Science.gov

Sample records for regulated insulin secretion

  1. Insulin reciprocally regulates glucagon secretion in humans.

    PubMed

    Cooperberg, Benjamin A; Cryer, Philip E

    2010-11-01

    We tested the hypothesis that an increase in insulin per se, i.e., in the absence of zinc, suppresses glucagon secretion during euglycemia and that a decrease in insulin per se stimulates glucagon secretion during hypoglycemia in humans. We measured plasma glucagon concentrations in patients with type 1 diabetes infused with the zinc-free insulin glulisine on three occasions. Glulisine was infused with clamped euglycemia (∼95 mg/dl [5.3 mmol/l]) from 0 to 60 min on all three occasions. Then, glulisine was discontinued with clamped euglycemia or with clamped hypoglycemia (∼55 mg/dl [3.0 mmol/l]) or continued with clamped hypoglycemia from 60 to 180 min. Plasma glucagon concentrations were suppressed by -13 ± 3, -9 ± 3, and -12 ± 2 pg/ml (-3.7 ± 0.9, -2.6 ± 0.9, and -3.4 ± 0.6 pmol/l), respectively, (all P < 0.01) during zinc-free hyperinsulinemic euglycemia over the first 60 min. Glucagon levels remained suppressed following a decrease in zinc-free insulin with euglycemia (-14 ± 3 pg/ml [-4.0 ± 0.9 pmol/l]) and during sustained hyperinsulinemia with hypoglycemia (-14 ± 2 pg/ml [-4.0 ± 0.6 pmol/l]) but increased to -3 ± 3 pg/ml (-0.9 ± 0.9 pmol/l) (P < 0.01) following a decrease in zinc-free insulin with hypoglycemia over the next 120 min. These data indicate that an increase in insulin per se suppresses glucagon secretion and a decrease in insulin per se, in concert with a low glucose concentration, stimulates glucagon secretion. Thus, they document that insulin is a β-cell secretory product that, in concert with glucose and among other signals, reciprocally regulates α-cell glucagon secretion in humans.

  2. Nutrient regulation of insulin secretion and action.

    PubMed

    Newsholme, Philip; Cruzat, Vinicius; Arfuso, Frank; Keane, Kevin

    2014-06-01

    Pancreatic β-cell function is of critical importance in the regulation of fuel homoeostasis, and metabolic dysregulation is a hallmark of diabetes mellitus (DM). The β-cell is an intricately designed cell type that couples metabolism of dietary sources of carbohydrates, amino acids and lipids to insulin secretory mechanisms, such that insulin release occurs at appropriate times to ensure efficient nutrient uptake and storage by target tissues. However, chronic exposure to high nutrient concentrations results in altered metabolism that impacts negatively on insulin exocytosis, insulin action and may ultimately lead to development of DM. Reduced action of insulin in target tissues is associated with impairment of insulin signalling and contributes to insulin resistance (IR), a condition often associated with obesity and a major risk factor for DM. The altered metabolism of nutrients by insulin-sensitive target tissues (muscle, adipose tissue and liver) can result in high circulating levels of glucose and various lipids, which further impact on pancreatic β-cell function, IR and progression of the metabolic syndrome. Here, we have considered the role played by the major nutrient groups, carbohydrates, amino acids and lipids, in mediating β-cell insulin secretion, while also exploring the interplay between amino acids and insulin action in muscle. We also focus on the effects of altered lipid metabolism in adipose tissue and liver resulting from activation of inflammatory processes commonly observed in DM pathophysiology. The aim of this review is to describe commonalities and differences in metabolism related to insulin secretion and action, pertinent to the development of DM. © 2014 Society for Endocrinology.

  3. Regulation of insulin secretion and proinsulin biosynthesis by succinate.

    PubMed

    Attali, Veronique; Parnes, Marcela; Ariav, Yafa; Cerasi, Erol; Kaiser, Nurit; Leibowitz, Gil

    2006-11-01

    Succinate stimulates insulin secretion and proinsulin biosynthesis. We studied the effects of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-modulating pathways on glucose- and succinate-stimulated insulin secretion and proinsulin biosynthesis in the rat and the insulin-resistant Psammomys obesus. Disruption of the anaplerotic pyruvate/malate shuttle by phenylacetic acid inhibited glucose- and succinate-stimulated insulin secretion and succinate-stimulated proinsulin biosynthesis in both species. In contrast, phenylacetic acid failed to inhibit glucose-stimulated proinsulin biosynthesis in P. obesus islets. Inhibition of the NADPH-consuming enzyme neuronal nitric oxide synthase (nNOS) with l-N(G)-nitro-l-arginine methyl ester or with N(G)-monomethyl-l-arginine(G) doubled succinate-stimulated insulin secretion in rat islets, suggesting that succinate- and nNOS-derived signals interact to regulate insulin secretion. In contrast, nNOS inhibition had no effect on succinate-stimulated proinsulin biosynthesis in both species. In P. obesus islets, insulin secretion was not stimulated by succinate in the absence of glucose, whereas proinsulin biosynthesis was increased 5-fold. Conversely, under stimulating glucose levels, succinate doubled insulin secretion, indicating glucose-dependence. Pyruvate ester and inhibition of nNOS partially mimicked the permissive effect of glucose on succinate-stimulated insulin secretion, suggesting that anaplerosis-derived signals render the beta-cells responsive to succinate. We conclude that beta-cell anaplerosis via pyruvate carboxylase is important for glucose- and succinate-stimulated insulin secretion and for succinate-stimulated proinsulin biosynthesis. In P. obesus, pyruvate/malate shuttle dependent and independent pathways that regulate proinsulin biosynthesis coexist; the latter can maintain fuel stimulated biosynthetic activity when the succinate-dependent pathway is inhibited. nNOS signaling is a negative regulator

  4. The bile acid sensor FXR regulates insulin transcription and secretion.

    PubMed

    Renga, Barbara; Mencarelli, Andrea; Vavassori, Piero; Brancaleone, Vincenzo; Fiorucci, Stefano

    2010-03-01

    Farnesoid X Receptor plays an important role in maintaining bile acid, cholesterol homeostasis and glucose metabolism. Here we investigated whether FXR is expressed by pancreatic beta-cells and regulates insulin signaling in pancreatic beta-cell line and human islets. We found that FXR activation induces positive regulatory effects on glucose-induced insulin transcription and secretion by genomic and non-genomic activities. Genomic effects of FXR activation relay on the induction of the glucose regulated transcription factor KLF11. Indeed, results from silencing experiments of KLF11 demonstrate that this transcription factor is essential for FXR activity on glucose-induced insulin gene transcription. In addition FXR regulates insulin secretion by non-genomic effects. Thus, activation of FXR in betaTC6 cells increases Akt phosphorylation and translocation of the glucose transporter GLUT2 at plasma membrane, increasing the glucose uptake by these cells. In vivo experiments on Non Obese Diabetic (NOD) mice demonstrated that FXR activation delays development of signs of diabetes, hyperglycemia and glycosuria, by enhancing insulin secretion and by stimulating glucose uptake by the liver. These data established that an FXR-KLF11 regulated pathway has an essential role in the regulation of insulin transcription and secretion induced by glucose.

  5. Minireview: Dopaminergic Regulation of Insulin Secretion from the Pancreatic Islet

    PubMed Central

    Ustione, Alessandro

    2013-01-01

    Exogenous dopamine inhibits insulin secretion from pancreatic β-cells, but the lack of dopaminergic neurons in pancreatic islets has led to controversy regarding the importance of this effect. Recent data, however, suggest a plausible physiologic role for dopamine in the regulation of insulin secretion. We review the literature underlying our current understanding of dopaminergic signaling that can down-regulate glucose-stimulated insulin secretion from pancreatic islets. In this negative feedback loop, dopamine is synthesized in the β-cells from circulating l-dopa, serves as an autocrine signal that is cosecreted with insulin, and causes a tonic inhibition on glucose-stimulated insulin secretion. On the whole animal scale, l-dopa is produced by cells in the gastrointestinal tract, and its concentration in the blood plasma increases following a mixed meal. By reviewing the outcome of certain types of bariatric surgery that result in rapid amelioration of glucose tolerance, we hypothesize that dopamine serves as an “antiincretin” signal that counterbalances the stimulatory effect of glucagon-like peptide 1. PMID:23744894

  6. Dynamin 2 regulates biphasic insulin secretion and plasma glucose homeostasis

    PubMed Central

    Fan, Fan; Ji, Chen; Wu, Yumei; Ferguson, Shawn M.; Tamarina, Natalia; Philipson, Louis H.; Lou, Xuelin

    2015-01-01

    Alterations in insulin granule exocytosis and endocytosis are paramount to pancreatic β cell dysfunction in diabetes mellitus. Here, using temporally controlled gene ablation specifically in β cells in mice, we identified an essential role of dynamin 2 GTPase in preserving normal biphasic insulin secretion and blood glucose homeostasis. Dynamin 2 deletion in β cells caused glucose intolerance and substantial reduction of the second phase of glucose-stimulated insulin secretion (GSIS); however, mutant β cells still maintained abundant insulin granules, with no signs of cell surface expansion. Compared with control β cells, real-time capacitance measurements demonstrated that exocytosis-endocytosis coupling was less efficient but not abolished; clathrin-mediated endocytosis (CME) was severely impaired at the step of membrane fission, which resulted in accumulation of clathrin-coated endocytic intermediates on the plasma membrane. Moreover, dynamin 2 ablation in β cells led to striking reorganization and enhancement of actin filaments, and insulin granule recruitment and mobilization were impaired at the later stage of GSIS. Together, our results demonstrate that dynamin 2 regulates insulin secretory capacity and dynamics in vivo through a mechanism depending on CME and F-actin remodeling. Moreover, this study indicates a potential pathophysiological link between endocytosis and diabetes mellitus. PMID:26413867

  7. A genetic strategy to measure circulating Drosophila insulin reveals genes regulating insulin production and secretion.

    PubMed

    Park, Sangbin; Alfa, Ronald W; Topper, Sydni M; Kim, Grace E S; Kockel, Lutz; Kim, Seung K

    2014-08-01

    Insulin is a major regulator of metabolism in metazoans, including the fruit fly Drosophila melanogaster. Genome-wide association studies (GWAS) suggest a genetic basis for reductions of both insulin sensitivity and insulin secretion, phenotypes commonly observed in humans with type 2 diabetes mellitus (T2DM). To identify molecular functions of genes linked to T2DM risk, we developed a genetic tool to measure insulin-like peptide 2 (Ilp2) levels in Drosophila, a model organism with superb experimental genetics. Our system permitted sensitive quantification of circulating Ilp2, including measures of Ilp2 dynamics during fasting and re-feeding, and demonstration of adaptive Ilp2 secretion in response to insulin receptor haploinsufficiency. Tissue specific dissection of this reduced insulin signaling phenotype revealed a critical role for insulin signaling in specific peripheral tissues. Knockdown of the Drosophila orthologues of human T2DM risk genes, including GLIS3 and BCL11A, revealed roles of these Drosophila genes in Ilp2 production or secretion. Discovery of Drosophila mechanisms and regulators controlling in vivo insulin dynamics should accelerate functional dissection of diabetes genetics.

  8. Glucagon regulates hepatic kisspeptin to impair insulin secretion.

    PubMed

    Song, Woo-Jin; Mondal, Prosenjit; Wolfe, Andrew; Alonso, Laura C; Stamateris, Rachel; Ong, Benny W T; Lim, Owen C; Yang, Kil S; Radovick, Sally; Novaira, Horacio J; Farber, Emily A; Farber, Charles R; Turner, Stephen D; Hussain, Mehboob A

    2014-04-01

    Early in the pathogenesis of type 2 diabetes mellitus (T2DM), dysregulated glucagon secretion from pancreatic α cells occurs prior to impaired glucose-stimulated insulin secretion (GSIS) from β cells. However, whether hyperglucagonemia is causally linked to β cell dysfunction remains unclear. Here we show that glucagon stimulates via cAMP-PKA-CREB signaling hepatic production of the neuropeptide kisspeptin1, which acts on β cells to suppress GSIS. Synthetic kisspeptin suppresses GSIS in vivo in mice and from isolated islets in a kisspeptin1 receptor-dependent manner. Kisspeptin1 is increased in livers and in serum from humans with T2DM and from mouse models of diabetes mellitus. Importantly, liver Kiss1 knockdown in hyperglucagonemic, glucose-intolerant, high-fat-diet fed, and Lepr(db/db) mice augments GSIS and improves glucose tolerance. These observations indicate a hormonal circuit between the liver and the endocrine pancreas in glycemia regulation and suggest in T2DM a sequential link between hyperglucagonemia via hepatic kisspeptin1 to impaired insulin secretion.

  9. Regulation of Insulin Synthesis and Secretion and Pancreatic Beta-Cell Dysfunction in Diabetes

    PubMed Central

    Fu, Zhuo; Gilbert, Elizabeth R.; Liu, Dongmin

    2014-01-01

    Pancreatic β-cell dysfunction plays an important role in the pathogenesis of both type 1 and type 2 diabetes. Insulin, which is produced in β-cells, is a critical regulator of metabolism. Insulin is synthesized as preproinsulin and processed to proinsulin. Proinsulin is then converted to insulin and C-peptide and stored in secretary granules awaiting release on demand. Insulin synthesis is regulated at both the transcriptional and translational level. The cis-acting sequences within the 5′ flanking region and trans-activators including paired box gene 6 (PAX6), pancreatic and duodenal homeobox-1(PDX-1), MafA, and B-2/Neurogenic differentiation 1 (NeuroD1) regulate insulin transcription, while the stability of preproinsulin mRNA and its untranslated regions control protein translation. Insulin secretion involves a sequence of events in β-cells that lead to fusion of secretory granules with the plasma membrane. Insulin is secreted primarily in response to glucose, while other nutrients such as free fatty acids and amino acids can augment glucose-induced insulin secretion. In addition, various hormones, such as melatonin, estrogen, leptin, growth hormone, and glucagon like peptide-1 also regulate insulin secretion. Thus, the β-cell is a metabolic hub in the body, connecting nutrient metabolism and the endocrine system. Although an increase in intracellular [Ca2+] is the primary insulin secretary signal, cAMP signaling-dependent mechanisms are also critical in the regulation of insulin secretion. This article reviews current knowledge on how β-cells synthesize and secrete insulin. In addition, this review presents evidence that genetic and environmental factors can lead to hyperglycemia, dyslipidemia, inflammation, and autoimmunity, resulting in β-cell dysfunction, thereby triggering the pathogenesis of diabetes. PMID:22974359

  10. Regulation of Insulin Secretion by Phosphatidylinositol-4,5-Bisphosphate

    PubMed Central

    Tomas, Alejandra; Yermen, Barbara; Regazzi, Romano; Pessin, Jeffrey E.; Halban, Philippe A.

    2014-01-01

    The role of PIP2 in pancreatic beta cell function was examined here using the beta cell line MIN6B1. Blocking PIP2 with PH-PLC-GFP or PIP5KIγ RNAi did not impact on glucose-stimulated secretion although susceptibility to apoptosis was increased. Over-expression of PIP5KIγ improved cell survival and inhibited secretion with accumulation of endocytic vacuoles containing F-actin, PIP2, transferrin receptor, caveolin 1, Arf6 and the insulin granule membrane protein phogrin but not insulin. Expression of constitutively active Arf6 Q67L also resulted in vacuole formation and inhibition of secretion, which was reversed by PH-PLC-GFP co-expression. PIP2 co-localized with gelsolin and F-actin, and gelsolin co-expression partially reversed the secretory defect of PIP5KIγ-over-expressing cells. RhoA/ROCK inhibition increased actin depolymerization and secretion, which was prevented by over-expressing PIP5KIγ, while blocking PIP2 reduced constitutively active RhoA V14-induced F-actin polymerization. In conclusion, although PIP2 plays a pro-survival role in MIN6B1 cells, excessive PIP2 production due to PIP5KIγ over-expression inhibits secretion due to both a defective Arf6/PIP5KIγ-dependent endocytic recycling of secretory membrane and secretory membrane components such as phogrin and the RhoA/ROCK/PIP5KIγ-dependent perturbation of F-actin cytoskeleton remodeling. PMID:19845918

  11. Dopamine-Mediated Autocrine Inhibitory Circuit Regulating Human Insulin Secretion in Vitro

    PubMed Central

    Simpson, Norman; Maffei, Antonella; Freeby, Matthew; Burroughs, Steven; Freyberg, Zachary; Javitch, Jonathan; Leibel, Rudolph L.

    2012-01-01

    We describe a negative feedback autocrine regulatory circuit for glucose-stimulated insulin secretion in purified human islets in vitro. Using chronoamperometry and in vitro glucose-stimulated insulin secretion measurements, evidence is provided that dopamine (DA), which is loaded into insulin-containing secretory granules by vesicular monoamine transporter type 2 in human β-cells, is released in response to glucose stimulation. DA then acts as a negative regulator of insulin secretion via its action on D2R, which are also expressed on β-cells. We found that antagonism of receptors participating in islet DA signaling generally drive increased glucose-stimulated insulin secretion. These in vitro observations may represent correlates of the in vivo metabolic changes associated with the use of atypical antipsychotics, such as increased adiposity. PMID:22915827

  12. Sirt1 Regulates Insulin Secretion by Repressing UCP2 in Pancreatic β Cells

    PubMed Central

    Bordone, Laura; Jhala, Ulupi S; Apfeld, Javier; McDonagh, Thomas; Lemieux, Madeleine; McBurney, Michael; Szilvasi, Akos; Easlon, Erin J; Lin, Su-Ju; Guarente, Leonard

    2006-01-01

    Sir2 and insulin/IGF-1 are the major pathways that impinge upon aging in lower organisms. In Caenorhabditis elegans a possible genetic link between Sir2 and the insulin/IGF-1 pathway has been reported. Here we investigate such a link in mammals. We show that Sirt1 positively regulates insulin secretion in pancreatic β cells. Sirt1 represses the uncoupling protein (UCP) gene UCP2 by binding directly to the UCP2 promoter. In β cell lines in which Sirt1 is reduced by SiRNA, UCP2 levels are elevated and insulin secretion is blunted. The up-regulation of UCP2 is associated with a failure of cells to increase ATP levels after glucose stimulation. Knockdown of UCP2 restores the ability to secrete insulin in cells with reduced Sirt1, showing that UCP2 causes the defect in glucose-stimulated insulin secretion. Food deprivation induces UCP2 in mouse pancreas, which may occur via a reduction in NAD (a derivative of niacin) levels in the pancreas and down-regulation of Sirt1. Sirt1 knockout mice display constitutively high UCP2 expression. Our findings show that Sirt1 regulates UCP2 in β cells to affect insulin secretion. PMID:16366736

  13. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion

    PubMed Central

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-01-01

    Secretagogin (SCGN), a Ca2+-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca2+-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  14. Intracellular and extracellular adenosine triphosphate in regulation of insulin secretion from pancreatic β cells (β).

    PubMed

    Wang, Chunjiong; Geng, Bin; Cui, Qinghua; Guan, Youfei; Yang, Jichun

    2014-03-01

    Adenosine triphosphate (ATP) synthesis and release in mitochondria play critical roles in regulating insulin secretion in pancreatic β cells. Mitochondrial dysfunction is mainly characterized by a decrease in ATP production, which is a central event in the progression of pancreatic β cell dysfunction and diabetes. ATP has been demonstrated to regulate insulin secretion via several pathways: (i) Intracellular ATP directly closes ATP-sensitive potassium channel to open L-type calcium channel, leading to an increase in free cytosolic calcium levels and exocytosis of insulin granules; (ii) A decrease in ATP production is always associated with an increase in production of reactive oxygen species, which exerts deleterious effects on pancreatic β cell survival and insulin secretion; and (iii) ATP can be co-secreted with insulin from pancreatic β cells, and the released ATP functions as an autocrine signal to modulate insulin secretory process via P2 receptors on the cell membrane. In this review, the recent findings regarding the role and mechanism of ATP synthesis and release in regulation of insulin secretion from pancreatic β cells will be summarized and discussed.

  15. Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion

    PubMed Central

    Sacco, Francesca; Humphrey, Sean J.; Cox, Jürgen; Mischnik, Marcel; Schulte, Anke; Klabunde, Thomas; Schäfer, Matthias; Mann, Matthias

    2016-01-01

    Insulin-secreting beta cells play an essential role in maintaining physiological blood glucose levels, and their dysfunction leads to the development of diabetes. To elucidate the signalling events regulating insulin secretion, we applied a recently developed phosphoproteomics workflow. We quantified the time-resolved phosphoproteome of murine pancreatic cells following their exposure to glucose and in combination with small molecule compounds that promote insulin secretion. The quantitative phosphoproteome of 30,000 sites clustered into three main groups in concordance with the modulation of the three key kinases: PKA, PKC and CK2A. A high-resolution time course revealed key novel regulatory sites, revealing the importance of methyltransferase DNMT3A phosphorylation in the glucose response. Remarkably a significant proportion of these novel regulatory sites is significantly downregulated in diabetic islets. Control of insulin secretion is embedded in an unexpectedly broad and complex range of cellular functions, which are perturbed by drugs in multiple ways. PMID:27841257

  16. Activation of islet 5-HT4 receptor regulates glycemic control through promoting insulin secretion.

    PubMed

    Chen, Hui; Hong, Feng; Chen, Ye; Li, Ji; Yao, Yuan-Sheng; Zhang, Yue; Zheng, Li-Fei; Zhu, Jin-Xia

    2016-10-15

    Mosapride, a gastrointestinal prokinetic drug, is an agonist of 5-hydroxytryptamine (5-HT) receptor 4 that also reduces blood glucose. Whether 5-HT4 receptor is distributed in pancreatic islets and whether mosapride can directly stimulate insulin secretion is unclear. In the present study, the protein expression and cellular location of 5-HT4 receptor in pancreas was detected through western blotting and immunofluorescence. The acute effects of 5-HT4 receptor agonists, mosapride and prucalopride, on insulin secretion were investigated in vivo and in vitro in normal and alloxan-induced diabetes rats. The results indicated that 5-HT4 receptor immunoreactivity was co-existed in the islets insulin-immunoreactive cells of rat, mouse, pig and human. However the immunoreactive cells of insulin and 5-HT4 receptor and the protein expression of 5-HT4 receptor were significantly decreased in the pancreas of alloxan-induced diabetes rats. In normal rats, mosapride and prucalopride decreased blood glucose and increased insulin secretion during glucose tolerance test, in association with an increase in glucose-stimulated insulin secretion, which was abolished by the 5-HT4 receptor antagonist GR113808. In diabetes rats, mosapride and prucalopride failed to improve blood glucose and insulin levels in the group of 180mg/kg alloxan, but increased glucose-stimulated insulin secretion in the group of 120mg/kg alloxan in vitro. We conclude that 5-HT4 receptor is distributed in the islet β cell. Activation of 5-HT4 receptor is able to stimulate insulin secretion directly, thereby reduce blood glucose. The study provides important experimental evidences for the 5-HT4 receptor regulating insulin secretion and acting as a potential drug target in diabetes treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Interactions between imidazoline compounds and sulphonylureas in the regulation of insulin secretion

    PubMed Central

    Mourtada, Mirna; Brown, Colin A; Smith, Stephen A; Piercy, Valerie; Chan, Susan L F; Morgan, Noel G

    1997-01-01

    Imidazoline α2-antagonist drugs such as efaroxan have been shown to increase the insulin secretory response to sulphonylureas from rat pancreatic B-cells. We have investigated whether this reflects binding to an islet imidazoline receptor or whether α2-adrenoceptor antagonism is involved. Administration of (±)-efaroxan or glibenclamide to Wistar rats was associated with a transient increase in plasma insulin. When both drugs were administered together, the resultant increase in insulin levels was much greater than that obtained with either drug alone. Use of the resolved enantiomers of efaroxan revealed that the ability of the compound to enhance the insulin secretory response to glibenclamide resided only in the α2-selective-(+)-enantiomer; the imidazoline receptor-selective-(−)-enantiomer was ineffective. In vitro, (+)-efaroxan increased the insulin secretory response to glibenclamide in rat freshly isolated and cultured islets of Langerhans, whereas (−)-efaroxan was inactive. By contrast, (+)-efaroxan did not potentiate glucose-induced insulin secretion but (−)-efaroxan induced a marked increase in insulin secretion from islets incubated in the presence of 6 mM glucose. Incubation of rat islets under conditions designed to minimize the extent of α2-adrenoceptor signalling (by receptor blockade with phenoxybenzamine; receptor down-regulation or treatment with pertussis toxin) abolished the capacity of (+)-and (±)-efaroxan to enhance the insulin secretory response to glibenclamide. However, these manoeuvres did not alter the ability of (±)-efaroxan to potentiate glucose-induced insulin secretion. The results indicate that the enantiomers of efaroxan exert differential effects on insulin secretion which may result from binding to effector sites having opposite stereoselectivity. Binding of (−)-efaroxan (presumably to imidazoline receptors) results in potentiation of glucose-induced insulin secretion, whereas interaction of (+)-efaroxan with a

  18. Inhibition of voltage-gated potassium channels mediates uncarboxylated osteocalcin-regulated insulin secretion in rat pancreatic β cells.

    PubMed

    Gao, Jingying; Zhong, Xiangqin; Ding, Yaqin; Bai, Tao; Wang, Hui; Wu, Hongbin; Liu, Yunfeng; Yang, Jing; Zhang, Yi

    2016-04-15

    Insulin secretion from pancreatic β cells is important to maintain glucose homeostasis and is regulated by electrical activities. Uncarboxylated osteocalcin, a bone-derived protein, has been reported to regulate glucose metabolism by increasing insulin secretion, stimulating β cell proliferation and improving insulin sensitivity. But the underlying mechanisms of uncarboxylated osteocalcin-modulated insulin secretion remain unclear. In the present study, we investigated the relationship of uncarboxylated osteocalcin-regulated insulin secretion and voltage-gated potassium (KV) channels, voltage-gated calcium channels in rat β cells. Insulin secretion was measured by radioimmunoassay. Channel currents and membrane action potentials were recorded using the conventional whole-cell patch-clamp technique. Calcium imaging system was used to analyze intracellular Ca(2+) concentration ([Ca(2+)]i). The data show that under 16.7mmol/l glucose conditions uncarboxylated osteocalcin alone increased insulin secretion and [Ca(2+)]i, but with no such effects on insulin secretion and [Ca(2+)]i in the presence of a KV channel blocker, tetraethylammonium chloride. In the patch-clamp experiments, uncarboxylated osteocalcin lengthened action potential duration and significantly inhibited KV currents, but had no influence on the characteristics of voltage-gated calcium channels. These results indicate that KV channels are involved in uncarboxylated osteocalcin-regulated insulin secretion in rat pancreatic β cells. By inhibiting KV channels, uncarboxylated osteocalcin prolongs action potential duration, increases intracellular Ca(2+) concentration and finally promotes insulin secretion. This finding provides new insight into the mechanisms of osteocalcin-modulated insulin secretion.

  19. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion.

    PubMed

    Zheng, Hongzhi; Fu, Jingqi; Xue, Peng; Zhao, Rui; Dong, Jian; Liu, Dianxin; Yamamoto, Masayuki; Tong, Qingchun; Teng, Weiping; Qu, Weidong; Zhang, Qiang; Andersen, Melvin E; Pi, Jingbo

    2015-04-01

    The inability of pancreatic β-cells to secrete sufficient insulin in response to glucose stimulation is a major contributing factor to the development of type 2 diabetes (T2D). We investigated both the in vitro and in vivo effects of deficiency of nuclear factor-erythroid 2-related factor 1 (Nrf1) in β-cells on β-cell function and glucose homeostasis. Silencing of Nrf1 in β-cells leads to a pre-T2D phenotype with disrupted glucose metabolism and impaired insulin secretion. Specifically, MIN6 β-cells with stable knockdown of Nrf1 (Nrf1-KD) and isolated islets from β-cell-specific Nrf1-knockout [Nrf1(b)-KO] mice displayed impaired glucose responsiveness, including elevated basal insulin release and decreased glucose-stimulated insulin secretion (GSIS). Nrf1(b)-KO mice exhibited severe fasting hyperinsulinemia, reduced GSIS, and glucose intolerance. Silencing of Nrf1 in MIN6 cells resulted in oxidative stress and altered glucose metabolism, with increases in both glucose uptake and aerobic glycolysis, which is associated with the elevated basal insulin release and reduced glucose responsiveness. The elevated glycolysis and reduced glucose responsiveness due to Nrf1 silencing likely result from altered expression of glucose metabolic enzymes, with induction of high-affinity hexokinase 1 and suppression of low-affinity glucokinase. Our study demonstrated a novel role of Nrf1 in regulating glucose metabolism and insulin secretion in β-cells and characterized Nrf1 as a key transcription factor that regulates the coupling of glycolysis and mitochondrial metabolism and GSIS. Nrf1 plays critical roles in regulating glucose metabolism, mitochondrial function, and insulin secretion, suggesting that Nrf1 may be a novel target to improve the function of insulin-secreting β-cells.

  20. Angiopoietin-like peptide 4 regulates insulin secretion and islet morphology.

    PubMed

    Kim, Hyun-Kyong; Kwon, Obin; Park, Kyeong-Han; Lee, Kyung Jin; Youn, Byung-Soo; Kim, Seung-Whan; Kim, Min-Seon

    2017-02-07

    Insulin secretion from pancreatic islet β-cells is primarily regulated by the blood glucose level, and also modulated by a number of biological factors produced inside the islets or released from remote organs. Previous studies have shown that angiopoietin-like protein 4 (Angptl4) controls glucose and lipid metabolism through its actions in the liver, adipose tissue, and skeletal muscles. In this present study, we investigated the possible role of Angptl4 in the regulation of insulin secretion from pancreatic islets. Angptl4 was found to be highly expressed in the α-cells but not β-cells of rodent islets. Moreover, treatment of rodent islets with Angptl4 peptide potentiated glucose-stimulated insulin secretion through a protein kinase A-dependent mechanism. Consistently, Angptl4 knockout mice showed impaired glucose tolerance. In the cultured islets from Angptl4 knockout mice, glucose-stimulated insulin secretion was significantly lower than in islets from wild type mice. Angptl4 peptide replacement partially reversed this reduction. Moreover, Angptl4 knockout mice had dysmorphic islets with abnormally distributed α-cells. In contrast, the β-cell mass and distribution were not significantly altered in these knockout mice. Our current data collectively suggest that Angptl4 may play a critical role in the regulation of insulin secretion and islet morphogenesis.

  1. The importance of early insulin secretion and its impact on glycaemic regulation.

    PubMed

    Garber, A J

    2000-09-01

    Type 2 diabetes is characterised by a progressive deterioration of the prandial insulin response, in a situation of continuing insulin resistance. Early phase insulin release is attenuated and delayed and there is a consequent failure to suppress glucagon secretion and curtail hepatic glucose production and gluconeogenesis. Postprandial plasma glucose concentration rises to pathological levels and fails to return to normal before the patient consumes their next meal, creating a problem of continuous daytime hyperglycaemia. Although late insulin secretion is preserved it does not rectify the hyperglycaemia. The pathology of excessive prandial glucose excursions and continual daytime hyperglycaemia can be normalised, at least in part, if early-phase insulin availability is restored through pharmacologic intervention. Initially, the feasibility of this approach was demonstrated experimentally with the use of carefully controlled insulin infusions or insulin analogue injections. More recently, the availability of the rapid or early augmentor of insulin secretion--repaglinide--provides a means for restoring prandial glucose regulation with oral therapy. Placebo-controlled and oral hypoglycaemic agent (OHA) comparative studies of repaglinide have established its antidiabetic efficacy and flexible mealtime/dosing studies have confirmed the importance of the prandial approach to treatment. Prandial glucose regulation with repaglinide has also been demonstrated to provide synergies when used as combination therapy with insulin sensitising agents. As a strategy, prandial glucose regulation has a number of theoretical advantages over the use of fixed doses of conventional insulin secretagogues, and these have been borne out in clinical trials. As well as offering a more flexible approach to treatment, prandial repaglinide is associated with a reduced risk of severe hypoglycaemia.

  2. Kin of IRRE-like Protein 2 Is a Phosphorylated Glycoprotein That Regulates Basal Insulin Secretion*

    PubMed Central

    Yesildag, Burcak; Bock, Thomas; Herrmanns, Karolin; Wollscheid, Bernd; Stoffel, Markus

    2015-01-01

    Direct interactions among pancreatic β-cells via cell surface proteins inhibit basal and enhance stimulated insulin secretion. Here, we functionally and biochemically characterized Kirrel2, an immunoglobulin superfamily protein with β-cell-specific expression in the pancreas. Our results show that Kirrel2 is a phosphorylated glycoprotein that co-localizes and interacts with the adherens junction proteins E-cadherin and β-catenin in MIN6 cells. We further demonstrate that the phosphosites Tyr595–596 are functionally relevant for the regulation of Kirrel2 stability and localization. Analysis of the extracellular and intracellular domains of Kirrel2 revealed that it is cleaved and shed from MIN6 cells and that the remaining membrane spanning cytoplasmic domain is processed by γ-secretase complex. Kirrel2 knockdown with RNA interference in MIN6 cells and ablation of Kirrel2 from mice with genetic deletion resulted in increased basal insulin secretion from β-cells, with no immediate influence on stimulated insulin secretion, total insulin content, or whole body glucose metabolism. Our results show that in pancreatic β-cells Kirrel2 localizes to adherens junctions, is regulated by multiple post-translational events, including glycosylation, extracellular cleavage, and phosphorylation, and engages in the regulation of basal insulin secretion. PMID:26324709

  3. Sox17 Regulates Insulin Secretion in the Normal and Pathologic Mouse β Cell

    PubMed Central

    Jonatan, Diva; Spence, Jason R.; Method, Anna M.; Kofron, Matthew; Sinagoga, Katie; Haataja, Leena; Arvan, Peter; Deutsch, Gail H.; Wells, James M.

    2014-01-01

    SOX17 is a key transcriptional regulator that can act by regulating other transcription factors including HNF1β and FOXA2, which are known to regulate postnatal β cell function. Given this, we investigated the role of SOX17 in the developing and postnatal pancreas and found a novel role for SOX17 in regulating insulin secretion. Deletion of the Sox17 gene in the pancreas (Sox17-paLOF) had no observable impact on pancreas development. However, Sox17-paLOF mice had higher islet proinsulin protein content, abnormal trafficking of proinsulin, and dilated secretory organelles suggesting that Sox17-paLOF adult mice are prediabetic. Consistant with this, Sox17-paLOF mice were more susceptible to aged-related and high fat diet-induced hyperglycemia and diabetes. Overexpression of Sox17 in mature β cells using Ins2-rtTA driver mice resulted in precocious secretion of proinsulin. Transcriptionally, SOX17 appears to broadly regulate secretory networks since a 24-hour pulse of SOX17 expression resulted in global transcriptional changes in factors that regulate hormone transport and secretion. Lastly, transient SOX17 overexpression was able to reverse the insulin secretory defects observed in MODY4 animals and restored euglycemia. Together, these data demonstrate a critical new role for SOX17 in regulating insulin trafficking and secretion and that modulation of Sox17-regulated pathways might be used therapeutically to improve cell function in the context of diabetes. PMID:25144761

  4. Ghrelin but not obestatin regulates insulin secretion from INS1 beta cell line via UCP2-dependent mechanism.

    PubMed

    Chmielewska, J; Szczepankiewicz, D; Skrzypski, M; Kregielska, D; Strowski, M Z; Nowak, K W

    2010-01-01

    The mitochondrial UCP2 mediates glucose-stimulated insulin secretion by decreasing intracellular ATP/ADP ratio. Insulin secretion is a tightly regulated process. Ghrelin, as well as obestatin, were intensively studied to determine their ability to modify insulin secretion. Ghrelin is considered to be an inhibitor of insulin release from pancreatic islets, however little is known about the effects of obestatin. In our study we demonstrate the stimulating effects of both peptides on insulin secretion in INS1 cells. Furthermore, we investigate the potential role of UCP2 in mediating the effects of both peptides on insulin secretion. UCP2 mRNA expression was down-regulated by ghrelin in the presence of 26.4 mM glucose, however it was unchanged after obestatin treatment. Our results confirm that UCP2 could be involved in the stimulating effect of ghrelin on insulin release from INS1 cells.

  5. Molecular Mechanisms of Insulin Secretion and Insulin Action.

    ERIC Educational Resources Information Center

    Flatt, Peter R.; Bailey, Clifford J.

    1991-01-01

    Information and current ideas on the factors regulating insulin secretion, the mechanisms underlying the secretion and biological actions of insulin, and the main characteristics of diabetes mellitus are presented. (Author)

  6. Molecular Mechanisms of Insulin Secretion and Insulin Action.

    ERIC Educational Resources Information Center

    Flatt, Peter R.; Bailey, Clifford J.

    1991-01-01

    Information and current ideas on the factors regulating insulin secretion, the mechanisms underlying the secretion and biological actions of insulin, and the main characteristics of diabetes mellitus are presented. (Author)

  7. Growth-Blocking Peptides As Nutrition-Sensitive Signals for Insulin Secretion and Body Size Regulation

    PubMed Central

    Koyama, Takashi; Mirth, Christen K.

    2016-01-01

    In Drosophila, the fat body, functionally equivalent to the mammalian liver and adipocytes, plays a central role in regulating systemic growth in response to nutrition. The fat body senses intracellular amino acids through Target of Rapamycin (TOR) signaling, and produces an unidentified humoral factor(s) to regulate insulin-like peptide (ILP) synthesis and/or secretion in the insulin-producing cells. Here, we find that two peptides, Growth-Blocking Peptide (GBP1) and CG11395 (GBP2), are produced in the fat body in response to amino acids and TOR signaling. Reducing the expression of GBP1 and GBP2 (GBPs) specifically in the fat body results in smaller body size due to reduced growth rate. In addition, we found that GBPs stimulate ILP secretion from the insulin-producing cells, either directly or indirectly, thereby increasing insulin and insulin-like growth factor signaling activity throughout the body. Our findings fill an important gap in our understanding of how the fat body transmits nutritional information to the insulin producing cells to control body size. PMID:26928023

  8. Hypothalamic prolyl endopeptidase (PREP) regulates pancreatic insulin and glucagon secretion in mice

    PubMed Central

    Kim, Jung Dae; Toda, Chitoku; D’Agostino, Giuseppe; Zeiss, Caroline J.; DiLeone, Ralph J.; Elsworth, John D.; Kibbey, Richard G.; Chan, Owen; Harvey, Brandon K.; Richie, Christopher T.; Savolainen, Mari; Myöhänen, Timo; Jeong, Jin Kwon; Diano, Sabrina

    2014-01-01

    Prolyl endopeptidase (PREP) has been implicated in neuronal functions. Here we report that hypothalamic PREP is predominantly expressed in the ventromedial nucleus (VMH), where it regulates glucose-induced neuronal activation. PREP knockdown mice (Prepgt/gt) exhibited glucose intolerance, decreased fasting insulin, increased fasting glucagon levels, and reduced glucose-induced insulin secretion compared with wild-type controls. Consistent with this, central infusion of a specific PREP inhibitor, S17092, impaired glucose tolerance and decreased insulin levels in wild-type mice. Arguing further for a central mode of action of PREP, isolated pancreatic islets showed no difference in glucose-induced insulin release between Prepgt/gt and wild-type mice. Furthermore, hyperinsulinemic euglycemic clamp studies showed no difference between Prepgt/gt and wild-type control mice. Central PREP regulation of insulin and glucagon secretion appears to be mediated by the autonomic nervous system because Prepgt/gt mice have elevated sympathetic outflow and norepinephrine levels in the pancreas, and propranolol treatment reversed glucose intolerance in these mice. Finally, re-expression of PREP by bilateral VMH injection of adeno-associated virus–PREP reversed the glucose-intolerant phenotype of the Prepgt/gt mice. Taken together, our results unmask a previously unknown player in central regulation of glucose metabolism and pancreatic function. PMID:25071172

  9. The Drosophila cytokine Unpaired 2 regulates physiological homeostasis by remotely controlling Insulin secretion

    PubMed Central

    Rajan, Akhila; Perrimon, Norbert

    2012-01-01

    In Drosophila the fat body (FB), a functional analog of the vertebrate adipose tissue, is the 'nutrient sensor' that conveys the nutrient status to the insulin producing cells (IPCs) in the fly brain to release insulin-like peptides (Dilps). Dilp secretion in turn regulates energy balance and promotes systemic growth. We identify Unpaired2 (Upd2), a protein with similarities to type I cytokines, as a secreted factor produced by the FB in the ‘fed’ state. When upd2 function is perturbed specifically in the FB, it results in a systemic reduction in growth and alters energy metabolism. Upd2 activates JAK/STAT signaling in a population of GABAergic neurons that project onto the IPCs. This activation relieves the inhibitory tone of the GABAergic neurons on the IPCs, resulting in the secretion of Dilps. Strikingly, we find that human Leptin, can rescue the upd2 mutant phenotypes, suggesting that Upd2 is the functional homolog of Leptin. PMID:23021220

  10. Ion channels and regulation of insulin secretion in human β-cells

    PubMed Central

    Fridlyand, Leonid E.; Jacobson, David A.; Philipson, L.H.

    2013-01-01

    In mammals an increase in glucose leads to block of ATP dependent potassium channels in pancreatic β cells leading to membrane depolarization. This leads to the repetitive firing of action potentials that increases calcium influx and triggers insulin granule exocytosis. Several important differences between species in this process suggest that a dedicated human-oriented approach is advantageous as extrapolating from rodent data may be misleading in several respects. We examined depolarization-induced spike activity in pancreatic human islet-attached β-cells employing whole-cell patch-clamp methods. We also reviewed the literature concerning regulation of insulin secretion by channel activity and constructed a data-based computer model of human β cell function. The model couples the Hodgkin-Huxley-type ionic equations to the equations describing intracellular Ca2+ homeostasis and insulin release. On the basis of this model we employed computational simulations to better understand the behavior of action potentials, calcium handling and insulin secretion in human β cells under a wide range of experimental conditions. This computational system approach provides a framework to analyze the mechanisms of human β cell insulin secretion. PMID:23624892

  11. Endogenous beta-cell CART regulates insulin secretion and transcription of beta-cell genes.

    PubMed

    Shcherbina, L; Edlund, A; Esguerra, J L S; Abels, M; Zhou, Y; Ottosson-Laakso, E; Wollheim, C B; Hansson, O; Eliasson, L; Wierup, N

    2017-05-15

    Impaired beta-cell function is key to the development of type 2 diabetes. Cocaine- and amphetamine-regulated transcript (CART) is an islet peptide with insulinotropic and glucagonostatic properties. Here we studied the role of endogenous CART in beta-cell function. CART silencing in INS-1 (832/13) beta-cells reduced insulin secretion and production, ATP levels and beta-cell exocytosis. This was substantiated by reduced expression of several exocytosis genes, as well as reduced expression of genes important for insulin secretion and processing. In addition, CART silencing reduced the expression of a network of transcription factors essential for beta-cell function. Moreover, in RNAseq data from human islet donors, CARTPT expression levels correlated with insulin, exocytosis genes and key beta-cell transcription factors. Thus, endogenous beta-cell CART regulates insulin expression and secretion in INS-1 (832/13) cells, via actions on the exocytotic machinery and a network of beta-cell transcription factors. We conclude that CART is important for maintaining the beta-cell phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Interaction of Munc18 and Syntaxin in the regulation of insulin secretion

    SciTech Connect

    Dong, Yongming; Wan, Qunfang; Yang, Xiaofei; Bai, Li; Xu, Pingyong . E-mail: pyxu@moon.ibp.ac.cn

    2007-08-31

    Syntaxin1A and Munc18-1 play essential roles in exocytosis. However, the molecular mechanism and the functional roles of their interaction in insulin secretion remain to be explored. Using membrane capacitance measurement, we examine effect of overexpressing Munc18-1 on exocytosis in pancreatic {beta} cells. The results show that Munc18-1 negatively regulates vesicle fusion. To probe the interaction between Munc18-1 and Syntaxin1A, Munc18-1-Tdimer2 and EGFP-Syntaxin1A were co-transfected into INS-1 cells. FRET measurement confirmed that Munc18-1 interacted with wild type Syntaxin 1A, but not the constitutively open form (DM) of Syntaxin1A. Overexpressing DM in primary pancreatic {beta} cells augmented insulin secretion, and this effect can overcome the inhibitory effect of Munc18-1 overexpression. We propose that Munc18-1 inhibitis the SNARE complex assembly by stabilizing Syntaxin1A in a closed conformation in vesicle priming process, therefore negatively regulates insulin secretion.

  13. TCF7L2 Regulates Late Events in Insulin Secretion From Pancreatic Islet β-Cells

    PubMed Central

    da Silva Xavier, Gabriela; Loder, Merewyn K.; McDonald, Angela; Tarasov, Andrei I.; Carzaniga, Raffaella; Kronenberger, Katrin; Barg, Sebastian; Rutter, Guy A.

    2009-01-01

    OBJECTIVE Polymorphisms in the human TCF7L2 gene are associated with reduced insulin secretion and an increased risk of type 2 diabetes. However, the mechanisms by which TCF7L2 affect insulin secretion are still unclear. We define the effects of TCF7L2 expression level on mature β-cell function and suggest a potential mechanism for its actions. RESEARCH DESIGN AND METHODS TCF7L2 expression in rodent islets and β-cell lines was altered using RNAi or adenoviral transduction. β-Cell gene profiles were measured by quantitative real-time PCR and the effects on intracellular signaling and exocytosis by live cell imaging, electron microscopy, and patch clamp electrophysiology. RESULTS Reducing TCF7L2 expression levels by RNAi decreased glucose- but not KCl-induced insulin secretion. The glucose-induced increments in both ATP/ADP ratio and cytosolic free Ca2+ concentration ([Ca2+]i) were increased compared with controls. Overexpression of TCF7L2 exerted minor inhibitory effects on glucose-regulated changes in [Ca2+]i and insulin release. Gene expression profiling in TCF7L2-silenced cells revealed increased levels of mRNA encoding syntaxin 1A but decreased Munc18–1 and ZnT8 mRNA. Whereas the number of morphologically docked vesicles was unchanged by TCF7L2 suppression, secretory granule movement increased and capacitance changes decreased, indicative of defective vesicle fusion. CONCLUSION—TCF7L2 is involved in maintaining expression of β-cell genes regulating secretory granule fusion. Defective insulin exocytosis may thus underlie increased diabetes incidence in carriers of the at-risk TCF7L2 alleles. PMID:19168596

  14. TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells.

    PubMed

    da Silva Xavier, Gabriela; Loder, Merewyn K; McDonald, Angela; Tarasov, Andrei I; Carzaniga, Raffaella; Kronenberger, Katrin; Barg, Sebastian; Rutter, Guy A

    2009-04-01

    Polymorphisms in the human TCF7L2 gene are associated with reduced insulin secretion and an increased risk of type 2 diabetes. However, the mechanisms by which TCF7L2 affect insulin secretion are still unclear. We define the effects of TCF7L2 expression level on mature beta-cell function and suggest a potential mechanism for its actions. TCF7L2 expression in rodent islets and beta-cell lines was altered using RNAi or adenoviral transduction. Beta-cell gene profiles were measured by quantitative real-time PCR and the effects on intracellular signaling and exocytosis by live cell imaging, electron microscopy, and patch clamp electrophysiology. Reducing TCF7L2 expression levels by RNAi decreased glucose- but not KCl-induced insulin secretion. The glucose-induced increments in both ATP/ADP ratio and cytosolic free Ca2+ concentration ([Ca2+]i) were increased compared with controls. Overexpression of TCF7L2 exerted minor inhibitory effects on glucose-regulated changes in [Ca2+]i and insulin release. Gene expression profiling in TCF7L2-silenced cells revealed increased levels of mRNA encoding syntaxin 1A but decreased Munc18-1 and ZnT8 mRNA. Whereas the number of morphologically docked vesicles was unchanged by TCF7L2 suppression, secretory granule movement increased and capacitance changes decreased, indicative of defective vesicle fusion. TCF7L2 is involved in maintaining expression of beta-cell genes regulating secretory granule fusion. Defective insulin exocytosis may thus underlie increased diabetes incidence in carriers of the at-risk TCF7L2 alleles.

  15. Oscillatory control of insulin secretion.

    PubMed

    Tengholm, Anders; Gylfe, Erik

    2009-01-15

    Pancreatic beta-cells possess an inherent ability to generate oscillatory signals that trigger insulin release. Coordination of the secretory activity among beta-cells results in pulsatile insulin secretion from the pancreas, which is considered important for the action of the hormone in the target tissues. This review focuses on the mechanisms underlying oscillatory control of insulin secretion at the level of the individual beta-cell. Recent studies have demonstrated that oscillations of the cytoplasmic Ca(2+) concentration are synchronized with oscillations in beta-cell metabolism, intracellular cAMP concentration, phospholipase C activity and plasma membrane phosphoinositide lipid concentrations. There are complex interdependencies between the different messengers and signalling pathways that contribute to amplitude regulation and shaping of the insulin secretory response to nutrient stimuli and neurohormonal modulators. Several of these pathways may be important pharmacological targets for improving pulsatile insulin secretion in type 2 diabetes.

  16. Lipid transport by TMEM24 at ER-plasma membrane contacts regulates pulsatile insulin secretion.

    PubMed

    Lees, Joshua A; Messa, Mirko; Sun, Elizabeth Wen; Wheeler, Heather; Torta, Federico; Wenk, Markus R; De Camilli, Pietro; Reinisch, Karin M

    2017-02-17

    Insulin is released by β cells in pulses regulated by calcium and phosphoinositide signaling. Here, we describe how transmembrane protein 24 (TMEM24) helps coordinate these signaling events. We showed that TMEM24 is an endoplasmic reticulum (ER)-anchored membrane protein whose reversible localization to ER-plasma membrane (PM) contacts is governed by phosphorylation and dephosphorylation in response to oscillations in cytosolic calcium. A lipid-binding module in TMEM24 transports the phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] precursor phosphatidylinositol between bilayers, allowing replenishment of PI(4,5)P2 hydrolyzed during signaling. In the absence of TMEM24, calcium oscillations are abolished, leading to a defect in triggered insulin release. Our findings implicate direct lipid transport between the ER and the PM in the control of insulin secretion, a process impaired in patients with type II diabetes.

  17. Leucine metabolism in regulation of insulin secretion from pancreatic beta cells

    PubMed Central

    Yang, Jichun; Chi, Yujing; Burkhardt, Brant R.; Guan, Youfei; Wolf, Bryan A

    2010-01-01

    Leucine, a the branched-chain amino acids that must be supplied in daily diet, plays an important role in controlling protein synthesis and regulating cell metabolism in various cell types. In pancreatic β cells, leucine acutely stimulates insulin secretion by serving as both metabolic fuel and allosteric activator of glutamate dehydrogenase to enhance glutaminolysis. Leucine has also been shown to regulate gene transcription and protein synthesis in pancreatic islet β cells via both mTOR-dependent and -independent pathways at physiological concentrations. Long-term treatment of leucine has been shown to improve insulin secretory dysfunction of human diabetic islets via upregulation of certain key metabolic genes. In vivo, leucine administration improves glycemic control in humans and rodents with type 2 diabetes. This review aims to summarize and discuss the recent findings regarding the effects of leucine metabolism on pancreatic β cell function. PMID:20500788

  18. Gap junctions and other mechanisms of cell-cell communication regulate basal insulin secretion in the pancreatic islet.

    PubMed

    Benninger, R K P; Head, W Steven; Zhang, Min; Satin, Leslie S; Piston, David W

    2011-11-15

    Cell-cell communication in the islet of Langerhans is important for the regulation of insulin secretion. Gap-junctions coordinate oscillations in intracellular free-calcium ([Ca(2+)](i)) and insulin secretion in the islet following elevated glucose. Gap-junctions can also ensure that oscillatory [Ca(2+)](i) ceases when glucose is at a basal levels. We determine the roles of gap-junctions and other cell-cell communication pathways in the suppression of insulin secretion under basal conditions. Metabolic, electrical and insulin secretion levels were measured from islets lacking gap-junction coupling following deletion of connexion36 (Cx36(-/-)), and these results were compared to those obtained using fully isolated β-cells. K(ATP) loss-of-function islets provide a further experimental model to specifically study gap-junction mediated suppression of electrical activity. In isolated β-cells or Cx36(-/-) islets, elevations in [Ca(2+)](i) persisted in a subset of cells even at basal glucose. Isolated β-cells showed elevated insulin secretion at basal glucose; however, insulin secretion from Cx36(-/-) islets was minimally altered. [Ca(2+)](i) was further elevated under basal conditions, but insulin release still suppressed in K(ATP) loss-of-function islets. Forced elevation of cAMP led to PKA-mediated increases in insulin secretion from islets lacking gap-junctions, but not from islets expressing Cx36 gap junctions. We conclude there is a redundancy in how cell-cell communication in the islet suppresses insulin release. Gap junctions suppress cellular heterogeneity and spontaneous [Ca(2+)](i) signals, while other juxtacrine mechanisms, regulated by PKA and glucose, suppress more distal steps in exocytosis. Each mechanism is sufficiently robust to compensate for a loss of the other and still suppress basal insulin secretion.

  19. Gap junctions and other mechanisms of cell–cell communication regulate basal insulin secretion in the pancreatic islet

    PubMed Central

    Benninger, R K P; Head, W Steven; Zhang, Min; Satin, Leslie S; Piston, David W

    2011-01-01

    Abstract Cell–cell communication in the islet of Langerhans is important for the regulation of insulin secretion. Gap-junctions coordinate oscillations in intracellular free-calcium ([Ca2+]i) and insulin secretion in the islet following elevated glucose. Gap-junctions can also ensure that oscillatory [Ca2+]i ceases when glucose is at a basal levels. We determine the roles of gap-junctions and other cell–cell communication pathways in the suppression of insulin secretion under basal conditions. Metabolic, electrical and insulin secretion levels were measured from islets lacking gap-junction coupling following deletion of connexion36 (Cx36−/−), and these results were compared to those obtained using fully isolated β-cells. KATP loss-of-function islets provide a further experimental model to specifically study gap-junction mediated suppression of electrical activity. In isolated β-cells or Cx36−/− islets, elevations in [Ca2+]i persisted in a subset of cells even at basal glucose. Isolated β-cells showed elevated insulin secretion at basal glucose; however, insulin secretion from Cx36−/− islets was minimally altered. [Ca2+]i was further elevated under basal conditions, but insulin release still suppressed in KATP loss-of-function islets. Forced elevation of cAMP led to PKA-mediated increases in insulin secretion from islets lacking gap-junctions, but not from islets expressing Cx36 gap junctions. We conclude there is a redundancy in how cell–cell communication in the islet suppresses insulin release. Gap junctions suppress cellular heterogeneity and spontaneous [Ca2+]i signals, while other juxtacrine mechanisms, regulated by PKA and glucose, suppress more distal steps in exocytosis. Each mechanism is sufficiently robust to compensate for a loss of the other and still suppress basal insulin secretion. PMID:21930600

  20. Protein Inhibitor of Activated STAT Y (PIASy) Regulates Insulin Secretion by Interacting with LIM Homeodomain Transcription Factor Isl1

    PubMed Central

    Yan, Chengzhi; Yu, Chulin; Zhang, Di; Cui, Yan; Zhou, Jinlian; Cui, Sheng

    2016-01-01

    It is known that the LIM homeodomain transcription factor Isl1 is highly expressed in all pancreatic endocrine cells and functions in regulating pancreatic development and insulin secretion. The Isl1 mutation has been found to be associated with type 2 diabetes, but the mechanism responsible for Isl1 regulation of insulin synthesis and secretion still needs to be elucidated. In the present study, the protein inhibitor of activated STAT Y (PIASy) was identified as a novel Isl1-interacting protein with a yeast two-hybrid system, and its interaction with Isl1 was further confirmed by a co-immunoprecipitation experiment. PIASy and Isl1 colocalize in human and mouse pancreas and NIT beta cells. Furthermore, PIASy and Isl1 upregulate insulin gene expression and insulin secretion in a dose-dependent manner by activating the insulin promoter. PIASy and Isl1 mRNA expression levels were also increased in type 2 diabetic db/db mice. In addition, our results demonstrate that PIASy and Isl1 cooperate to activate the insulin promoter through the Isl1 homeodomain and PIASy ring domain. These data suggest that that PIASy regulates insulin synthesis and secretion by interacting with Isl1 and provide new insight into insulin regulation, although the detailed molecular mechanism needs to be clarified in future studies. PMID:28000708

  1. Dopamine synthesis and D3 receptor activation in pancreatic β-cells regulates insulin secretion and intracellular [Ca(2+)] oscillations.

    PubMed

    Ustione, Alessandro; Piston, David W

    2012-11-01

    Pancreatic islets are critical for glucose homeostasis via the regulated secretion of insulin and other hormones. We propose a novel mechanism that regulates insulin secretion from β-cells within mouse pancreatic islets: a dopaminergic negative feedback acting on insulin secretion. We show that islets are a site of dopamine synthesis and accumulation outside the central nervous system. We show that both dopamine and its precursor l-dopa inhibit glucose-stimulated insulin secretion, and this inhibition correlates with a reduction in frequency of the intracellular [Ca(2+)] oscillations. We further show that the effects of dopamine are abolished by a specific antagonist of the dopamine receptor D3. Because the dopamine transporter and dopamine receptors are expressed in the islets, we propose that cosecretion of dopamine with insulin activates receptors on the β-cell surface. D3 receptor activation results in changes in intracellular [Ca(2+)] dynamics, which, in turn, lead to lowered insulin secretion. Because blocking dopaminergic negative feedback increases insulin secretion, expanding the knowledge of this pathway in β-cells might offer a potential new target for the treatment of type 2 diabetes.

  2. Dopamine Synthesis and D3 Receptor Activation in Pancreatic β-Cells Regulates Insulin Secretion and Intracellular [Ca2+] Oscillations

    PubMed Central

    Ustione, Alessandro

    2012-01-01

    Pancreatic islets are critical for glucose homeostasis via the regulated secretion of insulin and other hormones. We propose a novel mechanism that regulates insulin secretion from β-cells within mouse pancreatic islets: a dopaminergic negative feedback acting on insulin secretion. We show that islets are a site of dopamine synthesis and accumulation outside the central nervous system. We show that both dopamine and its precursor l-dopa inhibit glucose-stimulated insulin secretion, and this inhibition correlates with a reduction in frequency of the intracellular [Ca2+] oscillations. We further show that the effects of dopamine are abolished by a specific antagonist of the dopamine receptor D3. Because the dopamine transporter and dopamine receptors are expressed in the islets, we propose that cosecretion of dopamine with insulin activates receptors on the β-cell surface. D3 receptor activation results in changes in intracellular [Ca2+] dynamics, which, in turn, lead to lowered insulin secretion. Because blocking dopaminergic negative feedback increases insulin secretion, expanding the knowledge of this pathway in β-cells might offer a potential new target for the treatment of type 2 diabetes. PMID:22918877

  3. Neuronal Calcium Sensor Synaptotagmin-9 Is Not Involved in the Regulation of Glucose Homeostasis or Insulin Secretion

    PubMed Central

    Wang, Yue; Seah, Tingting; Xu, Jun; Radda, George K.; Südhof, Thomas C.; Han, Weiping

    2010-01-01

    Background Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. Methodology/Principal Findings In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X) mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. Conclusions Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells. PMID:21085706

  4. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion.

    PubMed

    Gustavsson, Natalia; Wang, Xiaorui; Wang, Yue; Seah, Tingting; Xu, Jun; Radda, George K; Südhof, Thomas C; Han, Weiping

    2010-11-09

    Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X) mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.

  5. Sweet taste receptors regulate basal insulin secretion and contribute to compensatory insulin hypersecretion during the development of diabetes in male mice.

    PubMed

    Kyriazis, George A; Smith, Kathleen R; Tyrberg, Björn; Hussain, Tania; Pratley, Richard E

    2014-06-01

    β-Cells rapidly secrete insulin in response to acute increases in plasma glucose but, upon further continuous exposure to glucose, insulin secretion progressively decreases. Although the mechanisms are unclear, this mode of regulation suggests the presence of a time-dependent glucosensory system that temporarily attenuates insulin secretion. Interestingly, early-stage β-cell dysfunction is often characterized by basal (ie, fasting) insulin hypersecretion, suggesting a disruption of these related mechanisms. Because sweet taste receptors (STRs) on β-cells are implicated in the regulation of insulin secretion and glucose is a bona fide STR ligand, we tested whether STRs mediate this sensory mechanism and participate in the regulation of basal insulin secretion. We used mice lacking STR signaling (T1R2(-/-) knockout) and pharmacologic inhibition of STRs in human islets. Mouse and human islets deprived of STR signaling hypersecrete insulin at short-term fasting glucose concentrations. Accordingly, 5-hour fasted T1R2(-/-) mice have increased plasma insulin and lower glucose. Exposure of isolated wild-type islets to elevated glucose levels reduced STR expression, whereas islets from diabetic (db/db) or diet-induced obese mouse models show similar down-regulation. This transcriptional reprogramming in response to hyperglycemia correlates with reduced STR function in these mouse models, leading to insulin hypersecretion. These findings reveal a novel mechanism by which insulin secretion is physiologically regulated by STRs and also suggest that, during the development of diabetes, STR function is compromised by hyperglycemia leading to hyperinsulinemia. These observations further suggest that STRs might be a promising therapeutic target to prevent and treat type 2 diabetes.

  6. Sweet Taste Receptors Regulate Basal Insulin Secretion and Contribute to Compensatory Insulin Hypersecretion During the Development of Diabetes in Male Mice

    PubMed Central

    Smith, Kathleen R.; Tyrberg, Björn; Hussain, Tania; Pratley, Richard E.

    2014-01-01

    β-Cells rapidly secrete insulin in response to acute increases in plasma glucose but, upon further continuous exposure to glucose, insulin secretion progressively decreases. Although the mechanisms are unclear, this mode of regulation suggests the presence of a time-dependent glucosensory system that temporarily attenuates insulin secretion. Interestingly, early-stage β-cell dysfunction is often characterized by basal (ie, fasting) insulin hypersecretion, suggesting a disruption of these related mechanisms. Because sweet taste receptors (STRs) on β-cells are implicated in the regulation of insulin secretion and glucose is a bona fide STR ligand, we tested whether STRs mediate this sensory mechanism and participate in the regulation of basal insulin secretion. We used mice lacking STR signaling (T1R2−/− knockout) and pharmacologic inhibition of STRs in human islets. Mouse and human islets deprived of STR signaling hypersecrete insulin at short-term fasting glucose concentrations. Accordingly, 5-hour fasted T1R2−/− mice have increased plasma insulin and lower glucose. Exposure of isolated wild-type islets to elevated glucose levels reduced STR expression, whereas islets from diabetic (db/db) or diet-induced obese mouse models show similar down-regulation. This transcriptional reprogramming in response to hyperglycemia correlates with reduced STR function in these mouse models, leading to insulin hypersecretion. These findings reveal a novel mechanism by which insulin secretion is physiologically regulated by STRs and also suggest that, during the development of diabetes, STR function is compromised by hyperglycemia leading to hyperinsulinemia. These observations further suggest that STRs might be a promising therapeutic target to prevent and treat type 2 diabetes. PMID:24712876

  7. Regulation of insulin secretion and reactive oxygen species production by free fatty acids in pancreatic islets.

    PubMed

    Graciano, Maria Fernanda Rodrigues; Valle, Maíra M R; Kowluru, Anjan; Curi, Rui; Carpinelli, Angelo R

    2011-01-01

    Free fatty acids regulate insulin secretion through metabolic and intracellular signaling mechanisms such as induction of malonyl-CoA/long-chain CoA pathway, production of lipids, GPRs (G protein-coupled receptors) activation and the modulation of calcium currents. Fatty acids (FA) are also important inducers of ROS (reactive oxygen species) production in β-cells. Production of ROS for short periods is associated with an increase in GSIS (glucose-stimulated insulin secretion), but excessive or sustained production of ROS is negatively correlated with the insulin secretory process. Several mechanisms for FA modulation of ROS production by pancreatic β-cells have been proposed, such as the control of mitochondrial complexes and electron transport, induction of uncoupling proteins, NADPH oxidase activation, interaction with the renin-angiotensin system, and modulation of the antioxidant defense system. The major sites of superoxide production within mitochondria derive from complexes I and III. The amphiphilic nature of FA favors their incorporation into mitochondrial membranes, altering the membrane fluidity and facilitating the electron leak. The extra-mitochondrial ROS production induced by FA through the NADPH oxidase complex is also an important source of these species in β-cells.

  8. G6PC2: A Negative Regulator of Basal Glucose-Stimulated Insulin Secretion

    PubMed Central

    Pound, Lynley D.; Oeser, James K.; O’Brien, Tracy P.; Wang, Yingda; Faulman, Chandler J.; Dadi, Prasanna K.; Jacobson, David A.; Hutton, John C.; McGuinness, Owen P.; Shiota, Masakazu; O’Brien, Richard M.

    2013-01-01

    Elevated fasting blood glucose (FBG) is associated with increased risk for the development of type 2 diabetes and cardiovascular-associated mortality. Genome-wide association studies (GWAS) have linked polymorphisms in G6PC2 with variations in FBG and body fat, although not insulin sensitivity or glucose tolerance. G6PC2 encodes an islet-specific, endoplasmic reticulum–resident glucose-6-phosphatase catalytic subunit. A combination of in situ perfused pancreas, in vitro isolated islet, and in vivo analyses were used to explore the function of G6pc2 in mice. G6pc2 deletion had little effect on insulin sensitivity and glucose tolerance, whereas body fat was reduced in female G6pc2 knockout (KO) mice on both a chow and high-fat diet, observations that are all consistent with human GWAS data. G6pc2 deletion resulted in a leftward shift in the dose-response curve for glucose-stimulated insulin secretion (GSIS). As a consequence, under fasting conditions in which plasma insulin levels were identical, blood glucose levels were reduced in G6pc2 KO mice, again consistent with human GWAS data. Glucose-6-phosphatase activity was reduced, whereas basal cytoplasmic calcium levels were elevated in islets isolated from G6pc2 KO mice. These data suggest that G6pc2 represents a novel, negative regulator of basal GSIS that acts by hydrolyzing glucose-6-phosphate, thereby reducing glycolytic flux. PMID:23274894

  9. G6PC2: a negative regulator of basal glucose-stimulated insulin secretion.

    PubMed

    Pound, Lynley D; Oeser, James K; O'Brien, Tracy P; Wang, Yingda; Faulman, Chandler J; Dadi, Prasanna K; Jacobson, David A; Hutton, John C; McGuinness, Owen P; Shiota, Masakazu; O'Brien, Richard M

    2013-05-01

    Elevated fasting blood glucose (FBG) is associated with increased risk for the development of type 2 diabetes and cardiovascular-associated mortality. Genome-wide association studies (GWAS) have linked polymorphisms in G6PC2 with variations in FBG and body fat, although not insulin sensitivity or glucose tolerance. G6PC2 encodes an islet-specific, endoplasmic reticulum-resident glucose-6-phosphatase catalytic subunit. A combination of in situ perfused pancreas, in vitro isolated islet, and in vivo analyses were used to explore the function of G6pc2 in mice. G6pc2 deletion had little effect on insulin sensitivity and glucose tolerance, whereas body fat was reduced in female G6pc2 knockout (KO) mice on both a chow and high-fat diet, observations that are all consistent with human GWAS data. G6pc2 deletion resulted in a leftward shift in the dose-response curve for glucose-stimulated insulin secretion (GSIS). As a consequence, under fasting conditions in which plasma insulin levels were identical, blood glucose levels were reduced in G6pc2 KO mice, again consistent with human GWAS data. Glucose-6-phosphatase activity was reduced, whereas basal cytoplasmic calcium levels were elevated in islets isolated from G6pc2 KO mice. These data suggest that G6pc2 represents a novel, negative regulator of basal GSIS that acts by hydrolyzing glucose-6-phosphate, thereby reducing glycolytic flux.

  10. Regulation of Endogenous (Male) Rodent GLP-1 Secretion and Human Islet Insulin Secretion by Antagonism of Somatostatin Receptor 5.

    PubMed

    Farb, Thomas B; Adeva, Marta; Beauchamp, Thomas J; Cabrera, Over; Coates, David A; DeShea Meredith, Tamika; Droz, Brian A; Efanov, Alexander; Ficorilli, James V; Gackenheimer, Susan L; Martinez-Grau, Maria A; Molero, Victoriano; Ruano, Gema; Statnick, Michael A; Suter, Todd M; Syed, Samreen K; Toledo, Miguel A; Willard, Francis S; Zhou, Xin; Bokvist, Krister B; Barrett, David G

    2017-09-11

    Incretin and insulin responses to nutrient loads are suppressed in persons with diabetes, resulting in decreased glycemic control. Whereas agents including sulfonylureas and Dipeptidyl peptidase-4 inhibitors (DPP4i) partially reverse these effects and provide therapeutic benefit, their modes of action limit efficacy. Because somatostatin (SST) has been shown to suppress both insulin and GLP-1 secretion through the Gi-coupled SST receptor 5 (SSTR5) isoform in vitro, antagonism of SSTR5 may improve glycemic control via intervention in both pathways. Here we show that a novel potent and selective SSTR5 antagonist reverses the blunting effects of SST on insulin secretion from isolated human islets, and demonstrate for the first time that SSTR5 antagonism affords increased levels of systemic GLP-1 in vivo. Knocking out Sstr5 in mice provided a similar increase in systemic GLP-1 levels, which were not increased further by treatment with the antagonist. Treatment of mice with the SSTR5 antagonist in combination with a DPP4i afforded increases in systemic GLP-1 levels that were more than additive, and resulted in greater glycemic control compared to either agent alone. In isolated human islets, the SSTR5 antagonist completely reversed the inhibitory effect of exogenous SST-14 on insulin secretion. Taken together, these data suggest that SSTR5 antagonism should increase circulating GLP-1 levels and stimulate insulin secretion (directly and via GLP-1) in humans, improving glycemic control in patients with diabetes. Copyright © 2017 Endocrine Society.

  11. Exposure to static magnetic fields increases insulin secretion in rat INS-1 cells by activating the transcription of the insulin gene and up-regulating the expression of vesicle-secreted proteins.

    PubMed

    Mao, Libin; Wang, Huiqin; Ma, Fenghui; Guo, Zhixia; He, Hongpeng; Zhou, Hao; Wang, Nan

    2017-08-01

    To evaluate the effect of static magnetic fields (SMFs) on insulin secretion and explore the mechanisms underlying exposure to SMF-induced insulin secretion in rat insulinoma INS-1 cells. INS-1 cells were exposed to a 400 mT SMF for 72 h, and the proliferation of INS-1 cells was detected by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The secretion of insulin was measured with an enzyme linked immunosorbent assays (ELISA), the expression of genes was detected by real-time PCR, and the expression of proteins was measured by Western blotting. Exposure to an SMF increased the expression and secretion of insulin by INS-1 cells but did not affect cell proliferation. Moreover, SMF exposure up-regulated the expression of several pancreas-specific transcriptional factors. Specifically, the activity of the rat insulin promoter was enhanced in INS-1 cells exposed to an SMF, and the expression levels of synaptosomal-associated protein 25 (SNAP-25) and syntaxin-1A were up-regulated after exposure to an SMF. SMF exposure can promote insulin secretion in rat INS-1 cells by activating the transcription of the insulin gene and up-regulating the expression of vesicle-secreted proteins.

  12. Functional Analysis of Novel Candidate Regulators of Insulin Secretion in the MIN6 Mouse Pancreatic β Cell Line

    PubMed Central

    Kobayashi, Masaki; Yamato, Eiji; Tanabe, Koji; Tashiro, Fumi; Miyazaki, Satsuki; Miyazaki, Jun-ichi

    2016-01-01

    Elucidating the regulation of glucose-stimulated insulin secretion (GSIS) in pancreatic β cells is important for understanding and treating diabetes. The pancreatic β cell line, MIN6, retains GSIS but gradually loses it in long-term culture. The MIN6 subclone, MIN6c4, exhibits well-regulated GSIS even after prolonged culture. We previously used DNA microarray analysis to compare gene expression in the parental MIN6 cells and MIN6c4 cells and identified several differentially regulated genes that may be involved in maintaining GSIS. Here we investigated the potential roles of six of these genes in GSIS: Tmem59l (Transmembrane protein 59 like), Scgn (Secretagogin), Gucy2c (Guanylate cyclase 2c), Slc29a4 (Solute carrier family 29, member 4), Cdhr1 (Cadherin-related family member 1), and Celsr2 (Cadherin EGF LAG seven-pass G-type receptor 2). These genes were knocked down in MIN6c4 cells using lentivirus vectors expressing gene-specific short hairpin RNAs (shRNAs), and the effects of the knockdown on insulin expression and secretion were analyzed. Suppression of Tmem59l, Scgn, and Gucy2c expression resulted in significantly decreased glucose- and/or KCl-stimulated insulin secretion from MIN6c4 cells, while the suppression of Slc29a4 expression resulted in increased insulin secretion. Tmem59l overexpression rescued the phenotype of the Tmem59l knockdown MIN6c4 cells, and immunostaining analysis indicated that the TMEM59L protein colocalized with insulin and GM130, a Golgi complex marker, in MIN6 cells. Collectively, our findings suggested that the proteins encoded by Tmem59l, Scgn, Gucy2c, and Slc29a4 play important roles in regulating GSIS. Detailed studies of these proteins and their functions are expected to provide new insights into the molecular mechanisms involved in insulin secretion. PMID:26986842

  13. Functional Analysis of Novel Candidate Regulators of Insulin Secretion in the MIN6 Mouse Pancreatic β Cell Line.

    PubMed

    Kobayashi, Masaki; Yamato, Eiji; Tanabe, Koji; Tashiro, Fumi; Miyazaki, Satsuki; Miyazaki, Jun-ichi

    2016-01-01

    Elucidating the regulation of glucose-stimulated insulin secretion (GSIS) in pancreatic β cells is important for understanding and treating diabetes. The pancreatic β cell line, MIN6, retains GSIS but gradually loses it in long-term culture. The MIN6 subclone, MIN6c4, exhibits well-regulated GSIS even after prolonged culture. We previously used DNA microarray analysis to compare gene expression in the parental MIN6 cells and MIN6c4 cells and identified several differentially regulated genes that may be involved in maintaining GSIS. Here we investigated the potential roles of six of these genes in GSIS: Tmem59l (Transmembrane protein 59 like), Scgn (Secretagogin), Gucy2c (Guanylate cyclase 2c), Slc29a4 (Solute carrier family 29, member 4), Cdhr1 (Cadherin-related family member 1), and Celsr2 (Cadherin EGF LAG seven-pass G-type receptor 2). These genes were knocked down in MIN6c4 cells using lentivirus vectors expressing gene-specific short hairpin RNAs (shRNAs), and the effects of the knockdown on insulin expression and secretion were analyzed. Suppression of Tmem59l, Scgn, and Gucy2c expression resulted in significantly decreased glucose- and/or KCl-stimulated insulin secretion from MIN6c4 cells, while the suppression of Slc29a4 expression resulted in increased insulin secretion. Tmem59l overexpression rescued the phenotype of the Tmem59l knockdown MIN6c4 cells, and immunostaining analysis indicated that the TMEM59L protein colocalized with insulin and GM130, a Golgi complex marker, in MIN6 cells. Collectively, our findings suggested that the proteins encoded by Tmem59l, Scgn, Gucy2c, and Slc29a4 play important roles in regulating GSIS. Detailed studies of these proteins and their functions are expected to provide new insights into the molecular mechanisms involved in insulin secretion.

  14. The voltage-gated proton channel Hv1 is expressed in pancreatic islet β-cells and regulates insulin secretion.

    PubMed

    Zhao, Qing; Che, Yongzhe; Li, Qiang; Zhang, Shangrong; Gao, Ying-Tang; Wang, Yifan; Wang, Xudong; Xi, Wang; Zuo, Weiyan; Li, Shu Jie

    2015-12-25

    The voltage-gated proton channel Hv1 is a potent acid extruder that participates in the extrusion of the intracellular acid. Here, we showed for the first time, Hv1 is highly expressed in mouse and human pancreatic islet β-cells, as well as β-cell lines. Imaging studies demonstrated that Hv1 resides in insulin-containing granules in β-cells. Knockdown of Hv1 with RNA interference significantly reduces glucose- and K(+)-induced insulin secretion in isolated islets and INS-1 (832/13) β-cells and has an impairment on glucose- and K(+)-induced intracellular Ca(2+) homeostasis. Our data demonstrated that the expression of Hv1 in pancreatic islet β-cells regulates insulin secretion through regulating Ca(2+) homeostasis.

  15. The voltage-gated proton channel Hv1 is expressed in pancreatic islet β-cells and regulates insulin secretion

    SciTech Connect

    Zhao, Qing; Che, Yongzhe; Li, Qiang; Zhang, Shangrong; Gao, Ying-Tang; Wang, Yifan; Wang, Xudong; Xi, Wang; Zuo, Weiyan; Li, Shu Jie

    2015-12-25

    The voltage-gated proton channel Hv1 is a potent acid extruder that participates in the extrusion of the intracellular acid. Here, we showed for the first time, Hv1 is highly expressed in mouse and human pancreatic islet β-cells, as well as β-cell lines. Imaging studies demonstrated that Hv1 resides in insulin-containing granules in β-cells. Knockdown of Hv1 with RNA interference significantly reduces glucose- and K{sup +}-induced insulin secretion in isolated islets and INS-1 (832/13) β-cells and has an impairment on glucose- and K{sup +}-induced intracellular Ca{sup 2+} homeostasis. Our data demonstrated that the expression of Hv1 in pancreatic islet β-cells regulates insulin secretion through regulating Ca{sup 2+} homeostasis.

  16. Stimulation of leptin secretion by insulin

    PubMed Central

    Tsai, Minglun; Asakawa, Akihiro; Amitani, Haruka; Inui, Akio

    2012-01-01

    Leptin has a crucial role in regulating food intake and maintaining metabolic homeostasis. Although little is known about the process of leptin secretion, insulin, which has an important role in the metabolism of glucose and lipids, is believed to regulate leptin secretion through a posttranscriptional mechanism in the short term, and via glucose metabolism in the long term. The gastric mucosa secretes leptin, but this mechanism has not been completely elucidated. Understanding the mechanism of insulin-regulated leptin secretion could lead to the development of new treatment methods for obesity and its comorbidities, which are serious public health concerns. PMID:23565488

  17. Nitric oxide (NO)--production and regulation of insulin secretion in islets of freely fed and fasted mice.

    PubMed

    Eckersten, Dag; Henningsson, Ragnar

    2012-02-10

    Production of nitric oxide through the action of nitric oxide synthase (NOS) has been detected in the islets of Langerhans. The inducible isoform of NOS (iNOS) is induced by cytokines and might contribute to the development of type-1 diabetes, while the constitutive isoform (cNOS) is thought to be implicated in the physiological regulation of insulin secretion. In the present study we have detected and quantified islet cNOS- and iNOS-derived NO production concomitant with measuring its influence on insulin secretion in the presence of different secretagogues: glucose, L-arginine, L-leucine and α-ketoisocaproic acid (KIC) both during fasting and freely fed conditions. In intact islets from freely fed mice both cNOS- and iNOS-activity was greatly increased by glucose (20 mmol/l). Fasting induced islet iNOS activity at both physiological (7 mmol/l) and high (20 mmol/l) glucose concentrations. NOS blockade increased insulin secretion both during freely fed conditions and after fasting. L-arginine stimulated islet cNOS activity and did not affect islet iNOS activity. l-leucine or KIC, known to enter the TCA cycle without affecting glycolysis, did not affect either islet cNOS- or iNOS activity. Accordingly, insulin secretion stimulated by L-leucine or KIC was unaffected by addition of L-NAME both during feeding and fasting. We conclude that both high glucose concentrations and fasting increase islet total NO production (mostly iNOS derived) which inhibit insulin secretion. The insulin secretagogues L-leucine and KIC, which do not affect glycolysis, do not interfere with the islet NO-NOS system.

  18. A peroxiredoxin, PRDX-2, is required for insulin secretion and insulin/IIS-dependent regulation of stress resistance and longevity

    PubMed Central

    Oláhová, Monika; Veal, Elizabeth A

    2015-01-01

    Peroxiredoxins (Prx) are abundant thiol peroxidases with a conserved anti-ageing role. In contrast to most animals, the nematode worm, Caenorhabditis elegans, encodes a single cytosolic 2-Cys Prx, PRDX-2, rendering it an excellent model for examining how peroxiredoxins affect animal physiology and ageing. Our previous work revealed that, although PRDX-2 protects against the toxicity of peroxides, enigmatically, prdx-2-mutant animals are hyper-resistant to other forms of oxidative stress. Here, we have investigated the basis for this increased resistance. Mammalian FOXO and Nrf2 transcription factors directly promote the expression of a range of detoxification enzymes. We show that the FOXO orthologue, DAF-16, and the Nrf2 orthologue, SKN-1, are required for the increased stress resistance of prdx-2-mutant worms. Our data suggest that PRDX-2 is required for normal levels of insulin secretion and hence the inhibition of DAF-16 and SKN-1 by insulin/IGF-1-like signalling (IIS) under nutrient-rich conditions. Intriguingly, loss of PRDX-2 increases DAF-16 and SKN-1 activities sufficiently to increase arsenite resistance without initiating other IIS-inhibited processes. Together, these data suggest that loss of peroxiredoxin function may increase stress resistance by reducing insulin secretion, but that further changes in insulin signalling are required for the reprogramming of development and fat metabolism. In addition, we reveal that the temperature-dependent prolongevity function of PRDX-2 is required for the extended lifespan associated with several pathways, including further reductions in IIS. PMID:25808059

  19. Brain Glucose Sensors Play a Significant Role in the Regulation of Pancreatic Glucose-Stimulated Insulin Secretion

    PubMed Central

    Osundiji, Mayowa A.; Lam, Daniel D.; Shaw, Jill; Yueh, Chen-Yu; Markkula, S. Pauliina; Hurst, Paul; Colliva, Carolina; Roda, Aldo; Heisler, Lora K.; Evans, Mark L.

    2012-01-01

    As patients decline from health to type 2 diabetes, glucose-stimulated insulin secretion (GSIS) typically becomes impaired. Although GSIS is driven predominantly by direct sensing of a rise in blood glucose by pancreatic β-cells, there is growing evidence that hypothalamic neurons control other aspects of peripheral glucose metabolism. Here we investigated the role of the brain in the modulation of GSIS. To examine the effects of increasing or decreasing hypothalamic glucose sensing on glucose tolerance and insulin secretion, glucose or inhibitors of glucokinase, respectively, were infused into the third ventricle during intravenous glucose tolerance tests (IVGTTs). Glucose-infused rats displayed improved glucose handling, particularly within the first few minutes of the IVGTT, with a significantly lower area under the excursion curve within the first 10 min (AUC0-10). This was explained by increased insulin secretion. In contrast, infusion of the glucokinase inhibitors glucosamine or mannoheptulose worsened glucose tolerance and decreased GSIS in the first few minutes of IVGTT. Our data suggest a role for brain glucose sensors in the regulation of GSIS, particularly during the early phase. We propose that pharmacological agents targeting hypothalamic glucose-sensing pathways may represent novel therapeutic strategies for enhancing early phase insulin secretion in type 2 diabetes. PMID:22210318

  20. Insulin and Glucagon Secretion In Vitro

    NASA Technical Reports Server (NTRS)

    Rajan, Arun S.

    1998-01-01

    Long-duration space flight is associated with many physiological abnormalities in astronauts. In particular, altered regulation of the hormones insulin and glucagon may contribute to metabolic disturbances such as increased blood sugar levels, which if persistently elevated result in toxic effects. These changes are also observed in the highly prevalent disease diabetes, which affects 16 million Americans and consumes over $100 billion in annual healthcare costs. By mimicking the microgravity environment of space in the research laboratory using a NASA-developed bioreactor, one can study the physiology of insulin and glucagon secretion and determine if there are alterations in these cellular processes. The original specific objectives of the project included: (1) growing ('cell culture') of pancreatic islet beta and alpha cells that secrete insulin and glucagon respectively, in the NASA bioreactor; (2) examination of the effects of microgravity on insulin and glucagon secretion; and (3) study of molecular mechanisms of insulin and glucagon secretion if altered by microgravity.

  1. Raldh3 expression in diabetic islets reciprocally regulates secretion of insulin and glucagon from pancreatic islets.

    PubMed

    Shimamura, Mitsuru; Karasawa, Hiroshi; Sakakibara, Sachiko; Shinagawa, Akira

    2010-10-08

    We have previously reported that obesity-induced diabetes developed in high-fat diet (HFD)-fed BDF1 mice. This is caused by insufficient insulin response to an excess glucose load. In this study, we have shown that the enhanced expression of retinaldehyde dehydrogenase 3 (Raldh3) causes functional disorders of pancreatic islets in diabetic mouse models. In the pancreatic islets of HFD-induced diabetic BDF1 mice and spontaneously diabetic C57BL/KsJ(db/db) mice, gene expression analysis with oligonucleotide microarray revealed a significant increase in Raldh3 expression. Exposure to a culture medium containing a higher glucose concentration (25 mM) significantly increased Raldh3 expression in murine MIN6 and alphaTC1 clone 9 cells, which derived from the α and β-cells of pancreatic islets, respectively. Overexpression of Raldh3 reduced the insulin secretion in MIN6 cells, and surprisingly, increased the glucagon secretion in alphaTC1 clone 9 cells. Furthermore, the knockdown of Raldh3 expression with siRNA decreased the glucagon secretion in alphaTC1 clone 9 cells. Raldh3 catalyzes the conversion of 13-cis retinal to 13-cis retinoic acid and we revealed that 13-cis retinoic acid significantly reduces cell viability in MIN6 and alphaTC1 clone 9 cells, but not in cells of H4IIEC3, 3T3-L1, and COS-1 cell lines. These findings suggest that an increasing expression of Raldh3 deregulates the balanced mechanisms of insulin and glucagon secretion in the pancreatic islets and may induce β-cell dysfunction leading to the development of type 2 diabetes. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. PED/PEA-15 regulates glucose-induced insulin secretion by restraining potassium channel expression in pancreatic beta-cells.

    PubMed

    Miele, Claudia; Raciti, Gregory Alexander; Cassese, Angela; Romano, Chiara; Giacco, Ferdinando; Oriente, Francesco; Paturzo, Flora; Andreozzi, Francesco; Zabatta, Assunta; Troncone, Giancarlo; Bosch, Fatima; Pujol, Anna; Chneiweiss, Hervé; Formisano, Pietro; Beguinot, Francesco

    2007-03-01

    The phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (ped/pea-15) gene is overexpressed in human diabetes and causes this abnormality in mice. Transgenic mice with beta-cell-specific overexpression of ped/pea-15 (beta-tg) exhibited decreased glucose tolerance but were not insulin resistant. However, they showed impaired insulin response to hyperglycemia. Islets from the beta-tg also exhibited little response to glucose. mRNAs encoding the Sur1 and Kir6.2 potassium channel subunits and their upstream regulator Foxa2 were specifically reduced in these islets. Overexpression of PED/PEA-15 inhibited the induction of the atypical protein kinase C (PKC)-zeta by glucose in mouse islets and in beta-cells of the MIN-6 and INS-1 lines. Rescue of PKC-zeta activity elicited recovery of the expression of the Sur1, Kir6.2, and Foxa2 genes and of glucose-induced insulin secretion in PED/PEA-15-overexpressing beta-cells. Islets from ped/pea-15-null mice exhibited a twofold increased activation of PKC-zeta by glucose; increased abundance of the Sur1, Kir6.2, and Foxa2 mRNAs; and enhanced glucose effect on insulin secretion. In conclusion, PED/PEA-15 is an endogenous regulator of glucose-induced insulin secretion, which restrains potassium channel expression in pancreatic beta-cells. Overexpression of PED/PEA-15 dysregulates beta-cell function and is sufficient to impair glucose tolerance in mice.

  3. Serotonin regulates glucose-stimulated insulin secretion from pancreatic β cells during pregnancy.

    PubMed

    Ohara-Imaizumi, Mica; Kim, Hail; Yoshida, Masashi; Fujiwara, Tomonori; Aoyagi, Kyota; Toyofuku, Yukiko; Nakamichi, Yoko; Nishiwaki, Chiyono; Okamura, Tadashi; Uchida, Toyoyoshi; Fujitani, Yoshio; Akagawa, Kimio; Kakei, Masafumi; Watada, Hirotaka; German, Michael S; Nagamatsu, Shinya

    2013-11-26

    In preparation for the metabolic demands of pregnancy, β cells in the maternal pancreatic islets increase both in number and in glucose-stimulated insulin secretion (GSIS) per cell. Mechanisms have been proposed for the increased β cell mass, but not for the increased GSIS. Because serotonin production increases dramatically during pregnancy, we tested whether flux through the ionotropic 5-HT3 receptor (Htr3) affects GSIS during pregnancy. Pregnant Htr3a(-/-) mice exhibited impaired glucose tolerance despite normally increased β cell mass, and their islets lacked the increase in GSIS seen in islets from pregnant wild-type mice. Electrophysiological studies showed that activation of Htr3 decreased the resting membrane potential in β cells, which increased Ca(2+) uptake and insulin exocytosis in response to glucose. Thus, our data indicate that serotonin, acting in a paracrine/autocrine manner through Htr3, lowers the β cell threshold for glucose and plays an essential role in the increased GSIS of pregnancy.

  4. Characterization of Zinc Influx Transporters (ZIPs) in Pancreatic β Cells: ROLES IN REGULATING CYTOSOLIC ZINC HOMEOSTASIS AND INSULIN SECRETION.

    PubMed

    Liu, Ying; Batchuluun, Battsetseg; Ho, Louisa; Zhu, Dan; Prentice, Kacey J; Bhattacharjee, Alpana; Zhang, Ming; Pourasgari, Farzaneh; Hardy, Alexandre B; Taylor, Kathryn M; Gaisano, Herbert; Dai, Feihan F; Wheeler, Michael B

    2015-07-24

    Zinc plays an essential role in the regulation of pancreatic β cell function, affecting important processes including insulin biosynthesis, glucose-stimulated insulin secretion, and cell viability. Mutations in the zinc efflux transport protein ZnT8 have been linked with both type 1 and type 2 diabetes, further supporting an important role for zinc in glucose homeostasis. However, very little is known about how cytosolic zinc is controlled by zinc influx transporters (ZIPs). In this study, we examined the β cell and islet ZIP transcriptome and show consistent high expression of ZIP6 (Slc39a6) and ZIP7 (Slc39a7) genes across human and mouse islets and MIN6 β cells. Modulation of ZIP6 and ZIP7 expression significantly altered cytosolic zinc influx in pancreatic β cells, indicating an important role for ZIP6 and ZIP7 in regulating cellular zinc homeostasis. Functionally, this dysregulated cytosolic zinc homeostasis led to impaired insulin secretion. In parallel studies, we identified both ZIP6 and ZIP7 as potential interacting proteins with GLP-1R by a membrane yeast two-hybrid assay. Knock-down of ZIP6 but not ZIP7 in MIN6 β cells impaired the protective effects of GLP-1 on fatty acid-induced cell apoptosis, possibly via reduced activation of the p-ERK pathway. Therefore, our data suggest that ZIP6 and ZIP7 function as two important zinc influx transporters to regulate cytosolic zinc concentrations and insulin secretion in β cells. In particular, ZIP6 is also capable of directly interacting with GLP-1R to facilitate the protective effect of GLP-1 on β cell survival.

  5. The expression and regulation of depolarization-activated K+ channels in the insulin-secreting cell line INS-1.

    PubMed

    Su, J; Yu, H; Lenka, N; Hescheler, J; Ullrich, S

    2001-04-01

    The aim of the present study was to characterize depolarization-activated outward currents in insulin-secreting INS-1 cells and to investigate the role of K+ channels other than the KATP channels in the regulation of insulin release. Outward currents were inhibited by 4-aminopyridine (4-AP, 10 mmol/l), tetraethylammonium (TEA, 10 mmol/l) and tetrapentylammonium (TPeA, 100 mumol/l) by 55.1 +/- 3.8% (n = 3), 78.1 +/- 3.2% (n = 6) and 98.7 +/- 0.8% (n = 5), respectively. Margatoxin (5 nmol/l) and charybdotoxin (3 mumol/l) had no effect. 4-AP inhibited mainly a fast-activating, slowly inactivating current, whereas the TEA- and TPeA-sensitive current components were slowly activating and non-inactivating. Forskolin and the forskolin analogue 1,9-dideoxyforskolin, which does not stimulate adenylyl cyclase, also inhibited the outward current, suggesting a direct effect on the channels. Using reverse transcriptase polymerase chain reaction (RT/PCR). Kv channel mRNAs of Kv1.4, Kv1.5, Kv2.1, Kv2.2, Kv3.1 and Kv3.2 were detected whereas other Kv channels, Kv1.1, Kv1.2, Kv1.3, Kv1.6 and Kv3.4 were not detected. Insulin secretion in the presence of tolbutamide (100 mumol/l) was increased by 4-AP, TEA and TPeA by 65%, 41% and 150%, respectively. Basal secretion was not affected by these blockers. Our study reveals that the opening of voltage-dependent K+ channels negatively controls insulin secretion in depolarized cells, probably by shortening the action potential thus reducing Ca2+ influx.

  6. Reactive sulfur species regulate tRNA methylthiolation and contribute to insulin secretion

    PubMed Central

    Takahashi, Nozomu; Wei, Fan-Yan; Watanabe, Sayaka; Hirayama, Mayumi; Ohuchi, Yuya; Fujimura, Atsushi; Kaitsuka, Taku; Ishii, Isao; Sawa, Tomohiro; Nakayama, Hideki; Akaike, Takaaki; Tomizawa, Kazuhito

    2017-01-01

    The 2-methylthio (ms2) modification at A37 of tRNAs is critical for accurate decoding, and contributes to metabolic homeostasis in mammals. However, the regulatory mechanism of ms2 modification remains largely unknown. Here, we report that cysteine hydropersulfide (CysSSH), a newly identified reactive sulfur species, is involved in ms2 modification in cells. The suppression of intracellular CysSSH production rapidly reduced ms2 modification, which was rescued by the application of an exogenous CysSSH donor. Using a unique and stable isotope-labeled CysSSH donor, we show that CysSSH was capable of specifically transferring its reactive sulfur atom to the cysteine residues of ms2-modifying enzymes as well as ms2 modification. Furthermore, the suppression of CysSSH production impaired insulin secretion and caused glucose intolerance in both a pancreatic β-cell line and mouse model. These results demonstrate that intracellular CysSSH is a novel sulfur source for ms2 modification, and that it contributes to insulin secretion. PMID:27568003

  7. Reactive sulfur species regulate tRNA methylthiolation and contribute to insulin secretion.

    PubMed

    Takahashi, Nozomu; Wei, Fan-Yan; Watanabe, Sayaka; Hirayama, Mayumi; Ohuchi, Yuya; Fujimura, Atsushi; Kaitsuka, Taku; Ishii, Isao; Sawa, Tomohiro; Nakayama, Hideki; Akaike, Takaaki; Tomizawa, Kazuhito

    2017-01-09

    The 2-methylthio (ms(2)) modification at A37 of tRNAs is critical for accurate decoding, and contributes to metabolic homeostasis in mammals. However, the regulatory mechanism of ms(2) modification remains largely unknown. Here, we report that cysteine hydropersulfide (CysSSH), a newly identified reactive sulfur species, is involved in ms(2) modification in cells. The suppression of intracellular CysSSH production rapidly reduced ms(2) modification, which was rescued by the application of an exogenous CysSSH donor. Using a unique and stable isotope-labeled CysSSH donor, we show that CysSSH was capable of specifically transferring its reactive sulfur atom to the cysteine residues of ms(2)-modifying enzymes as well as ms(2) modification. Furthermore, the suppression of CysSSH production impaired insulin secretion and caused glucose intolerance in both a pancreatic β-cell line and mouse model. These results demonstrate that intracellular CysSSH is a novel sulfur source for ms(2) modification, and that it contributes to insulin secretion.

  8. β-Cell Uncoupling Protein 2 Regulates Reactive Oxygen Species Production, Which Influences Both Insulin and Glucagon Secretion

    PubMed Central

    Robson-Doucette, Christine A.; Sultan, Sobia; Allister, Emma M.; Wikstrom, Jakob D.; Koshkin, Vasilij; Bhatacharjee, Alpana; Prentice, Kacey J.; Sereda, Samuel B.; Shirihai, Orian S.; Wheeler, Michael B.

    2011-01-01

    OBJECTIVE The role of uncoupling protein 2 (UCP2) in pancreatic β-cells is highly debated, partly because of the broad tissue distribution of UCP2 and thus limitations of whole-body UCP2 knockout mouse models. To investigate the function of UCP2 in the β-cell, β-cell–specific UCP2 knockout mice (UCP2BKO) were generated and characterized. RESEARCH DESIGN AND METHODS UCP2BKO mice were generated by crossing loxUCP2 mice with mice expressing rat insulin promoter-driven Cre recombinase. Several in vitro and in vivo parameters were measured, including respiration rate, mitochondrial membrane potential, islet ATP content, reactive oxygen species (ROS) levels, glucose-stimulated insulin secretion (GSIS), glucagon secretion, glucose and insulin tolerance, and plasma hormone levels. RESULTS UCP2BKO β-cells displayed mildly increased glucose-induced mitochondrial membrane hyperpolarization but unchanged rates of uncoupled respiration and islet ATP content. UCP2BKO islets had elevated intracellular ROS levels that associated with enhanced GSIS. Surprisingly, UCP2BKO mice were glucose-intolerant, showing greater α-cell area, higher islet glucagon content, and aberrant ROS-dependent glucagon secretion under high glucose conditions. CONCLUSIONS Using a novel β-cell–specific UCP2KO mouse model, we have shed light on UCP2 function in primary β-cells. UCP2 does not behave as a classical metabolic uncoupler in the β-cell, but has a more prominent role in the regulation of intracellular ROS levels that contribute to GSIS amplification. In addition, β-cell UCP2 contributes to the regulation of intraislet ROS signals that mediate changes in α-cell morphology and glucagon secretion. PMID:21984579

  9. Connexin-36 Gap Junctions Regulate In Vivo First- and Second-Phase Insulin Secretion Dynamics and Glucose Tolerance in the Conscious Mouse

    PubMed Central

    Head, W. Steven; Orseth, Meredith L.; Nunemaker, Craig S.; Satin, Leslie S.; Piston, David W.; Benninger, Richard K.P.

    2012-01-01

    Insulin is secreted from the islets of Langerhans in coordinated pulses. These pulses are thought to lead to plasma insulin oscillations, which are putatively more effective in lowering blood glucose than continuous levels of insulin. Gap-junction coupling of β-cells by connexin-36 coordinates intracellular free calcium oscillations and pulsatile insulin release in isolated islets, however a role in vivo has not been shown. We test whether loss of gap-junction coupling disrupts plasma insulin oscillations and whether this impacts glucose tolerance. We characterized the connexin-36 knockout (Cx36−/−) mouse phenotype and performed hyperglycemic clamps with rapid sampling of insulin in Cx36−/− and control mice. Our results show that Cx36−/− mice are glucose intolerant, despite normal plasma insulin levels and insulin sensitivity. However, Cx36−/− mice exhibit reduced insulin pulse amplitudes and a reduction in first-phase insulin secretion. These changes are similarly found in isolated Cx36−/− islets. We conclude that Cx36 gap junctions regulate the in vivo dynamics of insulin secretion, which in turn is important for glucose homeostasis. Coordinated pulsatility of individual islets enhances the first-phase elevation and second-phase pulses of insulin. Because these dynamics are disrupted in the early stages of type 2 diabetes, dysregulation of gap-junction coupling could be an important factor in the development of this disease. PMID:22511206

  10. Connexin-36 gap junctions regulate in vivo first- and second-phase insulin secretion dynamics and glucose tolerance in the conscious mouse.

    PubMed

    Head, W Steven; Orseth, Meredith L; Nunemaker, Craig S; Satin, Leslie S; Piston, David W; Benninger, Richard K P

    2012-07-01

    Insulin is secreted from the islets of Langerhans in coordinated pulses. These pulses are thought to lead to plasma insulin oscillations, which are putatively more effective in lowering blood glucose than continuous levels of insulin. Gap-junction coupling of β-cells by connexin-36 coordinates intracellular free calcium oscillations and pulsatile insulin release in isolated islets, however a role in vivo has not been shown. We test whether loss of gap-junction coupling disrupts plasma insulin oscillations and whether this impacts glucose tolerance. We characterized the connexin-36 knockout (Cx36(-/-)) mouse phenotype and performed hyperglycemic clamps with rapid sampling of insulin in Cx36(-/-) and control mice. Our results show that Cx36(-/-) mice are glucose intolerant, despite normal plasma insulin levels and insulin sensitivity. However, Cx36(-/-) mice exhibit reduced insulin pulse amplitudes and a reduction in first-phase insulin secretion. These changes are similarly found in isolated Cx36(-/-) islets. We conclude that Cx36 gap junctions regulate the in vivo dynamics of insulin secretion, which in turn is important for glucose homeostasis. Coordinated pulsatility of individual islets enhances the first-phase elevation and second-phase pulses of insulin. Because these dynamics are disrupted in the early stages of type 2 diabetes, dysregulation of gap-junction coupling could be an important factor in the development of this disease.

  11. α/β-Hydrolase domain-6 and saturated long chain monoacylglycerol regulate insulin secretion promoted by both fuel and non-fuel stimuli.

    PubMed

    Zhao, Shangang; Poursharifi, Pegah; Mugabo, Yves; Levens, Emily J; Vivot, Kevin; Attane, Camille; Iglesias, Jose; Peyot, Marie-Line; Joly, Erik; Madiraju, S R Murthy; Prentki, Marc

    2015-12-01

    α/β-Hydrolase domain-6 (ABHD6) is a newly identified monoacylglycerol (MAG) lipase. We recently reported that it negatively regulates glucose stimulated insulin secretion (GSIS) in the β cells by hydrolyzing lipolysis-derived MAG that acts as a metabolic coupling factor and signaling molecule via exocytotic regulator Munc13-1. Whether ABHD6 and MAG play a role in response to all classes of insulin secretagogues, in particular various fuel and non-fuel stimuli, is unknown. Insulin secretion in response to various classes of secretagogues, exogenous MAG and pharmacological agents was measured in islets of mice deficient in ABHD6 specifically in the β cell (BKO). Islet perifusion experiments and determinations of glucose and fatty acid metabolism, cytosolic Ca(2+) and MAG species levels were carried out. Deletion of ABHD6 potentiated insulin secretion in response to the fuels glutamine plus leucine and α-ketoisocaproate and to the non-fuel stimuli glucagon-like peptide 1, carbamylcholine and elevated KCl. Fatty acids amplified GSIS in control and BKO mice to the same extent. Exogenous 1-MAG amplified insulin secretion in response to fuel and non-fuel stimuli. MAG hydrolysis activity was greatly reduced in BKO islets without changes in total diacylglycerol and triacylglycerol lipase activity. ABHD6 deletion induced insulin secretion independently from KATP channels and did not alter the glucose induced rise in intracellular Ca(2+). Perifusion studies showed elevated insulin secretion during second phase of GSIS in BKO islets that was not due to altered cytosolic Ca(2+) signaling or because of changes in glucose and fatty acid metabolism. Glucose increased islet saturated long chain 1-MAG species and ABHD6 deletion caused accumulation of these 1-MAG species at both low and elevated glucose. ABHD6 regulates insulin secretion in response to fuel stimuli at large and some non-fuel stimuli by controlling long chain saturated 1-MAG levels that synergize with other

  12. Serotonin regulates glucose-stimulated insulin secretion from pancreatic β cells during pregnancy

    PubMed Central

    Ohara-Imaizumi, Mica; Kim, Hail; Yoshida, Masashi; Fujiwara, Tomonori; Aoyagi, Kyota; Toyofuku, Yukiko; Nakamichi, Yoko; Nishiwaki, Chiyono; Okamura, Tadashi; Uchida, Toyoyoshi; Fujitani, Yoshio; Akagawa, Kimio; Kakei, Masafumi; Watada, Hirotaka; German, Michael S.; Nagamatsu, Shinya

    2013-01-01

    In preparation for the metabolic demands of pregnancy, β cells in the maternal pancreatic islets increase both in number and in glucose-stimulated insulin secretion (GSIS) per cell. Mechanisms have been proposed for the increased β cell mass, but not for the increased GSIS. Because serotonin production increases dramatically during pregnancy, we tested whether flux through the ionotropic 5-HT3 receptor (Htr3) affects GSIS during pregnancy. Pregnant Htr3a−/− mice exhibited impaired glucose tolerance despite normally increased β cell mass, and their islets lacked the increase in GSIS seen in islets from pregnant wild-type mice. Electrophysiological studies showed that activation of Htr3 decreased the resting membrane potential in β cells, which increased Ca2+ uptake and insulin exocytosis in response to glucose. Thus, our data indicate that serotonin, acting in a paracrine/autocrine manner through Htr3, lowers the β cell threshold for glucose and plays an essential role in the increased GSIS of pregnancy. PMID:24218571

  13. NAD kinase regulates the size of the NADPH pool and insulin secretion in pancreatic β-cells

    PubMed Central

    Gray, Joshua P.; Alavian, Kambiz N.; Jonas, Elizabeth A.

    2012-01-01

    NADPH is an important component of the antioxidant defense system and a proposed mediator in glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. An increase in the NADPH/NADP+ ratio has been reported to occur within minutes following the rise in glucose concentration in β-cells. However, 30 min following the increase in glucose, the total NADPH pool also increases through a mechanism not yet characterized. NAD kinase (NADK) catalyzes the de novo formation of NADP+ by phosphorylation of NAD+. NAD kinases have been shown to be essential for redox regulation, oxidative stress defense, and survival in bacteria and yeast. However, studies on NADK in eukaryotic cells are scarce, and the function of this enzyme has not been described in β-cells. We employed INS-1 832/13 cells, an insulin-secreting rat β-cell line, and isolated rodent islets to investigate the role of NADK in β-cell metabolic pathways. Adenoviral-mediated overexpression of NADK resulted in a two- to threefold increase in the total NADPH pool and NADPH/NADP+ ratio, suggesting that NADP+ formed by the NADK-catalyzed reaction is rapidly reduced to NADPH via cytosolic reductases. This increase in the NADPH pool was accompanied by an increase in GSIS in NADK-overexpressing cells. Furthermore, NADK overexpression protected β-cells against oxidative damage by the redox cycling agent menadione and reversed menadione-mediated inhibition of GSIS. Knockdown of NADK via shRNA exerted the opposite effect on all these parameters. These data suggest that NADK kinase regulates intracellular redox and affects insulin secretion and oxidative defense in the β-cell. PMID:22550069

  14. A mathematical model of insulin secretion.

    PubMed

    Shannon, A G; Hogg, J M; Ollerton, R L; Luzio, S; Owens, D R

    1994-01-01

    Diabetes mellitus is a chronic state of excessive blood glucose levels (hyperglycaemia), which may result from many environmental and genetic factors, often acting jointly. The major regulator of glucose concentration in the blood is insulin. It is known that about 50% of the insulin is taken up by the liver on passing through it after secretion from the pancreas. The precise value of this fractional uptake is not known, so the prehepatic insulin secretion rates cannot be readily estimated from the plasma insulin concentration levels. By utilizing the equimolar secretion of insulin and connecting peptide (C-peptide) from the pancreas, a noninvasive method has been formulated. This was based on a compartmental model which involved the pancreas, liver, and plasma. The resulting differential equation yielded a gamma variate solution which could be readily linearized. The model was then tested on 56 normal (51 nonobese and 5 obese) subjects, and three groups of subjects with diabetes who could be labelled as mild, moderate, and severe (based on the fasting plasma glucose concentration) with 83, 88, and 64 subjects respectively. We have focused on the human patient environment of the clinician to produce a distinct model which gave a consistent pattern within all four groups with good fits between observed and theoretical values of the plasma insulin levels. The consequent rates for insulin secretion were consistent across the groups and were clinically meaningful.

  15. GRP94 Is Essential for Mesoderm Induction and Muscle Development Because It Regulates Insulin-like Growth Factor Secretion

    PubMed Central

    Wanderling, Sherry; Simen, Birgitte B.; Ostrovsky, Olga; Ahmed, Noreen T.; Vogen, Shawn M.; Gidalevitz, Tali

    2007-01-01

    Because only few of its client proteins are known, the physiological roles of the endoplasmic reticulum chaperone glucose-regulated protein 94 (GRP94) are poorly understood. Using targeted disruption of the murine GRP94 gene, we show that it has essential functions in embryonic development. grp94−/− embryos die on day 7 of gestation, fail to develop mesoderm, primitive streak, or proamniotic cavity. grp94−/− ES cells grow in culture and are capable of differentiation into cells representing all three germ layers. However, these cells do not differentiate into cardiac, smooth, or skeletal muscle. Differentiation cultures of mutant ES cells are deficient in secretion of insulin-like growth factor II and their defect can be complemented with exogenous insulin-like growth factors I or II. The data identify insulin-like growth factor II as one developmentally important protein whose production depends on the activity of GRP94. Keywords: chaperone/HSP90/Insulin-like growth factors/mouse development. PMID:17634284

  16. Fenofibrate Decreases Insulin Clearance and Insulin Secretion to Maintain Insulin Sensitivity.

    PubMed

    Ramakrishnan, Sadeesh K; Russo, Lucia; Ghanem, Simona S; Patel, Payal R; Oyarce, Ana Maria; Heinrich, Garrett; Najjar, Sonia M

    2016-11-11

    High fat diet reduces the expression of CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a transmembrane glycoprotein that promotes insulin clearance and down-regulates fatty acid synthase activity in the liver upon its phosphorylation by the insulin receptor. Because peroxisome proliferator-activated receptor α (PPARα) transcriptionally suppresses CEACAM1 expression, we herein examined whether high fat down-regulates CEACAM1 expression in a PPARα-dependent mechanism. By activating PPARα, the lipid-lowering drug fenofibrate reverses dyslipidemia and improves insulin sensitivity in type 2 diabetes in part by promoting fatty acid oxidation. Despite reducing glucose-stimulated insulin secretion, fenofibrate treatment does not result in insulin insufficiency. To examine whether this is mediated by a parallel decrease in CEACAM1-dependent hepatic insulin clearance pathways, we fed wild-type and Pparα(-/-) null mice a high fat diet supplemented with either fenofibrate or Wy14643, a selective PPARα agonist, and examined their effect on insulin metabolism and action. We demonstrated that the decrease in insulin secretion by fenofibrate and Wy14643 is accompanied by reduction in insulin clearance in wild-type but not Pparα(-/-) mice, thereby maintaining normoinsulinemia and insulin sensitivity despite continuous high fat intake. Intact insulin secretion in L-CC1 mice with protected hepatic insulin clearance and CEACAM1 levels provides in vivo evidence that insulin secretion responds to changes in insulin clearance to maintain physiologic insulin and glucose homeostasis. These results also emphasize the relevant role of hepatic insulin extraction in regulating insulin sensitivity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. A Novel GLP1 Receptor Interacting Protein ATP6ap2 Regulates Insulin Secretion in Pancreatic Beta Cells.

    PubMed

    Dai, Feihan F; Bhattacharjee, Alpana; Liu, Ying; Batchuluun, Battsetseg; Zhang, Ming; Wang, Xinye Serena; Huang, Xinyi; Luu, Lemieux; Zhu, Dan; Gaisano, Herbert; Wheeler, Michael B

    2015-10-09

    GLP1 activates its receptor, GLP1R, to enhance insulin secretion. The activation and transduction of GLP1R requires complex interactions with a host of accessory proteins, most of which remain largely unknown. In this study, we used membrane-based split ubiquitin yeast two-hybrid assays to identify novel GLP1R interactors in both mouse and human islets. Among these, ATP6ap2 (ATPase H(+)-transporting lysosomal accessory protein 2) was identified in both mouse and human islet screens. ATP6ap2 was shown to be abundant in islets including both alpha and beta cells. When GLP1R and ATP6ap2 were co-expressed in beta cells, GLP1R was shown to directly interact with ATP6ap2, as assessed by co-immunoprecipitation. In INS-1 cells, overexpression of ATP6ap2 did not affect insulin secretion; however, siRNA knockdown decreased both glucose-stimulated and GLP1-induced insulin secretion. Decreases in GLP1-induced insulin secretion were accompanied by attenuated GLP1 stimulated cAMP accumulation. Because ATP6ap2 is a subunit required for V-ATPase assembly of insulin granules, it has been reported to be involved in granule acidification. In accordance with this, we observed impaired insulin granule acidification upon ATP6ap2 knockdown but paradoxically increased proinsulin secretion. Importantly, as a GLP1R interactor, ATP6ap2 was required for GLP1-induced Ca(2+) influx, in part explaining decreased insulin secretion in ATP6ap2 knockdown cells. Taken together, our findings identify a group of proteins that interact with the GLP1R. We further show that one interactor, ATP6ap2, plays a novel dual role in beta cells, modulating both GLP1R signaling and insulin processing to affect insulin secretion.

  18. ERAD-icating mutant insulin promotes functional insulin secretion.

    PubMed

    Moore, Daniel J

    2017-01-18

    Overexpression of a chaperone protein liberates functional insulin from a misfolded mutant partner to improve insulin secretion. Copyright © 2017, American Association for the Advancement of Science.

  19. PI3K regulates endocytosis after insulin secretion by mediating signaling crosstalk between Arf6 and Rab27a.

    PubMed

    Yamaoka, Mami; Ando, Tomomi; Terabayashi, Takeshi; Okamoto, Mitsuhiro; Takei, Masahiro; Nishioka, Tomoki; Kaibuchi, Kozo; Matsunaga, Kohichi; Ishizaki, Ray; Izumi, Tetsuro; Niki, Ichiro; Ishizaki, Toshimasa; Kimura, Toshihide

    2016-02-01

    In secretory cells, endocytosis is coupled to exocytosis to enable proper secretion. Although endocytosis is crucial to maintain cellular homeostasis before and after secretion, knowledge about secretagogue-induced endocytosis in secretory cells is still limited. Here, we searched for proteins that interacted with the Rab27a GTPase-activating protein (GAP) EPI64 (also known as TBC1D10A) and identified the Arf6 guanine-nucleotide-exchange factor (GEF) ARNO (also known as CYTH2) in pancreatic β-cells. We found that the insulin secretagogue glucose promotes phosphatidylinositol (3,4,5)-trisphosphate (PIP3) generation through phosphoinositide 3-kinase (PI3K), thereby recruiting ARNO to the intracellular side of the plasma membrane. Peripheral ARNO promotes clathrin assembly through its GEF activity for Arf6 and regulates the early stage of endocytosis. We also found that peripheral ARNO recruits EPI64 to the same area and that the interaction requires glucose-induced endocytosis in pancreatic β-cells. Given that GTP- and GDP-bound Rab27a regulate exocytosis and the late stage of endocytosis, our results indicate that the glucose-induced activation of PI3K plays a pivotal role in exocytosis-endocytosis coupling, and that ARNO and EPI64 regulate endocytosis at distinct stages.

  20. Leucine Stimulates Insulin Secretion via Down-regulation of Surface Expression of Adrenergic α2A Receptor through the mTOR (Mammalian Target of Rapamycin) Pathway

    PubMed Central

    Yang, Jun; Dolinger, Michael; Ritaccio, Gabrielle; Mazurkiewicz, Joseph; Conti, David; Zhu, Xinjun; Huang, Yunfei

    2012-01-01

    The amino acid leucine is a potent secretagogue, capable of inducing insulin secretion. It also plays an important role in the regulation of mTOR activity, therefore, providing impetus to investigate if a leucine-sensing mechanism in the mTOR pathway is involved in insulin secretion. We found that leucine-induced insulin secretion was inhibited by both the mTOR inhibitor rapamycin as well as the adrenergic α2 receptor agonist clonidine. We also demonstrated that leucine down-regulated the surface expression of adrenergic α2A receptor via activation of the mTOR pathway. The leucine stimulatory effect on insulin secretion was attenuated in diabetic Goto-Kakizaki rats that overexpress adrenergic α2A receptors, confirming the role of leucine in insulin secretion. Thus, our data demonstrate that leucine regulates insulin secretion by modulating adrenergic α2 receptors through the mTOR pathway. The role of the mTOR pathway in metabolic homeostasis led us to a second important finding in this study; retrospective analysis of clinical data showed that co-administration of rapamycin and clonidine was associated with an increased incidence of new-onset diabetes in renal transplantation patients over those receiving rapamycin alone. We believe that inhibition of mTOR by rapamycin along with activation of adrenergic α2 receptors by clonidine represents a double-hit to pancreatic islets that synergistically disturbs glucose homeostasis. This new insight may have important implications for the clinical management of renal transplant patients. PMID:22645144

  1. Opiate-prostaglandin interactions in the regulation of insulin secretion from rat islets of Langerhans in vitro

    SciTech Connect

    Green, I.C.; Tadayyon, M.

    1988-01-01

    The inadequate insulin secretory response to glucose stimulation in non-insulin dependent diabetes has been attributed to many factors including high PGE/sub 2/ levels blunting the secretory response, and to the existence of inhibitory opiate activity in vivo. The purpose of the present work was to see if there was a connection between these two independent theories. Radioimmunoassayable PGE/sub 2/ in islets of Langerhans was found to be proportional to islet number and protein content and was typically 4 to 5pg/..mu..g islet protein. Indomethacin sodium salicylate and chlorpropamide all lowered islet PGE/sub 2/ levels and stimulated insulin release in vitro. Dynorphin stimulated insulin release at a concentration of 6 x 10/sup -9/M, while lowering islet PGE/sub 2/. Conversely, at a higher concentration, dynorphin had no stimulatory effect on insulin secretion and did not lower PGE/sub 2/ levels in islets or in the incubation media. The stimulatory effects of dynorphin and sodium salicylate on insulin secretion were blocked by exogenous PGE/sub 2/. PGE/sub 2/ at a lower concentration did not exert any inhibitory effect on dynorphin- or sodium salicylate-induced insulin release. This concentration of exogenous PGE/sub 2/ stimulated insulin release in the presence of 6mM glucose.

  2. Insulin secretion and Ca2+ dynamics in β-cells are regulated by PERK (EIF2AK3) in concert with calcineurin.

    PubMed

    Wang, Rong; McGrath, Barbara C; Kopp, Richard F; Roe, Michael W; Tang, Xin; Chen, Gong; Cavener, Douglas R

    2013-11-22

    Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) (EIF2AK3) is essential for normal development and function of the insulin-secreting β-cell. Although genetic ablation of PERK in β-cells results in permanent neonatal diabetes in humans and mice, the underlying mechanisms remain unclear. Here, we used a newly developed and highly specific inhibitor of PERK to determine the immediate effects of acute ablation of PERK activity. We found that inhibition of PERK in human and rodent β-cells causes a rapid inhibition of secretagogue-stimulated subcellular Ca(2+) signaling and insulin secretion. These dysfunctions stem from alterations in store-operated Ca(2+) entry and sarcoplasmic endoplasmic reticulum Ca(2+)-ATPase activity. We also found that PERK regulates calcineurin, and pharmacological inhibition of calcineurin results in similar defects on stimulus-secretion coupling. Our findings suggest that interplay between calcineurin and PERK regulates β-cell Ca(2+) signaling and insulin secretion, and that loss of this interaction may have profound implications in insulin secretion defects associated with diabetes.

  3. α/β-Hydrolase domain-6 and saturated long chain monoacylglycerol regulate insulin secretion promoted by both fuel and non-fuel stimuli

    PubMed Central

    Zhao, Shangang; Poursharifi, Pegah; Mugabo, Yves; Levens, Emily J.; Vivot, Kevin; Attane, Camille; Iglesias, Jose; Peyot, Marie-line; Joly, Erik; Madiraju, S.R. Murthy; Prentki, Marc

    2015-01-01

    Objective α/β-Hydrolase domain-6 (ABHD6) is a newly identified monoacylglycerol (MAG) lipase. We recently reported that it negatively regulates glucose stimulated insulin secretion (GSIS) in the β cells by hydrolyzing lipolysis-derived MAG that acts as a metabolic coupling factor and signaling molecule via exocytotic regulator Munc13-1. Whether ABHD6 and MAG play a role in response to all classes of insulin secretagogues, in particular various fuel and non-fuel stimuli, is unknown. Methods Insulin secretion in response to various classes of secretagogues, exogenous MAG and pharmacological agents was measured in islets of mice deficient in ABHD6 specifically in the β cell (BKO). Islet perifusion experiments and determinations of glucose and fatty acid metabolism, cytosolic Ca2+ and MAG species levels were carried out. Results Deletion of ABHD6 potentiated insulin secretion in response to the fuels glutamine plus leucine and α-ketoisocaproate and to the non-fuel stimuli glucagon-like peptide 1, carbamylcholine and elevated KCl. Fatty acids amplified GSIS in control and BKO mice to the same extent. Exogenous 1-MAG amplified insulin secretion in response to fuel and non-fuel stimuli. MAG hydrolysis activity was greatly reduced in BKO islets without changes in total diacylglycerol and triacylglycerol lipase activity. ABHD6 deletion induced insulin secretion independently from KATP channels and did not alter the glucose induced rise in intracellular Ca2+. Perifusion studies showed elevated insulin secretion during second phase of GSIS in BKO islets that was not due to altered cytosolic Ca2+ signaling or because of changes in glucose and fatty acid metabolism. Glucose increased islet saturated long chain 1-MAG species and ABHD6 deletion caused accumulation of these 1-MAG species at both low and elevated glucose. Conclusion ABHD6 regulates insulin secretion in response to fuel stimuli at large and some non-fuel stimuli by controlling long chain saturated 1-MAG levels

  4. [Participation of growth hormone and insulin in the regulation of gastric secretion in athletes wrestler in sportive and post sportive ontogenesis].

    PubMed

    Panov, S F; Pleshakov, A A; Batrakov, A A; Nepliuev, D A

    2010-01-01

    The role of gastrin, STH, insulin and glucose in the formation, and long-term adaptation of gastric secretion in athletes--wrestlers in the sportive and post sportive ontogeny Revealed an undulation in the age dynamics of the basal secretion of hormones and glucose in the blood. The ups and downs of different waves in the dynamics occur in sensitive periods of ontogeny. In a bicycle stress load changes in the secretion of hormones and glucose levels in 90% of cases are not statistically significant, but insufficient to achieve the end result of regulation--an adequate level of hydrolysis of proteins in response to physical stress.

  5. Regulation of glucose- and mitochondrial fuel-induced insulin secretion by a cytosolic protein histidine phosphatase in pancreatic beta-cells.

    PubMed

    Kamath, Vasudeva; Kyathanahalli, Chandrashekara N; Jayaram, Bhavaani; Syed, Ismail; Olson, Lawrence Karl; Ludwig, Katrin; Klumpp, Susanne; Krieglstein, Josef; Kowluru, Anjaneyulu

    2010-08-01

    We report localization of a cytosolic protein histidine phosphatase (PHP; approximately 16 kDa) in INS 832/13 cells, normal rat islets, and human islets. siRNA-mediated knockdown of PHP markedly reduced glucose- or mitochondrial fuel-induced but not KCl-induced insulin secretion. siRNA-mediated knockdown of PHP also attenuated mastoparan-induced insulin secretion, suggesting its participation in G protein-sensitive signaling steps, leading to insulin secretion. Functional assays revealed that the beta-cell PHP catalyzes the dephosphorylation of ATP-citrate lyase (ACL). Silencing of PHP expression markedly reduced ACL activity, suggesting functional regulation of ACL by PHP in beta-cells. Coimmunoprecipitation studies revealed modest effects of glucose on the interaction between PHP and ACL. Confocal microscopic evidence indicated that glucose promotes association between ACL and nm23-H1, a known kinase histidine kinase, but not between PHP and ACL. Furthermore, metabolic viability of INS 832/13 cells was resistant to siRNA-PHP, suggesting no regulatory roles of PHP in cell viability. Finally, long-term exposure (24 h) of INS 832/13 cells or rat islets to high glucose (30 mM) increased the expression of PHP. Such increases in PHP expression were also seen in islets derived from the Zucker diabetic fatty rat compared with islets from the lean control animals. Together, these data implicate regulatory roles for PHP in a G protein-sensitive step involved in nutrient-induced insulin secretion. In light of the current debate on putative regulatory roles of ACL in insulin secretion, additional studies are needed to precisely identify the phosphoprotein substrate(s) for PHP in the cascade of events leading to nutrient-induced insulin secretion.

  6. Regulation of glucose- and mitochondrial fuel-induced insulin secretion by a cytosolic protein histidine phosphatase in pancreatic β-cells

    PubMed Central

    Kamath, Vasudeva; Kyathanahalli, Chandrashekara N.; Jayaram, Bhavaani; Syed, Ismail; Olson, Lawrence Karl; Ludwig, Katrin; Klumpp, Susanne; Krieglstein, Josef

    2010-01-01

    We report localization of a cytosolic protein histidine phosphatase (PHP; ∼16 kDa) in INS 832/13 cells, normal rat islets, and human islets. siRNA-mediated knockdown of PHP markedly reduced glucose- or mitochondrial fuel-induced but not KCl-induced insulin secretion. siRNA-mediated knockdown of PHP also attenuated mastoparan-induced insulin secretion, suggesting its participation in G protein-sensitive signaling steps, leading to insulin secretion. Functional assays revealed that the β-cell PHP catalyzes the dephosphorylation of ATP-citrate lyase (ACL). Silencing of PHP expression markedly reduced ACL activity, suggesting functional regulation of ACL by PHP in β-cells. Coimmunoprecipitation studies revealed modest effects of glucose on the interaction between PHP and ACL. Confocal microscopic evidence indicated that glucose promotes association between ACL and nm23-H1, a known kinase histidine kinase, but not between PHP and ACL. Furthermore, metabolic viability of INS 832/13 cells was resistant to siRNA-PHP, suggesting no regulatory roles of PHP in cell viability. Finally, long-term exposure (24 h) of INS 832/13 cells or rat islets to high glucose (30 mM) increased the expression of PHP. Such increases in PHP expression were also seen in islets derived from the Zucker diabetic fatty rat compared with islets from the lean control animals. Together, these data implicate regulatory roles for PHP in a G protein-sensitive step involved in nutrient-induced insulin secretion. In light of the current debate on putative regulatory roles of ACL in insulin secretion, additional studies are needed to precisely identify the phosphoprotein substrate(s) for PHP in the cascade of events leading to nutrient-induced insulin secretion. PMID:20501872

  7. Zinc Up-Regulates Insulin Secretion from β Cell-Like Cells Derived from Stem Cells from Human Exfoliated Deciduous Tooth (SHED).

    PubMed

    Kim, Gyuyoup; Shin, Ki-Hyuk; Pae, Eung-Kwon

    2016-12-13

    Stem cells from human exfoliated deciduous tooth (SHED) offer several advantages over other stem cell sources. Using SHED, we examined the roles of zinc and the zinc uptake transporter ZIP8 (Zrt- and irt-like protein 8) while inducing SHED into insulin secreting β cell-like stem cells (i.e., SHED-β cells). We observed that ZIP8 expression increased as SHED differentiated into SHED-β cells, and that zinc supplementation at day 10 increased the levels of most pancreatic β cell markers-particularly Insulin and glucose transporter 2 (GLUT2). We confirmed that SHED-β cells produce insulin successfully. In addition, we note that zinc supplementation significantly increases insulin secretion with a significant elevation of ZIP8 transporters in SHED-β cells. We conclude that SHED can be converted into insulin-secreting β cell-like cells as zinc concentration in the cytosol is elevated. Insulin production by SHED-β cells can be regulated via modulation of zinc concentration in the media as ZIP8 expression in the SHED-β cells increases.

  8. Zinc Up-Regulates Insulin Secretion from β Cell-Like Cells Derived from Stem Cells from Human Exfoliated Deciduous Tooth (SHED)

    PubMed Central

    Kim, Gyuyoup; Shin, Ki-Hyuk; Pae, Eung-Kwon

    2016-01-01

    Stem cells from human exfoliated deciduous tooth (SHED) offer several advantages over other stem cell sources. Using SHED, we examined the roles of zinc and the zinc uptake transporter ZIP8 (Zrt- and irt-like protein 8) while inducing SHED into insulin secreting β cell-like stem cells (i.e., SHED-β cells). We observed that ZIP8 expression increased as SHED differentiated into SHED-β cells, and that zinc supplementation at day 10 increased the levels of most pancreatic β cell markers—particularly Insulin and glucose transporter 2 (GLUT2). We confirmed that SHED-β cells produce insulin successfully. In addition, we note that zinc supplementation significantly increases insulin secretion with a significant elevation of ZIP8 transporters in SHED-β cells. We conclude that SHED can be converted into insulin-secreting β cell-like cells as zinc concentration in the cytosol is elevated. Insulin production by SHED-β cells can be regulated via modulation of zinc concentration in the media as ZIP8 expression in the SHED-β cells increases. PMID:27983594

  9. Dual and opposing roles of the unfolded protein response regulated by IRE1alpha and XBP1 in proinsulin processing and insulin secretion.

    PubMed

    Lee, Ann-Hwee; Heidtman, Keely; Hotamisligil, Gökhan S; Glimcher, Laurie H

    2011-05-24

    As a key regulator of the unfolded protein response, the transcription factor XBP1 activates genes in protein secretory pathways and is required for the development of certain secretory cells. To elucidate the function of XBP1 in pancreatic β-cells, we generated β-cell-specific XBP1 mutant mice. Xbp1(f/f);RIP-cre mice displayed modest hyperglycemia and glucose intolerance resulting from decreased insulin secretion from β-cells. Ablation of XBP1 markedly decreased the number of insulin granules in β-cells, impaired proinsulin processing, increased the serum proinsulin:insulin ratio, blunted glucose-stimulated insulin secretion, and inhibited cell proliferation. Notably, XBP1 deficiency not only compromised the endoplasmic reticulum stress response in β-cells but also caused constitutive hyperactivation of its upstream activator, IRE1α, which could degrade a subset of mRNAs encoding proinsulin-processing enzymes. Hence, the combined effects of XBP1 deficiency on the canonical unfolded protein response and its negative feedback activation of IRE1α caused β-cell dysfunction in XBP1 mutant mice. These results demonstrate that IRE1α has dual and opposing roles in β-cells, and that a precisely regulated feedback circuit involving IRE1α and its product XBP1s is required to achieve optimal insulin secretion and glucose control.

  10. Dual and opposing roles of the unfolded protein response regulated by IRE1α and XBP1 in proinsulin processing and insulin secretion

    PubMed Central

    Lee, Ann-Hwee; Heidtman, Keely; Hotamisligil, Gökhan S.; Glimcher, Laurie H.

    2011-01-01

    As a key regulator of the unfolded protein response, the transcription factor XBP1 activates genes in protein secretory pathways and is required for the development of certain secretory cells. To elucidate the function of XBP1 in pancreatic β-cells, we generated β-cell-specific XBP1 mutant mice. Xbp1f/f;RIP-cre mice displayed modest hyperglycemia and glucose intolerance resulting from decreased insulin secretion from β-cells. Ablation of XBP1 markedly decreased the number of insulin granules in β-cells, impaired proinsulin processing, increased the serum proinsulin:insulin ratio, blunted glucose-stimulated insulin secretion, and inhibited cell proliferation. Notably, XBP1 deficiency not only compromised the endoplasmic reticulum stress response in β-cells but also caused constitutive hyperactivation of its upstream activator, IRE1α, which could degrade a subset of mRNAs encoding proinsulin-processing enzymes. Hence, the combined effects of XBP1 deficiency on the canonical unfolded protein response and its negative feedback activation of IRE1α caused β-cell dysfunction in XBP1 mutant mice. These results demonstrate that IRE1α has dual and opposing roles in β-cells, and that a precisely regulated feedback circuit involving IRE1α and its product XBP1s is required to achieve optimal insulin secretion and glucose control. PMID:21555585

  11. Transcriptional regulation of the miR-212/miR-132 cluster in insulin-secreting β-cells by cAMP-regulated transcriptional co-activator 1 and salt-inducible kinases.

    PubMed

    Malm, Helena Anna; Mollet, Inês G; Berggreen, Christine; Orho-Melander, Marju; Esguerra, Jonathan Lou S; Göransson, Olga; Eliasson, Lena

    2016-03-15

    MicroRNAs are central players in the control of insulin secretion, but their transcriptional regulation is poorly understood. Our aim was to investigate cAMP-mediated transcriptional regulation of the miR-212/miR-132 cluster and involvement of further upstream proteins in insulin secreting β-cells. cAMP induced by forskolin+IBMX or GLP-1 caused increased expression of miR-212/miR-132, and elevated phosphorylation of cAMP-response-element-binding-protein (CREB)/Activating-transcription-factor-1 (ATF1) and Salt-Inducible-Kinases (SIKs). CyclicAMP-Regulated Transcriptional Co-activator-1 (CRTC1) was concomitantly dephosphorylated and translocated to the nucleus. Silencing of miR-212/miR-132 reduced, and overexpression of miR-212 increased, glucose-stimulated insulin secretion. Silencing of CRTC1 expression resulted in decreased insulin secretion and miR-212/miR-132 expression, while silencing or inhibition of SIKs was associated with increased expression of the microRNAs and dephosphorylation of CRTC1. CRTC1 protein levels were reduced after silencing of miR-132, suggesting feed-back regulation. Our data propose cAMP-dependent co-regulation of miR-212/miR-132, in part mediated through SIK-regulated CRTC1, as an important factor for fine-tuned regulation of insulin secretion.

  12. In-vitro generation of human adipose tissue derived insulin secreting cells: up-regulation of Pax-6, Ipf-1 and Isl-1.

    PubMed

    Dave, Shruti D; Vanikar, Aruna V; Trivedi, Hargovind L

    2014-03-01

    We present a study of up-regulation of genes responsible for pancreatic development in glucose-sensitive insulin-secreting mesenchymal stem cells (IS-MSC) generated and differentiated from human adipose tissue (h-AD), with use of our specific differentiation media and without use of any xenogenic material. Anterior wall abdominal fat was collected from 56 volunteers and cultured in self-designed proliferation medium for 10 days. Cells were harvested by trypsinization and differentiated into insulin-expressing cells using self-designed differentiation medium for 3 days followed by evaluation for transcriptional factors Pax-6, Ipf-1, Isl-1, C-peptide and insulin secretion. Generated IS-MSC showed expression of Pax-6, Pdx-6 and Isl-1. Non-differentiated MSC as well as their further culture in absence of differentiation medium were used as negative controls. Generated 56 IS-MSC cell-lines were glucose responsive i.e. mean C-Peptide and insulin secretion levels were measured 0.41 ng/ml and 13.13 μU/ml, respectively, in absence of glucose which rose to 1.18 ng/ml and 83.42 μU/ml, respectively, following glucose challenge (p < 0.001). The mean rise in C-peptide and insulin secretion levels was 2.88 and 6.35 fold, respectively. To conclude insulin-secreting h-AD-MSC can be generated safely and effectively with application of specific differentiation media without xenogeneic material/any genetic modification, showing expression of transcriptional factors Pax-6, Ipf-1 and Isl-1.

  13. Leucine regulation of glucokinase and ATP synthase sensitizes glucose-induced insulin secretion in pancreatic beta-cells.

    PubMed

    Yang, Jichun; Wong, Ryan K; Park, MieJung; Wu, Jianmei; Cook, Joshua R; York, David A; Deng, Shaoping; Markmann, James; Naji, Ali; Wolf, Bryan A; Gao, Zhiyong

    2006-01-01

    We have recently shown that leucine culture upregulates ATP synthase beta-subunit (ATPSbeta) and increases ATP level, cytosolic Ca(2+), and glucose-induced insulin secretion in rat islets. The aim is to test whether glucokinase expression is also affected in rat islets and its role in glucose sensitization during leucine culture. Leucine culture increased glucose-induced NAD(P)H level at 1 and 2 days but not at 1 week. The half-maximal effective concentration of the glucose response curve for NAD(P)H was left-shifted from 5-7 to 2-3 mmol/l. The effect was dose dependent and rapamycin insensitive. Leucine culture did not affect glyceraldehyde effects on NAD(P)H. Leucine pretreatment for 30 min had no effects on NAD(P)H levels. Leucine culture for 2 days also increased glucose-induced cytosolic Ca(2+) elevation, ATP level, and insulin secretion. Leucine increase of glucokinase mRNA levels occurred as early as day 1 and lasted through 1 week. That of ATPSbeta did not occur until day 2 and lasted through 1 week. Leucine effects on both mRNAs were dose dependent. The upregulation of both genes was confirmed by Western blotting. Leucine culture also increased glucose-induced insulin secretion, ATP level, glucokinase, and ATPSbeta levels of type 2 diabetic human islets. In conclusion, leucine culture upregulates glucokinase, which increases NAD(P)H level, and ATPSbeta, which increases oxidation of NADH and production of ATP. The combined upregulation of both genes increases glucose-induced cytosolic Ca(2+) and insulin secretion.

  14. FTO Inhibits Insulin Secretion and Promotes NF-κB Activation through Positively Regulating ROS Production in Pancreatic β cells.

    PubMed

    Fan, Hong-Qi; He, Wei; Xu, Kuan-Feng; Wang, Zhi-Xiao; Xu, Xin-Yu; Chen, Heng

    2015-01-01

    FTO (Fat mass and obesity-associated) is associated with increased risk of obesity and type 2 diabetes incurrence. Pancreas islet β cells dysfunction and insulin resistance are major causes of type 2 diabetes. However, whether FTO plays an important functional role in pancreatic β cells as well as the related molecular mechanism is still unclear. In the present study, the tissue expression profile of FTO was firstly determined using quantitative PCR and western blot. FTO is widely expressed in various tissues and presented with relative high expression in pancreas tissue, especially in endocrine pancreas. FTO overexpression in MIN6 cells achieved by lentivirus delivery significantly inhibits insulin secretion in the presence of glucose stimulus as well as KCl. FTO silence has no effect on insulin secretion of MIN6 cells. However, FTO overexpression doesn't affect the transcription of insulin gene. Furthermore, reactive oxygen species (ROS) production and NF-κB activation are significantly promoted by FTO overexpression. Inhibition of intracellular ROS production by N-acetyl-L-cysteine (NAC) can alleviate NF-κB activation and restore the insulin secretion mediated by FTO overexpression. A whole transcript-microarray is employed to analyze the differential gene expression mediated by FTO overexpression. The genes which are modulated by FTO are involved in many important biological pathways such as G-protein coupled receptor signaling and NF-κB signaling. Therefore, our study indicates that FTO may contribute to pancreas islet β cells dysfunction and the inhibition of FTO activity is a potential target for the treatment of diabetes.

  15. FTO Inhibits Insulin Secretion and Promotes NF-κB Activation through Positively Regulating ROS Production in Pancreatic β cells

    PubMed Central

    Fan, Hong-Qi; He, Wei; Xu, Kuan-Feng; Wang, Zhi-Xiao; Xu, Xin-Yu; Chen, Heng

    2015-01-01

    FTO (Fat mass and obesity-associated) is associated with increased risk of obesity and type 2 diabetes incurrence. Pancreas islet β cells dysfunction and insulin resistance are major causes of type 2 diabetes. However, whether FTO plays an important functional role in pancreatic β cells as well as the related molecular mechanism is still unclear. In the present study, the tissue expression profile of FTO was firstly determined using quantitative PCR and western blot. FTO is widely expressed in various tissues and presented with relative high expression in pancreas tissue, especially in endocrine pancreas. FTO overexpression in MIN6 cells achieved by lentivirus delivery significantly inhibits insulin secretion in the presence of glucose stimulus as well as KCl. FTO silence has no effect on insulin secretion of MIN6 cells. However, FTO overexpression doesn’t affect the transcription of insulin gene. Furthermore, reactive oxygen species (ROS) production and NF-κB activation are significantly promoted by FTO overexpression. Inhibition of intracellular ROS production by N-acetyl-L-cysteine (NAC) can alleviate NF-κB activation and restore the insulin secretion mediated by FTO overexpression. A whole transcript-microarray is employed to analyze the differential gene expression mediated by FTO overexpression. The genes which are modulated by FTO are involved in many important biological pathways such as G-protein coupled receptor signaling and NF-κB signaling. Therefore, our study indicates that FTO may contribute to pancreas islet β cells dysfunction and the inhibition of FTO activity is a potential target for the treatment of diabetes. PMID:26018652

  16. Glycaemic regulation and insulin secretion are abnormal in cystic fibrosis pigs despite sparing of islet cell mass.

    PubMed

    Uc, Aliye; Olivier, Alicia K; Griffin, Michelle A; Meyerholz, David K; Yao, Jianrong; Abu-El-Haija, Maisam; Buchanan, Katherine M; Vanegas Calderón, Oriana G; Abu-El-Haija, Marwa; Pezzulo, Alejandro A; Reznikov, Leah R; Hoegger, Mark J; Rector, Michael V; Ostedgaard, Lynda S; Taft, Peter J; Gansemer, Nick D; Ludwig, Paula S; Hornick, Emma E; Stoltz, David A; Ode, Katie L; Welsh, Michael J; Engelhardt, John F; Norris, Andrew W

    2015-01-01

    Diabetes is a common and significant co-morbidity in cystic fibrosis (CF). The pathogenesis of cystic fibrosis related diabetes (CFRD) is incompletely understood. Because exocrine pancreatic disease is similar between humans and pigs with CF, the CF pig model has the potential to contribute significantly to the understanding of CFRD pathogenesis. We determined the structure of the endocrine pancreas in fetal, newborn and older CF and non-CF pigs and assessed endocrine pancreas function by intravenous glucose tolerance test (IV-GTT). In fetal pigs, pancreatic insulin and glucagon density was similar between CF and non-CF. In newborn and older pigs, the insulin and glucagon density was unchanged between CF and non-CF per total pancreatic area, but increased per remnant lobular tissue in CF reflecting exocrine pancreatic loss. Although fasting glucose levels were not different between CF and non-CF newborns, CF newborns demonstrated impaired glucose tolerance and increased glucose area under the curve during IV-GTT. Second phase insulin secretion responsiveness was impaired in CF newborn pigs and significantly lower than that observed in non-CF newborns. Older CF pigs had elevated random blood glucose levels compared with non-CF. In summary, glycaemic abnormalities and insulin secretion defects were present in newborn CF pigs and spontaneous hyperglycaemia developed over time. Functional changes in CF pig pancreas were not associated with a decline in islet cell mass. Our results suggest that functional islet abnormalities, independent of structural islet loss, contribute to the early pathogenesis of CFRD.

  17. Neuropeptide Y and somatostatin inhibit insulin secretion through different mechanisms

    PubMed Central

    Schwetz, Tara A.; Ustione, Alessandro

    2013-01-01

    Pancreatic β-cells regulate glucose homeostasis by secreting insulin in response to glucose elevation and G protein-coupled receptor (GPCR) activation. Neuropeptide Y (NPY) and somatostatin (SST) attenuate insulin secretion through Gi activation of Y1 and SSTR1&5 receptors, respectively. The downstream pathways altered by NPY and SST are poorly understood. Thus, we investigated these underlying mechanisms. NPY and SST increase cellular redox potential, suggesting that their inhibitory effect may not be mediated through metabolic inhibition. NPY does not affect intracellular calcium ([Ca2+]i) activity upon glucose stimulation, whereas SST alters this response. Gβγ-subunit inhibition by gallein attenuates insulin secretion but does not alter metabolism or [Ca2+]i. mSIRK-induced Gβγ activation does not modulate glucose metabolism but increases [Ca2+]i activity and potentiates insulin release. Cotreatment with gallein and NPY or SST reduces insulin secretion to levels similar to that of gallein alone. mSIRK and NPY cotreatment potentiates insulin secretion similarly to mSIRK alone, whereas mSIRK and SST treatment decreases insulin release. The data support a model where SST attenuates secretion through Gβγ inhibition of Ca2+ activity, while NPY activates a Ca2+-independent pathway mediated by Gα. GPCR ligands signal through multiple pathways to inhibit insulin secretion, and determining these mechanisms could lead to novel diabetic therapies. PMID:23211512

  18. Neuropeptide Y and somatostatin inhibit insulin secretion through different mechanisms.

    PubMed

    Schwetz, Tara A; Ustione, Alessandro; Piston, David W

    2013-01-15

    Pancreatic β-cells regulate glucose homeostasis by secreting insulin in response to glucose elevation and G protein-coupled receptor (GPCR) activation. Neuropeptide Y (NPY) and somatostatin (SST) attenuate insulin secretion through G(i) activation of Y(1) and SSTR(1&5) receptors, respectively. The downstream pathways altered by NPY and SST are poorly understood. Thus, we investigated these underlying mechanisms. NPY and SST increase cellular redox potential, suggesting that their inhibitory effect may not be mediated through metabolic inhibition. NPY does not affect intracellular calcium ([Ca(2+)](i)) activity upon glucose stimulation, whereas SST alters this response. G(βγ)-subunit inhibition by gallein attenuates insulin secretion but does not alter metabolism or [Ca(2+)](i). mSIRK-induced G(βγ) activation does not modulate glucose metabolism but increases [Ca(2+)](i) activity and potentiates insulin release. Cotreatment with gallein and NPY or SST reduces insulin secretion to levels similar to that of gallein alone. mSIRK and NPY cotreatment potentiates insulin secretion similarly to mSIRK alone, whereas mSIRK and SST treatment decreases insulin release. The data support a model where SST attenuates secretion through G(βγ) inhibition of Ca(2+) activity, while NPY activates a Ca(2+)-independent pathway mediated by G(α). GPCR ligands signal through multiple pathways to inhibit insulin secretion, and determining these mechanisms could lead to novel diabetic therapies.

  19. Short Term Exposure of Beta Cells to Low Concentrations of Interleukin-1β Improves Insulin Secretion through Focal Adhesion and Actin Remodeling and Regulation of Gene Expression*

    PubMed Central

    Arous, Caroline; Ferreira, Pedro G.; Dermitzakis, Emmanouil T.; Halban, Philippe A.

    2015-01-01

    Type 2 diabetes involves defective insulin secretion with islet inflammation governed in part by IL-1β. Prolonged exposure of islets to high concentrations of IL-1β (>24 h, 20 ng/ml) impairs beta cell function and survival. Conversely, exposure to lower concentrations of IL-1β for >24 h improves these same parameters. The impact on insulin secretion of shorter exposure times to IL-1β and the underlying molecular mechanisms are poorly understood and were the focus of this study. Treatment of rat primary beta cells, as well as rat or human whole islets, with 0.1 ng/ml IL-1β for 2 h increased glucose-stimulated (but not basal) insulin secretion, whereas 20 ng/ml was without effect. Similar differential effects of IL-1β depending on concentration were observed after 15 min of KCl stimulation but were prevented by diazoxide. Studies on sorted rat beta cells indicated that the enhancement of stimulated secretion by 0.1 ng/ml IL-1β was mediated by the NF-κB pathway and c-JUN/JNK pathway acting in parallel to elicit focal adhesion remodeling and the phosphorylation of paxillin independently of upstream regulation by focal adhesion kinase. Because the beneficial effect of IL-1β was dependent in part upon transcription, gene expression was analyzed by RNAseq. There were 18 genes regulated uniquely by 0.1 but not 20 ng/ml IL-1β, which are mostly involved in transcription and apoptosis. These results indicate that 2 h of exposure of beta cells to a low but not a high concentration of IL-1β enhances glucose-stimulated insulin secretion through focal adhesion and actin remodeling, as well as modulation of gene expression. PMID:25586177

  20. Neurotransmitters act as paracrine signals to regulate insulin secretion from the human pancreatic islet.

    PubMed

    Rodriguez-Diaz, Rayner; Menegaz, Danusa; Caicedo, Alejandro

    2014-08-15

    In this symposium review we discuss the role of neurotransmitters as paracrine signals that regulate pancreatic islet function. A large number of neurotransmitters and their receptors has been identified in the islet, but relatively little is known about their involvement in islet biology. Interestingly, neurotransmitters initially thought to be present in autonomic axons innervating the islet are also present in endocrine cells of the human islet. These neurotransmitters can thus be released as paracrine signals to help control hormone release. Here we propose that the role of neurotransmitters may extend beyond controlling endocrine cell function to work as signals modulating vascular flow and immune responses within the islet.

  1. Interleukin-22 restored mitochondrial damage and impaired glucose-stimulated insulin secretion through down-regulation of uncoupling protein-2 in INS-1 cells.

    PubMed

    Hu, Minling; Lin, Hanxiao; Yang, Li; Cheng, Yanzhen; Zhang, Hua

    2017-05-01

    Defective glucose-stimulated insulin secretion (GSIS) induced by chronic exposure to fatty acids is a hallmark of type 2 diabetes (T2D). Interleukin-22 (IL-22) has been shown to exert beneficial effects on insulin secretion and to protect pancreatic β-cells from stress. Moreover, uncoupling protein-2 (UCP-2) plays a central role in the regulation of GSIS and β-cell dysfunction, whereas the role of UCP-2 in IL-22-enhanced glycemic control under conditions of lipotoxicity remains unclear. In this present study, we investigated the effects of IL-22 on rat insulin-secreting cells (INS-1 cells) and the mechanisms that underlie IL-22 and lipotoxicity-impaired GSIS in vitro. Chronic palmitate (PA) treatment impaired insulin secretion and activated UCP-2 expression in INS-1 cells. Furthermore, in INS-1 cells, both reduced mitochondrial membrane potential (ΔΨm) and impaired GSIS induced by PA treatment were effectively reversed by an inhibitor of UCP-2 (genipin). Additionally, compared with the PA-treated group, INS-1 cells treated with IL-22 down-regulated UCP-2 expression, increased mitochondrial membrane potential, and restored GSIS. Together, our findings indicate that chronic exposure to PA could activate UCP-2, resulting in mitochondrial damage and impaired GSIS in INS-1 cells. We also suggest that IL-22 plays a protective role in this process via the down-regulation of UCP-2. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  2. Insulin secretion in children with growth retardation.

    PubMed

    Boscherini, B; Finocchi, G; Lostia, O; Mancuso, G; Montani, P; Pasquino, A M; Rezza, E; Rocchio, J; Taggi, F; Zorretta, D

    1977-12-30

    The effect of tolbutamide administration on insulin secretion was studied in 69 children with growth retardation. Diminished insulin secretion was found in all the patients, compared to the control group. This insulin deficit was most evident in patients with isolated, total GH deficiency and least evident in children with idiopathic short stature. Intermediate values were found in dwarfism due to isolated, partial GH deficiency. These results favour the hypothesis that hypoinsulinism contributes to the somatotropin deficiency in causing growth retardation.

  3. The v-SNARE Vti1a regulates insulin-stimulated glucose transport and Acrp30 secretion in 3T3-L1 adipocytes.

    PubMed

    Bose, Avirup; Guilherme, Adilson; Huang, Shaohui; Hubbard, Andrea C; Lane, Charles R; Soriano, Neil A; Czech, Michael P

    2005-11-04

    Regulated exocytosis in adipocytes mediates key functions, exemplified by insulin-stimulated secretion of peptides such as adiponectin and recycling of intracellular membranes containing GLUT4 glucose transporters to the cell surface. Using a proteomics approach, the v-SNARE Vti1a (vps10p tail interacting 1a) was identified by mass spectrometry in purified GLUT4-containing membranes. Insulin treatment of 3T3-L1 adipocytes decreased the amounts of both Vti1a and GLUT4 in these membranes, confirming that Vti1a is a component of insulin-sensitive GLUT4-containing vesicles. In the basal state, endogenous Vti1a colocalizes exclusively with perinuclear GLUT4. Although Vti1a has previously been reported to be a v-SNARE localized in the trans-Golgi network, treatment with brefeldin A failed to significantly modify Vti1a or GLUT4 localization while completely dispersing Golgi and trans-Golgi network marker proteins. Furthermore, depletion of Vti1a protein in cultured adipocytes through small interfering RNA-based gene silencing significantly inhibited both adiponectin secretion and insulin-stimulated deoxyglucose uptake. Taken together, these results suggest that the v-SNARE Vti1a may regulate a step common to both GLUT4 and Acrp30 trafficking in 3T3-L1 adipocytes.

  4. Chronic heat stress up-regulates leptin and adiponectin secretion and expression and improves leptin, adiponectin and insulin sensitivity in mice.

    PubMed

    Morera, Patrizia; Basiricò, Loredana; Hosoda, Kenji; Bernabucci, Umberto

    2012-04-01

    Heat stress (HS) induces adaptive responses that are responsible for alterations of carbohydrate and lipid metabolism. This study aimed to evaluate the effects of chronic heat treatment on the expression and secretion of leptin and adiponectin, important regulators of energy homeostasis, food intake and insulin action. C57BL/6 mice were subdivided into three groups (24 mice each). The first group was kept under control conditions (C: 22±2 °C). The second group was exposed to HS (35±1 °C). The third group was kept under control conditions and was food restricted (FR). The HS group had higher rectal temperature than the C and FR groups and lower food intake than the C group. Hspa1 (Hspa1a) gene expression in adipose tissue, muscle and liver was higher under HS than FR and C. Heat treatment resulted in decreased blood glucose and non-esterified fatty acids; increased leptin, adiponectin and insulin secretion; and greater glucose disposal. Leptin, adiponectin, leptin and adiponectin receptors, insulin receptor substrate-1 and glucose transporter mRNAs were up-regulated in HS mice. This study provides evidence that HS improves leptin and adiponectin signalling in adipose tissue, muscle and liver. Heat stress was responsible for improving insulin sensitivity and glucose uptake in peripheral tissues, probably mediated by adipokines. Changes in the adipokine levels and sensitivity to them may be considered as an adaptive response to heat.

  5. Dynamics of insulin secretion and the clinical implications for obesity and diabetes

    PubMed Central

    Seino, Susumu; Shibasaki, Tadao; Minami, Kohtaro

    2011-01-01

    Insulin secretion is a highly dynamic process regulated by various factors including nutrients, hormones, and neuronal inputs. The dynamics of insulin secretion can be studied at different levels: the single β cell, pancreatic islet, whole pancreas, and the intact organism. Studies have begun to analyze cellular and molecular mechanisms underlying dynamics of insulin secretion. This review focuses on our current understanding of the dynamics of insulin secretion in vitro and in vivo and discusses their clinical relevance. PMID:21633180

  6. Would R.D. Lawrence have been interested in the regulation of insulin secretion from pancreatic beta-cells?

    PubMed

    Jones, P M

    1998-08-01

    Dr Peter Jones gave the 1997 R.D. Lawrence Lecture to the Medical and Scientific Section of the British Diabetic Association. This prestigious award, made to an outstanding young researcher, is named in honour of the man who, with H.G. Wells, founded the British Diabetic Association, and was given to Dr Jones in acknowledgment of his work in the field of islet cell physiology and pathophysiology. In this article, Dr Jones recalls his lecture and describes the principles of intracellular signalling in insulin secretion and the need for beta-cells to live together.

  7. Effect of Naloxon on Counter Insulin Hormone Secretion in Insulin-Induced Hypoglycemia

    PubMed Central

    Ju, Yeong Shil; Kim, Sung Woon; Yang, In Myung; Kim, Jin Woo; Kim, Young Seol; Choi, Young Kil

    1987-01-01

    To investigate the normal physiologic role of endogenous opiates in glucose homeostasis and as a preliminary study for clarifying the association of endogenous opites with pathophysilogy of NIDDM, we obseved the changes in the secretion of counter-insulin hormones in response to insulin-induced hypoglycemia with or without naloxone. The results were as follows: Blood glucose was decreased significantly more rapidly with naloxone infusion than after insulin alone, which seems to play a role in the early responses of ACTH and GH.Not only was the more rapid response of ACTH and GH, but also the prolonged secretion of ACTH and Cortisol were observed after administration of insulin and naloxone. We concluded that endogenous opiates may be involved in the feedback regulation of secretion of ACTH and GH during hypoglycemia either at hypophysis or hypothalamus, and involved in glucose homeostasis via a certain direct mechanism other than regulation of counter hormone secretion. PMID:2856480

  8. Amantadine and sparteine inhibit ATP-regulated K-currents in the insulin-secreting beta-cell line, HIT-T15.

    PubMed Central

    Ashcroft, F. M.; Kerr, A. J.; Gibson, J. S.; Williams, B. A.

    1991-01-01

    1. The effects of pharmacological agents that potentiate insulin release were studied on ATP-regulated K-currents (K-ATP currents) in the insulin-secreting beta-cell line HIT-T15 by use of patch-clamp methods. 2. The tricyclic drug, 1-adamantanamine (amantadine), reversibly inhibited both whole-cell currents (with a Ki of 120 microM) and single channel currents in inside-out patches. This effect was principally due to an increase in a long closed state which reduced the channel open probability. The related compound, 1-adamantanol, in which the amino group is substituted by a hydroxyl one, did not inhibit K-ATP currents substantially. 3. The alkaloid, sparteine, reversibly inhibited both whole-cell K-ATP currents (Ki = 171 microM) and single channel currents in inside-out patches. 4. The results suggest that sparteine and amantadine can block the K-ATP channel from either side of the membrane and support the idea that at least part of the stimulatory effect of these agents on insulin secretion results from inhibition of this channel. PMID:1797321

  9. Pigment epithelium-derived factor (PEDF) regulates metabolism and insulin secretion from a clonal rat pancreatic beta cell line BRIN-BD11 and mouse islets.

    PubMed

    Chen, Younan; Carlessi, Rodrigo; Walz, Nikita; Cruzat, Vinicius Fernandes; Keane, Kevin; John, Abraham N; Jiang, Fang-Xu; Carnagarin, Revathy; Dass, Crispin R; Newsholme, Philip

    2016-05-05

    Pigment epithelium-derived factor (PEDF) is a multifunctional glycoprotein, associated with lipid catabolism and insulin resistance. In the present study, PEDF increased chronic and acute insulin secretion in a clonal rat β-cell line BRIN-BD11, without alteration of glucose consumption. PEDF also stimulated insulin secretion from primary mouse islets. Seahorse flux analysis demonstrated that PEDF did not change mitochondrial respiration and glycolytic function. The cytosolic presence of the putative PEDF receptor - adipose triglyceride lipase (ATGL) - was identified, and ATGL associated stimulation of glycerol release was robustly enhanced by PEDF, while intracellular ATP levels increased. Addition of palmitate or ex vivo stimulation with inflammatory mediators induced β-cell dysfunction, effects not altered by the addition of PEDF. In conclusion, PEDF increased insulin secretion in BRIN-BD11 and islet cells, but had no impact on glucose metabolism. Thus elevated lipolysis and enhanced fatty acid availability may impact insulin secretion following PEDF receptor (ATGL) stimulation.

  10. [Prostaglandins, insulin secretion and diabetes mellitus].

    PubMed

    Giugliano, D; Torella, R; Scheen, A J; Lefebvre, P J; D'Onofrio, F

    1988-12-01

    The islets of Langerhans have the enzymatic equipment permitting the synthesis of the metabolites of arachidonic acid: cyclo-oxygenase and lipo-oxygenase. Numerous studies have shown that cyclo-oxygenase derivatives, mainly PGE2, reduce the insulin response to glucose whereas lipo-oxygenase derivatives, mainly 15-HPETE, stimulate insulin secretion. So, for instance, drugs that increase prostaglandins synthesis as colchicine or furosemide inhibit insulin secretion while non steroid anti-inflammator drugs, mainly salicylates, which inhibit cyclo-oxygenase, enhance the insulin response to various stimuli. In type-2 (non insulin-dependent) diabetes, an increased sensitivity to endogenous prostaglandins has been proposed as a possible cause for the insulin secretion defect which characterizes this disease. Play in favor of this hypothesis the fact that the administration of PGE inhibits the insulin response to arginine in type-2 diabetics but not in normal subject and the fact that the administration of salicylates could improve the insulin response to glucose in some of these patients.

  11. THE HYPOPHYSIS AND SECRETION OF INSULIN

    PubMed Central

    Houssay, B. A.; Foglia, V. G.; Smyth, F. S.; Rietti, C. T.; Houssay, A. B.

    1942-01-01

    The ability of the pancreas, from various types of dogs, to correct diabetic hyperglycemia has been studied (Table XI). The pancreas from one animal was united by a vascular union with the neck blood vessels of another dog which had been pancreatectomized for 20 hours. The time necessary to reduce the blood sugar level to 120 mg. per cent was determined. 1. Pancreas from 6 hypophysectomized dogs produced a normal insulin secretion, showing that an anterior pituitary hormone is not necessary for its production or maintenance. 2. In 14 of 17 normal dogs given anterior pituitary extract for 3 or more consecutive days and presenting diabetes (fasting blood sugar 150 mg. per cent or more) the pancreas showed diminished insulin production. 3. In animals which remained diabetic after discontinuing the injections of hypophyseal extract, the pancreas islands were markedly pathologic and the insulin secretion was practically nil. 4. When hyperglycemia existed on the 2nd to 5th day but fell later, the insulin secretion of 5 dogs was normal in 2, supernormal in 1, and less than normal in 2. Histologic examination showed a restoration of beta cells. 5. In 14 dogs resistant to the diabetogenic action of anterior pituitary extract, as shown by little or no change in blood sugar, the pancreatic secretion of insulin was normal in 6 cases, supernormal in 3, and subnormal in 5 cases. Clear signs of hyperfunction of B cells were observed. In 6 resistant animals a high blood sugar (150 mg. per cent) appeared shortly before transplanting, but insulin secretion was normal in 4, supernormal in 1, and subnormal in 1 case. 6. With one injection of extract and 1 day of hyperglycemia the capacity of the pancreas to secrete insulin was not altered. 7. A high blood sugar level lasting 4 days does not alter the islets. The hypophyseal extract acts, therefore, by some other mechanism. In normal dogs, the continuous intravenous infusion of glucose for 4 days maintained the blood sugar at levels as

  12. Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase.

    PubMed

    Li, Changhong; Allen, Aron; Kwagh, Jae; Doliba, Nicolai M; Qin, Wei; Najafi, Habiba; Collins, Heather W; Matschinsky, Franz M; Stanley, Charles A; Smith, Thomas J

    2006-04-14

    Insulin secretion by pancreatic beta-cells is stimulated by glucose, amino acids, and other metabolic fuels. Glutamate dehydrogenase (GDH) has been shown to play a regulatory role in this process. The importance of GDH was underscored by features of hyperinsulinemia/hyperammonemia syndrome, where a dominant mutation causes the loss of inhibition by GTP and ATP. Here we report the effects of green tea polyphenols on GDH and insulin secretion. Of the four compounds tested, epigallocatechin gallate (EGCG) and epicatechin gallate were found to inhibit GDH with nanomolar ED(50) values and were therefore found to be as potent as the physiologically important inhibitor GTP. Furthermore, we have demonstrated that EGCG inhibits BCH-stimulated insulin secretion, a process that is mediated by GDH, under conditions where GDH is no longer inhibited by high energy metabolites. EGCG does not affect glucose-stimulated insulin secretion under high energy conditions where GDH is probably fully inhibited. We have further shown that these compounds act in an allosteric manner independent of their antioxidant activity and that the beta-cell stimulatory effects are directly correlated with glutamine oxidation. These results demonstrate that EGCG, much like the activator of GDH (BCH), can facilitate dissecting the complex regulation of insulin secretion by pharmacologically modulating the effects of GDH.

  13. Prenatal Programming of Insulin Secretion in Intrauterine Growth Restriction

    PubMed Central

    Gatford, Kathryn L.; Simmons, Rebecca A.

    2014-01-01

    Intrauterine growth restriction (IUGR) impairs insulin secretion in humans and in animal models of IUGR. Several underlying mechanisms have been implicated, including decreased expression of molecular regulators of β-cell mass and function, in some cases shown to be due to epigenetic changes initiated by an adverse fetal environment. Alterations in cell cycle progression contribute to loss of β-cell mass, whereas decreased islet vascularity and mitochondrial dysfunction impair β-cell function in IUGR rodents. Animal models of IUGR sharing similar insulin secretion outcomes as the IUGR human are allowing underlying mechanisms to be identified. This review will focus on models of uteroplacental in sufficiency. PMID:23820120

  14. Prenatal programming of insulin secretion in intrauterine growth restriction.

    PubMed

    Gatford, Kathryn L; Simmons, Rebecca A

    2013-09-01

    Intrauterine growth restriction (IUGR) impairs insulin secretion in humans and in animal models of IUGR. Several underlying mechanisms have been implicated, including decreased expression of molecular regulators of β-cell mass and function, in some cases shown to be due to epigenetic changes initiated by an adverse fetal environment. Alterations in cell cycle progression contribute to loss of β-cell mass, whereas decreased islet vascularity and mitochondrial dysfunction impair β-cell function in IUGR rodents. Animal models of IUGR sharing similar insulin secretion outcomes as the IUGR human are allowing underlying mechanisms to be identified. This review will focus on models of uteroplacental insufficiency.

  15. Transcription factor Ets-1 inhibits glucose-stimulated insulin secretion of pancreatic β-cells partly through up-regulation of COX-2 gene expression.

    PubMed

    Zhang, Xiong-Fei; Zhu, Yi; Liang, Wen-Biao; Zhang, Jing-Jing

    2014-08-01

    Increased cyclooxygenase-2 (COX-2) expression is associated with pancreatic β-cell dysfunction. We previously demonstrated that the transcription factor Ets-1 significantly up-regulated COX-2 gene promoter activity. In this report, we used the pancreatic β-cell line INS-1 and isolated rat islets to investigate whether Ets-1 could induce β-cell dysfunction through up-regulating COX-2 gene expression. We investigated the effects of ETS-1 overexpression and the effects of ETS-1 RNA interference on endogenous COX-2 expression in INS-1 cells. We used site-directed mutagenesis and a dual luciferase reporter assay to study putative Ets-1 binding sites in the COX-2 promoter. The effect of ETS-1 1 overexpression on the insulin secretion function of INS-1 cells and rat islets and the potential reversal of these effects by a COX-2 inhibitor were determined in a glucose-stimulated insulin secretion (GSIS) assay. ETS-1 overexpression significantly induces endogenous COX-2 expression, but ETS-1 RNA interference has no effect on basal COX-2 expression in INS-1 cells. Ets-1 protein significantly increases COX-2 promoter activity through the binding site located in the -195/-186 region of the COX-2 promoter. ETS-1 overexpression significantly inhibited the GSIS function of INS-1 cells and islet cells and COX-2 inhibitor treatment partly reversed this effect. These findings indicated that ETS-1 overexpression induces β-cell dysfunction partly through up-regulation of COX-2 gene expression. Moreover, Ets-1, the transcriptional regulator of COX-2 expression, may be a potential target for the prevention of β-cell dysfunction mediated by COX-2.

  16. Thrombin stimulates insulin secretion via protease-activated receptor-3.

    PubMed

    Hänzelmann, Sonja; Wang, Jinling; Güney, Emre; Tang, Yunzhao; Zhang, Enming; Axelsson, Annika S; Nenonen, Hannah; Salehi, Albert S; Wollheim, Claes B; Zetterberg, Eva; Berntorp, Erik; Costa, Ivan G; Castelo, Robert; Rosengren, Anders H

    2015-01-01

    The disease mechanisms underlying type 2 diabetes (T2D) remain poorly defined. Here we aimed to explore the pathophysiology of T2D by analyzing gene co-expression networks in human islets. Using partial correlation networks we identified a group of co-expressed genes ('module') including F2RL2 that was associated with glycated hemoglobin. F2Rl2 is a G-protein-coupled receptor (GPCR) that encodes protease-activated receptor-3 (PAR3). PAR3 is cleaved by thrombin, which exposes a 6-amino acid sequence that acts as a 'tethered ligand' to regulate cellular signaling. We have characterized the effect of PAR3 activation on insulin secretion by static insulin secretion measurements, capacitance measurements, studies of diabetic animal models and patient samples. We demonstrate that thrombin stimulates insulin secretion, an effect that was prevented by an antibody that blocks the thrombin cleavage site of PAR3. Treatment with a peptide corresponding to the PAR3 tethered ligand stimulated islet insulin secretion and single β-cell exocytosis by a mechanism that involves activation of phospholipase C and Ca(2+) release from intracellular stores. Moreover, we observed that the expression of tissue factor, which regulates thrombin generation, was increased in human islets from T2D donors and associated with enhanced β-cell exocytosis. Finally, we demonstrate that thrombin generation potential in patients with T2D was associated with increased fasting insulin and insulinogenic index. The findings provide a previously unrecognized link between hypercoagulability and hyperinsulinemia and suggest that reducing thrombin activity or blocking PAR3 cleavage could potentially counteract the exaggerated insulin secretion that drives insulin resistance and β-cell exhaustion in T2D.

  17. Regulation of L-type CaV1.3 channel activity and insulin secretion by the cGMP-PKG signaling pathway.

    PubMed

    Sandoval, Alejandro; Duran, Paz; Gandini, María A; Andrade, Arturo; Almanza, Angélica; Kaja, Simon; Felix, Ricardo

    2017-09-01

    cGMP is a second messenger widely used in the nervous system and other tissues. One of the major effectors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG), which catalyzes the phosphorylation of a variety of proteins including ion channels. Previously, it has been shown that the cGMP-PKG signaling pathway inhibits Ca(2+) currents in rat vestibular hair cells and chromaffin cells. This current allegedly flow through voltage-gated CaV1.3L-type Ca(2+) channels, and is important for controlling vestibular hair cell sensory function and catecholamine secretion, respectively. Here, we show that native L-type channels in the insulin-secreting RIN-m5F cell line, and recombinant CaV1.3 channels heterologously expressed in HEK-293 cells, are regulatory targets of the cGMP-PKG signaling cascade. Our results indicate that the CaVα1 ion-conducting subunit of the CaV1.3 channels is highly expressed in RIN-m5F cells and that the application of 8-Br-cGMP, a membrane-permeable analogue of cGMP, significantly inhibits Ca(2+) macroscopic currents and impair insulin release stimulated with high K(+). In addition, KT-5823, a specific inhibitor of PKG, prevents the current inhibition generated by 8-Br-cGMP in the heterologous expression system. Interestingly, mutating the putative phosphorylation sites to residues resistant to phosphorylation showed that the relevant PKG sites for CaV1.3 L-type channel regulation centers on two amino acid residues, Ser793 and Ser860, located in the intracellular loop connecting the II and III repeats of the CaVα1 pore-forming subunit of the channel. These findings unveil a novel mechanism for how the cGMP-PKG signaling pathway may regulate CaV1.3 channels and contribute to regulate insulin secretion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Regulation of protein secretion by ... protein secretion?

    PubMed

    Atmakuri, Krishnamohan; Fortune, Sarah M

    2008-09-11

    Mycobacterium tuberculosis (Mtb) requires an alternative protein secretion system, ESX1, for virulence. Recently, Raghavan et al. (2008) reported a new regulatory circuit that may explain how ESX1 activity is controlled during infection. Mtb appears to regulate ESX1 by modulating transcription of associated genes rather than structural components of the secretion system itself.

  19. Assessment of the Role of Metabolic Determinants on the Relationship between Insulin Sensitivity and Secretion

    PubMed Central

    Galgani, Jose E.; Gómez, Carmen; Mizgier, Maria L.; Gutierrez, Juan; Santos, Jose L.; Olmos, Pablo; Mari, Andrea

    2016-01-01

    Background Insulin secretion correlates inversely with insulin sensitivity, which may suggest the existence of a crosstalk between peripheral organs and pancreas. Such interaction might be mediated through glucose oxidation that may drive the release of circulating factors with action on insulin secretion. Aim To evaluate the association between whole-body carbohydrate oxidation and circulating factors with insulin secretion to consecutive oral glucose loading in non-diabetic individuals. Methods Carbohydrate oxidation was measured after an overnight fast and for 6 hours after two 3-h apart 75-g oral glucose tolerance tests (OGTT) in 53 participants (24/29 males/females; 34±9 y; 27±4 kg/m2). Insulin secretion was estimated by deconvolution of serum C-peptide concentration, β cell function by mathematical modelling and insulin sensitivity from an OGTT. Circulating lactate, free-fatty acids (FFA) and candidate chemokines were assessed before and after OGTT. The effect of recombinant RANTES (regulated on activation, normal T cell expressed and secreted) and IL8 (interleukin 8) on insulin secretion from isolated mice islets was also measured. Results Carbohydrate oxidation assessed over the 6-h period did not relate with insulin secretion (r = -0.11; p = 0.45) or β cell function indexes. Circulating lactate and FFA showed no association with 6-h insulin secretion. Circulating chemokines concentration increased upon oral glucose stimulation. Insulin secretion associated with plasma IL6 (r = 0.35; p<0.05), RANTES (r = 0.30; p<0.05) and IL8 (r = 0.41; p<0.05) determined at 60 min OGTT. IL8 was independently associated with in vivo insulin secretion; however, it did not affect in vitro insulin secretion. Conclusion Whole-body carbohydrate oxidation appears to have no influence on insulin secretion or putative circulating mediators. IL8 may be a potential factor influencing insulin secretion. PMID:28002466

  20. Assessment of the Role of Metabolic Determinants on the Relationship between Insulin Sensitivity and Secretion.

    PubMed

    Galgani, Jose E; Gómez, Carmen; Mizgier, Maria L; Gutierrez, Juan; Santos, Jose L; Olmos, Pablo; Mari, Andrea

    2016-01-01

    Insulin secretion correlates inversely with insulin sensitivity, which may suggest the existence of a crosstalk between peripheral organs and pancreas. Such interaction might be mediated through glucose oxidation that may drive the release of circulating factors with action on insulin secretion. To evaluate the association between whole-body carbohydrate oxidation and circulating factors with insulin secretion to consecutive oral glucose loading in non-diabetic individuals. Carbohydrate oxidation was measured after an overnight fast and for 6 hours after two 3-h apart 75-g oral glucose tolerance tests (OGTT) in 53 participants (24/29 males/females; 34±9 y; 27±4 kg/m2). Insulin secretion was estimated by deconvolution of serum C-peptide concentration, β cell function by mathematical modelling and insulin sensitivity from an OGTT. Circulating lactate, free-fatty acids (FFA) and candidate chemokines were assessed before and after OGTT. The effect of recombinant RANTES (regulated on activation, normal T cell expressed and secreted) and IL8 (interleukin 8) on insulin secretion from isolated mice islets was also measured. Carbohydrate oxidation assessed over the 6-h period did not relate with insulin secretion (r = -0.11; p = 0.45) or β cell function indexes. Circulating lactate and FFA showed no association with 6-h insulin secretion. Circulating chemokines concentration increased upon oral glucose stimulation. Insulin secretion associated with plasma IL6 (r = 0.35; p<0.05), RANTES (r = 0.30; p<0.05) and IL8 (r = 0.41; p<0.05) determined at 60 min OGTT. IL8 was independently associated with in vivo insulin secretion; however, it did not affect in vitro insulin secretion. Whole-body carbohydrate oxidation appears to have no influence on insulin secretion or putative circulating mediators. IL8 may be a potential factor influencing insulin secretion.

  1. Insulin secretion in health and disease: nutrients dictate the pace.

    PubMed

    Regazzi, Romano; Rodriguez-Trejo, Adriana; Jacovetti, Cécile

    2016-02-01

    Insulin is a key hormone controlling metabolic homeostasis. Loss or dysfunction of pancreatic β-cells lead to the release of insufficient insulin to cover the organism needs, promoting diabetes development. Since dietary nutrients influence the activity of β-cells, their inadequate intake, absorption and/or utilisation can be detrimental. This review will highlight the physiological and pathological effects of nutrients on insulin secretion and discuss the underlying mechanisms. Glucose uptake and metabolism in β-cells trigger insulin secretion. This effect of glucose is potentiated by amino acids and fatty acids, as well as by entero-endocrine hormones and neuropeptides released by the digestive tract in response to nutrients. Glucose controls also basal and compensatory β-cell proliferation and, along with fatty acids, regulates insulin biosynthesis. If in the short-term nutrients promote β-cell activities, chronic exposure to nutrients can be detrimental to β-cells and causes reduced insulin transcription, increased basal secretion and impaired insulin release in response to stimulatory glucose concentrations, with a consequent increase in diabetes risk. Likewise, suboptimal early-life nutrition (e.g. parental high-fat or low-protein diet) causes altered β-cell mass and function in adulthood. The mechanisms mediating nutrient-induced β-cell dysfunction include transcriptional, post-transcriptional and translational modifications of genes involved in insulin biosynthesis and secretion, carbohydrate and lipid metabolism, cell differentiation, proliferation and survival. Altered expression of these genes is partly caused by changes in non-coding RNA transcripts induced by unbalanced nutrient uptake. A better understanding of the mechanisms leading to β-cell dysfunction will be critical to improve treatment and find a cure for diabetes.

  2. Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules.

    PubMed

    Briscoe, Celia P; Peat, Andrew J; McKeown, Stephen C; Corbett, David F; Goetz, Aaron S; Littleton, Thomas R; McCoy, David C; Kenakin, Terry P; Andrews, John L; Ammala, Carina; Fornwald, James A; Ignar, Diane M; Jenkinson, Stephen

    2006-07-01

    1. Long chain fatty acids have recently been identified as agonists for the G protein-coupled receptors GPR40 and GPR120. Here, we present the first description of GW9508, a small-molecule agonist of the fatty acid receptors GPR40 and GPR120. In addition, we also describe the pharmacology of GW1100, a selective GPR40 antagonist. These molecules were used to further investigate the role of GPR40 in glucose-stimulated insulin secretion in the MIN6 mouse pancreatic beta-cell line. 2. GW9508 and linoleic acid both stimulated intracellular Ca2+ mobilization in human embryonic kidney (HEK)293 cells expressing GPR40 (pEC50 values of 7.32+/-0.03 and 5.65+/-0.06, respectively) or GPR120 (pEC50 values of 5.46+/-0.09 and 5.89+/-0.04, respectively), but not in the parent HEK-293 cell line. 3. GW1100 dose dependently inhibited GPR40-mediated Ca2+ elevations stimulated by GW9508 and linoleic acid (pIC50 values of 5.99+/-0.03 and 5.99+/-0.06, respectively). GW1100 had no effect on the GPR120-mediated stimulation of intracellular Ca2+ release produced by either GW9508 or linoleic acid. 4. GW9508 dose dependently potentiated glucose-stimulated insulin secretion in MIN6 cells, but not in primary rat or mouse islets. Furthermore, GW9508 was able to potentiate the KCl-mediated increase in insulin secretion in MIN6 cells. The effects of GW9508 on insulin secretion were reversed by GW1100, while linoleic acid-stimulated insulin secretion was partially attenuated by GW1100. 5. These results add further evidence to a link between GPR40 and the ability of fatty acids to acutely potentiate insulin secretion and demonstrate that small-molecule GPR40 agonists are glucose-sensitive insulin secretagogues.

  3. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion

    SciTech Connect

    Bagge, Annika; Clausen, Trine R.; Larsen, Sylvester; Ladefoged, Mette; Rosenstierne, Maiken W.; Larsen, Louise; Vang, Ole; Nielsen, Jens H.; Dalgaard, Louise T.

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer MicroRNA-29a (miR-29a) levels are increased by glucose in human and rat islets and INS-1E cells. Black-Right-Pointing-Pointer miR-29a increases proliferation of INS-1E beta-cells. Black-Right-Pointing-Pointer Forced expression of miR-29a decreases glucose-stimulated insulin secretion (GSIS). Black-Right-Pointing-Pointer Depletion of beta-cell miR-29a improves GSIS. Black-Right-Pointing-Pointer miR-29a may be a mediator of glucose toxicity in beta-cells. -- Abstract: Chronically elevated levels of glucose impair pancreatic beta-cell function while inducing beta-cell proliferation. MicroRNA-29a (miR-29a) levels are increased in several tissues in diabetic animals and mediate decreased insulin-stimulated glucose-transport of adipocytes. The aim was to investigate the impact of glucose on miR-29a levels in INS-1E beta-cells and in human islets of Langerhans and furthermore to evaluate the impact of miR-29a on beta-cell function and proliferation. Increased glucose levels up-regulated miR-29a in beta-cells and human and rat islets of Langerhans. Glucose-stimulated insulin-secretion (GSIS) of INS-1E beta-cells was decreased by forced expression of miR-29a, while depletion of endogenous miR-29a improved GSIS. Over-expression of miR-29a increased INS-1E proliferation. Thus, miR-29a up-regulation is involved in glucose-induced proliferation of beta-cells. Furthermore, as depletion of miR-29a improves beta-cell function, miR-29a is a mediator of glucose-induced beta-cell dysfunction. Glucose-induced up-regulation of miR-29a in beta-cells could be implicated in progression from impaired glucose tolerance to type 2 diabetes.

  4. The ETS-Domain Transcription Factor Elk-1 Regulates COX-2 Gene Expression and Inhibits Glucose-Stimulated Insulin Secretion in the Pancreatic β -Cell Line INS-1.

    PubMed

    Zhang, Xiong-Fei; Zhu, Yi; Liang, Wen-Biao; Zhang, Jing-Jing

    2013-01-01

    Cyclooxygenase-2 (COX-2) expression is associated with many aspects of physiological and pathological conditions, including pancreatic β -cell dysfunction. Prostaglandin E2 (PGE2) production, as a consequence of COX-2 gene induction, has been reported to impair β -cell function. The molecular mechanisms involved in the regulation of COX-2 gene expression are not fully understood. We previously demonstrated that transcription factor Elk-1 significantly upregulated COX-2 gene promoter activity. In this report, we used pancreatic β -cell line (INS-1) to explore the relationships between Elk-1 and COX-2. We first investigated the effects of Elk-1 on COX-2 transcriptional regulation and expression in INS-1 cells. We thus undertook to study the binding of Elk-1 to its putative binding sites in the COX-2 promoter. We also analysed glucose-stimulated insulin secretion (GSIS) in INS-1 cells that overexpressed Elk-1. Our results demonstrate that Elk-1 efficiently upregulates COX-2 expression at least partly through directly binding to the -82/-69 region of COX-2 promoter. Overexpression of Elk-1 inhibits GSIS in INS-1 cells. These findings will be helpful for better understanding the transcriptional regulation of COX-2 in pancreatic β -cell. Moreover, Elk-1, the transcriptional regulator of COX-2 expression, will be a potential target for the prevention of β -cell dysfunction mediated by PGE2.

  5. A role for cytosolic isocitrate dehydrogenase as a negative regulator of glucose signaling for insulin secretion in pancreatic ß-cells.

    PubMed

    Guay, Claudiane; Joly, Erik; Pepin, Emilie; Barbeau, Annie; Hentsch, Lisa; Pineda, Marco; Madiraju, S R Murthy; Brunengraber, Henri; Prentki, Marc

    2013-01-01

    Cytosolic NADPH may act as one of the signals that couple glucose metabolism to insulin secretion in the pancreatic ß-cell. NADPH levels in the cytoplasm are largely controlled by the cytosolic isoforms of malic enzyme and isocitrate dehydrogenase (IDHc). Some studies have provided evidence for a role of malic enzyme in glucose-induced insulin secretion (GIIS) via pyruvate cycling, but the role of IDHc in ß-cell signaling is unsettled. IDHc is an established component of the isocitrate/α-ketoglutarate shuttle that transfers reducing equivalents (NADPH) from the mitochondrion to the cytosol. This shuttle is energy consuming since it is coupled to nicotinamide nucleotide transhydrogenase that uses the mitochondrial proton gradient to produce mitochondrial NADPH and NAD(+) from NADP(+) and NADH. To determine whether flux through IDHc is positively or negatively linked to GIIS, we performed RNAi knockdown experiments in ß-cells. Reduced IDHc expression in INS 832/13 cells and isolated rat islet ß-cells resulted in enhanced GIIS. This effect was mediated at least in part via the KATP-independent amplification arm of GIIS. IDHc knockdown in INS 832/13 cells did not alter glucose oxidation but it reduced fatty acid oxidation and increased lipogenesis from glucose. Metabolome profiling in INS 832/13 cells showed that IDHc knockdown increased isocitrate and NADP(+) levels. It also increased the cellular contents of several metabolites linked to GIIS, in particular some Krebs cycle intermediates, acetyl-CoA, glutamate, cAMP and ATP. The results identify IDHc as a component of the emerging pathways that negatively regulate GIIS.

  6. LIM-homeodomain transcription factor Isl-1 mediates kisspeptin's effect on insulin secretion in mice.

    PubMed

    Chen, Juan; Fu, Rui; Cui, Yan; Pan, Jirong; Li, Yushan; Zhang, Xiaoxin; Evans, Sylvia M; Cui, Sheng; Liu, Jiali

    2014-08-01

    Kisspeptin and the G protein-coupled receptor 54 (GPR54) are highly abundant in the pancreas. In addition, circulating kisspeptin directly influences insulin secretion through GPR54. However, the mechanisms by which kisspeptin affects insulin release are unclear. The LIM-homeodomain transcription factor, Isl-1, is expressed in all pancreatic islet cells and is involved in regulating both islet development and insulin secretion. We therefore investigated potential interactions between kisspeptin and Isl-1. Our results demonstrate that Isl-1 and GPR54 are coexpressed in mouse pancreatic islet β-cells and NIT cells. Both in vitro and in vivo results demonstrate that kisspeptin-54 (KISS-54) inhibits Isl-1 expression and insulin secretion and both the in vivo and in vitro effects of KISS-54 on insulin gene expression and secretion are abolished when an Isl-1-inducible knockout model is used. Moreover, our results demonstrate that the direct action of KISS-54 on insulin secretion is mediated by Isl-1. Our results further show that KISS-54 influences Isl-1 expression and insulin secretion through the protein kinase C-ERK1/2 pathway. Conversely, insulin has a feedback loop via the Janus kinase-phosphatidylinositol 3-kinase pathway regulating kisspeptin expression and secretion. These findings are important in understanding mechanisms of insulin secretion and metabolism in diabetes.

  7. Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice

    PubMed Central

    Gustavsson, Natalia; Lao, Ye; Maximov, Anton; Chuang, Jen-Chieh; Kostromina, Elena; Repa, Joyce J.; Li, Cai; Radda, George K.; Südhof, Thomas C.; Han, Weiping

    2008-01-01

    Vertebrates express at least 15 different synaptotagmins with the same domain structure but diverse localizations and tissue distributions. Synaptotagmin-1,-2, and -9 act as calcium sensors for the fast phrase of neurotransmitter release, and synaptotagmin-12 acts as a calcium-independent modulator of release. The exact functions of the remaining 11 synaptotagmins, however, have not been established. By analogy to the role of synaptotagmin-1, -2, and -9 in neurotransmission, these other synaptotagmins may serve as Ca2+ transducers regulating other Ca2+-dependent membrane processes, such as insulin secretion in pancreatic β-cells. Of these other synaptotagmins, synaptotagmin-7 is one of the most abundant and is present in pancreatic β-cells. To determine whether synaptotagmin-7 regulates Ca2+-dependent insulin secretion, we analyzed synaptotagmin-7 null mutant mice for glucose tolerance and insulin release. Here, we show that synaptotagmin-7 is required for the maintenance of systemic glucose tolerance and glucose-stimulated insulin secretion. Mutant mice have normal insulin sensitivity, insulin production, islet architecture and ultrastructural organization, and metabolic and calcium responses but exhibit impaired glucose-induced insulin secretion, indicating a calcium-sensing defect during insulin-containing secretory granule exocytosis. Taken together, our findings show that synaptotagmin-7 functions as a positive regulator of insulin secretion and may serve as a calcium sensor controlling insulin secretion in pancreatic β cells. PMID:18308938

  8. Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice.

    PubMed

    Gustavsson, Natalia; Lao, Ye; Maximov, Anton; Chuang, Jen-Chieh; Kostromina, Elena; Repa, Joyce J; Li, Cai; Radda, George K; Südhof, Thomas C; Han, Weiping

    2008-03-11

    Vertebrates express at least 15 different synaptotagmins with the same domain structure but diverse localizations and tissue distributions. Synaptotagmin-1,-2, and -9 act as calcium sensors for the fast phrase of neurotransmitter release, and synaptotagmin-12 acts as a calcium-independent modulator of release. The exact functions of the remaining 11 synaptotagmins, however, have not been established. By analogy to the role of synaptotagmin-1, -2, and -9 in neurotransmission, these other synaptotagmins may serve as Ca(2+) transducers regulating other Ca(2+)-dependent membrane processes, such as insulin secretion in pancreatic beta-cells. Of these other synaptotagmins, synaptotagmin-7 is one of the most abundant and is present in pancreatic beta-cells. To determine whether synaptotagmin-7 regulates Ca(2+)-dependent insulin secretion, we analyzed synaptotagmin-7 null mutant mice for glucose tolerance and insulin release. Here, we show that synaptotagmin-7 is required for the maintenance of systemic glucose tolerance and glucose-stimulated insulin secretion. Mutant mice have normal insulin sensitivity, insulin production, islet architecture and ultrastructural organization, and metabolic and calcium responses but exhibit impaired glucose-induced insulin secretion, indicating a calcium-sensing defect during insulin-containing secretory granule exocytosis. Taken together, our findings show that synaptotagmin-7 functions as a positive regulator of insulin secretion and may serve as a calcium sensor controlling insulin secretion in pancreatic beta cells.

  9. Evaluation of insulin sensitivity and secretion in primary aldosteronism.

    PubMed

    Watanabe, Daisuke; Yatabe, Midori; Ichihara, Atsuhiro

    In primary aldosteronism (PA), insulin response to glucose is not fully understood. Insulin action was elucidated using indices in 32 PA and 21 essential hypertension (EH) patients. These patients were evaluated using homeostasis model assessment (HOMA) indices, quantitative insulin sensitivity check index (QUICKI), and insulinogenic index (IGI), which were expressed for insulin sensitivity/secretion and the early phase of insulin secretion. Insulin sensitivity and early phase of insulin secretion were decreased in PA, and there was a negative correlation between serum potassium concentration and insulin sensitivity indices. These findings suggest that glucose intolerance in PA may be caused by hypokalemia-induced insulin resistance and hypokalemia-independent impairment of early-phase insulin secretion.

  10. Signalling satiety and starvation to β-Cell insulin secretion.

    PubMed

    Holness, Mark J; Hegazy, Sharif; Sugden, Mary C

    2011-09-01

    The impact of bariatric surgery on insulin sensitivity and glucose tolerance has refocused interest in the role of gut-derived factors in the regulation of insulin secretion and action. The incretins, glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1) are released from endocrine cells in the small intestinal mucosa primarily in response to oral nutrient ingestion. They have various effects, including augmentation of glucose-stimulated insulin secretion (GSIS), actions that promote the cellular assimilation and storage of dietary glucose and lipid as liver and skeletal muscle glycogen and adipocyte triacylglycerol (TAG) respectively. Similarly, increased delivery of fatty acids (FA) acutely augments GSIS, and the resultant enhancement of GSIS facilitates FA storage as adipocyte TAG. Leptin secretion from white adipocytes curbs appetite to limit dietary nutrient intake and adipocyte TAG storage and, potentially, GSIS, thereby curtailing insulin-dependent TAG storage. On fasting, GSIS is curbed, an effect the mechanism of which is even now incompletely understood, but which may reflect augmented β-cell FA oxidation. The orexigen ghrelin, systemic concentrations of which increase with fasting, exerts enigmatic effects on GSIS, in that acylated ghrelin and unacylated ghrelin exert opposing effects on GSIS, whereas acylated ghrelin and unacylated ghrelin share protective effects on islet survival. This review will build on these emerging studies to evaluate the roles of the incretins, leptin, lipids and acylated and unacylated ghrelin in modulating islet function and survival during feasting and fasting.

  11. Mechanism by which cyproheptadine inhibits insulin secretion.

    PubMed Central

    Donatsch, P.; Lowe, D. A.; Richardson, B. P.; Taylor, P.

    1980-01-01

    1 Isolated islets of Langerhans from the rat have been used in studies designed to elucidate the mechanism by which cyproheptadine inhibits insulin secretion. 2 D-Glucose and tolbutamide, both of which require extracellular Ca2+ to produce insulin release, failed to evoke a secretory response from islets pretreated with cyproheptadine. Conversely veratridine, the calcium ionophore A23187 and theophylline, all of which are capable of mobilizing sufficient intracellular Ca2+ to evoke insulin secretion in the absence of extracellular Ca2+, produced similar responses from cyproheptadine pretreated and control islets. 3 Cyproheptadine completely inhibited Ca2+ uptake induced by D-glucose and high Ko+, two agents which depolarize the islet beta-cell membrane, whilst Ca2+ uptake elicited by removal of extracellular Na+ (i.e. Na+-Ca2+ counter transport) was only slightly reduced. 4 A significant increase in Na+ uptake produced by veratridine was sensitive to tetrodoxin but only partially reduced by cyproheptadine. 5 These results suggest that cyproheptadine inhibits depolarization-dependent calcium entry into pancreatic beta-cells. PMID:7002245

  12. BK channels mediate a novel ionic mechanism that regulates glucose-dependent electrical activity and insulin secretion in mouse pancreatic β-cells

    PubMed Central

    Houamed, Khaled M; Sweet, Ian R; Satin, Leslie S

    2010-01-01

    BK channels are large unitary conductance K+ channels cooperatively activated by intracellular calcium and membrane depolarisation. We show that BK channels regulate electrical activity in β-cells of mouse pancreatic islets exposed to elevated glucose. In 11.1 mm glucose, the non-peptidyl BK channel blocker paxilline increased the height of β-cell action potentials (APs) by 21 mV without affecting burst- or silent-period durations. In isolated β-cells, paxilline increased AP height by 16 mV without affecting resting membrane potential. In voltage clamp, paxilline blocked a transient component of outward current activated by a short depolarisation, which accounted for at least 90% of the initial outward K+ current. This BK current (IBK) was blocked by the Ca2+ channel blockers Cd2+ (200 μm) or nimodipine (1 μm), and potentiated by FPL-64176 (1 μm). IBK was also 56% blocked by the BK channel blocker iberiotoxin (100 nm). IBK activated more than 10-fold faster than the delayed rectifier IKv over the physiological voltage range, and partially inactivated. An AP-like command revealed that IBK activated and deactivated faster than IKv and accounted for 86% of peak IK, explaining why IBK block increased AP height. A higher amplitude AP-like command, patterned on an AP recorded in 11.1 mm glucose plus paxilline, activated 4-fold more IKv and significantly increased Ca2+ entry. Paxilline increased insulin secretion in islets exposed to 11.1 mm glucose by 67%, but did not affect basal secretion in 2.8 mm glucose. These data suggest a modified model of β-cell AP generation where IBK and IKv coordinate the AP repolarisation. PMID:20643769

  13. A Unifying Organ Model of Pancreatic Insulin Secretion

    PubMed Central

    De Gaetano, Andrea; Gaz, Claudio; Palumbo, Pasquale; Panunzi, Simona

    2015-01-01

    The secretion of insulin by the pancreas has been the object of much attention over the past several decades. Insulin is known to be secreted by pancreatic β-cells in response to hyperglycemia: its blood concentrations however exhibit both high-frequency (period approx. 10 minutes) and low-frequency oscillations (period approx. 1.5 hours). Furthermore, characteristic insulin secretory response to challenge maneuvers have been described, such as frequency entrainment upon sinusoidal glycemic stimulation; substantial insulin peaks following minimal glucose administration; progressively strengthened insulin secretion response after repeated administration of the same amount of glucose; insulin and glucose characteristic curves after Intra-Venous administration of glucose boli in healthy and pre-diabetic subjects as well as in Type 2 Diabetes Mellitus. Previous modeling of β-cell physiology has been mainly directed to the intracellular chain of events giving rise to single-cell or cell-cluster hormone release oscillations, but the large size, long period and complex morphology of the diverse responses to whole-body glucose stimuli has not yet been coherently explained. Starting with the seminal work of Grodsky it was hypothesized that the population of pancreatic β-cells, possibly functionally aggregated in islets of Langerhans, could be viewed as a set of independent, similar, but not identical controllers (firing units) with distributed functional parameters. The present work shows how a single model based on a population of independent islet controllers can reproduce very closely a diverse array of actually observed experimental results, with the same set of working parameters. The model’s success in reproducing a diverse array of experiments implies that, in order to understand the macroscopic behaviour of the endocrine pancreas in regulating glycemia, there is no need to hypothesize intrapancreatic pacemakers, influences between different islets of Langerhans

  14. Thymoquinone, a bioactive component of Nigella sativa, normalizes insulin secretion from pancreatic β-cells under glucose overload via regulation of malonyl-CoA

    PubMed Central

    Gray, Joshua P.; Zayasbazan Burgos, Delaine; Yuan, Tao; Seeram, Navindra; Rebar, Rebecca; Follmer, Rebecca

    2015-01-01

    Thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone) is a major bioactive component of Nigella sativa, a plant used in traditional medicine to treat a variety of symptoms, including elevated blood glucose levels in type 2 diabetic patients. Normalization of elevated blood glucose depends on both glucose disposal by peripheral tissues and glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. We employed clonal β-cells and rodent islets to investigate the effects of thymoquinone (TQ) and Nigella sativa extracts (NSEs) on GSIS and cataplerotic metabolic pathways implicated in the regulation of GSIS. TQ and NSE regulated NAD(P)H/NAD(P)+ ratios via a quinone-dependent redox cycling mechanism. TQ content was positively correlated with the degree of redox cycling activity of NSE extracts, suggesting that TQ is a major component engaged in mediating NSE-dependent redox cycling. Both acute and chronic exposure to TQ and NSE enhanced GSIS and were associated with the ability of TQ and NSE to increase the ATP/ADP ratio. Furthermore, TQ ameliorated the impairment of GSIS following chronic exposure of β-cells to glucose overload. This protective action was associated with the TQ-dependent normalization of chronic accumulation of malonyl-CoA, elevation of acetyl-CoA carboxylase (ACC), fatty acid synthase, and fatty acid-binding proteins following chronic glucose overload. Together, these data suggest that TQ modulates the β-cell redox circuitry and enhances the sensitivity of β-cell metabolic pathways to glucose and GSIS under normal conditions as well as under hyperglycemia. This action is associated with the ability of TQ to regulate carbohydrate-to-lipid flux via downregulation of ACC and malonyl-CoA. PMID:26786775

  15. Thymoquinone, a bioactive component of Nigella sativa, normalizes insulin secretion from pancreatic β-cells under glucose overload via regulation of malonyl-CoA.

    PubMed

    Gray, Joshua P; Burgos, Delaine Zayasbazan; Yuan, Tao; Seeram, Navindra; Rebar, Rebecca; Follmer, Rebecca; Heart, Emma A

    2016-03-15

    Thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone) is a major bioactive component of Nigella sativa, a plant used in traditional medicine to treat a variety of symptoms, including elevated blood glucose levels in type 2 diabetic patients. Normalization of elevated blood glucose depends on both glucose disposal by peripheral tissues and glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. We employed clonal β-cells and rodent islets to investigate the effects of thymoquinone (TQ) and Nigella sativa extracts (NSEs) on GSIS and cataplerotic metabolic pathways implicated in the regulation of GSIS. TQ and NSE regulated NAD(P)H/NAD(P)(+) ratios via a quinone-dependent redox cycling mechanism. TQ content was positively correlated with the degree of redox cycling activity of NSE extracts, suggesting that TQ is a major component engaged in mediating NSE-dependent redox cycling. Both acute and chronic exposure to TQ and NSE enhanced GSIS and were associated with the ability of TQ and NSE to increase the ATP/ADP ratio. Furthermore, TQ ameliorated the impairment of GSIS following chronic exposure of β-cells to glucose overload. This protective action was associated with the TQ-dependent normalization of chronic accumulation of malonyl-CoA, elevation of acetyl-CoA carboxylase (ACC), fatty acid synthase, and fatty acid-binding proteins following chronic glucose overload. Together, these data suggest that TQ modulates the β-cell redox circuitry and enhances the sensitivity of β-cell metabolic pathways to glucose and GSIS under normal conditions as well as under hyperglycemia. This action is associated with the ability of TQ to regulate carbohydrate-to-lipid flux via downregulation of ACC and malonyl-CoA.

  16. Melatonin modifies basal and stimulated insulin secretion via NADPH oxidase.

    PubMed

    Simões, Daniel; Riva, Patrícia; Peliciari-Garcia, Rodrigo Antonio; Cruzat, Vinicius Fernandes; Graciano, Maria Fernanda; Munhoz, Ana Claudia; Taneda, Marco; Cipolla-Neto, José; Carpinelli, Angelo Rafael

    2016-12-01

    Melatonin is a hormone synthesized in the pineal gland, which modulates several functions within the organism, including the synchronization of glucose metabolism and glucose-stimulated insulin secretion (GSIS). Melatonin can mediate different signaling pathways in pancreatic islets through two membrane receptors and via antioxidant or pro-oxidant enzymes modulation. NADPH oxidase (NOX) is a pro-oxidant enzyme responsible for the production of the reactive oxygen specie (ROS) superoxide, generated from molecular oxygen. In pancreatic islets, NOX-derived ROS can modulate glucose metabolism and regulate insulin secretion. Considering the roles of both melatonin and NOX in islets, the aim of this study was to evaluate the association of NOX and ROS production on glucose metabolism, basal and GSIS in pinealectomized rats (PINX) and in melatonin-treated isolated pancreatic islets. Our results showed that ROS content derived from NOX activity was increased in PINX at baseline (2.8 mM glucose), which was followed by a reduction in glucose metabolism and basal insulin secretion in this group. Under 16.7 mM glucose, an increase in both glucose metabolism and GSIS was observed in PINX islets, without changes in ROS content. In isolated pancreatic islets from control animals incubated with 2.8 mM glucose, melatonin treatment reduced ROS content, whereas in 16.7 mM glucose, melatonin reduced ROS and GSIS. In conclusion, our results demonstrate that both basal and stimulated insulin secretion can be regulated by melatonin through the maintenance of ROS homeostasis in pancreatic islets. © 2016 Society for Endocrinology.

  17. D-chiro-inositol glycan stimulates insulin secretion in pancreatic β cells.

    PubMed

    Lazarenko, Roman; Geisler, Jessica; Bayliss, Douglas; Larner, Joseph; Li, Chien

    2014-04-25

    Insulin has been shown to act on pancreatic β cells to regulate its own secretion. Currently the mechanism underlying this effect is unclear. INS-2, a novel inositol glycan pseudo-disaccharide containing D-chiro-inositol and galactosamine, has been shown to function as an insulin mimetic and a putative insulin mediator. In the present study we found that INS-2 stimulates insulin secretion in MIN6 β cells and potentiates glucose stimulated insulin secretion in isolated mouse islets. Importantly, INS-2 failed to potentiate insulin secretion induced by tolbutamide, which stimulates insulin release by closing ATP sensitive potassium channels (KATP). Electrophysiological studies showed that INS-2 inhibited sulfonylurea-sensitive KATP conductance. The effect of INS-2 on inhibiting KATP channel is mediated by protein phosphatase 2C (PP2C), as knocking down PP2C expression in MIN6 cells by PP2C small hairpin RNA completely abolished the effect of INS-2 on KATP and consequently attenuated INS-2 induced insulin secretion. In conclusion, the present study identifies a novel mechanism involving PP2C in regulating KATP channel activity and consequently insulin secretion.

  18. A functional circadian clock is required for proper insulin secretion by human pancreatic islet cells.

    PubMed

    Saini, C; Petrenko, V; Pulimeno, P; Giovannoni, L; Berney, T; Hebrok, M; Howald, C; Dermitzakis, E T; Dibner, C

    2016-04-01

    To determine the impact of a functional human islet clock on insulin secretion and gene transcription. Efficient circadian clock disruption was achieved in human pancreatic islet cells by small interfering RNA-mediated knockdown of CLOCK. Human islet secretory function was assessed in the presence or absence of a functional circadian clock by stimulated insulin secretion assays, and by continuous around-the-clock monitoring of basal insulin secretion. Large-scale transcription analysis was accomplished by RNA sequencing, followed by quantitative RT-PCR analysis of selected targets. Circadian clock disruption resulted in a significant decrease in both acute and chronic glucose-stimulated insulin secretion. Moreover, basal insulin secretion by human islet cells synchronized in vitro exhibited a circadian pattern, which was perturbed upon clock disruption. RNA sequencing analysis suggested alterations in 352 transcript levels upon circadian clock disruption. Among them, key regulators of the insulin secretion pathway (GNAQ, ATP1A1, ATP5G2, KCNJ11) and transcripts required for granule maturation and release (VAMP3, STX6, SLC30A8) were affected. Using our newly developed experimental approach for efficient clock disruption in human pancreatic islet cells, we show for the first time that a functional β-cell clock is required for proper basal and stimulated insulin secretion. Moreover, clock disruption has a profound impact on the human islet transcriptome, in particular, on the genes involved in insulin secretion. © 2015 John Wiley & Sons Ltd.

  19. The effect of fasting, diet, and actinomycin D on insulin secretion in the rat

    PubMed Central

    Grey, N. J.; Goldring, S.; Kipnis, D. M.

    1970-01-01

    The present studies were performed to elucidate the mechanisms responsible for the impairment of glucose-stimulated insulin secretion observed in fasting. Rats fasted for 48 hr displayed marked impairment in their insulin secretory response to both oral and intravenous glucose. Glucose-stimulated insulin secretion was restored within 24 hr by refeeding; actinomycin D given before refeeding blocked the expected return of normal glucose-stimulated insulin secretion despite adequate food intake. Fasted rats refed a diet devoid of carbohydrate failed to display a return of normal insulin secretory responsiveness to oral glucose in contrast to rats fed isocalorically a high carbohydrate diet. Differences in insulin secretion in fed, fasted, and fasted-refed rats could not be attributed to changes in pancreatic insulin content. There was no significant difference in the insulin secretory response to aminophylline of fed, fasted, or fasted-refed rats. The intermittent pulsing of fasted rats with hyperglycemic episodes by the injection of small amounts of glucose (500 mg) intraperitoneally every 8 hr ameliorated the impairment of glucose-stimulated insulin secretion characteristic of the fasting state. These results suggest that the impairment of glucose-stimulated insulin secretion during fasting and its restoration by refeeding are regulated by changes in a glucose-inducible enzyme system in the pancreatic beta cell. PMID:5441542

  20. Insight into Insulin Secretion from Transcriptome and Genetic Analysis of Insulin-Producing Cells of Drosophila

    PubMed Central

    Cao, Jian; Ni, Julie; Ma, Wenxiu; Shiu, Vanessa; Milla, Luis A.; Park, Sangbin; Spletter, Maria L.; Tang, Sheng; Zhang, Jun; Wei, Xing; Kim, Seung K.; Scott, Matthew P.

    2014-01-01

    Insulin-producing cells (IPCs) in the Drosophila brain produce and release insulin-like peptides (ILPs) to the hemolymph. ILPs are crucial for growth and regulation of metabolic activity in flies, functions analogous to those of mammalian insulin and insulin-like growth factors (IGFs). To identify components functioning in IPCs to control ILP production, we employed genomic and candidate gene approaches. We used laser microdissection and messenger RNA sequencing to characterize the transcriptome of larval IPCs. IPCs highly express many genes homologous to genes active in insulin-producing β-cells of the mammalian pancreas. The genes in common encode ILPs and proteins that control insulin metabolism, storage, secretion, β-cell proliferation, and some not previously linked to insulin production or β-cell function. Among these novelties is unc-104, a kinesin 3 family gene, which is more highly expressed in IPCs compared to most other neurons. Knockdown of unc-104 in IPCs impaired ILP secretion and reduced peripheral insulin signaling. Unc-104 appears to transport ILPs along axons. As a complementary approach, we tested dominant-negative Rab genes to find Rab proteins required in IPCs for ILP production or secretion. Rab1 was identified as crucial for ILP trafficking in IPCs. Inhibition of Rab1 in IPCs increased circulating sugar levels, delayed development, and lowered weight and body size. Immunofluorescence labeling of Rab1 showed its tight association with ILP2 in the Golgi of IPCs. Unc-104 and Rab1 join other proteins required for ILP transport in IPCs. PMID:24558258

  1. Gαo Represses Insulin Secretion by Reducing Vesicular Docking in Pancreatic β-Cells

    PubMed Central

    Zhao, Aizhen; Ohara-Imaizumi, Mica; Brissova, Marcella; Benninger, Richard K.P.; Xu, Yanwen; Hao, Yuhan; Abramowitz, Joel; Boulay, Guylain; Powers, Alvin C.; Piston, David; Jiang, Meisheng; Nagamatsu, Shinya; Birnbaumer, Lutz; Gu, Guoqiang

    2010-01-01

    OBJECTIVE Pertussis toxin uncoupling–based studies have shown that Gαi and Gαo can inhibit insulin secretion in pancreatic β-cells. Yet it is unclear whether Gαi and Gαo operate through identical mechanisms and how these G-protein–mediated signals inhibit insulin secretion in vivo. Our objective is to examine whether/how Gαo regulates islet development and insulin secretion in β-cells. RESEARCH DESIGN AND METHODS Immunoassays were used to analyze the Gαo expression in mouse pancreatic cells. Gαo was specifically inactivated in pancreatic progenitor cells by pancreatic cell–specific gene deletion. Hormone expression and insulin secretion in response to different stimuli were assayed in vivo and in vitro. Electron microscope and total internal reflection fluorescence–based assays were used to evaluate how Gαo regulates insulin vesicle docking and secretion in response to glucose stimulation. RESULTS Islet cells differentiate properly in Gαo−/− mutant mice. Gαo inactivation significantly enhances insulin secretion both in vivo and in isolation. Gαo nullizygous β-cells contain an increased number of insulin granules docked on the cell plasma membrane, although the total number of vesicles per β-cell remains unchanged. CONCLUSIONS Gαo is not required for endocrine islet cell differentiation, but it regulates the number of insulin vesicles docked on the β-cell membrane. PMID:20622165

  2. Insulin secretion and action in North Indian women during pregnancy.

    PubMed

    Arora, G P; Almgren, P; Thaman, R G; Pal, A; Groop, L; Vaag, A; Prasad, R B; Brøns, C

    2017-10-01

    The relative roles(s) of impaired insulin secretion vs. insulin resistance in the development of gestational diabetes mellitus depend upon multiple risk factors and diagnostic criteria. Here, we explored their relative contribution to gestational diabetes as defined by the WHO 1999 (GDM1999) and adapted WHO 2013 (GDM2013) criteria, excluding the 1-h glucose value, in a high-risk Indian population from Punjab. Insulin secretion (HOMA2-B) and insulin action (HOMA2-IR) were assessed in 4665 Indian women with or without gestational diabetes defined by the GDM1999 or adapted GDM2013 criteria. Gestational diabetes defined using both criteria was associated with decreased insulin secretion compared with pregnant women with normal glucose tolerance. Women with gestational diabetes defined by the adapted GDM2013, but not GDM1999 criteria, were more insulin resistant than pregnant women with normal glucose tolerance, and furthermore displayed lower insulin secretion than GDM1999 women. Urban habitat, illiteracy, high age and low BMI were independently associated with reduced insulin secretion, whereas Sikh religion, increasing age and BMI, as well as a family history of diabetes were independently associated with increased insulin resistance. Gestational diabetes risk factors influence insulin secretion and action in North Indian women in a differential manner. Gestational diabetes classified using the adapted GDM2013 compared with GDM1999 criteria is associated with more severe impairments of insulin secretion and action. © 2017 Diabetes UK.

  3. Sympathetic regulation of estradiol secretion from the ovary.

    PubMed

    Uchida, Sae

    2015-01-01

    It is well known that hormone secretion from endocrine glands is regulated by hierarchical feedback mechanisms. However, although Cannon revealed in the 1920s that sympathoadrenal medullary function increased during emergency situations, no studies on the autonomic nervous regulation of hormone secretion have been undertaken for many years. In the past 40 years, the autonomic nervous regulation of insulin secretion from the pancreas, gastrin secretion from the stomach, glucocorticoid secretion from the adrenal cortex, etc., has been demonstrated. Estradiol secretion from the ovary is strongly controlled by the hypothalamic-pituitary-ovarian axis, and its possible regulation by autonomic nerves has been largely unnoticed. Some histological studies have revealed rich adrenergic sympathetic innervation in the ovary. Recently, it has been demonstrated that the activation of the sympathetic nerves to the ovary directly reduces estradiol secretion from the ovary. This article reviews physiological and morphological studies, primarily in rats, on the sympathetic regulation of estradiol secretion from the ovary.

  4. Vitamin D, Insulin Secretion, Sensitivity, and Lipids

    PubMed Central

    Grimnes, Guri; Figenschau, Yngve; Almås, Bjørg; Jorde, Rolf

    2011-01-01

    OBJECTIVE Vitamin D deficiency is associated with an unfavorable metabolic profile in observational studies. The intention was to compare insulin sensitivity (the primary end point) and secretion and lipids in subjects with low and high serum 25(OH)D (25-hydroxyvitamin D) levels and to assess the effect of vitamin D supplementation on the same outcomes among the participants with low serum 25(OH)D levels. RESEARCH DESIGN AND METHODS Participants were recruited from a population-based study (the Tromsø Study) based on their serum 25(OH)D measurements. A 3-h hyperglycemic clamp was performed, and the participants with low serum 25(OH)D levels were thereafter randomized to receive capsules of 20,000 IU vitamin D3 or identical-looking placebo twice weekly for 6 months. A final hyperglycemic clamp was then performed. RESULTS The 52 participants with high serum 25(OH)D levels (85.6 ± 13.5 nmol/L [mean ± SD]) had significantly higher insulin sensitivity index (ISI) and lower HbA1c and triglycerides (TGs) than the 108 participants with low serum 25(OH)D (40.3 ± 12.8 nmol/L), but the differences in ISI and TGs were not significant after adjustments. After supplementation, serum 25(OH)D was 142.7 ± 25.7 and 42.9 ± 17.3 nmol/L in 49 of 51 completing participants randomized to vitamin D and 45 of 53 randomized to placebo, respectively. At the end of the study, there were no statistically significant differences in the outcome variables between the two groups. CONCLUSIONS Vitamin D supplementation to apparently healthy subjects with insufficient serum 25(OH)D levels does not improve insulin sensitivity or secretion or serum lipid profile. PMID:21911741

  5. Peroxiredoxin 4 Improves Insulin Biosynthesis and Glucose-induced Insulin Secretion in Insulin-secreting INS-1E Cells*

    PubMed Central

    Mehmeti, Ilir; Lortz, Stephan; Elsner, Matthias; Lenzen, Sigurd

    2014-01-01

    Oxidative folding of (pro)insulin is crucial for its assembly and biological function. This process takes place in the endoplasmic reticulum (ER) and is accomplished by protein disulfide isomerase and ER oxidoreductin 1β, generating stoichiometric amounts of hydrogen peroxide (H2O2) as byproduct. During insulin resistance in the prediabetic state, increased insulin biosynthesis can overwhelm the ER antioxidative and folding capacity, causing an imbalance in the ER redox homeostasis and oxidative stress. Peroxiredoxin 4 (Prdx4), an ER-specific antioxidative peroxidase can utilize luminal H2O2 as driving force for reoxidizing protein disulfide isomerase family members, thus efficiently contributing to disulfide bond formation. Here, we examined the functional significance of Prdx4 on β-cell function with emphasis on insulin content and secretion during stimulation with nutrient secretagogues. Overexpression of Prdx4 in glucose-responsive insulin-secreting INS-1E cells significantly metabolized luminal H2O2 and improved the glucose-induced insulin secretion, which was accompanied by the enhanced proinsulin mRNA transcription and insulin content. This β-cell beneficial effect was also observed upon stimulation with the nutrient insulin secretagogue combination of leucine plus glutamine, indicating that the effect is not restricted to glucose. However, knockdown of Prdx4 had no impact on H2O2 metabolism or β-cell function due to the fact that Prdx4 expression is negligibly low in pancreatic β-cells. Moreover, we provide evidence that the constitutively low expression of Prdx4 is highly susceptible to hyperoxidation in the presence of high glucose. Overall, these data suggest an important role of Prdx4 in maintaining insulin levels and improving the ER folding capacity also under conditions of a high insulin requirement. PMID:25122762

  6. Acute suppression of apo B secretion by insulin occurs independently of MTP.

    PubMed

    Sparks, Janet D; Chamberlain, Jeffrey M; O'Dell, Colleen; Khatun, Irani; Hussain, M Mahmood; Sparks, Charles E

    2011-03-11

    Secretion of apolipoprotein (apo) B-containing lipoproteins by the liver depends mainly upon apo B availability and microsomal triglyceride transfer protein (MTP) activity and is subject to insulin regulation. Hepatic MTP mRNA expression is negatively regulated by insulin which correlates with inhibition of apo B secretion suggesting that insulin might suppress apo B secretion through an MTP-dependent mechanism. To investigate this possibility, we examined the acute effect of insulin on hepatic MTP expression and activity levels in vivo utilizing apobec-1(-/-) mice. Insulin did not significantly alter hepatic MTP mRNA levels or lipid transfer activity 2h following injection, but suppressed expression of genes important in gluconeogenesis. To study the specific role of MTP, we expressed human MTP (hMTP) in primary rat hepatocytes using adenoviral gene transfer. Increased expression of hMTP resulted in a 47.6±17.9% increase in total apo B secreted. Incubation of hepatocytes with insulin suppressed apo B secretion by 50.1±10.8% in cells over-expressing hMTP and by 53.0±12.4% in control transfected hepatocytes. Results indicate that even under conditions of increased hepatic apo B secretion mediated by MTP, responsiveness of hepatocytes to insulin to suppress apo B secretion is maintained.

  7. Short-term regulation of adiponectin secretion in rat adipocytes.

    PubMed

    Szkudelski, T; Nogowski, L; Szkudelska, K

    2011-01-01

    Adiponectin belongs to the group of biologically active substances secreted by adipocytes and referred to as adipokines. Disturbances in its secretion and/or action are thought to be involved in the pathogenesis of some metabolic diseases. However, regulation of adiponectin secretion is poorly elucidated. In the present study, short-term regulation of adiponectin secretion in primary rat adipocytes was investigated. Isolated rat adipocytes were incubated in Krebs-Ringer buffer containing 5 mM glucose and insulin alone or in the combination with epinephrine, dibutyryl-cAMP, adenosine A(1) receptor antagonist (DPCPX), palmitate, 2-bromopalmitate or inhibitor of mitochondrial electron transport (rotenone). Adipocyte exposure for 2 h to insulin (1-100 nM) significantly increased secretion of adiponectin compared with secretion observed without insulin. Furthermore, secretion of adiponectin from adipocytes incubated with glucose and insulin was reduced by 1 and 2 microM epinephrine, but not by 0.25 and 0.5 microM epinephrine. Under similar conditions, 1 and 2 mM dibutyryl-cAMP substantially diminished secretion of adiponectin, whereas 0.5 mM dibutyryl-cAMP was ineffective. Secretion of adiponectin was found to be effectively decreased by DPCPX. Moreover, adipocyte exposure to rotenone also resulted in a substantial diminution of secretory response of adipocytes incubated for 2 h with glucose and insulin. It was also demonstrated that palmitate and 2-bromopalmitate (0.06-0.5 mM) failed to affect secretion of leptin. The obtained results indicated that in short-term regulation of adiponectin secretion, insulin and epinephrine exert the opposite effects. These effects appeared as early as after 2 h of exposure. Moreover, deprivation of energy or blockade of adenosine action substantially decreased secretion of adiponectin.

  8. CART is overexpressed in human type 2 diabetic islets and inhibits glucagon secretion and increases insulin secretion.

    PubMed

    Abels, Mia; Riva, Matteo; Bennet, Hedvig; Ahlqvist, Emma; Dyachok, Oleg; Nagaraj, Vini; Shcherbina, Liliya; Fred, Rikard G; Poon, Wenny; Sörhede-Winzell, Maria; Fadista, Joao; Lindqvist, Andreas; Kask, Lena; Sathanoori, Ramasri; Dekker-Nitert, Marloes; Kuhar, Michael J; Ahrén, Bo; Wollheim, Claes B; Hansson, Ola; Tengholm, Anders; Fex, Malin; Renström, Erik; Groop, Leif; Lyssenko, Valeriya; Wierup, Nils

    2016-09-01

    Insufficient insulin release and hyperglucagonaemia are culprits in type 2 diabetes. Cocaine- and amphetamine-regulated transcript (CART, encoded by Cartpt) affects islet hormone secretion and beta cell survival in vitro in rats, and Cart (-/-) mice have diminished insulin secretion. We aimed to test if CART is differentially regulated in human type 2 diabetic islets and if CART affects insulin and glucagon secretion in vitro in humans and in vivo in mice. CART expression was assessed in human type 2 diabetic and non-diabetic control pancreases and rodent models of diabetes. Insulin and glucagon secretion was examined in isolated islets and in vivo in mice. Ca(2+) oscillation patterns and exocytosis were studied in mouse islets. We report an important role of CART in human islet function and glucose homeostasis in mice. CART was found to be expressed in human alpha and beta cells and in a subpopulation of mouse beta cells. Notably, CART expression was several fold higher in islets of type 2 diabetic humans and rodents. CART increased insulin secretion in vivo in mice and in human and mouse islets. Furthermore, CART increased beta cell exocytosis, altered the glucose-induced Ca(2+) signalling pattern in mouse islets from fast to slow oscillations and improved synchronisation of the oscillations between different islet regions. Finally, CART reduced glucagon secretion in human and mouse islets, as well as in vivo in mice via diminished alpha cell exocytosis. We conclude that CART is a regulator of glucose homeostasis and could play an important role in the pathophysiology of type 2 diabetes. Based on the ability of CART to increase insulin secretion and reduce glucagon secretion, CART-based agents could be a therapeutic modality in type 2 diabetes.

  9. Important role of heparan sulfate in postnatal islet growth and insulin secretion

    SciTech Connect

    Takahashi, Iwao; Noguchi, Naoya; Nata, Koji; Yamada, Shuhei; Kaneiwa, Tomoyuki; Mizumoto, Shuji; Ikeda, Takayuki; Sugihara, Kazushi; Asano, Masahide; Yoshikawa, Takeo; Yamauchi, Akiyo; Shervani, Nausheen Jamal; Uruno, Akira; Kato, Ichiro; Unno, Michiaki; Sugahara, Kazuyuki; Takasawa, Shin; and others

    2009-05-22

    Heparan sulfate (HS) binds with several signaling molecules and regulates ligand-receptor interactions, playing an essential role in embryonic development. Here we showed that HS was intensively expressed in pancreatic islet {beta}-cells after 1 week of age in mice. The enzymatic removal of HS in isolated islets resulted in attenuated glucose-induced insulin secretion with a concomitant reduction in gene expression of several key components in the insulin secretion machinery. We further depleted islet HS by inactivating the exostosin tumor-like 3 gene specifically in {beta}-cells. These mice exhibited abnormal islet morphology with reduced {beta}-cell proliferation after 1 week of age and glucose intolerance due to defective insulin secretion. These results demonstrate that islet HS is involved in the regulation of postnatal islet maturation and required to ensure normal insulin secretion.

  10. Insulin secretion from beta cells within intact islets: location matters.

    PubMed

    Hoang Do, Oanh; Thorn, Peter

    2015-04-01

    The control of hormone secretion is central to body homeostasis, and its dysfunction is important in many diseases. The key cellular steps that lead to hormone secretion have been identified, and the stimulus-secretion pathway is understood in outline for many endocrine cells. In the case of insulin secretion from pancreatic beta cells, this pathway involves the uptake of glucose, cell depolarization, calcium entry, and the triggering of the fusion of insulin-containing granules with the cell membrane. The wealth of information on the control of insulin secretion has largely been obtained from isolated single-cell studies. However, physiologically, beta cells exist within the islets of Langerhans, with structural and functional specializations that are not preserved in single-cell cultures. This review focuses on recent work that is revealing distinct aspects of insulin secretion from beta cells within the islet.

  11. Role for the TRPV1 channel in insulin secretion from pancreatic beta cells.

    PubMed

    Diaz-Garcia, Carlos Manlio; Morales-Lázaro, Sara L; Sánchez-Soto, Carmen; Velasco, Myrian; Rosenbaum, Tamara; Hiriart, Marcia

    2014-06-01

    Transient receptor potential channels have been put forward as regulators of insulin secretion. A role for the TRPV1 ion channel in insulin secretion has been suggested in pancreatic beta cell lines. We explored whether TRPV1 is functionally expressed in RINm5F and primary beta cells from neonate and adult rats. We examined if capsaicin could activate cationic non-selective currents. Our results show that TRPV1 channels are not functional in insulin-secreting cells, since capsaicin did not produce current activation, not even under culture conditions known to induce the expression of other ion channels in these cells. Although TRPV1 channels seem to be irrelevant for the physiology of isolated beta cells, they may play a role in glucose homeostasis acting through the nerve fibers that regulate islet function. At the physiological level, we observed that Trpv1 (-/-) mice presented lower fasting insulin levels than their wild-type littermates, however, we did not find differences between these experimental groups nor in the glucose tolerance test or in the insulin secretion. However, we did find that the Trpv1 (-/-) mice exhibited a higher insulin sensitivity compared to their wild-type counterparts. Our results demonstrate that TRPV1 does not contribute to glucose-induced insulin secretion in beta cells as was previously thought, but it is possible that it may control insulin sensitivity.

  12. Inhibitory effect of kisspeptins on insulin secretion from isolated mouse islets.

    PubMed

    Vikman, J; Ahrén, B

    2009-11-01

    Islet hormone secretion is regulated by a variety of factors, and many of these signal through G protein-coupled receptors (GPCRs). A novel islet GPCR is GPR54, which couples to the Gq isoform of G proteins, which in turn signal through the phospholipase C pathway. Ligands for GPR54 are kisspeptins, which are peptides encoded in the KISS1 gene and also expressed in islet beta-cells. The KISS1 gene encodes a hydrophobic 145-amino acid protein that is cleaved into a 54-amino acid protein, kisspeptin-54 or KP54. Shorter kisspeptins also exist, such as kisspeptin-10 (KP10) and kisspeptin-13 (KP13). The involvement of GPR54 and kisspeptins in the regulation of islet function is not known. To address this problem, we incubated isolated mouse islets in the presence of KP13 and KP54 for 60 min and measured insulin secretion. We found that both KP13 and KP54 at 10 nM, 100 nM and 1microM inhibited insulin secretion in the presence of 2.8 mM glucose. However, by increasing the glucose concentration, this inhibitory action of the kisspeptins vanished. Thus, at 11.1 mM glucose, KP13 and KP54 inhibited insulin secretion only at high doses, and at 16.7 mM they no longer inhibited insulin secretion in any of the doses. We conclude that kisspeptins inhibit insulin secretion at glucose concentrations below 11.1 mM. This suggests that kisspeptins are regulating insulin secretion at physiological concentrations of glucose. The mechanisms by which kisspeptins regulate islet function and insulin secretion are unknown and will be further investigated.

  13. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    PubMed

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels.

  14. Suppression of Insulin Production and Secretion by a Decretin Hormone

    PubMed Central

    Alfa, Ronald W.; Park, Sangbin; Skelly, Kathleen-Rose; Poffenberger, Gregory; Jain, Nimit; Gu, Xueying; Kockel, Lutz; Wang, Jing; Liu, Yinghua; Powers, Alvin C.; Kim, Seung K.

    2015-01-01

    SUMMARY Decretins, hormones induced by fasting that suppress insulin production and secretion, have been postulated from classical human metabolic studies. From genetic screens, we identified Drosophila Limostatin (Lst), a peptide hormone that suppresses insulin secretion. Lst is induced by nutrient restriction in gut-associated endocrine cells. limostatin deficiency led to hyperinsulinemia, hypoglycemia and excess adiposity. A conserved 15-residue polypeptide encoded by limostatin suppressed secretion by insulin-producing cells. Targeted knockdown of CG9918, a Drosophila orthologue of Neuromedin U receptors (NMUR), in insulin-producing cells phenocopied limostatin deficiency, and attenuated insulin suppression by purified Lst, suggesting CG9918 encodes an Lst receptor. NMUR1 is expressed in islet β-cells, and purified NMU suppresses insulin secretion from human islets. A human mutant NMU variant that co-segregates with familial early-onset obesity and hyperinsulinemia fails to suppress insulin secretion. We propose Lst as an index member of an ancient hormone class called decretins, which suppress insulin output. PMID:25651184

  15. Effects of aldosterone on insulin sensitivity and secretion.

    PubMed

    Luther, James M

    2014-12-01

    Dr. Conn originally reported an increased risk of diabetes in patients with hyperaldosteronism in the 1950s, although the mechanism remains unclear. Aldosterone-induced hypokalemia was initially described to impair glucose tolerance by impairing insulin secretion. Correction of hypokalemia by potassium supplementation only partially restored insulin secretion and glucose tolerance, however. Aldosterone also impairs glucose-stimulated insulin secretion in isolated pancreatic islets via reactive oxygen species in a mineralocorticoid receptor-independent manner. Aldosterone-induced mineralocorticoid receptor activation also impairs insulin sensitivity in adipocytes and skeletal muscle. Aldosterone may produce insulin resistance secondarily by altering potassium, increasing inflammatory cytokines, and reducing beneficial adipokines such as adiponectin. Renin-angiotensin system antagonists reduce circulating aldosterone concentrations and also the risk of type 2 diabetes in clinical trials. These data suggest that primary and secondary hyperaldosteronism may contribute to worsening glucose tolerance by impairing insulin sensitivity or insulin secretion in humans. Future studies should define the effects of MR antagonists and aldosterone on insulin secretion and sensitivity in humans.

  16. Suppression of insulin production and secretion by a decretin hormone.

    PubMed

    Alfa, Ronald W; Park, Sangbin; Skelly, Kathleen-Rose; Poffenberger, Gregory; Jain, Nimit; Gu, Xueying; Kockel, Lutz; Wang, Jing; Liu, Yinghua; Powers, Alvin C; Kim, Seung K

    2015-02-03

    Decretins, hormones induced by fasting that suppress insulin production and secretion, have been postulated from classical human metabolic studies. From genetic screens, we identified Drosophila Limostatin (Lst), a peptide hormone that suppresses insulin secretion. Lst is induced by nutrient restriction in gut-associated endocrine cells. limostatin deficiency led to hyperinsulinemia, hypoglycemia, and excess adiposity. A conserved 15-residue polypeptide encoded by limostatin suppressed secretion by insulin-producing cells. Targeted knockdown of CG9918, a Drosophila ortholog of Neuromedin U receptors (NMURs), in insulin-producing cells phenocopied limostatin deficiency and attenuated insulin suppression by purified Lst, suggesting CG9918 encodes an Lst receptor. NMUR1 is expressed in islet β cells, and purified NMU suppresses insulin secretion from human islets. A human mutant NMU variant that co-segregates with familial early-onset obesity and hyperinsulinemia fails to suppress insulin secretion. We propose Lst as an index member of an ancient hormone class called decretins, which suppress insulin output.

  17. Cellular communication and heterogeneity in pancreatic islet insulin secretion dynamics.

    PubMed

    Benninger, Richard K P; Piston, David W

    2014-08-01

    Coordinated pulses of electrical activity and insulin secretion are a hallmark of the islet of Langerhans. These coordinated behaviors are lost when β cells are dissociated, which also leads to increased insulin secretion at low glucose levels. Islets without gap junctions exhibit asynchronous electrical activity similar to dispersed cells, but their secretion at low glucose levels is still clamped off, putatively by a juxtacrine mechanism. Mice lacking β cell gap junctions have near-normal average insulin levels, but are glucose intolerant due to reduced first-phase and pulsatile insulin secretion, illustrating the importance of temporal dynamics. Here, we review the quantitative data on islet synchronization and the current mathematical models that have been developed to explain these behaviors and generate greater understanding of the underlying mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Cellular Communication and Heterogeneity in Pancreatic Islet Insulin Secretion Dynamics

    PubMed Central

    Benninger, Richard K.P.; Piston, David W.

    2014-01-01

    Coordinated pulses of electrical activity and insulin secretion are a hallmark of the islet of Langerhans. These coordinated behaviors are lost when β-cells are dissociated, which also leads to increased insulin secretion at low glucose. Islets without gap junctions exhibit asynchronous electrical activity similar to dispersed cells, but their secretion at low glucose is still clamped off, putatively by a juxtacrine mechanism. Mice lacking β-cell gap junctions have near-normal average insulin levels, but are glucose intolerant due to reduced first-phase and pulsatile insulin secretion, illustrating the importance of temporal dynamics. We review the quantitative data on islet synchronization and the current mathematical models that have been developed to explain these behaviors and generate greater understanding of the underlying mechanisms. PMID:24679927

  19. Evaluation of insulin secretion and action in New World camelids.

    PubMed

    Firshman, Anna M; Cebra, Christopher K; Schanbacher, Barbara J; Seaquist, Elizabeth R

    2013-01-01

    To measure and compare insulin secretion and sensitivity in healthy alpacas and llamas via glucose clamping techniques. 8 llamas and 8 alpacas. Hyperinsulinemic euglycemic clamping (HEC) and hyperglycemic clamping (HGC) were performed on each camelid in a crossover design with a minimum 48-hour washout period between clamping procedures. The HEC technique was performed to measure insulin sensitivity. Insulin was infused IV at 6 mU/min/kg for 4 hours, and an IV infusion of glucose was adjusted to maintain blood glucose concentration at 150 mg/dL. Concentrations of blood glucose and plasma insulin were determined throughout. The HGC technique was performed to assess insulin secretion in response to exogenous glucose infusion. An IV infusion of glucose was administered to maintain blood glucose concentration at 320 mg/dL for 3 hours, and concentrations of blood glucose and plasma insulin were determined throughout. Alpacas and llamas were not significantly different with respect to whole-body insulin sensitivity during HEC or in pancreatic β-cell response during HGC. Alpacas and llamas had markedly lower insulin sensitivity during HEC and markedly lower pancreatic β-cell response during HGC, in comparison with many other species. New World camelids had lower glucose-induced insulin secretion and marked insulin resistance in comparison with other species. This likely contributes to the disorders of fat and glucose metabolism that are common to camelids.

  20. Elevated Basal Insulin Secretion in Type 2 Diabetes Caused by Reduced Plasma Membrane Cholesterol

    PubMed Central

    Nagaraj, Vini; Kazim, Abdulla S.; Helgeson, Johan; Lewold, Clemens; Barik, Satadal; Buda, Pawel; Reinbothe, Thomas M.; Wennmalm, Stefan

    2016-01-01

    Elevated basal insulin secretion under fasting conditions together with insufficient stimulated insulin release is an important hallmark of type 2 diabetes, but the mechanisms controlling basal insulin secretion remain unclear. Membrane rafts exist in pancreatic islet cells and spatially organize membrane ion channels and proteins controlling exocytosis, which may contribute to the regulation of insulin secretion. Membrane rafts (cholesterol and sphingolipid containing microdomains) were dramatically reduced in human type 2 diabetic and diabetic Goto-Kakizaki (GK) rat islets when compared with healthy islets. Oxidation of membrane cholesterol markedly reduced microdomain staining intensity in healthy human islets, but was without effect in type 2 diabetic islets. Intriguingly, oxidation of cholesterol affected glucose-stimulated insulin secretion only modestly, whereas basal insulin release was elevated. This was accompanied by increased intracellular Ca2+ spike frequency and Ca2+ influx and explained by enhanced single Ca2+ channel activity. These results suggest that the reduced presence of membrane rafts could contribute to the elevated basal insulin secretion seen in type 2 diabetes. PMID:27533789

  1. Elevated Basal Insulin Secretion in Type 2 Diabetes Caused by Reduced Plasma Membrane Cholesterol.

    PubMed

    Nagaraj, Vini; Kazim, Abdulla S; Helgeson, Johan; Lewold, Clemens; Barik, Satadal; Buda, Pawel; Reinbothe, Thomas M; Wennmalm, Stefan; Zhang, Enming; Renström, Erik

    2016-10-01

    Elevated basal insulin secretion under fasting conditions together with insufficient stimulated insulin release is an important hallmark of type 2 diabetes, but the mechanisms controlling basal insulin secretion remain unclear. Membrane rafts exist in pancreatic islet cells and spatially organize membrane ion channels and proteins controlling exocytosis, which may contribute to the regulation of insulin secretion. Membrane rafts (cholesterol and sphingolipid containing microdomains) were dramatically reduced in human type 2 diabetic and diabetic Goto-Kakizaki (GK) rat islets when compared with healthy islets. Oxidation of membrane cholesterol markedly reduced microdomain staining intensity in healthy human islets, but was without effect in type 2 diabetic islets. Intriguingly, oxidation of cholesterol affected glucose-stimulated insulin secretion only modestly, whereas basal insulin release was elevated. This was accompanied by increased intracellular Ca(2+) spike frequency and Ca(2+) influx and explained by enhanced single Ca(2+) channel activity. These results suggest that the reduced presence of membrane rafts could contribute to the elevated basal insulin secretion seen in type 2 diabetes.

  2. Insulin secretion abnormalities in exocrine pancreatic sufficient cystic fibrosis patients.

    PubMed

    Wooldridge, Jamie L; Szczesniak, Rhonda D; Fenchel, Matthew C; Elder, Deborah A

    2015-11-01

    The aim of this study is to assess insulin secretion in pediatric cystic fibrosis (CF) patients with exocrine pancreatic sufficiency. Glucose and insulin responses during an oral glucose tolerance test (OGTT) were measured in 146 CF patients. Patients were divided into exocrine sufficient (CF-PS) and insufficient (CF-PI) groups based on pancreatic enzyme usage and fecal elastase. A reference group included healthy, non-diabetic subjects. All CF groups showed reduced insulin secretion as measured by insulinogenic index. The CF-PS patients had normal glucose tolerance. There was a direct correlation between BMI z-score and insulin area under the curve. Patients with CF have reduced insulin secretion during an OGTT regardless of exocrine pancreatic status. The abnormal insulin secretion in all CF patients may predispose them for glucose intolerance, particularly when challenged by inflammation, infection, or nutritional deficiency. In addition, the diminished insulin secretion may contribute to increased catabolism. Lastly, the CF-related diabetes (CFRD) screening guidelines should be followed by all CF patients regardless of pancreatic status. Copyright © 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  3. Insulin Secretion Abnormalities in Exocrine Pancreatic Sufficient Cystic Fibrosis Patients

    PubMed Central

    Wooldridge, Jamie L.; Szczesniak, Rhonda D.; Fenchel, Matthew C.; Elder, Deborah A.

    2015-01-01

    BACKGROUND To assess insulin secretion in pediatric cystic fibrosis (CF) patients with exocrine pancreatic sufficiency. METHODS Glucose and insulin responses during an oral glucose tolerance test (OGTT) were measured in 146 CF patients. Patients were divided into exocrine sufficient (CF-PS) and insufficient (CF-PI) groups based on pancreatic enzyme usage and fecal elastase. A reference group included healthy, non-diabetic subjects. RESULTS All CF groups showed reduced insulin secretion as measured by insulinogenic index. The CF-PS patients had normal glucose tolerance. There was direct correlation between BMI z-score and insulin area under the curve. CONCLUSION Patients with CF have reduced insulin secretion during an OGTT regardless of exocrine pancreatic status. The abnormal insulin secretion in all CF patients may predispose them for glucose intolerance, particularly when challenged by inflammation, infection, or nutritional deficiency. In addition, the diminished insulin secretion may contribute to increased catabolism. Lastly, the CF-related diabetes (CFRD) screening guidelines should be followed by all CF patients regardless of pancreatic status. PMID:25754095

  4. Lysosomal integral membrane protein Sidt2 plays a vital role in insulin secretion.

    PubMed

    Gao, Jialin; Yu, Cui; Xiong, Qianyin; Zhang, Yao; Wang, Lizhuo

    2015-01-01

    Abnormal insulin secretion results in impaired glucose tolerance and is one of the causal factors in the etiology of type 2 diabetes mellitus. Sidt2, a lysosomal integral membrane protein, plays a critical role in insulin secretion. Here, we further investigate its regulation in insulin secretion. We show that Sidt2(-/-) mice exhibit weight loss, decreased postnatal survival rate with aging, increased fasting glucose and impaired glucose tolerance. After loading high levels of glucose in their diet, Sidt2(-/-) mice produce notably lower insulin levels at the first-phase secretion compared with Sidt2(+/+) mice. Consistent with the in vivo study, INS-1 cells treated with Sidt2 siRNA produced less insulin when loaded with 16.7 mM of glucose. Only 2 of the 13 genes, synap1 and synap3 which encode soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins, showed significantly decreased expression in Sidt2(-/-) mice. In conclusion, Sdit2 may play a vital role in the regulation of insulin secretion via two SNARE proteins synap1 and syanp3.

  5. Mechanisms of enhanced insulin secretion and sensitivity with n-3 unsaturated fatty acids.

    PubMed

    Bhaswant, Maharshi; Poudyal, Hemant; Brown, Lindsay

    2015-06-01

    The widespread acceptance that increased dietary n-3 polyunsaturated fatty acids (PUFAs), especially α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), improve health is based on extensive studies in animals, isolated cells and humans. Visceral adiposity is part of the metabolic syndrome, together with insulin resistance, dyslipidemia, hypertension and inflammation. Alleviation of metabolic syndrome requires normalization of insulin release and responses. This review assesses our current knowledge of the mechanisms that allow n-3 PUFAs to improve insulin secretion and sensitivity. EPA has been more extensively studied than either ALA or DHA. The complex actions of EPA include increased G-protein-receptor-mediated release of glucagon-like peptide 1 (GLP-1) from enteroendocrine L-cells in the intestine, up-regulation of the apelin pathway and down-regulation of other control pathways to promote insulin secretion by the pancreatic β-cells, together with suppression of inflammatory responses to adipokines, inhibition of peroxisome proliferator-activated receptor α actions and prevention of decreased insulin-like growth factor-1 secretion to improve peripheral insulin responses. The receptors involved and the mechanisms of action probably differ for ALA and DHA, with antiobesity effects predominating for ALA and anti-inflammatory effects for DHA. Modifying both GLP-1 release and the actions of adipokines by n-3 PUFAs could lead to additive improvements in both insulin secretion and sensitivity.

  6. Insulin secretion after injuries of differing severity in the rat.

    PubMed Central

    Frayn, K. N.

    1976-01-01

    The effects on insulin secretion of injuries of differing severity have been studied in the rat. The injuries used were dorsal scalds to 20% and 40% of the body surface area, and a 4-h period of bilateral hind-limb ischaemia. These injuries resulted in 48 h mortality rates of 0/10, 7/10 and 5/10 respectively. Rats were studied 1-5-2 h after scalding or removal of tourniquets. The blood glucose concentration was markedly raised after all these injuries, and the plasma insulin concentration was also raised, so that the insulin to glucose ratio in any group did not differ significantly from that in non-injured controls. Injection of glucose (0-5 g/kg i.v.) induced a rise in insulin concentration in all groups, although the insulin to glucose ratio after the lethal 40% scald was lower than in control rats. It was concluded that in the rat normal insulin secretion is maintained even after lethal injuries, although some suppression of the insulin response to exogenous glucose may occur. Insulin resistance is more important in the rat than impairment of insulin secretion even at an early stage after injury. PMID:782499

  7. Influence of Insulin in the Ventromedial Hypothalamus on Pancreatic Glucagon Secretion In Vivo

    PubMed Central

    Paranjape, Sachin A.; Chan, Owen; Zhu, Wanling; Horblitt, Adam M.; McNay, Ewan C.; Cresswell, James A.; Bogan, Jonathan S.; McCrimmon, Rory J.; Sherwin, Robert S.

    2010-01-01

    OBJECTIVE Insulin released by the β-cell is thought to act locally to regulate glucagon secretion. The possibility that insulin might also act centrally to modulate islet glucagon secretion has received little attention. RESEARCH DESIGN AND METHODS Initially the counterregulatory response to identical hypoglycemia was compared during intravenous insulin and phloridzin infusion in awake chronically catheterized nondiabetic rats. To explore whether the disparate glucagon responses seen were in part due to changes in ventromedial hypothalamus (VMH) exposure to insulin, bilateral guide cannulas were inserted to the level of the VMH and 8 days later rats received a VMH microinjection of either 1) anti-insulin affibody, 2) control affibody, 3) artificial extracellular fluid, 4) insulin (50 μU), 5) insulin receptor antagonist (S961), or 6) anti-insulin affibody plus a γ-aminobutyric acid A (GABAA) receptor agonist muscimol, prior to a hypoglycemic clamp or under baseline conditions. RESULTS As expected, insulin-induced hypoglycemia produced a threefold increase in plasma glucagon. However, the glucagon response was fourfold to fivefold greater when circulating insulin did not increase, despite equivalent hypoglycemia and C-peptide suppression. In contrast, epinephrine responses were not altered. The phloridzin-hypoglycemia induced glucagon increase was attenuated (40%) by VMH insulin microinjection. Conversely, local VMH blockade of insulin amplified glucagon twofold to threefold during insulin-induced hypoglycemia. Furthermore, local blockade of basal insulin levels or insulin receptors within the VMH caused an immediate twofold increase in fasting glucagon levels that was prevented by coinjection to the VMH of a GABAA receptor agonist. CONCLUSIONS Together, these data suggest that insulin's inhibitory effect on α-cell glucagon release is in part mediated at the level of the VMH under both normoglycemic and hypoglycemic conditions. PMID:20299468

  8. Defective insulin secretion in pancreatic β cells lacking type 1 IGF receptor

    PubMed Central

    Xuan, Shouhong; Kitamura, Tadahiro; Nakae, Jun; Politi, Katerina; Kido, Yoshiaki; Fisher, Peter E.; Morroni, Manrico; Cinti, Saverio; White, Morris F.; Herrera, Pedro L.; Accili, Domenico; Efstratiadis, Argiris

    2002-01-01

    Defective insulin secretion is a feature of type 2 diabetes that results from inadequate compensatory increase of β cell mass and impaired glucose-dependent insulin release. β cell proliferation and secretion are thought to be regulated by signaling through receptor tyrosine kinases. In this regard, we sought to examine the potential proliferative and/or antiapoptotic role of IGFs in β cells by tissue-specific conditional mutagenesis ablating type 1 IGF receptor (IGF1R) signaling. Unexpectedly, lack of functional IGF1R did not affect β cell mass, but resulted in age-dependent impairment of glucose tolerance, associated with a decrease of glucose- and arginine-dependent insulin release. These observations reveal a requirement of IGF1R-mediated signaling for insulin secretion. PMID:12370279

  9. Mechanisms of amino acid-stimulated insulin secretion in congenital hyperinsulinism.

    PubMed

    Zhang, Tingting; Li, Changhong

    2013-01-01

    The role of amino acids in the regulation of insulin secretion in pancreatic beta-cells is highlighted in three forms of congenital hyperinsulinism (HI), namely gain-of-function mutations of glutamate dehydrogenase (GDH), loss-of-function mutations of ATP-dependent potassium channels, and a deficiency of short-chain 3-hydroxyacyl-CoA dehydrogenase. Studies on disease mouse models of HI suggest that amino acid oxidation and signaling effects are the major mechanisms of amino acid-stimulated insulin secretion. Amino acid oxidation via GDH produces ATP and triggers insulin secretion. The signaling effect of amino acids amplifies insulin release after beta-cell depolarization and elevation of cytosolic calcium.

  10. Size-controlled insulin-secreting cell clusters.

    PubMed

    Mendelsohn, Adam D; Nyitray, Crystal; Sena, Mark; Desai, Tejal A

    2012-12-01

    The search for an effective cure for type I diabetes from the transplantation of encapsulated pancreatic β-cell clusters has so far produced sub-optimal clinical outcomes. Previous efforts have not controlled the size of transplanted clusters, a parameter implicated in affecting long-term viability and the secretion of therapeutically sufficient insulin. Here we demonstrate a method based on covalent attachment of patterned laminin for fabricating uniformly size-controlled insulin-secreting cell clusters. We show that cluster size within the range 40-120μm in diameter affects a variety of therapeutically relevant cellular responses including insulin expression, content and secretion. Our studies elucidate two size-dependent phenomena: (1) as the cluster size increases from 40μm to 60μm, glucose stimulation results in a greater amount of insulin produced per cell; and (2) as the cluster size increases beyond 60μm, sustained glucose stimulation results in a greater amount of insulin secreted per cell. Our study describes a method for producing uniformly sized insulin-secreting cell clusters, and since larger cluster sizes risk nutrient availability limitations, our data suggest that 100-120μm clusters may provide optimal viability and efficacy for encapsulated β-cell transplants as a treatment for type I diabetes and that further in vivo evaluation is warranted.

  11. The mechanisms of insulin secretion and calcium signaling in pancreatic β-cells exposed to fluoroquinolones.

    PubMed

    Bito, Motoki; Tomita, Takashi; Komori, Mika; Taogoshi, Takanori; Kimura, Yasuhiro; Kihira, Kenji

    2013-01-01

    Fluoroquinolones reportedly induce hypoglycemia through stimulation of insulin secretion from pancreatic β-cells via inhibition of K(ATP) channels and activation of L-type voltage-dependent Ca(2+) channels. In physiological condition, the cytosolic Ca(2+) concentration ([Ca(2+)](c)) is also regulated by release of Ca(2+) from intracellular Ca(2+) stores. In this study, we investigated the mechanism of insulin secretion induced by fluoroquinolones, with respect to intracellular Ca(2+) stores. Even where the absence of supplemental extracellular Ca(2+), insulin secretion and [Ca(2+)](c) were increased by gatifloxacin, levofloxacin or tolbutamide. Insulin secretion and the rise of [Ca(2+)](c) induced by fluoroquinolones were reduced by depleting of Ca(2+) in endoplasmic reticumum (ER) by thapsigargin, and inhibiting ryanodine receptor of ER by dantrolene. Inhibition of inositol 1,4,5-triphosphate receptor of ER by xestospongin C suppressed insulin secretion induced by fluoroquinolones, whereas it did not affect [Ca(2+)](c). Destruction of acidic Ca(2+) stores such as lysosome and lysosome-related organelles by glycyl-L-phenylalanine-2-nephthylamide (GPN) did not affect insulin secretion and the rise of [Ca(2+)](c) induced by fluoroquinolones. The increase in insulin and [Ca(2+)](c) induced by tolbutamide were reduced by thapsigargin, dantrolene, and GPN but not by xestospongin C. In conclusion, fluoroquinolones induces Ca(2+) release from ER mediated by the ryanodine receptor, and the reaction might involve in insulin secretion. Sulfonylureas induce Ca(2+) release from GPN-sensitive acidic Ca(2+) stores, but fluoroquinolones did not.

  12. Pulsatile insulin secretion, impaired glucose tolerance and type 2 diabetes

    PubMed Central

    Satin, Leslie S.; Butler, Peter C.; Ha, Joon; Sherman, Arthur S.

    2015-01-01

    Type 2 diabetes (T2DM) results when increases in beta cell function and/or mass cannot compensate for rising insulin resistance. Numerous studies have documented the longitudinal changes in metabolism that occur during the development of glucose intolerance and lead to T2DM. However, the role of changes in insulin secretion, both amount and temporal pattern has been understudied. Most of the insulin secreted from pancreatic beta cells of the pancreas is released in a pulsatile pattern, which is disrupted in T2DM. Here we review the evidence that changes in beta cell pulsatility occur during the progression from glucose intolerance to T2DM in humans, and contribute significantly to the etiology of the disease. We review the evidence that insulin pulsatility improves the efficacy of secreted insulin on its targets, particularly hepatic glucose production, but also examine evidence that pulsatility alters or is altered by changes in peripheral glucose uptake. Finally, we summarize our current understanding of the biophysical mechanisms responsible for oscillatory insulin secretion. Understanding how insulin pulsatility contributes to normal glucose homeostasis and is altered in metabolic disease states may help improve the treatment of T2DM. PMID:25637831

  13. Regulation of insulin gene expression and insulin production in Nile tilapia (Oreochromis niloticus).

    PubMed

    Hrytsenko, Olga; Wright, James R; Pohajdak, Bill

    2008-01-15

    Compared to mammals, little is known about insulin gene expression in fish. Using transient transfection experiments and mammalian insulinoma cell lines we demonstrate that transcription of the Nile tilapia (Oreochromis niloticus) insulin gene is (a) regulated in a beta-cell-specific manner; and (b) not sensitive to the glucose stimulations. Deletion analysis of the 1575 bp 5' insulin gene flanking sequence revealed that cooperative interactions between regulatory elements within the proximal (-1 to -396 bp) and the distal (-396 bp to -1575 bp) promoter regions were necessary for induction of the beta-cell-specific transcription. Effects of glucose and arginine on endogenous insulin secretion, translation, and transcription in isolated tilapia Brockmann bodies were determined using Northern hybridization, Western analysis, and quantitative RT-PCR. Similar to the regulation of mammalian insulin, we found that increases of glucose (1-70 mM) and arginine (0.4-25 mM) induced insulin secretion. However, transcription of the insulin gene was activated only by extremely high concentrations of glucose and arginine added simultaneously. When stimulated for 24 h with low concentrations of both inducers or with either of them added separately, tilapia beta-cells were able to replenish secreted insulin and to maintain insulin stores at a constant level without elevations of the insulin mRNA levels. Since the basal level of insulin mRNA was approximately 3.7-fold higher in tilapia beta-cells than it is in mammalian beta-cells, insulin production in tilapia cells probably relies on an enlarged intracellular insulin mRNA pool and does not require the transcriptional activation of the insulin gene.

  14. Simultaneous measurement of insulin sensitivity, insulin secretion and the disposition index in conscious unhandled mice

    PubMed Central

    Alonso, L. C.; Watanabe, Y.; Stefanovski, D.; Lee, E. J.; Singamsetty, S.; Romano, L. C.; Zou, B.; Garcia-Ocana, A.; Bergman, R. N.; O’Donnell, C. P.

    2012-01-01

    Of the parameters that determine glucose disposal and progression to diabetes in humans: first-phase insulin secretion, glucose effectiveness, insulin sensitivity, and the disposition index, only insulin sensitivity can be reliably measured in conscious mice. To determine the importance of the other parameters in murine glucose homeostasis in lean and obese states, we developed the frequently sampled intravenous glucose tolerance test (FSIVGTT) for use in unhandled mice. We validated the conscious FSIVGTT against the euglycemic clamp for measuring insulin sensitivity in lean and obese mice. Insulin resistant mice had increased first-phase insulin secretion, decreased glucose effectiveness and a reduced disposition index, qualitatively similar to humans. Intriguingly, while insulin secretion explained most of the variation in glucose disposal in lean mice, glucose effectiveness and the disposition index more strongly predicted glucose disposal in obese mice. Disposition index curves identified individual diet-induced obese mice as having compensated or decompensated insulin secretion. Conscious FSIVGTT opens the door to apply mouse genetics to the determinants of in vivo insulin secretion, glucose effectiveness and disposition index, and further validates the mouse as a model of metabolic disease. PMID:22331130

  15. Bombesin stimulates insulin secretion by a pancreatic islet cell line.

    PubMed Central

    Swope, S L; Schonbrunn, A

    1984-01-01

    The amphibian tetradecapeptide, bombesin (BBS) has been shown to stimulate insulin secretion both in vivo and by pancreatic islet cells in vitro. To determine whether BBS can act directly on pancreatic beta cells, we examined its effects on insulin secretion by HIT-T15 cells (HIT cells), a clonal islet cell line. Addition of 100 nM BBS to HIT cells stimulated insulin release 25-fold within 30 sec. The rapid stimulatory effect of BBS on insulin release was short-lived: the secretory rate returned to basal levels after 90 min of BBS treatment. The decrease in the rate of insulin release in the continued presence of BBS was due not to depletion of intracellular insulin stores but to specific desensitization to this peptide. Stimulation of insulin secretion by BBS was dose dependent with an ED50 value (0.51 +/- 0.15 nM) similar to the concentration of BBS-like immunoreactive material in rat plasma. Five BBS analogs, including porcine gastrin-releasing peptide, were as powerful as BBS in stimulating insulin release. The relative potencies of the analogs tested indicated that the COOH-terminal octapeptide sequence in BBS was sufficient for stimulation of release. In contrast, 14 peptides structurally unrelated to BBS did not alter insulin secretion. BBS action was synergistic with that of glucagon; insulin secretion in the presence of maximal concentrations of both peptides was greater than the additive effects of the two peptides added individually. Somatostatin inhibited BBS-stimulated release by 69 +/- 1% with an ID50 value of 3.2 +/- 0.3 nM. These results show that BBS stimulation of insulin secretion by a clonal pancreatic cell line closely parallels its effects in vivo and support the hypothesis that BBS stimulates insulin secretion by a direct effect on the pancreatic beta cell. The clonal HIT cell line provides a homogeneous cell preparation amenable for studies on the biochemical mechanisms of BBS action in the endocrine pancreas. PMID:6143320

  16. Incretin action maintains insulin secretion, but not hepatic insulin action, in people with impaired fasting glucose.

    PubMed

    Perreault, Leigh; Man, Chiara Dalla; Hunerdosse, Devon M; Cobelli, Claudio; Bergman, Bryan C

    2010-10-01

    To determine whether altered GLP-1 activity contributes to the abnormal endogenous glucose production (EGP) and insulin secretion characteristic of people with impaired fasting glucose (IFG). People with IFG (n=10) and normal glucose tolerance (NGT; n=13) underwent assessment of EGP (via [6,6-(2)H(2)]-glucose infusion). Parameters of whole body insulin action and secretion were estimated by IVGTT and OGTT. Measures of EGP and insulin secretion were made before and after sitagliptin administration. EGP was not different at baseline (glucose R(a); 1.47+/-0.08 vs. 1.46+/-0.05mg/kg/min, IFG vs. NGT, p=0.93). However, when differences in circulating insulin were accounted for (EGPXSSPI; 20.2+/-2.1 vs. 14.4+/-1.0AU, vs. NGT, p=0.03) the hepatic insulin resistance index was significantly higher in IFG. Baseline insulin action (S(i); 2.3+/-0.1x10(-4)/microU/ml vs. 3.5+/-0.4x10(-4)/microU/ml, p=0.01, IFG vs. NGT) and secretion (DI; 587+/-81x10(-4)/min vs. 1171+/-226x10(-4)/min, p=0.04, IFG vs. NGT) were impaired in IFG when evaluated by the IVGTT, but not by OGTT (insulin sensitivity 4.52+/-1.08x10(-4)dl/kg/min vs. 6.73+/-1.16x10(-4)dl/kg/min, IFG vs. NGT, p=0.16; indices of basal (Phi(b)), static (Phi(s)), dynamic (Phi(d)), and total (Phi(t)) insulin secretion, p>0.07). Sitagliptin did not change EGP or insulin secretion in either group. Incretin action maintained insulin secretion, but not hepatic insulin action, in people with IFG.

  17. Case report: a glucose responsive insulinoma--implication for the diagnosis of insulin secreting tumors.

    PubMed

    Sjoberg, R J; Kidd, G S

    1992-09-01

    Normal insulin secretagogues, including glucose, usually have little influence on insulin secretion from insulinomas. Therefore, insulinomas typically cause fasting hypoglycemia with relative hyperinsulinemia. This report describes a patient with hyperinsulinemia due to an islet cell adenoma with microadenomatosis, which, upon provocative in vivo testing, was found to be profoundly responsive to hypoglycemic and hyperglycemic stimuli. A 72 hr fast followed by brisk exercise resulted in a gradual reduction of serum glucose and insulin concentrations, but did not provoke symptomatic hypoglycemia. Oral glucose tolerance testing resulted in a prompt 10-fold increase in serum insulin accompanied by a mildly symptomatic and gradual fall in serum glucose to 30 mg/dl 90 minutes after glucose ingestion. An intravenous glucose challenge caused an acute increase in serum insulin to more than 1200 microU/ml with a resulting serum glucose of 11 mg/dl 25 minutes later, associated with loss of consciousness. Although a prolonged fast has proven to be the best diagnostic test for insulin secreting tumors, many other provocative tests that use normal insulin secretagogues have been somewhat useful in this regard. The patient in this report supports the concept that insulinomas vary widely in their response to a number of normal physiologic regulators of insulin secretion, including the serum glucose concentration. A variety of provocative tests may be needed to fully evaluate the rare patient in whom there is a strong clinical suspicion of insulinoma but who has a nondiagnostic prolonged fast.

  18. α-Synuclein binds the KATP channel at insulin-secretory granules and inhibits insulin secretion

    PubMed Central

    Geng, Xuehui; Lou, Haiyan; Wang, Jian; Li, Lehong; Swanson, Alexandra L.; Sun, Ming; Beers-Stolz, Donna; Watkins, Simon; Perez, Ruth G.

    2011-01-01

    α-Synuclein has been studied in numerous cell types often associated with secretory processes. In pancreatic β-cells, α-synuclein might therefore play a similar role by interacting with organelles involved in insulin secretion. We tested for α-synuclein localizing to insulin-secretory granules and characterized its role in glucose-stimulated insulin secretion. Immunohistochemistry and fluorescent sulfonylureas were used to test for α-synuclein localization to insulin granules in β-cells, immunoprecipitation with Western blot analysis for interaction between α-synuclein and KATP channels, and ELISA assays for the effect of altering α-synuclein expression up or down on insulin secretion in INS1 cells or mouse islets, respectively. Differences in cellular phenotype between α-synuclein knockout and wild-type β-cells were found by using confocal microscopy to image the fluorescent insulin biosensor Ins-C-emGFP and by using transmission electron microscopy. The results show that anti-α-synuclein antibodies labeled secretory organelles within β-cells. Anti-α-synuclein antibodies colocalized with KATP channel, anti-insulin, and anti-C-peptide antibodies. α-Synuclein coimmunoprecipitated in complexes with KATP channels. Expression of α-synuclein downregulated insulin secretion at 2.8 mM glucose with little effect following 16.7 mM glucose stimulation. α-Synuclein knockout islets upregulated insulin secretion at 2.8 and 8.4 mM but not 16.7 mM glucose, consistent with the depleted insulin granule density at the β-cell surface membranes observed in these islets. These findings demonstrate that α-synuclein interacts with KATP channels and insulin-secretory granules and functionally acts as a brake on secretion that glucose stimulation can override. α-Synuclein might play similar roles in diabetes as it does in other degenerative diseases, including Alzheimer's and Parkinson's diseases. PMID:20858756

  19. Cooperation between cAMP signalling and sulfonylurea in insulin secretion.

    PubMed

    Shibasaki, T; Takahashi, T; Takahashi, H; Seino, S

    2014-09-01

    Although glucose is physiologically the most important regulator of insulin secretion, glucose-induced insulin secretion is modulated by hormonal and neural inputs to pancreatic β-cells. Most of the hormones and neurotransmitters evoke intracellular signals such as cAMP, Ca²⁺ , and phospholipid-derived molecules by activating G protein-coupled receptors (GPCRs). In particular, cAMP is a key second messenger that amplifies insulin secretion in a glucose concentration-dependent manner. The action of cAMP on insulin secretion is mediated by both protein kinase A (PKA)-dependent and Epac2A-dependent mechanisms. Many of the proteins expressed in β-cells are phosphorylated by PKA in vitro, but only a few proteins in which PKA phosphorylation directly affects insulin secretion have been identified. On the other hand, Epac2A activates the Ras-like small G protein Rap in a cAMP-dependent manner. Epac2A is also directly activated by various sulfonylureas, except for gliclazide. 8-pCPT-2'-O-Me-cAMP, an Epac-selective cAMP analogue, and glibenclamide, a sulfonylurea, synergistically activate Epac2A and Rap1, whereas adrenaline, which suppresses cAMP production in pancreatic β-cells, blocks activation of Epac2A and Rap1 by glibenclamide. Thus, cAMP signalling and sulfonylurea cooperatively activate Epac2A and Rap1. This interaction could account, at least in part, for the synergistic effects of incretin-related drugs and sulfonylureas in insulin secretion. Accordingly, clarification of the mechanism of Epac2A activation may provide therapeutic strategies to improve insulin secretion in diabetes.

  20. Dissecting the relationship between obesity and hyperinsulinemia: Role of insulin secretion and insulin clearance.

    PubMed

    Kim, Mee Kyoung; Reaven, Gerald M; Kim, Sun H

    2017-02-01

    The aim of this study was to better delineate the complex interrelationship among insulin resistance (IR), secretion rate (ISR), and clearance rate (ICR) to increase plasma insulin concentrations in obesity. Healthy volunteers (92 nondiabetic individuals) had an insulin suppression test to measure IR and graded-glucose infusion test to measure ISR and ICR. Obesity was defined as a body mass index (BMI) ≥30 kg/m(2) , and IR was defined as steady-state plasma glucose (SSPG) ≥10 mmol/L during the insulin suppression test. Plasma glucose and insulin concentrations, ISR, and ICR were compared in three groups: insulin sensitive/overweight; insulin sensitive/obesity; and insulin resistant/obesity. Compared with the insulin-sensitive/overweight group, the insulin-sensitive/obesity had significantly higher insulin area under the curve (AUC) and ISR AUC during the graded-glucose infusion test (P < 0.001). Glucose AUC and ICR were similar. The insulin-resistant/obesity group had higher insulin AUC and ISR AUC compared with the insulin-sensitive/obesity but also had higher glucose AUC and decreased ICR (P < 0.01). In multivariate analysis, both BMI and SSPG were significantly associated with ISR. Plasma insulin concentration and ISR are increased in individuals with obesity, irrespective of degree of IR, but a decrease in ICR is confined to the subset of individuals with IR. © 2016 The Obesity Society.

  1. Circulating retinol-binding protein-4, insulin sensitivity, insulin secretion, and insulin disposition index in obese and nonobese subjects.

    PubMed

    Broch, Montserrat; Vendrell, Joan; Ricart, Wifredo; Richart, Cristóbal; Fernández-Real, José-Manuel

    2007-07-01

    Recent investigations disclosed an upregulation of retinol-binding protein-4 (RBP4) in the adipose tissue of several insulin-resistant mouse models and increased serum RBP4 concentration in subjects with obesity and type 2 diabetes in association with insulin resistance. There is some experimental evidence that RBP4 also could been linked to insulin secretion. We aimed to evaluate insulin secretion, insulin sensitivity, insulin disposition index (minimal model analysis), and circulating RBP4 (enzyme-linked immunosorbent assay) in nondiabetic men with a wide range of obesity (n = 107). Serum RBP4 concentration was nonsignificantly different among lean, overweight, and obese subjects. Circulating RBP4 was not associated with age, BMI, waist-to-hip ratio, or metabolic parameters, including insulin sensitivity (r = -0.03, P = 0.6). On the contrary, circulating RBP4 was negatively associated with insulin secretion, especially in obese subjects (r = -0.48, P = 0.007), in whom RBP4 also was linked to insulin disposition index (r = -0.44, P = 0.01). On multiple regression analyses to predict insulin secretion (acute insulin response [AIR(g)]), insulin sensitivity was the only factor that contributed to 17% of AIR(g) variance in nonobese subjects. In obese subjects, however, RBP4 emerged as an independent factor that contributed independently to AIR(g) variance (23%). Our results suggest that oversecretion of RBP4 may negatively affect beta-cell function directly or by preventing the binding of transthyretin to its receptor. These mechanisms could be behind the association between increased circulating RBP4 and type 2 diabetes. RBP4 could be one signal from insulin-resistant tissues that impacts on beta-cell secretion.

  2. Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea.

    PubMed

    Seino, S

    2012-08-01

    Clarification of the molecular mechanisms of insulin secretion is crucial for understanding the pathogenesis and pathophysiology of diabetes and for development of novel therapeutic strategies for the disease. Insulin secretion is regulated by various intracellular signals generated by nutrients and hormonal and neural inputs. In addition, a variety of glucose-lowering drugs including sulfonylureas, glinide-derivatives, and incretin-related drugs such as dipeptidyl peptidase IV (DPP-4) inhibitors and glucagon-like peptide 1 (GLP-1) receptor agonists are used for glycaemic control by targeting beta cell signalling for improved insulin secretion. There has been a remarkable increase in our understanding of the basis of beta cell signalling over the past two decades following the application of molecular biology, gene technology, electrophysiology and bioimaging to beta cell research. This review discusses cell signalling in insulin secretion, focusing on the molecular targets of ATP, cAMP and sulfonylurea, an essential metabolic signal in glucose-induced insulin secretion (GIIS), a critical signal in the potentiation of GIIS, and the commonly used glucose-lowering drug, respectively.

  3. Effects of glucose and insulin on secretion of amyloid-β by human adipose tissue cells.

    PubMed

    Tharp, William G; Gupta, Dhananjay; Smith, Joshua; Jones, Karen P; Jones, Amanda M; Pratley, Richard E

    2016-07-01

    Obesity and type 2 diabetes mellitus are risk factors for developing Alzheimer disease. Overlapping patterns of metabolic dysfunction may be common molecular links between these complex diseases. Amyloid-β (Aβ) precursor protein and associated β- and γ-secretases are expressed in adipose tissue. Aβ precursor protein is up-regulated with obesity and correlated to insulin resistance. Aβ may be secreted by adipose tissue, its production may be regulated through metabolic pathways, and Aβ may exert effects on adipose tissue insulin receptor signaling. Human stromal-vascular cells and differentiated adipocytes were cultured with different combinations of glucose and insulin and then assayed for Aβ in conditioned media. Aβ was measured in vivo using adipose tissue microdialysis. Aβ secretion was increased by glucose and insulin in vitro. Adipose tissue microdialysates contained Aβ. Adipocytes treated with Aβ had decreased expression of insulin receptor substrate-2 and reduced Akt-1 phosphorylation. Aβ was made by adipose tissue cells in vitro at concentrations similar to in vivo measurements. Regulation of Aβ production by glucose and insulin and effects of Aβ on the insulin receptor pathway suggest similar cellular mechanisms may exist between neuronal dysfunction in Alzheimer disease and adipose dysfunction in type 2 diabetes. © 2016 The Authors Obesity published by Wiley Periodicals, Inc. on behalf of The Obesity Society (TOS).

  4. H2O2-Activated Mitochondrial Phospholipase iPLA2γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein–Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic β-Cells

    PubMed Central

    Ježek, Jan; Dlasková, Andrea; Zelenka, Jaroslav; Jabůrek, Martin

    2015-01-01

    Abstract Aims: Pancreatic β-cell chronic lipotoxicity evolves from acute free fatty acid (FA)–mediated oxidative stress, unprotected by antioxidant mechanisms. Since mitochondrial uncoupling protein-2 (UCP2) plays antioxidant and insulin-regulating roles in pancreatic β-cells, we tested our hypothesis, that UCP2-mediated uncoupling attenuating mitochondrial superoxide production is initiated by FA release due to a direct H2O2-induced activation of mitochondrial phospholipase iPLA2γ. Results: Pro-oxidant tert-butylhydroperoxide increased respiration, decreased membrane potential and mitochondrial matrix superoxide release rates of control but not UCP2- or iPLA2γ-silenced INS-1E cells. iPLA2γ/UCP2-mediated uncoupling was alternatively activated by an H2O2 burst, resulting from palmitic acid (PA) β-oxidation, and it was prevented by antioxidants or catalase overexpression. Exclusively, nascent FAs that cleaved off phospholipids by iPLA2γ were capable of activating UCP2, indicating that the previously reported direct redox UCP2 activation is actually indirect. Glucose-stimulated insulin release was not affected by UCP2 or iPLA2γ silencing, unless pro-oxidant activation had taken place. PA augmented insulin secretion via G-protein–coupled receptor 40 (GPR40), stimulated by iPLA2γ-cleaved FAs (absent after GPR40 silencing). Innovation and Conclusion: The iPLA2γ/UCP2 synergy provides a feedback antioxidant mechanism preventing oxidative stress by physiological FA intake in pancreatic β-cells, regulating glucose-, FA-, and redox-stimulated insulin secretion. iPLA2γ is regulated by exogenous FA via β-oxidation causing H2O2 signaling, while FAs are cleaved off phospholipids, subsequently acting as amplifying messengers for GPR40. Hence, iPLA2γ acts in eminent physiological redox signaling, the impairment of which results in the lack of antilipotoxic defense and contributes to chronic lipotoxicity. Antioxid. Redox Signal. 23, 958–972. PMID:25925080

  5. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    SciTech Connect

    Permana, Paska A. . E-mail: Paska.Permana@med.va.gov; Menge, Christopher; Reaven, Peter D.

    2006-03-10

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-{kappa}B) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-{kappa}B inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity.

  6. Cardiorespiratory fitness predicts insulin action and secretion in healthy individuals.

    PubMed

    Larsen, Filip J; Anderson, Martin; Ekblom, Björn; Nyström, Thomas

    2012-01-01

    Long-term cardiorespiratory fitness (CRF) and the development of type 2 diabetes mellitus are inversely correlated. Here, we examined the relationships between peak oxygen uptake (VO(2)peak), on the one hand, and glucose infusion rate at rest (GIR(rest)) and during exercise (GIR(exercise)), as well as insulin secretion (both the early and late phases of response [area under the curve {AUC}(insulin)]), on the other. Eight male and 4 female healthy, lean, nonsmoking volunteers were recruited. The VO(2)peak was measured during graded exercise on a cycle ergometer until exhaustion was reached. The GIR(rest) and GIR(exercise) were determined using a euglycemic-hyperinsulinemic clamp, and insulin secretion at rest was evaluated with an intravenous glucose tolerance test. The VO(2)peak correlated positively to GIR(rest) (r = 0.81, P = .001) and GIR(exercise) (r = 0.87, P < .001) and negatively to AUC(insulin) (r = -0.64, P = .03). The respiratory exchange ratio (RER) during insulin infusion was positively correlated to GIR(rest) (r = 0.83, P < .001) and GIR(exercise) (r = 0.86, P < .01) and negatively correlated to both the early insulin response (r = -0.86, P < .0001) and AUC(insulin) (r = -0.87, P = .001). The VO(2)peak accounted for 45% of the variability in RER (R(2) = 0.45, P = .035). In this healthy population, CRF and RER were highly correlated to insulin sensitivity and secretion, as well as to the ability to alter the substrate being oxidized during exercise. These findings highlight the importance of good CRF to maintaining normal insulin action.

  7. Constitutively active heat shock factor 1 enhances glucose-driven insulin secretion.

    PubMed

    Uchiyama, Tsuyoshi; Tomono, Shoichi; Utsugi, Toshihiro; Ohyama, Yoshio; Nakamura, Tetsuya; Tomura, Hideaki; Kawazu, Shoji; Okajima, Fumikazu; Kurabayashi, Masahiko

    2011-06-01

    Weak pancreatic β-cell function is a cause of type 2 diabetes mellitus. Glucokinase regulates insulin secretion via phosphorylation of glucose. The present study focused on a system for the self-protection of pancreatic cell by expressing heat shock factor (HSF) and heat shock protein (HSP) to improve insulin secretion without inducing hypoglycemia. We previously generated a constitutively active form of human HSF1 (CA-hHSF1). An adenovirus expressing CA-hHSF1 using the cytomegalovirus promoter was generated to infect mouse insulinoma cells (MIN6 cells). An adenovirus expressing CA-hHSF1 using a human insulin promoter (Ins-CA-hHSF1) was also generated to infect rats. We investigated whether CA-hHSF1 induces insulin secretion in MIN6 cells and whether Ins-CA-hHSF1 can improve blood glucose and serum insulin levels in healthy Wister rats and type 2 diabetes mellitus model rats. CA-hHSF1 expression increased insulin secretion 1.27-fold compared with the overexpression of wild-type hHSF1 in MIN6 cells via induction of HSP90 expression and subsequent activation of glucokinase. This mechanism is associated with activation of both glucokinase and neuronal nitric oxide synthase. Ins-CA-hHSF1 improved blood glucose levels in neonatal streptozotocin-induced diabetic rats. Furthermore, Ins-CA-hHSF1 reduced oral glucose tolerance testing results in healthy Wister rats because of an insulin spike at 15 minutes; however, it did not induce hypoglycemia. CA-hHSF1 induced insulin secretion both in vitro and in vivo. These findings suggest that gene therapy with Ins-CA-hHSF1 will be able to be used to treat patients with type 2 diabetes mellitus and impaired glucose tolerance without causing hypoglycemia at fasting. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Autotaxin Is Regulated by Glucose and Insulin in Adipocytes.

    PubMed

    D'Souza, Kenneth; Kane, Daniel A; Touaibia, Mohamed; Kershaw, Erin E; Pulinilkunnil, Thomas; Kienesberger, Petra C

    2017-04-01

    Autotaxin (ATX) is an adipokine that generates the bioactive lipid, lysophosphatidic acid. Despite recent studies implicating adipose-derived ATX in metabolic disorders including obesity and insulin resistance, the nutritional and hormonal regulation of ATX in adipocytes remains unclear. The current study examined the regulation of ATX in adipocytes by glucose and insulin and the role of ATX in adipocyte metabolism. Induction of insulin resistance in adipocytes with high glucose and insulin concentrations increased ATX secretion, whereas coincubation with the insulin sensitizer, rosiglitazone, prevented this response. Moreover, glucose independently increased ATX messenger RNA (mRNA), protein, and activity in a time- and concentration-dependent manner. Glucose also acutely upregulated secreted ATX activity in subcutaneous adipose tissue explants. Insulin elicited a biphasic response. Acute insulin stimulation increased ATX activity in a PI3Kinase-dependent and mTORC1-independent manner, whereas chronic insulin stimulation decreased ATX mRNA, protein, and activity. To examine the metabolic role of ATX in 3T3-L1 adipocytes, we incubated cells with the ATX inhibitor, PF-8380, for 24 hours. Whereas ATX inhibition increased the expression of peroxisome proliferator-activated receptor-γ and its downstream targets, insulin signaling and mitochondrial respiration were unaffected. However, ATX inhibition enhanced mitochondrial H2O2 production. Taken together, this study suggests that ATX secretion from adipocytes is differentially regulated by glucose and insulin. This study also suggests that inhibition of autocrine/paracrine ATX-lysophosphatidic acid signaling does not influence insulin signaling or mitochondrial respiration, but increases reactive oxygen species production in adipocytes. Copyright © 2017 Endocrine Society.

  9. Free triiodothyronine plasma concentrations are positively associated with insulin secretion in euthyroid individuals

    PubMed Central

    Ortega, Emilio; Koska, Juraj; Pannacciulli, Nicola; Bunt, Joy C; Krakoff, Jonathan

    2008-01-01

    Background Thyroid hormones (TH) may influence glucose metabolism. Hyperthyroid subjects have higher insulin secretion rates when compared with euthyroid individuals. Objective To evaluate the association between TH concentrations and insulin secretion in euthyroid, healthy Pima Indian adults (n=55, 29±7 years, females/males 36/19) with normal glucose tolerance (NGT) admitted to a Clinical Research Unit. Methods TSH, free thyroxine (FT4), 3,5,3′-L-tri-iodothyronine (FT3), and fasting plasma insulin (FPI) concentrations were measured in fasting plasma samples, percentage of body fat (%BF) by dual energy x-ray absorptiometry (DXA), acute insulin response (AIR), and incremental area under the curve (AUC) of insulin in response to a 25 g intravenous glucose tolerance test (IVGTT) and 75 g oral glucose tolerance test (OGTT) respectively and insulin action (M) during an euglycemic clamp. Results FT3 concentrations were associated with FPI, AIR, and insulin AUC both before (r=0.33, P=0.01; r=0.29, P=0.03; and r=0.35, P=0.008 respectively) and after adjustment for age, sex, %BF, glucose (fasting concentrations or glucose AUC), and M (β=0.09, P=0.01; β=0.16, P=0.03; and β=0.24, P=0.0007 respectively). No associations were found for TSH or FT4. Conclusion FT3 was associated with several measurements of insulin secretion in euthyroid individuals with NGT. T3 concentrations may play a role in the regulation of insulin secretion. PMID:18230829

  10. Quetiapine treatment in youth is associated with decreased insulin secretion.

    PubMed

    Ngai, Ying Fai; Sabatini, Paul; Nguyen, Duc; Davidson, Jana; Chanoine, Jean-Pierre; Devlin, Angela M; Lynn, Francis C; Panagiotopoulos, Constadina

    2014-06-01

    Second-generation antipsychotics (SGAs) are commonly prescribed to youth but are associated with metabolic effects including obesity and diabetes. The mechanisms underlying diabetes development are unclear. The purpose of this study was to compare glucose homeostasis, insulin sensitivity, insulin secretion, and overall β-cell function in risperidone-treated, quetiapine-treated, and SGA-naive youth with mental illness. We conducted a cross-sectional study in which youth aged 9 to 18 years underwent a 2-hour oral glucose tolerance test. Indices for insulin sensitivity (Matsuda index), insulin secretion (insulinogenic index), and β-cell function (insulin secretion-sensitivity index-2 [ISSI-2]) were calculated. A total of 18 SGA-naive, 20 risperidone-treated, and 16 quetiapine-treated youth participated. The 3 groups were similar in age, sex, ethnicity, body mass index standardized for age and sex, pubertal status, degree of psychiatric illness, psychiatric diagnoses, and other medications. The median treatment duration was 17 months (range, 3-91 months) for risperidone-treated youth and 10 months (range, 3-44 months) for quetiapine-treated youth. The quetiapine-treated group had lower insulinogenic index (P < 0.01) and lower ISSI-2 (P < 0.01) compared with that in the SGA-naive group. Only the body mass index standardized for age and sex was negatively associated with Matsuda index (β = -0.540, P < 0.001) in all youth. Quetiapine treatment was negatively associated with insulinogenic index (β = -0.426, P = 0.007) and ISSI-2 (β = -0.433, P = 0.008). Quetiapine reduced the insulin expression in isolated mouse islets suggesting a direct β-cell effect. Our results suggest that quetiapine treatment in youth is associated with impaired β-cell function, specifically lower insulin secretion. Prospective longitudinal studies are required to understand the progression of β-cell dysfunction after quetiapine initiation.

  11. Nuclear PLCs affect insulin secretion by targeting PPARγ in pancreatic β cells.

    PubMed

    Fiume, Roberta; Ramazzotti, Giulia; Faenza, Irene; Piazzi, Manuela; Bavelloni, Alberto; Billi, Anna Maria; Cocco, Lucio

    2012-01-01

    Type 2 diabetes is a heterogeneous disorder caused by concomitant impairment of insulin secretion by pancreatic β cells and of insulin action in peripheral target tissues. Studies with inhibitors and agonists established a role for PLC in the regulation of insulin secretion but did not distinguish between effects due to nuclear or cytoplasmic PLC signaling pathways that act in a distinct fashion. We report that in MIN6 β cells, PLCβ1 localized in both nucleus and cytoplasm, PLCδ4 in the nucleus, and PLCγ1 in the cytoplasm. By silencing each isoform, we observed that they all affected glucose-induced insulin release both at basal and high glucose concentrations. To elucidate the molecular basis of PLC regulation, we focused on peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor transcription factor that regulates genes critical to β-cell maintenance and functions. Silencing of PLCβ1 and PLCδ4 resulted in a decrease in the PPARγ mRNA level. By means of a PPARγ-promoter-luciferase assay, the decrease could be attributed to a PLC action on the PPARγ-promoter region. The effect was specifically observed on silencing of the nuclear and not the cytoplasmic PLC. These findings highlight a novel pathway by which nuclear PLCs affect insulin secretion and identify PPARγ as a novel molecular target of nuclear PLCs.

  12. Impairment of GLP1-induced insulin secretion: role of genetic background, insulin resistance and hyperglycaemia.

    PubMed

    Herzberg-Schäfer, S; Heni, M; Stefan, N; Häring, H-U; Fritsche, A

    2012-10-01

    One major risk factor of type 2 diabetes is the impairment of glucose-induced insulin secretion which is mediated by the individual genetic background and environmental factors. In addition to impairment of glucose-induced insulin secretion, impaired glucagon-like peptide (GLP)1-induced insulin secretion has been identified to be present in subjects with diabetes and impaired glucose tolerance, but little is known about its fundamental mechanisms. The state of GLP1 resistance is probably an important mechanism explaining the reduced incretin effect observed in type 2 diabetes. In this review, we address methods that can be used for the measurement of insulin secretion in response to GLP1 in humans, and studies showing that specific diabetes risk genes are associated with resistance of the secretory function of the β-cell in response to GLP1 administration. Furthermore, we discuss other factors that are associated with impaired GLP1-induced insulin secretion, for example, insulin resistance. Finally, we provide evidence that hyperglycaemia per se, the genetic background and their interaction result in the development of GLP1 resistance of the β-cell. We speculate that the response or the non-response to therapy with GLP1 analogues and/or dipeptidyl peptidase-4 (DPP-IV) inhibitors is critically dependent on GLP1 resistance.

  13. Insulin secretion and sensitivity in space flight: diabetogenic effects

    NASA Technical Reports Server (NTRS)

    Tobin, Brian W.; Uchakin, Peter N.; Leeper-Woodford, Sandra K.

    2002-01-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  14. Insulin secretion and sensitivity in space flight: diabetogenic effects

    NASA Technical Reports Server (NTRS)

    Tobin, Brian W.; Uchakin, Peter N.; Leeper-Woodford, Sandra K.

    2002-01-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  15. Insulin secretion and sensitivity in space flight: diabetogenic effects.

    PubMed

    Tobin, Brian W; Uchakin, Peter N; Leeper-Woodford, Sandra K

    2002-10-01

    Nearly three decades of space flight research have suggested that there are subclinical diabetogenic changes that occur in microgravity. Alterations in insulin secretion, insulin sensitivity, glucose tolerance, and metabolism of protein and amino acids support the hypothesis that insulin plays an essential role in the maintenance of muscle mass in extended-duration space flight. Experiments in flight and after flight and ground-based bedrest studies have associated microgravity and its experimental paradigms with manifestations similar to those of diabetes, physical inactivity, and aging. We propose that these manifestations are characterized best by an etiology that falls into the clinical category of "other" causes of diabetes, including, but not restricted to, genetic beta-cell defects, insulin action defects, diseases of the endocrine pancreas, endocrinopathies, drug or chemically induced diabetes, infections, immune-mediated metabolic alteration, and a host of genetic related diseases. We present data showing alterations in tumor necrosis factor-alpha production, insulin secretion, and amino acid metabolism in pancreatic islets of Langerhans cultured in a ground-based cell culture bioreactor that mimics some of the effects of microgravity. Taken together, space flight research, ground-based studies, and bioreactor studies of pancreatic islets of Langerhans support the hypothesis that the pancreas is unable to overcome peripheral insulin resistance and amino acid dysregulation during space flight. We propose that measures of insulin secretion and insulin action will be necessary to design effective countermeasures against muscle loss, and we advance the "disposition index" as an essential model to be used in the clinical management of space flight-induced muscle loss.

  16. Endogenous somatostatin-28 modulates postprandial insulin secretion. Immunoneutralization studies in baboons.

    PubMed Central

    Ensinck, J W; Vogel, R E; Laschansky, E C; Koerker, D J; Prigeon, R L; Kahn, S E; D'Alessio, D A

    1997-01-01

    Somatostatin-28 (S-28), secreted into the circulation from enterocytes after food, and S-14, released mainly from gastric and pancreatic D cells and enteric neurons, inhibit peripheral cellular functions. We hypothesized that S-28 is a humoral regulator of pancreatic B cell function during nutrient absorption. Consistent with this postulate, we observed in baboons a two to threefold increase in portal and peripheral levels of S-28 after meals, with minimal changes in S-14. We attempted to demonstrate a hormonal effect of these peptides by measuring their concentrations before and after infusing a somatostatin-specific monoclonal antibody (mAb) into baboons and comparing glucose, insulin, and glucagon-like peptide-1 levels before and for 4 h after intragastric nutrients during a control study and on 2 d after mAb administration (days 1 and 2). Basal growth hormone (GH) and glucagon levels and parameters of insulin and glucose kinetics were also measured. During immunoneutralization, we found that (a) postprandial insulin levels were elevated on days 1 and 2; (b) GH levels rose immediately and were sustained for 28 h, while glucagon fell; (c) basal insulin levels were unchanged on day 1 but were increased two to threefold on day 2, coincident with decreased insulin sensitivity; and (d) plasma glucose concentrations were similar to control values. We attribute the eventual rise in fasting levels of insulin to its enhanced secretion in compensation for the heightened insulin resistance from increased GH action. Based on the elevated postmeal insulin levels after mAb administration, we conclude that S-28 participates in the enteroinsular axis as a decretin to regulate postprandial insulin secretion. PMID:9410907

  17. Phase modulation of insulin pulses enhances glucose regulation and enables inter-islet synchronization

    PubMed Central

    Lee, Boah; Song, Taegeun; Lee, Kayoung; Kim, Jaeyoon; Han, Seungmin; Berggren, Per-Olof; Ryu, Sung Ho; Jo, Junghyo

    2017-01-01

    Insulin is secreted in a pulsatile manner from multiple micro-organs called the islets of Langerhans. The amplitude and phase (shape) of insulin secretion are modulated by numerous factors including glucose. The role of phase modulation in glucose homeostasis is not well understood compared to the obvious contribution of amplitude modulation. In the present study, we measured Ca2+ oscillations in islets as a proxy for insulin pulses, and we observed their frequency and shape changes under constant/alternating glucose stimuli. Here we asked how the phase modulation of insulin pulses contributes to glucose regulation. To directly answer this question, we developed a phenomenological oscillator model that drastically simplifies insulin secretion, but precisely incorporates the observed phase modulation of insulin pulses in response to glucose stimuli. Then, we mathematically modeled how insulin pulses regulate the glucose concentration in the body. The model of insulin oscillation and glucose regulation describes the glucose-insulin feedback loop. The data-based model demonstrates that the existence of phase modulation narrows the range within which the glucose concentration is maintained through the suppression/enhancement of insulin secretion in conjunction with the amplitude modulation of this secretion. The phase modulation is the response of islets to glucose perturbations. When multiple islets are exposed to the same glucose stimuli, they can be entrained to generate synchronous insulin pulses. Thus, we conclude that the phase modulation of insulin pulses is essential for glucose regulation and inter-islet synchronization. PMID:28235104

  18. Phase modulation of insulin pulses enhances glucose regulation and enables inter-islet synchronization.

    PubMed

    Lee, Boah; Song, Taegeun; Lee, Kayoung; Kim, Jaeyoon; Han, Seungmin; Berggren, Per-Olof; Ryu, Sung Ho; Jo, Junghyo

    2017-01-01

    Insulin is secreted in a pulsatile manner from multiple micro-organs called the islets of Langerhans. The amplitude and phase (shape) of insulin secretion are modulated by numerous factors including glucose. The role of phase modulation in glucose homeostasis is not well understood compared to the obvious contribution of amplitude modulation. In the present study, we measured Ca2+ oscillations in islets as a proxy for insulin pulses, and we observed their frequency and shape changes under constant/alternating glucose stimuli. Here we asked how the phase modulation of insulin pulses contributes to glucose regulation. To directly answer this question, we developed a phenomenological oscillator model that drastically simplifies insulin secretion, but precisely incorporates the observed phase modulation of insulin pulses in response to glucose stimuli. Then, we mathematically modeled how insulin pulses regulate the glucose concentration in the body. The model of insulin oscillation and glucose regulation describes the glucose-insulin feedback loop. The data-based model demonstrates that the existence of phase modulation narrows the range within which the glucose concentration is maintained through the suppression/enhancement of insulin secretion in conjunction with the amplitude modulation of this secretion. The phase modulation is the response of islets to glucose perturbations. When multiple islets are exposed to the same glucose stimuli, they can be entrained to generate synchronous insulin pulses. Thus, we conclude that the phase modulation of insulin pulses is essential for glucose regulation and inter-islet synchronization.

  19. Effects of glucosamine infusion on insulin secretion and insulin action in humans.

    PubMed

    Monauni, T; Zenti, M G; Cretti, A; Daniels, M C; Targher, G; Caruso, B; Caputo, M; McClain, D; Del Prato, S; Giaccari, A; Muggeo, M; Bonora, E; Bonadonna, R C

    2000-06-01

    Glucose toxicity (i.e., glucose-induced reduction in insulin secretion and action) may be mediated by an increased flux through the hexosamine-phosphate pathway. Glucosamine (GlcN) is widely used to accelerate the hexosamine pathway flux, independently of glucose. We tested the hypothesis that GlcN can affect insulin secretion and/or action in humans. In 10 healthy subjects, we sequentially performed an intravenous glucose (plus [2-3H]glucose) tolerance test (IVGTT) and a euglycemic insulin clamp during either a saline infusion or a low (1.6 micromol x min(-1) x kg(-1)) or high (5 micromol x min(-1) x kg(-1) [n = 5]) GlcN infusion. Beta-cell secretion, insulin (SI*-IVGTT), and glucose (SG*) action on glucose utilization during the IVGTT were measured according to minimal models of insulin secretion and action. Infusion of GlcN did not affect readily releasable insulin levels, glucose-stimulated insulin secretion (GSIS), or the time constant of secretion, but it increased both the glucose threshold of GSIS (delta approximately 0.5-0.8 mmol/l, P < 0.03-0.01) and plasma fasting glucose levels (delta approximately 0.3-0.5 mmol/l, P < 0.05-0.02). GlcN did not change glucose utilization or intracellular metabolism (glucose oxidation and glucose storage were measured by indirect calorimetry) during the clamp. However, high levels of GlcN caused a decrease in SI*-IVGTT (delta approximately 30%, P < 0.02) and in SG* (delta approximately 40%, P < 0.05). Thus, in humans, acute GlcN infusion recapitulates some metabolic features of human diabetes. It remains to be determined whether acceleration of the hexosamine pathway can cause insulin resistance at euglycemia in humans.

  20. Key proteins involved in insulin vesicle exocytosis and secretion

    PubMed Central

    Xiong, Qian-Yin; Yu, Cui; Zhang, Yao; Ling, Liefeng; Wang, Lizhuo; Gao, Jia-Lin

    2017-01-01

    In vivo insulin secretion is predominantly affected by blood glucose concentration, blood concentration of amino acids, gastrointestinal hormones and free nerve functional status, in addition to other factors. Insulin is one of the most important hormones in the body, and its secretion is precisely controlled by nutrients, neurotransmitters and hormones. The insulin exocytosis process is similar to the neurotransmitter release mechanism. There are various types of proteins and lipids that participate in the insulin secretory vesicle fusion process, such as soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein, Ras-related proteins and vacuolar-type H+-ATPase (V-ATPase). Notably, the SNARE protein is the molecular basis of exocytotic activity. In the current review, the role of the vesicle membrane proteins (synaptobrevins, vesicle associated membrane proteins and target membrane proteins) and auxiliary proteins (Rab proteins and Munc-18 proteins) in vesicle fusion activity were summarized. A summary of these key proteins involved in insulin granule secretion will facilitate understanding of the pathogenesis of diabetes. PMID:28357064

  1. Role of Vitamin D in Insulin Secretion and Insulin Sensitivity for Glucose Homeostasis

    PubMed Central

    Alvarez, Jessica A.; Ashraf, Ambika

    2010-01-01

    Vitamin D functions are not limited to skeletal health benefits and may extend to preservation of insulin secretion and insulin sensitivity. This review summarizes the literature related to potential vitamin D influences on glucose homeostasis and insulin sensitivity. Cross-sectional data provide some evidence that circulating 25-hydroxyvitamin D (25(OH)D) is inversely associated with insulin resistance, although direct measurements of insulin sensitivity are required for confirmation. Reported associations with insulin secretion, however, are contradictory. Available prospective studies support a protective influence of high 25(OH)D concentrations on type 2 diabetes mellitus risk. There is a general lack of consistency in vitamin D intervention outcomes on insulin secretion and sensitivity, likely due to differences in subject populations, length of interventions, and forms of vitamin D supplementation. Vitamin D receptor gene polymorphisms and vitamin D interactions with the insulin like growth factor system may further influence glucose homeostasis. The ambiguity of optimal vitamin D dosing regimens and optimal therapeutic concentrations of serum 25(OH)D limit available intervention studies. Future studies, including cross-sectional and prospective, should be performed in populations at high risk for both vitamin D deficiency and type 2 diabetes mellitus. Well-designed, placebo-controlled, randomized intervention studies are required to establish a true protective influence of vitamin D on glucose homeostasis. PMID:20011094

  2. Role of vitamin d in insulin secretion and insulin sensitivity for glucose homeostasis.

    PubMed

    Alvarez, Jessica A; Ashraf, Ambika

    2010-01-01

    Vitamin D functions are not limited to skeletal health benefits and may extend to preservation of insulin secretion and insulin sensitivity. This review summarizes the literature related to potential vitamin D influences on glucose homeostasis and insulin sensitivity. Cross-sectional data provide some evidence that circulating 25-hydroxyvitamin D (25(OH)D) is inversely associated with insulin resistance, although direct measurements of insulin sensitivity are required for confirmation. Reported associations with insulin secretion, however, are contradictory. Available prospective studies support a protective influence of high 25(OH)D concentrations on type 2 diabetes mellitus risk. There is a general lack of consistency in vitamin D intervention outcomes on insulin secretion and sensitivity, likely due to differences in subject populations, length of interventions, and forms of vitamin D supplementation. Vitamin D receptor gene polymorphisms and vitamin D interactions with the insulin like growth factor system may further influence glucose homeostasis. The ambiguity of optimal vitamin D dosing regimens and optimal therapeutic concentrations of serum 25(OH)D limit available intervention studies. Future studies, including cross-sectional and prospective, should be performed in populations at high risk for both vitamin D deficiency and type 2 diabetes mellitus. Well-designed, placebo-controlled, randomized intervention studies are required to establish a true protective influence of vitamin D on glucose homeostasis.

  3. Somatostatin-secreting Pheochromocytoma Mimicking Insulin-dependent Diabetes Mellitus

    PubMed Central

    Hirai, Hiroyuki; Midorikawa, Sanae; Suzuki, Shinichi; Sasano, Hironobu; Watanabe, Tsuyoshi; Satoh, Hiroaki

    2016-01-01

    We herein present the findings of a 42-year-old woman with either adrenal pheochromocytoma or intraadrenal paraganglioma that simultaneously secreted somatostatin, thus mimicking insulin-dependent diabetes mellitus. Pheochromocytoma was clinically diagnosed based on scintigraphy, elevated catecholamine levels, and finally a histopathological analysis of resected specimens. The patient had diabetic ketosis, requiring 40 U insulin for treatment. Following laparoscopic adrenalectomy, insulin therapy was discontinued and the urinary c-peptide levels changed from 5.5-9.0 to 81.3-87.0 μg/day. Histologically, somatostatin immunoreactivity was detected and the somatostatin levels were elevated in the serum-like fluid obtained from the tumor. Clinicians should be aware of the possible occurrence of simultaneous ectopic hormone secretion in patients with pheochromocytoma. PMID:27746437

  4. Somatostatin-secreting Pheochromocytoma Mimicking Insulin-dependent Diabetes Mellitus.

    PubMed

    Hirai, Hiroyuki; Midorikawa, Sanae; Suzuki, Shinichi; Sasano, Hironobu; Watanabe, Tsuyoshi; Satoh, Hiroaki

    We herein present the findings of a 42-year-old woman with either adrenal pheochromocytoma or intraadrenal paraganglioma that simultaneously secreted somatostatin, thus mimicking insulin-dependent diabetes mellitus. Pheochromocytoma was clinically diagnosed based on scintigraphy, elevated catecholamine levels, and finally a histopathological analysis of resected specimens. The patient had diabetic ketosis, requiring 40 U insulin for treatment. Following laparoscopic adrenalectomy, insulin therapy was discontinued and the urinary c-peptide levels changed from 5.5-9.0 to 81.3-87.0 μg/day. Histologically, somatostatin immunoreactivity was detected and the somatostatin levels were elevated in the serum-like fluid obtained from the tumor. Clinicians should be aware of the possible occurrence of simultaneous ectopic hormone secretion in patients with pheochromocytoma.

  5. Optogenetic control of insulin secretion by pancreatic β-cells in vitro and in vivo.

    PubMed

    Kushibiki, T; Okawa, S; Hirasawa, T; Ishihara, M

    2015-07-01

    The present study assessed the ability of optogenetics techniques to provide a better understanding of the control of insulin secretion, particularly regarding pancreatic β-cell function in homeostasis and pathological conditions such as diabetes mellitus (DM). We used optogenetics to investigate whether insulin secretion and blood glucose homeostasis could be controlled by regulating intracellular calcium ion concentrations ([Ca(2+)]i) in a mouse pancreatic β-cell line (MIN6) transfected with the optogenetic protein channelrhodopsin-2 (ChR2). The ChR2-transfected MIN6 (ChR2-MIN6) cells secreted insulin following irradiation with a laser (470 nm). The increase in [Ca(2+)]i was accompanied by elevated levels of messenger RNAs that encode calcium/calmodulin-dependent protein kinase II delta and adenylate cyclase 1. ChR2-MIN6 cells suspended in matrigel were inoculated into streptozotocin-induced diabetic mice that were then subjected to a glucose tolerance test. Laser irradiation of these mice caused a significant decrease in blood glucose, and the irradiated implanted cells expressed insulin. These findings demonstrate the power of optogenetics to precisely and efficiently controlled insulin secretion by pancreatic β-cells 'on demand', in contrast to techniques using growth factors or chemical inducers. Optogenetic technology shows great promise for understanding the mechanisms of glucose homeostasis and for developing treatments for metabolic diseases such as DM.

  6. Impaired insulin secretion increases the risk of Alzheimer disease.

    PubMed

    Rönnemaa, E; Zethelius, B; Sundelöf, J; Sundström, J; Degerman-Gunnarsson, M; Berne, C; Lannfelt, L; Kilander, L

    2008-09-30

    Subjects with diabetes are reported to have an increased risk of dementia and cognitive impairment. However, the underlying causes remain unknown. We investigated the longitudinal associations between midlife insulin secretion, glucose metabolism, and the subsequent development of Alzheimer disease (AD) and dementia. The population-based Uppsala Longitudinal Study of Adult Men started 1970 when the 2,322 participants were 50 years old. Investigation at baseline included determinations of acute insulin response and glucose tolerance using the IV glucose tolerance test and Homeostasis Model Assessment insulin resistance index. During a median follow up of 32 years, 102 participants were diagnosed with AD, 57 with vascular dementia, and 394 with any dementia or cognitive impairment. Associations were analyzed using Cox proportional hazard models. A low insulin response at baseline was associated with a higher cumulative risk of AD (hazard ratio for 1 SD decrease, 1.31; 95% CI, 1.10-1.56) also after adjustment for age, systolic blood pressure, body mass index, serum cholesterol, smoking, education level, and insulin resistance. This association was stronger in subjects without the APOE epsilon4 allele. Impaired glucose tolerance increased the risk of vascular dementia (hazard ratio for 1 SD decrease, 1.45; 95% CI, 1.05-2.00) but not AD. Impaired insulin secretion, glucose intolerance, and estimates of insulin resistance were all associated with higher risk of any dementia and cognitive impairment. In this longitudinal study, impaired acute insulin response at midlife was associated with an increased risk of Alzheimer disease (AD) up to 35 years later suggesting a causal link between insulin metabolism and the pathogenesis of AD.

  7. Effects of I(Ks) channel inhibitors in insulin-secreting INS-1 cells.

    PubMed

    Ullrich, Susanne; Su, Jiping; Ranta, Felicia; Wittekindt, Oliver H; Ris, Frederic; Rösler, Martin; Gerlach, Uwe; Heitzmann, Dirk; Warth, Richard; Lang, Florian

    2005-12-01

    Potassium channels regulate insulin secretion. The closure of K(ATP) channels leads to membrane depolarisation, which triggers Ca(2+) influx and stimulates insulin secretion. The subsequent activation of K(+) channels terminates secretion. We examined whether KCNQ1 channels are expressed in pancreatic beta-cells and analysed their functional role. Using RT/PCR cellular mRNA of KCNQ1 but not of KCNE1 channels was detected in INS-1 cells. Effects of two sulfonamide analogues, 293B and HMR1556, inhibitors of KCNQ1 channels, were examined on voltage-activated outwardly rectifying K(+) currents using the patch-clamp method. It was found that 293B inhibited 60% of whole-cell outward currents induced by voltage pulses from -70 to +50 mV with a concentration for half-maximal inhibition (IC(50)) of 37 microM. The other sulfonamide analogue HMR1556 inhibited 48% of the outward current with an IC(50) of 7 microM. The chromanol 293B had no effect on tolbutamide-sensitive K(ATP) channels. Action potentials induced by current injections were broadened and after-repolarisation was attenuated by 293B. Insulin secretion in the presence but not in the absence of tolbutamide was significantly increased by 293B. These results suggest that 293B- and HMR1556-sensitive channels, probably in concert with other voltage-activated K(+) channels, influence action potential duration and frequency and thus insulin secretion.

  8. Cadherin engagement improves insulin secretion of single human β-cells.

    PubMed

    Parnaud, Geraldine; Lavallard, Vanessa; Bedat, Benoît; Matthey-Doret, David; Morel, Philippe; Berney, Thierry; Bosco, Domenico

    2015-03-01

    The aim of this study was to assess whether cadherin-mediated adhesion of human islet cells was affected by insulin secretagogues and explore the role of cadherins in the secretory activity of β-cells. Experiments were carried out with single islet cells adherent to chimeric proteins made of functional E-, N-, or P-cadherin ectodomains fused to the Fc fragment of immunoglobulin (E-cad/Fc, N-cad/Fc, and P-cad/Fc) and immobilized on an inert substrate. We observed that cadherin expression in islet cells was not affected by insulin secretagogues. Adhesion tests showed that islet cells attached to N-cad/Fc and E-cad/Fc acquired, in a time- and secretagogue-dependent manner, a spreading form that was inhibited by blocking cadherin antibodies. By reverse hemolytic plaque assay, we showed that glucose-stimulated insulin secretion of single β-cells was increased by N-cad/Fc and E-cad/Fc adhesion compared with control. In the presence of E-cad/Fc and after glucose stimulation, we showed that total insulin secretion was six times higher in spreading β-cells compared with round β-cells. Furthermore, cadherin-mediated adhesion induced an asymmetric distribution of cortical actin in β-cells. Our results demonstrate that adhesion of β-cells to E- and N-cadherins is regulated by insulin secretagogues and that E- and N-cadherin engagement promotes stimulated insulin secretion.

  9. Essential role of chicken ovalbumin upstream promoter-transcription factor II in insulin secretion and insulin sensitivity revealed by conditional gene knockout.

    PubMed

    Bardoux, Pascale; Zhang, Pili; Flamez, Daisy; Perilhou, Anaïs; Lavin, Tiphaine Aguirre; Tanti, Jean-François; Hellemans, Karine; Gomas, Emmanuel; Godard, Cécile; Andreelli, Fabrizio; Buccheri, Maria Antonietta; Kahn, Axel; Le Marchand-Brustel, Yannick; Burcelin, Rémy; Schuit, Frans; Vasseur-Cognet, Mireille

    2005-05-01

    Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) has been implicated in the control of blood glucose by its potent effect on expression and signaling of various nuclear receptors. To understand the role of COUP-TFII in glucose homeostasis, conditional COUP-TFII-deficient mice were generated and crossed with mice expressing Cre under the control of rat insulin II gene promoter, resulting in deletion of COUP-TFII in pancreatic beta-cells. Homozygous mutants died before birth for yet undetermined reasons. Heterozygous mice appeared healthy at birth and showed normal growth and fertility. When challenged intraperitoneally, the animals had glucose intolerance associated with reduced glucose-stimulated insulin secretion. Moreover, these heterozygous mice presented a mild increase in fasting and random-fed circulating insulin levels. In accordance, islets isolated from these animals exhibited higher insulin secretion in low glucose conditions and markedly decreased glucose-stimulated insulin secretion. Their pancreata presented normal microscopic architecture and insulin content up to 16 weeks of study. Altered insulin secretion was associated with peripheral insulin resistance in whole animals. It can be concluded that COUP-TFII is a new, important regulator of glucose homeostasis and insulin sensitivity.

  10. Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets

    SciTech Connect

    Douillet, Christelle; Currier, Jenna; Saunders, Jesse; Bodnar, Wanda M.; Matoušek, Tomáš; Stýblo, Miroslav

    2013-02-15

    Epidemiologic evidence has linked chronic exposure to inorganic arsenic (iAs) with an increased prevalence of diabetes mellitus. Laboratory studies have identified several mechanisms by which iAs can impair glucose homeostasis. We have previously shown that micromolar concentrations of arsenite (iAs{sup III}) or its methylated trivalent metabolites, methylarsonite (MAs{sup III}) and dimethylarsinite (DMAs{sup III}), inhibit the insulin-activated signal transduction pathway, resulting in insulin resistance in adipocytes. Our present study examined effects of the trivalent arsenicals on insulin secretion by intact pancreatic islets isolated from C57BL/6 mice. We found that 48-hour exposures to low subtoxic concentrations of iAs{sup III}, MAs{sup III} or DMAs{sup III} inhibited glucose-stimulated insulin secretion (GSIS), but not basal insulin secretion. MAs{sup III} and DMAs{sup III} were more potent than iAs{sup III} as GSIS inhibitors with estimated IC{sub 50} ≤ 0.1 μM. The exposures had little or no effects on insulin content of the islets or on insulin expression, suggesting that trivalent arsenicals interfere with mechanisms regulating packaging of the insulin transport vesicles or with translocation of these vesicles to the plasma membrane. Notably, the inhibition of GSIS by iAs{sup III}, MAs{sup III} or DMAs{sup III} could be reversed by a 24-hour incubation of the islets in arsenic-free medium. These results suggest that the insulin producing pancreatic β-cells are among the targets for iAs exposure and that the inhibition of GSIS by low concentrations of the methylated metabolites of iAs may be the key mechanism of iAs-induced diabetes. - Highlights: ► Trivalent arsenicals inhibit glucose stimulated insulin secretion by pancreatic islets. ► MAs{sup III} and DMAs{sup III} are more potent inhibitors than arsenite with IC{sub 50} ∼ 0.1 μM. ► The arsenicals have little or no effects on insulin expression in pancreatic islets. ► The inhibition of

  11. Blockade of cannabinoid 1 receptor improves GLP-1R mediated insulin secretion in mice.

    PubMed

    González-Mariscal, Isabel; Krzysik-Walker, Susan M; Kim, Wook; Rouse, Michael; Egan, Josephine M

    2016-03-05

    The cannabinoid 1 receptor (CB1) is an important regulator of energy metabolism. Reports of in vivo and in vitro studies give conflicting results regarding its role in insulin secretion, possibly due to circulatory factors, such as incretins. We hypothesized that this receptor may be a regulator of the entero-insular axis. We found that despite lower food consumption and lower body weight postprandial GLP-1 plasma concentrations were increased in CB1(-/-) mice compared to CB1(+/+) mice administered a standard diet or high fat/sugar diet. Upon exogenous GLP-1 treatment, CB1(-/-) mice had increased glucose-stimulated insulin secretion. In mouse insulinoma cells, cannabinoids reduced GLP-1R-mediated intracellular cAMP accumulation and subsequent insulin secretion. Importantly, such effects were also evident in human islets, and were prevented by pharmacologic blockade of CB1. Collectively, these findings suggest a novel mechanism in which endocannabinoids are negative modulators of incretin-mediated insulin secretion. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Metabolic signaling of insulin secretion by pancreatic β-cell and its derangement in type 2 diabetes.

    PubMed

    Zou, C-Y; Gong, Y; Liang, J

    2014-01-01

    Pancreatic beta-cell is responsible for insulin secretion in response to the availability of nutrients. Type 2 diabetes mellitus (T2D) is the result of pancreatic b-cell failure to supply sufficient amount of insulin accompanied with decreased sensitivity of the body tissues to respond to insulin. The insulin secretion apparatus of beta-cell is uniquely equipped with multiple metabolic and signaling steps that are under rigorous control. The metabolic machinery of beta-cell is designed to sense the fluctuations in blood glucose level and supply insulin accordingly to the needs of body. Besides glucose, amino acids including glutamine and leucine and also fatty acids are known to either stimulate the beta-cell directly or potentiate the glucose stimulated insulin secretion (GSIS) response. Glucose metabolism dependent GSIS is linked with the production of ATP that is needed for K+ATP channel inhibition and influx of calcium, necessary for insulin granule exocytosis. Besides glucose metabolism, amino acid metabolism and lipid metabolism derived metabolites mediate the optimal glucose response of beta-cells to secrete insulin. Metabolites derived from nutrient secretagogues that directly or indirectly participate in the enhancement of GSIS are considered as metabolic coupling factors. In this review, we will discuss the regulation of insulin secretion by b-cell keeping the recent developments in metabolic signaling in focus. The relevant metabolic pathways in pancreatic beta-cell and their role in the control of fuel-stimulated insulin secretion will be reviewed to arrive at a consensus picture with respect to the metabolic signaling of insulin secretion.

  13. Effect of ovarian suppression with gonadotropin-releasing hormone agonist on glucose disposal and insulin secretion.

    PubMed

    Toth, Michael J; Cooper, Brian C; Pratley, Richard E; Mari, Andrea; Matthews, Dwight E; Casson, Peter R

    2008-06-01

    Several lines of evidence suggest that ovarian hormones influence glucose homeostasis, although their exact role in humans has not been clearly defined. In the present study, we sought to test the hypothesis that ovarian hormones regulate glucose homeostasis by examining the effect of pharmacologically induced ovarian hormone deficiency on glucose disposal and insulin secretion. Young, healthy women with regular menstrual patterns were studied during the follicular and luteal phases of their cycle at baseline and after 2 mo of treatment with gonadotropin-releasing hormone agonist (GnRHa; n = 7) or placebo (n = 6). Using hyperglycemic clamps, in combination with stable isotope-labeled (i.e., (13)C and (2)H) glucose tracers, we measured glucose disposal and insulin secretion. Additionally, we assessed body composition and regional fat distribution using radiologic imaging techniques as well as glucoregulatory hormones. Ovarian hormone suppression with GnRHa did not alter body composition, abdominal fat distribution, or thigh tissue composition. There was no effect of ovarian suppression on total, oxidative, or nonoxidative glucose disposal expressed relative to plasma insulin level. Similarly, no effect of ovarian hormone deficiency was observed on first- or second-phase insulin secretion or insulin clearance. Finally, ovarian hormone deficiency was associated with an increase in circulating adiponectin levels but no change in leptin concentration. Our findings suggest that a brief period of ovarian hormone deficiency in young, healthy, eugonadal women does not alter glucose disposal index or insulin secretion, supporting the conclusion that ovarian hormones play a minimal role in regulating glucose homeostasis. Our data do, however, support a role for ovarian hormones in the regulation of plasma adiponectin levels.

  14. Dual Effect of Rosuvastatin on Glucose Homeostasis Through Improved Insulin Sensitivity and Reduced Insulin Secretion.

    PubMed

    Salunkhe, Vishal A; Mollet, Inês G; Ofori, Jones K; Malm, Helena A; Esguerra, Jonathan L S; Reinbothe, Thomas M; Stenkula, Karin G; Wendt, Anna; Eliasson, Lena; Vikman, Jenny

    2016-08-01

    Statins are beneficial in the treatment of cardiovascular disease (CVD), but these lipid-lowering drugs are associated with increased incidence of new on-set diabetes. The cellular mechanisms behind the development of diabetes by statins are elusive. Here we have treated mice on normal diet (ND) and high fat diet (HFD) with rosuvastatin. Under ND rosuvastatin lowered blood glucose through improved insulin sensitivity and increased glucose uptake in adipose tissue. In vitro rosuvastatin reduced insulin secretion and insulin content in islets. In the beta cell Ca(2+) signaling was impaired and the density of granules at the plasma membrane was increased by rosuvastatin treatment. HFD mice developed insulin resistance and increased insulin secretion prior to administration of rosuvastatin. Treatment with rosuvastatin decreased the compensatory insulin secretion and increased glucose uptake. In conclusion, our data shows dual effects on glucose homeostasis by rosuvastatin where insulin sensitivity is improved, but beta cell function is impaired. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Iron stores, blood donation, and insulin sensitivity and secretion.

    PubMed

    Fernández-Real, José Manuel; López-Bermejo, Abel; Ricart, Wifredo

    2005-07-01

    Epidemiologists have observed that blood donation is associated with decreased risk of type 2 diabetes and cardiovascular disease. We investigated the relationship between iron stores and insulin sensitivity, after controlling for known confounding factors, and compared insulin sensitivity between blood donors and individuals who had never donated blood (nondonors). In 181 men, insulin sensitivity and insulin secretion were evaluated through frequently sampled intravenous glucose tolerance tests with minimal model analysis. Men who donated blood between 6 months and 5 years before inclusion (n = 21) were carefully matched with nondonors (n = 66) for age, body mass index, waist-to-hip ratio, and cardiovascular risk profile, including blood lipids, blood pressure, and smoking status. Frequent blood donors (2-10 donations) had increased insulin sensitivity [3.42 (1.03) vs 2.45 (1.2) x 10(-4) x min(-1) x mIU/L; P = 0.04], decreased insulin secretion [186 (82) vs 401.7 (254) mIU/L x min; P <0.0001], and significantly lower iron stores [serum ferritin, 101.5 (74) vs 162 (100) microg/L; P = 0.017] than nondonors, but the 2 groups had similar blood hematocrits and blood hemoglobin concentrations. Blood donation is simultaneously associated with increased insulin sensitivity and decreased iron stores. Stored iron seems to impact negatively on insulin action even in healthy people, and not just in classic pathologic conditions associated with iron overload (hemochromatosis and hemosiderosis). According to these observations, it is imperative that a definition of excessive iron stores in healthy people be formulated.

  16. Apolipoprotein A-I interactions with insulin secretion and production.

    PubMed

    Rye, Kerry-Anne; Barter, Philip J; Cochran, Blake J

    2016-02-01

    Human population studies have established that an elevated plasma high-density lipoprotein cholesterol (HDL-C) level is associated with a decreased risk of developing cardiovascular disease. In addition to having several potentially cardioprotective functions, HDLs and apolipoprotein (apo)A-I, the main HDL apolipoprotein, also have antidiabetic properties. Interventions that elevate plasma HDL-C and apoA-I levels improve glycemic control in people with type 2 diabetes mellitus by enhancing pancreatic β-cell function and increasing insulin sensitivity. This review is concerned with recent advances in understanding the mechanisms by which HDLs and apoA-I improve pancreatic β-cell function. HDLs and apoA-I increase insulin synthesis and secretion in pancreatic β cells. The underlying mechanism of this effect is similar to what has been reported for intestinally derived incretins, such as glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide, which both increase β-cell insulin secretion under high glucose conditions. This involves the activation of a heterotrimeric G protein Gαs subunit on the β-cell surface that leads to induction of a transmembrane adenylyl cyclase, increased intracellular cyclic adenosine monophosphate and Ca levels, and activation of protein kinase A. Protein kinase A increases insulin synthesis by excluding FoxO1 from the β-cell nucleus and derepressing transcription of the insulin gene.

  17. Incretins, insulin secretion and Type 2 diabetes mellitus.

    PubMed

    Vilsbøll, T; Holst, J J

    2004-03-01

    When glucose is taken orally, insulin secretion is stimulated much more than it is when glucose is infused intravenously so as to result in similar glucose concentrations. This effect, which is called the incretin effect and is estimated to be responsible for 50 to 70% of the insulin response to glucose, is caused mainly by the two intestinal insulin-stimulating hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Their contributions have been confirmed in mimicry experiments, in experiments with antagonists of their actions, and in experiments where the genes encoding their receptors have been deleted. In patients with Type 2 diabetes, the incretin effect is either greatly impaired or absent, and it is assumed that this could contribute to the inability of these patients to adjust their insulin secretion to their needs. In studies of the mechanism of the impaired incretin effect in Type 2 diabetic patients, it has been found that the secretion of GIP is generally normal, whereas the secretion of GLP-1 is reduced, presumably as a consequence of the diabetic state. It might be of even greater importance that the effect of GLP-1 is preserved whereas the effect of GIP is severely impaired. The impaired GIP effect seems to have a genetic background, but could be aggravated by the diabetic state. The preserved effect of GLP-1 has inspired attempts to treat Type 2 diabetes with GLP-1 or analogues thereof, and intravenous GLP-1 administration has been shown to be able to near-normalize both fasting and postprandial glycaemic concentrations in the patients, perhaps because the treatment compensates for both the impaired secretion of GLP-1 and the impaired action of GIP. Several GLP-1 analogues are currently in clinical development and the reported results are, so far, encouraging.

  18. In beta-cells, mitochondria integrate and generate metabolic signals controlling insulin secretion.

    PubMed

    Maechler, Pierre; Carobbio, Stefania; Rubi, Blanca

    2006-01-01

    Pancreatic beta-cells are unique neuroendocrine cells displaying the peculiar feature of responding to nutrients, principally glucose, as primary stimulus. This requires translation of a metabolic substrate into intracellular messengers recognized by the exocytotic machinery. Central to this signal transduction mechanism, mitochondria integrate and generate metabolic signals, thereby coupling glucose recognition to insulin secretion. In response to a glucose rise, nucleotides and metabolites are generated by mitochondria and participate, together with cytosolic calcium, to the stimulation of insulin exocytosis. This review describes the mitochondrion-dependent pathways of regulated insulin secretion. In particular, importance of cataplerotic and anaplerotic processes is discussed, with special attention to the mitochondrial enzyme glutamate dehydrogenase. Mitochondrial defects, such as mutations and reactive oxygen species production, are presented in the context of beta-cell failure in the course of type 2 diabetes.

  19. Effect of tequila on homocysteine, insulin secretion, insulin sensitivity, and metabolic profile in healthy men.

    PubMed

    González-Ortiz, Manuel; Pascoe-González, Sara; Kam-Ramos, Angélica M; Martínez-Abundis, Esperanza

    2005-01-01

    The purpose of this study is to identify the effect of a low dose of tequila on homocysteine, insulin secretion, insulin sensitivity, and metabolic profile in healthy young men. An open clinical trial was carried out in eight healthy nonobese, young male volunteers. The study was divided in two phases. The first one evaluated metabolic changes, including insulin secretion and sensitivity due to acute administration of 30 ml of straight tequila. The second phase of the study evaluated metabolic effects due to the daily administration of 30 ml of tequila during 30 days. There were no significant metabolic changes after the single oral administration of 30 ml of straight tequila. After the administration of tequila during 30 days, a significant increase in homocysteine levels and a tendency to increase the glucose concentration and to decrease the insulin sensitivity were found. Detrimental metabolic changes were observed with the daily administration of 30 ml of tequila during 30 days.

  20. Biomarkers in Fasting Serum to Estimate Glucose Tolerance, Insulin Sensitivity, and Insulin Secretion

    PubMed Central

    Goldfine, Allison B.; Gerwien, Robert W.; Kolberg, Janice A.; O’Shea, Sheila; Hamren, Sarah; Hein, Glenn P.; Xu, Xiaomei M.; Patti, Mary Elizabeth

    2014-01-01

    BACKGROUND Biomarkers for estimating reduced glucose tolerance, insulin sensitivity, or impaired insulin secretion would be clinically useful, since these physiologic measures are important in the pathogenesis of type 2 diabetes mellitus. METHODS We conducted a cross-sectional study in which 94 individuals, of whom 84 had 1 or more risk factors and 10 had no known risk factors for diabetes, underwent oral glucose tolerance testing. We measured 34 protein biomarkers associated with diabetes risk in 250-μL fasting serum samples. We applied multiple regression selection techniques to identify the most informative biomarkers and develop multivariate models to estimate glucose tolerance, insulin sensitivity, and insulin secretion. The ability of the glucose tolerance model to discriminate between diabetic individuals and those with impaired or normal glucose tolerance was evaluated by area under the ROC curve (AUC) analysis. RESULTS Of the at-risk participants, 25 (30%) were found to have impaired glucose tolerance, and 11 (13%) diabetes. Using molecular counting technology, we assessed multiple biomarkers with high accuracy in small volume samples. Multivariate biomarker models derived from fasting samples correlated strongly with 2-h postload glucose tolerance (R2 = 0.45, P < 0.0001), composite insulin sensitivity index (R2 = 0.91, P < 0.0001), and insulin secretion (R2 = 0.45, P < 0.0001). Additionally, the glucose tolerance model provided strong discrimination between diabetes vs impaired or normal glucose tolerance (AUC 0.89) and between diabetes and impaired glucose tolerance vs normal tolerance (AUC 0.78). CONCLUSIONS Biomarkers in fasting blood samples may be useful in estimating glucose tolerance, insulin sensitivity, and insulin secretion. PMID:21149503

  1. Inhibition of the malate-aspartate shuttle in mouse pancreatic islets abolishes glucagon secretion without affecting insulin secretion.

    PubMed

    Stamenkovic, Jelena A; Andersson, Lotta E; Adriaenssens, Alice E; Bagge, Annika; Sharoyko, Vladimir V; Gribble, Fiona; Reimann, Frank; Wollheim, Claes B; Mulder, Hindrik; Spégel, Peter

    2015-05-15

    Altered secretion of insulin as well as glucagon has been implicated in the pathogenesis of Type 2 diabetes (T2D), but the mechanisms controlling glucagon secretion from α-cells largely remain unresolved. Therefore, we studied the regulation of glucagon secretion from αTC1-6 (αTC1 clone 6) cells and compared it with insulin release from INS-1 832/13 cells. We found that INS-1 832/13 and αTC1-6 cells respectively secreted insulin and glucagon concentration-dependently in response to glucose. In contrast, tight coupling of glycolytic and mitochondrial metabolism was observed only in INS-1 832/13 cells. Although glycolytic metabolism was similar in the two cell lines, TCA (tricarboxylic acid) cycle metabolism, respiration and ATP levels were less glucose-responsive in αTC1-6 cells. Inhibition of the malate-aspartate shuttle, using phenyl succinate (PhS), abolished glucose-provoked ATP production and hormone secretion from αTC1-6 but not INS-1 832/13 cells. Blocking the malate-aspartate shuttle increased levels of glycerol 3-phosphate only in INS-1 832/13 cells. Accordingly, relative expression of constituents in the glycerol phosphate shuttle compared with malate-aspartate shuttle was lower in αTC1-6 cells. Our data suggest that the glycerol phosphate shuttle augments the malate-aspartate shuttle in INS-1 832/13 but not αTC1-6 cells. These results were confirmed in mouse islets, where PhS abrogated secretion of glucagon but not insulin. Furthermore, expression of the rate-limiting enzyme of the glycerol phosphate shuttle was higher in sorted primary β- than in α-cells. Thus, suppressed glycerol phosphate shuttle activity in the α-cell may prevent a high rate of glycolysis and consequently glucagon secretion in response to glucose. Accordingly, pyruvate- and lactate-elicited glucagon secretion remains unaffected since their signalling is independent of mitochondrial shuttles.

  2. Regulation of Protein Secretion Through Controlled Aggregation in the Endoplasmic Reticulum

    NASA Astrophysics Data System (ADS)

    Rivera, Victor M.; Wang, Xiurong; Wardwell, Scott; Courage, Nancy L.; Volchuk, Allen; Keenan, Terence; Holt, Dennis A.; Gilman, Michael; Orci, Lelio; Cerasoli, Frank; Rothman, James E.; Clackson, Tim

    2000-02-01

    A system for direct pharmacologic control of protein secretion was developed to allow rapid and pulsatile delivery of therapeutic proteins. A protein was engineered so that it accumulated as aggregates in the endoplasmic reticulum. Secretion was then stimulated by a synthetic small-molecule drug that induces protein disaggregation. Rapid and transient secretion of growth hormone and insulin was achieved in vitro and in vivo. A regulated pulse of insulin secretion resulted in a transient correction of serum glucose concentrations in a mouse model of hyperglycemia. This approach may make gene therapy a viable method for delivery of polypeptides that require rapid and regulated delivery.

  3. p16(Ink4a)-induced senescence of pancreatic beta cells enhances insulin secretion.

    PubMed

    Helman, Aharon; Klochendler, Agnes; Azazmeh, Narmen; Gabai, Yael; Horwitz, Elad; Anzi, Shira; Swisa, Avital; Condiotti, Reba; Granit, Roy Z; Nevo, Yuval; Fixler, Yaakov; Shreibman, Dorin; Zamir, Amit; Tornovsky-Babeay, Sharona; Dai, Chunhua; Glaser, Benjamin; Powers, Alvin C; Shapiro, A M James; Magnuson, Mark A; Dor, Yuval; Ben-Porath, Ittai

    2016-04-01

    Cellular senescence is thought to contribute to age-associated deterioration of tissue physiology. The senescence effector p16(Ink4a) is expressed in pancreatic beta cells during aging and limits their proliferative potential; however, its effects on beta cell function are poorly characterized. We found that beta cell-specific activation of p16(Ink4a) in transgenic mice enhances glucose-stimulated insulin secretion (GSIS). In mice with diabetes, this leads to improved glucose homeostasis, providing an unexpected functional benefit. Expression of p16(Ink4a) in beta cells induces hallmarks of senescence--including cell enlargement, and greater glucose uptake and mitochondrial activity--which promote increased insulin secretion. GSIS increases during the normal aging of mice and is driven by elevated p16(Ink4a) activity. We found that islets from human adults contain p16(Ink4a)-expressing senescent beta cells and that senescence induced by p16(Ink4a) in a human beta cell line increases insulin secretion in a manner dependent, in part, on the activity of the mechanistic target of rapamycin (mTOR) and the peroxisome proliferator-activated receptor (PPAR)-γ proteins. Our findings reveal a novel role for p16(Ink4a) and cellular senescence in promoting insulin secretion by beta cells and in regulating normal functional tissue maturation with age.

  4. Class IA phosphatidylinositol 3-kinase in pancreatic β cells controls insulin secretion by multiple mechanisms.

    PubMed

    Kaneko, Kazuma; Ueki, Kohjiro; Takahashi, Noriko; Hashimoto, Shinji; Okamoto, Masayuki; Awazawa, Motoharu; Okazaki, Yukiko; Ohsugi, Mitsuru; Inabe, Kazunori; Umehara, Toshihiro; Yoshida, Masashi; Kakei, Masafumi; Kitamura, Tadahiro; Luo, Ji; Kulkarni, Rohit N; Kahn, C Ronald; Kasai, Haruo; Cantley, Lewis C; Kadowaki, Takashi

    2010-12-01

    Type 2 diabetes is characterized by insulin resistance and pancreatic β cell dysfunction, the latter possibly caused by a defect in insulin signaling in β cells. Inhibition of class IA phosphatidylinositol 3-kinase (PI3K), using a mouse model lacking the pik3r1 gene specifically in β cells and the pik3r2 gene systemically (βDKO mouse), results in glucose intolerance and reduced insulin secretion in response to glucose. β cells of βDKO mice had defective exocytosis machinery due to decreased expression of soluble N-ethylmaleimide attachment protein receptor (SNARE) complex proteins and loss of cell-cell synchronization in terms of Ca(2+) influx. These defects were normalized by expression of a constitutively active form of Akt in the islets of βDKO mice, preserving insulin secretion in response to glucose. The class IA PI3K pathway in β cells in vivo is important in the regulation of insulin secretion and may be a therapeutic target for type 2 diabetes.

  5. Leucine markedly regulates pancreatic exocrine secretion in goats.

    PubMed

    Yu, Z P; Xu, M; Liu, K; Yao, J H; Yu, H X; Wang, F

    2014-02-01

    Four goats (30.1 ± 1.3 kg) with common bile duct re-entrant catheter and duodenal catheter were used to evaluate the effects of duodenal leucine infusion on pancreatic exocrine secretion and plasma parameters with two 4 × 4 Latin square design experiments. In the long-term infusion experiment, goats were fed twice daily [700 g/day, dry matter (DM) basis] at 8:00 and 18:00 hours and were duodenally infused with 0, 3, 6, 9 g/day leucine for 14 days. Pancreatic juice and jugular blood samples were collected over 1-h intervals for 6 h daily from d 11 to 14 days to encompass a 24-h day. In the short-term experiment, goats were infused leucine for 10 h continuously at the same infusion rate with Experiment 1 after feed deprivation for 24 h repeated every 10 days. Pancreatic juice and blood samples were collected at 0, 1, 2, 4, 6, 8 and 10 h of infusion. The results showed that the long-term leucine infusion did not affect pancreatic juice secretion, protein output, trypsin and lipase secretion and plasma insulin concentration, but linearly increased α-amylase secretion. No changes in pancreatic protein and lipase secretion were observed in the short-term infusion. Pancreatic juice and α-amylase secretion responded quadratically, with the greatest values observed in the 3 and 6 g/day leucine respectively. Trypsin secretion linearly decreased, while plasma insulin concentration increased linearly with increased leucine infusion. The results demonstrated that duodenal leucine infusion dose and time dependently regulated pancreatic enzyme secretion not associated with the change in plasma insulin concentration.

  6. Optical Control of Insulin Secretion Using an Incretin Switch.

    PubMed

    Broichhagen, Johannes; Podewin, Tom; Meyer-Berg, Helena; von Ohlen, Yorrick; Johnston, Natalie R; Jones, Ben J; Bloom, Stephen R; Rutter, Guy A; Hoffmann-Röder, Anja; Hodson, David J; Trauner, Dirk

    2015-12-14

    Incretin mimetics are set to become a mainstay of type 2 diabetes treatment. By acting on the pancreas and brain, they potentiate insulin secretion and induce weight loss to preserve normoglycemia. Despite this, incretin therapy has been associated with off-target effects, including nausea and gastrointestinal disturbance. A novel photoswitchable incretin mimetic based upon the specific glucagon-like peptide-1 receptor (GLP-1R) agonist liraglutide was designed, synthesized, and tested. This peptidic compound, termed LirAzo, possesses an azobenzene photoresponsive element, affording isomer-biased GLP-1R signaling as a result of differential activation of second messenger pathways in response to light. While the trans isomer primarily engages calcium influx, the cis isomer favors cAMP generation. LirAzo thus allows optical control of insulin secretion and cell survival.

  7. Rab2A is a pivotal switch protein that promotes either secretion or ER-associated degradation of (pro)insulin in insulin-secreting cells

    PubMed Central

    Sugawara, Taichi; Kano, Fumi; Murata, Masayuki

    2014-01-01

    Rab2A, a small GTPase localizing to the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC), regulates COPI-dependent vesicular transport from the ERGIC. Rab2A knockdown inhibited glucose-stimulated insulin secretion and concomitantly enlarged the ERGIC in insulin-secreting cells. Large aggregates of polyubiquitinated proinsulin accumulated in the cytoplasmic vicinity of a unique large spheroidal ERGIC, designated the LUb-ERGIC. Well-known components of ER-associated degradation (ERAD) also accumulated at the LUb-ERGIC, creating a suitable site for ERAD-mediated protein quality control. Moreover, chronically high glucose levels, which induced the enlargement of the LUb-ERGIC and ubiquitinated protein aggregates, impaired Rab2A activity by promoting dissociation from its effector, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), in response to poly (ADP-ribosyl)ation of GAPDH. The inactivation of Rab2A relieved glucose-induced ER stress and inhibited ER stress-induced apoptosis. Collectively, these results suggest that Rab2A is a pivotal switch that controls whether insulin should be secreted or degraded at the LUb-ERGIC and Rab2A inactivation ensures alleviation of ER stress and cell survival under chronic glucotoxicity. PMID:25377857

  8. Modulation of Ionic Channels and Insulin Secretion by Drugs and Hormones in Pancreatic Beta Cells.

    PubMed

    Velasco, Myrian; Díaz-García, Carlos Manlio; Larqué, Carlos; Hiriart, Marcia

    2016-09-01

    Pancreatic beta cells, unique cells that secrete insulin in response to an increase in glucose levels, play a significant role in glucose homeostasis. Glucose-stimulated insulin secretion (GSIS) in pancreatic beta cells has been extensively explored. In this mechanism, glucose enters the cells and subsequently the metabolic cycle. During this process, the ATP/ADP ratio increases, leading to ATP-sensitive potassium (KATP) channel closure, which initiates depolarization that is also dependent on the activity of TRP nonselective ion channels. Depolarization leads to the opening of voltage-gated Na(+) channels (Nav) and subsequently voltage-dependent Ca(2+) channels (Cav). The increase in intracellular Ca(2+) triggers the exocytosis of insulin-containing vesicles. Thus, electrical activity of pancreatic beta cells plays a central role in GSIS. Moreover, many growth factors, incretins, neurotransmitters, and hormones can modulate GSIS, and the channels that participate in GSIS are highly regulated. In this review, we focus on the principal ionic channels (KATP, Nav, and Cav channels) involved in GSIS and how classic and new proteins, hormones, and drugs regulate it. Moreover, we also discuss advances on how metabolic disorders such as metabolic syndrome and diabetes mellitus change channel activity leading to changes in insulin secretion.

  9. Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets

    SciTech Connect

    Alquier, Thierry; Peyot, Marie-Line; Latour, M. G.; Kebede, Melkam; Sorensen, Christina M.; Gesta, Stephane; Kahn, C. R.; Smith, Richard D.; Jetton, Thomas L.; Metz, Thomas O.; Prentki, Marc; Poitout, Vincent J.

    2009-11-01

    The G protein-coupled receptor GPR40 mediates fatty-acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. We observed that glucose- and arginine-stimulated insulin secretion, assessed by hyperglycemic clamps, was decreased by approximately 60% in GPR40 knock-out (KO) fasted and fed mice, without changes in insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps. Glucose and palmitate metabolism were not affected by GPR40 deletion. Lipid profiling revealed a similar increase in triglyceride and decrease in lysophosphatidylethanolamine species in WT and KO islets in response to palmitate. These results demonstrate that GPR40 regulates insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism.

  10. Insulin-like growth factor-I feedback regulation of growth hormone and luteinizing hormone secretion in the pig: Evidence for a pituitary site of action

    USDA-ARS?s Scientific Manuscript database

    The ontogeny of IGF-I modulation of GH secretion from the anterior pituitary was studied. In EXP I, serial blood samples were collected from gilts at 90, 150 and 205 days of age, and 24 hr later anterior pituitary glands were collected for expression analysis of GH and pituitary-specific transcrip...

  11. Identification of morin as an agonist of imidazoline I-3 receptor for insulin secretion in diabetic rats.

    PubMed

    Lin, Mang Hung; Hsu, Chia-Chen; Lin, Jenshinn; Cheng, Juei-Tang; Wu, Ming Chang

    2017-07-08

    Morin is a flavonoid contained in guava that is known to reduce hyperglycemia in diabetics. Morin has been demonstrated to increase plasma insulin. However, the mechanism(s) remains unknown. The present study is designed to investigate the effect of morin on the imidazoline receptor (I-R) that regulates insulin secretion. We used Chinese hamster ovary (CHO) cells transfected with an I-R expression construct (NISCH-CHO-K1 cells) to identify the direct effect of morin on the I-R. Moreover, the imidazoline I3 receptor (I-3R) is known to be present in pancreatic β cells and involved in insulin secretion. Therefore, we applied a specific antagonist (KU14R) to block I-3R in diabetic rats. Additionally, the effect of morin on insulin secretion was characterized in isolated pancreatic islets. Morin decreased blood glucose levels by increasing plasma insulin levels in diabetic rats. In CHO cells expressing an I-R, morin increased calcium influx in a dose-dependent manner. Additionally, KU14R dose-dependently inhibited the morin-induced effects, including hypoglycemia and the increase in insulin secretion and plasma C-peptide levels, in diabetic rats. Furthermore, morin enhanced insulin secretion from isolated pancreatic islets, and this effect was also dose-dependently inhibited by KU14R. Phospholipase C (PLC) is known to couple with the I-R, and a PLC inhibitor dose-dependently attenuated the insulin secretion induced by morin in isolated pancreatic islets. Taken together, these data suggest that morin can activate I-3R to enhance insulin secretion. Therefore, it would be useful to develop morin into a treatment for diabetic disorders.

  12. Insulin Secretion Improves in Cystic Fibrosis Following Ivacaftor Correction of CFTR: A Small Pilot Study

    PubMed Central

    Bellin, Melena D.; Laguna, Theresa; Leschyshyn, Janice; Regelmann, Warren; Dunitz, Jordan; Billings, JoAnne; Moran, Antoinette

    2013-01-01

    Objective To determine whether the cystic fibrosis transmembrane conductance regulator (CFTR) is involved in human insulin secretion by assessing the metabolic impact of the new CFTR corrector, ivacaftor. Methods This open-label pilot study was conducted in CF patients with the G551D mutation given new prescriptions for ivacaftor. At baseline and 4 weeks after daily ivacaftor therapy, intravenous (IVGTT) and oral glucose (OGTT) tolerance tests were performed. Results Five patients age 6–52 were studied. After 1 month on ivacaftor, the insulin response to oral glucose improved by 66–178% in all subjects except one with long-standing diabetes. OGTT glucose levels were not lower in the two individuals with diabetes or the two with normal glucose tolerance (NGT), but the glucose tolerance category in the subject with impaired glucose tolerance (IGT) improved to NGT after treatment. In response to intravenous glucose, the only patient whose acute insulin secretion did not improve had newly diagnosed, untreated CFRD. The others improved by 51–346%. Acute insulin secretion was partially restored in two subjects with no measurable acute insulin response at baseline, including the one with IGT and the one with long-standing diabetes. Conclusions This small pilot study suggests there is a direct role of CFTR in human insulin secretion. Larger, long-term longitudinal studies are necessary to determine whether early initiation of CFTR correction, particularly in young children with CF who have not yet lost considerable beta-cell mass, will delay or prevent development of diabetes in this high risk population. PMID:23952705

  13. Lipocalin-13 regulates glucose metabolism by both insulin-dependent and insulin-independent mechanisms.

    PubMed

    Cho, Kae Won; Zhou, Yingjiang; Sheng, Liang; Rui, Liangyou

    2011-02-01

    Insulin sensitivity is impaired in obesity, and insulin resistance is the primary risk factor for type 2 diabetes. Here we show that lipocalin-13 (LCN13), a lipocalin superfamily member, is a novel insulin sensitizer. LCN13 was secreted by multiple cell types. Circulating LCN13 was markedly reduced in mice with obesity and type 2 diabetes. Three distinct approaches were used to increase LCN13 levels: LCN13 transgenic mice, LCN13 adenoviral infection, and recombinant LCN13 administration. Restoration of LCN13 significantly ameliorated hyperglycemia, insulin resistance, and glucose intolerance in mice with obesity. LCN13 enhanced insulin signaling not only in animals but also in cultured adipocytes. Recombinant LCN13 increased the ability of insulin to stimulate glucose uptake in adipocytes and to suppress hepatic glucose production (HGP) in primary hepatocyte cultures. Additionally, LCN13 alone was able to suppress HGP, whereas neutralization of LCN13 increased HGP in primary hepatocyte cultures. These data suggest that LCN13 regulates glucose metabolism by both insulin-dependent and insulin-independent mechanisms. LCN13 and LCN13-related molecules may be used to treat insulin resistance and type 2 diabetes.

  14. Increased Very Low Density Lipoprotein Secretion, Hepatic Steatosis, and Insulin Resistance

    PubMed Central

    Choi, Sung Hee; Ginsberg, Henry N

    2011-01-01

    Insulin resistance (IR) not only affects regulation of carbohydrate metabolism, but all aspects of lipid and lipoprotein metabolism. IR is associated with increased secretion of very low density lipoproteins (VLDL) and increased plasma triglycerides, as well as hepatic steatosis, despite the increased VLDL secretion. Here, we link IR with increased VLDL secretion and hepatic steatosis at both the physiologic and molecular levels. Increased VLDL secretion, together with the downstream effects on high density lipoprotein cholesterol and low density lipoprotein size is pro-atherogenic. Hepatic steatosis is a risk for steatohepatitis and cirrhosis. Understanding the complex inter-relationship between IR and these abnormalities of liver lipid homeostasis may provide insights relevant to new therapies for these increasing clinical problems. PMID:21616678

  15. Increased expression of the diabetes gene SOX4 reduces insulin secretion by impaired fusion pore expansion

    PubMed Central

    Collins, Stephan C.; Do, Hyun Woong; Hastoy, Benoit; Hugill, Alison; Adam, Julie; Chibalina, Margarita V.; Galvanovskis, Juris; Godazgar, Mahdieh; Lee, Sheena; Goldsworthy, Michelle; Salehi, Albert; Tarasov, Andrei I.; Rosengren, Anders H.; Cox, Roger; Rorsman, Patrik

    2016-01-01

    The transcription factor Sox4 has been proposed to underlie the increased type-2 diabetes risk linked to an intronic SNP in CDKAL1. In a mouse model expressing a mutant form of Sox4, glucose-induced insulin secretion is reduced by 40% despite normal intracellular Ca2+ signalling and depolarization-evoked exocytosis. This paradox is explained by a 4-fold increase in kiss-and-run exocytosis (as determined by single-granule exocytosis measurements), in which the fusion pore connecting the granule lumen to the exterior only expands to a diameter of 2 nm that does not allow the exit of insulin. Microarray analysis indicated that this correlated with an increased expression of the exocytosis-regulating protein Stxbp6. In a large collection of human islet preparations (n=63), STXBP6 expression and GIIS correlated positively and negatively with SOX4 expression, respectively. Overexpression of SOX4 in the human insulin-secreting cell EndoC-βH2 interfered with granule emptying and inhibited hormone release, the latter effect was reversed by silencing of STXBP6. These data suggest that increased SOX4 expression inhibits insulin secretion and increased diabetes risk by upregulation of STXBP6 and an increase in kiss-and-run exocytosis at the expense of full fusion. We propose that pharmacological interventions promoting fusion pore expansion may be effective in diabetes therapy. PMID:26993066

  16. The prolyl isomerase Pin1 increases β-cell proliferation and enhances insulin secretion.

    PubMed

    Nakatsu, Yusuke; Mori, Keiichi; Matsunaga, Yasuka; Yamamotoya, Takeshi; Ueda, Koji; Inoue, Yuki; Mitsuzaki-Miyoshi, Keiko; Sakoda, Hideyuki; Fujishiro, Midori; Yamaguchi, Suguru; Kushiyama, Akifumi; Ono, Hiraku; Ishihara, Hisamitsu; Asano, Tomoichiro

    2017-07-14

    The prolyl isomerase Pin1 binds to the phosphorylated Ser/Thr-Pro motif of target proteins and enhances their cis-trans conversion. This report is the first to show that Pin1 expression in pancreatic β cells is markedly elevated by high-fat diet feeding and in ob/ob mice. To elucidate the role of Pin1 in pancreatic β cells, we generated β-cell-specific Pin1 KO (βPin1 KO) mice. These mutant mice showed exacerbation of glucose intolerance but had normal insulin sensitivity. We identified two independent factors underlying impaired insulin secretion in the βPin1 KO mice. Pin1 enhanced pancreatic β-cell proliferation, as indicated by a reduced β-cell mass in βPin1 KO mice compared with control mice. Moreover, a diet high in fat and sucrose failed to increase pancreatic β-cell growth in the βPin1 KO mice, an observation to which up-regulation of the cell cycle protein cyclin D appeared to contribute. The other role of Pin1 was to activate the insulin-secretory step: Pin1 KO β cells showed impairments in glucose- and KCl-induced elevation of the intracellular Ca(2+) concentration and insulin secretion. We also identified salt-inducible kinase 2 (SIK2) as a Pin1-binding protein that affected the regulation of Ca(2+) influx and found Pin1 to enhance SIK2 kinase activity, resulting in a decrease in p35 protein, a negative regulator of Ca(2+) influx. Taken together, our observations demonstrate critical roles of Pin1 in pancreatic β cells and that Pin1 both promotes β-cell proliferation and activates insulin secretion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Effect of Gymnema sylvestre Administration on Metabolic Syndrome, Insulin Sensitivity, and Insulin Secretion.

    PubMed

    Zuñiga, Laura Y; González-Ortiz, Manuel; Martínez-Abundis, Esperanza

    2017-08-01

    Gymnema sylvestre is a medicinal plant whose consumption has demonstrated benefits on lipid and glucose levels, blood pressure, and body weight (BWt). The aim of this study was to evaluate the effect of G. sylvestre administration on metabolic syndrome (MetS), insulin secretion, and insulin sensitivity. A randomized, double-blind, placebo-controlled clinical trial was carried out in 24 patients (without pharmacological treatment), 30-60 years old, with diagnosis of MetS in accordance with the modified International Diabetes Federation criteria. Patients were randomly assigned to receive G. sylvestre or placebo twice daily before breakfast and dinner in 300 mg capsules for a total of 600 mg per day for 12 weeks. Before and after the intervention, the components of MetS were evaluated as well as BWt, body mass index (BMI), total cholesterol, low-density lipoprotein cholesterol, and very low-density lipoprotein (VLDL). Area under the curve of glucose and insulin, phases of insulin secretion, and insulin sensitivity were calculated. Statistical analysis was performed using Wilcoxon signed-rank, Mann-Whitney U, and chi-square tests; P ≤ .05 was considered statistically significant. After G. sylvestre administration, significant decreases in BWt (81.3 ± 10.6 kg vs. 77.9 ± 8.4 kg, P = .02), BMI (31.2 ± 2.5 kg/m(2) vs. 30.4 ± 2.2 kg/m(2), P = .02), and VLDL levels (0.45 ± 0.15 mmol/dL vs. 0.35 ± 0.15 mmol/dL, P = .05) were observed, without modifying the components of MetS, insulin secretion, and insulin sensitivity. In conclusion, G. sylvestre administration decreased BWt, BMI, and VLDL levels in subjects with MetS, without changes in insulin secretion and insulin sensitivity.

  18. Linoleic acid decreases leptin and adiponectin secretion from primary rat adipocytes in the presence of insulin.

    PubMed

    Pérez-Matute, P; Martínez, J A; Marti, A; Moreno-Aliaga, M J

    2007-10-01

    Obesity rates have dramatically increased over the last few decades and, at the same time, major changes in the type of fatty acid intake have occurred. Linoleic acid, an n-6 polyunsaturated fatty acid, is an essential fatty acid occurring in high amounts in several western diets. A potential role of this fatty acid on obesity has been suggested. Controversial effects of linoleic acid on insulin sensitivity have also been reported. Thus, the aim of this study was to examine the direct effects of linoleic acid on leptin and adiponectin production, two adipokines known to influence weight gain and insulin sensitivity. Because insulin-stimulated glucose metabolism is an important regulator of leptin production, the effects of linoleic acid on adipocyte metabolism were also examined. For this purpose, isolated rat adipocytes were incubated with linoleic acid (1-200 microM) in the absence or presence of insulin. Linoleic acid (1-200 microM) significantly decreased insulin-stimulated leptin secretion and expression (P < 0.05), however, no changes in basal leptin production were observed. Linoleic acid also induced a significant decrease (approximately 20%) in adiponectin secretion (P < 0.05), but only in the presence of insulin and at the highest concentration tested (200 microM). This fatty acid did not modify either glucose uptake or lactate production and the percentage of glucose metabolized to lactate was not changed either. Together, these results suggest that linoleic acid seems to interfere with other insulin signalling pathway different from those controlling glucose uptake and metabolism, but involved in the regulation of leptin and adiponectin production.

  19. Dietary Sodium Restriction Decreases Insulin Secretion Without Affecting Insulin Sensitivity in Humans

    PubMed Central

    Byrne, Loretta M.; Yu, Chang; Wang, Thomas J.; Brown, Nancy J.

    2014-01-01

    Context: Interruption of the renin-angiotensin-aldosterone system prevents incident diabetes in high-risk individuals, although the mechanism remains unclear. Objective: To test the hypothesis that activation of the endogenous renin-angiotensin-aldosterone system or exogenous aldosterone impairs insulin secretion in humans. Design: We conducted a randomized, blinded crossover study of aldosterone vs vehicle and compared the effects of a low-sodium versus a high-sodium diet. Setting: Academic clinical research center. Participants: Healthy, nondiabetic, normotensive volunteers. Interventions: Infusion of exogenous aldosterone (0.7 μg/kg/h for 12.5 h) or vehicle during low or high sodium intake. Low sodium (20 mmol/d; n = 12) vs high sodium (160 mmol/d; n = 17) intake for 5–7 days. Main Outcome Measures: Change in acute insulin secretory response assessed during hyperglycemic clamps while in sodium balance during a low-sodium vs high-sodium diet during aldosterone vs vehicle. Results: A low-sodium diet increased endogenous aldosterone and plasma renin activity, and acute glucose-stimulated insulin (−16.0 ± 5.6%; P = .007) and C-peptide responses (−21.8 ± 8.4%; P = .014) were decreased, whereas the insulin sensitivity index was unchanged (−1.0 ± 10.7%; P = .98). Aldosterone infusion did not affect the acute insulin response (+1.8 ± 4.8%; P = .72) or insulin sensitivity index (+2.0 ± 8.8%; P = .78). Systolic blood pressure and serum potassium were similar during low and high sodium intake and during aldosterone infusion. Conclusions: Low dietary sodium intake reduces insulin secretion in humans, independent of insulin sensitivity. PMID:25029426

  20. Palmitic acid acutely inhibits acetylcholine- but not GLP-1-stimulated insulin secretion in mouse pancreatic islets

    PubMed Central

    Qin, Wei; Vinogradov, Sergei A.; Wilson, David F.; Matschinsky, Franz M.

    2010-01-01

    Fatty acids, acetylcholine, and GLP-1 enhance insulin secretion in a glucose-dependent manner. However, the interplay between glucose, fatty acids, and the neuroendocrine regulators of insulin secretion is not well understood. Therefore, we studied the acute effects of PA (alone or in combination with glucose, acetylcholine, or GLP-1) on isolated cultured mouse islets. Two different sets of experiments were designed. In one, a fixed concentration of 0.5 mM of PA bound to 0.15 mM BSA was used; in the other, a PA ramp from 0 to 0.5 mM was applied at a fixed albumin concentration of 0.15 mM so that the molar PA/BSA ratio changed within the physiological range. At a fixed concentration of 0.5 mM, PA markedly inhibited acetylcholine-stimulated insulin release, the rise of intracellular Ca2+, and enhancement of cAMP production but did not influence the effects of GLP-1 on these parameters of islet cell function. 2-ADB, an IP3 receptor inhibitor, reduced the effect of acetylcholine on insulin secretion and reversed the effect of PA on acetylcholine-stimulated insulin release. Islet perfusion for 35–40 min with 0.5 mM PA significantly reduced the calcium storage capacity of ER measured by the thapsigargin-induced Ca2+ release. Oxygen consumption due to low but not high glucose was reduced by PA. When a PA ramp from 0 to 0.5 mM was applied in the presence of 8 mM glucose, PA at concentrations as low as 50 μM significantly augmented glucose-stimulated insulin release and markedly reduced acetylcholine's effects on hormone secretion. We thus demonstrate that PA acutely reduces the total oxygen consumption response to glucose, glucose-dependent acetylcholine stimulation of insulin release, Ca2+, and cAMP metabolism, whereas GLP-1's actions on these parameters remain unaffected or potentiated. We speculate that acute emptying of the ER calcium by PA results in decreased glucose stimulation of respiration and acetylcholine potentiation of insulin secretion. PMID:20606076

  1. Racial (black-white) differences in insulin secretion and clearance in adolescents: the Bogalusa heart study.

    PubMed

    Jiang, X; Srinivasan, S R; Radhakrishnamurthy, B; Dalferes, E R; Berenson, G S

    1996-03-01

    Earlier we found black-white contrast in insulin levels in adolescents. The purpose of this study is to assess whether this difference is attributable to alterations in insulin secretion and/or clearance. Fasting circulating insulin and C-peptide concentrations were examined in 1157 adolescents aged 11 to 18 years from a biracial community. Fasting plasma C-peptide, C-peptide to insulin ratio, and glucose to insulin ratio were used as indices of insulin secretion, hepatic insulin clearance, and insulin sensitivity, respectively. After adjusting several covariates (age, sexual maturation, and obesity), black adolescents had higher insulin levels (14.99 vs 12.66 microU/mL in girls). However, they had lower C-peptide levels than their white counterparts, indicating lower insulin secretion by pancreatic beta cells in black adolescents. Moreover, black adolescents had lower levels of C-peptide to insulin ratio than white adolescents (0.14 vs 0.17), suggesting reduced hepatic insulin clearance in black adolescents. In addition, significantly lower levels of glucose to insulin ratio in black girls suggest a reduced insulin sensitivity in this group. Further, differences in insulin levels between white and black girls disappeared after adjusting for differences in C-peptide to insulin ratio. These data suggest that elevated insulin levels observed in black adolescents, especially in black girls, may be attributed to their decreased hepatic insulin clearance, not hypersecretion of insulin.

  2. Drp1 guarding of the mitochondrial network is important for glucose-stimulated insulin secretion in pancreatic beta cells

    SciTech Connect

    Reinhardt, Florian; Schultz, Julia; Waterstradt, Rica; Baltrusch, Simone

    2016-06-10

    Mitochondria form a tubular network in mammalian cells, and the mitochondrial life cycle is determined by fission, fusion and autophagy. Dynamin-related protein 1 (Drp1) has a pivotal role in these processes because it alone is able to constrict mitochondria. However, the regulation and function of Drp1 have been shown to vary between cell types. Mitochondrial morphology affects mitochondrial metabolism and function. In pancreatic beta cells mitochondrial metabolism is a key component of the glucose-induced cascade of insulin secretion. The goal of the present study was to investigate the action of Drp1 in pancreatic beta cells. For this purpose Drp1 was down-regulated by means of shDrp1 in insulin-secreting INS1 cells and mouse pancreatic islets. In INS1 cells reduced Drp1 expression resulted in diminished expression of proteins regulating mitochondrial fusion, namely mitofusin 1 and 2, and optic atrophy protein 1. Diminished mitochondrial dynamics can therefore be assumed. After down-regulation of Drp1 in INS1 cells and spread mouse islets the initially homogenous mitochondrial network characterised by a moderate level of interconnections shifted towards high heterogeneity with elongated, clustered and looped mitochondria. These morphological changes were found to correlate directly with functional alterations. Mitochondrial membrane potential and ATP generation were significantly reduced in INS1 cells after Drp1down-regulation. Finally, a significant loss of glucose-stimulated insulin secretion was demonstrated in INS1 cells and mouse pancreatic islets. In conclusion, Drp1 expression is important in pancreatic beta cells to maintain the regulation of insulin secretion. -- Highlights: •Down-regulation of Drp1 in INS1 cells reduces mitochondrial fusion protein expression. •Mitochondrial membrane potential in INS1 cells is diminished after Drp1 down-regulation. •Mitochondria become elongated after down-regulation of Drp1 in beta cells. •Down-regulation of

  3. The zinc transporter ZNT3 co-localizes with insulin in INS-1E pancreatic beta cells and influences cell survival, insulin secretion capacity, and ZNT8 expression.

    PubMed

    Smidt, Kamille; Larsen, Agnete; Brønden, Andreas; Sørensen, Karen S; Nielsen, Julie V; Praetorius, Jeppe; Martensen, Pia M; Rungby, Jørgen

    2016-04-01

    Zinc trafficking in pancreatic beta cells is tightly regulated by zinc transporting (ZNTs) proteins. The role of different ZNTs in the beta cells is currently being clarified. ZNT8 transports zinc into insulin granules and is critical for a correct insulin crystallization and storage in the granules whereas ZNT3 knockout negatively affects beta cell function and survival. Here, we describe for the first time the sub-cellular localization of ZNT3 by immuno-gold electron microscopy and supplement previous data from knockout experiments with investigations of the effect of ZNT3 in a pancreatic beta cell line, INS-1E overexpressing ZNT3. In INS-1E cells, we found that ZNT3 was abundant in insulin containing granules located close to the plasma membrane. The level of ZNT8 mRNA was significantly decreased upon over-expression of ZNT3 at different glucose concentrations (5, 11 and 21 mM glucose). ZNT3 over-expression decreased insulin content and insulin secretion whereas ZNT3 over-expression improved the cell survival after 24 h at varying glucose concentrations (5, 11 and 21 mM). Our data suggest that ZNT3 and ZNT8 (known to regulate insulin secretion) have opposite effects on insulin synthesis and secretion possibly by a transcriptional co-regulation since mRNA expression of ZNT3 was inversely correlated to ZNT8 and ZNT3 over-expression reduced insulin synthesis and secretion in INS-1E cells. ZNT3 over-expression improved cell survival.

  4. New and emerging regulators of intestinal lipoprotein secretion.

    PubMed

    Xiao, Changting; Dash, Satya; Morgantini, Cecilia; Lewis, Gary F

    2014-04-01

    Overproduction of hepatic apoB100-containing VLDL particles has been well documented in animal models and in humans with insulin resistance such as the metabolic syndrome and type 2 diabetes, and contributes to the typical dyslipidemia of these conditions. In addition, postprandial hyperlipidemia and elevated plasma concentrations of intestinal apoB48-containing chylomicron and chylomicron remnant particles have been demonstrated in insulin resistant states. Intestinal lipoprotein production is primarily determined by the amount of fat ingested and absorbed. Until approximately 10 years ago, however, relatively little attention was paid to the role of the intestine itself in regulating the production of triglyceride-rich lipoproteins (TRL) and its dysregulation in pathological states such as insulin resistance. We and others have shown that insulin resistant animal models and humans are characterized by overproduction of intestinal apoB48-containing lipoproteins. Whereas various factors are known to regulate hepatic lipoprotein particle production, less is known about factors that regulate the production of intestinal lipoprotein particles. Monosacharides, plasma free fatty acids (FFA), resveratrol, intestinal peptides (e.g. GLP-1 and GLP-2), and pancreatic hormones (e.g. insulin) have recently been shown to be important regulators of intestinal lipoprotein secretion. Available evidence in humans and animal models strongly supports the concept that the small intestine is not merely an absorptive organ but rather plays an active role in regulating the rate of production of chylomicrons in fed and fasting states. Metabolic signals in insulin resistance and type 2 diabetes and in some cases an aberrant intestinal response to these factors contribute to the enhanced formation and secretion of TRL. Understanding the regulation of intestinal lipoprotein production is imperative for the development of new therapeutic strategies for the prevention and treatment of

  5. Inhibition of glucose-stimulated insulin secretion by KCNJ15, a newly identified susceptibility gene for type 2 diabetes.

    PubMed

    Okamoto, Koji; Iwasaki, Naoko; Doi, Kent; Noiri, Eisei; Iwamoto, Yasuhiko; Uchigata, Yasuko; Fujita, Toshiro; Tokunaga, Katsushi

    2012-07-01

    Potassium inwardly rectifying channel, subfamily J, member 15 (KCNJ15) is a type 2 diabetes-associated risk gene, and Kcnj15 overexpression suppresses insulin secretion in rat insulinoma (INS1) cells. The aim of the current study was to characterize the role of Kcnj15 by knockdown of this gene in vitro and in vivo. Human islet cells were used to determine the expression of KCNJ15. Expression of KCNJ15 mRNA in islets was higher in subjects with type 2 diabetes. In INS1 cells, Kcnj15 expression was induced by high glucose-containing medium. Regulation of Kcnj15 by glucose and its effect on insulin secretion were analyzed in INS1 cells and in normal mice and diabetic mice by the inactivation of Kcnj15 using small interfering RNA. Knockdown of Kcnj15 increased the insulin secretion in vitro and in vivo. KCNJ15 and Ca(2+)-sensing receptor (CsR) interact in the kidney. Binding of Kcnj15 with CsR was also detected in INS1 cells. In conclusion, downregulation of Kcnj15 leads to increased insulin secretion in vitro and in vivo. The mechanism to regulate insulin secretion involves KCNJ15 and CsR.

  6. Insulin and growth hormone secretion in the nephrotic syndrome.

    PubMed

    Bridgman, J F; Summerskill, J; Buckler, J M; Hellman, B; Rosen, S M

    1975-01-01

    Carbohydrate metabolism was studied in a series of patients with the nephrotic syndrome and compared with a similar number of normal controls. The nephrotic syndrome was associated with a smaller secretion of insulin in response to intravenous glucose and tolbutamide than occurred in normals. In the syndrom fasting serum growth hormone (G.H.) concentrations were increased and did not show the characteristic suppression after glucose administration, and the disappearance rate of glucose (k value) was lower. well marked correlation existed between serum G.H. concentrations and the total urinary protein excreted. These abnormal findings returned to normal in a patient who underwent a repeat study when the nephrotic syndrome had resolved.

  7. Studies on the mechanism of salicylate-induced increase of insulin secretion in man.

    PubMed

    Giugliano, D; Cozzolino, D; Ceriello, A; Cerciello, T; Varano, R; Saccomanno, F; Torella, R

    1988-01-01

    Salicylate compounds are known to increase basal and stimulated insulin secretion in man. In our studies, infusion of lysine acetylsalicylate (72 mg/min) increased basal insulin levels and amplified insulin responses to glucose (5 g i.v.), arginine (5 g i.v.) and tolbutamide (1 g i.v.). Verapamil, an organic calcium antagonist, did not modify LAS-induced increase of basal insulin levels, but reduced the effect of LAS on glucose-induced insulin secretion. Calcitonin and somatostatin, two agents that inhibit basal and glucose-stimulated insulin secretion, inhibited the insulin response to glucose in presence of LAS infusion. The ability of salicylate compounds to augment insulin secretion might be due to multiple sites of action in the Beta-cells.

  8. The insulin secretion of a minced neonatal rat pancreas cultured in a pancreatic chamber, in response to various insulin secretagogues.

    PubMed

    Araki, Y; Yoshioka, K; Inoue, Y; Nakamura, Y; Nakamura, N; Nakano, K; Yoshida, T; Kondo, M

    1981-02-01

    The minced pancreas of the neonatal rat was cultured for 35 days in a pancreatic chamber which was constructed of a plastic tube and an ultrafiltration membrane. Insulin and amylase secreted from this pancreatic chamber into the culture medium were measured. During the experiment, the concentration of glucose in the culture medium was changed between 5.5 and 16.5 mM at 2-3 day intervals in order to determine the insulin secretory response of the pancreatic tissue. Insulin secretion was markedly increased in response to 16.5 mM glucose. The ratio of insulin secretion to amylase secretion in the culture medium increased with the advance of culture days although secretions of both insulin and amylase decreased individually. On the 7th culture day, short term incubations were performed to test with various insulin secretagogues; obvious insulin release into the incubation medium was observed. These results show that the pancreatic chamber also in vitro secretes insulin rapidly and significantly in response to various stimuli; that by longer culture of a neonatal rat pancreas in this device, insulin secretory cells without exocrine tissue would be obtained without using digestive enzymes; that application of a pancreatic chamber for a pancreatic transplantation may be feasible.

  9. Effects of sleep restriction on glucose control and insulin secretion during diet-induced weight loss

    PubMed Central

    Nedeltcheva, A. V.; Imperial, J. G.; Penev, P. D.

    2012-01-01

    Insufficient sleep is associated with changes in glucose tolerance, insulin secretion, and insulin action. Despite widespread use of weight-loss diets for metabolic risk reduction, the effects of insufficient sleep on glucose regulation in overweight dieters are not known. To examine the consequences of recurrent sleep restriction on 24-hour blood glucose control during diet-induced weight loss, 10 overweight and obese adults (3F/7M; mean [SD] age 41 [5] y; BMI 27.4 [2.0] kg/m2) completed two 14-day treatments with hypocaloric diet and 8.5 or 5.5-h nighttime sleep opportunity in random order 7 [3] months apart. Oral and intravenous glucose tolerance test (IVGTT) data, fasting lipids and free-fatty acids (FFA), and 24-hour blood glucose, insulin, C-peptide, and counter-regulatory hormone measurements were collected after each treatment. Participants had comparable weight loss (1.0 [0.3] BMI units) during each treatment. Bedtime restriction reduced sleep by 131 [30] min/day. Recurrent sleep curtailment decreased 24-hour serum insulin concentrations (i.e. enhanced 24-hour insulin economy) without changes in oral glucose tolerance and 24-hour glucose control. This was accompanied by a decline in fasting blood glucose, increased fasting FFA which suppressed normally following glucose ingestion, and lower total and LDL cholesterol concentrations. Sleep-loss-related changes in counter-regulatory hormone secretion during the IVGTT limited the utility of the test in this study. In conclusion, sleep restriction enhanced 24-hour insulin economy without compromising glucose homeostasis in overweight individuals placed on a balanced hypocaloric diet. The changes in fasting blood glucose, insulin, lipid and FFA concentrations in sleep-restricted dieters resembled the pattern of human metabolic adaptation to reduced carbohydrate availability. PMID:22513492

  10. The control of insulin secretion by adipokines: current evidence for adipocyte-beta cell endocrine signalling in metabolic homeostasis.

    PubMed

    Cantley, James

    2014-10-01

    Metabolic homeostasis is maintained by the coordinated action of multiple organ systems. Insulin secretion is often enhanced during obesity or insulin resistance to maintain glucose and lipid homeostasis, whereas a loss of insulin secretion is associated with type 2 diabetes. Adipocytes secrete hormones known as adipokines which act on multiple cell types to regulate metabolism. Many adipokines have been shown to influence beta cell function by enhancing or inhibiting insulin release or by influencing beta cell survival. Insulin, in turn, regulates lipolysis and promotes glucose uptake and lipid storage in adipocytes. As adipokine secretion and action is strongly influenced by obesity, this provides a potential route by which beta cell function is coordinated with adiposity, independently of alterations in blood glucose or lipid levels. In this review, I assess the evidence for the direct regulation of beta cell function by the adipokines leptin, adiponectin, extracellular nicotinamide phosphoribosyltransferase, apelin, resistin, retinol binding protein 4, fibroblast growth factor 21, nesfatin-1 and fatty acid binding protein 4. I summarise in vitro and in vivo data and discuss the influence of obesity and diabetes on circulating adipokine concentrations, along with the potential for influencing beta cell function in human physiology. Finally, I highlight future research questions that are likely to yield new insights into the exciting field of insulinotropic adipokines.

  11. Novel GPR40 agonist AS2575959 exhibits glucose metabolism improvement and synergistic effect with sitagliptin on insulin and incretin secretion.

    PubMed

    Tanaka, Hirotsugu; Yoshida, Shigeru; Minoura, Hideaki; Negoro, Kenji; Shimaya, Akiyoshi; Shimokawa, Teruhiko; Shibasaki, Masayuki

    2014-01-17

    GPR40 is a free fatty acid receptor that regulates glucose-dependent insulin secretion at pancreatic β-cells and glucagon-like peptide-1 (GLP-1), one of the major incretins, secretion at the endocrine cells of the gastrointestinal tract. We investigated the synergistic effect of AS2575959, a novel GPR40 agonist, in combination with sitagliptin, a major dipeptidyl peptidase-IV (DPP-IV) inhibitor, on glucose-dependent insulin secretion and GLP-1 secretion. In addition, we investigated the chronic effects of AS2575959 on whole-body glucose metabolism. We evaluated acute glucose metabolism on insulin and GLP-1 secretion using an oral glucose tolerance test (OGTT) as well as assessed the chronic glucose metabolism in diabetic ob/ob mice following the repeated administration of AS2575959. We discovered the novel GPR40 agonist sodium [(3S)-6-({4'-[(3S)-3,4-dihydroxybutoxy]-2,2',6'-trimethyl[1,1'-biphenyl]-3-yl}methoxy)-3H-spiro[1-benzofuran-2,1'-cyclopropan]-3-yl]acetate (AS2575959) and found that the compound influenced glucose-dependent insulin secretion both in vitro pancreas β-cell-derived cells and in vivo mice OGTT. Further, we observed a synergistic effect of AS2575959 and DPP-IV inhibitor on insulin secretion and plasma GLP-1 level. In addition, we discovered the improvement in glucose metabolism on repeated administration of AS2575959. To our knowledge, this study is the first to demonstrate the synergistic effect of a GPR40 agonist and DPP-IV inhibitor on the glucose-dependent insulin secretion and GLP-1 concentration increase. These findings suggest that GPR40 agonists may represent a promising therapeutic strategy for the treatment of type 2 diabetes mellitus, particularly when used in combination with DPP-IV inhibitors. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Regulation of rat ovarian cell growth and steroid secretion

    PubMed Central

    Johnson, CC; Dawson, WE; Turner, JT; Wyche, JH

    1980-01-01

    A cultured rat ovarian cell line (31 A-F(2)) was used to study the effect of growth factors (epidermal growth factor [EGF] and fibroblast growth factor [FGF]), a survival factor (ovarian growth factor [OGF]), a hormone (insulin), and an iron-binding protein (transferring) on cell proliferation and steroid production under defined culture conditions. EGF and insulin were shown to be mitogenic (half-maximal response at 0.12 nM and 0.11 muM, respectively) for 31A-F(2) cells incubated in serum-free medium. EGF induced up to three doublings in the cell population, whereas insulin induced an average of one cell population doubling. FGF, OGF, and transferrin were found not to have any prominent effect on cell division when incubated individually with 31A-F(2) cells in serum-free medium. However, a combination of EGF, OGF, insulin, and transferrin stimulated cell division to the same approximate extent as cells incubated in the presence of 5 percent fetal calf serum. EGF or insulin did not significantly affect total cell cholesterol levels (relative to cells incubated in serum-free medium) when incubated individually with 31A-F(2) cells. However, cell cholesterol levels were increased by the addition of OGF (250 percent), FGF (370 percent), or a combination of insulin and EGF (320 percent). Progesterone secretion from 31A-F(2) cells was enhanced by EGF (25 percent), FGF (80 percent), and insulin (115 percent). However, the addition of a mitogenic mixture of EGF, OGF, insulin, and transferrin suppressed progesterone secretion 150 percent) below that of control cultures. These studies have permitted us to determine that EGF and insulin are mitogenic factors that are required for the growth of 31A-F(2) cells and that OGF and transferrin are positive cofactors that enhance growth. Also, additional data suggest that cholesterol and progesterone production in 31A-F(2) cells can be regulated by peptide growth factors and the hormone insulin. PMID:6995465

  13. Tear secretion and tear film function in insulin dependent diabetics

    PubMed Central

    Goebbels, M.

    2000-01-01

    BACKGROUND—Diabetic patients often complain of dry eye symptoms, such as burning and/or foreign body sensation. The aim of the present study was to investigate whether diabetes mellitus is correlated with tear film dysfunction and/or tear hyposecretion.
METHODS—In 86 consecutive insulin dependent diabetics with retinopathy and 84 non-diabetic controls (age and sex matched) we performed fluorophotometry of tear secretion, the Schirmer test, and impression cytology of the conjunctival epithelium and determined the tear film break up time.
RESULTS—When compared with the healthy control group diabetics showed decreased Schirmer test readings (−37%, p <0.001) and significantly more frequent and pronounced signs of conjunctival metaplasia. None of the other values differed between groups.
CONCLUSION—In insulin dependent diabetics, reflex tearing was demonstrated to be significantly decreased. In contrast, unstimulated basal tear flow and tear film break up time were found to be normal. However, a majority of insulin dependent diabetics shows distinct signs of conjunctival surface disease.

 PMID:10611093

  14. Sulfonylurea Receptor 1 Mutations That Cause Opposite Insulin Secretion Defects with Chemical Chaperone Exposure*S⃞

    PubMed Central

    Pratt, Emily B.; Yan, Fei-Fei; Gay, Joel W.; Stanley, Charles A.; Shyng, Show-Ling

    2009-01-01

    The β-cell ATP-sensitive potassium (KATP) channel composed of sulfonylurea receptor SUR1 and potassium channel Kir6.2 serves a key role in insulin secretion regulation by linking glucose metabolism to cell excitability. Mutations in SUR1 or Kir6.2 that decrease channel function are typically associated with congenital hyperinsulinism, whereas those that increase channel function are associated with neonatal diabetes. Here we report that two hyperinsulinism-associated SUR1 missense mutations, R74W and E128K, surprisingly reduce channel inhibition by intracellular ATP, a gating defect expected to yield the opposite disease phenotype neonatal diabetes. Under normal conditions, both mutant channels showed poor surface expression due to retention in the endoplasmic reticulum, accounting for the loss of channel function phenotype in the congenital hyperinsulinism patients. This trafficking defect, however, could be corrected by treating cells with the oral hypoglycemic drugs sulfonylureas, which we have shown previously to act as small molecule chemical chaperones for KATP channels. The R74W and E128K mutants thus rescued to the cell surface paradoxically exhibited ATP sensitivity 6- and 12-fold lower than wild-type channels, respectively. Further analyses revealed a nucleotide-independent decrease in mutant channel intrinsic open probability, suggesting the mutations may reduce ATP sensitivity by causing functional uncoupling between SUR1 and Kir6.2. In insulin-secreting cells, rescue of both mutant channels to the cell surface led to hyperpolarized membrane potentials and reduced insulin secretion upon glucose stimulation. Our results show that sulfonylureas, as chemical chaperones, can dictate manifestation of the two opposite insulin secretion defects by altering the expression levels of the disease mutants. PMID:19151370

  15. Sulfonylurea receptor 1 mutations that cause opposite insulin secretion defects with chemical chaperone exposure.

    PubMed

    Pratt, Emily B; Yan, Fei-Fei; Gay, Joel W; Stanley, Charles A; Shyng, Show-Ling

    2009-03-20

    The beta-cell ATP-sensitive potassium (K(ATP)) channel composed of sulfonylurea receptor SUR1 and potassium channel Kir6.2 serves a key role in insulin secretion regulation by linking glucose metabolism to cell excitability. Mutations in SUR1 or Kir6.2 that decrease channel function are typically associated with congenital hyperinsulinism, whereas those that increase channel function are associated with neonatal diabetes. Here we report that two hyperinsulinism-associated SUR1 missense mutations, R74W and E128K, surprisingly reduce channel inhibition by intracellular ATP, a gating defect expected to yield the opposite disease phenotype neonatal diabetes. Under normal conditions, both mutant channels showed poor surface expression due to retention in the endoplasmic reticulum, accounting for the loss of channel function phenotype in the congenital hyperinsulinism patients. This trafficking defect, however, could be corrected by treating cells with the oral hypoglycemic drugs sulfonylureas, which we have shown previously to act as small molecule chemical chaperones for K(ATP) channels. The R74W and E128K mutants thus rescued to the cell surface paradoxically exhibited ATP sensitivity 6- and 12-fold lower than wild-type channels, respectively. Further analyses revealed a nucleotide-independent decrease in mutant channel intrinsic open probability, suggesting the mutations may reduce ATP sensitivity by causing functional uncoupling between SUR1 and Kir6.2. In insulin-secreting cells, rescue of both mutant channels to the cell surface led to hyperpolarized membrane potentials and reduced insulin secretion upon glucose stimulation. Our results show that sulfonylureas, as chemical chaperones, can dictate manifestation of the two opposite insulin secretion defects by altering the expression levels of the disease mutants.

  16. Liver enzymes are associated with hepatic insulin resistance, insulin secretion, and glucagon concentration in healthy men and women.

    PubMed

    Bonnet, Fabrice; Ducluzeau, Pierre-Henri; Gastaldelli, Amalia; Laville, Martine; Anderwald, Christian H; Konrad, Thomas; Mari, Andrea; Balkau, Beverley

    2011-06-01

    The pathophysiological mechanisms to explain the association between risk of type 2 diabetes and elevated concentrations of γ-glutamyltransferase (GGT) and alanineaminotransferase (ALT) remain poorly characterized. We explored the association of liver enzymes with peripheral and hepatic insulin resistance, insulin secretion, insulin clearance, and glucagon concentration. We studied 1,309 nondiabetic individuals from the Relationship between Insulin Sensitivity and Cardiovascular disease (RISC) study; all had a euglycemic-hyperinsulinemic clamp and an oral glucose tolerance test (OGTT) with assessment of insulin secretion and hepatic insulin extraction. The hepatic insulin resistance index was calculated in 393 individuals. In both men and women, plasma concentrations of GGT and ALT were inversely related with insulin sensitivity (M/I) (all P < 0.01). Likewise, the hepatic insulin resistance index was positively correlated with both GGT (r = 0.37, P < 0.0001, men; r = 0.36, P < 0.0001, women) and ALT (r = 0.25, P = 0.0005, men; r = 0.18, P = 0.01, women). These associations persisted in multivariable models. Increased GGT and ALT were significantly associated with higher insulin secretion rates and with both reduced endogenous clearance of insulin and hepatic insulin extraction during the OGTT (P = 0.0005 in men; P = 0.003 in women). Plasma fasting glucagon levels increased over ALT quartiles (men, quartile 4 vs. quartile 1 11.2 ± 5.1 vs. 9.3 ± 3.8 pmol/L, respectively, P = 0.0002; women, 9.0 ± 4.3 vs. 7.6 ± 3.1, P = 0.001). In healthy individuals, increased GGT and ALT were biomarkers of both systemic and hepatic insulin resistance with concomitant increased insulin secretion and decreased hepatic insulin clearance. The novel finding of a positive correlation between ALT and fasting glucagon level concentrations warrants confirmation in type 2 diabetes.

  17. Resveratrol supplementation restores high-fat diet-induced insulin secretion dysfunction by increasing mitochondrial function in islet

    PubMed Central

    Kong, Wen; Zheng, Juan; Zhang, Hao-hao; Hu, Xiang; Zeng, Tian-shu; Hu, Di

    2015-01-01

    Resveratrol (RSV), a natural compound, is known for its effects on energy homeostasis. Here we investigated the effects of RSV and possible mechanism in insulin secretion of high-fat diet rats. Rats were randomly divided into three groups as follows: NC group (animals were fed ad libitum with normal chow for 8 weeks), HF group (animals were fed ad libitum with high-fat diet for 8 weeks), and HFR group (animals were treated with high-fat diet and administered with RSV for 8 weeks). Insulin secretion ability of rats was assessed by hyperglycemic clamp. Mitochondrial biogenesis genes, mitochondrial respiratory chain activities, reactive oxidative species (ROS), and several mitochondrial antioxidant enzyme activities were evaluated in islet. We found that HF group rats clearly showed low insulin secretion and mitochondrial complex dysfunction. Expression of silent mating type information regulation 2 homolog- 1 (SIRT1) and related mitochondrial biogenesis were significantly decreased. However, RSV administration group (HFR) showed a marked potentiation of glucose-stimulated insulin secretion. This effect was associated with elevated SIRT1 protein expression and antioxidant enzyme activities, resulting in increased mitochondrial respiratory chain activities and decreased ROS level. This study suggests that RSV may increase islet mitochondrial complex activities and antioxidant function to restore insulin secretion dysfunction induced by high-fat diet. PMID:25228148

  18. Resveratrol supplementation restores high-fat diet-induced insulin secretion dysfunction by increasing mitochondrial function in islet.

    PubMed

    Kong, Wen; Chen, Lu-lu; Zheng, Juan; Zhang, Hao-hao; Hu, Xiang; Zeng, Tian-shu; Hu, Di

    2015-02-01

    Resveratrol (RSV), a natural compound, is known for its effects on energy homeostasis. Here we investigated the effects of RSV and possible mechanism in insulin secretion of high-fat diet rats. Rats were randomly divided into three groups as follows: NC group (animals were fed ad libitum with normal chow for 8 weeks), HF group (animals were fed ad libitum with high-fat diet for 8 weeks), and HFR group (animals were treated with high-fat diet and administered with RSV for 8 weeks). Insulin secretion ability of rats was assessed by hyperglycemic clamp. Mitochondrial biogenesis genes, mitochondrial respiratory chain activities, reactive oxidative species (ROS), and several mitochondrial antioxidant enzyme activities were evaluated in islet. We found that HF group rats clearly showed low insulin secretion and mitochondrial complex dysfunction. Expression of silent mating type information regulation 2 homolog- 1 (SIRT1) and related mitochondrial biogenesis were significantly decreased. However, RSV administration group (HFR) showed a marked potentiation of glucose-stimulated insulin secretion. This effect was associated with elevated SIRT1 protein expression and antioxidant enzyme activities, resulting in increased mitochondrial respiratory chain activities and decreased ROS level. This study suggests that RSV may increase islet mitochondrial complex activities and antioxidant function to restore insulin secretion dysfunction induced by high-fat diet. © 2014 by the Society for Experimental Biology and Medicine.

  19. TRPM channels phosphorylation as a potential bridge between old signals and novel regulatory mechanisms of insulin secretion.

    PubMed

    Diaz-Garcia, Carlos Manlio; Sanchez-Soto, Carmen; Hiriart, Marcia

    2013-03-01

    Transient receptor potential channels, especially the members of the melastatin family (TRPM), participate in insulin secretion. Some of them are substrates for protein kinases, which are involved in several neurotransmitter, incretin and hormonal signaling cascades in β cells. The functional relationships between protein kinases and TRPM channels in systems of heterologous expression and native tissues rise issues about novel regulation pathways of pancreatic β-cell excitability. The aim of the present work is to review the evidences about phosphorylation of TRPM channels in β cells and to discuss the perspectives on insulin secretion.

  20. [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Lepr(db/db) type 2 diabetic mice.

    PubMed

    Samad, Mehdi Bin; Mohsin, Md Nurul Absar Bin; Razu, Bodiul Alam; Hossain, Mohammad Tashnim; Mahzabeen, Sinayat; Unnoor, Naziat; Muna, Ishrat Aklima; Akhter, Farjana; Kabir, Ashraf Ul; Hannan, J M A

    2017-08-09

    [6]-Gingerol, a major component of Zingiber officinale, was previously reported to ameliorate hyperglycemia in type 2 diabetic mice. Endocrine signaling is involved in insulin secretion and is perturbed in db/db Type-2 diabetic mice. [6]-Gingerol was reported to restore the disrupted endocrine signaling in rodents. In this current study on Lepr(db/db) diabetic mice, we investigated the involvement of endocrine pathway in the insulin secretagogue activity of [6]-Gingerol and the mechanism(s) through which [6]-Gingerol ameliorates hyperglycemia. Lepr(db/db) type 2 diabetic mice were orally administered a daily dose of [6]-Gingerol (200 mg/kg) for 28 days. We measured the plasma levels of different endocrine hormones in fasting and fed conditions. GLP-1 levels were modulated using pharmacological approaches, and cAMP/PKA pathway for insulin secretion was assessed by qRT-PCR and ELISA in isolated pancreatic islets. Total skeletal muscle and its membrane fractions were used to measure glycogen synthase 1 level and Glut4 expression and protein levels. 4-weeks treatment of [6]-Gingerol dramatically increased glucose-stimulated insulin secretion and improved glucose tolerance. Plasma GLP-1 was found to be significantly elevated in the treated mice. Pharmacological intervention of GLP-1 levels regulated the effect of [6]-Gingerol on insulin secretion. Mechanistically, [6]-Gingerol treatment upregulated and activated cAMP, PKA, and CREB in the pancreatic islets, which are critical components of GLP-1-mediated insulin secretion pathway. [6]-Gingerol upregulated both Rab27a GTPase and its effector protein Slp4-a expression in isolated islets, which regulates the exocytosis of insulin-containing dense-core granules. [6]-Gingerol treatment improved skeletal glycogen storage by increased glycogen synthase 1 activity. Additionally, GLUT4 transporters were highly abundant in the membrane of the skeletal myocytes, which could be explained by the increased expression of Rab8 and

  1. PRMT4 is involved in insulin secretion via the methylation of histone H3 in pancreatic β cells.

    PubMed

    Kim, Joong Kwan; Lim, Yongchul; Lee, Jung Ok; Lee, Young-Sun; Won, Nam Hee; Kim, Hyun; Kim, Hyeon Soo

    2015-06-01

    The relationship between protein arginine methyltransferases (PRMTs) and insulin synthesis in β cells is not yet well understood. In the present study, we showed that PRMT4 expression was increased in INS-1 and HIT-T15 pancreatic β cells under high-glucose conditions. In addition, asymmetric dimethylation of Arg17 in histone H3 was significantly increased in both cell lines in the presence of glucose. The inhibition or knockdown of PRMT4 suppressed glucose-induced insulin gene expression in INS-1 cells by 81.6 and 79% respectively. Additionally, the overexpression of mutant PRMT4 also significantly repressed insulin gene expression. Consistently, insulin secretion induced in response to high levels of glucose was decreased by both PRMT4 inhibition and knockdown. Moreover, the inhibition of PRMT4 blocked high-glucose-induced insulin gene expression and insulin secretion in primary pancreatic islets. These results indicate that PRMT4 might be a key regulator of high-glucose-induced insulin secretion from pancreatic β cells via H3R17 methylation.

  2. Dual role of proapoptotic BAD in insulin secretion and beta cell survival.

    PubMed

    Danial, Nika N; Walensky, Loren D; Zhang, Chen-Yu; Choi, Cheol Soo; Fisher, Jill K; Molina, Anthony J A; Datta, Sandeep Robert; Pitter, Kenneth L; Bird, Gregory H; Wikstrom, Jakob D; Deeney, Jude T; Robertson, Kirsten; Morash, Joel; Kulkarni, Ameya; Neschen, Susanne; Kim, Sheene; Greenberg, Michael E; Corkey, Barbara E; Shirihai, Orian S; Shulman, Gerald I; Lowell, Bradford B; Korsmeyer, Stanley J

    2008-02-01

    The proapoptotic BCL-2 family member BAD resides in a glucokinase-containing complex that regulates glucose-driven mitochondrial respiration. Here, we present genetic evidence of a physiologic role for BAD in glucose-stimulated insulin secretion by beta cells. This novel function of BAD is specifically dependent upon the phosphorylation of its BH3 sequence, previously defined as an essential death domain. We highlight the pharmacologic relevance of phosphorylated BAD BH3 by using cell-permeable, hydrocarbon-stapled BAD BH3 helices that target glucokinase, restore glucose-driven mitochondrial respiration and correct the insulin secretory response in Bad-deficient islets. Our studies uncover an alternative target and function for the BAD BH3 domain and emphasize the therapeutic potential of phosphorylated BAD BH3 mimetics in selectively restoring beta cell function. Furthermore, we show that BAD regulates the physiologic adaptation of beta cell mass during high-fat feeding. Our findings provide genetic proof of the bifunctional activities of BAD in both beta cell survival and insulin secretion.

  3. [Regulation and self-regulation of the pancreas secretion].

    PubMed

    Korot'ko, G F; Voskanian, S E

    2001-01-01

    A review of modern experimental and clinical research, including own author's data, on regulation of the periodical and postprandial external pancreas secretion and of the secretion phases. Focus on self-regulation of pancreas exosecretion with the pancreatic enzymes based on the principle of negative feedback, and on mechanisms of the feedback inhibition of pancreatic secretion. Description of the selective and generalised inhibition of secretion of pancreatic enzymes, the role of this mechanism in emergency adaptation of the fermental spectrum of the pancreas secretion in response to the nutritional composition and properties of the duodenal chemus. In conclusion, the experimental and clinical data are presented on use of intraduodenal injection of trypsin as a generalised inhibitor of pancreas secretion in case of acute pancreatitis.

  4. Enhanced insulin sensitivity mediated by adipose tissue browning perturbs islet morphology and hormone secretion in response to autonomic nervous activation in female mice.

    PubMed

    Omar, Bilal A; Kvist-Reimer, Martina; Enerbäck, Sven; Ahrén, Bo

    2016-01-01

    Insulin resistance results in a compensatory increase in insulin secretion to maintain normoglycemia. Conversely, high insulin sensitivity results in reduced insulin secretion to prevent hypoglycemia. The mechanisms for this inverse adaptation are not well understood. We utilized highly insulin-sensitive mice, due to adipocyte-specific overexpression of the FOXC2 transcription factor, to study mechanisms of the reversed islet adaptation to increased insulin sensitivity. We found that Foxc2TG mice responded to mild hyperglycemia with insulin secretion significantly lower than that of wild-type mice; however, when severe hyperglycemia was induced, Foxc2TG mice demonstrated insulin secretion equal to or greater than that of wild-type mice. In response to autonomic nervous activation by 2-deoxyglucose, the acute suppression of insulin seen in wild-type mice was absent in Foxc2TG mice, suggesting impaired sympathetic signaling to the islet. Basal glucagon was increased in Foxc2TG mice, but they displayed severely impaired glucagon responses to cholinergic and autonomic nervous stimuli. These data suggest that the autonomic nerves contribute to the islet adaptation to high insulin sensitivity, which is compatible with a neuro-adipo regulation of islet function being instrumental for maintaining glucose regulation.

  5. Effects of Tocotrienols on Insulin Secretion-Associated Genes Expression of Rat Pancreatic Islets in a Dynamic Culture

    PubMed Central

    Chia, Ling L.; Jantan, Ibrahim; Chua, Kien H.; Lam, Kok W.; Rullah, Kamal; Aluwi, Mohd F. M.

    2016-01-01

    Tocotrienols (T3) are well-known for their antioxidant properties besides showing therapeutic potential in clinical complications such as hyperlipidemia induced by diabetes. The aim of this study was to determine the effects of δ-T3, γ-T3, and α-T3 on insulin secretion-associated genes expression of rat pancreatic islets in a dynamic culture. Pancreatic islets freshly isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation. The cells were collected for total RNA extraction and reverse-transcribed, followed by measurement of insulin secretion-associated genes expression using quantitative real-time polymerase chain reaction. Molecular docking experiments were performed to gain insights on how the T3 bind to the receptors. Short-term exposure of δ- and γ-T3 to pancreatic β cells in a stimulant glucose condition (16.7 mM) significantly regulated preproinsulin mRNA levels and insulin gene transcription. In contrast, α-T3 possessed less ability in the activation of insulin synthesis level. Essentially, potassium chloride (KCl), a β cell membrane depolarising agent added into the treatment further enhanced the insulin production. δ- and γ-T3 revealed significantly higher quantitative expression in most of the insulin secretion-associated genes groups containing 16.7 mM glucose alone and 16.7 mM glucose with 30 mM KCl ranging from 600 to 1200 μM (p < 0.05). The findings suggest the potential of δ-T3 in regulating insulin synthesis and glucose-stimulated insulin secretion through triggering pathway especially in the presence of KCl. PMID:27625609

  6. Mechanisms of insulin secretion in malnutrition: modulation by amino acids in rodent models.

    PubMed

    de Oliveira, Camila Aparecida Machado; Latorraca, Márcia Queiroz; de Mello, Maria Alice Rostom; Carneiro, Everardo Magalhães

    2011-04-01

    Protein restriction at early stages of life reduces β-cell volume, number of insulin-containing granules, insulin content and release by pancreatic islets in response to glucose and other secretagogues, abnormalities similar to those seen in type 2 diabetes. Amino acids are capable to directly modulate insulin secretion and/or contribute to the maintenance of β-cell function, resulting in an improvement of insulin release. Animal models of protein malnutrition have provided important insights into the adaptive mechanisms involved in insulin secretion in malnutrition. In this review, we discuss studies focusing on the modulation of insulin secretion by amino acids, specially leucine and taurine, in rodent models of protein malnutrition. Leucine supplementation increases insulin secretion by pancreatic islets in malnourished mice. This effect is at least in part due to increase in the expression of proteins involved in the secretion process, and the activation of the PI3K/PKB/mTOR pathway seems also to contribute. Mice supplemented with taurine have increased insulin content and secretion as well as increased expression of genes essential for β-cell functionality. The knowledge of the mechanisms through which amino acids act on pancreatic β-cells to stimulate insulin secretion is of interest for clinical medicine. It can reveal new targets for the development of drugs toward the treatment of endocrine diseases, in special type 2 diabetes.

  7. Simvastatin Impairs Insulin Secretion by Multiple Mechanisms in MIN6 Cells.

    PubMed

    Yaluri, Nagendra; Modi, Shalem; López Rodríguez, Maykel; Stančáková, Alena; Kuusisto, Johanna; Kokkola, Tarja; Laakso, Markku

    2015-01-01

    Statins are widely used in the treatment of hypercholesterolemia and are efficient in the prevention of cardiovascular disease. Molecular mechanisms explaining statin-induced impairment in insulin secretion remain largely unknown. In the current study, we show that simvastatin decreased glucose-stimulated insulin secretion in mouse pancreatic MIN6 β-cells by 59% and 79% (p<0.01) at glucose concentration of 5.5 mmol/l and 16.7 mmol/l, respectively, compared to control, whereas pravastatin did not impair insulin secretion. Simvastatin induced decrease in insulin secretion occurred through multiple targets. In addition to its established effects on ATP-sensitive potassium channels (p = 0.004) and voltage-gated calcium channels (p = 0.004), simvastatin suppressed insulin secretion stimulated by muscarinic M3 or GPR40 receptor agonists (Tak875 by 33%, p = 0.002; GW9508 by 77%, p = 0.01) at glucose level of 5.5 mmol/l, and inhibited calcium release from the endoplasmic reticulum. Impaired insulin secretion caused by simvastatin treatment were efficiently restored by GPR119 or GLP-1 receptor stimulation and by direct activation of cAMP-dependent signaling pathways with forskolin. The effects of simvastatin treatment on insulin secretion were not affected by the presence of hyperglycemia. Our observation of the opposite effects of simvastatin and pravastatin on glucose-stimulated insulin secretion is in agreement with previous reports showing that simvastatin, but not pravastatin, was associated with increased risk of incident diabetes.

  8. Chromogranin A Regulation of Obesity and Peripheral Insulin Sensitivity

    PubMed Central

    Bandyopadhyay, Gautam K.; Mahata, Sushil K.

    2017-01-01

    Chromogranin A (CgA) is a prohormone and granulogenic factor in endocrine and neuroendocrine tissues, as well as in neurons, and has a regulated secretory pathway. The intracellular functions of CgA include the initiation and regulation of dense-core granule biogenesis and sequestration of hormones in neuroendocrine cells. This protein is co-stored and co-released with secreted hormones. The extracellular functions of CgA include the generation of bioactive peptides, such as pancreastatin (PST), vasostatin, WE14, catestatin (CST), and serpinin. CgA knockout mice (Chga-KO) display: (i) hypertension with increased plasma catecholamines, (ii) obesity, (iii) improved hepatic insulin sensitivity, and (iv) muscle insulin resistance. These findings suggest that individual CgA-derived peptides may regulate different physiological functions. Indeed, additional studies have revealed that the pro-inflammatory PST influences insulin sensitivity and glucose tolerance, whereas CST alleviates adiposity and hypertension. This review will focus on the different metabolic roles of PST and CST peptides in insulin-sensitive and insulin-resistant models, and their potential use as therapeutic targets. PMID:28228748

  9. Insulin sensitivity and secretion in Arab Americans with glucose intolerance.

    PubMed

    Salinitri, Francine D; Pinelli, Nicole R; Martin, Emily T; Jaber, Linda A

    2013-12-01

    This study examined the pathophysiological abnormalities in Arab Americans with impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT). Homeostasis model assessment of insulin resistance (HOMA-IR), homeostasis model assessment of insulin secretion (HOMA-%β), and the Matsuda Insulin Sensitivity Index composite (ISIcomposite) were calculated from the fasting and stimulated glucose and insulin concentrations measured during the oral glucose tolerance test in a population-based, representative, cross-sectional sample of randomly selected Arab Americans. In total, 497 individuals (42±14 years old; 40% males; body mass index [BMI], 29±6 kg/m(2)) were studied. Multivariate linear regression models were performed to compare HOMA-IR, HOMA-%β, and ISIcomposite among individuals with normal glucose tolerance (NGT) (n=191) versus isolated IFG (n=136), isolated IGT (n=22), combined IFG/IGT (n=43), and diabetes (n=105). Compared with individuals with NGT (2.9±1.6), HOMA-IR progressively increased in individuals with isolated IFG (4.8±2.7, P<0.001), combined IFG/IGT (6.0±4.3, P<0.001), and diabetes (9.7±8.3, P<0.001) but not in those with isolated IGT (3.0±1.7, P=0.87). After adjustment for sex and BMI, these associations remained unchanged. Whole-body insulin sensitivity as measured by ISIcomposite was significantly lower in individuals with isolated IFG (3.9±2.3, P<0.001), isolated IGT (2.8±1.5, P<0.001), combined IFG/IGT (1.9±1.1, P<0.001), and diabetes (1.6±1.1, P<0.001) compared with those with NGT (6.1±3.5). HOMA-%β was significantly lower in diabetes (113.7±124.9, P<0.001) compared with NGT (161.3±92.0). After adjustment for age, sex, and BMI, isolated IFG (146.6±80.2) was also significantly associated with a decline in HOMA-%β relative to NGT (P=0.005). This study suggests that differences in the underlying metabolic defects leading to diabetes in Arab Americans with IFG and/or IGT exist and may require different strategies for the

  10. The possible mechanisms by which maternal hypothyroidism impairs insulin secretion in adult male offspring in rats.

    PubMed

    Karbalaei, Narges; Ghasemi, Asghar; Hedayati, Mehdi; Godini, Aliashraf; Zahediasl, Saleh

    2014-04-01

    Previous studies have recently shown that maternal hypothyroidism leads to impaired glucose metabolism and reduced insulin secretion in adult offspring in rats. The aim of this study was to locate the defect in the insulin secretion pathway induced by maternal hypothyroidism. Pregnant Wistar rats were divided into two groups; the control group consumed water, while the hypothyroid (FH) group received water containing 0.025% 6-propyl-2-thiouracil during gestation. An intravenous glucose tolerance test was carried out on 5-month-old male offspring. In in vitro studies, the effects of various secretagogues and inhibitors acting at different levels of the insulin secretion cascade were investigated, and insulin content, insulin secretion and glucokinase activity of the islets were compared. Although insulin content of the FH islets did not differ from that of control islets, insulin secretion from FH islets was reduced when it was challenged by glucose or arginine. Compared with control islets, activities of both hexokinase and glucokinase were also significantly decreased in the FH islets. Although, in both groups, increasing glibenclamide and nifedipine concentrations in the presence of 16.7 mmol l(-1) glucose increased and decreased insulin secretion, respectively, the percentage of changes in secretion of FH islets was significantly lower compared with control islets. The response of FH islets to high extracellular potassium concentration and diazoxide was also significantly lower than that of the control islets. These findings demonstrate that impaired insulin secretion in the FH group is probably related to alterations in different steps of the insulin secretion pathway and not in the insulin pool of β-cells.

  11. Weight-dependent differential contribution of insulin secretion and clearance to hyperinsulinemia of obesity.

    PubMed

    Erdmann, Johannes; Mayr, Martina; Oppel, Ulrich; Sypchenko, Oleg; Wagenpfeil, Stefan; Schusdziarra, Volker

    2009-01-08

    Obesity is associated with insulin resistance and the resulting hyperinsulinemia has been attributed to an increase of insulin secretion and a reduction of insulin clearance. The present study was intended to further characterize the relative contribution of secretion and clearance especially in the postprandial state. In relation to WHO body weight classes 291 subjects were divided in 5 subgroups Basal insulin concentrations rose stepwise and significantly with increasing BMI. This was paralleled by C-peptide concentrations and insulin secretion, while the reduction of insulin clearance was less stringent in relation to BMI. Basal glucose was unchanged in the BMI25 group and 8% higher in the obese groups (BMI 30, 35, 40) compared to normal weight (NW). Although postprandial insulin concentrations were significantly higher in the overweight and obese groups compared to NW the correlation was not as tight as in the basal state. Furthermore, the present data demonstrate for the first time that insulin secretion only increased in the overweight group without further augmentation in the obese groups. Further hyperinsulinemia of the latter was due to weight-dependent reduction of insulin clearance. The postprandial glucose response was 38-82% higher with increasing weight compared to NW. In summary basal hyperinsulinemia is mainly due to weight related increase of insulin secretion with moderate contribution of reduced insulin clearance. Postprandially, hyperinsulinemia of overweight is predominantly due to secretion while further postprandial hyperinsulinemia of obese subjects is mainly due to reduced clearance. Thus, postprandial insulin secretion cannot respond adequately to the challenge of weight-dependent insulin resistance already in non-diabetic obese subjects.

  12. S-resistin, a non secretable resistin isoform, impairs the insulin signalling pathway in 3T3-L1 adipocytes.

    PubMed

    Rodríguez, María; Moltó, Eduardo; Aguado, Lidia; Gallardo, Nilda; Andrés, Antonio; Arribas, Carmen

    2015-09-01

    S-resistin is a non-secretable resistin spliced variant, which is expressed mainly in the white adipose tissue from Wistar rats. Previous results confirmed that 3T3-L1 cells expressing s-resistin (3T3-L1-s-res) showed an inflammatory response and exhibited a decrease in glucose transport, both basal and insulin-stimulated. Here we present evidences demonstrating for the first time that s-resistin, like resistin, blocks insulin signalling pathway by inhibiting insulin receptor, insulin receptor substrate 1, protein kinase B/Akt and the mammalian target of rapamycin phosphorylation, and increasing the suppressor of cytokine signalling 3 levels being the later probably due to augmented of leptin expression. Thus, our data suggest that s-resistin could act by a still unknown intracrine pathway as an intracellular sensor, regulating the adipocyte insulin sensitivity.

  13. Characterization of the Insulin Reservoir in Rat Islets of Langerhans: Evaluation of Hormone Synthesis, Processing, Storage and Secretion.

    NASA Astrophysics Data System (ADS)

    Gishizky, Mikhail Lev

    1988-12-01

    It has been reported that acute glucose stimulation of islets results in the preferential release of newly synthesized insulin. This suggests that the large islet hormone reservoir may represent a heterogeneous pool. In these investigation we characterized the nature of the islet hormone reservoir and evaluated possible mechanisms responsible for its regulation. Our studies demonstrated that under stimulated secretory conditions normal pancreatic islets secreted newly synthesized insulin in preference to their large stored hormone content. The preferential release pattern was observed with all secretogogues tested and was not restricted to a specific subset of islets. Aided by computer model analysis, we proposed that the islet insulin reservoir represented a heterogeneous pool composed of at least two hypothetical compartments--labile and stable. Evaluation of the islet hormone reservoir under different in vivo and in vitro conditions demonstrated that in response to prolonged stimulation, the hypothetical labile compartment apparently decreased in size. This augmentation in the compartmental character was associated with (1) decreased amount of insulin secreted, (2) increased proportion of newly synthesized insulin secreted, and (3) an increased rate of prohormone conversion with no alteration in the rate of hormone synthesis. Thus parameters which defined the islet hormone reservoir represented a dynamic system that responded to the islets milieu. Preferential release of newly synthesized insulin was not an intrinsic property of insulin secreting cells. Furthermore, the mechanism responsible for the compartmentalization of the insulin reservoir did not discriminate between the two non-allelic murine insulins. Our studies indicated that differences in the amino acid structure of the two prohormones apparently resulted in proinsulin I being transported to the conversion compartment faster than proinsulin II. However, glucose regulation of the synthesis and

  14. A beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion in mice.

    PubMed

    Attané, Camille; Peyot, Marie-Line; Lussier, Roxane; Poursharifi, Pegah; Zhao, Shangang; Zhang, Dongwei; Morin, Johane; Pineda, Marco; Wang, Shupei; Dumortier, Olivier; Ruderman, Neil B; Mitchell, Grant A; Simons, Brigitte; Madiraju, S R Murthy; Joly, Erik; Prentki, Marc

    2016-12-01

    To directly assess the role of beta cell lipolysis in insulin secretion and whole-body energy homeostasis, inducible beta cell-specific adipose triglyceride lipase (ATGL)-deficient (B-Atgl-KO) mice were studied under normal diet (ND) and high-fat diet (HFD) conditions. Atgl (flox/flox) mice were cross-bred with Mip-Cre-ERT mice to generate Mip-Cre-ERT(/+);Atgl (flox/flox) mice. At 8 weeks of age, these mice were injected with tamoxifen to induce deletion of beta cell-specific Atgl (also known as Pnpla2), and the mice were fed an ND or HFD. ND-fed male B-Atgl-KO mice showed decreased insulinaemia and glucose-induced insulin secretion (GSIS) in vivo. Changes in GSIS correlated with the islet content of long-chain saturated monoacylglycerol (MAG) species that have been proposed to be metabolic coupling factors for insulin secretion. Exogenous MAGs restored GSIS in B-Atgl-KO islets. B-Atgl-KO male mice fed an HFD showed reduced insulinaemia, glycaemia in the fasted and fed states and after glucose challenge, as well as enhanced insulin sensitivity. Moreover, decreased insulinaemia in B-Atgl-KO mice was associated with increased energy expenditure, and lipid metabolism in brown (BAT) and white (WAT) adipose tissues, leading to reduced fat mass and body weight. ATGL in beta cells regulates insulin secretion via the production of signalling MAGs. Decreased insulinaemia due to lowered GSIS protects B-Atgl-KO mice from diet-induced obesity, improves insulin sensitivity, increases lipid mobilisation from WAT and causes BAT activation. The results support the concept that fuel excess can drive obesity and diabetes via hyperinsulinaemia, and that an islet beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion.

  15. Functional Role of Serotonin in Insulin Secretion in a Diet-Induced Insulin-Resistant State

    PubMed Central

    Kim, Kyuho; Oh, Chang-Myung; Ohara-Imaizumi, Mica; Park, Sangkyu; Namkung, Jun; Yadav, Vijay K.; Tamarina, Natalia A.; Roe, Michael W.; Philipson, Louis H.; Karsenty, Gerard; Nagamatsu, Shinya

    2015-01-01

    The physiological role of serotonin, or 5-hydroxytryptamine (5-HT), in pancreatic β-cell function was previously elucidated using a pregnant mouse model. During pregnancy, 5-HT increases β-cell proliferation and glucose-stimulated insulin secretion (GSIS) through the Gαq-coupled 5-HT2b receptor (Htr2b) and the 5-HT3 receptor (Htr3), a ligand-gated cation channel, respectively. However, the role of 5-HT in β-cell function in an insulin-resistant state has yet to be elucidated. Here, we characterized the metabolic phenotypes of β-cell-specific Htr2b−/− (Htr2b βKO), Htr3a−/− (Htr3a knock-out [KO]), and β-cell-specific tryptophan hydroxylase 1 (Tph1)−/− (Tph1 βKO) mice on a high-fat diet (HFD). Htr2b βKO, Htr3a KO, and Tph1 βKO mice exhibited normal glucose tolerance on a standard chow diet. After 6 weeks on an HFD, beginning at 4 weeks of age, both Htr3a KO and Tph1 βKO mice developed glucose intolerance, but Htr2b βKO mice remained normoglycemic. Pancreas perfusion assays revealed defective first-phase insulin secretion in Htr3a KO mice. GSIS was impaired in islets isolated from HFD-fed Htr3a KO and Tph1 βKO mice, and 5-HT treatment improved insulin secretion from Tph1 βKO islets but not from Htr3a KO islets. Tph1 and Htr3a gene expression in pancreatic islets was not affected by an HFD, and immunostaining could not detect 5-HT in pancreatic islets from mice fed an HFD. Taken together, these results demonstrate that basal 5-HT levels in β-cells play a role in GSIS through Htr3, which becomes more evident in a diet-induced insulin-resistant state. PMID:25426873

  16. The good and bad effects of statins on insulin sensitivity and secretion.

    PubMed

    Muscogiuri, Giovanna; Sarno, Gerardo; Gastaldelli, Amalia; Savastano, Silvia; Ascione, Antonio; Colao, Annamaria; Orio, Francesco

    2014-01-01

    Statins are the main lipid-lowering treatment in both primary and secondary prevention populations. Whether statins deteriorates glycemic control, predisposing to the onset of diabetes mellitus has been a matter of recent concern. Statins may accelerate progression to diabetes via molecular mechanisms that impact insulin sensitivity and secretion. In this review, we debate the relative effect of statins in driving insulin resistance and the impairment of insulin secretion. Narrative overview of the literature synthesizing the findings of literature was retrieved from searches of computerized databases, hand searches, and authoritative texts employing the key words "Statins", "Randomized Clinical Trial", "Insulin sensitivity", "Insulin resistance", "Insulin Secretion", "Diabetes Mellitus" alone and/or in combination. The weight of clinical evidence suggests a worsening effect of statins on insulin resistance and secretion, anyway basic science studies did not find a clear molecular explanation, providing conflicting evidence regarding both the beneficial and the adverse effects of statin therapy on insulin sensitivity. Although most of the clinical studies suggest a worsening of insulin resistance and secretion, the cardiovascular benefits of statin therapy outweigh the risk of developing insulin resistance, thus the data suggest the need to treat dyslipidemia and to make patients aware of the possible risk of developing type 2 diabetes or, if they already are diabetic, of worsening their metabolic control.

  17. Insulin’s direct hepatic effect explains the inhibition of glucose production caused by insulin secretion

    PubMed Central

    Edgerton, Dale S.; Kraft, Guillaume; Smith, Marta; Farmer, Ben; Williams, Phillip E.; Coate, Katie C.; Printz, Richard L.; O’Brien, Richard M.; Cherrington, Alan D.

    2017-01-01

    Insulin can inhibit hepatic glucose production (HGP) by acting directly on the liver as well as indirectly through effects on adipose tissue, pancreas, and brain. While insulin’s indirect effects are indisputable, their physiologic role in the suppression of HGP seen in response to increased insulin secretion is not clear. Likewise, the mechanisms by which insulin suppresses lipolysis and pancreatic α cell secretion under physiologic circumstances are also debated. In this study, insulin was infused into the hepatic portal vein to mimic increased insulin secretion, and insulin’s indirect liver effects were blocked either individually or collectively. During physiologic hyperinsulinemia, plasma free fatty acid (FFA) and glucagon levels were clamped at basal values and brain insulin action was blocked, but insulin’s direct effects on the liver were left intact. Insulin was equally effective at suppressing HGP when its indirect effects were absent as when they were present. In addition, the inhibition of lipolysis, as well as glucagon and insulin secretion, did not require CNS insulin action or decreased plasma FFA. This indicates that the rapid suppression of HGP is attributable to insulin’s direct effect on the liver and that its indirect effects are redundant in the context of a physiologic increase in insulin secretion. PMID:28352665

  18. Chronic intermittent hypoxia disturbs insulin secretion and causes pancreatic injury via the MAPK signaling pathway.

    PubMed

    Wang, Yeying; Hai, Bing; Niu, Xiaoqun; Ai, Li; Cao, Yu; Li, Ran; Li, Yongxia

    2017-06-01

    Obstructive sleep apnea (OSA) is a breathing disorder during sleep, with a most prominent character of chronic intermittent hypoxia (CIH), which induces the generation of reactive oxygen species (ROS) that damages multiple tissues and causes metabolic disorders. In this study, we established a rat model of varying OSA with different grades of CIH (12.5% O2, 10% O2, 7.5% O2, and 5% O2) for 12 weeks, and found that CIH stimulated insulin secretion, reduced the insulin:proinsulin ratio in pancreatic tissue, and caused pancreatic tissue lesions and cell apoptosis in a dose-dependent manner. Moreover, CIH promoted the production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, and activated mitogen-activated protein kinase (MAPK) family members, extracellular regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and P38, depending on the O2 concentration. In summary, CIH disturbed insulin secretion, and caused inflammation, lesions, and cell apoptosis in pancreatic tissue via the MAPK signaling pathway, which may be of great significance for clinical treatment of OSA and type 2 diabetes mellitus (T2DM).

  19. A volume-activated anion conductance in insulin-secreting cells.

    PubMed

    Best, L; Sheader, E A; Brown, P D

    1996-01-01

    The whole-cell patch-clamp recording technique was used to measure volume-activated currents in K+-free solutions in RINm5F and HIT-T15 insulinoma cells and in dispersed rat islet cells. Cell swelling, induced by intracellular hypertonicity or extracellular hypotonicity, caused activation of an outwardly rectifying conductance which could be subsequently inactivated by hypertonic extracellular solutions. The conductance required adenosine 5'-triphosphate (ATP) in the pipette solution but was Ca2+ independent. Na+ and Cl- substitution studies suggested that the swelling-activated current is Cl- selective with a halide permeability sequence of Br > Cl > I. The conductance was reversibly inhibited by the anion channel inhibitors 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) and by 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). Further evidence for a volume-activated anion conductance was provided by studies of volume regulation in insulin-secreting cells. When RINm5F cells were exposed to a hypotonic medium, the initial cell swelling was followed by a regulatory volume decrease (RVD). This RVD response was also inhibited by DIDS and by NPPB. These data therefore provide evidence for a volume-activated anion conductance in insulin-secreting cells which could be involved in the RVD following osmotic stress. A possible role for the conductance in hypotonically induced insulin release is also discussed.

  20. Interactive Cytokine Regulation of Synoviocyte Lubricant Secretion

    PubMed Central

    Blewis, Megan E.; Lao, Brian J.; Schumacher, Barbara L.; Bugbee, William D.; Firestein, Gary S.

    2010-01-01

    Cytokine regulation of synovial fluid (SF) lubricants, hyaluronan (HA), and proteoglycan 4 (PRG4) is important in health, injury, and disease of synovial joints, and may also provide powerful regulation of lubricant secretion in bioreactors for articulating tissues. This study assessed lubricant secretion rates by human synoviocytes and the molecular weight (MW) of secreted lubricants in response to interleukin (IL)-1β, IL-17, IL-32, transforming growth factor-beta 1 (TGF-β1), and tumor necrosis factor-alpha (TNF-α), applied individually and in all combinations. Lubricant secretion rates were assessed using ELISA and binding assays, and lubricant MW was assessed using gel electrophoresis and Western blotting. HA secretion rates were increased ∼40-fold by IL-1β, and increased synergistically to ∼80-fold by the combination of IL-1β + TGF-β1 or TNF-α + IL-17. PRG4 secretion rates were increased ∼80-fold by TGF-β1, and this effect was counterbalanced by IL-1β and TNF-α. HA MW was predominantly <1 MDa for controls and individual cytokine stimulation, but was concentrated at >3 MDa after stimulation by IL-1β + TGF-β1 + TNF-α to resemble the distribution in human SF. PRG4 MW was unaffected by cytokines and similar to that in human SF. These results contribute to an understanding of the relationship between SF cytokine and lubricant content in health, injury, and disease, and provide approaches for using cytokines to modulate lubricant secretion rates and MW to help achieve desired lubricant composition of fluid in bioreactors. PMID:19908966

  1. Interactive cytokine regulation of synoviocyte lubricant secretion.

    PubMed

    Blewis, Megan E; Lao, Brian J; Schumacher, Barbara L; Bugbee, William D; Sah, Robert L; Firestein, Gary S

    2010-04-01

    Cytokine regulation of synovial fluid (SF) lubricants, hyaluronan (HA), and proteoglycan 4 (PRG4) is important in health, injury, and disease of synovial joints, and may also provide powerful regulation of lubricant secretion in bioreactors for articulating tissues. This study assessed lubricant secretion rates by human synoviocytes and the molecular weight (MW) of secreted lubricants in response to interleukin (IL)-1beta, IL-17, IL-32, transforming growth factor-beta 1 (TGF-beta1), and tumor necrosis factor-alpha (TNF-alpha), applied individually and in all combinations. Lubricant secretion rates were assessed using ELISA and binding assays, and lubricant MW was assessed using gel electrophoresis and Western blotting. HA secretion rates were increased approximately 40-fold by IL-1beta, and increased synergistically to approximately 80-fold by the combination of IL-1beta + TGF-beta1 or TNF-alpha + IL-17. PRG4 secretion rates were increased approximately 80-fold by TGF-beta1, and this effect was counterbalanced by IL-1beta and TNF-alpha. HA MW was predominantly <1 MDa for controls and individual cytokine stimulation, but was concentrated at >3 MDa after stimulation by IL-1beta + TGF-beta1 + TNF-alpha to resemble the distribution in human SF. PRG4 MW was unaffected by cytokines and similar to that in human SF. These results contribute to an understanding of the relationship between SF cytokine and lubricant content in health, injury, and disease, and provide approaches for using cytokines to modulate lubricant secretion rates and MW to help achieve desired lubricant composition of fluid in bioreactors.

  2. Nutrient-stimulated insulin secretion in mouse islets is critically dependent on intracellular pH

    PubMed Central

    Gunawardana, Subhadra C; Rocheleau, Jonathan V; Head, W Steven; Piston, David W

    2004-01-01

    Background Many mechanistic steps underlying nutrient-stimulated insulin secretion (NSIS) are poorly understood. The influence of intracellular pH (pHi) on insulin secretion is widely documented, and can be used as an investigative tool. This study demonstrates previously unknown effects of pHi-alteration on insulin secretion in mouse islets, which may be utilized to correct defects in insulin secretion. Methods Different components of insulin secretion in mouse islets were monitored in the presence and absence of forced changes in pHi. The parameters measured included time-dependent potentiation of insulin secretion by glucose, and direct insulin secretion by different mitochondrial and non-mitochondrial secretagogues. Islet pHi was altered using amiloride, removal of medium Cl-, and changing medium pH. Resulting changes in islet pHi were monitored by confocal microscopy using a pH-sensitive fluorescent indicator. To investigate the underlying mechanisms of the effects of pHi-alteration, cellular NAD(P)H levels were measured using two-photon excitation microscopy (TPEM). Data were analyzed using Student's t test. Results Time-dependent potentiation, a function normally absent in mouse islets, can be unmasked by a forced decrease in pHi. The optimal range of pHi for NSIS is 6.4–6.8. Bringing islet pHi to this range enhances insulin secretion by all mitochondrial fuels tested, reverses the inhibition of glucose-stimulated insulin secretion (GSIS) by mitochondrial inhibitors, and is associated with increased levels of cellular NAD(P)H. Conclusions Pharmacological alteration of pHi is a potential means to correct the secretory defect in non-insulin dependent diabetes mellitus (NIDDM), since forcing islet pHi to the optimal range enhances NSIS and induces secretory functions that are normally absent. PMID:15193158

  3. Investigation of morin-induced insulin secretion in cultured pancreatic cells.

    PubMed

    Lin, Mang Hung; Hsu, Chia-Chen; Lin, Jenshinn; Cheng, Juei Tang; Wu, Ming Chang

    2017-07-12

    Morin is a flavonoid contained in guava that is known to reduce hyperglycemia in diabetes. Insulin secretion has been demonstrated to increase following the administration of morin. The present study is designed to investigate the potential mechanism(s) of morin-induced insulin secretion in the MIN6 cell line. First, we identified that morin induced a dose-dependent increase in insulin secretion and intracellular calcium content in MIN6 cells. Morin potentiated glucose-stimulated insulin secretion (GSIS). Additionally, we used siRNA for the ablation of imidazoline receptor protein (NISCH) expression in MIN6 cells. Interestingly, the effects of increased insulin secretion by morin and canavanine were markedly reduced in Si-NISCH cells. Moreover, we used KU14R to block imidazoline I3 receptor (I-3R) that is known to enhance insulin release from the pancreatic β-cells. Without influence on the basal insulin secretion, KU14R dose-dependently inhibited the increased insulin secretion induced by morin or efaroxan in MIN6 cells. Additionally, effects of increased insulin secretion by morin or efaroxan were reduced by diazoxide at the dose sufficient to open KATP channels and attenuated by nifedipine at the dose used to inhibit L-type calcium channels. Otherwise, phospholipase C (PLC) is introduced to couple with imidazoline receptor (I-R). The PLC inhibitor dose-dependently inhibited the effects of morin in MIN6 cells. Similar blockade was also observed in protein kinase C (PKC) inhibitor-treated cells. Taken together, we found that morin increases insulin secretion via the activation of I-R in pancreatic cells. Therefore, morin would be useful to develop in the research and treatment of diabetic disorders. © 2017 John Wiley & Sons Australia, Ltd.

  4. Glucose-induced electrical activities and insulin secretion in pancreatic islet β-cells are modulated by CFTR

    PubMed Central

    Guo, Jing Hui; Chen, Hui; Ruan, Ye Chun; Zhang, Xue Lian; Zhang, Xiao Hu; Fok, Kin Lam; Tsang, Lai Ling; Yu, Mei Kuen; Huang, Wen Qing; Sun, Xiao; Chung, Yiu Wa; Jiang, Xiaohua; Sohma, Yoshiro; Chan, Hsiao Chang

    2014-01-01

    The cause of insulin insufficiency remains unknown in many diabetic cases. Up to 50% adult patients with cystic fibrosis (CF), a disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), develop CF-related diabetes (CFRD) with most patients exhibiting insulin insufficiency. Here we show that CFTR is a regulator of glucose-dependent electrical acitivities and insulin secretion in β-cells. We demonstrate that glucose elicited whole-cell currents, membrane depolarization, electrical bursts or action potentials, Ca2+ oscillations and insulin secretion are abolished or reduced by inhibitors or knockdown of CFTR in primary mouse β-cells or RINm5F β-cell line, or significantly attenuated in CFTR mutant (DF508) mice compared with wild-type mice. VX-809, a newly discovered corrector of DF508 mutation, successfully rescues the defects in DF508 β-cells. Our results reveal a role of CFTR in glucose-induced electrical activities and insulin secretion in β-cells, shed light on the pathogenesis of CFRD and possibly other idiopathic diabetes, and present a potential treatment strategy. PMID:25025956

  5. Insulin-like and IGF-like peptides in the silkmoth Bombyx mori: discovery, structure, secretion, and function

    PubMed Central

    Mizoguchi, Akira; Okamoto, Naoki

    2013-01-01

    A quarter of a century has passed since bombyxin, the first insulin-like peptide identified in insects, was discovered in the silkmoth Bombyx mori. During these years, bombyxin has been studied for its structure, genes, distribution, hemolymph titers, secretion control, as well as physiological functions, thereby stimulating a wide range of studies on insulin-like peptides in other insects. Moreover, recent studies have identified a new class of insulin family peptides, IGF-like peptides, in B. mori and Drosophila melanogaster, broadening the base of the research area of the insulin-related peptides in insects. In this review, we describe the achievements of the studies on insulin-like and IGF-like peptides mainly in B. mori with short histories of their discovery. Our emphasis is that bombyxins, secreted by the brain neurosecretory cells, regulate nutrient-dependent growth and metabolism, whereas the IGF-like peptides, secreted by the fat body and other peripheral tissues, regulate stage-dependent growth of tissues. PMID:23966952

  6. Metabolic memory of ß-cells controls insulin secretion and is mediated by CaMKIIa

    PubMed Central

    Santos, Gustavo Jorge dos; Ferreira, Sandra Mara; Ortis, Fernanda; Rezende, Luiz Fernando; Li, Chengyang; Naji, Ali; Carneiro, Everardo Magalhães; Kaestner, Klaus H.; Boschero, Antonio Carlos

    2014-01-01

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) functions both in regulation of insulin secretion and neurotransmitter release through common downstream mediators. Therefore, we hypothesized that pancreatic ß-cells acquire and store the information contained in calcium pulses as a form of “metabolic memory”, just as neurons store cognitive information. To test this hypothesis, we developed a novel paradigm of pulsed exposure of ß-cells to intervals of high glucose, followed by a 24-h consolidation period to eliminate any acute metabolic effects. Strikingly, ß-cells exposed to this high-glucose pulse paradigm exhibited significantly stronger insulin secretion. This metabolic memory was entirely dependent on CaMKII. Metabolic memory was reflected on the protein level by increased expression of proteins involved in glucose sensing and Ca2+-dependent vesicle secretion, and by elevated levels of the key ß-cell transcription factor MAFA. In summary, like neurons, human and mouse ß-cells are able to acquire and retrieve information. PMID:24944908

  7. Metabolic memory of ß-cells controls insulin secretion and is mediated by CaMKII.

    PubMed

    Santos, Gustavo Jorge Dos; Ferreira, Sandra Mara; Ortis, Fernanda; Rezende, Luiz Fernando; Li, Chengyang; Naji, Ali; Carneiro, Everardo Magalhães; Kaestner, Klaus H; Boschero, Antonio Carlos

    2014-07-01

    Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) functions both in regulation of insulin secretion and neurotransmitter release through common downstream mediators. Therefore, we hypothesized that pancreatic ß-cells acquire and store the information contained in calcium pulses as a form of "metabolic memory", just as neurons store cognitive information. To test this hypothesis, we developed a novel paradigm of pulsed exposure of ß-cells to intervals of high glucose, followed by a 24-h consolidation period to eliminate any acute metabolic effects. Strikingly, ß-cells exposed to this high-glucose pulse paradigm exhibited significantly stronger insulin secretion. This metabolic memory was entirely dependent on CaMKII. Metabolic memory was reflected on the protein level by increased expression of proteins involved in glucose sensing and Ca(2+)-dependent vesicle secretion, and by elevated levels of the key ß-cell transcription factor MAFA. In summary, like neurons, human and mouse ß-cells are able to acquire and retrieve information.

  8. Effect of lipids on insulin, growth hormone and exocrine pancreatic secretion in man.

    PubMed

    Raptis, S; Dollinger, H C; von Berger, L; Kissing, J; Schröder, K E; Klör, U; Pfeiffer, E F

    1975-11-21

    Influences of fat on release of insulin, growth hormone and pancreatic enzyme secretion were studied in 35 metabolically healthy subjects. A fat solution containing 40 g of soy bean oil was administered, I.V., orally and intraduodenally. In all cases there was a similar increase of insulin but the rise in serum insulin after oral or intraduodenal fat administration was not related to the changes in plasma free fatty acids, free glycerol and triglyceride levels. Blood surgar responded according to insulin secretion. The route of fat administration may possibly influence growth hormone secretion. Following intraduodenal fat administration volume and bicarbonate contents of the duodenal juice rose slightly whereas trypsin and bilirubin content increased considerably. These results suggest that insulin secretion after oral or intraduodenal administration of fat is influenced by intestinal factors. Cholecystokinin-pancroezymin and gastric inhibitory polypeptide are qualified to serve as such factors.

  9. GPR54 peptide agonists stimulate insulin secretion from murine, porcine and human islets.

    PubMed

    Bowe, James E; Foot, Victoria L; Amiel, Stephanie A; Huang, Gao Cai; Lamb, Morgan W; Lakey, Jonathan; Jones, Peter M; Persaud, Shanta J

    2012-01-01

    This study was designed to determine the effects of 10 and 13 amino acid forms of kisspeptin on dynamic insulin secretion from mammalian islets since it is not clear from published data whether the shorter peptide is stimulatory while the longer peptide inhibits insulin release. Insulin secretion was measured by radioimmunoassay following perifusion of human, pig, rat and mouse isolated islets with kisspeptin-10 or kisspeptin-13 in the presence of 20 mM glucose. Both peptides stimulated rapid, reversible potentiation of glucose-stimulated insulin secretion from islets of all species tested. These data indicate that both kisspeptin-10 and kisspeptin-13, which is an extension of kisspeptin-10 by three amino acids, act directly at islet β-cells of various species to potentiate insulin secretion, and suggest that inhibitory effects reported in earlier studies may reflect differences in experimental protocols.

  10. Quantitative visualization of synchronized insulin secretion from 3D-cultured cells.

    PubMed

    Suzuki, Takahiro; Kanamori, Takao; Inouye, Satoshi

    2017-05-13

    Quantitative visualization of synchronized insulin secretion was performed in an isolated rat pancreatic islet and a spheroid of rat pancreatic beta cell line using a method of video-rate bioluminescence imaging. Video-rate images of insulin secretion from 3D-cultured cells were obtained by expressing the fusion protein of insulin and Gaussia luciferase (Insulin-GLase). A subclonal rat INS-1E cell line stably expressing Insulin-GLase, named iGL, was established and a cluster of iGL cells showed oscillatory insulin secretion that was completely synchronized in response to high glucose. Furthermore, we demonstrated the effect of an antidiabetic drug, glibenclamide, on synchronized insulin secretion from 2D- and 3D-cultured iGL cells. The amount of secreted Insulin-GLase from iGL cells was also determined by a luminometer. Thus, our bioluminescence imaging method could generally be used for investigating protein secretion from living 3D-cultured cells. In addition, iGL cell line would be valuable for evaluating antidiabetic drugs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Synaptotagmin-7 phosphorylation mediates GLP-1-dependent potentiation of insulin secretion from β-cells.

    PubMed

    Wu, Bingbing; Wei, Shunhui; Petersen, Natalia; Ali, Yusuf; Wang, Xiaorui; Bacaj, Taulant; Rorsman, Patrik; Hong, Wanjin; Südhof, Thomas C; Han, Weiping

    2015-08-11

    Glucose stimulates insulin secretion from β-cells by increasing intracellular Ca(2+). Ca(2+) then binds to synaptotagmin-7 as a major Ca(2+) sensor for exocytosis, triggering secretory granule fusion and insulin secretion. In type-2 diabetes, insulin secretion is impaired; this impairment is ameliorated by glucagon-like peptide-1 (GLP-1) or by GLP-1 receptor agonists, which improve glucose homeostasis. However, the mechanism by which GLP-1 receptor agonists boost insulin secretion remains unclear. Here, we report that GLP-1 stimulates protein kinase A (PKA)-dependent phosphorylation of synaptotagmin-7 at serine-103, which enhances glucose- and Ca(2+)-stimulated insulin secretion and accounts for the improvement of glucose homeostasis by GLP-1. A phospho-mimetic synaptotagmin-7 mutant enhances Ca(2+)-triggered exocytosis, whereas a phospho-inactive synaptotagmin-7 mutant disrupts GLP-1 potentiation of insulin secretion. Our findings thus suggest that synaptotagmin-7 is directly activated by GLP-1 signaling and may serve as a drug target for boosting insulin secretion. Moreover, our data reveal, to our knowledge, the first physiological modulation of Ca(2+)-triggered exocytosis by direct phosphorylation of a synaptotagmin.

  12. A single-islet microplate assay to measure mouse and human islet insulin secretion.

    PubMed

    Truchan, Nathan A; Brar, Harpreet K; Gallagher, Shannon J; Neuman, Joshua C; Kimple, Michelle E

    2015-01-01

    One complication to comparing β-cell function among islet preparations, whether from genetically identical or diverse animals or human organ donors, is the number of islets required per assay. Islet numbers can be limiting, meaning that fewer conditions can be tested; other islet measurements must be excluded; or islets must be pooled from multiple animals/donors for each experiment. Furthermore, pooling islets negates the possibility of performing single-islet comparisons. Our aim was to validate a 96-well plate-based single islet insulin secretion assay that would be as robust as previously published methods to quantify glucose-stimulated insulin secretion from mouse and human islets. First, we tested our new assay using mouse islets, showing robust stimulation of insulin secretion 24 or 48 h after islet isolation. Next, we utilized the assay to quantify mouse islet function on an individual islet basis, measurements that would not be possible with the standard pooled islet assay methods. Next, we validated our new assay using human islets obtained from the Integrated Islet Distribution Program (IIDP). Human islets are known to have widely varying insulin secretion capacity, and using our new assay we reveal biologically relevant factors that are significantly correlated with human islet function, whether displayed as maximal insulin secretion response or fold-stimulation of insulin secretion. Overall, our results suggest this new microplate assay will be a useful tool for many laboratories, expert or not in islet techniques, to be able to precisely quantify islet insulin secretion from their models of interest.

  13. Brain glucagon-like peptide–1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage

    PubMed Central

    Knauf, Claude; Cani, Patrice D.; Perrin, Christophe; Iglesias, Miguel A.; Maury, Jean François; Bernard, Elodie; Benhamed, Fadilha; Grémeaux, Thierry; Drucker, Daniel J.; Kahn, C. Ronald; Girard, Jean; Tanti, Jean François; Delzenne, Nathalie M.; Postic, Catherine; Burcelin, Rémy

    2005-01-01

    Intestinal glucagon-like peptide–1 (GLP-1) is a hormone released into the hepatoportal circulation that stimulates pancreatic insulin secretion. GLP-1 also acts as a neuropeptide to control food intake and cardiovascular functions, but its neural role in glucose homeostasis is unknown. We show that brain GLP-1 controlled whole-body glucose fate during hyperglycemic conditions. In mice undergoing a hyperglycemic hyperinsulinemic clamp, icv administration of the specific GLP-1 receptor antagonist exendin 9–39 (Ex9) increased muscle glucose utilization and glycogen content. This effect did not require muscle insulin action, as it also occurred in muscle insulin receptor KO mice. Conversely, icv infusion of the GLP-1 receptor agonist exendin 4 (Ex4) reduced insulin-stimulated muscle glucose utilization. In hyperglycemia achieved by i.v. infusion of glucose, icv Ex4, but not Ex9, caused a 4-fold increase in insulin secretion and enhanced liver glycogen storage. However, when glucose was infused intragastrically, icv Ex9 infusion lowered insulin secretion and hepatic glycogen levels, whereas no effects of icv Ex4 were observed. In diabetic mice fed a high-fat diet, a 1-month chronic i.p. Ex9 treatment improved glucose tolerance and fasting glycemia. Our data show that during hyperglycemia, brain GLP-1 inhibited muscle glucose utilization and increased insulin secretion to favor hepatic glycogen stores, preparing efficiently for the next fasting state. PMID:16322793

  14. Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage.

    PubMed

    Knauf, Claude; Cani, Patrice D; Perrin, Christophe; Iglesias, Miguel A; Maury, Jean François; Bernard, Elodie; Benhamed, Fadilha; Grémeaux, Thierry; Drucker, Daniel J; Kahn, C Ronald; Girard, Jean; Tanti, Jean François; Delzenne, Nathalie M; Postic, Catherine; Burcelin, Rémy

    2005-12-01

    Intestinal glucagon-like peptide-1 (GLP-1) is a hormone released into the hepatoportal circulation that stimulates pancreatic insulin secretion. GLP-1 also acts as a neuropeptide to control food intake and cardiovascular functions, but its neural role in glucose homeostasis is unknown. We show that brain GLP-1 controlled whole-body glucose fate during hyperglycemic conditions. In mice undergoing a hyperglycemic hyperinsulinemic clamp, icv administration of the specific GLP-1 receptor antagonist exendin 9-39 (Ex9) increased muscle glucose utilization and glycogen content. This effect did not require muscle insulin action, as it also occurred in muscle insulin receptor KO mice. Conversely, icv infusion of the GLP-1 receptor agonist exendin 4 (Ex4) reduced insulin-stimulated muscle glucose utilization. In hyperglycemia achieved by i.v. infusion of glucose, icv Ex4, but not Ex9, caused a 4-fold increase in insulin secretion and enhanced liver glycogen storage. However, when glucose was infused intragastrically, icv Ex9 infusion lowered insulin secretion and hepatic glycogen levels, whereas no effects of icv Ex4 were observed. In diabetic mice fed a high-fat diet, a 1-month chronic i.p. Ex9 treatment improved glucose tolerance and fasting glycemia. Our data show that during hyperglycemia, brain GLP-1 inhibited muscle glucose utilization and increased insulin secretion to favor hepatic glycogen stores, preparing efficiently for the next fasting state.

  15. Reduced insulin secretion and glucose intolerance are involved in the fasting susceptibility of common vampire bats.

    PubMed

    Freitas, Mariella B; Queiroz, Joicy F; Dias Gomes, Carolinne I; Collares-Buzato, Carla B; Barbosa, Helena C; Boschero, Antonio C; Gonçalves, Carlos A; Pinheiro, Eliana C

    2013-03-01

    Susceptibility during fasting has been reported for the common vampire bat (Desmodus rotundus), to the point of untimely deaths after only 2-3 nights of fasting. To investigate the underlying physiology of this critical metabolic condition, we analyzed serum insulin levels, pancreatic islets morphometry and immunocytochemistry (ICC), static insulin secretion in pancreas fragments, and insulin signaling mechanism in male vampire bats. A glucose tolerance test (ipGTT) was also performed. Serum insulin was found to be lower in fed vampires compared to other mammals, and was significantly reduced after 24h fasting. Morphometrical analyses revealed small irregular pancreatic islets with reduced percentage of β-cell mass compared to other bats. Static insulin secretion analysis showed that glucose-stimulated insulin secretion was impaired, as insulin levels did not reach significance under high glucose concentrations, whereas the response to the amino acid leucin was preserved. Results from ipGTT showed a failure on glucose clearance, indicating glucose intolerance due to diminished pancreatic insulin secretion and/or decreased β-cell response to glucose. In conclusion, data presented here indicate lower insulinemia and impaired insulin secretion in D. rotundus, which is consistent with the limited ability to store body energy reserves, previously reported in these animals. Whether these metabolic and hormonal features are associated with their blood diet remains to be determined. The peculiar food sharing through blood regurgitation, reported to this species, might be an adaptive mechanism overcoming this metabolic susceptibility.

  16. Regulation and secretion of Xanthomonas virulence factors.

    PubMed

    Büttner, Daniela; Bonas, Ulla

    2010-03-01

    Plant pathogenic bacteria of the genus Xanthomonas cause a variety of diseases in economically important monocotyledonous and dicotyledonous crop plants worldwide. Successful infection and bacterial multiplication in the host tissue often depend on the virulence factors secreted including adhesins, polysaccharides, LPS and degradative enzymes. One of the key pathogenicity factors is the type III secretion system, which injects effector proteins into the host cell cytosol to manipulate plant cellular processes such as basal defense to the benefit of the pathogen. The coordinated expression of bacterial virulence factors is orchestrated by quorum-sensing pathways, multiple two-component systems and transcriptional regulators such as Clp, Zur, FhrR, HrpX and HpaR. Furthermore, virulence gene expression is post-transcriptionally controlled by the RNA-binding protein RsmA. In this review, we summarize the current knowledge on the infection strategies and regulatory networks controlling secreted virulence factors from Xanthomonas species.

  17. [Effects of chemical constituents of Crossostephium chinense on insulin secretion in rat islets in vitro].

    PubMed

    Zou, Lei; Wu, Qi; Yang, Xiuwei; Fu, Dexian

    2009-06-01

    To investigate the effects of the chemical constituents of the whole herbs of Crossostephium chinense on insulin secretion in rat islets. Islets were isolated from rat pancreata, cultured in vitro, and measured by color signals of dithizone stained digestion solution for detection of pancreatic islets. The morphological observation of islets was carried out by inverted microscope. The effects of test compounds, scopoletin (1), scopolin (2), tanacetin (3), quercetagetin-3,6,7-trimethylether (4) and 5-O-methyl-myo-inositol (5) isolated from the whole herbs of C. chinense, on the insulin secreting level from islets were compared with those of glybenclamide as a positive control substances, and the difference in insulin secreting level from islets between the presence and absence of test compounds was assayed. There was no difference in basal insulin secretion before and after 2 h incubation period of rat islets. The islets treated with quercetagetin-3,6,7-trimethylether have about 2-fold higher insulin secreting level (P < 0.01) compared a normal control group. The islets treated with 5-O-methyl-myo-inositol have about 1.5-fold higher insulin secreting level (P < 0.05) compared to a normal control group. Whereas the islets treated with scopoletin show about 1.9-fold lower basal insulin secreting level (P < 0.05) than a normal control group. In this paper the developed cultivation method of isolated pancreatic islets from rat can be used as a kind of islet-based drug screening model for diabetes mellitus in vitro. Quercetagetin-3,6,7-trimethylether and 5-O-methyl-myo-inositol could enhance rat islet insulin secretion and further in vivo studies are needed to clarify the nature of such an observation. However, scopletin suppress rat islet insulin secretion.

  18. Endocrine Determinants of Changes in Insulin Sensitivity and Insulin Secretion during a Weight Cycle in Healthy Men

    PubMed Central

    Karschin, Judith; Lagerpusch, Merit; Enderle, Janna; Eggeling, Ben; Müller, Manfred J.; Bosy-Westphal, Anja

    2015-01-01

    Objective Changes in insulin sensitivity (IS) and insulin secretion occur with perturbations in energy balance and glycemic load (GL) of the diet that may precede the development of insulin resistance and hyperinsulinemia. Determinants of changes in IS and insulin secretion with weight cycling in non-obese healthy subjects remain unclear. Methods In a 6wk controlled 2-stage randomized dietary intervention 32 healthy men (26±4y, BMI: 24±2kg/m2) followed 1wk of overfeeding (OF), 3wks of caloric restriction (CR) containing either 50% or 65% carbohydrate (CHO) and 2wks of refeeding (RF) with the same amount of CHO but either low or high glycaemic index at ±50% energy requirement. Measures of IS (basal: HOMA-index, postprandial: Matsuda-ISI), insulin secretion (early: Stumvoll-index, total: tAUC-insulin/tAUC-glucose) and potential endocrine determinants (ghrelin, leptin, adiponectin, thyroid hormone levels, 24h-urinary catecholamine excretion) were assessed. Results IS improved and insulin secretion decreased due to CR and normalized upon RF. Weight loss-induced improvements in basal and postprandial IS were associated with decreases in leptin and increases in ghrelin levels, respectively (r = 0.36 and r = 0.62, p<0.05). Weight regain-induced decrease in postprandial IS correlated with increases in adiponectin, fT3, TSH, GL of the diet and a decrease in ghrelin levels (r-values between -0.40 and 0.83, p<0.05) whereas increases in early and total insulin secretion were associated with a decrease in leptin/adiponectin-ratio (r = -0.52 and r = -0.46, p<0.05) and a decrease in fT4 (r = -0.38, p<0.05 for total insulin secretion only). After controlling for GL associations between RF-induced decrease in postprandial IS and increases in fT3 and TSH levels were no longer significant. Conclusion Weight cycling induced changes in IS and insulin secretion were associated with changes in all measured hormones, except for catecholamine excretion. While leptin, adiponectin and

  19. Association of nocturnal melatonin secretion with insulin resistance in nondiabetic young women.

    PubMed

    McMullan, Ciaran J; Curhan, Gary C; Schernhammer, Eva S; Forman, John P

    2013-07-15

    Exogenous melatonin ameliorates insulin resistance in animals, while among humans, polymorphisms in the melatonin receptor gene are associated with insulin resistance. We aimed to investigate the association of endogenous nocturnal melatonin secretion with insulin resistance in humans. We analyzed the association between endogenous nocturnal melatonin secretion, estimated by measuring the main melatonin metabolite, 6-sulfatoxymelatonin, from the first morning urinary void, and the prevalence of insulin resistance based on fasting blood samples collected in a cross-sectional study of 1,075 US women (1997-1999) without diabetes, hypertension, or malignancy. Urinary 6-sulfatoxymelatonin level was standardized to urinary creatinine level; insulin resistance was defined as an insulin sensitivity index value (using the McAuley formula) less than 7.85. Logistic regression models included adjustment for age, body mass index, smoking, physical activity, alcohol intake, dietary glycemic index, family history of diabetes mellitus, blood pressure, plasma total cholesterol, uric acid, and estimated glomerular filtration rate. Higher nocturnal melatonin secretion was inversely associated with insulin levels and insulin resistance. In fully adjusted models, the odds ratio for insulin resistance was 0.45 (95% confidence interval: 0.28, 0.74) among women in the highest quartile of urinary 6-sulfatoxymelatonin:creatinine ratio compared with women in the lowest quartile. Nocturnal melatonin secretion is independently and inversely associated with insulin resistance.

  20. Insulin secretion stimulated by allogeneic lymphocytes in an inbred strain of mice.

    PubMed Central

    García, J B; Venturino, M C; Alvarez, E; Fabiano de Bruno, L; Braun, M; Pivetta, O H; Basabe, J C

    1986-01-01

    Effects of intraperitoneal injection of allogeneic lymphocytes on insulin secretion were studied in incubated pancreas slices from BALB/c mice. Injection of allogeneic lymphocytes from C57BL/6J (H2b) mice increased insulin secretion, both in basal and 11-mM glucose-stimulated conditions. This effect was only present when at least 5 X 10(6) or 1 X 10(6) cells were injected (in basal and stimulated conditions, respectively). Glucose-induced insulin secretion (3.3-27.5 mM) was significantly increased in pancreata from mice injected with allogeneic lymphocytes. No effect was observed when glucose was not included in the incubation medium. Intraperitoneal injection of Dextran 70 produced no change in glucose-elicited insulin secretion. There were no differences in glucagon and somatostatin (SRIF) secretion obtained from pancreas of mice injected with allogeneic or syngeneic lymphocytes. Injection of allogeneic cells increases insulin secretion (basal and both phases of 11 mM glucose-stimulated secretion). Puromycin significantly inhibited the second phase of insulin secretion. These results suggest that: Injection of allogeneic lymphocytes raises both basal and glucose-stimulated insulin secretion. This effect seems to be connected with the major histocompatibility complex, and to be related to the number of allogeneic cells injected. Injection of allogeneic lymphocytes seems to sensitize the beta cell response to glucose stimulus. Neither glucagon nor SRIF secretion are altered by alloantigen injection. The stimulatory effect of allogeneic lymphocytes is related, at least in part, to insulin synthesis. PMID:2871044

  1. Relationship between whole-body macronutrient oxidative partitioning and pancreatic insulin secretion/β-cell function in non-diabetic humans

    PubMed Central

    Galgani, J. E.; Mizgier, M. L.; Mari, A.; Ravussin, E.

    2014-01-01

    Background Glucose-stimulated insulin secretion correlates inversely with the degree of whole-body insulin sensitivity suggesting a crosstalk between peripheral organs and pancreas. Such sensing mechanism could be mediated by changes in glucose flux (uptake, oxidation or storage) in peripheral tissues that may drive insulin secretion. Aim To relate whole-body non-protein respiratory quotient (npRQ), an index of macronutrient oxidative partitioning, with insulin secretion and β-cell function in non-diabetic individuals. Methods Macronutrient oxidation was measured after an overnight fast and for 4 hours after a 75-g oral glucose tolerance test (OGTT) in 30 participants (15/15 males/females; 35±12 y; 27±4 kg/m2). Furthermore, npRQ was assessed for 24 hours in a metabolic chamber. Insulin secretion was estimated by deconvolution of serum C-peptide concentration (fasting and 4-h OGTT) and from 24-h urinary C-peptide excretion corrected for energy intake (metabolic chamber). β-cell function parameters were obtained by mathematical modelling, while insulin sensitivity was determined by a euglycemic-hyperinsulinemic clamp (120 mU·m−2·min). Results Insulin secretion (from 24-h urinary C-peptide) correlated inversely with 24-h npRQ (r=−0.61; p=0.001), even after controlling for insulin sensitivity, energy balance, age and body mass index (r=−0.52; p=0.01). In turn, insulin secretion (from serum C-peptide) was not associated with fasting or OGTT npRQ. However, fasting npRQ was positively correlated with rate sensitivity (r=0.40; p<0.05) and marginally with glucose sensitivity (r=0.34; p=0.08). Conclusion Macronutrient oxidative partitioning, specifically glucose oxidation, might play a role on the regulation of insulin secretion. Further studies should aim at identifying the signals linking these processes. PMID:25176602

  2. Drp1 guarding of the mitochondrial network is important for glucose-stimulated insulin secretion in pancreatic beta cells.

    PubMed

    Reinhardt, Florian; Schultz, Julia; Waterstradt, Rica; Baltrusch, Simone

    2016-06-10

    Mitochondria form a tubular network in mammalian cells, and the mitochondrial life cycle is determined by fission, fusion and autophagy. Dynamin-related protein 1 (Drp1) has a pivotal role in these processes because it alone is able to constrict mitochondria. However, the regulation and function of Drp1 have been shown to vary between cell types. Mitochondrial morphology affects mitochondrial metabolism and function. In pancreatic beta cells mitochondrial metabolism is a key component of the glucose-induced cascade of insulin secretion. The goal of the present study was to investigate the action of Drp1 in pancreatic beta cells. For this purpose Drp1 was down-regulated by means of shDrp1 in insulin-secreting INS1 cells and mouse pancreatic islets. In INS1 cells reduced Drp1 expression resulted in diminished expression of proteins regulating mitochondrial fusion, namely mitofusin 1 and 2, and optic atrophy protein 1. Diminished mitochondrial dynamics can therefore be assumed. After down-regulation of Drp1 in INS1 cells and spread mouse islets the initially homogenous mitochondrial network characterised by a moderate level of interconnections shifted towards high heterogeneity with elongated, clustered and looped mitochondria. These morphological changes were found to correlate directly with functional alterations. Mitochondrial membrane potential and ATP generation were significantly reduced in INS1 cells after Drp1down-regulation. Finally, a significant loss of glucose-stimulated insulin secretion was demonstrated in INS1 cells and mouse pancreatic islets. In conclusion, Drp1 expression is important in pancreatic beta cells to maintain the regulation of insulin secretion.

  3. [Synthesis and regulation of growth hormone secretion].

    PubMed

    Miyachi, Y; Yakushiji, F; Terazono, T

    1993-10-01

    Human growth hormone (hGH) is a single chain, 22 kd-protein with two intramolecular disulfide bonds. The hGH gene is located on chromosome 17 at band q22-q24 and has four introns separating five coding exons. The expression of hGH is restricted to the pituitary and regulated by GHF-1 which binds to the hGH promoter acting in concert with several other more ubiquitous DNA binding proteins. The secretion of hGH is regulated by GH releasing hormone (GRH) and somatostatin. GRH controls GH synthesis by stimulating transcription of GH mRNA while somatostatin determines the timing and amplitude of GH pulses. Pulsatile GH secretion is influenced by a number of neurogenic, metabolic and hormonal factors.

  4. Urea impairs β cell glycolysis and insulin secretion in chronic kidney disease

    PubMed Central

    Koppe, Laetitia; Nyam, Elsa; Vivot, Kevin; Manning Fox, Jocelyn E.; Dai, Xiao-Qing; Nguyen, Bich N.; Attané, Camille; Moullé, Valentine S.; MacDonald, Patrick E.; Ghislain, Julien

    2016-01-01

    Disorders of glucose homeostasis are common in chronic kidney disease (CKD) and are associated with increased mortality, but the mechanisms of impaired insulin secretion in this disease remain unclear. Here, we tested the hypothesis that defective insulin secretion in CKD is caused by a direct effect of urea on pancreatic β cells. In a murine model in which CKD is induced by 5/6 nephrectomy (CKD mice), we observed defects in glucose-stimulated insulin secretion in vivo and in isolated islets. Similarly, insulin secretion was impaired in normal mouse and human islets that were cultured with disease-relevant concentrations of urea and in islets from normal mice treated orally with urea for 3 weeks. In CKD mouse islets as well as urea-exposed normal islets, we observed an increase in oxidative stress and protein O-GlcNAcylation. Protein O-GlcNAcylation was also observed in pancreatic sections from CKD patients. Impairment of insulin secretion in both CKD mouse and urea-exposed islets was associated with reduced glucose utilization and activity of phosphofructokinase 1 (PFK-1), which could be reversed by inhibiting O-GlcNAcylation. Inhibition of O-GlcNAcylation also restored insulin secretion in both mouse models. These results suggest that insulin secretory defects associated with CKD arise from elevated circulating levels of urea that increase islet protein O-GlcNAcylation and impair glycolysis. PMID:27525435

  5. Urea impairs β cell glycolysis and insulin secretion in chronic kidney disease.

    PubMed

    Koppe, Laetitia; Nyam, Elsa; Vivot, Kevin; Manning Fox, Jocelyn E; Dai, Xiao-Qing; Nguyen, Bich N; Trudel, Dominique; Attané, Camille; Moullé, Valentine S; MacDonald, Patrick E; Ghislain, Julien; Poitout, Vincent

    2016-09-01

    Disorders of glucose homeostasis are common in chronic kidney disease (CKD) and are associated with increased mortality, but the mechanisms of impaired insulin secretion in this disease remain unclear. Here, we tested the hypothesis that defective insulin secretion in CKD is caused by a direct effect of urea on pancreatic β cells. In a murine model in which CKD is induced by 5/6 nephrectomy (CKD mice), we observed defects in glucose-stimulated insulin secretion in vivo and in isolated islets. Similarly, insulin secretion was impaired in normal mouse and human islets that were cultured with disease-relevant concentrations of urea and in islets from normal mice treated orally with urea for 3 weeks. In CKD mouse islets as well as urea-exposed normal islets, we observed an increase in oxidative stress and protein O-GlcNAcylation. Protein O-GlcNAcylation was also observed in pancreatic sections from CKD patients. Impairment of insulin secretion in both CKD mouse and urea-exposed islets was associated with reduced glucose utilization and activity of phosphofructokinase 1 (PFK-1), which could be reversed by inhibiting O-GlcNAcylation. Inhibition of O-GlcNAcylation also restored insulin secretion in both mouse models. These results suggest that insulin secretory defects associated with CKD arise from elevated circulating levels of urea that increase islet protein O-GlcNAcylation and impair glycolysis.

  6. ER stress in adipocytes inhibits insulin signaling, represses lipolysis, and alters the secretion of adipokines without inhibiting glucose transport.

    PubMed

    Xu, L; Spinas, G A; Niessen, M

    2010-08-01

    The endoplasmic reticulum (ER) is the intra-cellular site, where secreted and membrane proteins are synthesized. ER stress and activation of the unfolded protein response (UPR) contribute to insulin resistance and the development of diabetes in obesity. It was shown previously in hepatocytes that the UPR activates c-jun N-terminal kinase (JNK), which phosphorylates insulin receptor substrate (IRS) proteins on serine residues thereby inhibiting insulin signal transduction. Here we describe how ER stress affects insulin signaling and the biological function of adipocytes. In addition to inhibition of IRS we found that ER stress downregulates the expression of the insulin receptor. Concomitantly, insulin-induced activation of Akt/PKB and of ERK1/2 was strongly inhibited. Ectopic expression of IRS1 or IRS2 strongly counteracted the inhibitory effect of ER stress on insulin signaling while pharmacological inhibition of JNK with SP600125 resulted only in a mild improvement. ER stress decreased the secretion of the adipokines adiponectin and leptin, but strongly increased secretion of IL-6. ER stress inhibited expression and insulin-induced phosphorylation of AS160, reduced lipolysis but did not inhibit glucose transport. Finally, supernatants collected from 3T3-L1 adipocytes undergoing ER stress improved or impaired proliferation when used to condition the culture medium of INS-1E beta-cells dependent on the degree of ER stress. It appears that ER stress in adipocytes might initially lead to changes resembling early prediabetic stages, which at least in part support the regulation of systemic energy homeostasis. Copyright Georg Thieme Verlag KG Stuttgart New York.

  7. ADCY5 Couples Glucose to Insulin Secretion in Human Islets

    PubMed Central

    Mitchell, Ryan K.; Marselli, Lorella; Pullen, Timothy J.; Gimeno Brias, Silvia; Semplici, Francesca; Everett, Katy L.; Cooper, Dermot M.F.; Bugliani, Marco; Marchetti, Piero; Lavallard, Vanessa; Bosco, Domenico; Piemonti, Lorenzo; Johnson, Paul R.; Hughes, Stephen J.; Li, Daliang; Li, Wen-Hong; Shapiro, A.M. James

    2014-01-01

    Single nucleotide polymorphisms (SNPs) within the ADCY5 gene, encoding adenylate cyclase 5, are associated with elevated fasting glucose and increased type 2 diabetes (T2D) risk. Despite this, the mechanisms underlying the effects of these polymorphic variants at the level of pancreatic β-cells remain unclear. Here, we show firstly that ADCY5 mRNA expression in islets is lowered by the possession of risk alleles at rs11708067. Next, we demonstrate that ADCY5 is indispensable for coupling glucose, but not GLP-1, to insulin secretion in human islets. Assessed by in situ imaging of recombinant probes, ADCY5 silencing impaired glucose-induced cAMP increases and blocked glucose metabolism toward ATP at concentrations of the sugar >8 mmol/L. However, calcium transient generation and functional connectivity between individual human β-cells were sharply inhibited at all glucose concentrations tested, implying additional, metabolism-independent roles for ADCY5. In contrast, calcium rises were unaffected in ADCY5-depleted islets exposed to GLP-1. Alterations in β-cell ADCY5 expression and impaired glucose signaling thus provide a likely route through which ADCY5 gene polymorphisms influence fasting glucose levels and T2D risk, while exerting more minor effects on incretin action. PMID:24740569

  8. New type 2 diabetes risk genes provide new insights in insulin secretion mechanisms.

    PubMed

    Schäfer, Silke A; Machicao, Fausto; Fritsche, Andreas; Häring, Hans-Ulrich; Kantartzis, Konstantinos

    2011-08-01

    Type 2 diabetes results from the inability of beta cells to increase insulin secretion sufficiently to compensate for insulin resistance. Insulin resistance is thought to result mainly from environmental factors, such as obesity. However, there is compelling evidence that the decline of both insulin sensitivity and insulin secretion have also a genetic component. Recent genome-wide association studies identified several novel risk genes for type 2 diabetes. The vast majority of these genes affect beta cell function by molecular mechanisms that remain unknown in detail. Nevertheless, we and others could show that a group of genes affect glucose-stimulated insulin secretion, a group incretin-stimulated insulin secretion (incretin sensitivity or secretion) and a group proinsulin-to-insulin conversion. The most important so far type 2 diabetes risk gene, TCF7L2, interferes with all three mechanisms. In addition to advancing knowledge in the pathophysiology of type 2 diabetes, the discovery of novel genetic determinants of diabetes susceptibility may help understanding of gene-environment, gene-therapy and gene-gene interactions. It was also hoped that it could make determination of the individual risk for type 2 diabetes feasible. However, the allelic relative risks of most genetic variants discovered so far are relatively low. Thus, at present, clinical criteria assess the risk for type 2 diabetes with greater sensitivity and specificity than the combination of all known genetic variants.

  9. Paracrine regulation of glucagon secretion: the β/α/δ model

    PubMed Central

    Watts, Margaret; Ha, Joon; Kimchi, Ofer

    2016-01-01

    The regulation of glucagon secretion in the pancreatic α-cell is not well understood. It has been proposed that glucose suppresses glucagon secretion either directly through an intrinsic mechanism within the α-cell or indirectly through an extrinsic mechanism. Previously, we described a mathematical model for isolated pancreatic α-cells and used it to investigate possible intrinsic mechanisms of regulating glucagon secretion. We demonstrated that glucose can suppress glucagon secretion through both ATP-dependent potassium channels (KATP) and a store-operated current (SOC). We have now developed an islet model that combines previously published mathematical models of α- and β-cells with a new model of δ-cells and use it to explore the effects of insulin and somatostatin on glucagon secretion. We show that the model can reproduce experimental observations that the inhibitory effect of glucose remains even when paracrine modulators are no longer acting on the α-cell. We demonstrate how paracrine interactions can either synchronize α- and δ-cells to produce pulsatile oscillations in glucagon and somatostatin secretion or fail to do so. The model can also account for the paradoxical observation that glucagon can be out of phase with insulin, whereas α-cell calcium is in phase with insulin. We conclude that both paracrine interactions and the α-cell's intrinsic mechanisms are needed to explain the response of glucagon secretion to glucose. PMID:26837808

  10. Effect of Human Myotubes-Derived Media on Glucose-Stimulated Insulin Secretion

    PubMed Central

    Cataldo, Luis R.; Gutierrez, Juan; Santos, José L.; Casas, Mariana; Contreras-Ferrat, Ariel E.; Moro, Cedric; Bouzakri, Karim

    2017-01-01

    Fasting to postprandial transition requires a tight adjustment of insulin secretion to its demand, so tissue (e.g., skeletal muscle) glucose supply is assured while hypo-/hyperglycemia are prevented. High muscle glucose disposal after meals is pivotal for adapting to increased glycemia and might drive insulin secretion through muscle-released factors (e.g., myokines). We hypothesized that insulin influences myokine secretion and then increases glucose-stimulated insulin secretion (GSIS). In conditioned media from human myotubes incubated with/without insulin (100 nmol/L) for 24 h, myokines were qualitatively and quantitatively characterized using an antibody-based array and ELISA-based technology, respectively. C57BL6/J mice islets and Wistar rat beta cells were incubated for 24 h with control and conditioned media from noninsulin- and insulin-treated myotubes prior to GSIS determination. Conditioned media from insulin-treated versus nontreated myotubes had higher RANTES but lower IL6, IL8, and MCP1 concentration. Qualitative analyses revealed that conditioned media from noninsulin- and insulin-treated myotubes expressed 32 and 23 out of 80 myokines, respectively. Islets incubated with conditioned media from noninsulin-treated myotubes had higher GSIS versus control islets (p < 0.05). Meanwhile, conditioned media from insulin-treated myotubes did not influence GSIS. In beta cells, GSIS was similar across conditions. In conclusion, factors being present in noninsulin-stimulated muscle cell-derived media appear to influence GSIS in mice islets. PMID:28286777

  11. Effect of Human Myotubes-Derived Media on Glucose-Stimulated Insulin Secretion.

    PubMed

    Mizgier, Maria L; Cataldo, Luis R; Gutierrez, Juan; Santos, José L; Casas, Mariana; Llanos, Paola; Contreras-Ferrat, Ariel E; Moro, Cedric; Bouzakri, Karim; Galgani, Jose E

    2017-01-01

    Fasting to postprandial transition requires a tight adjustment of insulin secretion to its demand, so tissue (e.g., skeletal muscle) glucose supply is assured while hypo-/hyperglycemia are prevented. High muscle glucose disposal after meals is pivotal for adapting to increased glycemia and might drive insulin secretion through muscle-released factors (e.g., myokines). We hypothesized that insulin influences myokine secretion and then increases glucose-stimulated insulin secretion (GSIS). In conditioned media from human myotubes incubated with/without insulin (100 nmol/L) for 24 h, myokines were qualitatively and quantitatively characterized using an antibody-based array and ELISA-based technology, respectively. C57BL6/J mice islets and Wistar rat beta cells were incubated for 24 h with control and conditioned media from noninsulin- and insulin-treated myotubes prior to GSIS determination. Conditioned media from insulin-treated versus nontreated myotubes had higher RANTES but lower IL6, IL8, and MCP1 concentration. Qualitative analyses revealed that conditioned media from noninsulin- and insulin-treated myotubes expressed 32 and 23 out of 80 myokines, respectively. Islets incubated with conditioned media from noninsulin-treated myotubes had higher GSIS versus control islets (p < 0.05). Meanwhile, conditioned media from insulin-treated myotubes did not influence GSIS. In beta cells, GSIS was similar across conditions. In conclusion, factors being present in noninsulin-stimulated muscle cell-derived media appear to influence GSIS in mice islets.

  12. Chronic exposure to free fatty acid reduces pancreatic beta cell insulin content by increasing basal insulin secretion that is not compensated for by a corresponding increase in proinsulin biosynthesis translation.

    PubMed Central

    Bollheimer, L C; Skelly, R H; Chester, M W; McGarry, J D; Rhodes, C J

    1998-01-01

    The pancreatic beta cell normally maintains a stable balance among insulin secretion, insulin production, and insulin degradation to keep optimal intracellular stores of the hormone. Elevated levels of FFA markedly enhance insulin secretion; however, the effects of FFA on insulin production and intracellular stores remain unclear. In this study, twofold elevation in total circulating FFA effected by infusion of lard oil and heparin into rats for 6 h under normoglycemic conditions resulted in a marked elevation of circulating insulin levels evident after 4 h, and a 30% decrease in pancreatic insulin content after a 6-h infusion in vivo. Adding 125 muM oleate to isolated rat pancreatic islets cultured with 5.6 mM glucose caused a 50% fall in their insulin content over 24 h, coupled with a marked enhancement of basal insulin secretion. Both effects of fatty acid were blocked by somatostatin. In contrast to the stimulatory effects of oleate on insulin secretion, glucose-induced proinsulin biosynthesis was inhibited by oleate up to 24 h, but was unaffected thereafter. This result was in spite of a two- to threefold oleate-induced increase in preproinsulin mRNA levels, underscoring the importance of translational regulation of proinsulin biosynthesis in maintaining beta cell insulin stores. Collectively, these results suggest that chronically elevated FFA contribute to beta cell dysfunction in the pathogenesis of NIDDM by significantly increasing the basal rate of insulin secretion. This increase in turn results in a decrease in the beta cell's intracellular stores that cannot be offset by commensurate FFA induction of proinsulin biosynthesis. PMID:9486980

  13. Insulin secretion and cellular glucose metabolism after prolonged low-grade intralipid infusion in young men.

    PubMed

    Jensen, Christine B; Storgaard, Heidi; Holst, Jens J; Dela, Flemming; Madsbad, Sten; Vaag, Allan A

    2003-06-01

    We examined the simultaneous effects of a 24-h low-grade Intralipid infusion on peripheral glucose disposal, intracellular glucose partitioning and insulin secretion rates in twenty young men, by 2-step hyperinsulinemic euglycemic clamp [low insulin clamp (LI), 10 mU/m(2) x min; high insulin clamp (HI), 40 mU/m(2) x min], 3-(3)H-glucose, indirect calorimetry, and iv glucose tolerance test. Free fatty acid concentrations were similar during basal steady state but 3.7- to 13-fold higher during clamps. P-glucagon increased and the insulin/glucagon ratio decreased at both LI and HI during Intralipid infusion. At LI, glucose oxidation decreased by 10%, whereas glucose disposal, glycolytic flux, glucose storage, and glucose production were not significantly altered. At HI, glucose disposal, and glucose oxidation decreased by 12% and 24%, respectively, during Intralipid infusion. Glycolytic flux, glucose storage, and glucose production were unchanged. Insulin secretion rates increased in response to Intralipid infusion, but disposition indices (DI = insulin action.insulin secretion) were unchanged. In conclusion, a 24-h low-grade Intralipid infusion caused insulin resistance in the oxidative (but not in the nonoxidative) glucose metabolism in young healthy men. Moreover, insulin hypersecretion perfectly countered the free-fatty acid-induced insulin resistance. Future studies are needed to determine the role of a prolonged moderate lipid load in subjects at increased risk of developing diabetes.

  14. Insulin signaling regulates neurite growth during metamorphic neuronal remodeling

    PubMed Central

    Gu, Tingting; Zhao, Tao; Hewes, Randall S.

    2014-01-01

    Summary Although the growth capacity of mature neurons is often limited, some neurons can shift through largely unknown mechanisms from stable maintenance growth to dynamic, organizational growth (e.g. to repair injury, or during development transitions). During insect metamorphosis, many terminally differentiated larval neurons undergo extensive remodeling, involving elimination of larval neurites and outgrowth and elaboration of adult-specific projections. Here, we show in the fruit fly, Drosophila melanogaster (Meigen), that a metamorphosis-specific increase in insulin signaling promotes neuronal growth and axon branching after prolonged stability during the larval stages. FOXO, a negative effector in the insulin signaling pathway, blocked metamorphic growth of peptidergic neurons that secrete the neuropeptides CCAP and bursicon. RNA interference and CCAP/bursicon cell-targeted expression of dominant-negative constructs for other components of the insulin signaling pathway (InR, Pi3K92E, Akt1, S6K) also partially suppressed the growth of the CCAP/bursicon neuron somata and neurite arbor. In contrast, expression of wild-type or constitutively active forms of InR, Pi3K92E, Akt1, Rheb, and TOR, as well as RNA interference for negative regulators of insulin signaling (PTEN, FOXO), stimulated overgrowth. Interestingly, InR displayed little effect on larval CCAP/bursicon neuron growth, in contrast to its strong effects during metamorphosis. Manipulations of insulin signaling in many other peptidergic neurons revealed generalized growth stimulation during metamorphosis, but not during larval development. These findings reveal a fundamental shift in growth control mechanisms when mature, differentiated neurons enter a new phase of organizational growth. Moreover, they highlight strong evolutionarily conservation of insulin signaling in neuronal growth regulation. PMID:24357229

  15. Differential stimulation of insulin secretion by GLP-1 and Kisspeptin-10.

    PubMed

    Schwetz, Tara A; Reissaus, Christopher A; Piston, David W

    2014-01-01

    β-cells in the pancreatic islet respond to elevated plasma glucose by secreting insulin to maintain glucose homeostasis. In addition to glucose stimulation, insulin secretion is modulated by numerous G-protein coupled receptors (GPCRs). The GPCR ligands Kisspeptin-10 (KP) and glucagon-like peptide-1 (GLP-1) potentiate insulin secretion through Gq and Gs-coupled receptors, respectively. Despite many studies, the signaling mechanisms by which KP and GLP-1 potentiate insulin release are not thoroughly understood. We investigated the downstream signaling pathways of these ligands and their affects on cellular redox potential, intracellular calcium activity ([Ca(2+)]i), and insulin secretion from β-cells within intact murine islets. In contrast to previous studies performed on single β-cells, neither KP nor GLP-1 affect [Ca(2+)]i upon stimulation with glucose. KP significantly increases the cellular redox potential, while no effect is observed with GLP-1, suggesting that KP and GLP-1 potentiate insulin secretion through different mechanisms. Co-treatment with KP and the Gβγ-subunit inhibitor gallein inhibits insulin secretion similar to that observed with gallein alone, while co-treatment with gallein and GLP-1 does not differ from GLP-1 alone. In contrast, co-treatment with the Gβγ activator mSIRK and either KP or GLP-1 stimulates insulin release similar to mSIRK alone. Neither gallein nor mSIRK alter [Ca(2+)]i activity in the presence of KP or GLP-1. These data suggest that KP likely alters insulin secretion through a Gβγ-dependent process that stimulates glucose metabolism without altering Ca(2+) activity, while GLP-1 does so, at least partly, through a Gα-dependent pathway that is independent of both metabolism and Ca(2+).

  16. Differential Stimulation of Insulin Secretion by GLP-1 and Kisspeptin-10

    PubMed Central

    Schwetz, Tara A.; Reissaus, Christopher A.; Piston, David W.

    2014-01-01

    β-cells in the pancreatic islet respond to elevated plasma glucose by secreting insulin to maintain glucose homeostasis. In addition to glucose stimulation, insulin secretion is modulated by numerous G-protein coupled receptors (GPCRs). The GPCR ligands Kisspeptin-10 (KP) and glucagon-like peptide-1 (GLP-1) potentiate insulin secretion through Gq and Gs-coupled receptors, respectively. Despite many studies, the signaling mechanisms by which KP and GLP-1 potentiate insulin release are not thoroughly understood. We investigated the downstream signaling pathways of these ligands and their affects on cellular redox potential, intracellular calcium activity ([Ca2+]i), and insulin secretion from β-cells within intact murine islets. In contrast to previous studies performed on single β-cells, neither KP nor GLP-1 affect [Ca2+]i upon stimulation with glucose. KP significantly increases the cellular redox potential, while no effect is observed with GLP-1, suggesting that KP and GLP-1 potentiate insulin secretion through different mechanisms. Co-treatment with KP and the Gβγ-subunit inhibitor gallein inhibits insulin secretion similar to that observed with gallein alone, while co-treatment with gallein and GLP-1 does not differ from GLP-1 alone. In contrast, co-treatment with the Gβγ activator mSIRK and either KP or GLP-1 stimulates insulin release similar to mSIRK alone. Neither gallein nor mSIRK alter [Ca2+]i activity in the presence of KP or GLP-1. These data suggest that KP likely alters insulin secretion through a Gβγ-dependent process that stimulates glucose metabolism without altering Ca2+ activity, while GLP-1 does so, at least partly, through a Gα-dependent pathway that is independent of both metabolism and Ca2+. PMID:25401335

  17. Enhanced insulin secretion and insulin sensitivity in young lambs with placental insufficiency-induced intrauterine growth restriction.

    PubMed

    Camacho, Leticia E; Chen, Xiaochuan; Hay, William W; Limesand, Sean W

    2017-08-01

    Intrauterine growth restriction (IUGR) is associated with persistent metabolic complications, but information is limited for IUGR infants. We determined glucose-stimulated insulin secretion (GSIS) and insulin sensitivity in young lambs with placental insufficiency-induced IUGR. Lambs with hyperthermia-induced IUGR (n = 7) were compared with control lambs (n = 8). GSIS was measured at 8 ± 1 days of age, and at 15 ± 1 days, body weight-specific glucose utilization rates were measured with radiolabeled d-glucose during a hyperinsulinemic-euglycemic clamp (HEC). IUGR lambs weighed 23% less (P < 0.05) than controls at birth. Fasting plasma glucose and insulin concentrations were not different between IUGR and controls for either study. First-phase insulin secretion was enhanced 2.3-fold in IUGR lambs compared with controls. However, second-phase insulin concentrations, glucose-potentiated arginine-stimulated insulin secretion, and β-cell mass were not different, indicating that IUGR β-cells have an intrinsic enhancement in acute GSIS. Compared with controls, IUGR lambs had higher body weight-specific glucose utilization rates and greater insulin sensitivity at fasting (1.6-fold) and hyperinsulinemic periods (2.4-fold). Improved insulin sensitivity for glucose utilization was not due to differences in skeletal muscle insulin receptor and glucose transporters 1 and 4 concentrations. Plasma lactate concentrations during HEC were elevated in IUGR lambs compared with controls, but no differences were found for glycogen content or citrate synthase activity in liver and muscle. Greater insulin sensitivity for glucose utilization and enhanced acute GSIS in young lambs are predicted from fetal studies but may promote conditions that exaggerate glucose disposal and lead to episodes of hypoglycemia in IUGR infants. Copyright © 2017 the American Physiological Society.

  18. Simvastatin Impairs Insulin Secretion by Multiple Mechanisms in MIN6 Cells

    PubMed Central

    López Rodríguez, Maykel; Stančáková, Alena; Kuusisto, Johanna; Kokkola, Tarja; Laakso, Markku

    2015-01-01

    Statins are widely used in the treatment of hypercholesterolemia and are efficient in the prevention of cardiovascular disease. Molecular mechanisms explaining statin-induced impairment in insulin secretion remain largely unknown. In the current study, we show that simvastatin decreased glucose-stimulated insulin secretion in mouse pancreatic MIN6 β-cells by 59% and 79% (p<0.01) at glucose concentration of 5.5 mmol/l and 16.7 mmol/l, respectively, compared to control, whereas pravastatin did not impair insulin secretion. Simvastatin induced decrease in insulin secretion occurred through multiple targets. In addition to its established effects on ATP-sensitive potassium channels (p = 0.004) and voltage-gated calcium channels (p = 0.004), simvastatin suppressed insulin secretion stimulated by muscarinic M3 or GPR40 receptor agonists (Tak875 by 33%, p = 0.002; GW9508 by 77%, p = 0.01) at glucose level of 5.5 mmol/l, and inhibited calcium release from the endoplasmic reticulum. Impaired insulin secretion caused by simvastatin treatment were efficiently restored by GPR119 or GLP-1 receptor stimulation and by direct activation of cAMP-dependent signaling pathways with forskolin. The effects of simvastatin treatment on insulin secretion were not affected by the presence of hyperglycemia. Our observation of the opposite effects of simvastatin and pravastatin on glucose-stimulated insulin secretion is in agreement with previous reports showing that simvastatin, but not pravastatin, was associated with increased risk of incident diabetes. PMID:26561346

  19. Increased adiposity and insulin correlates with the progressive suppression of pulsatile GH secretion during weight gain.

    PubMed

    Steyn, F J; Xie, T Y; Huang, L; Ngo, S T; Veldhuis, J D; Waters, M J; Chen, C

    2013-01-01

    Pathological changes associated with obesity are thought to contribute to GH deficiency. However, recent observations suggest that impaired GH secretion relative to excess calorie consumption contributes to progressive weight gain and thus may contribute to the development of obesity. To clarify this association between adiposity and GH secretion, we investigated the relationship between pulsatile GH secretion and body weight; epididymal fat mass; and circulating levels of leptin, insulin, non-esterified free fatty acids (NEFAs), and glucose. Data were obtained from male mice maintained on a standard or high-fat diet. We confirm the suppression of pulsatile GH secretion following dietary-induced weight gain. Correlation analyses reveal an inverse relationship between measures of pulsatile GH secretion, body weight, and epididymal fat mass. Moreover, we demonstrate an inverse relationship between measures of pulsatile GH secretion and circulating levels of leptin and insulin. The secretion of GH did not change relative to circulating levels of NEFAs or glucose. We conclude that impaired pulsatile GH secretion in the mouse occurs alongside progressive weight gain and thus precedes the development of obesity. Moreover, data illustrate key interactions between GH secretion and circulating levels of insulin and reflect the potential physiological role of GH in modulation of insulin-induced lipogenesis throughout positive energy balance.

  20. [Role of peripheral serotonin in the insulin secretion and glucose homeostasis].

    PubMed

    Cataldo, Luis Rodrigo; Cortés, Víctor Antonio; Galgani, José Eduardo; Olmos, Pablo Roberto; Santos, José Luis

    2014-09-01

    The most studied roles of serotonin (5-hydroxytryptamine, 5HT) have been related to its action in the Central Nervous System (CNS). However, most of 5HT is produced outside the CNS, mainly in the enterochromaffin cells of the gut. Additionally, other tissues such as the endocrine pancreas, particularly β-cells, have its own serotonin system able to synthesize, secrete and respond to extracellular 5HT through cell surface receptors subtypes that have been grouped in 7 families (HTR1-7). Interestingly, 5HT is stored in granules and released together with insulin from β-cells and its biological significance is likely a combination of intra and extracellular actions. The expression of enzymes involved in 5HT synthesis and their receptors varied markedly in β-pancreatic cells during pregnancy, in parallel with an increase in their insulin secretion potential (probably through the action of Htr3a) and an increase in β-cell mass (through the action of Htr2b and Htr1d). In addition, it has been suggested that gut-derived 5HT may promote hepatic gluconeogenesis during prolonged fasting through Htr2b receptor. Taken together, these findings suggest that peripheral 5HT plays an important role in the regulation of glucose homeostasis through the differential expression and activation of 5-HT membrane receptors on the surface of hepatocytes, adipocytes and pancreatic β-cells.

  1. Chronic effects of palmitate overload on nutrient-induced insulin secretion and autocrine signalling in pancreatic MIN6 beta cells.

    PubMed

    Watson, Maria L; Macrae, Katherine; Marley, Anna E; Hundal, Harinder S

    2011-01-01

    Sustained exposure of pancreatic β cells to an increase in saturated fatty acids induces pleiotropic effects on β-cell function, including a reduction in stimulus-induced insulin secretion. The objective of this study was to investigate the effects of chronic over supply of palmitate upon glucose- and amino acid-stimulated insulin secretion (GSIS and AASIS, respectively) and autocrine-dependent insulin signalling with particular focus on the importance of ceramide, ERK and CaMKII signalling. GSIS and AASIS were both stimulated by >7-fold resulting in autocrine-dependent activation of protein kinase B (PKB, also known as Akt). Insulin release was dependent upon nutrient-induced activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) as their pharmacological inhibition suppressed GSIS/AASIS significantly. Chronic (48 h, 0.4 mM) palmitate treatment blunted glucose/AA-induced activation of CaMKII and ERK and caused a concomitant reduction (~75%) in GSIS/AASIS and autocrine-dependent activation of PKB. This inhibition could not be attributed to enhanced mitochondrial fatty acid uptake/oxidation or ceramide synthesis, which were unaffected by palmitate. In contrast, diacylglycerol synthesis was elevated suggesting increased palmitate esterification rather than oxidation may contribute to impaired stimulus-secretion coupling. Consistent with this, 2-bromopalmitate, a non-oxidisable palmitate analogue, inhibited GSIS as effectively as palmitate. Our results exclude changes in ceramide content or mitochondrial fatty acid handling as factors initiating palmitate-induced defects in insulin release from MIN6 β cells, but suggest that reduced CaMKII and ERK activation associated with palmitate overload may contribute to impaired stimulus-induced insulin secretion.

  2. Chronic Effects of Palmitate Overload on Nutrient-Induced Insulin Secretion and Autocrine Signalling in Pancreatic MIN6 Beta Cells

    PubMed Central

    Watson, Maria L.; Macrae, Katherine; Marley, Anna E.; Hundal, Harinder S.

    2011-01-01

    Background Sustained exposure of pancreatic β cells to an increase in saturated fatty acids induces pleiotropic effects on β-cell function, including a reduction in stimulus-induced insulin secretion. The objective of this study was to investigate the effects of chronic over supply of palmitate upon glucose- and amino acid-stimulated insulin secretion (GSIS and AASIS, respectively) and autocrine-dependent insulin signalling with particular focus on the importance of ceramide, ERK and CaMKII signalling. Principal Findings GSIS and AASIS were both stimulated by >7-fold resulting in autocrine-dependent activation of protein kinase B (PKB, also known as Akt). Insulin release was dependent upon nutrient-induced activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) as their pharmacological inhibition suppressed GSIS/AASIS significantly. Chronic (48 h, 0.4 mM) palmitate treatment blunted glucose/AA-induced activation of CaMKII and ERK and caused a concomitant reduction (∼75%) in GSIS/AASIS and autocrine-dependent activation of PKB. This inhibition could not be attributed to enhanced mitochondrial fatty acid uptake/oxidation or ceramide synthesis, which were unaffected by palmitate. In contrast, diacylglycerol synthesis was elevated suggesting increased palmitate esterification rather than oxidation may contribute to impaired stimulus-secretion coupling. Consistent with this, 2-bromopalmitate, a non-oxidisable palmitate analogue, inhibited GSIS as effectively as palmitate. Conclusions Our results exclude changes in ceramide content or mitochondrial fatty acid handling as factors initiating palmitate-induced defects in insulin release from MIN6 β cells, but suggest that reduced CaMKII and ERK activation associated with palmitate overload may contribute to impaired stimulus-induced insulin secretion. PMID:21998735

  3. Free fatty acid receptor 1 (FFAR1/GPR40) signaling affects insulin secretion by enhancing mitochondrial respiration during palmitate exposure.

    PubMed

    Kristinsson, Hjalti; Bergsten, Peter; Sargsyan, Ernest

    2015-12-01

    Fatty acids affect insulin secretion via metabolism and FFAR1-mediated signaling. Recent reports indicate that these two pathways act synergistically. Still it remains unclear how they interrelate. Taking into account the key role of mitochondria in insulin secretion, we attempted to dissect the metabolic and FFAR1-mediated effects of fatty acids on mitochondrial function. One-hour culture of MIN6 cells with palmitate significantly enhanced mitochondrial respiration. Antagonism or silencing of FFAR1 prevented the palmitate-induced rise in respiration. On the other hand, in the absence of extracellular palmitate FFAR1 agonists caused a modest increase in respiration. Using an agonist of the M3 muscarinic acetylcholine receptor and PKC inhibitor we found that in the presence of the fatty acid mitochondrial respiration is regulated via Gαq protein-coupled receptor signaling. The increase in respiration in palmitate-treated cells was largely due to increased glucose utilization and oxidation. However, glucose utilization was not dependent on FFAR1 signaling. Collectively, these results indicate that mitochondrial respiration in palmitate-treated cells is enhanced via combined action of intracellular metabolism of the fatty acid and the Gαq-coupled FFAR1 signaling. Long-term palmitate exposure reduced ATP-coupling efficiency of mitochondria and deteriorated insulin secretion. The presence of the FFAR1 antagonist during culture did not improve ATP-coupling efficiency, however, it resulted in enhanced mitochondrial respiration and improved insulin secretion after culture. Taken together, our study demonstrates that during palmitate exposure, integrated actions of fatty acid metabolism and fatty acid-induced FFAR1 signaling on mitochondrial respiration underlie the synergistic action of the two pathways on insulin secretion.

  4. SUMOylation Regulates Insulin Exocytosis Downstream of Secretory Granule Docking in Rodents and Humans

    PubMed Central

    Dai, Xiao-Qing; Plummer, Greg; Casimir, Marina; Kang, Youhou; Hajmrle, Catherine; Gaisano, Herbert Y.; Manning Fox, Jocelyn E.; MacDonald, Patrick E.

    2011-01-01

    OBJECTIVE The reversible attachment of small ubiquitin-like modifier (SUMO) proteins controls target localization and function. We examined an acute role for the SUMOylation pathway in downstream events mediating insulin secretion. RESEARCH DESIGN AND METHODS We studied islets and β-cells from mice and human donors, as well as INS-1 832/13 cells. Insulin secretion, intracellular Ca2+, and β-cell exocytosis were monitored after manipulation of the SUMOylation machinery. Granule localization was imaged by total internal reflection fluorescence and electron microscopy; immunoprecipitation and Western blotting were used to examine the soluble NSF attachment receptor (SNARE) complex formation and SUMO1 interaction with synaptotagmin VII. RESULTS SUMO1 impairs glucose-stimulated insulin secretion by blunting the β-cell exocytotic response to Ca2+. The effect of SUMO1 to impair insulin secretion and β-cell exocytosis is rapid and does not require altered gene expression or insulin content, is downstream of granule docking at the plasma membrane, and is dependent on SUMO-conjugation because the deSUMOylating enzyme, sentrin/SUMO-specific protease (SENP)-1, rescues exocytosis. SUMO1 coimmunoprecipitates with the Ca2+ sensor synaptotagmin VII, and this is transiently lost upon glucose stimulation. SENP1 overexpression also disrupts the association of SUMO1 with synaptotagmin VII and mimics the effect of glucose to enhance exocytosis. Conversely, SENP1 knockdown impairs exocytosis at stimulatory glucose levels and blunts glucose-dependent insulin secretion from mouse and human islets. CONCLUSIONS SUMOylation acutely regulates insulin secretion by the direct and reversible inhibition of β-cell exocytosis in response to intracellular Ca2+ elevation. The SUMO protease, SENP1, is required for glucose-dependent insulin secretion. PMID:21266332

  5. Mechanisms of p-methoxycinnamic acid-induced increase in insulin secretion.

    PubMed

    Adisakwattana, S; Hsu, W H; Yibchok-anun, S

    2011-10-01

    p-Methoxycinnamic acid (p-MCA) is a cinnamic acid derivative that shows various pharmacologic actions such as hepatoprotective and antihyperglycemic activities. The present study was to elucidate the mechanisms by which p-MCA increases [Ca²⁺]i and insulin secretion in INS-1 cells. p-MCA (100 μM) increased [Ca²⁺]i in INS-1 cells. The p-MCA-induced insulin secretion and rise in [Ca²⁺]i were markedly inhibited in the absence of extracellular Ca²⁺ or in the presence of an L-type Ca²⁺ channel blocker nimodipine. These results suggested that p-MCA increased Ca²⁺ influx via the L-type Ca²⁺ channels. Diazoxide, an ATP-sensitive K⁺ channel opener, did not alter p-MCA-induced insulin secretion, nor [Ca²⁺]i response. In addition, p-MCA enhanced glucose-, glibenclamide-induced insulin secretion whereas it also potentiated the increase in insulin secretion induced by arginine, and Bay K 8644, an L-type Ca²⁺ channel agonist. Taken together, our results suggest that p-MCA stimulated insulin secretion from pancreatic β-cells by increasing Ca²⁺ influx via the L-type Ca²⁺ channels, but not through the closure of ATP-sensitive K⁺ channels.

  6. Regulation of renal potassium secretion: molecular mechanisms.

    PubMed

    Welling, Paul A

    2013-05-01

    A new understanding of renal potassium balance has emerged as the molecular underpinnings of potassium secretion have become illuminated, highlighting the key roles of apical potassium channels, renal outer medullary potassium channel (ROMK) and Big Potassium (BK), in the aldosterone-sensitive distal nephron and collecting duct. These channels act as the final-regulated components of the renal potassium secretory machinery. Their activity, number, and driving forces are precisely modulated to ensure potassium excretion matches dietary potassium intake. Recent identification of the underlying regulatory mechanisms at the molecular level provides a new appreciation of the physiology and reveals a molecular insight to explain the paradoxic actions of aldosterone on potassium secretion. Here, we review the current state of knowledge in the field.

  7. Indices of insulin secretion during a liquid mixed-meal test in obese youth with diabetes

    USDA-ARS?s Scientific Manuscript database

    To compare indices of insulin secretion, insulin sensitivity (IS),and oral disposition index (oDI) during the liquid mixed-meal test in obese youth with clinically diagnosed type 2 diabetes mellitus (T2DM) and negative autoantibodies (Ab-) versus those with T2DM and positive autoantibodies (Ab+) to ...

  8. Intra- and Inter-Islet Synchronization of Metabolically Driven Insulin Secretion

    PubMed Central

    Pedersen, Morten Gram; Bertram, Richard; Sherman, Arthur

    2005-01-01

    Insulin secretion from pancreatic β-cells is pulsatile with a period of 5–10 min and is believed to be responsible for plasma insulin oscillations with similar frequency. To observe an overall oscillatory insulin profile it is necessary that the insulin secretion from individual β-cells is synchronized within islets, and that the population of islets is also synchronized. We have recently developed a model in which pulsatile insulin secretion is produced as a result of calcium-driven electrical oscillations in combination with oscillations in glycolysis. We use this model to investigate possible mechanisms for intra-islet and inter-islet synchronization. We show that electrical coupling is sufficient to synchronize both electrical bursting activity and metabolic oscillations. We also demonstrate that islets can synchronize by mutually entraining each other by their effects on a simple model “liver,” which responds to the level of insulin secretion by adjusting the blood glucose concentration in an appropriate way. Since all islets are exposed to the blood, the distributed islet-liver system can synchronize the individual islet insulin oscillations. Thus, we demonstrate how intra-islet and inter-islet synchronization of insulin oscillations may be achieved. PMID:15834002

  9. Vibrio vulnificus Secretes an Insulin-degrading Enzyme That Promotes Bacterial Proliferation in Vivo*

    PubMed Central

    Kim, In Hwang; Kim, Ik-Jung; Wen, Yancheng; Park, Na-Young; Park, Jinyoung; Lee, Keun-Woo; Koh, Ara; Lee, Ji-Hyun; Koo, Seung-Hoi; Kim, Kun-Soo

    2015-01-01

    We describe a novel insulin-degrading enzyme, SidC, that contributes to the proliferation of the human bacterial pathogen Vibrio vulnificus in a mouse model. SidC is phylogenetically distinct from other known insulin-degrading enzymes and is expressed and secreted specifically during host infection. Purified SidC causes a significant decrease in serum insulin levels and an increase in blood glucose levels in mice. A comparison of mice infected with wild type V. vulnificus or an isogenic sidC-deletion strain showed that wild type bacteria proliferated to higher levels. Additionally, hyperglycemia leads to increased proliferation of V. vulnificus in diabetic mice. Consistent with these observations, the sid operon was up-regulated in response to low glucose levels through binding of the cAMP-receptor protein (CRP) complex to a region upstream of the operon. We conclude that glucose levels are important for the survival of V. vulnificus in the host, and that this pathogen uses SidC to actively manipulate host endocrine signals, making the host environment more favorable for bacterial survival and growth. PMID:26041774

  10. Activin Signaling Targeted by Insulin/dFOXO Regulates Aging and Muscle Proteostasis in Drosophila

    PubMed Central

    Bai, Hua; Kang, Ping; Hernandez, Ana Maria; Tatar, Marc

    2013-01-01

    Reduced insulin/IGF signaling increases lifespan in many animals. To understand how insulin/IGF mediates lifespan in Drosophila, we performed chromatin immunoprecipitation-sequencing analysis with the insulin/IGF regulated transcription factor dFOXO in long-lived insulin/IGF signaling genotypes. Dawdle, an Activin ligand, is bound and repressed by dFOXO when reduced insulin/IGF extends lifespan. Reduced Activin signaling improves performance and protein homeostasis in muscles of aged flies. Activin signaling through the Smad binding element inhibits the transcription of Autophagy-specific gene 8a (Atg8a) within muscle, a factor controlling the rate of autophagy. Expression of Atg8a within muscle is sufficient to increase lifespan. These data reveal how insulin signaling can regulate aging through control of Activin signaling that in turn controls autophagy, representing a potentially conserved molecular basis for longevity assurance. While reduced Activin within muscle autonomously retards functional aging of this tissue, these effects in muscle also reduce secretion of insulin-like peptides at a distance from the brain. Reduced insulin secretion from the brain may subsequently reinforce longevity assurance through decreased systemic insulin/IGF signaling. PMID:24244197

  11. Stress-impaired transcription factor expression and insulin secretion in transplanted human islets

    PubMed Central

    Dai, Chunhua; Kayton, Nora S.; Shostak, Alena; Poffenberger, Greg; Cyphert, Holly A.; Aramandla, Radhika; Thompson, Courtney; Papagiannis, Ioannis G.; Shiota, Masakazu; Stafford, John M.; Greiner, Dale L.; Herrera, Pedro L.; Shultz, Leonard D.; Stein, Roland; Powers, Alvin C.

    2016-01-01

    Type 2 diabetes is characterized by insulin resistance, hyperglycemia, and progressive β cell dysfunction. Excess glucose and lipid impair β cell function in islet cell lines, cultured rodent and human islets, and in vivo rodent models. Here, we examined the mechanistic consequences of glucotoxic and lipotoxic conditions on human islets in vivo and developed and/or used 3 complementary models that allowed comparison of the effects of hyperglycemic and/or insulin-resistant metabolic stress conditions on human and mouse islets, which responded quite differently to these challenges. Hyperglycemia and/or insulin resistance impaired insulin secretion only from human islets in vivo. In human grafts, chronic insulin resistance decreased antioxidant enzyme expression and increased superoxide and amyloid formation. In human islet grafts, expression of transcription factors NKX6.1 and MAFB was decreased by chronic insulin resistance, but only MAFB decreased under chronic hyperglycemia. Knockdown of NKX6.1 or MAFB expression in a human β cell line recapitulated the insulin secretion defect seen in vivo. Contrary to rodent islet studies, neither insulin resistance nor hyperglycemia led to human β cell proliferation or apoptosis. These results demonstrate profound differences in how excess glucose or lipid influence mouse and human insulin secretion and β cell activity and show that reduced expression of key islet-enriched transcription factors is an important mediator of glucotoxicity and lipotoxicity. PMID:27064285

  12. Adiponectin increases glucose-induced insulin secretion through the activation of lipid oxidation.

    PubMed

    Patané, G; Caporarello, N; Marchetti, P; Parrino, C; Sudano, D; Marselli, L; Vigneri, R; Frittitta, L

    2013-12-01

    The expression of adiponectin receptors has been demonstrated in human and rat pancreatic beta cells, where globular (g) adiponectin rescues rat beta cells from cytokine and fatty acid-induced apoptosis. The aim of our study was to evaluate whether adiponectin has a direct effect on insulin secretion and the metabolic pathways involved. Purified human pancreatic islets and rat beta cells (INS-1E) were exposed (1 h) to g-adiponectin, and glucose-induced insulin secretion was measured. A significant increase in glucose-induced insulin secretion was observed in the presence of g-adiponectin (1 nmol/l) with respect to control cells in both human pancreatic islets (n = 5, p < 0.05) and INS-1E cells (n = 5, p < 0.001). The effect of globular adiponectin on insulin secretion was independent of AMP-dependent protein kinase (AMPK) activation or glucose oxidation. In contrast, g-adiponectin significantly increased oleate oxidation (n = 5, p < 0.05), and the effect of g-adiponectin (p < 0.001) on insulin secretion by INS-1E was significantly reduced in the presence of etomoxir (1 μmol/l), an inhibitor of fatty acid beta oxidation. g-Adiponectin potentiates glucose-induced insulin secretion in both human pancreatic islets and rat beta cells via an AMPK independent pathway. Increased fatty acid oxidation rather than augmented glucose oxidation is the mechanism responsible. Overall, our data indicate that, in addition to its anti-apoptotic action, g-adiponectin has another direct effect on beta cells by potentiating insulin secretion. Adiponectin, therefore, in addition to its well-known effect on insulin sensitivity, has important effects at the pancreatic level.

  13. Aldosterone decreases glucose-stimulated insulin secretion in vivo in mice and in murine islets

    PubMed Central

    Luo, P.; Kreger, M. T.; Brissova, M.; Dai, C.; Whitfield, T. T.; Kim, H. S.; Wasserman, D. H.; Powers, A. C.; Brown, N. J.

    2011-01-01

    Aims/hypothesis Aldosterone concentrations increase in obesity and predict the onset of diabetes. We investigated the effects of aldosterone on glucose homeostasis and insulin secretion in vivo and in vitro. Methods We assessed insulin sensitivity and insulin secretion in aldosterone synthase-deficient (As [also known as Cyp11b2]−/−)and wild-type mice using euglycaemic-hyperinsulinaemic and hyperglycaemic clamps, respectively. We also conducted studies during high sodium intake to normalise renin activity and potassium concentration in As−/− mice. We subsequently assessed the effect of aldosterone on insulin secretion in vitro in the presence or absence of mineralocorticoid receptor antagonists in isolated C57BL/6J islets and in the MIN6 beta cell line. Results Fasting glucose concentrations were reduced in As−/−mice compared with wild-type. During hyperglycaemic clamps, insulin and C-peptide concentrations increased to a greater extent in As−/− than in wild-type mice. This was not attributable to differences in potassium or angiotensin II, as glucose-stimulated insulin secretion was enhanced in As−/− mice even during high sodium intake. There was no difference in insulin sensitivity between As−/− and wild-type mice in euglycaemic-hyperinsulinaemic clamp studies. In islet and MIN6 beta cell studies, aldosterone inhibited glucose and isobutylmethylxanthine-stimulated insulin secretion, an effect that was not blocked by mineralocorticoid receptor antagonism, but was prevented by the superoxide dismutase mimetic tempol. Conclusions/interpretation We demonstrated that aldosterone deficiency or excess modulates insulin secretion in vivo and in vitro via reactive oxygen species and in a manner that is independent of mineralocorticoid receptors. These findings provide insight into the mechanism of glucose intolerance in conditions of relative aldosterone excess. PMID:21519965

  14. Involvement of RhoA/ROCK in insulin secretion of pancreatic β-cells in 3D culture.

    PubMed

    Liu, Xiaofang; Yan, Fang; Yao, Hailei; Chang, Mingyang; Qin, Jinhua; Li, Yali; Wang, Yunfang; Pei, Xuetao

    2014-11-01

    Cell-cell contacts and interactions between pancreatic β-cells and/or other cell populations within islets are essential for cell survival, insulin secretion, and functional synchronization. Three-dimensional (3D) culture systems supply the ideal microenvironment for islet-like cluster formation and functional maintenance. However, the underlying mechanisms remain unclear. In this study, mouse insulinoma 6 (MIN6) cells were cultured in a rotating 3D culture system to form islet-like aggregates. Glucose-stimulated insulin secretion (GSIS) and the RhoA/ROCK pathway were investigated. In the 3D-cultured MIN6 cells, more endocrine-specific genes were up-regulated, and GSIS was increased to a greater extent than in cells grown in monolayers. RhoA/ROCK inactivation led to F-actin remodeling in the MIN6 cell aggregates and greater insulin exocytosis. The gap junction protein, connexin 36 (Cx36), was up-regulated in MIN6 cell aggregates and RhoA/ROCK-inactivated monolayer cells. GSIS dramatically decreased when Cx36 was knocked down by short interfering RNA and could not be reversed by RhoA/ROCK inactivation. Thus, the RhoA/ROCK signaling pathway is involved in insulin release through the up-regulation of Cx36 expression in 3D-cultured MIN6 cells.

  15. Detailed Physiologic Characterization Reveals Diverse Mechanisms for Novel Genetic Loci Regulating Glucose and Insulin Metabolism in Humans

    PubMed Central

    Ingelsson, Erik; Langenberg, Claudia; Hivert, Marie-France; Prokopenko, Inga; Lyssenko, Valeriya; Dupuis, Josée; Mägi, Reedik; Sharp, Stephen; Jackson, Anne U.; Assimes, Themistocles L.; Shrader, Peter; Knowles, Joshua W.; Zethelius, Björn; Abbasi, Fahim A.; Bergman, Richard N.; Bergmann, Antje; Berne, Christian; Boehnke, Michael; Bonnycastle, Lori L.; Bornstein, Stefan R.; Buchanan, Thomas A.; Bumpstead, Suzannah J.; Böttcher, Yvonne; Chines, Peter; Collins, Francis S.; Cooper, Cyrus C.; Dennison, Elaine M.; Erdos, Michael R.; Ferrannini, Ele; Fox, Caroline S.; Graessler, Jürgen; Hao, Ke; Isomaa, Bo; Jameson, Karen A.; Kovacs, Peter; Kuusisto, Johanna; Laakso, Markku; Ladenvall, Claes; Mohlke, Karen L.; Morken, Mario A.; Narisu, Narisu; Nathan, David M.; Pascoe, Laura; Payne, Felicity; Petrie, John R.; Sayer, Avan A.; Schwarz, Peter E. H.; Scott, Laura J.; Stringham, Heather M.; Stumvoll, Michael; Swift, Amy J.; Syvänen, Ann-Christine; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Tönjes, Anke; Valle, Timo T.; Williams, Gordon H.; Lind, Lars; Barroso, Inês; Quertermous, Thomas; Walker, Mark; Wareham, Nicholas J.; Meigs, James B.; McCarthy, Mark I.; Groop, Leif; Watanabe, Richard M.; Florez, Jose C.

    2010-01-01

    OBJECTIVE Recent genome-wide association studies have revealed loci associated with glucose and insulin-related traits. We aimed to characterize 19 such loci using detailed measures of insulin processing, secretion, and sensitivity to help elucidate their role in regulation of glucose control, insulin secretion and/or action. RESEARCH DESIGN AND METHODS We investigated associations of loci identified by the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) with circulating proinsulin, measures of insulin secretion and sensitivity from oral glucose tolerance tests (OGTTs), euglycemic clamps, insulin suppression tests, or frequently sampled intravenous glucose tolerance tests in nondiabetic humans (n = 29,084). RESULTS The glucose-raising allele in MADD was associated with abnormal insulin processing (a dramatic effect on higher proinsulin levels, but no association with insulinogenic index) at extremely persuasive levels of statistical significance (P = 2.1 × 10−71). Defects in insulin processing and insulin secretion were seen in glucose-raising allele carriers at TCF7L2, SCL30A8, GIPR, and C2CD4B. Abnormalities in early insulin secretion were suggested in glucose-raising allele carriers at MTNR1B, GCK, FADS1, DGKB, and PROX1 (lower insulinogenic index; no association with proinsulin or insulin sensitivity). Two loci previously associated with fasting insulin (GCKR and IGF1) were associated with OGTT-derived insulin sensitivity indices in a consistent direction. CONCLUSIONS Genetic loci identified through their effect on hyperglycemia and/or hyperinsulinemia demonstrate considerable heterogeneity in associations with measures of insulin processing, secretion, and sensitivity. Our findings emphasize the importance of detailed physiological characterization of such loci for improved understanding of pathways associated with alterations in glucose homeostasis and eventually type 2 diabetes. PMID:20185807

  16. LPS-Enhanced Glucose-Stimulated Insulin Secretion Is Normalized by Resveratrol

    PubMed Central

    Nøhr, Mark K.; Dudele, Anete; Poulsen, Morten M.; Ebbesen, Lene H.; Radko, Yulia; Christensen, Lars P.; Jessen, Niels; Richelsen, Bjørn; Lund, Sten; Pedersen, Steen B.

    2016-01-01

    Low-grade inflammation is seen with obesity and is suggested to be a mediator of insulin resistance. The eliciting factor of low-grade inflammation is unknown but increased permeability of gut bacteria-derived lipopolysaccharides (LPS) resulting in endotoxemia could be a candidate. Here we test the effect of LPS and the anti-inflammatory compound resveratrol on glucose homeostasis, insulin levels and inflammation. Mice were subcutaneously implanted with osmotic mini pumps infusing either low-dose LPS or saline for 28 days. Half of the mice were treated with resveratrol delivered through the diet. LPS caused increased inflammation of the liver and adipose tissue (epididymal and subcutaneous) together with enlarged spleens and increased number of leukocytes in the blood. Resveratrol specifically reduced the inflammatory status in epididymal fat (reduced expression of TNFa and Il1b, whereas the increased macrophage infiltration was unaltered) without affecting the other tissues investigated. By LC-MS, we were able to quantitate resveratrol metabolites in epididymal but not subcutaneous adipose tissue. LPS induced insulin resistance as the glucose-stimulated insulin secretion during an oral glucose tolerance test was increased despite similar plasma glucose level resulting in an increase in the insulinogenic index (IGI; delta0-15insulin / delta0-15glucose) from 13.73 to 22.40 pmol/mmol (P < 0.001). This aberration in insulin and glucose homeostasis was normalized by resveratrol. In conclusion: Low-dose LPS enhanced the glucose-stimulated insulin secretion without affecting the blood glucose suggesting increased insulin resistance. Resveratrol restored LPS-induced alteration of the insulin secretion and demonstrated anti-inflammatory effects specifically in epididymal adipose tissue possibly due to preferential accumulation of resveratrol metabolites pointing towards a possible important involvement of this tissue for the effects on insulin resistance and insulin

  17. ENPP1 Affects Insulin Action and Secretion: Evidences from In Vitro Studies

    PubMed Central

    Di Paola, Rosa; Caporarello, Nunzia; Marucci, Antonella; Dimatteo, Claudia; Iadicicco, Claudia; Del Guerra, Silvia; Prudente, Sabrina; Sudano, Dora; Miele, Claudia; Parrino, Cristina; Piro, Salvatore; Beguinot, Francesco; Marchetti, Piero

    2011-01-01

    The aim of this study was to deeper investigate the mechanisms through which ENPP1, a negative modulator of insulin receptor (IR) activation, plays a role on insulin signaling, insulin secretion and eventually glucose metabolism. ENPP1 cDNA (carrying either K121 or Q121 variant) was transfected in HepG2 liver-, L6 skeletal muscle- and INS1E beta-cells. Insulin-induced IR-autophosphorylation (HepG2, L6, INS1E), Akt-Ser473, ERK1/2-Thr202/Tyr204 and GSK3-beta Ser9 phosphorylation (HepG2, L6), PEPCK mRNA levels (HepG2) and 2-deoxy-D-glucose uptake (L6) was studied. GLUT 4 mRNA (L6), insulin secretion and caspase-3 activation (INS1E) were also investigated. Insulin-induced IR-autophosphorylation was decreased in HepG2-K, L6-K, INS1E-K (20%, 52% and 11% reduction vs. untransfected cells) and twice as much in HepG2-Q, L6-Q, INS1E-Q (44%, 92% and 30%). Similar data were obtained with Akt-Ser473, ERK1/2-Thr202/Tyr204 and GSK3-beta Ser9 in HepG2 and L6. Insulin-induced reduction of PEPCK mRNA was progressively lower in untransfected, HepG2-K and HepG2-Q cells (65%, 54%, 23%). Insulin-induced glucose uptake in untransfected L6 (60% increase over basal), was totally abolished in L6-K and L6-Q cells. GLUT 4 mRNA was slightly reduced in L6-K and twice as much in L6-Q (13% and 25% reduction vs. untransfected cells). Glucose-induced insulin secretion was 60% reduced in INS1E-K and almost abolished in INS1E-Q. Serum deficiency activated caspase-3 by two, three and four folds in untransfected INS1E, INS1E-K and INS1E-Q. Glyburide-induced insulin secretion was reduced by 50% in isolated human islets from homozygous QQ donors as compared to those from KK and KQ individuals. Our data clearly indicate that ENPP1, especially when the Q121 variant is operating, affects insulin signaling and glucose metabolism in skeletal muscle- and liver-cells and both function and survival of insulin secreting beta-cells, thus representing a strong pathogenic factor predisposing to insulin resistance

  18. An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration

    PubMed Central

    Ye, Lihua; Robertson, Morgan A.; Mastracci, Teresa L.; Anderson, Ryan M.

    2016-01-01

    As one of the key nutrient sensors, insulin signaling plays an important role in integrating environmental energy cues with organism growth. In adult organisms, relative insufficiency of insulin signaling induces compensatory expansion of insulin-secreting pancreatic beta (β) cells. However, little is known about how insulin signaling feedback might influence neogenesis of β cells during embryonic development. Using genetic approaches and a unique cell transplantation system in developing zebrafish, we have uncovered a novel role for insulin signaling in the negative regulation of pancreatic progenitor cell differentiation. Blocking insulin signaling in the pancreatic progenitors hastened the expression of the essential β cell genes insulin and pdx1, and promoted β cell fate at the expense of alpha cell fate. In addition, loss of insulin signaling promoted β cell regeneration and destabilization of alpha cell character. These data indicate that insulin signaling constitutes a tunable mechanism for β cell compensatory plasticity during early development. Moreover, using a novel blastomere-to-larva transplantation strategy, we found that loss of insulin signaling in endoderm-committed blastomeres drove their differentiation into β cells. Furthermore, the extent of this differentiation was dependent on the function of the β cell mass in the host. Altogether, our results indicate that modulation of insulin signaling will be crucial for the development of β cell restoration therapies for diabetics; further clarification of the mechanisms of insulin signaling in β cell progenitors will reveal therapeutic targets for both in vivo and in vitro β cell generation. PMID:26658317

  19. The Relationship between 25-hydroxyvitamin D Levels, Insulin Sensitivity and Insulin Secretion in Women 3 Years after Delivery.

    PubMed

    Tänczer, Tímea; Magenheim, Rita; Fürst, Ágnes; Domján, Beatrix; Janicsek, Zsófia; Szabó, Eszter; Ferencz, Viktória; Tabák, Ádám G

    2017-05-03

    There is a direct correlation between 25-hydroxyvitamin D (25[OH]D) levels and insulin sensitivity. Furthermore, women with gestational diabetes (GDM) may have lower levels of 25(OH)D compared to controls. The present study intended to investigate 25(OH)D levels and their association with insulin sensitivity and insulin secretion in women with prior GDM and in controls 3.2 years after delivery. A total of 87 patients with prior GDM and 45 randomly selected controls (age range, 22 to 44 years) with normal glucose tolerance during pregnancy nested within a cohort of all deliveries at Saint Margit Hospital, Budapest, between January 1 2005, and December 31 2006, were examined. Their 25(OH) D levels were measured by radioimmunoassay. Insulin sensitivity and fasting insulin secretion were estimated using the homeostasis model asssessment (HOMA) calculator and early insulin secretion by the insulinogenic index based on a 75 g oral glucose tolerance test. There was no significant difference in 25(OH)D levels between cases and controls (27.2±13.1 [±SD] vs. 26.9±9.8 ng/L). There was a positive association between HOMA insulin sensitivity and 25(OH)D levels (beta = 0.017; 95% CI 0.001 to 0.034/1 ng/mL) that was robust to adjustment for age and body mass index. There was a nonsignificant association between HOMA insulin secretion and 25(OH)D (p=0.099), while no association was found with the insulinogenic index. Prior GDM status was not associated with 25(OH)D levels; however, 25(OH) D levels were associated with HOMA insulin sensitivity. It is hypothesized that the association between HOMA insulin secretion and 25(OH)D levels is related to the autoregulation of fasting glucose levels because no association between 25(OH)D and insulinogenic index was found. Copyright © 2017 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  20. mTOR Inhibition: Reduced Insulin Secretion and Sensitivity in a Rat Model of Metabolic Syndrome

    PubMed Central

    Rovira, Jordi; Ramírez-Bajo, María Jose; Banon-Maneus, Elisenda; Moya-Rull, Daniel; Ventura-Aguiar, Pedro; Hierro-Garcia, Natalia; Lazo-Rodriguez, Marta; Revuelta, Ignacio; Torres, Armando; Oppenheimer, Federico; Campistol, Josep M.; Diekmann, Fritz

    2016-01-01

    Background Sirolimus (SRL) has been associated with new-onset diabetes mellitus after transplantation. The aim was to determine the effect of SRL on development of insulin resistance and β-cell toxicity. Methods Lean Zucker rat (LZR) and obese Zucker rat (OZR) were distributed into groups: vehicle and SRL (0.25, 0.5, or 1.0 mg/kg) during 12 or 28 days. Intraperitoneal glucose tolerance test (IPGTT) was evaluated at days 0, 12, 28, and 45. Islet morphometry, β-cell proliferation, and apoptosis were analyzed at 12 days. Islets were isolated to analyze insulin content, insulin secretion, and gene expression. Results After 12 days, SRL treatment only impaired IPGTT in a dose-dependent manner in OZR. Treatment prolongation induced increase of area under the curve of IPGTT in LZR and OZR; however, in contrast to OZR, LZR normalized glucose levels after 2 hours. The SRL reduced pancreas weight and islet proliferation in LZR and OZR as well as insulin content. Insulin secretion was only affected in OZR. Islets from OZR + SRL rats presented a downregulation of Neurod1, Pax4, and Ins2 gene. Genes related with insulin secretion remained unchanged or upregulated. Conclusions In conditions that require adaptive β-cell proliferation, SRL might reveal harmful effects by blocking β-cell proliferation, insulin production and secretion. These effects disappeared when removing the therapy. PMID:27500257

  1. Functional Reconstitution of the Insulin-Secreting Porosome Complex in Live Cells.

    PubMed

    Naik, Akshata R; Kulkarni, Sanjana P; Lewis, Kenneth T; Taatjes, Douglas J; Jena, Bhanu P

    2016-01-01

    Supramolecular cup-shaped lipoprotein structures called porosomes embedded in the cell plasma membrane mediate fractional release of intravesicular contents from cells during secretion. The presence of porosomes, have been documented in many cell types including neurons, acinar cells of the exocrine pancreas, GH-secreting cells of the pituitary, and insulin-secreting pancreatic β-cells. Functional reconstitution of porosomes into artificial lipid membranes, have also been accomplished. Earlier studies on mouse insulin-secreting Min6 cells report 100-nm porosome complexes composed of nearly 30 proteins. In the current study, porosomes have been functionally reconstituted for the first time in live cells. Isolated Min6 porosomes reconstituted into live Min6 cells demonstrate augmented levels of porosome proteins and a consequent increase in the potency and efficacy of glucose-stimulated insulin release. Elevated glucose-stimulated insulin secretion 48 hours after reconstitution, reflects on the remarkable stability and viability of reconstituted porosomes, documenting the functional reconstitution of native porosomes in live cells. These results, establish a new paradigm in porosome-mediated insulin secretion in β-cells.

  2. Consumption of a glucose diet enhances the sensitivity of pancreatic islets from adrenalectomized genetically obese (ob/ob) mice to glucose-induced insulin secretion.

    PubMed

    Mistry, A M; Chen, N G; Lee, Y S; Romsos, D R

    1995-03-01

    Consumption of a glucose diet for 4 d markedly elevates plasma insulin concentrations in adrenalectomized ob/ob mice. The present study examined regulation of insulin secretion from perifused pancreatic islets of female adrenalectomized genetically obese (ob/ob) and lean mice fed a glucose diet for 4 d. These mice were fed a high carbohydrate commercial diet for 21 d, or the high carbohydrate commercial diet for 17 d and a purified high glucose diet for the last 4 d of the 21-d feeding period. Adrenalectomy equalized plasma insulin concentrations, pancreatic islet size, rates of insulin secretion in response to 20 mmol/L glucose and insulin mRNA relative abundance in ob/ob and lean mice fed the commercial diet, but the threshold for glucose-induced insulin secretion determined by a linear glucose gradient remained lower in islets from adrenalectomized ob/ob mice than in those from lean mice (3.8 +/- 0.1 vs. 4.9 +/- 0.2 mmol/L glucose), and addition of acetylcholine to the perifusate lowered the threshold to only 2.0 +/- 0.1 mmol/L glucose in islets from ob/ob mice vs. 3.3 +/- 0.1 mmol/L glucose in lean mice. Switching from the commercial diet to the glucose diet for 4 d increased plasma insulin concentrations -10-fold in islets from adrenalectomized ob/ob mice without affecting islet size, 20 mmol/L glucose-induced insulin secretion or insulin mRNA abundance. Consumption of the glucose diet did, however, markedly lower the threshold for glucose-induced insulin secretion in islets from adrenalectomized ob/ob mice to approximate the abnormally low glucose thresholds in intact ob/ob mice.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Nitric Oxide Overproduction Reduces Insulin Secretion from Isolated Islets in Fetal Hypothyroid Rats.

    PubMed

    Rouintan, Z; Farrokhfall, K; Karbalaei, N; Ghasemi, A

    2016-02-01

    Thyroid hormones have developmental effects during fetal life. Fetal hypothyroidism leads to glucose intolerance and reduced insulin secretion capacity. Activity of nitric oxide synthases follows a heterogeneous pattern in hypothyroidism. Overactivity of constitutive nitric oxide synthase (NOS), inhibits glucose-stimulated insulin release. The aim of this study was to examine if reduction in insulin secretion in fetal hypothyroidism is due to overproduction of nitric oxide. Pregnant Wistar rats were divided into 2 groups; the experimental group consumed water containing 0.02% of 6-propyl-2-thiouracil till delivery, while the control group consumed tap water. After delivery serum thyroid hormones were measured. Intravenous glucose tolerance test was performed in 6-month old offspring (n=8). After 3 weeks recovery, pancreatic islets were isolated and insulin secretion, inducible and constitutive nitric oxide synthase activity were measured (n=4). Compared to controls, during intravenous glucose tolerance test, fetal hypothyroid rats had high plasma glucose concentration (p=0.003) and low plasma insulin levels (p=0.012) at 5-20 min and their insulin secretion from isolated islets at basal glucose concentration and in the presence of l-arginine was lower. The nitric oxide synthase inhibitor, NG-nitro-l-arginine methyl ester significantly improved insulin secretion in fetal hypothyroid rats at basal glucose concentration and in the presence of l-arginine. The results showed higher NOS activities in fetal hypothyroid rats (constitutive 17.60±1.09 vs. 47.34±4.44 and inducible 4.09±0.96 vs. 19.97±1.14 pmol/min/mg proteins, p=0.002). In conclusion, NO overproduction through NOS participates in decreased insulin secretion in fetal hypothyroid rats.

  4. Reactive Oxygen Species Stimulate Insulin Secretion in Rat Pancreatic Islets: Studies Using Mono-Oleoyl-Glycerol

    PubMed Central

    Kane, Ada; Shirihai, Orian; Corkey, Barbara E.; Deeney, Jude T.

    2012-01-01

    Chronic exposure (24–72 hrs) of pancreatic islets to elevated glucose and fatty acid leads to glucolipoxicity characterized by basal insulin hypersecretion and impaired glucose-stimulated insulin secretion (GSIS). Our aim was to determine the mechanism for basal hypersecretion of insulin. We used mono-oleoyl-glycerol (MOG) as a tool to rapidly increase lipids in isolated rat pancreatic ß-cells and in the clonal pancreatic ß-cell line INS-1 832/13. MOG (25–400 µM) stimulated basal insulin secretion from ß-cells in a concentration dependent manner without increasing intracellular Ca2+ or O2 consumption. Like GSIS, MOG increased NAD(P)H and reactive oxygen species (ROS). The mitochondrial reductant ß-hydroxybutyrate (ß-OHB) also increased the redox state and ROS production, while ROS scavengers abrogated secretion. Diazoxide (0.4 mM) did not prevent the stimulatory effect of MOG, confirming that the effect was independent of the KATP-dependent pathway of secretion. MOG was metabolized to glycerol and long-chain acyl-CoA (LC-CoA), whereas, acute oleate did not similarly increase LC-CoA. Inhibition of diacylglycerol kinase (DGK) did not mimic the effect of MOG on insulin secretion, indicating that MOG did not act primarily by inhibiting DGK. Inhibition of acyl-CoA synthetase (ACS) reduced the stimulatory effect of MOG on basal insulin secretion by 30% indicating a role for LC-CoA. These data suggest that basal insulin secretion is stimulated by increased ROS production, due to an increase in the mitochondrial redox state independent of the established components of GSIS. PMID:22272304

  5. Sodium arsenite impairs insulin secretion and transcription in pancreatic {beta}-cells

    SciTech Connect

    Diaz-Villasenor, Andrea; Sanchez-Soto, M. Carmen; Cebrian, Mariano E.; Ostrosky-Wegman, Patricia; Hiriart, Marcia . E-mail: mhiriart@ifc.unam.mx

    2006-07-01

    Human studies have shown that chronic inorganic arsenic (iAs) exposure is associated with a high prevalence and incidence of type 2 diabetes. However, the mechanism(s) underlying this effect are not well understood, and practically, there is no information available on the effects of arsenic on pancreatic {beta}-cells functions. Thus, since insulin secreted by the pancreas plays a crucial role in maintaining glucose homeostasis, our aim was to determine if sodium arsenite impairs insulin secretion and mRNA expression in single adult rat pancreatic {beta}-cells. Cells were treated with 0.5, 1, 2, 5 and 10 {mu}M sodium arsenite and incubated for 72 and 144 h. The highest dose tested (10 {mu}M) decreased {beta}-cell viability, by 33% and 83%, respectively. Insulin secretion and mRNA expression were evaluated in the presence of 1 and 5 {mu}M sodium arsenite. Basal insulin secretion, in 5.6 mM glucose, was not significantly affected by 1 or 5 {mu}M treatment for 72 h, but basal secretion was reduced when cells were exposed to 5 {mu}M sodium arsenite for 144 h. On the other hand, insulin secretion in response to 15.6 mM glucose decreased with sodium arsenite in a dose-dependent manner in such a way that cells were no longer able to distinguish between different glucose concentrations. We also showed a significant decrease in insulin mRNA expression of cells exposed to 5 {mu}M sodium arsenite during 72 h. Our data suggest that arsenic may contribute to the development of diabetes mellitus by impairing pancreatic {beta}-cell functions, particularly insulin synthesis and secretion.

  6. Insulin secretion in the hibernating edible dormouse (Glis glis): in vivo and in vitro studies.

    PubMed

    Castex, C; Tahri, A; Hoo-Paris, R; Sutter, B C

    1984-01-01

    Plasma glucose and insulin have been studied during lethargy and spontaneous arousal of hibernating edible dormouse. During lethargy blood glucose was low while plasma insulin remained at the same level as in other seasons. Plasma glucose and insulin did not fluctuate along the phase of lethargy. During spontaneous arousal plasma insulin rose strongly from the 17 degrees C stage, reaching the higher values at 26 degrees C while blood glucose was only 85 mg/100 ml, then decreased at 37 degrees C. The effect of glucose and temperature on insulin secretion was studied using perfused pancreas preparation from hibernating edible dormice. During the rewarming of the edible dormouse pancreas the insulin release did not occur in response to the absolute extracellular glucose level but occurred in response to a B cell membrane phenomenon which was dependent on the changing rate of glucose level. The effect of glucose and temperature on insulin secretion from perfused pancreas was compared between edible dormouse and homeotherm permanent, the rat. The B cell response to glucose of the dormouse pancreas increased up to 15 degrees C whereas that of the rat only from 25 degrees C. The dormouse insulin secretion reached a peak value at the 30 degrees C of temperature, whereas that of the rat progressively increased until 37 degrees C. These results showed that some biochemical adjustment or process of acclimatization took place in the B cells of the hibernators.

  7. CCR2 knockout exacerbates cerulein-induced chronic pancreatitis with hyperglycemia via decreased GLP-1 receptor expression and insulin secretion.

    PubMed

    Nakamura, Yuji; Kanai, Takanori; Saeki, Keita; Takabe, Miho; Irie, Junichiro; Miyoshi, Jun; Mikami, Yohei; Teratani, Toshiaki; Suzuki, Takahiro; Miyata, Naoteru; Hisamatsu, Tadakazu; Nakamoto, Nobuhiro; Yamagishi, Yoshiyuki; Higuchi, Hajime; Ebinuma, Hirotoshi; Hozawa, Shigenari; Saito, Hidetsugu; Itoh, Hiroshi; Hibi, Toshifumi

    2013-04-15

    Glucagon-like peptide-1 (GLP-1) promotes insulin release; however, the relationship between the GLP-1 signal and chronic pancreatitis is not well understood. Here we focus on chemokine (C-C motif) ligand 2 (CCL2) and its receptor (CCR2) axis, which regulates various immune cells, including macrophages, to clarify the mechanism of GLP-1-mediated insulin secretion in chronic pancreatitis in mice. One and multiple series of repetitive cerulein administrations were used to induce acute and chronic cerulein pancreatitis, respectively. Acute cerulein-administered CCR2-knockout (KO) mice showed suppressed infiltration of CD11b(+)Gr-1(low) macrophages and pancreatic inflammation and significantly upregulated insulin secretion compared with paired wild-type (WT) mice. However, chronic cerulein-administered CCR2-KO mice showed significantly increased infiltration of CD11b(+)/Gr-1(-) and CD11b(+)/Gr-1(high) cells, but not CD11b(+)/Gr-1(low) cells, in pancreas with severe inflammation and significantly decreased insulin secretion compared with their WT counterparts. Furthermore, although serum GLP-1 levels in chronic cerulein-administered WT and CCR2-KO mice were comparably upregulated after cerulein administrations, GLP-1 receptor levels in pancreases of chronic cerulein-administered CCR2-KO mice were significantly lower than in paired WT mice. Nevertheless, a significantly higher hyperglycemia level in chronic cerulein-administered CCR2-KO mice was markedly restored by treatment with a GLP-1 analog to a level comparable to the paired WT mice. Collectively, the CCR2/CCL2 axis-mediated CD11b(+)-cell migration to the pancreas is critically involved in chronic pancreatitis-mediated hyperglycemia through the modulation of GLP-1 receptor expression and insulin secretion.

  8. Insulin signalling regulates remating in female Drosophila.

    PubMed

    Wigby, Stuart; Slack, Cathy; Grönke, Sebastian; Martinez, Pedro; Calboli, Federico C F; Chapman, Tracey; Partridge, Linda

    2011-02-07

    Mating rate is a major determinant of female lifespan and fitness, and is predicted to optimize at an intermediate level, beyond which superfluous matings are costly. In female Drosophila melanogaster, nutrition is a key regulator of mating rate but the underlying mechanism is unknown. The evolutionarily conserved insulin/insulin-like growth factor-like signalling (IIS) pathway is responsive to nutrition, and regulates development, metabolism, stress resistance, fecundity and lifespan. Here we show that inhibition of IIS, by ablation of Drosophila insulin-like peptide (DILP)-producing median neurosecretory cells, knockout of dilp2, dilp3 or dilp5 genes, expression of a dominant-negative DILP-receptor (InR) transgene or knockout of Lnk, results in reduced female remating rates. IIS-mediated regulation of female remating can occur independent of virgin receptivity, developmental defects, reduced body size or fecundity, and the receipt of the female receptivity-inhibiting male sex peptide. Our results provide a likely mechanism by which females match remating rates to the perceived nutritional environment. The findings suggest that longevity-mediating genes could often have pleiotropic effects on remating rate. However, overexpression of the IIS-regulated transcription factor dFOXO in the fat body-which extends lifespan-does not affect remating rate. Thus, long life and reduced remating are not obligatorily coupled.

  9. Genetic variants in MTNR1B affecting insulin secretion.

    PubMed

    Müssig, Karsten; Staiger, Harald; Machicao, Fausto; Häring, Hans-Ulrich; Fritsche, Andreas

    2010-09-01

    The incidence of type 2 diabetes mellitus has markedly increased worldwide over the past decades. Pancreatic beta-cell dysfunction as well as central and peripheral insulin resistance appears to be elementary features in the pathophysiology of type 2 diabetes mellitus. Major environmental conditions predisposing to the development of type 2 diabetes are excessive food intake and sedentary life-style on the background of a genetic predisposition. Recent genome-wide association studies identified several novel type 2 diabetes risk genes, with impaired pancreatic beta-cell function as the underlying mechanism of increased diabetes risk in the majority of genes. Many of the novel type 2 diabetes risk genes, including MTNR1B which encodes one of the two known human melatonin receptors, were unexpected at first glance. However, previous animal as well as human studies already pointed to a significant impact of the melatonin system on the regulation of glucose homeostasis, in addition to its well known role in modulation of sleep and circadian rhythms. This brief review aims to give an overview of how alterations in the melatonin system could contribute to an increased diabetes risk, paying special attention to the role of melatonin receptors in pancreatic beta-cell function.

  10. Glucose and insulin modify thrombospondin 1 expression and secretion in primary adipocytes from diet-induced obese rats.

    PubMed

    Garcia-Diaz, Diego F; Arellano, Arianna V; Milagro, Fermin I; Moreno-Aliaga, Maria Jesus; Portillo, Maria Puy; Martinez, J Alfredo; Campion, Javier

    2011-09-01

    Thrombospondin 1 (TSP-1), an antiangiogenic factor and transforming growth factor (TGF)-β activity regulator, has been recently recognized as an adipokine that correlates with obesity, inflammation and insulin resistance processes. In the present study, epididymal adipocytes of rats that were fed a chow or a high-fat diet (HFD) for 50 days were isolated and incubated (24-72 h) in low (5.6 mM) or high (HG; 25 mM) glucose, in the presence or absence of 1.6 nM insulin. Rats fed the HF diet showed an established obesity state. Serum TSP-1 levels and TSP-1 mRNA basal expression of adipocytes from HFD rats were higher than those from controls. Adipocytes from HFD animals presented an insulin resistance state, as suggested by the lower insulin-stimulated glucose uptake as compared to controls. TSP-1 expression in culture was higher in adipocytes from obese animals at 24 h, but when the adipocytes were treated with HG, these expression levels dropped dramatically. Later at 72 h, TSP-1 expression was lower in adipocytes from HFD rats, and no effects of the other treatments were observed. Surprisingly, the secretion levels of this protein at 72 h were increased significantly by the HG treatment in both types of adipocytes, although they were even higher in adipocytes from obese animals. Finally, cell viability was significantly reduced by HG treatment in both types of adipocytes. In summary, TSP-1 expression/secretion was modulated in an in vitro model of insulin-resistant adipocytes. The difference between expression and secretion patterns suggests a posttranscriptional regulation. The present study confirms that TPS-1 is closely associated with obesity-related mechanisms.

  11. Insulin-regulated Glut4 Translocation

    PubMed Central

    Brewer, Paul Duffield; Habtemichael, Estifanos N.; Romenskaia, Irina; Mastick, Cynthia Corley; Coster, Adelle C. F.

    2014-01-01

    The trafficking kinetics of Glut4, the transferrin (Tf) receptor, and LRP1 were quantified in adipocytes and undifferentiated fibroblasts. Six steps were identified that determine steady state cell surface Glut4: (i) endocytosis, (ii) degradation, (iii) sorting, (iv) sequestration, (v) release, and (vi) tethering/docking/fusion. Endocytosis of Glut4 is 3 times slower than the Tf receptor in fibroblasts (ken = 0.2 min−1 versus 0.6 min−1). Differentiation decreases Glut4 ken 40% (ken = 0.12 min−1). Differentiation also decreases Glut4 degradation, increasing total and cell surface Glut4 3-fold. In fibroblasts, Glut4 is recycled from endosomes through a slow constitutive pathway (kex = 0.025–0.038 min−1), not through the fast Tf receptor pathway (kex = 0.2 min−1). The kex measured in adipocytes after insulin stimulation is similar (kex = 0.027 min−1). Differentiation decreases the rate constant for sorting into the Glut4 recycling pathway (ksort) 3-fold. In adipocytes, Glut4 is also sorted from endosomes into a second exocytic pathway through Glut4 storage vesicles (GSVs). Surprisingly, transfer from endosomes into GSVs is highly regulated; insulin increases the rate constant for sequestration (kseq) 8-fold. Release from sequestration in GSVs is rate-limiting for Glut4 exocytosis in basal adipocytes. AS160 regulates this step. Tethering/docking/fusion of GSVs to the plasma membrane is regulated through an AS160-independent process. Insulin increases the rate of release and fusion of GSVs (kfuseG) 40-fold. LRP1 cycles with the Tf receptor and Glut4 in fibroblasts but predominantly with Glut4 after differentiation. Surprisingly, AS160 knockdown accelerated LRP1 exocytosis in basal and insulin-stimulated adipocytes. These data indicate that AS160 may regulate trafficking into as well as release from GSVs. PMID:24778187

  12. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation

    PubMed Central

    Shigeto, Makoto; Ramracheya, Reshma; Tarasov, Andrei I.; Cha, Chae Young; Chibalina, Margarita V.; Hastoy, Benoit; Philippaert, Koenraad; Reinbothe, Thomas; Rorsman, Nils; Salehi, Albert; Sones, William R.; Vergari, Elisa; Weston, Cathryn; Gorelik, Julia; Katsura, Masashi; Nikolaev, Viacheslav O.; Vennekens, Rudi; Zaccolo, Manuela; Galione, Antony; Johnson, Paul R.V.; Kaku, Kohei; Ladds, Graham; Rorsman, Patrik

    2015-01-01

    Strategies aimed at mimicking or enhancing the action of the incretin hormone glucagon-like peptide 1 (GLP-1) therapeutically improve glucose-stimulated insulin secretion (GSIS); however, it is not clear whether GLP-1 directly drives insulin secretion in pancreatic islets. Here, we examined the mechanisms by which GLP-1 stimulates insulin secretion in mouse and human islets. We found that GLP-1 enhances GSIS at a half-maximal effective concentration of 0.4 pM. Moreover, we determined that GLP-1 activates PLC, which increases submembrane diacylglycerol and thereby activates PKC, resulting in membrane depolarization and increased action potential firing and subsequent stimulation of insulin secretion. The depolarizing effect of GLP-1 on electrical activity was mimicked by the PKC activator PMA, occurred without activation of PKA, and persisted in the presence of PKA inhibitors, the KATP channel blocker tolbutamide, and the L-type Ca2+ channel blocker isradipine; however, depolarization was abolished by lowering extracellular Na+. The PKC-dependent effect of GLP-1 on membrane potential and electrical activity was mediated by activation of Na+-permeable TRPM4 and TRPM5 channels by mobilization of intracellular Ca2+ from thapsigargin-sensitive Ca2+ stores. Concordantly, GLP-1 effects were negligible in Trpm4 or Trpm5 KO islets. These data provide important insight into the therapeutic action of GLP-1 and suggest that circulating levels of this hormone directly stimulate insulin secretion by β cells. PMID:26571400

  13. Insulin secretion is increased in non-diabetic subjects with fasting hypertriglyceridaemia.

    PubMed

    Simental-Mendía, Luis E; Rodríguez-Morán, Martha; Simental-Saucedo, Luis; Guerrero-Romero, Fernando

    2013-03-01

    The elevation of triglycerides is strongly linked with insulin resistance, but it has not been evaluated in relationship to insulin secretion. The aim of this study was to determine whether hypertriglyceridaemia is associated with abnormal insulin secretion. A cross-sectional study was carried out. Eligible subjects, apparently healthy men and non-pregnant women aged 20-65 years were recruited. According to the triglyceride levels, subjects were allocated in the groups with hypertriglyceridaemia and normotriglyceridaemia. Hypertriglyceridaemia was defined by serum triglyceride levels ≥150 mg/dL. Insulin secretion was evaluated by the first phase of insulin secretion (1st PIS) and the second phase of insulin secretion (2nd PIS). A regression linear analysis was performed to evaluate the association between hypertriglyceridaemia (independent variable) and the first and second phase insulin secretion (dependent variables). A total of 247 apparently healthy subjects were enrolled; 113 (45.7%) with hypertriglyceridaemia and 134 (54.3%) in the control group. The simple regression linear analysis showed a significant association between hypertriglyceridaemia and the 1st PIS [B = 207.0; 95% confidence interval (CI) 33.5-380.5, p = 0.02] and the 2nd PIS (B = 48.7; 95% CI 9.2-88.2, p = 0.01). A multiple regression linear analysis adjusted by age, sex, body mass index and waist circumference was performed showing that fasting hypertriglyceridaemia remained significantly associated with the 1st PIS (B = 184.3; 95% CI 13.0-355.7, p = 0.03) and the 2nd PIS (B = 43.1; 95% CI 4.2-81.9, p = 0.03). The results of this study show that hypertriglyceridaemia is associated with the increase of the 1st PIS and the 2nd PIS in apparently healthy subjects. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion.

    PubMed

    MacDonald, Michael J; Fahien, Leonard A; Brown, Laura J; Hasan, Noaman M; Buss, Julian D; Kendrick, Mindy A

    2005-01-01

    The importance of mitochondrial biosynthesis in stimulus secretion coupling in the insulin-producing beta-cell probably equals that of ATP production. In glucose-induced insulin secretion, the rate of pyruvate carboxylation is very high and correlates more strongly with the glucose concentration the beta-cell is exposed to (and thus with insulin release) than does pyruvate decarboxylation, which produces acetyl-CoA for metabolism in the citric acid cycle to produce ATP. The carboxylation pathway can increase the levels of citric acid cycle intermediates, and this indicates that anaplerosis, the net synthesis of cycle intermediates, is important for insulin secretion. Increased cycle intermediates will alter mitochondrial processes, and, therefore, the synthesized intermediates must be exported from mitochondria to the cytosol (cataplerosis). This further suggests that these intermediates have roles in signaling insulin secretion. Although evidence is quite good that all physiological fuel secretagogues stimulate insulin secretion via anaplerosis, evidence is just emerging about the possible extramitochondrial roles of exported citric acid cycle intermediates. This article speculates on their potential roles as signaling molecules themselves and as exporters of equivalents of NADPH, acetyl-CoA and malonyl-CoA, as well as alpha-ketoglutarate as a substrate for hydroxylases. We also discuss the "succinate mechanism," which hypothesizes that insulin secretagogues produce both NADPH and mevalonate. Finally, we discuss the role of mitochondria in causing oscillations in beta-cell citrate levels. These parallel oscillations in ATP and NAD(P)H. Oscillations in beta-cell plasma membrane electrical potential, ATP/ADP and NAD(P)/NAD(P)H ratios, and glycolytic flux are known to correlate with pulsatile insulin release. Citrate oscillations might synchronize oscillations of individual mitochondria with one another and mitochondrial oscillations with oscillations in glycolysis

  15. Adipose Triglyceride Lipase Is Implicated in Fuel- and Non-fuel-stimulated Insulin Secretion*

    PubMed Central

    Peyot, Marie-Line; Guay, Claudiane; Latour, Martin G.; Lamontagne, Julien; Lussier, Roxane; Pineda, Marco; Ruderman, Neil B.; Haemmerle, Guenter; Zechner, Rudolf; Joly, Érik; Madiraju, S. R. Murthy; Poitout, Vincent; Prentki, Marc

    2009-01-01

    Reduced lipolysis in hormone-sensitive lipase-deficient mice is associated with impaired glucose-stimulated insulin secretion (GSIS), suggesting that endogenous β-cell lipid stores provide signaling molecules for insulin release. Measurements of lipolysis and triglyceride (TG) lipase activity in islets from HSL−/− mice indicated the presence of other TG lipase(s) in the β-cell. Using real time-quantitative PCR, adipose triglyceride lipase (ATGL) was found to be the most abundant TG lipase in rat islets and INS832/13 cells. To assess its role in insulin secretion, ATGL expression was decreased in INS832/13 cells (ATGL-knockdown (KD)) by small hairpin RNA. ATGL-KD increased the esterification of free fatty acid (FFA) into TG. ATGL-KD cells showed decreased glucose- or Gln + Leu-induced insulin release, as well as reduced response to KCl or palmitate at high, but not low, glucose. The KATP-independent/amplification pathway of GSIS was considerably reduced in ATGL-KD cells. ATGL−/− mice were hypoinsulinemic and hypoglycemic and showed decreased plasma TG and FFAs. A hyperglycemic clamp revealed increased insulin sensitivity and decreased GSIS and arginine-induced insulin secretion in ATGL−/− mice. Accordingly, isolated islets from ATGL−/− mice showed reduced insulin secretion in response to glucose, glucose + palmitate, and KCl. Islet TG content and FFA esterification into TG were increased by 2-fold in ATGL−/− islets, but glucose usage and oxidation were unaltered. The results demonstrate the importance of ATGL and intracellular lipid signaling for fuel- and non-fuel-induced insulin secretion. PMID:19389712

  16. Adipose triglyceride lipase is implicated in fuel- and non-fuel-stimulated insulin secretion.

    PubMed

    Peyot, Marie-Line; Guay, Claudiane; Latour, Martin G; Lamontagne, Julien; Lussier, Roxane; Pineda, Marco; Ruderman, Neil B; Haemmerle, Guenter; Zechner, Rudolf; Joly, Erik; Madiraju, S R Murthy; Poitout, Vincent; Prentki, Marc

    2009-06-19

    Reduced lipolysis in hormone-sensitive lipase-deficient mice is associated with impaired glucose-stimulated insulin secretion (GSIS), suggesting that endogenous beta-cell lipid stores provide signaling molecules for insulin release. Measurements of lipolysis and triglyceride (TG) lipase activity in islets from HSL(-/-) mice indicated the presence of other TG lipase(s) in the beta-cell. Using real time-quantitative PCR, adipose triglyceride lipase (ATGL) was found to be the most abundant TG lipase in rat islets and INS832/13 cells. To assess its role in insulin secretion, ATGL expression was decreased in INS832/13 cells (ATGL-knockdown (KD)) by small hairpin RNA. ATGL-KD increased the esterification of free fatty acid (FFA) into TG. ATGL-KD cells showed decreased glucose- or Gln + Leu-induced insulin release, as well as reduced response to KCl or palmitate at high, but not low, glucose. The K(ATP)-independent/amplification pathway of GSIS was considerably reduced in ATGL-KD cells. ATGL(-/-) mice were hypoinsulinemic and hypoglycemic and showed decreased plasma TG and FFAs. A hyperglycemic clamp revealed increased insulin sensitivity and decreased GSIS and arginine-induced insulin secretion in ATGL(-/-) mice. Accordingly, isolated islets from ATGL(-/-) mice showed reduced insulin secretion in response to glucose, glucose + palmitate, and KCl. Islet TG content and FFA esterification into TG were increased by 2-fold in ATGL(-/-) islets, but glucose usage and oxidation were unaltered. The results demonstrate the importance of ATGL and intracellular lipid signaling for fuel- and non-fuel-induced insulin secretion.

  17. Kinetic regulation of coated vesicle secretion

    PubMed Central

    Foret, Lionel; Sens, Pierre

    2008-01-01

    The secretion of vesicles for intracellular transport often relies on the aggregation of specialized membrane-bound proteins into a coat able to curve cell membranes. The nucleation and growth of a protein coat is a kinetic process that competes with the energy-consuming turnover of coat components between the membrane and the cytosol. We propose a generic kinetic description of coat assembly and the formation of coated vesicles and discuss its implication to the dynamics of COP vesicles that traffic within the Golgi and with the endoplasmic reticulum. We show that stationary coats of fixed area emerge from the competition between coat growth and the recycling of coat components, in a fashion resembling the treadmilling of cytoskeletal filaments. We further show that the turnover of coat components allows for a highly sensitive switching mechanism between a quiescent and a vesicle producing membrane, upon a slowing down of the exchange kinetics. We claim that the existence of this switching behavior, also triggered by factors, such as the presence of cargo and variation of the membrane mechanical tension, allows for efficient regulation of vesicle secretion. We propose a model, supported by different experimental observations, in which vesiculation of secretory membranes is impaired by the energy-consuming desorption of coat proteins, until the presence of cargo or other factors triggers a dynamical switch into a vesicle producing state. PMID:18824695

  18. Insulin Regulation of the Glucagon Gene is Mediated by an Insulin- Responsive DNA Element

    NASA Astrophysics Data System (ADS)

    Philippe, Jacques

    1991-08-01

    Diabetes mellitus is characterized by insulin deficiency and high plasma glucagon levels, which can be normalized by insulin replacement. It has previously been reported that glucagon gene expression is negatively regulated by insulin at the transcriptional level. By transfection studies, I have now localized a DNA control element that mediates insulin effects on glucagon gene transcription. This element also confers insulin responsiveness to a heterologous promoter. DNA-binding proteins that specifically interact with this insulin-responsive element are found in both glucagon- and non-glucagon-producing cells; and the pattern of binding, as assessed by the gel retardation assay, is not modified by prior insulin treatment.

  19. Role of aryl hydrocarbon receptor nuclear translocator in K{sub ATP} channel-mediated insulin secretion in INS-1 insulinoma cells

    SciTech Connect

    Kim, Ji-Seon; Zheng Haifeng; Kim, Sung Joon; Ho, Won-Kyung; Chun, Yang-Sook

    2009-02-20

    Aryl hydrocarbon receptor nuclear translocator (ARNT) has been known to participate in cellular responses to xenobiotic and hypoxic stresses, as a common partner of aryl hydrocarbon receptor and hypoxia inducible factor-1/2{alpha}. Recently, it was reported that ARNT is essential for adequate insulin secretion in response to glucose input and that its expression is downregulated in the pancreatic islets of diabetic patients. In the present study, the authors addressed the mechanism by which ARNT regulates insulin secretion in the INS-1 insulinoma cell line. In ARNT knock-down cells, basal insulin release was elevated, but insulin secretion was not further stimulated by a high-glucose challenge. Electrophysiological analyses revealed that glucose-dependent membrane depolarization was impaired in these cells. Furthermore, K{sub ATP} channel activity and expression were reduced. Of two K{sub ATP} channel subunits, Kir6.2 was found to be positively regulated by ARNT at the mRNA and protein levels. Based on these results, the authors suggest that ARNT expresses K{sub ATP} channel and by so doing regulates glucose-dependent insulin secretion.

  20. Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells.

    PubMed

    Ferdaoussi, Mourad; Dai, Xiaoqing; Jensen, Mette V; Wang, Runsheng; Peterson, Brett S; Huang, Chao; Ilkayeva, Olga; Smith, Nancy; Miller, Nathanael; Hajmrle, Catherine; Spigelman, Aliya F; Wright, Robert C; Plummer, Gregory; Suzuki, Kunimasa; Mackay, James P; van de Bunt, Martijn; Gloyn, Anna L; Ryan, Terence E; Norquay, Lisa D; Brosnan, M Julia; Trimmer, Jeff K; Rolph, Timothy P; Kibbey, Richard G; Manning Fox, Jocelyn E; Colmers, William F; Shirihai, Orian S; Neufer, P Darrell; Yeh, Edward T H; Newgard, Christopher B; MacDonald, Patrick E

    2015-10-01

    Insulin secretion from β cells of the pancreatic islets of Langerhans controls metabolic homeostasis and is impaired in individuals with type 2 diabetes (T2D). Increases in blood glucose trigger insulin release by closing ATP-sensitive K+ channels, depolarizing β cells, and opening voltage-dependent Ca2+ channels to elicit insulin exocytosis. However, one or more additional pathway(s) amplify the secretory response, likely at the distal exocytotic site. The mitochondrial export of isocitrate and engagement with cytosolic isocitrate dehydrogenase (ICDc) may be one key pathway, but the mechanism linking this to insulin secretion and its role in T2D have not been defined. Here, we show that the ICDc-dependent generation of NADPH and subsequent glutathione (GSH) reduction contribute to the amplification of insulin exocytosis via sentrin/SUMO-specific protease-1 (SENP1). In human T2D and an in vitro model of human islet dysfunction, the glucose-dependent amplification of exocytosis was impaired and could be rescued by introduction of signaling intermediates from this pathway. Moreover, islet-specific Senp1 deletion in mice caused impaired glucose tolerance by reducing the amplification of insulin exocytosis. Together, our results identify a pathway that links glucose metabolism to the amplification of insulin secretion and demonstrate that restoration of this axis rescues β cell function in T2D.

  1. Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells

    PubMed Central

    Ferdaoussi, Mourad; Dai, Xiaoqing; Jensen, Mette V.; Wang, Runsheng; Peterson, Brett S.; Huang, Chao; Ilkayeva, Olga; Smith, Nancy; Miller, Nathanael; Hajmrle, Catherine; Spigelman, Aliya F.; Wright, Robert C.; Plummer, Gregory; Suzuki, Kunimasa; Mackay, James P.; van de Bunt, Martijn; Gloyn, Anna L.; Ryan, Terence E.; Norquay, Lisa D.; Brosnan, M. Julia; Trimmer, Jeff K.; Rolph, Timothy P.; Kibbey, Richard G.; Manning Fox, Jocelyn E.; Colmers, William F.; Shirihai, Orian S.; Neufer, P. Darrell; Yeh, Edward T.H.; Newgard, Christopher B.; MacDonald, Patrick E.

    2015-01-01

    Insulin secretion from β cells of the pancreatic islets of Langerhans controls metabolic homeostasis and is impaired in individuals with type 2 diabetes (T2D). Increases in blood glucose trigger insulin release by closing ATP-sensitive K+ channels, depolarizing β cells, and opening voltage-dependent Ca2+ channels to elicit insulin exocytosis. However, one or more additional pathway(s) amplify the secretory response, likely at the distal exocytotic site. The mitochondrial export of isocitrate and engagement with cytosolic isocitrate dehydrogenase (ICDc) may be one key pathway, but the mechanism linking this to insulin secretion and its role in T2D have not been defined. Here, we show that the ICDc-dependent generation of NADPH and subsequent glutathione (GSH) reduction contribute to the amplification of insulin exocytosis via sentrin/SUMO-specific protease-1 (SENP1). In human T2D and an in vitro model of human islet dysfunction, the glucose-dependent amplification of exocytosis was impaired and could be rescued by introduction of signaling intermediates from this pathway. Moreover, islet-specific Senp1 deletion in mice caused impaired glucose tolerance by reducing the amplification of insulin exocytosis. Together, our results identify a pathway that links glucose metabolism to the amplification of insulin secretion and demonstrate that restoration of this axis rescues β cell function in T2D. PMID:26389676

  2. Insulin Stimulates S100B Secretion and These Proteins Antagonistically Modulate Brain Glucose Metabolism.

    PubMed

    Wartchow, Krista Minéia; Tramontina, Ana Carolina; de Souza, Daniela F; Biasibetti, Regina; Bobermin, Larissa D; Gonçalves, Carlos-Alberto

    2016-06-01

    Brain metabolism is highly dependent on glucose, which is derived from the blood circulation and metabolized by the astrocytes and other neural cells via several pathways. Glucose uptake in the brain does not involve insulin-dependent glucose transporters; however, this hormone affects the glucose influx to the brain. Changes in cerebrospinal fluid levels of S100B (an astrocyte-derived protein) have been associated with alterations in glucose metabolism; however, there is no evidence whether insulin modulates glucose metabolism and S100B secretion. Herein, we investigated the effect of S100B on glucose metabolism, measuring D-(3)H-glucose incorporation in two preparations, C6 glioma cells and acute hippocampal slices, and we also investigated the effect of insulin on S100B secretion. Our results showed that: (a) S100B at physiological levels decreases glucose uptake, through the multiligand receptor RAGE and mitogen-activated protein kinase/ERK signaling, and (b) insulin stimulated S100B secretion via PI3K signaling. Our findings indicate the existence of insulin-S100B modulation of glucose utilization in the brain tissue, and may improve our understanding of glucose metabolism in several conditions such as ketosis, streptozotocin-induced dementia and pharmacological exposure to antipsychotics, situations that lead to changes in insulin signaling and extracellular levels of S100B.

  3. Regulation of growth hormone secretion by (pro)renin receptor.

    PubMed

    Tani, Yuji; Yamada, Shozo; Inoshita, Naoko; Hirata, Yukio; Shichiri, Masayoshi

    2015-06-03

    (Pro)renin receptor (PRR) has a single transmembrane domain that co-purifies with the vacuolar H(+)-ATPase (V-ATPase). In addition to its role in cellular acidification, V-ATPase has been implicated in membrane fusion and exocytosis via its Vo domain. Results from the present study show that PRR is expressed in pituitary adenoma cells and regulates growth hormone (GH) release via V-ATPase-induced cellular acidification. Positive PRR immunoreactivity was detected more often in surgically resected, growth hormone-producing adenomas (GHomas) than in nonfunctional pituitary adenomas. GHomas strongly expressing PRR showed excess GH secretion, as evidenced by distinctly high plasma GH and insulin-like growth factor-1 levels, as well as an elevated nadir GH in response to the oral glucose tolerance test. Suppression of PRR expression in rat GHoma-derived GH3 cells using PRR siRNA resulted in reduced GH secretion and significantly enhanced intracellular GH accumulation. GH3 treatment with bafilomycin A1, a V-ATPase inhibitor, also blocked GH release, indicating mediation via impaired cellular acidification of V-ATPase. PRR knockdown decreased Atp6l, a subunit of the Vo domain that destabilizes V-ATPase assembly, increased intracellular GH, and decreased GH release. To our knowledge, this is the first report demonstrating a pivotal role for PRR in a pituitary hormone release mechanism.

  4. The effect of defective early phase insulin secretion on postload glucose intolerance in impaired fasting glucose.

    PubMed

    Sargin, Mehmet; Ikiişik, Murat; Sargin, Haluk; Orçun, Asuman; Kaya, Müjgan; Gözü, Hülya; Dabak, Reşat; Bayramiçli, Oya Uygur; Yayla, Ali

    2005-10-01

    Impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) are two risk groups for type 2 diabetes. Type 2 diabetes is characterized by both impaired insulin secretion and insulin resistance but their relative contribution to the development of hyperglycemia may differ due to heterogeneity of the disease. Combined glucose intolerance (CGI), on the other hand, seems to represent a more advanced stage of prediabetes that bears a distinctly higher risk of progression to diabetes and its comorbidities. This study has the aim to compare isolated IFG and CGI categories with respect to the degree of early phase insulin secretion abnormalities and insulin resistance. Subjects who had IFG (fasting glucose: 110-126 mg/dl) were included in the study. A 75-g oral glucose tolerance test (OGTT) with insulin response was done and subjects were classified according to the WHO criteria. Six subjects were excluded because they had diabetic glucose tolerance. A total of 66 patients (53.4 +/- 11.1 years, female/male: 48/18) were divided into two groups according to their glucose tolerance in OGGT (Group 1: isolated IFG and group 2: CGI). Early phase insulin secretion was measured by intravenous glucose tolerance test (IVGTT) and OGTT. Insulin resistance was assessed by the R value of the homeostasis model assessment (HOMA). We did not find any statistically significant difference between groups according to age, gender, body mass index (BMI), fasting glucose, fasting insulin, insulin-AUC (0-180 min) and HOMA-R values. In OGGT there was no statistically significant difference between 0', 30', 60' and 90' insulin levels of the groups; only 120' and 180' insulin levels were higher in CGI than in IFG group (p<0.05). In IVGTT, there was no statistically significant difference between glucose levels of the groups. Furthermore, insulin response to intravenous glucose was higher in IFG than in CGI (p<0.05). Our data demonstrate that isolated IFG and CGI are similar with respect to

  5. Decreased irisin secretion contributes to muscle insulin resistance in high-fat diet mice.

    PubMed

    Yang, Zaigang; Chen, Xu; Chen, Yujuan; Zhao, Qian

    2015-01-01

    Recent studies have revealed the relationship between irisin and insulin signaling, while positive associations of muscle FNDC5 with insulin resistance is observed. However, the functional mechanism of irisin on muscle insulin resistance is still obscure. This study aims to investigate the effect of irisin on muscle insulin action. Diabetic mouse model was established by high fat diet (HFD) induced obesity in C57BL/6 mice. Body indexes and serum levels of triglyceride (TG), blood glucose and insulin were record. Oral glucose tolerance test (OGTT) was performed before being killed. Circulating irisin level was also detected, while FNDC5/irisin expression was determined by RT-PCR and western blot analysis in both muscle and adipose tissues. Insulin action was further evaluated by the phosphorylation of AKT and Erk, and palmitic acid treated muscle cells were introduced for mimicking diabetic status in vitro. Obvious obese feathers associated with type 2 diabetes were observed in HFD feeding mice, with decreased circulating irisin level and FNDC5/irisin secretion in adipose tissues. Although FNDC5/irisin expression showed little change in skeletal muscle, the insulin action was inhibited significantly. Moreover, palmitic acid treated muscle cells showed similar inhibition of insulin action, and FNDC5/irisin expression change. Besides, insulin action could be reversed by irisin addition in muscle cells. HFD induced obese mice showed decreased irisin secretion from adipose tissues, which might contribute to muscle insulin resistance. Furthermore, irisin addition could recover insulin action in palmitic acid treated muscle cells, indicating the importance of irisin for preserving insulin signaling.

  6. Restoration of insulin secretion in pancreatic islets of protein-deficient rats by reduced expression of insulin receptor substrate (IRS)-1 and IRS-2.

    PubMed

    Araujo, E P; Amaral, M E C; Filiputti, E; De Souza, C T; Laurito, T L; Augusto, V D; Saad, M J A; Boschero, A C; Velloso, L A; Carneiro, E M

    2004-04-01

    Autocrine and paracrine insulin signaling may participate in the fine control of insulin secretion. In the present study, tissue distribution and protein amounts of the insulin receptor and its major substrates, insulin receptor substrate (IRS)-1 and IRS-2, were evaluated in a model of impaired glucose-induced insulin secretion, the protein-deficient rat. Immunoblot and RT-PCR studies showed that the insulin receptor and IRS-2 expression are increased, whilst IRS-1 protein and mRNA contents are decreased in pancreatic islets of protein-deficient rats. Immunohistochemical studies revealed that the insulin receptor and IRS-1 and -2 are present in the great majority of islet cells; however, the greatest staining was localized at the periphery, suggesting a co-localization with non-insulin-secreting cells. Exogenous insulin stimulation of isolated islets promoted higher insulin receptor and IRS-1 and -2 tyrosine phosphorylation in islets from protein-deficient rats, as compared with controls. Moreover, insulin-induced IRS-1- and IRS-2-associated phosphatidylinositol 3-kinase activity are increased in islets of protein-deficient rats. The reduction of IRS-1 and IRS-2 protein expression in islets isolated from protein-deficient rats by the use of antisense IRS-1 or IRS-2 phosphorthioate-modified oligonucleotides partially restored glucose-induced insulin secretion. Thus, the impairment of insulin cell signaling through members of the IRS family of proteins in isolated rat pancreatic islets improves glucose-induced insulin secretion. The present data reinforced the role of insulin paracrine and autocrine signaling in the control of its own secretion.

  7. Adenovirus-mediated overexpression of liver carnitine palmitoyltransferase I in INS1E cells: effects on cell metabolism and insulin secretion.

    PubMed

    Rubí, Blanca; Antinozzi, Peter A; Herrero, Laura; Ishihara, Hisamitsu; Asins, Guillermina; Serra, Dolors; Wollheim, Claes B; Maechler, Pierre; Hegardt, Fausto G

    2002-05-15

    Lipid metabolism in the beta-cell is critical for the regulation of insulin secretion. Pancreatic beta-cells chronically exposed to fatty acids show higher carnitine palmitoyltransferase I (CPT I) protein levels, higher palmitate oxidation rates and an altered insulin response to glucose. We examined the effect of increasing CPT I levels on insulin secretion in cultured beta-cells. We prepared a recombinant adenovirus containing the cDNA for the rat liver isoform of CPT I. The overexpression of CPT I in INS1E cells caused a more than a 5-fold increase in the levels of CPT I protein (detected by Western blotting), a 6-fold increase in the CPT activity, and an increase in fatty acid oxidation at 2.5 mM glucose (1.7-fold) and 15 mM glucose (3.1-fold). Insulin secretion was stimulated in control cells by 15 mM glucose or 30 mM KCl. INS1E cells overexpressing CPT I showed lower insulin secretion on stimulation with 15 mM glucose (-40%; P<0.05). This decrease depended on CPT I activity, since the presence of etomoxir, a specific inhibitor of CPT I, in the preincubation medium normalized the CPT I activity, the fatty-acid oxidation rate and the insulin secretion in response to glucose. Exogenous palmitate (0.25 mM) rescued glucose-stimulated insulin secretion (GSIS) in CPT I-overexpressing cells, indicating that the mechanism of impaired GSIS was through the depletion of a critical lipid. Depolarizing the cells with KCl or intermediary glucose concentrations (7.5 mM) elicited similar insulin secretion in control cells and cells overexpressing CPT I. Glucose-induced ATP increase, glucose metabolism and the triacylglycerol content remained unchanged. These results provide further evidence that CPT I activity regulates insulin secretion in the beta-cell. They also indicate that up-regulation of CPT I contributes to the loss of response to high glucose in beta-cells exposed to fatty acids.

  8. Adenovirus-mediated overexpression of liver carnitine palmitoyltransferase I in INS1E cells: effects on cell metabolism and insulin secretion.

    PubMed Central

    Rubí, Blanca; Antinozzi, Peter A; Herrero, Laura; Ishihara, Hisamitsu; Asins, Guillermina; Serra, Dolors; Wollheim, Claes B; Maechler, Pierre; Hegardt, Fausto G

    2002-01-01

    Lipid metabolism in the beta-cell is critical for the regulation of insulin secretion. Pancreatic beta-cells chronically exposed to fatty acids show higher carnitine palmitoyltransferase I (CPT I) protein levels, higher palmitate oxidation rates and an altered insulin response to glucose. We examined the effect of increasing CPT I levels on insulin secretion in cultured beta-cells. We prepared a recombinant adenovirus containing the cDNA for the rat liver isoform of CPT I. The overexpression of CPT I in INS1E cells caused a more than a 5-fold increase in the levels of CPT I protein (detected by Western blotting), a 6-fold increase in the CPT activity, and an increase in fatty acid oxidation at 2.5 mM glucose (1.7-fold) and 15 mM glucose (3.1-fold). Insulin secretion was stimulated in control cells by 15 mM glucose or 30 mM KCl. INS1E cells overexpressing CPT I showed lower insulin secretion on stimulation with 15 mM glucose (-40%; P<0.05). This decrease depended on CPT I activity, since the presence of etomoxir, a specific inhibitor of CPT I, in the preincubation medium normalized the CPT I activity, the fatty-acid oxidation rate and the insulin secretion in response to glucose. Exogenous palmitate (0.25 mM) rescued glucose-stimulated insulin secretion (GSIS) in CPT I-overexpressing cells, indicating that the mechanism of impaired GSIS was through the depletion of a critical lipid. Depolarizing the cells with KCl or intermediary glucose concentrations (7.5 mM) elicited similar insulin secretion in control cells and cells overexpressing CPT I. Glucose-induced ATP increase, glucose metabolism and the triacylglycerol content remained unchanged. These results provide further evidence that CPT I activity regulates insulin secretion in the beta-cell. They also indicate that up-regulation of CPT I contributes to the loss of response to high glucose in beta-cells exposed to fatty acids. PMID:11988095

  9. Heterozygous SOD2 Deletion Impairs Glucose-Stimulated Insulin Secretion, but Not Insulin Action, in High-Fat–Fed Mice

    PubMed Central

    Dai, Chunhua; Lustig, Mary E.; Bonner, Jeffrey S.; Mayes, Wesley H.; Mokshagundam, Shilpa; James, Freyja D.; Thompson, Courtney S.; Lin, Chien-Te; Perry, Christopher G.R.; Anderson, Ethan J.; Neufer, P. Darrell; Wasserman, David H.; Powers, Alvin C.

    2014-01-01

    Elevated reactive oxygen species (ROS) are linked to insulin resistance and islet dysfunction. Manganese superoxide dismutase (SOD2) is a primary defense against mitochondrial oxidative stress. To test the hypothesis that heterozygous SOD2 deletion impairs glucose-stimulated insulin secretion (GSIS) and insulin action, wild-type (sod2+/+) and heterozygous knockout mice (sod2+/−) were fed a chow or high-fat (HF) diet, which accelerates ROS production. Hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI) clamps were performed to assess GSIS and insulin action in vivo. GSIS during HG clamps was equal in chow-fed sod2+/− and sod2+/+ but was markedly decreased in HF-fed sod2+/−. Remarkably, this impairment was not paralleled by reduced HG glucose infusion rate (GIR). Decreased GSIS in HF-fed sod2+/− was associated with increased ROS, such as superoxide ion. Surprisingly, insulin action determined by HI clamps did not differ between sod2+/− and sod2+/+ of either diet. Since insulin action was unaffected, we hypothesized that the unchanged HG GIR in HF-fed sod2+/− was due to increased glucose effectiveness. Increased GLUT-1, hexokinase II, and phospho-AMPK protein in muscle of HF-fed sod2+/− support this hypothesis. We conclude that heterozygous SOD2 deletion in mice, a model that mimics SOD2 changes observed in diabetic humans, impairs GSIS in HF-fed mice without affecting insulin action. PMID:24947366

  10. Geniposide accelerates proteasome degradation of Txnip to inhibit insulin secretion in pancreatic β-cells.

    PubMed

    Liu, C Y; Hao, Y N; Yin, F; Zhang, Y L; Liu, J H

    2017-05-01

    To analyze the role of geniposide in the protein degradation of Txnip and to determine the impact of Txnip on geniposide-regulated GSIS in pancreatic INS-1 cells. The content of Txnip protein was measured by western blot; insulin content and glucose uptake were determined by ELISA; and knockdown of Txnip was the method of RNA interference. Glucose induces a rapid increase in Txnip protein, and geniposide accelerates the degradation of Txnip via proteasome pathway in the presence of high glucose (25 mM) in INS-1 pancreatic β-cells. And MG132, a proteasomal inhibitor, potentiates glucose uptake, metabolism (ATP production) and glucose-stimulated insulin secretion (GSIS) in high-glucose (25 mM)-treated INS-1 cells, but geniposide significantly prevents these effects. Furthermore, the combination of geniposide and Txnip knockdown shows substantial synergistic effects to reduce glucose uptake, metabolism and GSIS in high-glucose (25 mM)-treated INS-1 cells. Txnip protein played an essential role in glucose uptake, metabolism and GSIS, and geniposide could accelerate the degradation via proteasome pathway in high-glucose-treated pancreatic INS-1 cells.

  11. The role of pancreatic insulin secretion in neonatal glucoregulation. I. Healthy term and preterm infants.

    PubMed Central

    Hawdon, J M; Aynsley-Green, A; Alberti, K G; Ward Platt, M P

    1993-01-01

    The glucoregulatory role of insulin in adult subjects is undisputed. However, less is known about the secretion of insulin and its actions in the neonatal period, either for healthy subjects, or for those at risk of disordered blood glucose homoeostasis. The relationships between blood glucose and plasma immunoreactive insulin concentrations were therefore examined in 52 healthy children (aged 1 month-10 years), 67 appropriate birth weight for gestational age (AGA) term infants, and 39 AGA preterm neonates. In children and AGA neonates, plasma immunoreactive insulin concentration was positively related to blood glucose concentration. However, although both groups of neonates had significantly lower blood glucose concentrations than children, plasma immunoreactive insulin concentrations were significantly higher in both term and preterm neonates, when compared with children. The variation in plasma immunoreactive insulin concentrations was greater for neonates than for children. These data suggest, that compared with older subjects, plasma immunoreactive insulin concentrations are high in newborn babies and that neonatal pancreatic insulin secretion is less closely linked to circulating blood glucose concentrations. There are important implications for the interpretation of studies in hypoglycaemic and hyperglycaemic neonates. PMID:8466262

  12. Association between Higher Serum Cortisol Levels and Decreased Insulin Secretion in a General Population

    PubMed Central

    Kamba, Aya; Daimon, Makoto; Murakami, Hiroshi; Otaka, Hideyuki; Matsuki, Kota; Sato, Eri; Tanabe, Jutaro; Takayasu, Shinobu; Matsuhashi, Yuki; Yanagimachi, Miyuki; Terui, Ken; Kageyama, Kazunori; Tokuda, Itoyo; Takahashi, Ippei; Nakaji, Shigeyuki

    2016-01-01

    Glucocorticoids (GCs) are well known to induce insulin resistance. However, the effect of GCs on insulin secretion has not been well characterized under physiological conditions in human. We here evaluated the effect of GCs on insulin secretion/ß-cell function precisely in a physiological condition. A population-based study of 1,071 Japanese individuals enrolled in the 2014 Iwaki study (390 men, 681 women; aged 54.1 ± 15.1 years), those excluded individuals taking medication for diabetes or steroid treatment, were enrolled in the present study. Association between serum cortisol levels and insulin resistance/secretion assessed by homeostasis model assessment using fasting blood glucose and insulin levels (HOMA-R and HOMA-ß, respectively) were examined. Univariate linear regression analyses showed correlation of serum cortisol levels with HOMA-ß (ß = -0.134, p <0.001) but not with HOMA-R (ß = 0.042, p = 0.172). Adjustments for age, gender, and the multiple clinical characteristics correlated with HOMA indices showed similar results (HOMA-ß: ß = -0.062, p = 0.025; HOMA-R: ß = -0.023, p = 0.394). The correlation between serum cortisol levels and HOMA-ß remained significant after adjustment for HOMA- R (ß = -0.057, p = 0.034). When subjects were tertiled based on serum cortisol levels, the highest tertile was at greater risk of decreased insulin secretion (defined as lower one third of HOMA-ß (≤70)) than the lowest tertile, after adjustment for multiple factors including HOMA- R (odds ratio 1.26, 95% confidence interval 1.03–1.54). In conclusion, higher serum cortisol levels are significantly associated with decreased insulin secretion in the physiological cortisol range in a Japanese population. PMID:27861636

  13. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    SciTech Connect

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila; Mirshahi, Faridoddin; Grider, John R.; Murthy, Karnam S.; Sanyal, Arun J.

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  14. Selective Serotonin Reuptake Inhibitors (SSRIs) Inhibit Insulin Secretion and Action in Pancreatic β Cells*

    PubMed Central

    Isaac, Roi; Boura-Halfon, Sigalit; Gurevitch, Diana; Shainskaya, Alla; Levkovitz, Yechiel; Zick, Yehiel

    2013-01-01

    Selective serotonin reuptake inhibitors (SSRIs) are antidepressants used for the treatment of mood and anxiety disorders. Here, we demonstrate that incubation (2 h) of murine islets or Min6 β cell line with the SSRIs paroxetine, fluoxetine, or sertraline inhibited insulin-induced Tyr phosphorylation of insulin receptor substrate (IRS)-2 protein and the activation of its downstream targets Akt and the ribosomal protein S6 kinase-1 (S6K1). Inhibition was dose-dependent with half-maximal effects at ∼15–20 μm. It correlated with a rapid dephosphorylation and activation of the IRS kinase GSK3β. Introduction of GSK3β siRNAs eliminated the inhibitory effects of the SSRIs. Inhibition of IRS-2 action by 30 μm SSRI was associated with a marked inhibition of glucose-stimulated insulin secretion from murine and human pancreatic islets. Secretion induced by basic secretagogues (KCl and Arg) was not affected by these drugs. Prolonged treatment (16 h) of Min6 cells with sertraline resulted in the induction of inducible nitric oxide synthase; activation of endoplasmic reticulum stress, and the initiation of the unfolded protein response, manifested by enhanced transcription of ATF4 and C/EBP homologous protein. This triggered an apoptotic process, manifested by enhanced caspase 3/7 activity, which resulted in β cell death. These findings implicate SSRIs as inhibitors of IRS protein function and insulin action through the activation of GSK3β. They further suggest that SSRIs inhibit insulin secretion; induce the unfolded protein response; activate an apoptotic process, and trigger β cell death. Given that SSRIs promote insulin resistance while inhibiting insulin secretion, these drugs might accelerate the transition from an insulin-resistant state to overt diabetes. PMID:23275337

  15. Integration of hormonal and nutrient signals that regulate leptin synthesis and secretion

    PubMed Central

    Lee, Mi-Jeong; Fried, Susan K.

    2009-01-01

    This review summarizes recent advances in our understanding of the pre- and posttranscriptional mechanisms that regulate leptin production and secretion in adipocytes. Basal leptin production is proportional to the status of energy stores, i.e., fat cell size, and this is mainly regulated by alterations in leptin mRNA levels. Leptin mRNA levels are regulated by hormones, including glucocorticoids and catecholamines, but little is known about the transcriptional mechanisms involved. Leptin synthesis and secretion is also acutely modulated in response to hormones such as insulin and the availability of metabolic fuels. Acute variations in leptin production over a time course of minutes to hours are mediated at the levels of both translation and secretion. Increases in amino acids and insulin after a meal activate the mammalian target of rapamycin (mTOR) pathway, leading to an increase in specific rates of leptin biosynthesis. Cross-talk among mTOR, PKA, and AMP-activated protein kinase pathways appears to integrate hormonal and nutrient signals that regulate leptin mRNA translation, at least in part through mechanisms involving its 5′- and 3′-untranslated regions. In addition, the rate of leptin secretion from preformed stores in response to hormonal cues is also regulated. Insulin stimulates, and adrenergic agonists inhibit, leptin secretion, and this likely contributes to variations in the magnitude of nutrition-related leptin excursions and oscillations. Overall, the study of leptin production has contributed to a deepening understanding of leptin biology and, more broadly, to our understanding of the cellular and molecular mechanisms by which the adipocyte integrates hormonal and nutrient signals to regulate adipokine production. PMID:19318513

  16. Pseudoislet formation enhances gene expression, insulin secretion and cytoprotective mechanisms of clonal human insulin-secreting 1.1B4 cells.

    PubMed

    Green, Alastair D; Vasu, Srividya; McClenaghan, Neville H; Flatt, Peter R

    2015-10-01

    We have studied the effects of cell communication on human beta cell function and resistance to cytotoxicity using the novel human insulin-secreting cell line 1.1B4 configured as monolayers and pseudoislets. Incubation with the incretin gut hormones GLP-1 and GIP caused dose-dependent stimulation of insulin secretion from 1.1B4 cell monolayers and pseudoislets. The secretory responses were 1.5-2.7-fold greater than monolayers. Cell viability (MTT), DNA damage (comet assay) and apoptosis (acridine orange/ethidium bromide staining) were investigated following 2-h exposure of 1.1B4 monolayers and pseudoislets to ninhydrin, H2O2, streptozotocin, glucose, palmitate or cocktails of proinflammatory cytokines. All agents tested decreased viability and increased DNA damage and apoptosis in both 1.1B4 monolayers and pseudoislets. However, pseudoislets exhibited significantly greater resistance to cytotoxicity (1.5-2.7-fold increases in LD50) and lower levels of DNA damage (1.3-3.4-fold differences in percentage tail DNA and olive tail moment) and apoptosis (1.3-1.5-fold difference) compared to monolayers. Measurement of gene expression by reverse-transcription, real-time PCR showed that genes involved with insulin secretion (INS, PDX1, PCSK1, PCSK2, GLP1R and GIPR), cell-cell communication (GJD2, GJA1 and CDH1) and antioxidant defence (SOD1, SOD2, GPX1 and CAT) were significantly upregulated in pseudoislets compared to monolayers, whilst the expression of proapoptotic genes (NOS2, MAPK8, MAPK10 and NFKB1) showed no significant differences. In summary, these data indicate cell-communication associated with three-dimensional islet architecture is important both for effective insulin secretion and for protection of human beta cells against cytotoxicity.

  17. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro

    PubMed Central

    Keller, Amy C.; Ma, Jun; Kavalier, Adam; He, Kan; Brillantes, Anne-Marie B.; Kennelly, Edward J.

    2012-01-01

    The antidiabetic activity of Momordica charantia (L.), Cucurbitaceae, a widely-used treatment for diabetes in a number of traditional medicine systems, was investigated in vitro. Antidiabetic activity has been reported for certain saponins isolated from M. charantia. In this study insulin secretion was measured in MIN6 β-cells incubated with an ethanol extract, saponin-rich fraction, and five purified saponins and cucurbitane triterpenoids from M. charantia, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (1), momordicine I (2), momordicine II (3), 3-hydroxycucurbita-5,24-dien-19-al-7,23-di-O-β-glucopyranoside (4), and kuguaglycoside G (5). Treatments were compared to incubation with high glucose (27 mM) and the insulin secretagogue, glipizide (50 μM). At 125 μg/ml, an LC-ToF-MS characterized saponin-rich fraction stimulated insulin secretion significantly more than the DMSO vehicle, p=0.02. At concentrations 10 and 25 μg/ml, compounds 3 and 5 also significantly stimulated insulin secretion as compared to the vehicle, p≤0.007, and p= 0.002, respectively. This is the first report of a saponin-rich fraction, and isolated compounds from M. charantia, stimulating insulin secretion in an in vitro, static incubation assay. PMID:22133295

  18. Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro.

    PubMed

    Keller, Amy C; Ma, Jun; Kavalier, Adam; He, Kan; Brillantes, Anne-Marie B; Kennelly, Edward J

    2011-12-15

    The antidiabetic activity of Momordica charantia (L.), Cucurbitaceae, a widely-used treatment for diabetes in a number of traditional medicine systems, was investigated in vitro. Antidiabetic activity has been reported for certain saponins isolated from M. charantia. In this study insulin secretion was measured in MIN6 β-cells incubated with an ethanol extract, saponin-rich fraction, and five purified saponins and cucurbitane triterpenoids from M. charantia, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (1), momordicine I (2), momordicine II (3), 3-hydroxycucurbita-5,24-dien-19-al-7,23-di-O-β-glucopyranoside (4), and kuguaglycoside G (5). Treatments were compared to incubation with high glucose (27 mM) and the insulin secretagogue, glipizide (50 μM). At 125 μg/ml, an LC-ToF-MS characterized saponin-rich fraction stimulated insulin secretion significantly more than the DMSO vehicle, p=0.02. At concentrations 10 and 25 μg/ml, compounds 3 and 5 also significantly stimulated insulin secretion as compared to the vehicle, p≤0.007, and p=0.002, respectively. This is the first report of a saponin-rich fraction, and isolated compounds from M. charantia, stimulating insulin secretion in an in vitro, static incubation assay. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. Defective insulin secretion by chronic glucagon receptor activation in glucose intolerant mice.

    PubMed

    Ahlkvist, Linda; Omar, Bilal; Valeur, Anders; Fosgerau, Keld; Ahrén, Bo

    2016-03-01

    Stimulation of insulin secretion by short-term glucagon receptor (GCGR) activation is well characterized; however, the effect of long-term GCGR activation on β-cell function is not known, but of interest, since hyperglucagonemia occurs early during development of type 2 diabetes. Therefore, we examined whether chronic GCGR activation affects insulin secretion in glucose intolerant mice. To induce chronic GCGR activation, high-fat diet fed mice were continuously (2 weeks) infused with the stable glucagon analog ZP-GA-1 and challenged with oral glucose and intravenous glucose±glucagon-like peptide 1 (GLP1). Islets were isolated to evaluate the insulin secretory response to glucose±GLP1 and their pancreas were collected for immunohistochemical analysis. Two weeks of ZP-GA-1 infusion reduced insulin secretion both after oral and intravenous glucose challenges in vivo and in isolated islets. These inhibitory effects were corrected for by GLP1. Also, we observed increased β-cell area and islet size. We conclude that induction of chronic ZP-GA-1 levels in glucose intolerant mice markedly reduces insulin secretion, and thus, we suggest that chronic activation of the GCGR may contribute to the failure of β-cell function during development of type 2 diabetes.

  20. Advanced glycation end products (AGEs) are cross-sectionally associated with insulin secretion in healthy subjects.

    PubMed

    Forbes, Josephine M; Sourris, Karly C; de Courten, Maximilian P J; Dougherty, Sonia L; Chand, Vibhasha; Lyons, Jasmine G; Bertovic, David; Coughlan, Melinda T; Schlaich, Markus P; Soldatos, Georgia; Cooper, Mark E; Straznicky, Nora E; Kingwell, Bronwyn A; de Courten, Barbora

    2014-02-01

    It has been postulated that chronic exposure to high levels of advanced glycation end products (AGEs), in particular from dietary sources, can impair insulin secretion. In the present study, we investigated the cross-sectional relationship between AGEs and acute insulin secretion during an intravenous glucose tolerance test (IVGTT) and following a 75 g oral glucose tolerance test (OGTT) in healthy humans. We report the cross-sectional association between circulating AGE concentrations and insulin secretory function in healthy humans (17 F: 27 M, aged 30 ± 10 years) with a wide range of BMI (24.6-31.0 kg/m(2)). Higher circulating concentrations of AGEs were related to increased first phase insulin secretion during IVGTT (r = 0.43; p < 0.05) and lower 2-h glucose concentrations during OGTT (r = -0.31; p < 0.05). In addition, fasting (r = -0.36; p < 0.05) and 2-h glucose concentrations were negatively related to circulating levels of soluble receptor for AGE (RAGE) isoforms (r = -0.39; p < 0.01). In conclusion, in healthy humans, we show a cross-sectional association between advanced glycation end products and acute insulin secretion during glucose tolerance testing.

  1. Mechanisms and regulation of neurotrophin synthesis and secretion.

    PubMed

    Al-Qudah, Mohammad A; Al-Dwairi, Ahmed

    2016-10-01

    Neurotrophins are secreted proteins that are synthesized as pre-pro-neurotrophins on the rough endoplasmic reticulum, which are subsequently processed and then secreted as mature proteins. During synthesis, neurotrophins are sorted in the trans-Golgi apparatus into 2 pathways of secretion; the constitutive and the regulated pathways. Neurotrophins in the constitutive pathway are secreted cautiously without any trigger, while in the regulated pathway of secretion an external stimulus elevates the calcium concentration intracellularly leading to neurotrophin release. The regulation of sorting and secretion of neurotrophins is critical for several processes in the body, such as synaptic plasticity, neurodegenerative disorders, demyelination disease, and inflammation. The purpose of this review is to summarize the current mechanisms of neurotrophin sorting and secretion.

  2. Effects of Steaming Time and Frequency for Manufactured Red Liriope platyphylla on the Insulin Secretion Ability and Insulin Receptor Signaling Pathway

    PubMed Central

    Choi, Sun Il; Lee, Hye Ryun; Goo, Jun Seo; Kim, Ji Eun; Nam, So Hee; Hwang, In Sik; Lee, Young Ju; Prak, So Hae; Lee, Hee Seob; Lee, Jong Sup; Jang, In Surk; Son, Hong Ju

    2011-01-01

    In oriental medicine, Liriope platyphylla (LP) has long been regarded as a curative herb useful for the treatment of diabetes, asthma, and neurodegenerative disorders. The principal objective of this study was to assess the effects of steaming time and frequency for manufactured Red LP (RLP) on insulin secretion ability and insulin receptor signaling pathway. To achieve our goal, several types of LPs manufactured under different conditions were applied to INS cells and streptozotocin (STZ)-induced diabetic ICR mice, after which alterations in insulin concentrations were detected in the culture supernatants and sera. The optimal concentration for the investigation of insulin secretion ability was found to be 50 ug/mL of LP. At this concentration, maximum insulin secretion was observed in the INS cells treated with LP extract steamed for 3 h (3-SLP) with two repeated steps (3 h steaming and 24 h air-dried) carried out 9 times (9-SALP); no significant changes in viability were detected in any of the treated cells. Additionally, the expression and phosphorylation levels of most components in the insulin receptor signaling pathway were increased significantly in the majority of cells treated with steaming-processed LP as compared to the cells treated with LP prepared without steaming. With regard to glucose transporter (GLUT) expression, alterations of steaming time induced similar responses on the expression levels of GLUT-2 and GLUT-3. However, differences in steaming frequency were also shown to induce dose-dependent responses in the expression level of GLUT-2 only; no significant differences in GLUT-3 expression were detected under these conditions. Furthermore, these responses observed in vitro were similarly detected in STZ-induced diabetic mice. 24-SLP and 9-SALP treatment applied for 14 days induced the down-regulation of glucose concentration and upregulation of insulin concentration. Therefore, these results indicated that the steaming processed LP may

  3. Glucagon-like peptide 1 and fatty acids amplify pulsatile insulin secretion from perifused rat islets.

    PubMed Central

    Cunningham, Barbara A; Richard, Ann-Marie T; Dillon, Joseph S; Daley, Jennifer T; Civelek, Vildan N; Deeney, Jude T; Yaney, Gordon C; Corkey, Barbara E; Tornheim, Keith

    2003-01-01

    Glucose-induced insulin secretion from isolated, perifused rat islets is pulsatile with a period of about 5-10 min, similar to the insulin oscillations that are seen in healthy humans but which are impaired in Type II diabetes. We evaluated the pattern of enhancement by the potent incretin, glucagon-like peptide 1 (GLP-1). GLP-1 increased the amplitude of pulses and the magnitude of insulin secretion from the perifused islets, without affecting the average time interval between pulses. Forskolin and the phosphodiesterase inhibitor isobutylmethylxanthine had the same effect, suggesting that the effect was due to elevated cAMP levels. The possibility that cAMP might enhance the amplitude of pulses by reducing phosphofructo-2-kinase (PFK-2) activity was eliminated when the liver isoform of PFK-2 was shown to be absent from beta-cells. The possibility that cAMP enhanced pulsatile secretion, at least in part, by stimulating lipolysis was supported by the observations that added oleate had a similar effect on secretion, and that the incretin effect of GLP-1 was inhibited by the lipase inhibitor orlistat. These data show that the physiological incretin GLP-1 preserves and enhances normal pulsatile insulin secretion, which may be essential in proposed therapeutic uses of GLP-1 or its analogues. PMID:12356335

  4. Bone marrow fat contributes to insulin sensitivity and adiponectin secretion in premenopausal women.

    PubMed

    Ermetici, Federica; Briganti, Silvia; Delnevo, Alessandra; Cannaò, Paola; Leo, Giovanni Di; Benedini, Stefano; Terruzzi, Ileana; Sardanelli, Francesco; Luzi, Livio

    2017-06-17

    Bone marrow fat is a functionally distinct adipose tissue that may contribute to systemic metabolism. This study aimed at evaluating a possible association between bone marrow fat and insulin sensitivity indices. Fifty obese (n = 23) and non-obese (n = 27) premenopausal women underwent proton magnetic resonance spectroscopy to measure vertebral bone marrow fat content and unsaturation index at L4 level. Abdominal visceral, subcutaneous fat, and epicardial fat were also measured using magnetic resonance imaging. Bone mineral density was measured by dual-energy X-ray absorptiometry. Body composition was assessed by bioelectrical impedance analysis. Fasting serum glucose, insulin, lipids, adiponectin were measured; the insulin resistance index HOMA (HOMA-IR) was calculated. Bone marrow fat content and unsaturation index were similar in obese and non-obese women (38.5 ± 0.1 vs. 38.6 ± 0.1%, p = 0.994; 0.162 ± 0.065 vs. 0.175 ± 0.048, p = 0.473, respectively). Bone marrow fat content negatively correlated with insulin and HOMA-IR (r = -0.342, r = -0.352, respectively, p = 0.01) and positively with high density lipoprotein cholesterol (r = 0.270, p = 0.043). From a multivariate regression model including lnHOMA-IR as a dependent variable and visceral, subcutaneous, epicardial fat, and bone marrow fat as independent variables, lnHOMA-IR was significantly associated with bone marrow fat (β = -0.008 ± 0.004, p = 0.04) and subcutaneous fat (β = 0.003 ± 0.001, p = 0.04). Bone marrow fat, among the other adipose depots, was a significant predictor of circulating adiponectin (β = 0.147 ± 0.060, p = 0.021). Bone marrow fat unsaturation index negatively correlated with visceral fat (r = -0.316, p = 0.026). There is a relationship between bone marrow fat content and insulin sensitivity in obese and non-obese premenopausal women, possibly mediated by adiponectin secretion

  5. Influence of Maternal Obesity on Insulin Sensitivity and Secretion in Offspring

    PubMed Central

    Mingrone, Geltrude; Manco, Melania; Valera Mora, Maria Elena; Guidone, Caterina; Iaconelli, Amerigo; Gniuli, Donatella; Leccesi, Laura; Chiellini, Chiara; Ghirlanda, Giovanni

    2008-01-01

    OBJECTIVE—The purpose of this study was to clarify the effects of maternal obesity on insulin sensitivity and secretion in offspring. RESEARCH DESIGN AND METHODS—Fifty-one offspring of both sexes of obese (Ob group) and 15 offspring of normal-weight (control group) mothers were studied. Plasma glucose, insulin, and C-peptide were measured during an oral glucose tolerance test (OGTT). Insulin sensitivity was calculated using the oral glucose insulin sensitivity index, and insulin secretion and β-cell glucose sensitivity were computed by a mathematical model. Fasting leptin and adiponectin were also measured. Body composition was assessed by dual-X-ray absorptiometry. RESULTS—No birth weight statistical difference was observed in the two groups. Of the Ob group, 69% were obese and 19% were overweight. The Ob group were more insulin resistant than the control group (398.58 ± 79.32 vs. 513.81 ± 70.70 ml−1 · min−1 · m−2 in women, P < 0.0001; 416.42 ± 76.17 vs. 484.242 ± 45.76 ml−1 · min−1 · m−2 in men, P < 0.05). Insulin secretion after OGTT was higher in Ob group than in control group men (63.94 ± 21.20 vs. 35.71 ± 10.02 nmol · m−2, P < 0.01) but did not differ significantly in women. β-Cell glucose sensitivity was not statistically different between groups. A multivariate analysis of variance showed that maternal obesity and offspring sex concurred together with BMI and β-cell glucose sensitivity to determine the differences in insulin sensitivity and secretion observed in offspring. CONCLUSIONS—Obese mothers can give birth to normal birth weight babies who later develop obesity and insulin resistance. The maternal genetic/epigenetic transmission shows a clear sexual dimorphism, with male offspring having a higher value of insulin sensitivity (although not statistically significant) associated with significantly higher insulin secretion than female offspring. PMID:18535193

  6. Intracellular alkalinization by phosphate uptake via type III sodium-phosphate cotransporter participates in high-phosphate-induced mitochondrial oxidative stress and defective insulin secretion.

    PubMed

    Nguyen, Tuyet Thi; Quan, Xianglan; Xu, Shanhua; Das, Ranjan; Cha, Seung-Kuy; Kong, In Deok; Shong, Minho; Wollheim, Claes B; Park, Kyu-Sang

    2016-12-01

    Elevated plasma levels of inorganic phosphate (Pi) are harmful, causing, among other complications, vascular calcification and defective insulin secretion. The underlying molecular mechanisms of these complications remain poorly understood. We demonstrated the role of Pi transport across the plasmalemma on Pi toxicity in INS-1E rat clonal β cells and rat pancreatic islet cells. Type III sodium-phosphate cotransporters (NaPis) are the predominant Pi transporters expressed in insulin-secreting cells. Transcript and protein levels of sodium-dependent phosphate transporter 1 and 2 (PiT-1 and -2), isotypes of type III NaPi, were up-regulated by high-Pi incubation. In patch-clamp experiments, extracellular Pi elicited a Na(+)-dependent, inwardly rectifying current, which was markedly reduced under acidic extracellular conditions. Cellular uptake of Pi elicited cytosolic alkalinization; intriguingly, this pH change facilitated Pi transport into the mitochondrial matrix. Increased mitochondrial Pi uptake accelerated superoxide generation, mitochondrial permeability transition (mPT), and endoplasmic reticulum stress-mediated translational attenuation, leading to reduced insulin content and impaired glucose-stimulated insulin secretion. Silencing of PiT-1/2 prevented Pi-induced superoxide generation and mPT, and restored insulin secretion. We propose that Pi transport across the plasma membrane and consequent cytosolic alkalinization could be a therapeutic target for protection from Pi toxicity in insulin-secreting cells, as well as in other cell types.-Nguyen, T. T., Quan, X., Xu, S., Das, R., Cha, S.-K., Kong, I. D., Shong, M., Wollheim, C. B., Park, K.-S. Intracellular alkalinization by phosphate uptake via type III sodium-phosphate cotransporter participates in high-phosphate-induced mitochondrial oxidative stress and defective insulin secretion. © FASEB.

  7. Loss of Liver Kinase B1 (LKB1) in Beta Cells Enhances Glucose-stimulated Insulin Secretion Despite Profound Mitochondrial Defects.

    PubMed

    Swisa, Avital; Granot, Zvi; Tamarina, Natalia; Sayers, Sophie; Bardeesy, Nabeel; Philipson, Louis; Hodson, David J; Wikstrom, Jakob D; Rutter, Guy A; Leibowitz, Gil; Glaser, Benjamin; Dor, Yuval

    2015-08-21

    The tumor suppressor liver kinase B1 (LKB1) is an important regulator of pancreatic β cell biology. LKB1-dependent phosphorylation of distinct AMPK (adenosine monophosphate-activated protein kinase) family members determines proper β cell polarity and restricts β cell size, total β cell mass, and glucose-stimulated insulin secretion (GSIS). However, the full spectrum of LKB1 effects and the mechanisms involved in the secretory phenotype remain incompletely understood. We report here that in the absence of LKB1 in β cells, GSIS is dramatically and persistently improved. The enhancement is seen both in vivo and in vitro and cannot be explained by altered cell polarity, increased β cell number, or increased insulin content. Increased secretion does require membrane depolarization and calcium influx but appears to rely mostly on a distal step in the secretion pathway. Surprisingly, enhanced GSIS is seen despite profound defects in mitochondrial structure and function in LKB1-deficient β cells, expected to greatly diminish insulin secretion via the classic triggering pathway. Thus LKB1 is essential for mitochondrial homeostasis in β cells and in parallel is a powerful negative regulator of insulin secretion. This study shows that β cells can be manipulated to enhance GSIS to supra-normal levels even in the face of defective mitochondria and without deterioration over months.

  8. The adenylyl cyclase inhibitor MDL-12,330A potentiates insulin secretion via blockade of voltage-dependent K(+) channels in pancreatic beta cells.

    PubMed

    Li, Xiaodong; Guo, Qing; Gao, Jingying; Yang, Jing; Zhang, Wan; Liang, Yueqin; Wu, Dongmei; Liu, Yunfeng; Weng, Jianping; Li, Qingshan; Zhang, Yi

    2013-01-01

    Adenylyl cyclases (ACs) play important role in regulating pancreatic beta cell growth, survival and secretion through the synthesis of cyclic AMP (cAMP). MDL-12,330A and SQ 22536 are two AC inhibitors used widely to establish the role of ACs. The goal of this study was to examine the effects of MDL-12,330A and SQ 22536 on insulin secretion and underlying mechanisms. Patch-clamp recording, Ca(2+) fluorescence imaging and radioimmunoassay were used to measure outward K(+) currents, action potentials (APs), intracellular Ca(2+) ([Ca(2+)]i) and insulin secretion from rat pancreatic beta cells. MDL-12,330A (10 µmol/l) potentiated insulin secretion to 1.7 times of control in the presence of 8.3 mmol/l glucose, while SQ 22536 did not show significant effect on insulin secretion. MDL-12,330A prolonged AP durations (APDs) by inhibiting voltage-dependent K(+) (KV) channels, leading to an increase in [Ca(2+)]i levels. It appeared that these effects induced by MDL-12,330A did not result from AC inhibition, since SQ 22536 did not show such effects. Furthermore, inhibition of the downstream effectors of AC/cAMP signaling by PKA inhibitor H89 and Epac inhibitor ESI-09, did not affect KV channels and insulin secretion. The putative AC inhibitor MDL-12,330A enhances [Ca(2+)]i and insulin secretion via inhibition of KV channels rather than AC antagonism in beta cells, suggesting that the non-specific effects is needed to be considered for the right interpretation of the experimental results using this agent in the analyses of the role of AC in cell function.

  9. The effects of caerulein on insulin secretion in anaesthetized dogs.

    PubMed

    Bertaccini, G; De Caro, G; Melchiorri, P

    1970-09-01

    1. Insulin concentration changes in pancreatico-duodenal venous plasma were studied in anaesthetized dogs injected with caerulein.2. Rises in insulin concentration were elicited by rapid intravenous injection of caerulein, as well as by intravenous infusion. Threshold doses were 10 ng/kg and 0.5-1 (ng/kg)/min respectively.3. At the highest dose used (500 ng/kg by rapid intravenous injection and (25 ng/kg)/min by intravenous infusion) the increase in immuno-reactive insulin release was approximately 7 to 9 times the base levels.4. Adrenalectomy potentiated the effects of intravenous infusion of caerulein.5. On a molar basis, caerulein was 2-3 times as active as pancreozymin.6. It is concluded that caerulein is a potent stimulant of pancreatic islets in the dog and that it may be considered as a model peptide, capable of being substituted for pancreozymin in any experiment.7. The mechanism of the insulin stimulating effect of caerulein is discussed. The possibility of a direct "beta-cytotropic" effect of the peptide is suggested.

  10. Combined contributions of over-secreted glucagon-like peptide 1 and suppressed insulin secretion to hyperglycemia induced by gatifloxacin in rats

    SciTech Connect

    Yu, Yunli; Wang, Xinting; Liu, Can; Yao, Dan; Hu, Mengyue; Li, Jia; Hu, Nan; Liu, Li; Liu, Xiaodong

    2013-02-01

    Accumulating evidences have showed that gatifloxacin causes dysglycemia in both diabetic and non-diabetic patients. Our preliminary study demonstrated that gatifloxacin stimulated glucagon-like peptide 1 (GLP-1) secretion from intestinal cells. The aim of the study was to investigate the association between gatifloxacin-stimulated GLP-1 release and dysglycemia in both normal and streptozotocin-induced diabetic rats and explore the possible mechanisms. Oral administration of gatifloxacin (100 mg/kg/day and 200 mg/kg/day) for 3 and 12 days led to marked elevation of GLP-1 levels, accompanied by significant decrease in insulin levels and increase in plasma glucose. Similar results were found in normal rats treated with 3-day gatifloxacin. Gatifloxacin-stimulated GLP-1 release was further confirmed in NCI-H716 cells, which was abolished by diazoxide, a K{sub ATP} channel opener. QT-PCR analysis showed that gatifloxacin also upregulated expression of proglucagon and prohormone convertase 3 mRNA. To clarify the contradiction on elevated GLP-1 without insulinotropic effect, effects of GLP-1 and gatifloxacin on insulin release were investigated using INS-1 cells. We found that short exposure (2 h) to GLP-1 stimulated insulin secretion and biosynthesis, whereas long exposure (24 h and 48 h) to high level of GLP-1 inhibited insulin secretion and biosynthesis. Moreover, we also confirmed gatifloxacin acutely stimulated insulin secretion while chronically inhibited insulin biosynthesis. All the results gave an inference that gatifloxacin stimulated over-secretion of GLP-1, in turn, high levels of GLP-1 and gatifloxacin synergistically impaired insulin release, worsening hyperglycemia. -- Highlights: ► Gatifloxacin induced hyperglycemia both in diabetic rats and normal rats. ► Gatifloxacin enhanced GLP-1 secretion but inhibited insulin secretion in rats. ► Long-term exposure to high GLP-1 inhibited insulin secretion and biosynthesis. ► GLP-1 over-secretion may be

  11. Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease

    PubMed Central

    Son, Sung Min; Cha, Moon-Yong; Choi, Heesun; Kang, Seokjo; Choi, Hyunjung; Lee, Myung-Shik; Park, Sun Ah; Mook-Jung, Inhee

    2016-01-01

    ABSTRACT The secretion of proteins that lack a signal sequence to the extracellular milieu is regulated by their transition through the unconventional secretory pathway. IDE (insulin-degrading enzyme) is one of the major proteases of amyloid beta peptide (Aβ), a presumed causative molecule in Alzheimer disease (AD) pathogenesis. IDE acts in the extracellular space despite having no signal sequence, but the underlying mechanism of IDE secretion extracellularly is still unknown. In this study, we found that IDE levels were reduced in the cerebrospinal fluid (CSF) of patients with AD and in pathology-bearing AD-model mice. Since astrocytes are the main cell types for IDE secretion, astrocytes were treated with Aβ. Aβ increased the IDE levels in a time- and concentration-dependent manner. Moreover, IDE secretion was associated with an autophagy-based unconventional secretory pathway, and depended on the activity of RAB8A and GORASP (Golgi reassembly stacking protein). Finally, mice with global haploinsufficiency of an essential autophagy gene, showed decreased IDE levels in the CSF in response to an intracerebroventricular (i.c.v.) injection of Aβ. These results indicate that IDE is secreted from astrocytes through an autophagy-based unconventional secretory pathway in AD conditions, and that the regulation of autophagy is a potential therapeutic target in addressing Aβ pathology. PMID:26963025

  12. Does adrenergic activity suppress insulin secretion during surgery? A clinical experiment with halothane anesthesia.

    PubMed Central

    Aärimaa, M; Syvälahti, E; Ovaska, J

    1978-01-01

    Peroperative inhibition of insulin release is widely attributed to increased alpha-adrenergic activity. To test this hypothesis serum insulin and glucose concentrations were measured at short intervals in 11 patients who underwent major surgery. Five patients were anesthetized with halothane and six with general anesthesia without halothane. The results were similar in both patient groups; halothane had no effect on insulin. This suggests that suppression of insulin under operations is probably not due to activation of the alpha-adrenergic receptors of the pancreatic beta-cells. The authors propose that suppression of insulin secretion during surgery may be caused by adrenaline, which, in competing for the glucose receptors, insensitizes the pancreatic beta-cells. PMID:202205

  13. Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells

    SciTech Connect

    Vaca, Pilar; Berna, Genoveva; Araujo, Raquel; Carneiro, Everardo M.; Bedoya, Francisco J.; Soria, Bernat; Martin, Franz

    2008-03-10

    The poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice. Here we show that undifferentiated mouse ES cells treated with nicotinamide: (i) showed an 80% decrease in cell proliferation; (ii) co-expressed insulin, C-peptide and Glut-2; (iii) had values of insulin and C-peptide corresponding to 10% of normal mouse islets; (iv) released insulin and C-peptide in response to stimulatory glucose concentrations; and (v) after transplantation into diabetic mice, normalized blood glucose levels over 7 weeks. Our data indicate that nicotinamide decreases ES cell proliferation and induces differentiation into insulin-secreting cells. Both aspects are very important when thinking about cell therapy for the treatment of diabetes based on ES cells.

  14. Loss of regular oscillatory insulin secretion in islet cell antibody positive non-diabetic subjects.

    PubMed

    Bingley, P J; Matthews, D R; Williams, A J; Bottazzo, G F; Gale, E A

    1992-01-01

    Basal insulin secretion was compared in nine islet-cell antibody positive, non-diabetic first-degree relatives of children with Type 1 (insulin-dependent) diabetes mellitus and nine normal control subjects matched for age, sex and weight. Acute insulin responses to a 25 g intravenous glucose tolerance test were similar in the two groups (243 (198-229) vs 329 (285-380) mU.l-1 x 10 min-1, mean (+/- SE), p = 0.25). Fasting plasma insulin was assayed in venous samples taken at one min intervals for 2 h. Time series analysis was used to demonstrate oscillatory patterns in plasma insulin. Autocorrelation showed that regular oscillatory activity was generally absent in the islet-cell antibody-positive group, whereas a regular 13 min cycle was shown in control subjects (p less than 0.0001). Fourier transformation did, however, show a 13 min spectral peak in the islet-cell antibody positive group, consistent with intermittent pulsatility. We conclude that overall oscillatory patterns of basal insulin secretion are altered in islet-cell antibody positive subjects even when the acute insulin response is within the normal range.

  15. Lack of TRPM2 Impaired Insulin Secretion and Glucose Metabolisms in Mice

    PubMed Central

    Uchida, Kunitoshi; Dezaki, Katsuya; Damdindorj, Boldbaatar; Inada, Hitoshi; Shiuchi, Tetsuya; Mori, Yasuo; Yada, Toshihiko; Minokoshi, Yasuhiko; Tominaga, Makoto

    2011-01-01

    OBJECTIVE TRPM2 is a Ca2+-permeable nonselective cation channel activated by adenosine dinucleotides. We previously demonstrated that TRPM2 is activated by coapplication of heat and intracellular cyclic adenosine 5′-diphosphoribose, which has been suggested to be involved in intracellular Ca2+ increase in immunocytes and pancreatic β-cells. To clarify the involvement of TRPM2 in insulin secretion, we analyzed TRPM2 knockout (TRPM2-KO) mice. RESEARCH DESIGN AND METHODS Oral and intraperitoneal glucose tolerance tests (OGTT and IPGTT) were performed in TRPM2-KO and wild-type mice. We also measured cytosolic free Ca2+ in single pancreatic cells using fura-2 microfluorometry and insulin secretion from pancreatic islets. RESULTS Basal blood glucose levels were higher in TRPM2-KO mice than in wild-type mice without any difference in plasma insulin levels. The OGTT and IPGTT demonstrated that blood glucose levels in TRPM2-KO mice were higher than those in wild-type mice, which was associated with an impairment in insulin secretion. In isolated β-cells, smaller intracellular Ca2+ increase was observed in response to high concentrations of glucose and incretin hormone in TRPM2-KO cells than in wild-type cells. Moreover, insulin secretion from the islets of TRPM2-KO mice in response to glucose and incretin hormone treatment was impaired, whereas the response to tolbutamide, an ATP-sensitive potassium channel inhibitor, was not different between the two groups. CONCLUSIONS These results indicate that TRPM2 is involved in insulin secretion stimulated by glucose and that further potentiated by incretins. Thus, TRPM2 may be a new target for diabetes therapy. PMID:20921208

  16. Pregnancy restores insulin secretion from pancreatic islets in cafeteria diet-induced obese rats.

    PubMed

    Vanzela, E C; Ribeiro, R A; de Oliveira, C A Machado; Rodrigues, F B; Bonfleur, M L; Carneiro, E M; Souza, K L A; Boschero, A C

    2010-02-01

    Insulin resistance during pregnancy is counteracted by enhanced insulin secretion. This condition is aggravated by obesity, which increases the risk of gestational diabetes. Therefore, pancreatic islet functionality was investigated in control nonpregnant (C) and pregnant (CP), and cafeteria diet-fed nonpregnant (Caf), and pregnant (CafP) obese rats. Isolated islets were used for measurements of insulin secretion (RIA), NAD(P)H production (MTS), glucose oxidation ((14)CO(2) production), intracellular Ca(2+) levels (fura-2 AM), and gene expression (real-time PCR). Impaired glucose tolerance was clearly established in Caf and CafP rats at the 14th wk on a diet. Insulin secretion induced by direct depolarizing agents such as KCl and tolbutamide and increasing concentrations of glucose was significantly reduced in Caf, compared with C islets. This reduction was not observed in islets from CP and CafP rats. Accordingly, the glucose oxidation and production of reduced equivalents were increased in CafP islets. The glucose-induced Ca(2+) increase was significantly lower in Caf and higher in CafP, compared with all other groups. CP and CafP islets demonstrated an increased Ca(2+) oscillation frequency, compared with both C and Caf islets, and the amplitude of oscillations was augmented in CafP, compared with Caf islets. In addition, Ca(v)alpha1.2 and SERCA2a mRNA levels were reduced in Caf islets. Ca(v)alpha1.2, but not SERCA2a, mRNA was normalized in CafP islets. In conclusion, cafeteria diet-induced obesity impairs insulin secretion. This alteration is related to the impairment of Ca(2+) handling in pancreatic islets, in especial Ca(2+) influx, a defect that is reversed during pregnancy allowing normalization of insulin secretion.

  17. Nutrient regulation of glucagon secretion: involvement in metabolism and diabetes.

    PubMed

    Marroquí, Laura; Alonso-Magdalena, Paloma; Merino, Beatriz; Fuentes, Esther; Nadal, Angel; Quesada, Ivan

    2014-06-01

    Glucose homeostasis is precisely regulated by glucagon and insulin, which are released by pancreatic α- and β-cells, respectively. While β-cells have been the focus of intense research, less is known about α-cell function and the actions of glucagon. In recent years, the study of this endocrine cell type has experienced a renewed drive. The present review contains a summary of established concepts as well as new information about the regulation of α-cells by glucose, amino acids, fatty acids and other nutrients, focusing especially on glucagon release, glucagon synthesis and α-cell survival. We have also discussed the role of glucagon in glucose homeostasis and in energy and lipid metabolism as well as its potential as a modulator of food intake and body weight. In addition to the well-established action on the liver, we discuss the effects of glucagon in other organs, where the glucagon receptor is expressed. These tissues include the heart, kidneys, adipose tissue, brain, small intestine and the gustatory epithelium. Alterations in α-cell function and abnormal glucagon concentrations are present in diabetes and are thought to aggravate the hyperglycaemic state of diabetic patients. In this respect, several experimental approaches in diabetic models have shown important beneficial results in improving hyperglycaemia after the modulation of glucagon secretion or action. Moreover, glucagon receptor agonism has also been used as a therapeutic strategy to treat obesity.

  18. Inhibin-non-steroidal regulation of follicle stimulating hormone secretion

    SciTech Connect

    Burger, H.G.; Findlay, J.K. ); de Kretser, D.M. ); Igarashi, M. )

    1987-01-01

    This book contains the proceedings of inhibin non-steroidal regulation of follicle stimulating hormone secretion. Topics covered include: FSH regulation, Molecular biology, Radioimmunoassay, Physiology - Testocular inhibin, Physiology - ovarian inhibin, and local actions.

  19. Human insulin B24 (Phe----Ser). Secretion and metabolic clearance of the abnormal insulin in man and in a dog model.

    PubMed Central

    Shoelson, S E; Polonsky, K S; Zeidler, A; Rubenstein, A H; Tager, H S

    1984-01-01

    We have already demonstrated that a hyperinsulinemic, diabetic subject secreted an abnormal insulin in which serine replaced phenylalanine B24 (Shoelson S., M. Fickova, M. Haneda, A. Nahum, G. Musso, E. T. Kaiser, A. H. Rubenstein, and H. Tager. 1983. Proc. Natl. Acad. Sci. USA. 80:7390-7394). High performance liquid chromatography analysis now shows that the circulating insulin in several other family members also consists of a mixture of the abnormal human insulin B24 (Phe----Ser) and normal human insulin in a ratio of approximately 9.5:1 during fasting. Although all affected subjects show fasting hyperinsulinemia, only the propositus and her father are overtly diabetic. Analysis of the serum insulin from two nondiabetic siblings revealed that normal insulin increased from approximately 2 to 15% of total serum insulin after the ingestion of glucose and that the proportion of the normal hormone plateaued or fell while the level of total insulin continued to rise. Animal studies involving the graded intraportal infusion of equimolar amounts of semisynthetic human [SerB24]-insulin and normal human insulin in pancreatectomized dogs (to simulate the secretion of insulin due to oral glucose in man) also showed both a rise in the fraction of normal insulin that reached the periphery and the attainment of a brief steady state in this fraction while total insulin levels continued to rise. Separate experiments documented a decreased hepatic extraction, a decreased metabolic clearance rate, and an increased plasma half-life of human [SerB24]-insulin within the same parameters as those determined for normal human insulin. These results form a basis for considering (a) the differential clearance of low activity abnormal insulins and normal insulin from the circulation in vivo, and (b) the causes of hyperinsulinemia in both diabetic and nondiabetic individuals who secrete abnormal human insulins. PMID:6371057

  20. Disturbances of basal and postprandial insulin secretion and clearance in obese patients with type 2 diabetes mellitus.

    PubMed

    Erdmann, J; Pöhnl, K; Mayr, M; Sypchenko, O; Naumann, A; Wagenpfeil, S; Schusdziarra, V

    2012-01-01

    Hyperinsulinemia of nondiabetic overweight and obese subjects is associated with weight-dependent increased insulin secretion and decreased insulin clearance. The present analysis examines whether similar effects