä

    2013-01-01

    The stems and roots of most dicot plants increase in diameter by radial growth, due to the activity of secondary meristems. Two types of meristems function in secondary plant body formation: the vascular cambium, which gives rise to secondary xylem and phloem, and the cork cambium, which produces a bark layer that replaces the epidermis and protects the plant stem from mechanical damage and pathogens. Cambial development, the initiation and activity of the vascular cambium, leads to an accumulation of wood, the secondary xylem tissue. The thick, cellulose-rich cell walls of wood provide a source of cellulose and have the potential to be used as a raw material for sustainable and renewable energy production. In this review, we will discuss what is known about the mechanisms regulating the cambium and secondary tissue development. Copyright © Physiologia Plantarum 2012.

  8. Cyclophilin A in cardiovascular homeostasis and diseases.

    PubMed

    Satoh, Kimio

    2015-01-01

    Vascular homeostasis is regulated by complex interactions between many vascular cell components, including endothelial cells, vascular smooth muscle cells (VSMCs), adventitial inflammatory cells, and autonomic nervous system. The balance between oxidant and antioxidant systems determines intracellular redox status, and their imbalance can cause oxidative stress. Excessive oxidative stress is one of the important stimuli that induce cellular damage and dysregulation of vascular cell components, leading to vascular diseases through multiple pathways. Cyclophilin A (CyPA) is one of the causative proteins that mediate oxidative stress-induced cardiovascular dysfunction. CyPA was initially discovered as the intracellular receptor of the immunosuppressive drug cyclosporine 30 years ago. However, recent studies have established that CyPA is secreted from vascular cell components, such as endothelial cells and VSMCs. Extracellular CyPA augments the development of cardiovascular diseases. CyPA secretion is regulated by Rho-kinase, which contributes to the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, and heart failure. We recently reported that plasma CyPA levels are significantly higher in patients with coronary artery disease, which is associated with increased numbers of stenotic coronary arteries and the need for coronary intervention in such patients. Furthermore, we showed that the vascular erythropoietin (Epo)/Epo receptor system plays an important role in production of nitric oxide and maintenance of vascular redox state and homeostasis, with a potential mechanistic link to the Rho-kinase-CyPA pathway. In this article, I review the data on the protective role of the vascular Epo/Epo receptor system and discuss the roles of the CyPA/Rho-kinase system in cardiovascular diseases.

  9. Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 Regulates Xylem Development and Growth by a Conserved Mechanism That Modulates Hormone Signaling1[W][OPEN

    PubMed Central

    Grienenberger, Etienne; Douglas, Carl J.

    2014-01-01

    Despite a strict conservation of the vascular tissues in vascular plants (tracheophytes), our understanding of the genetic basis underlying the differentiation of secondary cell wall-containing cells in the xylem of tracheophytes is still far from complete. Using coexpression analysis and phylogenetic conservation across sequenced tracheophyte genomes, we identified a number of Arabidopsis (Arabidopsis thaliana) genes of unknown function whose expression is correlated with secondary cell wall deposition. Among these, the Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 (VUP1) gene encodes a predicted protein of 24 kD with no annotated functional domains but containing domains that are highly conserved in tracheophytes. Here, we show that the VUP1 expression pattern, determined by promoter-β-glucuronidase reporter gene expression, is associated with vascular tissues, while vup1 loss-of-function mutants exhibit collapsed morphology of xylem vessel cells. Constitutive overexpression of VUP1 caused dramatic and pleiotropic developmental defects, including severe dwarfism, dark green leaves, reduced apical dominance, and altered photomorphogenesis, resembling brassinosteroid-deficient mutants. Constitutive overexpression of VUP homologs from multiple tracheophyte species induced similar defects. Whole-genome transcriptome analysis revealed that overexpression of VUP1 represses the expression of many brassinosteroid- and auxin-responsive genes. Additionally, deletion constructs and site-directed mutagenesis were used to identify critical domains and amino acids required for VUP1 function. Altogether, our data suggest a conserved role for VUP1 in regulating secondary wall formation during vascular development by tissue- or cell-specific modulation of hormone signaling pathways. PMID:24567189

  10. Extent of Vascular Remodeling Is Dependent on the Balance Between Estrogen Receptor α and G-Protein-Coupled Estrogen Receptor.

    PubMed

    Gros, Robert; Hussain, Yasin; Chorazyczewski, Jozef; Pickering, J Geoffrey; Ding, Qingming; Feldman, Ross D

    2016-11-01

    Estrogens are important regulators of cardiovascular function. Some of estrogen's cardiovascular effects are mediated by a G-protein-coupled receptor mechanism, namely, G-protein-coupled estrogen receptor (GPER). Estradiol-mediated regulation of vascular cell programmed cell death reflects the balance of the opposing actions of GPER versus estrogen receptor α (ERα). However, the significance of these opposing actions on the regulation of vascular smooth muscle cell proliferation or migration in vitro is unclear, and the significance in vivo is unknown. To determine the effects of GPER activation in vitro, we studied rat aortic vascular smooth muscle cells maintained in primary culture. GPER was reintroduced using adenoviral gene transfer. Both estradiol and G1, a GPER agonist, inhibited both proliferation and cell migration effects that were blocked by the GPER antagonist, G15. To determine the importance of the GPER-ERα balance in regulating vascular remodeling in a rat model of carotid ligation, we studied the effects of upregulation of GPER expression versus downregulation of ERα. Reintroduction of GPER significantly attenuated the extent of medial hypertrophy and attenuated the extent of CD45 labeling. Downregulation of ERα expression comparably attenuated the extent of medial hypertrophy and inflammation after carotid ligation. These studies demonstrate that the balance between GPER and ERα regulates vascular remodeling. Receptor-specific modulation of estrogen's effects may be an important new approach in modifying vascular remodeling in both acute settings like vascular injury and perhaps in longer term regulation like in hypertension. © 2016 American Heart Association, Inc.

  11. The crosstalk between autonomic nervous system and blood vessels

    PubMed Central

    Sheng, Yulan; Zhu, Li

    2018-01-01

    The autonomic nervous system (ANS), comprised of two primary branches, sympathetic and parasympathetic nervous system, plays an essential role in the regulation of vascular wall contractility and tension. The sympathetic and parasympathetic nerves work together to balance the functions of autonomic effector organs. The neurotransmitters released from the varicosities in the ANS can regulate the vascular tone. Norepinephrine (NE), adenosine triphosphate (ATP) and Neuropeptide Y (NPY) function as vasoconstrictors, whereas acetylcholine (Ach) and calcitonin gene-related peptide (CGRP) can mediate vasodilation. On the other hand, vascular factors, such as endothelium-derived relaxing factor nitric oxide (NO), and constriction factor endothelin, play an important role in the autonomic nervous system in physiologic conditions. Endothelial dysfunction and inflammation are associated with the sympathetic nerve activity in the pathological conditions, such as hypertension, heart failure, and diabetes mellitus. The dysfunction of the autonomic nervous system could be a risk factor for vascular diseases and the overactive sympathetic nerve is detrimental to the blood vessel. In this review, we summarize findings concerning the crosstalk between ANS and blood vessels in both physiological and pathological conditions and hope to provide insight into the development of therapeutic interventions of vascular diseases. PMID:29593847

  12. Heparin Stimulates Elastogenesis: Application to Silk-Based Vascular Grafts

    PubMed Central

    Baughman, Cassandra; Kaplan, David L.; Castellot, John J.

    2013-01-01

    With over 500,000 coronary artery bypass grafts (CABG) performed annually in the United States alone, there is a significant clinical need for a small diameter tissue engineered vascular graft. A principle goal in tissue engineering is to develop materials and growth conditions that encourage appropriate re-cellularization and extracellular matrix formation in vivo. A particular challenge in vascular tissue engineering results from the inability of adult cells to produce elastin, as its expression is developmentally limited. We investigated factors to stimulate elastogenesis in vitro, and found that heparin treatment of adult human vascular smooth muscle cells promoted the formation of elastic fibers. This effect was heparin-specific, and dependent on cell density and growth state. We then applied this information to a silk-based construct, and found that immobilized heparin showed essentially identical biological effects to that of soluble heparin. These findings indicate that heparinized vascular grafts may promote elastin formation and regulate restenosis, in addition to heparin’s well-established antithrombotic properties. Given the increase in elastin mRNA level and the increase in extracellular elastin present, our data suggests that there may be multiple levels of elastin regulation that are mediated by heparin treatment. PMID:21600981

  13. Brain cytoplasmic RNA 1 suppresses smooth muscle differentiation and vascular development in mice.

    PubMed

    Wang, Yung-Chun; Chuang, Ya-Hui; Shao, Qiang; Chen, Jian-Fu; Chen, Shi-You

    2018-04-13

    The cardiovascular system develops during the early stages of embryogenesis, and differentiation of smooth muscle cells (SMCs) is essential for that process. SMC differentiation is critically regulated by transforming growth factor (TGF)-β/SMAD family member 3 (SMAD3) signaling, but other regulators may also play a role. For example, long noncoding RNAs (lncRNAs) regulate various cellular activities and events, such as proliferation, differentiation, and apoptosis. However, whether long noncoding RNAs also regulate SMC differentiation remains largely unknown. Here, using the murine cell line C3H10T1/2, we found that brain cytoplasmic RNA 1 (BC1) is an important regulator of SMC differentiation. BC1 overexpression suppressed, whereas BC1 knockdown promoted, TGF-β-induced SMC differentiation, as indicated by altered cell morphology and expression of multiple SMC markers, including smooth muscle α-actin (αSMA), calponin, and smooth muscle 22α (SM22α). BC1 appeared to block SMAD3 activity and inhibit SMC marker gene transcription. Mechanistically, BC1 bound to SMAD3 via RNA SMAD-binding elements (rSBEs) and thus impeded TGF-β-induced SMAD3 translocation to the nucleus. This prevented SMAD3 from binding to SBEs in SMC marker gene promoters, an essential event in SMC marker transcription. In vivo , BC1 overexpression in mouse embryos impaired vascular SMC differentiation, leading to structural defects in the artery wall, such as random breaks in the elastic lamina, abnormal collagen deposition on SM fibers, and disorganized extracellular matrix proteins in the media of the neonatal aorta. Our results suggest that BC1 is a suppressor of SMC differentiation during vascular development. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Cytoglobin regulates blood pressure and vascular tone through nitric oxide metabolism in the vascular wall

    PubMed Central

    Liu, Xiaoping; El-Mahdy, Mohamed A.; Boslett, James; Varadharaj, Saradhadevi; Hemann, Craig; Abdelghany, Tamer M.; Ismail, Raed S.; Little, Sean C.; Zhou, Danlei; Thuy, Le Thi Thanh; Kawada, Norifumi; Zweier, Jay L.

    2017-01-01

    The identity of the specific nitric oxide dioxygenase (NOD) that serves as the main in vivo regulator of O2-dependent NO degradation in smooth muscle remains elusive. Cytoglobin (Cygb) is a recently discovered globin expressed in fibroblasts and smooth muscle cells with unknown function. Cygb, coupled with a cellular reducing system, efficiently regulates the rate of NO consumption by metabolizing NO in an O2-dependent manner with decreased NO consumption in physiological hypoxia. Here we show that Cygb is a major regulator of NO degradation and cardiovascular tone. Knockout of Cygb greatly prolongs NO decay, increases vascular relaxation, and lowers blood pressure and systemic vascular resistance. We further demonstrate that downregulation of Cygb prevents angiotensin-mediated hypertension. Thus, Cygb has a critical role in the regulation of vascular tone and disease. We suggest that modulation of the expression and NOD activity of Cygb represents a strategy for the treatment of cardiovascular disease. PMID:28393874

  15. Cytoglobin regulates blood pressure and vascular tone through nitric oxide metabolism in the vascular wall

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoping; El-Mahdy, Mohamed A.; Boslett, James; Varadharaj, Saradhadevi; Hemann, Craig; Abdelghany, Tamer M.; Ismail, Raed S.; Little, Sean C.; Zhou, Danlei; Thuy, Le Thi Thanh; Kawada, Norifumi; Zweier, Jay L.

    2017-04-01

    The identity of the specific nitric oxide dioxygenase (NOD) that serves as the main in vivo regulator of O2-dependent NO degradation in smooth muscle remains elusive. Cytoglobin (Cygb) is a recently discovered globin expressed in fibroblasts and smooth muscle cells with unknown function. Cygb, coupled with a cellular reducing system, efficiently regulates the rate of NO consumption by metabolizing NO in an O2-dependent manner with decreased NO consumption in physiological hypoxia. Here we show that Cygb is a major regulator of NO degradation and cardiovascular tone. Knockout of Cygb greatly prolongs NO decay, increases vascular relaxation, and lowers blood pressure and systemic vascular resistance. We further demonstrate that downregulation of Cygb prevents angiotensin-mediated hypertension. Thus, Cygb has a critical role in the regulation of vascular tone and disease. We suggest that modulation of the expression and NOD activity of Cygb represents a strategy for the treatment of cardiovascular disease.

  16. Mesodermal expression of integrin α5β1 regulates neural crest development and cardiovascular morphogenesis

    PubMed Central

    Liang, Dong; Wang, Xia; Mittal, Ashok; Dhiman, Sonam; Hou, Shuan-Yu; Degenhardt, Karl; Astrof, Sophie

    2014-01-01

    Integrin α5-null embryos die in mid-gestation from severe defects in cardiovascular morphogenesis, which stem from defective development of the neural crest, heart and vasculature. To investigate the role of integrin α5β1 in cardiovascular development, we used the Mesp1Cre knock-in strain of mice to ablate integrin α5 in the anterior mesoderm, which gives rise to all of the cardiac and many of the vascular and muscle lineages in the anterior portion of the embryo. Surprisingly, we found that mutant embryos displayed numerous defects related to the abnormal development of the neural crest such as cleft palate, ventricular septal defect, abnormal development of hypoglossal nerves, and defective remodeling of the aortic arch arteries. We found that defects in arch artery remodeling stem from the role of mesodermal integrin α5β1 in neural crest proliferation and differentiation into vascular smooth muscle cells, while proliferation of pharyngeal mesoderm and differentiation of mesodermal derivatives into vascular smooth muscle cells was not defective. Taken together our studies demonstrate a requisite role for mesodermal integrin α5β1 in signaling between the mesoderm and the neural crest, thereby regulating neural crest-dependent morphogenesis of essential embryonic structures. PMID:25242040

  17. Evidence for a possible role of oxygen free radicals in the abnormal functional arterial vasomotion in insulin dependent diabetes.

    PubMed

    Ceriello, A; Quatraro, A; Caretta, F; Varano, R; Giugliano, D

    1990-01-01

    A functional arterial spasm, revealed by reduced post-ischemic response, is present in diabetic subjects with no overt evidence of vascular damage. The administration of three different antioxidant agents, vitamin C, thiopronine and glutathione, produces an increase of basal blood flow in both diabetic and normal subjects, and ameliorates significantly the vascular functional response in diabetes. These data suggest that free radicals may play a role in the regulation of arterial resistance in humans, and that a de-regulation of their action may be involved in the development of arterial dysfunction in diabetes.

  18. Inhibition of Delta-like 4 mediated signaling induces abortion in mice due to deregulation of decidual angiogenesis.

    PubMed

    García-Pascual, C M; Ferrero, H; Zimmermann, R C; Simón, C; Pellicer, A; Gómez, R

    2014-07-01

    To explore whether the Dll4/Notch1 pathway plays a key role in regulating the vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) driven decidual angiogenesis and related pregnancy through induction of a tip/stalk phenotype. Progesterone-replaced ovariectomized pregnant mice received a single injection of YW152F (Dll4 blocking antibody, BAb) or placebo at embryonic day (E) 4.5. Animals were sacrificed at different time points; blood and uterus were collected for further analysis. Number of embryos and implantation site, uteri weight, and serum progesterone levels were assessed. Alterations in the tip/stalk phenotype were determined by quantitative immunofluorescent analysis of vascularization, Dll4 expression, cellular proliferation and apoptosis in uterine sections. Abrogation of Dll4 signaling leads to a promiscuous expression of Dll4, increased cell proliferation, apoptosis and vascularization at E 6.5. Such an abrogation was associated with a dramatic disruption of embryo growth and development starting at E 9.5. The observed promiscuous expression of Dll4 and the increase in cell proliferation, apoptosis and vascularization are events compatible with loss of the tip/stalk phenotype. Excessive (although very likely defective) decidual angiogenesis due to such vascular alterations is the most likely cause of subsequent interruption of embryo development and related pregnancy in Dll4 treated mice. Dll4 plays a key role in regulating decidual angiogenesis and related pregnancy through induction of a tip/stalk phenotype. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Maintenance of airway epithelium in acutely rejected orthotopic vascularized mouse lung transplants.

    PubMed

    Okazaki, Mikio; Gelman, Andrew E; Tietjens, Jeremy R; Ibricevic, Aida; Kornfeld, Christopher G; Huang, Howard J; Richardson, Steven B; Lai, Jiaming; Garbow, Joel R; Patterson, G Alexander; Krupnick, Alexander S; Brody, Steven L; Kreisel, Daniel

    2007-12-01

    Lung transplantation remains the only therapeutic option for many patients suffering from end-stage pulmonary disease. Long-term success after lung transplantation is severely limited by the development of bronchiolitis obliterans. The murine heterotopic tracheal transplantation model has been widely used for studies investigating pathogenesis of obliterative airway disease and immunosuppressive strategies to prevent its development. Despite its utility, this model employs proximal airway that lacks airflow and is not vascularized. We have developed a novel model of orthotopic vascularized lung transplantation in the mouse, which leads to severe vascular rejection in allogeneic strain combinations. Here we characterize differences in the fate of airway epithelial cells in nonimmunosuppressed heterotopic tracheal and vascularized lung allograft models over 28 days. Up-regulation of growth factors that are thought to be critical for the development of airway fibrosis and interstitial collagen deposition were similar in both models. However, while loss of airway epithelial cells occurred in the tracheal model, airway epithelium remained intact and fully differentiated in lung allografts, despite profound vascular rejection. Moreover, we demonstrate expression of the anti-apoptotic protein Bcl-2 in airway epithelial cells of acutely rejected lung allografts. These findings suggest that in addition to alloimmune responses, other stimuli may be required for the destruction of airway epithelial cells. Thus, the model of vascularized mouse lung transplantation may provide a new and more physiologic experimental tool to study the interaction between immune and nonimmune mechanisms affecting airway pathology in lung allografts.

  20. Netrins and UNC5 receptors in angiogenesis.

    PubMed

    Freitas, Catarina; Larrivée, Bruno; Eichmann, Anne

    2008-01-01

    Both neuronal and vascular development require guidance to establish a precise branching pattern of these systems in the vertebrate body. Several molecules implicated in axon navigation have also been shown to regulate vessel sprouting. Among these guidance cues, Netrins constitute a family of diffusible molecules with a bifuncional role in axon pathfinding. Recent findings implicate Netrins in other developmental processes, including vascular development. We here review recent studies and discuss the possible dual function of Netrins and its receptors during branching of blood vessels in developmental and pathological angiogenesis.

  1. Vascular reactivity in arterioles from normal and alloxan-diabetic mice: studies on single perfused islets.

    PubMed

    Lai, En Yin; Jansson, Leif; Patzak, Andreas; Persson, A Erik G

    2007-01-01

    Pancreatic islets possess an autonomous mechanism of blood flow regulation, independent of that of the exocrine pancreas. To study islet vascular regulation without confounding effects of the exocrine blood vessels, we have developed a technique enabling us to isolate single pancreatic islets and then to perfuse them using their endogenous vasculature for distribution of the medium. This made it possible to directly study the vascular reactivity of islet arterioles to different substances. We confirmed that control of islet blood flow is mainly located at the precapillary level. As expected, administration of angiotensin II and l-nitro-arginine methyl ester contracted islet arterioles, whereas nitric oxide and adenosine dilated them. d-glucose, the main insulin secretagogue, had a selective dilating effect on smooth muscle in islet arterioles but not in glomerular afferent arterioles. The response to glucose was amplified in islet arterioles from diabetic animals, indicating enhanced islet blood perfusion in diabetes. This newly developed technique for perfusing isolated pancreatic islets will provide new insights into islet perfusion control and its possible contributions to the pathogenesis of type 2 diabetes.

  2. Angiogenesis in tissue engineering: from concept to the vascularization of scaffold construct

    NASA Astrophysics Data System (ADS)

    Amirah Ishak, Siti; Pangestu Djuansjah, J. R.; Kadir, M. R. Abdul; Sukmana, Irza

    2014-06-01

    Angiogenesis, the formation of micro-vascular network from the preexisting vascular vessels, has been studied in the connection to the normal developmental process as well as numerous diseases. In tissue engineering research, angiogenesis is also essential to promote micro-vascular network inside engineered tissue constructs, mimicking a functional blood vessel in vivo. Micro-vascular network can be used to maintain adequate tissue oxygenation, nutrient transfer and waste removal. One of the problems faced by angiogenesis researchers is to find suitable in vitro assays and methods for assessing the effect of regulators on angiogenesis and micro-vessel formation. The assay would be reliable and repeatable with easily quantifiable with physiologically relevant. This review aims to highlights recent advanced and future challenges in developing and using an in vitro angiogenesis assay for the application on biomedical and tissue engineering research.

  3. Glycolaldehyde-derived advanced glycation end products (glycol-AGEs)-induced vascular smooth muscle cell dysfunction is regulated by the AGES-receptor (RAGE) axis in endothelium.

    PubMed

    Nam, Mi-Hyun; Son, Won-Rak; Lee, Young Sik; Lee, Kwang-Won

    Advanced glycation end-products (AGEs) are involved in the development of vascular smooth muscle cell (VSMC) dysfunction and the progression of atherosclerosis. However, AGEs may indirectly affect VSMCs via AGEs-induced signal transduction between monocytes and human umbilical endothelial cells (HUVECs), rather than having a direct influence. This study was designed to elucidate the signaling pathway underlying AGEs-RAGE axis influence on VSMC dysfunction using a co-culture system with monocytes, HUVECs and VSMCs. AGEs stimulated production of reactive oxygen species and pro-inflammatory mediators such as tumor necrosis factor-α and interleukin-1β via extracellular-signal-regulated kinases phosphorylation and nuclear factor-κB activation in HUVECs. It was observed that AGEs-induced pro-inflammatory cytokines increase VSMC proliferation, inflammation and vascular remodeling in the co-culture system. This result implies that RAGE plays a role in AGEs-induced VSMC dysfunction. We suggest that the regulation of signal transduction via the AGEs-RAGE axis in the endothelium can be a therapeutic target for preventing atherosclerosis.

  4. Embryonic exposure to sodium arsenite perturbs vascular development in zebrafish.

    PubMed

    McCollum, Catherine W; Hans, Charu; Shah, Shishir; Merchant, Fatima A; Gustafsson, Jan-Åke; Bondesson, Maria

    2014-07-01

    Exposure to arsenic in its inorganic form, arsenite, causes adverse effects to many different organs and tissues. Here, we have investigated arsenite-induced adverse effects on vascular tissues in the model organism zebrafish, Danio rerio. Zebrafish embryos were exposed to arsenite at different exposure windows and the susceptibility to vascular tissue damage was recorded at 72hours post fertilization (hpf). Intersegmental vessel sprouting and growth was most perturbed by exposure to arsenite during the 24-48hpf window, while disruption in the condensation of the caudal vein plexus was more often observed at the 48-72hpf exposure window, reflecting when these structures develop during normal embryogenesis. The vascular growth rate was decreased by arsenite exposure, and deviated from that of control embryos at around 24-26.5hpf. We further mapped changes in expression of key regulators of angiogenesis and vasculogenesis. Downregulation of vascular endothelial growth factor receptor 1/fms-related tyrosine kinase 1 (vegfr1/flt1) expression was evident already at 24hpf, coinciding with the decreased vascular growth rate. At later time points, matrix metalloproteinase 9 (mmp9) expression was upregulated, suggesting that arsenite affects the composition of the extracellular matrix. In total, the expression of eight key factors involved in different aspects of vascularization was significantly altered by arsenic exposure. In conclusion, our results show that arsenite is a potent vascular disruptor in the developing zebrafish embryo, a finding that calls for an evaluation of arsenite as a developmental vascular toxicant in mammalian model systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Early Vascular Ageing - A Concept in Development.

    PubMed

    M Nilsson, Peter

    2015-04-01

    Cardiovascular disease (CVD) is a prevalent condition in the elderly, often associated with metabolic disturbance and type 2 diabetes. For a number of years, research dedicated to understand atherosclerosis dominated, and for many good reasons, this pathophysiological process being proximal to the CVD events. In recent years, research has been devoted to an earlier stage of vascular pathology named arteriosclerosis (arterial stiffness) and the new concept of early vascular ageing (EVA), developed by a group of mostly European researchers. This overview describes recent developments in research dedicated to EVA and new emerging aspects found in studies of families at high cardiovascular risk. There are new aspects related to genetics, telomere biology and the role of gut microbiota. However, there is still no unifying definition available of EVA and no direct treatment, but rather only recommendations for conventional cardiovascular risk factor control. New interventions are being developed - not only new antihypertensive drugs, but also new drugs for vascular protection - the selective angiotensin-II (AT2) agonist Compound 21 (C21). Human studies are eagerly awaited. Even new functional food products could have the potential to positively influence cardiometabolic regulation, to be confirmed.

  6. Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition.

    PubMed

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Qing, Hua; Heywood, Elizabeth B; Jones, Karrie L; Cohn, Dianne; Bruemmer, Dennis

    2011-04-01

    Proliferation of smooth muscle cells (SMC) in response to vascular injury is central to neointimal vascular remodeling. There is accumulating evidence that histone acetylation constitutes a major epigenetic modification for the transcriptional control of proliferative gene expression; however, the physiological role of histone acetylation for proliferative vascular disease remains elusive. In the present study, we investigated the role of histone deacetylase (HDAC) inhibition in SMC proliferation and neointimal remodeling. We demonstrate that mitogens induce transcription of HDAC 1, 2, and 3 in SMC. Short interfering RNA-mediated knockdown of either HDAC 1, 2, or 3 and pharmacological inhibition of HDAC prevented mitogen-induced SMC proliferation. The mechanisms underlying this reduction of SMC proliferation by HDAC inhibition involve a growth arrest in the G(1) phase of the cell cycle that is due to an inhibition of retinoblastoma protein phosphorylation. HDAC inhibition resulted in a transcriptional and posttranscriptional regulation of the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip). Furthermore, HDAC inhibition repressed mitogen-induced cyclin D1 mRNA expression and cyclin D1 promoter activity. As a result of this differential cell cycle-regulatory gene expression by HDAC inhibition, the retinoblastoma protein retains a transcriptional repression of its downstream target genes required for S phase entry. Finally, we provide evidence that these observations are applicable in vivo by demonstrating that HDAC inhibition decreased neointima formation and expression of cyclin D1 in a murine model of vascular injury. These findings identify HDAC as a critical component of a transcriptional cascade regulating SMC proliferation and suggest that HDAC might play a pivotal role in the development of proliferative vascular diseases, including atherosclerosis and in-stent restenosis.

  7. Epigenetic Regulation of Vascular Smooth Muscle Cell Proliferation and Neointima Formation by Histone Deacetylase Inhibition

    PubMed Central

    Findeisen, Hannes M.; Gizard, Florence; Zhao, Yue; Qing, Hua; Heywood, Elizabeth B.; Jones, Karrie L.; Cohn, Dianne; Bruemmer, Dennis

    2011-01-01

    Objective Proliferation of smooth muscle cells (SMC) in response to vascular injury is central to neointimal vascular remodeling. There is accumulating evidence that histone acetylation constitutes a major epigenetic modification for the transcriptional control of proliferative gene expression; however, the physiological role of histone acetylation for proliferative vascular disease remains elusive. Methods and Results In the present study, we investigated the role of histone deacetylase (HDAC) inhibition in SMC proliferation and neointimal remodeling. We demonstrate that mitogens induce transcription of HDAC 1, 2 and 3 in SMC. siRNA-mediated knock-down of either HDAC 1, 2 or 3 and pharmacologic inhibition of HDAC prevented mitogen-induced SMC proliferation. The mechanisms underlying this reduction of SMC proliferation by HDAC inhibition involve a growth arrest in the G1-phase of the cell cycle due to an inhibition of retinoblastoma protein phosphorylation. HDAC inhibition resulted in a transcriptional and posttranscriptional regulation of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip. Furthermore, HDAC inhibition repressed mitogen-induced cyclin D1 mRNA expression and cyclin D1 promoter activity. As a result of this differential cell cycle-regulatory gene expression by HDAC inhibition, the retinoblastoma protein retains a transcriptional repression of its downstream target genes required for S phase entry. Finally, we provide evidence that these observations are applicable in vivo by demonstrating that HDAC inhibition decreased neointima formation and expression of cyclin D1 in a murine model of vascular injury. Conclusion These findings identify HDAC as a critical component of a transcriptional cascade regulating SMC proliferation and suggest that HDAC might play a pivotal role in the development of proliferative vascular diseases, including atherosclerosis and in-stent restenosis. PMID:21233448

  8. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo.

    PubMed

    Torella, Daniele; Iaconetti, Claudio; Catalucci, Daniele; Ellison, Georgina M; Leone, Angelo; Waring, Cheryl D; Bochicchio, Angela; Vicinanza, Carla; Aquila, Iolanda; Curcio, Antonio; Condorelli, Gianluigi; Indolfi, Ciro

    2011-09-30

    MicroRNA (miR)-1 and -133 play a crucial role in skeletal and cardiac muscle biology and pathophysiology. However, their expression and regulation in vascular cell physiology and disease is currently unknown. The aim of the present study was to evaluate the role, if any, of miR-1 and miR-133 in vascular smooth muscle cell (VSMC) phenotypic switch in vitro and in vivo. We demonstrate here that miR-133 is robustly expressed in vascular smooth muscle cells (VSMCs) in vitro and in vivo, whereas miR-1 vascular levels are negligible. miR-133 has a potent inhibitory role on VSMC phenotypic switch in vitro and in vivo, whereas miR-1 does not have any relevant effect per se. miR-133 expression is regulated by extracellular signal-regulated kinase 1/2 activation and is inversely correlated with VSMC growth. Indeed, miR-133 decreases when VSMCs are primed to proliferate in vitro and following vascular injury in vivo, whereas it increases when VSMCs are coaxed back to quiescence in vitro and in vivo. miR-133 loss- and gain-of-function experiments show that miR-133 plays a mechanistic role in VSMC growth. Accordingly, adeno-miR-133 reduces but anti-miR-133 exacerbates VSMC proliferation and migration in vitro and in vivo. miR-133 specifically suppresses the transcription factor Sp-1 expression in vitro and in vivo and through Sp-1 repression regulates smooth muscle gene expression. Our data show that miR-133 is a key regulator of vascular smooth muscle cell phenotypic switch in vitro and in vivo, suggesting its potential therapeutic application for vascular diseases.

  9. ADVANCES IN UNDERSTANDING AND MANAGEMENT OF RETINOPATHY OF PREMATURITY

    PubMed Central

    Hartnett, Mary Elizabeth

    2016-01-01

    The understanding, diagnosis and treatment of retinopathy of prematurity (ROP) have changed in the last seventy years since the original description of retrolental fibroplasia associated with high oxygenation. It is now recognized that ROP differs in appearance world-wide and as ever smaller and younger premature infants survive. New methods are being evaluated to image the retina, diagnose severe ROP, and determine windows of time for treatment to save eyes and improve visual and neural outcomes. New treatments to promote physiologic retinal vascular development, vascular repair, and inhibit vasoproliferation by regulating proteins involved in vascular endothelial growth factor, insulin-like growth factor, or erythropoietin signaling. Reducing excessive oxidative/nitrosative stress and understanding progenitor cells and neurovascular and glial vascular interactions are being studied. PMID:28012875

  10. EphrinA1 Inhibits Vascular Endothelial Growth Factor-Induced Intracellular Signaling and Suppresses Retinal Neovascularization and Blood-Retinal Barrier Breakdown

    PubMed Central

    Ojima, Tomonari; Takagi, Hitoshi; Suzuma, Kiyoshi; Oh, Hideyasu; Suzuma, Izumi; Ohashi, Hirokazu; Watanabe, Daisuke; Suganami, Eri; Murakami, Tomoaki; Kurimoto, Masafumi; Honda, Yoshihito; Yoshimura, Nagahisa

    2006-01-01

    The Eph receptor/ephrin system is a recently discovered regulator of vascular development during embryogenesis. Activation of EphA2, one of the Eph receptors, reportedly suppresses cell proliferation and adhesion in a wide range of cell types, including vascular endothelial cells. Vascular endothelial growth factor (VEGF) plays a primary role in both pathological angiogenesis and abnormal vascular leakage in diabetic retinopathy. In the study described herein, we demonstrated that EphA2 stimulation by ephrinA1 in cultured bovine retinal endothelial cells inhibits VEGF-induced VEGFR2 receptor phosphorylation and its downstream signaling cascades, including PKC (protein kinase C)-ERK (extracellular signal-regulated kinase) 1/2 and Akt. This inhibition resulted in the reduction of VEGF-induced angiogenic cell activity, including migration, tube formation, and cellular proliferation. These inhibitory effects were further confirmed in animal models. Intraocular injection of ephrinA1 suppressed ischemic retinal neovascularization in a dose-dependent manner in a mouse model. At a dose of 125 ng/eye, the inhibition was 36.0 ± 14.9% (P < 0.001). EphrinA1 also inhibited VEGF-induced retinal vascular permeability in a rat model by 46.0 ± 10.0% (P < 0.05). These findings suggest a novel therapeutic potential for EphA2/ephrinA1 in the treatment of neovascularization and vasopermeability abnormalities in diabetic retinopathy. PMID:16400034

  11. Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells.

    PubMed

    Feaver, Ryan E; Gelfand, Bradley D; Blackman, Brett R

    2013-01-01

    Haemodynamic variations are inherent to blood vessel geometries (such as bifurcations) and correlate with regional development of inflammation and atherosclerosis. However, the complex frequency spectrum characteristics from these haemodynamics have never been exploited to test whether frequency variations are critical determinants of endothelial inflammatory phenotype. Here we utilize an experimental Fourier transform analysis to systematically manipulate individual frequency harmonics from human carotid shear stress waveforms applied in vitro to human endothelial cells. The frequency spectrum, specifically the 0 th and 1st harmonics, is a significant regulator of inflammation, including NF-κB activity and downstream inflammatory phenotype. Further, a harmonic-based regression-model predicts eccentric NF-κB activity observed in the human internal carotid artery. Finally, short interfering RNA-knockdown of the mechanosensor PECAM-1 reverses frequency-dependent regulation of NF-κB activity. Thus, PECAM-1 may have a critical role in the endothelium's exquisite sensitivity to complex shear stress frequency harmonics and provide a mechanism for the focal development of vascular inflammation.

  12. Digital gene expression analysis of corky split vein caused by boron deficiency in 'Newhall' Navel Orange (Citrus sinensis Osbeck) for selecting differentially expressed genes related to vascular hypertrophy.

    PubMed

    Yang, Cheng-Quan; Liu, Yong-Zhong; An, Ji-Cui; Li, Shuang; Jin, Long-Fei; Zhou, Gao-Feng; Wei, Qing-Jiang; Yan, Hui-Qing; Wang, Nan-Nan; Fu, Li-Na; Liu, Xiao; Hu, Xiao-Mei; Yan, Ting-Shuai; Peng, Shu-Ang

    2013-01-01

    Corky split vein caused by boron (B) deficiency in 'Newhall' Navel Orange was studied in the present research. The boron-deficient citrus exhibited a symptom of corky split vein in mature leaves. Morphologic and anatomical surveys at four representative phases of corky split veins showed that the symptom was the result of vascular hypertrophy. Digital gene expression (DGE) analysis was performed based on the Illumina HiSeq™ 2000 platform, which was applied to analyze the gene expression profilings of corky split veins at four morphologic phases. Over 5.3 million clean reads per library were successfully mapped to the reference database and more than 22897 mapped genes per library were simultaneously obtained. Analysis of the differentially expressed genes (DEGs) revealed that the expressions of genes associated with cytokinin signal transduction, cell division, vascular development, lignin biosynthesis and photosynthesis in corky split veins were all affected. The expressions of WOL and ARR12 involved in the cytokinin signal transduction pathway were up-regulated at 1(st) phase of corky split vein development. Furthermore, the expressions of some cell cycle genes, CYCs and CDKB, and vascular development genes, WOX4 and VND7, were up-regulated at the following 2(nd) and 3(rd) phases. These findings indicated that the cytokinin signal transduction pathway may play a role in initiating symptom observed in our study.

  13. Can microRNAs control vascular smooth muscle phenotypic modulation and the response to injury?

    PubMed Central

    Albinsson, Sebastian

    2011-01-01

    Vascular smooth muscle cell (VSMC) migration and proliferation are critical events in vascular proliferative diseases. Recent studies have established microRNAs (miRNAs) as important mediators for the modulation of VSMC phenotype by targeting transcription factors and the cytoskeleton, which act as molecular switches for VSMC differentiation. The importance of miRNAs for VSMC development, differentiation, and function is evident by the fact that loss of the miRNA processing enzyme Dicer in VSMCs results in embryonic lethality due to severe vascular abnormalities. Similar abnormalities are observed in adult miR-143/145 knockout mice, indicating that these miRNAs are important for VSMC differentiation and function. However, since miR-143/145 knockout is not embryonically lethal, additional miRNA must be required during embryonic development of VSMCs. In addition, specific miRNAs such as miR-145, miR-21, and miR-221 have been found to regulate neointimal hyperplasia following vascular injury, which provides interesting possibilities for future therapeutical targets against vascular disease. Herein, we summarize recent advances regarding the role of miRNAs in VSMC phenotype modulation and response to injury. PMID:20841497

  14. Angiogenesis and microvasculature in the female reproductive organs: physiological and pathological implications.

    PubMed

    Shimizu, Takashi; Hoshino, Yumi; Miyazaki, Hitoshi; Sato, Eimei

    2012-01-01

    The female reproductive organs such as ovary, uterus, and placenta are some of the few adult tissues that exhibit regular intervals of rapid growth, and are highly vascularized and have high rates of blood flow. Angiogenesis is a process of vascular growth that is mainly limited to the reproductive system in healthy adult animals. The development of new blood vessels in the ovary and uterus is essential to guarantee the necessary supply of nutrients and hormones. The genetic and molecular mechanisms that control the development of capillary blood vessels in the reproductive organs are beginning to be elucidated. Reproductive organs contain and produce angiogenic factors which may act alone or in concert to regulate the process of vasculature. Vascular endothelial growth factors (VEGFs) and fibroblast growth factor (FGFs) are key factors for vascular system in the reproductive organs. Recent numerous studies reported several roles of VEGFs and FGFs on ovarian and uterine functions. In this review, we focus on the involvement of VEGFs and FGFs as angiogenic factors on reproductive organs and vascular therapy for diseases of reproductive organs using anti-angiogenic agents.

  15. Vascular aging: Chronic oxidative stress and impairment of redox signaling—consequences for vascular homeostasis and disease

    PubMed Central

    Bachschmid, Markus M.; Schildknecht, Stefan; Matsui, Reiko; Zee, Rebecca; Haeussler, Dagmar; Cohen, Richard A.; Pimental, David; van der Loo, Bernd

    2013-01-01

    Characteristic morphological and molecular alterations such as vessel wall thickening and reduction of nitric oxide occur in the aging vasculature leading to the gradual loss of vascular homeostasis. Consequently, the risk of developing acute and chronic cardiovascular diseases increases with age. Current research of the underlying molecular mechanisms of endothelial function demonstrates a duality of reactive oxygen and nitrogen species in contributing to vascular homeostasis or leading to detrimental effects when formed in excess. Furthermore, changes in function and redox status of vascular smooth muscle cells contribute to age-related vascular remodeling. The age-dependent increase in free radical formation causes deterioration of the nitric oxide signaling cascade, alters and activates prostaglandin metabolism, and promotes novel oxidative posttranslational protein modifications that interfere with vascular and cell signaling pathways. As a result, vascular dysfunction manifests. Compensatory mechanisms are initially activated to cope with age-induced oxidative stress, but become futile, which results in irreversible oxidative modifications of biological macromolecules. These findings support the ‘free radical theory of aging’ but also show that reactive oxygen and nitrogen species are essential signaling molecules, regulating vascular homeostasis. PMID:22380696

  16. Role of kinase-independent and -dependent functions of FAK in endothelial cell survival and barrier function during embryonic development.

    PubMed

    Zhao, Xiaofeng; Peng, Xu; Sun, Shaogang; Park, Ann Y J; Guan, Jun-Lin

    2010-06-14

    Focal adhesion kinase (FAK) is essential for vascular development as endothelial cell (EC)-specific knockout of FAK (conditional FAK knockout [CFKO] mice) leads to embryonic lethality. In this study, we report the differential kinase-independent and -dependent functions of FAK in vascular development by creating and analyzing an EC-specific FAK kinase-defective (KD) mutant knockin (conditional FAK knockin [CFKI]) mouse model. CFKI embryos showed apparently normal development through embryonic day (E) 13.5, whereas the majority of CFKO embryos died at the same stage. Expression of KD FAK reversed increased EC apoptosis observed with FAK deletion in embryos and in vitro through suppression of up-regulated p21. However, vessel dilation and defective angiogenesis of CFKO embryos were not rescued in CFKI embryos. ECs without FAK or expressing KD FAK showed increased permeability, abnormal distribution of vascular endothelial cadherin (VE-cadherin), and reduced VE-cadherin Y658 phosphorylation. Together, our data suggest that kinase-independent functions of FAK can support EC survival in vascular development through E13.5 but are insufficient for maintaining EC function to allow for completion of embryogenesis.

  17. The potential relationship between Flammer and Sjögren syndromes: the chime of dysfunction.

    PubMed

    Baban, Babak; Golubnitschaja, Olga

    2017-12-01

    Flammer syndrome (FS) is a term to blanket a cluster of vascular and nonvascular signs and symptoms linked to primary vascular dysregulation (PVD), increased sensitivity to various stimuli (stress, drugs, etc.) and altered sense regulation such as pain, smell and thirst perception. On one hand, disruption of blood barrier and homeostasis of the body are the main targets of vascular irregularity. Inflammation and immune disorders including autoimmunity are considered as a consequence of the abnormal vascular regulation processes. On the other hand, decreased thirst feeling typical for FS-affected individuals may lead to extensive body dehydration resulting in dry eye appearance and breast cancer (BC) risk, amongst others. To this end, recent research demonstrated FS as linked to BC development and progression into the metastatic disease. On the other side, Sjögren syndrome (SS) is an autoimmune disease characterised by a progressive sicca syndrome associated with the dry eye symptoms, specific immunologic complex and/or significant infiltrate at minor salivary gland biopsy. SS is relatively frequent, with a clinical diagnosis predominantly amongst women. Its physiopathology is a complex battery of both environmental and genetic factors. If left untreated, SS may be associated with and/or resulted in severe arthritis and the development of B cell lymphoma. In this mini-review, we summarise the facts and hypotheses connecting FS and SS symptoms together and mechanisms potentially overlapping in both syndromes. Unraveling the common denominators between these two syndromes not only providing more evidence for interaction between altered sense regulation, vascular dysregulation, immune system dysfunction but also focusing on the individual outcomes in terms of severity grade and potential complications exploring novel diagnostic, prognostic and treatment modalities. Multi-professional considerations presented here are an example how to effectively enter the new era of preventive, predictive and personalised medicine benefiting the patients and healthcare system as the whole.

  18. Central role of endogenous Toll-like receptor-2 activation in regulating inflammation, reactive oxygen species production, and subsequent neointimal formation after vascular injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shishido, Tetsuro; Nozaki, Naoki; Takahashi, Hiroki

    2006-07-14

    Background: It is now evident that inflammation after vascular injury has significant impact on the restenosis after revascularization procedures such as angioplasty, stenting, and bypass grafting. However, the mechanisms that regulate inflammation and repair after vascular injury are incompletely understood. Here, we report that vascular injury-mediated cytokine expression, reactive oxygen species (ROS) production, as well as subsequent neointimal formation requires Toll-like receptor-2 (TLR-2) mediated signaling pathway in vivo. Methods and results: Vascular injury was induced by cuff-placement around the femoral artery in non-transgenic littermates (NLC) and TLR-2 knockout (TLR-2KO) mice. After cuff-placement in NLC mice, expression of TLR-2 was significantlymore » increased in both smooth muscle medial layer and adventitia. Interestingly, we found that inflammatory genes expression such as tumor necrosis factor-{alpha}, interleukin-1{beta} (IL-1{beta}), IL-6, and monocyte chemoattractant protein-1 were markedly decreased in TLR-2KO mice compared with NLC mice. In addition, ROS production after vascular injury was attenuated in TLR-2KO mice compared with NLC mice. Since we observed the significant role of endogenous TLR-2 activation in regulating inflammatory responses and ROS production after vascular injury, we determined whether inhibition of endogenous TLR-2 activation can inhibit neointimal proliferation after vascular injury. Neointimal hyperplasia was markedly suppressed in TLR-2KO mice compared with WT mice at both 2 and 4 weeks after vascular injury. Conclusions: These findings suggested that endogenous TLR-2 activation might play a central role in the regulation of vascular inflammation as well as subsequent neointimal formation in injured vessels.« less

  19. Regulation and functional diversification of root hairs.

    PubMed

    Cui, Songkui; Suzaki, Takuya; Tominaga-Wada, Rumi; Yoshida, Satoko

    2017-10-13

    Root hairs result from the polar outgrowth of root epidermis cells in vascular plants. Root hair development processes are regulated by intrinsic genetic programs, which are flexibly modulated by environmental conditions, such as nutrient availability. Basic programs for root hair development were present in early land plants. Subsequently, some plants developed the ability to utilize root hairs for specific functions, in particular, for interactions with other organisms, such as legume-rhizobia and host plants-parasites interactions. In this review, we summarize the molecular regulation of root hair development and the modulation of root hairs under limited nutrient supply and during interactions with other organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Sites and Regulation of Polyamine Catabolism in the Tobacco Plant. Correlations with Cell Division/Expansion, Cell Cycle Progression, and Vascular Development1

    PubMed Central

    Paschalidis, Konstantinos A.; Roubelakis-Angelakis, Kalliopi A.

    2005-01-01

    We previously gave a picture of the homeostatic characteristics of polyamine (PA) biosynthesis and conjugation in tobacco (Nicotiana tabacum) plant organs during development. In this work, we present the sites and regulation of PA catabolism related to cell division/expansion, cell cycle progression, and vascular development in the tobacco plant. Diamine oxidase (DAO), PA oxidase (PAO), peroxidases (POXs), and putrescine N-methyltransferase expressions follow temporally and spatially discrete patterns in shoot apical cells, leaves (apical, peripheral, and central regions), acropetal and basipetal petiole regions, internodes, and young and old roots in developing plants. DAO and PAO produce hydrogen peroxide, a plant signal molecule and substrate for POXs. Gene expression and immunohistochemistry analyses reveal that amine oxidases in developing tobacco tissues precede and overlap with nascent nuclear DNA and also with POXs and lignification. In mature and old tissues, flow cytometry indicates that amine oxidase and POX activities, as well as pao gene and PAO protein levels, coincide with G2 nuclear phase and endoreduplication. In young versus the older roots, amine oxidases and POX expression decrease with parallel inhibition of G2 advance and endoreduplication, whereas putrescine N-methyltransferase dramatically increases. In both hypergeous and hypogeous tissues, DAO and PAO expression occurs in cells destined to undergo lignification, suggesting a different in situ localization. DNA synthesis early in development and the advance in cell cycle/endocycle are temporally and spatially related to PA catabolism and vascular development. PMID:16040649

  1. Advances in understanding and management of retinopathy of prematurity.

    PubMed

    Hartnett, Mary Elizabeth

    The understanding, diagnosis, and treatment of retinopathy of prematurity have changed in the 70 years since the original description of retrolental fibroplasia associated with high oxygenation. It is now recognized that retinopathy of prematurity differs in appearance worldwide and as ever smaller and younger premature infants survive. New methods are being evaluated to image the retina, diagnose severe retinopathy of prematurity, and determine windows of time for treatment to save eyes and improve visual and neural outcomes. New treatments to promote physiologic retinal vascular development, vascular repair, and inhibit vasoproliferation by regulating proteins involved in vascular endothelial growth factor, insulin-like growth factor, or erythropoietin signaling. Reducing excessive oxidative/nitrosative stress and understanding progenitor cells and neurovascular and glial vascular interactions are being studied. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The perspective of the vascular surgery trainee on new ACGME regulations, fatigue, resident training, and patient safety.

    PubMed

    De Martino, Randall R; Brewster, L P; Kokkosis, A A; Glass, C; Boros, M; Kreishman, P; Kauvar, D A; Farber, A

    2011-11-01

    To assess the opinions of vascular surgery trainees on the new Accreditation Council for Graduate Medical Education (ACGME) guidelines. A questionnaire was developed and electronically distributed to trainee members of the Society for Vascular Surgery. Of 238 eligible vascular trainees, 38 (16%) participated. Respondents were predominantly 30 to 35 years of age (47%), male (69%), in 2-year fellowship (73%), and at large academic centers (61%). Trainees report occasionally working while fatigued (63%). Fellows were more likely to report for duty while fatigued (P = .012) than integrated vascular residents. Respondents thought further work-hour restrictions would not improve patient care or training (P < .05) and may not lead to more sleep or improved quality of life. Respondents reported that duty hours should vary by specialty (81%) and allow flexibility in the last years of training (P < .05). Vascular surgery trainees are concerned about further duty-hour restrictions on patient care, education, and training and fatigue mitigation has to be balanced against the need to adequately train vascular surgeons.

  3. Redox signaling, Nox5 and vascular remodeling in hypertension.

    PubMed

    Montezano, Augusto C; Tsiropoulou, Sofia; Dulak-Lis, Maria; Harvey, Adam; Camargo, Livia De Lucca; Touyz, Rhian M

    2015-09-01

    Extensive data indicate a role for reactive oxygen species (ROS) and redox signaling in vascular damage in hypertension. However, molecular mechanisms underlying these processes remain unclear, but oxidative post-translational modification of vascular proteins is critical. This review discusses how proteins are oxidatively modified and how redox signaling influences vascular smooth muscle cell growth and vascular remodeling in hypertension. We also highlight Nox5 as a novel vascular ROS-generating oxidase. Oxidative stress in hypertension leads to oxidative imbalance that affects vascular cell function through redox signaling. Many Nox isoforms produce ROS in the vascular wall, and recent findings show that Nox5 may be important in humans. ROS regulate signaling by numerous processes including cysteine oxidative post-translational modification such as S-nitrosylation, S-glutathionylation and sulfydration. In vascular smooth muscle cells, this influences cellular responses to oxidative stimuli promoting changes from a contractile to a proliferative phenotype. In hypertension, Nox-induced ROS production is increased, leading to perturbed redox signaling through oxidative modifications of vascular proteins. This influences mitogenic signaling and cell cycle regulation, leading to altered cell growth and vascular remodeling in hypertension.

  4. The Renin-Angiotensin-Aldosterone System in Vascular Inflammation and Remodeling

    PubMed Central

    Pacurari, Maricica; Kafoury, Ramzi; Tchounwou, Paul B.; Ndebele, Kenneth

    2014-01-01

    The RAAS through its physiological effectors plays a key role in promoting and maintaining inflammation. Inflammation is an important mechanism in the development and progression of CVD such as hypertension and atherosclerosis. In addition to its main role in regulating blood pressure and its role in hypertension, RAAS has proinflammatory and profibrotic effects at cellular and molecular levels. Blocking RAAS provides beneficial effects for the treatment of cardiovascular and renal diseases. Evidence shows that inhibition of RAAS positively influences vascular remodeling thus improving CVD outcomes. The beneficial vascular effects of RAAS inhibition are likely due to decreasing vascular inflammation, oxidative stress, endothelial dysfunction, and positive effects on regeneration of endothelial progenitor cells. Inflammatory factors such as ICAM-1, VCAM-1, TNFα, IL-6, and CRP have key roles in mediating vascular inflammation and blocking RAAS negatively modulates the levels of these inflammatory molecules. Some of these inflammatory markers are clinically associated with CVD events. More studies are required to establish long-term effects of RAAS inhibition on vascular inflammation, vascular cells regeneration, and CVD clinical outcomes. This review presents important information on RAAS's role on vascular inflammation, vascular cells responses to RAAS, and inhibition of RAAS signaling in the context of vascular inflammation, vascular remodeling, and vascular inflammation-associated CVD. Nevertheless, the review also equates the need to rethink and rediscover new RAAS inhibitors. PMID:24804145

  5. Von Willebrand factor regulation of blood vessel formation.

    PubMed

    Randi, Anna M; Smith, Koval E; Castaman, Giancarlo

    2018-06-04

    Several important physiological processes, from permeability to inflammation to haemostasis, take place at the vessel wall and are regulated by endothelial cells (EC). Thus, proteins that have been identified as regulators of one process are increasingly found to be involved in other vascular functions. Such is the case for Von Willebrand Factor (VWF), a large glycoprotein best known for its critical role in haemostasis. In vitro and in vivo studies have shown that lack of VWF causes enhanced vascularisation, both constitutively and following ischemia. This evidence is supported by studies on blood outgrowth endothelial cells (BOEC) from patients with lack of VWF synthesis (type 3 von Willebrand disease [VWD]). The molecular pathways are likely to involve VWF binding partners, such as integrin αvβ3, and components of Weibel Palade bodies (WPB), such as Angiopoietin-2 and Galectin-3, whose storage is regulated by VWF; these converge on the master regulator of angiogenesis and endothelial homeostasis, vascular endothelial growth factor (VEGF) signalling. Recent studies suggest that the roles of VWF may be tissue-specific. The ability of VWF to regulate angiogenesis has clinical implications for a subset of VWD patients with severe, intractable gastrointestinal bleeding due to vascular malformations. In this article, we review the evidence showing that VWF is involved in blood vessel formation, discuss the role of VWF high molecular weight multimers in regulating angiogenesis, and the value of studies on BOEC in developing a precision medicine approach to validate novel treatments for angiodysplasia in congenital VWD and acquired von Willebrand syndrome. Copyright © 2018 American Society of Hematology.

  6. Vascular and renal function in experimental thyroid disorders.

    PubMed

    Vargas, Félix; Moreno, Juan Manuel; Rodríguez-Gómez, Isabel; Wangensteen, Rosemary; Osuna, Antonio; Alvarez-Guerra, Miriam; García-Estañ, Joaquín

    2006-02-01

    This review focuses on the effects of thyroid hormones in vascular and renal systems. Special emphasis is given to the mechanisms by which thyroid hormones affect the regulation of body fluids, vascular resistance and, ultimately, blood pressure. Vascular function is markedly affected by thyroid hormones that produce changes in vascular reactivity and endothelial function in hyper- and hypothyroidism. The hypothyroid state is accompanied by a marked decrease in sensitivity to vasoconstrictors, especially to sympathetic agonists, alteration that may play a role in the reduced blood pressure of hypothyroid rats, as well as in the preventive effects of hypothyroidism on experimental hypertension. Moreover, in hypothyroid rats, the endothelium-dependent and nitric oxide donors vasodilation is reduced. Conversely, the vessels from hyperthyroid rats showed an increased endothelium-dependent responsiveness that may be secondary to the shear-stress induced by the hyperdynamic circulation, and that may contribute to the reduced vascular resistance characteristic of this disease. Thyroid hormones also have important effects in the kidney, affecting renal growth, renal haemodynamics, and salt and water metabolism. In hyperthyroidism, there is a resetting of the pressure-natriuresis relationship related to hyperactivity of the renin-angiotensin system, which contributes to the arterial hypertension associated with this endocrine disease. Moreover, thyroid hormones affect the development and/or maintenance of various forms of arterial hypertension. This review also describes recent advances in our understanding of thyroid hormone action on nitric oxide and oxidative stress in the regulation of cardiovascular and renal function and in the long-term control of blood pressure.

  7. Gastrin-releasing peptide induces monocyte adhesion to vascular endothelium by upregulating endothelial adhesion molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Mi-Kyoung; Park, Hyun-Joo; Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 626-870

    Gastrin-releasing peptide (GRP) is a neuropeptide that plays roles in various pathophysiological conditions including inflammatory diseases in peripheral tissues; however, little is known about whether GRP can directly regulate endothelial inflammatory processes. In this study, we showed that GRP promotes the adhesion of leukocytes to human umbilical vein endothelial cells (HUVECs) and the aortic endothelium. GRP increased the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) by activating nuclear factor-κB (NF-κB) in endothelial cells. In addition, GRP activated extracellular signal-regulated kinase 1/2 (ERK1/2), p38MAPK, and AKT, and the inhibition of these signaling pathways significantly reduced GRP-inducedmore » monocyte adhesion to the endothelium. Overall, our results suggested that GRP may cause endothelial dysfunction, which could be of particular relevance in the development of vascular inflammatory disorders. - Highlights: • GRP induces adhesion of monocytes to vascular endothelium. • GRP increases the expression of endothelial adhesion molecules through the activation of NF-κB. • ERK1/2, p38MAPK, and Akt pathways are involved in the GRP-induced leukocyte adhesiveness to endothelium.« less

  8. Tristetraprolin Inhibits Ras-dependent Tumor Vascularization by Inducing Vascular Endothelial Growth Factor mRNA Degradation

    PubMed Central

    Essafi-Benkhadir, Khadija; Onesto, Cercina; Stebe, Emmanuelle; Moroni, Christoph

    2007-01-01

    Vascular endothelial growth factor (VEGF) is one of the most important regulators of physiological and pathological angiogenesis. Constitutive activation of the extracellular signal-regulated kinase (ERK) pathway and overexpression of VEGF are common denominators of tumors from different origins. We have established a new link between these two fundamental observations converging on VEGF mRNA stability. In this complex phenomenon, tristetraprolin (TTP), an adenylate and uridylate-rich element-associated protein that binds to VEGF mRNA 3′-untranslated region, plays a key role by inducing VEGF mRNA degradation, thus maintaining basal VEGF mRNA amounts in normal cells. ERKs activation results in the accumulation of TTP mRNA. However, ERKs reduce the VEGF mRNA-destabilizing effect of TTP, leading to an increase in VEGF expression that favors the angiogenic switch. Moreover, TTP decreases RasVal12-dependent VEGF expression and development of vascularized tumors in nude mice. As a consequence, TTP might represent a novel antiangiogenic and antitumor agent acting through its destabilizing activity on VEGF mRNA. Determination of TTP and ERKs status would provide useful information for the evaluation of the angiogenic potential in human tumors. PMID:17855506

  9. Adolescents with vascular frontal lesion: A neuropsychological follow up case study.

    PubMed

    Chávez, Clara L; Yáñez, Guillermina; Catroppa, Cathy; Rojas, Sulema; Escartin, Erick; Hearps, Stephen J C; García, Antonio

    2016-01-01

    The objective of this research was to identify clinically significant changes in cognitive functions in three adolescents who underwent surgery for resection of a focal vascular lesion in the frontal lobe. Cognitive functions, executive function, behavior regulation, emotion regulation, and social abilities were assessed prior to surgery, six and 24 months post-discharge. Significant clinical changes were observed during all the assessments. Cognitive changes after surgery are not homogeneous. Most of the significant clinical changes were improvements. Especially the significant clinical changes presented in EF domains were only improvements; these results suggest that EF were affected by the vascular lesion and benefitted by the surgery. After resection of a vascular lesion between 15 and 16 years of age the affected executive functions can continue the maturation process. Our results highlight the importance that assessments must include emotional aspects, even if deficits in these domains are not presented in the acute phase. Rehabilitation methods should promote the development of skills that help patients and their families to manage the emotional and behavioral changes that emerge once they are discharged from the hospital. Copyright © 2015 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  10. Endothelial C-type natriuretic peptide maintains vascular homeostasis

    PubMed Central

    Moyes, Amie J.; Khambata, Rayomand S.; Villar, Inmaculada; Bubb, Kristen J.; Baliga, Reshma S.; Lumsden, Natalie G.; Xiao, Fang; Gane, Paul J.; Rebstock, Anne-Sophie; Worthington, Roberta J.; Simone, Michela I.; Mota, Filipa; Rivilla, Fernando; Vallejo, Susana; Peiró, Concepción; Sánchez Ferrer, Carlos F.; Djordjevic, Snezana; Caulfield, Mark J.; MacAllister, Raymond J.; Selwood, David L.; Ahluwalia, Amrita; Hobbs, Adrian J.

    2014-01-01

    The endothelium plays a fundamental role in maintaining vascular homeostasis by releasing factors that regulate local blood flow, systemic blood pressure, and the reactivity of leukocytes and platelets. Accordingly, endothelial dysfunction underpins many cardiovascular diseases, including hypertension, myocardial infarction, and stroke. Herein, we evaluated mice with endothelial-specific deletion of Nppc, which encodes C-type natriuretic peptide (CNP), and determined that this mediator is essential for multiple aspects of vascular regulation. Specifically, disruption of CNP leads to endothelial dysfunction, hypertension, atherogenesis, and aneurysm. Moreover, we identified natriuretic peptide receptor–C (NPR-C) as the cognate receptor that primarily underlies CNP-dependent vasoprotective functions and developed small-molecule NPR-C agonists to target this pathway. Administration of NPR-C agonists promotes a vasorelaxation of isolated resistance arteries and a reduction in blood pressure in wild-type animals that is diminished in mice lacking NPR-C. This work provides a mechanistic explanation for genome-wide association studies that have linked the NPR-C (Npr3) locus with hypertension by demonstrating the importance of CNP/NPR-C signaling in preserving vascular homoeostasis. Furthermore, these results suggest that the CNP/NPR-C pathway has potential as a disease-modifying therapeutic target for cardiovascular disorders. PMID:25105365

  11. PubMed

    Gueguen, Marie; Vallin, Benjamin; Glorian, Martine; Blaise, Régis; Limon, Isabelle

    2016-01-01

    In response to various types of vascular stress, the smooth muscle cells of the vessel wall (VSMCs) change phenotype and acquire the capacity to react to abnormal signals. This phenomenon favors the involvement of these cells in the development of major vascular diseases, such as atherosclerosis, and some complications of angioplasty, such as restenosis. The cyclic adenosine monophosphate (cAMP) pathway plays a key role in the integration of stimuli from the immediate environment and in the development of cellular responses. The temporal and spatial subcellular compartmentalization of cAMP ensures that the signals transmitted are specific. This compartmentalization is dependent on the diversity of (1) proteins directly or indirectly regulating the synthesis, degradation or release of cAMP; (2) intracellular effectors of cAMP; (3) isoforms of all these proteins with unique biochemical properties and unique patterns of regulation and (4) the scaffolding proteins on which the macromolecular complexes are built. This review illustrates the ways in which changes in the profile of adenylyl cyclases (ACs) may play critical roles in signal integration, the response of muscle cells and pathological vascular remodeling. It also illustrates the relevance of the renewed consideration of ACs as potentially interesting treatment targets. © Société de Biologie, 2016.

  12. OASIS modulates hypoxia pathway activity to regulate bone angiogenesis

    PubMed Central

    Cui, Min; Kanemoto, Soshi; Cui, Xiang; Kaneko, Masayuki; Asada, Rie; Matsuhisa, Koji; Tanimoto, Keiji; Yoshimoto, Yuki; Shukunami, Chisa; Imaizumi, Kazunori

    2015-01-01

    OASIS/CREB3L1, an endoplasmic reticulum (ER)-resident transcription factor, plays important roles in osteoblast differentiation. In this study, we identified new crosstalk between OASIS and the hypoxia signaling pathway, which regulates vascularization during bone development. RT-PCR and real-time PCR analyses revealed significant decreases in the expression levels of hypoxia-inducible factor-1α (HIF-1α) target genes such as vascular endothelial growth factor A (VEGFA) in OASIS-deficient (Oasis−/−) mouse embryonic fibroblasts. In coimmunoprecipitation experiments, the N-terminal fragment of OASIS (OASIS-N; activated form of OASIS) bound to HIF-1α through the bZIP domain. Luciferase assays showed that OASIS-N promoted the transcription activities of a reporter gene via a hypoxia-response element (HRE). Furthermore, the expression levels of an angiogenic factor Vegfa was decreased in Oasis−/− osteoblasts. Immunostaining and metatarsal angiogenesis assay showed retarded vascularization in bone tissue of Oasis−/− mice. These results suggest that OASIS affects the expression of HIF-1α target genes through the protein interaction with HIF-1α, and that OASIS-HIF-1α complexes may play essential roles in angiogenesis during bone development. PMID:26558437

  13. Application of Acute Maximal Exercise to Enhance Mechanisms Underlying Blood Pressure Regulation and Orthostatic Tolerance After Exposure to Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Engelke, K. A.; Doerr, D. F.

    1999-01-01

    Development of orthostatic hypotension and intolerance in astronauts who return to earth following a spaceflight mission represents a significant operational concern to NASA. Reduced plasma volume, vascular resistance, and baroreflex responsiveness following exposure to actual and ground-based analogs of microgravity have been associated with orthostatic instability, suggesting that these mechanisms may contribute alone or in combination to compromise of blood pressure regulation after spaceflight. It therefore seems reasonable that development of procedures designed to reverse or restore the effects of microgravity on regulatory mechanisms of blood volume, vascular resistance and cardiac function should provide some protection against postflight orthostatic intolerance. Several investigations have provided evidence that a single bout of exhaustive dynamic exercise enhances functions of mechanisms responsible for blood pressure stability. Therefore, the purpose of our research project was to conduct a series of experiments using ground-based analogs of reduced gravity (i.e., prolonged restriction to the upright standing posture) in human subjects to investigate the hypothesis that a single bout of dynamic maximal exercise would restore blood volume, vascular resistance and cardiac function and improve blood pressure stability.

  14. The Role of Transient Receptor Potential Channel 6 Channels in the Pulmonary Vasculature

    PubMed Central

    Malczyk, Monika; Erb, Alexandra; Veith, Christine; Ghofrani, Hossein Ardeschir; Schermuly, Ralph T.; Gudermann, Thomas; Dietrich, Alexander; Weissmann, Norbert; Sydykov, Akylbek

    2017-01-01

    Canonical or classical transient receptor potential channel 6 (TRPC6) is a Ca2+-permeable non-selective cation channel that is widely expressed in the heart, lung, and vascular tissues. The use of TRPC6-deficient (“knockout”) mice has provided important insights into the role of TRPC6 in normal physiology and disease states of the pulmonary vasculature. Evidence indicates that TRPC6 is a key regulator of acute hypoxic pulmonary vasoconstriction. Moreover, several studies implicated TRPC6 in the pathogenesis of pulmonary hypertension. Furthermore, a unique genetic variation in the TRPC6 gene promoter has been identified, which might link the inflammatory response to the upregulation of TRPC6 expression and ultimate development of pulmonary vascular abnormalities in idiopathic pulmonary arterial hypertension. Additionally, TRPC6 is critically involved in the regulation of pulmonary vascular permeability and lung edema formation during endotoxin or ischemia/reperfusion-induced acute lung injury. In this review, we will summarize latest findings on the role of TRPC6 in the pulmonary vasculature. PMID:28670316

  15. Potassium Channels and Uterine Vascular Adaptation to Pregnancy and Chronic Hypoxia

    PubMed Central

    Zhu, Ronghui; Xiao, DaLiao; Zhang, Lubo

    2014-01-01

    During a normal course of pregnancy, uterine vascular tone is significantly decreased resulting in a striking increase in uterine blood flow, which is essential for fetal development and fetal growth. Chronic hypoxia during gestation may adversely affect the normal adaptation of uterine vascular tone and increase the risk of preeclampsia and fetal intrauterine growth restriction. In this review, we present evidence that the regulation of K+ channels is an important mechanism in the adaptation of uterine vascular tone to pregnancy and hypoxia. There are four types of K+ channels identified in arterial smooth muscle cells: 1) voltage-dependent K+ (Kv) channels, 2) Ca2+-activated K+ (KCa) channels, 3) inward rectifier K+ (KIR) channels, and 4) ATP-sensitive K+ (KATP) channels. Pregnancy differentially augments the expression and activity of K+ channels via downregulation of protein kinase C signaling in uterine and other vascular beds, leading to decreased uterine vascular tone and increased uterine blood flow. Sex steroid hormones play an important role in the pregnancy-mediated alteration of K+ channels in the uterine vasculature. In addition, chronic hypoxia alters uterine vascular K+ channels expression and activities via modulation of steroid hormones/receptors-mediated signaling, resulting in increased uterine vascular tone during pregnancy. PMID:24063385

  16. A Mutant Receptor Tyrosine Phosphatase, CD148, Causes Defects in Vascular Development

    PubMed Central

    Takahashi, Takamune; Takahashi, Keiko; St. John, Patricia L.; Fleming, Paul A.; Tomemori, Takuya; Watanabe, Toshio; Abrahamson, Dale R.; Drake, Christopher J.; Shirasawa, Takuji; Daniel, Thomas O.

    2003-01-01

    Vascularization defects in genetic recombinant mice have defined critical roles for a number of specific receptor tyrosine kinases. Here we evaluated whether an endothelium-expressed receptor tyrosine phosphatase, CD148 (DEP-1/PTPη), participates in developmental vascularization. A mutant allele, CD148ΔCyGFP, was constructed to eliminate CD148 phosphatase activity by in-frame replacement of cytoplasmic sequences with enhanced green fluorescent protein sequences. Homozygous mutant mice died at midgestation, before embryonic day 11.5 (E11.5), with vascularization failure marked by growth retardation and disorganized vascular structures. Structural abnormalities were observed as early as E8.25 in the yolk sac, prior to the appearance of intraembryonic defects. Homozygous mutant mice displayed enlarged vessels comprised of endothelial cells expressing markers of early differentiation, including VEGFR2 (Flk1), Tal1/SCL, CD31, ephrin-B2, and Tie2, with notable lack of endoglin expression. Increased endothelial cell numbers and mitotic activity indices were demonstrated. At E9.5, homozygous mutant embryos showed homogeneously enlarged primitive vessels defective in vascular remodeling and branching, with impaired pericyte investment adjacent to endothelial structures, in similarity to endoglin-deficient embryos. Developing cardiac tissues showed expanded endocardial projections accompanied by defective endocardial cushion formation. These findings implicate a member of the receptor tyrosine phosphatase family, CD148, in developmental vascular organization and provide evidence that it regulates endothelial proliferation and endothelium-pericyte interactions. PMID:12588999

  17. Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice.

    PubMed

    Overman, Jeroen; Fontaine, Frank; Moustaqil, Mehdi; Mittal, Deepak; Sierecki, Emma; Sacilotto, Natalia; Zuegg, Johannes; Robertson, Avril Ab; Holmes, Kelly; Salim, Angela A; Mamidyala, Sreeman; Butler, Mark S; Robinson, Ashley S; Lesieur, Emmanuelle; Johnston, Wayne; Alexandrov, Kirill; Black, Brian L; Hogan, Benjamin M; De Val, Sarah; Capon, Robert J; Carroll, Jason S; Bailey, Timothy L; Koopman, Peter; Jauch, Ralf; Smyth, Mark J; Cooper, Matthew A; Gambin, Yann; Francois, Mathias

    2017-01-31

    Pharmacological targeting of transcription factors holds great promise for the development of new therapeutics, but strategies based on blockade of DNA binding, nuclear shuttling, or individual protein partner recruitment have yielded limited success to date. Transcription factors typically engage in complex interaction networks, likely masking the effects of specifically inhibiting single protein-protein interactions. Here, we used a combination of genomic, proteomic and biophysical methods to discover a suite of protein-protein interactions involving the SOX18 transcription factor, a known regulator of vascular development and disease. We describe a small-molecule that is able to disrupt a discrete subset of SOX18-dependent interactions. This compound selectively suppressed SOX18 transcriptional outputs in vitro and interfered with vascular development in zebrafish larvae. In a mouse pre-clinical model of breast cancer, treatment with this inhibitor significantly improved survival by reducing tumour vascular density and metastatic spread. Our studies validate an interactome-based molecular strategy to interfere with transcription factor activity, for the development of novel disease therapeutics.

  18. Regulation of Endothelial Barrier Function by Cyclic Nucleotides: The Role of Phosphodiesterases

    PubMed Central

    Surapisitchat, James

    2014-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction. PMID:21695641

  19. Regulation of endothelial barrier function by cyclic nucleotides: the role of phosphodiesterases.

    PubMed

    Surapisitchat, James; Beavo, Joseph A

    2011-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction.

  20. WNTLESS IS REQUIRED FOR PERIPHERAL LUNG DIFFERENTIATION AND PULMONARY VASCULAR DEVELOPMENT

    PubMed Central

    Cornett, Bridget; Snowball, John; Varisco, Brian M.; Lang, Richard; Whitsett, Jeffrey; Sinner, Debora

    2013-01-01

    Wntless (Wls), a gene highly conserved across the animal kingdom, encodes for a transmembrane protein that mediates Wnt ligand secretion. Wls is expressed in developing lung, wherein Wnt signaling is necessary for pulmonary morphogenesis. We hypothesize that Wls plays a critical role in modulating Wnt signaling during lung development and therefore affects processes critical for pulmonary morphogenesis. We generated conditional Wls mutant mice utilizing Shh-Cre and Dermo1-Cre mice to delete Wls in the embryonic respiratory epithelium and mesenchyme, respectively. Epithelial deletion of Wls disrupted lung branching morphogenesis, peripheral lung development and pulmonary endothelial differentiation. Epithelial Wls mutant mice died at birth due to respiratory failure caused by lung hypoplasia and pulmonary hemorrhage. In the lungs of these mice, VEGF and Tie2-angiopoietin signaling pathways, which mediate vascular development, were downregulated from early stages of development. In contrast, deletion of Wls in mesenchymal cells of the developing lung did not alter branching morphogenesis or early mesenchymal differentiation. In vitro assays support the concept that Wls acts in part via Wnt5a to regulate pulmonary vascular development. We conclude that epithelial Wls modulates Wnt ligand activities critical for pulmonary vascular differentiation and peripheral lung morphogenesis. These studies provide a new framework for understanding the molecular mechanisms underlying normal pulmonary vasculature formation and the dysmorphic pulmonary vasculature development associated with congenital lung disease. PMID:23523683

  1. Wntless is required for peripheral lung differentiation and pulmonary vascular development.

    PubMed

    Cornett, Bridget; Snowball, John; Varisco, Brian M; Lang, Richard; Whitsett, Jeffrey; Sinner, Debora

    2013-07-01

    Wntless (Wls), a gene highly conserved across the animal kingdom, encodes for a transmembrane protein that mediates Wnt ligand secretion. Wls is expressed in developing lung, wherein Wnt signaling is necessary for pulmonary morphogenesis. We hypothesize that Wls plays a critical role in modulating Wnt signaling during lung development and therefore affects processes critical for pulmonary morphogenesis. We generated conditional Wls mutant mice utilizing Shh-Cre and Dermo1-Cre mice to delete Wls in the embryonic respiratory epithelium and mesenchyme, respectively. Epithelial deletion of Wls disrupted lung branching morphogenesis, peripheral lung development and pulmonary endothelial differentiation. Epithelial Wls mutant mice died at birth due to respiratory failure caused by lung hypoplasia and pulmonary hemorrhage. In the lungs of these mice, VEGF and Tie2-angiopoietin signaling pathways, which mediate vascular development, were downregulated from early stages of development. In contrast, deletion of Wls in mesenchymal cells of the developing lung did not alter branching morphogenesis or early mesenchymal differentiation. In vitro assays support the concept that Wls acts in part via Wnt5a to regulate pulmonary vascular development. We conclude that epithelial Wls modulates Wnt ligand activities critical for pulmonary vascular differentiation and peripheral lung morphogenesis. These studies provide a new framework for understanding the molecular mechanisms underlying normal pulmonary vasculature formation and the dysmorphic pulmonary vasculature development associated with congenital lung disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Calcitriol accelerates vascular calcification irrespective of vitamin K status in a rat model of CKD with hyperphosphatemia and secondary hyperparathyroidism.

    PubMed

    McCabe, Kristin M; Zelt, Jason G; Kaufmann, Martin; Laverty, Kimberly; Ward, Emilie; Barron, Henry; Jones, Glenville; Adams, Michael A; Holden, Rachel M

    2018-06-14

    Patients with chronic kidney disease have a markedly increased risk for developing cardiovascular disease. Non-traditional risk factors, such as increased phosphate retention, and deficiencies in vitamins D and K metabolism, likely play key roles in the development of vascular calcification during CKD progression. Calcitriol (1,25-(OH)2-D3) is a key transcriptional regulator of Matrix Gla protein (MGP), a vitamin K dependent protein that inhibits vascular calcification. The objective of this study was to determine if calcitriol treatment could inhibit the development of vascular calcification and if this inhibition was dependent on vitamin K status in a rat model of CKD. Rats were treated with dietary adenine (0.25%) to induce CKD, with either 0, 20 or 80 ng/kg of calcitriol with low or high dietary vitamin K1 (0.2 or 100 mg/kg) for 7 weeks. Calcitriol at both low (20 ng/kg) and moderate (80 ng/kg) doses increased the severity of vascular calcification and, contrary to our hypothesis, this was unaffected by high dietary vitamin K1. Calcitriol had a dose-dependent effect on: (i) lowering serum PTH, (ii) increasing serum calcium and (iii) increasing serum FGF-23. Calcitriol treatment significantly increased aortic expression of the calcification genes Runx2 and Pit-1. This data also implicates impaired vitamin D catabolism in CKD, which may contribute to the development of calcitriol toxicity and increased vascular calcification. The present findings demonstrate that in an adenine-induced rat model of CKD, calcitriol treatment at doses as low as 20 ng/kg can increase the severity of vascular calcification regardless of vitamin K status. The American Society for Pharmacology and Experimental Therapeutics.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ren; Trindade, Alexandre; Instituto Gulbenkian de Ciencia, Oeiras

    Highlights: Black-Right-Pointing-Pointer Low dose Dll4-Fc increases vascular proliferation and overall perfusion. Black-Right-Pointing-Pointer Low dose Dll4-Fc helps vascular injury recovery in hindlimb ischemia model. Black-Right-Pointing-Pointer Low dose Dll4-Fc helps vascular injury recovery in skin flap model. Black-Right-Pointing-Pointer Dll4 heterozygous deletion promotes vascular injury recovery. Black-Right-Pointing-Pointer Dll4 overexpression delays vascular injury recovery. -- Abstract: Notch pathway regulates vessel development and maturation. Dll4, a high-affinity ligand for Notch, is expressed predominantly in the arterial endothelium and is induced by hypoxia among other factors. Inhibition of Dll4 has paradoxical effects of reducing the maturation and perfusion in newly forming vessels while increasing the densitymore » of vessels. We hypothesized that partial and/or intermittent inhibition of Dll4 may lead to increased vascular response and still allow vascular maturation to occur. Thus tissue perfusion can be restored rapidly, allowing quicker recovery from ischemia or tissue injury. Our studies in two different models (hindlimb ischemia and skin flap) show that inhibition of Dll4 at low dose allows faster recovery from vascular and tissue injury. This opens a new possibility for Dll4 blockade's therapeutic application in promoting recovery from vascular injury and restoring blood supply to ischemic tissues.« less

  4. MicroRNA857 Is Involved in the Regulation of Secondary Growth of Vascular Tissues in Arabidopsis1

    PubMed Central

    Zhao, Yuanyuan; Lin, Sen; Qiu, Zongbo; Cao, Dechang; Wen, Jialong; Deng, Xin; Wang, Xiaohua; Lin, Jinxing; Li, Xiaojuan

    2015-01-01

    MicroRNAs (miRNAs) are endogenous small RNAs that repress target gene expression posttranscriptionally, and are critically involved in various developmental processes and responses to environmental stresses in eukaryotes. MiRNA857 is not widely distributed in plants and is encoded by a single gene, AtMIR857, in Arabidopsis (Arabidopsis thaliana). The functions of miR857 and its mechanisms in regulating plant growth and development are still unclear. Here, by means of genetic analysis coupled with cytological studies, we investigated the expression pattern and regulation mechanism of miR857 and its biological functions in Arabidopsis development. We found that miR857 regulates its target gene, Arabidopsis LACCASE7, at the transcriptional level, thereby reducing laccase activity. Using stimulated Raman scattering and x-ray microtomography three-dimensional analyses, we showed that miR857 was involved in the regulation of lignin content and consequently morphogenesis of the secondary xylem. In addition, miR857 was activated by SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 in response to low copper conditions. Collectively, these findings demonstrate the role of miR857 in the regulation of secondary growth of vascular tissues in Arabidopsis and reveal a unique control mechanism for secondary growth based on the miR857 expression in response to copper deficiency. PMID:26511915

  5. CXCR4(+) dendritic cells promote angiogenesis during embryo implantation in mice.

    PubMed

    Barrientos, Gabriela; Tirado-González, Irene; Freitag, Nancy; Kobelt, Peter; Moschansky, Petra; Klapp, Burghard F; Thijssen, Victor L J L; Blois, Sandra M

    2013-04-01

    Early pregnancy is characterized by decidual adaption to the developing embryo involving angiogenesis and vascular growth. Failure of decidual vascular expansion is linked to diseases of pregnancy. Dendritic cells (DC) have been associated with vascular growth during early gestation, though it is unknown whether their capacity to modulate angiogenesis is ubiquitous to all DC subsets. Here, we show that DC normally found associated with the decidual vasculature co-express the C-X-C chemokine receptor type 4 (CXCR4). In addition, we demonstrate that impaired homing of CXCR4(+)DC during early gestation provoked a disorganized decidual vasculature with impaired spiral artery remodeling later in gestation. In contrast, adoptive transfer experiments provided evidence that CXCR4(+)DC are able to rescue early pregnancy by normalizing decidual vascular growth and delivery of pro-angiogenic factors, which results in adequate remodeling of the spiral arteries during placental development. Taken together, our results indicate an important role of CXCR4(+)DC in the regulation of decidual angiogenesis and highlight the importance of the CXCL12/CXCR4 pathway during this process, suggesting that this may represent a key pathway to evaluate during pregnancy pathologies associated with impaired vascular expansion.

  6. Negative regulators of vessel patterning.

    PubMed

    Suchting, Steven; Freitas, Catarina; le Noble, Ferdinand; Benedito, Rui; Bréant, Christiane; Duarte, Antonio; Eichmann, Anne

    2007-01-01

    Blood vessels and nerves are structurally similar, complex branched networks that require guidance to ensure their proper positioning in the body. Recent studies have demonstrated that specialized endothelial cells, resembling axonal growth cones, are located at the tips of growing capillaries. These endothelial tip cells guide outgrowing capillaries in response to gradients of extracellular matrix-bound vascular endothelial growth factor (VEGF). Here we show that endothelial tip cell formation and vessel branching are negatively regulated by the Notch ligand Delta-like 4 (Dll4). Heterozygous deletion of Dll4 or pharmacological inhibition of Notch signalling using gamma-secretase inhibitor revealed a striking vascular phenotype, with greatly increased numbers of filopodia-extending endothelial tip cells and increased expression of tip cell marker genes compared to controls. Filopodia extension in Dll4+/- retinal vessels required VEGF and was inhibited when VEGF signalling was blocked. While VEGF expression was not significantly altered in Dll4+- retinas, Dll4+/- vessels showed increased expression of VEGF Receptor 2 and decreased expression of VEGF Receptor 1 compared to wildtype, suggesting that they could be more responsive to VEGF stimulation. In addition, expression of Dll4 in wildtype tip cells was itself decreased when VEGF signalling was blocked, indicating that Dll4 may act downstream of VEGF as a 'brake' on VEGF-mediated angiogenic sprouting. Taken together, these data reveal Dll4 as a novel negative regulator of vascular sprouting and vessel branching that is required for normal vascular network formation during development.

  7. Diabetes and Age-Related Differences in Vascular Function of Renal Artery: Possible Involvement of Endoplasmic Reticulum Stress.

    PubMed

    Matsumoto, Takayuki; Watanabe, Shun; Ando, Makoto; Yamada, Kosuke; Iguchi, Maika; Taguchi, Kumiko; Kobayashi, Tsuneo

    2016-02-01

    To study the time-course relationship between vascular functions and endoplasmic reticulum (ER) stress in type 2 diabetes, we investigated vascular function and associated protein expression, including cyclo-oxygenase (COX), ER stress, and apoptotic markers, in renal arteries (RA) from type 2 diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats at the young adult (4 months old) and aged (18 months old) stages. In the RA of aged OLETF (vs. young OLETF), we found: (1) Increased contractions induced by uridine adenosine tetraphosphate (Up4A) and phenylephrine, (2) decreased relaxation and increased contraction induced by acetylcholine (ACh) at lower and higher concentrations, respectively, and (3) increased expression of COX-1 and C/EBP-homologous protein (CHOP, a pro-apoptotic protein). In aged rats, the expression of COX-1, COX-2, PDI (an ER protein disulfide isomerase), Bax (a proapoptotic marker), and CHOP were increased in RA from OLETF rats (vs. age-matched control Long-Evans Tokushima Otsuka [LETO] rats). Up-regulation of PDI and Bax were seen in the RA from young OLETF (vs. young LETO) rats. No age-related alterations were apparent in the above changes in RA from LETO rats, excluding ACh-induced contraction. Short-term treatment with the ER stress inhibitor tauroursodeoxycholic acid (TUDCA, 100 mg/kg per day, intraperitoneally for 1 week) to OLETF rats at the chronic stage of the disease (12 months old) could suppress renal arterial contractions induced by Up4A and ACh. These results suggest that a long-term duration of disease may be important for the development of vascular dysfunction rather than aging per se. The early regulation of ER stress may be important against the development of diabetes-associated vascular dysfunction.

  8. Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.

    2009-01-01

    VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.

  9. Endothelial mechanotransduction proteins and vascular function are altered by dietary sucrose supplementation in healthy young male subjects.

    PubMed

    Gliemann, Lasse; Rytter, Nicolai; Lindskrog, Mads; Slingsby, Martina H Lundberg; Åkerström, Thorbjörn; Sylow, Lykke; Richter, Erik A; Hellsten, Ylva

    2017-08-15

    Mechanotransduction in endothelial cells is a central mechanism in the regulation of vascular tone and vascular remodelling Mechanotransduction and vascular function may be affected by high sugar levels in plasma because of a resulting increase in oxidative stress and increased levels of advanced glycation end-products (AGE). In healthy young subjects, 2 weeks of daily supplementation with 3 × 75 g of sucrose was found to reduce blood flow in response to passive lower leg movement and in response to 12 W of knee extensor exercise. This vascular impairment was paralleled by up-regulation of platelet endothelial cell adhesion molecule (PECAM)-1, endothelial nitric oxide synthase, NADPH oxidase and Rho family GTPase Rac1 protein expression, an increased basal phosphorylation status of vascular endothelial growth factor receptor 2 and a reduced phosphorylation status of PECAM-1. There were no measurable changes in AGE levels. The findings of the present study demonstrate that daily high sucrose intake markedly affects mechanotransduction proteins and has a detrimental effect on vascular function. Endothelial mechanotransduction is important for vascular function but alterations and activation of vascular mechanosensory proteins have not been investigated in humans. In endothelial cell culture, simple sugars effectively impair mechanosensor proteins. To study mechanosensor- and vascular function in humans, 12 young healthy male subjects supplemented their diet with 3 × 75 g sucrose day -1 for 14 days in a randomized cross-over design. Before and after the intervention period, the hyperaemic response to passive lower leg movement and active knee extensor exercise was determined by ultrasound doppler. A muscle biopsy was obtained from the thigh muscle before and after acute passive leg movement to allow assessment of protein amounts and the phosphorylation status of mechanosensory proteins and NADPH oxidase. The sucrose intervention led to a reduced flow response to passive movement (by 17 ± 2%) and to 12 W of active exercise (by 9 ± 1%), indicating impaired vascular function. A reduced flow response to passive and active exercise was paralleled by a significant up-regulation of platelet endothelial cell adhesion molecule (PECAM-1), endothelial nitric oxide synthase, NADPH oxidase and the Rho family GTPase Rac1 protein expression in the muscle tissue, as well as an increased basal phosphorylation status of vascular endothelial growth factor receptor 2 and a reduced phosphorylation status of PECAM-1. The phosphorylation status was not acutely altered with passive leg movement. These findings indicate that a regular intake of high levels of sucrose can impair vascular mechanotransduction and increase the oxidative stress potential, and suggest that dietary excessive sugar intake may contribute to the development of vascular disease. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  10. A prokineticin-driven epigenetic switch regulates human epicardial cell stemness and fate.

    PubMed

    Qureshi, Rehana; Kindo, Michel; Boulberdaa, Mounia; von Hunolstein, Jean-Jacques; Steenman, Marja; Nebigil, Canan G

    2018-06-06

    Epicardial adipose tissues (EAT) and vascular tissues may both belong to the mesoepithelial lineage that develops from epicardium-derived progenitor cells (EPDCs) in developing and injured hearts. Very little is known of the molecular mechanisms of EPDC contribution in EAT development and neovascularization in adult heart, which the topic remains a subject of intense therapeutic interest and scientific debate. Here we studied the epigenetic control of stemness and anti-adipogenic and pro-vasculogenic fate of hEPDCs, through investigating an angiogenic hormone, prokineticin-2 (PK2) signaling via its receptor PKR1. We found that hEPDCs spontaneously undergoes epithelial-to-mesenchymal transformation (EMT), and are not predestined for the vascular lineages. However, PK2 via a histone demethylase KDM6A inhibits EMT, and induces asymmetric division, leading to self-renewal and formation of vascular and epithelial/endothelial precursors with angiogenic potential capable of differentiating into vascular smooth muscle and endothelial cells. PK2 upregulates and activates KDM6A to inhibit repressive histone H3K27me3 marks on promoters of vascular genes (Flk-1 and SM22α) involved in vascular lineage commitment and maturation. In PK2-mediated anti-adipogenic signaling, KDM6A stabilizes and increases cytoplasmic β-catenin levels to repress PPARγ expression and activity. Our findings offer additional molecular targets to manipulate hEPDCs-involved tissue repair/regeneration in cardiometabolic and ischemic heart diseases. This article is protected by copyright. All rights reserved. © 2018 AlphaMed Press.

  11. FOXF1 transcription factor is required for formation of embryonic vasculature by regulating VEGF signaling in endothelial cells.

    PubMed

    Ren, Xiaomeng; Ustiyan, Vladimir; Pradhan, Arun; Cai, Yuqi; Havrilak, Jamie A; Bolte, Craig S; Shannon, John M; Kalin, Tanya V; Kalinichenko, Vladimir V

    2014-09-26

    Inactivating mutations in the Forkhead Box transcription factor F1 (FOXF1) gene locus are frequently found in patients with alveolar capillary dysplasia with misalignment of pulmonary veins, a lethal congenital disorder, which is characterized by severe abnormalities in the respiratory, cardiovascular, and gastrointestinal systems. In mice, haploinsufficiency of the Foxf1 gene causes alveolar capillary dysplasia and developmental defects in lung, intestinal, and gall bladder morphogenesis. Although FOXF1 is expressed in multiple mesenchyme-derived cell types, cellular origins and molecular mechanisms of developmental abnormalities in FOXF1-deficient mice and patients with alveolar capillary dysplasia with misalignment of pulmonary veins remain uncharacterized because of lack of mouse models with cell-restricted inactivation of the Foxf1 gene. In the present study, the role of FOXF1 in endothelial cells was examined using a conditional knockout approach. A novel mouse line harboring Foxf1-floxed alleles was generated by homologous recombination. Tie2-Cre and Pdgfb-CreER transgenes were used to delete Foxf1 from endothelial cells. FOXF1-deficient embryos exhibited embryonic lethality, growth retardation, polyhydramnios, cardiac ventricular hypoplasia, and vascular abnormalities in the lung, placenta, yolk sac, and retina. Deletion of FOXF1 from endothelial cells reduced endothelial proliferation, increased apoptosis, inhibited vascular endothelial growth factor signaling, and decreased expression of endothelial genes critical for vascular development, including vascular endothelial growth factor receptors Flt1 and Flk1, Pdgfb, Pecam1, CD34, integrin β3, ephrin B2, Tie2, and the noncoding RNA Fendrr. Chromatin immunoprecipitation assay demonstrated that Flt1, Flk1, Pdgfb, Pecam1, and Tie2 genes are direct transcriptional targets of FOXF1. FOXF1 is required for the formation of embryonic vasculature by regulating endothelial genes critical for vascular development and vascular endothelial growth factor signaling. © 2014 American Heart Association, Inc.

  12. The skeletal vascular system - Breathing life into bone tissue.

    PubMed

    Stegen, Steve; Carmeliet, Geert

    2017-08-26

    During bone development, homeostasis and repair, a dense vascular system provides oxygen and nutrients to highly anabolic skeletal cells. Characteristic for the vascular system in bone is the serial organization of two capillary systems, each typified by specific morphological and physiological features. Especially the arterial capillaries mediate the growth of the bone vascular system, serve as a niche for skeletal and hematopoietic progenitors and couple angiogenesis to osteogenesis. Endothelial cells and osteoprogenitor cells interact not only physically, but also communicate to each other by secretion of growth factors. A vital angiogenic growth factor is vascular endothelial growth factor and its expression in skeletal cells is controlled by osteogenic transcription factors and hypoxia signaling, whereas the secretion of angiocrine factors by endothelial cells is regulated by Notch signaling, blood flow and possibly hypoxia. Bone loss and impaired fracture repair are often associated with reduced and disorganized blood vessel network and therapeutic targeting of the angiogenic response may contribute to enhanced bone regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

    PubMed

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-06-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. © 2016 American Society of Plant Biologists. All rights reserved.

  14. Intraluminal valves: development, function and disease

    PubMed Central

    Geng, Xin; Cha, Boksik; Mahamud, Md. Riaj

    2017-01-01

    ABSTRACT The circulatory system consists of the heart, blood vessels and lymphatic vessels, which function in parallel to provide nutrients and remove waste from the body. Vascular function depends on valves, which regulate unidirectional fluid flow against gravitational and pressure gradients. Severe valve disorders can cause mortality and some are associated with severe morbidity. Although cardiac valve defects can be treated by valve replacement surgery, no treatment is currently available for valve disorders of the veins and lymphatics. Thus, a better understanding of valves, their development and the progression of valve disease is warranted. In the past decade, molecules that are important for vascular function in humans have been identified, with mouse studies also providing new insights into valve formation and function. Intriguing similarities have recently emerged between the different types of valves concerning their molecular identity, architecture and development. Shear stress generated by fluid flow has also been shown to regulate endothelial cell identity in valves. Here, we review our current understanding of valve development with an emphasis on its mechanobiology and significance to human health, and highlight unanswered questions and translational opportunities. PMID:29125824

  15. IGF-1 deficiency in a critical period early in life influences the vascular aging phenotype in mice by altering miRNA-mediated post-transcriptional gene regulation: implications for the developmental origins of health and disease hypothesis.

    PubMed

    Tarantini, Stefano; Giles, Cory B; Wren, Jonathan D; Ashpole, Nicole M; Valcarcel-Ares, M Noa; Wei, Jeanne Y; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna

    2016-08-01

    Epidemiological findings support the concept of Developmental Origins of Health and Disease, suggesting that early-life hormonal influences during a sensitive period of development have a fundamental impact on vascular health later in life. The endocrine changes that occur during development are highly conserved across mammalian species and include dramatic increases in circulating IGF-1 levels during adolescence. The present study was designed to characterize the effect of developmental IGF-1 deficiency on the vascular aging phenotype. To achieve that goal, early-onset endocrine IGF-1 deficiency was induced in mice by knockdown of IGF-1 in the liver using Cre-lox technology (Igf1 f/f mice crossed with mice expressing albumin-driven Cre recombinase). This model exhibits low-circulating IGF-1 levels during the peripubertal phase of development, which is critical for the biology of aging. Due to the emergence of miRNAs as important regulators of the vascular aging phenotype, the effect of early-life IGF-1 deficiency on miRNA expression profile in the aorta was examined in animals at 27 months of age. We found that developmental IGF-1 deficiency elicits persisting late-life changes in miRNA expression in the vasculature, which significantly differed from those in mice with adult-onset IGF-1 deficiency (TBG-Cre-AAV8-mediated knockdown of IGF-1 at 5 month of age in Igf1 f/f mice). Using a novel computational approach, we identified miRNA target genes that are co-expressed with IGF-1 and associate with aging and vascular pathophysiology. We found that among the predicted targets, the expression of multiple extracellular matrix-related genes, including collagen-encoding genes, were downregulated in mice with developmental IGF-1 deficiency. Collectively, IGF-1 deficiency during a critical period during early in life results in persistent changes in post-transcriptional miRNA-mediated control of genes critical targets for vascular health, which likely contribute to the deleterious late-life cardiovascular effects known to occur with developmental IGF-1 deficiency.

  16. Saturated phosphatidic acids mediate saturated fatty acid-induced vascular calcification and lipotoxicity.

    PubMed

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Keenan, Audrey L; Okamura, Kayo; Kendrick, Jessica; Chonchol, Michel; Offermanns, Stefan; Ntambi, James M; Kuro-O, Makoto; Miyazaki, Makoto

    2015-10-26

    Recent evidence indicates that saturated fatty acid-induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification.

  17. Epithelial cell integrin β1 is required for developmental angiogenesis in the pituitary gland

    PubMed Central

    Scully, Kathleen M.; Skowronska-Krawczyk, Dorota; Krawczyk, Michal; Merkurjev, Daria; Taylor, Havilah; Livolsi, Antonia; Tollkuhn, Jessica; Stan, Radu V.; Rosenfeld, Michael G.

    2016-01-01

    As a key component of the vertebrate neuroendocrine system, the pituitary gland relies on the progressive and coordinated development of distinct hormone-producing cell types and an invading vascular network. The molecular mechanisms that drive formation of the pituitary vasculature, which is necessary for regulated synthesis and secretion of hormones that maintain homeostasis, metabolism, and endocrine function, remain poorly understood. Here, we report that expression of integrin β1 in embryonic pituitary epithelial cells is required for angiogenesis in the developing mouse pituitary gland. Deletion of pituitary epithelial integrin β1 before the onset of angiogenesis resulted in failure of invading endothelial cells to recruit pericytes efficiently, whereas deletion later in embryogenesis led to decreased vascular density and lumen formation. In both cases, lack of epithelial integrin β1 was associated with a complete absence of vasculature in the pituitary gland at birth. Within pituitary epithelial cells, integrin β1 directs a large transcriptional program that includes components of the extracellular matrix and associated signaling factors that are linked to the observed non–cell-autonomous effects on angiogenesis. We conclude that epithelial integrin β1 functions as a critical and canonical regulator of developmental angiogenesis in the pituitary gland, thus providing insight into the long-standing systems biology conundrum of how vascular invasion is coordinated with tissue development. PMID:27810956

  18. Overexpression of Mitofusin 2 inhibited oxidized low-density lipoprotein induced vascular smooth muscle cell proliferation and reduced atherosclerotic lesion formation in rabbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo Yanhong; Chen Kuanghueih; Gao Wei

    2007-11-16

    Our previous studies have implies that Mitofusin 2 (Mfn2), which was progressively reduced in arteries from ApoE{sup -/-} mice during the development of atherosclerosis, may take part in pathogenesis of atherosclerosis. In this study, we found that overexpression of Mfn2 inhibited oxidized low-density lipoprotein or serum induced vascular smooth muscle cell proliferation by down-regulation of Akt and ERK phosphorylation. Then we investigated the in vivo role of Mfn2 on the development of atherosclerosis in rabbits using adenovirus expressing Mitofusin 2 gene (AdMfn2). By morphometric analysis we found overexpression of Mfn2 inhibited atherosclerotic lesion formation and intima/media ratio by 66.7% andmore » 74.6%, respectively, compared with control group. These results suggest that local Mfn2 treatment suppresses the development of atherosclerosis in vivo in part by attenuating the smooth muscle cell proliferation induced by lipid deposition and vascular injury.« less

  19. Vascular wall progenitor cells in health and disease.

    PubMed

    Psaltis, Peter J; Simari, Robert D

    2015-04-10

    The vasculature plays an indispensible role in organ development and maintenance of tissue homeostasis, such that disturbances to it impact greatly on developmental and postnatal health. Although cell turnover in healthy blood vessels is low, it increases considerably under pathological conditions. The principle sources for this phenomenon have long been considered to be the recruitment of cells from the peripheral circulation and the re-entry of mature cells in the vessel wall back into cell cycle. However, recent discoveries have also uncovered the presence of a range of multipotent and lineage-restricted progenitor cells in the mural layers of postnatal blood vessels, possessing high proliferative capacity and potential to generate endothelial, smooth muscle, hematopoietic or mesenchymal cell progeny. In particular, the tunica adventitia has emerged as a progenitor-rich compartment with niche-like characteristics that support and regulate vascular wall progenitor cells. Preliminary data indicate the involvement of some of these vascular wall progenitor cells in vascular disease states, adding weight to the notion that the adventitia is integral to vascular wall pathogenesis, and raising potential implications for clinical therapies. This review discusses the current body of evidence for the existence of vascular wall progenitor cell subpopulations from development to adulthood and addresses the gains made and significant challenges that lie ahead in trying to accurately delineate their identities, origins, regulatory pathways, and relevance to normal vascular structure and function, as well as disease. © 2015 American Heart Association, Inc.

  20. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bin; Li, Wei; Zheng, Qichang

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negativemore » effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.« less

  1. Dynamics of pulsatile flow in fractal models of vascular branching networks.

    PubMed

    Bui, Anh; Sutalo, Ilija D; Manasseh, Richard; Liffman, Kurt

    2009-07-01

    Efficient regulation of blood flow is critically important to the normal function of many organs, especially the brain. To investigate the circulation of blood in complex, multi-branching vascular networks, a computer model consisting of a virtual fractal model of the vasculature and a mathematical model describing the transport of blood has been developed. Although limited by some constraints, in particular, the use of simplistic, uniformly distributed model for cerebral vasculature and the omission of anastomosis, the proposed computer model was found to provide insights into blood circulation in the cerebral vascular branching network plus the physiological and pathological factors which may affect its functionality. The numerical study conducted on a model of the middle cerebral artery region signified the important effects of vessel compliance, blood viscosity variation as a function of the blood hematocrit, and flow velocity profile on the distributions of flow and pressure in the vascular network.

  2. Insulin resistance, metabolic stress, and atherosclerosis

    PubMed Central

    Pansuria, Meghana; Xi, Hang; Li, Le; Yang, Xiao-Feng; Wang, Hong

    2012-01-01

    Atherosclerosis, a pathological process that underlies the development of cardiovascular disease, is the primary cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). T2DM is characterized by hyperglycemia and insulin resistance (IR), in which target tissues fail to respond to insulin. Systemic IR is associated with impaired insulin signaling in the metabolic tissues and vasculature. Insulin receptor is highly expressed in the liver, muscle, pancreas, and adipose tissue. It is also expressed in vascular cells. It has been suggested that insulin signaling in vascular cells regulates cell proliferation and vascular function. In this review, we discuss the association between IR, metabolic stress, and atherosclerosis with focus on 1) tissue and cell distribution of insulin receptor and its differential signaling transduction and 2) potential mechanism of insulin signaling impairment and its role in the development of atherosclerosis and vascular function in metabolic disorders including hyperglycemia, hypertension, dyslipidemia, and hyperhomocysteinemia. We propose that insulin signaling impairment is the foremost biochemical mechanism underlying increased cardiovascular morbidity and mortality in atherosclerosis, T2DM, and metabolic syndrome. PMID:22202099

  3. The roles of vascular endothelial growth factor in bone repair and regeneration

    PubMed Central

    Hu, Kai; Olsen, Bjorn R.

    2016-01-01

    Vascular endothelial growth factor-A (VEGF) is one of the most important growth factors for regulation of vascular development and angiogenesis. Since bone is a highly vascularized organ and angiogenesis plays an important role in osteogenesis, VEGF also influences skeletal development and postnatal bone repair. Compromised bone repair and regeneration in many patients can be attributed to impaired blood supply; thus, modulation of VEGF levels in bones represents a potential strategy for treating compromised bone repair and improving bone regeneration. This review (i) summarizes the roles of VEGF at different stages of bone repair, including the phases of inflammation, endochondral ossification, intramembranous ossification during callus formation and bone remodeling; (ii) discusses different mechanisms underlying the effects of VEGF on osteoblast function, including paracrine, autocrine and intracrine signaling during bone repair; (iii) summarizes the role of VEGF in the bone regenerative procedure, distraction osteogenesis; and (iv) reviews evidence for the effects of VEGF in the context of repair and regeneration techniques involving the use of scaffolds, skeletal stem cells and growth factors. PMID:27353702

  4. Endothelial Depletion of Acvrl1 in Mice Leads to Arteriovenous Malformations Associated with Reduced Endoglin Expression

    PubMed Central

    Allinson, Kathleen R.; Redgrave, Rachael E.; Zhai, Zhenhua; Oh, S. Paul; Fruttiger, Marcus; Arthur, Helen M.

    2014-01-01

    Rare inherited cardiovascular diseases are frequently caused by mutations in genes that are essential for the formation and/or function of the cardiovasculature. Hereditary Haemorrhagic Telangiectasia is a familial disease of this type. The majority of patients carry mutations in either Endoglin (ENG) or ACVRL1 (also known as ALK1) genes, and the disease is characterized by arteriovenous malformations and persistent haemorrhage. ENG and ACVRL1 encode receptors for the TGFβ superfamily of ligands, that are essential for angiogenesis in early development but their roles are not fully understood. Our goal was to examine the role of Acvrl1 in vascular endothelial cells during vascular development and to determine whether loss of endothelial Acvrl1 leads to arteriovenous malformations. Acvrl1 was depleted in endothelial cells either in early postnatal life or in adult mice. Using the neonatal retinal plexus to examine angiogenesis, we observed that loss of endothelial Acvrl1 led to venous enlargement, vascular hyperbranching and arteriovenous malformations. These phenotypes were associated with loss of arterial Jag1 expression, decreased pSmad1/5/8 activity and increased endothelial cell proliferation. We found that Endoglin was markedly down-regulated in Acvrl1-depleted ECs showing endoglin expression to be downstream of Acvrl1 signalling in vivo. Endothelial-specific depletion of Acvrl1 in pups also led to pulmonary haemorrhage, but in adult mice resulted in caecal haemorrhage and fatal anaemia. We conclude that during development, endothelial Acvrl1 plays an essential role to regulate endothelial cell proliferation and arterial identity during angiogenesis, whilst in adult life endothelial Acvrl1 is required to maintain vascular integrity. PMID:24896812

  5. A Computational Model Predicting Disruption of Blood Vessel Development

    PubMed Central

    Kleinstreuer, Nicole; Dix, David; Rountree, Michael; Baker, Nancy; Sipes, Nisha; Reif, David; Spencer, Richard; Knudsen, Thomas

    2013-01-01

    Vascular development is a complex process regulated by dynamic biological networks that vary in topology and state across different tissues and developmental stages. Signals regulating de novo blood vessel formation (vasculogenesis) and remodeling (angiogenesis) come from a variety of biological pathways linked to endothelial cell (EC) behavior, extracellular matrix (ECM) remodeling and the local generation of chemokines and growth factors. Simulating these interactions at a systems level requires sufficient biological detail about the relevant molecular pathways and associated cellular behaviors, and tractable computational models that offset mathematical and biological complexity. Here, we describe a novel multicellular agent-based model of vasculogenesis using the CompuCell3D (http://www.compucell3d.org/) modeling environment supplemented with semi-automatic knowledgebase creation. The model incorporates vascular endothelial growth factor signals, pro- and anti-angiogenic inflammatory chemokine signals, and the plasminogen activating system of enzymes and proteases linked to ECM interactions, to simulate nascent EC organization, growth and remodeling. The model was shown to recapitulate stereotypical capillary plexus formation and structural emergence of non-coded cellular behaviors, such as a heterologous bridging phenomenon linking endothelial tip cells together during formation of polygonal endothelial cords. Molecular targets in the computational model were mapped to signatures of vascular disruption derived from in vitro chemical profiling using the EPA's ToxCast high-throughput screening (HTS) dataset. Simulating the HTS data with the cell-agent based model of vascular development predicted adverse effects of a reference anti-angiogenic thalidomide analog, 5HPP-33, on in vitro angiogenesis with respect to both concentration-response and morphological consequences. These findings support the utility of cell agent-based models for simulating a morphogenetic series of events and for the first time demonstrate the applicability of these models for predictive toxicology. PMID:23592958

  6. Pericyte-derived sphingosine 1-phosphate induces the expression of adhesion proteins and modulates the retinal endothelial cell barrier.

    PubMed

    McGuire, Paul G; Rangasamy, Sampathkumar; Maestas, Joann; Das, Arup

    2011-12-01

    The mechanisms that regulate the physical interaction of pericytes and endothelial cells and the effects of these interactions on interendothelial cell junctions are not well understood. We determined the extent to which vascular pericytes could regulate pericyte-endothelial adhesion and the consequences that this disruption might have on the function of the endothelial barrier. Human retinal microvascular endothelial cells were cocultured with pericytes, and the effect on the monolayer resistance of endothelial cells and expression of the cell junction molecules N-cadherin and VE-cadherin were measured. The molecules responsible for the effect of pericytes or pericyte-conditioned media on the endothelial resistance and cell junction molecules were further analyzed. Our results indicate that pericytes increase the barrier properties of endothelial cell monolayers. This barrier function is maintained through the secretion of pericyte-derived sphingosine 1-phosphate. Sphingosine 1-phosphate aids in maintenance of microvascular stability by upregulating the expression of N-cadherin and VE-cadherin, and downregulating the expression of angiopoietin 2. Under normal circumstances, the retinal vascular pericytes maintain pericyte-endothelial contacts and vascular barrier function through the secretion of sphingosine 1-phosphate. Alteration of pericyte-derived sphingosine 1-phosphate production may be an important mechanism in the development of diseases characterized by vascular dysfunction and increased permeability.

  7. Aberrant Splicing Induced by Dysregulated Rbfox2 Produces Enhanced Function of CaV1.2 Calcium Channel and Vascular Myogenic Tone in Hypertension.

    PubMed

    Zhou, Yingying; Fan, Jia; Zhu, Huayuan; Ji, Li; Fan, Wenyong; Kapoor, Isha; Wang, Yue; Wang, Yuan; Zhu, Guoqing; Wang, Juejin

    2017-12-01

    Calcium influx from activated voltage-gated calcium channel Ca V 1.2 in vascular smooth muscle cells is indispensable for maintaining myogenic tone and blood pressure. The function of Ca V 1.2 channel can be optimized by alternative splicing, one of post-transcriptional modification mechanisms. The splicing factor Rbfox2 is known to regulate the Ca V 1.2 pre-mRNA alternative splicing events during neuronal development. However, Rbfox2's roles in modulating the key function of vascular Ca V 1.2 channel and in the pathogenesis of hypertension remain elusive. Here, we report that the proportion of Ca V 1.2 channels with alternative exon 9* is increased by 10.3%, whereas that with alternative exon 33 is decreased by 10.5% in hypertensive arteries. Surprisingly, the expression level of Rbfox2 is increased ≈3-folds, presumably because of the upregulation of a dominant-negative isoform of Rbfox2. In vascular smooth muscle cells, we find that knockdown of Rbfox2 dynamically increases alternative exon 9*, whereas decreases exon 33 inclusion of Ca V 1.2 channels. By patch-clamp studies, we show that diminished Rbfox2-induced alternative splicing shifts the steady-state activation and inactivation curves of vascular Ca V 1.2 calcium channel to hyperpolarization, which makes the window current potential to more negative. Moreover, siRNA-mediated knockdown of Rbfox2 increases the pressure-induced vascular myogenic tone of rat mesenteric artery. Taken together, our data indicate that Rbfox2 modulates the functions of vascular Ca V 1.2 calcium channel by dynamically regulating the expressions of alternative exons 9* and 33, which in turn affects the vascular myogenic tone. Therefore, our work suggests a key role for Rbfox2 in hypertension, which provides a rational basis for designing antihypertensive therapies. © 2017 American Heart Association, Inc.

  8. Regulation of thrombosis and vascular function by protein methionine oxidation

    PubMed Central

    Gu, Sean X.; Stevens, Jeff W.

    2015-01-01

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. PMID:25900980

  9. Harnessing Sphingosine-1-Phosphate Signaling and Nanotopographical Cues To Regulate Skeletal Muscle Maturation and Vascularization.

    PubMed

    Tsui, Jonathan H; Janebodin, Kajohnkiart; Ieronimakis, Nicholas; Yama, David M P; Yang, Hee Seok; Chavanachat, Rakchanok; Hays, Aislinn L; Lee, Haeshin; Reyes, Morayma; Kim, Deok-Ho

    2017-12-26

    Despite possessing substantial regenerative capacity, skeletal muscle can suffer from loss of function due to catastrophic traumatic injury or degenerative disease. In such cases, engineered tissue grafts hold the potential to restore function and improve patient quality of life. Requirements for successful integration of engineered tissue grafts with the host musculature include cell alignment that mimics host tissue architecture and directional functionality, as well as vascularization to ensure tissue survival. Here, we have developed biomimetic nanopatterned poly(lactic-co-glycolic acid) substrates conjugated with sphingosine-1-phosphate (S1P), a potent angiogenic and myogenic factor, to enhance myoblast and endothelial maturation. Primary muscle cells cultured on these functionalized S1P nanopatterned substrates developed a highly aligned and elongated morphology and exhibited higher expression levels of myosin heavy chain, in addition to genes characteristic of mature skeletal muscle. We also found that S1P enhanced angiogenic potential in these cultures, as evidenced by elevated expression of endothelial-related genes. Computational analyses of live-cell videos showed a significantly improved functionality of tissues cultured on S1P-functionalized nanopatterns as indicated by greater myotube contraction displacements and velocities. In summary, our study demonstrates that biomimetic nanotopography and S1P can be combined to synergistically regulate the maturation and vascularization of engineered skeletal muscles.

  10. Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens.

    PubMed

    Eklund, D Magnus; Thelander, Mattias; Landberg, Katarina; Ståldal, Veronika; Nilsson, Anders; Johansson, Monika; Valsecchi, Isabel; Pederson, Eric R A; Kowalczyk, Mariusz; Ljung, Karin; Ronne, Hans; Sundberg, Eva

    2010-04-01

    The plant hormone auxin plays fundamental roles in vascular plants. Although exogenous auxin also stimulates developmental transitions and growth in non-vascular plants, the effects of manipulating endogenous auxin levels have thus far not been reported. Here, we have altered the levels and sites of auxin production and accumulation in the moss Physcomitrella patens by changing the expression level of homologues of the Arabidopsis SHI/STY family proteins, which are positive regulators of auxin biosynthesis genes. Constitutive expression of PpSHI1 resulted in elevated auxin levels, increased and ectopic expression of the auxin response reporter GmGH3pro:GUS, and in an increased caulonema/chloronema ratio, an effect also induced by exogenous auxin application. In addition, we observed premature ageing and necrosis in cells ectopically expressing PpSHI1. Knockout of either of the two PpSHI genes resulted in reduced auxin levels and auxin biosynthesis rates in leafy shoots, reduced internode elongation, delayed ageing, a decreased caulonema/chloronema ratio and an increased number of axillary hairs, which constitute potential auxin biosynthesis sites. Some of the identified auxin functions appear to be analogous in vascular and non-vascular plants. Furthermore, the spatiotemporal expression of the PpSHI genes and GmGH3pro:GUS strongly overlap, suggesting that local auxin biosynthesis is important for the regulation of auxin peak formation in non-vascular plants.

  11. Low oxygen tension enhances endothelial fate of human pluripotent stem cells.

    PubMed

    Kusuma, Sravanti; Peijnenburg, Elizabeth; Patel, Parth; Gerecht, Sharon

    2014-04-01

    A critical regulator of the developing or regenerating vasculature is low oxygen tension. Precise elucidation of the role of low oxygen environments on endothelial commitment from human pluripotent stem cells necessitates controlled in vitro differentiation environments. We used a feeder-free, 2-dimensional differentiation system in which we could monitor accurately dissolved oxygen levels during human pluripotent stem cell differentiation toward early vascular cells (EVCs). We found that oxygen uptake rate of differentiating human pluripotent stem cells is lower in 5% O2 compared with atmospheric conditions. EVCs differentiated in 5% O2 had an increased vascular endothelial cadherin expression with clusters of vascular endothelial cadherin+ cells surrounded by platelet-derived growth factor β+ cells. When we assessed the temporal effects of low oxygen differentiation environments, we determined that low oxygen environments during the early stages of EVC differentiation enhance endothelial lineage commitment. EVCs differentiated in 5% O2 exhibited an increased expression of vascular endothelial cadherin and CD31 along with their localization to the membrane, enhanced lectin binding and acetylated low-density lipoprotein uptake, rapid cord-like structure formation, and increased expression of arterial endothelial cell markers. Inhibition of reactive oxygen species generation during the early stages of differentiation abrogated the endothelial inductive effects of the low oxygen environments. Low oxygen tension during early stages of EVC derivation induces endothelial commitment and maturation through the accumulation of reactive oxygen species, highlighting the importance of regulating oxygen tensions during human pluripotent stem cell-vascular differentiation.

  12. Brain vascular heterogeneity: implications for disease pathogenesis and design of in vitro blood-brain barrier models.

    PubMed

    Noumbissi, Midrelle E; Galasso, Bianca; Stins, Monique F

    2018-04-23

    The vertebrate blood-brain barrier (BBB) is composed of cerebral microvascular endothelial cells (CEC). The BBB acts as a semi-permeable cellular interface that tightly regulates bidirectional molecular transport between blood and the brain parenchyma in order to maintain cerebral homeostasis. The CEC phenotype is regulated by a variety of factors, including cells in its immediate environment and within functional neurovascular units. The cellular composition of the brain parenchyma surrounding the CEC varies between different brain regions; this difference is clearly visible in grey versus white matter. In this review, we discuss evidence for the existence of brain vascular heterogeneity, focusing on differences between the vessels of the grey and white matter. The region-specific differences in the vasculature of the brain are reflective of specific functions of those particular brain areas. This BBB-endothelial heterogeneity may have implications for the course of pathogenesis of cerebrovascular diseases and neurological disorders involving vascular activation and dysfunction. This heterogeneity should be taken into account when developing BBB-neuro-disease models representative of specific brain areas.

  13. Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice

    PubMed Central

    Overman, Jeroen; Fontaine, Frank; Moustaqil, Mehdi; Mittal, Deepak; Sierecki, Emma; Sacilotto, Natalia; Zuegg, Johannes; Robertson, Avril AB; Holmes, Kelly; Salim, Angela A; Mamidyala, Sreeman; Butler, Mark S; Robinson, Ashley S; Lesieur, Emmanuelle; Johnston, Wayne; Alexandrov, Kirill; Black, Brian L; Hogan, Benjamin M; De Val, Sarah; Capon, Robert J; Carroll, Jason S; Bailey, Timothy L; Koopman, Peter; Jauch, Ralf; Smyth, Mark J; Cooper, Matthew A; Gambin, Yann; Francois, Mathias

    2017-01-01

    Pharmacological targeting of transcription factors holds great promise for the development of new therapeutics, but strategies based on blockade of DNA binding, nuclear shuttling, or individual protein partner recruitment have yielded limited success to date. Transcription factors typically engage in complex interaction networks, likely masking the effects of specifically inhibiting single protein-protein interactions. Here, we used a combination of genomic, proteomic and biophysical methods to discover a suite of protein-protein interactions involving the SOX18 transcription factor, a known regulator of vascular development and disease. We describe a small-molecule that is able to disrupt a discrete subset of SOX18-dependent interactions. This compound selectively suppressed SOX18 transcriptional outputs in vitro and interfered with vascular development in zebrafish larvae. In a mouse pre-clinical model of breast cancer, treatment with this inhibitor significantly improved survival by reducing tumour vascular density and metastatic spread. Our studies validate an interactome-based molecular strategy to interfere with transcription factor activity, for the development of novel disease therapeutics. DOI: http://dx.doi.org/10.7554/eLife.21221.001 PMID:28137359

  14. The adaptor Lnk (SH2B3): an emerging regulator in vascular cells and a link between immune and inflammatory signaling.

    PubMed

    Devallière, Julie; Charreau, Béatrice

    2011-11-15

    A better knowledge of the process by which inflammatory extracellular signals are relayed from the plasma membrane to specific intracellular sites is a key step to understand how inflammation develops and how it is regulated. This review focuses on Lnk (SH2B3) a member, with SH2B1 and SH2B2, of the SH2B family of adaptor proteins that influences a variety of signaling pathways mediated by Janus kinase and receptor tyrosine kinases. SH2B adaptor proteins contain conserved dimerization, pleckstrin homology, and SH2 domains. Initially described as a regulator of hematopoiesis and lymphocyte differentiation, Lnk now emerges as a key regulator in hematopoeitic and non hematopoeitic cells such as endothelial cells (EC) moderating growth factor and cytokine receptor-mediated signaling. In EC, Lnk is a negative regulator of TNF signaling that reduce proinflammatory phenotype and prevent EC from apoptosis. Lnk is a modulator in integrin signaling and actin cytoskeleton organization in both platelets and EC with an impact on cell adhesion, migration and thrombosis. In this review, we discuss some recent insights proposing Lnk as a key regulator of bone marrow-endothelial progenitor cell kinetics, including the ability to cell growth, endothelial commitment, mobilization, and recruitment for vascular regeneration. Finally, novel findings also provided evidences that mutations in Lnk gene are strongly linked to myeloproliferative disorders but also autoimmune and inflammatory syndromes where both immune and vascular cells display a role. Overall, these studies emphasize the importance of the Lnk adaptor molecule not only as prognostic marker but also as potential therapeutic target. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Open the gates: vascular neurocrine signaling mobilizes hematopoietic stem and progenitor cells.

    PubMed

    Itkin, Tomer; Gómez-Salinero, Jesús María; Rafii, Shahin

    2017-12-01

    Mobilization of hematopoietic stem and progenitor cells (HSPCs) from the bone marrow (BM) into the peripheral blood is a complex process that is enhanced dramatically under stress-induced conditions. A better understanding of how the mobilization process is regulated will likely facilitate the development of improved clinical protocols for stem cell harvesting and transplantation. In this issue of the JCI, Singh et al. (1) showed that the truncated cleaved form of neurotransmitter neuropeptide Y (NPY) actively promotes a breach of BM vascular sinusoidal portals, thereby augmenting HSPC trafficking to the circulation. The authors report a previously unrecognized axis, in which expression of the enzyme dipeptidylpeptidase-4 (DPP4)/CD26 by endothelial cells activates NPY-mediated signaling by increasing the bioavailability of the truncated form of NPY. These findings underscore the importance of and urgency to develop pharmacological therapies that target the vasculature and regulate diverse aspects of hematopoiesis, such as HSPC trafficking, in steady-state and stress-induced conditions.

  16. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibuya, Masabumi; Claesson-Welsh, Lena

    2006-03-10

    The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathologicalmore » angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases.« less

  17. Ubiquitin carboxyl terminal hydrolase L1 negatively regulates TNF{alpha}-mediated vascular smooth muscle cell proliferation via suppressing ERK activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichikawa, Tomonaga; Li, Jinqing; Dong, Xiaoyu

    2010-01-01

    Deubiquitinating enzymes (DUBs) appear to be critical regulators of a multitude of processes such as proliferation, apoptosis, differentiation, and inflammation. We have recently demonstrated that a DUB of ubiquitin carboxyl terminal hydrolase L1 (UCH-L1) inhibits vascular lesion formation via suppressing inflammatory responses in vasculature. However, the precise underlying mechanism remains to be defined. Herein, we report that a posttranscriptional up-regulation of UCH-L1 provides a negative feedback to tumor necrosis factor alpha (TNF{alpha})-mediated activation of extracellular signal-regulated kinases (ERK) and proliferation in vascular smooth muscle cells (VSMCs). In rat adult VSMCs, adenoviral over-expression of UCH-L1 inhibited TNF{alpha}-induced activation of ERK andmore » DNA synthesis. In contrast, over-expression of UCH-L1 did not affect platelet derived growth factor (PDGF)-induced VSMC proliferation and activation of growth stimulating cascades including ERK. TNF{alpha} hardly altered UCH-L1 mRNA expression and stability; however, up-regulated UCH-L1 protein expression via increasing UCH-L1 translation. These results uncover a novel mechanism by which UCH-L1 suppresses vascular inflammation.« less

  18. Microarray Data Analysis of Space Grown Arabidopsis Leaves for Genes Important in Vascular Patterning. Analysis of Space Grown Arabidopsis with Microarray Data from GeneLab: Identification of Genes Important in Vascular Patterning

    NASA Technical Reports Server (NTRS)

    Weitzel, A. J.; Wyatt, S. E.; Parsons-Wingerter, P.

    2016-01-01

    Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photo-assimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASA's GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be up-regulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS (Auxin-Regulated Gene Involved in Organ Size)-like protein (potentially affecting cell elongation in the leaves), and an F-box/kelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm up-regulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASA's VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.

  19. Localization and function of KLF4 in cytoplasm of vascular smooth muscle cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yan; The Third Hospital of Hebei Medical University, Shijazhuang; Zheng, Bin

    2013-06-28

    Highlights: •PDGF-BB prompts the translocation of KLF4 to the cytoplasm. •PDGF-BB promotes interaction between KLF4 and actin in the cytoplasm. •Phosphorylation and SUMOylation of KLF4 participates in regulation of cytoskeletal organization. •KLF4 regulates cytoskeleton by promoting the expression of contraction-associated genes. -- Abstract: The Krüppel-like factor 4 is a DNA-binding transcriptional regulator that regulates a diverse array of cellular processes, including development, differentiation, proliferation, and apoptosis. The previous studies about KLF4 functions mainly focused on its role as a transcription factor, its functions in the cytoplasm are still unknown. In this study, we found that PDGF-BB could prompt the translocationmore » of KLF4 to the cytoplasm through CRM1-mediated nuclear export pathway in vascular smooth muscle cells (VSMCs) and increased the interaction of KLF4 with actin in the cytoplasm. Further study showed that both KLF4 phosphorylation and SUMOylation induced by PDGF-BB participates in regulation of cytoskeletal organization by stabilizing the actin cytoskeleton in VSMCs. In conclusion, these results identify that KLF4 participates in the cytoskeletal organization by stabilizing cytoskeleton in the cytoplasm of VSMCs.« less

  20. Cardiovascular and Hemostatic Disorders: Role of STIM and Orai Proteins in Vascular Disorders.

    PubMed

    Tanwar, Jyoti; Trebak, Mohamed; Motiani, Rajender K

    2017-01-01

    Store-operated Ca 2+ entry (SOCE) mediated by STIM and Orai proteins is a highly regulated and ubiquitous signaling pathway that plays an important role in various cellular and physiological functions. Endoplasmic reticulum (ER) serves as the major site for intracellular Ca 2+ storage. Stromal Interaction Molecule 1/2 (STIM1/2) sense decrease in ER Ca 2+ levels and transmits the message to plasma membrane Ca 2+ channels constituted by Orai family members (Orai1/2/3) resulting in Ca 2+ influx into the cells. This increase in cytosolic Ca 2+ in turn activates a variety of signaling cascades to regulate a plethora of cellular functions. Evidence from the literature suggests that SOCE dysregulation is associated with several pathophysiologies, including vascular disorders. Interestingly, recent studies have suggested that STIM proteins may also regulate vascular functions independent of their contribution to SOCE. In this updated book chapter, we will focus on the physiological role of STIM and Orai proteins in the vasculature (endothelial cells and vascular smooth muscle cells). We will further retrospect the literature implicating a critical role for these proteins in vascular disease.

  1. Spongiosa Primary Development: A Biochemical Hypothesis by Turing Patterns Formations

    PubMed Central

    López-Vaca, Oscar Rodrigo; Garzón-Alvarado, Diego Alexander

    2012-01-01

    We propose a biochemical model describing the formation of primary spongiosa architecture through a bioregulatory model by metalloproteinase 13 (MMP13) and vascular endothelial growth factor (VEGF). It is assumed that MMP13 regulates cartilage degradation and the VEGF allows vascularization and advances in the ossification front through the presence of osteoblasts. The coupling of this set of molecules is represented by reaction-diffusion equations with parameters in the Turing space, creating a stable spatiotemporal pattern that leads to the formation of the trabeculae present in the spongy tissue. Experimental evidence has shown that the MMP13 regulates VEGF formation, and it is assumed that VEGF negatively regulates MMP13 formation. Thus, the patterns obtained by ossification may represent the primary spongiosa formation during endochondral ossification. Moreover, for the numerical solution, we used the finite element method with the Newton-Raphson method to approximate partial differential nonlinear equations. Ossification patterns obtained may represent the primary spongiosa formation during endochondral ossification. PMID:23193429

  2. 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine inhibits the proliferation and migration of vascular smooth muscle cells by suppressing ERK and Akt pathways.

    PubMed

    Seo, Hyang-Hee; Kim, Sang Woo; Lee, Chang Youn; Lim, Kyu Hee; Lee, Jiyun; Lim, Soyeon; Lee, Seahyoung; Hwang, Ki-Chul

    2017-03-05

    Excessive vascular smooth muscle cell (VSMC) proliferation and migration after vascular injury significantly contributes to the development of occlusive vascular disease. Therefore, inhibiting the proliferation and migration of VSMCs is a validated therapeutic modality for occlusive vascular disease such as atherosclerosis and restenosis. In the present study, we screened chemical compounds for their anti-proliferative effects on VSMCs using multiple approaches, such as MTT assays, wound healing assays, and trans-well migration assays. Our data indicate that 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine, a lymphocyte-specific protein tyrosine kinase (Lck) inhibitor, significantly inhibited both VSMC proliferation and migration. 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine suppresses VSMC proliferation and migration via down-regulating the protein kinase B (Akt) and extracellular signal regulated kinase (ERK) pathways, and it significantly decreased the expression of proliferating cell nuclear antigen (PCNA) and cyclin D1 and, the phosphorylation of retinoblastoma protein (pRb). Additionally, 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine suppressed the migration of VSMCs from endothelium-removed aortic rings, as well as neointima formation following rat carotid balloon injury. The present study identified 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine as a potent VSMC proliferation and migration inhibitor and warrants further studies to elucidate its more detailed molecular mechanisms, such as its primary target, and to further validate its in vivo efficacy as a therapeutic agent for pathologic vascular conditions, such as restenosis and atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Mouse model of CADASIL reveals novel insights into Notch3 function in adult hippocampal neurogenesis.

    PubMed

    Ehret, Fanny; Vogler, Steffen; Pojar, Sherin; Elliott, David A; Bradke, Frank; Steiner, Barbara; Kempermann, Gerd

    2015-03-01

    Could impaired adult hippocampal neurogenesis be a relevant mechanism underlying CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy)? Memory symptoms in CADASIL, the most common hereditary form of vascular dementia, are usually thought to be primarily due to vascular degeneration and white matter lacunes. Since adult hippocampal neurogenesis, a process essential for the integration of new spatial memory occurs in a highly vascularized niche, we considered dysregulation of adult neurogenesis as a potential mechanism for the manifestation of dementia in CADASIL. Analysis in aged mice overexpressing Notch3 with a CADASIL mutation, revealed vascular deficits in arteries of the hippocampal fissure but not in the niche of the dentate gyrus. At 12 months of age, cell proliferation and survival of newborn neurons were reduced not only in CADASIL mice but also in transgenic controls overexpressing wild type Notch3. At 6 months, hippocampal neurogenesis was altered in CADASIL mice independent of overt vascular abnormalities in the fissure. Further, we identified Notch3 expression in hippocampal precursor cells and maturing neurons in vivo as well as in cultured hippocampal precursor cells. Overexpression and knockdown experiments showed that Notch3 signaling negatively regulated precursor cell proliferation. Notch3 overexpression also led to deficits in KCl-induced precursor cell activation. This suggests a cell-autonomous effect of Notch3 signaling in the regulation of precursor proliferation and activation and a loss-of-function effect in CADASIL. Consequently, besides vascular damage, aberrant precursor cell proliferation and differentiation due to Notch3 dysfunction might be an additional independent mechanism for the development of hippocampal dysfunction in CADASIL. Copyright © 2014. Published by Elsevier Inc.

  4. ILK mediates LPS-induced vascular adhesion receptor expression and subsequent leucocyte trans-endothelial migration.

    PubMed

    Hortelano, Sonsoles; López-Fontal, Raquel; Través, Paqui G; Villa, Natividad; Grashoff, Carsten; Boscá, Lisardo; Luque, Alfonso

    2010-05-01

    The inflammatory response to injurious agents is tightly regulated to avoid adverse consequences of inappropriate leucocyte accumulation or failed resolution. Lipopolysaccharide (LPS)-activated endothelium recruits leucocytes to the inflamed tissue through controlled expression of membrane-associated adhesion molecules. LPS responses in macrophages are known to be regulated by integrin-linked kinase (ILK); in this study, we investigated the role of ILK in the regulation of the LPS-elicited inflammatory response in endothelium. This study was performed on immortalized mouse endothelial cells (EC) isolated from lung and coronary vasculature. Cells were thoroughly characterized and the role of ILK in the regulation of the LPS response was investigated by suppressing ILK expression using siRNA and shRNA technologies. Phenotypic and functional analyses confirmed that the immortalized cells behaved as true EC. LPS induced the expression of the inflammatory genes E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). ILK knockdown impaired LPS-mediated endothelial activation by preventing the induction of ICAM-1 and VCAM-1. Blockade of the LPS-induced response inhibited the inflammatory-related processes of firm adhesion and trans-endothelial migration of leucocytes. ILK is involved in the expression of cell adhesion molecules by EC activated with the inflammatory stimulus LPS. This reduced expression modulates leucocyte adhesion to the endothelium and the extravasation process. This finding suggests ILK as a potential anti-inflammatory target for the development of vascular-specific treatments for inflammation-related diseases.

  5. SarA based novel therapeutic candidate against Staphylococcus aureus associated with vascular graft infections.

    PubMed

    Arya, Rekha; Ravikumar, R; Santhosh, R S; Princy, S Adline

    2015-01-01

    Staphylococcus aureus is a common pathogen seen in prosthetic vascular graft, leading to high morbidity and mortality. The virulence genes for severity of infections are under the control of global regulators. Staphylococcal accessory regulator A (SarA) a known master controller of biofilm formation is an attractive target for the drug development. A structure based screening of lead compounds was employed for the identification of novel small molecule inhibitors targeted to interact to the DNA binding domain of the transcriptional activator, SarA and hinder its response over the control of genes that up-regulate the phenotype, biofilm. The top-hit SarA selective inhibitor, 4-[(2,4-diflurobenzyl)amino] cyclohexanol (SarABI) was further validated in-vitro for its efficacy. The SarABI was found to have MBIC50value of 200 μg/ml and also down-regulated the expression of the RNA effector, (RNAIII), Hemolysin (hld), and fibronectin-binding protein (fnbA). The anti-adherence property of SarABI on S. aureus invasion to the host epithelial cell lines (Hep-2) was examined where no significant attachment of S. aureus was observed. The SarABI inhibits the colonization of MDR S. aureus in animal model experiment significantly cohere to the molecular docking studies and in vitro experiments. So, we propose that the SarABI could be a novel substitute to overcome a higher degree of MDR S. aureus colonization on vascular graft.

  6. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters.

    PubMed

    Ververis, J J; Ku, L; Delafontaine, P

    1993-06-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.

  7. Conditional deletion of Dicer in vascular smooth muscle cells leads to the developmental delay and embryonic mortality

    PubMed Central

    Pan, Yaoqian; Balazs, Louisa; Tigyi, Gabor; Yue, Junming

    2013-01-01

    Dicer is a RNAase III enzyme that cleaves double stranded RNA and generates small interfering RNA (siRNA) and microRNA (miRNA). The goal of this study is to examine the role of Dicer and miRNAs in vascular smooth muscle cells (VSMCs). We deleted Dicer in VSMCs of mice, which caused a developmental delay that manifested as early as embryonic day E12.5, leading to embryonic death between E14.5 and E15.5 due to extensive hemorrhage in the liver, brain, and skin. Dicer KO embryos showed dilated blood vessels and a disarray of vascular architecture between E14.5 and E15.5. VSMC proliferation was significantly inhibited in Dicer KOs. The expression of VSMC marker genes were significantly downregulated in Dicer cKO embryos. The vascular structure of the yolk sac and embryo in Dicer KOs was lost to an extent that no blood vessels could be identified after E15.5. Expression of most miRNAs examined was compromised in VSMCs of Dicer KO. Our results indicate that Dicer is required for vascular development and regulates vascular remodeling by modulating VSMC proliferation and differentiation. PMID:21371421

  8. Fluid shear stress as a regulator of gene expression in vascular cells: possible correlations with diabetic abnormalities

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Eskin, S. G.; Ruef, J.; Runge, M. S.; McIntire, L. V.

    1999-01-01

    Diabetes mellitus is associated with increased frequency, severity and more rapid progression of cardiovascular diseases. Metabolic perturbations from hyperglycemia result in disturbed endothelium-dependent relaxation, activation of coagulation pathways, depressed fibrinolysis, and other abnormalities in vascular homeostasis. Atherosclerosis is localized mainly at areas of geometric irregularity at which blood vessels branch, curve and change diameter, and where blood is subjected to sudden changes in velocity and/or direction of flow. Shear stress resulting from blood flow is a well known modulator of vascular cell function. This paper presents what is currently known regarding the molecular mechanisms responsible for signal transduction and gene regulation in vascular cells exposed to shear stress. Considering the importance of the hemodynamic environment of vascular cells might be vital to increasing our understanding of diabetes.

  9. Vascular oxidative stress: a key factor in the development of hypertension associated with ethanol consumption.

    PubMed

    Ceron, Carla S; Marchi, Katia C; Muniz, Jaqueline J; Tirapelli, Carlos R

    2014-01-01

    The observation that the excessive consumption of ethyl alcohol (ethanol) is associated with high blood pressure is nearing its centennial mark. Mechanisms linking ethanol consumption and hypertension are complex and not fully understood. It is established that chronic ethanol consumption leads to hypertension and that this process is a multimediated event involving increased sympathetic activity, stimulation of the renin-angiotensin-aldosterone system with a subsequent increase in vascular oxidative stress and endothelial dysfunction. Under physiological conditions, reactive oxygen species (ROS) play an important role as a signaling molecule in the control of vascular tone and endothelial function. Increased ROS bioavailability is associated with important processes underlying vascular injury in cardiovascular disease such as endothelial dysfunction, vascular remodeling, and inflammation. Studies focusing on molecular mechanisms showed a link between overproduction of ROS in the vasculature and ethanol-induced hypertension. Of the ROS generated in vascular cells, superoxide anion (O2(-)) and hydrogen peroxide (H2O2) appear to be especially important. Ethanol-mediated generation of O2(-) and H2O2 in vascular tissues is associated with elevations in intracellular calcium ([Ca(2+)]i), reduced nitric oxide (NO) bioavailability, endothelial dysfunction and vasoconstriction. O2(-) can also act as a vascular signaling molecule regulating signaling pathways that lead to vascular contraction. Thus, through increased generation of ROS and activation of redox-sensitive pathways, ethanol induces vascular dysfunction, a response that might contribute to the hypertension associated with ethanol consumption. The present article reviews the role of ROS in vascular (patho)biology of ethanol.

  10. Combined deficiency of Notch1 and Notch3 causes pericyte dysfunction, models CADASIL, and results in arteriovenous malformations

    PubMed Central

    Kofler, Natalie M.; Cuervo, Henar; Uh, Minji K.; Murtomäki, Aino; Kitajewski, Jan

    2015-01-01

    Pericytes regulate vessel stability and pericyte dysfunction contributes to retinopathies, stroke, and cancer. Here we define Notch as a key regulator of pericyte function during angiogenesis. In Notch1+/−; Notch3−/− mice, combined deficiency of Notch1 and Notch3 altered pericyte interaction with the endothelium and reduced pericyte coverage of the retinal vasculature. Notch1 and Notch3 were shown to cooperate to promote proper vascular basement membrane formation and contribute to endothelial cell quiescence. Accordingly, loss of pericyte function due to Notch deficiency exacerbates endothelial cell activation caused by Notch1 haploinsufficiency. Mice mutant for Notch1 and Notch3 develop arteriovenous malformations and display hallmarks of the ischemic stroke disease CADASIL. Thus, Notch deficiency compromises pericyte function and contributes to vascular pathologies. PMID:26563570

  11. Hydrogen-Rich Medium Attenuated Lipopolysaccharide-Induced Monocyte-Endothelial Cell Adhesion and Vascular Endothelial Permeability via Rho-Associated Coiled-Coil Protein Kinase.

    PubMed

    Xie, Keliang; Wang, Weina; Chen, Hongguang; Han, Huanzhi; Liu, Daquan; Wang, Guolin; Yu, Yonghao

    2015-07-01

    Sepsis is the leading cause of death in critically ill patients. In recent years, molecular hydrogen, as an effective free radical scavenger, has been shown a selective antioxidant and anti-inflammatory effect, and it is beneficial in the treatment of sepsis. Rho-associated coiled-coil protein kinase (ROCK) participates in junction between normal cells, and regulates vascular endothelial permeability. In this study, we used lipopolysaccharide to stimulate vascular endothelial cells and explored the effects of hydrogen-rich medium on the regulation of adhesion of monocytes to endothelial cells and vascular endothelial permeability. We found that hydrogen-rich medium could inhibit adhesion of monocytes to endothelial cells and decrease levels of adhesion molecules, whereas the levels of transepithelial/endothelial electrical resistance values and the expression of vascular endothelial cadherin were increased after hydrogen-rich medium treatment. Moreover, hydrogen-rich medium could lessen the expression of ROCK, as a similar effect of its inhibitor Y-27632. In addition, hydrogen-rich medium could also inhibit adhesion of polymorphonuclear neutrophils to endothelial cells. In conclusion, hydrogen-rich medium could regulate adhesion of monocytes/polymorphonuclear neutrophils to endothelial cells and vascular endothelial permeability, and this effect might be related to the decreased expression of ROCK protein.

  12. Regulation of thrombosis and vascular function by protein methionine oxidation.

    PubMed

    Gu, Sean X; Stevens, Jeff W; Lentz, Steven R

    2015-06-18

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. © 2015 by The American Society of Hematology.

  13. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE PAGES

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; ...

    2015-04-01

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  14. Extracellular Matrix-Inspired Growth Factor Delivery Systems for Skin Wound Healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briquez, Priscilla S.; Hubbell, Jeffrey A.; Martino, Mikaël M.

    2015-08-01

    Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localizationmore » of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  15. Alteration of Developmental and Pathological Retinal Angiogenesis in angptl4-deficient Mice*

    PubMed Central

    Perdiguero, Elisa Gomez; Galaup, Ariane; Durand, Mélanie; Teillon, Jérémie; Philippe, Josette; Valenzuela, David M.; Murphy, Andrew J.; Yancopoulos, George D.; Thurston, Gavin; Germain, Stéphane

    2011-01-01

    Proper vessel maturation, remodeling of endothelial junctions, and recruitment of perivascular cells is crucial for establishing and maintaining vessel functions. In proliferative retinopathies, hypoxia-induced angiogenesis is associated with disruption of the vascular barrier, edema, and vision loss. Therefore, identifying factors that regulate vascular maturation is critical to target pathological angiogenesis. Given the conflicting role of angiopoietin-like-4 (ANGPTL4) reported in the current literature using gain of function systems both in vitro and in vivo, the goal of this study was to characterize angiogenesis, focusing on perinatal retinal vascularization and pathological circumstances in angpl4-deficient mice. We report altered organization of endothelial junctions and pericyte coverage, both leading to impaired angiogenesis and increased vascular leakage that were eventually caught up, suggesting a delay in vessel maturation. In a model of oxygen-induced retinopathy, pathological neovascularization, which results from tissue hypoxia, was also strongly inhibited in angptl4-deficient mice. This study therefore shows that ANGPTL4 tunes endothelial cell junction organization and pericyte coverage and controls vascular permeability and angiogenesis, both during development and in pathological conditions. PMID:21832056

  16. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  17. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela

    Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localizationmore » of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  18. Mechanosensitivity of Jagged–Notch signaling can induce a switch-type behavior in vascular homeostasis

    PubMed Central

    Stassen, Oscar M. J. A.; ter Huurne, Fleur M.; Boareto, Marcelo; Sahlgren, Cecilia M.

    2018-01-01

    Hemodynamic forces and Notch signaling are both known as key regulators of arterial remodeling and homeostasis. However, how these two factors integrate in vascular morphogenesis and homeostasis is unclear. Here, we combined experiments and modeling to evaluate the impact of the integration of mechanics and Notch signaling on vascular homeostasis. Vascular smooth muscle cells (VSMCs) were cyclically stretched on flexible membranes, as quantified via video tracking, demonstrating that the expression of Jagged1, Notch3, and target genes was down-regulated with strain. The data were incorporated in a computational framework of Notch signaling in the vascular wall, where the mechanical load was defined by the vascular geometry and blood pressure. Upon increasing wall thickness, the model predicted a switch-type behavior of the Notch signaling state with a steep transition of synthetic toward contractile VSMCs at a certain transition thickness. These thicknesses varied per investigated arterial location and were in good agreement with human anatomical data, thereby suggesting that the Notch response to hemodynamics plays an important role in the establishment of vascular homeostasis. PMID:29610298

  19. Angiomodulin is a specific marker of vasculature and regulates VEGF-A dependent neo-angiogenesis

    PubMed Central

    Hooper, Andrea T.; Shmelkov, Sergey V.; Gupta, Sunny; Milde, Till; Bambino, Kathryn; Gillen, Kelly; Goetz, Mollie; Chavala, Sai; Baljevic, Muhamed; Murphy, Andrew J.; Valenzuela, David M.; Gale, Nicholas W.; Thurston, Gavin; Yancopoulos, George D.; Vahdat, Linda; Evans, Todd; Rafii, Shahin

    2010-01-01

    Blood vessel formation is controlled by the balance between pro- and anti-angiogenic pathways. Although much is known about the factors that drive sprouting of neovessels, the factors that stabilize and pattern neovessels are undefined. The expression of angiomodulin (AGM), a VEGF-A binding protein, was increased in the vasculature of several human tumors as compared to normal tissue, raising the hypothesis that AGM may modulate VEGF-A-dependent vascular patterning. To elucidate the expression pattern of AGM, we developed an AGM knockin reporter mouse (AGMlacZ/+) wherein we demonstrate that AGM is predominantly expressed in the vasculature of developing embryos and adult organs. During physiological and pathological angiogenesis, AGM is upregulated in the angiogenic vasculature. Using the zebrafish model, we found that AGM is restricted to developing vasculature by 17-22 hpf. Blockade of AGM activity with morpholino oligomers (MO) results in prominent angiogenesis defects in vascular sprouting and remodeling. Concurrent knockdown of both AGM and VEGF-A results in synergistic angiogenesis defects. When VEGF-A is overexpressed, the compensatory induction of the VEGF-A receptor, VEGFR-2/flk-1, is blocked by the simultaneous injection of AGM MO. These results demonstrate that the vascular-specific marker AGM modulates vascular remodeling in part by temporizing the pro-angiogenic effects of VEGF-A. PMID:19542015

  20. Chloride channels in stroke

    PubMed Central

    Zhang, Ya-ping; Zhang, Hao; Duan, Dayue Darrel

    2013-01-01

    Vascular remodeling of cerebral arterioles, including proliferation, migration, and apoptosis of vascular smooth muscle cells (VSMCs), is the major cause of changes in the cross-sectional area and diameter of the arteries and sudden interruption of blood flow or hemorrhage in the brain, ie, stroke. Accumulating evidence strongly supports an important role for chloride (Cl−) channels in vascular remodeling and stroke. At least three Cl− channel genes are expressed in VSMCs: 1) the TMEM16A (or Ano1), which may encode the calcium-activated Cl− channels (CACCs); 2) the CLC-3 Cl− channel and Cl−/H+ antiporter, which is closely related to the volume-regulated Cl− channels (VRCCs); and 3) the cystic fibrosis transmembrane conductance regulator (CFTR), which encodes the PKA- and PKC-activated Cl− channels. Activation of the CACCs by agonist-induced increase in intracellular Ca2+ causes membrane depolarization, vasoconstriction, and inhibition of VSMC proliferation. Activation of VRCCs by cell volume increase or membrane stretch promotes the production of reactive oxygen species, induces proliferation and inhibits apoptosis of VSMCs. Activation of CFTR inhibits oxidative stress and may prevent the development of hypertension. In addition, Cl− current mediated by gamma-aminobutyric acid (GABA) receptor has also been implicated a role in ischemic neuron death. This review focuses on the functional roles of Cl− channels in the development of stroke and provides a perspective on the future directions for research and the potential to develop Cl− channels as new targets for the prevention and treatment of stroke. PMID:23103617

  1. Aldosterone mediates its rapid effects in vascular endothelial cells through GPER activation.

    PubMed

    Gros, Robert; Ding, Qingming; Liu, Bonan; Chorazyczewski, Jozef; Feldman, Ross D

    2013-03-01

    The importance of the rapid vascular effects of aldosterone is increasingly appreciated. Through these rapid pathways, aldosterone has been shown to regulate vascular contractility, cell growth, and apoptosis. In our most recent studies, we demonstrated the effects of aldosterone on cell growth and contractility in vascular smooth muscle cells. We showed that these effects could occur via activation of the classic mineralocorticoid receptor, as well the recently characterized G protein-coupled estrogen receptor (GPER), initially characterized as an estrogen-specific receptor. However, the mechanisms underlying aldosterone's endothelium-dependent actions are unknown. Furthermore, the ERK regulatory and proapoptotic effects of aldosterone mediated by GPER activation in cultured vascular smooth muscle cells were only apparent when GPER was reintroduced into these cells by gene transfer. Whether GPER activation via aldosterone might be an important regulator in native vascular cells has been questioned. Therefore, to determine the role of GPER in mediating aldosterone's effects on cell growth and vascular reactivity in native cells, we examined rat aortic vascular endothelial cells, a model characterized by persistent robust expression of GPER, but without detectable mineralocorticoid receptor expression. In these endothelial cells, the GPER agonist G1 mediates a rapid increase in ERK phosphorylation that is wholly GPER-dependent, paralleling the actions of aldosterone. The effects of G1 and aldosterone to stimulate ERK phosphorylation paralleled their proapoptotic and antiproliferative effects. In previous studies, we reported that aldosterone mediates a rapid endothelium-dependent vasodilatory effect, antagonistic to its direct vasoconstrictor effect in endothelium-denuded preparations. Using a rat aortic ring/organ bath preparation to determine the GPER dependence of aldosterone's endothelium-dependent vasodilator effects, we demonstrate that aldosterone inhibits phenylephrine-mediated contraction. This vasodilator effect parallels the actions of the GPER agonist G1. Furthermore, the effects of aldosterone were completely ablated by the GPER antagonist G15. These data support an important role of GPER activation in aldosterone-mediated regulation of endothelial cell growth, as well as in aldosterone's endothelium-mediated regulation of vasoreactivity.

  2. The Phosphatase PTP-PEST/PTPN12 Regulates Endothelial Cell Migration and Adhesion, but Not Permeability, and Controls Vascular Development and Embryonic Viability*

    PubMed Central

    Souza, Cleiton Martins; Davidson, Dominique; Rhee, Inmoo; Gratton, Jean-Philippe; Davis, Elaine C.; Veillette, André

    2012-01-01

    Protein-tyrosine phosphatase (PTP)-PEST (PTPN12) is ubiquitously expressed. It is essential for normal embryonic development and embryonic viability in mice. Herein we addressed the involvement of PTP-PEST in endothelial cell functions using a combination of genetic and biochemical approaches. By generating primary endothelial cells from an inducible PTP-PEST-deficient mouse, we found that PTP-PEST is not needed for endothelial cell differentiation and proliferation or for the control of endothelial cell permeability. Nevertheless, it is required for integrin-mediated adhesion and migration of endothelial cells. PTP-PEST-deficient endothelial cells displayed increased tyrosine phosphorylation of Cas, paxillin, and Pyk2, which were previously also implicated in integrin functions. By eliminating PTP-PEST in endothelial cells in vivo, we obtained evidence that expression of PTP-PEST in endothelial cells is required for normal vascular development and embryonic viability. Therefore, PTP-PEST is a key regulator of integrin-mediated functions in endothelial cells seemingly through its capacity to control Cas, paxillin, and Pyk2. This function explains at least in part the essential role of PTP-PEST in embryonic development and viability. PMID:23105101

  3. Retinal expression of Wnt-pathway mediated genes in low-density lipoprotein receptor-related protein 5 (Lrp5) knockout mice.

    PubMed

    Chen, Jing; Stahl, Andreas; Krah, Nathan M; Seaward, Molly R; Joyal, Jean-Sebastian; Juan, Aimee M; Hatton, Colman J; Aderman, Christopher M; Dennison, Roberta J; Willett, Keirnan L; Sapieha, Przemyslaw; Smith, Lois E H

    2012-01-01

    Mutations in low-density lipoprotein receptor-related protein 5 (Lrp5) impair retinal angiogenesis in patients with familial exudative vitreoretinopathy (FEVR), a rare type of blinding vascular eye disease. The defective retinal vasculature phenotype in human FEVR patients is recapitulated in Lrp5 knockout (Lrp5(-/-)) mouse with delayed and incomplete development of retinal vessels. In this study we examined gene expression changes in the developing Lrp5(-/-) mouse retina to gain insight into the molecular mechanisms that underlie the pathology of FEVR in humans. Gene expression levels were assessed with an Illumina microarray on total RNA from Lrp5(-/-) and WT retinas isolated on postnatal day (P) 8. Regulated genes were confirmed using RT-qPCR analysis. Consistent with a role in vascular development, we identified expression changes in genes involved in cell-cell adhesion, blood vessel morphogenesis and membrane transport in Lrp5(-/-) retina compared to WT retina. In particular, tight junction protein claudin5 and amino acid transporter slc38a5 are both highly down-regulated in Lrp5(-/-) retina. Similarly, several Wnt ligands including Wnt7b show decreased expression levels. Plasmalemma vesicle associated protein (plvap), an endothelial permeability marker, in contrast, is up-regulated consistent with increased permeability in Lrp5(-/-) retinas. Together these data suggest that Lrp5 regulates multiple groups of genes that influence retinal angiogenesis and may contribute to the pathogenesis of FEVR.

  4. Role of Connective Tissue Growth Factor in the Retinal Vasculature during Development and Ischemia

    PubMed Central

    Pi, Liya; Xia, Huiming; Liu, Jianwen; Shenoy, Anitha K.; Hauswirth, William W.; Scott, Edward W.

    2011-01-01

    Purpose. To investigate the function of connective tissue growth factor (CTGF), a matricellular protein of the CCN (Cyr61/CTGF/Nov) family, in retinal vasculature during development and ischemia. Methods. CTGF expression was determined using RT-PCR, immunohistochemistry, and transgenic mice carrying CTGF promoter-driven-GFP. CTGF antibody was intraocularly injected into neonates at postnatal day (P)2, and its effect on retinal angiogenesis was analyzed at P4. Transgenic animals expressing GFP regulated by the glial fibrillary acidic protein promoter were used for astrocyte visualization. Retinal vascular occlusion was introduced by rose Bengal and laser photocoagulation on chimeric mice that were reconstituted with GFP+ bone marrow cells. Vascular repair in response to VEGF-A and CTGF was analyzed. Results. A temporal increase in CTGF at both mRNA and protein levels was observed in the ganglion cell layer and inner nuclear layer during development. Endothelial cells and pericytes were identified as the main cellular sources of CTGF during retinal angiogenesis. CTGF stimulated the migration of astrocytes, retinal endothelial cells, and pericytes in vitro. Inhibition of CTGF by specific antibody affected vascular filopodial extension, growth of the superficial vascular plexus, and astrocyte remodeling. In adult mice, CTGF was prominently expressed in the perivascular cells of arteries. CTGF activated bone marrow-derived perivascular cells and promoted fibrovascular membrane formation in the laser-induced adult retinopathy model. Conclusions. CTGF is expressed in vascular beds and acts on multiple cell types. It is important for vessel growth during early retinal development and promotes the fibrovascular reaction in murine retinal ischemia after laser injury. PMID:21969300

  5. VEGFR tyrosine kinase inhibitor II (VRI) induced vascular insufficiency in zebrafish as a model for studying vascular toxicity and vascular preservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shang; Dang, Yuan Ye; Oi Lam Che, Ginny

    In ischemic disorders such as chronic wounds and myocardial ischemia, there is inadequate tissue perfusion due to vascular insufficiency. Besides, it has been observed that prolonged use of anti-angiogenic agents in cancer therapy produces cardiovascular toxicity caused by impaired vessel integrity and regeneration. In the present study, we used VEGFR tyrosine kinase inhibitor II (VRI) to chemically induce vascular insufficiency in zebrafish in vivo and human umbilical vein endothelial cells (HUVEC) in vitro to further study the mechanisms of vascular morphogenesis in these pathological conditions. We also explored the possibility of treating vascular insufficiency by enhancing vascular regeneration and repairmore » with pharmacological intervention. We observed that pretreatment of VRI induced blood vessel loss in developing zebrafish by inhibiting angiogenesis and increasing endothelial cell apoptosis, accompanied by down-regulation of kdr, kdrl and flt-1 genes expression. The VRI-induced blood vessel loss in zebrafish could be restored by post-treatment of calycosin, a cardiovascular protective isoflavone. Similarly, VRI induced cytotoxicity and apoptosis in HUVEC which could be rescued by calycosin post-treatment. Further investigation of the underlying mechanisms showed that the PI3K/AKT/Bad cell survival pathway was a main contributor of the vascular regenerative effect of calycosin. These findings indicated that the cardiovascular toxicity in anti-angiogenic therapy was mainly caused by insufficient endothelial cell survival, suggesting its essential role in vascular integrity, repair and regeneration. In addition, we showed that VRI-induced blood vessel loss in zebrafish represented a simple and effective in vivo model for studying vascular insufficiency and evaluating cancer drug vascular toxicities. - Highlights: • In vivo VRI model • Rescue effects of calycosin • Calycosin EC survival pathways.« less

  6. NORMALIZATION OF THE VASCULATURE FOR TREATMENT OF CANCER AND OTHER DISEASES

    PubMed Central

    Goel, Shom; Duda, Dan G.; Xu, Lei; Munn, Lance L.; Boucher, Yves; Fukumura, Dai; Jain, Rakesh K.

    2012-01-01

    New vessel formation (angiogenesis) is an essential physiological process for embryologic development, normal growth, and tissue repair. Angiogenesis is tightly regulated at the molecular level. Dysregulation of angiogenesis occurs in various pathologies and is one of the hallmarks of cancer. The imbalance of pro- and anti-angiogenic signaling within tumors creates an abnormal vascular network that is characterized by dilated, tortuous, and hyperpermeable vessels. The physiological consequences of these vascular abnormalities include temporal and spatial heterogeneity in tumor blood flow and oxygenation and increased tumor interstitial fluid pressure. These abnormalities and the resultant microenvironment fuel tumor progression, and also lead to a reduction in the efficacy of chemotherapy, radiotherapy, and immunotherapy. With the discovery of vascular endothelial growth factor (VEGF) as a major driver of tumor angiogenesis, efforts have focused on novel therapeutics aimed at inhibiting VEGF activity, with the goal of regressing tumors by starvation. Unfortunately, clinical trials of anti-VEGF monotherapy in patients with solid tumors have been largely negative. Intriguingly, the combination of anti-VEGF therapy with conventional chemotherapy has improved survival in cancer patients compared with chemotherapy alone. These seemingly paradoxical results could be explained by a “normalization” of the tumor vasculature by anti-VEGF therapy. Preclinical studies have shown that anti-VEGF therapy changes tumor vasculature towards a more “mature” or “normal” phenotype. This “vascular normalization” is characterized by attenuation of hyperpermeability, increased vascular pericyte coverage, a more normal basement membrane, and a resultant reduction in tumor hypoxia and interstitial fluid pressure. These in turn can lead to an improvement in the metabolic profile of the tumor microenvironment, the delivery and efficacy of exogenously administered therapeutics, the efficacy of radiotherapy and of effector immune cells, and a reduction in number of metastatic cells shed by tumors into circulation in mice. These findings are consistent with data from clinical trials of anti-VEGF agents in patients with various solid tumors. More recently, genetic and pharmacological approaches have begun to unravel some other key regulators of vascular normalization such as proteins that regulate tissue oxygen sensing (PHD2) and vessel maturation (PDGFRβ, RGS5, Ang1/2, TGF-β). Here, we review the pathophysiology of tumor angiogenesis, the molecular underpinnings and functional consequences of vascular normalization, and the implications for treatment of cancer and nonmalignant diseases. PMID:21742796

  7. Hydrogen peroxide prevents vascular calcification induced ROS production by regulating Nrf-2 pathway.

    PubMed

    Zhang, Wensong; Li, Yi; Ding, Hanlu; Du, Yaqin; Wang, Li

    2016-08-01

    Although vascular calcification in end-stage renal disease (ESRD) represents a ubiquitous human health problem, effective therapies with limited side effects are still lacking, and the precise mechanisms are not fully understood. The Nrf-2/ARE pathway is a pivotal to regulate anti-oxidative responses in vascular calcification upon ESRD. Although Nrf-2 plays a crucial role in atherosclerosis, pulmonary fibrosis, and brain ischemia, the effect of Nrf-2 and oxidative stress on vascular calcification in ESRD patients is still unclear. The aim of this research was to study the protective role of hydrogen peroxide in vascular calcification and the mechanism of Nrf-2 and oxidative stress on vascular calcification. Here we used the rat vascular smooth muscle cell model of β-glycerophosphate-induced calcification resembling vascular calcification in ESRD to investigate the therapeutic effect of 0.01 mM hydrogen peroxide on vascular calcification and further explores the possible underlying mechanisms. Our current report shows the in vitro role of 0.01 mM hydrogen peroxide in protecting against intracellular ROS accumulation upon vascular calcification. Both hydrogen peroxide and sulforaphane pretreatment reduced ROS production, increased the expression of Nrf-2, and decreased the expression of Runx2 following calcification. Our study demonstrates that 0.01 mM hydrogen peroxide can effectively protect rat aortic vascular smooth muscle cells against oxidative stress by preventing vascular calcification induced ROS production through Nrf-2 pathway. These data might define an antioxidant role of hydrogen peroxide in vascular calcification upon ESRD.

  8. The Unfolded Protein Response in Retinal Vascular Diseases: Implications and Therapeutic Potential Beyond Protein Folding

    PubMed Central

    Zhang, Sarah X.; Ma, Jacey H.; Bhatta, Maulasri; Fliesler, Steven J.; Wang, Joshua J.

    2015-01-01

    Angiogenesis is a complex, step-wise process of new vessel formation that is involved in both normal embryonic development as well as postnatal pathological processes, such as cancer, cardiovascular disease, and diabetes. Aberrant blood vessel growth, also known as neovascularization, in the retina and the choroid is a major cause of vision loss in severe eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity, and central and branch retinal vein occlusion. Yet, retinal neovascularization is causally and dynamically associated with vasodegeneration, ischemia, and vascular remodeling in retinal tissues. Understanding the mechanisms of retinal neovascularization is an urgent unmet need for developing new treatments for these devastating diseases. Accumulating evidence suggests a vital role for the unfolded protein response (UPR) in regulation of angiogenesis, in part through coordinating the secretion of pro-angiogenic growth factors, such as VEGF, and modulating endothelial cell survival and activity. Herein, we summarize current research in the context of endoplasmic reticulum (ER) stress and UPR signaling in retinal angiogenesis and vascular remodeling, highlighting potential implications of targeting these stress response pathways in the prevention and treatment of retinal vascular diseases that result in visual deficits and blindness. PMID:25529848

  9. Urokinase Receptor Counteracts Vascular Smooth Muscle Cell Functional Changes Induced by Surface Topography

    PubMed Central

    Kiyan, Yulia; Kurselis, Kestutis; Kiyan, Roman; Haller, Hermann; Chichkov, Boris N.; Dumler, Inna

    2013-01-01

    Current treatments for human coronary artery disease necessitate the development of the next generations of vascular bioimplants. Recent reports provide evidence that controlling cell orientation and morphology through topographical patterning might be beneficial for bioimplants and tissue engineering scaffolds. However, a concise understanding of cellular events underlying cell-biomaterial interaction remains missing. In this study, applying methods of laser material processing, we aimed to obtain useful markers to guide in the choice of better vascular biomaterials. Our data show that topographically treated human primary vascular smooth muscle cells (VSMC) have a distinct differentiation profile. In particular, cultivation of VSMC on the microgrooved biocompatible polymer E-shell induces VSMC modulation from synthetic to contractile phenotype and directs formation and maintaining of cell-cell communication and adhesion structures. We show that the urokinase receptor (uPAR) interferes with VSMC behavior on microstructured surfaces and serves as a critical regulator of VSMC functional fate. Our findings suggest that microtopography of the E-shell polymer could be important in determining VSMC phenotype and cytoskeleton organization. They further suggest uPAR as a useful target in the development of predictive models for clinical VSMC phenotyping on functional advanced biomaterials. PMID:23843899

  10. Semaphorin 3G Provides a Repulsive Guidance Cue to Lymphatic Endothelial Cells via Neuropilin-2/PlexinD1.

    PubMed

    Liu, Xinyi; Uemura, Akiyoshi; Fukushima, Yoko; Yoshida, Yutaka; Hirashima, Masanori

    2016-11-22

    The vertebrate circulatory system is composed of closely related blood and lymphatic vessels. It has been shown that lymphatic vascular patterning is regulated by blood vessels during development, but its molecular mechanisms have not been fully elucidated. Here, we show that the artery-derived ligand semaphorin 3G (Sema3G) and the endothelial cell receptor PlexinD1 play a role in lymphatic vascular patterning. In mouse embryonic back skin, genetic inactivation of Sema3G or PlexinD1 results in abnormal artery-lymph alignment and reduced lymphatic vascular branching. Conditional ablation in mice demonstrates that PlexinD1 is primarily required in lymphatic endothelial cells (LECs). In vitro analyses show that Sema3G binds to neuropilin-2 (Nrp2), which forms a receptor complex with PlexinD1. Sema3G induces cell collapse in an Nrp2/PlexinD1-dependent manner. Our findings shed light on a molecular mechanism by which LECs are distributed away from arteries and form a branching network during lymphatic vascular development. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Adipokine CTRP6 improves PPARγ activation to alleviate angiotensin II-induced hypertension and vascular endothelial dysfunction in spontaneously hypertensive rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Liyi; Departments of Cardiology, The 451st Hospital of People's Liberation Army; Hu, Xiaojing

    Angiotensin II (AngII) is the most important component of angiotensin, which has been regarded as a major contributor to the incidence of hypertension and vascular endothelial dysfunction. The adipocytokine C1q/TNF-related protein 6 (CTRP6) was recently reported to have multiple protective effects on cardiac and cardiovascular function. However, the exact role of CTRP6 in the progression of AngII induced hypertension and vascular endothelial function remains unclear. Here, we showed that serum CTRP6 content was significantly downregulated in SHRs, accompanied by a marked increase in arterial systolic pressure and serum AngII, CRP and ET-1 content. Then, pcDNA3.1-mediated CTRP6 delivery or CTRP6 siRNAmore » was injected into SHRs. CTRP6 overexpression caused a significant decrease in AngII expression and AngII-mediated hypertension and vascular endothelial inflammation. In contrast, CTRP6 knockdown had the opposite effect to CTRP6 overexpression. Moreover, we found that CTRP6 positively regulated the activation of the ERK1/2 signaling pathway and the expression of peroxisome proliferator-activated receptor γ (PPARγ), a recently proven negative regulator of AngII, in the brain and vascular endothelium of SHRs. Finally, CTRP6 was overexpressed in endothelial cells, and caused a significant increase in PPARγ activation and suppression in AngII-mediated vascular endothelial dysfunction and apoptosis. The effect of that could be rescued by the ERK inhibitor PD98059. In contrast, silencing CTRP6 suppressed PPARγ activation and exacerbated AngII-mediated vascular endothelial dysfunction and apoptosis. In conclusion, CTRP6 improves PPARγ activation and alleviates AngII-induced hypertension and vascular endothelial dysfunction. - Highlights: • Serum CTRP6 was significantly decreased in spontaneously hypertensive rats (SHRs). • CTRP6 positively regulated the activation of the ERK1/2 signaling pathway. • CTRP6 negatively regulates PPARγ mediated Angiotensin II (AngII) expression. • CTRP6 alleviates AngII-induced hypertension and vascular endothelial dysfunction.« less

  12. Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maimaitijiang, Alimujiang; Zhuang, Xinyu; Jiang, Xiaofei

    Hyperproliferation of vascular smooth muscle cells is a pathogenic mechanism common in diabetic vascular complications and is a putatively important therapeutic target. This study investigated multiple levels of biology, including cellular and organellar changes, as well as perturbations in protein synthesis and morphology. Quantitative and qualitative analysis was utilized to assess the effect of mitochondrial dynamic changes and reactive oxygen species(ROS) levels on high-glucose-induced hyperproliferation of vascular smooth muscle cells. The data demonstrated that the mitochondrial fission inhibitor Mdivi-1 and downregulation of ROS levels both effectively inhibited the high-glucose-induced hyperproliferation of vascular smooth muscle cells. Downregulation of ROS levels playedmore » a more direct role and ROS levels were also regulated by mitochondrial dynamics. Increased ROS levels induced excessive mitochondrial fission through dynamin-related protein (Drp 1), while Mdivi-1 suppressed the sensitivity of Drp1 to ROS levels, thus inhibiting excessive mitochondrial fission under high-glucose conditions. This study is the first to propose that mitochondrial dynamic changes and ROS levels interact with each other and regulate high-glucose-induced hyperproliferation of vascular smooth muscle cells. This finding provides novel ideas in understanding the pathogenesis of diabetic vascular remodeling and intervention. - Highlights: • Mdivi-1 inhibits VSMC proliferation by lowering ROS level in high-glucose condition. • ROS may be able to induce mitochondrial fission through Drp1 regulation. • Mdivi-1 can suppress the sensitivity of Drp1 to ROS.« less

  13. YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development

    PubMed Central

    Neto, Filipa; Klaus-Bergmann, Alexandra; Ong, Yu Ting; Alt, Silvanus; Vion, Anne-Clémence; Szymborska, Anna; Carvalho, Joana R; Hollfinger, Irene; Bartels-Klein, Eireen; Franco, Claudio A

    2018-01-01

    Formation of blood vessel networks by sprouting angiogenesis is critical for tissue growth, homeostasis and regeneration. How endothelial cells arise in adequate numbers and arrange suitably to shape functional vascular networks is poorly understood. Here we show that YAP/TAZ promote stretch-induced proliferation and rearrangements of endothelial cells whilst preventing bleeding in developing vessels. Mechanistically, YAP/TAZ increase the turnover of VE-Cadherin and the formation of junction associated intermediate lamellipodia, promoting both cell migration and barrier function maintenance. This is achieved in part by lowering BMP signalling. Consequently, the loss of YAP/TAZ in the mouse leads to stunted sprouting with local aggregation as well as scarcity of endothelial cells, branching irregularities and junction defects. Forced nuclear activity of TAZ instead drives hypersprouting and vascular hyperplasia. We propose a new model in which YAP/TAZ integrate mechanical signals with BMP signaling to maintain junctional compliance and integrity whilst balancing endothelial cell rearrangements in angiogenic vessels. PMID:29400648

  14. Accessing key steps of human tumor progression in vivo by using an avian embryo model

    NASA Astrophysics Data System (ADS)

    Hagedorn, Martin; Javerzat, Sophie; Gilges, Delphine; Meyre, Aurélie; de Lafarge, Benjamin; Eichmann, Anne; Bikfalvi, Andreas

    2005-02-01

    Experimental in vivo tumor models are essential for comprehending the dynamic process of human cancer progression, identifying therapeutic targets, and evaluating antitumor drugs. However, current rodent models are limited by high costs, long experimental duration, variability, restricted accessibility to the tumor, and major ethical concerns. To avoid these shortcomings, we investigated whether tumor growth on the chick chorio-allantoic membrane after human glioblastoma cell grafting would replicate characteristics of the human disease. Avascular tumors consistently formed within 2 days, then progressed through vascular endothelial growth factor receptor 2-dependent angiogenesis, associated with hemorrhage, necrosis, and peritumoral edema. Blocking of vascular endothelial growth factor receptor 2 and platelet-derived growth factor receptor signaling pathways by using small-molecule receptor tyrosine kinase inhibitors abrogated tumor development. Gene regulation during the angiogenic switch was analyzed by oligonucleotide microarrays. Defined sample selection for gene profiling permitted identification of regulated genes whose functions are associated mainly with tumor vascularization and growth. Furthermore, expression of known tumor progression genes identified in the screen (IL-6 and cysteine-rich angiogenic inducer 61) as well as potential regulators (lumican and F-box-only 6) follow similar patterns in patient glioma. The model reliably simulates key features of human glioma growth in a few days and thus could considerably increase the speed and efficacy of research on human tumor progression and preclinical drug screening. angiogenesis | animal model alternatives | glioblastoma

  15. Ankyrin-G Inhibits Endocytosis of Cadherin Dimers.

    PubMed

    Cadwell, Chantel M; Jenkins, Paul M; Bennett, Vann; Kowalczyk, Andrew P

    2016-01-08

    Dynamic regulation of endothelial cell adhesion is central to vascular development and maintenance. Furthermore, altered endothelial adhesion is implicated in numerous diseases. Therefore, normal vascular patterning and maintenance require tight regulation of endothelial cell adhesion dynamics. However, the mechanisms that control junctional plasticity are not fully understood. Vascular endothelial cadherin (VE-cadherin) is an adhesive protein found in adherens junctions of endothelial cells. VE-cadherin mediates adhesion through trans interactions formed by its extracellular domain. Trans binding is followed by cis interactions that laterally cluster the cadherin in junctions. VE-cadherin is linked to the actin cytoskeleton through cytoplasmic interactions with β- and α-catenin, which serve to increase adhesive strength. Furthermore, p120-catenin binds to the cytoplasmic tail of cadherin and stabilizes it at the plasma membrane. Here we report that induced cis dimerization of VE-cadherin inhibits endocytosis independent of both p120 binding and trans interactions. However, we find that ankyrin-G, a protein that links membrane proteins to the spectrin-actin cytoskeleton, associates with VE-cadherin and inhibits its endocytosis. Ankyrin-G inhibits VE-cadherin endocytosis independent of p120 binding. We propose a model in which ankyrin-G associates with and inhibits the endocytosis of VE-cadherin cis dimers. Our findings support a novel mechanism for regulation of VE-cadherin endocytosis through ankyrin association with cadherin engaged in lateral interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Critical role of sphingosine-1-phosphate receptor 2 (S1PR2) in acute vascular inflammation.

    PubMed

    Zhang, Guoqi; Yang, Li; Kim, Gab Seok; Ryan, Kieran; Lu, Shulin; O'Donnell, Rebekah K; Spokes, Katherine; Shapiro, Nathan; Aird, William C; Kluk, Michael J; Yano, Kiichiro; Sanchez, Teresa

    2013-07-18

    The endothelium, as the interface between blood and all tissues, plays a critical role in inflammation. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid, highly abundant in plasma, that potently regulates endothelial responses through interaction with its receptors (S1PRs). Here, we studied the role of S1PR2 in the regulation of the proadhesion and proinflammatory phenotype of the endothelium. By using genetic approaches and a S1PR2-specific antagonist (JTE013), we found that S1PR2 plays a key role in the permeability and inflammatory responses of the vascular endothelium during endotoxemia. Experiments with bone marrow chimeras (S1pr2(+/+) → S1pr2(+/+), S1pr2(+/+) → S1pr2(-/-), and S1pr2(-/-) → S1pr2(+/+)) indicate the critical role of S1PR2 in the stromal compartment, in the regulation of vascular permeability and vascular inflammation. In vitro, JTE013 potently inhibited tumor necrosis factor α-induced endothelial inflammation. Finally, we provide detailed mechanisms on the downstream signaling of S1PR2 in vascular inflammation that include the activation of the stress-activated protein kinase pathway that, together with the Rho-kinase nuclear factor kappa B pathway (NF-kB), are required for S1PR2-mediated endothelial inflammatory responses. Taken together, our data indicate that S1PR2 is a key regulator of the proinflammatory phenotype of the endothelium and identify S1PR2 as a novel therapeutic target for vascular disorders.

  17. The function of the RNA-binding protein TEL1 in moss reveals ancient regulatory mechanisms of shoot development.

    PubMed

    Vivancos, Julien; Spinner, Lara; Mazubert, Christelle; Charlot, Florence; Paquet, Nicolas; Thareau, Vincent; Dron, Michel; Nogué, Fabien; Charon, Céline

    2012-03-01

    The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16-18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.

  18. Vascular Endothelial Cell-Specific Connective Tissue Growth Factor (CTGF) Is Necessary for Development of Chronic Hypoxia-Induced Pulmonary Hypertension.

    PubMed

    Pi, Liya; Fu, Chunhua; Lu, Yuanquing; Zhou, Junmei; Jorgensen, Marda; Shenoy, Vinayak; Lipson, Kenneth E; Scott, Edward W; Bryant, Andrew J

    2018-01-01

    Chronic hypoxia frequently complicates the care of patients with interstitial lung disease, contributing to the development of pulmonary hypertension (PH), and premature death. Connective tissue growth factor (CTGF), a matricellular protein of the Cyr61/CTGF/Nov (CCN) family, is known to exacerbate vascular remodeling within the lung. We have previously demonstrated that vascular endothelial-cell specific down-regulation of CTGF is associated with protection against the development of PH associated with hypoxia, though the mechanism for this effect is unknown. In this study, we generated a transgenic mouse line in which the Ctgf gene was floxed and deleted in vascular endothelial cells that expressed Cre recombinase under the control of VE-Cadherin promoter (eCTGF KO mice). Lack of vascular endothelial-derived CTGF protected against the development of PH secondary to chronic hypoxia, as well as in another model of bleomycin-induced pulmonary hypertension. Importantly, attenuation of PH was associated with a decrease in infiltrating inflammatory cells expressing CD11b or integrin α M (ITGAM), a known adhesion receptor for CTGF, in the lungs of hypoxia-exposed eCTGF KO mice. Moreover, these pathological changes were associated with activation of-Rho GTPase family member-cell division control protein 42 homolog (Cdc42) signaling, known to be associated with alteration in endothelial barrier function. These data indicate that endothelial-specific deletion of CTGF results in protection against development of chronic-hypoxia induced PH. This protection is conferred by both a decrease in inflammatory cell recruitment to the lung, and a reduction in lung Cdc42 activity. Based on our studies, CTGF inhibitor treatment should be investigated in patients with PH associated with chronic hypoxia secondary to chronic lung disease.

  19. Deficiency of Akt1, but not Akt2, attenuates the development of pulmonary hypertension

    PubMed Central

    Tang, Haiyang; Chen, Jiwang; Fraidenburg, Dustin R.; Song, Shanshan; Sysol, Justin R.; Drennan, Abigail R.; Offermanns, Stefan; Ye, Richard D.; Bonini, Marcelo G.; Minshall, Richard D.; Garcia, Joe G. N.; Machado, Roberto F.; Makino, Ayako

    2014-01-01

    Pulmonary vascular remodeling, mainly attributable to enhanced pulmonary arterial smooth muscle cell proliferation and migration, is a major cause for elevated pulmonary vascular resistance and pulmonary arterial pressure in patients with pulmonary hypertension. The signaling cascade through Akt, comprised of three isoforms (Akt1–3) with distinct but overlapping functions, is involved in regulating cell proliferation and migration. This study aims to investigate whether the Akt/mammalian target of rapamycin (mTOR) pathway, and particularly which Akt isoform, contributes to the development and progression of pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension (HPH). Compared with the wild-type littermates, Akt1−/− mice were protected against the development and progression of chronic HPH, whereas Akt2−/− mice did not demonstrate any significant protection against the development of HPH. Furthermore, pulmonary vascular remodeling was significantly attenuated in the Akt1−/− mice, with no significant effect noted in the Akt2−/− mice after chronic exposure to normobaric hypoxia (10% O2). Overexpression of the upstream repressor of Akt signaling, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), and conditional and inducible knockout of mTOR in smooth muscle cells were also shown to attenuate the rise in right ventricular systolic pressure and the development of right ventricular hypertrophy. In conclusion, Akt isoforms appear to have a unique function within the pulmonary vasculature, with the Akt1 isoform having a dominant role in pulmonary vascular remodeling associated with HPH. The PTEN/Akt1/mTOR signaling pathway will continue to be a critical area of study in the pathogenesis of pulmonary hypertension, and specific Akt isoforms may help specify therapeutic targets for the treatment of pulmonary hypertension. PMID:25416384

  20. SHORT-ROOT regulates vascular patterning, but not apical meristematic activity in the Arabidopsis root through cytokinin homeostasis

    PubMed Central

    Hao, Yueling; Cui, Hongchang

    2012-01-01

    SHORT-ROOT (SHR) is a key regulator of radial patterning and stem-cell renewal in the Arabidopsis root. Although SHR is expressed in the stele, its function in the vascular tissue was not recognized until recently. In shr, the protoxylem is missing due to the loss of expression of microRNA165A (miR165A) and microRNA166B (miR165B). shr is also defective in lateral root formation, but the mechanism remains unclear. To dissect the SHR developmental pathway, we recently have identified its direct targets at the genome scale by chromatin immunoprecipitation followed by microarray analysis (ChIP-chip). In further studies, we have shown that SHR regulates cytokinin homeostasis through cytokinin oxidase 3 and that this role of SHR is critical to vascular patterning in the root. In this communication we report that SHR also regulates miR165A and miR166B indirectly through its effect on cytokinin homeostasis. Although cytokinin is inhibitory to root growth, the root-apical-meristem defect in shr was not alleviated by reduction of endogenous cytokinin. These results together suggest that SHR regulates vascular patterning, but not root apical meristematic activity, through cytokinin homeostasis. PMID:22476466

  1. UAP56 is an important mediator of Angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahni, Abha; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555; Wang, Nadan

    2013-02-15

    Highlights: ► Knockdown of UAP56 inhibits Angiotensin II/PDGF induced vascular smooth muscle cell proliferation. ► UAP56 is a positive regulator of E2F transcriptional activation. ► UAP56 is present in the vessel wall of low flow carotid arteries. -- Abstract: Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reportedmore » that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease.« less

  2. Global transcriptome analysis reveals extensive gene remodeling, alternative splicing and differential transcription profiles in non-seed vascular plant Selaginella moellendorffii.

    PubMed

    Zhu, Yan; Chen, Longxian; Zhang, Chengjun; Hao, Pei; Jing, Xinyun; Li, Xuan

    2017-01-25

    Selaginella moellendorffii, a lycophyte, is a model plant to study the early evolution and development of vascular plants. As the first and only sequenced lycophyte to date, the genome of S. moellendorffii revealed many conserved genes and pathways, as well as specialized genes different from flowering plants. Despite the progress made, little is known about long noncoding RNAs (lncRNA) and the alternative splicing (AS) of coding genes in S. moellendorffii. Its coding gene models have not been fully validated with transcriptome data. Furthermore, it remains important to understand whether the regulatory mechanisms similar to flowering plants are used, and how they operate in a non-seed primitive vascular plant. RNA-sequencing (RNA-seq) was performed for three S. moellendorffii tissues, root, stem, and leaf, by constructing strand-specific RNA-seq libraries from RNA purified using RiboMinus isolation protocol. A total of 176 million reads (44 Gbp) were obtained from three tissue types, and were mapped to S. moellendorffii genome. By comparing with 22,285 existing gene models of S. moellendorffii, we identified 7930 high-confidence novel coding genes (a 35.6% increase), and for the first time reported 4422 lncRNAs in a lycophyte. Further, we refined 2461 (11.0%) of existing gene models, and identified 11,030 AS events (for 5957 coding genes) revealed for the first time for lycophytes. Tissue-specific gene expression with functional implication was analyzed, and 1031, 554, and 269 coding genes, and 174, 39, and 17 lncRNAs were identified in root, stem, and leaf tissues, respectively. The expression of critical genes for vascular development stages, i.e. formation of provascular cells, xylem specification and differentiation, and phloem specification and differentiation, was compared in S. moellendorffii tissues, indicating a less complex regulatory mechanism in lycophytes than in flowering plants. The results were further strengthened by the evolutionary trend of seven transcription factor families related to vascular development, which was observed among four representative species of seed and non-seed vascular plants, and nonvascular land and aquatic plants. The deep RNA-seq study of S. moellendorffii discovered extensive new gene contents, including novel coding genes, lncRNAs, AS events, and refined gene models. Compared to flowering vascular plants, S. moellendorffii displayed a less complexity in both gene structure, alternative splicing, and regulatory elements of vascular development. The study offered important insight into the evolution of vascular plants, and the regulation mechanism of vascular development in a non-seed plant.

  3. Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function

    PubMed Central

    Beigi, Farideh; Gonzalez, Daniel R.; Minhas, Khalid M.; Sun, Qi-An; Foster, Matthew W.; Khan, Shakil A.; Treuer, Adriana V.; Dulce, Raul A.; Harrison, Robert W.; Saraiva, Roberto M.; Premer, Courtney; Schulman, Ivonne Hernandez; Stamler, Jonathan S.; Hare, Joshua M.

    2012-01-01

    Although protein S-nitrosylation is increasingly recognized as mediating nitric oxide (NO) signaling, roles for protein denitrosylation in physiology remain unknown. Here, we show that S-nitrosoglutathione reductase (GSNOR), an enzyme that governs levels of S-nitrosylation by promoting protein denitrosylation, regulates both peripheral vascular tone and β-adrenergic agonist-stimulated cardiac contractility, previously ascribed exclusively to NO/cGMP. GSNOR-deficient mice exhibited reduced peripheral vascular tone and depressed β-adrenergic inotropic responses that were associated with impaired β-agonist–induced denitrosylation of cardiac ryanodine receptor 2 (RyR2), resulting in calcium leak. These results indicate that systemic hemodynamic responses (vascular tone and cardiac contractility), both under basal conditions and after adrenergic activation, are regulated through concerted actions of NO synthase/GSNOR and that aberrant denitrosylation impairs cardiovascular function. Our findings support the notion that dynamic S-nitrosylation/denitrosylation reactions are essential in cardiovascular regulation. PMID:22366318

  4. Aging and vascular endothelial function in humans

    PubMed Central

    SEALS, Douglas R.; JABLONSKI, Kristen L.; DONATO, Anthony J.

    2012-01-01

    Advancing age is the major risk factor for the development of CVD (cardiovascular diseases). This is attributable, in part, to the development of vascular endothelial dysfunction, as indicated by reduced peripheral artery EDD (endothelium-dependent dilation) in response to chemical [typically ACh (acetylcholine)] or mechanical (intravascular shear) stimuli. Reduced bioavailability of the endothelium-synthesized dilating molecule NO (nitric oxide) as a result of oxidative stress is the key mechanism mediating reduced EDD with aging. Vascular oxidative stress increases with age as a consequence of greater production of reactive oxygen species (e.g. superoxide) without a compensatory increase in antioxidant defences. Sources of increased superoxide production include up-regulation of the oxidant enzyme NADPH oxidase, uncoupling of the normally NO-producing enzyme, eNOS (endothelial NO synthase) (due to reduced availability of the cofactor tetrahydrobiopterin) and increased mitochondrial synthesis during oxidative phosphorylation. Increased bioactivity of the potent endothelial-derived constricting factor ET-1 (endothelin-1), reduced endothelial production of/responsiveness to dilatory prostaglandins, the development of vascular inflammation, formation of AGEs (advanced glycation end-products), an increased rate of endothelial apoptosis and reduced expression of oestrogen receptor α (in postmenopausal females) also probably contribute to impaired EDD with aging. Several lifestyle and biological factors modulate vascular endothelial function with aging, including regular aerobic exercise, dietary factors (e.g. processed compared with non-processed foods), body weight/fatness, vitamin D status, menopause/oestrogen deficiency and a number of conventional and non-conventional risk factors for CVD. Given the number of older adults now and in the future, more information is needed on effective strategies for the prevention and treatment of vascular endothelial aging. PMID:21244363

  5. The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species.

    PubMed

    Monaghan-Benson, Elizabeth; Burridge, Keith

    2009-09-18

    Vascular permeability is a complex process involving the coordinated regulation of multiple signaling pathways in the endothelial cell. It has long been documented that vascular endothelial growth factor (VEGF) greatly enhances microvascular permeability; however, the molecular mechanisms controlling VEGF-induced permeability remain unknown. Treatment of microvascular endothelial cells with VEGF led to an increase in reactive oxygen species (ROS) production. ROS are required for VEGF-induced permeability as treatment with the free radical scavenger, N-acetylcysteine, inhibited this effect. Additionally, treatment with VEGF caused ROS-dependent tyrosine phosphorylation of both vascular-endothelial (VE)-cadherin and beta-catenin. Rac1 was required for the VEGF-induced increase in permeability and adherens junction protein phosphorylation. Knockdown of Rac1 inhibited VEGF-induced ROS production consistent with Rac lying upstream of ROS in this pathway. Collectively, these data suggest that VEGF leads to a Rac-mediated generation of ROS, which, in turn, elevates the tyrosine phosphorylation of VE-cadherin and beta-catenin, ultimately regulating adherens junction integrity.

  6. Abnormalities in the Regulators of Angiogenesis in Patients with Scleroderma

    PubMed Central

    HUMMERS, LAURA K.; HALL, AMY; WIGLEY, FREDRICK M.; SIMONS, MICHAEL

    2014-01-01

    Objective To determine plasma levels of regulators of angiogenesis in patients with scleroderma and to correlate those levels with manifestations of scleroderma-related vascular disease. Methods Plasma levels of vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), fibroblast growth factor-2 (FGF-2), matrix metalloproteinase-9 (MMP-9), endostatin, pro-MMP-1, hepatocyte growth factor (HGF), placental growth factor (PlGF), and FGF-4 were examined by ELISA in a cross-sectional study of 113 patients with scleroderma and 27 healthy controls. Simple and multivariate regression models were used to look for associations between factor levels and clinical disease characteristics. Results There were marked differences in the levels of pro-angiogenic growth factors between patients with scleroderma and controls, with significant elevations of VEGF, PDGF, FGF-2, and PlGF among patients with scleroderma (p < 0.0001). Levels of MMP were also higher in scleroderma patients compared to controls (MMP-9 and pro-MMP-1) (p < 0.0001). Levels of the pro-angiogenic and anti-fibrotic factor, HGF, were noted to be lower in patients with scleroderma, but had a positive correlation with right ventricular systolic pressure (RVSP) as measured by echocardiogram (p < 0.0001) and the Raynaud Severity Score (p = 0.05). Endostatin (an anti-angiogenic factor) was notably higher in patients with scleroderma (p < 0.0001) and also correlated positively with RVSP (p = 0.023). Conclusion These results demonstrate striking abnormalities in the circulating regulators of angiogenesis in patients with scleroderma. The levels of some factors correlate with measures of vascular disease among patients with scleroderma. Dysregulated angiogenesis may play a role in the development of scleroderma vascular disease. PMID:19228661

  7. RNCR3: A regulator of diabetes mellitus-related retinal microvascular dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Kun; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing

    Retinal microvascular abnormality is an important pathological feature of diabetic retinopathy. Herein, we report the role of lncRNA-RNCR3 in diabetes mellitus-induced retinal microvascular abnormalities. We show that RNCR3 is significantly up-regulated upon high glucose stress in vivo and in vitro. RNCR3 knockdown alleviates retinal vascular dysfunction in vivo, as shown by decreased acellular capillaries, decreased vascular leakage, and reduced inflammatory response. RNCR3 knockdown decreases retinal endothelial cell proliferation, and reduces cell migration and tube formation in vitro. RNCR3 regulates endothelial cell function through RNCR3/KLF2/miR-185-5p regulatory network. RNCR3 inhibition may be a treatment option for the prevention of diabetes mellitus-induced retinal microvascular abnormalities. - Highlights:more » • RNCR3 expression is significantly up-regulated upon high glucose stress. • RNCR3 knockdown alleviates retinal vascular dysfunction in vivo. • RNCR3 regulates retinal endothelial cell function in vitro. • RNCR3 regulates retinal endothelial cell function via RNCR3/KLF2/miR-185-5p pathway.« less

  8. What determines blood vessel structure? Genetic prespecification vs. hemodynamics.

    PubMed

    Jones, Elizabeth A V; le Noble, Ferdinand; Eichmann, Anne

    2006-12-01

    Vascular network remodeling, angiogenesis, and arteriogenesis play an important role in the pathophysiology of ischemic cardiovascular diseases and cancer. Based on recent studies of vascular network development in the embryo, several novel aspects to angiogenesis have been identified as crucial to generate a functional vascular network. These aspects include specification of arterial and venous identity in vessels and network patterning. In early embryogenesis, vessel identity and positioning are genetically hardwired and involve neural guidance genes expressed in the vascular system. We demonstrated that, during later stages of embryogenesis, blood flow plays a crucial role in regulating vessel identity and network remodeling. The flow-evoked remodeling process is dynamic and involves a high degree of vessel plasticity. The open question in the field is how genetically predetermined processes in vessel identity and patterning balance with the contribution of blood flow in shaping a functional vascular architecture. Although blood flow is essential, it remains unclear to what extent flow is able to act on the developing cardiovascular system. There is significant evidence that mechanical forces created by flowing blood are biologically active within the embryo and that the level of mechanical forces and the type of flow patterns present in the embryo are able to affect gene expression. Here, we highlight the pivotal role for blood flow and physical forces in shaping the cardiovascular system.

  9. Endothelium-derived fibronectin regulates neonatal vascular morphogenesis in an autocrine fashion.

    PubMed

    Turner, Christopher J; Badu-Nkansah, Kwabena; Hynes, Richard O

    2017-11-01

    Fibronectin containing alternatively spliced EIIIA and EIIIB domains is largely absent from mature quiescent vessels in adults, but is highly expressed around blood vessels during developmental and pathological angiogenesis. The precise functions of fibronectin and its splice variants during developmental angiogenesis however remain unclear due to the presence of cardiac, somitic, mesodermal and neural defects in existing global fibronectin KO mouse models. Using a rare family of surviving EIIIA EIIIB double KO mice, as well as inducible endothelial-specific fibronectin-deficient mutant mice, we show that vascular development in the neonatal retina is regulated in an autocrine manner by endothelium-derived fibronectin, and requires both EIIIA and EIIIB domains and the RGD-binding α5 and αv integrins for its function. Exogenous sources of fibronectin do not fully substitute for the autocrine function of endothelial fibronectin, demonstrating that fibronectins from different sources contribute differentially to specific aspects of angiogenesis.

  10. Biomechanical factors as regulators of biological responses to vascular grafts.

    PubMed

    Fortunato, J E; Glagov, S; Bassiouny, H S

    1999-03-01

    Biomechanical forces have been implicated in the induction and progression of intimal hyperplastic thickening in vein, prosthetic, and endovascular bypass grafts. Graft implantation imposes significant alterations is shear and tensile forces. Such physical forces play an important role in modulating those cellular and molecular events that underlie regulation of vascular healing and adaptation. Characterization of such hemodynamic variables that induce perpetual medial vascular smooth muscle cell proliferation and migration will help in identification of those grafts at risk for occlusion and limited long-term patency and in design of therapeutic strategies that attenuate progressive intimal hyperplasia.

  11. Development of mathematical models of environmental physiology

    NASA Technical Reports Server (NTRS)

    Stolwijk, J. A. J.; Mitchell, J. W.; Nadel, E. R.

    1971-01-01

    Selected articles concerned with mathematical or simulation models of human thermoregulation are presented. The articles presented include: (1) development and use of simulation models in medicine, (2) model of cardio-vascular adjustments during exercise, (3) effective temperature scale based on simple model of human physiological regulatory response, (4) behavioral approach to thermoregulatory set point during exercise, and (5) importance of skin temperature in sweat regulation.

  12. Transient Receptor Potential Channels in the Vasculature

    PubMed Central

    Earley, Scott; Brayden, Joseph E.

    2015-01-01

    The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca2+ levels or subcellular Ca2+ signaling events. In addition to directly mediating Ca2+ entry, TRP channels influence intracellular Ca2+ dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions. PMID:25834234

  13. ALDOSTERONE DYSREGULATION WITH AGING PREDICTS RENAL-VASCULAR FUNCTION AND CARDIO-VASCULAR RISK

    PubMed Central

    Brown, Jenifer M.; Underwood, Patricia C.; Ferri, Claudio; Hopkins, Paul N.; Williams, Gordon H.; Adler, Gail K.; Vaidya, Anand

    2014-01-01

    Aging and abnormal aldosterone regulation are both associated with vascular disease. We hypothesized that aldosterone dysregulation influences the age-related risk of renal- and cardio-vascular disease. We conducted an analysis of 562 subjects who underwent detailed investigations under conditions of liberal and restricted dietary sodium intake (1,124 visits) in a Clinical Research Center. Aldosterone regulation was characterized by the ratio of maximal suppression-to-stimulation (supine serum aldosterone on a liberal sodium diet divided by the same measure on a restricted sodium diet). We previously demonstrated that higher levels of this Sodium-modulated Aldosterone Suppression-Stimulation Index (SASSI) indicate greater aldosterone dysregulation. Renal plasma flow (RPF) was determined via p-aminohippurate clearance to assess basal renal hemodynamics, and the renal-vascular responses to dietary sodium manipulation and angiotensin II (AngII) infusion. Cardiovascular risk was calculated using the Framingham Risk Score. In univariate linear regression, older age (β= -4.60, p<0.0001) and higher SASSI (β= -58.63, p=0.001) predicted lower RPF and a blunted RPF response to sodium loading and AngII infusion. We observed a continuous, independent, multivariate-adjusted interaction between age and SASSI, where the inverse relationship between SASSI and RPF was most apparent with older age (p<0.05). Higher SASSI and lower RPF independently predicted higher Framingham Risk Score (p<0.0001) and together displayed an additive effect. Aldosterone regulation and age may interact to mediate renal-vascular disease. Our findings suggest that the combination of aldosterone dysregulation and renal-vascular dysfunction could additively increase the risk of future cardiovascular outcomes; therefore, aldosterone dysregulation may represent a modifiable mechanism of age-related vascular disease. PMID:24664291

  14. A Novel Human Tissue-Engineered 3-D Functional Vascularized Cardiac Muscle Construct

    PubMed Central

    Valarmathi, Mani T.; Fuseler, John W.; Davis, Jeffrey M.; Price, Robert L.

    2017-01-01

    Organ tissue engineering, including cardiovascular tissues, has been an area of intense investigation. The major challenge to these approaches has been the inability to vascularize and perfuse the in vitro engineered tissue constructs. Attempts to provide oxygen and nutrients to the cells contained in the biomaterial constructs have had varying degrees of success. The aim of this current study is to develop a three-dimensional (3-D) model of vascularized cardiac tissue to examine the concurrent temporal and spatial regulation of cardiomyogenesis in the context of postnatal de novo vasculogenesis during stem cell cardiac regeneration. In order to achieve the above aim, we have developed an in vitro 3-D functional vascularized cardiac muscle construct using human induced pluripotent stem cell-derived embryonic cardiac myocytes (hiPSC-ECMs) and human mesenchymal stem cells (hMSCs). First, to generate the prevascularized scaffold, human cardiac microvascular endothelial cells (hCMVECs) and hMSCs were co-cultured onto a 3-D collagen cell carrier (CCC) for 7 days under vasculogenic culture conditions. In this milieu, hCMVECs/hMSCs underwent maturation, differentiation, and morphogenesis characteristic of microvessels, and formed extensive plexuses of vascular networks. Next, the hiPSC-ECMs and hMSCs were co-cultured onto this generated prevascularized CCCs for further 7 or 14 days in myogenic culture conditions. Finally, the vascular and cardiac phenotypic inductions were analyzed at the morphological, immunological, biochemical, molecular, and functional levels. Expression and functional analyses of the differentiated cells revealed neo-angiogenesis and neo-cardiomyogenesis. Thus, our unique 3-D co-culture system provided us the apt in vitro functional vascularized 3-D cardiac patch that can be utilized for cellular cardiomyoplasty. PMID:28194397

  15. Expression of vascular endothelial growth factor mRNA in non-small-cell lung carcinomas

    PubMed Central

    Fontanini, G; Boldrini, L; Chinè, S; Pisaturo, F; Basolo, F; Calcinai, A; Lucchi, M; Mussi, A; Angeletti, C A; Bevilacqua, G

    1999-01-01

    The vascular endothelial growth factor (VEGF) has been shown to be strictly related to vascular permeability and endothelial cell growth under physiological and pathological conditions. In tumour development and progression, VEGF plays a pivotal role in the development of the tumoral vascular network, and useful information in the progression of human cancer can be obtained by analysing the vascular endothelial growth factor expression of the tumours. In this study, we investigated the vascular endothelial growth factor transcript expression in non-small-cell lung carcinomas to evaluate the significance of this factor in a group of cancers in which the vascular pattern has been shown to significantly affect progression. Surgical samples of 42 patients with NSCLC were studied using reverse transcription polymerase chain reaction (PCR) analysis and in situ hybridization. Thirty-three out of 42 cases (78.6%) showed VEGF transcript expression predominantly as transcripts for the secretory forms of VEGF (isoforms 121 and 165). In situ hybridization, performed on 24 out of 42 samples, showed that the VEGF transcript expression was in several cases present in the cytoplasm both of neoplastic and normal cells, even if the VEGF mRNA was less expressed in the corresponding non-tumoral part. The VEGF 121 expression was associated with hilar and/or mediastinal nodal involvement (P = 0.02), and, taken together, the VEGF isoforms were shown to significantly influence overall (P = 0.02) and disease-free survival (P = 0.03). As a regulator of tumour angiogenesis, VEGF may represent a useful indicator of progression and poor prognosis in non-small-cell lung carcinomas. © 1999 Cancer Research Campaign PMID:9888482

  16. Light and Dark of Reactive Oxygen Species for Vascular Function: 2014 ASVB (Asian Society of Vascular Biology).

    PubMed

    Shimokawa, Hiroaki; Satoh, Kimio

    2015-05-01

    Vascular-derived hydrogen peroxide (H2O2) serves as an important signaling molecule in the cardiovascular system and contributes to vascular homeostasis. H2O2 is a second messenger, transducing the oxidative signal into biological responses through posttranslational protein modification. The balance between oxidant and antioxidant systems regulates intracellular redox status, and their imbalance causes oxidative or reductive stress, leading to cellular damage in cardiovascular systems. Excessive H2O2 deteriorates vascular functions and promotes vascular disease through multiple pathways. The RhoA/Rho-kinase pathway plays an important role in various fundamental cellular functions, including production of excessive reactive oxygen species, leading to the development of cardiovascular diseases. Rho-kinase (ROCK1 and ROCK2) belongs to the family of serine/threonine kinases and is an important downstream effector of the small GTP-binding protein RhoA. Rho-kinase plays a crucial role in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, stroke, and heart failure. Thus, Rho-kinase inhibitors may be useful for the treatment of cardiovascular diseases in humans. In this review, we will briefly discuss the roles of vascular-derived H2O2 and review the recent progress in the translational research on the therapeutic importance of the Rho-kinase pathway in cardiovascular medicine.

  17. A LATS biosensor screen identifies VEGFR as a regulator of the Hippo pathway in angiogenesis.

    PubMed

    Azad, T; Janse van Rensburg, H J; Lightbody, E D; Neveu, B; Champagne, A; Ghaffari, A; Kay, V R; Hao, Y; Shen, H; Yeung, B; Croy, B A; Guan, K L; Pouliot, F; Zhang, J; Nicol, C J B; Yang, X

    2018-03-13

    The Hippo pathway is a central regulator of tissue development and homeostasis, and has been reported to have a role during vascular development. Here we develop a bioluminescence-based biosensor that monitors the activity of the Hippo core component LATS kinase. Using this biosensor and a library of small molecule kinase inhibitors, we perform a screen for kinases modulating LATS activity and identify VEGFR as an upstream regulator of the Hippo pathway. We find that VEGFR activation by VEGF triggers PI3K/MAPK signaling, which subsequently inhibits LATS and activates the Hippo effectors YAP and TAZ. We further show that the Hippo pathway is a critical mediator of VEGF-induced angiogenesis and tumor vasculogenic mimicry. Thus, our work offers a biosensor tool for the study of the Hippo pathway and suggests a role for Hippo signaling in regulating blood vessel formation in physiological and pathological settings.

  18. Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth

    PubMed Central

    Jackson, William F.

    2017-01-01

    Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+ and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. Vascular smooth muscle cells express multiple isoforms of at least five classes of K+ channels contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression and function of large-conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells. PMID:28212804

  19. Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction

    PubMed Central

    Barton, Matthias; Baretella, Oliver; Meyer, Matthias R

    2012-01-01

    Obesity has become a serious global health issue affecting both adults and children. Recent devolopments in world demographics and declining health status of the world's population indicate that the prevalence of obesity will continue to increase in the next decades. As a disease, obesity has deleterious effects on metabolic homeostasis, and affects numerous organ systems including heart, kidney and the vascular system. Thus, obesity is now regarded as an independent risk factor for atherosclerosis-related diseases such as coronary artery disease, myocardial infarction and stroke. In the arterial system, endothelial cells are both the source and target of factors contributing to atherosclerosis. Endothelial vasoactive factors regulate vascular homeostasis under physiological conditions and maintain basal vascular tone. Obesity results in an imbalance between endothelium-derived vasoactive factors favouring vasoconstriction, cell growth and inflammatory activation. Abnormal regulation of these factors due to endothelial cell dysfunction is both a consequence and a cause of vascular disease processes. Finally, because of the similarities of the vascular pathomechanisms activated, obesity can be considered to cause accelerated, ‘premature’ vascular aging. Here, we will review some of the pathomechanisms involved in obesity-related activation of endothelium-dependent vasoconstriction, the clinical relevance of obesity-associated vascular risk, and therapeutic interventions using ‘endothelial therapy’ aiming at maintaining or restoring vascular endothelial health. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3 PMID:21557734

  20. Dietary vitamin K and therapeutic warfarin alter susceptibility to vascular calcification in experimental chronic kidney disease

    USDA-ARS?s Scientific Manuscript database

    The leading cause of death in patients with chronic kidney disease (CKD) is cardiovascular disease (CVD), with vascular calcification (VC) being a key modifier of disease progression. A local regulator of vascular calcification is vitamin K. This gamma-glutamyl carboxylase substrate is an essential ...

  1. Vascular endothelial growth factor c/vascular endothelial growth factor receptor 3 signaling regulates chemokine gradients and lymphocyte migration from tissues to lymphatics.

    PubMed

    Iwami, Daiki; Brinkman, C Colin; Bromberg, Jonathan S

    2015-04-01

    Circulation of leukocytes via blood, tissue and lymph is integral to adaptive immunity. Afferent lymphatics form CCL21 gradients to guide dendritic cells and T cells to lymphatics and then to draining lymph nodes (dLN). Vascular endothelial growth factor C and vascular endothelial growth factor receptor 3 (VEGFR-3) are the major lymphatic growth factor and receptor. We hypothesized these molecules also regulate chemokine gradients and lymphatic migration. CD4 T cells were injected into the foot pad or ear pinnae, and migration to afferent lymphatics and dLN quantified by flow cytometry or whole mount immunohistochemistry. Vascular endothelial growth factor receptor 3 or its signaling or downstream actions were modified with blocking monoclonal antibodies (mAbs) or other reagents. Anti-VEGFR-3 prevented migration of CD4 T cells into lymphatic lumen and significantly decreased the number that migrated to dLN. Anti-VEGFR-3 abolished CCL21 gradients around lymphatics, although CCL21 production was not inhibited. Heparan sulfate (HS), critical to establish CCL21 gradients, was down-regulated around lymphatics by anti-VEGFR-3 and this was dependent on heparanase-mediated degradation. Moreover, a Phosphoinositide 3-kinase (PI3K)α inhibitor disrupted HS and CCL21 gradients, whereas a PI3K activator prevented the effects of anti-VEGFR-3. During contact hypersensitivity, VEGFR-3, CCL21, and HS expression were all attenuated, and anti-heparanase or PI3K activator reversed these effects. Vascular endothelial growth factor C/VEGFR-3 signaling through PI3Kα regulates the activity of heparanase, which modifies HS and CCL21 gradients around lymphatics. The functional and physical linkages of these molecules regulate lymphatic migration from tissues to dLN. These represent new therapeutic targets to influence immunity and inflammation.

  2. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease

    PubMed Central

    Simon, Matthew J.; Iliff, Jeffrey J.

    2015-01-01

    Cerebrospinal fluid (CSF) circulation and turnover provides a sink for the elimination of solutes from the brain interstitium, serving an important homeostatic role for the function of the central nervous system. Disruption of normal CSF circulation and turnover is believed to contribute to the development of many diseases, including neurodegenerative conditions such as Alzheimer’s disease, ischemic and traumatic brain injury, and neuroinflammatory conditions such as multiple sclerosis. Recent insights into CSF biology suggesting that CSF and interstitial fluid exchange along a brain-wide network of perivascular spaces termed the ‘glymphatic’ system suggest that CSF circulation may interact intimately with glial and vascular function to regulate basic aspects of brain function. Dysfunction within this glial vascular network, which is a feature of the aging and injured brain, is a potentially critical link between brain injury, neuroinflammation and the development of chronic neurodegeneration. Ongoing research within this field may provide a powerful new framework for understanding the common links between neurodegenerative, neurovascular and neuroinflammatory disease, in addition to providing potentially novel therapeutic targets for these conditions. PMID:26499397

  3. Effects of noise on vascular function, oxidative stress, and inflammation: mechanistic insight from studies in mice

    PubMed Central

    Münzel, Thomas; Daiber, Andreas; Steven, Sebastian; Tran, Lan P.; Ullmann, Elisabeth; Kossmann, Sabine; Schmidt, Frank P.; Oelze, Matthias; Xia, Ning; Li, Huige; Pinto, Antonio; Wild, Philipp; Pies, Kai; Schmidt, Erwin R.; Rapp, Steffen; Kröller-Schön, Swenja

    2017-01-01

    Abstract Aims Epidemiological studies indicate that traffic noise increases the incidence of coronary artery disease, hypertension and stroke. The underlying mechanisms remain largely unknown. Field studies with nighttime noise exposure demonstrate that aircraft noise leads to vascular dysfunction, which is markedly improved by vitamin C, suggesting a key role of oxidative stress in causing this phenomenon. Methods and results We developed a novel animal model to study the vascular consequences of aircraft noise exposure. Peak sound levels of 85 and mean sound level of 72 dBA applied by loudspeakers for 4 days caused an increase in systolic blood pressure, plasma noradrenaline and angiotensin II levels and induced endothelial dysfunction. Noise increased eNOS expression but reduced vascular NO levels because of eNOS uncoupling. Noise increased circulating levels of nitrotyrosine, interleukine-6 and vascular expression of the NADPH oxidase subunit Nox2, nitrotyrosine-positive proteins and of endothelin-1. FACS analysis demonstrated an increase in infiltrated natural killer-cells and neutrophils into the vasculature. Equal mean sound pressure levels of white noise for 4 days did not induce these changes. Comparative Illumina sequencing of transcriptomes of aortic tissues from aircraft noise-treated animals displayed significant changes of genes in part responsible for the regulation of vascular function, vascular remodelling, and cell death. Conclusion We established a novel and unique aircraft noise stress model with increased blood pressure and vascular dysfunction associated with oxidative stress. This animal model enables future studies of molecular mechanisms, mitigation strategies, and pharmacological interventions to protect from noise-induced vascular damage. PMID:28329261

  4. Large-Scale Proteome Comparative Analysis of Developing Rhizomes of the Ancient Vascular Plant Equisetum Hyemale

    PubMed Central

    Balbuena, Tiago Santana; He, Ruifeng; Salvato, Fernanda; Gang, David R.; Thelen, Jay J.

    2012-01-01

    Horsetail (Equisetum hyemale) is a widespread vascular plant species, whose reproduction is mainly dependent on the growth and development of the rhizomes. Due to its key evolutionary position, the identification of factors that could be involved in the existence of the rhizomatous trait may contribute to a better understanding of the role of this underground organ for the successful propagation of this and other plant species. In the present work, we characterized the proteome of E. hyemale rhizomes using a GeLC-MS spectral-counting proteomics strategy. A total of 1,911 and 1,860 non-redundant proteins were identified in the rhizomes apical tip and elongation zone, respectively. Rhizome-characteristic proteins were determined by comparisons of the developing rhizome tissues to developing roots. A total of 87 proteins were found to be up-regulated in both horsetail rhizome tissues in relation to developing roots. Hierarchical clustering indicated a vast dynamic range in the regulation of the 87 characteristic proteins and revealed, based on the regulation profile, the existence of nine major protein groups. Gene ontology analyses suggested an over-representation of the terms involved in macromolecular and protein biosynthetic processes, gene expression, and nucleotide and protein binding functions. Spatial difference analysis between the rhizome apical tip and the elongation zone revealed that only eight proteins were up-regulated in the apical tip including RNA-binding proteins and an acyl carrier protein, as well as a KH domain protein and a T-complex subunit; while only seven proteins were up-regulated in the elongation zone including phosphomannomutase, galactomannan galactosyltransferase, endoglucanase 10 and 25, and mannose-1-phosphate guanyltransferase subunits alpha and beta. This is the first large-scale characterization of the proteome of a plant rhizome. Implications of the findings were discussed in relation to other underground organs and related species. PMID:22740841

  5. The Krüppel-like factor 2 and Krüppel-like factor 4 genes interact to maintain endothelial integrity in mouse embryonic vasculogenesis

    PubMed Central

    2013-01-01

    Background Krüppel-like Factor 2 (KLF2) plays an important role in vessel maturation during embryonic development. In adult mice, KLF2 regulates expression of the tight junction protein occludin, which may allow KLF2 to maintain vascular integrity. Adult tamoxifen-inducible Krüppel-like Factor 4 (KLF4) knockout mice have thickened arterial intima following vascular injury. The role of KLF4, and the possible overlapping functions of KLF2 and KLF4, in the developing vasculature are not well-studied. Results Endothelial breaks are observed in a major vessel, the primary head vein (PHV), in KLF2-/-KLF4-/- embryos at E9.5. KLF2-/-KLF4-/- embryos die by E10.5, which is earlier than either single knockout. Gross hemorrhaging of multiple vessels may be the cause of death. E9.5 KLF2-/-KLF4+/- embryos do not exhibit gross hemorrhaging, but cross-sections display disruptions of the endothelial cell layer of the PHV, and these embryos generally also die by E10.5. Electron micrographs confirm that there are gaps in the PHV endothelial layer in E9.5 KLF2-/-KLF4-/- embryos, and show that the endothelial cells are abnormally bulbous compared to KLF2-/- and wild-type (WT). The amount of endothelial Nitric Oxide Synthase (eNOS) mRNA, which encodes an endothelial regulator, is reduced by 10-fold in E9.5 KLF2-/-KLF4-/- compared to KLF2-/- and WT embryos. VEGFR2, an eNOS inducer, and occludin, a tight junction protein, gene expression are also reduced in E9.5 KLF2-/-KLF4-/- compared to KLF2-/- and WT embryos. Conclusions This study begins to define the roles of KLF2 and KLF4 in the embryonic development of blood vessels. It indicates that the two genes interact to maintain an intact endothelial layer. KLF2 and KLF4 positively regulate the eNOS, VEGFR2 and occludin genes. Down-regulation of these genes in KLF2-/-KLF4-/- embryos may result in the observed loss of vascular integrity. PMID:24261709

  6. Hyaluronic Acid in Vascular and Immune Homeostasis during Normal Pregnancy and Preeclampsia

    PubMed Central

    Ziganshina, M. M.; Pavlovich, S. V.; Bovin, N. V.; Sukhikh, G. T.

    2016-01-01

    Preeclampsia (PE) is a multisystem pathologic state that clinically manifests itself after the 20th week of pregnancy. It is characterized by high maternal and perinatal morbidity and mortality. According to modern concepts, the impairment of trophoblast invasion into maternal spiral arteries, leading to the development of ischemia in placenta, is considered to be the major pathogenetic factor of PE development. Ischemic lesions initiate the development of a systemic inflammatory response (SIR) and endothelial dysfunction, which is the main cause of the multiple organ failure in PE. Some data has appear indicating the importance of a glycans-forming endothelial glycocalyx and extracellular matrix (ECM) for placenta morphogenesis, as well as their role in the regulation of vascular permeability and vascular tone in hypertension disorders and, in particular, PE. Since intact glycocalyx and ECM are considered to be the major factors that maintain the physiological vascular tone and adequate intercellular interactions, their value in PE pathogenesis is underestimated. This review is focused on hyaluronic acid (HA) as the key glycan providing the organization and stabilization of the ECM and glycocalyx, its distribution in tissues in the case of presence or absence of placental pathology, as well as on the regulatory function of hyaluronic acids of various molecular weights in different physiological and pathophysiological processes. The summarized data will provide a better understanding of the PE pathogenesis, with the main focus on glycopathology. PMID:27795844

  7. Endothelial Barrier and Metabolism: New Kids on the Block Regulating Bone Marrow Vascular Niches.

    PubMed

    Harjes, Ulrike; Verfaillie, Catherine; Carmeliet, Peter

    2016-05-09

    The vasculature of the bone marrow remains poorly characterized, yet crucial to maintain hematopoiesis and retain stem cells in a quiescent state. A recent study by Itkin et al. (2016) in Nature reports how vascular barrier integrity and endothelial cell metabolism regulate hematopoietic stem cell quiescence and leukocyte trafficking. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Nitric oxide (NO) in normal and hypoxic vascular regulation of the spiny dogfish, Squalus acanthias.

    PubMed

    Swenson, Kai E; Eveland, Randy L; Gladwin, Mark T; Swenson, Erik R

    2005-02-01

    Nitric oxide (NO) is a potent vasodilator in terrestrial vertebrates, but whether vascular endothelial-derived NO plays a role in vascular regulation in fish remains controversial. To explore this issue, a study was made of spiny dogfish sharks (Squalus acanthias) in normoxia and acute hypoxia (60 min exposure to seawater equilibrated with 3% oxygen) with various agents known to alter NO metabolism or availability. In normoxia, nitroprusside (a NO donor) reduced blood pressure by 20%, establishing that vascular smooth muscle responds to NO. L-arginine, the substrate for NO synthase, had no hemodynamic effect. Acetylcholine, which stimulates endothelial NO and prostaglandin production in mammals, reduced blood pressure, but also caused marked bradycardia. L-NAME, an inhibitor of all NO synthases, caused a small 10% rise in blood pressure, but cell-free hemoglobin (a potent NO scavenger and hypertensive agent in mammals) had no effect. Acute hypoxia caused a 15% fall in blood pressure, which was blocked by L-NAME and cell-free hemoglobin. Serum nitrite, a marker of NO production, rose with hypoxia, but not with L-NAME. Results suggest that NO is not an endothelial-derived vasodilator in the normoxic elasmobranch. The hypertensive effect of L-NAME may represent inhibition of NO production in the CNS and nerves regulating blood pressure. In acute hypoxia, there is a rapid up-regulation of vascular NO production that appears to be responsible for hypoxic vasodilation.

  9. [Hemodynamic phenomena in retrobulhar and eyeball vessels].

    PubMed

    Modrzejewska, Monika

    2011-01-01

    The purpose of this review was to evaluate factors connected with blood flow and indices regulating vascular diameter and some parameters influencing retrobulbar circulation such as type of vascular resistance, anatomical structure of vascular wall and vessel lumen. Neurogenic and angiogenic factors, rheological blood composition, presence of anatomical and pathological obstructions on blood flow pathway as well as degree of development of collateral circulation pathways--have influence on the volume and blood flow velocity in eyeball. There were discussed bulbar circulation hemodynamics, emphasizing the importance of perfusion pressure. The role of risk factors was underlined for pathological lesions in vessels supplying blood to eyeball and in ophthalmic artery (OA) and its collaterals, in central retinal artery (CRA) as well as posterior ciliary arteries (PCAs), and in venous system carrying away blood from eye. IN CONCLUSION--the results of many studies of retrobulbar blood flow in different types of ophthalmic diseases of the vascular etiopathogenesis indicate that registry of the mean values of blood flow parameters and vascular resistance indices parallel to measurement of blood flow spectrum in OA, CRA, PCAs arteries, might contribute much information to explain or to evaluate nature of pathological changes in retinal and choroidal circulation.

  10. Auxin Influx Carriers Control Vascular Patterning and Xylem Differentiation in Arabidopsis thaliana

    PubMed Central

    Siligato, Riccardo; Alonso, Jose M.; Swarup, Ranjan; Bennett, Malcolm J.; Mähönen, Ari Pekka; Caño-Delgado, Ana I.; Ibañes, Marta

    2015-01-01

    Auxin is an essential hormone for plant growth and development. Auxin influx carriers AUX1/LAX transport auxin into the cell, while auxin efflux carriers PIN pump it out of the cell. It is well established that efflux carriers play an important role in the shoot vascular patterning, yet the contribution of influx carriers to the shoot vasculature remains unknown. Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem. Our theoretical analysis predicts that influx carriers facilitate periodic patterning and modulate the periodicity of auxin maxima. In agreement, we observed fewer and more spaced vascular bundles in quadruple mutants plants of the auxin influx carriers aux1lax1lax2lax3. Furthermore, we show AUX1/LAX carriers promote xylem differentiation in both the shoot and the root tissues. Influx carriers increase cytoplasmic auxin signaling, and thereby differentiation. In addition to this cytoplasmic role of auxin, our computational simulations propose a role for extracellular auxin as an inhibitor of xylem differentiation. Altogether, our study shows that auxin influx carriers AUX1/LAX regulate vascular patterning and differentiation in plants. PMID:25922946

  11. Effects of Smad decoy ODN on shear stress-induced atherosclerotic ApoE-/-mouse

    PubMed Central

    An, Hyun-Jin; Lee, Woo-Ram; Kim, Kyung-Hyun; Kim, Jung-Yeon; Kim, Woon-Hae; Park, Kwan-Kyu; Youn, Sung Won

    2015-01-01

    Atherosclerosis is a complex disease which involves both genetic and environmental factors in its development and progression. Shear stress is the drag force per unit area acting on the endothelium as a result of blood flow, and it plays a critical role in plaque location and progression. TGF-β1 is often regarded to have pro-atherosclerotic effect on vascular disease. TGF-β1 downstream targets Smad, for regulating a set of genes associated with atherosclerosis. Therefore, modulation of TGF-β1 and Smad expression may be the important targets for the prevention and treatment of shear stress-induced vascular disease. However, the precise mechanism of the anti-atherosclerotic effects of novel therapeutic approach has not been elucidated by using animal models regarding the shear stress-induced vascular disease. Therefore, we designed to test whether Smad decoy ODN would prevent the development of atherosclerosis in the shear stress-induced ApoE-/-mice on a western diet. We examined the effect of cast placement on the development of atherosclerosis, and the carotid artery was harvested at the sacrifice to observe histological changes. Also, we evaluated the impact of Smad decoy ODN in the regulation of genes expression related to atherosclerosis, including TGF-β1, PAI-1, and α-SMA. Our results showed that western diet with cast placement developed atherosclerosis in ApoE-/-mouse. Also, administration of Smad decoy ODN decreases the expression of TGF-β1, PAI-1, and α-SMA. These results demonstrate the potential of Smad decoy ODN to prevent the progression of atherosclerosis in ApoE-/-mouse model with western diet and shear stress. PMID:26097583

  12. Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival.

    PubMed

    Schipani, E; Ryan, H E; Didrickson, S; Kobayashi, T; Knight, M; Johnson, R S

    2001-11-01

    Breakdown or absence of vascular oxygen delivery is a hallmark of many common human diseases, including cancer, myocardial infarction, and stroke. The chief mediator of hypoxic response in mammalian tissues is the transcription factor hypoxia-inducible factor 1 (HIF-1), and its oxygen-sensitive component HIF-1alpha. A key question surrounding HIF-1alpha and the hypoxic response is the role of this transcription factor in cells removed from a functional vascular bed; in this regard there is evidence indicating that it can act as either a survival factor or induce growth arrest and apoptosis. To study more closely how HIF-1alpha functions in hypoxia in vivo, we used tissue-specific targeting to delete HIF-1alpha in an avascular tissue: the cartilaginous growth plate of developing bone. We show here the first evidence that the developmental growth plate in mammals is hypoxic, and that this hypoxia occurs in its interior rather than at its periphery. As a result of this developmental hypoxia, cells that lack HIF-1alpha in the interior of the growth plate die. This is coupled to decreased expression of the CDK inhibitor p57, and increased levels of BrdU incorporation in HIF-1alpha null growth plates, indicating defects in HIF-1alpha-regulated growth arrest occurs in these animals. Furthermore, we find that VEGF expression in the growth plate is regulated through both HIF-1alpha-dependent and -independent mechanisms. In particular, we provide evidence that VEGF expression is up-regulated in a HIF-1alpha-independent manner in chondrocytes surrounding areas of cell death, and this in turn induces ectopic angiogenesis. Altogether, our findings have important implications for the role of hypoxic response and HIF-1alpha in development, and in cell survival in tissues challenged by interruption of vascular flow; they also illustrate the complexities of HIF-1alpha response in vivo, and they provide new insights into mechanisms of growth plate development.

  13. Vascular Endothelial Growth Factor (VEGF) and Platelet (PF-4) Factor 4 Inputs Modulate Human Microvascular Endothelial Signaling in a Three-Dimensional Matrix Migration Context*

    PubMed Central

    Hang, Ta-Chun; Tedford, Nathan C.; Reddy, Raven J.; Rimchala, Tharathorn; Wells, Alan; White, Forest M.; Kamm, Roger D.; Lauffenburger, Douglas A.

    2013-01-01

    The process of angiogenesis is under complex regulation in adult organisms, particularly as it often occurs in an inflammatory post-wound environment. As such, there are many impacting factors that will regulate the generation of new blood vessels which include not only pro-angiogenic growth factors such as vascular endothelial growth factor, but also angiostatic factors. During initial postwound hemostasis, a large initial bolus of platelet factor 4 is released into localized areas of damage before progression of wound healing toward tissue homeostasis. Because of its early presence and high concentration, the angiostatic chemokine platelet factor 4, which can induce endothelial anoikis, can strongly affect angiogenesis. In our work, we explored signaling crosstalk interactions between vascular endothelial growth factor and platelet factor 4 using phosphotyrosine-enriched mass spectrometry methods on human dermal microvascular endothelial cells cultured under conditions facilitating migratory sprouting into collagen gel matrices. We developed new methods to enable mass spectrometry-based phosphorylation analysis of primary cells cultured on collagen gels, and quantified signaling pathways over the first 48 h of treatment with vascular endothelial growth factor in the presence or absence of platelet factor 4. By observing early and late signaling dynamics in tandem with correlation network modeling, we found that platelet factor 4 has significant crosstalk with vascular endothelial growth factor by modulating cell migration and polarization pathways, centered around P38α MAPK, Src family kinases Fyn and Lyn, along with FAK. Interestingly, we found EphA2 correlational topology to strongly involve key migration-related signaling nodes after introduction of platelet factor 4, indicating an influence of the angiostatic factor on this ambiguous but generally angiogenic signal in this complex environment. PMID:24023389

  14. Hedgehog signaling in the murine melanoma microenvironment.

    PubMed

    Geng, Ling; Cuneo, Kyle C; Cooper, Michael K; Wang, Hong; Sekhar, Konjeti; Fu, Allie; Hallahan, Dennis E

    2007-01-01

    The Hedgehog intercellular signaling pathway regulates cell proliferation and differentiation. This pathway has been implicated to play a role in the pathogenesis of cancer and in embryonic blood vessel development. In the current study, Hedgehog signaling in tumor related vasculature and microenvironment was examined using human umbilical vein endothelial cells and B16F0 (murine melanoma) tumors models. Use of exogenous Sonic hedgehog (Shh) peptide significantly increased BrdU incorporation in endothelial cells in vitro by a factor of 2 (P < 0.001). The Hedgehog pathway antagonist cyclopamine effectively reduced Shh-induced proliferation to control levels. To study Hedgehog signaling in vivo a hind limb tumor model with the B16F0 cell line was used. Treatment with 25 mg/kg cyclopamine significantly attenuated BrdU incorporation in tumor cells threefold (P < 0.001), in tumor related endothelial cells threefold (P = 0.004), and delayed tumor growth by 4 days. Immunohistochemistry revealed that the Hedgehog receptor Patched was localized to the tumor stroma and that B16F0 cells expressed Shh peptide. Furthermore, mouse embryonic fibroblasts required the presence of B16F0 cells to express Patched in a co-culture assay system. These studies indicate that Shh peptide produced by melanoma cells induces Patched expression in fibroblasts. To study tumor related angiogenesis a vascular window model was used to monitor tumor vascularity. Treatment with cyclopamine significantly attenuated vascular formation by a factor of 2.5 (P < 0.001) and altered vascular morphology. Furthermore, cyclopamine reduced tumor blood vessel permeability to FITC labeled dextran while having no effect on normal blood vessels. These studies suggest that Hedgehog signaling regulates melanoma related vascular formation and function.

  15. Hindlimb heating increases vascular access of large molecules to murine tibial growth plates measured by in vivo multiphoton imaging

    PubMed Central

    Efaw, Morgan L.; Williams, Rebecca M.

    2013-01-01

    Advances in understanding the molecular regulation of longitudinal growth have led to development of novel drug therapies for growth plate disorders. Despite progress, a major unmet challenge is delivering therapeutic agents to avascular-cartilage plates. Dense extracellular matrix and lack of penetrating blood vessels create a semipermeable “barrier,” which hinders molecular transport at the vascular-cartilage interface. To overcome this obstacle, we used a hindlimb heating model to manipulate bone circulation in 5-wk-old female mice (n = 22). Temperatures represented a physiological range of normal human knee joints. We used in vivo multiphoton microscopy to quantify temperature-enhanced delivery of large molecules into tibial growth plates. We tested the hypothesis that increasing hindlimb temperature from 22°C to 34°C increases vascular access of large systemic molecules, modeled using 10, 40, and 70 kDa dextrans that approximate sizes of physiological regulators. Vascular access was quantified by vessel diameter, velocity, and dextran leakage from subperichondrial plexus vessels and accumulation in growth plate cartilage. Growth plate entry of 10 kDa dextrans increased >150% at 34°C. Entry of 40 and 70 kDa dextrans increased <50%, suggesting a size-dependent temperature enhancement. Total dextran levels in the plexus increased at 34°C, but relative leakage out of vessels was not temperature dependent. Blood velocity and vessel diameter increased 118% and 31%, respectively, at 34°C. These results demonstrate that heat enhances vascular carrying capacity and bioavailability of large molecules around growth plates, suggesting that temperature could be a noninvasive strategy for modulating delivery of therapeutics to impaired growth plates of children. PMID:24371019

  16. [Remodeling of Cardiovascular System: Causes and Consequences].

    PubMed

    Lopatina, E V; Kipenko, A V; Penniyaynen, V A; Pasatetckaia, N A; Tsyrline, V A

    2016-01-01

    Literature and our data suggest the regulatory action of a number of biologically active substances (catecholamines, cardiac glycosides, β-blockers, angiotensin-converting-enzyme inhibitor) on the growth and proliferation of heart cells. By using of organotypic tissue culture has proved that the basis of this regulation is the ability of test substances, receptor- or transducer-mediated signaling to modulate the function of Na⁺, K⁺-ATPase. There is a delay in the development of vascular smooth muscle in the late postnatal period in rats with the blockade of the sympathetic nervous system in the prenatal period. The relationship between vascular remodeling and contractile activity is described. It seems that one of the causes of high blood pressure is a remodeling of the cardiovascular system, which precedes the development of hypertension.

  17. Arterial innervation in development and disease.

    PubMed

    Eichmann, Anne; Brunet, Isabelle

    2014-09-03

    Innervation of arteries by sympathetic nerves is well known to control blood supply to organs. Recent studies have elucidated the mechanisms that regulate the development of arterial innervation and show that in addition to vascular tone, sympathetic nerves may also influence arterial maturation and growth. Understanding sympathetic arterial innervation may lead to new approaches to treat peripheral arterial disease and hypertension. Copyright © 2014, American Association for the Advancement of Science.

  18. NAMPT and NAMPT-controlled NAD Metabolism in Vascular Repair.

    PubMed

    Wang, Pei; Li, Wen-Lin; Liu, Jian-Min; Miao, Chao-Yu

    2016-06-01

    Vascular repair plays important roles in postischemic remodeling and rehabilitation in cardiovascular and cerebrovascular disease, such as stroke and myocardial infarction. Nicotinamide adenine dinucleotide (NAD), a well-known coenzyme involved in electron transport chain for generation of adenosine triphosphate, has emerged as an important controller regulating various biological signaling pathways. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for NAD biosynthesis in mammals. NAMPT may also act in a nonenzymatic manner, presumably mediated by unknown receptor(s). Rapidly accumulating data in the past decade show that NAMPT and NAMPT-controlled NAD metabolism regulate fundamental biological functions in endothelial cells, vascular smooth muscle cells, and endothelial progenitor cells. The NAD-consuming proteins, including sirtuins, poly-ADP-ribose polymerases (PARPs), and CD38, may contribute to the regulatory effects of NAMPT-NAD axis in these cells and vascular repair. This review discusses the current data regarding NAMPT and NAMPT-controlled NAD metabolism in vascular repair and the clinical potential translational application of NAMPT-related products in treatment of cardiovascular and cerebrovascular disease.

  19. Something more to say about calcium homeostasis: the role of vitamin K2 in vascular calcification and osteoporosis.

    PubMed

    Flore, R; Ponziani, F R; Di Rienzo, T A; Zocco, M A; Flex, A; Gerardino, L; Lupascu, A; Santoro, L; Santoliquido, A; Di Stasio, E; Chierici, E; Lanti, A; Tondi, P; Gasbarrini, A

    2013-09-01

    Vascular calcification and osteoporosis share similar etiopathogenetic mechanisms. Vitamin K2 deficiency could be responsible of the so called "calcium paradox", that is the lack of calcium in the bone and its storage in the vessel wall. These events may have clinically relevant consequences, such as cardiovascular accidents, and bone fractures. To review the biological function of vitamin K2 metabolism, the main factors related to its deficiency and the consequent clinical significance. Vitamin K2 is essential for the function of several proteins, involved in the maintenance of the normal structure of arterial wall, osteoarticular system, teeth, and for the regulation of cell growth. It has been demonstrated to have a pivotal role in the inhibition of vascular foci of calcification, and in the regulation of calcium deposition in the bone. Vitamin K2 deficiency is often subclinic in a large part of healthy population. This deficiency is related to the interaction of various factors, such as the reduced dietary intake, the alteration of intestinal absorption or production, with a possible role of intestinal microbiota and the increased consumption at the vessel wall. Vitamin K2 deficiency has recently been recognized as a protagonist in the development of vascular calcification and osteoporosis. Data reported so far are promising and, dietary supplementation seems a useful tool to contrast these diseases. However, large studies or solid clinical correlations regarding vitamin K2 deficiency and its pathologic consequences are needed to confirm these preliminary experiences.

  20. Trophic and neurotrophic factors in human pituitary adenomas (Review).

    PubMed

    Spoletini, Marialuisa; Taurone, Samanta; Tombolini, Mario; Minni, Antonio; Altissimi, Giancarlo; Wierzbicki, Venceslao; Giangaspero, Felice; Parnigotto, Pier Paolo; Artico, Marco; Bardella, Lia; Agostinelli, Enzo; Pastore, Francesco Saverio

    2017-10-01

    The pituitary gland is an organ that functionally connects the hypothalamus with the peripheral organs. The pituitary gland is an important regulator of body homeostasis during development, stress, and other processes. Pituitary adenomas are a group of tumors arising from the pituitary gland: they may be subdivided in functional or non-functional, depending on their hormonal activity. Some trophic and neurotrophic factors seem to play a key role in the development and maintenance of the pituitary function and in the regulation of hypothalamo-pituitary-adrenocortical axis activity. Several lines of evidence suggest that trophic and neurotrophic factors may be involved in pituitary function, thus suggesting a possible role of the trophic and neurotrophic factors in the normal development of pituitary gland and in the progression of pituitary adenomas. Additional studies might be necessary to better explain the biological role of these molecules in the development and progression of this type of tumor. In this review, in light of the available literature, data on the following neurotrophic factors are discussed: ciliary neurotrophic factor (CNTF), transforming growth factors β (TGF‑β), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), vascular endothelial growth inhibitor (VEGI), fibroblast growth factors (FGFs) and epidermal growth factor (EGF) which influence the proliferation and growth of pituitary adenomas.

  1. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation

    PubMed Central

    Kim, Yoo Hyung; Kim, Jaeryung; Park, Do Young; Bae, Hosung; Lee, Da-Hye; Kim, Kyun Hoo; Hong, Seon Pyo; Jang, Seung Pil; Kwon, Young-Guen; Lim, Dae-Sik

    2017-01-01

    Angiogenesis is a multistep process that requires coordinated migration, proliferation, and junction formation of vascular endothelial cells (ECs) to form new vessel branches in response to growth stimuli. Major intracellular signaling pathways that regulate angiogenesis have been well elucidated, but key transcriptional regulators that mediate these signaling pathways and control EC behaviors are only beginning to be understood. Here, we show that YAP/TAZ, a transcriptional coactivator that acts as an end effector of Hippo signaling, is critical for sprouting angiogenesis and vascular barrier formation and maturation. In mice, endothelial-specific deletion of Yap/Taz led to blunted-end, aneurysm-like tip ECs with fewer and dysmorphic filopodia at the vascular front, a hyper-pruned vascular network, reduced and disarranged distributions of tight and adherens junction proteins, disrupted barrier integrity, subsequent hemorrhage in growing retina and brain vessels, and reduced pathological choroidal neovascularization. Mechanistically, YAP/TAZ activates actin cytoskeleton remodeling, an important component of filopodia formation and junction assembly. Moreover, YAP/TAZ coordinates EC proliferation and metabolic activity by upregulating MYC signaling. Overall, these results show that YAP/TAZ plays multifaceted roles for EC behaviors, proliferation, junction assembly, and metabolism in sprouting angiogenesis and barrier formation and maturation and could be a potential therapeutic target for treating neovascular diseases. PMID:28805663

  2. Neem Leaf Glycoprotein Prophylaxis Transduces Immune Dependent Stop Signal for Tumor Angiogenic Switch within Tumor Microenvironment

    PubMed Central

    Banerjee, Saptak; Ghosh, Tithi; Barik, Subhasis; Das, Arnab; Ghosh, Sarbari; Bhuniya, Avishek

    2014-01-01

    We have reported that prophylactic as well as therapeutic administration of neem leaf glycoprotein (NLGP) induces significant restriction of solid tumor growth in mice. Here, we investigate whether the effect of such pretreatment (25µg/mice; weekly, 4 times) benefits regulation of tumor angiogenesis, an obligate factor for tumor progression. We show that NLGP pretreatment results in vascular normalization in melanoma and carcinoma bearing mice along with downregulation of CD31, VEGF and VEGFR2. NLGP pretreatment facilitates profound infiltration of CD8+ T cells within tumor parenchyma, which subsequently regulates VEGF-VEGFR2 signaling in CD31+ vascular endothelial cells to prevent aberrant neovascularization. Pericyte stabilization, VEGF dependent inhibition of VEC proliferation and subsequent vascular normalization are also experienced. Studies in immune compromised mice confirmed that these vascular and intratumoral changes in angiogenic profile are dependent upon active adoptive immunity particularly those mediated by CD8+ T cells. Accumulated evidences suggest that NLGP regulated immunomodulation is active in tumor growth restriction and normalization of tumor angiogenesis as well, thereby, signifying its clinical translation. PMID:25391149

  3. Neem leaf glycoprotein prophylaxis transduces immune dependent stop signal for tumor angiogenic switch within tumor microenvironment.

    PubMed

    Banerjee, Saptak; Ghosh, Tithi; Barik, Subhasis; Das, Arnab; Ghosh, Sarbari; Bhuniya, Avishek; Bose, Anamika; Baral, Rathindranath

    2014-01-01

    We have reported that prophylactic as well as therapeutic administration of neem leaf glycoprotein (NLGP) induces significant restriction of solid tumor growth in mice. Here, we investigate whether the effect of such pretreatment (25µg/mice; weekly, 4 times) benefits regulation of tumor angiogenesis, an obligate factor for tumor progression. We show that NLGP pretreatment results in vascular normalization in melanoma and carcinoma bearing mice along with downregulation of CD31, VEGF and VEGFR2. NLGP pretreatment facilitates profound infiltration of CD8+ T cells within tumor parenchyma, which subsequently regulates VEGF-VEGFR2 signaling in CD31+ vascular endothelial cells to prevent aberrant neovascularization. Pericyte stabilization, VEGF dependent inhibition of VEC proliferation and subsequent vascular normalization are also experienced. Studies in immune compromised mice confirmed that these vascular and intratumoral changes in angiogenic profile are dependent upon active adoptive immunity particularly those mediated by CD8+ T cells. Accumulated evidences suggest that NLGP regulated immunomodulation is active in tumor growth restriction and normalization of tumor angiogenesis as well, thereby, signifying its clinical translation.

  4. Immune physiology in tissue regeneration and aging, tumor growth, and regenerative medicine.

    PubMed

    Bukovsky, Antonin; Caudle, Michael R; Carson, Ray J; Gaytán, Francisco; Huleihel, Mahmoud; Kruse, Andrea; Schatten, Heide; Telleria, Carlos M

    2009-02-13

    The immune system plays an important role in immunity (immune surveillance), but also in the regulation of tissue homeostasis (immune physiology). Lessons from the female reproductive tract indicate that immune system related cells, such as intraepithelial T cells and monocyte-derived cells (MDC) in stratified epithelium, interact amongst themselves and degenerate whereas epithelial cells proliferate and differentiate. In adult ovaries, MDC and T cells are present during oocyte renewal from ovarian stem cells. Activated MDC are also associated with follicular development and atresia, and corpus luteum differentiation. Corpus luteum demise resembles rejection of a graft since it is attended by a massive influx of MDC and T cells resulting in parenchymal and vascular regression. Vascular pericytes play important roles in immune physiology, and their activities (including secretion of the Thy-1 differentiation protein) can be regulated by vascular autonomic innervation. In tumors, MDC regulate proliferation of neoplastic cells and angiogenesis. Tumor infiltrating T cells die among malignant cells. Alterations of immune physiology can result in pathology, such as autoimmune, metabolic, and degenerative diseases, but also in infertility and intrauterine growth retardation, fetal morbidity and mortality. Animal experiments indicate that modification of tissue differentiation (retardation or acceleration) during immune adaptation can cause malfunction (persistent immaturity or premature aging) of such tissue during adulthood. Thus successful stem cell therapy will depend on immune physiology in targeted tissues. From this point of view, regenerative medicine is more likely to be successful in acute rather than chronic tissue disorders.

  5. Immune physiology in tissue regeneration and aging, tumor growth, and regenerative medicine

    PubMed Central

    Bukovsky, Antonin; Caudle, Michael R.; Carson, Ray J.; Gaytán, Francisco; Huleihel, Mahmoud; Kruse, Andrea; Schatten, Heide; Telleria, Carlos M.

    2009-01-01

    The immune system plays an important role in immunity (immune surveillance), but also in the regulation of tissue homeostasis (immune physiology). Lessons from the female reproductive tract indicate that immune system related cells, such as intraepithelial T cells and monocyte-derived cells (MDC) in stratified epithelium, interact amongst themselves and degenerate whereas epithelial cells proliferate and differentiate. In adult ovaries, MDC and T cells are present during oocyte renewal from ovarian stem cells. Activated MDC are also associated with follicular development and atresia, and corpus luteum differentiation. Corpus luteum demise resembles rejection of a graft since it is attended by a massive influx of MDC and T cells resulting in parenchymal and vascular regression. Vascular pericytes play important roles in immune physiology, and their activities (including secretion of the Thy-1 differentiation protein) can be regulated by vascular autonomic innervation. In tumors, MDC regulate proliferation of neoplastic cells and angiogenesis. Tumor infiltrating T cells die among malignant cells. Alterations of immune physiology can result in pathology, such as autoimmune, metabolic, and degenerative diseases, but also in infertility and intrauterine growth retardation, fetal morbidity and mortality. Animal experiments indicate that modification of tissue differentiation (retardation or acceleration) during immune adaptation can cause malfunction (persistent immaturity or premature aging) of such tissue during adulthood. Thus successful stem cell therapy will depend on immune physiology in targeted tissues. From this point of view, regenerative medicine is more likely to be successful in acute rather than chronic tissue disorders. PMID:20195382

  6. Antagonistic Function of the RNA-binding Protein HuR and miR-200b in Post-transcriptional Regulation of Vascular Endothelial Growth Factor-A Expression and Angiogenesis*

    PubMed Central

    Chang, Sung-Hee; Lu, Yi-Chien; Li, Xi; Hsieh, Wan-Ying; Xiong, Yuquan; Ghosh, Mallika; Evans, Todd; Elemento, Olivier; Hla, Timothy

    2013-01-01

    HuR, also known as Elavl1, is an RNA-binding protein that regulates embryonic development, progenitor cell survival, and cell stress responses. The role of HuR in angiogenesis is not known. Using a myeloid-specific HuR knock-out mouse model (Elavl1Mø KO), we show that HuR expression in bone marrow-derived macrophages (BMDMs) is needed to maintain the expression of genes enriched in AU-rich elements and U-rich elements in the 3′-UTR. In addition, BMDMs from Elavl1Mø KO mice also showed alterations in expression of several miRNAs. Interestingly, computational analysis suggested that miR-200b, which is up-regulated in Elavl1Mø KO BMDMs, interacts with myeloid mRNAs very close to the HuR binding sites, suggesting competitive regulation of gene expression. One such mRNA encodes vascular endothelial growth factor (VEGF)-A, a major regulator of angiogenesis. Immunoprecipitation of RNA-protein complexes and luciferase reporter assays indicate that HuR antagonizes the suppressive activity of miR-200b, down-regulates miR-200b expression, and promotes VEGF-A expression. Indeed, Vegf-a and other angiogenic regulatory transcripts were down-regulated in Elavl1Mø KO BMDMs. Interestingly, tumor growth, angiogenesis, vascular sprouting, branching, and permeability were significantly attenuated in Elavl1Mø KO mice, suggesting that HuR-regulated myeloid-derived factors modulate tumor angiogenesis in trans. Zebrafish embryos injected with an elavl1 morpholino oligomer or miR-200b mimic showed angiogenesis defects in the subintestinal vein plexus, and elavl1 mRNA rescued the repressive effect of miR-200b. In addition, miR-200b and HuR morpholino oligomer suppressed the activity of a zVEGF 3′-UTR luciferase reporter construct. Together, these studies reveal an evolutionarily conserved post-transcriptional mechanism involving competitive interactions between HuR and miR-200b that controls angiogenesis. PMID:23223443

  7. Effects of Gingko biloba extract (EGb 761) on vascular smooth muscle cell calcification induced by β-glycerophosphate.

    PubMed

    Li, En-Gang; Tian, Jun; Xu, Zhong-Hua

    2016-01-01

    To investigate the effects of Gingko biloba extract (EGb 761) on calcification induced by β-glycerophosphate in rat aortic vascular smooth muscle cells. Rat aortic vascular smooth muscle cells were cultured with various concentrations of EGb 761 and β-glycerophosphate for 7 days. Calcium content in the cells, alkaline phosphatase activity, cell protein content, NF-κB activation, and reactive oxygen species production were assayed, respectively. The calcium depositions of vascular smooth muscle cells of the β-glycerophosphate group were significantly higher than those of the control group (p < 0.01), and were inhibited by EGb 761 in a concentration-dependent manner (p < 0.05). Data showed β-glycerophosphate induced the enhanced expression of alkaline phosphatase, up-regulated the NF-κB activity and increased reactive oxygen species production of vascular smooth muscle cells while these decreased when administrated with EGb 761(p < 0.05). EGb 761 significantly reduced deposition of calcium induced by β-glycerophosphate in rat aortic vascular smooth muscle cells. It not only reduced the deposition of calcium, but also inhibited osteogenic transdifferentiation, which may be associated with decreasing expression of alkaline phosphatase, down-regulating the NF-κB activity, and reducing reactive oxygen species production of vascular smooth muscle cells, and may have the potential to serve as a role for vascular calcification in clinical situations.

  8. [Placental gene activity of significant angiogenetic factors in the background of intrauterine growth restriction].

    PubMed

    Kovács, Péter; Rab, Attila; Szentpéteri, Imre; Joó, József Gábor; Kornya, László

    2017-04-01

    Placental vascular endothelial growth factor A (VEGF-A) gene and endoglin gene are both overexpressed in placental samples obtained from pregnancies with intrauterine growth restriction compared to normal pregnancies. In the background of these changes a mechanism can be supposed, in which the increased endoglin activity in intrauterine growth restriction (IUGR) leads to impaired placental circulation through an antioangiogenetic effect. This results in the development of placental vascular dysfunction and chronic fetal hypoxia. It is chronic hypoxia that turns on VEGF-A as a compensatory mechanism to improve fetal vascular blood supply by promoting placental blood vessel formation. Although the maternal serum placental growth factor (PlGF) level is a potential predictor for both IUGR and praeeclampsia, placental PlGF gene activity may be less of an active in the regulation of placental circulation in IUGR pregnancies during the later stages of gestation. Orv. Hetil., 2017, 158(16), 612-617.

  9. Neuronal clues to vascular guidance.

    PubMed

    Suchting, Steven; Bicknell, Roy; Eichmann, Anne

    2006-03-10

    The development of the vertebrate vascular system into a highly ordered and stereotyped network requires precise control over the branching and growth of new vessels. Recent research has highlighted the important role of genetic programs in regulating vascular patterning and in particular has established a crucial role for families of molecules previously described in controlling neuronal guidance. Like neurons, new vessels are guided along the correct path by integrating attractive and repulsive cues from the external environment. This is achieved by specialised endothelial cells at the leading tip of vessel sprouts which express receptor proteins that couple extracellular guidance signals with the cytoskeletal changes necessary to alter cell direction. Here, we review the genetic and in vitro evidence implicating four families of ligand-receptor signalling systems common to both neuronal and vessel guidance: the Ephrins and Eph receptors; Semaphorins, Neuropilins and Plexin receptors; Netrin and Unc5 receptors; and Slits and Robo receptors.

  10. Intravascular ATP and the regulation of blood flow and oxygen delivery in humans.

    PubMed

    Crecelius, Anne R; Kirby, Brett S; Dinenno, Frank A

    2015-01-01

    Regulation of vascular tone is a complex response that integrates multiple signals that allow for blood flow and oxygen supply to match oxygen demand appropriately. Here, we discuss the potential role of intravascular adenosine triphosphate (ATP) as a primary factor in these responses and put forth the hypothesis that deficient ATP release contributes to impairments in vascular control exhibited in aged and diseased populations.

  11. Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction.

    PubMed

    Barton, Matthias; Baretella, Oliver; Meyer, Matthias R

    2012-02-01

    Obesity has become a serious global health issue affecting both adults and children. Recent devolopments in world demographics and declining health status of the world's population indicate that the prevalence of obesity will continue to increase in the next decades. As a disease, obesity has deleterious effects on metabolic homeostasis, and affects numerous organ systems including heart, kidney and the vascular system. Thus, obesity is now regarded as an independent risk factor for atherosclerosis-related diseases such as coronary artery disease, myocardial infarction and stroke. In the arterial system, endothelial cells are both the source and target of factors contributing to atherosclerosis. Endothelial vasoactive factors regulate vascular homeostasis under physiological conditions and maintain basal vascular tone. Obesity results in an imbalance between endothelium-derived vasoactive factors favouring vasoconstriction, cell growth and inflammatory activation. Abnormal regulation of these factors due to endothelial cell dysfunction is both a consequence and a cause of vascular disease processes. Finally, because of the similarities of the vascular pathomechanisms activated, obesity can be considered to cause accelerated, 'premature' vascular aging. Here, we will review some of the pathomechanisms involved in obesity-related activation of endothelium-dependent vasoconstriction, the clinical relevance of obesity-associated vascular risk, and therapeutic interventions using 'endothelial therapy' aiming at maintaining or restoring vascular endothelial health. This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  12. The regulation of Jmjd3 upon the expression of NF-κB downstream inflammatory genes in LPS activated vascular endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shaoqing; Graduate School of Medicine, Nanchang University, Nanchang; Chen, Xia

    Inflammatory mediators and adhesion molecules have been implicated in a variety of diseases including atherosclerosis. As both the mediator-releasing and targeted cells, vascular endothelial cells play key role in pathological processes. NF-κB signaling regulates a cluster of inflammatory factors in LPS-activated vascular endothelial cells but the underlying mechanisms remain largely unknown. Here, we investigated the epigenetic regulation of LPS upon the expression of inflammatory mediators and adhesion molecules. We found that LPS treatment promoted jmjd3 expression, enhanced Jmjd3 nuclear accumulation in human vascular endothelial cells. In addition, LPS enhanced the demethylation of H3K27me3, a specific substrate of Jmjd3. LPS treatmentmore » recruited Jmjd3 and NF-κB to the promoter region of target genes, suggesting Jmjd3 synergizes with NF-κB to activate the expression of target genes. We further found that Jmjd3 attenuated the methylation status in promoter region of target genes, culminating in target gene expression. Our findings unveil epigenetic regulations of LPS upon NF-κB pathway and identify Jmjd3 as a critical modulator of NF-κB pathway and potential therapeutic target for NF-κB related diseases including atherosclerosis.« less

  13. What is precise pathophysiology in development of hypertension in pregnancy? Precision medicine requires precise physiology and pathophysiology.

    PubMed

    Gao, Qinqin; Tang, Jiaqi; Li, Na; Liu, Bailin; Zhang, Mengshu; Sun, Miao; Xu, Zhice

    2018-02-01

    It is widely accepted that placental ischemia is central in the evolution of hypertension in pregnancy. Many studies and reviews have targeted placental ischemia to explain mechanisms for initiating pregnancy hypertension. The placenta is rich in blood vessels, which are the basis for developing placental ischemia. However, is the physiology of placental vessels the same as that of nonplacental vessels? What is the pathophysiology of placental vessels in development of pregnancy hypertension? This review aims to provide a comprehensive summary of special features of placental vascular regulations and the pathophysiological changes linked to preeclamptic conditions. Interestingly, some popular theories or accepted concepts could be based on our limited knowledge and evidence regarding placental vascular physiology, pharmacology and pathophysiology. New views raised could offer interesting ideas for future investigation of mechanisms as well as targets for pregnancy hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells.

    PubMed

    Lachgar, S; Charveron, M; Gall, Y; Bonafe, J L

    1998-03-01

    The hair follicle dermal papilla which controls hair growth, is characterized in the anagen phase by a highly developed vascular network. We have demonstrated in a previous study that the expression of an angiogenic growth factor called vascular endothelial growth factor (VEGF) mRNA varied during the hair cycle. VEGF mRNA is strongly expressed in dermal papilla cells (DPC) in the anagen phase, but during the catagen and telogen phases. VEGF mRNA is less strongly expressed. This involvement of VEGF during the hair cycle allowed us to determine whether VEGF mRNA expression by DPC was regulated by minoxidil. In addition, the effect of minoxidil on VEGF protein synthesis in both cell extracts and DPC-conditioned medium, was investigated immunoenzymatically. Both VEGF mRNA and protein were significantly elevated in treated DPC compared with controls. DPC incubated with increasing minoxidil concentrations (0.2, 2, 6, 12 and 24 mumol/L) induced a dose-dependent expression of VEGF mRNA. Quantification of transcripts showed that DPC stimulated with 24 mumol/L minoxidil express six times more VEGF mRNA than controls. Similarly, VEGF protein production increases in cell extracts and conditioned media following minoxidil stimulation. These studies strongly support the likely involvement of minoxidil in the development of dermal papilla vascularization via a stimulation of VEGF expression, and support the hypothesis that minoxidil has a physiological role in maintaining a good vascularization of hair follicles in androgenetic alopecia.

  15. Aldosterone dysregulation with aging predicts renal vascular function and cardiovascular risk.

    PubMed

    Brown, Jenifer M; Underwood, Patricia C; Ferri, Claudio; Hopkins, Paul N; Williams, Gordon H; Adler, Gail K; Vaidya, Anand

    2014-06-01

    Aging and abnormal aldosterone regulation are both associated with vascular disease. We hypothesized that aldosterone dysregulation influences the age-related risk of renal vascular and cardiovascular disease. We conducted an analysis of 562 subjects who underwent detailed investigations under conditions of liberal and restricted dietary sodium intake (1124 visits) in the General Clinical Research Center. Aldosterone regulation was characterized by the ratio of maximal suppression to stimulation (supine serum aldosterone on a liberal sodium diet divided by the same measure on a restricted sodium diet). We previously demonstrated that higher levels of this Sodium-modulated Aldosterone Suppression-Stimulation Index (SASSI) indicate greater aldosterone dysregulation. Renal plasma flow (RPF) was determined via p-aminohippurate clearance to assess basal renal hemodynamics and the renal vascular responses to dietary sodium manipulation and angiotensin II infusion. Cardiovascular risk was calculated using the Framingham Risk Score. In univariate linear regression, older age (β=-4.60; P<0.0001) and higher SASSI (β=-58.63; P=0.001) predicted lower RPF and a blunted RPF response to sodium loading and angiotensin II infusion. We observed a continuous, independent, multivariate-adjusted interaction between age and SASSI, where the inverse relationship between SASSI and RPF was most apparent with older age (P<0.05). Higher SASSI and lower RPF independently predicted higher Framingham Risk Score (P<0.0001) and together displayed an additive effect. Aldosterone regulation and age may interact to mediate renal vascular disease. Our findings suggest that the combination of aldosterone dysregulation and renal vascular dysfunction could additively increase the risk of future cardiovascular outcomes; therefore, aldosterone dysregulation may represent a modifiable mechanism of age-related vascular disease.

  16. Antithrombotic Effects of Nur77 and Nor1 Are Mediated Through Upregulating Thrombomodulin Expression in Endothelial Cells.

    PubMed

    Yang, Ping; Wei, Xin; Zhang, Jian; Yi, Bing; Zhang, Guan-Xin; Yin, Litian; Yang, Xiao-Feng; Sun, Jianxin

    2016-02-01

    Thrombomodulin is highly expressed on the lumenal surface of vascular endothelial cells (ECs) and possesses potent anticoagulant, antifibrinolytic, and anti-inflammatory activities in the vessel wall. However, the regulation of thrombomodulin expression in ECs remains largely unknown. In this study, we characterized nuclear receptor 4A family as a novel regulator of thrombomodulin expression in vascular ECs. We demonstrated that both nuclear receptors 4A, Nur77 and Nor1, robustly increase thrombomodulin mRNA and protein levels in human vascular ECs and in mouse liver tissues after adenovirus-mediated transduction of Nur77 and Nor1 cDNAs. Moreover, Nur77 deficiency and knockdown of Nur77 and Nor1 expression markedly attenuated the basal and vascular endothelial growth factor165-stimulated thrombomodulin expression. Mechanistically, we found that Nur77 and Nor1 increase thrombomodulin expression by acting through 2 different mechanisms. We showed that Nur77 barely affects thrombomodulin promoter activity, but significantly increases thrombomodulin mRNA stability, whereas Nor1 enhances thrombomodulin expression mainly through induction of Kruppel-like factors 2 and 4 in vascular ECs. Furthermore, we demonstrated that both Nur77 and Nor1 significantly increase protein C activity and inhibit tumor necrosis factor α-induced prothrombotic effects in human ECs. Deficiency of Nur77 increases susceptibility to arterial thrombosis, whereas enhanced expression of Nur77 and Nor1 protects mice from arterial thrombus formation. Our results identified nuclear receptors 4A as novel regulators of thrombomodulin expression and function in vascular ECs and provided a proof-of-concept demonstration that targeted increasing expression of Nur77 and Nor1 in the vascular endothelium might represent a novel therapeutic approach for the treatment of thrombotic disorders. © 2015 American Heart Association, Inc.

  17. Translational control of phloem development by RNA G-quadruplex-JULGI determines plant sink strength.

    PubMed

    Cho, Hyunwoo; Cho, Hyun Seob; Nam, Hoyoung; Jo, Hunho; Yoon, Joonseon; Park, Chanyoung; Dang, Tuong Vi T; Kim, Eunah; Jeong, Jongmin; Park, Soyoung; Wallner, Eva-Sophie; Youn, Hyungjun; Park, Jongmin; Jeon, Jinseong; Ryu, Hojin; Greb, Thomas; Choi, Kyuha; Lee, Yoontae; Jang, Sung Key; Ban, Changill; Hwang, Ildoo

    2018-06-01

    The emergence of a plant vascular system was a prerequisite for the colonization of land; however, it is unclear how the photosynthate transporting system was established during plant evolution. Here, we identify a novel translational regulatory module for phloem development involving the zinc-finger protein JULGI (JUL) and its targets, the 5' untranslated regions (UTRs) of the SUPPRESSOR OF MAX2 1-LIKE4/5 (SMXL4/5) mRNAs, which is exclusively conserved in vascular plants. JUL directly binds and induces an RNA G-quadruplex in the 5' UTR of SMXL4/5, which are key promoters of phloem differentiation. We show that RNA G-quadruplex formation suppresses SMXL4/5 translation and restricts phloem differentiation. In turn, JUL deficiency promotes phloem formation and strikingly increases sink strength per seed. We propose that the translational regulation by the JUL/5' UTR G-quadruplex module is a major determinant of phloem establishment, thereby determining carbon allocation to sink tissues, and that this mechanism was a key invention during the emergence of vascular plants.

  18. Expression of Genes Involved in Drosophila Wing Morphogenesis and Vein Patterning Are Altered by Spaceflight

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2015-01-01

    Imaginal wing discs of Drosophila melanogaster (fruit fly) defined during embryogenesis ultimately result in mature wings of stereotyped (specific) venation patterning. Major regulators of wing disc development are the epidermal growth factor receptor (EGF), Notch, Hedgehog (Hh), Wingless (Wg), and Dpp signaling pathways. Highly stereotyped vascular patterning is also characteristic of tissues in other organisms flown in space such as the mouse retina and leaves of Arabidopsis thaliana. Genetic and other adaptations of vascular patterning to space environmental factors have not yet been systematically quantified, despite widespread recognition of their critical importance for terrestrial and microgravity applications. Here we report changes in gene expression with space flight related to Drosophila wing morphogenesis and vein patterning. In addition, genetically modified phenotypes of increasingly abnormal ectopic wing venation in the Drosophila wing1 were analyzed by NASA's VESsel GENeration Analysis (VESGEN) software2. Our goal is to further develop insightful vascular mappings associated with bioinformatic dimensions of genetic or other molecular phenotypes for correlation with genetic and other molecular profiling relevant to NASA's GeneLab and other Space Biology exploration initiatives.

  19. Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering.

    PubMed

    Wu, Tong; Zhang, Jialing; Wang, Yuanfei; Li, Dandan; Sun, Binbin; El-Hamshary, Hany; Yin, Meng; Mo, Xiumei

    2018-01-01

    Designing a biomimetic and functional tissue-engineered vascular graft has been urgently needed for repairing and regenerating defected vascular tissues. Utilizing a multi-layered vascular scaffold is commonly considered an effective way, because multi-layered scaffolds can easily simulate the structure and function of natural blood vessels. Herein, we developed a novel tri-layer tubular graft consisted of Poly(L-lactide-co-caprolactone)/collagen (PLCL/COL) fibers and Poly(lactide-co-glycolide)/silk fibroin (PLGA/SF) yarns via a three-step electrospinning method. The tri-layer vascular graft consisted of PLCL/COL aligned fibers in inner layer, PLGA/SF yarns in middle layer, and PLCL/COL random fibers in outer layer. Each layer possessed tensile mechanical strength and elongation, and the entire tubular structure provided tensile and compressive supports. Furthermore, the human umbilical vein endothelial cells (HUVECs) and smooth muscle cells (SMCs) proliferated well on the materials. Fluorescence staining images demonstrated that the axially aligned PLCL/COL fibers prearranged endothelium morphology in lumen and the circumferential oriented PLGA/SF yarns regulated SMCs organization along the single yarns. The outside PLCL/COL random fibers performed as the fixed layer to hold the entire tubular structure. The in vivo results showed that the tri-layer vascular graft supported cell infiltration, scaffold biodegradation and abundant collagen production after subcutaneous implantation for 10weeks, revealing the optimal biocompatibility and tissue regenerative capability of the tri-layer graft. Therefore, the specially designed tri-layer vascular graft will be beneficial to vascular reconstruction. Copyright © 2017. Published by Elsevier B.V.

  20. Can We Clinically Recognize a Vascular Depression?

    PubMed Central

    Turk, Bela R.; Gschwandtner, Michael E.; Mauerhofer, Michaela; Löffler-Stastka, Henriette

    2015-01-01

    Abstract The vascular depression (VD) hypothesis postulates that cerebrovascular disease may “predispose, precipitate, or perpetuate” a depressive syndrome in elderly patients. Clinical presentation of VD has been shown to differ to major depression in quantitative disability; however, as little research has been made toward qualitative phenomenological differences in the personality aspects of the symptom profile, clinical diagnosis remains a challenge. We attempted to identify differences in clinical presentation between depression patients (n = 50) with (n = 25) and without (n = 25) vascular disease using questionnaires to assess depression, affect regulation, object relations, aggressiveness, alexithymia, personality functioning, personality traits, and counter transference. We were able to show that patients with vascular dysfunction and depression exhibit significantly higher aggressive and auto-aggressive tendencies due to a lower tolerance threshold. These data indicate that VD is a separate clinical entity and secondly that the role of personality itself may be a component of the disease process. We propose an expanded threshold disease model incorporating personality functioning and mood changes. Such findings might also aid the development of a screening program, by serving as differential criteria, ameliorating the diagnostic procedure. PMID:25950684

  1. Down-regulation of N-deacetylase-N-sulfotransferase-1 signaling in the developing diaphragmatic vasculature of nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem

    2017-06-01

    Congenital diaphragmatic hernia (CDH) has been attributed to various developmental abnormalities of the underlying tissue components. N-deacetylase-N-sulfotransferase-1 (Ndst1) is a strongly expressed biosynthetic enzyme in endothelial cells, which has recently been identified as an important factor during diaphragmatic vascularization. Loss of endothelial Ndst1 has been demonstrated to cause angiogenic defects in the developing diaphragm and disrupt normal diaphragmatic development. Furthermore, deficiency of Ndst1 diminishes the expression of slit homolog 3 (Slit3), a known CDH-related gene that has been associated with reduced vascular density and muscle defects in the diaphragm of Slit3 -/- mice. We hypothesized that expression of Ndst1 and Slit3 is decreased in the diaphragmatic vasculature of fetal rats with nitrofen-induced CDH. Time-mated rats received either nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms were microdissected on D13, D15 and D18, and divided into control and nitrofen-exposed specimens. Gene expression levels of Ndst1 and Slit3 were assessed using qRT-PCR. Immunofluorescence-double-staining for Ndst1 and Slit3 was performed to evaluate protein expression and localization. Relative mRNA expression of Ndst1 and Slit3 was significantly decreased in pleuroperitoneal folds (D13), developing diaphragms (D15) and fully muscularized diaphragms (D18) of nitrofen-exposed fetuses compared to controls. Confocal-laser-scanning-microscopy revealed markedly diminished Ndst1 and Slit3 expression in endothelial cells within the diaphragmatic vasculature on D13, D15 and D18 compared to controls. Down-regulation of Ndst1 signaling in the developing diaphragm may impair endothelial cell migration and angiogenesis, thus leading to defective diaphragmatic vascular development and CDH. Ib. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Rice Ovate Family Protein 2 (OFP2) alters hormonal homeostasis and vasculature development.

    PubMed

    Schmitz, Aaron J; Begcy, Kevin; Sarath, Gautam; Walia, Harkamal

    2015-12-01

    OFP (Ovate Family Protein) is a transcription factor family found only in plants. In dicots, OFPs control fruit shape and secondary cell wall biosynthesis. OFPs are also thought to function through interactions with KNOX and BELL transcription factors. Here, we have functionally characterized OsOFP2, a member of the OFP subgroup associated with regulating fruit shape. OsOFP2 was found to localize to the nucleus and to the cytosol. A putative nuclear export signal was identified within the OVATE domain and was required for the localization of OsOFP2 to distinct cytosolic spots. Rice plants overexpressing OsOFP2 were reduced in height and exhibited altered leaf morphology, seed shape, and positioning of vascular bundles in stems. Transcriptome analysis indicated disruptions of genes associated with vasculature development, lignin biosynthesis, and hormone homeostasis. Reduced expression of the gibberellin biosynthesis gene GA 20-oxidase 7 coincided with lower gibberellin content in OsOFP2 overexpression lines. Also, we found that OsOFP2 was expressed in plant vasculature and determined that putative vascular development KNOX and BELL proteins interact with OsOFP2. KNOX and BELL genes are known to suppress gibberellin biosynthesis through GA20ox gene regulation and can restrict lignin biosynthesis. We propose that OsOFP2 could modulate KNOX-BELL function to control diverse aspects of development including vasculature development. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Evolution of the VEGF-regulated vascular network from a neural guidance system.

    PubMed

    Ponnambalam, Sreenivasan; Alberghina, Mario

    2011-06-01

    The vascular network is closely linked to the neural system, and an interdependence is displayed in healthy and in pathophysiological responses. How has close apposition of two such functionally different systems occurred? Here, we present a hypothesis for the evolution of the vascular network from an ancestral neural guidance system. Biological cornerstones of this hypothesis are the vascular endothelial growth factor (VEGF) protein family and cognate receptors. The primary sequences of such proteins are conserved from invertebrates, such as worms and flies that lack discernible vascular systems compared to mammals, but all these systems have sophisticated neuronal wiring involving such molecules. Ancestral VEGFs and receptors (VEGFRs) could have been used to develop and maintain the nervous system in primitive eukaryotes. During evolution, the demands of increased morphological complexity required systems for transporting molecules and cells, i.e., biological conductive tubes. We propose that the VEGF-VEGFR axis was subverted by evolution to mediate the formation of biological tubes necessary for transport of fluids, e.g., blood. Increasingly, there is evidence that aberrant VEGF-mediated responses are also linked to neuronal dysfunctions ranging from motor neuron disease, stroke, Parkinson's disease, Alzheimer's disease, ischemic brain disease, epilepsy, multiple sclerosis, and neuronal repair after injury, as well as common vascular diseases (e.g., retinal disease). Manipulation and correction of the VEGF response in different neural tissues could be an effective strategy to treat different neurological diseases.

  4. Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise.

    PubMed

    Cudmore, Robert H; Dougherty, Sarah E; Linden, David J

    2017-12-01

    The cerebral vasculature provides blood flow throughout the brain, and local changes in blood flow are regulated to match the metabolic demands of the active brain regions. This neurovascular coupling is mediated by real-time changes in vessel diameter and depends on the underlying vascular network structure. Neurovascular structure is configured during development by genetic and activity-dependent factors. In adulthood, it can be altered by experiences such as prolonged hypoxia, sensory deprivation and seizure. Here, we have sought to determine whether exercise could alter cerebral vascular structure in the adult mouse. We performed repeated in vivo two-photon imaging in the motor cortex of adult transgenic mice expressing membrane-anchored green fluorescent protein in endothelial cells (tyrosine endothelial kinase 2 receptor (Tie2)-Cre:mTmG). This strategy allows for high-resolution imaging of the vessel walls throughout the lifespan. Vascular structure, as measured by capillary branch point number and position, segment diameter and length remained stable over a time scale of months as did pericyte number and position. Furthermore, we compared the vascular structure before, during, and after periods of voluntary wheel running and found no alterations in these same parameters. In both running and control mice, we observed a low rate of capillary segment subtraction. Interestingly, these rare subtraction events preferentially remove short vascular loops.

  5. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees.

    PubMed

    Kucukoglu, Melis; Nilsson, Jeanette; Zheng, Bo; Chaabouni, Salma; Nilsson, Ove

    2017-07-01

    Plant secondary growth derives from the meristematic activity of the vascular cambium. In Arabidopsis thaliana, cell divisions in the cambium are regulated by the transcription factor WOX4, a key target of the CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR)-RELATED 41 (CLE41) signaling pathway. However, function of the WOX4-like genes in plants that are dependent on a much more prolific secondary growth, such as trees, remains unclear. Here, we investigate the role of WOX4 and CLE41 homologs for stem secondary growth in Populus trees. In Populus, PttWOX4 genes are specifically expressed in the cambial region during vegetative growth, but not after growth cessation and during dormancy, possibly involving a regulation by auxin. In PttWOX4a/b RNAi trees, primary growth was not affected whereas the width of the vascular cambium was severely reduced and secondary growth was greatly diminished. Our data show that in Populus trees, PttWOX4 genes control cell division activity in the vascular cambium, and hence growth in stem girth. This activity involves the positive regulation of PttWOX4a/b through PttCLE41-related genes. Finally, expression profiling suggests that the CLE41 signaling pathway is an evolutionarily conserved program for the regulation of vascular cambium activity between angiosperm and gymnosperm tree species. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  6. Prostaglandin E₂ regulates cellular migration via induction of vascular endothelial growth factor receptor-1 in HCA-7 human colon cancer cells.

    PubMed

    Fujino, Hiromichi; Toyomura, Kaori; Chen, Xiao-bo; Regan, John W; Murayama, Toshihiko

    2011-02-01

    An important event in the development of tumors is angiogenesis, or the formation of new blood vessels. Angiogenesis is also known to be involved in tumor cell metastasis and is dependent upon the activity of the vascular endothelial growth factor (VEGF) signaling pathway. Studies of mice in which the EP3 prostanoid receptors have been genetically deleted have shown a role for these receptors in cancer growth and angiogenesis. In the present study, human colon cancer HCA-7 cells were used as a model system to understand the potential role of EP3 receptors in tumor cell migration. We now show that stimulation of HCA-7 cells with PGE₂ enhanced the up-regulation of VEGF receptor-1 (VEGFR-1) expression by a mechanism involving EP3 receptor-mediated activation of phosphatidylinositol 3-kinase and the extracellular signal-regulated kinases. Moreover, the PGE₂ stimulated increase in VEGFR-1 expression was accompanied by an increase in the cellular migration of HCA-7 cells. Given the known involvement of VEGFR-1 in cellular migration, our results suggest that EP3 receptors may contribute to tumor cell metastasis by increasing cellular migration through the up-regulation of VEGFR-1 signaling. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Role of taurine in the vasculature: an overview of experimental and human studies

    PubMed Central

    Abebe, Worku; Mozaffari, Mahmood S

    2011-01-01

    Taurine is a sulfur-containing amino acid-like endogenous compound found in substantial amounts in mammalian tissues. It exerts a diverse array of biological effects, including cardiovascular regulation, antioxidation, modulation of ion transport, membrane stabilization, osmoregulation, modulation of neurotransmission, bile acid conjugation, hypolipidemia, antiplatelet activity and modulation of fetal development. This brief review summarizes the role of taurine in the vasculature and modulation of blood pressure, based on experimental and human studies. Oral supplementation of taurine induces antihypertensive effects in various animal models of hypertension. These effects of taurine have been shown to be both centrally and peripherally mediated. Consistent with this, taurine produces endothelium-dependent and independent relaxant effects in isolated vascular tissue preparations. Oral administration of taurine also ameliorates impairment of vascular reactivity, intimal thickening, arteriosclerosis, endothelial apoptosis, oxidative stress and inflammation, associated primarily with diabetes and, to a lesser extent with obesity, hypertension and nicotine-induced vascular adverse events. In rat aortic vascular smooth muscle cells (VSMCs), taurine acts as an antiproliferative and antioxidant agent. In endothelial cells, taurine inhibits apoptosis, inflammation, oxidative stress and cell death while increasing NO generation. Oral taurine in hypertensive human patients alleviates the symptoms of hypertension and also reverses arterial stiffness and brachial artery reactivity in type 1 diabetic patients. However, despite these favorable findings, there is a need to further establish certain aspects of the reported results and also consider addressing unresolved related issues. In addition, the molecular mechanism (s) involved in the vascular effects of taurine is largely unknown and requires further investigations. Elucidation of the mechanisms through which taurine affects the vasculature could facilitate the development of therapeutic and/or diet-based strategies to reduce the burdens of vascular diseases. PMID:22254206

  8. The impact of simulated microgravity on purinergic signaling in an endothelial and smooth muscle cell co-culture model

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Hemmersbach, Ruth; Lau, Patrick; Pansky, Andreas; Kassack, Matthias; Tobiasch, Edda

    Astronauts suffer from cardiovascular deconditioning when they are exposed to microgravity conditions during space missions. Thus, current research focuses on the identification of the underlying mechanism also with respect to therapy and countermeasures. Endothelial cells (ECs) and smooth muscle cells (SMCs) play a key role in a variety of vascular functions. Gene expression, cytoskeleton morphology and apoptosis in both, ECs and SMCs, have shown alterations under simulated and real microgravity condition. However, all these data were observed during single culturing of either ECs or SMCs under microgravity conditions, which is different from the in vivo situation. Purinergic 2 (P2) receptors bind extracellular nucleotides and can regulate the vascular tone and vascular cell proliferation, migration and apoptosis. In this study primary ECs and SMCs were obtained from bovine aorta and characterized using specific markers. Here we show for the first time that the P2-receptor expressions pattern in ECs and in SMCs is altered after 24h in simulated microgravity. Specific receptors are down- or up-regulated on the gene and protein level. In addition the supernatant of ECs during culture was used as conditioned medium for SMCs and vice visa to investigate the influence of either cell type on the other. ECs and SMCs secret cytokines which induce pathogenic proliferation and an altered migration behavior under simulated microgravity conditions. Interestingly, co-culturing with condition medium could compensate this change. In detail, P2X7 was down-regulated in ECs after 24h clinorotation but recovered to the 1 g level when cultured with conditioned medium from SMCs collected under normal gravity. In conclusion, our data indicate that the paracrine effect between ECs and SMCs is an important regulator of cell behavior, also under altered gravity conditions. P2-receptor gene and protein expression were altered during microgravity. Since several P2-receptor artificial ligands are already established as drugs, P2-receptors might be a reasonable candidate for drug development for astronaut treatment of vascular deconditioning in the future. Keywords: simulated microgravity, purinergic signaling, endothelial cells, smooth muscle cells, co-culture, clinostat

  9. Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs.

    PubMed

    Chávez Montes, Ricardo A; de Fátima Rosas-Cárdenas, Flor; De Paoli, Emanuele; Accerbi, Monica; Rymarquis, Linda A; Mahalingam, Gayathri; Marsch-Martínez, Nayelli; Meyers, Blake C; Green, Pamela J; de Folter, Stefan

    2014-04-23

    Small RNAs are pivotal regulators of gene expression that guide transcriptional and post-transcriptional silencing mechanisms in eukaryotes, including plants. Here we report a comprehensive atlas of sRNA and miRNA from 3 species of algae and 31 representative species across vascular plants, including non-model plants. We sequence and quantify sRNAs from 99 different tissues or treatments across species, resulting in a data set of over 132 million distinct sequences. Using miRBase mature sequences as a reference, we identify the miRNA sequences present in these libraries. We apply diverse profiling methods to examine critical sRNA and miRNA features, such as size distribution, tissue-specific regulation and sequence conservation between species, as well as to predict putative new miRNA sequences. We also develop database resources, computational analysis tools and a dedicated website, http://smallrna.udel.edu/. This study provides new insights on plant sRNAs and miRNAs, and a foundation for future studies.

  10. Angiopoietin receptor Tie2 is required for vein specification and maintenance via regulating COUP-TFII.

    PubMed

    Chu, Man; Li, Taotao; Shen, Bin; Cao, Xudong; Zhong, Haoyu; Zhang, Luqing; Zhou, Fei; Ma, Wenjuan; Jiang, Haijuan; Xie, Pancheng; Liu, Zhengzheng; Dong, Ningzheng; Xu, Ying; Zhao, Yun; Xu, Guoqiang; Lu, Peirong; Luo, Jincai; Wu, Qingyu; Alitalo, Kari; Koh, Gou Young; Adams, Ralf H; He, Yulong

    2016-12-22

    Mechanisms underlying the vein development remain largely unknown. Tie2 signaling mediates endothelial cell (EC) survival and vascular maturation and its activating mutations are linked to venous malformations. Here we show that vein formation are disrupted in mouse skin and mesentery when Tie2 signals are diminished by targeted deletion of Tek either ubiquitously or specifically in embryonic ECs. Postnatal Tie2 attenuation resulted in the degeneration of newly formed veins followed by the formation of haemangioma-like vascular tufts in retina and venous tortuosity. Mechanistically, Tie2 insufficiency compromised venous EC identity, as indicated by a significant decrease of COUP-TFII protein level, a key regulator in venogenesis. Consistently, angiopoietin-1 stimulation increased COUP-TFII in cultured ECs, while Tie2 knockdown or blockade of Tie2 downstream PI3K/Akt pathway reduced COUP-TFII which could be reverted by the proteasome inhibition. Together, our results imply that Tie2 is essential for venous specification and maintenance via Akt mediated stabilization of COUP-TFII.

  11. The roles of O-linked β-N-acetylglucosamine in cardiovascular physiology and disease

    PubMed Central

    2012-01-01

    More than 1,000 proteins of the nucleus, cytoplasm, and mitochondria are dynamically modified by O-linked β-N-acetylglucosamine (O-GlcNAc), an essential post-translational modification of metazoans. O-GlcNAc, which modifies Ser/Thr residues, is thought to regulate protein function in a manner analogous to protein phosphorylation and, on a subset of proteins, appears to have a reciprocal relationship with phosphorylation. Like phosphorylation, O-GlcNAc levels change dynamically in response to numerous signals including hyperglycemia and cellular injury. Recent data suggests that O-GlcNAc appears to be a key regulator of the cellular stress response, the augmentation of which is protective in models of acute vascular injury, trauma hemorrhage, and ischemia-reperfusion injury. In contrast to these studies, O-GlcNAc has also been implicated in the development of hypertension and type II diabetes, leading to vascular and cardiac dysfunction. Here we summarize the current understanding of the roles of O-GlcNAc in the heart and vasculature. PMID:22287582

  12. Adenosine signaling promotes hematopoietic stem and progenitor cell emergence

    PubMed Central

    Jing, Lili; Tamplin, Owen J.; Chen, Michael J.; Deng, Qing; Patterson, Shenia; Kim, Peter G.; Durand, Ellen M.; McNeil, Ashley; Green, Julie M.; Matsuura, Shinobu; Ablain, Julien; Brandt, Margot K.; Schlaeger, Thorsten M.; Huttenlocher, Anna; Daley, George Q.; Ravid, Katya

    2015-01-01

    Hematopoietic stem cells (HSCs) emerge from aortic endothelium via the endothelial-to-hematopoietic transition (EHT). The molecular mechanisms that initiate and regulate EHT remain poorly understood. Here, we show that adenosine signaling regulates hematopoietic stem and progenitor cell (HSPC) development in zebrafish embryos. The adenosine receptor A2b is expressed in the vascular endothelium before HSPC emergence. Elevated adenosine levels increased runx1+/cmyb+ HSPCs in the dorsal aorta, whereas blocking the adenosine pathway decreased HSPCs. Knockdown of A2b adenosine receptor disrupted scl+ hemogenic vascular endothelium and the subsequent EHT process. A2b adenosine receptor activation induced CXCL8 via cAMP–protein kinase A (PKA) and mediated hematopoiesis. We further show that adenosine increased multipotent progenitors in a mouse embryonic stem cell colony-forming assay and in embryonic day 10.5 aorta-gonad-mesonephros explants. Our results demonstrate that adenosine signaling plays an evolutionary conserved role in the first steps of HSPC formation in vertebrates. PMID:25870200

  13. WAVE2 is required for directed cell migration and cardiovascular development.

    PubMed

    Yamazaki, Daisuke; Suetsugu, Shiro; Miki, Hiroaki; Kataoka, Yuki; Nishikawa, Shin-Ichi; Fujiwara, Takashi; Yoshida, Nobuaki; Takenawa, Tadaomi

    2003-07-24

    WAVE2, a protein related to Wiskott-Aldrich syndrome protein, is crucial for Rac-induced membrane ruffling, which is important in cell motility. Cell movement is essential for morphogenesis, but it is unclear how cell movement is regulated or related to morphogenesis. Here we show the physiological functions of WAVE2 by disruption of the WAVE2 gene in mice. WAVE2 was expressed predominantly in vascular endothelial cells during embryogenesis. WAVE2-/- embryos showed haemorrhages and died at about embryonic day 10. Deficiency in WAVE2 had no significant effect on vasculogenesis, but it decreased sprouting and branching of endothelial cells from existing vessels during angiogenesis. In WAVE2-/- endothelial cells, cell polarity formed in response to vascular endothelial growth factor, but the formation of lamellipodia at leading edges and capillaries was severely impaired. These findings indicate that WAVE2-regulated actin reorganization might be required for proper cell movement and that a lack of functional WAVE2 impairs angiogenesis in vivo.

  14. Novel vascular endothelial growth factor blocker improves cellular viability and reduces hypobaric hypoxia-induced vascular leakage and oedema in rat brain.

    PubMed

    Saraswat, Deepika; Nehra, Sarita; Chaudhary, Kamal; CVS, Siva Prasad

    2015-05-01

    Vascular endothelial growth factor (VEGF) is an important cerebral angiogenic and permeability factor under hypoxia. There is a need to find effective molecules that may ameliorate hypoxia-induced cerebral oedema. In silico identification of novel candidate molecules that block VEGF-A site were identified and validated with a Ramachandran plot. The active site residues of VEGF-A were detected by Pocketfinder, CASTp, and DogSiteScorer. Based on in silico data, three VEGF-A blocker (VAB) candidate molecules (VAB1, VAB2, and VAB3) were checked for improvement in cellular viability and regulation of VEGF levels in N2a cells under hypoxia (0.5% O2 ). Additionally, the best candidate molecule's efficacy was assessed in male Sprague-Dawley rats for its ameliorative effect on cerebral oedema and vascular leakage under hypobaric hypoxia 7260 m. All experimental results were compared with the commercially available VEGF blocker sunitinib. Vascular endothelial growth factor-A blocker 1 was found most effective in increasing cellular viability and maintaining normal VEGF levels under hypoxia (0.5% oxygen) in N2a cells. Vascular endothelial growth factor-A blocker 1 effectively restored VEGF levels, decreased cerebral oedema, and reduced vascular leakage under hypobaric hypoxia when compared to sunitinib-treated rats. Vascular endothelial growth factor-A blocker 1 may be a promising candidate molecule for ameliorating hypobaric hypoxia-induced vasogenic oedema by regulating VEGF levels. © 2015 Wiley Publishing Asia Pty Ltd.

  15. Genetic Deletion of ACE2 Induces Vascular Dysfunction in C57BL/6 Mice: Role of Nitric Oxide Imbalance and Oxidative Stress.

    PubMed

    Rabelo, Luiza A; Todiras, Mihail; Nunes-Souza, Valéria; Qadri, Fatimunnisa; Szijártó, István András; Gollasch, Maik; Penninger, Josef M; Bader, Michael; Santos, Robson A; Alenina, Natalia

    2016-01-01

    Accumulating evidence indicates that angiotensin-converting enzyme 2 (ACE2) plays a critical role in cardiovascular homeostasis, and its altered expression is associated with major cardiac and vascular disorders. The aim of this study was to evaluate the regulation of vascular function and assess the vascular redox balance in ACE2-deficient (ACE2-/y) animals. Experiments were performed in 20-22 week-old C57BL/6 and ACE2-/y male mice. Evaluation of endothelium-dependent and -independent relaxation revealed an impairment of in vitro and in vivo vascular function in ACE2-/y mice. Drastic reduction in eNOS expression at both protein and mRNA levels, and a decrease in •NO concentrations were observed in aortas of ACE2-/y mice in comparison to controls. Consistently, these mice presented a lower plasma and urine nitrite concentration, confirming reduced •NO availability in ACE2-deficient animals. Lipid peroxidation was significantly increased and superoxide dismutase activity was decreased in aorta homogenates of ACE2-/y mice, indicating impaired antioxidant capacity. Taken together, our data indicate, that ACE2 regulates vascular function by modulating nitric oxide release and oxidative stress. In conclusion, we elucidate mechanisms by which ACE2 is involved in the maintenance of vascular homeostasis. Furthermore, these findings provide insights into the role of the renin-angiotensin system in both vascular and systemic redox balance.

  16. Post-translational control of nitrate reductase activity responding to light and photosynthesis evolved already in the early vascular plants.

    PubMed

    Nemie-Feyissa, Dugassa; Królicka, Adriana; Førland, Nina; Hansen, Margarita; Heidari, Behzad; Lillo, Cathrine

    2013-05-01

    Regulation of nitrate reductase (NR) by reversible phosphorylation at a conserved motif is well established in higher plants, and enables regulation of NR in response to rapid fluctuations in light intensity. This regulation is not conserved in algae NR, and we wished to test the evolutionary origin of the regulatory mechanism by physiological examination of ancient land plants. Especially a member of the lycophytes is of interest since their NR is candidate for regulation by reversible phosphorylation based on sequence analysis. We compared Selaginella kraussiana, a member of the lycophytes and earliest vascular plants, with the angiosperm Arabidopsis thaliana, and also tested the moss Physcomitrella patens. Interestingly, optimization of assay conditions revealed that S. kraussiana NR used NADH as an electron donor like A. thaliana, whereas P. patens NR activity depended on NADPH. Examination of light/darkness effects showed that S. kraussiana NR was rapidly regulated similar to A. thaliana NR when a differential (Mg(2+) contra EDTA) assay was used to reveal activity state of NR. This implies that already existing NR enzyme was post-translationally activated by light in both species. Light had a positive effect also on de novo synthesis of NR in S. kraussiana, which could be shown after the plants had been exposed to a prolonged dark period (7 days). Daily variations in NR activity were mainly caused by post-translational modifications. As for angiosperms, the post-translational light activation of NR in S. kraussiana was inhibited by 3-(3,4-dichlorophenyl)-1*1-dimethylurea (DCMU), an inhibitor of photosynthesis and stomata opening. Evolutionary, a post-translational control mechanism for NR have occurred before or in parallel with development of vascular tissue in land plants, and appears to be part of a complex mechanisms for coordination of CO2 and nitrogen metabolism in these plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. MicroRNA-24 regulates vascular remodeling via inhibiting PDGF-BB pathway in diabetic rat model.

    PubMed

    Yang, Jian; Zeng, Ping; Yang, Jun; Liu, Xiaowen; Ding, Jiawang; Wang, Huibo; Chen, Lihua

    2018-06-15

    Hyperglycemia is the high risk factor of vascular remodeling induced by angioplasty, and neointimal hyperplasia is strongly implicated in the pathogenesis of vascular remodeling caused by carotid artery balloon injury. Studies have shown that MicroRNA 24 (miR-24) plays an important role in angiocardiopathy, However, the role of miR-24 is far from thorough research. In this study, we investigate whether up-regulation of miR-24 by using miR-24 recombinant adenovirus (Ad-miR-24-GFP) can inhibit PDGF-BB signaling pathway and attenuate vascular remodeling in the diabetic rat model. Male Sprague-Dawley rats (n = 60) were randomly divided into 5 groups and fed with high sugar and high fat diet (Sham, Saline, Scramble, Ad-miR-24 groups), or ordinary diet (Control group). The front four groups were treated with streptozotocin (STZ) four weeks later and the blood glucose level was closely monitored. After the successful establishment of diabetic rats, the external carotid artery was injured by pressuring balloon 1.5 after internal carotid artery ligation, then the blood vessels were harvested 14 days later and indexes were detected including the following: HE staining for the level of vascular intima thickness, immunohistochemical detection for PCNA and P27 to test the proliferative degree of vascular smooth muscle cells (VSMCs), qRT-PCR for the level of miR-24, RAS,PDGF-R, western blot for the protein levels of JNK1/2, p- JNK1/2, ERK1/2, p-ERK1/2, RAS, PDGF-R, AP-1,P27 and PCNA. Serological detection was conducted for TNF-α, IL-6, IL-8. The delivery of Ad-miR-24 into balloon injury site has significantly increased the level of miR-24. Up-regulation of miR-24 could regulate vascular remodeling effectively, lower the level of inflammatory factors, inhibit the expression of mRNA and protein levels of JNK1/2, ERK1/2, RAS, PDGF-R, AP-1, P27, PCNA. miR-24 can inhibit the expression of AP-1 via the inhibition of PDGF-BB signaling pathway, thus inhibit VSMCs proliferation and vascular remodeling. Copyright © 2018. Published by Elsevier B.V.

  18. Cell Based Therapeutic Approach in Vascular Surgery: Application and Review

    PubMed Central

    Rocca, Aldo; Tafuri, Domenico; Paccone, Marianna; Giuliani, Antonio; Zamboli, Anna Ginevra Immacolata; Surfaro, Giuseppe; Paccone, Andrea; Compagna, Rita; Amato, Maurizo; Serra, Raffaele; Amato, Bruno

    2017-01-01

    Abstract Multipotent stem cells - such as mesenchymal stem/stromal cells and stem cells derived from different sources like vascular wall are intensely studied to try to rapidly translate their discovered features from bench to bedside. Vascular wall resident stem cells recruitment, differentiation, survival, proliferation, growth factor production, and signaling pathways transduced were analyzed. We studied biological properties of vascular resident stem cells and explored the relationship from several factors as Matrix Metalloproteinases (MMPs) and regulations of biological, translational and clinical features of these cells. In this review we described a translational and clinical approach to Adult Vascular Wall Resident Multipotent Vascular Stem Cells (VW-SCs) and reported their involvement in alternative clinical approach as cells based therapy in vascular disease like arterial aneurysms or peripheral arterial obstructive disease. PMID:29071303

  19. Cell-Responsive Hydrogel for Encapsulation of Vascular Cells

    PubMed Central

    Kraehenbuehl, Thomas P.; Ferreira, Lino S.; Zammaretti, Prisca; Hubbell, Jeffrey A.; Langer, Robert

    2014-01-01

    The in vitro potential of a synthetic matrix metalloproteinase (MMP)-responsive polyethylene glycol) (PEG)-based hydrogel as a bioactive co-encapsulation system for vascular cells and a small bioactive peptide, thymosin β4 (Tp4), was examined. We show that the physical incorporation of Tβ4 in this bioactive matrix creates a three-dimensional (3D) environment conducive for human umbilical vein endothelial cell (HUVEC) adhesion, survival, migration and organization. Gels with entrapped Tβ4 increased the survival of HUVEC compared to gels without Tp4, and significantly up-regulated the endothelial genes vascular endothelial-cadherin and angiopoietin-2, whereas von Willebrand factor was significantly down-regulated. Incorporation of Tβ4 significantly increased MMP-2 and MMP-9 secretion of encapsulated HUVEC. The gel acts as a controlled Tβ4-release system, as MMP-2 and MMP-9 enzymes trigger the release. In addition, Tβ4 facilitated HUVEC attachment and induced vascular-like network formation upon the PEG-hydrogels. These MMP-responsive PEG-hydrogels may thus serve as controlled co-encapsulation system of vascular cells and bioactive factors for in situ regeneration of ischemic tissues. PMID:19500842

  20. The Soil-Plant-Atmosphere System - Past and Present.

    NASA Astrophysics Data System (ADS)

    Berry, J. A.; Baker, I. T.; Randall, D. A.; Sellers, P. J.

    2012-12-01

    Plants with stomata, roots and a vascular system first appeared on earth about 415 million years ago. This evolutionary innovation helped to set in motion non-linear feedback mechanisms that led to an acceleration of the hydrologic cycle over the continents and an expansion of the climate zones favorable for plant (and animal) life. Skeletal soils that developed long before plants came onto the land would have held water and nutrients in their pore space, yet these resources would have been largely unavailable to primitive, surface-dwelling non-vascular plants due to physical limitations on water transport once the surface layer of soil dries. Plants with roots and a vascular system that could span this dry surface layer could gain increased and prolonged access to the water and nutrients stored in the soil for photosynthesis. Maintenance of the hydraulic connections permitting water to be drawn through the vascular system from deep in the soil to the sites of evaporation in the leaves required a cuticle and physiological regulation of stomata. These anatomical and physiological innovations changed properties of the terrestrial surface (albedo, roughness, a vascular system and control of surface conductance) and set in motion complex interactions of the soil - plant - atmosphere system. We will use coupled physiological and meteorological models to examine some of these interactions.

  1. Bisphenol A induces proliferative effects on both breast cancer cells and vascular endothelial cells through a shared GPER-dependent pathway in hypoxia.

    PubMed

    Xu, Fangyi; Wang, Xiaoning; Wu, Nannan; He, Shuiqing; Yi, Weijie; Xiang, Siyun; Zhang, Piwei; Xie, Xiao; Ying, Chenjiang

    2017-12-01

    Based on the breast cancer cells and the vascular endothelial cells are both estrogen-sensitive, we proposed a close reciprocity existed between them in the tumor microenvironment, via shared molecular mechanism affected by environmental endocrine disruptors (EDCs). In this study, bisphenol A (BPA), via triggering G-protein estrogen receptor (GPER), stimulated cell proliferation and migration of bovine vascular endothelial cells (BVECs) and breast cancer cells (SkBr-3 and MDA-MB-231) and enhanced tumor growth in vivo. Moreover, the expression of both hypoxia inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) were up-regulated in a GPER-dependent manner by BPA treatment under hypoxic condition, and the activated GPER induced the HIF-1α expression by competitively binding to caveolin-1 (Cav-1) and facilitating the release of heat shock protein 90 (HSP90). These findings show that in a hypoxic microenvironment, BPA promotes HIF-1α and VEGF expressions through a shared GPER/Cav-1/HSP90 signaling cascade. Our observations provide a probable hypothesis that the effects of BPA on tumor development are copromoting relevant biological responses in both vascular endothelial and breast cancer cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Control of brown and beige fat development

    PubMed Central

    Wang, Wenshan; Seale, Patrick

    2017-01-01

    Brown and beige adipocytes expend chemical energy to produce heat and are therefore important in regulating body temperature and body weight. Brown adipocytes develop in discrete and relatively homogenous depots of brown adipose tissue, whereas beige adipocytes are induced to develop in white adipose tissue in response to certain stimuli — notably, exposure to cold. Fate-mapping analyses have identified progenitor populations that give rise to brown and beige fat cells and revealed unanticipated cell-lineage relationships between vascular smooth muscle and beige adipocytes, and between brown fat and skeletal muscle cells. Additionally, non-adipocyte cells in adipose tissue, including neurons, blood vessel-associated cells and immune cells play crucial roles in regulating the differentiation and function of brown and beige fat. PMID:27552974

  3. Dual effects of fructose on ChREBP and FoxO1/3α are responsible for AldoB up-regulation and vascular remodelling.

    PubMed

    Cao, Wei; Chang, Tuanjie; Li, Xiao-Qiang; Wang, Rui; Wu, Lingyun

    2017-02-01

    Increased production of methylglyoxal (MG) in vascular tissues is one of the causative factors for vascular remodelling in different subtypes of metabolic syndrome, including hypertension and insulin resistance. Fructose-induced up-regulation of aldolase B (AldoB) contributes to increased vascular MG production but the underlying mechanisms are unclear. Serum levels of MG and fructose were determined in diabetic patients with hypertension. MG level had significant positive correlations with blood pressure and fructose level respectively. C57BL/6 mice were fed with control or fructose-enriched diet for 3 months and ultrasonographic and histologic analyses were performed to evaluate arterial structural changes. Fructose-fed mice exhibited hypertension and high levels of serum MG with normal glucose level. Fructose intake increased blood vessel wall thickness and vascular smooth muscle cell (VSMC) proliferation. Western blotting and real-time PCR analysis revealed that AldoB level was significantly increased in both the aorta of fructose-fed mice and the fructose-treated VSMCs, whereas aldolase A (AldoA) expression was not changed. The knockdown of AldoB expression prevented fructose-induced MG overproduction and VSMC proliferation. Moreover, fructose significantly increased carbohydrate-responsive element-binding protein (ChREBP), phosphorylated FoxO1/3α and Akt1 levels. Fructose induced translocation of ChREBP from the cytosol to nucleus and activated AldoB gene expression, which was inhibited by the knockdown of ChREBP. Meanwhile, fructose caused FoxO1/3α shuttling from the nucleus to cytosol and inhibited its binding to AldoB promoter region. Fructose-induced AldoB up-regulation was suppressed by Akt1 inhibitor but enhanced by FoxO1/3α siRNA. Collectively, fructose activates ChREBP and inactivates FoxO1/3α pathways to up-regulate AldoB expression and MG production, leading to vascular remodelling. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  4. Smooth muscle cells differentiated from mesenchymal stem cells are regulated by microRNAs and suitable for vascular tissue grafts.

    PubMed

    Gu, Wenduo; Hong, Xuechong; Le Bras, Alexandra; Nowak, Witold N; Issa Bhaloo, Shirin; Deng, Jiacheng; Xie, Yao; Hu, Yanhua; Ruan, Xiong Z; Xu, Qingbo

    2018-05-25

    Tissue-engineered vascular grafts with long-term patency are greatly needed in the clinical settings, and smooth muscle cells (SMCs) are a critical graft component. Human mesenchymal stem cells (MSCs) are used for generating SMCs, and understanding the underlying regulatory mechanisms of the MSC-to-SMC differentiation process could improve SMC generation in the clinic. Here, we found that in response to stimulation of transforming growth factor-β1 (TGFβ1), human umbilical cord-derived MSCs abundantly express the SMC markers α-smooth muscle actin (αSMA), smooth muscle protein 22 (SM22), calponin, and smooth muscle myosin heavy chain (SMMHC) at both gene and protein levels. Functionally, MSC-derived SMCs displayed contracting capacity in vitro and supported vascular structure formation in the Matrigel plug assay in vivo More importantly, SMCs differentiated from human MSCs could migrate into decellularized mouse aorta and give rise to the smooth muscle layer of vascular grafts, indicating the potential of utilizing human MSC-derived SMCs to generate vascular grafts. Of note, microRNA (miR) array analysis and TaqMan microRNA assays identified miR-503 and miR-222-5p as potential regulators of MSC differentiation into SMCs at early time points. Mechanistically, miR-503 promoted SMC differentiation by directly targeting SMAD7, a suppressor of SMAD-related, TGFβ1-mediated signaling pathways. Moreover, miR-503 expression was SMAD4-dependent. SMAD4 was enriched at the miR-503 promoter. Furthermore, miR-222-5p inhibited SMC differentiation by targeting and down-regulating ROCK2 and αSMA. In conclusion, MSC differentiation into SMCs is regulated by miR-503 and miR-222-5p and yields functional SMCs for use in vascular grafts. © 2018 Gu et al.

  5. Down-regulation of vascular PPAR-γ contributes to endothelial dysfunction in high-fat diet-induced obese mice exposed to chronic intermittent hypoxia.

    PubMed

    Zhang, Yanan; Zhang, Chunlian; Li, Haiou; Hou, Jingdong

    2017-10-14

    Obstructive sleep apnea (OSA), characterized by chronic intermittent hypoxia (CIH), is associated with endothelial dysfunction. The prevalence of OSA is linked to an epidemic of obesity. CIH has recently been reported to cause endothelial dysfunction in diet-induced obese animals by exaggerating oxidative stress and inflammation, but the underlying mechanism remains unclear. PPAR-γ, a ligand-inducible transcription factor that exerts anti-oxidant and anti-inflammatory effects, is down-regulated in the peripheral tissues in diet-induce obesity. We tested the hypothesis that down-regulation of vascular PPAR-γ in diet-induced obesity enhances inflammation and oxidative stress in response to CIH, resulting in endothelial dysfunction. Male C57BL/6 mice were fed either a high-fat diet (HFD) or a low-fat diet (LFD) and simultaneously exposed to CIH or intermittent air for 6 weeks. An additional HFD group received a combination of CIH and PPAR-γ agonist pioglitazone for 6 weeks. Endothelial-dependent vasodilation was impaired only in HFD group exposed to CIH, compared with other groups, but was restored by concomitant pioglitazone treatment. Molecular studies revealed that vascular PPAR-γ expression and activity were reduced in HFD groups, compared with LFD groups, but were reversed by pioglitazone treatment. In addition, CIH elevated vascular expression of NADPH oxidase 4 and dihydroethidium fluorescence, and increased expression of proinflammatory cytokines TNF-α and IL-1β in both LFD and HFD groups, but these increases was significantly greater in HFD group, along with decreased vascular eNOS activity. Pioglitazone treatment of HFD group prevented CIH-induced changes in above molecular markers. The results suggest that HFD-induced obesity down-regulates vascular PPAR-γ, which results in exaggerated oxidative stress and inflammation in response to CIH, contributing to endothelial dysfunction. This finding may provide new insights into the mechanisms by which OSA induces endothelial dysfunction and other cardiovascular disease in patients with obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Modulation of CaV1.2 calcium channel by neuropeptide W regulates vascular myogenic tone via G protein-coupled receptor 7.

    PubMed

    Ji, Li; Zhu, Huayuan; Chen, Hong; Fan, Wenyong; Chen, Junjie; Chen, Jing; Zhu, Guoqing; Wang, Juejin

    2015-12-01

    Neuropeptide W (NPW), an endogenous ligand for the G protein-coupled receptor 7 (GPR7), was first found to make important roles in central nerve system. In periphery, NPW was also present and regulated intracellular calcium homeostasis by L-type calcium channels. This study was designed to discover the effects of NPW-GPR7 on the function of CaV1.2 calcium channels in the vascular smooth muscle cells (VSMCs) and vasotone of arterial vessels. By whole-cell patch clamp, we studied the effects of NPW-23, the active form of NPW, on the CaV1.2 channels in the heterologously transfected human embryonic kidney 293 cells and VSMCs isolated from rat. Living system was used to explore the physiological function of NPW-23 in arterial myogenic tone. To investigate the pathological relevance, NPW mRNA level of mesenteric arteries was measured in the hypertensive and normotensive rats. NPW's receptor GPR7 was coexpressed with CaV1.2 channels in arterial smooth muscle. NPW-23 increased the ICa,L in transfected human embryonic kidney 293 cells and VSMCs via GPR7, which could be abrogated by phospholipase C (PLC)/protein kinase C (PKC) inhibitors, not protein kinase A or protein kinase G inhibitor. After NPW-23 application, the expression of pan phospho-PKC was increased; moreover, intracellular diacylglycerol level, the second messenger catalyzed by PLC, was increased 1.5-2-fold. Application with NPW-23 increased pressure-induced vasotone of the rat mesenteric arteries. Importantly, the expression of NPW was decreased in the hypertensive rats. NPW-23 regulates ICa,L via GPR7, which is mediated by PLC/PKC signaling, and such a mechanism plays a role in modulating vascular myogenic tone, which may involve in the development of vascular hypertension.

  7. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease.

    PubMed

    Simon, Matthew J; Iliff, Jeffrey J

    2016-03-01

    Cerebrospinal fluid (CSF) circulation and turnover provides a sink for the elimination of solutes from the brain interstitium, serving an important homeostatic role for the function of the central nervous system. Disruption of normal CSF circulation and turnover is believed to contribute to the development of many diseases, including neurodegenerative conditions such as Alzheimer's disease, ischemic and traumatic brain injury, and neuroinflammatory conditions such as multiple sclerosis. Recent insights into CSF biology suggesting that CSF and interstitial fluid exchange along a brain-wide network of perivascular spaces termed the 'glymphatic' system suggest that CSF circulation may interact intimately with glial and vascular function to regulate basic aspects of brain function. Dysfunction within this glial vascular network, which is a feature of the aging and injured brain, is a potentially critical link between brain injury, neuroinflammation and the development of chronic neurodegeneration. Ongoing research within this field may provide a powerful new framework for understanding the common links between neurodegenerative, neurovascular and neuroinflammatory disease, in addition to providing potentially novel therapeutic targets for these conditions. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Potential Mechanisms Linking Atherosclerosis and Increased Cardiovascular Risk in COPD: Focus On Sirtuins

    PubMed Central

    Corbi, Graziamaria; Bianco, Andrea; Turchiarelli, Viviana; Cellurale, Michele; Fatica, Federica; Daniele, Aurora; Mazzarella, Gennaro; Ferrara, Nicola

    2013-01-01

    The development of atherosclerosis is a multi-step process, at least in part controlled by the vascular endothelium function. Observations in humans and experimental models of atherosclerosis have identified monocyte recruitment as an early event in atherogenesis. Chronic inflammation is associated with ageing and its related diseases (e.g., atherosclerosis and chronic obstructive pulmonary disease). Recently it has been discovered that Sirtuins (NAD+-dependent deacetylases) represent a pivotal regulator of longevity and health. They appear to have a prominent role in vascular biology and regulate aspects of age-dependent atherosclerosis. Many studies demonstrate that SIRT1 exhibits anti-inflammatory properties in vitro (e.g., fatty acid-induced inflammation), in vivo (e.g., atherosclerosis, sustainment of normal immune function in knock-out mice) and in clinical studies (e.g., patients with chronic obstructive pulmonary disease). Because of a significant reduction of SIRT1 in rodent lungs exposed to cigarette smoke and in lungs of patients with chronic obstructive pulmonary disease (COPD), activation of SIRT1 may be a potential target for chronic obstructive pulmonary disease therapy. We review the inflammatory mechanisms involved in COPD-CVD coexistence and the potential role of SIRT1 in the regulation of these systems. PMID:23774840

  9. Unraveling the mechanisms underlying the rapid vascular effects of steroids: sorting out the receptors and the pathways.

    PubMed

    Feldman, Ross D; Gros, Robert

    2011-07-01

    Aldosterone, oestrogens and other vasoactive steroids are important physiological and pathophysiological regulators of cardiovascular and metabolic function. The traditional view of the cardiovascular actions of these vasoactive steroids has focused on their roles as regulators of transcription via activation of their 'classical' receptors [mineralocorticoid receptors (MR) and oestrogen receptors (ER)]. However, based on a series of observations going back more than half a century, scientists have speculated that a range of steroids, including oestrogen and aldosterone, might have effects on regulation of smooth muscle contractility, cell growth and differentiation that are too rapid to be accounted for by transcriptional regulation. Recent studies performed in our laboratories (and those of others) have begun to elucidate the mechanism of rapid steroid-mediated cardiometabolic regulation. GPR30, now designated as GPER-1 (http://www.iuphar-db.org/DATABASE/FamilyIntroductionForward?familyId=22), a newly characterized 'orphan receptor', has been implicated in mediating the rapid effects of estradiol and most recently those of aldosterone. Studies to date have taught us that to understand the rapid vascular mechanisms of steroids, one must (i) know which vascular 'compartment' the steroid is acting; (ii) know which receptor the steroid hormone is activating; and (iii) not assume the receptor specificity of a steroid receptor ligand based solely on its selectivity for its traditional 'transcriptional' steroid receptor. Our newfound appreciation of the rapid effects of steroids such as aldosterone and oestrogens opens up a new vista for advancing our understanding of the biology and pathobiology of vascular regulation. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  10. LRP1 regulates architecture of the vascular wall by controlling PDGFRbeta-dependent phosphatidylinositol 3-kinase activation.

    PubMed

    Zhou, Li; Takayama, Yoshiharu; Boucher, Philippe; Tallquist, Michelle D; Herz, Joachim

    2009-09-09

    Low density lipoprotein receptor-related protein 1 (LRP1) protects against atherosclerosis by regulating the activation of platelet-derived growth factor receptor beta (PDGFRbeta) in vascular smooth muscle cells (SMCs). Activated PDGFRbeta undergoes tyrosine phosphorylation and subsequently interacts with various signaling molecules, including phosphatidylinositol 3-kinase (PI3K), which binds to the phosphorylated tyrosine 739/750 residues in mice, and thus regulates actin polymerization and cell movement. In this study, we found disorganized actin in the form of membrane ruffling and enhanced cell migration in LRP1-deficient (LRP1-/-) SMCs. Marfan syndrome-like phenotypes such as tortuous aortas, disrupted elastic layers and abnormally activated transforming growth factor beta (TGFbeta) signaling are present in smooth muscle-specific LRP1 knockout (smLRP1-/-) mice. To investigate the role of LRP1-regulated PI3K activation by PDGFRbeta in atherogenesis, we generated a strain of smLRP1-/- mice in which tyrosine 739/750 of the PDGFRbeta had been mutated to phenylalanines (PDGFRbeta F2/F2). Spontaneous atherosclerosis was significantly reduced in the absence of hypercholesterolemia in these mice compared to smLRP1-/- animals that express wild type PDGFR. Normal actin organization was restored and spontaneous SMC migration as well as PDGF-BB-induced chemotaxis was dramatically reduced, despite continued overactivation of TGFbeta signaling, as indicated by high levels of nuclear phospho-Smad2. Our data suggest that LRP1 regulates actin organization and cell migration by controlling PDGFRbeta-dependent activation of PI3K. TGFbeta activation alone is not sufficient for the expression of the Marfan-like vascular phenotype. Thus, regulation of PI3 Kinase by PDGFRbeta is essential for maintaining vascular integrity, and for the prevention of atherosclerosis as well as Marfan syndrome.

  11. Select Rab GTPases Regulate the Pulmonary Endothelium via Endosomal Trafficking of Vascular Endothelial-Cadherin.

    PubMed

    Chichger, Havovi; Braza, Julie; Duong, Huetran; Boni, Geraldine; Harrington, Elizabeth O

    2016-06-01

    Pulmonary edema occurs in settings of acute lung injury, in diseases, such as pneumonia, and in acute respiratory distress syndrome. The lung interendothelial junctions are maintained in part by vascular endothelial (VE)-cadherin, an adherens junction protein, and its surface expression is regulated by endocytic trafficking. The Rab family of small GTPases are regulators of endocytic trafficking. The key trafficking pathways are regulated by Rab4, -7, and -9. Rab4 regulates the recycling of endosomes to the cell surface through a rapid-shuttle process, whereas Rab7 and -9 regulate trafficking to the late endosome/lysosome for degradation or from the trans-Golgi network to the late endosome, respectively. We recently demonstrated a role for the endosomal adaptor protein, p18, in regulation of the pulmonary endothelium through enhanced recycling of VE-cadherin to adherens junction. Thus, we hypothesized that Rab4, -7, and -9 regulate pulmonary endothelial barrier function through modulating trafficking of VE-cadherin-positive endosomes. We used Rab mutants with varying activities and associations to the endosome to study endothelial barrier function in vitro and in vivo. Our study demonstrates a key role for Rab4 activation and Rab9 inhibition in regulation of vascular permeability through enhanced VE-cadherin expression at the interendothelial junction. We further showed that endothelial barrier function mediated through Rab4 is dependent on extracellular signal-regulated kinase phosphorylation and activity. Thus, we demonstrate that Rab4 and -9 regulate VE-cadherin levels at the cell surface to modulate the pulmonary endothelium through extracellular signal-regulated kinase-dependent and -independent pathways, respectively. We propose that regulating select Rab GTPases represents novel therapeutic strategies for patients suffering with acute respiratory distress syndrome.

  12. High Endothelial Venules and Other Blood Vessels: Critical Regulators of Lymphoid Organ Development and Function

    PubMed Central

    Ager, Ann

    2017-01-01

    The blood vasculature regulates both the development and function of secondary lymphoid organs by providing a portal for entry of hemopoietic cells. During the development of lymphoid organs in the embryo, blood vessels deliver lymphoid tissue inducer cells that initiate and sustain the development of lymphoid tissues. In adults, the blood vessels are structurally distinct from those in other organs due to the requirement for high levels of lymphocyte recruitment under non-inflammatory conditions. In lymph nodes (LNs) and Peyer’s patches, high endothelial venules (HEVs) especially adapted for lymphocyte trafficking form a spatially organized network of blood vessels, which controls both the type of lymphocyte and the site of entry into lymphoid tissues. Uniquely, HEVs express vascular addressins that regulate lymphocyte entry into lymphoid organs and are, therefore, critical to the function of lymphoid organs. Recent studies have demonstrated important roles for CD11c+ dendritic cells in the induction, as well as the maintenance, of vascular addressin expression and, therefore, the function of HEVs. Tertiary lymphoid organs (TLOs) are HEV containing LN-like structures that develop inside organized tissues undergoing chronic immune-mediated inflammation. In autoimmune lesions, the development of TLOs is thought to exacerbate disease. In cancerous tissues, the development of HEVs and TLOs is associated with improved patient outcomes in several cancers. Therefore, it is important to understand what drives the development of HEVs and TLOs and how these structures contribute to pathology. In several human diseases and experimental animal models of chronic inflammation, there are some similarities between the development and function of HEVs within LN and TLOs. This review will summarize current knowledge of how hemopoietic cells with lymphoid tissue-inducing, HEV-inducing, and HEV-maintaining properties are recruited from the bloodstream to induce the development and control the function of lymphoid organs. PMID:28217126

  13. Conditional deletion of Dicer in vascular smooth muscle cells leads to the developmental delay and embryonic mortality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yaoqian; Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163; Balazs, Louisa

    2011-05-13

    Highlights: {yields} Deletion of Dicer in vascular smooth muscle cells(VSMCs) leads to embryonic mortality. {yields} Loss of Dicer in VSMCs leads to developmental delay. {yields} Loss of Dicer in VSMCs leads to hemorrhage in various organs including brain, skin and liver. {yields} Loss of Dicer in VSMCs leads to vascular wall remodeling. {yields} Loss of Dicer in VSMCs dysregulates the expression of miRNA and VSMC marker genes. -- Abstract: Dicer is a RNAase III enzyme that cleaves double stranded RNA and generates small interfering RNA (siRNA) and microRNA (miRNA). The goal of this study is to examine the role ofmore » Dicer and miRNAs in vascular smooth muscle cells (VSMCs). We deleted Dicer in VSMCs of mice, which caused a developmental delay that manifested as early as embryonic day E12.5, leading to embryonic death between E14.5 and E15.5 due to extensive hemorrhage in the liver, brain, and skin. Dicer KO embryos showed dilated blood vessels and a disarray of vascular architecture between E14.5 and E15.5. VSMC proliferation was significantly inhibited in Dicer KOs. The expression of VSMC marker genes were significantly downregulated in Dicer cKO embryos. The vascular structure of the yolk sac and embryo in Dicer KOs was lost to an extent that no blood vessels could be identified after E15.5. Expression of most miRNAs examined was compromised in VSMCs of Dicer KO. Our results indicate that Dicer is required for vascular development and regulates vascular remodeling by modulating VSMC proliferation and differentiation.« less

  14. Physicochemical hydrodynamics of porous structures in vascular plants

    NASA Astrophysics Data System (ADS)

    Ryu, Jeongeun; Ahn, Sungsook; Kim, Seung-Gon; Kim, Taejoo; Lee, Sang Joon

    2013-11-01

    Transport of sap flow through xylem conduits of vascular plants has been considered as a passive process, because the xylem conduits are regarded as inert, dead wood. However, plants can actively regulate water transport using ion-mediated response for adapting to environmental changes. In order to understand the active regulation mechanism of physicochemical hydrodynamics of porous structures in vascular plants, the effects of specific ion types and their ionic ratios on the water transport were experimentally investigated under in vivocondition. Based on the experimental results, the principle of ionic effects will be explained through in-vitro comparative experiments and theoretical considerations. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).

  15. Flow and pressure regulation in the cardiovascular system. [engineering systems model

    NASA Technical Reports Server (NTRS)

    Iberall, A.

    1974-01-01

    Principles and descriptive fragments which may contribute to a model of the regulating chains in the cardiovascular system are presented. Attention is given to the strain sensitivity of blood vessels, the law of the autonomy of the heart beat oscillator, the law of the encapsulation of body fluids, the law of the conservation of protein, the law of minimum 'arterial' pressure, the design of the 'mammalian' kidney, questions of homeokinetic organization, and the development of self-regulatory chains. Details concerning the development program for the heart muscle are considered along with the speed of response of the breathing rate and the significance of the pulmonary vascular pressure-flow characteristics.

  16. Cyanidin-3-glucoside attenuates angiotensin II-induced oxidative stress and inflammation in vascular endothelial cells.

    PubMed

    Sivasinprasasn, Sivanan; Pantan, Rungusa; Thummayot, Sarinthorn; Tocharus, Jiraporn; Suksamrarn, Apichart; Tocharus, Chainarong

    2016-10-28

    Angiotensin II (Ang II) causes oxidative stress and vascular inflammation, leading to vascular endothelial cell dysfunction, and is associated with the development of inflammatory cardiovascular diseases such as atherosclerosis. Therefore, interventions of oxidative stress and inflammation may contribute to the reduction of cardiovascular diseases. Cyanidin-3-glucoside (C3G) plays a role in the prevention of oxidative damage in several diseases. Here, we investigated the effect of C3G on Ang II-induced oxidative stress and vascular inflammation in human endothelial cells (EA.hy926). C3G dose-dependently suppressed the free radicals and inhibited the nuclear factor-kappa B (NF-κB) signaling pathway by protecting the degradation of inhibitor of kappa B-alpha (IκB-α), inhibiting the expression and translocation of NF-κB into the nucleus through the down-regulation of NF-κB p65 and reducing the expression of inducible nitric oxide synthase (iNOS). Pretreatment with C3G not only prohibited the NF-κB signaling pathway but also promoted the activity of the nuclear erythroid-related factor 2 (Nrf2) signaling pathway through the upregulation of endogenous antioxidant enzymes. Particularly, we observed that C3G significantly enhanced the production of superoxide dismutase (SOD) and induced the expression of heme oxygenase (HO-1). Our findings confirm that C3G can protect against vascular endothelial cell inflammation induced by AngII. C3G may represent a promising dietary supplement for the prevention of inflammation, thereby decreasing the risk for the development of atherosclerosis. Copyright © 2016. Published by Elsevier Ireland Ltd.

  17. Potential candidate genomic biomarkers of drug induced vascular injury in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalmas, Deidre A., E-mail: Deidre.A.Dalmas@gsk.com; Scicchitano, Marshall S., E-mail: Marshall.S.Scicchitano@gsk.com; Mullins, David, E-mail: David.R.Mullins@gsk.com

    2011-12-15

    Drug-induced vascular injury is frequently observed in rats but the relevance and translation to humans present a hurdle for drug development. Numerous structurally diverse pharmacologic agents have been shown to induce mesenteric arterial medial necrosis in rats, but no consistent biomarkers have been identified. To address this need, a novel strategy was developed in rats to identify genes associated with the development of drug-induced mesenteric arterial medial necrosis. Separate groups (n = 6/group) of male rats were given 28 different toxicants (30 different treatments) for 1 or 4 days with each toxicant given at 3 different doses (low, mid andmore » high) plus corresponding vehicle (912 total rats). Mesentery was collected, frozen and endothelial and vascular smooth muscle cells were microdissected from each artery. RNA was isolated, amplified and Affymetrix GeneChip Registered-Sign analysis was performed on selectively enriched samples and a novel panel of genes representing those which showed a dose responsive pattern for all treatments in which mesenteric arterial medial necrosis was histologically observed, was developed and verified in individual endothelial cell- and vascular smooth muscle cell-enriched samples. Data were confirmed in samples containing mesentery using quantitative real-time RT-PCR (TaqMan Trade-Mark-Sign ) gene expression profiling. In addition, the performance of the panel was also confirmed using similarly collected samples obtained from a timecourse study in rats given a well established vascular toxicant (Fenoldopam). Although further validation is still required, a novel gene panel has been developed that represents a strategic opportunity that can potentially be used to help predict the occurrence of drug-induced mesenteric arterial medial necrosis in rats at an early stage in drug development. -- Highlights: Black-Right-Pointing-Pointer A gene panel was developed to help predict rat drug-induced mesenteric MAN. Black-Right-Pointing-Pointer A gene panel was identified following treatment of rats with 28 different toxicants. Black-Right-Pointing-Pointer There was a strong correlation of genes and histologic evidence of mesenteric MAN. Black-Right-Pointing-Pointer Many genes were also regulated prior to histologic evidence of arterial effects.« less

  18. Mitochondrial Aldehyde Dehydrogenase 2 Regulates Revascularization in Chronic Ischemia: Potential Impact on the Development of Coronary Collateral Circulation.

    PubMed

    Liu, Xiangwei; Sun, Xiaolei; Liao, Hua; Dong, Zhen; Zhao, Jingjing; Zhu, Hong; Wang, Peng; Shen, Li; Xu, Lei; Ma, Xin; Shen, Cheng; Fan, Fan; Wang, Cong; Hu, Kai; Zou, Yunzeng; Ge, Junbo; Ren, Jun; Sun, Aijun

    2015-10-01

    Revascularization is an essential process to compensate for cardiac underperfusion and, therefore, preserves cardiac function in the face of chronic ischemic injury. Recent evidence suggested a vital role of aldehyde dehydrogenase 2 (ALDH2) in cardiac protection after ischemia. This study was designed to determine whether ALDH2 regulates chronic ischemia-induced angiogenesis and to explore the underlying mechanism involved. Moreover, the clinical impact of the ALDH2 mutant allele on the development of coronary collateral circulation (CCC) was evaluated. Mice limb ischemia was performed. Compared with wild-type, ALDH2 deletion significantly reduced perfusion recovery, small artery and capillary density, and increased muscle atrophy in this ischemic model. In vitro, ALDH2-knockdown reduced proliferation, migration and hypoxia triggered endothelial tube formation of endothelial cells, the effects of which were restored by ALDH2 transfection. Further examination revealed that ALDH2 regulated angiogenesis possibly through hypoxia-inducible factor-1α/vascular endothelial growth factor pathways. To further discern the role of ALDH2 deficiency in the function of bone marrow stem/progenitor cells, cross bone marrow transplantation was performed between wild-type and ALDH2-knockout mice. However, there was no significant improvement for wild-type bone marrow transplantation into knockout mice. ALDH2 genotyping was screened in 139 patients with chronic total occlusion recruited to Zhongshan Hospital (2011.10-2014.4). Patients with poor CCC (Rentrop 0-1; n=51) exhibited a higher frequency of the AA genotype than those with enriched CCC (Rentrop 2-3; n=88; 11.76% versus 1.14%; P=0 0.01). However, the AA group displayed less enriched CCC frequency in Logistic regression model when compared with the GG group (odds ratio=0.08; 95% confidence interval, 0.009-0.701; P=0 0.026). Furthermore, serum vascular endothelial growth factor level tended to be lower in patients with ALDH2 mutation. This study demonstrated that ALDH2 possesses an intrinsic capacity to regulate angiogenesis via hypoxia-inducible factor-1α and vascular endothelial growth factor. Patients with ALDH2-deficient genotype displayed a higher risk of developing poor CCC. Therapeutic individualization based on ALDH2 allele distribution may thus improve the therapeutic benefit, especially in the East Asian decedents. © 2015 American Heart Association, Inc.

  19. CMTM3 (CKLF-Like Marvel Transmembrane Domain 3) Mediates Angiogenesis by Regulating Cell Surface Availability of VE-Cadherin in Endothelial Adherens Junctions.

    PubMed

    Chrifi, Ihsan; Louzao-Martinez, Laura; Brandt, Maarten; van Dijk, Christian G M; Burgisser, Petra; Zhu, Changbin; Kros, Johan M; Duncker, Dirk J; Cheng, Caroline

    2017-06-01

    Decrease in VE-cadherin adherens junctions reduces vascular stability, whereas disruption of adherens junctions is a requirement for neovessel sprouting during angiogenesis. Endocytosis plays a key role in regulating junctional strength by altering bioavailability of cell surface proteins, including VE-cadherin. Identification of new mediators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we assessed the function of CMTM3 (CKLF-like MARVEL transmembrane domain 3), which we have previously identified as highly expressed in Flk1 + endothelial progenitor cells during embryonic development. Using a 3-dimensional coculture of human umbilical vein endothelial cells-GFP (green fluorescent protein) and pericytes-RFP (red fluorescent protein), we demonstrated that siRNA-mediated CMTM3 silencing in human umbilical vein endothelial cells impairs angiogenesis. In vivo CMTM3 inhibition by morpholino injection in developing zebrafish larvae confirmed that CMTM3 expression is required for vascular sprouting. CMTM3 knockdown in human umbilical vein endothelial cells does not affect proliferation or migration. Intracellular staining demonstrated that CMTM3 colocalizes with early endosome markers EEA1 (early endosome marker 1) and Clathrin + vesicles and with cytosolic VE-cadherin in human umbilical vein endothelial cells. Adenovirus-mediated CMTM3 overexpression enhances endothelial endocytosis, shown by an increase in Clathrin + , EEA1 + , Rab11 + , Rab5 + , and Rab7 + vesicles. CMTM3 overexpression enhances, whereas CMTM3 knockdown decreases internalization of cell surface VE-cadherin in vitro. CMTM3 promotes loss of endothelial barrier function in thrombin-induced responses, shown by transendothelial electric resistance measurements in vitro. In this study, we have identified a new regulatory function for CMTM3 in angiogenesis. CMTM3 is involved in VE-cadherin turnover and is a regulator of the cell surface pool of VE-cadherin. Therefore, CMTM3 mediates cell-cell adhesion at adherens junctions and contributes to the control of vascular sprouting. © 2017 American Heart Association, Inc.

  20. Deposition of collagen type I onto skeletal endothelium reveals a new role for blood vessels in regulating bone morphology

    PubMed Central

    Ben Shoham, Adi; Rot, Chagai; Stern, Tomer; Krief, Sharon; Akiva, Anat; Dadosh, Tali; Sabany, Helena; Lu, Yinhui; Kadler, Karl E.

    2016-01-01

    Recently, blood vessels have been implicated in the morphogenesis of various organs. The vasculature is also known to be essential for endochondral bone development, yet the underlying mechanism has remained elusive. We show that a unique composition of blood vessels facilitates the role of the endothelium in bone mineralization and morphogenesis. Immunostaining and electron microscopy showed that the endothelium in developing bones lacks basement membrane, which normally isolates the blood vessel from its surroundings. Further analysis revealed the presence of collagen type I on the endothelial wall of these vessels. Because collagen type I is the main component of the osteoid, we hypothesized that the bone vasculature guides the formation of the collagenous template and consequently of the mature bone. Indeed, some of the bone vessels were found to undergo mineralization. Moreover, the vascular pattern at each embryonic stage prefigured the mineral distribution pattern observed one day later. Finally, perturbation of vascular patterning by overexpressing Vegf in osteoblasts resulted in abnormal bone morphology, supporting a role for blood vessels in bone morphogenesis. These data reveal the unique composition of the endothelium in developing bones and indicate that vascular patterning plays a role in determining bone shape by forming a template for deposition of bone matrix. PMID:27621060

  1. Regulation of Vascular Growth in the Chorioallantoic Membrane of Japanese Quail Eggs

    NASA Technical Reports Server (NTRS)

    Montague, Idoreyin P.

    2004-01-01

    The Microgravity Research Program is part of NASA's Office of Biological and Physical Research (OBPR). The mission of the Microgravity Fluid Physics research program is to facilitate and conduct the best possible fluid physics research using the space environment and make this knowledge available to the scientific community and the public at large. During the summer of 2004, I worked in this division with Dr. Patricia Parsons-Wingerter. Dr. Parsons was working on several projects that used the chorioallantoic membrane (CAM) of Japanese quail eggs. The CAM develops in the eggs of birds and reptiles and is a very vascular fetal membrane composed of the fused chorion and adjacent wall of the allantois. The CAM is formed on day 4 of incubation and its primary job is to mediate gas exchanges with the extra embryonic environment. The CAM of our Japanese quail eggs is easily identifiable to us because it is transparent and it sits on top of the yolk with the embryo in the center. The CAM is of interest because of its many applications in the field of medicine as it relates to vascular remodeling and angiogenesis. Angiogenesis is simply the growth or formation of new blood vessels and anti-angiogenesis is the inhibition of said vessels. Angiogenesis occurs naturally in a healthy body for healing wounds and for restoring blood flow to tissues after injury and in females during the monthly reproductive cycle. In many serious diseases, like several types of cancer and those that affect the heart and cardiovascular system, the body loses control over angiogenesis. These diseases, which are dependent on angiogenesis, result when new blood vessels either grow excessively or insufficiently. The chorioallantoic membrane of our Japanese quail eggs gives a good model of angiogenesis. We used angiogenic regulators to inhibit or stimulate vascular growth in the CAM in a healthy manner and they induced distinct vascular patterns in vivo. Certain dominant regulators can be recognized by their unique vascular patterns and from these patterns; we can deduce specific alterations in vascular remodeling and angiogenesis. This will aid us in early-stage diagnosis and customized therapies for patients with angiogenic-dependent diseases. This particular research is important to NASA because cardiovascular health issues are the second highest of ten categories that have been defined as risk factors in human space exploration. Also, cardiovascular-related diseases have been the leading cause of death in America since 1981. Therefore, this kind of research in the field of cardiovascular health is of great importance to humans on earth and in space. This particular research is important to NASA because cardiovascular health is of great importance to humans on earth and in space.

  2. Do androgens play a beneficial role in the regulation of vascular tone? Nongenomic vascular effects of testosterone metabolites

    PubMed Central

    Perusquía, Mercedes

    2010-01-01

    The marked sexual dimorphism that exists in human cardiovascular diseases has led to the dogmatic concept that testosterone (Tes) has deleterious effects and exacerbates the development of cardiovascular disease in males. While some animal studies suggest that Tes does exert deleterious effects by enhancing vascular tone through acute or chronic mechanisms, accumulating evidence suggests that Tes and other androgens exert beneficial effects by inducing rapid vasorelaxation of vascular smooth muscle through nongenomic mechanisms. While this effect frequently has been observed in large arteries at micromolar concentrations, more recent studies have reported vasorelaxation of smaller resistance arteries at nanomolar (physiological) concentrations. The key mechanism underlying Tes-induced vasorelaxation appears to be the modulation of vascular smooth muscle ion channel function, particularly the inactivation of L-type voltage-operated Ca2+ channels and/or the activation of voltage-operated and Ca2+-activated K+ channels. Studies employing Tes analogs and metabolites reveal that androgen-induced vasodilation is a structurally specific nongenomic effect that is fundamentally different than the genomic effects on reproductive targets. For example, 5α-dihydrotestosterone exhibits potent genomic-androgenic effects but only moderate vasorelaxing activity, whereas its isomer 5β-dihydrotestosterone is devoid of androgenic effects but is a highly efficacious vasodilator. These findings suggest that the dihydro-metabolites of Tes or other androgen analogs devoid of androgenic or estrogenic effects could have useful therapeutic roles in hypertension, erectile dysfunction, prostatic ischemia, or other vascular dysfunctions. PMID:20228257

  3. Impaired sympathetic vascular regulation in humans after acute dynamic exercise

    NASA Technical Reports Server (NTRS)

    Halliwill, J. R.; Taylor, J. A.; Eckberg, D. L.

    1996-01-01

    1. The reduction in vascular resistance which accompanies acute dynamic exercise does not subside immediately during recovery, resulting in a post-exercise hypotension. This sustained vasodilatation suggests that sympathetic vascular regulation is altered after exercise. 2. Therefore, we assessed the baroreflex control of sympathetic outflow in response to arterial pressure changes, and transduction of sympathetic activity into vascular resistance during a sympatho-excitatory stimulus (isometric handgrip exercise) after either exercise (60 min cycling at 60% peak aerobic power (VO2,peak)) or sham treatment (60 min seated rest) in nine healthy subjects. 3. Both muscle sympathetic nerve activity and calf vascular resistance were reduced after exercise (-29.7 +/- 8.8 and -25.3 +/- 9.1%, both P < 0.05). The baroreflex relation between diastolic pressure and sympathetic outflow was shifted downward after exercise (post-exercise intercept, 218 +/- 38 total integrated activity (heartbeat)-1; post-sham intercept, 318 +/- 51 total integrated activity (heartbeat)-1, P < 0.05), indicating less sympathetic outflow across all diastolic pressures. Further, the relation between sympathetic activity and vascular resistance was attenuated after exercise (post-exercise slope, 0.0031 +/- 0.0007 units (total integrated activity)-1 min; post-sham slope, 0.0100 +/- 0.0033 units (total integrated activity)-1 min, P < 0.05), indicating less vasoconstriction with any increase in sympathetic activity. 4. Thus, both baroreflex control of sympathetic outflow and the transduction of sympathetic activity into vascular resistance are altered after dynamic exercise. We conclude that the vasodilation which underlies post-exercise hypotension results from both neural and vascular phenomena.

  4. Gravity-regulated formation of the peg in developing cucumber seedlings

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Scott, T. K.

    1994-01-01

    It has been proposed that peg formation in the vascular transition region (TR zone) between the hypocotyl and the root in Cucurbitaceae seedlings is a gravimorphogenetic phenomenon. Initiation of the peg became visible 36 h after imbibition when cucumber (Cucumis sativus L. cv. Burpee Hybrid II) seeds were germinated in a horizontal position at 24 degrees C in the dark. Simultaneously, sedimented amyloplasts (putative statoliths) were apparent in the sheath cells surrounding the vascular strands, and in the cortical cells immediately adjacent to them, in the TR zone. In contrast, the other cortical cells, some of which were destined to develop into the peg, contained amyloplasts which were not sedimented. These results suggest that the graviperception mechanism for peg formation may be like that of statoliths in shoot gravitropism. By 48 h following imbibition, the cells of the TR zone still had sedimented amyloplasts but had lost their sensitivity to gravity, possibly because of their maturation.

  5. TAM receptor signaling in development.

    PubMed

    Burstyn-Cohen, Tal

    2017-01-01

    TYRO3, AXL and MERTK comprise the TAM family of receptor protein tyrosine kinases. Activated by their ligands, protein S (PROS1) and growth-arrest-specific 6 (GAS6), they mediate numerous cellular functions throughout development and adulthood. Expressed by a myriad of cell types and tissues, they have been implicated in homeostatic regulation of the immune, nervous, vascular, bone and reproductive systems. The loss-of-function of TAM signaling in adult tissues culminates in the destruction of tissue homeostasis and diseased states, while TAM gain-of-function in various tumors promotes cancer phenotypes. Combinatorial ligand-receptor interactions may elicit different molecular and cellular responses. Many of the TAM regulatory functions are essentially developmental, taking place both during embryogenesis and postnatally. This review highlights current knowledge on the role of TAM receptors and their ligands during these developmental processes in the immune, nervous, vascular and reproductive systems.

  6. Axon guidance molecules in vascular patterning.

    PubMed

    Adams, Ralf H; Eichmann, Anne

    2010-05-01

    Endothelial cells (ECs) form extensive, highly branched and hierarchically organized tubular networks in vertebrates to ensure the proper distribution of molecular and cellular cargo in the vertebrate body. The growth of this vascular system during development, tissue repair or in disease conditions involves the sprouting, migration and proliferation of endothelial cells in a process termed angiogenesis. Surprisingly, specialized ECs, so-called tip cells, which lead and guide endothelial sprouts, share many feature with another guidance structure, the axonal growth cone. Tip cells are motile, invasive and extend numerous filopodial protrusions sensing growth factors, extracellular matrix and other attractive or repulsive cues in their tissue environment. Axonal growth cones and endothelial tip cells also respond to signals belonging to the same molecular families, such as Slits and Roundabouts, Netrins and UNC5 receptors, Semaphorins, Plexins and Neuropilins, and Eph receptors and ephrin ligands. Here we summarize fundamental principles of angiogenic growth, the selection and function of tip cells and the underlying regulation by guidance cues, the Notch pathway and vascular endothelial growth factor signaling.

  7. YAP/TAZ Orchestrate VEGF Signaling during Developmental Angiogenesis.

    PubMed

    Wang, Xiaohong; Freire Valls, Aida; Schermann, Géza; Shen, Ying; Moya, Ivan M; Castro, Laura; Urban, Severino; Solecki, Gergely M; Winkler, Frank; Riedemann, Lars; Jain, Rakesh K; Mazzone, Massimilano; Schmidt, Thomas; Fischer, Tamás; Halder, Georg; Ruiz de Almodóvar, Carmen

    2017-09-11

    Vascular endothelial growth factor (VEGF) is a major driver of blood vessel formation. However, the signal transduction pathways culminating in the biological consequences of VEGF signaling are only partially understood. Here, we show that the Hippo pathway effectors YAP and TAZ work as crucial signal transducers to mediate VEGF-VEGFR2 signaling during angiogenesis. We demonstrate that YAP/TAZ are essential for vascular development as endothelium-specific deletion of YAP/TAZ leads to impaired vascularization and embryonic lethality. Mechanistically, we show that VEGF activates YAP/TAZ via its effects on actin cytoskeleton and that activated YAP/TAZ induce a transcriptional program to further control cytoskeleton dynamics and thus establish a feedforward loop that ensures a proper angiogenic response. Lack of YAP/TAZ also results in altered cellular distribution of VEGFR2 due to trafficking defects from the Golgi apparatus to the plasma membrane. Altogether, our study identifies YAP/TAZ as central mediators of VEGF signaling and therefore as important regulators of angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Regulation of monocyte cell fate by blood vessels mediated by Notch signalling.

    PubMed

    Gamrekelashvili, Jaba; Giagnorio, Roberto; Jussofie, Jasmin; Soehnlein, Oliver; Duchene, Johan; Briseño, Carlos G; Ramasamy, Saravana K; Krishnasamy, Kashyap; Limbourg, Anne; Kapanadze, Tamar; Ishifune, Chieko; Hinkel, Rabea; Radtke, Freddy; Strobl, Lothar J; Zimber-Strobl, Ursula; Napp, L Christian; Bauersachs, Johann; Haller, Hermann; Yasutomo, Koji; Kupatt, Christian; Murphy, Kenneth M; Adams, Ralf H; Weber, Christian; Limbourg, Florian P

    2016-08-31

    A population of monocytes, known as Ly6C(lo) monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6C(hi) monocytes into Ly6C(lo) monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo, while culture on recombinant DLL1 induces monocyte conversion in vitro. Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation.

  9. Regulation of monocyte cell fate by blood vessels mediated by Notch signalling

    PubMed Central

    Gamrekelashvili, Jaba; Giagnorio, Roberto; Jussofie, Jasmin; Soehnlein, Oliver; Duchene, Johan; Briseño, Carlos G.; Ramasamy, Saravana K.; Krishnasamy, Kashyap; Limbourg, Anne; Häger, Christine; Kapanadze, Tamar; Ishifune, Chieko; Hinkel, Rabea; Radtke, Freddy; Strobl, Lothar J.; Zimber-Strobl, Ursula; Napp, L. Christian; Bauersachs, Johann; Haller, Hermann; Yasutomo, Koji; Kupatt, Christian; Murphy, Kenneth M.; Adams, Ralf H.; Weber, Christian; Limbourg, Florian P.

    2016-01-01

    A population of monocytes, known as Ly6Clo monocytes, patrol blood vessels by crawling along the vascular endothelium. Here we show that endothelial cells control their origin through Notch signalling. Using combinations of conditional genetic deletion strategies and cell-fate tracking experiments we show that Notch2 regulates conversion of Ly6Chi monocytes into Ly6Clo monocytes in vivo and in vitro, thereby regulating monocyte cell fate under steady-state conditions. This process is controlled by Notch ligand delta-like 1 (Dll1) expressed by a population of endothelial cells that constitute distinct vascular niches in the bone marrow and spleen in vivo, while culture on recombinant DLL1 induces monocyte conversion in vitro. Thus, blood vessels regulate monocyte conversion, a form of committed myeloid cell fate regulation. PMID:27576369

  10. Recapitulation of developmental mechanisms to revascularize the ischemic heart

    PubMed Central

    Dubé, Karina N.; Thomas, Tonia M.; Munshaw, Sonali; Rohling, Mala; Riley, Paul R.

    2017-01-01

    Restoring blood flow after myocardial infarction (MI) is essential for survival of existing and newly regenerated tissue. Endogenous vascular repair processes are deployed following injury but are poorly understood. We sought to determine whether developmental mechanisms of coronary vessel formation are intrinsically reactivated in the adult mouse after MI. Using pulse-chase genetic lineage tracing, we establish that de novo vessel formation constitutes a substantial component of the neovascular response, with apparent cellular contributions from the endocardium and coronary sinus. The adult heart reverts to its former hypertrabeculated state and repeats the process of compaction, which may facilitate endocardium-derived neovascularization. The capacity for angiogenic sprouting of the coronary sinus vein, the adult derivative of the sinus venosus, may also reflect its embryonic origin. The quiescent epicardium is reactivated and, while direct cellular contribution to new vessels is minimal, it supports the directional expansion of the neovessel network toward the infarcted myocardium. Thymosin β4, a peptide with roles in vascular development, was required for endocardial compaction, epicardial vessel expansion, and smooth muscle cell recruitment. Insight into pathways that regulate endogenous vascular repair, drawing on comparisons with development, may reveal novel targets for therapeutically enhancing neovascularization. PMID:29202457

  11. The Annexin a2 Promotes Development in Arthritis through Neovascularization by Amplification Hedgehog Pathway.

    PubMed

    Yi, Jun; Zhu, Yan; Jia, Yin; Jiang, Hongdie; Zheng, Xin; Liu, Dejing; Gao, Shunxiang; Sun, Mingjuan; Hu, Bo; Jiao, Binghua; Wang, Lianghua; Wang, Kaihui

    2016-01-01

    The neovascularization network of pannus formation plays a crucial role in the development of rheumatoid arthritis (RA). Annexin a2 (Axna2) is an important mediating agent that induces angiogenesis in vascular diseases. The correlation between Axna2 and pannus formation has not been studied. Here, we provided evidence that compared to osteoarthritis (OA) patients and healthy people, the expression of Axna2 and Axna2 receptor (Axna2R) were up-regulated in patients with RA. Joint swelling, inflammation and neovascularization were increased significantly in mice with collagen-induced arthritis (CIA) that were exogenously added Axna2. Cell experiments showed that Axna2 promoted HUVEC proliferation by binding Axna2R, and could activate Hedgehog (HH) signaling and up-regulate the expression of Ihh and Gli. Besides, expression of Ihh, Patched (Ptc), Smoothened (Smo) and Gli and matrix metalloproteinase-2 (MMP-2), vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang-2), angiogenic growth factor of HH signaling downstream, were down-regulated after inhibition of expression Axna2R on HUVEC. Together, our research definitely observed that over-expression of Axna2 could promote the development of CIA, especially during the process of pannus formation for the first time. Meanwhile, Axna2 depended on combining Axna2R to activate and enlarge HH signaling and the expression of its downstream VEGF, Ang-2 and MMP-2 to promote HUVEC proliferation, and eventually caused to angiogenesis. Therefore, the role of Axna2 is instructive for understanding the development of RA, suppress the effect of Axna2 might provide a new potential measure for treatment of RA.

  12. Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells

    PubMed Central

    Watkins, Stacey; Robel, Stefanie; Kimbrough, Ian F.; Robert, Stephanie M.; Ellis-Davies, Graham; Sontheimer, Harald

    2014-01-01

    Astrocytic endfeet cover the entire cerebral vasculature and serve as exchange sites for ions, metabolites, and energy substrates from the blood to the brain. They maintain endothelial tight junctions that form the blood-brain barrier (BBB) and release vasoactive molecules that regulate vascular tone. Malignant gliomas are highly invasive tumors that use the perivascular space for invasion and co-opt existing vessels as satellite tumors form. Here we use a clinically relevant mouse model of glioma and find that glioma cells, as they populate the perivascular space of pre-existing vessels, displace astrocytic endfeet from endothelial or vascular smooth muscle cells. This causes a focal breach in the BBB. Furthermore, astrocyte-mediated gliovascular coupling is lost, and glioma cells seize control over regulation of vascular tone through Ca2+-dependent release of K+. These findings have important clinical implications regarding blood flow in the tumor-associated brain and the ability to locally deliver chemotherapeutic drugs in disease. PMID:24943270

  13. ITE and TCDD differentially regulate the vascular remodeling of rat placenta via the activation of AhR.

    PubMed

    Wu, Yanming; Chen, Xiao; Zhou, Qian; He, Qizhi; Kang, Jiuhong; Zheng, Jing; Wang, Kai; Duan, Tao

    2014-01-01

    Vascular remodeling in the placenta is essential for normal fetal development. The previous studies have demonstrated that in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an environmental toxicant) induces the intrauterine fetal death in many species via the activation of aryl hydrocarbon receptor (AhR). In the current study, we compared the effects of 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) and TCDD on the vascular remodeling of rat placentas. Pregnant rats on gestational day (GD) 15 were randomly assigned into 5 groups, and were exposed to a single dose of 1.6 and 8.0 mg/kg body weight (bw) ITE, 1.6 and 8.0 µg/kg bw TCDD, or an equivalent volume of the vehicle, respectively. The dams were sacrificed on GD20 and the placental tissues were gathered. The intrauterine fetal death was observed only in 8.0 µg/kg bw TCDD-exposed group and no significant difference was seen in either the placental weight or the fetal weight among all these groups. The immunohistochemical and histological analyses revealed that as compared with the vehicle-control, TCDD, but not ITE, suppressed the placental vascular remodeling, including reduced the ratio of the placental labyrinth zone to the basal zone thickness (at least 0.71 fold of control), inhibited the maternal sinusoids dilation and thickened the trophoblastic septa. However, no marked difference was observed in the density of fetal capillaries in the labyrinth zone among these groups, although significant differences were detected in the expression of angiogenic growth factors between ITE and TCDD-exposed groups, especially Angiopoietin-2 (Ang-2), Endoglin, Interferon-γ (IFN-γ) and placenta growth factor (PIGF). These results suggest ITE and TCDD differentially regulate the vascular remodeling of rat placentas, as well as the expression of angiogenic factors and their receptors, which in turn may alter the blood flow in the late gestation and partially resulted in intrauterine fetal death.

  14. Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease.

    PubMed

    Benjamin, Mina M; Khalil, Raouf A

    2012-01-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade various components of the extracellular matrix (ECM). MMPs could also regulate the activity of several non-ECM bioactive substrates and consequently affect different cellular functions. Members of the MMPs family include collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and others. Pro-MMPs are cleaved into active MMPs, which in turn act on various substrates in the ECM and on the cell surface. MMPs play an important role in the regulation of numerous physiological processes including vascular remodeling and angiogenesis. MMPs may also be involved in vascular diseases such as hypertension, atherosclerosis, aortic aneurysm, and varicose veins. MMPs also play a role in the hemodynamic and vascular changes associated with pregnancy and preeclampsia. The role of MMPs is commonly assessed by measuring their gene expression, protein amount, and proteolytic activity using gel zymography. Because there are no specific activators of MMPs, MMP inhibitors are often used to investigate the role of MMPs in different physiologic processes and in the pathogenesis of specific diseases. MMP inhibitors include endogenous tissue inhibitors (TIMPs) and pharmacological inhibitors such as zinc chelators, doxycycline, and marimastat. MMP inhibitors have been evaluated as diagnostic and therapeutic tools in cancer, autoimmune disease, and cardiovascular disease. Although several MMP inhibitors have been synthesized and tested both experimentally and clinically, only one MMP inhibitor, i.e., doxycycline, is currently approved by the Food and Drug Administration. This is mainly due to the undesirable side effects of MMP inhibitors especially on the musculoskeletal system. While most experimental and clinical trials of MMP inhibitors have not demonstrated significant benefits, some trials still showed promising results. With the advent of new genetic and pharmacological tools, disease-specific MMP inhibitors with fewer undesirable effects are being developed and could be useful in the management of vascular disease.

  15. Circular RNA hsa_circ_0003575 regulates oxLDL induced vascular endothelial cells proliferation and angiogenesis.

    PubMed

    Li, Chen-Ye; Ma, Lan; Yu, Bo

    2017-11-01

    Circular RNAs (circRNAs) are a novel class of RNAs generated from back-splicing and characterized by covalently closed continuous loops. Recently, circRNAs have recently shown large regulation on cardiovascular system, including atherosclerosis. The present study aims to investigate the circRNA expression profile and identify their roles on vascular endothelial cells induced by oxLDL. Human circRNA microarray analysis revealed that total 943 differently expressed circRNAs were screened with 2 fold change. Hsa_circ_0003575 was validated to be significantly up-regulated in oxLDL induced HUVECs. Loss-of-function experiments indicated that hsa_circ_0003575 silencing promoted the proliferation and angiogenesis ability of HUVECs. Bioinformatics online programs predicted the potential circRNA-miRNA-mRNA network for hsa_circ_0003575. In summary, circRNA microarray analysis reveals the expression profiles of HUVECs and verifies the role of hsa_circ_0003575 on HUVECs, providing a therapeutic strategy for vascular endothelial cell injury of atherosclerosis. Copyright © 2017. Published by Elsevier Masson SAS.

  16. RhoC and ROCKs regulate cancer cell interactions with endothelial cells.

    PubMed

    Reymond, Nicolas; Im, Jae Hong; Garg, Ritu; Cox, Susan; Soyer, Magali; Riou, Philippe; Colomba, Audrey; Muschel, Ruth J; Ridley, Anne J

    2015-06-01

    RhoC is a member of the Rho GTPase family that is implicated in cancer progression by stimulating cancer cell invasiveness. Here we report that RhoC regulates the interaction of cancer cells with vascular endothelial cells (ECs), a crucial step in the metastatic process. RhoC depletion by RNAi reduces PC3 prostate cancer cell adhesion to ECs, intercalation between ECs as well as transendothelial migration in vitro. Depletion of the kinases ROCK1 and ROCK2, two known RhoC downstream effectors, similarly decreases cancer interaction with ECs. RhoC also regulates the extension of protrusions made by cancer cells on vascular ECs in vivo. Transient RhoC depletion is sufficient to reduce both early PC3 cell retention in the lungs and experimental metastasis formation in vivo. Our results indicate RhoC plays a central role in cancer cell interaction with vascular ECs, which is a critical event for cancer progression. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Inherited liver shunts in dogs elucidate pathways regulating embryonic development and clinical disorders of the portal vein.

    PubMed

    van Steenbeek, Frank G; van den Bossche, Lindsay; Leegwater, Peter A J; Rothuizen, Jan

    2012-02-01

    Congenital disorders of the hepatic portal vasculature are rare in man but occur frequently in certain dog breeds. In dogs, there are two main subtypes: intrahepatic portosystemic shunts, which are considered to stem from defective closure of the embryonic ductus venosus, and extrahepatic shunts, which connect the splanchnic vascular system with the vena cava or vena azygos. Both subtypes result in nearly complete bypass of the liver by the portal blood flow. In both subtypes the development of the smaller branches of the portal vein tree in the liver is impaired and terminal branches delivering portal blood to the liver lobules are often lacking. The clinical signs are due to poor liver growth, development, and function. Patency of the ductus venosus seems to be a digenic trait in Irish wolfhounds, whereas Cairn terriers with extrahepatic portosystemic shunts display a more complex inheritance. The genes involved in these disorders cannot be identified with the sporadic human cases, but in dogs, the genome-wide study of the extrahepatic form is at an advanced stage. The canine disease may lead to the identification of novel genes and pathways cooperating in growth and development of the hepatic portal vein tree. The same pathways likely regulate the development of the vascular system of regenerating livers during liver diseases such as hepatitis and cirrhosis. Therefore, the identification of these molecular pathways may provide a basis for future proregenerative intervention.

  18. Ott1 (Rbm15) is essential for placental vascular branching morphogenesis and embryonic development of the heart and spleen.

    PubMed

    Raffel, Glen D; Chu, Gerald C; Jesneck, Jonathan L; Cullen, Dana E; Bronson, Roderick T; Bernard, Olivier A; Gilliland, D Gary

    2009-01-01

    The infant leukemia-associated gene Ott1 (Rbm15) has broad regulatory effects within murine hematopoiesis. However, germ line Ott1 deletion results in fetal demise prior to embryonic day 10.5, indicating additional developmental requirements for Ott1. The spen gene family, to which Ott1 belongs, has a transcriptional activation/repression domain and RNA recognition motifs and has a significant role in the development of the head and thorax in Drosophila melanogaster. Early Ott1-deficient embryos show growth retardation and incomplete closure of the notochord. Further analysis demonstrated placental defects in the spongiotrophoblast and syncytiotrophoblast layers, resulting in an arrest of vascular branching morphogenesis. The rescue of the placental defect using a conditional allele with a trophoblast-sparing cre transgene allowed embryos to form a normal placenta and survive gestation. This outcome showed that the process of vascular branching morphogenesis in Ott1-deficient animals was regulated by the trophoblast compartment rather than the fetal vasculature. Mice surviving to term manifested hyposplenia and abnormal cardiac development. Analysis of global gene expression of Ott1-deficient embryonic hearts showed an enrichment of hypoxia-related genes and a significant alteration of several candidate genes critical for cardiac development. Thus, Ott1-dependent pathways, in addition to being implicated in leukemogenesis, may also be important for the pathogenesis of placental insufficiency and cardiac malformations.

  19. Matricellular protein CCN3 mitigates abdominal aortic aneurysm

    PubMed Central

    Zhang, Chao; van der Voort, Dustin; Shi, Hong; Qing, Yulan; Hiraoka, Shuichi; Takemoto, Minoru; Yokote, Koutaro; Moxon, Joseph V.; Norman, Paul; Rittié, Laure; Atkins, G. Brandon; Gerson, Stanton L.; Shi, Guo-Ping; Golledge, Jonathan; Dong, Nianguo; Perbal, Bernard; Prosdocimo, Domenick A.

    2016-01-01

    Abdominal aortic aneurysm (AAA) is a major cause of morbidity and mortality; however, the mechanisms that are involved in disease initiation and progression are incompletely understood. Extracellular matrix proteins play an integral role in modulating vascular homeostasis in health and disease. Here, we determined that the expression of the matricellular protein CCN3 is strongly reduced in rodent AAA models, including angiotensin II–induced AAA and elastase perfusion–stimulated AAA. CCN3 levels were also reduced in human AAA biopsies compared with those in controls. In murine models of induced AAA, germline deletion of Ccn3 resulted in severe phenotypes characterized by elastin fragmentation, vessel dilation, vascular inflammation, dissection, heightened ROS generation, and smooth muscle cell loss. Conversely, overexpression of CCN3 mitigated both elastase- and angiotensin II–induced AAA formation in mice. BM transplantation experiments suggested that the AAA phenotype of CCN3-deficient mice is intrinsic to the vasculature, as AAA was not exacerbated in WT animals that received CCN3-deficient BM and WT BM did not reduce AAA severity in CCN3-deficient mice. Genetic and pharmacological approaches implicated the ERK1/2 pathway as a critical regulator of CCN3-dependent AAA development. Together, these results demonstrate that CCN3 is a nodal regulator in AAA biology and identify CCN3 as a potential therapeutic target for vascular disease. PMID:26974158

  20. Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells.

    PubMed

    Zhou, Fang; Jia, Xiaoling; Yang, Yang; Yang, Qingmao; Gao, Chao; Zhao, Yunhui; Fan, Yubo; Yuan, Xiaoyan

    2016-11-01

    The efficiency of biomaterials used in small vascular repair depends greatly on their ability to interact with vascular endothelial cells (VECs). Rapid endothelialization of the vascular grafts is a promising way to prevent thrombosis and intimal hyperplasia. In this work, modification of electrospun membranes of poly(ethylene glycol)-b-poly(l-lactide-co-ε-caprolactone) (PELCL) by three different peptides for regulation of VECs were studied in order to obtain ideal bioactive biomaterials as small diameter vascular grafts. QK (a mimetic peptide to vascular endothelial growth factor), Arg-Glu-Asp-Val (REDV, a specific adhesive peptide to VECs) and Val-Ala-Pro-Gly (VAPG, a specific adhesive peptide to vascular smooth muscle cells) were investigated. Surface properties of the modified membranes and the response of VECs were verified. It was found that protein adsorption and platelet adhesion were effectively suppressed with the introduction of QK, REDV or VAPG peptides on the PELCL electrospun membranes. Both QK- and REDV-modified electrospun membranes could accelerate the proliferation of VECs in the first 9days, and the QK-modified electrospun membrane promoted cell proliferation more significantly than the REDV-modified one. The REDV-modified PELCL membrane was the most favorable for VECs adhesion than QK- and VAPG-modified membranes. It was suggested that QK- or REDV-modified PELCL electrospun membranes may have great potential applications in cardiovascular biomaterials for rapid endothelialization in situ. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Optical projection tomography reveals dynamics of HEV growth after immunization with protein plus CFA and features shared with HEVs in acute autoinflammatory lymphadenopathy.

    PubMed

    Kumar, Varsha; Chyou, Susan; Stein, Jens V; Lu, Theresa T

    2012-01-01

    The vascular-stromal compartment of lymph nodes is important for lymph node function, and high endothelial venules (HEVs) play a critical role in controlling the entry of recirculating lymphocytes. In autoimmune and autoinflammatory diseases, lymph node swelling is often accompanied by apparent HEV expansion and, potentially, targeting HEV expansion could be used therapeutically to limit autoimmunity. In previous studies using mostly flow cytometry analysis, we defined three differentially regulated phases of lymph node vascular-stromal growth: initiation, expansion, and the re-establishment of vascular quiescence and stabilization. In this study, we use optical projection tomography to better understand the morphologic aspects of HEV growth upon immunization with ovalbumin/CFA (OVA/CFA). We find HEV elongation as well as modest arborization during the initiation phase, increased arborization during the expansion phase, and, finally, vessel narrowing during the re-establishment of vascular quiescence and stabilization. We also examine acutely enlarged autoinflammatory lymph nodes induced by regulatory T cell depletion and show that HEVs are expanded and morphologically similar to the expanded HEVs in OVA/CFA-stimulated lymph nodes. These results reinforce the idea of differentially regulated, distinct phases of vascular-stromal growth after immunization and suggest that insights gained from studying immunization-induced lymph node vascular growth may help to understand how the lymph node vascular-stromal compartment could be therapeutically targeted in autoimmune and autoinflammatory diseases.

  2. The generation of the epicardial lineage from human pluripotent stem cells

    PubMed Central

    Witty, Alec D.; Mihic, Anton; Tam, Roger Y.; Fisher, Stephanie A.; Mikryukov, Alexander; Shoichet, Molly S.; Li, Ren-Ke; Kattman, Steven J.; Keller, Gordon

    2014-01-01

    The epicardium supports cardiomyocyte proliferation early in development and provides fibroblasts and vascular smooth muscle cells to the developing heart. The epicardium has been shown to play an important role during tissue remodeling after cardiac injury, making access to this cell lineage necessary for the study of regenerative medicine. Here we describe the generation of epicardial lineage cells from human pluripotent stem cells by stage-specific activation of the BMP and WNT signaling pathways. These cells display morphological characteristics and express markers of the epicardial lineage, including the transcription factors WT1 and TBX18 and the retinoic acid–producing enzyme ALDH1A2. When induced to undergo epicardial-tomesenchymal transition, the cells give rise to populations that display characteristics of the fibroblast and vascular smooth muscle lineages. These findings identify BMP and WNT as key regulators of the epicardial lineage in vitro and provide a model for investigating epicardial function in human development and disease. PMID:25240927

  3. CNS Macrophages Control Neurovascular Development via CD95L.

    PubMed

    Chen, Si; Tisch, Nathalie; Kegel, Marcel; Yerbes, Rosario; Hermann, Robert; Hudalla, Hannes; Zuliani, Cecilia; Gülcüler, Gülce Sila; Zwadlo, Klara; von Engelhardt, Jakob; Ruiz de Almodóvar, Carmen; Martin-Villalba, Ana

    2017-05-16

    The development of neurons and vessels shares striking anatomical and molecular features, and it is presumably orchestrated by an overlapping repertoire of extracellular signals. CNS macrophages have been implicated in various developmental functions, including the morphogenesis of neurons and vessels. However, whether CNS macrophages can coordinately influence neurovascular development and the identity of the signals involved therein is unclear. Here, we demonstrate that activity of the cell surface receptor CD95 regulates neuronal and vascular morphogenesis in the post-natal brain and retina. Furthermore, we identify CNS macrophages as the main source of CD95L, and macrophage-specific deletion thereof reduces both neurovascular complexity and synaptic activity in the brain. CD95L-induced neuronal and vascular growth is mediated through src-family kinase (SFK) and PI3K signaling. Together, our study highlights a coordinated neurovascular development instructed by CNS macrophage-derived CD95L, and it underlines the importance of macrophages for the establishment of the neurovascular network during CNS development. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Postural Regulation of Muscle Sympathetic Nerve Activity Before and After Simulated and Actual Microgravity Deconditioning

    NASA Technical Reports Server (NTRS)

    Pawelczyk, J. A.; Levine, B. D.

    1999-01-01

    The etiology of orthostatic intolerance after spaceflight is multifaceted. Morphological adaptations, in particular cardiac atrophy, are likely to magnify the decrease in stroke volume that occurs with reductions in cardiac filling pressure when standing. Neural adaptations may be inferred as well, as reductions in carotid-cardiac baroreflex responsiveness have been reported following bedrest deconditioning and spaceflight. Neural control of vascular resistance has not been studied directly when orthostatic intolerance is florid in the hours following spaceflight. However, the increases in systemic vascular resistance and plasma catecholamines during orthostatic stress are inappropriately low in orthostatically intolerant subjects following spaceflight, suggesting that deficits in the regulation of vascular resistance may be associated with hypoadrenergic function. The studies described in this abstract were designed to test this hypothesis.

  5. Activation of KV7 channels stimulates vasodilatation of human placental chorionic plate arteries.

    PubMed

    Mills, T A; Greenwood, S L; Devlin, G; Shweikh, Y; Robinson, M; Cowley, E; Hayward, C E; Cottrell, E C; Tropea, T; Brereton, M F; Dalby-Brown, W; Wareing, M

    2015-06-01

    Potassium (K(+)) channels are key regulators of vascular smooth muscle cell (VSMC) excitability. In systemic small arteries, Kv7 channel expression/activity has been noted and a role in vascular tone regulation demonstrated. We aimed to demonstrate functional Kv7 channels in human fetoplacental small arteries. Human placental chorionic plate arteries (CPAs) were obtained at term. CPA responses to Kv7 channel modulators was determined by wire myography. Presence of Kv7 channel mRNA (encoded by KCNQ1-5) and protein expression were assessed by RT-PCR and immunohistochemistry/immunofluorescence, respectively. Kv7 channel blockade with linopirdine increased CPA basal tone and AVP-induced contraction. Pre-contracted CPAs (AVP; 80 mM K(+) depolarization solution) exhibited significant relaxation to flupirtine, retigabine, the acrylamide (S)-1, and (S) BMS-204352, differential activators of Kv7.1 - Kv7.5 channels. All CPAs assessed expressed KCNQ1 and KCNQ3-5 mRNA; KCNQ2 was expressed only in a subset of CPAs. Kv7 protein expression was confirmed in intact CPAs and isolated VSMCs. Kv7 channels are present and active in fetoplacental vessels, contributing to vascular tone regulation in normal pregnancy. Targeting these channels may represent a therapeutic intervention in pregnancies complicated by increased vascular resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Testosterone and phosphodiesterase type-5 inhibitors: new strategy for preventing endothelial damage in internal and sexual medicine?

    PubMed Central

    Aversa, Antonio; Bruzziches, Roberto; Francomano, Davide; Natali, Marco; Lenzi, Andrea

    2009-01-01

    Normal vascular endothelium is essential for the synthesis and release of substances affecting vascular tone (e.g. nitric oxide; NO), cell adhesion (e.g. endothelins, interleukins), and the homeostasis of clotting and fibrinolysis (e.g. plasminogen inhibitors, von Willebrand factor). The degeneration of endothelial integrity promotes adverse events (AEs) leading to increased atherogenesis and to the development of vascular systemic and penile end-organ disease. Testosterone (T) is an important player in the regulation of vascular tone through non-genomic actions exerted via blockade of extracellular-calcium entry or activation of potassium channels; also, adequate T concentrations are paramount for the regulation of phosphodiesterase type-5 (PDE5) expression and finally, for the actions exerted by hydrogen sulphide, a gas involved in the alternative pathway controlling vasodilator responses in penile tissue. It is known that an age-related decline of serum T is reported in approximately 20 to 30% of men whereas T deficiency is reported in up to 50% of men with metabolic syndrome or diabetes. A number of laboratory and human studies have shown the combination of T and other treatments for erectile dysfunction (ED), such as PDE5 inhibitors, to be more beneficial in patients with ED and hypogonadism, who fail monotherapy for sexual disturbances. The aim of this review is to show evidence on the role of T and PDE5 inhibitors, alone or in combination, as potential boosters of endothelial function in internal medicine diseases associated with reduced T or NO bioavailability, i.e. metabolic syndrome, obesity, diabetes, coronary artery disease, hyperhomocysteinemia, that share common risk factors with ED. Furthermore, the possibility of such a strategy to prevent endothelial dysfunction in men at increased cardiovascular risk is discussed. PMID:21789066

  7. The role of angiogenic factors in fibroid pathogenesis: potential implications for future therapy

    PubMed Central

    Tal, Reshef; Segars, James H.

    2014-01-01

    Background It is well established that tumors are dependent on angiogenesis for their growth and survival. Although uterine fibroids are known to be benign tumors with reduced vascularization, recent work demonstrates that the vasculature of fibroids is grossly and microscopically abnormal. Accumulating evidence suggests that angiogenic growth factor dysregulation may be implicated in these vascular and other features of fibroid pathophysiology. Methods Literature searches were performed in PubMed and Google Scholar for articles with content related to angiogenic growth factors and myometrium/leiomyoma. The findings are hereby reviewed and discussed. Results Multiple growth factors involved in angiogenesis are differentially expressed in leiomyoma compared with myometrium. These include epidermal growth factor (EGF), heparin-binding-EGF, vascular endothelial growth factor, basic fibroblast growth factor, platelet-derived growth factor, transforming growth factor-β and adrenomedullin. An important paradox is that although leiomyoma tissues are hypoxic, leiomyoma feature down-regulation of key molecular regulators of the hypoxia response. Furthermore, the hypoxic milieu of leiomyoma may contribute to fibroid development and growth. Notably, common treatments for fibroids such as GnRH agonists and uterine artery embolization (UAE) are shown to work at least partly via anti-angiogenic mechanisms. Conclusions Angiogenic growth factors play an important role in mechanisms of fibroid pathophysiology, including abnormal vasculature and fibroid growth and survival. Moreover, the fibroid's abnormal vasculature together with its aberrant hypoxic and angiogenic response may make it especially vulnerable to disruption of its vascular supply, a feature which could be exploited for treatment. Further experimental studies are required in order to gain a better understanding of the growth factors that are involved in normal and pathological myometrial angiogenesis, and to assess the potential of anti-angiogenic treatment strategies for uterine fibroids. PMID:24077979

  8. Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Chang Yoon; Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul; Ku, Cheol Ryong

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Protocatechuic aldehyde (PCA) inhibits ROS production in VSMCs. Black-Right-Pointing-Pointer PCA inhibits proliferation and migration in PDGF-induced VSMCs. Black-Right-Pointing-Pointer PCA has anti-platelet effects in ex vivo rat whole blood. Black-Right-Pointing-Pointer We report the potential therapeutic role of PCA in atherosclerosis. -- Abstract: The migration and proliferation of vascular smooth muscle cells (VSMCs) and formation of intravascular thrombosis play crucial roles in the development of atherosclerotic lesions. This study examined the effects of protocatechuic aldehyde (PCA), a compound isolated from the aqueous extract of the root of Salvia miltiorrhiza, an herb used in traditional Chinese medicine to treat a varietymore » of vascular diseases, on the migration and proliferation of VSMCs and platelets due to platelet-derived growth factor (PDGF). DNA 5-bromo-2 Prime -deoxy-uridine (BrdU) incorporation and wound-healing assays indicated that PCA significantly attenuated PDGF-induced proliferation and migration of VSMCs at a pharmacologically relevant concentration (100 {mu}M). On a molecular level, we observed down-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways, both of which regulate key enzymes associated with migration and proliferation. We also found that PCA induced S-phase arrest of the VSMC cell cycle and suppressed cyclin D2 expression. In addition, PCA inhibited PDGF-BB-stimulated reactive oxygen species production in VSMCs, indicating that PCA's antioxidant properties may contribute to its suppression of PDGF-induced migration and proliferation in VSMCs. Finally, PCA exhibited an anti-thrombotic effect related to its inhibition of platelet aggregation, confirmed with an aggregometer. Together, these findings suggest a potential therapeutic role of PCA in the treatment of atherosclerosis and angioplasty-induced vascular restenosis.« less

  9. Vascular endothelium-specific overexpression of human catalase in cloned pigs

    PubMed Central

    Samuel, M.; Mahan, E.; Padilla, J.; Simmons, G. H.; Arce-Esquivel, A. A.; Bender, S. B.; Whitworth, K. M.; Hao, Y. H.; Murphy, C. N.; Walters, E. M.; Prather, R. S.; Laughlin, M. H.

    2012-01-01

    The objective of this study was to develop transgenic Yucatan minipigs that overexpress human catalase (hCat) in an endothelial-specific manner. Catalase metabolizes hydrogen peroxide (H2O2), an important regulator of vascular tone that contributes to diseases such as atherosclerosis and preeclampsia. A large animal model to study reduced endothelium-derived H2O2 would therefore generate valuable translational data on vascular regulation in health and disease. Yucatan minipig fetal fibroblasts stably co-transfected with human catalase (Tie2-hCat) and eGFP expression constructs were isolated into single-cell populations. The presence of the Tie2-hCat transgene in individual colonies of fibroblasts was determined by PCR. Transgenic fibroblasts were used for nuclear transfer into enucleated oocytes by electrofusion. A minimum of 140 cloned embryos were transferred per surrogate sow (n = 4). All four surrogates maintained pregnancies and piglets were delivered by cesarean section. Nine male piglets from three of the four litters carried the Tie2-hCat transgene. Expression of human catalase mRNA and overall elevated catalase protein in isolated umbilical endothelial cells from transgenic piglets were verified by RT–PCR and western blot, respectively, and endothelial localization was confirmed by immunohistochemistry. Increased enzymatic activity of catalase in transgenic versus wild-type endothelial cells was inferred based on significantly reduced levels of H2O2 in culture. The similarities in swine and human cardiovascular anatomy and physiology will make this pig model a valuable source of information on the putative role of endothelium-derived H2O2 in vasodilation and in the mechanisms underlying vascular health and disease. PMID:21170678

  10. Amphetamine and environmentally induced hyperthermia differentially alter the expression of genes regulating vascular tone and angiogenesis in the meninges and associated vasculature.

    PubMed

    Thomas, Monzy; George, Nysia I; Patterson, Tucker A; Bowyer, John F

    2009-10-01

    An amphetamine (AMPH) regimen that does not produce a prominent blood-brain barrier breakdown was shown to significantly alter the expression of genes regulating vascular tone, immune function, and angiogenesis in vasculature associated with arachnoid and pia membranes of the forebrain. Adult-male Sprague-Dawley rats were given either saline injections during environmentally-induced hyperthermia (EIH) or four doses of AMPH with 2 h between each dose (5, 7.5, 10, and 10 mg/kg d-AMPH, s.c.) that produced hyperthermia. Rats were sacrificed either 3 h or 1 day after dosing, and total RNA and protein was isolated from the meninges, arachnoid and pia membranes, and associated vasculature (MAV) that surround the forebrain. Vip, eNos, Drd1a, and Edn1 (genes regulating vascular tone) were increased by either EIH or AMPH to varying degrees in MAV, indicating that EIH and AMPH produce differential responses to enhance vasodilatation. AMPH, and EIH to a lesser extent, elicited a significant inflammatory response at 3 h as indicated by an increased MAV expression of cytokines Il1b, Il6, Ccl-2, Cxcl1, and Cxcl2. Also, genes related to heat shock/stress and disruption of vascular homeostasis such as Icam1 and Hsp72 were also observed. The increased expression of Ctgf and Timp1 and the decreased expression of Akt1, Anpep, and Mmp2 and Tek (genes involved in stimulating angiogenesis) from AMPH exposure suggest that angiogenesis was arrested or disrupted in MAV to a greater extent by AMPH compared to EIH. Alterations in vascular-related gene expression in the parietal cortex and striatum after AMPH were less in magnitude than in MAV, indicating less of a disruption of vascular homeostasis in these two regions. Changes in the levels of insulin-like growth factor binding proteins Igfbp1, 2, and 5 in MAV, compared to those in striatum and parietal cortex, imply an interaction between these regions to regulate the levels of insulin-like growth factor after AMPH damage. Thus, the vasculature and meninges surrounding the surface of the forebrain may be an important region in which AMPHs can disrupt vascular homeostasis. Copyright 2009 Wiley-Liss, Inc.

  11. Vascular calcification and 25-hydroxyvitamin D levels in non-dialysis patients with chronic kidney disease stages 4 and 5.

    PubMed

    García-Canton, Cesar; Bosch, Elvira; Ramírez, Ana; Gonzalez, Yeray; Auyanet, Ingrid; Guerra, Rita; Perez, Miguel A; Fernández, Ernesto; Toledo, Agustín; Lago, Mar; Checa, Maria D

    2011-07-01

    Cardiovascular disease (CVD) is the leading cause of death among chronic kidney disease (CKD) patients. Vascular calcification is highly prevalent in this population and is an independent predictor of cardiovascular mortality. Vascular calcification in uraemic patients is known to be an active and regulated process subject to the action of many promoting and inhibitory factors. The role of vitamin D in this process remains controversial. We evaluated the relationship between serum levels of 25-hydroxyvitamin D (25(OH)D) and vascular calcification evaluated by plain X-ray images, in predialysis patients with CKD stages 4 and 5. We performed a cross-sectional study with 210 CKD patients stages 4 and 5 managed at our predialysis unit. Patients were 63.5 ± 13 years of age, 60.5% males, 64.8% diabetics and 47.1% with a history of CVD. Plain X-ray images of pelvis, hands and lateral lumbar spine from all subjects were studied for calculation of semiquantitative vascular calcification scores as described by Adragao and Kauppila. We found a high prevalence of vascular calcification in our population. Adragao scores revealed only 47 patients (22.4%) without vascular calcification and 120 (57.1%) with scores higher than 3. Kauppila scores revealed only 29 patients (13.8%) without aortic calcifications and 114 patients (54.3%) with scores higher than 7. Higher vascular calcification scores were related to older age, diabetes, history of CVD and lower levels of 25(OH)D. Only 18.5% of patients had adequate levels of 25(OH)D (> 30 ng/mL), 53.7% of them had insufficient levels (15-30 ng/mL) and 27.8% had deficient levels (< 15 ng/mL). Multivariate analysis showed that age, diabetes and CVD were directly associated and 25(OH)D levels were inversely associated with vascular calcifications. Our results show an independent and negative association between serum levels of 25(OH)D and vascular calcification. Further and larger prospective studies are needed to clarify the possible role of vitamin D deficiency in the development of vascular calcification in CKD patients.

  12. Novel ideas about salt, blood pressure, and pregnancy.

    PubMed

    Rakova, Natalia; Muller, Dominik N; Staff, Anne Cathrine; Luft, Friedrich C; Dechend, Ralf

    2014-03-01

    The molecular mechanisms leading to preeclampsia are poorly understood. It has been related to certain immune mechanisms, as well as the pathological regulation of the renin-angiotensin system together with perturbed salt and plasma volume regulation. Finally, a non-specific, vascular, inflammatory response is generated, which leads to the clinical syndrome. Here, we present novel findings in salt (NaCl) metabolism implying that salt is not only important in blood pressure control and volume homeostasis, but also in immune regulation. Sodium and chloride can be stored without accumulation of water in the interstitium at hypertonic concentrations through interactions with proteoglycans. Macrophages in the interstitium act as osmosensors for salt, producing increased amounts of vascular endothelial factor C, which increases the density of the lymph-capillary network and the production of nitric oxide in vessels. An increased interstitial salt concentration activates the innate immune system, especially Th17 cells, and may be an important trigger for autoimmune diseases. The novel findings with the idea of sodium storage and local mechanisms of volume and immune regulation are appealing for preeclampsia and may unify the "immune" and "vascular" hypotheses of preeclampsia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Pharmacologic and Nonpharmacologic Approaches to the Treatment of Hypertension with Implications for the Clinical Nurse Specialist

    DTIC Science & Technology

    1988-01-01

    Hypertension 6 14 that assist in regulation of smooth muscle contraction . This results in a lowered peripheral vascular resistance and 6 thus, a lowering of...the effect of epinephrine and also allows the sustained vascular smooth - muscle contraction caused by the catecholamines; this too, contributing to an...hypertension. These agents cause arteriolar dilatation by acting directly on vascular smooth muscle . They do this by interfering with the calcium gates

  14. Sphingosine-1-phosphate: a novel nonhypoxic activator of hypoxia-inducible factor-1 in vascular cells.

    PubMed

    Michaud, Maude D; Robitaille, Geneviève A; Gratton, Jean-Philippe; Richard, Darren E

    2009-06-01

    Sphingosine-1-phosphate (S1P) is a potent bioactive phospholipid responsible for a variety of vascular cell responses. Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator of genes essential for adaptation to low oxygen. S1P and HIF-1 are both important mediators of vascular cell responses such as migation, proliferation, and survival. Studies have shown that nonhypoxic stimuli can activate HIF-1 in oxygenated conditions. Here, we attempt to determine whether S1P can modulate the vascular activation of HIF-1. We show that in vascular endothelial and smooth muscle cells, activation of the S1P type-2 receptor by S1P strongly increases HIF-1 alpha protein levels, the active subunit of HIF-1. This is achieved through pVHL-independent stabilization of HIF-1 alpha. We demonstrate that the HIF-1 nuclear complex, formed on S1P stimulation, is transcriptionally active and specifically binds to a hypoxia-responsive elements. Moreover, S1P activates the expression of genes known to be closely regulated by HIF-1. Our results identify S1P as a novel and potent nonhypoxic activator of HIF-1. We believe that understanding the role played by HIF-1 in S1P gene regulation will have a strong impact on different aspects of vascular biology.

  15. By Different Cellular Mechanisms, Lymphatic Vessels Sprout by Endothelial Cell Recruitment Whereas Blood Vessels Grow by Vascular Expansion

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; McKay, Terri L.; Leontiev, Dmitry; Condrich, Terence K.; DiCorleto, Paul E.

    2005-01-01

    The development of effective vascular therapies requires the understanding of all modes of vessel formation contributing to vasculogenesis, angiogenesis (here termed hemangiogenesis) and lymphangiogenesis. We show that lymphangiogenesis proceeds by blind-ended vessel sprouting via recruitment of isolated endothelial progenitor cells to the tips of growing vessels, whereas hemangiogenesis occurs by non-sprouting vessel expansion from the capillary network, during middevelopment in the quail chorioallantoic membrane (CAM). Blood vessels expanded out of capillaries that displayed transient expression of alpha smooth muscle actin (alphaSMA), accompanied by mural recruitment of migratory progenitor cells expressing SMA. Lymphatics and blood vessels were identified by confocal/fluorescence microscopy of vascular endothelial growth factor (VEGF) receptors VEGFR-1 and VEGFR-2, alphaSMA (expressed on CAM blood vessels but not on lymphatics), homeobox transcription factor Prox-1 (specific to CAM lymphatic endothelium), and the quail hematopoetic/vascular marker, QH-1. Expression of VEGFR-1 was highly restricted to blood vessels (primarily capillaries). VEGFR-2 was expressed intensely in isolated hematopoietic cells, lymphatic vessels and moderately in blood vessels. Prox-1 was absent from endothelial progenitor cells prior to lymphatic recruitment. Although vascular endothelial growth factor-165 (VEGF(sub 165)) is a key regulator of numerous cellular processes in hemangiogenesis and vasculogenesis, the role of VEGF(sub 165) in lymphangiogenesis is less clear. Exogenous VEGF(sub 165) increased blood vessel density without changing endogenous modes of vascular/lymphatic vessel formation or marker expression patterns. However, VEGF(sub 165) did increase the frequency of blood vascular anastomoses and strongly induced the antimaturational dissociation of lymphatics from blood vessels, with frequent formation of homogeneous lymphatic networks.

  16. Phytochemical genistein in the regulation of vascular function: new insights.

    PubMed

    Si, Hongwei; Liu, Dongmin

    2007-01-01

    Genistein, a natural bioactive compound derived from legumes, has drawn wide attention during the last decade because of its potentially beneficial effects on some human degenerative diseases. It has a weak estrogenic effect and is a well-known non-specific tyrosine kinase inhibitor at pharmacological doses. Epidemiological studies show that genistein intake is inversely associated with the risk of cardiovascular diseases. Data from animal and in vitro studies suggest a protective role of genistein in cardiovascular events. However, the mechanisms of the genistein action on vascular protective effects are unclear. Past extensive studies exploring its hypolipidemic effect resulted in contradictory data. Genistein also is a relatively poor antioxidant. However, genistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits leukocyte-endothelium interaction, thereby modulating vascular inflammation, a major event in the pathogenesis of atherosclerosis. Recent studies found that genistein exerts a novel non-genomic action by targeting on important signaling molecules in vascular endothelial cells (ECs). Genistein rapidly activates endothelial nitric oxide synthase and production of nitric oxide in ECs. This genistein effect is novel since it is independent of its known effects, but mediated by the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) cascade. Further studies demonstrated that genistein directly stimulates the plasma membrane-associated adenylate cyclases, leading to activation of the cAMP signaling pathway. In addition, genistein activates peroxisome proliferator-activated receptors, ligand-activated nuclear receptors important to normal vascular function. Furthermore, genistein reduces reactive oxygen species (ROS) by attenuating the expression of ROS-producing enzymes. These new findings reveal the novel roles for genistein in the regulation of vascular function and provide a basis for further investigating its therapeutic potential for inflammatory-related vascular disease.

  17. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders.

    PubMed

    Ringvold, H C; Khalil, R A

    2017-01-01

    Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca 2+ -dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca 2+ -dependent α, β, and γ, novel Ca 2+ -independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease. © 2017 Elsevier Inc. All rights reserved.

  18. Endothelial TWIST1 Promotes Pathological Ocular Angiogenesis

    PubMed Central

    Li, Jie; Liu, Chi-Hsiu; Sun, Ye; Gong, Yan; Fu, Zhongjie; Evans, Lucy P.; Tian, Katherine T.; Juan, Aimee M.; Hurst, Christian G.; Mammoto, Akiko; Chen, Jing

    2014-01-01

    Purpose. Pathological neovessel formation impacts many blinding vascular eye diseases. Identification of molecular signatures distinguishing pathological neovascularization from normal quiescent vessels is critical for developing new interventions. Twist-related protein 1 (TWIST1) is a transcription factor important in tumor and pulmonary angiogenesis. This study investigated the potential role of TWIST1 in modulating pathological ocular angiogenesis in mice. Methods. Twist1 expression and localization were analyzed in a mouse model of oxygen-induced retinopathy (OIR). Pathological ocular angiogenesis in Tie2-driven conditional Twist1 knockout mice were evaluated in both OIR and laser-induced choroidal neovascularization models. In addition, the effects of TWIST1 on angiogenesis and endothelial cell function were analyzed in sprouting assays of aortic rings and choroidal explants isolated from Twist1 knockout mice, and in human retinal microvascular endothelial cells treated with TWIST1 small interfering RNA (siRNA). Results. TWIST1 is highly enriched in pathological neovessels in OIR retinas. Conditional Tie2-driven depletion of Twist1 significantly suppressed pathological neovessels in OIR without impacting developmental retinal angiogenesis. In a laser-induced choroidal neovascularization model, Twist1 deficiency also resulted in significantly smaller lesions with decreased vascular leakage. In addition, loss of Twist1 significantly decreased vascular sprouting in both aortic ring and choroid explants. Knockdown of TWIST1 in endothelial cells led to dampened expression of vascular endothelial growth factor receptor 2 (VEGFR2) and decreased endothelial cell proliferation. Conclusions. Our study suggests that TWIST1 is a novel regulator of pathologic ocular angiogenesis and may represent a new molecular target for developing potential therapeutic treatments to suppress pathological neovascularization in vascular eye diseases. PMID:25414194

  19. Vascular structural and functional changes: their association with causality in hypertension: models, remodeling and relevance.

    PubMed

    Lee, Robert Mkw; Dickhout, Jeffrey G; Sandow, Shaun L

    2017-04-01

    Essential hypertension is a complex multifactorial disease process that involves the interaction of multiple genes at various loci throughout the genome, and the influence of environmental factors such as diet and lifestyle, to ultimately determine long-term arterial pressure. These factors converge with physiological signaling pathways to regulate the set-point of long-term blood pressure. In hypertension, structural changes in arteries occur and show differences within and between vascular beds, between species, models and sexes. Such changes can also reflect the development of hypertension, and the levels of circulating humoral and vasoactive compounds. The role of perivascular adipose tissue in the modulation of vascular structure under various disease states such as hypertension, obesity and metabolic syndrome is an emerging area of research, and is likely to contribute to the heterogeneity described in this review. Diversity in structure and related function is the norm, with morphological changes being causative in some beds and states, and in others, a consequence of hypertension. Specific animal models of hypertension have advantages and limitations, each with factors influencing the relevance of the model to the human hypertensive state/s. However, understanding the fundamental properties of artery function and how these relate to signalling mechanisms in real (intact) tissues is key for translating isolated cell and model data to have an impact and relevance in human disease etiology. Indeed, the ultimate aim of developing new treatments to correct vascular dysfunction requires understanding and recognition of the limitations of the methodologies used.

  20. A lignin-specific peroxidase in tobacco whose antisense suppression leads to vascular tissue modification

    NASA Technical Reports Server (NTRS)

    Blee, Kristopher A.; Choi, Joon W.; O'Connell, Ann P.; Schuch, Wolfgang; Lewis, Norman G.; Bolwell, G. Paul

    2003-01-01

    A tobacco peroxidase isoenzyme (TP60) was down-regulated in tobacco using an antisense strategy, this affording transformants with lignin reductions of up to 40-50% of wild type (control) plants. Significantly, both guaiacyl and syringyl levels decreased in essentially a linear manner with the reductions in lignin amounts, as determined by both thioacidolysis and nitrobenzene oxidative analyses. These data provisionally suggest that a feedback mechanism is operative in lignifying cells, which prevents build-up of monolignols should oxidative capacity for their subsequent metabolism be reduced. Prior to this study, the only known rate-limiting processes in the monolignol/lignin pathways involved that of Phe supply and the relative activities of cinnamate-4-hydroxylase/p-coumarate-3-hydroxylase, respectively. These transformants thus provide an additional experimental means in which to further dissect and delineate the factors involved in monolignol targeting to precise regions in the cell wall, and of subsequent lignin assembly. Interestingly, the lignin down-regulated tobacco phenotypes displayed no readily observable differences in overall growth and development profiles, although the vascular apparatus was modified.

  1. Angiopoietin receptor Tie2 is required for vein specification and maintenance via regulating COUP-TFII

    PubMed Central

    Chu, Man; Li, Taotao; Shen, Bin; Cao, Xudong; Zhong, Haoyu; Zhang, Luqing; Zhou, Fei; Ma, Wenjuan; Jiang, Haijuan; Xie, Pancheng; Liu, Zhengzheng; Dong, Ningzheng; Xu, Ying; Zhao, Yun; Xu, Guoqiang; Lu, Peirong; Luo, Jincai; Wu, Qingyu; Alitalo, Kari; Koh, Gou Young; Adams, Ralf H; He, Yulong

    2016-01-01

    Mechanisms underlying the vein development remain largely unknown. Tie2 signaling mediates endothelial cell (EC) survival and vascular maturation and its activating mutations are linked to venous malformations. Here we show that vein formation are disrupted in mouse skin and mesentery when Tie2 signals are diminished by targeted deletion of Tek either ubiquitously or specifically in embryonic ECs. Postnatal Tie2 attenuation resulted in the degeneration of newly formed veins followed by the formation of haemangioma-like vascular tufts in retina and venous tortuosity. Mechanistically, Tie2 insufficiency compromised venous EC identity, as indicated by a significant decrease of COUP-TFII protein level, a key regulator in venogenesis. Consistently, angiopoietin-1 stimulation increased COUP-TFII in cultured ECs, while Tie2 knockdown or blockade of Tie2 downstream PI3K/Akt pathway reduced COUP-TFII which could be reverted by the proteasome inhibition. Together, our results imply that Tie2 is essential for venous specification and maintenance via Akt mediated stabilization of COUP-TFII. DOI: http://dx.doi.org/10.7554/eLife.21032.001 PMID:28005008

  2. Regulator of calcineurin 1 mediates pathological vascular wall remodeling

    PubMed Central

    Esteban, Vanesa; Méndez-Barbero, Nerea; Jesús Jiménez-Borreguero, Luis; Roqué, Mercè; Novensá, Laura; Belén García-Redondo, Ana; Salaices, Mercedes; Vila, Luis; Arbonés, María L.

    2011-01-01

    Artery wall remodeling, a major feature of diseases such as hypertension, restenosis, atherosclerosis, and aneurysm, involves changes in the tunica media mass that reduce or increase the vessel lumen. The identification of molecules involved in vessel remodeling could aid the development of improved treatments for these pathologies. Angiotensin II (AngII) is a key effector of aortic wall remodeling that contributes to aneurysm formation and restenosis through incompletely defined signaling pathways. We show that AngII induces vascular smooth muscle cell (VSMC) migration and vessel remodeling in mouse models of restenosis and aneurysm. These effects were prevented by pharmacological inhibition of calcineurin (CN) or lentiviral delivery of CN-inhibitory peptides. Whole-genome analysis revealed >1,500 AngII-regulated genes in VSMCs, with just 11 of them requiring CN activation. Of these, the most sensitive to CN activation was regulator of CN 1 (Rcan1). Rcan1 was strongly activated by AngII in vitro and in vivo and was required for AngII-induced VSMC migration. Remarkably, Rcan1−/− mice were resistant to AngII-induced aneurysm and restenosis. Our results indicate that aneurysm formation and restenosis share mechanistic elements and identify Rcan1 as a potential therapeutic target for prevention of aneurysm and restenosis progression. PMID:21930771

  3. Plasma zinc's alter ego is a low-molecular-weight humoral factor.

    PubMed

    Ou, Ou; Allen-Redpath, Keith; Urgast, Dagmar; Gordon, Margaret-Jane; Campbell, Gill; Feldmann, Jörg; Nixon, Graeme F; Mayer, Claus-Dieter; Kwun, In-Sook; Beattie, John H

    2013-09-01

    Mild dietary zinc deprivation in humans and rodents has little effect on blood plasma zinc levels, and yet cellular consequences of zinc depletion can be detected in vascular and other tissues. We proposed that a zinc-regulated humoral factor might mediate the effects of zinc deprivation. Using a novel approach, primary rat vascular smooth muscle cells (VSMCs) were treated with plasma from zinc-deficient (<1 mg Zn/kg) or zinc-adequate (35 mg Zn/kg, pair-fed) adult male rats, and zinc levels were manipulated to distinguish direct and indirect effects of plasma zinc. Gene expression changes were analyzed by microarray and qPCR, and incubation of VSMCs with blood plasma from zinc-deficient rats strongly changed the expression of >2500 genes, compared to incubation of cells with zinc-adequate rat plasma. We demonstrated that this effect was caused by a low-molecular-weight (∼2-kDa) zinc-regulated humoral factor but that changes in gene expression were mostly reversed by adding zinc back to zinc-deficient plasma. Strongly regulated genes were overrepresented in pathways associated with immune function and development. We conclude that zinc deficiency induces the production of a low-molecular-weight humoral factor whose influence on VSMC gene expression is blocked by plasma zinc. This factor is therefore under dual control by zinc.

  4. A novel mechanism of angiotensin II-regulated placental vascular tone in the development of hypertension in preeclampsia.

    PubMed

    Gao, Qinqin; Tang, Jiaqi; Li, Na; Zhou, Xiuwen; Li, Yongmei; Liu, Yanping; Wu, Jue; Yang, Yuxian; Shi, Ruixiu; He, Axin; Li, Xiang; Zhang, Yingying; Chen, Jie; Zhang, Lubo; Sun, Miao; Xu, Zhice

    2017-05-09

    The present study tested the hypothesis that angiotensin II plays a role in the regulation of placental vascular tone, which contributes to hypertension in preeclampsia. Functional and molecular assays were performed in large and micro placental and non-placental vessels from humans and animals. In human placental vessels, angiotensin II induced vasoconstrictions in 78.7% vessels in 155 tests, as referenced to KCl-induced contractions. In contrast, phenylephrine only produced contractions in 3.0% of 133 tests. In non-placental vessels, phenylephrine induced contractions in 76.0% of 67 tests, whereas angiotensin II failed to produce contractions in 75 tests. Similar results were obtained in animal placental and non-placental vessels. Compared with non-placental vessels, angiotensin II receptors and β-adrenoceptors were significantly increased in placental vessels. Compared to the vessels from normal pregnancy, angiotensin II-induced vasoconstrictions were significantly reduced in preeclamptic placentas, which was associated with a decrease in angiotensin II receptors. In addition, angiotensin II and angiotensin converting enzyme in the maternal-placenta circulation in preeclampsia were increased, whereas angiotensin I and angiotensin1-7 concentrations were unchanged. The study demonstrates a selective effect of angiotensin II in maintaining placental vessel tension, which may play an important role in development of hypertension in preeclampsia.

  5. Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau.

    PubMed

    Yan, Yujing; Yang, Xian; Tang, Zhiyao

    2013-11-01

    Large-scale patterns of species richness and the underlying mechanisms regulating these patterns have long been the central issues in biogeography and macroecology. Phylogenetic community structure is a result of combined effects of contemporary ecological interactions, environmental filtering, and evolutionary history, and it links community ecology with biogeography and trait evolution. The Qinghai-Tibetan Plateau provides a good opportunity to test the influence of contemporary climate on shaping species richness because of its unique geological history, cold climate, and high biodiversity. In this study, based on high-resolution distributions of ˜9000 vascular plant species, we explored how species richness and phylogenetic structure of vascular plants correlate with climates on the highest (and species rich) plateau on the Earth. The results showed that most of the vascular plants were distributed on the eastern part of the plateau; there was a strong association between species richness and climate, even after the effects of habitat heterogeneity were controlled. However, the responses of richness to climate remarkably depended on life-forms. Richness of woody plants showed stronger climatic associations than that of herbaceous plants; energy and water availability together regulated richness pattern of woody plants; whereas water availability predominantly regulated richness pattern of herbaceous plants. The phylogenetic structure of vascular species clustered in most areas of the plateau, suggesting that rapid speciation and environment filtering dominated the assembly of communities on the plateau. We further propose that biodiversity conservation in this area should better take into account ecological features for different life-forms and phylogenetic lineages.

  6. A peptide inhibitor of the urokinase/urokinase receptor system inhibits alteration of the blood-retinal barrier in diabetes.

    PubMed

    Navaratna, Deepti; Menicucci, Gina; Maestas, Joann; Srinivasan, Ramprasad; McGuire, Paul; Das, Arup

    2008-09-01

    One of the major complications of diabetes is the alteration of the blood-retinal barrier, leading to retinal edema and consequent vision loss. The aim of this study was to evaluate the role of the urokinase plasminogen activator (uPA)/uPA receptor (uPAR) system in the regulation of retinal vascular permeability. Biochemical, molecular, and histological techniques were used to examine the role of uPA and uPAR in the regulation of retinal vascular permeability in diabetic rats and cultured retinal endothelial cells. The increased retinal vascular permeability in diabetic rats was associated with a decrease in vascular endothelial (VE) -cadherin expression in retinal vessels. Treatment with the uPA/uPAR-inhibiting peptide (A6) was shown to reduce diabetes-induced permeability and the loss of VE-cadherin. The increased permeability of cultured cells in response to advanced glycation end products (AGEs) was significantly inhibited with A6. Treatment of endothelial cells with specific matrix metalloproteinases or AGEs resulted in loss of VE-cadherin from the cell surface, which could be inhibited by A6. uPA/uPAR physically interacts with AGEs/receptor for advanced glycation end products on the cell surface and regulates its activity. uPA and its receptor uPAR play important roles in the alteration of the blood-retinal barrier through proteolytic degradation of VE-cadherin. The ability of A6 to block retinal vascular permeability in diabetes suggests a potential therapeutic approach for the treatment of diabetic macular edema.

  7. Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau

    PubMed Central

    Yan, Yujing; Yang, Xian; Tang, Zhiyao

    2013-01-01

    Large-scale patterns of species richness and the underlying mechanisms regulating these patterns have long been the central issues in biogeography and macroecology. Phylogenetic community structure is a result of combined effects of contemporary ecological interactions, environmental filtering, and evolutionary history, and it links community ecology with biogeography and trait evolution. The Qinghai-Tibetan Plateau provides a good opportunity to test the influence of contemporary climate on shaping species richness because of its unique geological history, cold climate, and high biodiversity. In this study, based on high-resolution distributions of ˜9000 vascular plant species, we explored how species richness and phylogenetic structure of vascular plants correlate with climates on the highest (and species rich) plateau on the Earth. The results showed that most of the vascular plants were distributed on the eastern part of the plateau; there was a strong association between species richness and climate, even after the effects of habitat heterogeneity were controlled. However, the responses of richness to climate remarkably depended on life-forms. Richness of woody plants showed stronger climatic associations than that of herbaceous plants; energy and water availability together regulated richness pattern of woody plants; whereas water availability predominantly regulated richness pattern of herbaceous plants. The phylogenetic structure of vascular species clustered in most areas of the plateau, suggesting that rapid speciation and environment filtering dominated the assembly of communities on the plateau. We further propose that biodiversity conservation in this area should better take into account ecological features for different life-forms and phylogenetic lineages. PMID:24340197

  8. [The balance of markers of regulation vascular tone and fibrinogen in the prognosis of hemorrhagic transformation and fatal outcome in the acute period of ischemic stroke].

    PubMed

    Liang, O V; Kochetov, A G; Arkhipkin, A A; Novozhenova, Iu V; Shamalov, N A; Ramazanov, G R; Chuĭko, M R; Ogurtsov, P P; Skvortsova, V I

    2012-01-01

    The markers of regulation vascular tone, such as rennin, endothelin-1, and C-type natriuretic peptide, are of great value for prognosis of hemorrhagic transformation and fatal outcome of ischemic stroke. A change in the vascular tone in case of hemorrhagic transformation at the affected site precedes activation of the coagulation component of hemostasis as a mechanism preventing blood loss and increasing fibrinogen level. This work was aimed to study the balance of the above markers and fibrinogen in the prognosis of hemorrhagic transformation and fatal outcome in the acute period of ischemic stroke. It included 62 patients receiving no thrombolytic therapy. It was shown that symptomatic hemorrhagic transformation was associated with elevated rennin levels without a marked fall in the level of C-type natriuretic peptide and asymptomatic hemorrhagic transformation with elevated endothelin-1 levels and decreased concentration of natriuretic peptide. Fibrinogen level on day 4 of the observation proved to be a reliable predictor of negative prognosis. Asymptomatic hemorrhagic transformation without fatal outcome was associated with systemic and local vasoconstriction and inhibition of local vasodilation. Symptomatic hemorrhagic transformation with the fatal outcome was accompanied by dysregulation of vascular tone in the form of activation of systemic and local vasoconstriction, insufficient inhibition of local vasodilation and compensatory reaction in the form of activation of hemostatic mechanisms manifest as elevated fibrinogen levels on day 4. The lethal outcome without hemorrhagic transformation was associated with systemic vasoconstriction, activation of local vasodilation and vasoconstriction leading to local "biochemical paralysis" of vascular tone regulation.

  9. The role of perivascular adipose tissue in vascular smooth muscle cell growth

    PubMed Central

    Miao, Chao-Yu; Li, Zhi-Yong

    2012-01-01

    Adipose tissue is the largest endocrine organ, producing various adipokines and many other substances. Almost all blood vessels are surrounded by perivascular adipose tissue (PVAT), which has not received research attention until recently. This review will discuss the paracrine actions of PVAT on the growth of underlying vascular smooth muscle cells (VSMCs). PVAT can release growth factors and inhibitors. Visfatin is the first identified growth factor derived from PVAT. Decreased adiponectin and increased tumour necrosis factor-α in PVAT play a pathological role for neointimal hyperplasia after endovascular injury. PVAT-derived angiotensin II, angiotensin 1–7, reactive oxygen species, complement component 3, NO and H2S have a paracrine action on VSMC contraction, endothelial or fibroblast function; however, their paracrine actions on VSMC growth remain to be directly verified. Factors such as monocyte chemoattractant protein-1, interleukin-6, interleukin-8, leptin, resistin, plasminogen activator inhibitor type-1, adrenomedullin, free fatty acids, glucocorticoids and sex hormones can be released from adipose tissue and can regulate VSMC growth. Most of them have been verified for their secretion by PVAT; however, their paracrine functions are unknown. Obesity, vascular injury, aging and infection may affect PVAT, causing adipocyte abnormality and inflammatory cell infiltration, inducing imbalance of PVAT-derived growth factors and inhibitors, leading to VSMC growth and finally resulting in development of proliferative vascular disease, including atherosclerosis, restenosis and hypertension. In the future, using cell-specific gene interventions and local treatments may provide definitive evidence for identification of key factor(s) involved in PVAT dysfunction-induced vascular disease and thus may help to develop new therapies. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3 PMID:21470202

  10. Regional early and progressive loss of brain pericytes but not vascular smooth muscle cells in adult mice with disrupted platelet-derived growth factor receptor-β signaling.

    PubMed

    Nikolakopoulou, Angeliki Maria; Zhao, Zhen; Montagne, Axel; Zlokovic, Berislav V

    2017-01-01

    Pericytes regulate key neurovascular functions of the brain. Studies in pericyte-deficient transgenic mice with aberrant signaling between endothelial-derived platelet-derived growth factor BB (PDGF-BB) and platelet-derived growth factor receptor β (PDGFRβ) in pericytes have contributed to better understanding of the role of pericytes in the brain. Here, we studied PdgfrβF7/F7 mice, which carry seven point mutations that disrupt PDGFRβ signaling causing loss of pericytes and vascular smooth muscle cells (VSMCs) in the developing brain. We asked whether these mice have a stable or progressive vascular phenotype after birth, and whether both pericyte and VSMCs populations are affected in the adult brain. We found an early and progressive region-dependent loss of brain pericytes, microvascular reductions and blood-brain barrier (BBB) breakdown, which were more pronounced in the cortex, hippocampus and striatum than in the thalamus, whereas VSMCs population remained unaffected at the time when pericyte loss was already established. For example, compared to age-matched controls, PdgfrβF7/F7 mice between 4-6 and 36-48 weeks of age developed a region-dependent loss in pericyte coverage (22-46, 24-44 and 4-31%) and cell numbers (36-49, 34-64 and 11-36%), reduction in capillary length (20-39, 13-46 and 1-30%), and an increase in extravascular fibrinogen-derived deposits (3.4-5.2, 2.8-4.1 and 0-3.6-fold) demonstrating BBB breakdown in the cortex, hippocampus and thalamus, respectively. Capillary reductions and BBB breakdown correlated with loss of pericyte coverage. Our data suggest that PdgfrβF7/F7 mice develop an aggressive and rapid vascular phenotype without appreciable early involvement of VSMCs, therefore providing a valuable model to study regional effects of pericyte loss on brain vascular and neuronal functions. This model could be a useful tool for future studies directed at understanding the role of pericytes in the pathogenesis of neurological disorders associated with pericyte loss such as vascular dementia, Alzheimer's disease, amyotrophic lateral sclerosis, stroke and human immunodeficiency virus-associated neurocognitive disorder.

  11. Increased expression of matrix metalloproteinase-1 in systemic vessels of preeclamptic women: a critical mediator of vascular dysfunction.

    PubMed

    Estrada-Gutierrez, Guadalupe; Cappello, Renato E; Mishra, Nikita; Romero, Roberto; Strauss, Jerome F; Walsh, Scott W

    2011-01-01

    This study was conducted to determine the following: (1) whether matrix metalloproteinase-1 (MMP-1) is increased in systemic vessels of preeclamptic women, (2) whether this increase might be mediated by neutrophils, and (3) whether MMP-1 could be responsible for vascular dysfunction. Omental arteries and plasma were collected from healthy pregnant and preeclamptic women. Omental arteries were evaluated for gene and protein expression of MMP-1, collagen type 1α, tissue inhibitor of metalloproteinase-1, and vascular reactivity to MMP-1. Gene and protein expression levels were also evaluated in human vascular smooth muscle cells (VSMCs) co-cultured with activated neutrophils, reactive oxygen species, or tumor necrosis factor α. Vessel expression of MMP-1 and circulating MMP-1 levels were increased in preeclamptic women, whereas vascular expression of collagen or tissue inhibitor of metalloproteinase-1 were down-regulated or unchanged. In cultured VSMCs, the imbalance in collagen-regulating genes of preeclamptic vessels was reproduced by treatment with neutrophils, tumor necrosis factor α, or reactive oxygen species. Chemotaxis studies with cultured cells revealed that MMP-1 promoted recruitment of neutrophils via vascular smooth muscle release of interleukin-8. Furthermore, MMP-1 induced vasoconstriction via protease-activated receptor-1, whose expression was significantly increased in omental arteries of preeclamptic women and in VSMCs co-cultured with neutrophils. Collectively, these findings disclose a novel role for MMP-1 as a mediator of vasoconstriction and vascular dysfunction in preeclampsia. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. A natural protective mechanism against hyperglycaemia in vascular endothelial and smooth-muscle cells: role of glucose and 12-hydroxyeicosatetraenoic acid.

    PubMed Central

    Alpert, Evgenia; Gruzman, Arie; Totary, Hanan; Kaiser, Nurit; Reich, Reuven; Sasson, Shlomo

    2002-01-01

    Bovine aortic endothelial and smooth-muscle cells down-regulate the rate of glucose transport in the face of hyperglycaemia, thus providing protection against deleterious effects of increased intracellular glucose levels. When exposed to high glucose concentrations these cells reduced the mRNA and protein content of their typical glucose transporter, GLUT-1, as well as its plasma-membrane abundance. Inhibition of the lipoxygenase (LO) pathway, and particularly 12-LO, reversed this glucose-induced down-regulatory process and restored the rate of hexose transport to the level seen in vascular cells exposed to normal glucose levels. This reversal was accompanied by increased levels of GLUT-1 mRNA and protein, as well as of its plasma-membrane content. Exposure of the vascular cells to elevated glucose concentrations increased by 2-3-fold the levels of cell-associated and secreted 12-hydroxyeicosatetraenoic acid (12-HETE), the product of 12-LO. Inhibition of 15- and 5-LO, cyclo-oxygenases 1 and 2, and eicosanoid-producing cytochrome P450 did not modify the hexose-transport system in vascular cells. These results suggest a role for HETEs in the autoregulation of hexose transport in vascular cells. 8-Iso prostaglandin F(2alpha), a non-enzymic oxidation product of arachidonic acid, had no effect on the hexose-transport system in vascular cells exposed to hyperglycaemic conditions. Taken together, these findings show that hyperglycaemia increases the production rate of 12-HETE, which in turn mediates the down-regulation of GLUT-1 expression and the glucose-transport system in vascular endothelial and smooth-muscle cells. PMID:11853550

  13. VEGF and VEGFB Play Balancing Roles in Adipose Differentiation, Gene Expression, and Function.

    PubMed

    Jin, Honghong; Li, Dan; Wang, Xutong; Jia, Jia; Chen, Yang; Yao, Yapeng; Zhao, Chunlan; Lu, Xiaodan; Zhang, Shujie; Togo, Jacques; Ji, Yan; Zhang, Luqing; Feng, Xuechao; Zheng, Yaowu

    2018-05-01

    Obesity is the result of abnormal adipose development and energy metabolism. Using vascular endothelial growth factor (VEGF) B-knockout and inducible VEGF downregulation mouse models, we have shown that VEGFB inactivation caused expansion of white adipose, whitening of brown adipose, an increase in fat accumulation, and a reduction in energy consumption. At the same time, expression of the white adipose-associated genes was increased and brown adipose-associated genes decreased. VEGF repression, in contrast, induced brown adipose expansion and brown adipocyte development in white adipose, increased energy expenditure, upregulated brown adipose-associated genes, and downregulated white adipose-associated genes. When VEGFB-knockout and VEGF-repressed mice are crossed together, VEGF and VEGFB can counteractively regulate large numbers of genes and efficiently reverse each other's roles. These genes, under counteractive VEGF and VEGFB regulations, include transcription factors, adhesion molecules, and metabolic enzymes. This balancing role is confirmed by morphologic and functional changes. This study reports that VEGF and VEGFB counteractively regulate adipose development and function in energy metabolism.

  14. Angiotensin II modulates interleukin-1{beta}-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-{kappa}B crosstalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shanqin; Zhi, Hui; Hou, Xiuyun

    2011-07-08

    Highlights: {yields} We examine how angiotensin II modulates ERK-NF-{kappa}B crosstalk and gene expression. {yields} Angiotensin II suppresses IL-1{beta}-induced prolonged ERK and NF-{kappa}B activation. {yields} ERK-RSK1 signaling is required for IL-1{beta}-induced prolonged NF-{kappa}B activation. {yields} Angiotensin II modulates NF-{kappa}B responsive genes via regulating ERK-NF-{kappa}B crosstalk. {yields} ERK-NF-{kappa}B crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. Inmore » cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1{beta}-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-{kappa}B, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1{beta}-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1{beta}, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE{sup -/-}) mice. VCAM-1 and iNOS expression were higher in ApoE{sup -/-} than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE{sup -/-} mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that angiotensin II can differentially modulate inflammatory gene expression in aortic smooth muscle cells through influencing ERK-NF-{kappa}B crosstalk, which may contribute to angiotensin II-induced inflammatory disorders related to cardiovascular diseases.« less

  15. Sost deficiency does not alter bone's lacunar or vascular porosity in mice

    NASA Astrophysics Data System (ADS)

    Mosey, Henry; Núñez, Juan A.; Goring, Alice; Clarkin, Claire E.; Staines, Katherine A.; Lee, Peter D.; Pitsillides, Andrew A.; Javaheri, Behzad

    2017-09-01

    SCLEROSTIN (Sost) is expressed predominantly in osteocytes acting as a negative regulator of bone formation. In humans, mutations in the SOST gene lead to skeletal overgrowth and increased bone mineral density, suggesting that SCLEROSTIN is a key regulator of bone mass. The function of SCLEROSTIN as an inhibitor of bone formation is further supported by Sost knockout (KO) mice which display a high bone mass with elevated bone formation. Previous studies have indicated that Sost exerts its effect on bone formation through Wnt-mediated regulation of osteoblast differentiation, proliferation and activity. Recent in vitro studies have also suggested that SCLEROSTIN regulates angiogenesis and osteoblast-to-osteocyte transition. Despite this wealth of knowledge of the mechanisms responsible for SCLEROSTIN action, no previous studies have examined whether SCLEROSTIN regulates osteocyte and vascular configuration in cortices of mouse tibia. Herein, we image tibiae from Sost KO mice and their wild-type (WT) counterparts with high resolution CT to examine whether lack of SCLEROSTIN influences the morphometric properties of lacunae and vascular canal porosity relating to osteocytes and vessels within cortical bone. Male Sost KO and WT mice (n = 6 /group) were sacrificed at 12 weeks of age. Fixed tibiae were analysed using microCT to examine cortical bone mass and architecture. Then, samples were imaged by using benchtop and synchrotron nanoCT at the tibiofibular junction. Our data, consistent with previous studies show that, Sost deficiency leads to significant enhancement of bone mass by cortical thickening and bigger cross-sectional area and we find that this occurs without modifications of tibial ellipticity, a measure of bone shape. In addition, our data show that there are no significant differences in any lacunar or vascular morphometric or geometric parameters between Sost KO mouse tibia and WT counterparts. We therefore conclude that the significant increases in bone mass induced by Sost deficiency are not accompanied by any significant modification in the density, organisation or shape of osteocyte lacunae or vascular content within the cortical bone. These data may imply that SCLEROSTIN does not modify the frequency of osteocytogenic recruitment of osteoblasts to initiate terminal osteocytic differentiation in mice.

  16. Receptor for advanced glycation end product expression in experimental diabetic retinopathy.

    PubMed

    Wang, Yumei; Vom Hagen, Franziska; Pfister, Frederick; Bierhaus, Angelika; Feng, Yuxi; Gans, Reinhold; Hammes, Hans-Peter

    2008-04-01

    The advanced glycation end product (AGE)-receptor for AGE (RAGE) pathway is involved in the pathogenesis of diabetic microvascular damage. The special distribution of RAGE and its engagement has an impact on the development of diabetic retinopathy. In the present study, we used immunofluorescence and confocal laser microscopy to study RAGE expression with special emphasis on Müller glia in Sprague Dawley rats. RAGE expression was low in nondiabetic retinae and was found in ganglion cells and Müller cell end feet. In diabetic retinae, upregulated RAGE was predominantly expressed in retinal glia. Since Müller cells are important in the regulation of important features of early retinal vascular damage, such as vascular permeability, homeostasis, and response to stress, RAGE appears to be a central modulator in diabetic retinopathy.

  17. Complex genetics of familial exudative vitreoretinopathy and related pediatric retinal detachments

    PubMed Central

    Kondo, Hiroyuki

    2015-01-01

    Familial exudative vitreoretinopathy (FEVR) is a hereditary vitreoretinal disorder that can cause various types of retinal detachments. The abnormalities in eyes with FEVR are caused by poor vascularization in the peripheral retina. The genetics of FEVR is highly heterogeneous, and mutations in the genes for Wnt signaling and a transcription factor have been reported to be responsible for FEVR. These factors have been shown to be the regulators of the pathophysiological pathways of retinal vascular development. Studies conducted to identify the causative genes of FEVR have uncovered a diverse and complex relationship between FEVR and other diseases; for example, Norrie disease, a Mendelian-inherited disease; retinopathy of prematurity, a multifactorial genetic disease; and Coats disease, a nongenetic disease, associated with pediatric retinal detachments. PMID:29018668

  18. Vascular remodeling: A redox-modulated mechanism of vessel caliber regulation.

    PubMed

    Tanaka, Leonardo Y; Laurindo, Francisco R M

    2017-08-01

    Vascular remodeling, i.e. whole-vessel structural reshaping, determines lumen caliber in (patho)physiology. Here we review mechanisms underlying vessel remodeling, with emphasis in redox regulation. First, we discuss confusing terminology and focus on strictu sensu remodeling. Second, we propose a mechanobiological remodeling paradigm based on the concept of tensional homeostasis as a setpoint regulator. We first focus on shear-mediated models as prototypes of remodeling closely dominated by highly redox-sensitive endothelial function. More detailed discussions focus on mechanosensors, integrins, extracellular matrix, cytoskeleton and inflammatory pathways as potential of mechanisms potentially coupling tensional homeostasis to redox regulation. Further discussion of remodeling associated with atherosclerosis and injury repair highlights important aspects of redox vascular responses. While neointima formation has not shown consistent responsiveness to antioxidants, vessel remodeling has been more clearly responsive, indicating that despite the multilevel redox signaling pathways, there is a coordinated response of the whole vessel. Among mechanisms that may orchestrate redox pathways, we discuss roles of superoxide dismutase activity and extracellular protein disulfide isomerase. We then discuss redox modulation of aneurysms, a special case of expansive remodeling. We propose that the redox modulation of vascular remodeling may reflect (1) remodeling pathophysiology is dominated by a particularly redox-sensitive cell type, e.g., endothelial cells (2) redox pathways are temporospatially coordinated at an organ level across distinct cellular and acellular structures or (3) the tensional homeostasis setpoint is closely connected to redox signaling. The mechanobiological/redox model discussed here can be a basis for improved understanding of remodeling and helps clarifying mechanisms underlying prevalent hard-to-treat diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Regulation of endothelial Fas expression as a mechanism of promotion of vascular integrity by mural cells in tumors.

    PubMed

    Kamei, Ryosuke; Tanaka, Hiroyoshi Y; Kawano, Takao; Morii, Chiharu; Tanaka, Sayaka; Nishihara, Hiroshi; Iwata, Caname; Kano, Mitsunobu R

    2017-05-01

    Angiogenesis is a multi-step process that culminates in vascular maturation whereby nascent vessels stabilize to become functional, and mural cells play an essential role in this process. Recent studies have shown that mural cells in tumors also promote and maintain vascular integrity, with wide-reaching clinical implications including the regulation of tumor growth, metastases, and drug delivery. Various regulatory signaling pathways have been hitherto implicated, but whether regulation of Fas-dependent apoptotic mechanisms is involved has not yet been fully investigated. We first compared endothelial FAS staining in human pancreatic ductal adenocarcinomas and colon carcinomas and show that the latter, characterized by lower mural cell coverage of tumor vasculature, demonstrated higher expression of FAS than the former. Next, in an in vitro coculture system of MS-1 and 10T1/2 cells as endothelial and mural cells respectively, we show that mural cells decreased endothelial Fas expression. Then, in an in vivo model in which C26 colon carcinoma cells were inoculated together with MS-1 cells alone or with the further addition of 10T1/2 cells, we demonstrate that mural cells prevented hemorrhage. Finally, knockdown of endothelial Fas sufficiently recapitulated the protection against hemorrhage seen with the addition of mural cells. These results together suggest that regulation of endothelial Fas signaling is involved in the promotion of vascular integrity by mural cells in tumors. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  20. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning

    PubMed Central

    Vempati, Prakash; Popel, Aleksander S.; Mac Gabhann, Feilim

    2014-01-01

    The regulation of vascular endothelial growth factor A (VEGF) is critical to neovascularization in numerous tissues under physiological and pathological conditions. VEGF has multiple isoforms, created by alternative splicing or proteolytic cleavage, and characterized by different receptor-binding and matrix-binding properties. These isoforms are known to give rise to a spectrum of angiogenesis patterns marked by differences in branching, which has functional implications for tissues. In this review, we detail the extensive extracellular regulation of VEGF and the ability of VEGF to dictate the vascular phenotype. We explore the role of VEGF-releasing proteases and soluble carrier molecules on VEGF activity. While proteases such as MMP9 can ‘release’ matrix-bound VEGF and promote angiogenesis, for example as a key step in carcinogenesis, proteases can also suppress VEGF’s angiogenic effects. We explore what dictates pro- or anti-angiogenic behavior. We also seek to understand the phenomenon of VEGF gradient formation. Strong VEGF gradients are thought to be due to decreased rates of diffusion from reversible matrix binding, however theoretical studies show that this scenario cannot give rise to lasting VEGF gradients in vivo. We propose that gradients are formed through degradation of sequestered VEGF. Finally, we review how different aspects of the VEGF signal, such as its concentration, gradient, matrix-binding, and NRP1-binding can differentially affect angiogenesis. We explore how this allows VEGF to regulate the formation of vascular networks across a spectrum of high to low branching densities, and from normal to pathological angiogenesis. A better understanding of the control of angiogenesis is necessary to improve upon limitations of current angiogenic therapies. PMID:24332926

  1. A20 Regulates Atherogenic Interferon (IFN)-γ Signaling in Vascular Cells by Modulating Basal IFNβ Levels*

    PubMed Central

    Moll, Herwig P.; Lee, Andy; Minussi, Darlan C.; da Silva, Cleide G.; Csizmadia, Eva; Bhasin, Manoj; Ferran, Christiane

    2014-01-01

    IFNγ signaling in endothelial (EC) and smooth muscle cells (SMC) is a key culprit of pathologic vascular remodeling. The impact of NF-κB inhibitory protein A20 on IFNγ signaling in vascular cells remains unknown. In gain- and loss-of-function studies, A20 inversely regulated expression of IFNγ-induced atherogenic genes in human EC and SMC by modulating STAT1 transcription. In vivo, inadequate A20 expression in A20 heterozygote mice aggravated intimal hyperplasia following partial carotid artery ligation. This outcome uniquely associated with increased levels of Stat1 and super-induction of Ifnγ-dependent genes. Transcriptome analysis of the aortic media from A20 heterozygote versus wild-type mice revealed increased basal Ifnβ signaling as the likely cause for higher Stat1 transcription. We confirmed higher basal IFNβ levels in A20-silenced human SMC and showed that neutralization or knockdown of IFNβ abrogates heightened STAT1 levels in these cells. Upstream of IFNβ, A20-silenced EC and SMC demonstrated higher levels of phosphorylated/activated TANK-binding kinase-1 (TBK1), a regulator of IFNβ transcription. This suggested that A20 knockdown increased STAT1 transcription by enhancing TBK1 activation and subsequently basal IFNβ levels. Altogether, these results uncover A20 as a key physiologic regulator of atherogenic IFNγ/STAT1 signaling. This novel function of A20 added to its ability to inhibit nuclear factor-κB (NF-κB) activation solidifies its promise as an ideal therapeutic candidate for treatment and prevention of vascular diseases. In light of recently discovered A20/TNFAIP3 (TNFα-induced protein 3) single nucleotide polymorphisms that impart lower A20 expression or function, these results also qualify A20 as a reliable clinical biomarker for vascular risk assessment. PMID:25217635

  2. Revealing the role of phospholipase Cβ3 in the regulation of VEGF-induced vascular permeability

    PubMed Central

    Hoeppner, Luke H.; Phoenix, Kathryn N.; Clark, Karl J.; Bhattacharya, Resham; Gong, Xun; Sciuto, Tracey E.; Vohra, Pawan; Suresh, Sandip; Bhattacharya, Santanu; Dvorak, Ann M.; Ekker, Stephen C.; Dvorak, Harold F.; Claffey, Kevin P.

    2012-01-01

    VEGF induces vascular permeability (VP) in ischemic diseases and cancer, leading to many pathophysiological consequences. The molecular mechanisms by which VEGF acts to induce hyperpermeability are poorly understood and in vivo models that easily facilitate real-time, genetic studies of VP do not exist. In the present study, we report a heat-inducible VEGF transgenic zebrafish (Danio rerio) model through which VP can be monitored in real time. Using this approach with morpholino-mediated gene knock-down and knockout mice, we describe a novel role of phospholipase Cβ3 as a negative regulator of VEGF-mediated VP by regulating intracellular Ca2+ release. Our results suggest an important effect of PLCβ3 on VP and provide a new model with which to identify genetic regulators of VP crucial to several disease processes. PMID:22674805

  3. VEGFR-3 signaling is regulated by a G-protein activator, activator of G-protein signaling 8, in lymphatic endothelial cells.

    PubMed

    Sakima, Miho; Hayashi, Hisaki; Mamun, Abdullah Al; Sato, Motohiko

    2018-07-01

    Vascular endothelial growth factor C (VEGFC) and its cognate receptor VEGFR-3 play a key role in lymphangiogenesis. We previously reported that an ischemia-inducible Gβγ signal regulator, activator of G-protein signaling 8 (AGS8), regulated the subcellular distribution of vascular endothelial growth factor receptor-2 (VEGFR-2) and influenced VEGFA-induced signaling in vascular endothelial cells. Here, we report that AGS8 regulates VEGFR-3, which is another subtype of the VEGF receptor family, and mediates VEGFC signaling in human dermal lymphatic endothelial cells (HDLECs). VEGFC stimulated the proliferation of HDLECs and tube formation by HDLECs, which were inhibited by knocking down AGS8 by small interfering RNA (siRNA). AGS8 siRNA inhibited VEGFC-mediated phosphorylation of VEGFR-3 and its downstream molecules, including ERK1/2 and AKT. Analysis of fluorescence-activated cell sorting and immunofluorescence staining demonstrated that AGS8 knockdown was associated with a reduction of VEGFR-3 at the cell surface. Endocytosis inhibitors did not rescue the decrease of cell-surface VEGFR-3, suggesting that AGS8 regulated the trafficking of VEGFR-3 to the plasma membrane. An immunoprecipitation assay indicated that VEGFR-3 formed a complex including AGS8 and Gβγ in cells. These data suggest the novel regulation of VEGFC-VEGFR-3 by AGS8 in HDLECs and a potential role for AGS8 in lymphangiogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Retinal O-linked N-acetylglucosamine protein modifications: implications for postnatal retinal vascularization and the pathogenesis of diabetic retinopathy

    PubMed Central

    Sieg, Kelsey M.; Shallow, Keegan D.; Sorenson, Christine M.; Sheibani, Nader

    2013-01-01

    Purpose Hyperglycemia activates several metabolic pathways, including the hexosamine biosynthetic pathway. Uridine diphosphate N-acetylglucosamine (GlcNAc) is the product of the hexosamine biosynthetic pathway and the substrate for O-linked GlcNAc (O-GlcNAc) modification. This modification affects a wide range of proteins by altering their activity, cellular localization, and/or protein interactions. However, the role O-GlcNAcylation may play in normal postnatal retinal vascular development and in the ocular complications of diabetes, including diabetic retinopathy, requires further investigation. Methods The total levels of O-GlcNAc-modified proteins were evaluated by western blot analysis of lysates prepared from retinas obtained at different days during postnatal retinal vascularization and oxygen-induced ischemic retinopathy. Similar experiments were performed with retinal lysate prepared from diabetic Ins2Akita/+ mice with different durations of diabetes and retinal vascular cells cultured under various glucose conditions. The localization of O-GlcNAc-modified proteins in the retinal vasculature was confirmed by immunofluorescence staining. The impact of altered O-GlcNAcylation on the migration of retinal vascular cells was determined using scratch wound and transwell migration assays. Results We detected an increase in protein O-GlcNAcylation during mouse postnatal retinal vascularization and aging, in part through the regulation of the enzymes that control this modification. The study of the diabetic Ins2Akita/+ mouse retina showed an increase in the O-GlcNAc modification of retinal proteins. We also observed an increase in retinal O-GlcNAcylated protein levels during the neovascularization phase of oxygen-induced ischemic retinopathy. Our fluorescence microscopy data confirmed that the alterations in retinal O-GlcNAcylation are similarly represented in the retinal vasculature and in retinal pericytes and endothelial cells. Particularly, the migration of retinal pericytes, but not retinal endothelial cells, was attenuated by increased O-GlcNAc modification. Conclusions The O-GlcNAc modification pattern changes during postnatal retinal vascular development and neovascularization, and its dysregulation under hyperglycemia and/or ischemia may contribute to the pathogenesis of the diabetic retinopathy and retinal neovascularization. PMID:23734074

  5. S-phase kinase-associated protein-2 (Skp2) promotes vascular smooth muscle cell proliferation and neointima formation in vivo

    PubMed Central

    Wu, Yih-Jer; Sala-Newby, Graciela B.; Shu, Kuo-Tung; Yeh, Hung-I.; Nakayama, Keiichi I.; Nakayama, Keiko; Newby, Andrew C.; Bond, Mark

    2009-01-01

    Objective Vascular smooth muscle cell (VSMC) proliferation plays an important role in the development of postangioplasty or in-stent restenosis, venous graft failure, and atherosclerosis. Our previous work has demonstrated S-phase kinase-associated protein-2 (Skp2), an F-box subunit of SCFSkp2 ubiquitin ligase, as an important mediator and common final pathway for growth factors, extracellular matrices, and cyclic-nucleotides to regulate VSMC proliferation in vitro. However, whether alteration of Skp2 function also regulates VSMC proliferation in vivo and neointimal thickening postvascular injury remains unclear. We investigated the effect of Skp2 on VSMC proliferation and neointimal formation in vivo. Methods and Results Firstly, we demonstrated that Skp2-null mice developed significantly smaller neointimal areas than wild-type mice after carotid ligation. Secondly, to further identify a local rather than a systemic effect of Skp2 alteration, we demonstrated that adenovirus-mediated expression of dominant-negative Skp2 in the balloon-injured rat carotid artery significantly increased medial p27Kip1 levels, inhibited VSMC proliferation, and the subsequent neointimal thickening. Lastly, to determine if Skp2 alone is sufficient to drive VSMC proliferation and lesion development in vivo, we demonstrated that adenovirus-delivery of wild-type Skp2 to the minimally-injured rat carotids is sufficient to downregulate p27Kip1 protein levels, enhanced medial VSMC proliferation, and the neointimal thickening. Conclusion This data provides, we believe for the first time, a more comprehensive understanding of Skp2 in the regulation of VSMC proliferation and neointimal formation and suggests that Skp2 is a promising target in the treatment of vasculoproliferative diseases. PMID:19878790

  6. Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation

    USDA-ARS?s Scientific Manuscript database

    Stem cells are important in the continuous formation of various tissues during postembryonic organogenesis. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular procambium/cambium are regulated by CLE-receptor kinase-WOX signaling modules. Previous data showed ...

  7. A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants.

    PubMed

    Vera-Sirera, Francisco; De Rybel, Bert; Úrbez, Cristina; Kouklas, Evangelos; Pesquera, Marta; Álvarez-Mahecha, Juan Camilo; Minguet, Eugenio G; Tuominen, Hannele; Carbonell, Juan; Borst, Jan Willem; Weijers, Dolf; Blázquez, Miguel A

    2015-11-23

    Control of tissue dimensions in multicellular organisms requires the precise quantitative regulation of mitotic activity. In plants, where cells are immobile, tissue size is achieved through control of both cell division orientation and mitotic rate. The bHLH transcription factor heterodimer formed by target of monopteros5 (TMO5) and lonesome highway (LHW) is a central regulator of vascular width-increasing divisions. An important unanswered question is how its activity is limited to specify vascular tissue dimensions. Here we identify a regulatory network that restricts TMO5/LHW activity. We show that thermospermine synthase ACAULIS5 antagonizes TMO5/LHW activity by promoting the accumulation of SAC51-LIKE (SACL) bHLH transcription factors. SACL proteins heterodimerize with LHW-therefore likely competing with TMO5/LHW interactions-prevent activation of TMO5/LHW target genes, and suppress the over-proliferation caused by excess TMO5/LHW activity. These findings connect two thus-far disparate pathways and provide a mechanistic understanding of the quantitative control of vascular tissue growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    PubMed

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  9. Vanilloid Receptor-1 (TRPV1) Expression and Function in the Vasculature of the Rat

    PubMed Central

    Czikora, Ágnes; Pásztor, Enikő T.; Dienes, Beatrix; Bai, Péter; Csernoch, László; Rutkai, Ibolya; Csató, Viktória; Mányiné, Ivetta S.; Pórszász, Róbert; Édes, István; Papp, Zoltán; Boczán, Judit

    2014-01-01

    Transient receptor potential (TRP) cation channels are emerging in vascular biology. In particular, the expression of the capsaicin receptor (TRPV1) was reported in vascular smooth muscle cells. This study characterized the arteriolar TRPV1 function and expression in the rat. TRPV1 mRNA was expressed in various vascular beds. Six commercially available antibodies were tested for TRPV1 specificity. Two of them were specific (immunostaining was abolished by blocking peptides) for neuronal TRPV1 and one recognized vascular TRPV1. TRPV1 was expressed in blood vessels in the skeletal muscle, mesenteric and skin tissues, as well as in the aorta and carotid arteries. TRPV1 expression was found to be regulated at the level of individual blood vessels, where some vessels expressed, while others did not express TRPV1 in the same tissue sections. Capsaicin (a TRPV1 agonist) evoked constrictions in skeletal muscle arteries and in the carotid artery, but had no effect on the femoral and mesenteric arteries or the aorta. In blood vessels, TRPV1 expression was detected in most of the large arteries, but there were striking differences at level of the small arteries. TRPV1 activity was suppressed in some isolated arteries. This tightly regulated expression and function suggests a physiological role for vascular TRPV1. PMID:24217926

  10. Role of Dietary Antioxidants in the Preservation of Vascular Function and the Modulation of Health and Disease

    PubMed Central

    Varadharaj, Saradhadevi; Kelly, Owen J.; Khayat, Rami N.; Kumar, Purnima S.; Ahmed, Naseer; Zweier, Jay L.

    2017-01-01

    In vascular diseases, including hypertension and atherosclerosis, vascular endothelial dysfunction (VED) occurs secondary to altered function of endothelial nitric oxide synthase (eNOS). A novel redox regulated pathway was identified through which eNOS is uncoupled due to S-glutathionylation of critical cysteine residues, resulting in superoxide free radical formation instead of the vasodilator molecule, nitric oxide. In addition, the redox sensitive cofactor tetrahydrobiopterin, BH4, is also essential for eNOS coupling. Antioxidants, either individually or combined, can modulate eNOS uncoupling by scavenging free radicals or impairing specific radical generating pathways, thus preventing oxidative stress and ameliorating VED. Epidemiological evidence and dietary guidelines suggest that diets high in antioxidants, or antioxidant supplementation, could preserve vascular health and prevent cardiovascular diseases (CVDs). Therefore, the purpose of this review is to highlight the possible role of dietary antioxidants in regulating eNOS function and uncoupling which is critical for maintenance of vascular health with normal blood flow/circulation and prevention of VED. We hypothesize that a conditioned dietary approach with suitable antioxidants may limit systemic oxidation, maintain a beneficial ratio of reduced to oxidized glutathione, and other redox markers, and minimize eNOS uncoupling serving to prevent CVD and possibly other chronic diseases. PMID:29164133

  11. Ion channel remodeling in vascular smooth muscle during hypertension: Implications for novel therapeutic approaches

    PubMed Central

    Joseph, Biny K.; Thakali, Keshari M.; Moore, Christopher L.; Rhee, Sung W.

    2013-01-01

    Ion channels are multimeric, transmembrane proteins that selectively mediate ion flux across the plasma membrane in a variety of cells including vascular smooth muscle cells (VSMCs). The dynamic interplay of Ca2+ and K+ channels on the plasma membrane of VSMCs plays a pivotal role in modulating the vascular tone of small arteries and arterioles. The abnormally-elevated arterial tone observed in hypertension thus points to an aberrant expression and function of Ca2+ and K+ channels in the VSMCs. In this short review, we focus on the three well-studied ion channels in VSMCs, namely the L-type Ca2+ (CaV1.2) channels, the voltage-gated K+ (KV) channels, and the large-conductance Ca2+-activated K+ (BK) channels. First, we provide a brief overview on the physiological role of vascular CaV1.2, KV and BK channels in regulating arterial tone. Second, we discuss the current understanding of the expression changes and regulation of CaV1.2, KV and BK channels in the vasculature during hypertension. Third, based on available proof-of-concept studies, we describe the potential therapeutic approaches targeting these vascular ion channels in order to restore blood pressure to normotensive levels. PMID:23376354

  12. Semaphorin 3A

    PubMed Central

    Xu, Ren

    2014-01-01

    Semaphorin 3A (Sema3A) is a protein identified originally as a diffusible axonal chemorepellent. Sema3A has multifunctional roles in embryonic development, immune regulation, vascularization, and oncogenesis. Bone remodeling consists of two phases: the removal of mineralized bone by osteoclasts and the formation of new bone by osteoblasts, and plays an essential role in skeletal diseases such as osteoporosis. Recent studies have shown that Sema3A is implicated in the regulation of osteoblastgenesis and osteoclastgenesis. Moreover, low bone mass in mice with specific knockout of Sema3A in the neurons indicates that Sema3A regulates bone remodeling indirectly. This review highlights recent advances on our understanding of the role of sema3A as a new player in the regulation of bone remodeling and proposes the potential of sema3A in the diagnosis and therapy of bone diseases. PMID:24589620

  13. miRNA as a New Regulatory Mechanism of Estrogen Vascular Action.

    PubMed

    Pérez-Cremades, Daniel; Mompeón, Ana; Vidal-Gómez, Xavier; Hermenegildo, Carlos; Novella, Susana

    2018-02-06

    The beneficial effects of estrogen on the cardiovascular system have been reported extensively. In fact, the incidence of cardiovascular diseases in women is lower than in age-matched men during their fertile stage of life, a benefit that disappears after menopause. These sex-related differences point to sexual hormones, mainly estrogen, as possible cardiovascular protective factors. The regulation of vascular function by estrogen is mainly related to the maintenance of normal endothelial function and is mediated by both direct and indirect gene transcription through the activity of specific estrogen receptors. Some of these mechanisms are known, but many remain to be elucidated. In recent years, microRNAs have been established as non-coding RNAs that regulate the expression of a high percentage of protein-coding genes in mammals and are related to the correct function of human physiology. Moreover, within the cardiovascular system, miRNAs have been related to physiological and pathological conditions. In this review, we address what is known about the role of estrogen-regulated miRNAs and their emerging involvement in vascular biology.

  14. Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting Angiopoietin-1

    PubMed Central

    Zhou, Bo O; Ding, Lei; Morrison, Sean J

    2015-01-01

    Hematopoietic stem cells (HSCs) are maintained by a perivascular niche in bone marrow but it is unclear whether the niche is reciprocally regulated by HSCs. Here, we systematically assessed the expression and function of Angiopoietin-1 (Angpt1) in bone marrow. Angpt1 was not expressed by osteoblasts. Angpt1 was most highly expressed by HSCs, and at lower levels by c-kit+ hematopoietic progenitors, megakaryocytes, and Leptin Receptor+ (LepR+) stromal cells. Global conditional deletion of Angpt1, or deletion from osteoblasts, LepR+ cells, Nes-cre-expressing cells, megakaryocytes, endothelial cells or hematopoietic cells in normal mice did not affect hematopoiesis, HSC maintenance, or HSC quiescence. Deletion of Angpt1 from hematopoietic cells and LepR+ cells had little effect on vasculature or HSC frequency under steady-state conditions but accelerated vascular and hematopoietic recovery after irradiation while increasing vascular leakiness. Hematopoietic stem/progenitor cells and LepR+ stromal cells regulate niche regeneration by secreting Angpt1, reducing vascular leakiness but slowing niche recovery. DOI: http://dx.doi.org/10.7554/eLife.05521.001 PMID:25821987

  15. Nitric oxide signaling and the cross talk with prostanoids pathways in vascular system.

    PubMed

    Silva, Bruno R; Paula, Tiago D; Paulo, Michele; Bendhack, Lusiane M

    2016-12-28

    This review provides an overview of the cellular signaling of nitric oxide (NO) and prostanoids in vascular cells and the possible cross talk between their pathways, mainly in hypertension, since the imbalance of these two systems has been attributed to development of some cardiovascular diseases. It also deals with the modulation of vasodilation induced by NO donors. NO is a well-known second messenger involved in many cellular functions. In the vascular system, the NO produced by endothelial NO-synthase (eNOS) or released by NO donors acts in vascular smooth muscle cells, the binding of NO to Fe2+-heme of soluble guanylyl-cyclase (sGC) activates sGC and the production of cyclic guanosine-3-5-monophosphate (cGMP). The second messenger (cGMP) activates protein kinase G and the signaling cascade, including K+ channels. Activation of K+ channels leads to cell membrane hyperpolarization and Ca2+ channels blockade, which induce vascular relaxation. Moreover, the enzyme cyclooxygenase (COX) is also an important regulator of the vascular function by prostanoids production such as thromboxane A2 (TXA2) and prostacyclin (PGI2), which classically induce contraction and relaxation, respectively. Additionaly, studies indicate that the activity of both enzymes can be modulated by their products and reactive oxygen species (ROS) in cardiovascular diseases such as hypertension. The interaction of NO with cellular molecules, particularly the reaction of NO with ROS, determines the biological mechanisms of action and short half-life of NO. We have been working on the vascular effects of ruthenium-derived complexes that release NO. Our research group has published works on the vasodilating effects of ruthenium-derived NO donors and the mechanisms of vascular cells involved in the relaxation of the vascular smooth muscle in health and hypertensive rats. In our previous studies, we have compared the new NO donors synthesized by our group to SNP. It shows the cellular signaling of NO in the endothelial and vascular smooth muscle cells. This work focuses on the cellular mechanisms involved in the vasodilation induced by NO and the role of prostanoids in contractile or relaxing vascular responses. Since the NO is produced by NO-synthase (NOS) or released from NO donors we also discussed the perspectives to cross talk between NO and COX pathways on the vascular tone control.

  16. Ginkgo biloba Extract in Vascular Protection: Molecular Mechanisms and Clinical Applications.

    PubMed

    Tian, Jinfan; Liu, Yue; Chen, Keji

    2017-01-01

    Leaves of Ginkgo biloba, a "living fossil," have been used as traditional herbal medicine for hundreds of years in China. Currently, its application in vascular protection is garnering much attention. In this manuscript, preclinical studies were reviewed to discuss various mechanisms underlying the vascular protection by Ginkgo biloba extract (GBE). Additionally, we reviewed clinical studies to present the application of GBE in the ischaemic disease. GBE, a commonly used dietary supplement, has been shown to act as an antioxidant and freeradical scavenger, a membrane stabilizer, an inhibitor of the platelet-activating factor, a vasodilator, and a regulator of metabolism. Currently, there exist a growing number of clinical studies about GBE in the application of cardiovascular disease, peripheral vascular disease (PVD) and diabetic vascular complications. GBE, a promising therapeutic agent for cardiovascular and ischaemic diseases, exerts vascular- protection function by a comprehensive mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Redox-dependent impairment of vascular function in sickle cell disease.

    PubMed

    Aslan, Mutay; Freeman, Bruce A

    2007-12-01

    The vascular pathophysiology of sickle cell disease (SCD) is influenced by many factors, including adhesiveness of red and white blood cells to endothelium, increased coagulation, and homeostatic perturbation. The vascular endothelium is central to disease pathogenesis because it displays adhesion molecules for blood cells, balances procoagulant and anticoagulant properties of the vessel wall, and regulates vascular homeostasis by synthesizing vasoconstricting and vasodilating substances. The occurrence of intermittent vascular occlusion in SCD leads to reperfusion injury associated with granulocyte accumulation and enhanced production of reactive oxygen species. The participation of nitric oxide (NO) in oxidative reactions causes a reduction in NO bioavailability and contributes to vascular dysfunction in SCD. Therapeutic strategies designed to counteract endothelial, inflammatory, and oxidative abnormalities may reduce the frequency of hospitalization and blood transfusion, the incidence of pain, and the occurrence of acute chest syndrome and pulmonary hypertension in patients with SCD.

  18. Regulation of Cellular Redox Signaling by Matricellular Proteins in Vascular Biology, Immunology, and Cancer.

    PubMed

    Roberts, David D; Kaur, Sukhbir; Isenberg, Jeffrey S

    2017-10-20

    In contrast to structural elements of the extracellular matrix, matricellular proteins appear transiently during development and injury responses, but their sustained expression can contribute to chronic disease. Through interactions with other matrix components and specific cell surface receptors, matricellular proteins regulate multiple signaling pathways, including those mediated by reactive oxygen and nitrogen species and H 2 S. Dysregulation of matricellular proteins contributes to the pathogenesis of vascular diseases and cancer. Defining the molecular mechanisms and receptors involved is revealing new therapeutic opportunities. Recent Advances: Thrombospondin-1 (TSP1) regulates NO, H 2 S, and superoxide production and signaling in several cell types. The TSP1 receptor CD47 plays a central role in inhibition of NO signaling, but other TSP1 receptors also modulate redox signaling. The matricellular protein CCN1 engages some of the same receptors to regulate redox signaling, and ADAMTS1 regulates NO signaling in Marfan syndrome. In addition to mediating matricellular protein signaling, redox signaling is emerging as an important pathway that controls the expression of several matricellular proteins. Redox signaling remains unexplored for many matricellular proteins. Their interactions with multiple cellular receptors remains an obstacle to defining signaling mechanisms, but improved transgenic models could overcome this barrier. Therapeutics targeting the TSP1 receptor CD47 may have beneficial effects for treating cardiovascular disease and cancer and have recently entered clinical trials. Biomarkers are needed to assess their effects on redox signaling in patients and to evaluate how these contribute to their therapeutic efficacy and potential side effects. Antioxid. Redox Signal. 27, 874-911.

  19. Control of plant stem cell function by conserved interacting transcriptional regulators

    PubMed Central

    Zhou, Yun; Liu, Xing; Engstrom, Eric M.; Nimchuk, Zachary L.; Pruneda-Paz, Jose L.; Tarr, Paul T.; Yan, An; Kay, Steve A.; Meyerowitz, Elliot M.

    2014-01-01

    SUMMARY Plant stem cells in the shoot apical meristem (SAM) and root apical meristem (RAM) provide for postembryonic development of above-ground tissues and roots, respectively, while secondary vascular stem cells sustain vascular development1–4. WUSCHEL (WUS), a homeodomain transcription factor expressed in the rib meristem of the SAM, is a key regulatory factor controlling stem cell populations in the Arabidopsis SAM5–6 and is thought to establish the shoot stem cell niche via a feedback circuit with the CLAVATA3 (CLV3) peptide signaling pathway7. WUSCHEL-RELATED HOMEOBOX5 (WOX5), specifically expressed in root quiescent center (QC), defines QC identity and functions interchangeably with WUS in control of shoot and root stem cell niches8. WOX4, expressed in Arabidopsis procambial cells, defines the vascular stem cell niche9–11. WUS/WOX family proteins are evolutionarily and functionally conserved throughout the plant kingdom12 and emerge as key actors in the specification and maintenance of stem cells within all meristems13. However, the nature of the genetic regime in stem cell niches that centers on WOX gene function has been elusive, and molecular links underlying conserved WUS/WOX function in stem cell niches remain unknown. Here we demonstrate that the Arabidopsis HAIRY MERISTEM (HAM)family transcription regulators act as conserved interacting co-factors with WUS/WOX proteins. HAM and WUS share common targets in vivo and their physical interaction is important in driving downstream transcriptional programs and in promoting shoot stem cell proliferation. Differences in the overlapping expression patterns of WOX and HAM family members underlie the formation of diverse stem cell niche locations, and the HAM family is essential for all of these stem cell niches. These findings establish a new framework for the control of stem cell production during plant development. PMID:25363783

  20. NASAs VESGEN: Systems Analysis of Vascular Phenotypes from Stress and Other Signaling Pathways Using GeneLab.

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Weitzel, Alexander; Vyas, Ruchi J.; Murray, Matthew C.; Wyatt, Sarah E.

    2016-01-01

    One fundamental requirement shared by humans with all higher terrestrial life forms, including insect wings, higher land plants and other vertebrates, is a complex, fractally branching vascular system. NASA's VESsel GENeration Analysis (VESGEN) software maps and quantifies vascular trees, networks, and tree-network composites according to weighted physiological rules such as vessel connectivity, tapering and bifurcational branching. According to fluid dynamics, successful vascular transport requires a complex distributed system of highly regulated laminar flow. Microvascular branching rules within vertebrates, dicot leaves and the other organisms therefore display many similarities. One unifying perspective is that vascular patterning offers a useful readout that necessarily integrates complex molecular signaling pathways. VESGEN has elucidated changes in vascular pattern resulting from inflammatory, stress response, developmental and other signaling within numerous tissues and major model organisms studied for Space Biology. For a new VESGEN systems approach, we analyzed differential gene expression in leaves of Arabidopsis thaliana reported by GeneLab (GLDS-7) for spaceflight. Vascular-related changes in leaf gene expression were identified that can potentially be phenocopied by mutants in ground-based experiments. To link transcriptional, protein and other molecular change with phenotype, alterations in the Euclidean and dynamic dimensions (x,y,t) of vascular patterns for Arabidopsis leaves and other model species are being co-localized with signaling patterns of single molecular expression analyzed as information dimensions (i,j,k,...). Previously, Drosophila microarray data returned from space suggested significant changes in genes related to wing venation development that include EGF, Notch, Hedghog, Wingless and Dpp signaling. Phenotypes of increasingly abnormal ectopic wing venation in the (non-spaceflight) Drosophila wing generated by overexpression of a Notch antagonist were analyzed by VESGEN. Other VESGEN research applications include the mouse retina, GI and coronary vessels, avian placental analogs and translational studies in the astronaut retina related to health challenges for long-duration missions.

  1. Tumour Vascular Shutdown and Cell Death Following Ultrasound-Microbubble Enhanced Radiation Therapy

    PubMed Central

    El Kaffas, Ahmed; Gangeh, Mehrdad J.; Farhat, Golnaz; Tran, William Tyler; Hashim, Amr; Giles, Anoja; Czarnota, Gregory J.

    2018-01-01

    High-dose radiotherapy effects are regulated by acute tumour endothelial cell death followed by rapid tumour cell death instead of canonical DNA break damage. Pre-treatment with ultrasound-stimulated microbubbles (USMB) has enabled higher-dose radiation effects with conventional radiation doses. This study aimed to confirm acute and longitudinal relationships between vascular shutdown and tumour cell death following radiation and USMB in a wild type murine fibrosarcoma model using in vivo imaging. Methods: Tumour xenografts were treated with single radiation doses of 2 or 8 Gy alone, or in combination with low-/high-concentration USMB. Vascular changes and tumour cell death were evaluated at 3, 24 and 72 h following therapy, using high-frequency 3D power Doppler and quantitative ultrasound spectroscopy (QUS) methods, respectively. Staining using in situ end labelling (ISEL) and cluster of differentiation 31 (CD31) of tumour sections were used to assess cell death and vascular distributions, respectively, as gold standard histological methods. Results: Results indicated a decrease in the power Doppler signal of up to 50%, and an increase of more than 5 dBr in cell-death linked QUS parameters at 24 h for tumours treated with combined USMB and radiotherapy. Power Doppler and quantitative ultrasound results were significantly correlated with CD31 and ISEL staining results (p < 0.05), respectively. Moreover, a relationship was found between ultrasound power Doppler and QUS results, as well as between micro-vascular densities (CD31) and the percentage of cell death (ISEL) (R2 0.5-0.9). Conclusions: This study demonstrated, for the first time, the link between acute vascular shutdown and acute tumour cell death using in vivo longitudinal imaging, contributing to the development of theoretical models that incorporate vascular effects in radiation therapy. Overall, this study paves the way for theranostic use of ultrasound in radiation oncology as a diagnostic modality to characterize vascular and tumour response effects simultaneously, as well as a therapeutic modality to complement radiation therapy. PMID:29290810

  2. Vascular endothelial growth factor and its relationship to the prognosis and treatment of breast, ovarian, and cervical cancer.

    PubMed

    Delli Carpini, Jennifer; Carpini, Jennifer Delli; Karam, Amer K; Montgomery, Leslie

    2010-03-01

    Tumor neovascularization is a complex process that plays a crucial role in the development of many different types of cancer. Vascular endothelial growth factor (VEGF) is a potent mitogen that is involved with mitogenesis, angiogenesis, endothelial survival, and the induction of hematopoiesis. By increasing vascular permeability in endothelial cells, it helps tumors recruit wound-healing proteins fibrin and fibrinogen from the plasma, suggesting that tumor formation is a process of abnormal wound healing dependent on the ability to generate a blood supply. The human female reproductive tract is highly dependent on VEGF for normal functions such as endometrial proliferation and development of the corpus luteum. The unique influence of female sex steroid hormones on the expression and activity of VEGF deems angiogenesis an important facet of the development of breast and ovarian cancer. Additionally, the up-regulation of VEGF by the E6 oncoprotein of the human papillomavirus suggests that VEGF plays an important role in the development of cervical cancer. Clinical trials have investigated the humanized monoclonal antibody bevacizumab as potential treatment for all three forms of cancer; the data show that in breast cancer, the use of bevacizumab may lengthen the disease-free survival for women with advanced breast cancer, but does not appear to change their overall survival. It may have a role as salvage chemotherapy for ovarian and cervical cancer, though further research is needed to establish it as a definitive form of treatment.

  3. Hypertension induces brain β-amyloid accumulation, cognitive impairment, and memory deterioration through activation of receptor for advanced glycation end products in brain vasculature.

    PubMed

    Carnevale, Daniela; Mascio, Giada; D'Andrea, Ivana; Fardella, Valentina; Bell, Robert D; Branchi, Igor; Pallante, Fabio; Zlokovic, Berislav; Yan, Shirley Shidu; Lembo, Giuseppe

    2012-07-01

    Although epidemiological data associate hypertension with a strong predisposition to develop Alzheimer disease, no mechanistic explanation exists so far. We developed a model of hypertension, obtained by transverse aortic constriction, leading to alterations typical of Alzheimer disease, such as amyloid plaques, neuroinflammation, blood-brain barrier dysfunction, and cognitive impairment, shown here for the first time. The aim of this work was to investigate the mechanisms involved in Alzheimer disease of hypertensive mice. We focused on receptor for advanced glycation end products (RAGE) that critically regulates Aβ transport at the blood-brain barrier and could be influenced by vascular factors. The hypertensive challenge had an early and sustained effect on RAGE upregulation in brain vessels of the cortex and hippocampus. Interestingly, RAGE inhibition protected from hypertension-induced Alzheimer pathology, as showed by rescue from cognitive impairment and parenchymal Aβ deposition. The increased RAGE expression in transverse aortic coarctation mice was induced by increased circulating advanced glycation end products and sustained by their later deposition in brain vessels. Interestingly, a daily treatment with an advanced glycation end product inhibitor or antioxidant prevented the development of Alzheimer traits. So far, Alzheimer pathology in experimental animal models has been recognized using only transgenic mice overexpressing amyloid precursor. This is the first study demonstrating that a chronic vascular insult can activate brain vascular RAGE, favoring parenchymal Aβ deposition and the onset of cognitive deterioration. Overall we demonstrate that RAGE activation in brain vessels is a crucial pathogenetic event in hypertension-induced Alzheimer disease, suggesting that inhibiting this target can limit the onset of vascular-related Alzheimer disease.

  4. Human telomerase reverse transcriptase regulates vascular endothelial growth factor expression via human papillomavirus oncogene E7 in HPV-18-positive cervical cancer cells.

    PubMed

    Li, Fang; Cui, Jinquan

    2015-07-01

    Human papillomavirus (HPV) infection induces chronic and precancerous lesions and results in invasive cervical cancer. Human telomerase as well as inflammatory and angiogenic factors such as telomerase reverse transcriptase (hTERT) or vascular endothelial growth factor (VEGF) could play a role in regulating HPV-induced cervical cancer. This study investigated underlying molecular events in HPV-induced HPV-positive cervical cancer through hTERT and VEGF in vitro. Expressions of hTERT, a rate-limiting subunit of telomerase, and VEGF mRNA and proteins were, respectively, assessed by qRT-PCR, ELISA, and TRAP-ELISA in HPV-positive tissue samples and cervical cancer cell lines. To assess hTERT and VEGF secretion, hTERT overexpression and knockdown were conducted in HPV-18-positive Hela cells by hTERT cDNA and shRNA transfection, respectively. Then, the effect of HPV E6 and E7 on VEGF expressions was assessed in HPV-negative cervical cancer cells. Data have shown that VEGF expression levels are associated with hTERT expressions and telomerase activity in HPV-positive cervical cancer tissues and cells. Knockdown of hTERT expression down-regulated VEGF expressions, whereas overexpression of hTERT up-regulated VEGF expressions in HPV-18-positive Hela cells. Furthermore, HPV E7 oncoprotein was necessary for hTERT to up-regulate VEGF expressions in HPV-negative cervical cancer cells. Data from this current study indicate that HPV oncoproteins up-regulated hTERT and telomerase activity and in turn promoted VEGF expressions, which could be a key mechanism for HPV-induced cervical cancer development and progression.

  5. Emerging hemodynamic signatures of the right heart (Third International Right Heart Failure Summit, part 2).

    PubMed

    Maron, Bradley A

    2014-12-01

    Despite the importance of preserved right ventricular structure and function with respect to outcome across the spectrum of lung, cardiac, and pulmonary vascular diseases, only recently have organized efforts developed to consider the pulmonary vascular-right ventricular apparatus as a specific unit within the larger context of cardiopulmonary pathophysiology. The Third International Right Heart Failure Summit (Boston, MA) was a multidisciplinary event dedicated to promoting a dialogue about the scientific and clinical basis of right heart disease. The current review provides a synopsis of key discussions presented during the section of the summit titled "Emerging Hemodynamic Signatures of the Right Heart." Specifically, topics emphasized in this element of the symposium included (1) the effects of pulmonary vascular dysfunction at rest or provoked by exercise on the right ventricular pressure-volume relationship, (2) the role of pressure-volume loop analysis as a method to characterize right ventricular inefficiency and predict right heart failure, and (3) the importance of a systems biology approach to identifying novel factors that contribute to pathophenotypes associated with pulmonary arterial hypertension and/or right ventricular dysfunction. Collectively, these concepts frame a forward-thinking paradigm shift in the approach to right heart disease by emphasizing factors that regulate the transition from adaptive to maladaptive right ventricular-pulmonary vascular (patho)physiology.

  6. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis

    PubMed Central

    Cao, Zhongwei; Lis, Raphael; Ginsberg, Michael; Chavez, Deebly; Shido, Koji; Rabbany, Sina Y.; Fong, Guo-Hua; Sakmar, Thomas P.; Rafii, Shahin; Ding, Bi-Sen

    2016-01-01

    Although the lung can undergo self-repair after injury, fibrosis in chronically injured or diseased lungs can occur at the expense of regeneration. Here we study how a hematopoietic-vascular niche regulates alveolar repair and lung fibrosis. Using intratracheal injection of bleomycin or hydrochloric acid in mice, we show that repetitive lung injury activates pulmonary capillary endothelial cells (PCECs) and perivascular macrophages, impeding alveolar repair and promoting fibrosis. Whereas the chemokine receptor CXCR7, expressed on PCECs, acts to prevent epithelial damage and ameliorate fibrosis after a single round of treatment with bleomycin or hydrochloric acid, repeated injury leads to suppression of CXCR7 expression and recruitment of vascular endothelial growth factor receptor 1 (VEGFR1)-expressing perivascular macrophages. This recruitment stimulates Wnt/β-catenin–dependent persistent upregulation of the Notch ligand Jagged1 (encoded by Jag1) in PCECs, which in turn stimulates exuberant Notch signaling in perivascular fibroblasts and enhances fibrosis. Administration of a CXCR7 agonist or PCEC-targeted Jag1 shRNA after lung injury promotes alveolar repair and reduces fibrosis. Thus, targeting of a maladaptbed hematopoietic-vascular niche, in which macrophages, PCECs and perivascular fibroblasts interact, may help to develop therapy to spur lung regeneration and alleviate fibrosis. PMID:26779814

  7. Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis.

    PubMed

    Cao, Zhongwei; Lis, Raphael; Ginsberg, Michael; Chavez, Deebly; Shido, Koji; Rabbany, Sina Y; Fong, Guo-Hua; Sakmar, Thomas P; Rafii, Shahin; Ding, Bi-Sen

    2016-02-01

    Although the lung can undergo self-repair after injury, fibrosis in chronically injured or diseased lungs can occur at the expense of regeneration. Here we study how a hematopoietic-vascular niche regulates alveolar repair and lung fibrosis. Using intratracheal injection of bleomycin or hydrochloric acid in mice, we show that repetitive lung injury activates pulmonary capillary endothelial cells (PCECs) and perivascular macrophages, impeding alveolar repair and promoting fibrosis. Whereas the chemokine receptor CXCR7, expressed on PCECs, acts to prevent epithelial damage and ameliorate fibrosis after a single round of treatment with bleomycin or hydrochloric acid, repeated injury leads to suppression of CXCR7 expression and recruitment of vascular endothelial growth factor receptor 1 (VEGFR1)-expressing perivascular macrophages. This recruitment stimulates Wnt/β-catenin-dependent persistent upregulation of the Notch ligand Jagged1 (encoded by Jag1) in PCECs, which in turn stimulates exuberant Notch signaling in perivascular fibroblasts and enhances fibrosis. Administration of a CXCR7 agonist or PCEC-targeted Jag1 shRNA after lung injury promotes alveolar repair and reduces fibrosis. Thus, targeting of a maladapted hematopoietic-vascular niche, in which macrophages, PCECs and perivascular fibroblasts interact, may help to develop therapy to spur lung regeneration and alleviate fibrosis.

  8. Is Vasomotion in Cerebral Arteries Impaired in Alzheimer's Disease?

    PubMed

    Di Marco, Luigi Yuri; Farkas, Eszter; Martin, Chris; Venneri, Annalena; Frangi, Alejandro F

    2015-01-01

    A substantial body of evidence supports the hypothesis of a vascular component in the pathogenesis of Alzheimer's disease (AD). Cerebral hypoperfusion and blood-brain barrier dysfunction have been indicated as key elements of this pathway. Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder, frequent in AD, characterized by the accumulation of amyloid-β (Aβ) peptide in cerebral blood vessel walls. CAA is associated with loss of vascular integrity, resulting in impaired regulation of cerebral circulation, and increased susceptibility to cerebral ischemia, microhemorrhages, and white matter damage. Vasomotion- the spontaneous rhythmic modulation of arterial diameter, typically observed in arteries/arterioles in various vascular beds including the brain- is thought to participate in tissue perfusion and oxygen delivery regulation. Vasomotion is impaired in adverse conditions such as hypoperfusion and hypoxia. The perivascular and glymphatic pathways of Aβ clearance are thought to be driven by the systolic pulse. Vasomotion produces diameter changes of comparable amplitude, however at lower rates, and could contribute to these mechanisms of Aβ clearance. In spite of potential clinical interest, studies addressing cerebral vasomotion in the context of AD/CAA are limited. This study reviews the current literature on vasomotion, and hypothesizes potential paths implicating impaired cerebral vasomotion in AD/CAA. Aβ and oxidative stress cause vascular tone dysregulation through direct effects on vascular cells, and indirect effects mediated by impaired neurovascular coupling. Vascular tone dysregulation is further aggravated by cholinergic deficit and results in depressed cerebrovascular reactivity and (possibly) impaired vasomotion, aggravating regional hypoperfusion and promoting further Aβ and oxidative stress accumulation.

  9. Placental insufficiency decreases pancreatic vascularity and disrupts hepatocyte growth factor signaling in the pancreatic islet endothelial cell in fetal sheep.

    PubMed

    Rozance, Paul J; Anderson, Miranda; Martinez, Marina; Fahy, Anna; Macko, Antoni R; Kailey, Jenai; Seedorf, Gregory J; Abman, Steven H; Hay, William W; Limesand, Sean W

    2015-02-01

    Hepatocyte growth factor (HGF) and vascular endothelial growth factor A (VEGFA) are paracrine hormones that mediate communication between pancreatic islet endothelial cells (ECs) and β-cells. Our objective was to determine the impact of intrauterine growth restriction (IUGR) on pancreatic vascularity and paracrine signaling between the EC and β-cell. Vessel density was less in IUGR pancreata than in controls. HGF concentrations were also lower in islet EC-conditioned media (ECCM) from IUGR, and islets incubated with control islet ECCM responded by increasing insulin content, which was absent with IUGR ECCM. The effect of ECCM on islet insulin content was blocked with an inhibitory anti-HGF antibody. The HGF receptor was not different between control and IUGR islets, but VEGFA was lower and the high-affinity VEGF receptor was higher in IUGR islets and ECs, respectively. These findings show that paracrine actions from ECs increase islet insulin content, and in IUGR ECs, secretion of HGF was diminished. Given the potential feed-forward regulation of β-cell VEGFA and islet EC HGF, these two growth factors are highly integrated in normal pancreatic islet development, and this regulation is decreased in IUGR fetuses, resulting in lower pancreatic islet insulin concentrations and insulin secretion. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. Advances in the cellular and molecular biology of angiogenesis.

    PubMed

    Egginton, Stuart; Bicknell, Roy

    2011-12-01

    Capillaries have been recognized for over a century as one of the most important components in regulating tissue oxygen transport, and their formation or angiogenesis a pivotal element of tissue remodelling during development and adaptation. Clinical interest stems from observations that both excessive and inadequate vascular growth plays a major role in human diseases, and novel developments in treatments for cancer and eye disease increasingly rely on anti-angiogenic therapies. Although the discovery of VEGF (vascular endothelial growth factor) provided the first clue for specificity of signalling in endothelial cell activation, understanding the integrative response that drives angiogenesis requires a much broader perspective. The Advances in the Cellular and Molecular Biology of Angiogenesis meeting brought together researchers at the forefront of this rapidly moving field to provide an update on current understanding, and the most recent insights into molecular and cellular mechanisms of vascular growth. The plenary lecture highlighted the integrative nature of the angiogenic process, whereas invited contributions from basic and clinician scientists described fundamental mechanisms and disease-associated issues of blood vessel formation, grouped under a number of themes to aid discussion. These articles will appeal to academic, clinical and pharmaceutical scientists interested in the molecular and cellular basis of angiogenesis, their modulation or dysfunction in human diseases, and application of these findings towards translational medicine.

  11. Stem development through vascular tissues: EPFL-ERECTA family signaling that bounces in and out of phloem.

    PubMed

    Tameshige, Toshiaki; Ikematsu, Shuka; Torii, Keiko U; Uchida, Naoyuki

    2017-01-01

    Plant cells communicate with each other using a variety of signaling molecules. Recent studies have revealed that various types of secreted peptides, as well as phytohormones known since long ago, mediate cell-cell communication in diverse contexts of plant life. These peptides affect cellular activities, such as proliferation and cell fate decisions, through their perception by cell surface receptors located on the plasma membrane of target cells. ERECTA (ER), an Arabidopsis thaliana receptor kinase gene, was first identified as a stem growth regulator, and since then an increasing number of studies have shown that ER is involved in a wide range of developmental and physiological processes. In particular, molecular functions of ER have been extensively studied in stomatal patterning. Furthermore, the importance of ER signaling in vascular tissues of inflorescence stems, especially in phloem cells, has recently been highlighted. In this review article, first we briefly summarize the history of ER research including studies on stomatal development, then introduce ER functions in vascular tissues, and discuss its interactions with phytohormones and other receptor kinase signaling pathways. Future questions and challenges will also be addressed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Air Pollution-Induced Vascular Dysfunction: Potential Role of Endothelin-1 (ET-1) System

    PubMed Central

    Finch, Jordan; Conklin, Daniel J.

    2015-01-01

    Exposure to air pollution negatively impacts cardiovascular health. Studies show that increased exposure to a number of airborne pollutants increases the risk for cardiovascular disease progression, myocardial events, and cardiovascular mortality. A hypothesized mechanism linking air pollution and cardiovascular disease is the development of systemic inflammation and endothelium dysfunction, the latter of which can result from an imbalance of vasoactive factors within the vasculature. Endothelin-1 (ET-1) is a potent peptide vasoconstrictor that plays a significant role in regulating vascular homeostasis. It has been reported that the production and function of ET-1 and its receptors are upregulated in a number of disease states associated with endothelium dysfunction including hypertension and atherosclerosis. This mini-review surveys epidemiological and experimental air pollution studies focused on ET-1 dysregulation as a plausible mechanism underlying the development of cardiovascular disease. Although alterations in ET-1 system components are observed in some studies, there remains a need for future research to clarify whether these specific changes are compensatory or causally related to vascular injury and dysfunction. Moreover, further research may test the efficacy of selective ET-1 pharmacological interventions (e.g., ETA receptor inhibitors) to determine whether these treatments could impede the deleterious impact of air pollution exposure on cardiovascular health. PMID:26148452

  13. Air Pollution-Induced Vascular Dysfunction: Potential Role of Endothelin-1 (ET-1) System.

    PubMed

    Finch, Jordan; Conklin, Daniel J

    2016-07-01

    Exposure to air pollution negatively impacts cardiovascular health. Studies show that increased exposure to a number of airborne pollutants increases the risk for cardiovascular disease progression, myocardial events, and cardiovascular mortality. A hypothesized mechanism linking air pollution and cardiovascular disease is the development of systemic inflammation and endothelium dysfunction, the latter of which can result from an imbalance of vasoactive factors within the vasculature. Endothelin-1 (ET-1) is a potent peptide vasoconstrictor that plays a significant role in regulating vascular homeostasis. It has been reported that the production and function of ET-1 and its receptors are upregulated in a number of disease states associated with endothelium dysfunction including hypertension and atherosclerosis. This mini-review surveys epidemiological and experimental air pollution studies focused on ET-1 dysregulation as a plausible mechanism underlying the development of cardiovascular disease. Although alterations in ET-1 system components are observed in some studies, there remains a need for future research to clarify whether these specific changes are compensatory or causally related to vascular injury and dysfunction. Moreover, further research may test the efficacy of selective ET-1 pharmacological interventions (e.g., ETA receptor inhibitors) to determine whether these treatments could impede the deleterious impact of air pollution exposure on cardiovascular health.

  14. Adverse Outcome Pathway for Embryonic Vascular Disruption and Alternative Methods to Identify Chemical Vascular Disruptors During Development

    EPA Science Inventory

    Chemically induced vascular toxicity during embryonic development can result in a wide range of adverse prenatal outcomes. We used information from genetic mouse models linked to phenotypic outcomes and a vascular toxicity knowledge base to construct an embryonic vascular disrupt...

  15. Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRT1

    PubMed Central

    Csiszar, Anna; Labinskyy, Nazar; Jimenez, Rosario; Pinto, John T.; Ballabh, Praveen; Losonczy, Gyorgy; Pearson, Kevin J.; de Cabo, Rafael; Ungvari, Zoltan

    2009-01-01

    Endothelial-dysfunction, oxidative stress and inflammation are associated with vascular aging and promote the development of cardiovascular-disease. Caloric restriction (CR) mitigates conditions associated with aging, but its effects on vascular dysfunction during aging remain poorly defined. To determine whether CR exerts vasoprotective effects in aging, aortas of ad libitum (AL) fed young and aged and CR-aged F344 rats were compared. Aging in AL-rats was associated with impaired acetylcholine-induced relaxation, vascular oxidative stress and increased NF-κB-activity. Lifelong CR significantly improved endothelial function, attenuated vascular ROS production, inhibited NF-κB activity and down-regulated inflammatory genes. To elucidate the role of circulating factors in mediation of the vasoprotective effects of CR, we determined whether sera obtained from CR-animals can confer anti-oxidant and anti-inflammatory effects in cultured coronary-arterial endothelial cells (CAECs), mimicking the effects of CR. In CAECs cultured in the presence of AL-serum TNFα elicited oxidative-stress, NF-κB-activation and inflammatory gene expression. By contrast, treatment of CAECs with CR-serum attenuated TNFα-induced ROS generation and prevented NF-κB-activation and induction of inflammatory genes. siRNA-knockdown of SIRT1 mitigated the anti-oxidant and anti-inflammatory effects of CR-serum. CR exerts anti-oxidant and anti-inflammatory vascular effects, which are likely mediated by circulating factors, in part, via a SIRT1-dependent pathway. PMID:19549533

  16. Tetrahydrobiopterin in Cardiovascular Health and Disease

    PubMed Central

    Bendall, Jennifer K.; Douglas, Gillian; McNeill, Eileen; Channon, Keith M.

    2014-01-01

    Abstract Tetrahydrobiopterin (BH4) functions as a cofactor for several important enzyme systems, and considerable evidence implicates BH4 as a key regulator of endothelial nitric oxide synthase (eNOS) in the setting of cardiovascular health and disease. BH4 bioavailability is determined by a balance of enzymatic de novo synthesis and recycling, versus degradation in the setting of oxidative stress. Augmenting vascular BH4 levels by pharmacological supplementation has been shown in experimental studies to enhance NO bioavailability. However, it has become more apparent that the role of BH4 in other enzymatic pathways, including other NOS isoforms and the aromatic amino acid hydroxylases, may have a bearing on important aspects of vascular homeostasis, inflammation, and cardiac function. This article reviews the role of BH4 in cardiovascular development and homeostasis, as well as in pathophysiological processes such as endothelial and vascular dysfunction, atherosclerosis, inflammation, and cardiac hypertrophy. We discuss the therapeutic potential of BH4 in cardiovascular disease states and attempt to address how this modulator of intracellular NO-redox balance may ultimately provide a powerful new treatment for many cardiovascular diseases. Antioxid. Redox Signal. 20, 3040–3077. PMID:24294830

  17. PPFIA1 drives active α5β1 integrin recycling and controls fibronectin fibrillogenesis and vascular morphogenesis

    PubMed Central

    Mana, Giulia; Clapero, Fabiana; Panieri, Emiliano; Panero, Valentina; Böttcher, Ralph T.; Tseng, Hui-Yuan; Saltarin, Federico; Astanina, Elena; Wolanska, Katarzyna I.; Morgan, Mark R.; Humphries, Martin J.; Santoro, Massimo M.; Serini, Guido; Valdembri, Donatella

    2016-01-01

    Basolateral polymerization of cellular fibronectin (FN) into a meshwork drives endothelial cell (EC) polarity and vascular remodelling. However, mechanisms coordinating α5β1 integrin-mediated extracellular FN endocytosis and exocytosis of newly synthesized FN remain elusive. Here we show that, on Rab21-elicited internalization, FN-bound/active α5β1 is recycled to the EC surface. We identify a pathway, comprising the regulators of post-Golgi carrier formation PI4KB and AP-1A, the small GTPase Rab11B, the surface tyrosine phosphatase receptor PTPRF and its adaptor PPFIA1, which we propose acts as a funnel combining FN secretion and recycling of active α5β1 integrin from the trans-Golgi network (TGN) to the EC surface, thus allowing FN fibrillogenesis. In this framework, PPFIA1 interacts with active α5β1 integrin and localizes close to EC adhesions where post-Golgi carriers are targeted. We show that PPFIA1 is required for FN polymerization-dependent vascular morphogenesis, both in vitro and in the developing zebrafish embryo. PMID:27876801

  18. Interplay between TGF-β signaling and receptor tyrosine kinases in tumor development.

    PubMed

    Shi, Qiaoni; Chen, Ye-Guang

    2017-10-01

    Transforming growth factor-β (TGF-β) signaling regulates cell proliferation, differentiation, migration and death, and plays a critical role in embryogenesis and tissue homeostasis. Its deregulation results in various diseases including tumor formation. Receptor tyrosine kinases (RTKs), such as epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR), also play key roles in the development and progression of many types of tumors. It has been realized that TGF-β signaling and RTK pathways interact with each other and their interplay is important for cancer development. They are mutually regulated and cooperatively modulate cell survival and migration, epithelial-mesenchymal transition, and tumor microenvironment to accelerate tumorigenesis and tumor metastasis. RTKs can modulate Smad-dependent transcription or cooperate with TGF-β to potentiate its oncogenic activity, while TGF-β signaling can in turn control RTK signaling by regulating their activities or expression. This review summarizes current understandings of the interplay between TGF-β signaling and RTKs and its influence on tumor development.

  19. Transcriptional control of secondary growth and wood formation.

    Treesearch

    Juan Du; Andrew Groover

    2010-01-01

    Secondary growth and wood formation are products of the vascular cambium, a lateral meristem. Although the mechanisms have only recently begun to be uncovered, transcriptional regulation appears increasingly central to the regulation of secondary growth. The importance of transcriptional regulation is illustrated by the correlation of expression of specific classes of...

  20. Cyclic Mechanical Stretch Up-regulates Hepatoma-Derived Growth Factor Expression in Cultured Rat Aortic Smooth Muscle Cells.

    PubMed

    Kao, Ying-Hsien; Chen, Po-Han; Sun, Cheuk-Kwan; Chang, Yo-Chen; Lin, Yu-Chun; Tsai, Ming-Shian; Lee, Po-Huang; Cheng, Cheng-I

    2018-02-21

    Hepatoma-derived growth factor (HDGF) is a potent mitogen for vascular smooth muscle cells (SMCs) during embryogenesis and injury repair of vessel walls. Whether mechanical stimuli modulate HDGF expression remains unknown. This study aimed at investigating whether cyclic mechanical stretch plays a regulatory role in HDGF expression and regenerative cytokine production in aortic SMCs. A SMC cell line was grown on a silicone-based elastomer chamber with extracellular matrix coatings (either type I collagen or fibronectin) and received cyclic and uni-axial mechanical stretches with 10% deformation at frequency 1 Hz. Morphological observation showed that fibronectin coating provided better cell adhesion and spreading and that consecutive 6 hours of cyclic mechanical stretch remarkably induced reorientation and realignment of SMCs. Western blotting detection demonstrated that continuous mechanical stimuli elicited up-regulation of HDGF and PCNA, a cell proliferative marker. Signal kinetic profiling study indicated that cyclic mechanical stretch induced signaling activity in RhoA/ROCK and PI3K/Akt cascades. Kinase inhibition study further showed that blockade of PI3K activity suppressed the stretch-induced TNF-a, whereas RhoA/ROCK inhibition significantly blunted the IL-6 production and HDGF over-expression. Moreover, siRNA-mediated HDGF gene silencing significantly suppressed constitutive expression of IL-6, but not TNF-α, in SMCs. These findings support the role of HDGF in maintaining vascular expression of IL-6, which has been regarded a crucial regenerative factor for acute vascular injury. In conclusion, cyclic mechanical stretch may maintain constitutive expression of HDGF in vascular walls and be regarded an important biophysical regulator in vascular regeneration. ©2018 The Author(s).

  1. Renal and femoral venous blood flows are regulated by different mechanisms dependent on α-adrenergic receptor subtypes and nitric oxide in anesthetized rats.

    PubMed

    Fioretti, Alexandre C; Ogihara, Cristiana A; Cafarchio, Eduardo M; Venancio, Daniel P; de Almeida, Roberto Lopes; Antonio, Bruno B; Sato, Monica A

    2017-12-01

    Venous and arterial walls are responsive to sympathetic system and circulating substances, nevertheless, very few is known about the venous blood flow regulation simultaneously to arterial vascular beds. In this study, we compared the venous and arterial blood flow regulation in visceral and muscular beds upon injection of different doses of vasoactive drugs which act in arterial vascular beds. Anesthetized adult male Wistar rats underwent to right femoral artery and vein cannulation for hemodynamic recordings and infusion of drugs. Doppler flow probes were placed around the left renal artery and vein, and left femoral artery and vein to evaluate the changes in flood flow. Phenylephrine (PHE) injection (α 1 -adrenergic receptor agonist) elicited vasoconstriction in all arteries and veins. Intravenous prazosin (PZS) (1mg/kg, α 1 -adrenergic receptor blocker) caused renal artery vasodilation, but not in the other beds. Vasoconstrictor effect of PHE was abolished by PZS in all vascular beds, except in femoral vein. Phentolamine (PTL) injection (1mg/kg, α 1 /α 2 -adrenergic receptor blocker) produced renal artery vasodilation with no change in other beds. After PTL, the vasoconstriction evoked by PHE was abolished in all vascular beds. Sodium Nitroprusside (SNP), a nitric oxide donor, elicited vasodilation in all beds, and after PTL but not post PZS injection, SNP enhanced the vasodilatory effect in femoral vein. Our findings suggest that the vasoconstriction in renal and femoral veins is mediated by different subtypes of α-adrenoceptors. The nitric oxide-dependent vasodilation in femoral vein enhances when α 2 -adrenoceptors are not under stimulation, but not in the other vascular beds investigated. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Glutathione regulation of redox-sensitive signals in tumor necrosis factor-{alpha}-induced vascular endothelial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsou, T.-C.; Yeh, S.C.; Tsai, F.-Y.

    2007-06-01

    We investigated the regulatory role of glutathione in tumor necrosis factor-alpha (TNF-{alpha})-induced vascular endothelial dysfunction as evaluated by using vascular endothelial adhesion molecule expression and monocyte-endothelial monolayer binding. Since TNF-{alpha} induces various biological effects on vascular cells, TNF-{alpha} dosage could be a determinant factor directing vascular cells into different biological fates. Based on the adhesion molecule expression patterns responding to different TNF-{alpha} concentrations, we adopted the lower TNF-{alpha} (0.2 ng/ml) to rule out the possible involvement of other TNF-{alpha}-induced biological effects. Inhibition of glutathione synthesis by L-buthionine-(S,R)-sulfoximine (BSO) resulted in down-regulations of the TNF-{alpha}-induced adhesion molecule expression and monocyte-endothelial monolayermore » binding. BSO attenuated the TNF-{alpha}-induced nuclear factor-kappaB (NF-{kappa}B) activation, however, with no detectable effect on AP-1 and its related mitogen-activated protein kinases (MAPKs). Deletion of an AP-1 binding site in intercellular adhesion molecule-1 (ICAM-1) promoter totally abolished its constitutive promoter activity and its responsiveness to TNF-{alpha}. Inhibition of ERK, JNK, or NF-{kappa}B attenuates TNF-{alpha}-induced ICAM-1 promoter activation and monocyte-endothelial monolayer binding. Our study indicates that TNF-{alpha} induces adhesion molecule expression and monocyte-endothelial monolayer binding mainly via activation of NF-{kappa}B in a glutathione-sensitive manner. We also demonstrated that intracellular glutathione does not modulate the activation of MAPKs and/or their downstream AP-1 induced by lower TNF-{alpha}. Although AP-1 activation by the lower TNF-{alpha} was not detected in our systems, we could not rule out the possible involvement of transiently activated MAPKs/AP-1 in the regulation of TNF-{alpha}-induced adhesion molecule expression.« less

  3. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.

    PubMed

    Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis

    2013-04-01

    Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.

  4. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.

    PubMed

    Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis

    2013-05-01

    Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.

  5. Calcium dynamics and signaling in vascular regulation: computational models

    PubMed Central

    Tsoukias, Nikolaos Michael

    2013-01-01

    Calcium is a universal signaling molecule with a central role in a number of vascular functions including in the regulation of tone and blood flow. Experimentation has provided insights into signaling pathways that lead to or affected by Ca2+ mobilization in the vasculature. Mathematical modeling offers a systematic approach to the analysis of these mechanisms and can serve as a tool for data interpretation and for guiding new experimental studies. Comprehensive models of calcium dynamics are well advanced for some systems such as the heart. This review summarizes the progress that has been made in modeling Ca2+ dynamics and signaling in vascular cells. Model simulations show how Ca2+ signaling emerges as a result of complex, nonlinear interactions that cannot be properly analyzed using only a reductionist's approach. A strategy of integrative modeling in the vasculature is outlined that will allow linking macroscale pathophysiological responses to the underlying cellular mechanisms. PMID:21061306

  6. Grape seed proanthocyanidin extract alleviates ouabain-induced vascular remodeling through regulation of endothelial function.

    PubMed

    Liu, Xiangju; Qiu, Jie; Zhao, Shaohua; You, Beian; Ji, Xiang; Wang, Yan; Cui, Xiaopei; Wang, Qian; Gao, Haiqing

    2012-11-01

    Recent studies indicate that chronic ouabain treatment leads to hypertension and hypertensive vascular remodeling. Grape seed proanthocyanidin extract (GSPE) has been reported to be effective in treating arteriosclerosis, while little is known about its effect on systolic blood pressure and vascular remodeling. In this study, the effects of GSPE on systolic blood pressure and vascular remodeling were analyzed by treating ouabain-induced hypertensive rats with GSPE (250 mg/kg·d). The expression of nitric oxide (NO) and endothelin-1 (ET-1) in thoracic aorta was examined by ELISA; the mRNA and protein levels of TGF-β1 were detected using real-time PCR and western blotting, respectively. The results showed that the systolic blood pressure was significantly decreased following treatment with GSPE, with blocked vascular remodeling. The ET-1 content was reduced while NO production was increased in the GSPE group, which showed improved vascular endothelial function. Moreover, GSPE also reduced TGF-β1 expression in the thoracic aorta, which is a determinant in vascular remodeling. In conclusion, GSPE antagonized ouabain-induced hypertension and vascular remodeling and is recommended as a potential anti-hypertensive agent for patients with hypertensive vascular diseases.

  7. Disruption of mechanical stress in extracellular matrix is related to Stanford type A aortic dissection through down-regulation of Yes-associated protein.

    PubMed

    Jiang, Wen-Jian; Ren, Wei-Hong; Liu, Xu-Jie; Liu, Yan; Wu, Fu-Jian; Sun, Li-Zhong; Lan, Feng; Du, Jie; Zhang, Hong-Jia

    2016-09-05

    In this study, we assessed whether the down-regulation of Yes-associated protein (YAP) is involved in the pathogenesis of extracellular matrix (ECM) mechanical stress-induced Stanford type A aortic dissection (STAAD). Human aortic samples were obtained from heart transplantation donors as normal controls and from STAAD patients undergoing surgical replacement of the ascending aorta. Decreased maximum aortic wall velocity, ECM disorders, increased VSMC apoptosis, and YAP down-regulation were identified in STAAD samples. In a mouse model of STAAD, YAP was down-regulated over time during the development of ECM damage, and increased VSMC apoptosis was also observed. YAP knockdown induced VSMC apoptosis under static conditions in vitro , and the change in mechanical stress induced YAP down-regulation and VSMC apoptosis. This study provides evidence that YAP down-regulation caused by the disruption of mechanical stress is associated with the development of STAAD via the induction of apoptosis in aortic VSMCs. As STAAD is among the most elusive and life-threatening vascular diseases, better understanding of the molecular pathogenesis of STAAD is critical to improve clinical outcome.

  8. Vascular tone pathway polymorphisms in relation to primary open-angle glaucoma.

    PubMed

    Kang, J H; Loomis, S J; Yaspan, B L; Bailey, J C; Weinreb, R N; Lee, R K; Lichter, P R; Budenz, D L; Liu, Y; Realini, T; Gaasterland, D; Gaasterland, T; Friedman, D S; McCarty, C A; Moroi, S E; Olson, L; Schuman, J S; Singh, K; Vollrath, D; Wollstein, G; Zack, D J; Brilliant, M; Sit, A J; Christen, W G; Fingert, J; Forman, J P; Buys, E S; Kraft, P; Zhang, K; Allingham, R R; Pericak-Vance, M A; Richards, J E; Hauser, M A; Haines, J L; Wiggs, J L; Pasquale, L R

    2014-06-01

    Vascular perfusion may be impaired in primary open-angle glaucoma (POAG); thus, we evaluated a panel of markers in vascular tone-regulating genes in relation to POAG. We used Illumina 660W-Quad array genotype data and pooled P-values from 3108 POAG cases and 3430 controls from the combined National Eye Institute Glaucoma Human Genetics Collaboration consortium and Glaucoma Genes and Environment studies. Using information from previous literature and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we compiled single-nucleotide polymorphisms (SNPs) in 186 vascular tone-regulating genes. We used the 'Pathway Analysis by Randomization Incorporating Structure' analysis software, which performed 1000 permutations to compare the overall pathway and selected genes with comparable randomly generated pathways and genes in their association with POAG. The vascular tone pathway was not associated with POAG overall or POAG subtypes, defined by the type of visual field loss (early paracentral loss (n=224 cases) or only peripheral loss (n=993 cases)) (permuted P≥0.20). In gene-based analyses, eight were associated with POAG overall at permuted P<0.001: PRKAA1, CAV1, ITPR3, EDNRB, GNB2, DNM2, HFE, and MYL9. Notably, six of these eight (the first six listed) code for factors involved in the endothelial nitric oxide synthase activity, and three of these six (CAV1, ITPR3, and EDNRB) were also associated with early paracentral loss at P<0.001, whereas none of the six genes reached P<0.001 for peripheral loss only. Although the assembled vascular tone SNP set was not associated with POAG, genes that code for local factors involved in setting vascular tone were associated with POAG.

  9. Optical clearing of the pancreas for visualization of mature β-cells and vessels in mice.

    PubMed

    Nishimura, Wataru; Sakaue-Sawano, Asako; Takahashi, Satoru; Miyawaki, Atsushi; Yasuda, Kazuki; Noda, Yasuko

    2018-05-04

    Glucose metabolism is regulated by insulin, which is produced from β-cells in the pancreas. Because insulin is secreted into vessels in response to blood glucose, vascular structures of the pancreas, especially the relationship between vessels and β-cells, are important for physiological and pathological glucose metabolism. Here, we developed a system to visualize vessels surrounding mature β-cells expressing transcription factor MafA in a three-dimensional manner. Optical clearing of the pancreas prevented light scattering of fluorescence driven by the bacterial artificial chromosome (BAC)-mafA promoter in β-cells. Reconstruction of confocal images demonstrated mature β-cells and the glomerular-like structures of β-cell vasculatures labeled with DyLight 488-conjugated lectin in normal mice as well as in low-dose streptozotocin-injected diabetes model mice with reduced β-cell mass. This technological innovation of organ imaging can be used to investigate morphological changes in vascular structures during transplantation, regeneration and diabetes development.

  10. The marvel of percutaneous cardiovascular devices in the elderly.

    PubMed

    Guidoin, Robert; Douville, Yvan; Clavel, Marie-Annick; Zhang, Ze; Nutley, Mark; Pîbarot, Philippe; Dionne, Guy

    2010-06-01

    Thanks to minimally invasive procedures, frail and elderly patients can also benefit from innovative technologies. More than 14 million implanted pacemakers deliver impulses to the heart muscle to regulate the heart rate (treating bradycardias and blocks). The first human implantation of defibrillators was performed in early 2000. The defibrillator detects cardiac arrhythmias and corrects them by delivering electric shocks. The ongoing development of minimally invasive technologies has also broadened the scope of treatment for elderly patients with vascular stenosis and aneurysmal disease as well as other complex vascular pathologies. The nonsurgical cardiac valve replacement represents one of the most recent and exciting developments, demonstrating the feasibility of replacing a heart valve by way of placement through an intra-arterial or trans-ventricular sheath. Percutaneous devices are particularly well suited for the elderly as the surgical risks of minimally invasive surgery are considerably less as compared to open surgery, leading to a shorter hospital stay, a faster recovery, and improved quality of life.

  11. Endothelial deletion of Ino80 disrupts coronary angiogenesis and causes congenital heart disease.

    PubMed

    Rhee, Siyeon; Chung, Jae I; King, Devin A; D'amato, Gaetano; Paik, David T; Duan, Anna; Chang, Andrew; Nagelberg, Danielle; Sharma, Bikram; Jeong, Youngtae; Diehn, Maximilian; Wu, Joseph C; Morrison, Ashby J; Red-Horse, Kristy

    2018-01-25

    During development, the formation of a mature, well-functioning heart requires transformation of the ventricular wall from a loose trabecular network into a dense compact myocardium at mid-gestation. Failure to compact is associated in humans with congenital diseases such as left ventricular non-compaction (LVNC). The mechanisms regulating myocardial compaction are however still poorly understood. Here, we show that deletion of the Ino80 chromatin remodeler in vascular endothelial cells prevents ventricular compaction in the developing mouse heart. This correlates with defective coronary vascularization, and specific deletion of Ino80 in the two major coronary progenitor tissues-sinus venosus and endocardium-causes intermediate phenotypes. In vitro, endothelial cells promote myocardial expansion independently of blood flow in an Ino80-dependent manner. Ino80 deletion increases the expression of E2F-activated genes and endothelial cell S-phase occupancy. Thus, Ino80 is essential for coronary angiogenesis and allows coronary vessels to support proper compaction of the heart wall.

  12. O-GlcNAc on NOTCH1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals.

    PubMed

    Sawaguchi, Shogo; Varshney, Shweta; Ogawa, Mitsutaka; Sakaidani, Yuta; Yagi, Hirokazu; Takeshita, Kyosuke; Murohara, Toyoaki; Kato, Koichi; Sundaram, Subha; Stanley, Pamela; Okajima, Tetsuya

    2017-04-11

    The glycosyltransferase EOGT transfers O-GlcNAc to a consensus site in epidermal growth factor-like (EGF) repeats of a limited number of secreted and membrane proteins, including Notch receptors. In EOGT-deficient cells, the binding of DLL1 and DLL4, but not JAG1, canonical Notch ligands was reduced, and ligand-induced Notch signaling was impaired. Mutagenesis of O-GlcNAc sites on NOTCH1 also resulted in decreased binding of DLL4. EOGT functions were investigated in retinal angiogenesis that depends on Notch signaling. Global or endothelial cell-specific deletion of Eogt resulted in defective retinal angiogenesis, with a mild phenotype similar to that caused by reduced Notch signaling in retina. Combined deficiency of different Notch1 mutant alleles exacerbated the abnormalities in Eogt -/- retina, and Notch target gene expression was decreased in Eogt -/- endothelial cells. Thus, O-GlcNAc on EGF repeats of Notch receptors mediates ligand-induced Notch signaling required in endothelial cells for optimal vascular development.

  13. Characterization of two homeodomain transcription factors with critical but distinct roles in virulence in the vascular pathogen Verticillium dahliae

    USDA-ARS?s Scientific Manuscript database

    Vascular wilt caused by Verticillium dahliae is a destructive disease that represents a chronic economic problem for crop production worldwide. In this work, we characterized two new regulators of pathogenicity in this species. Vph1 (VDAG_06555) was identified in a candidate gene approach as a putat...

  14. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials.

    PubMed

    Lee, Ted T; García, José R; Paez, Julieta I; Singh, Ankur; Phelps, Edward A; Weis, Simone; Shafiq, Zahid; Shekaran, Asha; Del Campo, Aránzazu; García, Andrés J

    2015-03-01

    Materials engineered to elicit targeted cellular responses in regenerative medicine must display bioligands with precise spatial and temporal control. Although materials with temporally regulated presentation of bioadhesive ligands using external triggers, such as light and electric fields, have recently been realized for cells in culture, the impact of in vivo temporal ligand presentation on cell-material responses is unknown. Here, we present a general strategy to temporally and spatially control the in vivo presentation of bioligands using cell-adhesive peptides with a protecting group that can be easily removed via transdermal light exposure to render the peptide fully active. We demonstrate that non-invasive, transdermal time-regulated activation of cell-adhesive RGD peptide on implanted biomaterials regulates in vivo cell adhesion, inflammation, fibrous encapsulation, and vascularization of the material. This work shows that triggered in vivo presentation of bioligands can be harnessed to direct tissue reparative responses associated with implanted biomaterials.

  15. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials

    NASA Astrophysics Data System (ADS)

    Lee, Ted T.; García, José R.; Paez, Julieta I.; Singh, Ankur; Phelps, Edward A.; Weis, Simone; Shafiq, Zahid; Shekaran, Asha; Del Campo, Aránzazu; García, Andrés J.

    2015-03-01

    Materials engineered to elicit targeted cellular responses in regenerative medicine must display bioligands with precise spatial and temporal control. Although materials with temporally regulated presentation of bioadhesive ligands using external triggers, such as light and electric fields, have recently been realized for cells in culture, the impact of in vivo temporal ligand presentation on cell-material responses is unknown. Here, we present a general strategy to temporally and spatially control the in vivo presentation of bioligands using cell-adhesive peptides with a protecting group that can be easily removed via transdermal light exposure to render the peptide fully active. We demonstrate that non-invasive, transdermal time-regulated activation of cell-adhesive RGD peptide on implanted biomaterials regulates in vivo cell adhesion, inflammation, fibrous encapsulation, and vascularization of the material. This work shows that triggered in vivo presentation of bioligands can be harnessed to direct tissue reparative responses associated with implanted biomaterials.

  16. Recent advances in arginine metabolism: roles and regulation of the arginases

    PubMed Central

    Morris, Sidney M

    2009-01-01

    As arginine can serve as precursor to a wide range of compounds, including nitric oxide, creatine, urea, polyamines, proline, glutamate and agmatine, there is considerable interest in elucidating mechanisms underlying regulation of its metabolism. It is now becoming apparent that the two isoforms of arginase in mammals play key roles in regulation of most aspects of arginine metabolism in health and disease. In particular, work over the past several years has focused on the roles and regulation of the arginases in vascular disease, pulmonary disease, infectious disease, immune cell function and cancer. As most of these topics have been considered in recent review articles, this review will focus more closely on results of recent studies on expression of the arginases in endothelial and vascular smooth muscle cells, post-translational modulation of arginase activity and applications of arginase inhibitors in vivo. PMID:19508396

  17. Non coding RNAs in vascular disease - from basic science to clinical applications: Scientific update from the Working Group of Myocardial Function of the European Society of Cardiology

    PubMed

    Fiedler, Jan; Baker, Andrew H; Dimmeler, Stefanie; Heymans, Stephane; Mayr, Manuel; Thum, Thomas

    2018-05-23

    Non-coding RNAs are increasingly recognized not only as regulators of various biological functions but also as targets for a new generation of RNA therapeutics and biomarkers. We hereby review recent insights relating to non-coding RNAs including microRNAs (e.g. miR-126, miR-146a), long non-coding RNAs (e.g. MIR503HG, GATA6-AS, SMILR) and circular RNAs (e.g. cZNF292) and their role in vascular diseases. This includes identification and therapeutic use of hypoxia-regulated non-coding RNAs and endogenous non-coding RNAs that regulate intrinsic smooth muscle cell signalling, age-related non-coding RNAs and non-coding RNAs involved in the regulation of mitochondrial biology and metabolic control. Finally, we discuss non-coding RNA species with biomarker potential.

  18. BDNF - A key player in cardiovascular system.

    PubMed

    Pius-Sadowska, Ewa; Machaliński, Bogusław

    2017-09-01

    Neurotrophins (NTs) were first identified as target-derived survival factors for neurons of the central and peripheral nervous system (PNS). They are known to control neural cell fate, development and function. Independently of their neuronal properties, NTs exert unique cardiovascular activity. The heart is innervated by sensory, sympathetic and parasympathetic neurons, which require NTs during early development and in the establishment of mature properties, contributing to the maintenance of cardiovascular homeostasis. The identification of molecular mechanisms regulated by NTs and involved in the crosstalk between cardiac sympathetic nerves, cardiomyocytes, cardiac fibroblasts, and vascular cells, has a fundamental importance in both normal heart function and disease. The article aims to review the recent data on the effects of Brain-Derived Neurotrophic Factor (BDNF) on various cardiovascular neuronal and non-neuronal functions such as the modulation of synaptic properties of autonomic neurons, axonal outgrowth and sprouting, formation of the vascular and neural networks, smooth muscle migration, and control of endothelial cell survival and cardiomyocytes. Understanding these mechanisms may be crucial for developing novel therapeutic strategies, including stem cell-based therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Like a slippery fish, a little slime is a good thing: the glycocalyx revealed.

    PubMed

    Biddle, Chuck

    2013-12-01

    The glycocalyx is a dynamic network of multiple membrane-bound complexes lining the vascular endothelium. Its role in maintaining vascular homeostasis includes regulating vascular permeability as well as a range of vital functions, such as mechanotransduction, hemostasis, modulation of inflammatory processes, and serving as an antiatherogenic. Revisionist thinking about the Starling principle is discussed in terms of the major influence of the glycocalyx on capillary and tissue fluid homeostasis. The clinical and pathophysiologic threats to the glycocalyx are reviewed as well as strategies to maintain its integrity.

  20. MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells.

    PubMed

    Liao, Xiao-Bo; Zhang, Zhi-Yuan; Yuan, Ke; Liu, Yuan; Feng, Xiang; Cui, Rong-Rong; Hu, Ye-Rong; Yuan, Zhao-Shun; Gu, Lu; Li, Shi-Jun; Mao, Ding-An; Lu, Qiong; Zhou, Xin-Ming; de Jesus Perez, Vinicio A; Yuan, Ling-Qing

    2013-09-01

    Arterial calcification is a key pathologic component of vascular diseases such as atherosclerosis, coronary artery disease, and peripheral vascular disease. A hallmark of this pathological process is the phenotypic transition of vascular smooth muscle cells (VSMCs) to osteoblast-like cells. Several studies have demonstrated that microRNAs (miRNAs) regulate osteoblast differentiation, but it is unclear whether miRNAs also regulate VSMC-mediated arterial calcification. In the present study, we sought to characterize the role of miR-133a in regulating VSMC-mediated arterial calcification. Northern blotting analysis of VSMCs treated with β-glycerophosphate demonstrated that miR-133a was significantly decreased during osteogenic differentiation. Overexpression of miR-133a inhibited VSMC transdifferentiation into osteoblast-like cells as evidenced by a decrease in alkaline phosphatase activity, osteocalcin secretion, Runx2 expression, and mineralized nodule formation. Conversely, the knockdown of miR-133a using an miR-133a inhibitor promoted osteogenic differentiation of VSMCs by increasing alkaline phosphatase activity, osteocalcin secretion, and Runx2 expression. Runx2 was identified as a direct target of miR-133a by a cotransfection experiment in VSMCs with luciferase reporter plasmids containing wild-type or mutant 3'-untranslated region sequences of Runx2. Furthermore, the pro-osteogenic effects of miR-133a inhibitor were abrogated in Runx2-knockdown cells, and the inhibition of osteogenic differentiation by pre-miR-133a was reversed by overexpression of Runx2, providing functional evidence that the effects of miR-133a in osteogenic differentiation were mediated by targeting Runx2. These results demonstrate that miR-133a is a key negative regulator of the osteogenic differentiation of VSMCs.

  1. Venous-derived angioblasts generate organ-specific vessels during zebrafish embryonic development.

    PubMed

    Hen, Gideon; Nicenboim, Julian; Mayseless, Oded; Asaf, Lihee; Shin, Masahiro; Busolin, Giorgia; Hofi, Roy; Almog, Gabriella; Tiso, Natascia; Lawson, Nathan D; Yaniv, Karina

    2015-12-15

    Formation and remodeling of vascular beds are complex processes orchestrated by multiple signaling pathways. Although it is well accepted that vessels of a particular organ display specific features that enable them to fulfill distinct functions, the embryonic origins of tissue-specific vessels and the molecular mechanisms regulating their formation are poorly understood. The subintestinal plexus of the zebrafish embryo comprises vessels that vascularize the gut, liver and pancreas and, as such, represents an ideal model in which to investigate the early steps of organ-specific vessel formation. Here, we show that both arterial and venous components of the subintestinal plexus originate from a pool of specialized angioblasts residing in the floor of the posterior cardinal vein (PCV). Using live imaging of zebrafish embryos, in combination with photoconvertable transgenic reporters, we demonstrate that these angioblasts undergo two phases of migration and differentiation. Initially, a subintestinal vein forms and expands ventrally through a Bone Morphogenetic Protein-dependent step of collective migration. Concomitantly, a Vascular Endothelial Growth Factor-dependent shift in the directionality of migration, coupled to the upregulation of arterial markers, is observed, which culminates with the generation of the supraintestinal artery. Together, our results establish the zebrafish subintestinal plexus as an advantageous model for the study of organ-specific vessel development and provide new insights into the molecular mechanisms controlling its formation. More broadly, our findings suggest that PCV-specialized angioblasts contribute not only to the formation of the early trunk vasculature, but also to the establishment of late-forming, tissue-specific vascular beds. © 2015. Published by The Company of Biologists Ltd.

  2. ITE and TCDD Differentially Regulate the Vascular Remodeling of Rat Placenta via the Activation of AhR

    PubMed Central

    Zhou, Qian; He, Qizhi; Kang, Jiuhong; Zheng, Jing; Wang, Kai; Duan, Tao

    2014-01-01

    Vascular remodeling in the placenta is essential for normal fetal development. The previous studies have demonstrated that in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an environmental toxicant) induces the intrauterine fetal death in many species via the activation of aryl hydrocarbon receptor (AhR). In the current study, we compared the effects of 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) and TCDD on the vascular remodeling of rat placentas. Pregnant rats on gestational day (GD) 15 were randomly assigned into 5 groups, and were exposed to a single dose of 1.6 and 8.0 mg/kg body weight (bw) ITE, 1.6 and 8.0 µg/kg bw TCDD, or an equivalent volume of the vehicle, respectively. The dams were sacrificed on GD20 and the placental tissues were gathered. The intrauterine fetal death was observed only in 8.0 µg/kg bw TCDD-exposed group and no significant difference was seen in either the placental weight or the fetal weight among all these groups. The immunohistochemical and histological analyses revealed that as compared with the vehicle-control, TCDD, but not ITE, suppressed the placental vascular remodeling, including reduced the ratio of the placental labyrinth zone to the basal zone thickness (at least 0.71 fold of control), inhibited the maternal sinusoids dilation and thickened the trophoblastic septa. However, no marked difference was observed in the density of fetal capillaries in the labyrinth zone among these groups, although significant differences were detected in the expression of angiogenic growth factors between ITE and TCDD-exposed groups, especially Angiopoietin-2 (Ang-2), Endoglin, Interferon-γ (IFN-γ) and placenta growth factor (PIGF). These results suggest ITE and TCDD differentially regulate the vascular remodeling of rat placentas, as well as the expression of angiogenic factors and their receptors, which in turn may alter the blood flow in the late gestation and partially resulted in intrauterine fetal death. PMID:24475139

  3. Uncoupling protein 2 deficiency mimics the effects of hypoxia and endoplasmic reticulum stress on mitochondria and triggers pseudohypoxic pulmonary vascular remodeling and pulmonary hypertension.

    PubMed

    Dromparis, Peter; Paulin, Roxane; Sutendra, Gopinath; Qi, Andrew C; Bonnet, Sébastien; Michelakis, Evangelos D

    2013-07-05

    Mitochondrial signaling regulates both the acute and the chronic response of the pulmonary circulation to hypoxia, and suppressed mitochondrial glucose oxidation contributes to the apoptosis-resistance and proliferative diathesis in the vascular remodeling in pulmonary hypertension. Hypoxia directly inhibits glucose oxidation, whereas endoplasmic reticulum (ER)-stress can indirectly inhibit glucose oxidation by decreasing mitochondrial calcium (Ca²⁺m levels). Both hypoxia and ER stress promote proliferative pulmonary vascular remodeling. Uncoupling protein 2 (UCP2) has been shown to conduct calcium from the ER to mitochondria and suppress mitochondrial function. We hypothesized that UCP2 deficiency reduces Ca²⁺m in pulmonary artery smooth muscle cells (PASMCs), mimicking the effects of hypoxia and ER stress on mitochondria in vitro and in vivo, promoting normoxic hypoxia inducible factor-1α activation and pulmonary hypertension. Ucp2 knockout (KO)-PASMCs had lower mitochondrial calcium than Ucp2 wildtype (WT)-PASMCs at baseline and during histamine-stimulated ER-Ca²⁺ release. Normoxic Ucp2KO-PASMCs had mitochondrial hyperpolarization, lower Ca²⁺-sensitive mitochondrial enzyme activity, reduced levels of mitochondrial reactive oxygen species and Krebs' cycle intermediates, and increased resistance to apoptosis, mimicking the hypoxia-induced changes in Ucp2WT-PASMC. Ucp2KO mice spontaneously developed pulmonary vascular remodeling and pulmonary hypertension and exhibited a pseudohypoxic state with pulmonary vascular and systemic hypoxia inducible factor-1α activation (increased hematocrit), not exacerbated further by chronic hypoxia. This first description of the role of UCP2 in oxygen sensing and in pulmonary hypertension vascular remodeling may open a new window in biomarker and therapeutic strategies.

  4. Enzymatic regulation of functional vascular networks using gelatin hydrogels

    PubMed Central

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh

    2015-01-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:25749296

  5. Molecular Mechanisms Regulating the Vascular Prostacyclin Pathways and Their Adaptation during Pregnancy and in the Newborn

    PubMed Central

    Majed, Batoule H.

    2012-01-01

    Prostacyclin (PGI2) is a member of the prostanoid group of eicosanoids that regulate homeostasis, hemostasis, smooth muscle function and inflammation. Prostanoids are derived from arachidonic acid by the sequential actions of phospholipase A2, cyclooxygenase (COX), and specific prostaglandin (PG) synthases. There are two major COX enzymes, COX1 and COX2, that differ in structure, tissue distribution, subcellular localization, and function. COX1 is largely constitutively expressed, whereas COX2 is induced at sites of inflammation and vascular injury. PGI2 is produced by endothelial cells and influences many cardiovascular processes. PGI2 acts mainly on the prostacyclin (IP) receptor, but because of receptor homology, PGI2 analogs such as iloprost may act on other prostanoid receptors with variable affinities. PGI2/IP interaction stimulates G protein-coupled increase in cAMP and protein kinase A, resulting in decreased [Ca2+]i, and could also cause inhibition of Rho kinase, leading to vascular smooth muscle relaxation. In addition, PGI2 intracrine signaling may target nuclear peroxisome proliferator-activated receptors and regulate gene transcription. PGI2 counteracts the vasoconstrictor and platelet aggregation effects of thromboxane A2 (TXA2), and both prostanoids create an important balance in cardiovascular homeostasis. The PGI2/TXA2 balance is particularly critical in the regulation of maternal and fetal vascular function during pregnancy and in the newborn. A decrease in PGI2/TXA2 ratio in the maternal, fetal, and neonatal circulation may contribute to preeclampsia, intrauterine growth restriction, and persistent pulmonary hypertension of the newborn (PPHN), respectively. On the other hand, increased PGI2 activity may contribute to patent ductus arteriosus (PDA) and intraventricular hemorrhage in premature newborns. These observations have raised interest in the use of COX inhibitors and PGI2 analogs in the management of pregnancy-associated and neonatal vascular disorders. The use of aspirin to decrease TXA2 synthesis has shown little benefit in preeclampsia, whereas indomethacin and ibuprofen are used effectively to close PDA in the premature newborn. PGI2 analogs have been used effectively in primary pulmonary hypertension in adults and have shown promise in PPHN. Careful examination of PGI2 metabolism and the complex interplay with other prostanoids will help design specific modulators of the PGI2-dependent pathways for the management of pregnancy-related and neonatal vascular disorders. PMID:22679221

  6. Molecular mechanisms regulating the vascular prostacyclin pathways and their adaptation during pregnancy and in the newborn.

    PubMed

    Majed, Batoule H; Khalil, Raouf A

    2012-07-01

    Prostacyclin (PGI(2)) is a member of the prostanoid group of eicosanoids that regulate homeostasis, hemostasis, smooth muscle function and inflammation. Prostanoids are derived from arachidonic acid by the sequential actions of phospholipase A(2), cyclooxygenase (COX), and specific prostaglandin (PG) synthases. There are two major COX enzymes, COX1 and COX2, that differ in structure, tissue distribution, subcellular localization, and function. COX1 is largely constitutively expressed, whereas COX2 is induced at sites of inflammation and vascular injury. PGI(2) is produced by endothelial cells and influences many cardiovascular processes. PGI(2) acts mainly on the prostacyclin (IP) receptor, but because of receptor homology, PGI(2) analogs such as iloprost may act on other prostanoid receptors with variable affinities. PGI(2)/IP interaction stimulates G protein-coupled increase in cAMP and protein kinase A, resulting in decreased [Ca(2+)](i), and could also cause inhibition of Rho kinase, leading to vascular smooth muscle relaxation. In addition, PGI(2) intracrine signaling may target nuclear peroxisome proliferator-activated receptors and regulate gene transcription. PGI(2) counteracts the vasoconstrictor and platelet aggregation effects of thromboxane A(2) (TXA(2)), and both prostanoids create an important balance in cardiovascular homeostasis. The PGI(2)/TXA(2) balance is particularly critical in the regulation of maternal and fetal vascular function during pregnancy and in the newborn. A decrease in PGI(2)/TXA(2) ratio in the maternal, fetal, and neonatal circulation may contribute to preeclampsia, intrauterine growth restriction, and persistent pulmonary hypertension of the newborn (PPHN), respectively. On the other hand, increased PGI(2) activity may contribute to patent ductus arteriosus (PDA) and intraventricular hemorrhage in premature newborns. These observations have raised interest in the use of COX inhibitors and PGI(2) analogs in the management of pregnancy-associated and neonatal vascular disorders. The use of aspirin to decrease TXA(2) synthesis has shown little benefit in preeclampsia, whereas indomethacin and ibuprofen are used effectively to close PDA in the premature newborn. PGI(2) analogs have been used effectively in primary pulmonary hypertension in adults and have shown promise in PPHN. Careful examination of PGI(2) metabolism and the complex interplay with other prostanoids will help design specific modulators of the PGI(2)-dependent pathways for the management of pregnancy-related and neonatal vascular disorders.

  7. Interaction with caveolin-1 modulates vascular ATP-sensitive potassium (KATP) channel activity

    PubMed Central

    Davies, Lowri M; Purves, Gregor I; Barrett-Jolley, Richard; Dart, Caroline

    2010-01-01

    ATP-sensitive potassium channels (KATP channels) of arterial smooth muscle are important regulators of arterial tone, and hence blood flow, in response to vasoactive transmitters. Recent biochemical and electron microscopic evidence suggests that these channels localise to small vesicular invaginations of the plasma membrane, known as caveolae, and interact with the caveolae-associated protein, caveolin. Here we report that interaction with caveolin functionally regulates the activity of the vascular subtype of KATP channel, Kir6.1/SUR2B. Pinacidil-evoked recombinant whole-cell Kir6.1/SUR2B currents recorded in HEK293 cells stably expressing caveolin-1 (69.6 ± 8.3 pA pF−1, n= 8) were found to be significantly smaller than currents recorded in caveolin-null cells (179.7 ± 35.9 pA pF−1, n= 6; P < 0.05) indicating that interaction with caveolin may inhibit channel activity. Inclusion in the pipette-filling solution of a peptide corresponding to the scaffolding domain of caveolin-1 had a similar inhibitory effect on whole-cell Kir6.1/SUR2B currents as co-expression with full-length caveolin-1, while a scrambled version of the same peptide had no effect. Interestingly, intracellular dialysis of vascular smooth muscle cells with the caveolin-1 scaffolding domain peptide (SDP) also caused inhibition of pinacidil-evoked native whole-cell KATP currents, indicating that a significant proportion of vascular KATP channels are susceptible to block by exogenously applied SDP. In cell-attached recordings of Kir6.1/SUR2B single channel activity, the presence of caveolin-1 significantly reduced channel open probability (from 0.05 ± 0.01 to 0.005 ± 0.001; P < 0.05) and the amount of time spent in a relatively long-lived open state. These changes in kinetic behaviour can be explained by a caveolin-induced shift in the channel's sensitivity to its physiological regulator MgADP. Our findings thus suggest that interaction with caveolin-1 suppresses vascular-type KATP channel activity. Since caveolin expression is regulated by cellular free cholesterol and plasma levels of low-density lipoprotein (LDL), this interaction may have implications in both the physiological and pathophysiological control of vascular function. PMID:20624795

  8. Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1α axis.

    PubMed

    Dang, Rui-Ying; Liu, Feng-Li; Li, Yan

    2017-08-19

    Circular RNAs (circRNAs) are a group of non-protein-coding RNAs generated from back splicing. Emerging evidence has demonstrated its vital regulation on angiogenesis. However, the underlying mechanism responsible for circRNAs effects on vascular endothelial cells is still unclear. In the present study, we screened the expression profiles and investigated the physiological role of circRNAs in hypoxia-induced human umbilical vein endothelial cells (HUVECs). Using circRNA microarray analysis, we identified 36 circRNAs that were significantly dysregulated including 14 down-regulated circRNAs and 22 up-regulated with 2-fold change (P < 0.05). From the over-expressed circRNAs, hsa_circ_0010729 was selected as candidate circRNA and which was validated to be significantly up-regulated using RT-PCR. In loss-of-function experiments of HUVECs, hsa_circ_0010729 knockdown suppressed the proliferation and migration ability and enhanced apoptosis. Bioinformatic prediction and luciferase assay revealed that hsa_circ_0010729 and hypoxia inducible factor 1 alpha (HIF-1α) were targeted by miR-186. Validation experiments verified that hsa_circ_0010729 was co-expressed with HIF-1α, being negatively correlated with miR-186. Moreover, rescue experiments demonstrated that miR-186 inhibitor could reverse the role of hsa_circ_0010729 knockdown on HUVECs progression. Overall, the present study identifies the crucial regulation of hsa_circ_0010729 on vascular endothelial cell proliferation and apoptosis via targeting miR-186/HIF-1α axis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Monolignol radical-radical coupling networks in western red cedar and Arabidopsis and their evolutionary implications

    NASA Technical Reports Server (NTRS)

    Kim, Myoung K.; Jeon, Jae-Heung; Davin, Laurence B.; Lewis, Norman G.

    2002-01-01

    The discovery of a nine-member multigene dirigent family involved in control of monolignol radical-radical coupling in the ancient gymnosperm, western red cedar, suggested that a complex multidimensional network had evolved to regulate such processes in vascular plants. Accordingly, in this study, the corresponding promoter regions for each dirigent multigene member were obtained by genome-walking, with Arabidopsis being subsequently transformed to express each promoter fused to the beta-glucuronidase (GUS) reporter gene. It was found that each component gene of the proposed network is apparently differentially expressed in individual tissues, organs and cells at all stages of plant growth and development. The data so obtained thus further support the hypothesis that a sophisticated monolignol radical-radical coupling network exists in plants which has been highly conserved throughout vascular plant evolution.

  10. Potential of optical microangiography to monitor cerebral blood perfusion and vascular plasticity following traumatic brain injury in mice in vivo

    NASA Astrophysics Data System (ADS)

    Jia, Yali; Alkayed, Nabil; Wang, Ruikang K.

    2009-07-01

    Optical microanglography (OMAG) is a recently developed imaging modality capable of volumetric imaging of dynamic blood perfusion, down to capillary level resolution, with an imaging depth up to 2.00 mm beneath the tissue surface. We report the use of OMAG to monitor the cerebral blood flow (CBF) over the cortex of mouse brain upon traumatic brain injury (TBI), with the cranium left intact, for a period of two weeks on the same animal. We show the ability of OMAG to repeatedly image 3-D cerebral vasculatures during pre- and post-traumatic phases, and to visualize the changes of regulated CBF and the vascular plasticity after TBI. The results indicate the potential of OMAG to explore the mechanism involved in the rehabilitation of TBI.

  11. New Radiotracers for Imaging of Vascular Targets in Angiogenesis-related Diseases

    PubMed Central

    Hong, Hao; Chen, Feng; Zhang, Yin; Cai, Weibo

    2014-01-01

    Tremendous advances over the last several decades in positron emission tomography (PET) and single photon emission computed tomography (SPECT) allow for targeted imaging of molecular and cellular events in the living systems. Angiogenesis, a multistep process regulated by the network of different angiogenic factors, has attracted world-wide interests, due to its pivotal role in the formation and progression of different diseases including cancer, cardiovascular diseases (CVD), and inflammation. In this review article, we will summarize the recent progress in PET or SPECT imaging of a wide variety of vascular targets in three major angiogenesis-related diseases: cancer, cardiovascular diseases, and inflammation. Faster drug development and patient stratification for a specific therapy will become possible with the facilitation of PET or SPECT imaging and it will be critical for the maximum benefit of patients. PMID:25086372

  12. Optical Microangiography Based on Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Reif, Roberto; Wang, Ruikang K.

    Proper homeostasis regulation of in vivo biological systems requires microvascular blood perfusion, which is the process of delivering blood into the tissue's capillary beds. Abnormal tissue vascularization has been associated with various diseases such as cancer, diabetes, neurological disorders, wounds, and inflammation. Understanding the changes in the vascular network or microangiography will have an important role in determining the causes and developing potential treatments for these diseases. Optical coherence tomography (OCT) is a noninvasive method for imaging three-dimensional biological tissues with high resolution (~10 µm) and without requiring the use of contrast agents. In this chapter we review several techniques for using OCT to determine blood flow velocities and the vessel morphology (optical microangiography). Different techniques will be discussed with a brief explanation of their limitations. Also, methods for quantifying these images are presented, as well as the depiction of several applications.

  13. TDZ pulsing evaluation on the in vitro morphogenesis of peach palm.

    PubMed

    Graner, Erika Mendes; Oberschelp, Gustavo Pedro Javier; Brondani, Gilvano Ebling; Batagin-Piotto, Katherine Derlene; de Almeida, Cristina Vieira; de Almeida, Marcílio

    2013-04-01

    Peach palm (Bactris gasipaes Kunth.) cropping is an excellent alternative to native species exploitation; nevertheless, the problems with seed germination and conventional propagation justify the use of in vitro culturing. Aiming to asses TDZ pulsing effect on B. gasipaes morphogenesis, explants obtained from unarmed microplants were maintained in two treatments, half of them in MS free medium (without growth regulator) and the other half in MS with TDZ (0.36 μM). Both groups were transferred to growth regulator-free MS medium following 14 days of culture. After 84 days of culture, TDZ pulsing increased the growth and development of the shoots, restricted the growth and development of the roots, with no influence on adventitious bud induction or somatic embryogenesis. Furthermore, development of prickles, thickening of roots and chlorotic leaves were noted under TDZ pulsing. Leaf sheath histological analysis showed an epidermal origin and no vascularization of these prickles.

  14. Inhibitory Effects of Hydrogen on Proliferation and Migration of Vascular Smooth Muscle Cells via Down-Regulation of Mitogen/Activated Protein Kinase and Ezrin-Radixin-Moesin Signaling Pathways.

    PubMed

    Zhang, Ya-Xing; Xu, Jing-Ting; You, Xin-Chao; Wang, Chen; Zhou, Ke-Wen; Li, Ping; Sun, Peng; Wang, Ling; Wang, Ting-Huai

    2016-02-29

    Molecular hydrogen (H₂) has recently attracted considerable attention for the prevention of oxidative stress-related vascular diseases. The purpose of this study is to evaluate the effects of hydrogen on proliferation and migration of vascular smooth muscle cells (VSMCs) stimulated by angiotensin II (Ang II) in vitro, and on vascular hypertrophy induced by abdominal aortic coarctation (AAC) in vivo. Hydrogen-rich medium (0.6~0.9 ppm) was added 30 min before 10⁻⁷ M Ang II administration, then the proliferation and migration index were determined 24 h after Ang II stimulation. Hydrogen gas (99.999%) was given by intraperitoneal injection at the dose of 1 ml/100 g/day consecutively for one week before AAC and lasted for 6 weeks in vivo. Hydrogen inhibited proliferation and migration of VSMCs with Ang II stimulation in vitro, and improved the vascular hypertrophy induced by AAC in vivo. Treatment with hydrogen reduced Ang II- or AAC-induced oxidative stress, which was reflected by diminishing the induction of reactive oxygen species (ROS) in Ang II-stimulated VSMCs, inhibiting the levels of 3-nitrotyrosine (3-NT) in vascular and serum malondialdehyde (MDA). Hydrogen treatment also blocked Ang II-induced phosphorylation of the extracellular signal-regulated kinase1/2 (ERK1/2), p38 MAPK, c-Jun NH₂-terminal kinase (JNK) and the ezrin/radixin/moesin (ERM) in vitro. Taken together, our studies indicate that hydrogen prevents AAC-induced vascular hypertrophy in vivo, and inhibits Ang II-induced proliferation and migration of VSMCs in vitro possibly by targeting ROS-dependent ERK1/2, p38 MAPK, JNK and ERM signaling. It provides the molecular basis of hydrogen on inhibiting the abnormal proliferation and migration of VSMCs and improving vascular remodeling diseases.

  15. Hypothesis: the regulation of the partial pressure of oxygen by the serotonergic nervous system in hypoxia.

    PubMed

    Devereux, Diana; Ikomi-Kumm, Julie

    2013-03-01

    The regulation of the partial pressure of oxygen by the serotonergic nervous system in hypoxia is a hypothesis, which proposes an inherent operative system in homo sapiens that allows central nervous system and endocrine-mediated vascular system adaption to variables in partial pressure of oxygen, pH and body composition, while maintaining sufficient oxygen saturation for the immune system and ensuring protection of major organs in hypoxic and suboptimal conditions. While acknowledging the importance of the Henderson-Hasselbalch equation in the regulation of acid base balance, the hypothesis seeks to define the specific neuroendocrine/vascular mechanisms at work in regulating acid base balance in hypoxia and infection. The SIA (serotonin-immune-adrenergic) system is proposed as a working model, which allows central nervous system and endocrine-mediated macro- and micro vascular 'fine tuning'. The neurotransmitter serotonin serves as a 'hypoxic sensor' in concert with other operators to orchestrate homeostatic balance in normal and pathological states. The SIA system finely regulates oxygen, fuel and metabolic buffering systems at local sites to ensure optimum conditions for the immune response. The SIA system is fragile and its operation may be affected by infection, stress, diet, environmental toxins and lack of exercise. The hypothesis provides new insight in the area of neuro-gastroenterology, and emphasizes the importance of diet and nutrition as a complement in the treatment of infection, as well as the normalization of intestinal flora following antibiotic therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Regulation of VEGF signaling by membrane traffic.

    PubMed

    Horowitz, Arie; Seerapu, Himabindu Reddy

    2012-09-01

    Recent findings have drawn attention to the role of membrane traffic in the signaling of vascular endothelial growth factor (VEGF). The significance of this development stems from the pivotal function of VEGF in vasculogenesis and angiogenesis. The outline of the regulation of VEGF receptor (VEGFR) signaling by membrane traffic is similar to that of the epidermal growth factor receptor (EGFR), a prototype of the intertwining between membrane traffic and signaling. There are, however, unique features in VEGFR signaling that are conferred in part by the involvement of the co-receptor neuropilin (Nrp). Nrp1 and VEGFR2 are integrated into membrane traffic through the adaptor protein synectin, which recruits myosin VI, a molecular motor that drives inward trafficking [17,21,64]. The recent detection of only mild vascular defects in a knockin mouse model that expresses Nrp1 lacking a cytoplasmic domain [104], questions the co-receptor's role in VEGF signaling and membrane traffic. The regulation of endocytosis by ephrin-B2 is another feature unique to VEGR2/3 [18,19], but it awaits a mechanistic explanation. Current models do not fully explain how membrane traffic bridges between VEGFR and the downstream effectors that produce its functional outcome, such as cell migration. VEGF-A appears to accomplish this task in part by recruiting endocytic vesicles carrying RhoA to internalized active VEGFR2 [58]. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. A systematic expression analysis implicates Plexin-B2 and its ligand Sema4C in the regulation of the vascular and endocrine system.

    PubMed

    Zielonka, Matthias; Xia, Jingjing; Friedel, Roland H; Offermanns, Stefan; Worzfeld, Thomas

    2010-09-10

    Plexins serve as receptors for semaphorins and play important roles in the developing nervous system. Plexin-B2 controls decisive developmental programs in the neural tube and cerebellum. However, whether Plexin-B2 also regulates biological functions in adult nonneuronal tissues is unknown. Here we show by two methodologically independent approaches that Plexin-B2 is expressed in discrete cell types of several nonneuronal tissues in the adult mouse. In the vasculature, Plexin-B2 is selectively expressed in functionally specialized endothelial cells. In endocrine organs, Plexin-B2 localizes to the pancreatic islets of Langerhans and to both cortex and medulla of the adrenal gland. Plexin-B2 expression is also detected in certain types of immune and epithelial cells. In addition, we report on a systematic comparison of the expression patterns of Plexin-B2 and its ligand Sema4C, which show complementarity or overlap in some but not all tissues. Furthermore, we demonstrate that Plexin-B2 and its family member Plexin-B1 display largely nonredundant expression patterns. This work establishes Plexin-B2 and Sema4C as potential regulators of the vascular and endocrine system and provides an anatomical basis to understand the biological functions of this ligand-receptor pair. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Heterogeneity in Kv7 channel function in the cerebral and coronary circulation.

    PubMed

    Lee, Sewon; Yang, Yan; Tanner, Miles A; Li, Min; Hill, Michael A

    2015-02-01

    Kv7 channels are considered important regulators of vascular smooth muscle contractility. The present study aimed to examine the hypotheses that (i) Kv7 channels are present in mouse cerebral and coronary arteries and regulate vascular reactivity and (ii) regional differences exist in the activity of these channels. PCR confirmed that basilar, Circle of Willis and LAD arteries express predominantly Kv7.1 and 7.4. Western blot analysis, however, showed greater Kv7.4 protein levels in the cerebral vessels. Relaxation to the Kv7 channel activator, retigabine (1-50 μM) was significantly greater in the basilar artery compared to the LAD artery. Similarly, the Kv7 channel inhibitor, linopirdine (10 μM) caused a stronger contraction of the basilar artery. Furthermore, pre-incubation with linopirdine reduced forskolin (cAMP activator)-induced vasorelaxation in basilar while not altering forskolin-induced vasorelaxation of the LAD, suggesting that Kv7 channels play a more prominent role in the cerebral than in the coronary circulation. Consistent with the vessel data, whole cell Kv7 currents in cerebral VSMCs were potentiated by retigabine and inhibited by linopirdine, while these responses were blunted in coronary VSMCs. This study provides evidence that mouse Kv7 channels may contribute differently to regulating the functional properties of cerebral and coronary arteries. Such heterogeneity has important implications for developing novel therapeutics for cardiovascular dysfunction. © 2014 John Wiley & Sons Ltd.

  19. Heterogeneity in Kv7 channel function in the Cerebral and Coronary Circulation

    PubMed Central

    Tanner, Miles A.; Li, Min; Hill, Michael A.

    2014-01-01

    Kv7 channels are considered important regulators of vascular smooth muscle contractility. The present study examined the hypotheses that 1. Kv7 channels are present in mouse cerebral and coronary arteries and regulate vascular reactivity, and 2. regional differences exist in the activity of these channels. PCR confirmed that basilar, Circle of Willis and left anterior descending (LAD) arteries express predominantly Kv7.1 and 7.4. Western blot analysis, however, showed greater Kv7.4 protein levels in the cerebral vessels. Relaxation to the Kv7 channel activator, retigabine (1-50μM) was significantly greater in basilar compared to LAD. Similarly, the Kv7 channel inhibitor, linopirdine (10μM) caused stronger contraction of the basilar artery. Furthermore, pre-incubation with linopirdine reduced forskolin (cAMP activator)-induced vasorelaxation in basilar while not altering forskolin-induced vasorelaxation of the LAD, suggesting that Kv7 channels play a more prominent role in the cerebral than coronary circulation. Consistent with the vessel data, whole cell Kv7 currents in cerebral VSMCs were potentiated by retigabine and inhibited by linopirdine, while these responses were blunted in coronary VSMCs. This study provides evidence that mouse Kv7 channels may contribute differently to regulating the functional properties of cerebral and coronary arteries. Such heterogeneity has important implications for developing novel therapeutics for cardiovascular dysfunction. PMID:25476662

  20. The vascular permeabilizing factors histamine and serotonin induce angiogenesis through TR3/Nur77 and subsequently truncate it through thrombospondin-1

    PubMed Central

    Qin, Liuliang; Zhao, Dezheng; Xu, Jianfeng; Ren, Xianghui; Terwilliger, Ernest F.; Parangi, Sareh; Lawler, Jack; Dvorak, Harold F.

    2013-01-01

    Angiogenesis plays an important role in cancer and in many other human diseases. Vascular endothelial growth factor-A (VEGF-A), the best known angiogenic factor, was originally discovered as a potent vascular permeability factor (VPF), suggesting that other vascular permeabilizing agents, such as histamine and serotonin, might also have angiogenic activity. We recently demonstrated that, like VEGF-A, histamine and serotonin up-regulate the orphan nuclear receptor and transcription factor TR3 (mouse homolog Nur77) and that TR3/Nur77 is essential for their vascular permeabilizing activities. We now report that histamine and serotonin are also angiogenic factors that, at low micromolar concentrations, induce endothelial cell proliferation, migration and tube formation in vitro, and angiogenesis in vivo. All of these responses are mediated through specific histamine and serotonin receptors, are independent of VEGF-A, and are directly dependent on TR3/Nur77. Initially, the angiogenic response closely resembled that induced by VEGF-A, with generation of “mother” vessels. However, after ∼10 days, mother vessels began to regress as histamine and serotonin, unlike VEGF-A, up-regulated the potent angiogenesis inhibitor thrombospondin-1, thereby triggering a negative feedback loop. Thus, histamine and serotonin induce an angiogenic response that fits the time scale of acute inflammation. PMID:23315169

  1. Magnesium Counteracts Vascular Calcification: Passive Interference or Active Modulation?

    PubMed

    Ter Braake, Anique D; Shanahan, Catherine M; de Baaij, Jeroen H F

    2017-08-01

    Over the last decade, an increasing number of studies report a close relationship between serum magnesium concentration and cardiovascular disease risk in the general population. In end-stage renal disease, an association was found between serum magnesium and survival. Hypomagnesemia was identified as a strong predictor for cardiovascular disease in these patients. A substantial body of in vitro and in vivo studies has identified a protective role for magnesium in vascular calcification. However, the precise mechanisms and its contribution to cardiovascular protection remain unclear. There are currently 2 leading hypotheses: first, magnesium may bind phosphate and delay calcium phosphate crystal growth in the circulation, thereby passively interfering with calcium phosphate deposition in the vessel wall. Second, magnesium may regulate vascular smooth muscle cell transdifferentiation toward an osteogenic phenotype by active cellular modulation of factors associated with calcification. Here, the data supporting these major hypotheses are reviewed. The literature supports both a passive inorganic phosphate-buffering role reducing hydroxyapatite formation and an active cell-mediated role, directly targeting vascular smooth muscle transdifferentiation. However, current evidence relies on basic experimental designs that are often insufficient to delineate the underlying mechanisms. The field requires more advanced experimental design, including determination of intracellular magnesium concentrations and the identification of the molecular players that regulate magnesium concentrations in vascular smooth muscle cells. © 2017 American Heart Association, Inc.

  2. Differential Regulation of NOTCH2 and NOTCH3 Contribute to Their Unique Functions in Vascular Smooth Muscle Cells*

    PubMed Central

    Baeten, Jeremy T.; Lilly, Brenda

    2015-01-01

    Notch signaling is a key regulator of vascular smooth muscle cell (VSMC) phenotypes, including differentiation, proliferation, and cell survival. However, the exact contribution of the individual Notch receptors has not been thoroughly delineated. In this study, we identify unique roles for NOTCH2 and NOTCH3 in regulating proliferation and cell survival in cultured VSMCs. Our results indicate that NOTCH2 inhibits PDGF-B-dependent proliferation and its expression is decreased by PDGF-B. In contrast, NOTCH3 promotes proliferation and receptor expression is increased by PDGF-B. Additionally, data show that NOTCH3, but not NOTCH2 protects VSMCs from apoptosis and apoptosis mediators degrade NOTCH3 protein. We identified three pro-survival genes specifically regulated by NOTCH3 in cultured VSMCs and in mouse aortas. This regulation is mediated through MAP kinase signaling, which we demonstrate can be activated by NOTCH3, but not NOTCH2. Overall, this study highlights discrete roles for NOTCH2 and NOTCH3 in VSMCs and connects these roles to specific upstream regulators that control their expression. PMID:25957400

  3. Expression of the Growth Factor Progranulin in Endothelial Cells Influences Growth and Development of Blood Vessels: A Novel Mouse Model

    PubMed Central

    Toh, Huishi; Cao, Mingju; Daniels, Eugene; Bateman, Andrew

    2013-01-01

    Progranulin is a secreted glycoprotein that regulates cell proliferation, migration and survival. It has roles in development, tumorigenesis, wound healing, neurodegeneration and inflammation. Endothelia in tumors, wounds and placenta express elevated levels of progranulin. In culture, progranulin activates endothelial proliferation and migration. This suggested that progranulin might regulate angiogenesis. It was, however, unclear how elevated endothelial progranulin levels influence vascular growth in vivo. To address this issue, we generated mice with progranulin expression targeted specifically to developing endothelial cells using a Tie2–promoter/enhancer construct. Three Tie2-Grn mouse lines were generated with varying Tie2-Grn copy number, and were called GrnLo, GrnMid, and GrnHi. All three lines showed increased mortality that correlates with Tie2-Grn copy number, with greatest mortality and lowest germline transmission in the GrnHi line. Death of the transgenic animals occurred around birth, and continued for three days after birth. Those that survived beyond day 3 survived into adulthood. Transgenic neonates that died showed vascular abnormalities of varying severity. Some exhibited bleeding into body cavities such as the pericardial space. Smaller localized hemorrhages were seen in many organs. Blood vessels were often dilated and thin-walled. To establish the development of these abnormalities, we examined mice at early (E10.5–14.5) and later (E15.5–17.5) developmental phases. Early events during vasculogenesis appear unaffected by Tie2-Grn as apparently normal primary vasculature had been established at E10.5. The earliest onset of vascular abnormality was at E15.5, with focal cerebral hemorrhage and enlarged vessels in various organs. Aberrant Tie2-Grn positive vessels showed thinning of the basement membrane and reduced investiture with mural cells. We conclude that progranulin promotes exaggerated vessel growth in vivo, with subsequent effects in the formation of the mural cell layer and weakening of vessel integrity. These results demonstrate that overexpression of progranulin in endothelial cells influences normal angiogenesis in vivo. PMID:23741441

  4. Expression of the growth factor progranulin in endothelial cells influences growth and development of blood vessels: a novel mouse model.

    PubMed

    Toh, Huishi; Cao, Mingju; Daniels, Eugene; Bateman, Andrew

    2013-01-01

    Progranulin is a secreted glycoprotein that regulates cell proliferation, migration and survival. It has roles in development, tumorigenesis, wound healing, neurodegeneration and inflammation. Endothelia in tumors, wounds and placenta express elevated levels of progranulin. In culture, progranulin activates endothelial proliferation and migration. This suggested that progranulin might regulate angiogenesis. It was, however, unclear how elevated endothelial progranulin levels influence vascular growth in vivo. To address this issue, we generated mice with progranulin expression targeted specifically to developing endothelial cells using a Tie2-promoter/enhancer construct. Three Tie2-Grn mouse lines were generated with varying Tie2-Grn copy number, and were called GrnLo, GrnMid, and GrnHi. All three lines showed increased mortality that correlates with Tie2-Grn copy number, with greatest mortality and lowest germline transmission in the GrnHi line. Death of the transgenic animals occurred around birth, and continued for three days after birth. Those that survived beyond day 3 survived into adulthood. Transgenic neonates that died showed vascular abnormalities of varying severity. Some exhibited bleeding into body cavities such as the pericardial space. Smaller localized hemorrhages were seen in many organs. Blood vessels were often dilated and thin-walled. To establish the development of these abnormalities, we examined mice at early (E10.5-14.5) and later (E15.5-17.5) developmental phases. Early events during vasculogenesis appear unaffected by Tie2-Grn as apparently normal primary vasculature had been established at E10.5. The earliest onset of vascular abnormality was at E15.5, with focal cerebral hemorrhage and enlarged vessels in various organs. Aberrant Tie2-Grn positive vessels showed thinning of the basement membrane and reduced investiture with mural cells. We conclude that progranulin promotes exaggerated vessel growth in vivo, with subsequent effects in the formation of the mural cell layer and weakening of vessel integrity. These results demonstrate that overexpression of progranulin in endothelial cells influences normal angiogenesis in vivo.

  5. Selective Expression of an Endogenous Inhibitor of FAK Regulates Proliferation and Migration of Vascular Smooth Muscle Cells

    PubMed Central

    Taylor, Joan M.; Mack, Christopher P.; Nolan, Kate; Regan, Christopher P.; Owens, Gary K.; Parsons, J. Thomas

    2001-01-01

    Extracellular matrix signaling via integrin receptors is important for smooth muscle cell (SMC) differentiation during vasculogenesis and for phenotypic modulation of SMCs during atherosclerosis. We previously reported that the noncatalytic carboxyl-terminal protein binding domain of focal adhesion kinase (FAK) is expressed as a separate protein termed FAK-related nonkinase (FRNK) and that ectopic expression of FRNK can attenuate FAK activity and integrin-dependent signaling (A. Richardson and J. T. Parsons, Nature 380:538–540, 1996). Herein we report that in contrast to FAK, which is expressed ubiquitously, FRNK is expressed selectively in SMCs, with particularly high levels observed in conduit blood vessels. FRNK expression was low during embryonic development, was significantly upregulated in the postnatal period, and returned to low but detectable levels in adult tissues. FRNK expression was also dramatically upregulated following balloon-induced carotid artery injury. In cultured rat aortic smooth muscle cells, overexpression of FRNK attenuated platelet-derived growth factor (PDGF)-BB-induced migration and also dramatically inhibited [3H]thymidine incorporation upon stimulation with PDGF-BB or 10% serum. These effects were concomitant with a reduction in SMC proliferation. Taken together, these data indicate that FRNK acts as an endogenous inhibitor of FAK signaling in SMCs. Furthermore, increased FRNK expression following vascular injury or during development may alter the SMC phenotype by negatively regulating proliferative and migratory signals. PMID:11238893

  6. GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana.

    PubMed

    Sawa, Mariko; Kay, Steve A

    2011-07-12

    Plants perceive environmental signals such as day length and temperature to determine optimal timing for the transition from vegetative to floral stages. Arabidopsis flowers under long-day conditions through the CONSTANS (CO)-FLOWERING LOCUS T (FT) regulatory module. It is thought that the environmental cues for photoperiodic control of flowering are initially perceived in the leaves. We have previously shown that GIGANTEA (GI) regulates the timing of CO expression, together with FLAVIN-BINDING, KELCH REPEAT, F BOX protein 1. Normally, CO and FT are expressed exclusively in vascular bundles, whereas GI is expressed in various tissues. To better elucidate the role of tissue-specific expression of GI in the flowering pathway, we established transgenic lines in which GI is expressed exclusively in mesophyll, vascular bundles, epidermis, shoot apical meristem, or root. We found that GI expressed in either mesophyll or vascular bundles rescues the late-flowering phenotype of the gi-2 loss-of-function mutant under both short-day and long-day conditions. Interestingly, GI expressed in mesophyll or vascular tissues increases FT expression without up-regulating CO expression under short-day conditions. Furthermore, we examined the interaction between GI and FT repressors in mesophyll. We found that GI can bind to three FT repressors: SHORT VEGETATIVE PHASE (SVP), TEMPRANILLO (TEM)1, and TEM2. Finally, our chromatin immunoprecipitation experiments showed that GI binds to FT promoter regions that are near the SVP binding sites. Taken together, our data further elucidate the multiple roles of GI in the regulation of flowering time.

  7. Interaction of Vascular Smooth Muscle Cells Under Low Shear Stress

    NASA Technical Reports Server (NTRS)

    Seidel, Charles L.

    1998-01-01

    The blood vessel wall consists of three cellular layers, an outer adventitial, a middle medial and an inner intimal layer. When the blood vessel forms in the embryo it begins as a tube composed of a single cell type called endothelial cells. Over time, other cells are recruited from the surrounding tissue to form additional layers on the outer surface of the endothelial tube. The cells that are recruited are called mesenchymal cells. Mesenchymal cells are responsible for the production of connective tissue that holds the blood vessel together and for developing into vascular smooth muscle cells that are responsible for regulating the diameter of the vessel (1) and therefore, blood flow. In a fully developed blood vessel, the endothelial cells make- up the majority of cells in the intimal layer while the mesenchymal cells make-up the majority of cells in the medial and adventitial layers. Within the medial layer of a mature vessel, cells are organized into multiple circular layers of alternating bands of connective tissue and cells. The cell layer is composed of a mixture of mesenchymal cells that have not developed into smooth muscle cells and fully developed smooth muscle cells (2). The assembly and organization of complex tissues is directed in part by a signaling system composed of proteins on the cell surface called adhesion molecules. Adhesion molecules enable cells to recognize each other as well as the composition of the connective tissue in which they reside (3). It was hypothesized that the different cell types that compose the vascular wall possess different adhesion molecules that enable them to recognize each other and through this recognition system, form the complex layered organization of the vascular wall. In other words, the layered organization is an intrinsic property of the cells. If this hypothesis is correct then the different cells that make up the vessel wall, when mixed together, should organize themselves into a layered structure resembling an intact blood vessel. Experiments described below were designed to test this hypothesis.

  8. Is Vasomotion in Cerebral Arteries Impaired in Alzheimer’s Disease?

    PubMed Central

    Di Marco, Luigi Yuri; Farkas, Eszter; Martin, Chris; Venneri, Annalena; Frangi, Alejandro F.

    2015-01-01

    Abstract A substantial body of evidence supports the hypothesis of a vascular component in the pathogenesis of Alzheimer’s disease (AD). Cerebral hypoperfusion and blood-brain barrier dysfunction have been indicated as key elements of this pathway. Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder, frequent in AD, characterized by the accumulation of amyloid-β (Aβ) peptide in cerebral blood vessel walls. CAA is associated with loss of vascular integrity, resulting in impaired regulation of cerebral circulation, and increased susceptibility to cerebral ischemia, microhemorrhages, and white matter damage. Vasomotion— the spontaneous rhythmic modulation of arterial diameter, typically observed in arteries/arterioles in various vascular beds including the brain— is thought to participate in tissue perfusion and oxygen delivery regulation. Vasomotion is impaired in adverse conditions such as hypoperfusion and hypoxia. The perivascular and glymphatic pathways of Aβ clearance are thought to be driven by the systolic pulse. Vasomotion produces diameter changes of comparable amplitude, however at lower rates, and could contribute to these mechanisms of Aβ clearance. In spite of potential clinical interest, studies addressing cerebral vasomotion in the context of AD/CAA are limited. This study reviews the current literature on vasomotion, and hypothesizes potential paths implicating impaired cerebral vasomotion in AD/CAA. Aβ and oxidative stress cause vascular tone dysregulation through direct effects on vascular cells, and indirect effects mediated by impaired neurovascular coupling. Vascular tone dysregulation is further aggravated by cholinergic deficit and results in depressed cerebrovascular reactivity and (possibly) impaired vasomotion, aggravating regional hypoperfusion and promoting further Aβ and oxidative stress accumulation. PMID:25720414

  9. Expression of the KNOTTED HOMEOBOX Genes in the Cactaceae Cambial Zone Suggests Their Involvement in Wood Development.

    PubMed

    Reyes-Rivera, Jorge; Rodríguez-Alonso, Gustavo; Petrone, Emilio; Vasco, Alejandra; Vergara-Silva, Francisco; Shishkova, Svetlana; Terrazas, Teresa

    2017-01-01

    The vascular cambium is a lateral meristem that produces secondary xylem (i.e., wood) and phloem. Different Cactaceae species develop different types of secondary xylem; however, little is known about the mechanisms underlying wood formation in the Cactaceae. The KNOTTED HOMEOBOX (KNOX) gene family encodes transcription factors that regulate plant development. The role of class I KNOX genes in the regulation of the shoot apical meristem, inflorescence architecture, and secondary growth is established in a few model species, while the functions of class II KNOX genes are less well understood, although the Arabidopsis thaliana class II KNOX protein KNAT7 is known to regulate secondary cell wall biosynthesis. To explore the involvement of the KNOX genes in the enormous variability of wood in Cactaceae, we identified orthologous genes expressed in species with fibrous ( Pereskia lychnidiflora and Pilosocereus alensis ), non-fibrous ( Ariocarpus retusus ), and dimorphic ( Ferocactus pilosus ) wood. Both class I and class II KNOX genes were expressed in the cactus cambial zone, including one or two class I paralogs of KNAT1 , as well as one or two class II paralogs of KNAT3 - KNAT4 - KNAT5 . While the KNOX gene SHOOTMERISTEMLESS ( STM) and its ortholog ARK1 are expressed during secondary growth in the Arabidopsis and Populus stem, respectively, we did not find STM orthologs in the Cactaceae cambial zone, which suggests possible differences in the vascular cambium genetic regulatory network in these species. Importantly, while two class II KNOX paralogs from the KNAT7 clade were expressed in the cambial zone of A. retusus and F. pilosus , we did not detect KNAT7 ortholog expression in the cambial zone of P. lychnidiflora . Differences in the transcriptional repressor activity of secondary cell wall biosynthesis by the KNAT7 orthologs could therefore explain the differences in wood development in the cactus species.

  10. Expression of the KNOTTED HOMEOBOX Genes in the Cactaceae Cambial Zone Suggests Their Involvement in Wood Development

    PubMed Central

    Reyes-Rivera, Jorge; Rodríguez-Alonso, Gustavo; Petrone, Emilio; Vasco, Alejandra; Vergara-Silva, Francisco; Shishkova, Svetlana; Terrazas, Teresa

    2017-01-01

    The vascular cambium is a lateral meristem that produces secondary xylem (i.e., wood) and phloem. Different Cactaceae species develop different types of secondary xylem; however, little is known about the mechanisms underlying wood formation in the Cactaceae. The KNOTTED HOMEOBOX (KNOX) gene family encodes transcription factors that regulate plant development. The role of class I KNOX genes in the regulation of the shoot apical meristem, inflorescence architecture, and secondary growth is established in a few model species, while the functions of class II KNOX genes are less well understood, although the Arabidopsis thaliana class II KNOX protein KNAT7 is known to regulate secondary cell wall biosynthesis. To explore the involvement of the KNOX genes in the enormous variability of wood in Cactaceae, we identified orthologous genes expressed in species with fibrous (Pereskia lychnidiflora and Pilosocereus alensis), non-fibrous (Ariocarpus retusus), and dimorphic (Ferocactus pilosus) wood. Both class I and class II KNOX genes were expressed in the cactus cambial zone, including one or two class I paralogs of KNAT1, as well as one or two class II paralogs of KNAT3-KNAT4-KNAT5. While the KNOX gene SHOOTMERISTEMLESS (STM) and its ortholog ARK1 are expressed during secondary growth in the Arabidopsis and Populus stem, respectively, we did not find STM orthologs in the Cactaceae cambial zone, which suggests possible differences in the vascular cambium genetic regulatory network in these species. Importantly, while two class II KNOX paralogs from the KNAT7 clade were expressed in the cambial zone of A. retusus and F. pilosus, we did not detect KNAT7 ortholog expression in the cambial zone of P. lychnidiflora. Differences in the transcriptional repressor activity of secondary cell wall biosynthesis by the KNAT7 orthologs could therefore explain the differences in wood development in the cactus species. PMID:28316604

  11. Simulated hypogravity impairs the angiogenic response of endothelium by up-regulating apoptotic signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morbidelli, Lucia; Monici, Monica; Marziliano, Nicola

    Health hazards in astronauts are represented by cardiovascular problems and impaired bone healing. These disturbances are characterized by a common event, the loss of function by vascular endothelium, leading to impaired angiogenesis. We investigated whether the exposure of cultured endothelial cells to hypogravity condition could affect their behaviour in terms of functional activity, biochemical responses, morphology, and gene expression. Simulated hypogravity conditions for 72 h produced a reduction of cell number. Genomic analysis of endothelial cells exposed to hypogravity revealed that proapoptotic signals increased, while antiapoptotic and proliferation/survival genes were down-regulated by modelled low gravity. Activation of apoptosis was accompaniedmore » by morphological changes with mitochondrial disassembly and organelles/cytoplasmic NAD(P)H redistribution, as evidenced by autofluorescence analysis. In this condition cells were not able to respond to angiogenic stimuli in terms of migration and proliferation. Our study documents functional, morphological, and transcription alterations in vascular endothelium exposed to simulated low gravity conditions, thus providing insights on the occurrence of vascular tissue dysregulation in crewmen during prolonged space flights. Moreover, the alteration of vascular endothelium can intervene as a concause in other systemic effects, like bone remodelling, observed in weightlessness.« less

  12. Vascular retraction driven by matrix softening

    NASA Astrophysics Data System (ADS)

    Valentine, Megan

    We recently discovered we can directly apply physical forces and monitor the downstream responses in a living organism in real time through manipulation of the blood vessels of a marine organism called, Botryllus schlosseri. The extracellular matrix (ECM) plays a key role in regulating vascular growth and homeostasis in Botryllus,a basal chordate which has a large, transparent extracorporeal vascular network that can encompass areas >100 cm2. We have determined that lysyl oxidase 1 (LOX1), which is responsible for cross-linking collagen, is expressed in all vascular cells and is critically important for vascular maintenance. Inhibition of LOX1 activity in vivo by the addition of a specific inhibitor, ß-aminopropionitrile (BAPN), caused a rapid, global regression of the entire vascular bed, with some vessels regressing >10 mm within 16 hrs. In this talk, I will discuss the molecular and cellular origins of this systemic remodeling event, which hinges upon the ability of the vascular cells to sense and respond to mechanical signals, while introducing this exciting new model system for studies of biological physics and mechanobiology. Collaborators: Anthony DeTomaso, Delany Rodriguez, Aimal Khankhel (UCSB).

  13. Analysis of homeobox gene action may reveal novel angiogenic pathways in normal placental vasculature and in clinical pregnancy disorders associated with abnormal placental angiogenesis.

    PubMed Central

    Murthi, Padma; Abumaree, Mohamed; Kalionis, Bill

    2014-01-01

    Homeobox genes are essential for both the development of the blood and lymphatic vascular systems, as well as for their maintenance in the adult. Homeobox genes comprise an important family of transcription factors, which are characterized by a well conserved DNA binding motif; the homeodomain. The specificity of the homeodomain allows the transcription factor to bind to the promoter regions of batteries of target genes and thereby regulates their expression. Target genes identified for homeodomain proteins have been shown to control fundamental cell processes such as proliferation, differentiation, and apoptosis. We and others have reported that homeobox genes are expressed in the placental vasculature, but our knowledge of their downstream target genes is limited. This review highlights the importance of studying the cellular and molecular mechanisms by which homeobox genes and their downstream targets may regulate important vascular cellular processes such as proliferation, migration, and endothelial tube formation, which are essential for placental vasculogenesis and angiogenesis. A better understanding of the molecular targets of homeobox genes may lead to new therapies for aberrant angiogenesis associated with clinically important pregnancy pathologies, including fetal growth restriction and preeclampsia. PMID:24926269

  14. Neuropilin-1 modulates TGFβ signaling to drive glioblastoma growth and recurrence after anti-angiogenic therapy

    PubMed Central

    Kwiatkowski, Sam C.; Guerrero, Paola A.; Hirota, Shinya; Chen, Zhihua; Morales, John E.; Aghi, Manish

    2017-01-01

    Glioblastoma (GBM) is a rapidly progressive brain cancer that exploits the neural microenvironment, and particularly blood vessels, for selective growth and survival. Anti-angiogenic agents such as the vascular endothelial growth factor-A (VEGF-A) blocking antibody bevacizumab yield short-term benefits to patients due to blood vessel regression and stabilization of vascular permeability. However, tumor recurrence is common, and this is associated with acquired resistance to bevacizumab. The mechanisms that drive acquired resistance and tumor recurrence in response to anti-angiogenic therapy remain largely unknown. Here, we report that Neuropilin-1 (Nrp1) regulates GBM growth and invasion by balancing tumor cell responses to VEGF-A and transforming growth factor βs (TGFβs). Nrp1 is expressed in GBM cells where it promotes TGFβ receptor internalization and signaling via Smad transcription factors. GBM that recur after bevacizumab treatment show down-regulation of Nrp1 expression, indicating that altering the balance between VEGF-A and TGFβ signaling is one mechanism that promotes resistance to anti-angiogenic agents. Collectively, these data reveal that Nrp1 plays a critical role in balancing responsiveness to VEGF-A versus TGFβ to regulate GBM growth, progression, and recurrence after anti-vascular therapy. PMID:28938007

  15. Circadian changes in uterine artery and ovarian stromal blood flow after pituitary down-regulation.

    PubMed

    Chan, Carina C W; Ng, Ernest H Y; Tang, Oi-Shan; Ho, Pak-Chung

    2005-09-01

    To investigate changes in the uterine artery and ovarian stromal blood flow in relation to the time of the day after pituitary down-regulation during in vitro fertilization treatment. Thirteen women were recruited. The uterine artery blood flow was studied using pulsed color Doppler ultrasonography and the ovarian stromal blood flow was measured using three-dimensional power Doppler ultrasonography. Ultrasound scan examinations and blood pressure measurements were performed in the morning and evening. The diastolic and the mean arterial pressures were significantly higher in the evening. An increase in the uterine artery pulsatility index and resistance index in the evening was observed. The ovarian vascularization index, vascularization flow index, and right ovarian flow index were significantly lower in the evening. Despite the small sample size, we have demonstrated the presence of a diurnal change in uterine artery and ovarian stromal blood flow after pituitary down-regulation. Such changes may be related to the systemic change in the sympathetic system and hence vascular resistance. Future study regarding ovarian stromal blood flow should take into account the effect of the time of the day on the readings in order to avoid misleading interpretation of data.

  16. Regulation and function of endothelial glycocalyx layer in vascular diseases.

    PubMed

    Sieve, Irina; Münster-Kühnel, Anja K; Hilfiker-Kleiner, Denise

    2018-01-01

    In the vascular system, the endothelial surface layer (ESL) as the inner surface of blood vessels affects mechanotransduction, vascular permeability, rheology, thrombogenesis, and leukocyte adhesion. It creates barriers between endothelial cells and blood and neighbouring cells. The glycocalyx, composed of glycoconjugates and proteoglycans, is an integral component of the ESL and a key element in inter- and intracellular communication and tissue homeostasis. In pathophysiological conditions (atherosclerosis, infection, ischemia/reperfusion injury, diabetes, trauma and acute lung injury) glycocalyx-degrading factors, i.e. reactive oxygen and nitrogen species, matrix metalloproteinases, heparanase and sialidases, damage the ESL, thereby impairing endothelial functions. This leads to increased capillary permeability, leucocyte-endothelium interactions, thrombosis and vascular inflammation, the latter further driving glycocalyx destruction. The present review highlights current knowledge on the vasculoprotective role of the ESL, with specific emphasis on its remodelling in inflammatory vascular diseases and discusses its potential as a novel therapeutic target to treat vascular pathologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Lipid-Polymer Nanoparticles Encapsulating Curcumin for Modulating the Vascular Deposition of Breast Cancer Cells

    PubMed Central

    Palange, Anna L.; Di Mascolo, Daniele; Carallo, Claudio; Gnasso, Agostino; Decuzzi, Paolo

    2014-01-01

    Vascular adhesion and endothelial transmigration are critical steps in the establishment of distant metastasis by circulating tumor cells (CTCs). Also, vascular inflammation plays a pivotal role in steering CTCs out of the blood stream. Here, long circulating lipid-polymer nanoparticles encapsulating curcumin (NANOCurc) are proposed for modulating the vascular deposition of CTCs. Upon treatment with NANOCurc, the adhesion propensity of highly metastatic breast cancer cells (MDA-MB-231) onto TNF-α stimulated endothelial cells (HUVECs) reduces by ~ 70%, in a capillary flow. Remarkably, the CTC vascular deposition already reduces up to ~ 50% by treating solely the inflamed HUVECs. The CTC arrest is mediated by the interaction between ICAM-1 on HUVECs and MUC-1 on cancer cells, and moderate doses of curcumin down-regulate the expression of both molecules. This suggests that NANOCurc could prevent metastasis and limit the progression of the disease by modulating vascular inflammation and impairing the CTC arrest. PMID:24566270

  18. Prostacyclin induction by high-density lipoprotein (HDL) in vascular smooth muscle cells depends on sphingosine 1-phosphate receptors: effect of simvastatin.

    PubMed

    González-Díez, María; Rodríguez, Cristina; Badimon, Lina; Martínez-González, José

    2008-07-01

    Prostacyclin (PGI2) is an important regulator of vascular homeostasis. Our goal was to analyze the role of sphingosine 1-phosphate (S1P) and its receptors in the up-regulation of cyclooxygenase-2 (Cox-2) induced by HDL in human vascular smooth muscle cells (VSMC). S1P induces Cox-2 expression in a time-and dose-dependent manner at concentrations (0.02-1 microM) compatible with those present in physiological HDL levels. The effect was mimicked by dihydro-S1P (DhS1P), a S1P derivative that only acts through cell surface S1P receptors. Desensitization of S1P receptors with S1P (or DhS1P) abolished HDL-induced Cox-2 up-regulation and PGI2 release. Inhibition of S1P receptors by suramin (inhibitor of S1P3), JTE013 (inhibitor of S1P2) or VPC23019 (inhibitor of S1P1 and S1P3) reduced the up-regulation of Cox-2 induced by HDL and S1P. The combination of suramin and JTE013 increased the inhibitory effect compared to that observed in cells treated with each inhibitor alone. siRNA against S1P2 or S1P3 significantly reduced the ability of HDL and S1P to up-regulate Cox-2. Simvastatin induced over-expression of S1P3 and potentiated the induction of Cox-2 expression produced by HDL (or S1P). Finally, suramin, JTE013 and VPC23019 inhibited p38 MAPK and ERK1/2 signaling pathways activated by HDL (or S1P) and the downstream activation of CREB, a key transcription factor involved in Cox-2 transcriptional up-regulation. These results indicate that S1P receptors, in particular S1P2 and S1P3, are involved in the Cox-2-dependent effects of HDL on vascular cells. Strategies aimed to therapeutically modulate S1P or S1P receptors could be useful to improve cardiovascular protection.

  19. Regulation of Cellular Redox Signaling by Matricellular Proteins in Vascular Biology, Immunology, and Cancer

    PubMed Central

    Kaur, Sukhbir

    2017-01-01

    Abstract Significance: In contrast to structural elements of the extracellular matrix, matricellular proteins appear transiently during development and injury responses, but their sustained expression can contribute to chronic disease. Through interactions with other matrix components and specific cell surface receptors, matricellular proteins regulate multiple signaling pathways, including those mediated by reactive oxygen and nitrogen species and H2S. Dysregulation of matricellular proteins contributes to the pathogenesis of vascular diseases and cancer. Defining the molecular mechanisms and receptors involved is revealing new therapeutic opportunities. Recent Advances: Thrombospondin-1 (TSP1) regulates NO, H2S, and superoxide production and signaling in several cell types. The TSP1 receptor CD47 plays a central role in inhibition of NO signaling, but other TSP1 receptors also modulate redox signaling. The matricellular protein CCN1 engages some of the same receptors to regulate redox signaling, and ADAMTS1 regulates NO signaling in Marfan syndrome. In addition to mediating matricellular protein signaling, redox signaling is emerging as an important pathway that controls the expression of several matricellular proteins. Critical Issues: Redox signaling remains unexplored for many matricellular proteins. Their interactions with multiple cellular receptors remains an obstacle to defining signaling mechanisms, but improved transgenic models could overcome this barrier. Future Directions: Therapeutics targeting the TSP1 receptor CD47 may have beneficial effects for treating cardiovascular disease and cancer and have recently entered clinical trials. Biomarkers are needed to assess their effects on redox signaling in patients and to evaluate how these contribute to their therapeutic efficacy and potential side effects. Antioxid. Redox Signal. 27, 874–911. PMID:28712304

  20. Using NASA's GeneLab for VESGEN Systems Analysis of Vascular Phenotypes from Stress and Other Signaling Pathways

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, P.; Weitzel, Alexander; Vyas, R. J.; Murray, M. C.; Vickerman, M. B.; Bhattacharya, S.; Wyatt, S. E.

    2016-01-01

    One fundamental requirement shared by humans with all higher terrestrial life forms, including other vertebrates, insects, and higher land plants, is a complex, fractally branching vascular system. NASA's VESsel GENeration Analysis (VESGEN) software maps and quantifies vascular trees, networks, and tree-network composites according to weighted physiological rules such as vessel connectivity, tapering and bifurcational branching. According to fluid dynamics, successful vascular transport requires a complex distributed system of highly regulated laminar flow. Microvascular branching rules within vertebrates, dicot leaves and the other organisms therefore display many similarities. A unifying perspective is that vascular patterning offers a useful readout of molecular signaling that necessarily integrates these complex pathways. VESGEN has elucidated changes in vascular pattern resulting from inflammatory, developmental and other signaling within numerous tissues and major model organisms studied for Space Biology. For a new VESGEN systems approach, we analyzed differential gene expression in leaves of Arabidopsis thaliana reported by GeneLab (GLDS-7) for spaceflight. Vascularrelated changes in leaf gene expression were identified that can potentially be phenocopied by mutants in ground-based experiments. To link transcriptional, protein and other molecular change with phenotype, alterations in the spatial and dynamic dimensions of vascular patterns for Arabidopsis leaves and other model species are being co-localized with signaling patterns of single molecular expression analyzed as information dimensions. Previously, Drosophila microarray data returned from space suggested significant changes in genes related to wing venation development that include EGF, Notch, Hedghog, Wingless and Dpp signaling. Phenotypes of increasingly abnormal ectopic wing venation in the (non-spaceflight) Drosophila wing generated by overexpression of a Notch antagonist were analyzed by VESGEN. Other VESGEN research applications include the mouse retina, GI and coronary vessels, avian placental analogs and translational studies in the astronaut retina related to health challenges for long-duration missions.

Top