Science.gov

Sample records for regulates 3-phosphatidylinositide dynamics

  1. Metabolic regulation of mitochondrial dynamics

    PubMed Central

    Mishra, Prashant

    2016-01-01

    Mitochondria are renowned for their central bioenergetic role in eukaryotic cells, where they act as powerhouses to generate adenosine triphosphate from oxidation of nutrients. At the same time, these organelles are highly dynamic and undergo fusion, fission, transport, and degradation. Each of these dynamic processes is critical for maintaining a healthy mitochondrial population. Given the central metabolic function of mitochondria, it is not surprising that mitochondrial dynamics and bioenergetics reciprocally influence each other. We review the dynamic properties of mitochondria, with an emphasis on how these processes respond to cellular signaling events and how they affect metabolism. PMID:26858267

  2. Regulators of mitochondrial dynamics in cancer.

    PubMed

    Senft, Daniela; Ronai, Ze'ev A

    2016-04-01

    Mitochondrial dynamics encompasses processes associated with mitochondrial fission and fusion, affecting their number, degree of biogenesis, and the induction of mitophagy. These activities determine the balance between mitochondrial energy production and cell death programs. Processes governing mitochondrial dynamics are tightly controlled in physiological conditions and are often deregulated in cancer. Mitochondrial protein homeostasis, transcriptional regulation, and post-translational modification are among processes that govern the control of mitochondrial dynamics. Cancer cells alter mitochondrial dynamics to resist apoptosis and adjust their bioenergetic and biosynthetic needs to support tumor initiating and transformation properties including proliferation, migration, and therapeutic resistance. This review focuses on key regulators of mitochondrial dynamics and their role in cancer. PMID:26896558

  3. Dynamics of bacterial gene regulation

    NASA Astrophysics Data System (ADS)

    Narang, Atul

    2009-03-01

    The phenomenon of diauxic growth is a classical problem of bacterial gene regulation. The most well studied example of this phenomenon is the glucose-lactose diauxie, which occurs because the expression of the lac operon is strongly repressed in the presence of glucose. This repression is often explained by appealing to molecular mechanisms such as cAMP activation and inducer exclusion. I will begin by analyzing data showing that these molecular mechanisms cannot explain the strong lac repression because they exert a relatively weak effect. I will then present a minimal model accounting only for enzyme induction and dilution, which yields strong repression despite the absence of catabolite repression and inducer exclusion. The model also explains the growth patterns observed in batch and continuous cultures of various bacterial strains and substrate mixtures. The talk will conclude with a discussion of the experimental evidence regarding positive feedback, the key component of the minimal model.

  4. Dynamic Voltage Regulation Using Distributed Energy Resources

    SciTech Connect

    Xu, Yan; Rizy, D Tom; Li, Fangxing; Kueck, John D

    2007-01-01

    Many distributed energy resources (DE) are near load centres and equipped with power electronics converters to interface with the grid, therefore it is feasible for DE to provide ancillary services such as voltage regulation, nonactive power compensation, and power factor correction. A synchronous condenser and a microturbine with an inverter interface are implemented in parallel in a distribution system to regulate the local voltage. Voltage control schemes of the inverter and the synchronous condenser are developed. The experimental results show that both the inverter and the synchronous condenser can regulate the local voltage instantaneously, while the dynamic response of the inverter is faster than the synchronous condenser; and that integrated voltage regulation (multiple DE perform voltage regulation) can increase the voltage regulation capability, increase the lifetime of the equipment, and reduce the capital and operation costs.

  5. Regulation of peroxisome dynamics by phosphorylation.

    PubMed

    Oeljeklaus, Silke; Schummer, Andreas; Mastalski, Thomas; Platta, Harald W; Warscheid, Bettina

    2016-05-01

    Peroxisomes are highly dynamic organelles that can rapidly change in size, abundance, and protein content in response to alterations in nutritional and other environmental conditions. These dynamic changes in peroxisome features, referred to as peroxisome dynamics, rely on the coordinated action of several processes of peroxisome biogenesis. Revealing the regulatory mechanisms of peroxisome dynamics is an emerging theme in cell biology. These mechanisms are inevitably linked to and synchronized with the biogenesis and degradation of peroxisomes. To date, the key players and basic principles of virtually all steps in the peroxisomal life cycle are known, but regulatory mechanisms remained largely elusive. A number of recent studies put the spotlight on reversible protein phosphorylation for the control of peroxisome dynamics and highlighted peroxisomes as hubs for cellular signal integration and regulation. Here, we will present and discuss the results of several studies performed using yeast and mammalian cells that convey a sense of the impact protein phosphorylation may have on the modulation of peroxisome dynamics by regulating peroxisomal matrix and membrane protein import, proliferation, inheritance, and degradation. We further put forward the idea to make use of current data on phosphorylation sites of peroxisomal and peroxisome-associated proteins reported in advanced large-scale phosphoproteomic studies. PMID:26775584

  6. Dynamic Redox Regulation of IL-4 Signaling

    PubMed Central

    Dwivedi, Gaurav; Gran, Margaret A.; Bagchi, Pritha; Kemp, Melissa L.

    2015-01-01

    Quantifying the magnitude and dynamics of protein oxidation during cell signaling is technically challenging. Computational modeling provides tractable, quantitative methods to test hypotheses of redox mechanisms that may be simultaneously operative during signal transduction. The interleukin-4 (IL-4) pathway, which has previously been reported to induce reactive oxygen species and oxidation of PTP1B, may be controlled by several other putative mechanisms of redox regulation; widespread proteomic thiol oxidation observed via 2D redox differential gel electrophoresis upon IL-4 treatment suggests more than one redox-sensitive protein implicated in this pathway. Through computational modeling and a model selection strategy that relied on characteristic STAT6 phosphorylation dynamics of IL-4 signaling, we identified reversible protein tyrosine phosphatase (PTP) oxidation as the primary redox regulatory mechanism in the pathway. A systems-level model of IL-4 signaling was developed that integrates synchronous pan-PTP oxidation with ROS-independent mechanisms. The model quantitatively predicts the dynamics of IL-4 signaling over a broad range of new redox conditions, offers novel hypotheses about regulation of JAK/STAT signaling, and provides a framework for interrogating putative mechanisms involving receptor-initiated oxidation. PMID:26562652

  7. Dynamic Redox Regulation of IL-4 Signaling.

    PubMed

    Dwivedi, Gaurav; Gran, Margaret A; Bagchi, Pritha; Kemp, Melissa L

    2015-11-01

    Quantifying the magnitude and dynamics of protein oxidation during cell signaling is technically challenging. Computational modeling provides tractable, quantitative methods to test hypotheses of redox mechanisms that may be simultaneously operative during signal transduction. The interleukin-4 (IL-4) pathway, which has previously been reported to induce reactive oxygen species and oxidation of PTP1B, may be controlled by several other putative mechanisms of redox regulation; widespread proteomic thiol oxidation observed via 2D redox differential gel electrophoresis upon IL-4 treatment suggests more than one redox-sensitive protein implicated in this pathway. Through computational modeling and a model selection strategy that relied on characteristic STAT6 phosphorylation dynamics of IL-4 signaling, we identified reversible protein tyrosine phosphatase (PTP) oxidation as the primary redox regulatory mechanism in the pathway. A systems-level model of IL-4 signaling was developed that integrates synchronous pan-PTP oxidation with ROS-independent mechanisms. The model quantitatively predicts the dynamics of IL-4 signaling over a broad range of new redox conditions, offers novel hypotheses about regulation of JAK/STAT signaling, and provides a framework for interrogating putative mechanisms involving receptor-initiated oxidation. PMID:26562652

  8. Dynamical Length-Regulation of Microtubules

    NASA Astrophysics Data System (ADS)

    Melbinger, Anna; Reese, Louis; Frey, Erwin

    2012-02-01

    Microtubules (MTs) are vital constituents of the cytoskeleton. These stiff filaments are not only needed for mechanical support. They also fulfill highly dynamic tasks. For instance MTs build the mitotic spindle, which pulls the doubled set of chromosomes apart during mitosis. Hence, a well-regulated and adjustable MT length is essential for cell division. Extending a recently introduced model [1], we here study length-regulation of MTs. Thereby we account for both spontaneous polymerization and depolymerization triggered by motor proteins. In contrast to the polymerization rate, the effective depolymerization rate depends on the presence of molecular motors at the tip and thereby on crowding effects which in turn depend on the MT length. We show that these antagonistic effects result in a well-defined MT length. Stochastic simulations and analytic calculations reveal the exact regimes where regulation is feasible. Furthermore, the adjusted MT length and the ensuing strength of fluctuations are analyzed. Taken together, we make quantitative predictions which can be tested experimentally. These results should help to obtain deeper insights in the microscopic mechanisms underlying length-regulation. [4pt] [1] L.Reese, A.Melbinger, E.Frey, Biophys. J., 101, 9, 2190 (2011)

  9. Nitric oxide regulates vascular adaptive mitochondrial dynamics.

    PubMed

    Miller, Matthew W; Knaub, Leslie A; Olivera-Fragoso, Luis F; Keller, Amy C; Balasubramaniam, Vivek; Watson, Peter A; Reusch, Jane E B

    2013-06-15

    Cardiovascular disease risk factors, such as diabetes, hypertension, dyslipidemia, obesity, and physical inactivity, are all correlated with impaired endothelial nitric oxide synthase (eNOS) function and decreased nitric oxide (NO) production. NO-mediated regulation of mitochondrial biogenesis has been established in many tissues, yet the role of eNOS in vascular mitochondrial biogenesis and dynamics is unclear. We hypothesized that genetic eNOS deletion and 3-day nitric oxide synthase (NOS) inhibition in rodents would result in impaired mitochondrial biogenesis and defunct fission/fusion and autophagy profiles within the aorta. We observed a significant, eNOS expression-dependent decrease in mitochondrial electron transport chain (ETC) protein subunits from complexes I, II, III, and V in eNOS heterozygotes and eNOS null mice compared with age-matched controls. In response to NOS inhibition with NG-nitro-L-arginine methyl ester (L-NAME) treatment in Sprague Dawley rats, significant decreases were observed in ETC protein subunits from complexes I, III, and IV as well as voltage-dependent anion channel 1. Decreased protein content of upstream regulators of mitochondrial biogenesis, cAMP response element-binding protein and peroxisome proliferator-activated receptor-γ coactivator-1α, were observed in response to 3-day L-NAME treatment. Both genetic eNOS deletion and NOS inhibition resulted in decreased manganese superoxide dismutase protein. L-NAME treatment resulted in significant changes to mitochondrial dynamic protein profiles with decreased fusion, increased fission, and minimally perturbed autophagy. In addition, L-NAME treatment blocked mitochondrial adaptation to an exercise intervention in the aorta. These results suggest that eNOS/NO play a role in basal and adaptive mitochondrial biogenesis in the vasculature and regulation of mitochondrial turnover. PMID:23585138

  10. Structure and Dynamic Regulation of Abl Kinases*

    PubMed Central

    Panjarian, Shoghag; Iacob, Roxana E.; Chen, Shugui; Engen, John R.; Smithgall, Thomas E.

    2013-01-01

    The c-abl proto-oncogene encodes a unique protein-tyrosine kinase (Abl) distinct from c-Src, c-Fes, and other cytoplasmic tyrosine kinases. In normal cells, Abl plays prominent roles in cellular responses to genotoxic stress as well as in the regulation of the actin cytoskeleton. Abl is also well known in the context of Bcr-Abl, the oncogenic fusion protein characteristic of chronic myelogenous leukemia. Selective inhibitors of Bcr-Abl, of which imatinib is the prototype, have had a tremendous impact on clinical outcomes in chronic myelogenous leukemia and revolutionized the field of targeted cancer therapy. In this minireview, we focus on the structural organization and dynamics of Abl kinases and how these features influence inhibitor sensitivity. PMID:23316053

  11. Dynamic regulation of lipid-protein interactions.

    PubMed

    Martfeld, Ashley N; Rajagopalan, Venkatesan; Greathouse, Denise V; Koeppe, Roger E

    2015-09-01

    We review the importance of helix motions for the function of several important categories of membrane proteins and for the properties of several model molecular systems. For voltage-gated potassium or sodium channels, sliding, tilting and/or rotational movements of the S4 helix accompanied by a swapping of cognate side-chain ion-pair interactions regulate the channel gating. In the seven-helix G protein-coupled receptors, exemplified by the rhodopsins, collective helix motions serve to activate the functional signaling. Peptides which initially associate with lipid-bilayer membrane surfaces may undergo dynamic transitions from surface-bound to tilted-transmembrane orientations, sometimes accompanied by changes in the molecularity, formation of a pore or, more generally, the activation of biological function. For single-span membrane proteins, such as the tyrosine kinases, an interplay between juxtamembrane and transmembrane domains is likely to be crucial for the regulation of dimer assembly that in turn is associated with the functional responses to external signals. Additionally, we note that experiments with designed single-span transmembrane helices offer fundamental insights into the molecular features that govern protein-lipid interactions. This article is part of a Special Issue entitled: Lipid-protein interactions. PMID:25666872

  12. Dynamic Hydraulic Fluid Stimulation Regulated Intramedullary Pressure

    PubMed Central

    Hu, Minyi; Serra-Hsu, Frederick; Bethel, Neville; Lin, Liangjun; Ferreri, Suzanne; Cheng, Jiqi; Qin, Yi-Xian

    2013-01-01

    Physical signals within bone, i.e. generated from mechanical loading, have the potential to initiate skeletal adaptation. Strong evidence has pointed to bone fluid flow (BFF) as a media between an external load and the bone cells, in which altered velocity and pressure can ultimately initiate the mechanotransduction and the remodeling process within bone. Load-induced BFF can be altered by factors such as intramedullary pressure (ImP) and/or bone matrix strain, mediating bone adaptation. Previous studies have shown that BFF induced by ImP alone, with minimum bone strain, can initiate bone remodeling. However, identifying induced ImP dynamics and bone strain factor in vivo using a non-invasive method still remains challenging. To apply ImP as a means for alteration of BFF, it was hypothesized that non-invasive dynamic hydraulic stimulation (DHS) can induce local ImP with minimal bone strain to potentially elicit osteogenic adaptive responses via bone-muscle coupling. The goal of this study was to evaluate the immediate effects on local and distant ImP and strain in response to a range of loading frequencies using DHS. Simultaneous femoral and tibial ImP and bone strain values were measured in three 15-month-old female Sprague Dawley rats during DHS loading on the tibia with frequencies of 1Hz to 10Hz. DHS showed noticeable effects on ImP induction in the stimulated tibia in a nonlinear fashion in response to DHS over the range of loading frequencies, where peaked at 2Hz. DHS at various loading frequencies generated minimal bone strain in the tibiae. Maximal bone strain measured at all loading frequencies was less than 8με. No detectable induction of ImP or bone strain was observed in the femur. This study suggested that oscillatory DHS may regulate the local fluid dynamics with minimal mechanical strain in bone, which serves critically in bone adaptation. These results clearly implied DHS’s potential as an effective, non-invasive intervention for osteopenia and

  13. Modelling and Analysis of a New Piezoelectric Dynamic Balance Regulator

    PubMed Central

    Du, Zhe; Mei, Xue-Song; Xu, Mu-Xun

    2012-01-01

    In this paper, a new piezoelectric dynamic balance regulator, which can be used in motorised spindle systems, is presented. The dynamic balancing adjustment mechanism is driven by an in-plane bending vibration from an annular piezoelectric stator excited by a high-frequency sinusoidal input voltage. This device has different construction, characteristics and operating principles than a conventional balance regulator. In this work, a dynamic model of the regulator is first developed using a detailed analytical method. Thereafter, MATLAB is employed to numerically simulate the relations between the dominant parameters and the characteristics of the regulator based on thedynamic model. Finally, experimental measurements are used to certify the validity of the dynamic model. Consequently, the mathematical model presented and analysed in this paper can be used as a tool for optimising the design of a piezoelectric dynamic balance regulator during steady state operation. PMID:23202182

  14. Dynamic Self-Regulation: The Driving Force behind Academic Achievement.

    ERIC Educational Resources Information Center

    Schapiro, Susan R.; Livingston, Jennifer

    2000-01-01

    College freshmen and sophomores (n=342) in an elective class designed to teach active learning strategies and critical thinking completed the Dynamic and Active Learning Inventory. Results supported the theory that self-regulated learning requires not only active, deliberate learning strategies, but also includes a natural dynamic component that…

  15. Wnt-regulated dynamics of positional information in zebrafish somitogenesis

    PubMed Central

    Bajard, Lola; Morelli, Luis G.; Ares, Saúl; Pécréaux, Jacques; Jülicher, Frank; Oates, Andrew C.

    2014-01-01

    How signaling gradients supply positional information in a field of moving cells is an unsolved question in patterning and morphogenesis. Here, we ask how a Wnt signaling gradient regulates the dynamics of a wavefront of cellular change in a flow of cells during somitogenesis. Using time-controlled perturbations of Wnt signaling in the zebrafish embryo, we changed segment length without altering the rate of somite formation or embryonic elongation. This result implies specific Wnt regulation of the wavefront velocity. The observed Wnt signaling gradient dynamics and timing of downstream events support a model for wavefront regulation in which cell flow plays a dominant role in transporting positional information. PMID:24595291

  16. Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model

    NASA Astrophysics Data System (ADS)

    Li, Ying; Liu, Zengrong

    MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.

  17. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics.

    PubMed

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-10-20

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design. PMID:26488648

  18. Regulation of Mitoflash Biogenesis and Signaling by Mitochondrial Dynamics.

    PubMed

    Li, Wenwen; Sun, Tao; Liu, Beibei; Wu, Di; Qi, Wenfeng; Wang, Xianhua; Ma, Qi; Cheng, Heping

    2016-01-01

    Mitochondria are highly dynamic organelles undergoing constant network reorganization and exhibiting stochastic signaling events in the form of mitochondrial flashes (mitoflashes). Here we investigate whether and how mitochondrial network dynamics regulate mitoflash biogenesis and signaling. We found that mitoflash frequency was largely invariant when network fragmentized or redistributed in the absence of mitofusin (Mfn) 1, Mfn2, or Kif5b. However, Opa1 deficiency decreased spontaneous mitoflash frequency due to superimposing changes in respiratory function, whereas mitoflash response to non-metabolic stimulation was unchanged despite network fragmentation. In Drp1- or Mff-deficient cells whose mitochondria hyperfused into a single whole-cell reticulum, the frequency of mitoflashes of regular amplitude and duration was again unaltered, although brief and low-amplitude "miniflashes" emerged because of improved detection ability. As the network reorganized, however, the signal mass of mitoflash signaling was dynamically regulated in accordance with the degree of network connectivity. These findings demonstrate a novel functional role of mitochondrial network dynamics and uncover a magnitude- rather than frequency-modulatory mechanism in the regulation of mitoflash signaling. In addition, our data support a stochastic trigger model for the ignition of mitoflashes. PMID:27623243

  19. Population dynamics and regulation in the cave salamander Speleomantes strinatii

    NASA Astrophysics Data System (ADS)

    Salvidio, Sebastiano

    2007-05-01

    Time series analysis has been used to evaluate the mechanisms regulating population dynamics of mammals and insects, but has been rarely applied to amphibian populations. In this study, the influence of endogenous (density-dependent) and exogenous (density-independent) factors regulating population dynamics of the terrestrial plethodontid salamander Speleomantes strinatii was analysed by means of time series and multiple regression analyses. During the period 1993 2005, S. strinatii population abundance, estimated by a standardised temporary removal method, displayed relatively low fluctuations, and the autocorrelation function (ACF) analysis showed that the time series had a noncyclic structure. The partial rate correlation function (PRCF) indicated that a strong first-order negative feedback dominated the endogenous dynamics. Stepwise multiple regression analysis showed that the only climatic factor influencing population growth rate was the minimum winter temperature. Thus, at least during the study period, endogenous, density-dependent negative feedback was the main factor affecting the growth rate of the salamander population, whereas stochastic environmental variables, such as temperature and rainfall, seemed to play a minor role in regulation. These results stress the importance of considering both exogenous and endogenous factors when analysing amphibian long-term population dynamics.

  20. Dynamic hydro-climatic networks in pristine and regulated rivers

    NASA Astrophysics Data System (ADS)

    Botter, G.; Basso, S.; Lazzaro, G.; Doulatyari, B.; Biswal, B.; Schirmer, M.; Rinaldo, A.

    2014-12-01

    Flow patterns observed at-a-station are the dynamical byproduct of a cascade of processes involving different compartments of the hydro-climatic network (e.g., climate, rainfall, soil, vegetation) that regulates the transformation of rainfall into streamflows. In complex branching rivers, flow regimes result from the heterogeneous arrangement around the stream network of multiple hydrologic cascades that simultaneously occur within distinct contributing areas. As such, flow regimes are seen as the integrated output of a complex "network of networks", which can be properly characterized by its degree of temporal variability and spatial heterogeneity. Hydrologic networks that generate river flow regimes are dynamic in nature. In pristine rivers, the time-variance naturally emerges at multiple timescales from climate variability (namely, seasonality and inter-annual fluctuations), implying that the magnitude (and the features) of the water flow between two nodes may be highly variable across different seasons and years. Conversely, the spatial distribution of river flow regimes within pristine rivers involves scale-dependent transport features, as well as regional climatic and soil use gradients, which in small and meso-scale catchments (A < 103 km2) are usually mild enough to guarantee quite uniform flow regimes and high spatial correlations. Human-impacted rivers, instead, constitute hybrid networks where observed spatio-temporal patterns are dominated by anthropogenic shifts, such as landscape alterations and river regulation. In regulated rivers, the magnitude and the features of water flows from node to node may change significantly through time due to damming and withdrawals. However, regulation may impact river regimes in a spatially heterogeneous manner (e.g. in localized river reaches), with a significant decrease of spatial correlations and network connectivity. Provided that the spatial and temporal dynamics of flow regimes in complex rivers may strongly

  1. Dynamic regulation and function of histone monoubiquitination in plants

    PubMed Central

    Feng, Jing; Shen, Wen-Hui

    2014-01-01

    Polyubiquitin chain deposition on a target protein frequently leads to proteasome-mediated degradation whereas monoubiquitination modifies target protein property and function independent of proteolysis. Histone monoubiquitination occurs in chromatin and is in nowadays recognized as one critical type of epigenetic marks in eukaryotes. While H2A monoubiquitination (H2Aub1) is generally associated with transcription repression mediated by the Polycomb pathway, H2Bub1 is involved in transcription activation. H2Aub1 and H2Bub1 levels are dynamically regulated via deposition and removal by specific enzymes. We review knows and unknowns of dynamic regulation of H2Aub1 and H2Bub1 deposition and removal in plants and highlight the underlying crucial functions in gene transcription, cell proliferation/differentiation, and plant growth and development. We also discuss crosstalks existing between H2Aub1 or H2Bub1 and different histone methylations for an ample mechanistic understanding. PMID:24659991

  2. Mammal population regulation, keystone processes and ecosystem dynamics.

    PubMed Central

    Sinclair, A R E

    2003-01-01

    The theory of regulation in animal populations is fundamental to understanding the dynamics of populations, the causes of mortality and how natural selection shapes the life history of species. In mammals, the great range in body size allows us to see how allometric relationships affect the mode of regulation. Resource limitation is the fundamental cause of regulation. Top-down limitation through predators is determined by four factors: (i). body size; (ii). the diversity of predators and prey in the system; (iii). whether prey are resident or migratory; and (iv). the presence of alternative prey for predators. Body size in mammals has two important consequences. First, mammals, particularly large species, can act as keystones that determine the diversity of an ecosystem. I show how keystone processes can, in principle, be measured using the example of the wildebeest in the Serengeti ecosystem. Second, mammals act as ecological landscapers by altering vegetation succession. Mammals alter physical structure, ecological function and species diversity in most terrestrial biomes. In general, there is a close interaction between allometry, population regulation, life history and ecosystem dynamics. These relationships are relevant to applied aspects of conservation and pest management. PMID:14561329

  3. Kinesin regulation dynamics through cargo delivery, a single molecule investigation

    NASA Astrophysics Data System (ADS)

    Kovacs, Anthony; Kessler, Jonathan; Lin, Huawen; Dutcher, Susan; Wang, Yan Mei

    2015-03-01

    Kinesins are microtubule-based motors that deliver cargo to their destinations in a highly regulated manner. Although in recent years numerous regulators of cargo delivery have been identified, the regulation mechanism of kinesin through the cargo delivery and recycling process is not known. By performing single molecule fluorescence imaging measurements in Chlamydomonas flagella, which are 200 nm in diameter, 10 microns in length, and contain 9 sets of microtubule doublets, we tracked the intraflagellar transport (IFT) trains, BBSome cargo, and kinesin-2 motors through the cargo delivery process and determined the aforementioned dynamics. Upon arrival at the microtubule plus end at the flagellar tip, (1) IFT trains and BBSome cargo remain intact, dissociate together from kinesins and microtubules, and diffuse along flagellar membrane for a mean of 2.3 sec before commencing retrograde travel. (2) Kinesin motors remain bound to and diffuse along microtubules for 1.3 sec before dissociating into the flagellar lumen for recycling.

  4. Membrane tension regulates clathrin-coated pit dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Allen

    2014-03-01

    Intracellular organization depends on close communication between the extracellular environment and a network of cytoskeleton filaments. The interactions between cytoskeletal filaments and the plasma membrane lead to changes in membrane tension that in turns help regulate biological processes. Endocytosis is thought to be stimulated by low membrane tension and the removal of membrane increases membrane tension. While it is appreciated that the opposing effects of exocytosis and endocytosis have on keeping plasma membrane tension to a set point, it is not clear how membrane tension affects the dynamics of clathrin-coated pits (CCPs), the individual functional units of clathrin-mediated endocytosis. Furthermore, although it was recently shown that actin dynamics counteracts membrane tension during CCP formation, it is not clear what roles plasma membrane tension plays during CCP initiation. Based on the notion that plasma membrane tension is increased when the membrane area increases during cell spreading, we designed micro-patterned surfaces of different sizes to control the cell spreading sizes. Total internal reflection fluorescence microscopy of living cells and high content image analysis were used to quantify the dynamics of CCPs. We found that there is an increased proportion of CCPs with short (<20s) lifetime for cells on larger patterns. Interestingly, cells on larger patterns have higher CCP initiation density, an effect unexpected based on the conventional view of decreasing endocytosis with increasing membrane tension. Furthermore, by analyzing the intensity profiles of CCPs that were longer-lived, we found CCP intensity decreases with increasing cell size, indicating that the CCPs are smaller with increasing membrane tension. Finally, disruption of actin dynamics significantly increased the number of short-lived CCPs, but also decreased CCP initiation rate. Together, our study reveals new mechanistic insights into how plasma membrane tension regulates

  5. PACSIN1 regulates the dynamics of AMPA receptor trafficking.

    PubMed

    Widagdo, Jocelyn; Fang, Huaqiang; Jang, Se Eun; Anggono, Victor

    2016-01-01

    Dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses plays an important role in synaptic plasticity. We previously reported that the protein kinase C and casein kinase II substrate in neurons (PACSIN) forms a complex with AMPARs through its interaction with the protein interacting with C-kinase 1 (PICK1) to regulate NMDA receptor (NMDAR)-induced AMPAR endocytosis and cerebellar long-term depression. However, the molecular mechanism by which PACSIN regulates the dynamics of AMPAR trafficking remains unclear. Using a pH-sensitive green fluorescent protein, pHluorin, tagged to the extracellular domain of the GluA2 subunit of AMPARs, we demonstrate dual roles for PACSIN1 in controlling the internalization and recycling of GluA2 after NMDAR activation. Structure and function analysis reveals a requirement for the PACSIN1 F-BAR and SH3 domains in controlling these NMDAR-dependent processes. Interestingly, the variable region, which binds to PICK1, is not essential for NMDAR-dependent GluA2 internalization and is required only for the correct recycling of AMPARs. These results indicate that PACSIN is a versatile membrane deformation protein that links the endocytic and recycling machineries essential for dynamic AMPAR trafficking in neurons. PMID:27488904

  6. PACSIN1 regulates the dynamics of AMPA receptor trafficking

    PubMed Central

    Widagdo, Jocelyn; Fang, Huaqiang; Jang, Se Eun; Anggono, Victor

    2016-01-01

    Dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses plays an important role in synaptic plasticity. We previously reported that the protein kinase C and casein kinase II substrate in neurons (PACSIN) forms a complex with AMPARs through its interaction with the protein interacting with C-kinase 1 (PICK1) to regulate NMDA receptor (NMDAR)-induced AMPAR endocytosis and cerebellar long-term depression. However, the molecular mechanism by which PACSIN regulates the dynamics of AMPAR trafficking remains unclear. Using a pH-sensitive green fluorescent protein, pHluorin, tagged to the extracellular domain of the GluA2 subunit of AMPARs, we demonstrate dual roles for PACSIN1 in controlling the internalization and recycling of GluA2 after NMDAR activation. Structure and function analysis reveals a requirement for the PACSIN1 F-BAR and SH3 domains in controlling these NMDAR-dependent processes. Interestingly, the variable region, which binds to PICK1, is not essential for NMDAR-dependent GluA2 internalization and is required only for the correct recycling of AMPARs. These results indicate that PACSIN is a versatile membrane deformation protein that links the endocytic and recycling machineries essential for dynamic AMPAR trafficking in neurons. PMID:27488904

  7. Non-equilibrium dynamics of stochastic gene regulation.

    PubMed

    Ghosh, Anandamohan

    2015-01-01

    The process of gene regulation is comprised of intrinsically random events resulting in large cell-to-cell variability in mRNA and protein numbers. With gene expression being the central dogma of molecular biology, it is essential to understand the origin and role of these fluctuations. An intriguing observation is that the number of mRNA present in a cell are not only random and small but also that they are produced in bursts. The gene switches between an active and an inactive state, and the active gene transcribes mRNA in bursts. Transcriptional noise being bursty, so are the number of proteins and the subsequent gene expression levels. It is natural to ask the question: what is the reason for the bursty mRNA dynamics? And can the bursty dynamics be shown to be entropically favorable by studying the reaction kinetics underlying the gene regulation mechanism? The dynamics being an out-of-equilibrium process, the fluctuation theorem for entropy production in the reversible reaction channel is discussed. We compute the entropy production rate for varying degrees of burstiness. We find that the reaction parameters that maximize the burstiness simultaneously maximize the entropy production rate. PMID:25288134

  8. Signaling networks regulating leukocyte podosome dynamics and function

    PubMed Central

    Dovas, Athanassios; Cox, Dianne

    2011-01-01

    Podosomes are ventral adhesion structures prominent in cells of the myeloid lineage. A common aspect of these cells is that they are highly motile and are required to traverse multiple tissue barriers in order to perform their functions. Recently podosomes have gathered attention from researchers as important cellular structures that can influence cell adhesion, motility and matrix remodeling. Adhesive and soluble ligands act via transmembrane receptors and propagate signals to the leukocyte cytoskeleton via small G proteins of the Rho family, tyrosine kinases and scaffold proteins and are able to induce podosome formation and rearrangements. Manipulation of the signals that regulate podosome formation and dynamics can therefore be a strategy to interfere with leukocyte functions in a multitude of pathological settings, such as infections, atherosclerosis and arthritis. Here, we review the major signaling molecules that act in the formation and regulation of podosomes. PMID:21342664

  9. The role of symmetry in the regulation of brain dynamics

    NASA Astrophysics Data System (ADS)

    Tang, Evelyn; Giusti, Chad; Cieslak, Matthew; Grafton, Scott; Bassett, Danielle

    Synchronous neural processes regulate a wide range of behaviors from attention to learning. Yet structural constraints on these processes are far from understood. We draw on new theoretical links between structural symmetries and the control of synchronous function, to offer a reconceptualization of the relationships between brain structure and function in human and non-human primates. By classifying 3-node motifs in macaque connectivity data, we find the most prevalent motifs can theoretically ensure a diversity of function including strict synchrony as well as control to arbitrary states. The least prevalent motifs are theoretically controllable to arbitrary states, which may not be desirable in a biological system. In humans, regions with high topological similarity of connections (a continuous notion related to symmetry) are most commonly found in fronto-parietal systems, which may account for their critical role in cognitive control. Collectively, our work underscores the role of symmetry and topological similarity in regulating dynamics of brain function.

  10. Transcription regulates telomere dynamics in human cancer cells

    PubMed Central

    Arora, Rajika; Brun, Catherine M.; Azzalin, Claus M.

    2012-01-01

    Telomeres are nucleoprotein structures capping the physical ends of linear eukaryotic chromosomes. Although largely heterochromatic, telomeres are transcribed into telomeric repeat-containing RNA (TERRA) molecules by RNA polymerase II. The functions associated with telomere transcription and TERRA remain ill defined. Here we show that the transcriptional activity of human telomeres directly regulates their movement during interphase. We find that chemical inhibition of global transcription dampens telomere motion, while global stimulation promotes it. Likewise, when DNA methyltransferase enzymes are deleted to augment telomere transcription, we observe increased telomere movement. Finally, using a cell line engineered with a unique transcriptionally inducible telomere, we show that transcription of one specific telomere stimulates only its own dynamics without overtly affecting its stability or its length. We reveal a new and unforeseen function for telomere transcription as a regulator of telomere motion, and speculate on the intriguing possibility that transcription-dependent telomere motion sustains the maintenance of functional and dysfunctional telomeres. PMID:22357912

  11. Metabolic gene regulation in a dynamically changing environment.

    PubMed

    Bennett, Matthew R; Pang, Wyming Lee; Ostroff, Natalie A; Baumgartner, Bridget L; Nayak, Sujata; Tsimring, Lev S; Hasty, Jeff

    2008-08-28

    Natural selection dictates that cells constantly adapt to dynamically changing environments in a context-dependent manner. Gene-regulatory networks often mediate the cellular response to perturbation, and an understanding of cellular adaptation will require experimental approaches aimed at subjecting cells to a dynamic environment that mimics their natural habitat. Here we monitor the response of Saccharomyces cerevisiae metabolic gene regulation to periodic changes in the external carbon source by using a microfluidic platform that allows precise, dynamic control over environmental conditions. We show that the metabolic system acts as a low-pass filter that reliably responds to a slowly changing environment, while effectively ignoring fast fluctuations. The sensitive low-frequency response was significantly faster than in predictions arising from our computational modelling, and this discrepancy was resolved by the discovery that two key galactose transcripts possess half-lives that depend on the carbon source. Finally, to explore how induction characteristics affect frequency response, we compare two S. cerevisiae strains and show that they have the same frequency response despite having markedly different induction properties. This suggests that although certain characteristics of the complex networks may differ when probed in a static environment, the system has been optimized for a robust response to a dynamically changing environment. PMID:18668041

  12. Dynamic regulation of Polycomb group activity during plant development.

    PubMed

    Bemer, Marian; Grossniklaus, Ueli

    2012-11-01

    Polycomb group (PcG) complexes play important roles in phase transitions and cell fate determination in plants and animals, by epigenetically repressing sets of genes that promote either proliferation or differentiation. The continuous differentiation of new organs in plants, such as leaves or flowers, requires a highly dynamic PcG function, which can be induced, modulated, or repressed when necessary. In this review, we discuss the recent advance in understanding PcG function in plants and focus on the diverse molecular mechanisms that have been described to regulate and counteract PcG activity in Arabidopsis. PMID:22999383

  13. Extra-coding RNAs regulate neuronal DNA methylation dynamics.

    PubMed

    Savell, Katherine E; Gallus, Nancy V N; Simon, Rhiana C; Brown, Jordan A; Revanna, Jasmin S; Osborn, Mary Katherine; Song, Esther Y; O'Malley, John J; Stackhouse, Christian T; Norvil, Allison; Gowher, Humaira; Sweatt, J David; Day, Jeremy J

    2016-01-01

    Epigenetic mechanisms such as DNA methylation are essential regulators of the function and information storage capacity of neurons. DNA methylation is highly dynamic in the developing and adult brain, and is actively regulated by neuronal activity and behavioural experiences. However, it is presently unclear how methylation status at individual genes is targeted for modification. Here, we report that extra-coding RNAs (ecRNAs) interact with DNA methyltransferases and regulate neuronal DNA methylation. Expression of ecRNA species is associated with gene promoter hypomethylation, is altered by neuronal activity, and is overrepresented at genes involved in neuronal function. Knockdown of the Fos ecRNA locus results in gene hypermethylation and mRNA silencing, and hippocampal expression of Fos ecRNA is required for long-term fear memory formation in rats. These results suggest that ecRNAs are fundamental regulators of DNA methylation patterns in neuronal systems, and reveal a promising avenue for therapeutic targeting in neuropsychiatric disease states. PMID:27384705

  14. Extra-coding RNAs regulate neuronal DNA methylation dynamics

    PubMed Central

    Savell, Katherine E.; Gallus, Nancy V. N.; Simon, Rhiana C.; Brown, Jordan A.; Revanna, Jasmin S.; Osborn, Mary Katherine; Song, Esther Y.; O'Malley, John J.; Stackhouse, Christian T.; Norvil, Allison; Gowher, Humaira; Sweatt, J. David; Day, Jeremy J.

    2016-01-01

    Epigenetic mechanisms such as DNA methylation are essential regulators of the function and information storage capacity of neurons. DNA methylation is highly dynamic in the developing and adult brain, and is actively regulated by neuronal activity and behavioural experiences. However, it is presently unclear how methylation status at individual genes is targeted for modification. Here, we report that extra-coding RNAs (ecRNAs) interact with DNA methyltransferases and regulate neuronal DNA methylation. Expression of ecRNA species is associated with gene promoter hypomethylation, is altered by neuronal activity, and is overrepresented at genes involved in neuronal function. Knockdown of the Fos ecRNA locus results in gene hypermethylation and mRNA silencing, and hippocampal expression of Fos ecRNA is required for long-term fear memory formation in rats. These results suggest that ecRNAs are fundamental regulators of DNA methylation patterns in neuronal systems, and reveal a promising avenue for therapeutic targeting in neuropsychiatric disease states. PMID:27384705

  15. Actomyosin contractility spatiotemporally regulates actin network dynamics in migrating cells.

    PubMed

    Okeyo, Kennedy Omondi; Adachi, Taiji; Sunaga, Junko; Hojo, Masaki

    2009-11-13

    Coupling interactions among mechanical and biochemical factors are important for the realization of various cellular processes that determine cell migration. Although F-actin network dynamics has been the focus of many studies, it is not yet clear how mechanical forces generated by actomyosin contractility spatiotemporally regulate this fundamental aspect of cell migration. In this study, using a combination of fluorescent speckle microscopy and particle imaging velocimetry techniques, we perturbed the actomyosin system and examined quantitatively the consequence of actomyosin contractility on F-actin network flow and deformation in the lamellipodia of actively migrating fish keratocytes. F-actin flow fields were characterized by retrograde flow at the front and anterograde flow at the back of the lamellipodia, and the two flows merged to form a convergence zone of reduced flow intensity. Interestingly, activating or inhibiting actomyosin contractility altered network flow intensity and convergence, suggesting that network dynamics is directly regulated by actomyosin contractility. Moreover, quantitative analysis of F-actin network deformation revealed that the deformation was significantly negative and predominant in the direction of cell migration. Furthermore, perturbation experiments revealed that the deformation was a function of actomyosin contractility. Based on these results, we suggest that the actin cytoskeletal structure is a mechanically self-regulating system, and we propose an elaborate pathway for the spatiotemporal self-regulation of the actin cytoskeletal structure during cell migration. In the proposed pathway, mechanical forces generated by actomyosin interactions are considered central to the realization of the various mechanochemical processes that determine cell motility. PMID:19665125

  16. Fast Responding Voltage Regulator and Dynamic VAR Compensator

    SciTech Connect

    Divan, Deepak; Moghe, Rohit; Tholomier, Damien

    2014-12-31

    The objectives of this project were to develop a dynamic VAR compensator (DVC) for voltage regulation through VAR support to demonstrate the ability to achieve greater levels of voltage control on electricity distribution networks, and faster response compared to existing grid technology. The goal of the project was to develop a prototype Fast Dynamic VAR Compensator (Fast DVC) hardware device, and this was achieved. In addition to developing the dynamic VAR compensator device, Varentec in partnership with researchers at North Carolina State University (NCSU) successfully met the objectives to model the potential positive impact of such DVCs on representative power networks. This modeling activity validated the ability of distributed dynamic VAR compensators to provide fast voltage regulation and reactive power control required to respond to grid disturbances under high penetration of fluctuating and intermittent distributed energy resources (DERs) through extensive simulation studies. Specifically the following tasks were set to be accomplished: 1) Development of dynamic VAR compensator to support dynamic voltage variations on the grid through VAR control 2) Extensive testing of the DVC in the lab environment 3) Present the operational DVC device to the DOE at Varentec’s lab 4) Formulation of a detailed specification sheet, unit assembly document, test setup document, unit bring-up plan, and test plan 5) Extensive simulations of the DVC in a system with high PV penetration. Understanding the operation with many DVC on a single distribution system 6) Creation and submittal of quarterly and final reports conveying the design documents, unit performance data, modeling simulation charts and diagrams, and summary explanations of the satisfaction of program goals. This report details the various efforts that led to the development of the Fast DVC as well as the modeling & simulation results. The report begins with the introduction in Section II which outlines the

  17. Promoter nucleosome dynamics regulated by signalling through the CTD code.

    PubMed

    Materne, Philippe; Anandhakumar, Jayamani; Migeot, Valerie; Soriano, Ignacio; Yague-Sanz, Carlo; Hidalgo, Elena; Mignion, Carole; Quintales, Luis; Antequera, Francisco; Hermand, Damien

    2015-01-01

    The phosphorylation of the RNA polymerase II C-terminal domain (CTD) plays a key role in delineating transcribed regions within chromatin by recruiting histone methylases and deacetylases. Using genome-wide nucleosome mapping, we show that CTD S2 phosphorylation controls nucleosome dynamics in the promoter of a subset of 324 genes, including the regulators of cell differentiation ste11 and metabolic adaptation inv1. Mechanistic studies on these genes indicate that during gene activation a local increase of phospho-S2 CTD nearby the promoter impairs the phospho-S5 CTD-dependent recruitment of Set1 and the subsequent recruitment of specific HDACs, which leads to nucleosome depletion and efficient transcription. The early increase of phospho-S2 results from the phosphorylation of the CTD S2 kinase Lsk1 by MAP kinase in response to cellular signalling. The artificial tethering of the Lsk1 kinase at the ste11 promoter is sufficient to activate transcription. Therefore, signalling through the CTD code regulates promoter nucleosomes dynamics. PMID:26098123

  18. Promoter nucleosome dynamics regulated by signalling through the CTD code

    PubMed Central

    Materne, Philippe; Anandhakumar, Jayamani; Migeot, Valerie; Soriano, Ignacio; Yague-Sanz, Carlo; Hidalgo, Elena; Mignion, Carole; Quintales, Luis; Antequera, Francisco; Hermand, Damien

    2015-01-01

    The phosphorylation of the RNA polymerase II C-terminal domain (CTD) plays a key role in delineating transcribed regions within chromatin by recruiting histone methylases and deacetylases. Using genome-wide nucleosome mapping, we show that CTD S2 phosphorylation controls nucleosome dynamics in the promoter of a subset of 324 genes, including the regulators of cell differentiation ste11 and metabolic adaptation inv1. Mechanistic studies on these genes indicate that during gene activation a local increase of phospho-S2 CTD nearby the promoter impairs the phospho-S5 CTD-dependent recruitment of Set1 and the subsequent recruitment of specific HDACs, which leads to nucleosome depletion and efficient transcription. The early increase of phospho-S2 results from the phosphorylation of the CTD S2 kinase Lsk1 by MAP kinase in response to cellular signalling. The artificial tethering of the Lsk1 kinase at the ste11 promoter is sufficient to activate transcription. Therefore, signalling through the CTD code regulates promoter nucleosomes dynamics. DOI: http://dx.doi.org/10.7554/eLife.09008.001 PMID:26098123

  19. Mating triggers dynamic immune regulations in wood ant queens.

    PubMed

    Castella, G; Christe, P; Chapuisat, M

    2009-03-01

    Mating can affect female immunity in multiple ways. On the one hand, the immune system may be activated by pathogens transmitted during mating, sperm and seminal proteins, or wounds inflicted by males. On the other hand, immune defences may also be down-regulated to reallocate resources to reproduction. Ants are interesting models to study post-mating immune regulation because queens mate early in life, store sperm for many years, and use it until their death many years later, while males typically die after mating. This long-term commitment between queens and their mates limits the opportunity for sexual conflict but raises the new constraint of long-term sperm survival. In this study, we examine experimentally the effect of mating on immunity in wood ant queens. Specifically, we compared the phenoloxidase and antibacterial activities of mated and virgin Formica paralugubris queens. Queens had reduced levels of active phenoloxidase after mating, but elevated antibacterial activity 7 days after mating. These results indicate that the process of mating, dealation and ovary activation triggers dynamic patterns of immune regulation in ant queens that probably reflect functional responses to mating and pathogen exposure that are independent of sexual conflict. PMID:19170815

  20. Regulators of Actin Dynamics in Gastrointestinal Tract Tumors

    PubMed Central

    Steinestel, Konrad; Wardelmann, Eva; Hartmann, Wolfgang; Grünewald, Inga

    2015-01-01

    Reorganization of the actin cytoskeleton underlies cell migration in a wide variety of physiological and pathological processes, such as embryonic development, wound healing, and tumor cell invasion. It has been shown that actin assembly and disassembly are precisely regulated by intracellular signaling cascades that respond to changes in the cell microenvironment, ligand binding to surface receptors, or oncogenic transformation of the cell. Actin-nucleating and actin-depolymerizing (ANFs/ADFs) and nucleation-promoting factors (NPFs) regulate cytoskeletal dynamics at the leading edge of migrating cells, thereby modulating cell shape; these proteins facilitate cellular movement and mediate degradation of the surrounding extracellular matrix by secretion of lytic proteases, thus eliminating barriers for tumor cell invasion. Accordingly, expression and activity of these actin-binding proteins have been linked to enhanced metastasis and poor prognosis in a variety of malignancies. In this review, we will summarize what is known about expression patterns and the functional role of actin regulators in gastrointestinal tumors and evaluate first pharmacological approaches to prevent invasion and metastatic dissemination of malignant cells. PMID:26345720

  1. Regulators of Actin Dynamics in Gastrointestinal Tract Tumors.

    PubMed

    Steinestel, Konrad; Wardelmann, Eva; Hartmann, Wolfgang; Grünewald, Inga

    2015-01-01

    Reorganization of the actin cytoskeleton underlies cell migration in a wide variety of physiological and pathological processes, such as embryonic development, wound healing, and tumor cell invasion. It has been shown that actin assembly and disassembly are precisely regulated by intracellular signaling cascades that respond to changes in the cell microenvironment, ligand binding to surface receptors, or oncogenic transformation of the cell. Actin-nucleating and actin-depolymerizing (ANFs/ADFs) and nucleation-promoting factors (NPFs) regulate cytoskeletal dynamics at the leading edge of migrating cells, thereby modulating cell shape; these proteins facilitate cellular movement and mediate degradation of the surrounding extracellular matrix by secretion of lytic proteases, thus eliminating barriers for tumor cell invasion. Accordingly, expression and activity of these actin-binding proteins have been linked to enhanced metastasis and poor prognosis in a variety of malignancies. In this review, we will summarize what is known about expression patterns and the functional role of actin regulators in gastrointestinal tumors and evaluate first pharmacological approaches to prevent invasion and metastatic dissemination of malignant cells. PMID:26345720

  2. Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation

    PubMed Central

    Cavazza, Alessia; Miccio, Annarita; Romano, Oriana; Petiti, Luca; Malagoli Tagliazucchi, Guidantonio; Peano, Clelia; Severgnini, Marco; Rizzi, Ermanno; De Bellis, Gianluca; Bicciato, Silvio; Mavilio, Fulvio

    2016-01-01

    Summary Human skin is maintained by the differentiation and maturation of interfollicular stem and progenitors cells. We used DeepCAGE, genome-wide profiling of histone modifications and retroviral integration analysis, to map transcripts, promoters, enhancers, and super-enhancers (SEs) in prospectively isolated keratinocytes and transit-amplifying progenitors, and retrospectively defined keratinocyte stem cells. We show that >95% of the active promoters are in common and differentially regulated in progenitors and differentiated keratinocytes, while approximately half of the enhancers and SEs are stage specific and account for most of the epigenetic changes occurring during differentiation. Transcription factor (TF) motif identification and correlation with TF binding site maps allowed the identification of TF circuitries acting on enhancers and SEs during differentiation. Overall, our study provides a broad, genome-wide description of chromatin dynamics and differential enhancer and promoter usage during epithelial differentiation, and describes a novel approach to identify active regulatory elements in rare stem cell populations. PMID:27050947

  3. Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation.

    PubMed

    Cavazza, Alessia; Miccio, Annarita; Romano, Oriana; Petiti, Luca; Malagoli Tagliazucchi, Guidantonio; Peano, Clelia; Severgnini, Marco; Rizzi, Ermanno; De Bellis, Gianluca; Bicciato, Silvio; Mavilio, Fulvio

    2016-04-12

    Human skin is maintained by the differentiation and maturation of interfollicular stem and progenitors cells. We used DeepCAGE, genome-wide profiling of histone modifications and retroviral integration analysis, to map transcripts, promoters, enhancers, and super-enhancers (SEs) in prospectively isolated keratinocytes and transit-amplifying progenitors, and retrospectively defined keratinocyte stem cells. We show that >95% of the active promoters are in common and differentially regulated in progenitors and differentiated keratinocytes, while approximately half of the enhancers and SEs are stage specific and account for most of the epigenetic changes occurring during differentiation. Transcription factor (TF) motif identification and correlation with TF binding site maps allowed the identification of TF circuitries acting on enhancers and SEs during differentiation. Overall, our study provides a broad, genome-wide description of chromatin dynamics and differential enhancer and promoter usage during epithelial differentiation, and describes a novel approach to identify active regulatory elements in rare stem cell populations. PMID:27050947

  4. Methane dynamics regulated by microbial community response to permafrost thaw.

    PubMed

    McCalley, Carmody K; Woodcroft, Ben J; Hodgkins, Suzanne B; Wehr, Richard A; Kim, Eun-Hae; Mondav, Rhiannon; Crill, Patrick M; Chanton, Jeffrey P; Rich, Virginia I; Tyson, Gene W; Saleska, Scott R

    2014-10-23

    Permafrost contains about 50% of the global soil carbon. It is thought that the thawing of permafrost can lead to a loss of soil carbon in the form of methane and carbon dioxide emissions. The magnitude of the resulting positive climate feedback of such greenhouse gas emissions is still unknown and may to a large extent depend on the poorly understood role of microbial community composition in regulating the metabolic processes that drive such ecosystem-scale greenhouse gas fluxes. Here we show that changes in vegetation and increasing methane emissions with permafrost thaw are associated with a switch from hydrogenotrophic to partly acetoclastic methanogenesis, resulting in a large shift in the δ(13)C signature (10-15‰) of emitted methane. We used a natural landscape gradient of permafrost thaw in northern Sweden as a model to investigate the role of microbial communities in regulating methane cycling, and to test whether a knowledge of community dynamics could improve predictions of carbon emissions under loss of permafrost. Abundance of the methanogen Candidatus 'Methanoflorens stordalenmirensis' is a key predictor of the shifts in methane isotopes, which in turn predicts the proportions of carbon emitted as methane and as carbon dioxide, an important factor for simulating the climate feedback associated with permafrost thaw in global models. By showing that the abundance of key microbial lineages can be used to predict atmospherically relevant patterns in methane isotopes and the proportion of carbon metabolized to methane during permafrost thaw, we establish a basis for scaling changing microbial communities to ecosystem isotope dynamics. Our findings indicate that microbial ecology may be important in ecosystem-scale responses to global change. PMID:25341787

  5. Neurogranin regulates CaM dynamics at dendritic spines

    PubMed Central

    Petersen, Amber; Gerges, Nashaat Z.

    2015-01-01

    Calmodulin (CaM) plays a key role in synaptic function and plasticity due to its ability to mediate Ca2+ signaling. Therefore, it is essential to understand the dynamics of CaM at dendritic spines. In this study we have explored CaM dynamics using live-cell confocal microscopy and fluorescence recovery after photobleaching (FRAP) to study CaM diffusion. We find that only a small fraction of CaM in dendritic spines is immobile. Furthermore, the diffusion rate of CaM was regulated by neurogranin (Ng), a CaM-binding protein enriched at dendritic spines. Interestingly, Ng did not influence the immobile fraction of CaM at recovery plateau. We have previously shown that Ng enhances synaptic strength in a CaM-dependent manner. Taken together, these data indicate that Ng-mediated enhancement of synaptic strength is due to its ability to target, rather than sequester, CaM within dendritic spines. PMID:26084473

  6. NEURONAL ACTIVITY REGULATES GLUTAMATE TRANSPORTER DYNAMICS IN DEVELOPING ASTROCYTES

    PubMed Central

    Benediktsson, A.M.; Marrs, G.S.; Tu, J.C.; Worley, P.F.; Rothstein, J.D.; Bergles, D.E.; Dailey, M.E.

    2011-01-01

    Glutamate transporters maintain a low ambient level of glutamate in the CNS and shape the activation of glutamate receptors at synapses. Nevertheless, the mechanisms that regulate the trafficking and localization of transporters near sites of glutamate release are poorly understood. Here we examined the subcellular distribution and dynamic remodeling of the predominant glutamate transporter GLT-1 (EAAT2) in developing hippocampal astrocytes. Immunolabeling revealed that endogenous GLT-1 is concentrated into discrete clusters along branches of developing astrocytes that were apposed preferentially to synapsin-1 positive synapses. GFP-GLT-1 fusion proteins expressed in astrocytes also formed distinct clusters that lined the edges of astrocyte processes, as well as the tips of filopodia and spine-like structures. Time-lapse 3D confocal imaging in tissue slices revealed that GFP-GLT-1 clusters were dynamically remodeled on a timescale of minutes. Some transporter clusters moved within developing astrocyte branches as filopodia extended and retracted, while others maintained stable positions at the tips of spine-like structures. Blockade of neuronal activity with tetrodotoxin reduced both the density and perisynaptic localization of GLT-1 clusters. Conversely, enhancement of neuronal activity increased the size of GLT-1 clusters and their proximity to synapses. Together, these findings indicate that neuronal activity influences both the organization of glutamate transporters in developing astrocyte membranes and their position relative to synapses. PMID:22052455

  7. Dynamic DNA methylation regulates neuronal intrinsic membrane excitability.

    PubMed

    Meadows, Jarrod P; Guzman-Karlsson, Mikael C; Phillips, Scott; Brown, Jordan A; Strange, Sarah K; Sweatt, J David; Hablitz, John J

    2016-01-01

    Epigenetic modifications, such as DNA cytosine methylation, contribute to the mechanisms underlying learning and memory by coordinating adaptive gene expression and neuronal plasticity. Transcription-dependent plasticity regulated by DNA methylation includes synaptic plasticity and homeostatic synaptic scaling. Memory-related plasticity also includes alterations in intrinsic membrane excitability mediated by changes in the abundance or activity of ion channels in the plasma membrane, which sets the threshold for action potential generation. We found that prolonged inhibition of DNA methyltransferase (DNMT) activity increased intrinsic membrane excitability of cultured cortical pyramidal neurons. Knockdown of the cytosine demethylase TET1 or inhibition of RNA polymerase blocked the increased membrane excitability caused by DNMT inhibition, suggesting that this effect was mediated by subsequent cytosine demethylation and de novo transcription. Prolonged DNMT inhibition blunted the medium component of the after-hyperpolarization potential, an effect that would increase neuronal excitability, and was associated with reduced expression of the genes encoding small-conductance Ca(2+)-activated K(+) (SK) channels. Furthermore, the specific SK channel blocker apamin increased neuronal excitability but was ineffective after DNMT inhibition. Our results suggested that DNMT inhibition enables transcriptional changes that culminate in decreased expression of SK channel-encoding genes and decreased activity of SK channels, thus providing a mechanism for the regulation of neuronal intrinsic membrane excitability by dynamic DNA cytosine methylation. This study has implications for human neurological and psychiatric diseases associated with dysregulated intrinsic excitability. PMID:27555660

  8. Dynamic regulation of aquaporin-4 water channels in neurological disorders

    PubMed Central

    Hsu, Ying; Tran, Minh; Linninger, Andreas A.

    2015-01-01

    Aquaporin-4 water channels play a central role in brain water regulation in neurological disorders. Aquaporin-4 is abundantly expressed at the astroglial endfeet facing the cerebral vasculature and the pial membrane, and both its expression level and subcellular localization significantly influence brain water transport. However, measurements of aquaporin-4 levels in animal models of brain injury often report opposite trends of change at the injury core and the penumbra. Furthermore, aquaporin-4 channels play a beneficial role in brain water clearance in vasogenic edema, but a detrimental role in cytotoxic edema and exacerbate cell swelling. In light of current evidence, we still do not have a complete understanding of the role of aquaporin-4 in brain water transport. In this review, we propose that the regulatory mechanisms of aquaporin-4 at the transcriptional, translational, and post-translational levels jointly regulate water permeability in the short and long time scale after injury. Furthermore, in order to understand why aquaporin-4 channels play opposing roles in cytotoxic and vasogenic edema, we discuss experimental evidence on the dynamically changing osmotic gradients between blood, extracellular space, and the cytosol during the formation of cytotoxic and vasogenic edema. We conclude with an emerging picture of the distinct osmotic environments in cytotoxic and vasogenic edema, and propose that the directions of aquaporin-4-mediated water clearance in these two types of edema are distinct. The difference in water clearance pathways may provide an explanation for the conflicting observations of the roles of aquaporin-4 in edema resolution. PMID:26526878

  9. Dynamic regulation of aquaporin-4 water channels in neurological disorders.

    PubMed

    Hsu, Ying; Tran, Minh; Linninger, Andreas A

    2015-10-01

    Aquaporin-4 water channels play a central role in brain water regulation in neurological disorders. Aquaporin-4 is abundantly expressed at the astroglial endfeet facing the cerebral vasculature and the pial membrane, and both its expression level and subcellular localization significantly influence brain water transport. However, measurements of aquaporin-4 levels in animal models of brain injury often report opposite trends of change at the injury core and the penumbra. Furthermore, aquaporin-4 channels play a beneficial role in brain water clearance in vasogenic edema, but a detrimental role in cytotoxic edema and exacerbate cell swelling. In light of current evidence, we still do not have a complete understanding of the role of aquaporin-4 in brain water transport. In this review, we propose that the regulatory mechanisms of aquaporin-4 at the transcriptional, translational, and post-translational levels jointly regulate water permeability in the short and long time scale after injury. Furthermore, in order to understand why aquaporin-4 channels play opposing roles in cytotoxic and vasogenic edema, we discuss experimental evidence on the dynamically changing osmotic gradients between blood, extracellular space, and the cytosol during the formation of cytotoxic and vasogenic edema. We conclude with an emerging picture of the distinct osmotic environments in cytotoxic and vasogenic edema, and propose that the directions of aquaporin-4-mediated water clearance in these two types of edema are distinct. The difference in water clearance pathways may provide an explanation for the conflicting observations of the roles of aquaporin-4 in edema resolution. PMID:26526878

  10. Dynamic conformational ensembles regulate casein kinase-1 isoforms: Insights from molecular dynamics and molecular docking studies.

    PubMed

    Singh, Surya Pratap; Gupta, Dwijendra K

    2016-04-01

    Casein kinase-1 (CK1) isoforms actively participate in the down-regulation of canonical Wnt signaling pathway; however recent studies have shown their active roles in oncogenesis of various tissues through this pathway. Functional loss of two isoforms (CK1-α/ε) has been shown to activate the carcinogenic pathway which involves the stabilization of of cytoplasmic β-catenin. Development of anticancer therapeutics is very laborious task and depends upon the structural and conformational details of the target. This study focuses on, how the structural dynamics and conformational changes of two CK1 isoforms are synchronized in carcinogenic pathway. The conformational dynamics in kinases is the responsible for their action as has been supported by the molecular docking experiments. PMID:26788877

  11. Impaired sympathetic vascular regulation in humans after acute dynamic exercise.

    PubMed Central

    Halliwill, J R; Taylor, J A; Eckberg, D L

    1996-01-01

    1. The reduction in vascular resistance which accompanies acute dynamic exercise does not subside immediately during recovery, resulting in a post-exercise hypotension. This sustained vasodilatation suggests that sympathetic vascular regulation is altered after exercise. 2. Therefore, we assessed the baroreflex control of sympathetic outflow in response to arterial pressure changes, and transduction of sympathetic activity into vascular resistance during a sympatho-excitatory stimulus (isometric handgrip exercise) after either exercise (60 min cycling at 60% peak aerobic power (VO2,peak)) or sham treatment (60 min seated rest) in nine healthy subjects. 3. Both muscle sympathetic nerve activity and calf vascular resistance were reduced after exercise (-29.7 +/- 8.8 and -25.3 +/- 9.1%, both P < 0.05). The baroreflex relation between diastolic pressure and sympathetic outflow was shifted downward after exercise (post-exercise intercept, 218 +/- 38 total integrated activity (heartbeat)-1; post-sham intercept, 318 +/- 51 total integrated activity (heartbeat)-1, P < 0.05), indicating less sympathetic outflow across all diastolic pressures. Further, the relation between sympathetic activity and vascular resistance was attenuated after exercise (post-exercise slope, 0.0031 +/- 0.0007 units (total integrated activity)-1 min; post-sham slope, 0.0100 +/- 0.0033 units (total integrated activity)-1 min, P < 0.05), indicating less vasoconstriction with any increase in sympathetic activity. 4. Thus, both baroreflex control of sympathetic outflow and the transduction of sympathetic activity into vascular resistance are altered after dynamic exercise. We conclude that the vasodilation which underlies post-exercise hypotension results from both neural and vascular phenomena. Images Figure 7 PMID:8866370

  12. Impaired sympathetic vascular regulation in humans after acute dynamic exercise

    NASA Technical Reports Server (NTRS)

    Halliwill, J. R.; Taylor, J. A.; Eckberg, D. L.

    1996-01-01

    1. The reduction in vascular resistance which accompanies acute dynamic exercise does not subside immediately during recovery, resulting in a post-exercise hypotension. This sustained vasodilatation suggests that sympathetic vascular regulation is altered after exercise. 2. Therefore, we assessed the baroreflex control of sympathetic outflow in response to arterial pressure changes, and transduction of sympathetic activity into vascular resistance during a sympatho-excitatory stimulus (isometric handgrip exercise) after either exercise (60 min cycling at 60% peak aerobic power (VO2,peak)) or sham treatment (60 min seated rest) in nine healthy subjects. 3. Both muscle sympathetic nerve activity and calf vascular resistance were reduced after exercise (-29.7 +/- 8.8 and -25.3 +/- 9.1%, both P < 0.05). The baroreflex relation between diastolic pressure and sympathetic outflow was shifted downward after exercise (post-exercise intercept, 218 +/- 38 total integrated activity (heartbeat)-1; post-sham intercept, 318 +/- 51 total integrated activity (heartbeat)-1, P < 0.05), indicating less sympathetic outflow across all diastolic pressures. Further, the relation between sympathetic activity and vascular resistance was attenuated after exercise (post-exercise slope, 0.0031 +/- 0.0007 units (total integrated activity)-1 min; post-sham slope, 0.0100 +/- 0.0033 units (total integrated activity)-1 min, P < 0.05), indicating less vasoconstriction with any increase in sympathetic activity. 4. Thus, both baroreflex control of sympathetic outflow and the transduction of sympathetic activity into vascular resistance are altered after dynamic exercise. We conclude that the vasodilation which underlies post-exercise hypotension results from both neural and vascular phenomena.

  13. BIN1 regulates dynamic t-tubule membrane.

    PubMed

    Fu, Ying; Hong, TingTing

    2016-07-01

    Cardiac transverse tubules (t-tubules) are specific membrane organelles critical in calcium signaling and excitation-contraction coupling required for beat-to-beat heart contraction. T-tubules are highly branched and form an interconnected network that penetrates the myocyte interior to form junctions with the sarcoplasmic reticulum. T-tubules are selectively enriched with specific ion channels and proteins crucial in calcium transient development necessary in excitation-contraction coupling, thus t-tubules are a key component of cardiac myocyte function. In this review, we focus primarily on two proteins concentrated within the t-tubular network, the L-type calcium channel (LTCC) and associated membrane anchor protein, bridging integrator 1 (BIN1). Here, we provide an overview of current knowledge in t-tubule morphology, composition, microdomains, as well as the dynamics of the t-tubule network. Secondly, we highlight multiple aspects of BIN1-dependent t-tubule function, which includes forward trafficking of LTCCs to t-tubules, LTCC clustering at t-tubule surface, microdomain organization and regulation at t-tubule membrane, and the formation of a slow diffusion barrier within t-tubules. Lastly, we describe progress in characterizing how acquired human heart failure can be attributed to abnormal BIN1 transcription and associated t-tubule remodeling. Understanding BIN1-regulated cardiac t-tubule biology in human heart failure management has the dual benefit of promoting progress in both biomarker development and therapeutic target identification. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26578114

  14. Dynamics of adenylate cyclase regulation via heterotrimeric G-proteins.

    PubMed

    Milde, Markus; Werthmann, Ruth C; von Hayn, Kathrin; Bünemann, Moritz

    2014-04-01

    A wide variety of G-protein-coupled receptors either activate or inhibit ACs (adenylate cyclases), thereby regulating cellular cAMP levels and consequently inducing proper physiological responses. Stimulatory and inhibitory G-proteins interact directly with ACs, whereas G(q)-coupled receptors exert their effects primarily via Ca2+. Using the FRET-based cAMP sensor Epac1 (exchange protein directly activated by cAMP 1)-cAMPS (adenosine 3',5'-cyclic monophosphorothioate), we studied cAMP levels in single living VSMCs (vascular smooth muscle cells) or HUVECs (human umbilical vein endothelial cells) with subsecond temporal resolution. Stimulation of purinergic (VSMCs) or thrombin (HUVECs) receptors rapidly decreased cAMP levels in the presence of the β-adrenergic agonist isoprenaline via a rise in Ca2+ and subsequent inhibition of AC5 and AC6. Specifically in HUVECs, we observed that, in the continuous presence of thrombin, cAMP levels climbed slowly after the initial decline with a delay of a little less than 1 min. The underlying mechanism includes phospholipase A2 activity and cyclo-oxygenase-mediated synthesis of prostaglandins. We studied further the dynamics of the inhibition of ACs via G(i)-proteins utilizing FRET imaging to resolve interactions between fluorescently labelled G(i)-proteins and AC5. FRET between Gα(i1) and AC5 developed at much lower concentration of agonist compared with the overall G(i)-protein activity. We found the dissociation of Gα(i1) subunits and AC5 to occur slower than the G(i)-protein deactivation. This led us to the conclusion that AC5, by binding active Gα(i1), interferes with G-protein deactivation and reassembly and thereby might sensitize its own regulation. PMID:24646224

  15. Regulation of phytoplankton dynamics by vitamin B12

    NASA Astrophysics Data System (ADS)

    Sañudo-Wilhelmy, S. A.; Gobler, C. J.; Okbamichael, M.; Taylor, G. T.

    2006-02-01

    Despite the biological necessity of vitamin B12 (cobalamin), its importance in phytoplankton ecology has been ignored for nearly three decades. Here we report strong and selective responses of phytoplankton communities to varying low levels (5-87 pM) of dissolved B12 in several coastal embayments. The ecological importance of this vitamin is inferred from observed declines in dissolved B12 levels as field populations of large (>5 μm) phytoplankton increased. In contrast, biomass of small (<5 μm) phytoplankton varied independently of B12 concentrations. These observations were corroborated by field-based nutrient amendment experiments, in which B12 additions stimulated growth of large phytoplankton taxa 6-fold over unamended controls. In contrast, small taxa (<5 μm) were largely unaffected. This study provides the first evidence of vitamin B12's influence on phytoplankton field population dynamics based on direct chemical measurements of cobalamin, and implicates B12 as an important organic regulator of photoautotrophic fertility in marine systems.

  16. Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis.

    PubMed

    Dawson, Scott C; Sagolla, Meredith S; Mancuso, Joel J; Woessner, David J; House, Susan A; Fritz-Laylin, Lillian; Cande, W Zacheus

    2007-12-01

    Microtubule depolymerization dynamics in the spindle are regulated by kinesin-13, a nonprocessive kinesin motor protein that depolymerizes microtubules at the plus and minus ends. Here we show that a single kinesin-13 homolog regulates flagellar length dynamics, as well as other interphase and mitotic dynamics in Giardia intestinalis, a widespread parasitic diplomonad protist. Both green fluorescent protein-tagged kinesin-13 and EB1 (a plus-end tracking protein) localize to the plus ends of mitotic and interphase microtubules, including a novel localization to the eight flagellar tips, cytoplasmic anterior axonemes, and the median body. The ectopic expression of a kinesin-13 (S280N) rigor mutant construct caused significant elongation of the eight flagella with significant decreases in the median body volume and resulted in mitotic defects. Notably, drugs that disrupt normal interphase and mitotic microtubule dynamics also affected flagellar length in Giardia. Our study extends recent work on interphase and mitotic kinesin-13 functioning in metazoans to include a role in regulating flagellar length dynamics. We suggest that kinesin-13 universally regulates both mitotic and interphase microtubule dynamics in diverse microbial eukaryotes and propose that axonemal microtubules are subject to the same regulation of microtubule dynamics as other dynamic microtubule arrays. Finally, the present study represents the first use of a dominant-negative strategy to disrupt normal protein function in Giardia and provides important insights into giardial microtubule dynamics with relevance to the development of antigiardial compounds that target critical functions of kinesins in the giardial life cycle. PMID:17766466

  17. Valve dynamic and thermal cycle model in stepless capacity regulation for reciprocating compressor

    NASA Astrophysics Data System (ADS)

    Jin, Jiangming; Hong, Weirong

    2012-11-01

    The existing researches of stepless capacity regulation system by depressing the suction valve for reciprocation compressor always adopt hypothesis that the compressor valves are open or close instantaneously, the valve dynamic has not been taken account into thermal cycle computation, the influence of capacity regulation system on suction valves dynamic performance and cylinder thermal cycle operation has not been considered. This paper focuses on theoretical and experimental analysis of the valve dynamic and thermal cycle for reciprocating compressor in the situation of stepless capacity regulation. The valve dynamics equation, gas forces for normal and back flow, and the cylinder pressure varying with suction valve unloader moment during compression thermal cycle are discussed. A new valve dynamic model based on L-K real gas state equation for reciprocating compressor is first deduced to reduce the calculation errors induced by the ideal gas state equation. The variations of valve dynamic and cylinder pressure during part of compression stroke are calculated numerically. The calculation results reveal the non-normal thermal cycle and operation condition of compressor in stepless capacity regulation situation. The numerical simulation results of the valve dynamic and thermal cycle parameters are also verified by the stepless capacity regulation experiments in the type of 3L-10-8 reciprocating compressor. The experimental results agree with the numerical simulation results, which show that the theoretical models proposed are effective and high-precision. The proposed theoretical models build the theoretical foundation to design the real stepless capacity regulation system.

  18. Histone Lysine Methylation Dynamics: Establishment, Regulation, and Biological Impact

    PubMed Central

    Black, Joshua C.; Van Rechem, Capucine; Whetstine, Johnathan R.

    2013-01-01

    Histone lysine methylation has emerged as a critical player in the regulation of gene expression, cell cycle, genome stability, and nuclear architecture. Over the past decade, a tremendous amount of progress has led to the characterization of methyl modifications and the lysine methyltransferases (KMTs) and lysine demethylases (KDMs) that regulate them. Here, we review the discovery and characterization of the KMTs and KDMs and the methyl modifications they regulate. We discuss the localization of the KMTs and KDMs as well as the distribution of lysine methylation throughout the genome. We highlight how these data have shaped our view of lysine methylation as a key determinant of complex chromatin states. Finally, we discuss the regulation of KMTs and KDMs by proteasomal degradation, posttranscriptional mechanisms, and metabolic status. We propose key questions for the field and highlight areas that we predict will yield exciting discoveries in the years to come. PMID:23200123

  19. Oscillatory Dynamics of the Extracellular Signal-regulated Kinase Pathway

    SciTech Connect

    Shankaran, Harish; Wiley, H. S.

    2010-12-01

    The extracellular signal-regulated kinase (ERK) pathway is a central signaling pathway in development and disease and is regulated by multiple negative and positive feedback loops. Recent studies have shown negative feedback from ERK to upstream regulators can give rise to biochemical oscillations with a periodicity of between 15-30 minutes. Feedback due to the stimulated transcription of negative regulators of the ERK pathway can also give rise to transcriptional oscillations with a periodicity of 1-2h. The biological significance of these oscillations is not clear, but recent evidence suggests that transcriptional oscillations participate in developmental processes, such as somite formation. Biochemical oscillations are more enigmatic, but could provide a mechanism for encoding different types of inputs into a common signaling pathway.

  20. Regulation of Microtubule Dynamics in Axon Regeneration: Insights from C. elegans

    PubMed Central

    Tang, Ngang Heok; Chisholm, Andrew D.

    2016-01-01

    The capacity of an axon to regenerate is regulated by its external environment and by cell-intrinsic factors. Studies in a variety of organisms suggest that alterations in axonal microtubule (MT) dynamics have potent effects on axon regeneration. We review recent findings on the regulation of MT dynamics during axon regeneration, focusing on the nematode Caenorhabditis elegans. In C. elegans the dual leucine zipper kinase (DLK) promotes axon regeneration, whereas the exchange factor for Arf6 (EFA-6) inhibits axon regeneration. Both DLK and EFA-6 respond to injury and control axon regeneration in part via MT dynamics. How the DLK and EFA-6 pathways are related is a topic of active investigation, as is the mechanism by which EFA-6 responds to axonal injury. We evaluate potential candidates, such as the MT affinity-regulating kinase PAR-1/MARK, in regulation of EFA-6 and axonal MT dynamics in regeneration. PMID:27350865

  1. Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis

    PubMed Central

    Kapelko, Magdalena; Lansink, Alfons Oude; Stefanou, Spiro E.

    2015-01-01

    This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change. PMID:26057878

  2. Dynamics of positive emotion regulation: associations with youth depressive symptoms.

    PubMed

    Fussner, Lauren M; Luebbe, Aaron M; Bell, Debora J

    2015-04-01

    Depression is frequently considered a disorder of impaired affect regulation with deficits across both positive and negative affective systems. However, where deficits in emotion regulation occur in youth, specifically regarding regulation of positive emotions, is relatively unknown. The current study tested whether deficits in broad (felt and expressed) and specific (up-regulation and maintenance) positive emotion processes are associated with youth depressive symptoms. Adolescents (n = 134; 65 girls) in grades 7 to 9 completed a self-report measure of depressive symptoms prior to participating in two parent-child interactions tasks, a rewarding trivia task and a problem-solving conflict task. During the interaction tasks, adolescent's overall self-reported experience and observed expression of positive affect (PA) was examined. Following the reward task, youth's ability to up-regulate PA (PA response) and maintain PA while buffering against NA (PA persistence) was explored observationally. Results suggested that reduced experience and expression of PA was associated with depression symptoms, but only in a context that elicited negative emotions. No association was found between PA response and depression symptoms; however, shorter PA persistence was associated with elevated depressive symptoms. Youth higher in depressive symptoms appear able to respond similarly to rewarding events, but fail to maintain PA and ward off NA when transitioning from a positive to negative task. PMID:25070360

  3. Cortactin Branches Out: Roles in Regulating Protrusive Actin Dynamics

    PubMed Central

    Ammer, Amanda Gatesman; Weed, Scott A.

    2008-01-01

    Since its discovery in the early 1990’s, cortactin has emerged as a key signaling protein in many cellular processes, including cell adhesion, migration, endocytosis, and tumor invasion. While the list of cellular functions influenced by cortactin grows, the ability of cortactin to interact with and alter the cortical actin network is central to its role in regulating these processes. Recently, several advances have been made in our understanding of the interaction between actin and cortactin, providing insight into how these two proteins work together to provide a framework for normal and altered cellular function. This review examines how regulation of cortactin through post-translational modifications and interactions with multiple binding partners elicits changes in cortical actin cytoskeletal organization, impacting the regulation and formation of actin-rich motility structures. PMID:18615630

  4. LncRNA HOTAIR: a master regulator of chromatin dynamics and cancer

    PubMed Central

    Bhan, Arunoday; Mandal, Subhrangsu S.

    2015-01-01

    Non-coding RNAs (ncRNAs) are emerging classes of regulatory RNA that play key roles in various cellular and physiological processes such as in gene regulation, chromatin dynamics, cell differentiation, development etc. NcRNAs are dysregulated in a variety of human disorders including cancers, neurological disorders, and immunological disorders. The mechanisms through which ncRNAs regulate various biological processes and human diseases still remain elusive. HOX antisense intergenic RNA (HOTAIR) is a recently discovered long non-coding RNA (lncRNA) that plays critical role in gene regulation and chromatin dynamics, appears to be misregulated in a variety of cancers. HOTAIR interacts with key epigenetic regulators such as histone methyltransferase PRC2 and histone demethylase LSD1 and regulates gene silencing. Here, we have reviewed recent advancements in understanding the functions and regulation of HOTAIR and its association with cancer and other diseases. PMID:26208723

  5. Population Dynamics with Global Regulation: The Conserved Fisher Equation

    NASA Astrophysics Data System (ADS)

    Newman, T. J.; Kolomeisky, E. B.; Antonovics, J.

    2004-06-01

    We introduce and study a conserved version of the Fisher equation. Within a population biology context, this model describes spatially extended populations in which the total number of individuals is fixed due to either biotic or environmental factors. We find a rich spectrum of dynamical phases including a pseudotraveling wave and, in the presence of the Allee effect, a phase transition from a locally constrained high density state to a low density fragmented state.

  6. Cell Spreading Area Regulates Clathrin-Coated Pit Dynamics on Micropatterned Substrate

    PubMed Central

    Tan, Xinyu; Heureaux, Johanna; Liu, Allen P.

    2015-01-01

    Clathrin-mediated endocytosis (CME) is the most characterized pathway for the endocytic entry of proteins and lipids at the plasma membrane of eukaryotic cells. Numerous studies have probed the roles of different endocytic accessory proteins in regulating the dynamics of clathrin-coated pit (CCP) assembly. However, it is not completely clear how physical cues regulate CCP dynamics. Here we employ microcontact printing to control cell shape and examine CCP dynamics as a function of cell spreading area for three differently sized cells. Cells with a large spreading area had more short-lived CCPs but a higher CCP initiation rate. Interestingly, we found that fluorescence intensity of CCPs decreased with increasing cell spreading area in a manner that was dependent on the cortical actin network. Our results point to another facet of the regulation of CCP dynamics, suggesting that CME may be modulated while cells change their mechanical state and remodel their actin cytoskeleton during various processes. PMID:26205141

  7. MACF1 regulates the migration of pyramidal neurons via microtubule dynamics and GSK-3 signaling.

    PubMed

    Ka, Minhan; Jung, Eui-Man; Mueller, Ulrich; Kim, Woo-Yang

    2014-11-01

    Neuronal migration and subsequent differentiation play critical roles for establishing functional neural circuitry in the developing brain. However, the molecular mechanisms that regulate these processes are poorly understood. Here, we show that microtubule actin crosslinking factor 1 (MACF1) determines neuronal positioning by regulating microtubule dynamics and mediating GSK-3 signaling during brain development. First, using MACF1 floxed allele mice and in utero gene manipulation, we find that MACF1 deletion suppresses migration of cortical pyramidal neurons and results in aberrant neuronal positioning in the developing brain. The cell autonomous deficit in migration is associated with abnormal dynamics of leading processes and centrosomes. Furthermore, microtubule stability is severely damaged in neurons lacking MACF1, resulting in abnormal microtubule dynamics. Finally, MACF1 interacts with and mediates GSK-3 signaling in developing neurons. Our findings establish a cellular mechanism underlying neuronal migration and provide insights into the regulation of cytoskeleton dynamics in developing neurons. PMID:25224226

  8. Dynamic Regulation of the GABAA Receptor Function by Redox Mechanisms.

    PubMed

    Calvo, Daniel J; González, Andrea N Beltrán

    2016-09-01

    Oxidizing and reducing agents, which are currently involved in cell metabolism and signaling pathways, can regulate fast inhibitory neurotransmission mediated by GABA receptors in the nervous system. A number of in vitro studies have shown that diverse redox compounds, including redox metabolites and reactive oxygen and nitrogen species, modulate phasic and tonic responses mediated by neuronal GABAA receptors through both presynaptic and postsynaptic mechanisms. We review experimental data showing that many redox agents, which are normally present in neurons and glia or are endogenously generated in these cells under physiologic states or during oxidative stress (e.g., hydrogen peroxide, superoxide and hydroxyl radicals, nitric oxide, ascorbic acid, and glutathione), induce potentiating or inhibiting actions on different native and recombinant GABAA receptor subtypes. Based on these results, it is thought that redox signaling might represent a homeostatic mechanism that regulates the function of synaptic and extrasynaptic GABAA receptors in physiologic and pathologic conditions. PMID:27439531

  9. Leading at the Front: How EB Proteins Regulate Microtubule Dynamics

    NASA Astrophysics Data System (ADS)

    Hawkins, Taviare

    2012-02-01

    Microtubules are the most rigid of the cytoskeletal filaments, they provide the cell's scaffolding, form the byways on which motor proteins transport intracellular cargo and reorganize to form the mitotic spindle when the cell needs to divide. These biopolymers are composed of alpha and beta tubulin monomers that create hollow cylindrical nanotubes with an outer diameter of 25 nm and an inner diameter of 17 nm. At steady state concentrations, microtubules undergo a process known as dynamic instability. During dynamic instability the length of individual microtubules is changing as the filament alternates between periods of growth to shrinkage (catastrophe) and shrinkage to growth (rescue). This process can be enhanced or diminished with the addition of microtubule associated proteins (MAPs). MAPs are microtubule binding proteins that stabilize, destabilize, or nucleate microtubules. We will discuss the effects of the stabilizing end-binding proteins (EB1, EB2 and EB3), on microtubule dynamics observed in vitro. The EBs are a unique family of MAPs known to tip track and enhance microtubule growth by stabilizing the ends. This is a different mechanism than those employed by structural MAPs such as tau or MAP4.

  10. Dynamic Nature of Noncoding RNA Regulation of Adaptive Immune Response

    PubMed Central

    Curtale, Graziella; Citarella, Franca

    2013-01-01

    Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs) in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs) are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs) could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response. PMID:23975170

  11. mRNA modifications: Dynamic regulators of gene expression?

    PubMed Central

    Hoernes, Thomas Philipp; Hüttenhofer, Alexander; Erlacher, Matthias David

    2016-01-01

    ABSTRACT The expression of a gene is a tightly regulated process and is exerted by a myriad of different mechanisms. Recently, RNA modifications located in coding sequences of mRNAs, have been identified as potential regulators of gene expression. N6-methyladenosine (m6A), 5-methylcytosine (m5C), pseudouridine (Ψ) and N1-methyladenosine (m1A) have been found within open reading frames of mRNAs. The presence of these mRNA modifications has been implicated to modulate the fate of an mRNA, ranging from maturation to its translation and even degradation. However, many aspects concerning the biological functions of mRNA modifications remain elusive. Recently, systematic in vitro studies allowed a first glimpse of the direct interplay of mRNA modifications and the efficiency and fidelity of ribosomal translation. It thereby became evident that the effects of mRNA modifications were, astonishingly versatile, depending on the type, position or sequence context. The incorporation of a single modification could either prematurely terminate protein synthesis, reduce the peptide yield or alter the amino acid sequence identity. These results implicate that mRNA modifications are a powerful mechanism to post-transcriptionally regulate gene expression. PMID:27351916

  12. A divergent canonical WNT-signaling pathway regulates microtubule dynamics

    PubMed Central

    Ciani, Lorenza; Krylova, Olga; Smalley, Matthew J.; Dale, Trevor C.; Salinas, Patricia C.

    2004-01-01

    Dishevelled (DVL) is associated with axonal microtubules and regulates microtubule stability through the inhibition of the serine/threonine kinase, glycogen synthase kinase 3β (GSK-3β). In the canonical WNT pathway, the negative regulator Axin forms a complex with β-catenin and GSK-3β, resulting in β-catenin degradation. Inhibition of GSK-3β by DVL increases β-catenin stability and TCF transcriptional activation. Here, we show that Axin associates with microtubules and unexpectedly stabilizes microtubules through DVL. In turn, DVL stabilizes microtubules by inhibiting GSK-3β through a transcription- and β-catenin–independent pathway. More importantly, axonal microtubules are stabilized after DVL localizes to axons. Increased microtubule stability is correlated with a decrease in GSK-3β–mediated phosphorylation of MAP-1B. We propose a model in which Axin, through DVL, stabilizes microtubules by inhibiting a pool of GSK-3β, resulting in local changes in the phosphorylation of cellular targets. Our data indicate a bifurcation in the so-called canonical WNT-signaling pathway to regulate microtubule stability. PMID:14734535

  13. Dynamic regulation of the endocannabinoid system: implications for analgesia

    PubMed Central

    Sagar, Devi Rani; Gaw, A Gemma; Okine, Bright N; Woodhams, Stephen G; Wong, Amy; Kendall, David A; Chapman, Victoria

    2009-01-01

    The analgesic effects of cannabinoids are well documented, but these are often limited by psychoactive side-effects. Recent studies indicate that the endocannabinoid system is dynamic and altered under different pathological conditions, including pain states. Changes in this receptor system include altered expression of receptors, differential synthetic pathways for endocannabinoids are expressed by various cell types, multiple pathways of catabolism and the generation of biologically active metabolites, which may be engaged under different conditions. This review discusses the evidence that pain states alter the endocannabinoid receptor system at key sites involved in pain processing and how these changes may inform the development of cannabinoid-based analgesics. PMID:19814807

  14. Baroreflex regulation of blood pressure during dynamic exercise

    NASA Technical Reports Server (NTRS)

    Raven, P. B.; Potts, J. T.; Shi, X.; Blomqvist, C. G. (Principal Investigator)

    1997-01-01

    From the work of Potts et al. Papelier et al. and Shi et al. it is readily apparent that the arterial (aortic and carotid) baroreflexes are reset to function at the prevailing ABP of exercise. The blood pressure of exercise is the result of the hemodynamic (cardiac output and TPR) responses, which appear to be regulated by two redundant neural control systems, "Central Command" and the "exercise pressor reflex". Central Command is a feed-forward neural control system that operates in parallel with the neural regulation of the locomotor system and appears to establish the hemodynamic response to exercise. Within the central nervous system it appears that the HLR may be the operational site for Central Command. Specific neural sites within the HLR have been demonstrated in animals to be active during exercise. With the advent of positron emission tomography (PET) and single-photon emission computed tomography (SPECT), the anatomical areas of the human brain related to Central Command are being mapped. It also appears that the Nucleus Tractus Solitarius and the ventrolateral medulla may serve as an integrating site as they receive neural information from the working muscles via the group III/IV muscle afferents as well as from higher brain centers. This anatomical site within the CNS is now the focus of many investigations in which arterial baroreflex function, Central Command and the "exercise pressor reflex" appear to demonstrate inhibitory or facilitatory interaction. The concept of whether Central Command is the prime mover in the resetting of the arterial baroreceptors to function at the exercising ABP or whether the resetting is an integration of the "exercise pressor reflex" information with that of Central Command is now under intense investigation. However, it would be justified to conclude, from the data of Bevegard and Shepherd, Dicarlo and Bishop, Potts et al., and Papelier et al. that the act of exercise results in the resetting of the arterial baroreflex

  15. Dynamical self-regulation in self-propelled particle flows

    NASA Astrophysics Data System (ADS)

    Gopinath, Arvind; Hagan, Michael F.; Marchetti, M. Cristina; Baskaran, Aparna

    2012-06-01

    We study a continuum model of overdamped self-propelled particles with aligning interactions in two dimensions. Combining analytical theory and computations, we map out the phase diagram for the parameter space covered by the model. We find that the system self-organizes into two robust structures in different regions of parameter space: solitary waves composed of ordered swarms moving through a low density disordered background, and stationary radially symmetric asters. The self-regulating nature of the flow yields phase separation, ubiquitous in this class of systems, and controls the formation of solitary waves. Self-propulsion and the associated active convection play a crucial role in aster formation.

  16. Dynamic model of gene regulation for the lac operon

    NASA Astrophysics Data System (ADS)

    Angelova, Maia; Ben-Halim, Asma

    2011-03-01

    Gene regulatory network is a collection of DNA which interact with each other and with other matter in the cell. The lac operon is an example of a relatively simple genetic network and is one of the best-studied structures in the Escherichia coli bacteria. In this work we consider a deterministic model of the lac operon with a noise term, representing the stochastic nature of the regulation. The model is written in terms of a system of simultaneous first order differential equations with delays. We investigate an analytical and numerical solution and analyse the range of values for the parameters corresponding to a stable solution.

  17. Interhemispheric inhibition is dynamically regulated during action observation.

    PubMed

    Gueugneau, Nicolas; Bove, Marco; Ballay, Yves; Papaxanthis, Charalambos

    2016-05-01

    It is now well established that the motor system plays a pivotal role in action observation and that the neurophysiological processes underlying perception and action overlaps. However, while various experiments have shown a specific facilitation of the contralateral motor cortex during action observation, no information is available concerning the dynamics of interhemispheric interactions. The aim of the present study was, therefore, to assess interhemispheric inhibition during the observation of others' actions. We designed a transcranial magnetic stimulation (TMS) experiment in which we measured both corticospinal excitability and interhemispheric inhibition, this latter by means of the ipsilateral silent period (iSP), while participants observed two motor tasks (tapping or grasping). We show that the iSP is enhanced during movement observation and that this modulation is tuned to the kinematics of the observed movements. An additional experiment was performed in which the TMS intensity was adjusted to match corticospinal excitability between rest and action observation. This resulted in a relative decrease of iSP. Overall, our data strongly suggest that action observation, as action execution, involves interhemispheric inhibitory mechanisms between the two motor cortices, and that this neural activity appears to be firmly shaped by the ongoing observed movement and its intrinsic dynamics. PMID:27082878

  18. Fuel additive programs at crossroads of regulation, market dynamics

    SciTech Connect

    Adler, K.

    1998-01-01

    Fuel additive manufacturers, gasoline marketers and automakers seem to be forgetting about the power of the marketplace in their efforts to use additives to help reduce emissions and improve vehicle performance. Recall that the port fuel injector (PFI) and intake valve deposit (IVD) problems of the 1980s were addressed quickly by the fuels industry. In just a few months after the PFID problem surfaced, additive makers had detergents on the market, and fuel marketers followed up with an effective advertising campaign. Formal regulations came about a decade later. The solution to the BMW IVD problem was similar. BMW provided an enticing incentive for oil companies to differentiate through better additives and many did. Contrast those developments with the command-and-control approach that has been in effect since January 1995. EPA`s additive rule is working almost to perfection - if adherence to strict rules is considered. All gasolines in the US are additized, and a wide variety of packages have been developed that meet the regulatory standards. But by the measure of real-world performance, the circumstances can look quite different. And with industry finalizing a better IVD test and conducting research into the need for a combustion chamber deposit (CCD) regulation, now may be the time to limit the regulatory approach and let refiners and additive suppliers return to creating products that target excellence instead of regulatory minimums.

  19. TOG Proteins Are Spatially Regulated by Rac-GSK3β to Control Interphase Microtubule Dynamics.

    PubMed

    Trogden, Kathryn P; Rogers, Stephen L

    2015-01-01

    Microtubules are regulated by a diverse set of proteins that localize to microtubule plus ends (+TIPs) where they regulate dynamic instability and mediate interactions with the cell cortex, actin filaments, and organelles. Although individual +TIPs have been studied in depth and we understand their basic contributions to microtubule dynamics, there is a growing body of evidence that these proteins exhibit cross-talk and likely function to collectively integrate microtubule behavior and upstream signaling pathways. In this study, we have identified a novel protein-protein interaction between the XMAP215 homologue in Drosophila, Mini spindles (Msps), and the CLASP homologue, Orbit. These proteins have been shown to promote and suppress microtubule dynamics, respectively. We show that microtubule dynamics are regionally controlled in cells by Rac acting to suppress GSK3β in the peripheral lamellae/lamellipodium. Phosphorylation of Orbit by GSK3β triggers a relocalization of Msps from the microtubule plus end to the lattice. Mutation of the Msps-Orbit binding site revealed that this interaction is required for regulating microtubule dynamic instability in the cell periphery. Based on our findings, we propose that Msps is a novel Rac effector that acts, in partnership with Orbit, to regionally regulate microtubule dynamics. PMID:26406596

  20. TOG Proteins Are Spatially Regulated by Rac-GSK3β to Control Interphase Microtubule Dynamics

    PubMed Central

    Trogden, Kathryn P.; Rogers, Stephen L.

    2015-01-01

    Microtubules are regulated by a diverse set of proteins that localize to microtubule plus ends (+TIPs) where they regulate dynamic instability and mediate interactions with the cell cortex, actin filaments, and organelles. Although individual +TIPs have been studied in depth and we understand their basic contributions to microtubule dynamics, there is a growing body of evidence that these proteins exhibit cross-talk and likely function to collectively integrate microtubule behavior and upstream signaling pathways. In this study, we have identified a novel protein-protein interaction between the XMAP215 homologue in Drosophila, Mini spindles (Msps), and the CLASP homologue, Orbit. These proteins have been shown to promote and suppress microtubule dynamics, respectively. We show that microtubule dynamics are regionally controlled in cells by Rac acting to suppress GSK3β in the peripheral lamellae/lamellipodium. Phosphorylation of Orbit by GSK3β triggers a relocalization of Msps from the microtubule plus end to the lattice. Mutation of the Msps-Orbit binding site revealed that this interaction is required for regulating microtubule dynamic instability in the cell periphery. Based on our findings, we propose that Msps is a novel Rac effector that acts, in partnership with Orbit, to regionally regulate microtubule dynamics. PMID:26406596

  1. A Dynamical Model of B-T Cell Regulation

    NASA Astrophysics Data System (ADS)

    Kürten, Karl E.; Castiglione, Filippo

    We present a minimal regulatory model for the dynamics of the humoral immune response of two lymphocytes populations (B and T helper) interacting with a specific antigen pool (bacterium). Stability analysis reveals that the system accounts for the occurrence of multiple steady states in the absence as well as in the presence of the antigen population. The model exhibits (i) a state of immune memory, (ii) one state with high antigen and low helper concentration (disease), and (iii) one state with low antigen and high helper concentration (tolerance). The latter state allows oscillatory behavior. Injection of high antigen doses as well as minimal changes of structural parameters provoke the system to jump from the state of disease to the state of tolerance. This is reminiscent of therapies where the patient is treated with allergen, immuno-suppressants or drugs.

  2. Dynamic regulation of Schwann cell enhancers after peripheral nerve injury.

    PubMed

    Hung, Holly A; Sun, Guannan; Keles, Sunduz; Svaren, John

    2015-03-13

    Myelination of the peripheral nervous system is required for axonal function and long term stability. After peripheral nerve injury, Schwann cells transition from axon myelination to a demyelinated state that supports neuronal survival and ultimately remyelination of axons. Reprogramming of gene expression patterns during development and injury responses is shaped by the actions of distal regulatory elements that integrate the actions of multiple transcription factors. We used ChIP-seq to measure changes in histone H3K27 acetylation, a mark of active enhancers, to identify enhancers in myelinating rat peripheral nerve and their dynamics after demyelinating nerve injury. Analysis of injury-induced enhancers identified enriched motifs for c-Jun, a transcription factor required for Schwann cells to support nerve regeneration. We identify a c-Jun-bound enhancer in the gene for Runx2, a transcription factor induced after nerve injury, and we show that Runx2 is required for activation of other induced genes. In contrast, enhancers that lose H3K27ac after nerve injury are enriched for binding sites of the Sox10 and early growth response 2 (Egr2/Krox20) transcription factors, which are critical determinants of Schwann cell differentiation. Egr2 expression is lost after nerve injury, and many Egr2-binding sites lose H3K27ac after nerve injury. However, the majority of Egr2-bound enhancers retain H3K27ac, indicating that other transcription factors maintain active enhancer status after nerve injury. The global epigenomic changes in H3K27ac deposition pinpoint dynamic changes in enhancers that mediate the effects of transcription factors that control Schwann cell myelination and peripheral nervous system responses to nerve injury. PMID:25614629

  3. Circuit reactivation dynamically regulates synaptic plasticity in neocortex

    NASA Astrophysics Data System (ADS)

    Kruskal, Peter B.; Li, Lucy; Maclean, Jason N.

    2013-10-01

    Circuit reactivations involve a stereotyped sequence of neuronal firing and have been behaviourally linked to memory consolidation. Here we use multiphoton imaging and patch-clamp recording, and observe sparse and stereotyped circuit reactivations that correspond to UP states within active neurons. To evaluate the effect of the circuit on synaptic plasticity, we trigger a single spike-timing-dependent plasticity (STDP) pairing once per circuit reactivation. The pairings reliably fall within a particular epoch of the circuit sequence and result in long-term potentiation. During reactivation, the amplitude of plasticity significantly correlates with the preceding 20-25 ms of membrane depolarization rather than the depolarization at the time of pairing. This circuit-dependent plasticity provides a natural constraint on synaptic potentiation, regulating the inherent instability of STDP in an assembly phase-sequence model. Subthreshold voltage during endogenous circuit reactivations provides a critical informative context for plasticity and facilitates the stable consolidation of a spatiotemporal sequence.

  4. Dynamics and regulation of bulk milk somatic cell counts.

    PubMed Central

    Schukken, Y H; Weersink, A; Leslie, K E; Martin, S W

    1993-01-01

    Somatic cell count (SCC) in milk is inversely related to dairy cow productivity and milk quality. In an effort to improve product quality, and indirectly farm productivity, regulatory limits on somatic cell counts have been established by many of the major dairy producing countries. The purpose of this paper was to assess the impact of regulations on bulk milk somatic cell counts in Ontario and to assist producers in meeting regulatory limits through development of prediction models. Through the use of a transfer function model, provincial SCC was found to have dropped by approximately 60,000 as a result of the reduction program. Limits of the regulatory program, seasonality and herd characteristics were found through time series cross-sectional models to have an impact on prediction of SCC at the farm level, but the major influence was historical SCC levels. PMID:8490807

  5. Dynamic regulation of erythropoiesis: A computer model of general applicability

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1979-01-01

    A mathematical model for the control of erythropoiesis was developed based on the balance between oxygen supply and demand at a renal oxygen detector which controls erythropoietin release and red cell production. Feedback regulation of tissue oxygen tension is accomplished by adjustments of hemoglobin levels resulting from the output of a renal-bone marrow controller. Special consideration was given to the determinants of tissue oxygenation including evaluation of the influence of blood flow, capillary diffusivity, oxygen uptake and oxygen-hemoglobin affinity. A theoretical analysis of the overall control system is presented. Computer simulations of altitude hypoxia, red cell infusion hyperoxia, and homolytic anemia demonstrate validity of the model for general human application in health and disease.

  6. Dynamic regulation of macroautophagy by distinctive, ubiquitin-like proteins

    PubMed Central

    Klionsky, Daniel J.; Schulman, Brenda A.

    2014-01-01

    Autophagy complements the ubiquitin-proteasome system in mediating protein turnover. Whereas the proteasome degrades individual proteins modified with ubiquitin chains, autophagy degrades many proteins and organelles en masse. Macromolecules destined for autophagic degradation are “selected” through sequestration within a specialized double-membrane compartment termed the “phagophore”, the precursor to an “autophagosome”, and then hydrolyzed in a lysosome/vacuole-dependent manner. Notably, a pair of distinctive ubiquitin-like proteins (UBLs), Atg8 and Atg12, regulate degradation by autophagy in unique ways, by controlling autophagosome biogenesis and recruitment of specific cargos during selective autophagy. Here we review structural mechanisms underlying functions and conjugation of these UBLs that are specialized to provide interaction platforms linked to phagophore membranes. PMID:24699082

  7. Ibuprofen regulation of microtubule dynamics in cystic fibrosis epithelial cells.

    PubMed

    Rymut, Sharon M; Kampman, Claire M; Corey, Deborah A; Endres, Tori; Cotton, Calvin U; Kelley, Thomas J

    2016-08-01

    High-dose ibuprofen, an effective anti-inflammatory therapy for the treatment of cystic fibrosis (CF), has been shown to preserve lung function in a pediatric population. Despite its efficacy, few patients receive ibuprofen treatment due to potential renal and gastrointestinal toxicity. The mechanism of ibuprofen efficacy is also unclear. We have previously demonstrated that CF microtubules are slower to reform after depolymerization compared with respective wild-type controls. Slower microtubule dynamics in CF cells are responsible for impaired intracellular transport and are related to inflammatory signaling. Here, it is identified that high-dose ibuprofen treatment in both CF cell models and primary CF nasal epithelial cells restores microtubule reformation rates to wild-type levels, as well as induce extension of microtubules to the cell periphery. Ibuprofen treatment also restores microtubule-dependent intracellular transport monitored by measuring intracellular cholesterol transport. These effects are specific to ibuprofen as other cyclooxygenase inhibitors have no effect on these measures. Effects of ibuprofen are mimicked by stimulation of AMPK and blocked by the AMPK inhibitor compound C. We conclude that high-dose ibuprofen treatment enhances microtubule formation in CF cells likely through an AMPK-related pathway. These findings define a potential mechanism to explain the efficacy of ibuprofen therapy in CF. PMID:27317686

  8. Force regulated dynamics of RPA on a DNA fork

    PubMed Central

    Kemmerich, Felix E.; Daldrop, Peter; Pinto, Cosimo; Levikova, Maryna; Cejka, Petr; Seidel, Ralf

    2016-01-01

    Replication protein A (RPA) is a single-stranded DNA binding protein, involved in most aspects of eukaryotic DNA metabolism. Here, we study the behavior of RPA on a DNA substrate that mimics a replication fork. Using magnetic tweezers we show that both yeast and human RPA can open forked DNA when sufficient external tension is applied. In contrast, at low force, RPA becomes rapidly displaced by the rehybridization of the DNA fork. This process appears to be governed by the binding or the release of an RPA microdomain (toehold) of only few base-pairs length. This gives rise to an extremely rapid exchange dynamics of RPA at the fork. Fork rezipping rates reach up to hundreds of base-pairs per second, being orders of magnitude faster than RPA dissociation from ssDNA alone. Additionally, we show that RPA undergoes diffusive motion on ssDNA, such that it can be pushed over long distances by a rezipping fork. Generally the behavior of both human and yeast RPA homologs is very similar. However, in contrast to yeast RPA, the dissociation of human RPA from ssDNA is greatly reduced at low Mg2+ concentrations, such that human RPA can melt DNA in absence of force. PMID:27016742

  9. Microtubules regulate focal adhesion dynamics through MAP4K4.

    PubMed

    Yue, Jiping; Xie, Min; Gou, Xuewen; Lee, Philbert; Schneider, Michael D; Wu, Xiaoyang

    2014-12-01

    Disassembly of focal adhesions (FAs) allows cell retraction and integrin detachment from the extracellular matrix, processes critical for cell movement. Growth of microtubules (MTs) can promote FA turnover by serving as tracks to deliver proteins essential for FA disassembly. The molecular nature of this FA "disassembly factor," however, remains elusive. By quantitative proteomics, we identified mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) as an FA regulator that associates with MTs. Knockout of MAP4K4 stabilizes FAs and impairs cell migration. By exploring underlying mechanisms, we further show that MAP4K4 associates with ending binding 2 (EB2) and IQ motif and SEC7 domain-containing protein 1 (IQSEC1), a guanine nucleotide exchange factor specific for Arf6, whose activation promotes integrin internalization. Together, our findings provide critical insight into FA disassembly, suggesting that MTs can deliver MAP4K4 toward FAs through EB2, where MAP4K4 can, in turn, activate Arf6 via IQSEC1 and enhance FA dissolution. PMID:25490267

  10. Microtubules Regulate Focal Adhesion Dynamics through MAP4K4

    PubMed Central

    Yue, Jiping; Xie, Min; Gou, Xuewen; Lee, Philbert; Schneider, Michael D; Wu, Xiaoyang

    2014-01-01

    Disassembly of focal adhesions (FAs) allows cell retraction and integrin detachment from the ECM, processes critical for cell movement. Growth of MT (microtubule) can promote FA turnover by serving as tracks to deliver proteins essential for FA disassembly. The molecular nature of this FA “disassembly factor”, however, remains elusive. By quantitative proteomics, we identified MAP4K4 (mitogen-activated protein kinase kinase kinase kinase 4) as a FA regulator that associates with MTs. Conditional knockout (cKO) of MAP4K4 in skin stabilizes FAs and impairs epidermal migration. By exploring underlying mechanisms, we further show that MAP4K4 associates with EB2, a MT binding protein, and IQSEC1, a guanine nucleotide exchange factor (GEF) specific for Arf6, whose activation promotes integrin internalization. Together, our findings provide critical insights into FA disassembly, suggesting that MTs can deliver MAP4K4 toward FAs through EB2, where MAP4K4 can in turn activate Arf6 via IQSEC1 and enhance FA dissolution. PMID:25490267

  11. Effects of whole body heating on dynamic baroreflex regulation of heart rate in humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.; Zhang, R.; Levine, B. D.

    2000-01-01

    The purpose of this project was to identify whether dynamic baroreflex regulation of heart rate (HR) is altered during whole body heating. In 14 subjects, dynamic baroreflex regulation of HR was assessed using transfer function analysis. In normothermic and heat-stressed conditions, each subject breathed at a fixed rate (0. 25 Hz) while beat-by-beat HR and systolic blood pressure (SBP) were obtained. Whole body heating significantly increased sublingual temperature, HR, and forearm skin blood flow. Spectral analysis of HR and SBP revealed that the heat stress significantly reduced HR and SBP variability within the high-frequency range (0.2-0.3 Hz), reduced SBP variability within the low-frequency range (0.03-0.15 Hz), and increased the ratio of low- to high-frequency HR variability (all P < 0.01). Transfer function gain analysis showed that the heat stress reduced dynamic baroreflex regulation of HR within the high-frequency range (from 1.04 +/- 0.06 to 0.54 +/- 0.6 beats. min(-1). mmHg(-1); P < 0.001) without significantly affecting the gain in the low-frequency range (P = 0.63). These data suggest that whole body heating reduced high-frequency dynamic baroreflex regulation of HR associated with spontaneous changes in blood pressure. Reduced vagal baroreflex regulation of HR may contribute to reduced orthostatic tolerance known to occur in humans during heat stress.

  12. Experiment and Simulation of Dynamic Voltage Regulation in Multiple Distributed Energy Resources Systems

    SciTech Connect

    Xu, Yan; Li, Fangxing; Kueck, John D; Rizy, D Tom

    2007-01-01

    Distributed energy (DE) resources are power sources located near load centers and equipped with power electronics converters to interface with the grid, therefore it is feasible for DE to provide reactive power (along with active power) locally for dynamic voltage regulation. In this paper, a synchronous condenser and a microturbine with an inverter interface are implemented in parallel in a distribution system to regulate the local voltage. Developed voltage control schemes for the inverter and the synchronous condenser are presented. Experimental results show that both the inverter and the synchronous condenser can regulate the local voltage instantaneously although the dynamic response of the inverter is much faster than the synchronous condenser. In a system with multiple DEs performing local voltage regulation, the interaction between the DEs is studied. The simulation results show the relationship between the voltages in the system and the reactive power required for the voltage regulation. Also, integrated voltage regulation (multiple DEs performing voltage regulation) can increase the voltage regulation capability of DEs and reduce the capital and operating costs.

  13. Dynamic regulation of β1 subunit trafficking controls vascular contractility

    PubMed Central

    Leo, M. Dennis; Bannister, John P.; Narayanan, Damodaran; Nair, Anitha; Grubbs, Jordan E.; Gabrick, Kyle S.; Boop, Frederick A.; Jaggar, Jonathan H.

    2014-01-01

    Ion channels composed of pore-forming and auxiliary subunits control physiological functions in virtually all cell types. A conventional view is that channels assemble with their auxiliary subunits before anterograde plasma membrane trafficking of the protein complex. Whether the multisubunit composition of surface channels is fixed following protein synthesis or flexible and open to acute and, potentially, rapid modulation to control activity and cellular excitability is unclear. Arterial smooth muscle cells (myocytes) express large-conductance Ca2+-activated potassium (BK) channel α and auxiliary β1 subunits that are functionally significant modulators of arterial contractility. Here, we show that native BKα subunits are primarily (∼95%) plasma membrane-localized in human and rat arterial myocytes. In contrast, only a small fraction (∼10%) of total β1 subunits are located at the cell surface. Immunofluorescence resonance energy transfer microscopy demonstrated that intracellular β1 subunits are stored within Rab11A-postive recycling endosomes. Nitric oxide (NO), acting via cGMP-dependent protein kinase, and cAMP-dependent pathways stimulated rapid (≤1 min) anterograde trafficking of β1 subunit-containing recycling endosomes, which increased surface β1 almost threefold. These β1 subunits associated with surface-resident BKα proteins, elevating channel Ca2+ sensitivity and activity. Our data also show that rapid β1 subunit anterograde trafficking is the primary mechanism by which NO activates myocyte BK channels and induces vasodilation. In summary, we show that rapid β1 subunit surface trafficking controls functional BK channel activity in arterial myocytes and vascular contractility. Conceivably, regulated auxiliary subunit trafficking may control ion channel activity in a wide variety of cell types. PMID:24464482

  14. NOUGHT MAY ENDURE BUT MUTABILITY*: SPLICEOSOME DYNAMICS AND THE REGULATION OF SPLICING

    PubMed Central

    Smith, Duncan J.; Query, Charles C.; Konarska, Maria M.

    2008-01-01

    SUMMARY The spliceosome is both compositionally and conformationally dynamic. Each transition along the splicing pathway presents an opportunity for progression, pausing or discard, allowing splice site choice to be regulated throughout both the assembly and catalytic phases of the reaction. PMID:18570869

  15. ABT737 enhances cholangiocarcinoma sensitivity to cisplatin through regulation of mitochondrial dynamics

    SciTech Connect

    Fan, Zhongqi; Yu, Huimei; Cui, Ni; Kong, Xianggui; Liu, Xiaomin; Chang, Yulei; Wu, Yao; Sun, Liankun; Wang, Guangyi

    2015-07-01

    Cholangiocarcinoma responses weakly to cisplatin. Mitochondrial dynamics participate in the response to various stresses, and mainly involve mitophagy and mitochondrial fusion and fission. Bcl-2 family proteins play critical roles in orchestrating mitochondrial dynamics, and are involved in the resistance to cisplatin. Here we reported that ABT737, combined with cisplatin, can promote cholangiocarcinoma cells to undergo apoptosis. We found that the combined treatment decreased the Mcl-1 pro-survival form and increased Bak. Cells undergoing cisplatin treatment showed hyperfused mitochondria, whereas fragmentation was dominant in the mitochondria of cells exposed to the combined treatment, with higher Fis1 levels, decreased Mfn2 and OPA1 levels, increased ratio of Drp1 60 kD to 80 kD form, and more Drp1 located on mitochondria. More p62 aggregates were observed in cells with fragmented mitochondria, and they gradually translocated to mitochondria. Mitophagy was induced by the combined treatment. Knockdown p62 decreased the Drp1 ratio, increased Tom20, and increased cell viability. Our data indicated that mitochondrial dynamics play an important role in the response of cholangiocarcinoma to cisplatin. ABT737 might enhance cholangiocarcinoma sensitivity to cisplatin through regulation of mitochondrial dynamics and the balance within Bcl-2 family proteins. Furthermore, p62 seems to be critical in the regulation of mitochondrial dynamics. - Highlights: • Cholangiocarcinoma may adapt to cisplatin through mitochondrial fusion. • ABT737 sensitizes cholangiocarcinoma to cisplatin by promoting fission and mitophagy. • p62 might participate in the regulation of mitochondrial fission and mitophagy.

  16. NudC regulates actin dynamics and ciliogenesis by stabilizing cofilin 1.

    PubMed

    Zhang, Cheng; Zhang, Wen; Lu, Yi; Yan, Xiaoyi; Yan, Xiumin; Zhu, Xueliang; Liu, Wei; Yang, Yuehong; Zhou, Tianhua

    2016-02-01

    Emerging data indicate that actin dynamics is associated with ciliogenesis. However, the underlying mechanism remains unclear. Here we find that nuclear distribution gene C (NudC), an Hsp90 co-chaperone, is required for actin organization and dynamics. Depletion of NudC promotes cilia elongation and increases the percentage of ciliated cells. Further results show that NudC binds to and stabilizes cofilin 1, a key regulator of actin dynamics. Knockdown of cofilin 1 also facilitates ciliogenesis. Moreover, depletion of either NudC or cofilin 1 causes similar ciliary defects in zebrafish, including curved body, pericardial edema and defective left-right asymmetry. Ectopic expression of cofilin 1 significantly reverses the phenotypes induced by NudC depletion in both cultured cells and zebrafish. Thus, our data suggest that NudC regulates actin cytoskeleton and ciliogenesis by stabilizing cofilin 1. PMID:26704451

  17. DNA methylation dynamics in plants and mammals: overview of regulation and dysregulation.

    PubMed

    Elhamamsy, Amr Rafat

    2016-07-01

    DNA methylation is a major epigenetic marking mechanism regulating various biological functions in mammals and plant. The crucial role of DNA methylation has been observed in cellular differentiation, embryogenesis, genomic imprinting and X-chromosome inactivation. Furthermore, DNA methylation takes part in disease susceptibility, responses to environmental stimuli and the biodiversity of natural populations. In plant, different types of environmental stress have demonstrated the ability to alter the archetype of DNA methylation through the genome, change gene expression and confer a mechanism of adaptation. DNA methylation dynamics are regulated by three processes de novo DNA methylation, methylation maintenance and DNA demethylation. These processes have their similarities and differences between mammals and plants. Furthermore, the dysregulation of DNA methylation dynamics represents one of the primary molecular mechanisms of developing diseases in mammals. This review discusses the regulation and dysregulation of DNA methylation in plants and mammals. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27003927

  18. Length regulation of mechanosensitive stereocilia depends on very slow actin dynamics and filament-severing proteins.

    PubMed

    Narayanan, Praveena; Chatterton, Paul; Ikeda, Akihiro; Ikeda, Sakae; Corey, David P; Ervasti, James M; Perrin, Benjamin J

    2015-01-01

    Auditory sensory hair cells depend on stereocilia with precisely regulated lengths to detect sound. Since stereocilia are primarily composed of crosslinked, parallel actin filaments, regulated actin dynamics are essential for controlling stereocilia length. Here we assessed stereocilia actin turnover by monitoring incorporation of inducibly expressed β-actin-GFP in adult mouse hair cells in vivo and by directly measuring β-actin-GFP turnover in explants. Stereocilia actin incorporation is remarkably slow and restricted to filament barbed ends in a small tip compartment, with minimal accumulation in the rest of the actin core. Shorter rows of stereocilia, which have mechanically gated ion channels, show more variable actin turnover than the tallest stereocilia, which lack channels. Finally, the proteins ADF and AIP1, which both mediate actin filament severing, contribute to stereocilia length maintenance. Altogether, the data support a model whereby stereocilia actin cores are largely static, with dynamic regulation at the tips to maintain a critical length. PMID:25897778

  19. Nuclear deformability and telomere dynamics are regulated by cell geometric constraints

    PubMed Central

    Makhija, Ekta; Jokhun, D. S.; Shivashankar, G. V.

    2016-01-01

    Forces generated by the cytoskeleton can be transmitted to the nucleus and chromatin via physical links on the nuclear envelope and the lamin meshwork. Although the role of these active forces in modulating prestressed nuclear morphology has been well studied, the effect on nuclear and chromatin dynamics remains to be explored. To understand the regulation of nuclear deformability by these active forces, we created different cytoskeletal states in mouse fibroblasts using micropatterned substrates. We observed that constrained and isotropic cells, which lack long actin stress fibers, have more deformable nuclei than elongated and polarized cells. This nuclear deformability altered in response to actin, myosin, formin perturbations, or a transcriptional down-regulation of lamin A/C levels in the constrained and isotropic geometry. Furthermore, to probe the effect of active cytoskeletal forces on chromatin dynamics, we tracked the spatiotemporal dynamics of heterochromatin foci and telomeres. We observed increased dynamics and decreased correlation of the heterochromatin foci and telomere trajectories in constrained and isotropic cell geometry. The observed enhanced dynamics upon treatment with actin depolymerizing reagents in elongated and polarized geometry were regained once the reagent was washed off, suggesting an inherent structural memory in chromatin organization. We conclude that active forces from the cytoskeleton and rigidity from lamin A/C nucleoskeleton can together regulate nuclear and chromatin dynamics. Because chromatin remodeling is a necessary step in transcription control and its memory, genome integrity, and cellular deformability during migration, our results highlight the importance of cell geometric constraints as critical regulators in cell behavior. PMID:26699462

  20. Rational Coupled Dynamics Network Manipulation Rescues Disease-Relevant Mutant Cystic Fibrosis Transmembrane Conductance Regulator

    PubMed Central

    Proctor, Elizabeth A.; Kota, Pradeep; Aleksandrov, Andrei A.; He, Lihua; Riordan, John R.; Dokholyan, Nikolay V.

    2014-01-01

    Many cellular functions necessary for life are tightly regulated by protein allosteric conformational change, and correlated dynamics between protein regions has been found to contribute to the function of proteins not previously considered allosteric. The ability to map and control such dynamic coupling would thus create opportunities for the extension of current therapeutic design strategy. Here, we present an approach to determine the networks of residues involved in the transfer of correlated motion across a protein, and apply our approach to rescue disease-causative mutant cystic fibrosis transmembrane regulator (CFTR) ion channels, ΔF508 and ΔI507, which together constitute over 90% of cystic fibrosis cases. We show that these mutations perturb dynamic coupling within the first nucleotide-binding domain (NBD1), and uncover a critical residue that mediates trans-domain coupled dynamics. By rationally designing a mutation to this residue, we improve aberrant dynamics of mutant CFTR as well as enhance surface expression and function of both mutants, demonstrating the rescue of a disease mutation by rational correction of aberrant protein dynamics. PMID:25685315

  1. Motivational dynamics of eating regulation: a self-determination theory perspective

    PubMed Central

    2012-01-01

    Within Western society, many people have difficulties adequately regulating their eating behaviors and weight. Although the literature on eating regulation is vast, little attention has been given to motivational dynamics involved in eating regulation. Grounded in Self-Determination Theory (SDT), the present contribution aims to provide a motivational perspective on eating regulation. The role of satisfaction and thwarting of the basic psychological needs for autonomy, competence, and relatedness is introduced as a mechanism to (a) explain the etiology of body image concerns and disordered eating and (b) understand the optimal regulation of ongoing eating behavior for healthy weight maintenance. An overview of empirical studies on these two research lines is provided. In a final section, the potential relevance and value of SDT in relation to prevailing theoretical models in the domain of eating regulation is discussed. Although research on SDT in the domain of eating regulation is still in its early stages and more research is clearly needed, this review suggests that the SDT represents a promising framework to more thoroughly study and understand the motivational processes involved in eating regulation and associated problems. PMID:22385782

  2. Dynamic Power Flow Controller: Compact Dynamic Phase Angle Regulators for Transmission Power Routing

    SciTech Connect

    2012-01-03

    GENI Project: Varentec is developing compact, low-cost transmission power controllers with fractional power rating for controlling power flow on transmission networks. The technology will enhance grid operations through improved use of current assets and by dramatically reducing the number of transmission lines that have to be built to meet increasing contributions of renewable energy sources like wind and solar. The proposed transmission controllers would allow for the dynamic control of voltage and power flow, improving the grid’s ability to dispatch power in real time to the places where it is most needed. The controllers would work as fail-safe devices whereby the grid would be restored to its present operating state in the event of a controller malfunction instead of failing outright. The ability to affordably and dynamically control power flow with adequate fail-safe switchgear could open up new competitive energy markets which are not possible under the current regulatory structure and technology base.

  3. Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling

    PubMed Central

    Zschätzsch, Marlen; Oliva, Carlos; Langen, Marion; De Geest, Natalie; Özel, Mehmet Neset; Williamson, W Ryan; Lemon, William C; Soldano, Alessia; Munck, Sebastian; Hiesinger, P Robin; Sanchez-Soriano, Natalia; Hassan, Bassem A

    2014-01-01

    Axonal branching allows a neuron to connect to several targets, increasing neuronal circuit complexity. While axonal branching is well described, the mechanisms that control it remain largely unknown. We find that in the Drosophila CNS branches develop through a process of excessive growth followed by pruning. In vivo high-resolution live imaging of developing brains as well as loss and gain of function experiments show that activation of Epidermal Growth Factor Receptor (EGFR) is necessary for branch dynamics and the final branching pattern. Live imaging also reveals that intrinsic asymmetry in EGFR localization regulates the balance between dynamic and static filopodia. Elimination of signaling asymmetry by either loss or gain of EGFR function results in reduced dynamics leading to excessive branch formation. In summary, we propose that the dynamic process of axon branch development is mediated by differential local distribution of signaling receptors. DOI: http://dx.doi.org/10.7554/eLife.01699.001 PMID:24755286

  4. Model-driven mapping of transcriptional networks reveals the circuitry and dynamics of virulence regulation.

    PubMed

    Maier, Ezekiel J; Haynes, Brian C; Gish, Stacey R; Wang, Zhuo A; Skowyra, Michael L; Marulli, Alyssa L; Doering, Tamara L; Brent, Michael R

    2015-05-01

    Key steps in understanding a biological process include identifying genes that are involved and determining how they are regulated. We developed a novel method for identifying transcription factors (TFs) involved in a specific process and used it to map regulation of the key virulence factor of a deadly fungus-its capsule. The map, built from expression profiles of 41 TF mutants, includes 20 TFs not previously known to regulate virulence attributes. It also reveals a hierarchy comprising executive, midlevel, and "foreman" TFs. When grouped by temporal expression pattern, these TFs explain much of the transcriptional dynamics of capsule induction. Phenotypic analysis of TF deletion mutants revealed complex relationships among virulence factors and virulence in mice. These resources and analyses provide the first integrated, systems-level view of capsule regulation and biosynthesis. Our methods dramatically improve the efficiency with which transcriptional networks can be analyzed, making genomic approaches accessible to laboratories focused on specific physiological processes. PMID:25644834

  5. Model-driven mapping of transcriptional networks reveals the circuitry and dynamics of virulence regulation

    PubMed Central

    Maier, Ezekiel J.; Haynes, Brian C.; Gish, Stacey R.; Wang, Zhuo A.; Skowyra, Michael L.; Marulli, Alyssa L.; Doering, Tamara L.; Brent, Michael R.

    2015-01-01

    Key steps in understanding a biological process include identifying genes that are involved and determining how they are regulated. We developed a novel method for identifying transcription factors (TFs) involved in a specific process and used it to map regulation of the key virulence factor of a deadly fungus—its capsule. The map, built from expression profiles of 41 TF mutants, includes 20 TFs not previously known to regulate virulence attributes. It also reveals a hierarchy comprising executive, midlevel, and “foreman” TFs. When grouped by temporal expression pattern, these TFs explain much of the transcriptional dynamics of capsule induction. Phenotypic analysis of TF deletion mutants revealed complex relationships among virulence factors and virulence in mice. These resources and analyses provide the first integrated, systems-level view of capsule regulation and biosynthesis. Our methods dramatically improve the efficiency with which transcriptional networks can be analyzed, making genomic approaches accessible to laboratories focused on specific physiological processes. PMID:25644834

  6. Aurora A orchestrates entosis by regulating a dynamic MCAK–TIP150 interaction

    PubMed Central

    Xia, Peng; Zhou, Jinhua; Song, Xiaoyu; Wu, Bing; Liu, Xing; Li, Di; Zhang, Shuyuan; Wang, Zhikai; Yu, Huijuan; Ward, Tarsha; Zhang, Jiancun; Li, Yinmei; Wang, Xiaoning; Chen, Yong; Guo, Zhen; Yao, Xuebiao

    2014-01-01

    Entosis, a cell-in-cell process, has been implicated in the formation of aneuploidy associated with an aberrant cell division control. Microtubule plus-end-tracking protein TIP150 facilitates the loading of MCAK onto the microtubule plus ends and orchestrates microtubule plus-end dynamics during cell division. Here we show that TIP150 cooperates with MCAK to govern entosis via a regulatory circuitry that involves Aurora A-mediated phosphorylation of MCAK. Our biochemical analyses show that MCAK forms an intra-molecular association, which is essential for TIP150 binding. Interestingly, Aurora A-mediated phosphorylation of MCAK modulates its intra-molecular association, which perturbs the MCAK–TIP150 interaction in vitro and inhibits entosis in vivo. To probe if MCAK–TIP150 interaction regulates microtubule plasticity to affect the mechanical properties of cells during entosis, we used an optical trap to measure the mechanical rigidity of live MCF7 cells. We find that the MCAK cooperates with TIP150 to promote microtubule dynamics and modulate the mechanical rigidity of the cells during entosis. Our results show that a dynamic interaction of MCAK–TIP150 orchestrated by Aurora A-mediated phosphorylation governs entosis via regulating microtubule plus-end dynamics and cell rigidity. These data reveal a previously unknown mechanism of Aurora A regulation in the control of microtubule plasticity during cell-in-cell processes. PMID:24847103

  7. Clathrin and Membrane Microdomains Cooperatively Regulate RbohD Dynamics and Activity in Arabidopsis.

    PubMed

    Hao, Huaiqing; Fan, Lusheng; Chen, Tong; Li, Ruili; Li, Xiaojuan; He, Qihua; Botella, Miguel A; Lin, Jinxing

    2014-04-22

    Arabidopsis thaliana respiratory burst oxidase homolog D (RbohD) functions as an essential regulator of reactive oxygen species (ROS). However, our understanding of the regulation of RbohD remains limited. By variable-angle total internal reflection fluorescence microscopy, we demonstrate that green fluorescent protein (GFP)-RbohD organizes into dynamic spots at the plasma membrane. These RbohD spots have heterogeneous diffusion coefficients and oligomerization states, as measured by photobleaching techniques. Stimulation with ionomycin and calyculin A, which activate the ROS-producing enzymatic activity of RbohD, increases the diffusion and oligomerization of RbohD. Abscisic acid and flg22 treatments also increase the diffusion coefficient and clustering of GFP-RbohD. Single-particle analysis in clathrin heavy chain2 mutants and a Flotillin1 artificial microRNA line demonstrated that clathrin- and microdomain-dependent endocytic pathways cooperatively regulate RbohD dynamics. Under salt stress, GFP-RbohD assembles into clusters and then internalizes into the cytoplasm. Dual-color fluorescence cross-correlation spectroscopy analysis further showed that salt stress stimulates RbohD endocytosis via membrane microdomains. We demonstrate that microdomain-associated RbohD spots diffuse at the membrane with high heterogeneity, and these dynamics closely relate to RbohD activity. Our results provide insight into the regulation of RbohD activity by clustering and endocytosis, which facilitate the activation of redox signaling pathways. PMID:24755455

  8. Mitochondrial Dynamics Impacts Stem Cell Identity and Fate Decisions by Regulating a Nuclear Transcriptional Program.

    PubMed

    Khacho, Mireille; Clark, Alysen; Svoboda, Devon S; Azzi, Joelle; MacLaurin, Jason G; Meghaizel, Cynthia; Sesaki, Hiromi; Lagace, Diane C; Germain, Marc; Harper, Mary-Ellen; Park, David S; Slack, Ruth S

    2016-08-01

    Regulated mechanisms of stem cell maintenance are key to preventing stem cell depletion and aging. While mitochondrial morphology plays a fundamental role in tissue development and homeostasis, its role in stem cells remains unknown. Here, we uncover that mitochondrial dynamics regulates stem cell identity, self-renewal, and fate decisions by orchestrating a transcriptional program. Manipulation of mitochondrial structure, through OPA1 or MFN1/2 deletion, impaired neural stem cell (NSC) self-renewal, with consequent age-dependent depletion, neurogenesis defects, and cognitive impairments. Gene expression profiling revealed ectopic expression of the Notch self-renewal inhibitor Botch and premature induction of transcription factors that promote differentiation. Changes in mitochondrial dynamics regulate stem cell fate decisions by driving a physiological reactive oxygen species (ROS)-mediated process, which triggers a dual program to suppress self-renewal and promote differentiation via NRF2-mediated retrograde signaling. These findings reveal mitochondrial dynamics as an upstream regulator of essential mechanisms governing stem cell self-renewal and fate decisions through transcriptional programming. PMID:27237737

  9. Dynamic regulation of partner abundance mediates response of reef coral symbioses to environmental change.

    PubMed

    Cunning, R; Vaughan, N; Gillette, P; Capo, T R; Matté, J L; Baker, A C

    2015-05-01

    Regulating partner abunclance may allow symmotic organisms to mediate interaction outcomes, facilitating adaptive responses to environmental change. To explore the capacity for-adaptive regulation in an ecologically important endosymbiosis, we studied the population dynamics of symbiotic algae in reef-building corals under different abiotic contexts. We found high natural variability in symbiont abundance in corals across reefs, but this variability converged to different symbiont-specific abundances when colonies were maintained under constant conditions. When conditions changed seasonally, symbiont abundance readjusted to new equilibria. We explain these patterns using an a priori model of symbiotic costs and benefits to the coral host, which shows that the observed changes in symbiont abundance are consistent with the maximization of interaction benefit under different environmental conditions. These results indicate that, while regulating symbiont abundance helps hosts sustain maximum benefit in a dynamic environment, spatiotemporal variation in abiotic factors creates a broad range of symbiont abundances (and interaction outcomes) among corals that may account for observed natural variability in performance (e.g., growth rate) and stress tolerance (e.g., bleaching susceptibility). This cost or benefit framework provides a new perspective on the dynamic regulation of reef coral symbioses and illustrates that the dependence of interaction outcomes on biotic and abiotic contexts may be important in understanding how diverse mutualisms respond to environmental change. PMID:26236853

  10. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development

    PubMed Central

    2014-01-01

    Background Development of eukaryotic organisms is controlled by transcription factors that trigger specific and global changes in gene expression programs. In plants, MADS-domain transcription factors act as master regulators of developmental switches and organ specification. However, the mechanisms by which these factors dynamically regulate the expression of their target genes at different developmental stages are still poorly understood. Results We characterized the relationship of chromatin accessibility, gene expression, and DNA binding of two MADS-domain proteins at different stages of Arabidopsis flower development. Dynamic changes in APETALA1 and SEPALLATA3 DNA binding correlated with changes in gene expression, and many of the target genes could be associated with the developmental stage in which they are transcriptionally controlled. We also observe dynamic changes in chromatin accessibility during flower development. Remarkably, DNA binding of APETALA1 and SEPALLATA3 is largely independent of the accessibility status of their binding regions and it can precede increases in DNA accessibility. These results suggest that APETALA1 and SEPALLATA3 may modulate chromatin accessibility, thereby facilitating access of other transcriptional regulators to their target genes. Conclusions Our findings indicate that different homeotic factors regulate partly overlapping, yet also distinctive sets of target genes in a partly stage-specific fashion. By combining the information from DNA-binding and gene expression data, we are able to propose models of stage-specific regulatory interactions, thereby addressing dynamics of regulatory networks throughout flower development. Furthermore, MADS-domain TFs may regulate gene expression by alternative strategies, one of which is modulation of chromatin accessibility. PMID:24581456

  11. TCTP regulates spindle microtubule dynamics by stabilizing polar microtubules during mouse oocyte meiosis.

    PubMed

    Jeon, Hyuk-Joon; You, Seung Yeop; Park, Yong Seok; Chang, Jong Wook; Kim, Jae-Sung; Oh, Jeong Su

    2016-04-01

    Dynamic changes in spindle structure and function are essential for maintaining genomic integrity during the cell cycle. Spindle dynamics are highly dependent on several microtubule-associated proteins that coordinate the dynamic behavior of microtubules, including microtubule assembly, stability and organization. Here, we show that translationally controlled tumor protein (TCTP) is a novel microtubule-associated protein that regulates spindle dynamics during meiotic maturation. TCTP was expressed and widely distributed in the cytoplasm with strong enrichment at the spindle microtubules during meiosis. TCTP was found to be phosphorylated during meiotic maturation, and was exclusively localized to the spindle poles. Knockdown of TCTP impaired spindle organization without affecting chromosome alignment. These spindle defects were mostly due to the destabilization of the polar microtubules. However, the stability of kinetochore microtubules attached to chromosomes was not affected by TCTP knockdown. Overexpression of a nonphosphorylable mutant of TCTP disturbed meiotic maturation, stabilizing the spindle microtubules. In addition, Plk1 was decreased by TCTP knockdown. Taken together, our results demonstrate that TCTP is a microtubule-associating protein required to regulate spindle microtubule dynamics during meiotic maturation in mouse oocytes. PMID:26802898

  12. Dynamic Regulation of Integrin α6β4 During Angiogenesis: Potential Implications for Pathogenic Wound Healing

    PubMed Central

    Desai, Diana; Singh, Purva; Van De Water, Livingston; LaFlamme, Susan E.

    2013-01-01

    Objective Angiogenesis is an essential component of normal cutaneous wound repair, but is altered in pathogenic forms of wound healing, such as chronic wounds and fibrosis. We previously reported that endothelial expression of integrin α6β4 is developmentally regulated, with α6β4 expression correlating with tissue maturation and further showed that endothelial α6β4 is downregulated in explant angiogenesis assays. These data support the hypothesis that dynamic regulation of α6β4 may play an important role during new vessel formation in healing wounds. Approach To test this hypothesis, we examined the endothelial expression of α6β4 using a murine model of cutaneous wound healing and in vitro cultures of primary human dermal microvascular endothelial cells (HDMECs). Results Expression of α6β4 is downregulated during early stages of wound healing; angiogenic vessels in day 7 wounds do not express α6β4. Endothelial expression of α6β4 is resumed in day 14 wounds. Moreover, explanted HDMECs do not express α6β4, but expression is induced by treatment with histone deacetylase inhibitors. Innovation We provide in vivo data supporting a role for the dynamic regulation of α6β4 during vessel formation and remodeling during cutaneous wound repair and in vitro findings that suggest endothelial β4 expression is regulated transcriptionally, providing an important foundation for future studies to understand the transcriptional mechanisms involved in endothelial cell maturation during normal wound repair. Conclusion Our data indicate that α6β4 is dynamically regulated during angiogenesis and vessel maturation and suggest that disruption of this regulation may contribute to defective angiogenesis associated with diabetic wounds or cutaneous fibrosis. PMID:24527356

  13. Cooperative linear output regulation for networked systems by dynamic measurement output feedback

    NASA Astrophysics Data System (ADS)

    Li, Shaobao; Feng, Gang; Wang, Juan; Luo, Xiaoyuan; Guan, Xinping

    2016-04-01

    This paper investigates the cooperative linear output regulation problem of a class of heterogeneous networked systems with a common reference input but with different disturbances for individual nodes. A novel distributed control law is presented based on dynamic measurement output feedback. It is shown that the overall networked closed-loop control system is asymptotically stable and the output regulation errors asymptotically approach zero as time goes to infinity under a sufficient and necessary condition. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed control law.

  14. Minireview: Regulation of Gap Junction Dynamics by Nuclear Hormone Receptors and Their Ligands

    PubMed Central

    Kapadia, Bhumika J.

    2012-01-01

    Gap junctions are plasma membrane channels comprising connexin proteins that mediate intercellular permeability and communication. The presence, composition, and function of gap junctions can be regulated by diverse sets of physiological signals. Evidence from many hormone-responsive tissues has shown that connexin expression, modification, stability, and localization can be targeted by nuclear hormone receptors and their ligands through both transcriptional and nontranscriptional mechanisms. The focus of this review is to discuss molecular, cellular, and physiological studies that directly link receptor- and ligand-triggered signaling pathways to the regulation of gap junction dynamics. PMID:22935924

  15. Dynamic Transcriptional Regulation of Fis in Salmonella During the Exponential Phase.

    PubMed

    Wang, Hui; Wang, Lei; Li, Ping; Hu, Yilang; Zhang, Wei; Tang, Bo

    2015-12-01

    Fis is one of the most important global regulators and has attracted extensive research attention. Many studies have focused on comparing the Fis global regulatory networks for exploring Fis function during different growth stages, such as the exponential and stationary stages. Although the Fis protein in bacteria is mainly expressed in the exponential phase, the dynamic transcriptional regulation of Fis during the exponential phase remains poorly understood. To address this question, we used RNA-seq technology to identify the Fis-regulated genes in the S. enterica serovar Typhimurium during the early exponential phase, and qRT-PCR was performed to validate the transcriptional data. A total of 1495 Fis-regulated genes were successfully identified, including 987 Fis-repressed genes and 508 Fis-activated genes. Comparing the results of this study with those of our previous study, we found that the transcriptional regulation of Fis was diverse during the early- and mid-exponential phases. The results also showed that the strong positive regulation of Fis on Salmonella pathogenicity island genes in the mid-exponential phase transitioned into insignificant effect in the early exponential phase. To validate these results, we performed a cell infection assay and found that Δfis only exhibited a 1.49-fold decreased capacity compared with the LT2 wild-type strain, indicating a large difference from the 6.31-fold decrease observed in the mid-exponential phase. Our results provide strong evidence for a need to thoroughly understand the dynamic transcriptional regulation of Fis in Salmonella during the exponential phase. PMID:26359211

  16. Effects of automobile steering characteristics on driver vehicle system dynamics in regulation tasks

    NASA Technical Reports Server (NTRS)

    Mcruer, D. T.; Klein, R.

    1975-01-01

    A regulation task which subjected the automobile to a random gust disturbance which is countered by driver control action is used to study the effects of various automobile steering characteristics on the driver/vehicle system. The experiments used a variable stability automobile specially configured to permit insertion of the simulated gust disturbance and the measurement of the driver/vehicle system characteristics. Driver/vehicle system dynamics were measured and interpreted as an effective open loop system describing function. Objective measures of system bandwidth, stability, and time delays were deduced and compared. These objective measures were supplemented by driver ratings. A tentative optimum range of vehicle dynamics for the directional regulation task was established.

  17. Differential dopaminergic regulation of inwardly rectifying potassium channel mediated subthreshold dynamics in striatal medium spiny neurons.

    PubMed

    Zhao, Bo; Zhu, Junling; Dai, Dongqing; Xing, Junling; He, Jiahou; Fu, Zhanyan; Zhang, Lei; Li, Zhuyi; Wang, Wenting

    2016-08-01

    The dorsal striatum plays a key role in motor control and cognitive processes. Proper functioning of the striatum relies on the fine dynamic balance between the direct pathway projection medium spiny neurons (MSNs) that express D1 dopamine receptor (D1 MSNs) and indirect pathway projection MSNs that express D2 dopamine receptor (D2 MSNs). The inwardly rectifying K(+) channels (Kir), which express on both D1 and D2 MSNs, participate in the subthreshold dynamics including the membrane resonance and dendritic integration. However, it remains unclear whether dopamine differentially regulates Kir mediated subthreshold dynamics in two subtypes MSNs. Using transgenic mice that express either tdTomato in D1 MSNs or eGFP in D2 MSNs, we explored the Kir mediated subthreshold dynamics in D1 or D2 MSNs with whole cell patch clamp recording in acute brain slices. We found that D1 receptor agonist increased the Kir current while D2 receptor activation decreased the Kir conductance. The dopamine regulation of the Kir enhanced the resonant frequency and reduced the resonant impedance of D1 MSNs. The converse is ture for D2 MSNs. It also caused an opposing effect on dendritic integration between D1 and D2 MSNs, which can promote stability of the two pathways. The D1 receptor activation modulated Kir through cAMP-PKA signaling, whereas the D2 receptor modulated Kir through PLC-PKC signaling. Our findings demonstrated the differential dopaminergic regulation role of Kir, which mediates distinct subthreshold dynamics, and thus, contributes to the role of dopamine in fine tuning the balance of the striatal direct and indirect pathway activities. PMID:27018450

  18. A voltage regulator system with dynamic bandwidth boosting for passive UHF RFID transponders

    NASA Astrophysics Data System (ADS)

    Jinpeng, Shen; Xin'an, Wang; Shan, Liu; Shoucheng, Li; Zhengkun, Ruan

    2013-10-01

    This paper presents a voltage regulator system for passive UHF RFID transponders, which contains a rectifier, a limiter, and a regulator. The rectifier achieves power by rectifying the incoming RF energy. Due to the huge variation of the rectified voltage, a limiter at the rectifier output is used to clamp the rectified voltage. In this paper, the design of a limiter circuit is discussed in detail, which can provide a stable limiting voltage with low sensitivity to temperature variation and process dispersion. The key aspect of the voltage regulator system is the dynamic bandwidth boosting in the regulator. By sensing the excess current that is bypassed in the limiter during periods of excess energy, the bias current as well as the bandwidth of the regulator are increased, the output supply voltage can recover quickly from line transients during the periods of no RF energy to a full blast of RF energy. This voltage regulator system is implemented in a 0.18 μm CMOS process.

  19. Adult plant development in triticale (× triticosecale wittmack) is controlled by dynamic genetic patterns of regulation.

    PubMed

    Würschum, Tobias; Liu, Wenxin; Alheit, Katharina V; Tucker, Matthew R; Gowda, Manje; Weissmann, Elmar A; Hahn, Volker; Maurer, Hans Peter

    2014-09-01

    Many biologically and agronomically important traits are dynamic and show temporal variation. In this study, we used triticale (× Triticosecale Wittmack) as a model crop to assess the genetic dynamics underlying phenotypic plasticity of adult plant development. To this end, a large mapping population with 647 doubled haploid lines derived from four partially connected families from crosses among six parents was scored for developmental stage at three different time points. Using genome-wide association mapping, we identified main effect and epistatic quantitative trait loci (QTL) at all three time points. Interestingly, some of these QTL were identified at all time points, whereas others appear to only contribute to the genetic architecture at certain developmental stages. Our results illustrate the temporal contribution of QTL to the genetic control of adult plant development and more generally, the temporal genetic patterns of regulation that underlie dynamic traits. PMID:25237110

  20. Intrinsic Enzyme Dynamics in the Unbound State and Relation to Allosteric Regulation

    PubMed Central

    Bahar, Ivet; Chennubhotla, Chakra; Tobi, Dror

    2007-01-01

    In recent years, there has been a surge in the number of studies exploring the relationship between proteins’ equilibrium dynamics and structural changes involved in function. An emerging concept, supported by both theory and experiments, is that under native state conditions proteins have an intrinsic ability to sample conformations that meet functional requirements. A typical example is the ability of enzymes to sample open and closed forms, irrespective of substrate, succeeded by the stabilization of one form (usually closed) upon substrate binding. This ability is structure-encoded, and plays a key role in facilitating allosteric regulation, which suggests complementing the sequence-encodes-structure paradigm of protein science by structure-encodes-dynamics-encodes-function. The emerging connection implies an evolutionary role in selecting/conserving structures based on their ability to achieve functional dynamics, and in turn, selecting sequences that fold into such ‘apt’ structures. PMID:18024008

  1. Changes in Dynamics upon Oligomerization Regulate Substrate Binding and Allostery in Amino Acid Kinase Family Members

    PubMed Central

    Marcos, Enrique; Crehuet, Ramon; Bahar, Ivet

    2011-01-01

    Oligomerization is a functional requirement for many proteins. The interfacial interactions and the overall packing geometry of the individual monomers are viewed as important determinants of the thermodynamic stability and allosteric regulation of oligomers. The present study focuses on the role of the interfacial interactions and overall contact topology in the dynamic features acquired in the oligomeric state. To this aim, the collective dynamics of enzymes belonging to the amino acid kinase family both in dimeric and hexameric forms are examined by means of an elastic network model, and the softest collective motions (i.e., lowest frequency or global modes of motions) favored by the overall architecture are analyzed. Notably, the lowest-frequency modes accessible to the individual subunits in the absence of multimerization are conserved to a large extent in the oligomer, suggesting that the oligomer takes advantage of the intrinsic dynamics of the individual monomers. At the same time, oligomerization stiffens the interfacial regions of the monomers and confers new cooperative modes that exploit the rigid-body translational and rotational degrees of freedom of the intact monomers. The present study sheds light on the mechanism of cooperative inhibition of hexameric N-acetyl-L-glutamate kinase by arginine and on the allosteric regulation of UMP kinases. It also highlights the significance of the particular quaternary design in selectively determining the oligomer dynamics congruent with required ligand-binding and allosteric activities. PMID:21980279

  2. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis

    PubMed Central

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.; Mohandas, Narla; Pachter, Lior; Conboy, John G.

    2016-01-01

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentally-dynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ∼50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclear-localized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. We conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease. PMID:26531823

  3. Evidence for Dynamic Network Regulation of Drosophila Photoreceptor Function from Mutants Lacking the Neurotransmitter Histamine.

    PubMed

    Dau, An; Friederich, Uwe; Dongre, Sidhartha; Li, Xiaofeng; Bollepalli, Murali K; Hardie, Roger C; Juusola, Mikko

    2016-01-01

    Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1-R6 photoreceptors to those of the hdc (JK910) mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdc (JK910) photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdc (JK910) photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdc (JK910) R1-R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdc (JK910) mutant also restored their normal phasic feedback modulation to R1-R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons. PMID:27047343

  4. Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome

    PubMed Central

    Oliveira, Ana Paula; Dimopoulos, Sotiris; Busetto, Alberto Giovanni; Christen, Stefan; Dechant, Reinhard; Falter, Laura; Haghir Chehreghani, Morteza; Jozefczuk, Szymon; Ludwig, Christina; Rudroff, Florian; Schulz, Juliane Caroline; González, Asier; Soulard, Alexandre; Stracka, Daniele; Aebersold, Ruedi; Buhmann, Joachim M; Hall, Michael N; Peter, Matthias; Sauer, Uwe; Stelling, Jörg

    2015-01-01

    Cells react to nutritional cues in changing environments via the integrated action of signaling, transcriptional, and metabolic networks. Mechanistic insight into signaling processes is often complicated because ubiquitous feedback loops obscure causal relationships. Consequently, the endogenous inputs of many nutrient signaling pathways remain unknown. Recent advances for system-wide experimental data generation have facilitated the quantification of signaling systems, but the integration of multi-level dynamic data remains challenging. Here, we co-designed dynamic experiments and a probabilistic, model-based method to infer causal relationships between metabolism, signaling, and gene regulation. We analyzed the dynamic regulation of nitrogen metabolism by the target of rapamycin complex 1 (TORC1) pathway in budding yeast. Dynamic transcriptomic, proteomic, and metabolomic measurements along shifts in nitrogen quality yielded a consistent dataset that demonstrated extensive re-wiring of cellular networks during adaptation. Our inference method identified putative downstream targets of TORC1 and putative metabolic inputs of TORC1, including the hypothesized glutamine signal. The work provides a basis for further mechanistic studies of nitrogen metabolism and a general computational framework to study cellular processes. PMID:25888284

  5. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis.

    PubMed

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L; Mohandas, Narla; Pachter, Lior; Conboy, John G

    2016-01-29

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentally-dynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ∼50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclear-localized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. We conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease. PMID:26531823

  6. A dynamic-biased dual-loop-feedback CMOS LDO regulator with fast transient response

    NASA Astrophysics Data System (ADS)

    Han, Wang; Maomao, Sun

    2014-04-01

    This paper presents a low-dropout regulator (LDO) for portable applications with dual-loop feedback and a dynamic bias circuit. The dual-loop feedback structure is adopted to reduce the output voltage spike and the response time of the LDO. The dynamic bias circuit enhances the slew rate at the gate of the power transistor. In addition, an adaptive miller compensation technique is employed, from which a single pole system is realized and over a 59° phase margin is achieved under the full range of the load current. The proposed LDO has been implemented in a 0.6-μm CMOS process. From the experimental results, the regulator can operate with a minimum dropout voltage of 200 mV at a maximum 300 mA load and IQ of 113 μA. The line regulation and load regulation are improved to 0.1 mV/V and 3.4 μV/mA due to the sufficient loop gain provided by the dual feedback loops. Under a full range load current step, the voltage spikes and the recovery time of the proposed LDO is reduced to 97 mV and 0.142 μs respectively.

  7. Cellular context–mediated Akt dynamics regulates MAP kinase signaling thresholds during angiogenesis

    PubMed Central

    Hellesøy, Monica; Lorens, James B.

    2015-01-01

    The formation of new blood vessels by sprouting angiogenesis is tightly regulated by contextual cues that affect angiogeneic growth factor signaling. Both constitutive activation and loss of Akt kinase activity in endothelial cells impair angiogenesis, suggesting that Akt dynamics mediates contextual microenvironmental regulation. We explored the temporal regulation of Akt in endothelial cells during formation of capillary-like networks induced by cell–cell contact with vascular smooth muscle cells (vSMCs) and vSMC-associated VEGF. Expression of constitutively active Akt1 strongly inhibited network formation, whereas hemiphosphorylated Akt1 epi-alleles with reduced kinase activity had an intermediate inhibitory effect. Conversely, inhibition of Akt signaling did not affect endothelial cell migration or morphogenesis in vSMC cocultures that generate capillary-like structures. We found that endothelial Akt activity is transiently blocked by proteasomal degradation in the presence of SMCs during the initial phase of capillary-like structure formation. Suppressed Akt activity corresponded to the increased endothelial MAP kinase signaling that was required for angiogenic endothelial morphogenesis. These results reveal a regulatory principle by which cellular context regulates Akt protein dynamics, which determines MAP kinase signaling thresholds necessary drive a morphogenetic program during angiogenesis. PMID:26023089

  8. p120-catenin regulates microtubule dynamics and cell migration in a cadherin-independent manner.

    PubMed

    Ichii, Tetsuo; Takeichi, Masatoshi

    2007-07-01

    p120-catenin (p120) has been shown to be essential for cadherin stability. Here, we show that p120 is capable of regulating microtubule (MT) dynamics in a cadherin-independent manner. When p120 was depleted in cadherin-deficient Neuro-2a (N2a) cells, MT stability was reduced, as assessed by the nocodazole sensitivity of MTs. On the contrary, over-expression of p120 caused MTs to become resistant to nocodazole. Time-lapse recording of GFP-tagged EB1, a protein which binds the growing plus-ends of MTs, introduced into these cells demonstrated that the plus ends underwent more frequent catastrophe in p120-depleted cells. In addition, p120 knockdown up-regulated the motility of isolated cells, whereas it down-regulated the directional migration of cells from wound edges; and these migratory behaviors of cells were mimicked by nocodazole-induced MT depolymerization. These results suggest that p120 has the ability to regulate MT dynamics and that this activity, in turn, affects cell motility independently of the cadherin adhesion system. PMID:17584295

  9. VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle

    PubMed Central

    Cantarero, Lara; Sanz-García, Marta; Vinograd-Byk, Hadar; Renbaum, Paul; Levy-Lahad, Ephrat; Lazo, Pedro A.

    2015-01-01

    Cajal bodies (CBs) are nuclear organelles associated with ribonucleoprotein functions and RNA maturation. CBs are assembled on coilin, its main scaffold protein, in a cell cycle dependent manner. The Ser-Thr VRK1 (vaccinia-related kinase 1) kinase, whose activity is also cell cycle regulated, interacts with and phosphorylates coilin regulating assembly of CBs. Coilin phosphorylation is not necessary for its interaction with VRK1, but it occurs in mitosis and regulates coilin stability. Knockdown of VRK1 or VRK1 inactivation by serum deprivation causes a loss of coilin phosphorylation in Ser184 and of CBs formation, which are rescued with an active VRK1, but not by kinase-dead VRK1. The phosphorylation of coilin in Ser184 occurs during mitosis before assembly of CBs. Loss of coilin phosphorylation results in disintegration of CBs, and of coilin degradation that is prevented by proteasome inhibitors. After depletion of VRK1, coilin is ubiquitinated in nuclei, which is partly mediated by mdm2, but its proteasomal degradation occurs in cytosol and is prevented by blocking its nuclear export. We conclude that VRK1 is a novel regulator of CBs dynamics and stability in cell cycle by protecting coilin from ubiquitination and degradation in the proteasome, and propose a model of CB dynamics. PMID:26068304

  10. Post-translational Control of the Temporal Dynamics of Transcription Factor Activity Regulates Neurogenesis.

    PubMed

    Quan, Xiao-Jiang; Yuan, Liqun; Tiberi, Luca; Claeys, Annelies; De Geest, Natalie; Yan, Jiekun; van der Kant, Rob; Xie, Wei R; Klisch, Tiemo J; Shymkowitz, Joost; Rousseau, Frederic; Bollen, Mathieu; Beullens, Monique; Zoghbi, Huda Y; Vanderhaeghen, Pierre; Hassan, Bassem A

    2016-01-28

    Neurogenesis is initiated by the transient expression of the highly conserved proneural proteins, bHLH transcriptional regulators. Here, we discover a conserved post-translational switch governing the duration of proneural protein activity that is required for proper neuronal development. Phosphorylation of a single Serine at the same position in Scute and Atonal proneural proteins governs the transition from active to inactive forms by regulating DNA binding. The equivalent Neurogenin2 Threonine also regulates DNA binding and proneural activity in the developing mammalian neocortex. Using genome editing in Drosophila, we show that Atonal outlives its mRNA but is inactivated by phosphorylation. Inhibiting the phosphorylation of the conserved proneural Serine causes quantitative changes in expression dynamics and target gene expression resulting in neuronal number and fate defects. Strikingly, even a subtle change from Serine to Threonine appears to shift the duration of Atonal activity in vivo, resulting in neuronal fate defects. PMID:26824657

  11. Single-domain response regulators: molecular switches with emerging roles in cell organization and dynamics

    PubMed Central

    Jenal, Urs; Galperin, Michael Y.

    2009-01-01

    Summary Single domain response regulators (SD-RRs) are signaling components of two-component phosphorylation pathways that harbor a phosphoryl receiver domain but lack a dedicated output domain. The E. coli protein CheY, the paradigm member of this family, regulates chemotaxis by relaying information between chemoreceptors and the flagellar switch. New data provide a more complex picture of CheY-mediated motility control in several bacteria and suggest diverging mechanisms in control of cellular motors. Moreover, advances have been made in understanding cellular functions of SD-RRs beyond chemotaxis. We review recent reports indicating that SD-RRs constitute a family of versatile molecular switches that contribute to cellular organization and dynamics as spatial organizers and/or as allosteric regulators of histidine protein kinases. PMID:19246239

  12. Kinesin superfamily proteins and the regulation of microtubule dynamics in morphogenesis.

    PubMed

    Niwa, Shinsuke

    2015-01-01

    Kinesin superfamily proteins (KIFs) are microtubule-dependent molecular motors that serve as sources of force for intracellular transport and cell division. Recent studies have revealed new roles of KIFs as microtubule stabilizers and depolymerizers, and these activities are fundamental to cellular morphogenesis and mammalian development. KIF2A and KIF19A have microtubule-depolymerizing activities and regulate the neuronal morphology and cilia length, respectively. KIF21A and KIF26A work as microtubule stabilizers that regulate axonal morphology. Morphological defects that are similar to human diseases are observed in mice in which these KIF genes have been deleted. Actually, KIF2A and KIF21A have been identified as causes of human neuronal diseases. In this review, the functions of these atypical KIFs that regulate microtubule dynamics are discussed. Moreover, some interesting unanswered questions and hypothetical answers to them are discussed. PMID:25347970

  13. Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6

    PubMed Central

    Dai, Yawei; Seeger, Markus; Weng, Jingwei; Song, Song; Wang, Wenning; Tan, Yan-Wen

    2016-01-01

    Cellular informational and metabolic processes are propagated with specific membrane fusions governed by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNARE). SNARE protein Ykt6 is highly expressed in brain neurons and plays a critical role in the membrane-trafficking process. Studies suggested that Ykt6 undergoes a conformational change at the interface between its longin domain and the SNARE core. In this work, we study the conformational state distributions and dynamics of rat Ykt6 by means of single-molecule Förster Resonance Energy Transfer (smFRET) and Fluorescence Cross-Correlation Spectroscopy (FCCS). We observed that intramolecular conformational dynamics between longin domain and SNARE core occurred at the timescale ~200 μs. Furthermore, this dynamics can be regulated and even eliminated by the presence of lipid dodecylphoshpocholine (DPC). Our molecular dynamic (MD) simulations have shown that, the SNARE core exhibits a flexible structure while the longin domain retains relatively stable in apo state. Combining single molecule experiments and theoretical MD simulations, we are the first to provide a quantitative dynamics of Ykt6 and explain the functional conformational change from a qualitative point of view. PMID:27493064

  14. Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6

    NASA Astrophysics Data System (ADS)

    Dai, Yawei; Seeger, Markus; Weng, Jingwei; Song, Song; Wang, Wenning; Tan, Yan-Wen

    2016-08-01

    Cellular informational and metabolic processes are propagated with specific membrane fusions governed by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNARE). SNARE protein Ykt6 is highly expressed in brain neurons and plays a critical role in the membrane-trafficking process. Studies suggested that Ykt6 undergoes a conformational change at the interface between its longin domain and the SNARE core. In this work, we study the conformational state distributions and dynamics of rat Ykt6 by means of single-molecule Förster Resonance Energy Transfer (smFRET) and Fluorescence Cross-Correlation Spectroscopy (FCCS). We observed that intramolecular conformational dynamics between longin domain and SNARE core occurred at the timescale ~200 μs. Furthermore, this dynamics can be regulated and even eliminated by the presence of lipid dodecylphoshpocholine (DPC). Our molecular dynamic (MD) simulations have shown that, the SNARE core exhibits a flexible structure while the longin domain retains relatively stable in apo state. Combining single molecule experiments and theoretical MD simulations, we are the first to provide a quantitative dynamics of Ykt6 and explain the functional conformational change from a qualitative point of view.

  15. Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6.

    PubMed

    Dai, Yawei; Seeger, Markus; Weng, Jingwei; Song, Song; Wang, Wenning; Tan, Yan-Wen

    2016-01-01

    Cellular informational and metabolic processes are propagated with specific membrane fusions governed by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNARE). SNARE protein Ykt6 is highly expressed in brain neurons and plays a critical role in the membrane-trafficking process. Studies suggested that Ykt6 undergoes a conformational change at the interface between its longin domain and the SNARE core. In this work, we study the conformational state distributions and dynamics of rat Ykt6 by means of single-molecule Förster Resonance Energy Transfer (smFRET) and Fluorescence Cross-Correlation Spectroscopy (FCCS). We observed that intramolecular conformational dynamics between longin domain and SNARE core occurred at the timescale ~200 μs. Furthermore, this dynamics can be regulated and even eliminated by the presence of lipid dodecylphoshpocholine (DPC). Our molecular dynamic (MD) simulations have shown that, the SNARE core exhibits a flexible structure while the longin domain retains relatively stable in apo state. Combining single molecule experiments and theoretical MD simulations, we are the first to provide a quantitative dynamics of Ykt6 and explain the functional conformational change from a qualitative point of view. PMID:27493064

  16. Extending the dynamic range of transcription factor action by translational regulation.

    PubMed

    Sokolowski, Thomas R; Walczak, Aleksandra M; Bialek, William; Tkačik, Gašper

    2016-02-01

    A crucial step in the regulation of gene expression is binding of transcription factor (TF) proteins to regulatory sites along the DNA. But transcription factors act at nanomolar concentrations, and noise due to random arrival of these molecules at their binding sites can severely limit the precision of regulation. Recent work on the optimization of information flow through regulatory networks indicates that the lower end of the dynamic range of concentrations is simply inaccessible, overwhelmed by the impact of this noise. Motivated by the behavior of homeodomain proteins, such as the maternal morphogen Bicoid in the fruit fly embryo, we suggest a scheme in which transcription factors also act as indirect translational regulators, binding to the mRNA of other regulatory proteins. Intuitively, each mRNA molecule acts as an independent sensor of the input concentration, and averaging over these multiple sensors reduces the noise. We analyze information flow through this scheme and identify conditions under which it outperforms direct transcriptional regulation. Our results suggest that the dual role of homeodomain proteins is not just a historical accident, but a solution to a crucial physics problem in the regulation of gene expression. PMID:26986359

  17. Extending the dynamic range of transcription factor action by translational regulation

    NASA Astrophysics Data System (ADS)

    Sokolowski, Thomas R.; Walczak, Aleksandra M.; Bialek, William; Tkačik, Gašper

    2016-02-01

    A crucial step in the regulation of gene expression is binding of transcription factor (TF) proteins to regulatory sites along the DNA. But transcription factors act at nanomolar concentrations, and noise due to random arrival of these molecules at their binding sites can severely limit the precision of regulation. Recent work on the optimization of information flow through regulatory networks indicates that the lower end of the dynamic range of concentrations is simply inaccessible, overwhelmed by the impact of this noise. Motivated by the behavior of homeodomain proteins, such as the maternal morphogen Bicoid in the fruit fly embryo, we suggest a scheme in which transcription factors also act as indirect translational regulators, binding to the mRNA of other regulatory proteins. Intuitively, each mRNA molecule acts as an independent sensor of the input concentration, and averaging over these multiple sensors reduces the noise. We analyze information flow through this scheme and identify conditions under which it outperforms direct transcriptional regulation. Our results suggest that the dual role of homeodomain proteins is not just a historical accident, but a solution to a crucial physics problem in the regulation of gene expression.

  18. Dynamic regulation of basement membrane protein levels promotes egg chamber elongation in Drosophila.

    PubMed

    Isabella, Adam J; Horne-Badovinac, Sally

    2015-10-15

    Basement membranes (BMs) are sheet-like extracellular matrices that provide essential support to epithelial tissues. Recent evidence suggests that regulated changes in BM architecture can direct tissue morphogenesis, but the mechanisms by which cells remodel BMs are largely unknown. The Drosophila egg chamber is an organ-like structure that transforms from a spherical to an ellipsoidal shape as it matures. This elongation coincides with a stage-specific increase in Type IV Collagen (Col IV) levels in the BM surrounding the egg chamber; however, the mechanisms and morphogenetic relevance of this remodeling event have not been established. Here, we identify the Collagen-binding protein SPARC as a negative regulator of egg chamber elongation, and show that SPARC down-regulation is necessary for the increase in Col IV levels to occur. We find that SPARC interacts with Col IV prior to secretion and propose that, through this interaction, SPARC blocks the incorporation of newly synthesized Col IV into the BM. We additionally observe a decrease in Perlecan levels during elongation, and show that Perlecan is a negative regulator of this process. These data provide mechanistic insight into SPARC's conserved role in matrix dynamics and demonstrate that regulated changes in BM composition influence organ morphogenesis. PMID:26348027

  19. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions.

    PubMed

    Doyle, Andrew D; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M

    2015-01-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils. PMID:26548801

  20. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    PubMed Central

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-01-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils. PMID:26548801

  1. Systems-level analysis of the regulation and function of p53 dynamics in cancer

    NASA Astrophysics Data System (ADS)

    Batchelor, Eric

    Living cells use complex signaling pathways to detect environmental stimuli and generate appropriate responses. As methods for quantifying intracellular signaling have improved, several signaling pathways have been found to transmit information using signals that pulse in time. The transcription factor p53 is a key tumor suppressor and stress-response regulator that exhibits pulsatile dynamics. In response to DNA double-strand breaks, the concentration of p53 in the cell nucleus increases in pulses with a fixed amplitude, duration, and period; the mean number of pulses increases with DNA damage. p53 regulates the expression of over 100 target genes involved in a range of cellular stress responses including apoptosis, cell cycle arrest, and changes in metabolism. p53 pulsing directly impacts p53 function: altering p53 dynamics by pharmacologically inhibiting p53 degradation changes patterns of target gene expression and cell fate. While p53 pulsing serves an important signaling function, it is less clear what it accomplishes mechanistically. Here we will describe our recent efforts to determine the impact of p53 pulsing on the dynamics and coordination of target gene expression.

  2. Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking

    PubMed Central

    Wilson, Carlos; González-Billault, Christian

    2015-01-01

    A proper balance between chemical reduction and oxidation (known as redox balance) is essential for normal cellular physiology. Deregulation in the production of oxidative species leads to DNA damage, lipid peroxidation and aberrant post-translational modification of proteins, which in most cases induces injury, cell death and disease. However, physiological concentrations of oxidative species are necessary to support important cell functions, such as chemotaxis, hormone synthesis, immune response, cytoskeletal remodeling, Ca2+ homeostasis and others. Recent evidence suggests that redox balance regulates actin and microtubule dynamics in both physiological and pathological contexts. Microtubules and actin microfilaments contain certain amino acid residues that are susceptible to oxidation, which reduces the ability of microtubules to polymerize and causes severing of actin microfilaments in neuronal and non-neuronal cells. In contrast, inhibited production of reactive oxygen species (ROS; e.g., due to NOXs) leads to aberrant actin polymerization, decreases neurite outgrowth and affects the normal development and polarization of neurons. In this review, we summarize emerging evidence suggesting that both general and specific enzymatic sources of redox species exert diverse effects on cytoskeletal dynamics. Considering the intimate relationship between cytoskeletal dynamics and trafficking, we also discuss the potential effects of redox balance on intracellular transport via regulation of the components of the microtubule and actin cytoskeleton as well as cytoskeleton-associated proteins, which may directly impact localization of proteins and vesicles across the soma, dendrites and axon of neurons. PMID:26483635

  3. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis

    DOE PAGESBeta

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.; Mohandas, Narla; Pachter, Lior; Conboy, John G.

    2015-11-03

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentallydynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ~50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclearlocalized. Splicemore » site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. Finally, we conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.« less

  4. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis

    SciTech Connect

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.; Mohandas, Narla; Pachter, Lior; Conboy, John G.

    2015-11-03

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentallydynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ~50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclearlocalized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. Finally, we conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.

  5. ER sheet persistence is coupled to myosin 1c-regulated dynamic actin filament arrays.

    PubMed

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M; Lowe, Martin; Vartiainen, Maria K; Jokitalo, Eija

    2014-04-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network. PMID:24523293

  6. ER sheet persistence is coupled to myosin 1c–regulated dynamic actin filament arrays

    PubMed Central

    Joensuu, Merja; Belevich, Ilya; Rämö, Olli; Nevzorov, Ilya; Vihinen, Helena; Puhka, Maija; Witkos, Tomasz M.; Lowe, Martin; Vartiainen, Maria K.; Jokitalo, Eija

    2014-01-01

    The endoplasmic reticulum (ER) comprises a dynamic three-dimensional (3D) network with diverse structural and functional domains. Proper ER operation requires an intricate balance within and between dynamics, morphology, and functions, but how these processes are coupled in cells has been unclear. Using live-cell imaging and 3D electron microscopy, we identify a specific subset of actin filaments localizing to polygons defined by ER sheets and tubules and describe a role for these actin arrays in ER sheet persistence and, thereby, in maintenance of the characteristic network architecture by showing that actin depolymerization leads to increased sheet fluctuation and transformations and results in small and less abundant sheet remnants and a defective ER network distribution. Furthermore, we identify myosin 1c localizing to the ER-associated actin filament arrays and reveal a novel role for myosin 1c in regulating these actin structures, as myosin 1c manipulations lead to loss of the actin filaments and to similar ER phenotype as observed after actin depolymerization. We propose that ER-associated actin filaments have a role in ER sheet persistence regulation and thus support the maintenance of sheets as a stationary subdomain of the dynamic ER network. PMID:24523293

  7. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    NASA Astrophysics Data System (ADS)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  8. The GATA transcription factor GtaC regulates early developmental gene expression dynamics in Dictyostelium.

    PubMed

    Santhanam, Balaji; Cai, Huaqing; Devreotes, Peter N; Shaulsky, Gad; Katoh-Kurasawa, Mariko

    2015-01-01

    In many systems, including the social amoeba Dictyostelium discoideum, development is often marked by dynamic morphological and transcriptional changes orchestrated by key transcription factors. However, efforts to examine sequential genome-wide changes of gene regulation in developmental processes have been fairly limited. Here we report the developmental regulatory dynamics of GtaC, a GATA-type zinc-finger transcription factor, through the analyses of serial ChIP- and RNA-sequencing data. GtaC is essential for developmental progression, decoding extracellular cAMP pulses during early development and may play a role in mediating cell-type differentiation at later stages. We find that GtaC exhibits temporally distinctive DNA-binding patterns concordant with each developmental stage. We identify direct GtaC targets and observe cotemporaneous GtaC-binding and developmental expression regulation. Our results suggest that GtaC regulates multiple physiological processes as Dictyostelium transitions from a group of unicellular amoebae to an integrated multicellular organism. PMID:26144553

  9. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.

    PubMed

    Trapnell, Cole; Cacchiarelli, Davide; Grimsby, Jonna; Pokharel, Prapti; Li, Shuqiang; Morse, Michael; Lennon, Niall J; Livak, Kenneth J; Mikkelsen, Tarjei S; Rinn, John L

    2014-04-01

    Defining the transcriptional dynamics of a temporal process such as cell differentiation is challenging owing to the high variability in gene expression between individual cells. Time-series gene expression analyses of bulk cells have difficulty distinguishing early and late phases of a transcriptional cascade or identifying rare subpopulations of cells, and single-cell proteomic methods rely on a priori knowledge of key distinguishing markers. Here we describe Monocle, an unsupervised algorithm that increases the temporal resolution of transcriptome dynamics using single-cell RNA-Seq data collected at multiple time points. Applied to the differentiation of primary human myoblasts, Monocle revealed switch-like changes in expression of key regulatory factors, sequential waves of gene regulation, and expression of regulators that were not known to act in differentiation. We validated some of these predicted regulators in a loss-of function screen. Monocle can in principle be used to recover single-cell gene expression kinetics from a wide array of cellular processes, including differentiation, proliferation and oncogenic transformation. PMID:24658644

  10. Transcription factor p63 bookmarks and regulates dynamic enhancers during epidermal differentiation

    PubMed Central

    Kouwenhoven, Evelyn N; Oti, Martin; Niehues, Hanna; van Heeringen, Simon J; Schalkwijk, Joost; Stunnenberg, Hendrik G; van Bokhoven, Hans; Zhou, Huiqing

    2015-01-01

    The transcription factor p63 plays a pivotal role in keratinocyte proliferation and differentiation in the epidermis. However, how p63 regulates epidermal genes during differentiation is not yet clear. Using epigenome profiling of differentiating human primary epidermal keratinocytes, we characterized a catalog of dynamically regulated genes and p63-bound regulatory elements that are relevant for epithelial development and related diseases. p63-bound regulatory elements occur as single or clustered enhancers, and remarkably, only a subset is active as defined by the co-presence of the active enhancer mark histone modification H3K27ac in epidermal keratinocytes. We show that the dynamics of gene expression correlates with the activity of p63-bound enhancers rather than with p63 binding itself. The activity of p63-bound enhancers is likely determined by other transcription factors that cooperate with p63. Our data show that inactive p63-bound enhancers in epidermal keratinocytes may be active during the development of other epithelial-related structures such as limbs and suggest that p63 bookmarks genomic loci during the commitment of the epithelial lineage and regulates genes through temporal- and spatial-specific active enhancers. PMID:26034101

  11. Dynamics Intrinsic to Cystic Fibrosis Transmembrane Conductance Regulator Function and Stability

    PubMed Central

    Chong, P. Andrew; Kota, Pradeep; Dokholyan, Nikolay V.; Forman-Kay, Julie D.

    2013-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) requires dynamic fluctuations between states in its gating cycle for proper channel function, including changes in the interactions between the nucleotide-binding domains (NBDs) and between the intracellular domain (ICD) coupling helices and NBDs. Such motions are also linked with fluctuating phosphorylation-dependent binding of CFTR’s disordered regulatory (R) region to the NBDs and partners. Folding of CFTR is highly inefficient, with the marginally stable NBD1 sampling excited states or folding intermediates that are aggregation-prone. The severe CF–causing F508del mutation exacerbates the folding inefficiency of CFTR and leads to impaired channel regulation and function, partly as a result of perturbed NBD1–ICD interactions and enhanced sampling of these NBD1 excited states. Increased knowledge of the dynamics within CFTR will expand our understanding of the regulated channel gating of the protein as well as of the F508del defects in folding and function. PMID:23457292

  12. The GATA transcription factor GtaC regulates early developmental gene expression dynamics in Dictyostelium

    PubMed Central

    Santhanam, Balaji; Cai, Huaqing; Devreotes, Peter N.; Shaulsky, Gad; Katoh-Kurasawa, Mariko

    2015-01-01

    In many systems, including the social amoeba Dictyostelium discoideum, development is often marked by dynamic morphological and transcriptional changes orchestrated by key transcription factors. However, efforts to examine sequential genome-wide changes of gene regulation in developmental processes have been fairly limited. Here we report the developmental regulatory dynamics of GtaC, a GATA-type zinc-finger transcription factor, through the analyses of serial ChIP- and RNA-sequencing data. GtaC is essential for developmental progression, decoding extracellular cAMP pulses during early development and may play a role in mediating cell-type differentiation at later stages. We find that GtaC exhibits temporally distinctive DNA-binding patterns concordant with each developmental stage. We identify direct GtaC targets and observe cotemporaneous GtaC-binding and developmental expression regulation. Our results suggest that GtaC regulates multiple physiological processes as Dictyostelium transitions from a group of unicellular amoebae to an integrated multicellular organism. PMID:26144553

  13. A hybrid model of molecular regulation and population dynamics for yeast autophagy.

    PubMed

    Jin, Huiqin; Lei, Jinzhi

    2016-08-01

    Autophagy is an evolutionarily conserved lysosome-based degradation process that is involved in maintaining cellular homeostasis and stress responses. Dysregulation of autophagy is known to associate with many diseases. In this paper, we establish a Hybrid model of Molecular regulation and Population dynamics (HMP model) for yeast autophagy to study how autophagy regulation at molecular level affects the cell population dynamics under the stress of starvation. The model includes interactions between amino acids, TORC1, Atg1 complex, and Atg8 lipidation at the molecular level, and cell death and division at the cell behavior level. Two feedback loops are involved in autophagy induction, in which the negative feedback of TORC1 activation has been known previously, and the positive feedback between TORC1 and Atg1 complex formation is introduced according to the similarity of Drosophila and mammalian cells. We demonstrate that the two feedback loops play distinct roles in autophagy regulation. The positive feedback is pro-survival, whereas the negative feedback has little effect on the survival of population during starvation. In addition, autophagy deficient cells can be rescued from starvation by amino acid exchanges from their neighboring wild type cells. PMID:27103581

  14. Transcription factor p63 bookmarks and regulates dynamic enhancers during epidermal differentiation.

    PubMed

    Kouwenhoven, Evelyn N; Oti, Martin; Niehues, Hanna; van Heeringen, Simon J; Schalkwijk, Joost; Stunnenberg, Hendrik G; van Bokhoven, Hans; Zhou, Huiqing

    2015-07-01

    The transcription factor p63 plays a pivotal role in keratinocyte proliferation and differentiation in the epidermis. However, how p63 regulates epidermal genes during differentiation is not yet clear. Using epigenome profiling of differentiating human primary epidermal keratinocytes, we characterized a catalog of dynamically regulated genes and p63-bound regulatory elements that are relevant for epithelial development and related diseases. p63-bound regulatory elements occur as single or clustered enhancers, and remarkably, only a subset is active as defined by the co-presence of the active enhancer mark histone modification H3K27ac in epidermal keratinocytes. We show that the dynamics of gene expression correlates with the activity of p63-bound enhancers rather than with p63 binding itself. The activity of p63-bound enhancers is likely determined by other transcription factors that cooperate with p63. Our data show that inactive p63-bound enhancers in epidermal keratinocytes may be active during the development of other epithelial-related structures such as limbs and suggest that p63 bookmarks genomic loci during the commitment of the epithelial lineage and regulates genes through temporal- and spatial-specific active enhancers. PMID:26034101

  15. RNA-Based Regulation: Dynamics and Response to Perturbations of Competing RNAs

    PubMed Central

    Figliuzzi, Matteo; De Martino, Andrea; Marinari, Enzo

    2014-01-01

    The observation that, through a titration mechanism, microRNAs (miRNAs) can act as mediators of effective interactions among their common targets (competing endogenous RNAs or ceRNAs) has brought forward the idea (i.e., the ceRNA hypothesis) that RNAs can regulate each other in extended cross-talk networks. Such an ability might play a major role in posttranscriptional regulation to shape a cell’s protein repertoire. Recent work focusing on the emergent properties of the cross-talk networks has emphasized the high flexibility and selectivity that may be achieved at stationarity. On the other hand, dynamical aspects, possibly crucial on the relevant timescales, are far less clear. We have carried out a dynamical study of the ceRNA hypothesis on a model of posttranscriptional regulation. Sensitivity analysis shows that ceRNA cross-talk is dynamically extended, i.e., it may take place on timescales shorter than those required to achieve stationarity even in cases where no cross-talk occurs in the steady state, and is possibly amplified. In addition, in the case of large, transfection-like perturbations, the system may develop a strongly nonlinear, threshold response. Finally, we show that the ceRNA effect provides a very efficient way for a cell to achieve fast positive shifts in the level of a ceRNA when necessary. These results indicate that competition for miRNAs may indeed provide an elementary mechanism to achieve system-level regulatory effects on the transcriptome over physiologically relevant timescales. PMID:25140437

  16. Probabilistic Evaluation of Anthropogenic Regulations In a Vegetated River Channel Using a Vegetation Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Miyamoto, Hitoshi

    2015-04-01

    Vegetation overgrowth in fluvial floodplains, gravel beds, and sand bars has been a serious engineering problem for riparian management in Japan. From the viewpoints of flood control and ecological conservation, it would be necessary to predict the vegetation dynamics accurately for long-term duration. In this research, we have developed a stochastic model for predicting the vegetation dynamics in fluvial floodplains with emphasis on the interaction with flood impacts. The model consists of the following four components: (i) long-term stochastic behavior of flow discharge, (ii) hydrodynamics in a channel with floodplain vegetation, (iii) variation of riverbed topography, and (iv) vegetation dynamics on floodplains. In the vegetation dynamics model, the flood discharge (i) is stochastically simulated using a filtered Poisson process, one of the conventional approaches in hydrological time-series generation. The component for vegetation dynamics (iv) includes the effects of tree growth, mortality by floods, and infant tree recruitment. Vegetation condition has been observed mainly before and after floods since 2008 at a field site located between 23-24 km from the river mouth in Kako River, Japan. The Kako River has the catchment area of 1,730 km2 and the main channel length of 96 km. This site is one of the vegetation overgrowth sites in the Kako River floodplains. The predominant tree species are willows and bamboos. In the field survey, the position, trunk diameter and height of each tree as well as the riverbed materials were measured after several flood events to investigate their impacts on the floodplain vegetation community. This presentation tries to examine effects of anthropogenic river regulations, i.e., thinning and cutting-down, in the vegetated channel in Kako River by using the vegetation dynamics model. Sensitivity of both the flood water level and the vegetation status in the channel is statistically evaluated in terms of the different cutting

  17. Dynamic Interplay Among Homeostatic, Hedonic, and Cognitive Feedback Circuits Regulating Body Weight

    PubMed Central

    Hammond, Ross A.; Rahmandad, Hazhir

    2014-01-01

    Obesity is associated with a prolonged imbalance between energy intake and expenditure, both of which are regulated by multiple feedback processes within and across individuals. These processes constitute 3 hierarchical control systems—homeostatic, hedonic, and cognitive—with extensive interaction among them. Understanding complex eating behavior requires consideration of all 3 systems and their interactions. Existing models of these processes are widely scattered, with relatively few attempts to integrate across mechanisms. We briefly review available empirical evidence and dynamic models, discussing challenges and potential for better integration. We conclude that developing richer models of dynamic interplay among systems should be a priority in the future study of obesity and that systems science modeling offers the potential to aid in this goal. PMID:24832422

  18. Dynamic regulation of RNA editing in human brain development and disease.

    PubMed

    Hwang, Taeyoung; Park, Chul-Kee; Leung, Anthony K L; Gao, Yuan; Hyde, Thomas M; Kleinman, Joel E; Rajpurohit, Anandita; Tao, Ran; Shin, Joo Heon; Weinberger, Daniel R

    2016-08-01

    RNA editing is increasingly recognized as a molecular mechanism regulating RNA activity and recoding proteins. Here we surveyed the global landscape of RNA editing in human brain tissues and identified three unique patterns of A-to-I RNA editing rates during cortical development: stable high, stable low and increasing. RNA secondary structure and the temporal expression of adenosine deaminase acting on RNA (ADAR) contribute to cis- and trans-regulatory mechanisms of these RNA editing patterns, respectively. Interestingly, the increasing pattern was associated with neuronal maturation, correlated with mRNA abundance and potentially influenced miRNA binding energy. Gene ontology analyses implicated the increasing pattern in vesicle or organelle membrane-related genes and glutamate signaling pathways. We also found that the increasing pattern was selectively perturbed in spinal cord injury and glioblastoma. Our findings reveal global and dynamic aspects of RNA editing in brain, providing new insight into epitranscriptional regulation of sequence diversity. PMID:27348216

  19. Minireview: Steroid/Nuclear Receptor-Regulated Dynamics of Occluding and Anchoring Junctions

    PubMed Central

    Kapadia, Bhumika J.

    2014-01-01

    A diverse set of physiological signals control intercellular interactions by regulating the structure and function of occluding junctions (tight junctions) and anchoring junctions (adherens junctions and desmosomes). These plasma membrane junctions are comprised of multiprotein complexes of transmembrane and cytoplasmic peripheral plasma membrane proteins. Evidence from many hormone-responsive tissues has shown that expression, modification, molecular interactions, stability, and localization of junctional complex-associated proteins can be targeted by nuclear hormone receptors and their ligands through transcriptional and nontranscriptional mechanisms. The focus of this minireview is to discuss molecular, cellular, and physiological studies that directly link nuclear receptor- and ligand-triggered signaling pathways to the regulation of occluding and anchoring junction dynamics. PMID:25203673

  20. The Role of Nox-Mediated Oxidation in the Regulation of Cytoskeletal Dynamics

    PubMed Central

    Valdivia, Alejandra; Duran, Charity; Martin, Alejandra San

    2015-01-01

    Nox generated ROS, particularly those derived from Nox1, Nox2 and Nox4, have emerged as important regulators of the actin cytoskeleton and cytoskeleton-supported cell functions, such as migration and adhesion. The effects of Nox-derived ROS on cytoskeletal remodeling may be largely attributed to the ability of ROS to directly modify proteins that constitute or are associated with the cytoskeleton. Additionally, Nox-derived ROS may participate in signaling pathways governing cytoskeletal remodeling. In addition to these more extensively studied signaling pathways involving Nox-derived ROS, there also exist redox sensitive pathways for which the source of ROS is unclear. ROS from as of yet undetermined sources play a role in modifying, and thus regulating, the activity of several proteins critical for remodeling of the actin cytoskeleton. In this review we discuss ROS sensitive targets that are likely to affect cytoskeletal dynamics, as well as the potential involvement of Nox proteins. PMID:26510432

  1. Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq

    PubMed Central

    Gan, Qiang; Chepelev, Iouri; Wei, Gang; Tarayrah, Lama; Cui, Kairong; Zhao, Keji; Chen, Xin

    2010-01-01

    Both transcription and post-transcriptional processes, such as alternative splicing, play crucial roles in controlling developmental programs in metazoans. Recently emerged RNA-seq method has brought our understandings of eukaryotic transcriptomes to a new level, because it can resolve both gene expression level and alternative splicing events simultaneously. To gain a better understanding of cellular differentiation in gonads, we analyzed mRNA profiles from Drosophila testes and ovaries using RNA-seq. We identified a set of genes that have sex-specific isoforms in wild-type (wt) gonads, including several transcription factors. We found that differentiation of sperms from undifferentiated germ cells induced a dramatic down-regulation of RNA splicing factors. Our data confirmed that RNA splicing events are significantly more frequent in the undifferentiated-cell enriched bag of marbles (bam) mutant testis, but down-regulated upon differentiation in wt testis. Consistent with this, we showed that genes required for meiosis and terminal differentiation in wt testis were mainly regulated at the transcriptional level, but not by alternative splicing. Unexpectedly, we observed an increase in expression of all families of chromatin remodeling factors and histone modifying enzymes in the undifferentiated cell-enriched bam testis. More interestingly, chromatin regulators and histone modifying enzymes with opposite enzymatic activities are co-enriched in undifferentiated cells in testis, suggesting these cells may possess dynamic chromatin architecture. Finally, our data revealed many new features of the Drosophila gonadal transcriptomes, and will lead to a more comprehensive understanding of how differential gene expression and splicing regulate gametogenesis in Drosophila. Our data provided a foundation for the systematic study of gene expression and alternative splicing in many interesting areas of germ cell biology in Drosophila, such as the molecular basis for sexual

  2. Nodal signaling regulates endodermal cell motility and actin dynamics via Rac1 and Prex1

    PubMed Central

    Housley, Michael P.; Weiner, Orion D.

    2012-01-01

    Embryo morphogenesis is driven by dynamic cell behaviors, including migration, that are coordinated with fate specification and differentiation, but how such coordination is achieved remains poorly understood. During zebrafish gastrulation, endodermal cells sequentially exhibit first random, nonpersistent migration followed by oriented, persistent migration and finally collective migration. Using a novel transgenic line that labels the endodermal actin cytoskeleton, we found that these stage-dependent changes in migratory behavior correlated with changes in actin dynamics. The dynamic actin and random motility exhibited during early gastrulation were dependent on both Nodal and Rac1 signaling. We further identified the Rac-specific guanine nucleotide exchange factor Prex1 as a Nodal target and showed that it mediated Nodal-dependent random motility. Reducing Rac1 activity in endodermal cells caused them to bypass the random migration phase and aberrantly contribute to mesodermal tissues. Together, our results reveal a novel role for Nodal signaling in regulating actin dynamics and migration behavior, which are crucial for endodermal morphogenesis and cell fate decisions. PMID:22945937

  3. Pressure Regulators as Valves for Saving Compressed Air and their Influence on System Dynamics

    NASA Astrophysics Data System (ADS)

    Dvořák, Lukáš; Fojtášek, Kamil

    2015-05-01

    Pressure regulators in the field of pneumatic mechanisms can be used as valves for saving compressed air. For example it can be used to reduce the pressure when the piston rod is retracting unloaded and thus it is possible to save some energy. However the problem is that saving valve can significantly affect the dynamics of the pneumatic system. The lower pressure in the piston rod chamber causes extension of time for retraction of the piston rod. This article compare the air consumption experimentally determined and calculated, measured curves of pressure in cylinder chambers and piston speed when saving valve is set up differently.

  4. Evidence for Dynamic Network Regulation of Drosophila Photoreceptor Function from Mutants Lacking the Neurotransmitter Histamine

    PubMed Central

    Dau, An; Friederich, Uwe; Dongre, Sidhartha; Li, Xiaofeng; Bollepalli, Murali K.; Hardie, Roger C.; Juusola, Mikko

    2016-01-01

    Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1–R6 photoreceptors to those of the hdcJK910 mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdcJK910 photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdcJK910 photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdcJK910 R1–R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdcJK910 mutant also restored their normal phasic feedback modulation to R1–R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons. PMID:27047343

  5. DISC1-dependent Regulation of Mitochondrial Dynamics Controls the Morphogenesis of Complex Neuronal Dendrites*

    PubMed Central

    Norkett, Rosalind; Modi, Souvik; Birsa, Nicol; Atkin, Talia A.; Ivankovic, Davor; Pathania, Manav; Trossbach, Svenja V.; Korth, Carsten; Hirst, Warren D.; Kittler, Josef T.

    2016-01-01

    The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development. PMID:26553875

  6. DISC1-dependent Regulation of Mitochondrial Dynamics Controls the Morphogenesis of Complex Neuronal Dendrites.

    PubMed

    Norkett, Rosalind; Modi, Souvik; Birsa, Nicol; Atkin, Talia A; Ivankovic, Davor; Pathania, Manav; Trossbach, Svenja V; Korth, Carsten; Hirst, Warren D; Kittler, Josef T

    2016-01-01

    The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development. PMID:26553875

  7. Cortactin Controls Cell Motility and Lamellipodial Dynamics by Regulating ECM Secretion

    PubMed Central

    Sung, Bong Hwan; Zhu, Xiaodong; Kaverina, Irina; Weaver, Alissa

    2011-01-01

    Background Branched actin assembly is critical for both cell motility and membrane trafficking. The branched actin regulator, cortactin, is generally considered to promote cell migration by controlling leading edge lamellipodial dynamics. However, recent reports indicate that lamellipodia are not required for cell movement, suggesting an alternate mechanism. Results Since cortactin also regulates membrane trafficking and adhesion dynamics, we hypothesized that altered secretion of extracellular matrix (ECM) and/or integrin trafficking might underlie motility defects of cortactin-knockdown (KD) cells. Consistent with a primary defect in ECM secretion, both motility and lamellipodial defects of cortactin-KD cells were fully rescued by plating on increasing concentrations of exogenous ECM. Furthermore, cortactin-KD cell speed defects were rescued on cell-free autocrine ECM produced by control cells but not on ECM produced by cortactin-KD cells. Investigation of the mechanism revealed that whereas endocytosed FN is redeposited at the basal cell surface by control cells, cortactin-KD cells exhibit defective FN secretion and abnormal FN retention in a late endocytic/lysosomal compartment. Cortactin-KD motility and FN deposition defects were phenocopied by KD in control cells of the lysosomal fusion regulator Synaptotagmin-7. Rescue of cortactin-KD cells by expression of cortactin binding domain mutants revealed that interaction with Arp2/3 complex and actin filaments is essential for rescue of both cell motility and autocrine ECM secretion phenotypes whereas binding of SH3 domain partners is not required. Conclusions Efficient cell motility, promoted by cortactin regulation of branched actin networks, involves processing and resecretion of internalized ECM from a late endosomal/lysosomal compartment. PMID:21856159

  8. Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC

    PubMed Central

    Che, Ting-Fang; Lin, Ching-Wen; Wu, Yi-Ying; Chen, Yu-Ju; Han, Chia-Li; Chang, Yih-leong; Wu, Chen-Tu; Hsiao, Tzu-Hung

    2015-01-01

    Dysfunction of the mitochondria is well-known for being associated with cancer progression. In the present study, we analyzed the mitochondria proteomics of lung cancer cell lines with different invasion abilities and found that EGFR is highly expressed in the mitochondria of highly invasive non-small-cell lung cancer (NSCLC) cells. EGF induces the mitochondrial translocation of EGFR; further, it leads to mitochondrial fission and redistribution in the lamellipodia, upregulates cellular ATP production, and enhances motility in vitro and in vivo. Moreover, EGFR can regulate mitochondrial dynamics by interacting with Mfn1 and disturbing Mfn1 polymerization. Overexpression of Mfn1 reverses the phenotypes resulting from EGFR mitochondrial translocation. We show that the mitochondrial EGFR expressions are higher in paired samples of the metastatic lymph node as compared with primary lung tumor and are inversely correlated with the overall survival in NSCLC patients. Therefore, our results demonstrate that besides the canonical role of EGFR as a receptor tyrosine, the mitochondrial translocation of EGFR may enhance cancer invasion and metastasis through regulating mitochondria dynamics. PMID:26497368

  9. Homeostatic Responses Regulate Selfish Mitochondrial Genome Dynamics in C. elegans.

    PubMed

    Gitschlag, Bryan L; Kirby, Cait S; Samuels, David C; Gangula, Rama D; Mallal, Simon A; Patel, Maulik R

    2016-07-12

    Mutant mitochondrial genomes (mtDNA) can be viewed as selfish genetic elements that persist in a state of heteroplasmy despite having potentially deleterious metabolic consequences. We sought to study regulation of selfish mtDNA dynamics. We establish that the large 3.1-kb deletion-bearing mtDNA variant uaDf5 is a selfish genome in Caenorhabditis elegans. Next, we show that uaDf5 mutant mtDNA replicates in addition to, not at the expense of, wild-type mtDNA. These data suggest the existence of a homeostatic copy-number control that is exploited by uaDf5 to "hitchhike" to high frequency. We also observe activation of the mitochondrial unfolded protein response (UPR(mt)) in uaDf5 animals. Loss of UPR(mt) causes a decrease in uaDf5 frequency, whereas its constitutive activation increases uaDf5 levels. UPR(mt) activation protects uaDf5 from mitophagy. Taken together, we propose that mtDNA copy-number control and UPR(mt) represent two homeostatic response mechanisms that play important roles in regulating selfish mitochondrial genome dynamics. PMID:27411011

  10. A dynamic alternative splicing program regulates gene expression during terminal erythropoiesis

    PubMed Central

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry; Ghanem, Dana; An, Xiuli; Li, Jie; Mohandas, Narla; Pachter, Lior; Conboy, John G.

    2014-01-01

    Alternative pre-messenger RNA splicing remodels the human transcriptome in a spatiotemporal manner during normal development and differentiation. Here we explored the landscape of transcript diversity in the erythroid lineage by RNA-seq analysis of five highly purified populations of morphologically distinct human erythroblasts, representing the last four cell divisions before enucleation. In this unique differentiation system, we found evidence of an extensive and dynamic alternative splicing program encompassing genes with many diverse functions. Alternative splicing was particularly enriched in genes controlling cell cycle, organelle organization, chromatin function and RNA processing. Many alternative exons exhibited differentiation-associated switches in splicing efficiency, mostly in late-stage polychromatophilic and orthochromatophilic erythroblasts, in concert with extensive cellular remodeling that precedes enucleation. A subset of alternative splicing switches introduces premature translation termination codons into selected transcripts in a differentiation stage-specific manner, supporting the hypothesis that alternative splicing-coupled nonsense-mediated decay contributes to regulation of erythroid-expressed genes as a novel part of the overall differentiation program. We conclude that a highly dynamic alternative splicing program in terminally differentiating erythroblasts plays a major role in regulating gene expression to ensure synthesis of appropriate proteome at each stage as the cells remodel in preparation for production of mature red cells. PMID:24442673

  11. Caveolin-1 expression and cavin stability regulate caveolae dynamics in adipocyte lipid store fluctuation.

    PubMed

    Briand, Nolwenn; Prado, Cécilia; Mabilleau, Guillaume; Lasnier, Françoise; Le Lièpvre, Xavier; Covington, Jeffrey D; Ravussin, Eric; Le Lay, Soazig; Dugail, Isabelle

    2014-12-01

    Adipocytes specialized in the storage of energy as fat are among the most caveolae-enriched cell types. Loss of caveolae produces lipodystrophic diabetes in humans, which cannot be reversed by endothelial rescue of caveolin expression in mice, indicating major importance of adipocyte caveolae. However, how caveolae participate in fat cell functions is poorly understood. We investigated dynamic conditions of lipid store fluctuations and demonstrate reciprocal regulation of caveolae density and fat cell lipid droplet storage. We identified caveolin-1 expression as a crucial step in adipose cell lines and in mice to raise the density of caveolae, to increase adipocyte ability to accommodate larger lipid droplets, and to promote cell expansion by increased glucose utilization. In human subjects enrolled in a trial of 8 weeks of overfeeding to promote fattening, adipocyte expansion response correlated with initial caveolin-1 expression. Conversely, lipid mobilization in cultured adipocytes to induce lipid droplet shrinkage led to biphasic response of cavin-1 with ultimate loss of expression of cavin-1 and -3 and EHD2 by protein degradation, coincident with caveolae disassembly. We have identified the key steps in cavin/caveolin interplay regulating adipocyte caveolae dynamics. Our data establish that caveolae participate in a unique cell response connected to lipid store fluctuation, suggesting lipid-induced mechanotension in adipocytes. PMID:24969108

  12. A dynamic alternative splicing program regulates gene expression during terminal erythropoiesis.

    PubMed

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry; Ghanem, Dana; An, Xiuli; Li, Jie; Mohandas, Narla; Pachter, Lior; Conboy, John G

    2014-04-01

    Alternative pre-messenger RNA splicing remodels the human transcriptome in a spatiotemporal manner during normal development and differentiation. Here we explored the landscape of transcript diversity in the erythroid lineage by RNA-seq analysis of five highly purified populations of morphologically distinct human erythroblasts, representing the last four cell divisions before enucleation. In this unique differentiation system, we found evidence of an extensive and dynamic alternative splicing program encompassing genes with many diverse functions. Alternative splicing was particularly enriched in genes controlling cell cycle, organelle organization, chromatin function and RNA processing. Many alternative exons exhibited differentiation-associated switches in splicing efficiency, mostly in late-stage polychromatophilic and orthochromatophilic erythroblasts, in concert with extensive cellular remodeling that precedes enucleation. A subset of alternative splicing switches introduces premature translation termination codons into selected transcripts in a differentiation stage-specific manner, supporting the hypothesis that alternative splicing-coupled nonsense-mediated decay contributes to regulation of erythroid-expressed genes as a novel part of the overall differentiation program. We conclude that a highly dynamic alternative splicing program in terminally differentiating erythroblasts plays a major role in regulating gene expression to ensure synthesis of appropriate proteome at each stage as the cells remodel in preparation for production of mature red cells. PMID:24442673

  13. A hemidesmosomal protein regulates actin dynamics and traction forces in motile keratinocytes.

    PubMed

    Hiroyasu, Sho; Colburn, Zachary T; Jones, Jonathan C R

    2016-06-01

    During wound healing of the skin, keratinocytes disassemble hemidesmosomes and reorganize their actin cytoskeletons in order to exert traction forces on and move directionally over the dermis. Nonetheless, the transmembrane hemidesmosome component collagen XVII (ColXVII) is found in actin-rich lamella, situated behind the lamellipodium. A set of actin bundles, along which ColXVII colocalizes with actinin4, is present at each lamella. Knockdown of either ColXVII or actinin4 not only inhibits directed migration of keratinocytes but also relieves constraints on actin bundle retrograde movement at the site of lamella, such that actin bundle movement is enhanced more than 5-fold. Moreover, whereas control keratinocytes move in a stepwise fashion over a substrate by generating alternating traction forces, of up to 1.4 kPa, at each flank of the lamellipodium, ColXVII knockdown keratinocytes fail to do so. In summary, our data indicate that ColXVII-actinin4 complexes at the lamella of a moving keratinocyte regulate actin dynamics, thereby determining the direction of cell movement.-Hiroyasu, S., Colburn, Z. T., Jones, J. C. R. A hemidesmosomal protein regulates actin dynamics and traction forces in motile keratinocytes. PMID:26936359

  14. Characterizing regulated reservoirs dynamics in regional to global scale hydrologic models

    NASA Astrophysics Data System (ADS)

    Beighley, E.; Yoon, Y.; Lee, H.; Pavelsky, T.; Allen, G. H.

    2015-12-01

    Lakes and reservoirs are widely used for water supply and flood control resulting in regulated release of outflows that are nonconcurrent with inflows. In hydrologic modeling applications, accounting for the regulated behavior of reservoirs distributed throughout a river system poses a significant challenge because detailed reservoir operation rules or strategies can be difficult or not possible to obtain. Building on this problem, this study addresses the science questions: Can we model reservoir water storage changes and outlet discharges based on satellite measurements of river water surface elevation and inundated area, and How does repeat cycle, mission duration and measurement uncertainty impact our ability to characterize reservoir behavior? A modeling framework suitable for regional to global applications and based on the forthcoming Surface Water and Ocean Topography (SWOT) satellite mission is presented. Although our framework can be combined with data assimilation techniques for real-time flood forecasting, our goal is to represent reservoir storage patterns in large-scale hydrologic models for simulating: (i) impacts of future climate and/or land cover conditions on water resources, and (ii) synthetic storm events (e.g., 100-yr flood) or event catalogs for flood hazard and risk assessments. In-situ and remotely sensed reservoir dynamics are presented for select locations in the Mississippi River Basin and used in the Hillslope River Routing (HRR) hydrologic model to simulate downstream flow dynamics.

  15. Caveolin-1 Expression and Cavin Stability Regulate Caveolae Dynamics in Adipocyte Lipid Store Fluctuation

    PubMed Central

    Briand, Nolwenn; Prado, Cécilia; Mabilleau, Guillaume; Lasnier, Françoise; Le Lièpvre, Xavier; Covington, Jeffrey D.; Ravussin, Eric; Le Lay, Soazig

    2014-01-01

    Adipocytes specialized in the storage of energy as fat are among the most caveolae-enriched cell types. Loss of caveolae produces lipodystrophic diabetes in humans, which cannot be reversed by endothelial rescue of caveolin expression in mice, indicating major importance of adipocyte caveolae. However, how caveolae participate in fat cell functions is poorly understood. We investigated dynamic conditions of lipid store fluctuations and demonstrate reciprocal regulation of caveolae density and fat cell lipid droplet storage. We identified caveolin-1 expression as a crucial step in adipose cell lines and in mice to raise the density of caveolae, to increase adipocyte ability to accommodate larger lipid droplets, and to promote cell expansion by increased glucose utilization. In human subjects enrolled in a trial of 8 weeks of overfeeding to promote fattening, adipocyte expansion response correlated with initial caveolin-1 expression. Conversely, lipid mobilization in cultured adipocytes to induce lipid droplet shrinkage led to biphasic response of cavin-1 with ultimate loss of expression of cavin-1 and -3 and EHD2 by protein degradation, coincident with caveolae disassembly. We have identified the key steps in cavin/caveolin interplay regulating adipocyte caveolae dynamics. Our data establish that caveolae participate in a unique cell response connected to lipid store fluctuation, suggesting lipid-induced mechanotension in adipocytes. PMID:24969108

  16. The demography of climate-driven and density-regulated population dynamics in a perennial plant.

    PubMed

    Dahlgren, Johan P; Bengtsson, Karin; Ehrlén, Johan

    2016-04-01

    Identifying the internal and external drivers of population dynamics is a key objective in ecology, currently accentuated by the need to forecast the effects of climate change on species distributions and abundances. The interplay between environmental and density effects is one particularly important aspect of such forecasts. We examined the simultaneous impact of climate and intraspecific density on vital rates of the dwarf shrub Fumana procumbens over 20 yr, using generalized additive mixed models. We then analyzed effects on population dynamics using integral projection models. The population projection models accurately captured observed fluctuations in population size. Our analyses suggested the population was intrinsically regulated but with annual fluctuations in response to variation in weather. Simulations showed that implicitly assuming variation in demographic rates to be driven solely by the environment can overestimate extinction risks if there is density dependence. We conclude that density regulation can dampen effects of climate change on Fumana population size, and discuss the need to quantify density dependence in predictions of population responses to environmental changes. PMID:27220206

  17. Regulation of Myosin II Dynamics by Phosphorylation and Dephosphorylation of Its Light Chain in Epithelial Cells

    PubMed Central

    Watanabe, Toshiyuki; Hosoya, Hiroshi

    2007-01-01

    Nonmuscle myosin II, an actin-based motor protein, plays an essential role in actin cytoskeleton organization and cellular motility. Although phosphorylation of its regulatory light chain (MRLC) is known to be involved in myosin II filament assembly and motor activity in vitro, it remains unclear exactly how MRLC phosphorylation regulates myosin II dynamics in vivo. We established clones of Madin Darby canine kidney II epithelial cells expressing MRLC-enhanced green fluorescent protein or its mutants. Time-lapse imaging revealed that both phosphorylation and dephosphorylation are required for proper dynamics of myosin II. Inhibitors affecting myosin phosphorylation and MRLC mutants indicated that monophosphorylation of MRLC is required and sufficient for maintenance of stress fibers. Diphosphorylated MRLC stabilized myosin II filaments and was distributed locally in regions of stress fibers where contraction occurs, suggesting that diphosphorylation is involved in the spatial regulation of myosin II assembly and contraction. We further found that myosin phosphatase or Zipper-interacting protein kinase localizes to stress fibers depending on the activity of myosin II ATPase. PMID:17151359

  18. Caudal Regulates the Spatiotemporal Dynamics of Pair-Rule Waves in Tribolium

    PubMed Central

    El-Sherif, Ezzat; Zhu, Xin; Fu, Jinping; Brown, Susan J.

    2014-01-01

    In the short-germ beetle Tribolium castaneum, waves of pair-rule gene expression propagate from the posterior end of the embryo towards the anterior and eventually freeze into stable stripes, partitioning the anterior-posterior axis into segments. Similar waves in vertebrates are assumed to arise due to the modulation of a molecular clock by a posterior-to-anterior frequency gradient. However, neither a molecular candidate nor a functional role has been identified to date for such a frequency gradient, either in vertebrates or elsewhere. Here we provide evidence that the posterior gradient of Tc-caudal expression regulates the oscillation frequency of pair-rule gene expression in Tribolium. We show this by analyzing the spatiotemporal dynamics of Tc-even-skipped expression in strong and mild knockdown of Tc-caudal, and by correlating the extension, level and slope of the Tc-caudal expression gradient to the spatiotemporal dynamics of Tc-even-skipped expression in wild type as well as in different RNAi knockdowns of Tc-caudal regulators. Further, we show that besides its absolute importance for stripe generation in the static phase of the Tribolium blastoderm, a frequency gradient might serve as a buffer against noise during axis elongation phase in Tribolium as well as vertebrates. Our results highlight the role of frequency gradients in pattern formation. PMID:25329152

  19. Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake.

    PubMed

    Andrés, Zaida; Pérez-Hormaeche, Javier; Leidi, Eduardo O; Schlücking, Kathrin; Steinhorst, Leonie; McLachlan, Deirdre H; Schumacher, Karin; Hetherington, Alistair M; Kudla, Jörg; Cubero, Beatriz; Pardo, José M

    2014-04-29

    Stomatal movements rely on alterations in guard cell turgor. This requires massive K(+) bidirectional fluxes across the plasma and tonoplast membranes. Surprisingly, given their physiological importance, the transporters mediating the energetically uphill transport of K(+) into the vacuole remain to be identified. Here, we report that, in Arabidopsis guard cells, the tonoplast-localized K(+)/H(+) exchangers NHX1 and NHX2 are pivotal in the vacuolar accumulation of K(+) and that nhx1 nhx2 mutant lines are dysfunctional in stomatal regulation. Hypomorphic and complete-loss-of-function double mutants exhibited significantly impaired stomatal opening and closure responses. Disruption of K(+) accumulation in guard cells correlated with more acidic vacuoles and the disappearance of the highly dynamic remodelling of vacuolar structure associated with stomatal movements. Our results show that guard cell vacuolar accumulation of K(+) is a requirement for stomatal opening and a critical component in the overall K(+) homeostasis essential for stomatal closure, and suggest that vacuolar K(+) fluxes are also of decisive importance in the regulation of vacuolar dynamics and luminal pH that underlie stomatal movements. PMID:24733919

  20. Drought and Recovery: Independently Regulated Processes Highlighting the Importance of Protein Turnover Dynamics and Translational Regulation in Medicago truncatula.

    PubMed

    Lyon, David; Castillejo, Maria Angeles; Mehmeti-Tershani, Vlora; Staudinger, Christiana; Kleemaier, Christoph; Wienkoop, Stefanie

    2016-06-01

    Climate change in conjunction with population growth necessitates a systems biology approach to characterize plant drought acclimation as well as a more thorough understanding of the molecular mechanisms of stress recovery. Plants are exposed to a continuously changing environment. Extremes such as several weeks of drought are followed by rain. This requires a molecular plasticity of the plant enabling drought acclimation and the necessity of deacclimation processes for recovery and continuous growth.During drought stress and subsequent recovery, the metabolome and proteome are regulated through a sequence of molecular processes including synthesis and degradation and molecular interaction networks are part of this regulatory process. In order to study this complex regulatory network, a comprehensive analysis is presented for the first time, investigating protein turnover and regulatory classes of proteins and metabolites during a stress recovery scenario in the model legume Medicago truncatula The data give novel insights into the molecular capacity and differential processes required for acclimation and deacclimation of severe drought stressed plants.Functional cluster and network analyses unraveled independent regulatory mechanisms for stress and recovery with different dynamic phases that during the course of recovery define the plants deacclimation from stress. The combination of relative abundance levels and turnover analysis revealed an early transition phase that seems key for recovery initiation through water resupply and is independent from renutrition. Thus, a first indication for a metabolite and protein-based load capacity was observed necessary for the recovery from drought, an important but thus far ignored possible feature toward tolerance. The data indicate that apart from the plants molecular stress response mechanisms, plasticity may be related to the nutritional status of the plant prior to stress initiation. A new perspective and possible new

  1. Murine Mesenchymal Stem Cell Commitment to Differentiation Is Regulated by Mitochondrial Dynamics.

    PubMed

    Forni, Maria Fernanda; Peloggia, Julia; Trudeau, Kyle; Shirihai, Orian; Kowaltowski, Alicia J

    2016-03-01

    Mouse skin mesenchymal stem cells (msMSCs) are dermis CD105(+) CD90(+) CD73(+) CD29(+) CD34(-) mesodermal precursors which, after in vitro induction, undergo chondro, adipo, and osteogenesis. Extensive metabolic reconfiguration has been found to occur during differentiation, and the bioenergetic status of a cell is known to be dependent on the quality and abundance of the mitochondrial population, which may be regulated by fusion and fission. However, little is known regarding the impact of mitochondrial dynamics on the differentiation process. We addressed this knowledge gap by isolating MSCs from Swiss female mice, inducing these cells to differentiate into osteo, chondro, and adipocytes and measuring changes in mass, morphology, dynamics, and bioenergetics. Mitochondrial biogenesis was increased in adipogenesis, as evaluated through confocal microscopy, citrate synthase activity, and mtDNA content. The early steps of adipo and osteogenesis involved mitochondrial elongation, as well as increased expression of mitochondrial fusion proteins Mfn1 and 2. Chondrogenesis involved a fragmented mitochondrial phenotype, increased expression of fission proteins Drp1, Fis1, and 2, and enhanced mitophagy. These events were accompanied by profound bioenergetic alterations during the commitment period. Moreover, knockdown of Mfn2 in adipo and osteogenesis and the overexpression of a dominant negative form of Drp1 during chondrogenesis resulted in a loss of differentiation ability. Overall, we find that mitochondrial morphology and its regulating processes of fission/fusion are modulated early on during commitment, leading to alterations in the bioenergetic profile that are important for differentiation. We thus propose a central role for mitochondrial dynamics in the maintenance/commitment of mesenchymal stem cells. PMID:26638184

  2. Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics

    PubMed Central

    Bi, Yan; Mukhopadhyay, Dhriti; Drinane, Mary; Ji, Baoan; Li, Xing; Cao, Sheng

    2014-01-01

    Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl−/−; or Yes, Src, and Fyn knockout mice (YSF−/−)] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl−/− MEF showed impaired matrix endocytosis, YSF−/− MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9

  3. Dynamic aspects of functional regulation of the ATP receptor channel P2X2.

    PubMed

    Kubo, Yoshihiro; Fujiwara, Yuichiro; Keceli, Batu; Nakajo, Koichi

    2009-11-15

    The P2X(2) channel is a ligand-gated channel activated by ATP. Functional features that reflect the dynamic flexibility of the channel include time-dependent pore dilatation following ATP application and direct inhibitory interaction with activated nicotinic acetylcholine receptors on the membrane. We have been studying the mechanisms by which P2X(2) channel functionality is dynamically regulated. Using a Xenopus oocyte expression system, we observed that the pore properties, including ion selectivity and rectification, depend on the open channel density on the membrane. Pore dilatation was apparent when the open channel density was high and inward rectification was modest. We also observed that P2X(2) channels show voltage dependence, despite the absence of a canonical voltage sensor. At a semi-steady state after ATP application, P2X(2) channels were activated upon membrane hyperpolarization. This voltage-dependent activation was also [ATP] dependent. With increases in [ATP], the speed of hyperpolarization-induced activation was increased and the conductance-voltage relationship was shifted towards depolarized potentials. Based on analyses of experimental data and various simulations, we propose that these phenomena can be explained by assuming a fast ATP binding step and a rate-limiting voltage-dependent gating step. Complete elucidation of these regulatory mechanisms awaits dynamic imaging of functioning P2X(2) channels. PMID:19752115

  4. Conformational dynamics of a G-protein α subunit is tightly regulated by nucleotide binding.

    PubMed

    Goricanec, David; Stehle, Ralf; Egloff, Pascal; Grigoriu, Simina; Plückthun, Andreas; Wagner, Gerhard; Hagn, Franz

    2016-06-28

    Heterotrimeric G proteins play a pivotal role in the signal-transduction pathways initiated by G-protein-coupled receptor (GPCR) activation. Agonist-receptor binding causes GDP-to-GTP exchange and dissociation of the Gα subunit from the heterotrimeric G protein, leading to downstream signaling. Here, we studied the internal mobility of a G-protein α subunit in its apo and nucleotide-bound forms and characterized their dynamical features at multiple time scales using solution NMR, small-angle X-ray scattering, and molecular dynamics simulations. We find that binding of GTP analogs leads to a rigid and closed arrangement of the Gα subdomain, whereas the apo and GDP-bound forms are considerably more open and dynamic. Furthermore, we were able to detect two conformational states of the Gα Ras domain in slow exchange whose populations are regulated by binding to nucleotides and a GPCR. One of these conformational states, the open state, binds to the GPCR; the second conformation, the closed state, shows no interaction with the receptor. Binding to the GPCR stabilizes the open state. This study provides an in-depth analysis of the conformational landscape and the switching function of a G-protein α subunit and the influence of a GPCR in that landscape. PMID:27298341

  5. AAA+ Chaperone ClpX Regulates Dynamics of Prokaryotic Cytoskeletal Protein FtsZ*

    PubMed Central

    Sugimoto, Shinya; Yamanaka, Kunitoshi; Nishikori, Shingo; Miyagi, Atsushi; Ando, Toshio; Ogura, Teru

    2010-01-01

    AAA+ chaperone ClpX has been suggested to be a modulator of prokaryotic cytoskeletal protein FtsZ, but the details of recognition and remodeling of FtsZ by ClpX are largely unknown. In this study, we have extensively investigated the nature of FtsZ polymers and mechanisms of ClpX-regulated FtsZ polymer dynamics. We found that FtsZ polymerization is inhibited by ClpX in an ATP-independent manner and that the N-terminal domain of ClpX plays a crucial role for the inhibition of FtsZ polymerization. Single molecule analysis with high speed atomic force microscopy directly revealed that FtsZ polymer is in a dynamic equilibrium between polymerization and depolymerization on a time scale of several seconds. ClpX disassembles FtsZ polymers presumably by blocking reassembly of FtsZ. Furthermore, Escherichia coli cells overproducing ClpX and N-terminal domain of ClpX show filamentous morphology with abnormal localization of FtsZ. These data together suggest that ClpX modulates FtsZ polymer dynamics in an ATP-independent fashion, which is achieved by interaction between the N-terminal domain of ClpX and FtsZ monomers or oligomers. PMID:20022957

  6. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control

    PubMed Central

    Xu, Peng; Li, Lingyun; Zhang, Fuming; Stephanopoulos, Gregory; Koffas, Mattheos

    2014-01-01

    Global energy demand and environmental concerns have stimulated increasing efforts to produce carbon-neutral fuels directly from renewable resources. Microbially derived aliphatic hydrocarbons, the petroleum-replica fuels, have emerged as promising alternatives to meet this goal. However, engineering metabolic pathways with high productivity and yield requires dynamic redistribution of cellular resources and optimal control of pathway expression. Here we report a genetically encoded metabolic switch that enables dynamic regulation of fatty acids (FA) biosynthesis in Escherichia coli. The engineered strains were able to dynamically compensate the critical enzymes involved in the supply and consumption of malonyl-CoA and efficiently redirect carbon flux toward FA biosynthesis. Implementation of this metabolic control resulted in an oscillatory malonyl-CoA pattern and a balanced metabolism between cell growth and product formation, yielding 15.7- and 2.1-fold improvement in FA titer compared with the wild-type strain and the strain carrying the uncontrolled metabolic pathway. This study provides a new paradigm in metabolic engineering to control and optimize metabolic pathways facilitating the high-yield production of other malonyl-CoA–derived compounds. PMID:25049420

  7. Dynamic Regulation of APE1/Ref-1 as a Therapeutic Target Protein

    PubMed Central

    Choi, Sunga; Joo, Hee Kyoung

    2016-01-01

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein that plays a central role in the cellular response to DNA damage and redox regulation against oxidative stress. APE1/Ref-1 functions in the DNA base excision repair pathway, the redox regulation of several transcription factors, and the control of intracellular redox status through the inhibition of reactive oxygen species (ROS) production. APE1/Ref-1 is predominantly localized in the nucleus; however, its subcellular localization is dynamically regulated and it may be found in the mitochondria or elsewhere in the cytoplasm. Studies have identified a nuclear localization signal and a mitochondrial target sequence in APE1/Ref-1, as well as the involvement of the nuclear export system, as determinants of APE1/Ref-1 subcellular distribution. Recently, it was shown that APE1/Ref-1 is secreted in response to hyperacetylation at specific lysine residues. Additionally, post-translational modifications such as phosphorylation, S-nitrosation, and ubiquitination appear to play a role in fine-tuning the activities and subcellular localization of APE1/Ref-1. In this review, we will introduce the multifunctional role of APE1/Ref-1 and its potential usefulness as a therapeutic target in cancer and cardiovascular disease. PMID:27231670

  8. AKAP9, a Regulator of Microtubule Dynamics, Contributes to Blood-Testis Barrier Function.

    PubMed

    Venkatesh, Deepak; Mruk, Dolores; Herter, Jan M; Cullere, Xavier; Chojnacka, Katarzyna; Cheng, C Yan; Mayadas, Tanya N

    2016-02-01

    The blood-testis barrier (BTB), formed between adjacent Sertoli cells, undergoes extensive remodeling to facilitate the transport of preleptotene spermatocytes across the barrier from the basal to apical compartments of the seminiferous tubules for further development and maturation into spermatozoa. The actin cytoskeleton serves unique structural and supporting roles in this process, but little is known about the role of microtubules and their regulators during BTB restructuring. The large isoform of the cAMP-responsive scaffold protein AKAP9 regulates microtubule dynamics and nucleation at the Golgi. We found that conditional deletion of Akap9 in mice after the initial formation of the BTB at puberty leads to infertility. Akap9 deletion results in marked alterations in the organization of microtubules in Sertoli cells and a loss of barrier integrity despite a relatively intact, albeit more apically localized F-actin and BTB tight junctional proteins. These changes are accompanied by a loss of haploid spermatids due to impeded meiosis. The barrier, however, progressively reseals in older Akap9 null mice, which correlates with a reduction in germ cell apoptosis and a greater incidence of meiosis. However, spermiogenesis remains defective, suggesting additional roles for AKAP9 in this process. Together, our data suggest that AKAP9 and, by inference, the regulation of the microtubule network are critical for BTB function and subsequent germ cell development during spermatogenesis. PMID:26687990

  9. The BRCA1 Breast Cancer Suppressor: Regulation of Transport, Dynamics, and Function at Multiple Subcellular Locations

    PubMed Central

    Henderson, Beric R.

    2012-01-01

    Inherited mutations in the BRCA1 gene predispose to a higher risk of breast/ovarian cancer. The BRCA1 tumor suppressor is a 1863 amino acid protein with multiple protein interaction domains that facilitate its roles in regulating DNA repair and maintenance, cell cycle progression, transcription, and cell survival/apoptosis. BRCA1 was first identified as a nuclear phosphoprotein, but has since been shown to contain different transport sequences including nuclear export and nuclear localization signals that enable it to shuttle between specific sites within the nucleus and cytoplasm, including DNA repair foci, centrosomes, and mitochondria. BRCA1 nuclear transport and ubiquitin E3 ligase enzymatic activity are tightly regulated by the BRCA1 dimeric binding partner BARD1 and further modulated by cancer mutations and diverse signaling pathways. This paper will focus on the transport, dynamics, and multiple intracellular destinations of BRCA1 with emphasis on how regulation of these events has impact on, and determines, a broad range of important cellular functions. PMID:24278741

  10. Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity.

    PubMed

    Kevenaar, Josta T; Bianchi, Sarah; van Spronsen, Myrrhe; Olieric, Natacha; Lipka, Joanna; Frias, Cátia P; Mikhaylova, Marina; Harterink, Martin; Keijzer, Nanda; Wulf, Phebe S; Hilbert, Manuel; Kapitein, Lukas C; de Graaff, Esther; Ahkmanova, Anna; Steinmetz, Michel O; Hoogenraad, Casper C

    2016-04-01

    Kinesin motor proteins play a fundamental role for normal neuronal development by controlling intracellular cargo transport and microtubule (MT) cytoskeleton organization. Regulating kinesin activity is important to ensure their proper functioning, and their misregulation often leads to severe human neurological disorders. Homozygous nonsense mutations in kinesin-binding protein (KBP)/KIAA1279 cause the neurological disorder Goldberg-Shprintzen syndrome (GOSHS), which is characterized by intellectual disability, microcephaly, and axonal neuropathy. Here, we show that KBP regulates kinesin activity by interacting with the motor domains of a specific subset of kinesins to prevent their association with the MT cytoskeleton. The KBP-interacting kinesins include cargo-transporting motors such as kinesin-3/KIF1A and MT-depolymerizing motor kinesin-8/KIF18A. We found that KBP blocks KIF1A/UNC-104-mediated synaptic vesicle transport in cultured hippocampal neurons and in C. elegans PVD sensory neurons. In contrast, depletion of KBP results in the accumulation of KIF1A motors and synaptic vesicles in the axonal growth cone. We also show that KBP regulates neuronal MT dynamics by controlling KIF18A activity. Our data suggest that KBP functions as a kinesin inhibitor that modulates MT-based cargo motility and depolymerizing activity of a subset of kinesin motors. We propose that misregulation of KBP-controlled kinesin motors may represent the underlying molecular mechanism that contributes to the neuropathological defects observed in GOSHS patients. PMID:26948876

  11. Mapping a Dynamic Innate Immunity Protein Interaction Network Regulating Type I Interferon Production

    PubMed Central

    Li, Shitao; Wang, Lingyan; Berman, Michael; Kong, Young-Yun; Dorf, Martin E.

    2011-01-01

    SUMMARY To systematically investigate innate immune signaling networks regulating production of type I interferon, we analyzed protein complexes formed after microbial recognition. Fifty-eight baits were associated with 260 interacting proteins forming a human innate immunity interactome for type I interferon (HI5) of 401 unique interactions; 21% of interactions were modulated by RNA, DNA, or LPS. Overexpression and depletion analyses identified 22 unique genes that regulated NF-κB and ISRE reporter activity, viral replication, or virus-induced interferon production. Detailed mechanistic analysis defined a role for mind bomb (MIB) E3 ligases in K63-linked ubiquitination of TBK1, a kinase that phosphorylates IRF transcription factors controlling interferon production. Mib genes selectively controlled responses to cytosolic RNA. MIB deficiency reduced antiviral activity, establishing the role of MIB proteins as positive regulators of antiviral responses. The HI5 provides a dynamic physical and regulatory network that serves as a resource for mechanistic analysis of innate immune signaling. PMID:21903422

  12. TLR Stimulation Dynamically Regulates Heme and Iron Export Gene Expression in Macrophages.

    PubMed

    Philip, Mary; Chiu, Edison Y; Hajjar, Adeline M; Abkowitz, Janis L

    2016-01-01

    Pathogenic bacteria have evolved multiple mechanisms to capture iron or iron-containing heme from host tissues or blood. In response, organisms have developed defense mechanisms to keep iron from pathogens. Very little of the body's iron store is available as free heme; rather nearly all body iron is complexed with heme or other proteins. The feline leukemia virus, subgroup C (FeLV-C) receptor, FLVCR, exports heme from cells. It was unknown whether FLVCR regulates heme-iron availability after infection, but given that other heme regulatory proteins are upregulated in macrophages in response to bacterial infection, we hypothesized that macrophages dynamically regulate FLVCR. We stimulated murine primary macrophages or macrophage cell lines with LPS and found that Flvcr is rapidly downregulated in a TLR4/MD2-dependent manner; TLR1/2 and TLR3 stimulation also decreased Flvcr expression. We identified several candidate TLR-activated transcription factors that can bind to the Flvcr promoter. Macrophages must balance the need to sequester iron from systemic circulating or intracellular pathogens with the macrophage requirement for heme and iron to produce reactive oxygen species. Our findings underscore the complexity of this regulation and point to a new role for FLVCR and heme export in macrophages responses to infection and inflammation. PMID:27006955

  13. Subcellular targeting and dynamic regulation of PTEN: implications for neuronal cells and neurological disorders

    PubMed Central

    Kreis, Patricia; Leondaritis, George; Lieberam, Ivo; Eickholt, Britta J.

    2014-01-01

    PTEN is a lipid and protein phosphatase that regulates a diverse range of cellular mechanisms. PTEN is mainly present in the cytosol and transiently associates with the plasma membrane to dephosphorylate PI(3,4,5)P3, thereby antagonizing the PI3-Kinase signaling pathway. Recently, PTEN has been shown to associate also with organelles such as the endoplasmic reticulum (ER), the mitochondria, or the nucleus, and to be secreted outside of the cell. In addition, PTEN dynamically localizes to specialized sub-cellular compartments such as the neuronal growth cone or dendritic spines. The diverse localizations of PTEN imply a tight temporal and spatial regulation, orchestrated by mechanisms such as posttranslational modifications, formation of distinct protein–protein interactions, or the activation/recruitment of PTEN downstream of external cues. The regulation of PTEN function is thus not only important at the enzymatic activity level, but is also associated to its spatial distribution. In this review we will summarize (i) recent findings that highlight mechanisms controlling PTEN movement and sub-cellular localization, and (ii) current understanding of how PTEN localization is achieved by mechanisms controlling posttranslational modification, by association with binding partners and by PTEN structural or activity requirements. Finally, we will discuss the possible roles of compartmentalized PTEN in developing and mature neurons in health and disease. PMID:24744697

  14. TLR Stimulation Dynamically Regulates Heme and Iron Export Gene Expression in Macrophages

    PubMed Central

    Philip, Mary; Chiu, Edison Y.; Hajjar, Adeline M.; Abkowitz, Janis L.

    2016-01-01

    Pathogenic bacteria have evolved multiple mechanisms to capture iron or iron-containing heme from host tissues or blood. In response, organisms have developed defense mechanisms to keep iron from pathogens. Very little of the body's iron store is available as free heme; rather nearly all body iron is complexed with heme or other proteins. The feline leukemia virus, subgroup C (FeLV-C) receptor, FLVCR, exports heme from cells. It was unknown whether FLVCR regulates heme-iron availability after infection, but given that other heme regulatory proteins are upregulated in macrophages in response to bacterial infection, we hypothesized that macrophages dynamically regulate FLVCR. We stimulated murine primary macrophages or macrophage cell lines with LPS and found that Flvcr is rapidly downregulated in a TLR4/MD2-dependent manner; TLR1/2 and TLR3 stimulation also decreased Flvcr expression. We identified several candidate TLR-activated transcription factors that can bind to the Flvcr promoter. Macrophages must balance the need to sequester iron from systemic circulating or intracellular pathogens with the macrophage requirement for heme and iron to produce reactive oxygen species. Our findings underscore the complexity of this regulation and point to a new role for FLVCR and heme export in macrophages responses to infection and inflammation. PMID:27006955

  15. Mechanism for dynamic regulation of iNOS expression after UVB-irradiation.

    PubMed

    Lu, Wei; Wu, Shiyong

    2013-08-01

    Ultraviolet B (UVB) induces an immediate activation of cNOSs, which contributes to the early release of nitric oxide after irradiation. UVB also induces the expression of iNOS, which peaks at both the mRNA and protein level near 24 h post-irradiation. The induced expression of iNOS contributes largely to the late elevation of nitric oxide after UVB irradiation. However, the regulation of iNOS expression in the early stages of UVB irradiation is not well studied. We previously reported that the UVB-induced early release of nitric oxide leads to the activation of PERK and GCN2, which phosphorylate the alpha-subunit of eIF2 and inhibit protein synthesis. In this report, we demonstrate that eIF2 phosphorylation plays a critical role in regulation of iNOS expression in the early-phase (with in 12 h) of UVB irradiation. Our data shows that with an increased phosphorylation of eIF2, the iNOS protein expression was reduced even though the iNOS mRNA expression was linearly increased in HaCaT and MEF cells after UVB irradiation. The UVB-induced dynamic up- and down-regulation of iNOS expression was almost completely lost in MEF(A/A) cells, which contain a nonphosphorylatable S51A mutation on eIF2. Our results suggest that the UVB-induced eIF2 phosphorylation does not only regulate iNOS expression at the translational level, but at the transcriptional level as well. PMID:22430947

  16. Dynamic Regulation of H3K27 Trimethylation during Arabidopsis Differentiation

    PubMed Central

    Lafos, Marcel; Kroll, Phillip; Hohenstatt, Mareike L.; Thorpe, Frazer L.; Clarenz, Oliver; Schubert, Daniel

    2011-01-01

    During growth of multicellular organisms, identities of stem cells and differentiated cells need to be maintained. Cell fate is epigenetically controlled by the conserved Polycomb-group (Pc-G) proteins that repress their target genes by catalyzing histone H3 lysine 27 trimethylation (H3K27me3). Although H3K27me3 is associated with mitotically stable gene repression, a large fraction of H3K27me3 target genes are tissue-specifically activated during differentiation processes. However, in plants it is currently unclear whether H3K27me3 is already present in undifferentiated cells and dynamically regulated to permit tissue-specific gene repression or activation. We used whole-genome tiling arrays to identify the H3K27me3 target genes in undifferentiated cells of the shoot apical meristem and in differentiated leaf cells. Hundreds of genes gain or lose H3K27me3 upon differentiation, demonstrating dynamic regulation of an epigenetic modification in plants. H3K27me3 is correlated with gene repression, and its release preferentially results in tissue-specific gene activation, both during differentiation and in Pc-G mutants. We further reveal meristem- and leaf-specific targeting of individual gene families including known but also likely novel regulators of differentiation and stem cell regulation. Interestingly, H3K27me3 directly represses only specific transcription factor families, but indirectly activates others through H3K27me3-mediated silencing of microRNA genes. Furthermore, H3K27me3 targeting of genes involved in biosynthesis, transport, perception, and signal transduction of the phytohormone auxin demonstrates control of an entire signaling pathway. Based on these and previous analyses, we propose that H3K27me3 is one of the major determinants of tissue-specific expression patterns in plants, which restricts expression of its direct targets and promotes gene expression indirectly by repressing miRNA genes. PMID:21490956

  17. Investigations of stability and dynamic performances of switching regulators employing current-injected control

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Carter, R. A.

    1981-01-01

    The stability and dynamic performances of a buck/boost regulator employing a current-injected control are examined. Small-signal models for the power state, the multi-loop error processor and the duty-cycle pulse-modulator are developed. The error-processor model which incorporates the current-injected loop, the dc loop and the compensation network permits evaluation of the effects of each individual control loop and their combined efforts toward shaping the performance characteristics of the closed-loop system. Comparisons are made between this modeling approach and earlier approaches. Some important yet subtle dissimilarities are discussed. This model predicts the constant-frequency 50 percent duty-cycle instability which is inherent to the current-injected control.

  18. Dynamic regulation of uncoupling protein 2 content in INS-1E insulinoma cells

    PubMed Central

    Azzu, Vian; Affourtit, Charles; Breen, Eamon P.; Parker, Nadeene; Brand, Martin D.

    2008-01-01

    Uncoupling protein 2 (UCP2) regulates glucose-stimulated insulin secretion in pancreatic beta-cells. UCP2 content, measured by calibrated immunoblot in INS-1E insulinoma cells (a pancreatic beta-cell model) grown in RPMI medium, and INS-1E mitochondria, was 2.0 ng/million cells (7.9 ng/mg mitochondrial protein). UCP2 content was lower in cells incubated without glutamine and higher in cells incubated with 20 mM glucose, and varied from 1.0–4.4 ng/million cells (2.7–14.5 ng/mg mitochondrial protein). This dynamic response to nutrients was achieved by varied expression rates against a background of a very short UCP2 protein half-life of about 1 h. PMID:18692019

  19. Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior.

    PubMed

    Ferenczi, Emily A; Zalocusky, Kelly A; Liston, Conor; Grosenick, Logan; Warden, Melissa R; Amatya, Debha; Katovich, Kiefer; Mehta, Hershel; Patenaude, Brian; Ramakrishnan, Charu; Kalanithi, Paul; Etkin, Amit; Knutson, Brian; Glover, Gary H; Deisseroth, Karl

    2016-01-01

    Motivation for reward drives adaptive behaviors, whereas impairment of reward perception and experience (anhedonia) can contribute to psychiatric diseases, including depression and schizophrenia. We sought to test the hypothesis that the medial prefrontal cortex (mPFC) controls interactions among specific subcortical regions that govern hedonic responses. By using optogenetic functional magnetic resonance imaging to locally manipulate but globally visualize neural activity in rats, we found that dopamine neuron stimulation drives striatal activity, whereas locally increased mPFC excitability reduces this striatal response and inhibits the behavioral drive for dopaminergic stimulation. This chronic mPFC overactivity also stably suppresses natural reward-motivated behaviors and induces specific new brainwide functional interactions, which predict the degree of anhedonia in individuals. These findings describe a mechanism by which mPFC modulates expression of reward-seeking behavior, by regulating the dynamical interactions between specific distant subcortical regions. PMID:26722001

  20. Dynamic regulation of fluorescent proteins from a single species of coral.

    PubMed

    Kao, Hung-Teh; Sturgis, Shelby; DeSalle, Rob; Tsai, Julia; Davis, Douglas; Gruber, David F; Pieribone, Vincent A

    2007-01-01

    To gain a better understanding of the natural function of fluorescent proteins, we have undertaken quantitative analyses of these proteins in a single species of coral, Montastraea cavernosa, residing around Turneffe atoll, on the Belizean Barrier Reef. We identified at least 10 members of a fluorescent protein family in this species, which consist of 4 distinct spectral classes. As much as a 10-fold change in the overall expression of fluorescent proteins was observed from specimen to specimen, suggesting that fluorescent proteins are dynamically regulated in response to environmental or physiological conditions. We found that the expression of some proteins was inversely correlated with depth, and that groups of proteins were coordinately expressed. There was no relationship between the expression of fluorescent proteins and the natural coloration of the Montastraea cavernosa specimens in this study. These findings have implications for current hypotheses regarding the properties and natural function of fluorescent proteins. PMID:17955294

  1. Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior

    PubMed Central

    Grosenick, Logan; Warden, Melissa R.; Amatya, Debha; Katovich, Kiefer; Mehta, Hershel; Patenaude, Brian; Ramakrishnan, Charu; Kalanithi, Paul; Etkin, Amit; Knutson, Brian; Glover, Gary H.; Deisseroth, Karl

    2016-01-01

    Motivation for reward drives adaptive behaviors, whereas impairment of reward perception and experience (anhedonia) can contribute to psychiatric diseases, including depression and schizophrenia. We sought to test the hypothesis that the medial prefrontal cortex (mPFC) controls interactions among specific subcortical regions that govern hedonic responses. By using optogenetic functional magnetic resonance imaging to locally manipulate but globally visualize neural activity in rats, we found that dopamine neuron stimulation drives striatal activity, whereas locally increased mPFC excitability reduces this striatal response and inhibits the behavioral drive for dopaminergic stimulation. This chronic mPFC overactivity also stably suppresses natural reward-motivated behaviors and induces specific new brainwide functional interactions, which predict the degree of anhedonia in individuals. These findings describe a mechanism by which mPFC modulates expression of reward-seeking behavior, by regulating the dynamical interactions between specific distant subcortical regions. PMID:26722001

  2. Dynamic control of type I IFN signalling by an integrated network of negative regulators.

    PubMed

    Porritt, Rebecca A; Hertzog, Paul J

    2015-03-01

    Whereas type I interferons (IFNs) have critical roles in protection from pathogens, excessive IFN responses contribute to pathology in both acute and chronic settings, pointing to the importance of balancing activating signals with regulatory mechanisms that appropriately tune the response. Here we review evidence for an integrated network of negative regulators of IFN production and action, which function at all levels of the activating and effector signalling pathways. We propose that the aim of this extensive network is to limit tissue damage while enabling an IFN response that is temporally appropriate and of sufficient magnitude. Understanding the architecture and dynamics of this network, and how it differs in distinct tissues, will provide new insights into IFN biology and aid the design of more effective therapeutics. PMID:25725583

  3. The Kinesin KIF1C and Microtubule Plus Ends Regulate Podosome Dynamics in Macrophages

    PubMed Central

    Kopp, Petra; Lammers, Reiner; Aepfelbacher, Martin; Woehlke, Günther; Rudel, Thomas; Machuy, Nikolaus; Steffen, Walter

    2006-01-01

    Microtubules are important for the turnover of podosomes, dynamic, actin-rich adhesions implicated in migration and invasion of monocytic cells. The molecular basis for this functional dependency, however, remained unclear. Here, we show that contact by microtubule plus ends critically influences the cellular fate of podosomes in primary human macrophages. In particular, we identify the kinesin KIF1C, a member of the Kinesin-3 family, as a plus-end–enriched motor that targets regions of podosome turnover. Expression of mutation constructs or small interfering RNA-/short hairpin RNA-based depletion of KIF1C resulted in decreased podosome dynamics and ultimately in podosome deficiency. Importantly, protein interaction studies showed that KIF1C binds to nonmuscle myosin IIA via its PTPD-binding domain, thus providing an interface between the actin and tubulin cytoskeletons, which may facilitate the subcellular targeting of podosomes by microtubules. This is the first report to implicate a kinesin in podosome regulation and also the first to describe a function for KIF1C in human cells. PMID:16554367

  4. Quantitative image analysis identifies pVHL as a key regulator of microtubule dynamic instability.

    PubMed

    Thoma, Claudio R; Matov, Alexandre; Gutbrodt, Katrin L; Hoerner, Christian R; Smole, Zlatko; Krek, Wilhelm; Danuser, Gaudenz

    2010-09-20

    Von Hippel-Lindau (VHL) tumor suppressor gene mutations predispose carriers to kidney cancer. The protein pVHL has been shown to interact with microtubules (MTs), which is critical to cilia maintenance and mitotic spindle orientation. However, the function for pVHL in the regulation of MT dynamics is unknown. We tracked MT growth via the plus end marker EB3 (end-binding protein 3)-GFP and inferred additional parameters of MT dynamics indirectly by spatiotemporal grouping of growth tracks from live cell imaging. Our data establish pVHL as a near-optimal MT-stabilizing protein: it attenuates tubulin turnover, both during MT growth and shrinkage, inhibits catastrophe, and enhances rescue frequencies. These functions are mediated, in part, by inhibition of tubulin guanosine triphosphatase activity in vitro and at MT plus ends and along the MT lattice in vivo. Mutants connected to the VHL cancer syndrome are differentially compromised in these activities. Thus, single cell-level analysis of pVHL MT regulatory function allows new predictions for genotype to phenotype associations that deviate from the coarser clinically defined mutant classifications. PMID:20855504

  5. The Role of Distant Mutations and Allosteric Regulation on LovD Active Site Dynamics

    PubMed Central

    Jiménez-Osés, Gonzalo; Osuna, Sílvia; Gao, Xue; Sawaya, Michael R.; Gilson, Lynne; Collier, Steven J.; Huisman, Gjalt W.; Yeates, Todd O.; Tang, Yi; Houk, K. N.

    2014-01-01

    Natural enzymes have evolved to perform their cellular functions under complex selective pressures, which often require their catalytic activities to be regulated by other proteins. We contrasted a natural enzyme, LovD, which acts on a protein-bound (LovF) acyl substrate, with a laboratory-generated variant that was transformed by directed evolution to accept instead a small free acyl thioester, and no longer requires the acyl carrier protein. The resulting 29-mutant variant is 1000-fold more efficient in the synthesis of the drug simvastatin than the wild-type LovD. This is the first non-patent report of the enzyme currently used for the manufacture of simvastatin, as well as the intermediate evolved variants. Crystal structures and microsecond molecular dynamics simulations revealed the mechanism by which the laboratory-generated mutations free LovD from dependence on protein-protein interactions. Mutations dramatically altered conformational dynamics of the catalytic residues, obviating the need for allosteric modulation by the acyl carrier LovF. PMID:24727900

  6. Mechanisms of allosteric gene regulation by NMR quantification of microsecond-millisecond protein dynamics.

    PubMed

    Kleckner, Ian R; Gollnick, Paul; Foster, Mark P

    2012-01-13

    The trp RNA-binding attenuation protein (TRAP) is a paradigmatic allosteric protein that regulates the tryptophan biosynthetic genes associated with the trp operon in bacilli. The ring-shaped 11-mer TRAP is activated for recognition of a specific trp-mRNA target by binding up to 11 tryptophan molecules. To characterize the mechanisms of tryptophan-induced TRAP activation, we have performed methyl relaxation dispersion (MRD) nuclear magnetic resonance (NMR) experiments that probe the time-dependent structure of TRAP in the microsecond-to-millisecond "chemical exchange" time window. We find significant side chain flexibility localized to the RNA and tryptophan binding sites of the apo protein and that these dynamics are dramatically reduced upon ligand binding. Analysis of the MRD NMR data provides insights into the structural nature of transiently populated conformations sampled in solution by apo TRAP. The MRD data are inconsistent with global two-state exchange, indicating that conformational sampling in apo TRAP is asynchronous. These findings imply a temporally heterogeneous population of structures that are incompatible with RNA binding and substantiate the study of TRAP as a paradigm for probing and understanding essential dynamics in allosteric, regulatory proteins. PMID:22115774

  7. Neuronal Actin Dynamics, Spine Density and Neuronal Dendritic Complexity Are Regulated by CAP2.

    PubMed

    Kumar, Atul; Paeger, Lars; Kosmas, Kosmas; Kloppenburg, Peter; Noegel, Angelika A; Peche, Vivek S

    2016-01-01

    Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2(gt/gt) mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2(gt/gt) with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2(gt/gt) neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics. PMID:27507934

  8. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics.

    PubMed

    Ho, Chin Yee; Jaalouk, Diana E; Vartiainen, Maria K; Lammerding, Jan

    2013-05-23

    Laminopathies, caused by mutations in the LMNA gene encoding the nuclear envelope proteins lamins A and C, represent a diverse group of diseases that include Emery-Dreifuss muscular dystrophy (EDMD), dilated cardiomyopathy (DCM), limb-girdle muscular dystrophy, and Hutchison-Gilford progeria syndrome. Most LMNA mutations affect skeletal and cardiac muscle by mechanisms that remain incompletely understood. Loss of structural function and altered interaction of mutant lamins with (tissue-specific) transcription factors have been proposed to explain the tissue-specific phenotypes. Here we report in mice that lamin-A/C-deficient (Lmna(-/-)) and Lmna(N195K/N195K) mutant cells have impaired nuclear translocation and downstream signalling of the mechanosensitive transcription factor megakaryoblastic leukaemia 1 (MKL1), a myocardin family member that is pivotal in cardiac development and function. Altered nucleo-cytoplasmic shuttling of MKL1 was caused by altered actin dynamics in Lmna(-/-) and Lmna(N195K/N195K) mutant cells. Ectopic expression of the nuclear envelope protein emerin, which is mislocalized in Lmna mutant cells and also linked to EDMD and DCM, restored MKL1 nuclear translocation and rescued actin dynamics in mutant cells. These findings present a novel mechanism that could provide insight into the disease aetiology for the cardiac phenotype in many laminopathies, whereby lamin A/C and emerin regulate gene expression through modulation of nuclear and cytoskeletal actin polymerization. PMID:23644458

  9. Lamin A/C and emerin regulate MKL1/SRF activity by modulating actin dynamics

    PubMed Central

    Ho, Chin Yee; Jaalouk, Diana E.; Vartiainen, Maria K.; Lammerding, Jan

    2013-01-01

    Laminopathies, caused by mutations in the LMNA gene encoding the nuclear envelope proteins lamins A and C, represent a diverse group of diseases that include Emery-Dreifuss Muscular Dystrophy (EDMD), dilated cardiomyopathy (DCM), limb-girdle muscular dystrophy, and Hutchison-Gilford progeria syndrome (HGPS).1 The majority of LMNA mutations affect skeletal and cardiac muscle by mechanisms that remain incompletely understood. Loss of structural function and disturbed interaction of mutant lamins with (tissue-specific) transcription factors have been proposed to explain the tissue-specific phenotypes.1 We report here that lamin A/C-deficient (Lmna−/−) and Lmna N195K mutant cells have impaired nuclear translocation and downstream signaling of the mechanosensitive transcription factor megakaryoblastic leukaemia 1 (MKL1), a myocardin family member that is pivotal in cardiac development and function.2 Disturbed nucleo-cytoplasmic shuttling of MKL1 was caused by altered actin dynamics in Lmna−/− and N195K mutant cells. Ectopic expression of the nuclear envelope protein emerin, which is mislocalized in Lmna mutant cells and also linked to EDMD and DCM, restored MKL1 nuclear translocation and rescued actin dynamics in mutant cells. These findings present a novel mechanism that could provide insight into the disease etiology for the cardiac phenotype in many laminopathies, whereby lamins A/C and emerin regulate gene expression through modulation of nuclear and cytoskeletal actin polymerization. PMID:23644458

  10. Nestin regulates proliferation and invasion of gastrointestinal stromal tumor cells by altering mitochondrial dynamics.

    PubMed

    Wang, J; Cai, J; Huang, Y; Ke, Q; Wu, B; Wang, S; Han, X; Wang, T; Wang, Y; Li, W; Lao, C; Song, W; Xiang, A P

    2016-06-16

    Nestin is widely expressed in numerous tumors and has become a diagnostic and prognostic indicator. However, the exact mechanism by which nestin contributes to tumor malignancy remains poorly understood. Here, we found marked upregulation of nestin expression in highly proliferative and invasive gastrointestinal stromal tumor (GIST) specimens. Nestin knockdown in GIST cells reduced the proliferative and invasive activity owing to a decrease of mitochondrial intracellular reactive oxygen species (ROS) generation. Furthermore, nestin was co-localized with mitochondria, and knockdown of nestin increased mitochondrial elongation and influenced the mitochondrial function, including oxygen consumption rates, ATP generation and mitochondrial membrane potential and so on. In exploring the underlying mechanism, we demonstrated nestin knockdown inhibited the mitochondrial recruitment of Dynamin-related protein1 and induced the change of mitochondrial dynamics. Thus, nestin may have an important role in GIST malignancy by regulating mitochondrial dynamics and altering intracellular ROS levels. The findings provide new clues to reveal mechanisms by which nestin mediates the proliferation and invasion of GISTs. PMID:26434586

  11. Neuronal Actin Dynamics, Spine Density and Neuronal Dendritic Complexity Are Regulated by CAP2

    PubMed Central

    Kumar, Atul; Paeger, Lars; Kosmas, Kosmas; Kloppenburg, Peter; Noegel, Angelika A.; Peche, Vivek S.

    2016-01-01

    Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2gt/gt mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2gt/gt with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2gt/gt neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics. PMID:27507934

  12. Model-Driven Understanding of Palmitoylation Dynamics: Regulated Acylation of the Endoplasmic Reticulum Chaperone Calnexin

    PubMed Central

    Sandoz, Patrick A.; Savoglidis, Georgios; Hatzimanikatis, Vassily; van der Goot, F. Gisou

    2016-01-01

    Cellular functions are largely regulated by reversible post-translational modifications of proteins which act as switches. Amongst these, S-palmitoylation is unique in that it confers hydrophobicity. Due to technical difficulties, the understanding of this modification has lagged behind. To investigate principles underlying dynamics and regulation of palmitoylation, we have here studied a key cellular protein, the ER chaperone calnexin, which requires dual palmitoylation for function. Apprehending the complex inter-conversion between single-, double- and non- palmitoylated species required combining experimental determination of kinetic parameters with extensive mathematical modelling. We found that calnexin, due to the presence of two cooperative sites, becomes stably acylated, which not only confers function but also a remarkable increase in stability. Unexpectedly, stochastic simulations revealed that palmitoylation does not occur soon after synthesis, but many hours later. This prediction guided us to find that phosphorylation actively delays calnexin palmitoylation in resting cells. Altogether this study reveals that cells synthesize 5 times more calnexin than needed under resting condition, most of which is degraded. This unused pool can be mobilized by preventing phosphorylation or increasing the activity of the palmitoyltransferase DHHC6. PMID:26900856

  13. Dynamic regulation of Gata factor levels is more important than their identity.

    PubMed

    Ferreira, Rita; Wai, Albert; Shimizu, Ritsuko; Gillemans, Nynke; Rottier, Robbert; von Lindern, Marieke; Ohneda, Kinuko; Grosveld, Frank; Yamamoto, Masayuki; Philipsen, Sjaak

    2007-06-15

    Three Gata transcription factors (Gata1, -2, and -3) are essential for hematopoiesis. These factors are thought to play distinct roles because they do not functionally replace each other. For instance, Gata2 messenger RNA (mRNA) expression is highly elevated in Gata1-null erythroid cells, yet this does not rescue the defect. Here, we test whether Gata2 and -3 transgenes rescue the erythroid defect of Gata1-null mice, if expressed in the appropriate spatiotemporal pattern. Gata1, -2, and -3 transgenes driven by beta-globin regulatory elements, directing expression to late stages of differentiation, fail to rescue erythropoiesis in Gata1-null mutants. In contrast, when controlled by Gata1 regulatory elements, directing expression to the early stages of differentiation, Gata1, -2, and -3 do rescue the Gata1-null phenotype. The dramatic increase of endogenous Gata2 mRNA in Gata1-null progenitors is not reflected in Gata2 protein levels, invoking translational regulation. Our data show that the dynamic spatiotemporal regulation of Gata factor levels is more important than their identity and provide a paradigm for developmental control mechanisms that are hard-wired in cis-regulatory elements. PMID:17327407

  14. SynCAM 1 Adhesion Dynamically Regulates Synapse Number and Impacts Plasticity and Learning

    PubMed Central

    Robbins, Elissa M.; Krupp, Alexander J.; de Arce, Karen Perez; Ghosh, Ananda K.; Fogel, Adam I.; Boucard, Antony; Südhof, Thomas C.; Stein, Valentin; Biederer, Thomas

    2010-01-01

    Summary Synaptogenesis is required for wiring neuronal circuits in the developing brain and continues to remodel adult networks. However, the molecules organizing synapse development and maintenance in vivo remain incompletely understood. We now demonstrate that the immunoglobulin adhesion molecule SynCAM 1 dynamically alters synapse number and plasticity. Overexpression of SynCAM 1 in transgenic mice promotes excitatory synapse number, while loss of SynCAM 1 results in fewer excitatory synapses. By turning off SynCAM 1 overexpression in transgenic brains, we show that it maintains the newly induced synapses. SynCAM 1 also functions at mature synapses to alter their plasticity by regulating long-term depression. Consistent with these effects on neuronal connectivity, SynCAM 1 expression affects spatial learning, with knock-out mice learning better. The reciprocal effects of increased SynCAM 1 expression and loss reveal that this adhesion molecule contributes to the regulation of synapse number and plasticity, and impacts how neuronal networks undergo activity-dependent changes. PMID:21145003

  15. Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2

    PubMed Central

    Humphrey, Sean J.; Yang, Guang; Yang, Pengyi; Fazakerley, Daniel J.; Stöckli, Jacqueline; Yang, Jean Y.; James, David E.

    2013-01-01

    Summary A major challenge of the post-genomics era is to define the connectivity of protein phosphorylation networks. Here, we quantitatively delineate the insulin signaling network in adipocytes by high-resolution mass spectrometry-based proteomics. These data reveal the complexity of intracellular protein phosphorylation. We identified 37,248 phosphorylation sites on 5,705 proteins in this single-cell type, with approximately 15% responding to insulin. We integrated these large-scale phosphoproteomics data using a machine learning approach to predict physiological substrates of several diverse insulin-regulated kinases. This led to the identification of an Akt substrate, SIN1, a core component of the mTORC2 complex. The phosphorylation of SIN1 by Akt was found to regulate mTORC2 activity in response to growth factors, revealing topological insights into the Akt/mTOR signaling network. The dynamic phosphoproteome described here contains numerous phosphorylation sites on proteins involved in diverse molecular functions and should serve as a useful functional resource for cell biologists. PMID:23684622

  16. Bio‐inspired Dynamic Gradients Regulated by Supramolecular Bindings in Receptor‐Embedded Hydrogel Matrices

    PubMed Central

    Luan, Xinglong; Wu, Jing; Jonkheijm, Pascal; Li, Guangtao; Jiang, Lei

    2016-01-01

    Abstract The kinetics of supramolecular bindings are fundamentally important for molecular motions and spatial–temporal distributions in biological systems, but have rarely been employed in preparing artificial materials. This report proposes a bio‐inspired concept to regulate dynamic gradients through the coupled supramolecular binding and diffusion process in receptor‐embedded hydrogel matrices. A new type of hydrogel that uses cyclodextrin (CD) as both the gelling moiety and the receptors is prepared as the diffusion matrices. The diffusible guest, 4‐aminoazobenzene, quickly and reversibly binds to matrices‐bound CD during diffusion and generates steeper gradients than regular diffusion. Weakened bindings induced through UV irradiation extend the gradients. Combined with numerical simulation, these results indicate that the coupled binding–diffusion could be viewed as slowed diffusion, regulated jointly by the binding constant and the equilibrium receptor concentrations, and gradients within a bio‐relevant extent of 4 mm are preserved up to 90 h. This report should inspire design strategies of biomedical or cell‐culturing materials. PMID:27547643

  17. The Treg/Th17 Axis: A Dynamic Balance Regulated by the Gut Microbiome

    PubMed Central

    Omenetti, Sara; Pizarro, Theresa T.

    2015-01-01

    T-helper 17 (Th17) and T-regulatory (Treg) cells are frequently found at barrier surfaces, particularly within the intestinal mucosa, where they function to protect the host from pathogenic microorganisms and to restrain excessive effector T-cell responses, respectively. Despite their differing functional properties, Th17 cells and Tregs share similar developmental requirements. In fact, the fate of antigen-naïve T-cells to either Th17 or Treg lineages is finely regulated by key mediators, including TGFβ, IL-6, and all-trans retinoic acid. Importantly, the intestinal microbiome also provides immunostimulatory signals, which can activate innate and downstream adaptive immune responses. Specific components of the gut microbiome have been implicated in the production of proinflammatory cytokines by innate immune cells, such as IL-6, IL-23, IL-1β, and the subsequent generation and expansion of Th17 cells. Similarly, commensal bacteria and their metabolites can also promote the generation of intestinal Tregs that can actively induce mucosal tolerance. As such, dysbiosis of the gut microbiome may not solely represent a consequence of gut inflammation, but rather shape the Treg/Th17 commitment and influence susceptibility to inflammatory bowel disease. In this review, we discuss Treg and Th17 cell plasticity, its dynamic regulation by the microbiome, and highlight its impact on intestinal homeostasis and disease. PMID:26734006

  18. Impacts of Small Scale Flow Regulation on Sediment Dynamics in an Ecologically Important Upland River

    NASA Astrophysics Data System (ADS)

    Quinlan, E.; Gibbins, C. N.; Batalla, R. J.; Vericat, D.

    2015-03-01

    Flow regulation is widely recognized as affecting fluvial processes and river ecosystems. Most impact assessments have focused on large dams and major water transfer schemes, so relatively little is known about the impacts of smaller dams, weirs and water diversions. This paper assesses sediment dynamics in an upland river (the Ehen, NW England) whose flows are regulated by a small weir and tributary diversion. The river is important ecologically due to the presence of the endangered freshwater pearl mussel Margaritifera margaritifera, a species known to be sensitive to sedimentary conditions. Fine sediment yield for the 300-m long study reach was estimated to be 0.057 t km-2 year-1, a very low value relative to other upland UK rivers. Mean in-channel storage of fine sediment was also low, estimated at an average of around 40 g m-2. Although the study period was characterized by frequent high flow events, little movement of coarser bed material was observed. Data therefore indicate an extremely stable fluvial system within the study reach. The implication of this stability for pearl mussels is discussed.

  19. Bio-inspired Dynamic Gradients Regulated by Supramolecular Bindings in Receptor-Embedded Hydrogel Matrices.

    PubMed

    Luan, Xinglong; Zhang, Yihe; Wu, Jing; Jonkheijm, Pascal; Li, Guangtao; Jiang, Lei; Huskens, Jurriaan; An, Qi

    2016-08-01

    The kinetics of supramolecular bindings are fundamentally important for molecular motions and spatial-temporal distributions in biological systems, but have rarely been employed in preparing artificial materials. This report proposes a bio-inspired concept to regulate dynamic gradients through the coupled supramolecular binding and diffusion process in receptor-embedded hydrogel matrices. A new type of hydrogel that uses cyclodextrin (CD) as both the gelling moiety and the receptors is prepared as the diffusion matrices. The diffusible guest, 4-aminoazobenzene, quickly and reversibly binds to matrices-bound CD during diffusion and generates steeper gradients than regular diffusion. Weakened bindings induced through UV irradiation extend the gradients. Combined with numerical simulation, these results indicate that the coupled binding-diffusion could be viewed as slowed diffusion, regulated jointly by the binding constant and the equilibrium receptor concentrations, and gradients within a bio-relevant extent of 4 mm are preserved up to 90 h. This report should inspire design strategies of biomedical or cell-culturing materials. PMID:27547643

  20. Dynamic imaging reveals that BDNF can independently regulate motility and direction of RMS neuroblast migration

    PubMed Central

    Bagley, Joshua A.; Belluscio, Leonardo

    2010-01-01

    Neuronal precursors generated in the subventricular zone (SVZ) migrate through the rostral migratory stream (RMS) to the olfactory bulb (OB). Although, the mechanisms regulating this migration remain largely unknown, studies have suggested that molecular factors, such as Brain-Derived Neurotrophic Factor (BDNF) emanating from the OB, may function as chemoattractants drawing neuroblasts toward their target. To better understand the role of BDNF in RMS migration, we used an acute slice preparation from early postnatal mice to track the tangential migration of GAD65-GFP labeled RMS neuroblasts with confocal time-lapse imaging. By quantifying the cell dynamics using specific directional and motility criteria, our results showed that removal of the OB did not alter the overall directional trajectory of neuroblasts, but did reduce their motility. This suggested that additional guidance factors may be present locally within the RMS. Thus, we next demonstrated that BDNF and its high affinity receptor, TrkB, are indeed heterogeneously expressed within the RMS at postnatal day 7, and by altering BDNF levels within the entire pathway, showed that reduced BDNF signaling changes both neuroblast motility and direction, while increased BDNF levels changes only motility. Together these data reveal that during this early postnatal period BDNF plays a complex role in regulating both the motility and direction of RMS flow, and that it arises from within the RMS itself, as well as from the olfactory bulb. PMID:20538046

  1. The nuclear phenotypic plasticity observed in fish during rRNA regulation entails Cajal bodies dynamics

    SciTech Connect

    Alvarez, Marco; Nardocci, Gino; Thiry, Marc; Alvarez, Rodrigo; Reyes, Mauricio; Molina, Alfredo; Vera, M. Ines . E-mail: mvera@unab.cl

    2007-08-17

    Cajal bodies (CBs) are small mobile organelles found throughout the nucleoplasm of animal and plant cells. The dynamics of these organelles involves interactions with the nucleolus. The later has been found to play a substantial role in the compensatory response that evolved in eurythermal fish to adapt to the cyclic seasonal habitat changes, i.e., temperature and photoperiod. Contrary to being constitutive, rRNA synthesis is dramatically regulated between summer and winter, thus affecting ribosomal biogenesis which plays a central role in the acclimatization process. To examine whether CBs, up to now, never described in fish, were also sustaining the phenotypic plasticity observed in nuclei of fish undergoing seasonal acclimatization, we identified these organelles both, by transmission electronic microscopy and immunodetection with the marker protein p80-coilin. We found transcripts in all tissues analyzed. Furthermore we assessed that p80-coilin gene expression was always higher in summer-acclimatized fish when compared to that adapted to the cold season, indicating that p80-coilin expression is modulated upon seasonal acclimatization. Concurrently, CBs were more frequently found in summer-acclimatized carp which suggests that the organization of CBs is involved in adaptive processes and contribute to the phenotypic plasticity of fish cell nuclei observed concomitantly with profound reprogramming of nucleolar components and regulation of ribosomal rRNAs.

  2. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression

    PubMed Central

    Kojima, Shihoko; Sher-Chen, Elaine L.; Green, Carla B.

    2012-01-01

    Poly(A) tails are 3′ modifications of eukaryotic mRNAs that are important in the control of translation and mRNA stability. We identified hundreds of mouse liver mRNAs that exhibit robust circadian rhythms in the length of their poly(A) tails. Approximately 80% of these are primarily the result of nuclear adenylation coupled with rhythmic transcription. However, unique decay kinetics distinguish these mRNAs from other mRNAs that are transcribed rhythmically but do not exhibit poly(A) tail rhythms. The remaining 20% are uncoupled from transcription and exhibit poly(A) tail rhythms even though the steady-state mRNA levels are not rhythmic. These are under the control of rhythmic cytoplasmic polyadenylation, regulated at least in some cases by cytoplasmic polyadenylation element-binding proteins (CPEBs). Importantly, we found that the rhythmicity in poly(A) tail length is closely correlated with rhythmic protein expression, with a several-hour delay between the time of longest tail and the time of highest protein level. Our study demonstrates that the circadian clock regulates the dynamic polyadenylation status of mRNAs, which can result in rhythmic protein expression independent of the steady-state levels of the message. PMID:23249735

  3. Dynamic regulation of spine-dendrite coupling in cultured hippocampal neurons.

    PubMed

    Korkotian, Eduard; Holcman, David; Segal, Menahem

    2004-11-01

    We investigated the role of dendritic spine morphology in spine-dendrite calcium communication using novel experimental and theoretical approaches. A transient rise in [Ca2+]i was produced in individual spine heads of Fluo-4-loaded cultured hippocampal neurons by flash photolysis of caged calcium. Following flash photolysis in the spine head, a delayed [Ca2+]i transient was detected in the parent dendrites of only short, but not long, spines. Delayed elevated fluorescence in the dendrite of the short spines was also seen with a membrane-bound fluorophore and fluorescence recovery from bleaching of a calcium-bound fluorophore had a much slower kinetics, indicating that the dendritic fluorescence change reflects a genuine diffusion of free [Ca2+]i from the spine head to the parent dendrite. Calcium diffusion between spine head and the parent dendrite was regulated by calcium stores as well as by a Na-Ca exchanger. Spine length varied with the recent history of the [Ca2+]i variations in the spine, such that small numbers of calcium transients resulted in elongation of spines whereas large numbers of calcium transients caused shrinkage of the spines. Consequently, spine elongation resulted in a complete isolation of the spine from the dendrite, while shrinkage caused an enhanced coupling with the parent dendrite. These studies highlight a dynamically regulated coupling between a dendritic spine head and its parent dendrite. PMID:15548208

  4. Dynamic and Stable Cohesins Regulate Synaptonemal Complex Assembly and Chromosome Segregation.

    PubMed

    Gyuricza, Mercedes R; Manheimer, Kathryn B; Apte, Vandana; Krishnan, Badri; Joyce, Eric F; McKee, Bruce D; McKim, Kim S

    2016-07-11

    Assembly of the synaptonemal complex (SC) in Drosophila depends on two independent pathways defined by the chromosome axis proteins C(2)M and ORD. Because C(2)M encodes a Kleisin-like protein and ORD is required for sister-chromatid cohesion, we tested the hypothesis that these two SC assembly pathways depend on two cohesin complexes. Through single- and double-mutant analysis to study the mitotic cohesion proteins Stromalin (SA) and Nipped-B (SCC2) in meiosis, we provide evidence that there are at least two meiosis-specific cohesin complexes. One complex depends on C(2)M, SA, and Nipped-B. Despite the presence of mitotic cohesins SA and Nipped-B, this pathway has only a minor role in meiotic sister-centromere cohesion and is primarily required for homolog interactions. C(2)M is continuously incorporated into pachytene chromosomes even though SC assembly is complete. In contrast, the second complex, which depends on meiosis-specific proteins SOLO, SUNN, and ORD is required for sister-chromatid cohesion, localizes to the centromeres and is not incorporated during prophase. Our results show that the two cohesin complexes have unique functions and are regulated differently. Multiple cohesin complexes may provide the diversity of activities required by the meiotic cell. For example, a dynamic complex may allow the chromosomes to regulate meiotic recombination, and a stable complex may be required for sister-chromatid cohesion. PMID:27291057

  5. Electronic and Structural Elements That Regulate the Excited-State Dynamics in Purine Nucleobase Derivatives

    PubMed Central

    2015-01-01

    The excited-state dynamics of the purine free base and 9-methylpurine are investigated using experimental and theoretical methods. Femtosecond broadband transient absorption experiments reveal that excitation of these purine derivatives in aqueous solution at 266 nm results primarily in ultrafast conversion of the S2(ππ*) state to the vibrationally excited 1nπ* state. Following vibrational and conformational relaxation, the 1nπ* state acts as a doorway state in the efficient population of the triplet manifold with an intersystem crossing lifetime of hundreds of picoseconds. Experiments show an almost 2-fold increase in the intersystem crossing rate on going from polar aprotic to nonpolar solvents, suggesting that a solvent-dependent energy barrier must be surmounted to access the singlet-to-triplet crossing region. Ab initio static and surface-hopping dynamics simulations lend strong support to the proposed relaxation mechanism. Collectively, the experimental and computational results demonstrate that the accessibility of the nπ* states and the topology of the potential energy surfaces in the vicinity of conical intersections are key elements in controlling the excited-state dynamics of the purine derivatives. From a structural perspective, it is shown that the purine chromophore is not responsible for the ultrafast internal conversion in the adenine and guanine monomers. Instead, C6 functionalization plays an important role in regulating the rates of radiative and nonradiative relaxation. C6 functionalization inhibits access to the 1nπ* state while simultaneously facilitating access to the 1ππ*(La)/S0 conical intersection, such that population of the 1nπ* state cannot compete with the relaxation pathways to the ground state involving ring puckering at the C2 position. PMID:25763596

  6. Immature spinal cord neurons are dynamic regulators of adult nociceptive sensitivity

    PubMed Central

    Rusanescu, Gabriel; Mao, Jianren

    2015-01-01

    Chronic pain is a debilitating condition with unknown mechanism. Nociceptive sensitivity may be regulated by genetic factors, some of which have been separately linked to neuronal progenitor cells and neuronal differentiation. This suggests that genetic factors that interfere with neuronal differentiation may contribute to a chronic increase in nociceptive sensitivity, by extending the immature, hyperexcitable stage of spinal cord neurons. Although adult rodent spinal cord neurogenesis was previously demonstrated, the fate of these progenitor cells is unknown. Here, we show that peripheral nerve injury in adult rats induces extensive spinal cord neurogenesis and a long-term increase in the number of spinal cord laminae I–II neurons ipsilateral to injury. The production and maturation of these new neurons correlates with the time course and modulation of nociceptive behaviour, and transiently mimics the cellular and behavioural conditions present in genetically modified animal models of chronic pain. This suggests that the number of immature neurons present at any time in the spinal cord dorsal horns contributes to the regulation of nociceptive sensitivity. The continuous turnover of these neurons, which can fluctuate between normal and injured states, is a dynamic regulator of nociceptive sensitivity. In support of this hypothesis, we find that promoters of neuronal differentiation inhibit, while promoters of neurogenesis increase long-term nociception. TrkB agonists, well-known promoters of nociception in the short-term, significantly inhibit long-term nociception by promoting the differentiation of newly produced immature neurons. These findings suggest that promoters of neuronal differentiation may be used to alleviate chronic pain. PMID:26223362

  7. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion

    PubMed Central

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-01-01

    Secretagogin (SCGN), a Ca2+-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca2+-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  8. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion.

    PubMed

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-06-15

    Secretagogin (SCGN), a Ca(2+)-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca(2+)-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  9. Dynamic Regulation of Platelet-Derived Growth Factor Receptor α Expression in Alveolar Fibroblasts during Realveolarization

    PubMed Central

    Chen, Leiling; Acciani, Thomas; Le Cras, Tim; Lutzko, Carolyn

    2012-01-01

    Although the importance of platelet-derived growth factor receptor (PDGFR)-α signaling during normal alveogenesis is known, it is unclear whether this signaling pathway can regulate realveolarization in the adult lung. During alveolar development, PDGFR-α–expressing cells induce α smooth muscle actin (α-SMA) and differentiate to interstitial myofibroblasts. Fibroblast growth factor (FGF) signaling regulates myofibroblast differentiation during alveolarization, whereas peroxisome proliferator-activated receptor (PPAR)-γ activation antagonizes myofibroblast differentiation in lung fibrosis. Using left lung pneumonectomy, the roles of FGF and PPAR-γ signaling in differentiation of myofibroblasts from PDGFR-α–positive precursors during compensatory lung growth were assessed. FGF receptor (FGFR) signaling was inhibited by conditionally activating a soluble dominant-negative FGFR2 transgene. PPAR-γ signaling was activated by administration of rosiglitazone. Changes in α-SMA and PDGFR-α protein expression were assessed in PDGFR-α–green fluorescent protein (GFP) reporter mice using immunohistochemistry, flow cytometry, and real-time PCR. Immunohistochemistry and flow cytometry demonstrated that the cell ratio and expression levels of PDGFR-α–GFP changed dynamically during alveolar regeneration and that α-SMA expression was induced in a subset of PDGFR-α–GFP cells. Expression of a dominant-negative FGFR2 and administration of rosiglitazone inhibited induction of α-SMA in PDGFR-α–positive fibroblasts and formation of new septae. Changes in gene expression of epithelial and mesenchymal signaling molecules were assessed after left lobe pneumonectomy, and results demonstrated that inhibition of FGFR2 signaling and increase in PPAR-γ signaling altered the expression of Shh, FGF, Wnt, and Bmp4, genes that are also important for epithelial–mesenchymal crosstalk during early lung development. Our data demonstrate for the first time that a comparable

  10. Cell Type-Specific Regulation of Immunological Synapse Dynamics by B7 Ligand Recognition

    PubMed Central

    Brzostek, Joanna; Gascoigne, Nicholas R. J.; Rybakin, Vasily

    2016-01-01

    B7 proteins CD80 (B7-1) and CD86 (B7-2) are expressed on most antigen-presenting cells and provide critical co-stimulatory or inhibitory input to T cells via their T-cell-expressed receptors: CD28 and CTLA-4. CD28 is expressed on effector T cells and regulatory T cells (Tregs), and CD28-dependent signals are required for optimum activation of effector T cell functions. CD28 ligation on effector T cells leads to formation of distinct molecular patterns and induction of cytoskeletal rearrangements at the immunological synapse (IS). CD28 plays a critical role in recruitment of protein kinase C (PKC)-θ to the effector T cell IS. CTLA-4 is constitutively expressed on the surface of Tregs, but it is expressed on effector T cells only after activation. As CTLA-4 binds to B7 proteins with significantly higher affinity than CD28, B7 ligand recognition by cells expressing both receptors leads to displacement of CD28 and PKC-θ from the IS. In Tregs, B7 ligand recognition leads to recruitment of CTLA-4 and PKC-η to the IS. CTLA-4 plays a role in regulation of T effector and Treg IS stability and cell motility. Due to their important roles in regulating T-cell-mediated responses, B7 receptors are emerging as important drug targets in oncology. In this review, we present an integrated summary of current knowledge about the role of B7 family receptor–ligand interactions in the regulation of spatial and temporal IS dynamics in effector and Tregs. PMID:26870040

  11. Regulation of Gap Junction Dynamics by UNC-44/ankyrin and UNC-33/CRMP through VAB-8 in C. elegans Neurons

    PubMed Central

    Yan, Dong

    2016-01-01

    Gap junctions are present in both vertebrates and invertebrates from nematodes to mammals. Although the importance of gap junctions has been documented in many biological processes, the molecular mechanisms underlying gap junction dynamics remain unclear. Here, using the C. elegans PLM neurons as a model, we show that UNC-44/ankyrin acts upstream of UNC-33/CRMP in regulation of a potential kinesin VAB-8 to control gap junction dynamics, and loss-of-function in the UNC-44/UNC-33/VAB-8 pathway suppresses the turnover of gap junction channels. Therefore, we first show a signal pathway including ankyrin, CRMP, and kinesin in regulating gap junctions. PMID:27015090

  12. Regulation of Gap Junction Dynamics by UNC-44/ankyrin and UNC-33/CRMP through VAB-8 in C. elegans Neurons.

    PubMed

    Meng, Lingfeng; Chen, Chia-Hui; Yan, Dong

    2016-03-01

    Gap junctions are present in both vertebrates and invertebrates from nematodes to mammals. Although the importance of gap junctions has been documented in many biological processes, the molecular mechanisms underlying gap junction dynamics remain unclear. Here, using the C. elegans PLM neurons as a model, we show that UNC-44/ankyrin acts upstream of UNC-33/CRMP in regulation of a potential kinesin VAB-8 to control gap junction dynamics, and loss-of-function in the UNC-44/UNC-33/VAB-8 pathway suppresses the turnover of gap junction channels. Therefore, we first show a signal pathway including ankyrin, CRMP, and kinesin in regulating gap junctions. PMID:27015090

  13. Xenopus TACC1 is a microtubule plus-end tracking protein that can regulate microtubule dynamics during embryonic development.

    PubMed

    Lucaj, Christopher M; Evans, Matthew F; Nwagbara, Belinda U; Ebbert, Patrick T; Baker, Charlie C; Volk, Joseph G; Francl, Andrew F; Ruvolo, Sean P; Lowery, Laura Anne

    2015-05-01

    Microtubule plus-end dynamics are regulated by a family of proteins called plus-end tracking proteins (+TIPs). We recently demonstrated that the transforming acidic coiled-coil (TACC) domain family member, TACC3, can function as a +TIP to regulate microtubule dynamics in Xenopus laevis embryonic cells. Although it has been previously reported that TACC3 is the only TACC family member that exists in Xenopus, our examination of its genome determined that Xenopus, like all other vertebrates, contains three TACC family members. Here, we investigate the localization and function of Xenopus TACC1, the founding member of the TACC family. We demonstrate that it can act as a +TIP to regulate microtubule dynamics, and that the conserved C-terminal TACC domain is required for its localization to plus-ends. We also show that, in Xenopus embryonic mesenchymal cells, TACC1 and TACC3 are each required for maintaining normal microtubule growth speed but exhibit some functional redundancy in the regulation of microtubule growth lifetime. Given the conservation of TACC1 in Xenopus and other vertebrates, we propose that Xenopus laevis is a useful system to investigate unexplored cell biological functions of TACC1 and other TACC family members in the regulation of microtubule dynamics. PMID:26012630

  14. Computational analysis of the regulation of Ca2+ dynamics in rat ventricular myocytes

    NASA Astrophysics Data System (ADS)

    Bugenhagen, Scott M.; Beard, Daniel A.

    2015-10-01

    Force-frequency relationships of isolated cardiac myocytes show complex behaviors that are thought to be specific to both the species and the conditions associated with the experimental preparation. Ca2+ signaling plays an important role in shaping the force-frequency relationship, and understanding the properties of the force-frequency relationship in vivo requires an understanding of Ca2+ dynamics under physiologically relevant conditions. Ca2+ signaling is itself a complicated process that is best understood on a quantitative level via biophysically based computational simulation. Although a large number of models are available in the literature, the models are often a conglomeration of components parameterized to data of incompatible species and/or experimental conditions. In addition, few models account for modulation of Ca2+ dynamics via β-adrenergic and calmodulin-dependent protein kinase II (CaMKII) signaling pathways even though they are hypothesized to play an important regulatory role in vivo. Both protein-kinase-A and CaMKII are known to phosphorylate a variety of targets known to be involved in Ca2+ signaling, but the effects of these pathways on the frequency- and inotrope-dependence of Ca2+ dynamics are not currently well understood. In order to better understand Ca2+ dynamics under physiological conditions relevant to rat, a previous computational model is adapted and re-parameterized to a self-consistent dataset obtained under physiological temperature and pacing frequency and updated to include β-adrenergic and CaMKII regulatory pathways. The necessity of specific effector mechanisms of these pathways in capturing inotrope- and frequency-dependence of the data is tested by attempting to fit the data while including and/or excluding those effector components. We find that: (1) β-adrenergic-mediated phosphorylation of the L-type calcium channel (LCC) (and not of phospholamban (PLB)) is sufficient to explain the inotrope-dependence; and (2) that

  15. Non-monotonic Response to Monotonic Stimulus: Regulation of Glyoxylate Shunt Gene-Expression Dynamics in Mycobacterium tuberculosis

    PubMed Central

    Gennaro, Maria L.; Igoshin, Oleg A.

    2016-01-01

    Understanding how dynamical responses of biological networks are constrained by underlying network topology is one of the fundamental goals of systems biology. Here we employ monotone systems theory to formulate a theorem stating necessary conditions for non-monotonic time-response of a biochemical network to a monotonic stimulus. We apply this theorem to analyze the non-monotonic dynamics of the σB-regulated glyoxylate shunt gene expression in Mycobacterium tuberculosis cells exposed to hypoxia. We first demonstrate that the known network structure is inconsistent with observed dynamics. To resolve this inconsistency we employ the formulated theorem, modeling simulations and optimization along with follow-up dynamic experimental measurements. We show a requirement for post-translational modulation of σB activity in order to reconcile the network dynamics with its topology. The results of this analysis make testable experimental predictions and demonstrate wider applicability of the developed methodology to a wide class of biological systems. PMID:26900694

  16. Non-monotonic Response to Monotonic Stimulus: Regulation of Glyoxylate Shunt Gene-Expression Dynamics in Mycobacterium tuberculosis.

    PubMed

    Ascensao, Joao A; Datta, Pratik; Hancioglu, Baris; Sontag, Eduardo; Gennaro, Maria L; Igoshin, Oleg A

    2016-02-01

    Understanding how dynamical responses of biological networks are constrained by underlying network topology is one of the fundamental goals of systems biology. Here we employ monotone systems theory to formulate a theorem stating necessary conditions for non-monotonic time-response of a biochemical network to a monotonic stimulus. We apply this theorem to analyze the non-monotonic dynamics of the σB-regulated glyoxylate shunt gene expression in Mycobacterium tuberculosis cells exposed to hypoxia. We first demonstrate that the known network structure is inconsistent with observed dynamics. To resolve this inconsistency we employ the formulated theorem, modeling simulations and optimization along with follow-up dynamic experimental measurements. We show a requirement for post-translational modulation of σB activity in order to reconcile the network dynamics with its topology. The results of this analysis make testable experimental predictions and demonstrate wider applicability of the developed methodology to a wide class of biological systems. PMID:26900694

  17. Cutting Edge: Drebrin-Regulated Actin Dynamics Regulate IgE-Dependent Mast Cell Activation and Allergic Responses.

    PubMed

    Law, Mankit; Lee, YongChan; Morales, J Luis; Ning, Gang; Huang, Weishan; Pabon, Jonathan; Kannan, Arun K; Jeong, Ah-Reum; Wood, Amie; Carter, Chavez; Mohinta, Sonia; Song, Jihong; August, Avery

    2015-07-15

    Mast cells play critical roles in allergic responses. Calcium signaling controls the function of these cells, and a role for actin in regulating calcium influx into cells has been suggested. We have previously identified the actin reorganizing protein Drebrin as a target of the immunosuppressant 3,5-bistrifluoromethyl pyrazole, which inhibits calcium influx into cells. In this study, we show that Drebrin(-/-) mice exhibit reduced IgE-mediated histamine release and passive systemic anaphylaxis, and Drebrin(-/-) mast cells also exhibit defects in FcεRI-mediated degranulation. Drebrin(-/-) mast cells exhibit defects in actin cytoskeleton organization and calcium responses downstream of the FcεRI, and agents that relieve actin reorganization rescue mast cell FcεRI-induced degranulation. Our results indicate that Drebrin regulates the actin cytoskeleton and calcium responses in mast cells, thus regulating mast cell function in vivo. PMID:26056254

  18. Calcium Induced Regulation of Skeletal Troponin — Computational Insights from Molecular Dynamics Simulations

    PubMed Central

    Genchev, Georgi Z.; Kobayashi, Tomoyoshi; Lu, Hui

    2013-01-01

    The interaction between calcium and the regulatory site(s) of striated muscle regulatory protein troponin switches on and off muscle contraction. In skeletal troponin binding of calcium to sites I and II of the TnC subunit results in a set of structural changes in the troponin complex, displaces tropomyosin along the actin filament and allows myosin-actin interaction to produce mechanical force. In this study, we used molecular dynamics simulations to characterize the calcium dependent dynamics of the fast skeletal troponin molecule and its TnC subunit in the calcium saturated and depleted states. We focused on the N-lobe and on describing the atomic level events that take place subsequent to removal of the calcium ion from the regulatory sites I and II. A main structural event - a closure of the A/B helix hydrophobic pocket results from the integrated effect of the following conformational changes: the breakage of H-bond interactions between the backbone nitrogen atoms of the residues at positions 2, 9 and sidechain oxygen atoms of the residue at position 12 (N2-OE12/N9-OE12) in sites I and II; expansion of sites I and II and increased site II N-terminal end-segment flexibility; strengthening of the β-sheet scaffold; and the subsequent re-packing of the N-lobe hydrophobic residues. Additionally, the calcium release allows the N-lobe to rotate relative to the rest of the Tn molecule. Based on the findings presented herein we propose a novel model of skeletal thin filament regulation. PMID:23554884

  19. Regulation of matrix metalloproteinase expression by dynamic tensile strain in rat fibrochondrocytes

    PubMed Central

    Deschner, J.; Rath-Deschner, B.; Agarwal, S.

    2016-01-01

    Summary Objective We sought to determine the molecular basis for the anticatabolic effects of mechanical signals on fibrocartilage cells by studying the expression of a variety of matrix metalloproteinases (MMPs). Furthermore, we examined whether the effects of biomechanical strain on MMP gene expression are sustained. Methods Fibrochondrocytes from temporomandibular joint (TMJ) discs were exposed to dynamic tensile strain for various time intervals in the presence of interleukin (IL)-1β. The regulation of the messenger RNA (mRNA) expression and synthesis of MMPs and tissue inhibitors of MMPs (TIMPs) were examined by end-point and real-time reverse transcriptase-polymerase chain reaction (RT-PCR) as well as Western blot analysis. Results Fibrochondrocytes expressed mRNA for MMP-2, -3, -7, -8, -9, -11, -13, -14, -16, -17, and -19 as well as TIMP-1, -2, and -3, IL-1β induced a significant (P <0.05) upregulation of mRNA for MMP-3, -7, -8, -9, -13, -16, -17, and -19. The IL-1β-stimulated upregulation of these MMPs was significantly (P <0.05) abrogated by dynamic tensile strain. However, MMP-2, -11, -14, and TIMPs were not affected by either IL-1β or tensile strain. Biomechanical strain also inhibited the IL-1β-stimulated protein synthesis of MMP-3, -7, -8, -9, -13, -16, and -17. Application of mechanical strain for various time intervals during a 24-h incubation with IL-1β showed that the suppressive effects of mechanical signals are sustained. Conclusions The data provide evidence that biomechanical signals can downregulate the catabolic activity of fibrocartilage cells in an inflammatory environment by inhibiting the expression of a variety of MMPs. Furthermore, the matrix-protective effects of biomechanical signals are sustained even in an inflammatory environment. PMID:16290189

  20. Dynamic Epigenetic Regulation of Gene Expression during the Life Cycle of Malaria Parasite Plasmodium falciparum

    PubMed Central

    Gupta, Archna P.; Chin, Wai Hoe; Zhu, Lei; Mok, Sachel; Luah, Yen-Hoon; Lim, Eng-How; Bozdech, Zbynek

    2013-01-01

    Epigenetic mechanisms are emerging as one of the major factors of the dynamics of gene expression in the human malaria parasite, Plasmodium falciparum. To elucidate the role of chromatin remodeling in transcriptional regulation associated with the progression of the P. falciparum intraerythrocytic development cycle (IDC), we mapped the temporal pattern of chromosomal association with histone H3 and H4 modifications using ChIP-on-chip. Here, we have generated a broad integrative epigenomic map of twelve histone modifications during the P. falciparum IDC including H4K5ac, H4K8ac, H4K12ac, H4K16ac, H3K9ac, H3K14ac, H3K56ac, H4K20me1, H4K20me3, H3K4me3, H3K79me3 and H4R3me2. While some modifications were found to be associated with the vast majority of the genome and their occupancy was constant, others showed more specific and highly dynamic distribution. Importantly, eight modifications displaying tight correlations with transcript levels showed differential affinity to distinct genomic regions with H4K8ac occupying predominantly promoter regions while others occurred at the 5′ ends of coding sequences. The promoter occupancy of H4K8ac remained unchanged when ectopically inserted at a different locus, indicating the presence of specific DNA elements that recruit histone modifying enzymes regardless of their broad chromatin environment. In addition, we showed the presence of multivalent domains on the genome carrying more than one histone mark, highlighting the importance of combinatorial effects on transcription. Overall, our work portrays a substantial association between chromosomal locations of various epigenetic markers, transcriptional activity and global stage-specific transitions in the epigenome. PMID:23468622

  1. Mitochondrial dynamics protein Drp1 is overexpressed in oncocytic thyroid tumors and regulates cancer cell migration.

    PubMed

    Ferreira-da-Silva, André; Valacca, Cristina; Rios, Elisabete; Pópulo, Helena; Soares, Paula; Sobrinho-Simões, Manuel; Scorrano, Luca; Máximo, Valdemar; Campello, Silvia

    2015-01-01

    Oncocytic cell tumors are characterized by the accumulation of morphologically abnormal mitochondria in their cells, suggesting a role for abnormal mitochondrial biogenesis in oncocytic cell transformation. Little is known about the reason for the dysmorphology of accumulated mitochondria. The proteins regulating the morphology of mitochondria, the "mitochondria-shaping" proteins, can modulate their size and number; however, nothing is known hitherto about a possible involvement of mitochondrial dynamics in oncocytic cell transformation in tumors. Our aim was to assess the status of the mitochondria morphology and its role in oncocytic cell transformation. We therefore evaluated the expression pattern of the main mitochondrial fusion and fission proteins in a series of thyroid cell tumor samples, as well as in thyroid tumor cell lines, with and without oncocytic cell features. The expression of mitochondrial fusion (Opa1, Mfn1 and Mfn2) and fission (Drp1 and Fis1) proteins were evaluated by immunohistochemistry (IHC) in a series of 88 human thyroid tumors. In vitro studies, for comparative purposes and to deepen the study, were performed using TPC1--a papillary thyroid carcinoma derived cell line--and XTC.UC1, an oncocytic follicular thyroid carcinoma-derived cell line. Both IHC and in vitro protein analyses showed an overall increase in the levels of "mitochondrial-shaping" proteins in oncocytic thyroid tumors. Furthermore, overexpression of the pro-fission protein Drp1 was found to be associated with malignant oncocytic thyroid tumors. Interestingly, genetic and pharmacological blockage of Drp1 activity was able to influence thyroid cancer cells' migration/invasion ability, a feature of tumor malignancy. In this study we show that unbalanced mitochondrial dynamics characterize the malignant features of thyroid oncocytic cell tumors, and participate in the acquisition of the migrating phenotype. PMID:25822260

  2. Mitochondrial Dynamics Protein Drp1 Is Overexpressed in Oncocytic Thyroid Tumors and Regulates Cancer Cell Migration

    PubMed Central

    Ferreira-da-Silva, André; Valacca, Cristina; Rios, Elisabete; Pópulo, Helena; Soares, Paula; Sobrinho-Simões, Manuel; Scorrano, Luca; Máximo, Valdemar; Campello, Silvia

    2015-01-01

    Oncocytic cell tumors are characterized by the accumulation of morphologically abnormal mitochondria in their cells, suggesting a role for abnormal mitochondrial biogenesis in oncocytic cell transformation. Little is known about the reason for the dysmorphology of accumulated mitochondria. The proteins regulating the morphology of mitochondria, the "mitochondria-shaping" proteins, can modulate their size and number; however, nothing is known hitherto about a possible involvement of mitochondrial dynamics in oncocytic cell transformation in tumors. Our aim was to assess the status of the mitochondria morphology and its role in oncocytic cell transformation. We therefore evaluated the expression pattern of the main mitochondrial fusion and fission proteins in a series of thyroid cell tumor samples, as well as in thyroid tumor cell lines, with and without oncocytic cell features. The expression of mitochondrial fusion (Opa1, Mfn1 and Mfn2) and fission (Drp1 and Fis1) proteins were evaluated by immunohistochemistry (IHC) in a series of 88 human thyroid tumors. In vitro studies, for comparative purposes and to deepen the study, were performed using TPC1 - a papillary thyroid carcinoma derived cell line—and XTC.UC1, an oncocytic follicular thyroid carcinoma-derived cell line. Both IHC and in vitro protein analyses showed an overall increase in the levels of "mitochondrial-shaping" proteins in oncocytic thyroid tumors. Furthermore, overexpression of the pro-fission protein Drp1 was found to be associated with malignant oncocytic thyroid tumors. Interestingly, genetic and pharmacological blockage of Drp1 activity was able to influence thyroid cancer cells’ migration/invasion ability, a feature of tumor malignancy. In this study we show that unbalanced mitochondrial dynamics characterize the malignant features of thyroid oncocytic cell tumors, and participate in the acquisition of the migrating phenotype. PMID:25822260

  3. Conformational Dynamics of Response Regulator RegX3 from Mycobacterium tuberculosis

    PubMed Central

    Ahmad, Ashfaq; Cai, Yongfei; Chen, Xingqiang; Shuai, Jianwei; Han, Aidong

    2015-01-01

    Two-component signal transduction systems (TCS) are vital for adaptive responses to various environmental stresses in bacteria, fungi and even plants. A TCS typically comprises of a sensor histidine kinase (SK) with its cognate response regulator (RR), which often has two domains—N terminal receiver domain (RD) and C terminal effector domain (ED). The histidine kinase phosphorylates the RD to activate the ED by promoting dimerization. However, despite significant progress on structural studies, how RR transmits activation signal from RD to ED remains elusive. Here we analyzed active to inactive transition process of OmpR/PhoB family using an active conformation of RegX3 from Mycobacterium tuberculosis as a model system by computational approaches. An inactive state of RegX3 generated from 150 ns molecular dynamic simulation has rotameric conformations of Thr79 and Tyr98 that are generally conserved in inactive RRs. Arg81 in loop β4α4 acts synergistically with loop β1α1 to change its interaction partners during active to inactive transition, potentially leading to the N-terminal movement of RegX3 helix α1. Global conformational dynamics of RegX3 is mainly dependent on α4β5 region, in particular seven ‘hot-spot’ residues (Tyr98 to Ser104), adjacent to which several coevolved residues at dimeric interface, including Ile76-Asp96, Asp97-Arg111 and Glu24-Arg113 pairs, are critical for signal transduction. Taken together, our computational analyses suggest a molecular linkage between Asp phosphorylation, proximal loops and α4β5α5 dimeric interface during RR active to inactive state transition, which is not often evidently defined from static crystal structures. PMID:26201027

  4. Redox-Dependent Dynamics in Heme-Bound Bacterial Iron Response Regulator (Irr) Protein.

    PubMed

    Kobayashi, Kazuo; Nakagaki, Megumi; Ishikawa, Haruto; Iwai, Kazuhiro; O'Brian, Mark R; Ishimori, Koichiro

    2016-07-26

    The iron response regulator (Irr) protein from Bradyrhizobium japonicum mediates iron-dependent regulation of heme biosynthesis. Irr degrades in response to heme availability through a process that involves the binding of heme to Cys-29 in the heme regulatory motif (HRM) in the presence of molecular oxygen. In this work, we assessed the dynamics of one-electron reduction of heme-bound Irr by monitoring the formation of transient intermediates by pulse radiolysis. Hydrated electrons generated by pulse radiolysis reduced heme iron-bound Irr, facilitating the binding of molecular oxygen to the heme iron in Irr through an initial intermediate with an absorption maximum at 420 nm. This initial intermediate was converted to a secondary intermediate with an absorption maximum at 425 nm, with a first-order rate constant of 1.0 × 10(4) s(-1). The Cys-29 → Ala (C29A) mutant of Irr, on the other hand, did not undergo the secondary phase, implying that ligand exchange of Cys-29 for another ligand takes place during the process. Spectral changes during the reduction of the heme-bound Irr revealed that binding of CO to ferrous heme consisted of two phases with kon values of 1.3 × 10(5) and 2.5 × 10(4) M(-1) s(-1), a finding consistent with the presence of two distinct hemes in Irr. In aerobic solutions, by contrast, oxidation of the ferrous heme to the ferric form was found to be a two-phase process. The C29A mutant was similarly oxidized, but this occurred as a single-phase process. We speculate that a reactive oxygen species essential for degradation of the protein is generated during the oxidation process. PMID:27379473

  5. Pur-alpha regulates cytoplasmic stress granule dynamics and ameliorates FUS toxicity.

    PubMed

    Daigle, J Gavin; Krishnamurthy, Karthik; Ramesh, Nandini; Casci, Ian; Monaghan, John; McAvoy, Kevin; Godfrey, Earl W; Daniel, Dianne C; Johnson, Edward M; Monahan, Zachary; Shewmaker, Frank; Pasinelli, Piera; Pandey, Udai Bhan

    2016-04-01

    Amyotrophic lateral sclerosis is characterized by progressive loss of motor neurons in the brain and spinal cord. Mutations in several genes, including FUS, TDP43, Matrin 3, hnRNPA2 and other RNA-binding proteins, have been linked to ALS pathology. Recently, Pur-alpha, a DNA/RNA-binding protein was found to bind to C9orf72 repeat expansions and could possibly play a role in the pathogenesis of ALS. When overexpressed, Pur-alpha mitigates toxicities associated with Fragile X tumor ataxia syndrome (FXTAS) and C9orf72 repeat expansion diseases in Drosophila and mammalian cell culture models. However, the function of Pur-alpha in regulating ALS pathogenesis has not been fully understood. We identified Pur-alpha as a novel component of cytoplasmic stress granules (SGs) in ALS patient cells carrying disease-causing mutations in FUS. When cells were challenged with stress, we observed that Pur-alpha co-localized with mutant FUS in ALS patient cells and became trapped in constitutive SGs. We also found that FUS physically interacted with Pur-alpha in mammalian neuronal cells. Interestingly, shRNA-mediated knock down of endogenous Pur-alpha significantly reduced formation of cytoplasmic stress granules in mammalian cells suggesting that Pur-alpha is essential for the formation of SGs. Furthermore, ectopic expression of Pur-alpha blocked cytoplasmic mislocalization of mutant FUS and strongly suppressed toxicity associated with mutant FUS expression in primary motor neurons. Our data emphasizes the importance of stress granules in ALS pathogenesis and identifies Pur-alpha as a novel regulator of SG dynamics. PMID:26728149

  6. Regulation of Microtubule Dynamics through Phosphorylation on Stathmin by Epstein-Barr Virus Kinase BGLF4*

    PubMed Central

    Chen, Po-Wen; Lin, Sue-Jane; Tsai, Shu-Chun; Lin, Jiun-Han; Chen, Mei-Ru; Wang, Jiin-Tarng; Lee, Chung-Pei; Tsai, Ching-Hwa

    2010-01-01

    Stathmin is an important microtubule (MT)-destabilizing protein, and its activity is differently attenuated by phosphorylation at one or more of its four phosphorylatable serine residues (Ser-16, Ser-25, Ser-38, and Ser-63). This phosphorylation of stathmin plays important roles in mitotic spindle formation. We observed increasing levels of phosphorylated stathmin in Epstein-Barr virus (EBV)-harboring lymphoblastoid cell lines (LCLs) and nasopharyngeal carcinoma (NPC) cell lines during the EBV lytic cycle. These suggest that EBV lytic products may be involved in the regulation of stathmin phosphorylation. BGLF4 is an EBV-encoded kinase and has similar kinase activity to cdc2, an important kinase that phosphorylates serine residues 25 and 38 of stathmin during mitosis. Using an siRNA approach, we demonstrated that BGLF4 contributes to the phosphorylation of stathmin in EBV-harboring NPC. Moreover, we confirmed that BGLF4 interacts with and phosphorylates stathmin using an in vitro kinase assay and an in vivo two-dimensional electrophoresis assay. Interestingly, unlike cdc2, BGLF4 was shown to phosphorylate non-proline directed serine residues of stathmin (Ser-16) and it mediated phosphorylation of stathmin predominantly at serines 16, 25, and 38, indicating that BGLF4 can down-regulate the activity of stathmin. Finally, we demonstrated that the pattern of MT organization was changed in BGLF4-expressing cells, possibly through phosphorylation of stathmin. In conclusion, we have shown that a viral Ser/Thr kinase can directly modulate the activity of stathmin and this contributes to alteration of cellular MT dynamics and then may modulate the associated cellular processes. PMID:20110360

  7. Dynamic modelling of microRNA regulation during mesenchymal stem cell differentiation

    PubMed Central

    2013-01-01

    Background Network inference from gene expression data is a typical approach to reconstruct gene regulatory networks. During chondrogenic differentiation of human mesenchymal stem cells (hMSCs), a complex transcriptional network is active and regulates the temporal differentiation progress. As modulators of transcriptional regulation, microRNAs (miRNAs) play a critical role in stem cell differentiation. Integrated network inference aimes at determining interrelations between miRNAs and mRNAs on the basis of expression data as well as miRNA target predictions. We applied the NetGenerator tool in order to infer an integrated gene regulatory network. Results Time series experiments were performed to measure mRNA and miRNA abundances of TGF-beta1+BMP2 stimulated hMSCs. Network nodes were identified by analysing temporal expression changes, miRNA target gene predictions, time series correlation and literature knowledge. Network inference was performed using NetGenerator to reconstruct a dynamical regulatory model based on the measured data and prior knowledge. The resulting model is robust against noise and shows an optimal trade-off between fitting precision and inclusion of prior knowledge. It predicts the influence of miRNAs on the expression of chondrogenic marker genes and therefore proposes novel regulatory relations in differentiation control. By analysing the inferred network, we identified a previously unknown regulatory effect of miR-524-5p on the expression of the transcription factor SOX9 and the chondrogenic marker genes COL2A1, ACAN and COL10A1. Conclusions Genome-wide exploration of miRNA-mRNA regulatory relationships is a reasonable approach to identify miRNAs which have so far not been associated with the investigated differentiation process. The NetGenerator tool is able to identify valid gene regulatory networks on the basis of miRNA and mRNA time series data. PMID:24219887

  8. The function and dynamics of the apical scaffolding protein E3KARP are regulated by cell-cycle phosphorylation

    PubMed Central

    Sauvanet, Cécile; Garbett, Damien; Bretscher, Anthony

    2015-01-01

    We examine the dynamics and function of the apical scaffolding protein E3KARP/NHERF2, which consists of two PDZ domains and a tail containing an ezrin-binding domain. The exchange rate of E3KARP is greatly enhanced during mitosis due to phosphorylation at Ser-303 in its tail region. Whereas E3KARP can substitute for the function of the closely related scaffolding protein EBP50/NHERF1 in the formation of interphase microvilli, E3KARP S303D cannot. Moreover, the S303D mutation enhances the in vivo dynamics of the E3KARP tail alone, whereas in vitro the interaction of E3KARP with active ezrin is unaffected by S303D, implicating another factor regulating dynamics in vivo. A-Raf is found to be required for S303 phosphorylation in mitotic cells. Regulation of the dynamics of EBP50 is known to be dependent on its tail region but modulated by PDZ domain occupancy, which is not the case for E3KARP. Of interest, in both cases, the mechanisms regulating dynamics involve the tails, which are the most diverged region of the paralogues and probably evolved independently after a gene duplication event that occurred early in vertebrate evolution. PMID:26310448

  9. Quantification of Dexterity as the Dynamical Regulation of Instabilities: Comparisons Across Gender, Age, and Disease

    PubMed Central

    Lawrence, Emily L.; Fassola, Isabella; Werner, Inge; Leclercq, Caroline; Valero-Cuevas, Francisco J.

    2014-01-01

    Dexterous manipulation depends on using the fingertips to stabilize unstable objects. The Strength–Dexterity paradigm consists of asking subjects to compress a slender and compliant spring prone to buckling. The maximal level of compression [requiring low fingertip forces <300 grams force (gf)] quantifies the neural control capability to dynamically regulate fingertip force vectors and motions for a dynamic manipulation task. We found that finger dexterity is significantly affected by age (p = 0.017) and gender (p = 0.021) in 147 healthy individuals (66F, 81M, 20–88 years). We then measured finger dexterity in 42 hands of patients following treatment for osteoarthritis of the base of the thumb (CMC OA, 33F, 65.8 ± 9.7 years), and 31 hands from patients being treated for Parkinson’s disease (PD, 6F, 10M, 67.68 ± 8.5 years). Importantly, we found no differences in finger compression force among patients or controls. However, we did find stronger age-related declines in performance in the patients with PD (slope −2.7 gf/year, p = 0.002) than in those with CMC OA (slope −1.4 gf/year, p = 0.015), than in controls (slope −0.86 gf/year). In addition, the temporal variability of forces during spring compression shows clearly different dynamics in the clinical populations compared to the controls (p < 0.001). Lastly, we compared dexterity across extremities. We found stronger age (p = 0.005) and gender (p = 0.002) effects of leg compression force in 188 healthy subjects who compressed a larger spring with the foot of an isolated leg (73F, 115M, 14–92 years). In 81 subjects who performed the tests with all four limbs separately, we found finger and leg compression force to be significantly correlated (females ρ = 0.529, p = 0.004; males ρ = 0.403, p = 0.003; 28F, 53M, 20–85 years), but surprisingly found no differences between dominant and non-dominant limbs. These results have important

  10. Design and optimization of photo bioreactor for O2 regulation and control by system dynamics and computer simulation.

    PubMed

    Hu, Dawei; Li, Ming; Zhou, Rui; Sun, Yi

    2012-01-01

    In this paper, a valid kinetic model of photo bioreactor (PBR) used for highly-effective cultivation of blue algae, Spirulina platensis, was developed for fully describing the dynamic characteristics of O(2) concentration, then a closed-loop PBR with Linear-Quadratic Gaussian (LQG) servo controller was established and optimized via digital simulation and dynamic response optimization, and the effectiveness of the closed-loop PBR was further tested and accredited by real-time simulation. The result showed that the closed-loop PBR could regulate and control the O(2) concentration in its gas phase according to the reference with desired dynamic response performance, hence microalgae with unique characteristic could be selected as a powerful tool for O(2) regulation and control whenever O(2) concentration in Bioregenerative Life Support System (BLSS) deviates from the nominal level in emergencies, and greatly enhance safety and reliability of BLSS on space and ground missions. PMID:22153599

  11. ETS family transcriptional regulators drive chromatin dynamics and malignancy in squamous cell carcinomas.

    PubMed

    Yang, Hanseul; Schramek, Daniel; Adam, Rene C; Keyes, Brice E; Wang, Ping; Zheng, Deyou; Fuchs, Elaine

    2015-01-01

    Tumor-initiating stem cells (SCs) exhibit distinct patterns of transcription factors and gene expression compared to healthy counterparts. Here, we show that dramatic shifts in large open-chromatin domain (super-enhancer) landscapes underlie these differences and reflect tumor microenvironment. By in vivo super-enhancer and transcriptional profiling, we uncover a dynamic cancer-specific epigenetic network selectively enriched for binding motifs of a transcription factor cohort expressed in squamous cell carcinoma SCs (SCC-SCs). Many of their genes, including Ets2 and Elk3, are themselves regulated by SCC-SC super-enhancers suggesting a cooperative feed-forward loop. Malignant progression requires these genes, whose knockdown severely impairs tumor growth and prohibits progression from benign papillomas to SCCs. ETS2-deficiency disrupts the SCC-SC super-enhancer landscape and downstream cancer genes while ETS2-overactivation in epidermal-SCs induces hyperproliferation and SCC super-enhancer-associated genes Fos, Junb and Klf5. Together, our findings unearth an essential regulatory network required for the SCC-SC chromatin landscape and unveil its importance in malignant progression. PMID:26590320

  12. ETS family transcriptional regulators drive chromatin dynamics and malignancy in squamous cell carcinomas

    PubMed Central

    Adam, Rene C; Keyes, Brice E; Wang, Ping; Zheng, Deyou; Fuchs, Elaine

    2015-01-01

    Tumor-initiating stem cells (SCs) exhibit distinct patterns of transcription factors and gene expression compared to healthy counterparts. Here, we show that dramatic shifts in large open-chromatin domain (super-enhancer) landscapes underlie these differences and reflect tumor microenvironment. By in vivo super-enhancer and transcriptional profiling, we uncover a dynamic cancer-specific epigenetic network selectively enriched for binding motifs of a transcription factor cohort expressed in squamous cell carcinoma SCs (SCC-SCs). Many of their genes, including Ets2 and Elk3, are themselves regulated by SCC-SC super-enhancers suggesting a cooperative feed-forward loop. Malignant progression requires these genes, whose knockdown severely impairs tumor growth and prohibits progression from benign papillomas to SCCs. ETS2-deficiency disrupts the SCC-SC super-enhancer landscape and downstream cancer genes while ETS2-overactivation in epidermal-SCs induces hyperproliferation and SCC super-enhancer-associated genes Fos, Junb and Klf5. Together, our findings unearth an essential regulatory network required for the SCC-SC chromatin landscape and unveil its importance in malignant progression. DOI: http://dx.doi.org/10.7554/eLife.10870.001 PMID:26590320

  13. Actin dynamics tune the integrated stress response by regulating eukaryotic initiation factor 2α dephosphorylation

    PubMed Central

    Chambers, Joseph E; Dalton, Lucy E; Clarke, Hanna J; Malzer, Elke; Dominicus, Caia S; Patel, Vruti; Moorhead, Greg; Ron, David; Marciniak, Stefan J

    2015-01-01

    Four stress-sensing kinases phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) to activate the integrated stress response (ISR). In animals, the ISR is antagonised by selective eIF2α phosphatases comprising a catalytic protein phosphatase 1 (PP1) subunit in complex with a PPP1R15-type regulatory subunit. An unbiased search for additional conserved components of the PPP1R15-PP1 phosphatase identified monomeric G-actin. Like PP1, G-actin associated with the functional core of PPP1R15 family members and G-actin depletion, by the marine toxin jasplakinolide, destabilised the endogenous PPP1R15A-PP1 complex. The abundance of the ternary PPP1R15-PP1-G-actin complex was responsive to global changes in the polymeric status of actin, as was its eIF2α-directed phosphatase activity, while localised G-actin depletion at sites enriched for PPP1R15 enhanced eIF2α phosphorylation and the downstream ISR. G-actin's role as a stabilizer of the PPP1R15-containing holophosphatase provides a mechanism for integrating signals regulating actin dynamics with stresses that trigger the ISR. DOI: http://dx.doi.org/10.7554/eLife.04872.001 PMID:25774599

  14. Histone H3.3 regulates dynamic chromatin states during spermatogenesis

    PubMed Central

    Yuen, Benjamin T. K.; Bush, Kelly M.; Barrilleaux, Bonnie L.; Cotterman, Rebecca; Knoepfler, Paul S.

    2014-01-01

    The histone variant H3.3 is involved in diverse biological processes, including development, transcriptional memory and transcriptional reprogramming, as well as diseases, including most notably malignant brain tumors. Recently, we developed a knockout mouse model for the H3f3b gene, one of two genes encoding H3.3. Here, we show that targeted disruption of H3f3b results in a number of phenotypic abnormalities, including a reduction in H3.3 histone levels, leading to male infertility, as well as abnormal sperm and testes morphology. Additionally, null germ cell populations at specific stages in spermatogenesis, in particular spermatocytes and spermatogonia, exhibited increased rates of apoptosis. Disruption of H3f3b also altered histone post-translational modifications and gene expression in the testes, with the most prominent changes occurring at genes involved in spermatogenesis. Finally, H3f3b null testes also exhibited abnormal germ cell chromatin reorganization and reduced protamine incorporation. Taken together, our studies indicate a major role for H3.3 in spermatogenesis through regulation of chromatin dynamics. PMID:25142466

  15. Regulation of Mitotic Cytoskeleton Dynamics and Cytokinesis by Integrin-Linked Kinase in Retinoblastoma Cells

    PubMed Central

    Sharma, Manju; Assi, Kiran; Salh, Baljinder; Cox, Michael E.; Mills, Julia

    2014-01-01

    During cell division integrin-linked kinase (ILK) has been shown to regulate microtubule dynamics and centrosome clustering, processes involved in cell cycle progression, and malignant transformation. In this study, we examine the effects of downregulating ILK on mitotic function in human retinoblastoma cell lines. These retinal cancer cells, caused by the loss of function of two gene alleles (Rb1) that encode the retinoblastoma tumour suppressor, have elevated expression of ILK. Here we show that inhibition of ILK activity results in a concentration-dependent increase in nuclear area and multinucleated cells. Moreover, inhibition of ILK activity and expression increased the accumulation of multinucleated cells over time. In these cells, aberrant cytokinesis and karyokinesis correlate with altered mitotic spindle organization, decreased levels of cortical F-actin and centrosome de-clustering. Centrosome de-clustering, induced by ILK siRNA, was rescued in FLAG-ILK expressing Y79 cells as compared to those expressing FLAG-tag alone. Inhibition of ILK increased the proportion of cells exhibiting mitotic spindles and caused a significant G2/M arrest as early as 24 hours after exposure to QLT-0267. Live cell analysis indicate ILK downregulation causes an increase in multipolar anaphases and failed cytokinesis (bipolar and multipolar) of viable cells. These studies extend those indicating a critical function for ILK in mitotic cytoskeletal organization and describe a novel role for ILK in cytokinesis of Rb deficient cells. PMID:24911651

  16. Regulation of mitotic cytoskeleton dynamics and cytokinesis by integrin-linked kinase in retinoblastoma cells.

    PubMed

    Sikkema, William K A; Strikwerda, Arend; Sharma, Manju; Assi, Kiran; Salh, Baljinder; Cox, Michael E; Mills, Julia

    2014-01-01

    During cell division integrin-linked kinase (ILK) has been shown to regulate microtubule dynamics and centrosome clustering, processes involved in cell cycle progression, and malignant transformation. In this study, we examine the effects of downregulating ILK on mitotic function in human retinoblastoma cell lines. These retinal cancer cells, caused by the loss of function of two gene alleles (Rb1) that encode the retinoblastoma tumour suppressor, have elevated expression of ILK. Here we show that inhibition of ILK activity results in a concentration-dependent increase in nuclear area and multinucleated cells. Moreover, inhibition of ILK activity and expression increased the accumulation of multinucleated cells over time. In these cells, aberrant cytokinesis and karyokinesis correlate with altered mitotic spindle organization, decreased levels of cortical F-actin and centrosome de-clustering. Centrosome de-clustering, induced by ILK siRNA, was rescued in FLAG-ILK expressing Y79 cells as compared to those expressing FLAG-tag alone. Inhibition of ILK increased the proportion of cells exhibiting mitotic spindles and caused a significant G2/M arrest as early as 24 hours after exposure to QLT-0267. Live cell analysis indicate ILK downregulation causes an increase in multipolar anaphases and failed cytokinesis (bipolar and multipolar) of viable cells. These studies extend those indicating a critical function for ILK in mitotic cytoskeletal organization and describe a novel role for ILK in cytokinesis of Rb deficient cells. PMID:24911651

  17. Enhancement of Transient Stability Limit and Voltage Regulation with Dynamic Loads Using Robust Excitation Control

    NASA Astrophysics Data System (ADS)

    Hossain, Jahangir; Mahmud, Apel; Roy, Naruttam K.; Pota, Hemanshu R.

    2013-10-01

    In stressed power systems with large induction machine component, there exist undamped electromechanical modes and unstable monotonic voltage modes. This article proposes a sequential design of an excitation controller and a power system stabiliser (PSS) to stabilise the system. The operating region, with induction machines in stressed power systems, is often not captured using a linearisation around an operating point, and to alleviate this situation a robust controller is designed which guarantees stable operation in a large region of operation. A minimax linear quadratic Gaussian design is used for the design of the supplementary control to automatic voltage regulators, and a classical PSS structure is used to damp electromechanical oscillations. The novelty of this work is in proposing a method to capture the unmodelled nonlinear dynamics as uncertainty in the design of the robust controller. Tight bounds on the uncertainty are obtained using this method which enables high-performance controllers. An IEEE benchmark test system has been used to demonstrate the performance of the designed controller.

  18. Amygdala regulates risk of predation in rats foraging in a dynamic fear environment

    PubMed Central

    Choi, June-Seek; Kim, Jeansok J.

    2010-01-01

    In a natural environment, foragers constantly face the risk of encountering predators. Fear is a defensive mechanism evolved to protect animals from danger by balancing the animals’ needs for primary resources with the risk of predation, and the amygdala is implicated in mediating fear responses. However, the functions of fear and amygdala in foraging behavior are not well characterized because of the technical difficulty in quantifying prey–predator interaction with real (unpredictable) predators. Thus, the present study investigated the rat's foraging behavior in a seminaturalistic environment when confronted with a predator-like robot programmed to surge toward the animal seeking food. Rats initially fled into the nest and froze (demonstrating fear) and then cautiously approached and seized the food as a function of decreasing nest−food and increasing food−robot distances. The likelihood of procuring food increased and decreased via lesioning/inactivating and disinhibiting the amygdala, respectively. These results indicate that the amygdala bidirectionally regulates risk behavior in rats foraging in a dynamic fear environment. PMID:21115817

  19. Pin1 Regulates the Dynamics of c-Myc DNA Binding To Facilitate Target Gene Regulation and Oncogenesis

    PubMed Central

    Farrell, Amy S.; Pelz, Carl; Wang, Xiaoyan; Daniel, Colin J.; Wang, Zhiping; Su, Yulong; Janghorban, Mahnaz; Zhang, Xiaoli; Morgan, Charlie; Impey, Soren

    2013-01-01

    The Myc oncoprotein is considered a master regulator of gene transcription by virtue of its ability to modulate the expression of a large percentage of all genes. However, mechanisms that direct Myc's recruitment to DNA and target gene selection to elicit specific cellular functions have not been well elucidated. Here, we report that the Pin1 prolyl isomerase enhances recruitment of serine 62-phosphorylated Myc and its coactivators to select promoters during gene activation, followed by promoting Myc's release associated with its degradation. This facilitates Myc's activation of genes involved in cell growth and metabolism, resulting in enhanced proproliferative activity, even while controlling Myc levels. In cancer cells with impaired Myc degradation, Pin1 still enhances Myc DNA binding, although it no longer facilitates Myc degradation. Thus, we find that Pin1 and Myc are cooverexpressed in cancer, and this drives a gene expression pattern that we show is enriched in poor-outcome breast cancer subtypes. This study provides new insight into mechanisms regulating Myc DNA binding and oncogenic activity, it reveals a novel role for Pin1 in the regulation of transcription factors, and it elucidates a mechanism that can contribute to oncogenic cooperation between Pin1 and Myc. PMID:23716601

  20. Landslides that never go catastrophic: dynamics of self-regulating earthflows along the Eel River, CA

    NASA Astrophysics Data System (ADS)

    Handwerger, A. L.; Roering, J. J.; Schmidt, D. A.

    2013-12-01

    The seasonal dynamics of earthflows are governed by complex mechanical-hydrologic interactions between landslide properties (e.g., size, topographic slope, material properties) and external forcings such as precipitation. While many studies have quantified the dynamics of individual earthflows, most have been in diverse climatic, tectonic, and lithologic settings such that a systematic comparison required to isolate these interactions is often infeasible. Here, we use satellite InSAR time series, precipitation data, and topographic data, including airborne lidar, to quantify relationships between precipitation, slide geometry, and kinematics for 10 slow-moving earthflows in the Eel River catchment, Northern California. We also apply a commonly used viscous-flow model to help interpret relationships between topographic slope and velocity. These 10 earthflows have areas from 0.16 to 3.1 km2, average topographic slopes angles from 9 to 15°, and downslope velocities from 0.2 to 1.2 m/yr. Each slide displays persistent year-round movement with distinct kinematic zones (e.g., source, transport, deposition). Consistent with the regional hydrologic patterns, the slides exhibit well-defined seasonal velocity changes indicating that they are driven by rainfall-induced changes in pore-water pressure along basal shear zones. Furthermore, each kinematic zone displays a synchronous response to rainfall, which suggests that periods of acceleration and deceleration are triggered across the entire shear zone. Since the response of these earthflows is similar in both timing and magnitude despite differences in landslide size, we suggest that these slides self-regulate to maintain a narrow range of pore-water pressures year-round, which allows for both seasonal velocity changes and persistent long-term (i.e. non-catastrophic) motion. Although dynamic patterns are consistent between slides, we find no clear correlation between the magnitude of the slope and velocity for individual

  1. Analysis of marker-defined HNSCC subpopulations reveals a dynamic regulation of tumor initiating properties.

    PubMed

    Bragado, Paloma; Estrada, Yeriel; Sosa, Maria Soledad; Avivar-Valderas, Alvaro; Cannan, David; Genden, Eric; Teng, Marita; Ranganathan, Aparna C; Wen, Huei-Chi; Kapoor, Avnish; Bernstein, Emily; Aguirre-Ghiso, Julio A

    2012-01-01

    Head and neck squamous carcinoma (HNSCC) tumors carry dismal long-term prognosis and the role of tumor initiating cells (TICs) in this cancer is unclear. We investigated in HNSCC xenografts whether specific tumor subpopulations contributed to tumor growth. We used a CFSE-based label retentions assay, CD49f (α6-integrin) surface levels and aldehyde dehydrogenase (ALDH) activity to profile HNSCC subpopulations. The tumorigenic potential of marker-positive and -negative subpopulations was tested in nude (Balb/c nu/nu) and NSG (NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ) mice and chicken embryo chorioallantoic membrane (CAM) assays. Here we identified in HEp3, SQ20b and FaDu HNSCC xenografts a subpopulation of G0/G1-arrested slow-cycling CD49f(high)/ALDH1A1(high)/H3K4/K27me3(low) subpopulation (CD49f+) of tumor cells. A strikingly similar CD49f(high)/H3K27me3(low) subpopulation is also present in primary human HNSCC tumors and metastases. While only sorted CD49f(high)/ALDH(high), label retaining cells (LRC) proliferated immediately in vivo, with time the CD49f(low)/ALDH(low), non-LRC (NLRC) tumor cell subpopulations were also able to regain tumorigenic capacity; this was linked to restoration of CD49f(high)/ALDH(high), label retaining cells. In addition, CD49f is required for HEp3 cell tumorigenicity and to maintain low levels of H3K4/K27me3. CD49f+ cells also displayed reduced expression of the histone-lysine N-methyltransferase EZH2 and ERK1/2 phosphorylation. This suggests that although transiently quiescent, their unique chromatin structure is poised for rapid transcriptional activation. CD49f- cells can "reprogram" and also achieve this state eventually. We propose that in HNSCC tumors, epigenetic mechanisms likely driven by CD49f signaling dynamically regulate HNSCC xenograft phenotypic heterogeneity. This allows multiple tumor cell subpopulations to drive tumor growth suggesting that their dynamic nature renders them a "moving target" and their eradication might

  2. Analysis of Marker-Defined HNSCC Subpopulations Reveals a Dynamic Regulation of Tumor Initiating Properties

    PubMed Central

    Bragado, Paloma; Estrada, Yeriel; Sosa, Maria Soledad; Avivar-Valderas, Alvaro; Cannan, David; Genden, Eric; Teng, Marita; Ranganathan, Aparna C.; Wen, Huei-Chi; Kapoor, Avnish; Bernstein, Emily; Aguirre-Ghiso, Julio A.

    2012-01-01

    Head and neck squamous carcinoma (HNSCC) tumors carry dismal long-term prognosis and the role of tumor initiating cells (TICs) in this cancer is unclear. We investigated in HNSCC xenografts whether specific tumor subpopulations contributed to tumor growth. We used a CFSE-based label retentions assay, CD49f (α6-integrin) surface levels and aldehyde dehydrogenase (ALDH) activity to profile HNSCC subpopulations. The tumorigenic potential of marker-positive and -negative subpopulations was tested in nude (Balb/c nu/nu) and NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice and chicken embryo chorioallantoic membrane (CAM) assays. Here we identified in HEp3, SQ20b and FaDu HNSCC xenografts a subpopulation of G0/G1-arrested slow-cycling CD49fhigh/ALDH1A1high/H3K4/K27me3low subpopulation (CD49f+) of tumor cells. A strikingly similar CD49fhigh/H3K27me3low subpopulation is also present in primary human HNSCC tumors and metastases. While only sorted CD49fhigh/ALDHhigh, label retaining cells (LRC) proliferated immediately in vivo, with time the CD49flow/ALDHlow, non-LRC (NLRC) tumor cell subpopulations were also able to regain tumorigenic capacity; this was linked to restoration of CD49fhigh/ALDHhigh, label retaining cells. In addition, CD49f is required for HEp3 cell tumorigenicity and to maintain low levels of H3K4/K27me3. CD49f+ cells also displayed reduced expression of the histone-lysine N-methyltransferase EZH2 and ERK1/2phosphorylation. This suggests that although transiently quiescent, their unique chromatin structure is poised for rapid transcriptional activation. CD49f− cells can “reprogram” and also achieve this state eventually. We propose that in HNSCC tumors, epigenetic mechanisms likely driven by CD49f signaling dynamically regulate HNSCC xenograft phenotypic heterogeneity. This allows multiple tumor cell subpopulations to drive tumor growth suggesting that their dynamic nature renders them a “moving target” and their eradication might require more

  3. Integrin-linked kinase regulates oligodendrocyte cytoskeleton, growth cone, and adhesion dynamics.

    PubMed

    Michalski, John-Paul; Cummings, Sarah E; O'Meara, Ryan W; Kothary, Rashmi

    2016-02-01

    Integrin-linked kinase (ILK), a focal adhesion protein, brokers the link between cytoskeleton, cell membrane, and extracellular environment. Here, we demonstrate a role for ILK in laminin-2-mediated adhesion in primary murine oligodendrocytes (OLs) - with ILK loss leading to severe defects in process branching and outgrowth. These defects were partially recovered when the ILK-depleted OLs were instead grown on the non-integrin-activating substrate poly-l-lysine. Intriguingly, ILK loss on the neutral poly-l-lysine substrate led to swelling at the tips of OL processes, which we identified as enlarged growth cones. Employing the bloated ILK-depleted growth cones as template, we demonstrate the appearance of distinct cytoskeletal domains within OL growth cones bearing classic neuronal growth cone architecture. Further, microtubule organization was severely perturbed following ILK loss, with centripetal microtubule looping and failure to bundle occurring in a laminin-2-independent manner. Together, our work highlights differences in specific aspects of OL biology as driven by laminin-2-dependent or independent ILK governed mechanisms. We also reinforce the idea of OLs as growth cone bearing cells and describe the neuronal-like cytoskeleton therein. Finally, we demonstrate a role for ILK in OL growth cone maturation through microtubule regulation, the loss of which translates to decreased process length and myelin production capacity. We describe herein how different substrates fundamentally alter the oligodendrocyte's response to loss of integrin-linked kinase (ILK). On laminin-2 (Ln-2), ILK-depleted oligodendrocytes appear stunted and malformed, while on the non-integrin-activating substrate PLL branching and membrane formation are restored. We also reinforce the idea of oligodendrocytes as growth cone-bearing cells, detailing the growth cone's cytoskeletal architecture. Strikingly, loss of ILK on poly-l-lysine leads to growth cone swelling, the structure's size and

  4. CaMKII regulates intracellular Ca²⁺ dynamics in native endothelial cells.

    PubMed

    Toussaint, Fanny; Charbel, Chimène; Blanchette, Alexandre; Ledoux, Jonathan

    2015-09-01

    Localized endothelial Ca(2+) signalling, such as Ca(2+) pulsars, can modulate the contractile state of the underlying vascular smooth muscle cell through specific endothelial targets. In addition to K(Ca)3.1 as a target, Ca(2+) pulsars, an IP3R-dependent pulsatile Ca(2+) release from the endoplasmic reticulum (ER) could activate a frequency-sensitive Ca(2+)-dependent kinase such as CaMKII. In the absence of extracellular Ca(2+), acetylcholine increased endothelial CaMKII phosphorylation and activation, thereby suggesting CaMKII activation independently of Ca(2+) influx. Herein, a reciprocal relation where CaMKII controls endothelial Ca(2+) dynamics has been investigated in mesenteric arteries. Both CaMKIIα and β isoforms have been identified in endothelial cells and close proximity (<40 nm) suggests their association in heteromultimers. Intracellular Ca(2+) monitoring with high speed confocal microscopy then showed that inhibition of CaMKII with KN-93 significantly increased the population of Ca(2+) pulsars active sites (+89%), suggesting CaMKII as a major regulator of Ca(2+) pulsars in native endothelium. Mechanistic insights were then sought through the elucidation of the impact of CaMKII on ER Ca(2+) store. ER Ca(2+) emptying was accelerated by CaMKII inhibition and ER Ca(2+) content was assessed using ionomycin. Exposure to KN-93 strongly diminished ER Ca(2+) content (-61%) by relieving CaMKII-dependent inhibition of IP3 receptors (IP3R). Moreover, in situ proximity ligation assay suggested CaMKII-IP3R promiscuity, essential condition for a protein-protein interaction. Interestingly, segregation of IP3R within myoendothelial projection (MEP) appears to be isoform-specific. Hence, only IP3R type 1 and type 2 are detected within fenestrations of the internal elastic lamina, sites of MEP, whilst type 3 is absent from these structures. In summary, CaMKII seems to act as a Ca(2+)-sensitive switch of a negative feedback loop regulating endothelial Ca(2

  5. Dynamic Regulation of Cell Volume and Extracellular ATP of Human Erythrocytes

    PubMed Central

    Leal Denis, M. Florencia; Alvarez, H. Ariel; Lauri, Natalia; Alvarez, Cora L.; Chara, Osvaldo; Schwarzbaum, Pablo J.

    2016-01-01

    Introduction The peptide mastoparan 7 (MST7) triggered in human erythrocytes (rbcs) the release of ATP and swelling. Since swelling is a well-known inducer of ATP release, and extracellular (ATPe), interacting with P (purinergic) receptors, can affect cell volume (Vr), we explored the dynamic regulation between Vr and ATPe. Methods and Treatments We made a quantitative assessment of MST7-dependent kinetics of Vr and of [ATPe], both in the absence and presence of blockers of ATP efflux, swelling and P receptors. Results In rbcs 10 μM MST7 promoted acute, strongly correlated changes in [ATPe] and Vr. Whereas MST7 induced increases of 10% in Vr and 190 nM in [ATPe], blocking swelling in a hyperosmotic medium + MST7 reduced [ATPe] by 40%. Pre-incubation of rbcs with 10 μM of either carbenoxolone or probenecid, two inhibitors of the ATP conduit pannexin 1, reduced [ATPe] by 40–50% and swelling by 40–60%, while in the presence of 80 U/mL apyrase, an ATPe scavenger, cell swelling was prevented. While exposure to 10 μM NF110, a blocker of ATP-P2X receptors mediating sodium influx, reduced [ATPe] by 48%, and swelling by 80%, incubation of cells in sodium free medium reduced swelling by 92%. Analysis and Discussion Results were analyzed by means of a mathematical model where ATPe kinetics and Vr kinetics were mutually regulated. Model dependent fit to experimental data showed that, upon MST7 exposure, ATP efflux required a fast 1960-fold increase of ATP permeability, mediated by two kinetically different conduits, both of which were activated by swelling and inactivated by time. Both experimental and theoretical results suggest that, following MST7 exposure, ATP is released via two conduits, one of which is mediated by pannexin 1. The accumulated ATPe activates P2X receptors, followed by sodium influx, resulting in cell swelling, which in turn further activates ATP release. Thus swelling and P2X receptors constitute essential components of a positive feedback loop

  6. Dynamic Regulation of TCR–Microclusters and the Microsynapse for T Cell Activation

    PubMed Central

    Hashimoto-Tane, Akiko; Saito, Takashi

    2016-01-01

    The interaction between a T cell and an antigen-presenting cell is the initiating event in T cell-mediated adaptive immunity. The Immunological Synapse (IS) is formed at the interface between these two cell types, and is the site where antigen (Ag)-specific recognition and activation are induced through the T cell receptor (TCR). This occurs at the center of the IS, and cell adhesion is supported through integrins in the area surrounding the TCR. Recently, this model has been revised based on data indicating that the initial Ag-specific activation signal is triggered prior to IS formation at TCR–microclusters (MCs), sites where TCR, kinases and adaptors of TCR proximal downstream signaling molecules accumulate as an activation signaling cluster. TCR–MCs then move into the center of the cell–cell interface to generate the cSMAC. This translocation of TCR–MCs is mediated initially by the actin cytoskeleton and then by dynein-induced movement along microtubules. The translocation of TCR–MCs and cSMAC formation is induced upon strong TCR stimulation through the assembly of a TCR–dynein super complex with microtubules. The Ag-specific activation signal is induced at TCR–MCs, but the adhesion signal is now shown to be induced by generating a “microsynapse,” which is composed of a core of TCR–MCs and the surrounding adhesion ring of integrin and focal adhesion molecules. Since the microsynapse is critical for activation, particularly under weak TCR stimulation, this structure supports a weak TCR signal through a cell–cell adhesion signal. The microsynapse has a structure similar to the IS but on a micro-scale and regulates Ag-specific activation as well as cell–cell adhesion. We describe here the dynamic regulation of TCR–MCs, responsible for inducing Ag-specific activation signals, and the microsynapse, responsible for adhesion signals critical for cell–cell interactions, and their interrelationship. PMID:27446085

  7. Mantle dynamics in super-Earths: Post-perovskite rheology and self-regulation of viscosity

    NASA Astrophysics Data System (ADS)

    Tackley, P. J.; Ammann, M.; Brodholt, J. P.; Dobson, D. P.; Valencia, D.

    2013-07-01

    The discovery of extra-solar "super-Earth" planets with sizes up to twice that of Earth has prompted interest in their possible lithosphere and mantle dynamics and evolution. Simple scalings suggest that super-Earths are more likely than an equivalent Earth-sized planet to be undergoing plate tectonics. Generally, viscosity and thermal conductivity increase with pressure while thermal expansivity decreases, resulting in lower convective vigour in the deep mantle, which, if extralopated to the largest super-Earths might, according to conventional thinking, result in no convection in their deep mantles due to the very low effective Rayleigh number. Here we evaluate this. First, as the mantle of a super-Earth is made mostly of post-perovskite we here extend the density functional theory (DFT) calculations of post-perovskite activation enthalpy of to a pressure of 1 TPa, for both slowest diffusion (upper-bound rheology) and fastest diffusion (lower-bound rheology) directions. Along a 1600 K adiabat the upper-bound rheology would lead to a post-perovskite layer of a very high (˜1030 Pa s) but relatively uniform viscosity, whereas the lower-bound rheology leads to a post-perovskite viscosity increase of ˜7 orders of magnitude with depth; in both cases the deep mantle viscosity would be too high for convection. Second, we use these DFT-calculated values in statistically steady-state numerical simulations of mantle convection and lithosphere dynamics of planets with up to ten Earth masses. The models assume a compressible mantle including depth-dependence of material properties and plastic yielding induced plate-like lithospheric behaviour. Results confirm the likelihood of plate tectonics for planets with Earth-like surface conditions (temperature and water) and show a self-regulation of deep mantle temperature. The deep mantle is not adiabatic; instead feedback between internal heating, temperature and viscosity regulates the temperature such that the viscosity has the

  8. Counteracting H3K4 methylation modulators Set1 and Jhd2 co-regulate chromatin dynamics and gene transcription

    PubMed Central

    Ramakrishnan, Saravanan; Pokhrel, Srijana; Palani, Sowmiya; Pflueger, Christian; Parnell, Timothy J.; Cairns, Bradley R.; Bhaskara, Srividya; Chandrasekharan, Mahesh B.

    2016-01-01

    Histone H3K4 methylation is connected to gene transcription from yeast to humans, but its mechanistic roles in transcription and chromatin dynamics remain poorly understood. We investigated the functions for Set1 and Jhd2, the sole H3K4 methyltransferase and H3K4 demethylase, respectively, in S. cerevisiae. Here, we show that Set1 and Jhd2 predominantly co-regulate genome-wide transcription. We find combined activities of Set1 and Jhd2 via H3K4 methylation contribute to positive or negative transcriptional regulation. Providing mechanistic insights, our data reveal that Set1 and Jhd2 together control nucleosomal turnover and occupancy during transcriptional co-regulation. Moreover, we find a genome-wide co-regulation of chromatin structure by Set1 and Jhd2 at different groups of transcriptionally active or inactive genes and at different regions within yeast genes. Overall, our study puts forth a model wherein combined actions of Set1 and Jhd2 via modulating H3K4 methylation−demethylation together control chromatin dynamics during various facets of transcriptional regulation. PMID:27325136

  9. Counteracting H3K4 methylation modulators Set1 and Jhd2 co-regulate chromatin dynamics and gene transcription.

    PubMed

    Ramakrishnan, Saravanan; Pokhrel, Srijana; Palani, Sowmiya; Pflueger, Christian; Parnell, Timothy J; Cairns, Bradley R; Bhaskara, Srividya; Chandrasekharan, Mahesh B

    2016-01-01

    Histone H3K4 methylation is connected to gene transcription from yeast to humans, but its mechanistic roles in transcription and chromatin dynamics remain poorly understood. We investigated the functions for Set1 and Jhd2, the sole H3K4 methyltransferase and H3K4 demethylase, respectively, in S. cerevisiae. Here, we show that Set1 and Jhd2 predominantly co-regulate genome-wide transcription. We find combined activities of Set1 and Jhd2 via H3K4 methylation contribute to positive or negative transcriptional regulation. Providing mechanistic insights, our data reveal that Set1 and Jhd2 together control nucleosomal turnover and occupancy during transcriptional co-regulation. Moreover, we find a genome-wide co-regulation of chromatin structure by Set1 and Jhd2 at different groups of transcriptionally active or inactive genes and at different regions within yeast genes. Overall, our study puts forth a model wherein combined actions of Set1 and Jhd2 via modulating H3K4 methylation-demethylation together control chromatin dynamics during various facets of transcriptional regulation. PMID:27325136

  10. Proinflammatory cytokines differentially regulate adipocyte mitochondrial metabolism, oxidative stress, and dynamics

    PubMed Central

    Hahn, Wendy S.; Kuzmicic, Jovan; Burrill, Joel S.; Donoghue, Margaret A.; Foncea, Rocio; Jensen, Michael D.; Lavandero, Sergio; Arriaga, Edgar A.

    2014-01-01

    Proinflammatory cytokines differentially regulate adipocyte mitochondrial metabolism, oxidative stress, and dynamics. Macrophage infiltration of adipose tissue and the chronic low-grade production of inflammatory cytokines have been mechanistically linked to the development of insulin resistance, the forerunner of type 2 diabetes mellitus. In this study, we evaluated the chronic effects of TNFα, IL-6, and IL-1β on adipocyte mitochondrial metabolism and morphology using the 3T3-L1 model cell system. TNFα treatment of cultured adipocytes led to significant changes in mitochondrial bioenergetics, including increased proton leak, decreased ΔΨm, increased basal respiration, and decreased ATP turnover. In contrast, although IL-6 and IL-1β decreased maximal respiratory capacity, they had no effect on ΔΨm and varied effects on ATP turnover, proton leak, or basal respiration. Only TNFα treatment of 3T3-L1 cells led to an increase in oxidative stress (as measured by superoxide anion production and protein carbonylation) and C16 ceramide synthesis. Treatment of 3T3-L1 adipocytes with cytokines led to decreased mRNA expression of key transcription factors and control proteins implicated in mitochondrial biogenesis, including PGC-1α and eNOS as well as deceased expression of COX IV and Cyt C. Whereas each cytokine led to effects on expression of mitochondrial markers, TNFα exclusively led to mitochondrial fragmentation and decreased the total level of OPA1 while increasing OPA1 cleavage, without expression of levels of mitofusin 2, DRP-1, or mitofilin being affected. In summary, these results indicate that inflammatory cytokines have unique and specialized effects on adipocyte metabolism, but each leads to decreased mitochondrial function and a reprogramming of fat cell biology. PMID:24595304

  11. Dynamic Trk and G Protein Signalings Regulate Dopaminergic Neurodifferentiation in Human Trophoblast Stem Cells

    PubMed Central

    Lee, Tony Tung-Yin; Tsai, Cheng-Fang; Chen, Hung-Sheng; Lai, Feng-Jie; Yokoyama, Kazunari K.; Hsieh, Tsung-Hsun; Wu, Ruey-Meei; Lee, Jau-nan

    2015-01-01

    Understanding the mechanisms in the generation of neural stem cells from pluripotent stem cells is a fundamental step towards successful management of neurodegenerative diseases in translational medicine. Albeit all-trans retinoic acid (RA) has been associated with axon outgrowth and nerve regeneration, the maintenance of differentiated neurons, the association with degenerative disease like Parkinson's disease, and its regulatory molecular mechanism from pluripotent stem cells to neural stem cells remain fragmented. We have previously reported that RA is capable of differentiation of human trophoblast stem cells to dopamine (DA) committed progenitor cells. Intracranial implantation of such neural progenitor cells into the 6-OHDA-lesioned substantia nigra pars compacta successfully regenerates dopaminergic neurons and integrity of the nigrostriatal pathway, ameliorating the behavioral deficits in the Parkinson’s disease rat model. Here, we demonstrated a dynamic molecular network in systematic analysis by addressing spatiotemporal molecular expression, intracellular protein-protein interaction and inhibition, imaging study, and genetic expression to explore the regulatory mechanisms of RA induction in the differentiation of human trophoblast stem cells to DA committed progenitor cells. We focused on the tyrosine receptor kinase (Trk), G proteins, canonical Wnt2B/β-catenin, genomic and non-genomic RA signaling transductions with Tyrosine hydroxylase (TH) gene expression as the differentiation endpoint. We found that at the early stage, integration of TrkA and G protein signalings aims for axonogenesis and morphogenesis, involving the novel RXRα/Gαq/11 and RARβ/Gβ signaling pathways. While at the later stage, five distinct signaling pathways together with epigenetic histone modifications emerged to regulate expression of TH, a precursor of dopamine. RA induction generated DA committed progenitor cells in one day. Our results provided substantial mechanistic

  12. Dynamic Trk and G Protein Signalings Regulate Dopaminergic Neurodifferentiation in Human Trophoblast Stem Cells.

    PubMed

    Tsai, Eing-Mei; Wang, Yu-Chih; Lee, Tony Tung-Yin; Tsai, Cheng-Fang; Chen, Hung-Sheng; Lai, Feng-Jie; Yokoyama, Kazunari K; Hsieh, Tsung-Hsun; Wu, Ruey-Meei; Lee, Jau-Nan

    2015-01-01

    Understanding the mechanisms in the generation of neural stem cells from pluripotent stem cells is a fundamental step towards successful management of neurodegenerative diseases in translational medicine. Albeit all-trans retinoic acid (RA) has been associated with axon outgrowth and nerve regeneration, the maintenance of differentiated neurons, the association with degenerative disease like Parkinson's disease, and its regulatory molecular mechanism from pluripotent stem cells to neural stem cells remain fragmented. We have previously reported that RA is capable of differentiation of human trophoblast stem cells to dopamine (DA) committed progenitor cells. Intracranial implantation of such neural progenitor cells into the 6-OHDA-lesioned substantia nigra pars compacta successfully regenerates dopaminergic neurons and integrity of the nigrostriatal pathway, ameliorating the behavioral deficits in the Parkinson's disease rat model. Here, we demonstrated a dynamic molecular network in systematic analysis by addressing spatiotemporal molecular expression, intracellular protein-protein interaction and inhibition, imaging study, and genetic expression to explore the regulatory mechanisms of RA induction in the differentiation of human trophoblast stem cells to DA committed progenitor cells. We focused on the tyrosine receptor kinase (Trk), G proteins, canonical Wnt2B/β-catenin, genomic and non-genomic RA signaling transductions with Tyrosine hydroxylase (TH) gene expression as the differentiation endpoint. We found that at the early stage, integration of TrkA and G protein signalings aims for axonogenesis and morphogenesis, involving the novel RXRα/Gαq/11 and RARβ/Gβ signaling pathways. While at the later stage, five distinct signaling pathways together with epigenetic histone modifications emerged to regulate expression of TH, a precursor of dopamine. RA induction generated DA committed progenitor cells in one day. Our results provided substantial mechanistic

  13. Cannabinoid receptor trafficking in peripheral cells is dynamically regulated by a binary biochemical switch.

    PubMed

    Kleyer, Jonas; Nicolussi, Simon; Taylor, Peter; Simonelli, Deborah; Furger, Evelyne; Anderle, Pascale; Gertsch, Jürg

    2012-05-15

    The cannabinoid G protein-coupled receptors (GPCRs) CB₁ and CB₂ are expressed in different peripheral cells. Localization of GPCRs in the cell membrane determines signaling via G protein pathways. Here we show that unlike in transfected cells, CB receptors in cell lines and primary human cells are not internalized upon agonist interaction, but move between cytoplasm and cell membranes by ligand-independent trafficking mechanisms. Even though CB receptors are expressed in many cells of peripheral origin they are not always localized in the cell membrane and in most cancer cell lines the ratios between CB₁ and CB₂ receptor gene and surface expression vary significantly. In contrast, CB receptor cell surface expression in HL60 cells is subject to significant oscillations and CB₂ receptors form oligomers and heterodimers with CB₁ receptors, showing synchronized surface expression, localization and trafficking. We show that hydrogen peroxide and other nonspecific protein tyrosine phosphatase inhibitors (TPIs) such as phenylarsine oxide trigger both CB₂ receptor internalization and externalization, depending on receptor localization. Phorbol ester-mediated internalization of CB receptors can be inhibited via this switch. In primary human immune cells hydrogen peroxide and other TPIs lead to a robust internalization of CB receptors in monocytes and an externalization in T cells. This study describes, for the first time, the dynamic nature of CB receptor trafficking in the context of a biochemical switch, which may have implications for studies on the cell-type specific effects of cannabinoids and our understanding of the regulation of CB receptor cell surface expression. PMID:22387618

  14. Enhancement of stress resilience through Hdac6-mediated regulation of glucocorticoid receptor chaperone dynamics

    PubMed Central

    Jochems, Jeanine; Teegarden, Sarah L; Chen, Yong; Boulden, Janette; Challis, Collin; Ben-Dor, Gabriel A; Kim, Sangwon F; Berton, Olivier

    2014-01-01

    Background Acetylation of Hsp90 regulates downstream hormone signaling via the glucocorticoid receptor (GR), but the role of this molecular mechanism in stress homeostasis remains poorly understood. We tested whether acetylation of Hsp90 in the brain predicts and modulates the behavioral sequelae of a mouse model of social stress. Methods Mice subjected to chronic social defeat stress (CSDS) were stratified into resilient and vulnerable subpopulations. HPA axis function was probed using a DEX/CRF test. Hsp90 acetylation, Hsp90-GR interactions and GR translocation were measured in the dorsal raphe nucleus (DRN). To manipulate Hsp90 acetylation, we pharmacologically inhibited Hdac6, a known deacetylase of Hsp90 or overexpressed a point-mutant that mimics the hyperacetylated state of Hsp90 at lysine K294 Results Lower acetylated Hsp90, higher GR-Hsp90 association and enhanced GR translocation were observed in DRN of vulnerable mice after CSDS. Administration of ACY-738, an Hdac6-selective inhibitor, led to Hsp90 hyperacetylation in brain and in neuronal culture. In cell-based assays, ACY-738 increased the relative association of Hsp90 with FKBP51 versus FKBP52 and inhibited hormone-induced GR translocation. This effect was replicated by overexpressing the acetylation-mimic point-mutant of Hsp90. In vivo, ACY-738 promoted resilience to CSDS and serotonin-selective viral overexpression of the acetylation-mimic mutant of Hsp90 in raphe neurons reproduced the behaviroral effect of ACY-738. Conclusions Hyperacetylation of Hsp90 is a predictor and causal molecular determinant of stress resilience in mice. Brain-penetrant Hdac6 inhibitors increase Hsp90 acetylation and modulate GR chaperone dynamics offering a promising strategy to curtail deleterious socioaffective effects of stress and glucocorticoids. PMID:25442004

  15. Mitochondrial dynamics, quality control and miRNA regulation in skeletal muscle: implications for obesity and related metabolic disease.

    PubMed

    Dahlmans, Dennis; Houzelle, Alexandre; Schrauwen, Patrick; Hoeks, Joris

    2016-06-01

    The western dietary habits and sedentary lifestyle largely contributes to the growing epidemic of obesity. Mitochondria are at the front line of cellular energy homoeostasis and are implicated in the pathophysiology of obesity and obesity-related metabolic disease. In recent years, novel aspects in the regulation of mitochondrial metabolism, such as mitochondrial dynamics, mitochondrial protein quality control and post-transcriptional regulation of genes coding for mitochondrial proteins, have emerged. In this review, we discuss the recent findings concerning the dysregulation of these processes in skeletal muscle in obesogenic conditions. PMID:27129097

  16. A dynamic set point for thermal adaptation requires phospholipase C-mediated regulation of TRPM8 in vivo.

    PubMed

    Brenner, Daniel S; Golden, Judith P; Vogt, Sherri K; Dhaka, Ajay; Story, Gina M; Gereau Iv, Robert W

    2014-10-01

    The ability to sense and respond to thermal stimuli at varied environmental temperatures is essential for survival in seasonal areas. In this study, we show that mice respond similarly to ramping changes in temperature from a wide range of baseline temperatures. Further investigation suggests that this ability to adapt to different ambient environments is based on rapid adjustments made to a dynamic temperature set point. The adjustment of this set point requires transient receptor potential cation channel, subfamily member 8 (TRPM8), but not transient receptor potential cation channel, subfamily A, member 1 (TRPA1), and is regulated by phospholipase C (PLC) activity. Overall, our findings suggest that temperature response thresholds in mice are dynamic, and that this ability to adapt to environmental temperature seems to mirror the in vitro findings that PLC-mediated hydrolysis of phosphoinositol 4,5-bisphosphate modulates TRPM8 activity and thereby regulates the response thresholds to cold stimuli. PMID:25109670

  17. Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing

    NASA Astrophysics Data System (ADS)

    Cui, Jiaxi; Daniel, Daniel; Grinthal, Alison; Lin, Kaixiang; Aizenberg, Joanna

    2015-08-01

    Approaches for regulated fluid secretion, which typically rely on fluid encapsulation and release from a shelled compartment, do not usually allow a fine continuous modulation of secretion, and can be difficult to adapt for monitoring or function-integration purposes. Here, we report self-regulated, self-reporting secretion systems consisting of liquid-storage compartments in a supramolecular polymer-gel matrix with a thin liquid layer on top, and demonstrate that dynamic liquid exchange between the compartments, matrix and surface layer allows repeated, responsive self-lubrication of the surface and cooperative healing of the matrix. Depletion of the surface liquid or local material damage induces secretion of the stored liquid via a dynamic feedback between polymer crosslinking, droplet shrinkage and liquid transport that can be read out through changes in the system's optical transparency. We foresee diverse applications in fluid delivery, wetting and adhesion control, and material self-repair.

  18. Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing.

    PubMed

    Cui, Jiaxi; Daniel, Daniel; Grinthal, Alison; Lin, Kaixiang; Aizenberg, Joanna

    2015-08-01

    Approaches for regulated fluid secretion, which typically rely on fluid encapsulation and release from a shelled compartment, do not usually allow a fine continuous modulation of secretion, and can be difficult to adapt for monitoring or function-integration purposes. Here, we report self-regulated, self-reporting secretion systems consisting of liquid-storage compartments in a supramolecular polymer-gel matrix with a thin liquid layer on top, and demonstrate that dynamic liquid exchange between the compartments, matrix and surface layer allows repeated, responsive self-lubrication of the surface and cooperative healing of the matrix. Depletion of the surface liquid or local material damage induces secretion of the stored liquid via a dynamic feedback between polymer crosslinking, droplet shrinkage and liquid transport that can be read out through changes in the system's optical transparency. We foresee diverse applications in fluid delivery, wetting and adhesion control, and material self-repair. PMID:26099112

  19. Crumbs is an essential regulator of cytoskeletal dynamics and cell-cell adhesion during dorsal closure in Drosophila

    PubMed Central

    Flores-Benitez, David; Knust, Elisabeth

    2015-01-01

    The evolutionarily conserved Crumbs protein is required for epithelial polarity and morphogenesis. Here we identify a novel role of Crumbs as a negative regulator of actomyosin dynamics during dorsal closure in the Drosophila embryo. Embryos carrying a mutation in the FERM (protein 4.1/ezrin/radixin/moesin) domain-binding motif of Crumbs die due to an overactive actomyosin network associated with disrupted adherens junctions. This phenotype is restricted to the amnioserosa and does not affect other embryonic epithelia. This function of Crumbs requires DMoesin, the Rho1-GTPase, class-I p21-activated kinases and the Arp2/3 complex. Data presented here point to a critical role of Crumbs in regulating actomyosin dynamics, cell junctions and morphogenesis. DOI: http://dx.doi.org/10.7554/eLife.07398.001 PMID:26544546

  20. VLN2 Regulates Plant Architecture by Affecting Microfilament Dynamics and Polar Auxin Transport in Rice[OPEN

    PubMed Central

    Wu, Shengyang; Xie, Yurong; Guo, Xiuping; Sheng, Peike; Wang, Juan; Wu, Chuanyin; Wang, Haiyang; Wan, Jianmin

    2015-01-01

    As a fundamental and dynamic cytoskeleton network, microfilaments (MFs) are regulated by diverse actin binding proteins (ABPs). Villins are one type of ABPs belonging to the villin/gelsolin superfamily, and their function is poorly understood in monocotyledonous plants. Here, we report the isolation and characterization of a rice (Oryza sativa) mutant defective in VILLIN2 (VLN2), which exhibits malformed organs, including twisted roots and shoots at the seedling stage. Cellular examination revealed that the twisted phenotype of the vln2 mutant is mainly caused by asymmetrical expansion of cells on the opposite sides of an organ. VLN2 is preferentially expressed in growing tissues, consistent with a role in regulating cell expansion in developing organs. Biochemically, VLN2 exhibits conserved actin filament bundling, severing and capping activities in vitro, with bundling and stabilizing activity being confirmed in vivo. In line with these findings, the vln2 mutant plants exhibit a more dynamic actin cytoskeleton network than the wild type. We show that vln2 mutant plants exhibit a hypersensitive gravitropic response, faster recycling of PIN2 (an auxin efflux carrier), and altered auxin distribution. Together, our results demonstrate that VLN2 plays an important role in regulating plant architecture by modulating MF dynamics, recycling of PIN2, and polar auxin transport. PMID:26486445

  1. Rationale and Design of the Feeding Dynamic Intervention (FDI) Study for Self-Regulation of Energy Intake in Preschoolers

    PubMed Central

    Eneli, Ihuoma U.; Tylka, Tracy L.; Hummel, Jessica; Watowicz, Rosanna P.; Perez, Susana A.; Kaciroti, Niko; Lumeng, Julie C.

    2015-01-01

    In 2011, the Institute of Medicine Early Childhood Prevention Policies Report identified feeding dynamics as an important focus area for childhood obesity prevention and treatment. Feeding dynamics include two central components: (1) caregiver feeding practices (i.e., determining how, when, where, and what they feed their children) and (2) child eating behaviors (i.e., determining how much and what to eat from what food caregivers have provided). Although there has been great interest in overweight and obesity prevention and treatment in young children, they have not focused comprehensively on feeding dynamics. Interventions on feeding dynamics that reduce caregivers’ excessive controlling and restrictive feeding practices and encourage the development of children’s self-regulation of energy intake may hold promise for tackling childhood obesity especially in the young child but currently lack an evidence base. This manuscript describes the rationale and design for a randomized controlled trial designed to compare a group of mothers and their 3-to 5-year old children who received an intervention focused primarily on feeding dynamics called the Feeding Dynamic Intervention (FDI) with a Wait-list Control Group (WLC). The primary aim of the study will be to investigate the efficacy of the FDI for decreasing Eating in the Absence of Hunger (EAH) and improving energy compensation (COMPX). The secondary aim will be to examine the effect of the FDI in comparison to the WLC on maternal self-reported feeding practices and child satiety responsiveness. PMID:25616192

  2. Rationale and design of the Feeding Dynamic Intervention (FDI) study for self-regulation of energy intake in preschoolers.

    PubMed

    Eneli, Ihuoma U; Tylka, Tracy L; Hummel, Jessica; Watowicz, Rosanna P; Perez, Susana A; Kaciroti, Niko; Lumeng, Julie C

    2015-03-01

    In 2011, the Institute of Medicine Early Childhood Prevention Policies Report identified feeding dynamics as an important focus area for childhood obesity prevention and treatment. Feeding dynamics includes two central components: (1) caregiver feeding practices (i.e., determining how, when, where, and what they feed their children) and (2) child eating behaviors (i.e., determining how much and what to eat from what food caregivers have provided). Although there has been great interest in overweight and obesity prevention and treatment in young children, they have not focused comprehensively on feeding dynamics. Interventions on feeding dynamics that reduce caregivers' excessive controlling and restrictive feeding practices and encourage the development of children's self-regulation of energy intake may hold promise for tackling childhood obesity especially in the young child but currently lack an evidence base. This manuscript describes the rationale and design for a randomized controlled trial designed to compare a group of mothers and their 3-to 5-year old children who received an intervention focused primarily on feeding dynamics called the Feeding Dynamic Intervention (FDI) with a Wait-list Control Group (WLC). The primary aim of the study will be to investigate the efficacy of the FDI for decreasing Eating in the Absence of Hunger (EAH) and improving energy compensation (COMPX). The secondary aim will be to examine the effect of the FDI in comparison to the WLC on maternal self-reported feeding practices and child satiety responsiveness. PMID:25616192

  3. Dynamics and regulation of glycolysis-tricarboxylic acid metabolism in the midgut of Spodoptera litura during metamorphosis.

    PubMed

    Hu, D; Luo, W; Fan, L F; Liu, F L; Gu, J; Deng, H M; Zhang, C; Huang, L H; Feng, Q L

    2016-04-01

    Significant changes usually take place in the internal metabolism of insects during metamorphosis. The glycolysis-tricarboxylic acid (glycolysis-TCA) pathway is important for energy metabolism. To elucidate its dynamics, the mRNA levels of genes involved in this pathway were examined in the midgut of Spodoptera litura during metamorphosis, and the pyruvate content was quantified. The expression patterns of these genes in response to starvation were examined, and the interaction between protein phosphatase 1 (PP1) and phosphofructokinase (PFK) was studied. The results revealed that the expression or activities of most glycolytic enzymes was down-regulated in prepupae and then recovered in some degree in pupae, and all TCA-related genes were remarkably suppressed in both the prepupae and pupae. Pyruvate was enriched in the pupal midgut. Taken together, these results suggest that insects decrease both glycolysis and TCA in prepupae to save energy and then up-regulate glycolysis but down-regulate TCA in pupae to increase the supply of intermediates for construction of new organs. The expression of all these genes were down-regulated by starvation, indicating that non-feeding during metamorphosis may be a regulator of glycolysis-TCA pathway in the midgut. Importantly, interaction between PP1 and PFK was identified and is suggested to be involved in the regulation of glycolysis. PMID:26683413

  4. The Tyrosine Kinase Activity of c-Src Regulates Actin Dynamics and Organization of Podosomes in Osteoclasts

    PubMed Central

    Destaing, Olivier; Sanjay, Archana; Itzstein, Cecile; Horne, William C.; Toomre, Derek

    2008-01-01

    Podosomes are dynamic actin-rich structures composed of a dense F-actin core surrounded by a cloud of more diffuse F-actin. Src performs one or more unique functions in osteoclasts (OCLs), and podosome belts and bone resorption are impaired in the absence of Src. Using Src−/− OCLs, we investigated the specific functions of Src in the organization and dynamics of podosomes. We found that podosome number and the podosome-associated actin cloud were decreased in Src−/− OCLs. Videomicroscopy and fluorescence recovery after photobleaching analysis revealed that the life span of Src−/− podosomes was increased fourfold and that the rate of actin flux in the core was decreased by 40%. Thus, Src regulates the formation, structure, life span, and rate of actin polymerization in podosomes and in the actin cloud. Rescue of Src−/− OCLs with Src mutants showed that both the kinase activity and either the SH2 or the SH3 binding domain are required for Src to restore normal podosome organization and dynamics. Moreover, inhibition of Src family kinase activities in Src−/− OCLs by Src inhibitors or by expressing dominant-negative SrcK295M induced the formation of abnormal podosomes. Thus, Src is an essential regulator of podosome structure, dynamics and organization. PMID:17978100

  5. Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans

    PubMed Central

    Wang, Jennifer T; Smith, Jarrett; Chen, Bi-Chang; Schmidt, Helen; Rasoloson, Dominique; Paix, Alexandre; Lambrus, Bramwell G; Calidas, Deepika; Betzig, Eric; Seydoux, Geraldine

    2014-01-01

    RNA granules have been likened to liquid droplets whose dynamics depend on the controlled dissolution and condensation of internal components. The molecules and reactions that drive these dynamics in vivo are not well understood. In this study, we present evidence that a group of intrinsically disordered, serine-rich proteins regulate the dynamics of P granules in C. elegans embryos. The MEG (maternal-effect germline defective) proteins are germ plasm components that are required redundantly for fertility. We demonstrate that MEG-1 and MEG-3 are substrates of the kinase MBK-2/DYRK and the phosphatase PP2APPTR−½. Phosphorylation of the MEGs promotes granule disassembly and dephosphorylation promotes granule assembly. Using lattice light sheet microscopy on live embryos, we show that GFP-tagged MEG-3 localizes to a dynamic domain that surrounds and penetrates each granule. We conclude that, despite their liquid-like behavior, P granules are non-homogeneous structures whose assembly in embryos is regulated by phosphorylation. DOI: http://dx.doi.org/10.7554/eLife.04591.001 PMID:25535836

  6. Stonin1 mediates endocytosis of the proteoglycan NG2 and regulates focal adhesion dynamics and cell motility

    PubMed Central

    Feutlinske, Fabian; Browarski, Marietta; Ku, Min-Chi; Trnka, Philipp; Waiczies, Sonia; Niendorf, Thoralf; Stallcup, William B.; Glass, Rainer; Krause, Eberhard; Maritzen, Tanja

    2015-01-01

    Cellular functions, ranging from focal adhesion (FA) dynamics and cell motility to tumour growth, are orchestrated by signals cells receive from outside via cell surface receptors. Signalling is fine-tuned by the exo–endocytic cycling of these receptors to control cellular responses such as FA dynamics, which determine cell motility. How precisely endocytosis regulates turnover of the various cell surface receptors remains unclear. Here we identify Stonin1, an endocytic adaptor of unknown function, as a regulator of FA dynamics and cell motility, and demonstrate that it facilitates the internalization of the oncogenic proteoglycan NG2, a co-receptor of integrins and platelet-derived growth factor receptor. Embryonic fibroblasts obtained from Stonin1-deficient mice display a marked surface accumulation of NG2, increased cellular signalling and defective FA disassembly as well as altered cellular motility. These data establish Stonin1 as a specific adaptor for the endocytosis of NG2 and as an important factor for FA dynamics and cell migration. PMID:26437238

  7. Probing the dynamic regulation of peripheral membrane proteins using hydrogen deuterium exchange-MS (HDX-MS).

    PubMed

    Vadas, Oscar; Burke, John E

    2015-10-01

    Many cellular signalling events are controlled by the selective recruitment of protein complexes to membranes. Determining the molecular basis for how lipid signalling complexes are recruited, assembled and regulated on specific membrane compartments has remained challenging due to the difficulty of working in conditions mimicking native biological membrane environments. Enzyme recruitment to membranes is controlled by a variety of regulatory mechanisms, including binding to specific lipid species, protein-protein interactions, membrane curvature, as well as post-translational modifications. A powerful tool to study the regulation of membrane signalling enzymes and complexes is hydrogen deuterium exchange-MS (HDX-MS), a technique that allows for the interrogation of protein dynamics upon membrane binding and recruitment. This review will highlight the theory and development of HDX-MS and its application to examine the molecular basis of lipid signalling enzymes, specifically the regulation and activation of phosphoinositide 3-kinases (PI3Ks). PMID:26517882

  8. Projection-Specific Dynamic Regulation of Inhibition in Amygdala Micro-Circuits.

    PubMed

    Vogel, Elisabeth; Krabbe, Sabine; Gründemann, Jan; Wamsteeker Cusulin, Jaclyn I; Lüthi, Andreas

    2016-08-01

    Cannabinoid receptor type 1 (CB1R)-expressing CCK interneurons are key regulators of cortical circuits. Here we report that retrograde endocannabinoid signaling and CB1R-mediated regulation of inhibitory synaptic transmission onto basal amygdala principal neurons strongly depend on principal neuron projection target. Projection-specific asymmetries in the regulation of local inhibitory micro-circuits may contribute to the selective activation of distinct amygdala output pathways during behavioral changes. PMID:27497223

  9. REGULATION OF STAR FORMATION RATES IN MULTIPHASE GALACTIC DISKS: A THERMAL/DYNAMICAL EQUILIBRIUM MODEL

    SciTech Connect

    Ostriker, Eve C.; McKee, Christopher F.; Leroy, Adam K. E-mail: cmckee@astro.berkeley.ed

    2010-10-01

    We develop a model for the regulation of galactic star formation rates {Sigma}{sub SFR} in disk galaxies, in which interstellar medium (ISM) heating by stellar UV plays a key role. By requiring that thermal and (vertical) dynamical equilibrium are simultaneously satisfied within the diffuse gas, and that stars form at a rate proportional to the mass of the self-gravitating component, we obtain a prediction for {Sigma}{sub SFR} as a function of the total gaseous surface density {Sigma} and the midplane density of stars+dark matter {rho}{sub sd}. The physical basis of this relationship is that the thermal pressure in the diffuse ISM, which is proportional to the UV heating rate and therefore to {Sigma}{sub SFR}, must adjust until it matches the midplane pressure value set by the vertical gravitational field. Our model applies to regions where {Sigma} {approx}< 100 M{sub sun} pc{sup -2}. In low-{Sigma}{sub SFR} (outer-galaxy) regions where diffuse gas dominates, the theory predicts that {Sigma}{sub SFR{proportional_to}{Sigma}{radical}}({rho}{sub sd}). The decrease of thermal equilibrium pressure when {Sigma}{sub SFR} is low implies, consistent with observations, that star formation can extend (with declining efficiency) to large radii in galaxies, rather than having a sharp cutoff at a fixed value of {Sigma}. The main parameters entering our model are the ratio of thermal pressure to total pressure in the diffuse ISM, the fraction of diffuse gas that is in the warm phase, and the star formation timescale in self-gravitating clouds; all of these are (at least in principle) direct observables. At low surface density, our model depends on the ratio of the mean midplane FUV intensity (or thermal pressure in the diffuse gas) to the star formation rate, which we set based on solar-neighborhood values. We compare our results to recent observations, showing good agreement overall for azimuthally averaged data in a set of spiral galaxies. For the large flocculent spiral

  10. Evolution-development congruence in pattern formation dynamics: Bifurcations in gene expression and regulation of networks structures.

    PubMed

    Kohsokabe, Takahiro; Kaneko, Kunihiko

    2016-01-01

    Search for possible relationships between phylogeny and ontogeny is important in evolutionary-developmental biology. Here we uncover such relationships by numerical evolution and unveil their origin in terms of dynamical systems theory. By representing developmental dynamics of spatially located cells with gene expression dynamics with cell-to-cell interaction under external morphogen gradient, gene regulation networks are evolved under mutation and selection with the fitness to approach a prescribed spatial pattern of expressed genes. For most numerical evolution experiments, evolution of pattern over generations and development of pattern by an evolved network exhibit remarkable congruence. Both in the evolution and development pattern changes consist of several epochs where stripes are formed in a short time, while for other temporal regimes, pattern hardly changes. In evolution, these quasi-stationary regimes are generations needed to hit relevant mutations, while in development, they are due to some gene expression that varies slowly and controls the pattern change. The morphogenesis is regulated by combinations of feedback or feedforward regulations, where the upstream feedforward network reads the external morphogen gradient, and generates a pattern used as a boundary condition for the later patterns. The ordering from up to downstream is common in evolution and development, while the successive epochal changes in development and evolution are represented as common bifurcations in dynamical-systems theory, which lead to the evolution-development congruence. Mechanism of exceptional violation of the congruence is also unveiled. Our results provide a new look on developmental stages, punctuated equilibrium, developmental bottlenecks, and evolutionary acquisition of novelty in morphogenesis. PMID:26678220

  11. QSSPN: dynamic simulation of molecular interaction networks describing gene regulation, signalling and whole-cell metabolism in human cells

    PubMed Central

    Fisher, Ciarán P.; Plant, Nicholas J.; Moore, J. Bernadette; Kierzek, Andrzej M.

    2013-01-01

    Motivation: Dynamic simulation of genome-scale molecular interaction networks will enable the mechanistic prediction of genotype–phenotype relationships. Despite advances in quantitative biology, full parameterization of whole-cell models is not yet possible. Simulation methods capable of using available qualitative data are required to develop dynamic whole-cell models through an iterative process of modelling and experimental validation. Results: We formulate quasi-steady state Petri nets (QSSPN), a novel method integrating Petri nets and constraint-based analysis to predict the feasibility of qualitative dynamic behaviours in qualitative models of gene regulation, signalling and whole-cell metabolism. We present the first dynamic simulations including regulatory mechanisms and a genome-scale metabolic network in human cell, using bile acid homeostasis in human hepatocytes as a case study. QSSPN simulations reproduce experimentally determined qualitative dynamic behaviours and permit mechanistic analysis of genotype–phenotype relationships. Availability and implementation: The model and simulation software implemented in C++ are available in supplementary material and at http://sysbio3.fhms.surrey.ac.uk/qsspn/. Contact: a.kierzek@surrey.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24064420

  12. Transposable element dynamics and PIWI regulation impacts lncRNA and gene expression diversity in Drosophila ovarian cell cultures

    PubMed Central

    Sytnikova, Yuliya A.; Rahman, Reazur; Chirn, Gung-wei; Clark, Josef P.

    2014-01-01

    Piwi proteins and Piwi-interacting RNAs (piRNAs) repress transposable elements (TEs) from mobilizing in gonadal cells. To determine the spectrum of piRNA-regulated targets that may extend beyond TEs, we conducted a genome-wide survey for transcripts associated with PIWI and for transcripts affected by PIWI knockdown in Drosophila ovarian somatic sheet (OSS) cells, a follicle cell line expressing the Piwi pathway. Despite the immense sequence diversity among OSS cell piRNAs, our analysis indicates that TE transcripts are the major transcripts associated with and directly regulated by PIWI. However, several coding genes were indirectly regulated by PIWI via an adjacent de novo TE insertion that generated a nascent TE transcript. Interestingly, we noticed that PIWI-regulated genes in OSS cells greatly differed from genes affected in a related follicle cell culture, ovarian somatic cells (OSCs). Therefore, we characterized the distinct genomic TE insertions across four OSS and OSC lines and discovered dynamic TE landscapes in gonadal cultures that were defined by a subset of active TEs. Particular de novo TEs appeared to stimulate the expression of novel candidate long noncoding RNAs (lncRNAs) in a cell lineage-specific manner, and some of these TE-associated lncRNAs were associated with PIWI and overlapped PIWI-regulated genes. Our analyses of OSCs and OSS cells demonstrate that despite having a Piwi pathway to suppress endogenous mobile elements, gonadal cell TE landscapes can still dramatically change and create transcriptome diversity. PMID:25267525

  13. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis

    PubMed Central

    Tagliabracci, Vincent S.; Engel, James L.; Wiley, Sandra E.; Xiao, Junyu; Gonzalez, David J.; Nidumanda Appaiah, Hitesh; Koller, Antonius; Nizet, Victor; White, Kenneth E.; Dixon, Jack E.

    2014-01-01

    The family with sequence similarity 20, member C (Fam20C) has recently been identified as the Golgi casein kinase. Fam20C phosphorylates secreted proteins on Ser-x-Glu/pSer motifs and loss-of-function mutations in the kinase cause Raine syndrome, an often-fatal osteosclerotic bone dysplasia. Fam20C is potentially an upstream regulator of the phosphate-regulating hormone fibroblast growth factor 23 (FGF23), because humans with FAM20C mutations and Fam20C KO mice develop hypophosphatemia due to an increase in full-length, biologically active FGF23. However, the mechanism by which Fam20C regulates FGF23 is unknown. Here we show that Fam20C directly phosphorylates FGF23 on Ser180, within the FGF23 R176XXR179/S180AE subtilisin-like proprotein convertase motif. This phosphorylation event inhibits O-glycosylation of FGF23 by polypeptide N-acetylgalactosaminyltransferase 3 (GalNAc-T3), and promotes FGF23 cleavage and inactivation by the subtilisin-like proprotein convertase furin. Collectively, our results provide a molecular mechanism by which FGF23 is dynamically regulated by phosphorylation, glycosylation, and proteolysis. Furthermore, our findings suggest that cross-talk between phosphorylation and O-glycosylation of proteins in the secretory pathway may be an important mechanism by which secreted proteins are regulated. PMID:24706917

  14. Interaction of CDK5RAP2 with EB1 to track growing microtubule tips and to regulate microtubule dynamics.

    PubMed

    Fong, Ka-Wing; Hau, Shiu-Yeung; Kho, Yik-Shing; Jia, Yue; He, Lisheng; Qi, Robert Z

    2009-08-01

    Mutations in cdk5rap2 are linked to autosomal recessive primary microcephaly, and attention has been paid to its function at centrosomes. In this report, we demonstrate that CDK5RAP2 localizes to microtubules and concentrates at the distal tips in addition to centrosomal localization. CDK5RAP2 interacts directly with EB1, a prototypic member of microtubule plus-end tracking proteins, and contains the basic and Ser-rich motif responsible for EB1 binding. The EB1-binding motif is conserved in the CDK5RAP2 sequences of chimpanzee, bovine, and dog but not in those of rat and mouse, suggesting a function gained during the evolution of mammals. The mutation of the Ile/Leu-Pro dipeptide within the motif abolishes EB1 interaction and plus-end attachment. In agreement with the mutational analysis, suppression of EB1 expression inhibits microtubule tip-tracking of CDK5RAP2. We have also found that the CDK5RAP2-EB1 complex regulates microtubule dynamics and stability. CDK5RAP2 depletion by RNA interference impacts the dynamic behaviors of microtubules. The CDK5RAP2-EB1 complex induces microtubule bundling and acetylation when expressed in cell cultures and stimulates microtubule assembly and bundle formation in vitro. Collectively, these results show that CDK5RAP2 targets growing microtubule tips in association with EB1 to regulate microtubule dynamics. PMID:19553473

  15. Dynamic Cross Talk between S1P and CXCL12 Regulates Hematopoietic Stem Cells Migration, Development and Bone Remodeling

    PubMed Central

    Golan, Karin; Kollet, Orit; Lapidot, Tsvee

    2013-01-01

    Hematopoietic stem cells (HSCs) are mostly retained in a quiescent non-motile mode in their bone marrow (BM) niches, shifting to a migratory cycling and differentiating state to replenish the blood with mature leukocytes on demand. The balance between the major chemo-attractants CXCL12, predominantly in the BM, and S1P, mainly in the blood, dynamically regulates HSC recruitment to the circulation versus their retention in the BM. During alarm situations, stress-signals induce a decrease in CXCL12 levels in the BM, while S1P levels are rapidly and transiently increased in the circulation, thus favoring mobilization of stem cells as part of host defense and repair mechanisms. Myeloid cytokines, including G-CSF, up-regulate S1P signaling in the BM via the PI3K pathway. Induced CXCL12 secretion from stromal cells via reactive oxygen species (ROS) generation and increased S1P1 expression and ROS signaling in HSCs, all facilitate mobilization. Bone turnover is also modulated by both CXCL12 and S1P, regulating the dynamic BM stromal microenvironment, osteoclasts and stem cell niches which all functionally express CXCL12 and S1P receptors. Overall, CXCL12 and S1P levels in the BM and circulation are synchronized to mutually control HSC motility, leukocyte production and osteoclast/osteoblast bone turnover during homeostasis and stress situations. PMID:24276423

  16. Enabled Negatively Regulates Diaphanous-Driven Actin Dynamics In Vitro and In Vivo

    PubMed Central

    Bilancia, Colleen G.; Winkelman, Jonathan D.; Tsygankov, Denis; Nowotarski, Stephanie H.; Sees, Jennifer A.; Comber, Kate; Evans, Iwan; Lakhani, Vinal; Wood, Will; Elston, Timothy C.; Kovar, David R.; Peifer, Mark

    2014-01-01

    Summary Actin regulators facilitate cell migration by controlling cell protrusion architecture and dynamics. As the behavior of individual actin regulators becomes clear, we must address why cells require multiple regulators with similar functions and how they cooperate to create diverse protrusions. We characterized Diaphanous (Dia) and Enabled (Ena) as a model, using complementary approaches: cell culture, biophysical analysis, and Drosophila morphogenesis. We found that Dia and Ena have distinct biochemical properties that contribute to the different protrusion morphologies each induces. Dia is a more processive, faster elongator, paralleling the long, stable filopodia it induces in vivo, while Ena promotes filopodia with more dynamic changes in number, length, and lifetime. Acting together, Ena and Dia induce protrusions distinct from those induced by either alone, with Ena reducing Dia-driven protrusion length and number. Consistent with this, EnaEVH1 binds Dia directly and inhibits DiaFH1FH2-mediated nucleation in vitro. Finally, Ena rescues hemocyte migration defects caused by activated Dia. PMID:24576424

  17. An integrated mechanism of pediatric pseudotumor cerebri syndrome: evidence of bioenergetic and hormonal regulation of cerebrospinal fluid dynamics

    PubMed Central

    Sheldon, Claire A.; Kwon, Young Joon; Liu, Grant T.; McCormack, Shana E.

    2015-01-01

    Pseudotumor cerebri syndrome (PTCS) is defined by the presence of elevated intracranial pressure (ICP) in the setting of normal brain parenchyma and cerebrospinal fluid (CSF). Headache, vision changes, and papilledema are common presenting features. Up to 10% of appropriately treated patients may experience permanent visual loss. The mechanism(s) underlying PTCS is unknown. PTCS occurs in association with a variety of conditions, including kidney disease, obesity, and adrenal insufficiency, suggesting endocrine and/or metabolic derangements may occur. Recent studies suggest that fluid and electrolyte balance in renal epithelia is regulated by a complex interaction of metabolic and hormonal factors; these cells share many of the same features as the choroid plexus cells in the central nervous system (CNS) responsible for regulation of CSF dynamics. Thus, we posit that similar factors may influence CSF dynamics in both types of fluid-sensitive tissues. Specifically, we hypothesize that, in patients with PTCS, mitochondrial metabolites (glutamate, succinate) and steroid hormones (cortisol, aldosterone) regulate CSF production and/or absorption. In this integrated mechanism review, we consider the clinical and molecular evidence for each metabolite and hormone in turn. We illustrate how related intracellular signaling cascades may converge in the choroid plexus, drawing on evidence from functionally similar tissues. PMID:25420176

  18. Dynamic curvature regulation accounts for the symmetric and asymmetric beats of Chlamydomonas flagella.

    PubMed

    Sartori, Pablo; Geyer, Veikko F; Scholich, Andre; Jülicher, Frank; Howard, Jonathon

    2016-01-01

    Cilia and flagella are model systems for studying how mechanical forces control morphology. The periodic bending motion of cilia and flagella is thought to arise from mechanical feedback: dynein motors generate sliding forces that bend the flagellum, and bending leads to deformations and stresses, which feed back and regulate the motors. Three alternative feedback mechanisms have been proposed: regulation by the sliding forces, regulation by the curvature of the flagellum, and regulation by the normal forces that deform the cross-section of the flagellum. In this work, we combined theoretical and experimental approaches to show that the curvature control mechanism is the one that accords best with the bending waveforms of Chlamydomonas flagella. We make the surprising prediction that the motors respond to the time derivative of curvature, rather than curvature itself, hinting at an adaptation mechanism controlling the flagellar beat. PMID:27166516

  19. Dynamic phosphorylation of Histone Deacetylase 1 by Aurora kinases during mitosis regulates zebrafish embryos development

    PubMed Central

    Loponte, Sara; Segré, Chiara V.; Senese, Silvia; Miccolo, Claudia; Santaguida, Stefano; Deflorian, Gianluca; Citro, Simona; Mattoscio, Domenico; Pisati, Federica; Moser, Mirjam A.; Visintin, Rosella; Seiser, Christian; Chiocca, Susanna

    2016-01-01

    Histone deacetylases (HDACs) catalyze the removal of acetyl molecules from histone and non-histone substrates playing important roles in chromatin remodeling and control of gene expression. Class I HDAC1 is a critical regulator of cell cycle progression, cellular proliferation and differentiation during development; it is also regulated by many post-translational modifications (PTMs). Herein we characterize a new mitosis-specific phosphorylation of HDAC1 driven by Aurora kinases A and B. We show that this phosphorylation affects HDAC1 enzymatic activity and it is critical for the maintenance of a proper proliferative and developmental plan in a complex organism. Notably, we find that Aurora-dependent phosphorylation of HDAC1 regulates histone acetylation by modulating the expression of genes directly involved in the developing zebrafish central nervous system. Our data represent a step towards the comprehension of HDAC1 regulation by its PTM code, with important implications in unravelling its roles both in physiology and pathology. PMID:27458029

  20. Dynamic curvature regulation accounts for the symmetric and asymmetric beats of Chlamydomonas flagella

    PubMed Central

    Sartori, Pablo; Geyer, Veikko F; Scholich, Andre; Jülicher, Frank; Howard, Jonathon

    2016-01-01

    Cilia and flagella are model systems for studying how mechanical forces control morphology. The periodic bending motion of cilia and flagella is thought to arise from mechanical feedback: dynein motors generate sliding forces that bend the flagellum, and bending leads to deformations and stresses, which feed back and regulate the motors. Three alternative feedback mechanisms have been proposed: regulation by the sliding forces, regulation by the curvature of the flagellum, and regulation by the normal forces that deform the cross-section of the flagellum. In this work, we combined theoretical and experimental approaches to show that the curvature control mechanism is the one that accords best with the bending waveforms of Chlamydomonas flagella. We make the surprising prediction that the motors respond to the time derivative of curvature, rather than curvature itself, hinting at an adaptation mechanism controlling the flagellar beat. DOI: http://dx.doi.org/10.7554/eLife.13258.001 PMID:27166516

  1. Dynamic phosphorylation of Histone Deacetylase 1 by Aurora kinases during mitosis regulates zebrafish embryos development.

    PubMed

    Loponte, Sara; Segré, Chiara V; Senese, Silvia; Miccolo, Claudia; Santaguida, Stefano; Deflorian, Gianluca; Citro, Simona; Mattoscio, Domenico; Pisati, Federica; Moser, Mirjam A; Visintin, Rosella; Seiser, Christian; Chiocca, Susanna

    2016-01-01

    Histone deacetylases (HDACs) catalyze the removal of acetyl molecules from histone and non-histone substrates playing important roles in chromatin remodeling and control of gene expression. Class I HDAC1 is a critical regulator of cell cycle progression, cellular proliferation and differentiation during development; it is also regulated by many post-translational modifications (PTMs). Herein we characterize a new mitosis-specific phosphorylation of HDAC1 driven by Aurora kinases A and B. We show that this phosphorylation affects HDAC1 enzymatic activity and it is critical for the maintenance of a proper proliferative and developmental plan in a complex organism. Notably, we find that Aurora-dependent phosphorylation of HDAC1 regulates histone acetylation by modulating the expression of genes directly involved in the developing zebrafish central nervous system. Our data represent a step towards the comprehension of HDAC1 regulation by its PTM code, with important implications in unravelling its roles both in physiology and pathology. PMID:27458029

  2. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  3. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  4. Dynamic subnuclear relocalization of WRKY40, a potential new mechanism of ABA-dependent transcription factor regulation

    PubMed Central

    Geilen, Katja; Böhmer, Maik

    2015-01-01

    The phytohormone ABA plays a major role during plant development, e.g. seed maturation and seed germination, and during adaptation to abiotic stresses like stomatal aperture regulation. The three closely related WRKY transcription factors WRKY18, WRKY40 and WRKY60 function in ABA signal transduction. We recently demonstrated that WRKY18 and WRKY40 but not WRKY60 localize to nuclear bodies in A. thaliana mesophyll protoplasts. WRKY40, a negative regulator of ABA-dependent inhibition of seed germination, relocalizes from PNBs to the nucleoplasm in the presence of ABA in a dynamic and phosphorylation-dependent manner. We propose that subnuclear relocalization of WRKY40 might constitute a new regulatory mechanism of ABA-dependent modulation of transcription factor activity. PMID:26479147

  5. Dynamic subnuclear relocalization of WRKY40, a potential new mechanism of ABA-dependent transcription factor regulation.

    PubMed

    Geilen, Katja; Böhmer, Maik

    2015-01-01

    The phytohormone ABA plays a major role during plant development, e.g. seed maturation and seed germination, and during adaptation to abiotic stresses like stomatal aperture regulation. The three closely related WRKY transcription factors WRKY18, WRKY40 and WRKY60 function in ABA signal transduction. We recently demonstrated that WRKY18 and WRKY40 but not WRKY60 localize to nuclear bodies in A. thaliana mesophyll protoplasts. WRKY40, a negative regulator of ABA-dependent inhibition of seed germination, relocalizes from PNBs to the nucleoplasm in the presence of ABA in a dynamic and phosphorylation-dependent manner. We propose that subnuclear relocalization of WRKY40 might constitute a new regulatory mechanism of ABA-dependent modulation of transcription factor activity. PMID:26479147

  6. Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent Notch signaling

    PubMed Central

    Paul, MK; Bisht, B; Darmawan, DO; Chiou, R; Ha, VL; Wallace, WD; Chon, AC; Hegab, AE; Grogan, T; Elashoff, DA; Alva-Ornelas, JA; Gomperts, BN

    2014-01-01

    SUMMARY Airways are exposed to myriad environmental and damaging agents such as reactive oxygen species (ROS), which also have physiological roles as signaling molecules that regulate stem cell function. However, the functional significance of both steady and dynamically changing ROS levels in different stem cell populations, as well as downstream mechanisms that integrate ROS sensing into decisions regarding stem cell homeostasis, are unclear. Here, we show in mouse and human airway basal stem cells (ABSCs) that intracellular flux from low to moderate ROS levels is required for stem cell self-renewal and proliferation. Changing ROS levels activate Nrf2, which activates the Notch pathway to stimulate ABSC self-renewal as well an antioxidant program that scavenges intracellular ROS, returning overall ROS levels to a low state to maintain homeostatic balance. This redox-mediated regulation of lung stem cell function has significant implications for stem cell biology, repair of lung injuries, and diseases such as cancer. PMID:24953182

  7. Coordinated Regulation of TIP60 and Poly(ADP-Ribose) Polymerase 1 in Damaged-Chromatin Dynamics.

    PubMed

    Ikura, Masae; Furuya, Kanji; Fukuto, Atsuhiko; Matsuda, Ryo; Adachi, Jun; Matsuda, Tomonari; Kakizuka, Akira; Ikura, Tsuyoshi

    2016-05-15

    The dynamic exchange of histones alleviates the nucleosome barrier and simultaneously facilitates various aspects of cellular DNA metabolism, such as DNA repair and transcription. In response to DNA damage, the acetylation of Lys5 in the histone variant H2AX, catalyzed by TIP60, plays a key role in promoting histone exchange; however, the detailed molecular mechanism still is unclear. Here, we show that the TIP60 complex includes poly(ADP-ribose) polymerase 1 (PARP-1). PARP-1 is required for the rapid exchange of H2AX on chromatin at DNA damage sites. It is known that PARP-1 binds dynamically to damaged chromatin and is crucial for the subsequent recruitment of other repair factors, and its auto-poly(ADP-ribosyl)ation is required for the dynamics. We also show that the acetylation of histone H2AX at Lys5 by TIP60, but not the phosphorylation of H2AX, is required for the ADP-ribosylation activity of PARP-1 and its dynamic binding to damaged chromatin. Our results indicate the reciprocal regulation of K5 acetylation of H2AX and PARP-1, which could modulate the chromatin structure to facilitate DNA metabolism at damage sites. This could explain the rather undefined roles of PARP-1 in various DNA damage responses. PMID:26976643

  8. KCC2 regulates actin dynamics in dendritic spines via interaction with β-PIX

    PubMed Central

    Llano, Olaya; Smirnov, Sergey; Soni, Shetal; Golubtsov, Andrey; Guillemin, Isabelle; Hotulainen, Pirta; Medina, Igor; Nothwang, Hans Gerd

    2015-01-01

    Chloride extrusion in mature neurons is largely mediated by the neuron-specific potassium-chloride cotransporter KCC2. In addition, independently of its chloride transport function, KCC2 regulates the development and morphology of dendritic spines through structural interactions with the actin cytoskeleton. The mechanism of this effect remains largely unknown. In this paper, we show a novel pathway for KCC2-mediated regulation of the actin cytoskeleton in neurons. We found that KCC2, through interaction with the b isoform of Rac/Cdc42 guanine nucleotide exchange factor β-PIX, regulates the activity of Rac1 GTPase and the phosphorylation of one of the major actin-regulating proteins, cofilin-1. KCC2-deficient neurons had abnormally high levels of phosphorylated cofilin-1. Consistently, dendritic spines of these neurons exhibited a large pool of stable actin, resulting in reduced spine motility and diminished density of functional synapses. In conclusion, we describe a novel signaling pathway that couples KCC2 to the cytoskeleton and regulates the formation of glutamatergic synapses. PMID:26056138

  9. KCC2 regulates actin dynamics in dendritic spines via interaction with β-PIX.

    PubMed

    Llano, Olaya; Smirnov, Sergey; Soni, Shetal; Golubtsov, Andrey; Guillemin, Isabelle; Hotulainen, Pirta; Medina, Igor; Nothwang, Hans Gerd; Rivera, Claudio; Ludwig, Anastasia

    2015-06-01

    Chloride extrusion in mature neurons is largely mediated by the neuron-specific potassium-chloride cotransporter KCC2. In addition, independently of its chloride transport function, KCC2 regulates the development and morphology of dendritic spines through structural interactions with the actin cytoskeleton. The mechanism of this effect remains largely unknown. In this paper, we show a novel pathway for KCC2-mediated regulation of the actin cytoskeleton in neurons. We found that KCC2, through interaction with the b isoform of Rac/Cdc42 guanine nucleotide exchange factor β-PIX, regulates the activity of Rac1 GTPase and the phosphorylation of one of the major actin-regulating proteins, cofilin-1. KCC2-deficient neurons had abnormally high levels of phosphorylated cofilin-1. Consistently, dendritic spines of these neurons exhibited a large pool of stable actin, resulting in reduced spine motility and diminished density of functional synapses. In conclusion, we describe a novel signaling pathway that couples KCC2 to the cytoskeleton and regulates the formation of glutamatergic synapses. PMID:26056138

  10. The Drosophila effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB.

    PubMed

    DeVorkin, Lindsay; Go, Nancy Erro; Hou, Ying-Chen Claire; Moradian, Annie; Morin, Gregg B; Gorski, Sharon M

    2014-05-26

    Increasing evidence reveals that a subset of proteins participates in both the autophagy and apoptosis pathways, and this intersection is important in normal physiological contexts and in pathological settings. In this paper, we show that the Drosophila effector caspase, Drosophila caspase 1 (Dcp-1), localizes within mitochondria and regulates mitochondrial morphology and autophagic flux. Loss of Dcp-1 led to mitochondrial elongation, increased levels of the mitochondrial adenine nucleotide translocase stress-sensitive B (SesB), increased adenosine triphosphate (ATP), and a reduction in autophagic flux. Moreover, we find that SesB suppresses autophagic flux during midoogenesis, identifying a novel negative regulator of autophagy. Reduced SesB activity or depletion of ATP by oligomycin A could rescue the autophagic defect in Dcp-1 loss-of-function flies, demonstrating that Dcp-1 promotes autophagy by negatively regulating SesB and ATP levels. Furthermore, we find that pro-Dcp-1 interacts with SesB in a nonproteolytic manner to regulate its stability. These data reveal a new mitochondrial-associated molecular link between nonapoptotic caspase function and autophagy regulation in vivo. PMID:24862573

  11. The Drosophila effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB

    PubMed Central

    DeVorkin, Lindsay; Go, Nancy Erro; Hou, Ying-Chen Claire; Moradian, Annie; Morin, Gregg B.

    2014-01-01

    Increasing evidence reveals that a subset of proteins participates in both the autophagy and apoptosis pathways, and this intersection is important in normal physiological contexts and in pathological settings. In this paper, we show that the Drosophila effector caspase, Drosophila caspase 1 (Dcp-1), localizes within mitochondria and regulates mitochondrial morphology and autophagic flux. Loss of Dcp-1 led to mitochondrial elongation, increased levels of the mitochondrial adenine nucleotide translocase stress-sensitive B (SesB), increased adenosine triphosphate (ATP), and a reduction in autophagic flux. Moreover, we find that SesB suppresses autophagic flux during midoogenesis, identifying a novel negative regulator of autophagy. Reduced SesB activity or depletion of ATP by oligomycin A could rescue the autophagic defect in Dcp-1 loss-of-function flies, demonstrating that Dcp-1 promotes autophagy by negatively regulating SesB and ATP levels. Furthermore, we find that pro–Dcp-1 interacts with SesB in a nonproteolytic manner to regulate its stability. These data reveal a new mitochondrial-associated molecular link between nonapoptotic caspase function and autophagy regulation in vivo. PMID:24862573

  12. Setd1a and NURF mediate chromatin dynamics and gene regulation during erythroid lineage commitment and differentiation

    PubMed Central

    Li, Ying; Schulz, Vincent P.; Deng, Changwang; Li, Guangyao; Shen, Yong; Tusi, Betsabeh K.; Ma, Gina; Stees, Jared; Qiu, Yi; Steiner, Laurie A.; Zhou, Lei; Zhao, Keji; Bungert, Jörg; Gallagher, Patrick G.; Huang, Suming

    2016-01-01

    The modulation of chromatin structure is a key step in transcription regulation in mammalian cells and eventually determines lineage commitment and differentiation. USF1/2, Setd1a and NURF complexes interact to regulate chromatin architecture in erythropoiesis, but the mechanistic basis for this regulation is hitherto unknown. Here we showed that Setd1a and NURF complexes bind to promoters to control chromatin structural alterations and gene activation in a cell context dependent manner. In human primary erythroid cells USF1/2, H3K4me3 and the NURF complex were significantly co-enriched at transcription start sites of erythroid genes, and their binding was associated with promoter/enhancer accessibility that resulted from nucleosome repositioning. Mice deficient for Setd1a, an H3K4 trimethylase, in the erythroid compartment exhibited reduced Ter119/CD71 positive erythroblasts, peripheral blood RBCs and hemoglobin levels. Loss of Setd1a led to a reduction of promoter-associated H3K4 methylation, inhibition of gene transcription and blockade of erythroid differentiation. This was associated with alterations in NURF complex occupancy at erythroid gene promoters and reduced chromatin accessibility. Setd1a deficiency caused decreased associations between enhancer and promoter looped interactions as well as reduced expression of erythroid genes such as the adult β-globin gene. These data indicate that Setd1a and NURF complexes are specifically targeted to and coordinately regulate erythroid promoter chromatin dynamics during erythroid lineage differentiation. PMID:27141965

  13. Dynamics of chest wall volume regulation during constant work rate exercise in patients with chronic obstructive pulmonary disease

    PubMed Central

    Takara, L.S.; Cunha, T.M.; Barbosa, P.; Rodrigues, M.K.; Oliveira, M.F.; Nery, L.E.; Neder, J.A.

    2012-01-01

    This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(VCW) = rib cage (VRC) + abdomen (VAB)] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) VCW increased in relation to resting values. There was a noticeable heterogeneity in the patterns of VCW regulation as EEVCW increased non-linearly in 17/30 “hyperinflators” and decreased in 13/30 “non-hyperinflators” (P < 0.05). EEVAB decreased slightly in 8 of the “hyperinflators”, thereby reducing and slowing the rate of increase in end-inspiratory (EI) VCW (P < 0.05). In contrast, decreases in EEVCW in the “non-hyperinflators” were due to the combination of stable EEVRC with marked reductions in EEVAB. These patients showed lower EIVCW and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIVCW regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment. PMID:23250012

  14. Dynamics of re-constitution of the human nuclear proteome after cell division is regulated by NLS-adjacent phosphorylation

    PubMed Central

    Róna, Gergely; Borsos, Máté; Ellis, Jonathan J; Mehdi, Ahmed M; Christie, Mary; Környei, Zsuzsanna; Neubrandt, Máté; Tóth, Judit; Bozóky, Zoltán; Buday, László; Madarász, Emília; Bodén, Mikael; Kobe, Bostjan; Vértessy, Beáta G

    2014-01-01

    Phosphorylation by the cyclin-dependent kinase 1 (Cdk1) adjacent to nuclear localization signals (NLSs) is an important mechanism of regulation of nucleocytoplasmic transport. However, no systematic survey has yet been performed in human cells to analyze this regulatory process, and the corresponding cell-cycle dynamics have not yet been investigated. Here, we focused on the human proteome and found that numerous proteins, previously not identified in this context, are associated with Cdk1-dependent phosphorylation sites adjacent to their NLSs. Interestingly, these proteins are involved in key regulatory events of DNA repair, epigenetics, or RNA editing and splicing. This finding indicates that cell-cycle dependent events of genome editing and gene expression profiling may be controlled by nucleocytoplasmic trafficking. For in-depth investigations, we selected a number of these proteins and analyzed how point mutations, expected to modify the phosphorylation ability of the NLS segments, perturb nucleocytoplasmic localization. In each case, we found that mutations mimicking hyper-phosphorylation abolish nuclear import processes. To understand the mechanism underlying these phenomena, we performed a video microscopy-based kinetic analysis to obtain information on cell-cycle dynamics on a model protein, dUTPase. We show that the NLS-adjacent phosphorylation by Cdk1 of human dUTPase, an enzyme essential for genomic integrity, results in dynamic cell cycle-dependent distribution of the protein. Non-phosphorylatable mutants have drastically altered protein re-import characteristics into the nucleus during the G1 phase. Our results suggest a dynamic Cdk1-driven mechanism of regulation of the nuclear proteome composition during the cell cycle. PMID:25483092

  15. A Mixed Incoherent Feed-Forward Loop Allows Conditional Regulation of Response Dynamics

    PubMed Central

    Semsey, Szabolcs

    2014-01-01

    Expression of the SodA superoxide dismutase (MnSOD) in Escherichia coli is regulated by superoxide concentration through the SoxRS system and also by Fur (Ferric uptake regulator) through a mixed incoherent feed forward loop (FFL) containing the RyhB small regulatory RNA. In this work I theoretically analyze the function of this feed forward loop as part of the network controlling expression of the two cytoplasmic superoxide dismutases, SodA and SodB. I find that feed forward regulation allows faster response to superoxide stress at low intracellular iron levels compared to iron rich conditions. That is, it can conditionally modulate the response time of a superimposed transcriptional control mechanism. PMID:24621982

  16. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast.

    PubMed

    Miao, Yansong; Han, Xuemei; Zheng, Liangzhen; Xie, Ying; Mu, Yuguang; Yates, John R; Drubin, David G

    2016-01-01

    Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin-Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism. PMID:27068241

  17. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast

    PubMed Central

    Miao, Yansong; Han, Xuemei; Zheng, Liangzhen; Xie, Ying; Mu, Yuguang; Yates, John R.; Drubin, David G.

    2016-01-01

    Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin–Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism. PMID:27068241

  18. Dynamics of sensitivity regulation in primate outer retina: the horizontal cell network.

    PubMed

    Lee, Barry B; Dacey, Dennis M; Smith, Vivianne C; Pokorny, Joel

    2003-01-01

    The goal of these experiments was to define the time course and degree of cone adaptation in primate outer retina by use of probe stimuli upon temporally modulated backgrounds. Recordings were obtained from primate horizontal cells. Test probes were either a low-amplitude, high-frequency sinusoid superimposed on a slowly modulated background or small test pulses superimposed on backgrounds of various frequencies. The amplitude of the test response was modulated by the background, indicating sensitivity regulation. Results were consistent with gain controls which, at 1000 td, required approximately 10-20 ms to completion. These mechanisms could also account for some of the distortions of horizontal cell responses to sinusoids and pulses. Modulation of test responsivity occurred at low background contrasts, suggesting no threshold change in light level must be exceeded to evoke sensitivity regulation. As retinal illuminance increased from darkness, sensitivity regulation was evident at 10-20 td. PMID:14507256

  19. The adaptive potential of maternal stress exposure in regulating population dynamics.

    PubMed

    Sheriff, Michael J

    2015-03-01

    Ecologists, evolutionary biologists and biomedical researchers are investing great effort in understanding the impact maternal stress may have on offspring phenotypes. Bian et al. advance this field by providing evidence that density-induced maternal stress programs offspring phenotypes, resulting in direct consequences on their fitness and population dynamics, but doing so in a context-dependent manner. They suggest that intrinsic state alterations induced by maternal stress may be one ecological factor generating delayed density-dependent effects. This research highlights the connection between maternal stress and population dynamics, and the importance of understanding the adaptive potential of such effects in a context-dependent manner. PMID:26247815

  20. The Role of Self-Efficacy, Goal, and Affect in Dynamic Motivational Self-Regulation

    ERIC Educational Resources Information Center

    Seo, Myeong-gu; Ilies, Remus

    2009-01-01

    In this paper, we examined the within-person relationship between self-efficacy and performance in an Internet-based stock investment simulation in which participants engaged in a series of stock trading activities trying to achieve performance goals in response to dynamic task environments (performance feedback and stock market movements).…

  1. Wasting disease regulates long-term population dynamics in a threatened seagrass.

    PubMed

    Bull, James C; Kenyon, Emma J; Cook, Kevan J

    2012-05-01

    The role of disease in the long-term dynamics of threatened species is poorly quantified, as well as being under-represented in ecology and conservation management. To understand persistent host-pathogen interaction operating in a vulnerable habitat, we quantified dynamics driving patterns of seagrass density using a longitudinal study in a relatively pristine site (Isles of Scilly, UK). Replicated samples of eelgrass (Zostera marina) density and wasting disease prevalence, presumably caused by Labyrinthula zosterae, were taken from five meadows at the height of the growing season, over the years 1997-2010. Data were used to parameterise a population dynamic model, incorporating density-dependent factors and sea temperature records. We found that direct density and disease-mediated feedback operate within a network of local populations. Furthermore, our results indicate that the strength of limitation to seagrass growth by disease was increased at higher temperatures. This modification of the coupled host-pathogen dynamics forms a novel hypothesis to account for dramatic die-backs of Z. marina widely reported elsewhere. Our findings highlight the importance of disease in structuring distributions of vulnerable species, as well as the application of population modelling in order to reveal ecological processes and prioritize future mechanistic investigation. PMID:22076311

  2. Plasma Membrane Abundance of Human Aquaporin 5 Is Dynamically Regulated by Multiple Pathways.

    PubMed

    Kitchen, Philip; Öberg, Fredrik; Sjöhamn, Jennie; Hedfalk, Kristina; Bill, Roslyn M; Conner, Alex C; Conner, Matthew T; Törnroth-Horsefield, Susanna

    2015-01-01

    Aquaporin membrane protein channels mediate cellular water flow. Human aquaporin 5 (AQP5) is highly expressed in the respiratory system and secretory glands where it facilitates the osmotically-driven generation of pulmonary secretions, saliva, sweat and tears. Dysfunctional trafficking of AQP5 has been implicated in several human disease states, including Sjögren's syndrome, bronchitis and cystic fibrosis. In order to investigate how the plasma membrane expression levels of AQP5 are regulated, we studied real-time translocation of GFP-tagged AQP5 in HEK293 cells. We show that AQP5 plasma membrane abundance in transfected HEK293 cells is rapidly and reversibly regulated by at least three independent mechanisms involving phosphorylation at Ser156, protein kinase A activity and extracellular tonicity. The crystal structure of a Ser156 phosphomimetic mutant indicates that its involvement in regulating AQP5 membrane abundance is not mediated by a conformational change of the carboxy-terminus. We suggest that together these pathways regulate cellular water flow. PMID:26569106

  3. Plasma Membrane Abundance of Human Aquaporin 5 Is Dynamically Regulated by Multiple Pathways

    PubMed Central

    Kitchen, Philip; Öberg, Fredrik; Sjöhamn, Jennie; Hedfalk, Kristina; Bill, Roslyn M.; Conner, Alex C.; Conner, Matthew T.; Törnroth-Horsefield, Susanna

    2015-01-01

    Aquaporin membrane protein channels mediate cellular water flow. Human aquaporin 5 (AQP5) is highly expressed in the respiratory system and secretory glands where it facilitates the osmotically-driven generation of pulmonary secretions, saliva, sweat and tears. Dysfunctional trafficking of AQP5 has been implicated in several human disease states, including Sjögren’s syndrome, bronchitis and cystic fibrosis. In order to investigate how the plasma membrane expression levels of AQP5 are regulated, we studied real-time translocation of GFP-tagged AQP5 in HEK293 cells. We show that AQP5 plasma membrane abundance in transfected HEK293 cells is rapidly and reversibly regulated by at least three independent mechanisms involving phosphorylation at Ser156, protein kinase A activity and extracellular tonicity. The crystal structure of a Ser156 phosphomimetic mutant indicates that its involvement in regulating AQP5 membrane abundance is not mediated by a conformational change of the carboxy-terminus. We suggest that together these pathways regulate cellular water flow. PMID:26569106

  4. Serotonin- and Training-Induced Dynamic Regulation of CREB2 in "Aplysia"

    ERIC Educational Resources Information Center

    Liu, Rong-Yu; Shah, Shreyansh; Cleary, Leonard J.; Byrne, John H.

    2011-01-01

    Long-term memory and plasticity, including long-term synaptic facilitation (LTF) of the "Aplysia" sensorimotor synapse, depend on the activation of transcription factors that regulate genes necessary for synaptic plasticity. In the present study we found that treatment with 5-HT and behavioral training produce biphasic changes in the expression of…

  5. Dynamic Changes in Anger, Externalizing and Internalizing Problems: Attention and Regulation

    ERIC Educational Resources Information Center

    Kim, Jungmeen; Deater-Deckard, Kirby

    2011-01-01

    Background: Low levels of dispositional anger and a good attention span are critical to healthy social emotional development, with attention control reflecting effective cognitive self-regulation of negative emotions such as anger. Using a longitudinal design, we examined attention span as a moderator of reciprocal links between changes in anger…

  6. Pseudo-transition Analysis Identifies the Key Regulators of Dynamic Metabolic Adaptations from Steady-State Data.

    PubMed

    Gerosa, Luca; Haverkorn van Rijsewijk, Bart R B; Christodoulou, Dimitris; Kochanowski, Karl; Schmidt, Thomas S B; Noor, Elad; Sauer, Uwe

    2015-10-28

    Hundreds of molecular-level changes within central metabolism allow a cell to adapt to the changing environment. A primary challenge in cell physiology is to identify which of these molecular-level changes are active regulatory events. Here, we introduce pseudo-transition analysis, an approach that uses multiple steady-state observations of (13)C-resolved fluxes, metabolites, and transcripts to infer which regulatory events drive metabolic adaptations following environmental transitions. Pseudo-transition analysis recapitulates known biology and identifies an unexpectedly sparse, transition-dependent regulatory landscape: typically a handful of regulatory events drive adaptation between carbon sources, with transcription mainly regulating TCA cycle flux and reactants regulating EMP pathway flux. We verify these observations using time-resolved measurements of the diauxic shift, demonstrating that some dynamic transitions can be approximated as monotonic shifts between steady-state extremes. Overall, we show that pseudo-transition analysis can explore the vast regulatory landscape of dynamic transitions using relatively few steady-state data, thereby guiding time-consuming, hypothesis-driven molecular validations. PMID:27136056

  7. Balance between Coiled-Coil Stability and Dynamics Regulates Activity of BvgS Sensor Kinase in Bordetella

    PubMed Central

    Lesne, E.; Krammer, E.-M.; Dupre, E.; Locht, C.; Lensink, M. F.

    2016-01-01

    ABSTRACT The two-component system BvgAS controls the expression of the virulence regulon of Bordetella pertussis. BvgS is a prototype of bacterial sensor kinases with extracytoplasmic Venus flytrap perception domains. Following its transmembrane segment, BvgS harbors a cytoplasmic Per-Arnt-Sim (PAS) domain and then a predicted 2-helix coiled coil that precede the dimerization-histidine-phosphotransfer domain of the kinase. BvgS homologs have a similar domain organization, or they harbor only a predicted coiled coil between the transmembrane and the dimerization-histidine-phosphotransfer domains. Here, we show that the 2-helix coiled coil of BvgS regulates the enzymatic activity in a mechanical manner. Its marginally stable hydrophobic interface enables a switch between a state of great rotational dynamics in the kinase mode and a more rigid conformation in the phosphatase mode in response to signal perception by the periplasmic domains. We further show that the activity of BvgS is controlled in the same manner if its PAS domain is replaced with the natural α-helical sequences of PAS-less homologs. Clamshell motions of the Venus flytrap domains trigger the shift of the coiled coil’s dynamics. Thus, we have uncovered a general mechanism of regulation for the BvgS family of Venus flytrap-containing two-component sensor kinases. PMID:26933056

  8. Tropomyosin flexural rigidity and single ca(2+) regulatory unit dynamics: implications for cooperative regulation of cardiac muscle contraction and cardiomyocyte hypertrophy.

    PubMed

    Loong, Campion K P; Badr, Myriam A; Chase, P Bryant

    2012-01-01

    Striated muscle contraction is regulated by dynamic and cooperative interactions among Ca(2+), troponin, and tropomyosin on the thin filament. While Ca(2+) regulation has been extensively studied, little is known about the dynamics of individual regulatory units and structural changes of individual tropomyosin molecules in relation to their mechanical properties, and how these factors are altered by cardiomyopathy mutations in the Ca(2+) regulatory proteins. In this hypothesis paper, we explore how various experimental and analytical approaches could broaden our understanding of the cooperative regulation of cardiac contraction in health and disease. PMID:22493584

  9. Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling.

    PubMed

    Kamimoto, Kenji; Kaneko, Kota; Kok, Cindy Yuet-Yin; Okada, Hajime; Miyajima, Atsushi; Itoh, Tohru

    2016-01-01

    Dynamic remodeling of the intrahepatic biliary epithelial tissue plays key roles in liver regeneration, yet the cellular basis for this process remains unclear. We took an unbiased approach based on in vivo clonal labeling and tracking of biliary epithelial cells in the three-dimensional landscape, in combination with mathematical simulation, to understand their mode of proliferation in a mouse liver injury model where the nascent biliary structure formed in a tissue-intrinsic manner. An apparent heterogeneity among biliary epithelial cells was observed: whereas most of the responders that entered the cell cycle upon injury exhibited a limited and tapering growth potential, a select population continued to proliferate, making a major contribution in sustaining the biliary expansion. Our study has highlighted a unique mode of epithelial tissue dynamics, which depends not on a hierarchical system driven by fixated stem cells, but rather, on a stochastically maintained progenitor population with persistent proliferative activity. PMID:27431614

  10. Model with two types of CTL regulation and experiments on CTL dynamics.

    PubMed

    Sergeev, R A; Batorsky, R E; Rouzine, I M

    2010-04-01

    Recently, we developed a mathematical model of interaction between the HIV and the immune system to match various dynamic experiments carried out in HIV-infected humans and SIV-infected macaques. The model includes helper cell-dependent and helper cell-independent cytotoxic lymphocytes (CTLs) and predicts two stable steady states, a state with a high virus load and few helper cells, and another state with a low virus load and many helper cells. Here we upgrade the model to take into account recent reports on the link between the activation status of infected cells and their ability to produce virus, the effect of helper cells at the time of priming on CTL differentiation, and virus dynamics in unvaccinated macaques with a broad genetic background acutely infected with SIVmac251. We also discuss in detail the experimental justification of the CTL block and the robustness of model predictions with respect to the hypothesis of two CTL subtypes. PMID:19913558

  11. Dynamic Regulation of Host Restriction Factor Expression over the Course of HIV-1 Infection In Vivo

    PubMed Central

    Abdel-Mohsen, Mohamed; Deng, Xutao; Hecht, Frederick M.; Pilcher, Christopher D.; Pillai, Satish K.; Nixon, Douglas F.

    2014-01-01

    In this study, we investigated the expression levels of host restriction factors in six untreated HIV-1-positive patients over the course of infection. We found that the host restriction factor gene expression profile consistently increased over time and was significantly associated with CD4+ T cell activation and viral load. Our data are among the first to demonstrate the dynamic nature of host restriction factors in vivo over time. PMID:25031350

  12. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels

    PubMed Central

    Steinacher, Arno; Bates, Declan G.; Akman, Ozgur E.; Soyer, Orkun S.

    2016-01-01

    Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for

  13. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.

    PubMed

    Steinacher, Arno; Bates, Declan G; Akman, Ozgur E; Soyer, Orkun S

    2016-01-01

    Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for

  14. Dynamics and Mechanism of A Quorum Sensing Network Regulated by Small RNAs in Vibrio Harveyi

    NASA Astrophysics Data System (ADS)

    Shen, Jian-Wei

    2011-03-01

    Bacterial quorum sensing (QS) has attracted much interests and it is an important process of cell communication. Recently, Bassler et al. studied the phenomena of QS regulated by small RNAs and the experimental data showed that small RNAs played important role in the QS of Vibrio harveyi and it can permit the fine-tuning of gene regulation and maintenance of homeostasis. According to Michaelis—Menten kinetics and mass action law in this paper, we construct a mathematical model to investigate the mechanism induced QS by coexist of small RNA and signal molecular (AI) and show that there are periodic oscillation when the time delay and Hill coefficient exceed a critical value and the periodic oscillation produces the change of concentration and induces QS. These results are fit to the experimental results. In the meanwhile, we also get some theoretical value of Hopf Bifurcation on time deday. In addition, we also find this network is robust against noise.

  15. Cryptochrome 1 regulates the circadian clock through dynamic interactions with the BMAL1 C terminus.

    PubMed

    Xu, Haiyan; Gustafson, Chelsea L; Sammons, Patrick J; Khan, Sanjoy K; Parsley, Nicole C; Ramanathan, Chidambaram; Lee, Hsiau-Wei; Liu, Andrew C; Partch, Carrie L

    2015-06-01

    The molecular circadian clock in mammals is generated from transcriptional activation by the bHLH-PAS transcription factor CLOCK-BMAL1 and subsequent repression by PERIOD and CRYPTOCHROME (CRY). The mechanism by which CRYs repress CLOCK-BMAL1 to close the negative feedback loop and generate 24-h timing is not known. Here we show that, in mouse fibroblasts, CRY1 competes for binding with coactivators to the intrinsically unstructured C-terminal transactivation domain (TAD) of BMAL1 to establish a functional switch between activation and repression of CLOCK-BMAL1. TAD mutations that alter affinities for co-regulators affect the balance of repression and activation to consequently change the intrinsic circadian period or eliminate cycling altogether. Our results suggest that CRY1 fulfills its role as an essential circadian repressor by sequestering the TAD from coactivators, and they highlight regulation of the BMAL1 TAD as a critical mechanism for establishing circadian timing. PMID:25961797

  16. HDAC6 regulates the dynamics of lytic granules in cytotoxic T lymphocytes.

    PubMed

    Núñez-Andrade, Norman; Iborra, Salvador; Trullo, Antonio; Moreno-Gonzalo, Olga; Calvo, Enrique; Catalán, Elena; Menasche, Gaël; Sancho, David; Vázquez, Jesús; Yao, Tso-Pang; Martín-Cófreces, Noa Beatriz; Sánchez-Madrid, Francisco

    2016-04-01

    HDAC6 is a tubulin deacetylase involved in many cellular functions related to cytoskeleton dynamics, including cell migration and autophagy. In addition, HDAC6 affects antigen-dependent CD4(+)T cell activation. In this study, we show that HDAC6 contributes to the cytotoxic function of CD8(+)T cells. Immunization studies revealed defective cytotoxic activityin vivoin the absence of HDAC6. Adoptive transfer of wild-type orHdac6(-/-)CD8(+)T cells toRag1(-/-)mice demonstrated specific impairment in CD8(+)T cell responses against vaccinia infection. Mechanistically, HDAC6-deficient cytotoxic T lymphocytes (CTLs) showed defectivein vitrocytolytic activity related to altered dynamics of lytic granules, inhibited kinesin-1-dynactin-mediated terminal transport of lytic granules to the immune synapse and deficient exocytosis, but not to target cell recognition, T cell receptor (TCR) activation or interferon (IFN)γ production. Our results establish HDAC6 as an effector of the immune cytotoxic response that acts by affecting the dynamics, transport and secretion of lytic granules by CTLs. PMID:26869226

  17. Dynamic regulation of heart rate during acute hypotension: new insight into baroreflex function

    NASA Technical Reports Server (NTRS)

    Zhang, R.; Behbehani, K.; Crandall, C. G.; Zuckerman, J. H.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    2001-01-01

    To examine the dynamic properties of baroreflex function, we measured beat-to-beat changes in arterial blood pressure (ABP) and heart rate (HR) during acute hypotension induced by thigh cuff deflation in 10 healthy subjects under supine resting conditions and during progressive lower body negative pressure (LBNP). The quantitative, temporal relationship between ABP and HR was fitted by a second-order autoregressive (AR) model. The frequency response was evaluated by transfer function analysis. Results: HR changes during acute hypotension appear to be controlled by an ABP error signal between baseline and induced hypotension. The quantitative relationship between changes in ABP and HR is characterized by a second-order AR model with a pure time delay of 0.75 s containing low-pass filter properties. During LBNP, the change in HR/change in ABP during induced hypotension significantly decreased, as did the numerator coefficients of the AR model and transfer function gain. Conclusions: 1) Beat-to-beat HR responses to dynamic changes in ABP may be controlled by an error signal rather than directional changes in pressure, suggesting a "set point" mechanism in short-term ABP control. 2) The quantitative relationship between dynamic changes in ABP and HR can be described by a second-order AR model with a pure time delay. 3) The ability of the baroreflex to evoke a HR response to transient changes in pressure was reduced during LBNP, which was due primarily to a reduction of the static gain of the baroreflex.

  18. The Regulation by Phenolic Compounds of Soil Organic Matter Dynamics under a Changing Environment

    PubMed Central

    Min, Kyungjin; Freeman, Chris; Kang, Hojeong; Choi, Sung-Uk

    2015-01-01

    Phenolics are the most abundant plant metabolites and are believed to decompose slowly in soils compared to other soil organic matter (SOM). Thus, they have often been considered as a slow carbon (C) pool in soil dynamics models. Here, however, we review changes in our concept about the turnover rate of phenolics and quantification of different types of phenolics in soils. Also, we synthesize current research on the degradation of phenolics and their regulatory effects on decomposition. Environmental changes, such as elevated CO2, warming, nitrogen (N) deposition, and drought, could influence the production and form of phenolics, leading to a change in SOM dynamics, and thus we also review the fate of phenolics under environmental disturbances. Finally, we propose the use of phenolics as a tool to control rates of SOM decomposition to stabilize organic carbon in ecosystems. Further studies to clarify the role of phenolics in SOM dynamics should include improving quantification methods, elucidating the relationship between phenolics and soil microorganisms, and determining the interactive effects of combinations of environmental changes on the phenolics production and degradation and subsequent impact on SOM processing. PMID:26495314

  19. Transmembrane auxin carrier systems--dynamic regulators of polar auxin transport.

    PubMed

    Morris, D A

    2000-11-01

    Recent investigations of the biochemistry, physiology and molecular genetics of polar auxin transport have greatly advanced our understanding of the process and of the part it plays in the regulation of development and in the responses of cells, tissues and organs to internal and external stimuli. The molecular and physiological characterization of mutants which exhibit lesions in polar auxin transport has led to the isolation and sequencing of genes which encode putative components of auxin carrier systems, or proteins which directly or indirectly regulate these systems. This work has revealed that specific auxin uptake and efflux carriers are coded not by single genes, but by whole families of genes, the expression of which is tissue or stimulus specific. Furthermore, evidence is accumulating rapidly that at least the auxin efflux carrier is a multi-component system consisting of both catalytic and regulatory subunits, including a separate phytotropin-binding protein. Other genes have been tentatively identified which code proteins that regulate the expression of genes coding auxin carrier components, or which regulate the intracellular traffic or activity of auxin carriers. Investigations of the turn-over and Golgi-mediated trafficking of auxin carrier proteins have revealed that essential components of at least the efflux carrier have a very short half-life in the plasma membrane and are replaced without the need for concurrent protein synthesis, leading to speculation that they might cycle between internal stores and the plasma membrane. The way is now clear for the development of specific molecular probes with which to investigate the intracellular transport and targeting of auxin carrier proteins. PMID:11758564

  20. Dynamic regulation of novel and conserved miRNAs across various tissues of diverse Cucurbit spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNA genes (miRNAs) encoding small non-coding RNAs are abundant in plant genomes and play a key role in regulating several biological mechanisms. Five conserved miRNAs, miR156, miR168-1, miR168-2, miR164, and miR166 were selected for analysis from the 21 known plant miRNA families that were rec...

  1. Dynamic regulation of the angiotensinogen gene by DNA methylation, which is influenced by various stimuli experienced in daily life.

    PubMed

    Demura, Masashi; Demura, Yosiki; Takeda, Yoshiyu; Saijoh, Kiyofumi

    2015-08-01

    Angiotensinogen (AGT) has a central role in maintaining blood pressure and fluid balance. DNA methylation is an epigenomic modification maintaining a steady pattern in somatic cells. Herein we summarize the link between AGT regulation and DNA methylation. DNA methylation negatively regulates AGT expression and dynamically changes in response to continuous AGT promoter stimulation. High-salt intake and excess circulating aldosterone cause DNA demethylation around the CCAAT enhancer-binding protein-binding sites, thereby converting the phenotype of AGT expression from an inactive to an active state in visceral adipose tissue. Salt-dependent hypertension may be partially affected by increased adipose AGT expression. Because angiotensin II is a well-established aldosterone-releasing hormone, stimulation of adipose AGT by aldosterone creates a positive feedback loop. This effect is pathologically associated with obesity-related hypertension, although it would be physiologically favorable for humans to efficiently retain their body fluid. The clear difference in DNA demethylation patterns between aldosterone and cortisol indicates a difference in the respective target DNA-binding sites between mineralocorticoid and glucocorticoid receptors in the AGT promoter. Stimulation-induced interactions between transcription factors and target DNA-binding sites trigger DNA demethylation. Dynamic changes in DNA methylation occur in relaxed chromatin regions both where transcription factors actively interact and where transcription is initiated. In contrast to rapid histone modifications, DNA demethylation and remethylation will progress relatively slowly over days or years. A wide variety of stimuli in daily life will continue to slowly and dynamically change DNA methylation patterns throughout life. Wise choices of beneficial stimuli will improve health. PMID:25809578

  2. Behavior control in the sensorimotor loop with short-term synaptic dynamics induced by self-regulating neurons

    PubMed Central

    Toutounji, Hazem; Pasemann, Frank

    2014-01-01

    The behavior and skills of living systems depend on the distributed control provided by specialized and highly recurrent neural networks. Learning and memory in these systems is mediated by a set of adaptation mechanisms, known collectively as neuronal plasticity. Translating principles of recurrent neural control and plasticity to artificial agents has seen major strides, but is usually hampered by the complex interactions between the agent's body and its environment. One of the important standing issues is for the agent to support multiple stable states of behavior, so that its behavioral repertoire matches the requirements imposed by these interactions. The agent also must have the capacity to switch between these states in time scales that are comparable to those by which sensory stimulation varies. Achieving this requires a mechanism of short-term memory that allows the neurocontroller to keep track of the recent history of its input, which finds its biological counterpart in short-term synaptic plasticity. This issue is approached here by deriving synaptic dynamics in recurrent neural networks. Neurons are introduced as self-regulating units with a rich repertoire of dynamics. They exhibit homeostatic properties for certain parameter domains, which result in a set of stable states and the required short-term memory. They can also operate as oscillators, which allow them to surpass the level of activity imposed by their homeostatic operation conditions. Neural systems endowed with the derived synaptic dynamics can be utilized for the neural behavior control of autonomous mobile agents. The resulting behavior depends also on the underlying network structure, which is either engineered or developed by evolutionary techniques. The effectiveness of these self-regulating units is demonstrated by controlling locomotion of a hexapod with 18 degrees of freedom, and obstacle-avoidance of a wheel-driven robot. PMID:24904403

  3. Behavior control in the sensorimotor loop with short-term synaptic dynamics induced by self-regulating neurons.

    PubMed

    Toutounji, Hazem; Pasemann, Frank

    2014-01-01

    The behavior and skills of living systems depend on the distributed control provided by specialized and highly recurrent neural networks. Learning and memory in these systems is mediated by a set of adaptation mechanisms, known collectively as neuronal plasticity. Translating principles of recurrent neural control and plasticity to artificial agents has seen major strides, but is usually hampered by the complex interactions between the agent's body and its environment. One of the important standing issues is for the agent to support multiple stable states of behavior, so that its behavioral repertoire matches the requirements imposed by these interactions. The agent also must have the capacity to switch between these states in time scales that are comparable to those by which sensory stimulation varies. Achieving this requires a mechanism of short-term memory that allows the neurocontroller to keep track of the recent history of its input, which finds its biological counterpart in short-term synaptic plasticity. This issue is approached here by deriving synaptic dynamics in recurrent neural networks. Neurons are introduced as self-regulating units with a rich repertoire of dynamics. They exhibit homeostatic properties for certain parameter domains, which result in a set of stable states and the required short-term memory. They can also operate as oscillators, which allow them to surpass the level of activity imposed by their homeostatic operation conditions. Neural systems endowed with the derived synaptic dynamics can be utilized for the neural behavior control of autonomous mobile agents. The resulting behavior depends also on the underlying network structure, which is either engineered or developed by evolutionary techniques. The effectiveness of these self-regulating units is demonstrated by controlling locomotion of a hexapod with 18 degrees of freedom, and obstacle-avoidance of a wheel-driven robot. PMID:24904403

  4. Tetraspanin CD82 Regulates the Spatiotemporal Dynamics of PKCα in Acute Myeloid Leukemia

    PubMed Central

    Termini, Christina M.; Lidke, Keith A.; Gillette, Jennifer M.

    2016-01-01

    Patients with acute myeloid leukemia (AML) have increased myeloid cells within their bone marrow that exhibit aberrant signaling. Therefore, therapeutic targets that modulate disrupted signaling cascades are of significant interest. In this study, we demonstrate that the tetraspanin membrane scaffold, CD82, regulates protein kinase c alpha (PKCα)-mediated signaling critical for AML progression. Utilizing a palmitoylation mutant form of CD82 with disrupted membrane organization, we find that the CD82 scaffold controls PKCα expression and activation. Combining single molecule and ensemble imaging measurements, we determine that CD82 stabilizes PKCα activation at the membrane and regulates the size of PKCα membrane clusters. Further evaluation of downstream effector signaling identified robust and sustained activation of ERK1/2 upon CD82 overexpression that results in enhanced AML colony formation. Together, these data propose a mechanism where CD82 membrane organization regulates sustained PKCα signaling that results in an aggressive leukemia phenotype. These observations suggest that the CD82 scaffold may be a potential therapeutic target for attenuating aberrant signal transduction in AML. PMID:27417454

  5. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences

    PubMed Central

    Todor, Horia; Gooding, Jessica; Ilkayeva, Olga R.; Schmid, Amy K.

    2015-01-01

    Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes. PMID:26284786

  6. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences.

    PubMed

    Todor, Horia; Gooding, Jessica; Ilkayeva, Olga R; Schmid, Amy K

    2015-01-01

    Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes. PMID:26284786

  7. Epigenetic regulation of serotype expression antagonizes transcriptome dynamics in Paramecium tetraurelia

    PubMed Central

    Cheaib, Miriam; Dehghani Amirabad, Azim; Nordström, Karl J. V.; Schulz, Marcel H.; Simon, Martin

    2015-01-01

    Phenotypic variation of a single genotype is achieved by alterations in gene expression patterns. Regulation of such alterations depends on their time scale, where short-time adaptations differ from permanently established gene expression patterns maintained by epigenetic mechanisms. In the ciliate Paramecium, serotypes were described for an epigenetically controlled gene expression pattern of an individual multigene family. Paradoxically, individual serotypes can be triggered in Paramecium by alternating environments but are then stabilized by epigenetic mechanisms, thus raising the question to which extend their expression follows environmental stimuli. To characterize environmental adaptation in the context of epigenetically controlled serotype expression, we used RNA-seq to characterize transcriptomes of serotype pure cultures. The resulting vegetative transcriptome resource is first analysed for genes involved in the adaptive response to the altered environment. Secondly, we identified groups of genes that do not follow the adaptive response but show co-regulation with the epigenetically controlled serotype system, suggesting that their gene expression pattern becomes manifested by similar mechanisms. In our experimental set-up, serotype expression and the entire group of co-regulated genes were stable among environmental changes and only heat-shock genes altered expression of these gene groups. The data suggest that the maintenance of these gene expression patterns in a lineage represents epigenetically controlled robustness counteracting short-time adaptation processes. PMID:26231545

  8. Epigenetic regulation of serotype expression antagonizes transcriptome dynamics in Paramecium tetraurelia.

    PubMed

    Cheaib, Miriam; Dehghani Amirabad, Azim; Nordström, Karl J V; Schulz, Marcel H; Simon, Martin

    2015-08-01

    Phenotypic variation of a single genotype is achieved by alterations in gene expression patterns. Regulation of such alterations depends on their time scale, where short-time adaptations differ from permanently established gene expression patterns maintained by epigenetic mechanisms. In the ciliate Paramecium, serotypes were described for an epigenetically controlled gene expression pattern of an individual multigene family. Paradoxically, individual serotypes can be triggered in Paramecium by alternating environments but are then stabilized by epigenetic mechanisms, thus raising the question to which extend their expression follows environmental stimuli. To characterize environmental adaptation in the context of epigenetically controlled serotype expression, we used RNA-seq to characterize transcriptomes of serotype pure cultures. The resulting vegetative transcriptome resource is first analysed for genes involved in the adaptive response to the altered environment. Secondly, we identified groups of genes that do not follow the adaptive response but show co-regulation with the epigenetically controlled serotype system, suggesting that their gene expression pattern becomes manifested by similar mechanisms. In our experimental set-up, serotype expression and the entire group of co-regulated genes were stable among environmental changes and only heat-shock genes altered expression of these gene groups. The data suggest that the maintenance of these gene expression patterns in a lineage represents epigenetically controlled robustness counteracting short-time adaptation processes. PMID:26231545

  9. Tetraspanin CD82 Regulates the Spatiotemporal Dynamics of PKCα in Acute Myeloid Leukemia.

    PubMed

    Termini, Christina M; Lidke, Keith A; Gillette, Jennifer M

    2016-01-01

    Patients with acute myeloid leukemia (AML) have increased myeloid cells within their bone marrow that exhibit aberrant signaling. Therefore, therapeutic targets that modulate disrupted signaling cascades are of significant interest. In this study, we demonstrate that the tetraspanin membrane scaffold, CD82, regulates protein kinase c alpha (PKCα)-mediated signaling critical for AML progression. Utilizing a palmitoylation mutant form of CD82 with disrupted membrane organization, we find that the CD82 scaffold controls PKCα expression and activation. Combining single molecule and ensemble imaging measurements, we determine that CD82 stabilizes PKCα activation at the membrane and regulates the size of PKCα membrane clusters. Further evaluation of downstream effector signaling identified robust and sustained activation of ERK1/2 upon CD82 overexpression that results in enhanced AML colony formation. Together, these data propose a mechanism where CD82 membrane organization regulates sustained PKCα signaling that results in an aggressive leukemia phenotype. These observations suggest that the CD82 scaffold may be a potential therapeutic target for attenuating aberrant signal transduction in AML. PMID:27417454

  10. Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription

    PubMed Central

    Di Cerbo, Vincenzo; Mohn, Fabio; Ryan, Daniel P; Montellier, Emilie; Kacem, Salim; Tropberger, Philipp; Kallis, Eleni; Holzner, Monika; Hoerner, Leslie; Feldmann, Angelika; Richter, Florian Martin; Bannister, Andrew J; Mittler, Gerhard; Michaelis, Jens; Khochbin, Saadi; Feil, Robert; Schuebeler, Dirk; Owen-Hughes, Tom; Daujat, Sylvain; Schneider, Robert

    2014-01-01

    Post-translational modifications of proteins have emerged as a major mechanism for regulating gene expression. However, our understanding of how histone modifications directly affect chromatin function remains limited. In this study, we investigate acetylation of histone H3 at lysine 64 (H3K64ac), a previously uncharacterized acetylation on the lateral surface of the histone octamer. We show that H3K64ac regulates nucleosome stability and facilitates nucleosome eviction and hence gene expression in vivo. In line with this, we demonstrate that H3K64ac is enriched in vivo at the transcriptional start sites of active genes and it defines transcriptionally active chromatin. Moreover, we find that the p300 co-activator acetylates H3K64, and consistent with a transcriptional activation function, H3K64ac opposes its repressive counterpart H3K64me3. Our findings reveal an important role for a histone modification within the nucleosome core as a regulator of chromatin function and they demonstrate that lateral surface modifications can define functionally opposing chromatin states. DOI: http://dx.doi.org/10.7554/eLife.01632.001 PMID:24668167

  11. Molecular dynamics simulation of phosphorylation-induced conformational transitions in the mycobacterium tuberculosis response regulator PrrA

    SciTech Connect

    Chen, Guo; Mcmahon, Benjamin H; Tung, Chang - Shung

    2008-01-01

    Phosphorylation-activated modulation of response regulators (RR) is predominantly used by bacteria as a strategy in regulating their two-component signaling (TCS) systems, the underlying molecular mechanisms are however far from fully understood. In this work we have conducted a molecular dynamics (MD) simulation of the phosphorylation-induced conformational transitions of RRs with the Mycobacterium Tuberculosis PrrA as a particular example. Starting from the full-length inactive structure of PrrA we introduced a local disturbance by phosphorylating the conserved aspartic acid residue, Asp-58, in the regulatory domain. A Go-model-type algorithm packaged with AMBER force fields was then applied to simulate the dynamics upon phosphorylation. The MD simulation shows that the phosphorylation of Asp-58 facilitates PrrA, whose inactive state has a compact conformation with a closed interdomain interface, to open up with its interdomain separation being increased by an average of about 1.5 {angstrom} for a simulation of 20 ns. The trans-activation loop, which is completely buried within the interdomain interface in the inactive PrrA, is found to become more exposed with the phosphorylated structure as well. These results provide more structural details of how the phosphorylation of a local aspartate activates PrrA to undergo a global conformational rearrangement toward its extended active state. This work also indicates that MD simulations can serve as a fast tool to unravel the regulation mechanisms of all RRs, which is especially valuable when the structures of full-length active RRs are currently unavailable.

  12. Erk1/2 MAPK and caldesmon differentially regulate podosome dynamics in A7r5 vascular smooth muscle cells

    SciTech Connect

    Gu Zhizhan; Kordowska, Jolanta; Williams, Geoffrey L.; Wang, C.-L. Albert; Hai, C.-M. . E-mail: Chi-Ming_Hai@brown.edu

    2007-03-10

    We tested the hypothesis that the MEK/Erk/caldesmon phosphorylation cascade regulates PKC-mediated podosome dynamics in A7r5 cells. We observed the phosphorylation of MEK, Erk and caldesmon, and their translocation to the podosomes upon phorbol dibutyrate (PDBu) stimulation, together with the nuclear translocation of phospho-MEK and phospho-Erk. After MEK inhibition by U0126, Erk translocated to the interconnected actin-rich columns but failed to translocate to the nucleus, suggesting that podosomes served as a site for Erk phosphorylation. The interconnected actin-rich columns in U0126-treated, PDBu-stimulated cells contained {alpha}-actinin, caldesmon, vinculin, and metalloproteinase-2. Caldesmon and vinculin became integrated with F-actin at the columns, in contrast to their typical location at the ring of podosomes. Live-imaging experiments suggested the growth of these columns from podosomes that were slow to disassemble. The observed modulation of podosome size and life time in A7r5 cells overexpressing wild-type and phosphorylation-deficient caldesmon-GFP mutants in comparison to untransfected cells suggests that caldesmon and caldesmon phosphorylation modulate podosome dynamics in A7r5 cells. These results suggest that Erk1/2 and caldesmon differentially modulate PKC-mediated formation and/or dynamics of podosomes in A7r5 vascular smooth muscle cells.

  13. Regulation of Mnemiopsis leidyi dynamics by potential changes in temperature and zooplankton conditions in the Black Sea.

    NASA Astrophysics Data System (ADS)

    Salihoglu, B.; Fach, B.; Oguz, T.

    2009-04-01

    Providing a comprehensive understanding of the effects that cause formations of ctenophore blooms in the Black Sea is the main objective of this study. In order to analyse ctenophore dynamics in the Black Sea a zero-dimensional population based model of the ctenophore Mnemiopsis leidyi is developed. The stage resolving ctenophore model combines the modified form of stage resolving approach of Fennel, 2001 with the growth dynamics model of Kremer, 1976; Kremer and Reeve, 1989 under 4 stages of model-ctenophore. These stages include the different growth characteristics of egg, juvenile, transitional and adult stages. The dietary patterns of the different stages follows the observations obtained from the literature. The model is able to represent consistent development patterns, while reflecting the physiological complexity of a population of Mnemiopsis leidyi. Model results suggest that different nutritional requirement of each stage may serve as the bottlenecks for population growth and only when growth conditions are favorable for both larval and lobate stages, the high overall population growth rates may occur. Model is also used to analyse the influence of climatic changes on Mnemiopsis leidyi reproduction and outburst. This study presents and discussed how potential changes in temperature and zooplankton conditions in the Black Sea may regulate Mnemiopsis leidyi dynamics.

  14. Erk1/2 MAPK and Caldesmon Differentially Regulate Podosome Dynamics in A7r5 Vascular Smooth Muscle Cells

    PubMed Central

    Gu, Zhizhan; Kordowska, Jolanta; Williams, Geoffrey L.; Wang, C.-L. Albert; Hai, Chi-Ming

    2007-01-01

    We tested the hypothesis that the MEK/Erk/caldesmon phosphorylation cascade regulates PKC-mediated podosome dynamics in A7r5 cells. We observed the phosphorylation of MEK, Erk and caldesmon, and their translocation to the podosomes upon phorbol dibutyrate (PDBu) stimulation, together with the nuclear translocation of phospho-MEK and phospho-Erk. After MEK inhibition by U0126, Erk translocated to the interconnected actin-rich columns but failed to translocate to the nucleus, suggesting that podosomes served as a site for Erk phosphorylation. The interconnected actin-rich columns in U0126-treated, PDBu-stimulated cells contained α-actinin, caldesmon, vinculin, and metalloproteinase-2. Caldesmon and vinculin became integrated with F-actin at the columns, in contrast to their typical location at the ring of podosomes. Live-imaging experiments suggested the growth of these columns from podosomes that were slow to disassemble. The observed modulation of podosome size and life time in A7r5 cells overexpressing wild-type and phosphorylation-deficient caldesmon-GFP mutants in comparison to untransfected cells suggests that caldesmon and caldesmon phosphorylation modulate podosome dynamics in A7r5 cells. These results suggest that Erk1/2 and caldesmon differentially modulate PKC-mediated formation and/or dynamics of podosomes in A7r5 vascular smooth muscle cells. PMID:17239373

  15. Foxn1 Is Dynamically Regulated in Thymic Epithelial Cells during Embryogenesis and at the Onset of Thymic Involution

    PubMed Central

    O’Neill, Kathy E.; Bredenkamp, Nicholas; Tischner, Christin; Vaidya, Harsh J.; Stenhouse, Frances H.; Peddie, C. Diana; Nowell, Craig S.; Gaskell, Terri; Blackburn, C. Clare

    2016-01-01

    Thymus function requires extensive cross-talk between developing T-cells and the thymic epithelium, which consists of cortical and medullary TEC. The transcription factor FOXN1 is the master regulator of TEC differentiation and function, and declining Foxn1 expression with age results in stereotypical thymic involution. Understanding of the dynamics of Foxn1 expression is, however, limited by a lack of single cell resolution data. We have generated a novel reporter of Foxn1 expression, Foxn1G, to monitor changes in Foxn1 expression during embryogenesis and involution. Our data reveal that early differentiation and maturation of cortical and medullary TEC coincides with precise sub-lineage-specific regulation of Foxn1 expression levels. We further show that initiation of thymic involution is associated with reduced cTEC functionality, and proportional expansion of FOXN1-negative TEC in both cortical and medullary sub-lineages. Cortex-specific down-regulation of Foxn1 between 1 and 3 months of age may therefore be a key driver of the early stages of age-related thymic involution. PMID:26983083

  16. Ezrin regulates focal adhesion and invadopodia dynamics by altering calpain activity to promote breast cancer cell invasion

    PubMed Central

    Hoskin, Victoria; Szeto, Alvin; Ghaffari, Abdi; Greer, Peter A.; Côté, Graham P.; Elliott, Bruce E.

    2015-01-01

    Up-regulation of the cytoskeleton linker protein ezrin frequently occurs in aggressive cancer types and is closely linked with metastatic progression. However, the underlying molecular mechanisms detailing how ezrin is involved in the invasive and metastatic phenotype remain unclear. Here we report a novel function of ezrin in regulating focal adhesion (FA) and invadopodia dynamics, two key processes required for efficient invasion to occur. We show that depletion of ezrin expression in invasive breast cancer cells impairs both FA and invadopodia turnover. We also demonstrate that ezrin-depleted cells display reduced calpain-mediated cleavage of the FA and invadopodia-associated proteins talin, focal adhesion kinase (FAK), and cortactin and reduced calpain-1–specific membrane localization, suggesting a requirement for ezrin in maintaining proper localization and activity of calpain-1. Furthermore, we show that ezrin is required for cell directionality, early lung seeding, and distant organ colonization but not primary tumor growth. Collectively our results unveil a novel mechanism by which ezrin regulates breast cancer cell invasion and metastasis. PMID:26246600

  17. Foxn1 Is Dynamically Regulated in Thymic Epithelial Cells during Embryogenesis and at the Onset of Thymic Involution.

    PubMed

    O'Neill, Kathy E; Bredenkamp, Nicholas; Tischner, Christin; Vaidya, Harsh J; Stenhouse, Frances H; Peddie, C Diana; Nowell, Craig S; Gaskell, Terri; Blackburn, C Clare

    2016-01-01

    Thymus function requires extensive cross-talk between developing T-cells and the thymic epithelium, which consists of cortical and medullary TEC. The transcription factor FOXN1 is the master regulator of TEC differentiation and function, and declining Foxn1 expression with age results in stereotypical thymic involution. Understanding of the dynamics of Foxn1 expression is, however, limited by a lack of single cell resolution data. We have generated a novel reporter of Foxn1 expression, Foxn1G, to monitor changes in Foxn1 expression during embryogenesis and involution. Our data reveal that early differentiation and maturation of cortical and medullary TEC coincides with precise sub-lineage-specific regulation of Foxn1 expression levels. We further show that initiation of thymic involution is associated with reduced cTEC functionality, and proportional expansion of FOXN1-negative TEC in both cortical and medullary sub-lineages. Cortex-specific down-regulation of Foxn1 between 1 and 3 months of age may therefore be a key driver of the early stages of age-related thymic involution. PMID:26983083

  18. Transcriptional Regulation of Cell Cycle Genes in Response to Abiotic Stresses Correlates with Dynamic Changes in Histone Modifications in Maize

    PubMed Central

    Hou, Haoli; Zhang, Hao; Wang, Yapei; Yan, Shihan; Huang, Yan; Li, Hui; Tan, Junjun; Hu, Ao; Gao, Fei; Zhang, Qi; Li, Yingnan; Zhou, Hong; Zhang, Wei; Li, Lijia

    2014-01-01

    The histone modification level has been shown to be related with gene activation and repression in stress-responsive process, but there is little information on the relationship between histone modification and cell cycle gene expression responsive to environmental cues. In this study, the function of histone modifications in mediating the transcriptional regulation of cell cycle genes under various types of stress was investigated in maize (Zea mays L.). Abiotic stresses all inhibit the growth of maize seedlings, and induce total acetylation level increase compared with the control group in maize roots. The positive and negative regulation of the expression of some cell cycle genes leads to perturbation of cell cycle progression in response to abiotic stresses. Chromatin immunoprecipitation analysis reveals that dynamic histone acetylation change in the promoter region of cell cycle genes is involved in the control of gene expression in response to external stress and different cell cycle genes have their own characteristic patterns for histone acetylation. The data also showed that the combinations of hyperacetylation and hypoacetylation states of specific lysine sites on the H3 and H4 tails on the promoter regions of cell cycle genes regulate specific cell cycle gene expression under abiotic stress conditions, thus resulting in prolonged cell cycle duration and an inhibitory effect on growth and development in maize seedlings. PMID:25171199

  19. A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis

    PubMed Central

    Sessa, Giovanna; Carabelli, Monica; Sassi, Massimiliano; Ciolfi, Andrea; Possenti, Marco; Mittempergher, Francesca; Becker, Jorg; Morelli, Giorgio; Ruberti, Ida

    2005-01-01

    Plants grown under dense canopies perceive through the phytochrome system a reduction in the ratio of red to far-red light as a warning of competition, and this triggers a series of morphological changes to avoid shade. Several phytochrome signaling intermediates acting as positive regulators of accelerated elongation growth and induction of flowering in shade avoidance have been identified. Here we report that a negative regulatory mechanism ensures that in the presence of far-red-rich light an exaggerated plant response does not occur. Strikingly, this unpredicted negative regulatory mechanism is centrally involved in the attenuation of virtually all plant responses to canopy shade. PMID:16322556

  20. A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis.

    PubMed

    Sessa, Giovanna; Carabelli, Monica; Sassi, Massimiliano; Ciolfi, Andrea; Possenti, Marco; Mittempergher, Francesca; Becker, Jorg; Morelli, Giorgio; Ruberti, Ida

    2005-12-01

    Plants grown under dense canopies perceive through the phytochrome system a reduction in the ratio of red to far-red light as a warning of competition, and this triggers a series of morphological changes to avoid shade. Several phytochrome signaling intermediates acting as positive regulators of accelerated elongation growth and induction of flowering in shade avoidance have been identified. Here we report that a negative regulatory mechanism ensures that in the presence of far-red-rich light an exaggerated plant response does not occur. Strikingly, this unpredicted negative regulatory mechanism is centrally involved in the attenuation of virtually all plant responses to canopy shade. PMID:16322556

  1. Spontaneous Inward Opening of the Dopamine Transporter Is Triggered by PIP2-Regulated Dynamics of the N-Terminus

    PubMed Central

    2015-01-01

    We present the dynamic mechanism of concerted motions in a full-length molecular model of the human dopamine transporter (hDAT), a member of the neurotransmitter/sodium symporter (NSS) family, involved in state-to-state transitions underlying function. The findings result from an analysis of unbiased atomistic molecular dynamics simulation trajectories (totaling >14 μs) of the hDAT molecule immersed in lipid membrane environments with or without phosphatidylinositol 4,5-biphosphate (PIP2) lipids. The N-terminal region of hDAT (N-term) is shown to have an essential mechanistic role in correlated rearrangements of specific structural motifs relevant to state-to-state transitions in the hDAT. The mechanism involves PIP2-mediated electrostatic interactions between the N-term and the intracellular loops of the transporter molecule. Quantitative analyses of collective motions in the trajectories reveal that these interactions correlate with the inward-opening dynamics of hDAT and are allosterically coupled to the known functional sites of the transporter. The observed large-scale motions are enabled by specific reconfiguration of the network of ionic interactions at the intracellular end of the protein. The isomerization to the inward-facing state in hDAT is accompanied by concomitant movements in the extracellular vestibule and results in the release of an Na+ ion from the Na2 site and destabilization of the substrate dopamine in the primary substrate binding S1 site. The dynamic mechanism emerging from the findings highlights the involvement of the PIP2-regulated interactions between the N-term and the intracellular loop 4 in the functionally relevant conformational transitions that are also similar to those found to underlie state-to-state transitions in the leucine transporter (LeuT), a prototypical bacterial homologue of the NSS. PMID:26255829

  2. Suicide Gene-Engineered Stromal Cells Reveal a Dynamic Regulation of Cancer Metastasis

    PubMed Central

    Shen, Keyue; Luk, Samantha; Elman, Jessica; Murray, Ryan; Mukundan, Shilpaa; Parekkadan, Biju

    2016-01-01

    Cancer-associated fibroblasts (CAFs) are a major cancer-promoting component in the tumor microenvironment (TME). The dynamic role of human CAFs in cancer progression has been ill-defined because human CAFs lack a unique marker needed for a cell-specific, promoter-driven knockout model. Here, we developed an engineered human CAF cell line with an inducible suicide gene to enable selective in vivo elimination of human CAFs at different stages of xenograft tumor development, effectively circumventing the challenge of targeting a cell-specific marker. Suicide-engineered CAFs were highly sensitive to apoptosis induction in vitro and in vivo by the addition of a simple small molecule inducer. Selection of timepoints for targeted CAF apoptosis in vivo during the progression of a human breast cancer xenograft model was guided by a bi-phasic host cytokine response that peaked at early timepoints after tumor implantation. Remarkably, we observed that the selective apoptosis of CAFs at these early timepoints did not affect primary tumor growth, but instead increased the presence of tumor-associated macrophages and the metastatic spread of breast cancer cells to the lung and bone. The study revealed a dynamic relationship between CAFs and cancer metastasis that has counter-intuitive ramifications for CAF-targeted therapy. PMID:26893143

  3. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism. PMID:26807480

  4. Mechanism of Mcl-1 Conformational Regulation Upon Small Molecule Binding Revealed by Molecular Dynamic Simulation.

    PubMed

    Wang, Anhui; Song, Ting; Wang, Ziqian; Liu, Yubo; Fan, Yudan; Zhang, Yahui; Zhang, Zhichao

    2016-04-01

    Inhibition of interactions between Mcl-1 and proapoptotic proteins is considered to be a therapeutic strategy to induce apoptosis in cancer cells. Here, we adopted molecular dynamics simulation with molecular mechanics-Poisson Boltzmann/surface area method (MM-PB/SA) to study the inhibition mechanism of three Mcl-1 inhibitors, compounds 1, 2 and 3. Analysis of energy components shows that the better binding free energy of compound 3 than compounds 1 and 2 is attributable to the van der Waals energy (ΔEvdw ) and non-polar solvation energy (ΔGnp ) upon binding. In addition to the excellent agreement with previous experimentally determined affinities, our simulation results further show a bend of helix 4 on Mcl-1 upon compound 3 binding, which is driven by hydrophobic interaction with residue Val(253) , leading to a narrowed BH3-binding groove to impede Puma(BH) (3) binding. The computational result is consistent with our competitive isothermal titration calorimetry (ITC) assays, which shows that the competitive ability of compound 3 toward Mcl-1/Puma(BH) (3) complex is improved beyond its direct binding affinity toward Mcl-1 itself, and compound 3 exhibits much more efficiency to compete with Puma(BH) (3) than compound 2. Our study provides a new strategy to improve inhibitory activity on Mcl-1 based on the conformational dynamic change. PMID:26518611

  5. Subtle balance of tropoelastin molecular shape and flexibility regulates dynamics and hierarchical assembly.

    PubMed

    Yeo, Giselle C; Tarakanova, Anna; Baldock, Clair; Wise, Steven G; Buehler, Markus J; Weiss, Anthony S

    2016-02-01

    The assembly of the tropoelastin monomer into elastin is vital for conferring elasticity on blood vessels, skin, and lungs. Tropoelastin has dual needs for flexibility and structure in self-assembly. We explore the structure-dynamics-function interplay, consider the duality of molecular order and disorder, and identify equally significant functional contributions by local and global structures. To study these organizational stratifications, we perturb a key hinge region by expressing an exon that is universally spliced out in human tropoelastins. We find a herniated nanostructure with a displaced C terminus and explain by molecular modeling that flexible helices are replaced with substantial β sheets. We see atypical higher-order cross-linking and inefficient assembly into discontinuous, thick elastic fibers. We explain this dysfunction by correlating local and global structural effects with changes in the molecule's assembly dynamics. This work has general implications for our understanding of elastomeric proteins, which balance disordered regions with defined structural modules at multiple scales for functional assembly. PMID:26998516

  6. Regulation of Structural Dynamics within a Signal Recognition Particle Promotes Binding of Protein Targeting Substrates*

    PubMed Central

    Gao, Feng; Kight, Alicia D.; Henderson, Rory; Jayanthi, Srinivas; Patel, Parth; Murchison, Marissa; Sharma, Priyanka; Goforth, Robyn L.; Kumar, Thallapuranam Krishnaswamy Suresh; Henry, Ralph L.; Heyes, Colin D.

    2015-01-01

    Protein targeting is critical in all living organisms and involves a signal recognition particle (SRP), an SRP receptor, and a translocase. In co-translational targeting, interactions among these proteins are mediated by the ribosome. In chloroplasts, the light-harvesting chlorophyll-binding protein (LHCP) in the thylakoid membrane is targeted post-translationally without a ribosome. A multidomain chloroplast-specific subunit of the SRP, cpSRP43, is proposed to take on the role of coordinating the sequence of targeting events. Here, we demonstrate that cpSRP43 exhibits significant interdomain dynamics that are reduced upon binding its SRP binding partner, cpSRP54. We showed that the affinity of cpSRP43 for the binding motif of LHCP (L18) increases when cpSRP43 is complexed to the binding motif of cpSRP54 (cpSRP54pep). These results support the conclusion that substrate binding to the chloroplast SRP is modulated by protein structural dynamics in which a major role of cpSRP54 is to improve substrate binding efficiency to the cpSRP. PMID:25918165

  7. Suicide Gene-Engineered Stromal Cells Reveal a Dynamic Regulation of Cancer Metastasis

    NASA Astrophysics Data System (ADS)

    Shen, Keyue; Luk, Samantha; Elman, Jessica; Murray, Ryan; Mukundan, Shilpaa; Parekkadan, Biju

    2016-02-01

    Cancer-associated fibroblasts (CAFs) are a major cancer-promoting component in the tumor microenvironment (TME). The dynamic role of human CAFs in cancer progression has been ill-defined because human CAFs lack a unique marker needed for a cell-specific, promoter-driven knockout model. Here, we developed an engineered human CAF cell line with an inducible suicide gene to enable selective in vivo elimination of human CAFs at different stages of xenograft tumor development, effectively circumventing the challenge of targeting a cell-specific marker. Suicide-engineered CAFs were highly sensitive to apoptosis induction in vitro and in vivo by the addition of a simple small molecule inducer. Selection of timepoints for targeted CAF apoptosis in vivo during the progression of a human breast cancer xenograft model was guided by a bi-phasic host cytokine response that peaked at early timepoints after tumor implantation. Remarkably, we observed that the selective apoptosis of CAFs at these early timepoints did not affect primary tumor growth, but instead increased the presence of tumor-associated macrophages and the metastatic spread of breast cancer cells to the lung and bone. The study revealed a dynamic relationship between CAFs and cancer metastasis that has counter-intuitive ramifications for CAF-targeted therapy.

  8. Disrupted-in-schizophrenia-1 (DISC1) Regulates Endoplasmic Reticulum Calcium Dynamics

    PubMed Central

    Park, Sung Jin; Jeong, Jaehoon; Park, Young-Un; Park, Kyung-Sun; Lee, Haeryun; Lee, Namgyu; Kim, Sung-Mo; Kuroda, Keisuke; Nguyen, Minh Dang; Kaibuchi, Kozo; Park, Sang Ki

    2015-01-01

    Disrupted-in-schizophrenia-1 (DISC1) has emerged as a convincing susceptibility gene for multiple mental disorders, but its mechanistic link to the pathogenesis of schizophrenia related psychiatric conditions is yet to be further understood. Here, we showed that DISC1 localizes to the outer surface of the endoplasmic reticulum (ER). EXOC1, a subunit of the exocyst complex, interacted with DISC1 and affected its recruitment to inositol-1,4,5-trisphosphate receptor 1 (IP3R1). Notably, knockdown of DISC1 and EXOC1 elicited an exaggerated ER calcium response upon stimulation of IP3R agonists. Similar abnormal ER calcium responses were observed in hippocampal neurons from DISC1-deficient mutant mice. Moreover, perturbation of ER calcium dynamics upon DISC1 knockdown was effectively reversed by treatment with antipsychotic drugs, such as clozapine and haloperidol. These results collectively indicate that DISC1 is a regulatory factor in ER calcium dynamics, linking a perturbed intracellular calcium signaling and schizophrenia pathogenesis. PMID:25732993

  9. Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling

    PubMed Central

    Kamimoto, Kenji; Kaneko, Kota; Kok, Cindy Yuet-Yin; Okada, Hajime; Miyajima, Atsushi; Itoh, Tohru

    2016-01-01

    Dynamic remodeling of the intrahepatic biliary epithelial tissue plays key roles in liver regeneration, yet the cellular basis for this process remains unclear. We took an unbiased approach based on in vivo clonal labeling and tracking of biliary epithelial cells in the three-dimensional landscape, in combination with mathematical simulation, to understand their mode of proliferation in a mouse liver injury model where the nascent biliary structure formed in a tissue-intrinsic manner. An apparent heterogeneity among biliary epithelial cells was observed: whereas most of the responders that entered the cell cycle upon injury exhibited a limited and tapering growth potential, a select population continued to proliferate, making a major contribution in sustaining the biliary expansion. Our study has highlighted a unique mode of epithelial tissue dynamics, which depends not on a hierarchical system driven by fixated stem cells, but rather, on a stochastically maintained progenitor population with persistent proliferative activity. DOI: http://dx.doi.org/10.7554/eLife.15034.001 PMID:27431614

  10. Disrupted-in-schizophrenia-1 (DISC1) Regulates Endoplasmic Reticulum Calcium Dynamics.

    PubMed

    Park, Sung Jin; Jeong, Jaehoon; Park, Young-Un; Park, Kyung-Sun; Lee, Haeryun; Lee, Namgyu; Kim, Sung-Mo; Kuroda, Keisuke; Nguyen, Minh Dang; Kaibuchi, Kozo; Park, Sang Ki

    2015-01-01

    Disrupted-in-schizophrenia-1 (DISC1) has emerged as a convincing susceptibility gene for multiple mental disorders, but its mechanistic link to the pathogenesis of schizophrenia related psychiatric conditions is yet to be further understood. Here, we showed that DISC1 localizes to the outer surface of the endoplasmic reticulum (ER). EXOC1, a subunit of the exocyst complex, interacted with DISC1 and affected its recruitment to inositol-1,4,5-trisphosphate receptor 1 (IP3R1). Notably, knockdown of DISC1 and EXOC1 elicited an exaggerated ER calcium response upon stimulation of IP3R agonists. Similar abnormal ER calcium responses were observed in hippocampal neurons from DISC1-deficient mutant mice. Moreover, perturbation of ER calcium dynamics upon DISC1 knockdown was effectively reversed by treatment with antipsychotic drugs, such as clozapine and haloperidol. These results collectively indicate that DISC1 is a regulatory factor in ER calcium dynamics, linking a perturbed intracellular calcium signaling and schizophrenia pathogenesis. PMID:25732993

  11. Subtle balance of tropoelastin molecular shape and flexibility regulates dynamics and hierarchical assembly

    PubMed Central

    Yeo, Giselle C.; Tarakanova, Anna; Baldock, Clair; Wise, Steven G.; Buehler, Markus J.; Weiss, Anthony S.

    2016-01-01

    The assembly of the tropoelastin monomer into elastin is vital for conferring elasticity on blood vessels, skin, and lungs. Tropoelastin has dual needs for flexibility and structure in self-assembly. We explore the structure-dynamics-function interplay, consider the duality of molecular order and disorder, and identify equally significant functional contributions by local and global structures. To study these organizational stratifications, we perturb a key hinge region by expressing an exon that is universally spliced out in human tropoelastins. We find a herniated nanostructure with a displaced C terminus and explain by molecular modeling that flexible helices are replaced with substantial β sheets. We see atypical higher-order cross-linking and inefficient assembly into discontinuous, thick elastic fibers. We explain this dysfunction by correlating local and global structural effects with changes in the molecule’s assembly dynamics. This work has general implications for our understanding of elastomeric proteins, which balance disordered regions with defined structural modules at multiple scales for functional assembly. PMID:26998516

  12. Spatiotemporal regulation of Heterochromatin Protein 1- alpha oligomerization and dynamics in live cells

    PubMed Central

    Hinde, Elizabeth; Cardarelli, Francesco; Gratton, Enrico

    2015-01-01

    Heterochromatin protein 1 (HP1) is a central factor in establishing and maintaining the heterochromatin state. As consequence of playing a structural role in heterochromatin, HP1 proteins can have both an activating as well as repressive function in gene expression. Here we probe how oligomerisation of the HP1-α isoform modulates interaction with chromatin, by spatially resolved fluorescence correlation spectroscopy (FCS). We find from fluctuation analysis of HP1-α dynamics that this isoform exists as a dimer around the periphery of heterochromatin foci and these foci locally rotate with characteristic turn rates that range from 5–100ms. From inhibition of HP1-α homo-oligomerization we find the slow turn rates (20–100 ms) are dimer dependent. From treatment with drugs that disrupt or promote chromatin compaction, we find that HP1-α dimers spatially redistribute to favor fast (5–10 ms) or slow (20–100 ms) turn rates. Collectively our results demonstrate HP1-α oligomerization is critical to the maintenance of heterochromatin and the tunable dynamics of this HP1 isoform. PMID:26238434

  13. Carotid baroreflex regulation of sympathetic nerve activity during dynamic exercise in humans

    NASA Technical Reports Server (NTRS)

    Fadel, P. J.; Ogoh, S.; Watenpaugh, D. E.; Wasmund, W.; Olivencia-Yurvati, A.; Smith, M. L.; Raven, P. B.

    2001-01-01

    We sought to determine whether carotid baroreflex (CBR) control of muscle sympathetic nerve activity (MSNA) was altered during dynamic exercise. In five men and three women, 23.8 +/- 0.7 (SE) yr of age, CBR function was evaluated at rest and during 20 min of arm cycling at 50% peak O(2) uptake using 5-s periods of neck pressure and neck suction. From rest to steady-state arm cycling, mean arterial pressure (MAP) was significantly increased from 90.0 +/- 2.7 to 118.7 +/- 3.6 mmHg and MSNA burst frequency (microneurography at the peroneal nerve) was elevated by 51 +/- 14% (P < 0.01). However, despite the marked increases in MAP and MSNA during exercise, CBR-Delta%MSNA responses elicited by the application of various levels of neck pressure and neck suction ranging from +45 to -80 Torr were not significantly different from those at rest. Furthermore, estimated baroreflex sensitivity for the control of MSNA at rest was the same as during exercise (P = 0.74) across the range of neck chamber pressures. Thus CBR control of sympathetic nerve activity appears to be preserved during moderate-intensity dynamic exercise.

  14. CaM/BAG5/Hsc70 signaling complex dynamically regulates leaf senescence.

    PubMed

    Li, Luhua; Xing, Yangfei; Chang, Dong; Fang, Shasha; Cui, Boyang; Li, Qi; Wang, Xuejie; Guo, Shang; Yang, Xue; Men, Shuzhen; Shen, Yuequan

    2016-01-01

    Calcium signaling plays an essential role in plant cell physiology, and chaperone-mediated protein folding directly regulates plant programmed cell death. The Arabidopsis thaliana protein AtBAG5 (Bcl-2-associated athanogene 5) is unique in that it contains both a BAG domain capable of binding Hsc70 (Heat shock cognate protein 70) and a characteristic IQ motif that is specific for Ca(2+)-free CaM (Calmodulin) binding and hence acts as a hub linking calcium signaling and the chaperone system. Here, we determined crystal structures of AtBAG5 alone and in complex with Ca(2+)-free CaM. Structural and biochemical studies revealed that Ca(2+)-free CaM and Hsc70 bind AtBAG5 independently, whereas Ca(2+)-saturated CaM and Hsc70 bind AtBAG5 with negative cooperativity. Further in vivo studies confirmed that AtBAG5 localizes to mitochondria and that its overexpression leads to leaf senescence symptoms including decreased chlorophyll retention and massive ROS production in dark-induced plants. Mutants interfering the CaM/AtBAG5/Hsc70 complex formation leads to different phenotype of leaf senescence. Collectively, we propose that the CaM/AtBAG5/Hsc70 signaling complex plays an important role in regulating plant senescence. PMID:27539741

  15. PAK-PIX interactions regulate adhesion dynamics and membrane protrusion to control neurite outgrowth.

    PubMed

    Santiago-Medina, Miguel; Gregus, Kelly A; Gomez, Timothy M

    2013-03-01

    The roles of P21-activated kinase (PAK) in the regulation of axon outgrowth downstream of extracellular matrix (ECM) proteins are poorly understood. Here we show that PAK1-3 and PIX are expressed in the developing spinal cord and differentially localize to point contacts and filopodial tips within motile growth cones. Using a specific interfering peptide called PAK18, we found that axon outgrowth is robustly stimulated on laminin by partial inhibition of PAK-PIX interactions and PAK function, whereas complete inhibition of PAK function stalls axon outgrowth. Furthermore, modest inhibition of PAK-PIX stimulates the assembly and turnover of growth cone point contacts, whereas strong inhibition over-stabilizes adhesions. Point mutations within PAK confirm the importance of PIX binding. Together our data suggest that regulation of PAK-PIX interactions in growth cones controls neurite outgrowth by influencing the activity of several important mediators of actin filament polymerization and retrograde flow, as well as integrin-dependent adhesion to laminin. PMID:23321640

  16. Dynamic changes in E-protein activity regulate T reg cell development

    PubMed Central

    Gao, Ping; Han, Xiaojuan; Zhang, Qi; Yang, Zhiqiong; Fuss, Ivan J.; Myers, Timothy G.; Gardina, Paul J.

    2014-01-01

    E-proteins are TCR-sensitive transcription factors essential for intrathymic T cell transitions. Here, we show that deletion of E-proteins leads to both enhanced peripheral TGF-β–induced regulatory T (iT reg) cell and thymic naturally arising T reg cell (nT reg cell) differentiation. In contrast, deletion of Id proteins results in reduced nT reg cell differentiation. Mechanistic analysis indicated that decreased E-protein activity leads to de-repression of signaling pathways that are essential to Foxp3 expression. Decreased E-protein binding to an IL-2Rα enhancer locus facilitated TCR-induced IL-2Rα expression. Similarly, decreased E-protein activity facilitated TCR-induced NF-κB activation and generation of c-Rel. Consistent with this, microarray analysis indicated that cells with E-protein depletion that are not yet expressing Foxp3 exhibit activation of the IL-2 and NF-κB signaling pathways as well as enhanced expression of many of the genes associated with Foxp3 induction. Finally, studies using Nur77-GFP mice to monitor TCR signaling showed that TCR signaling strength sufficient to induce Foxp3 differentiation is accompanied by down-regulation of E-protein levels. Collectively, these data suggest that TCR stimulation acts in part through down-regulation of E-protein activity to induce T reg cell lineage development. PMID:25488982

  17. Structured and Dynamic Disordered Domains Regulate the Activity of a Multifunctional Anti-σ Factor

    PubMed Central

    Herrou, Julien; Willett, Jonathan W.

    2015-01-01

    ABSTRACT The anti-σ factor NepR plays a central role in regulation of the general stress response (GSR) in alphaproteobacteria. This small protein has two known interaction partners: its cognate extracytoplasmic function (ECF) σ factor and the anti-anti-σ factor, PhyR. Stress-dependent phosphorylation of PhyR initiates a protein partner switch that promotes phospho-PhyR binding to NepR, which frees ECF σ to activate transcription of genes required for cell survival under adverse or fluctuating conditions. We have defined key functional roles for structured and intrinsically disordered domains of Caulobacter crescentus NepR in partner binding and activation of GSR transcription. We further demonstrate that NepR strongly stimulates the rate of PhyR phosphorylation in vitro and that this effect requires the structured and disordered domains of NepR. This result provides evidence for an additional layer of GSR regulation in which NepR directly influences activation of its binding partner, PhyR, as an anti-anti-σ factor. We conclude that structured and intrinsically disordered domains of NepR coordinately control multiple functions in the GSR signaling pathway, including core protein partner switch interactions and pathway activation by phosphorylation. PMID:26220965

  18. Dynamics of the Transcriptome during Human Spermatogenesis: Predicting the Potential Key Genes Regulating Male Gametes Generation.

    PubMed

    Zhu, Zijue; Li, Chong; Yang, Shi; Tian, Ruhui; Wang, Junlong; Yuan, Qingqing; Dong, Hui; He, Zuping; Wang, Shengyue; Li, Zheng

    2016-01-01

    Many infertile men are the victims of spermatogenesis disorder. However, conventional clinical test could not provide efficient information on the causes of spermatogenesis disorder and guide the doctor how to treat it. More effective diagnosis and treating methods could be developed if the key genes that regulate spermatogenesis were determined. Many works have been done on animal models, while there are few works on human beings due to the limited sample resources. In current work, testis tissues were obtained from 27 patients with obstructive azoospermia via surgery. The combination of Fluorescence Activated Cell Sorting and Magnetic Activated Cell Sorting was chosen as the efficient method to sort typical germ cells during spermatogenesis. RNA Sequencing was carried out to screen the change of transcriptomic profile of the germ cells during spermatogenesis. Differential expressed genes were clustered according to their expression patterns. Gene Ontology annotation, pathway analysis, and Gene Set Enrichment Analysis were carried out on genes with specific expression patterns and the potential key genes such as HOXs, JUN, SP1, and TCF3 which were involved in the regulation of spermatogenesis, with the potential value serve as molecular tools for clinical purpose, were predicted. PMID:26753906

  19. ECM signaling regulates collective cellular dynamics to control pancreas branching morphogenesis

    PubMed Central

    Shih, Hung Ping; Panlasigui, Devin; Cirulli, Vincenzo; Sander, Maike

    2015-01-01

    Summary During pancreas development, epithelial buds undergo branching morphogenesis to form an exocrine and endocrine gland. Proper morphogenesis is necessary for correct lineage allocation of pancreatic progenitors; however, the cellular events underlying pancreas morphogenesis are unknown. Here, we employed time-lapse microscopy and fluorescent labeling of cells to analyze cell behaviors associated with pancreas morphogenesis. We observed that outer bud cells adjacent to the basement membrane are pleomorphic and rearrange frequently; as well, they largely remain in the outer cell compartment even after mitosis. These cell behaviors and pancreas branching depend on cell contacts with the basement membrane, which induce actomyosin cytoskeleton remodeling via integrin-mediated activation of FAK/Src signaling. We show that integrin signaling reduces E-cadherin-mediated cell-cell adhesion in outer cells, and provide genetic evidence that this regulation is necessary for initiation of branching. Our study suggests that regulation of cell motility and adhesion by local niche cues initiates pancreas branching morphogenesis. PMID:26748698

  20. Novel Inhibitors Complexed with Glutamate Dehydrogenase: ALLOSTERIC REGULATION BY CONTROL OF PROTEIN DYNAMICS

    SciTech Connect

    Li, Ming; Smith, Christopher J.; Walker, Matthew T.; Smith, Thomas J.

    2009-12-01

    Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate using NAD(P){sup +} as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently discovered hyperinsulinism/hyperammonemia disorder showed that the loss of allosteric inhibition of GDH by GTP causes excessive secretion of insulin. Subsequent studies demonstrated that wild-type and hyperinsulinemia/hyperammonemia forms of GDH are inhibited by the green tea polyphenols, epigallocatechin gallate and epicatechin gallate. This was followed by high throughput studies that identified more stable inhibitors, including hexachlorophene, GW5074, and bithionol. Shown here are the structures of GDH complexed with these three compounds. Hexachlorophene forms a ring around the internal cavity in GDH through aromatic stacking interactions between the drug and GDH as well as between the drug molecules themselves. In contrast, GW5074 and bithionol both bind as pairs of stacked compounds at hexameric 2-fold axes between the dimers of subunits. The internal core of GDH contracts when the catalytic cleft closes during enzymatic turnover. None of the drugs cause conformational changes in the contact residues, but all bind to key interfaces involved in this contraction process. Therefore, it seems likely that the drugs inhibit enzymatic turnover by inhibiting this transition. Indeed, this expansion/contraction process may play a major role in the inter-subunit communication and allosteric regulation observed in GDH.

  1. A Bcl-xL-Drp1 complex regulates synaptic vesicle membrane dynamics during endocytosis

    PubMed Central

    Li, Hongmei; Alavian, Kambiz N.; Lazrove, Emma; Mehta, Nabil; Jones, Adrienne; Zhang, Ping; Licznerski, Pawel; Graham, Morven; Uo, Takuma; Guo, Junhua; Rahner, Christoph; Duman, Ronald S.; Morrison, Richard S.; Jonas, Elizabeth A.

    2013-01-01

    Following exocytosis, the rate of recovery of neurotransmitter release is determined by vesicle retrieval from the plasma membrane and by recruitment of vesicles from reserve pools within the synapse, the latter of which is dependent on mitochondrial ATP. The Bcl-2 family protein Bcl-xL, in addition to its role in cell death, regulates neurotransmitter release and recovery in part by increasing ATP availability from mitochondria. We now find, however, that, Bcl-xL directly regulates endocytotic vesicle retrieval in hippocampal neurons through protein/protein interaction with components of the clathrin complex. Our evidence suggests that, during synaptic stimulation, Bcl-xL translocates to clathrin-coated pits in a calmodulin-dependent manner and forms a complex of proteins with the GTPase Drp1, Mff and clathrin. Depletion of Drp1 produces misformed endocytotic vesicles. Mutagenesis studies suggest that formation of the Bcl-xL-Drp1 complex is necessary for the enhanced rate of vesicle endocytosis produced by Bcl-xL, thus providing a mechanism for presynaptic plasticity. PMID:23792689

  2. Dynamics of the Transcriptome during Human Spermatogenesis: Predicting the Potential Key Genes Regulating Male Gametes Generation

    PubMed Central

    Zhu, Zijue; Li, Chong; Yang, Shi; Tian, Ruhui; Wang, Junlong; Yuan, Qingqing; Dong, Hui; He, Zuping; Wang, Shengyue; Li, Zheng

    2016-01-01

    Many infertile men are the victims of spermatogenesis disorder. However, conventional clinical test could not provide efficient information on the causes of spermatogenesis disorder and guide the doctor how to treat it. More effective diagnosis and treating methods could be developed if the key genes that regulate spermatogenesis were determined. Many works have been done on animal models, while there are few works on human beings due to the limited sample resources. In current work, testis tissues were obtained from 27 patients with obstructive azoospermia via surgery. The combination of Fluorescence Activated Cell Sorting and Magnetic Activated Cell Sorting was chosen as the efficient method to sort typical germ cells during spermatogenesis. RNA Sequencing was carried out to screen the change of transcriptomic profile of the germ cells during spermatogenesis. Differential expressed genes were clustered according to their expression patterns. Gene Ontology annotation, pathway analysis, and Gene Set Enrichment Analysis were carried out on genes with specific expression patterns and the potential key genes such as HOXs, JUN, SP1, and TCF3 which were involved in the regulation of spermatogenesis, with the potential value serve as molecular tools for clinical purpose, were predicted. PMID:26753906

  3. CaM/BAG5/Hsc70 signaling complex dynamically regulates leaf senescence

    PubMed Central

    Li, Luhua; Xing, Yangfei; Chang, Dong; Fang, Shasha; Cui, Boyang; Li, Qi; Wang, Xuejie; Guo, Shang; Yang, Xue; Men, Shuzhen; Shen, Yuequan

    2016-01-01

    Calcium signaling plays an essential role in plant cell physiology, and chaperone-mediated protein folding directly regulates plant programmed cell death. The Arabidopsis thaliana protein AtBAG5 (Bcl-2-associated athanogene 5) is unique in that it contains both a BAG domain capable of binding Hsc70 (Heat shock cognate protein 70) and a characteristic IQ motif that is specific for Ca2+-free CaM (Calmodulin) binding and hence acts as a hub linking calcium signaling and the chaperone system. Here, we determined crystal structures of AtBAG5 alone and in complex with Ca2+-free CaM. Structural and biochemical studies revealed that Ca2+-free CaM and Hsc70 bind AtBAG5 independently, whereas Ca2+-saturated CaM and Hsc70 bind AtBAG5 with negative cooperativity. Further in vivo studies confirmed that AtBAG5 localizes to mitochondria and that its overexpression leads to leaf senescence symptoms including decreased chlorophyll retention and massive ROS production in dark-induced plants. Mutants interfering the CaM/AtBAG5/Hsc70 complex formation leads to different phenotype of leaf senescence. Collectively, we propose that the CaM/AtBAG5/Hsc70 signaling complex plays an important role in regulating plant senescence. PMID:27539741

  4. The evolutionary dynamics of major regulators for sexual development among Hymenoptera species

    PubMed Central

    Biewer, Matthias; Schlesinger, Francisca; Hasselmann, Martin

    2015-01-01

    All hymenopteran species, such as bees, wasps and ants, are characterized by the common principle of haplodiploid sex determination in which haploid males arise from unfertilized eggs and females from fertilized eggs. The underlying molecular mechanism has been studied in detail in the western honey bee Apis mellifera, in which the gene complementary sex determiner (csd) acts as primary signal of the sex determining pathway, initiating female development by csd-heterozygotes. Csd arose from gene duplication of the feminizer (fem) gene, a transformer (tra) ortholog, and mediates in conjunction with transformer2 (tra2) sex-specific splicing of fem. Comparative molecular analyses identified fem/tra and its downstream target doublesex (dsx) as conserved unit within the sex determining pathway of holometabolous insects. In this study, we aim to examine evolutionary differences among these key regulators. Our main hypothesis is that sex determining key regulators in Hymenoptera species show signs of coevolution within single phylogenetic lineages. We take advantage of several newly sequenced genomes of bee species to test this hypothesis using bioinformatic approaches. We found evidences that duplications of fem are restricted to certain bee lineages and notable amino acid differences of tra2 between Apis and non-Apis species propose structural changes in Tra2 protein affecting co-regulatory function on target genes. These findings may help to gain deeper insights into the ancestral mode of hymenopteran sex determination and support the common view of the remarkable evolutionary flexibility in this regulatory pathway. PMID:25914717

  5. Acanthamoeba castellanii: proteins involved in actin dynamics, glycolysis, and proteolysis are regulated during encystation.

    PubMed

    Bouyer, Sabrina; Rodier, Marie-Hélène; Guillot, Alain; Héchard, Yann

    2009-09-01

    Acanthamoeba castellanii is a pathogenic free-living amoeba. Cyst forms are particularly important in their pathogenicity, as they are more resistant to treatments and might protect pathogenic intracellular bacteria. However, encystation is poorly understood at the molecular level and global changes at the protein level have not been completely described. In this study, we performed two-dimensional gel electrophoresis to compare protein expression in trophozoite and cyst forms. Four proteins, specifically expressed in trophozoites, and four proteins, specifically expressed in cysts, were identified. Two proteins, enolase and fructose bisphosphate aldolase, are involved in the glycolytic pathway. Three proteins are likely actin-binding proteins, which is consistent with the dramatic morphological modifications of the cells during encystation. One protein belongs to the serine protease family and has been already linked to encystation in A. castellanii. In conclusion, this study found that the proteins whose expression was modified during encystation were likely involved in actin dynamics, glycolysis, and proteolysis. PMID:19523468

  6. Regulating the Tumor Cell Population Dynamics by Controlling the Proliferation Rate

    NASA Astrophysics Data System (ADS)

    Hirschbeck, Sarah; Shojania Feizabadi, Mitra

    2007-03-01

    The two-compartment model of cancer cell population dynamics introduces two subpopulations for a tumor (proliferating and quiescent). In precious theoretical models, the interaction of tumor cells with chemotherapeutic drugs is expressed as an additional term which reduces the size of subpopulations because of the killing effect of the drug with different killing rates. We develop a simple mathematical model for a more realistic interaction of anti-cancer drugs with tumor cells. The key assumption used in developing this model is that the anti-cancer drug not only kills the subpopulations but also decreases the proliferating rate of the proliferating subpopulation during the course of therapy. Finally, we present the numerical result for the evolution of the subpopulations based on this model.

  7. Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval.

    PubMed

    Tennant, Jonathan P; Mannion, Philip D; Upchurch, Paul

    2016-01-01

    Reconstructing deep time trends in biodiversity remains a central goal for palaeobiologists, but our understanding of the magnitude and tempo of extinctions and radiations is confounded by uneven sampling of the fossil record. In particular, the Jurassic/Cretaceous (J/K) boundary, 145 million years ago, remains poorly understood, despite an apparent minor extinction and the radiation of numerous important clades. Here we apply a rigorous subsampling approach to a comprehensive tetrapod fossil occurrence data set to assess the group's macroevolutionary dynamics through the J/K transition. Although much of the signal is exclusively European, almost every higher tetrapod group was affected by a substantial decline across the boundary, culminating in the extinction of several important clades and the ecological release and radiation of numerous modern tetrapod groups. Variation in eustatic sea level was the primary driver of these patterns, controlling biodiversity through availability of shallow marine environments and via allopatric speciation on land. PMID:27587285

  8. Do genes and environment meet to regulate cerebrospinal fluid dynamics? Relevance for schizophrenia

    PubMed Central

    Palha, Joana A.; Santos, Nadine C.; Marques, Fernanda; Sousa, João; Bessa, João; Miguelote, Rui; Sousa, Nuno; Belmonte-de-Abreu, Paulo

    2012-01-01

    Schizophrenia is a neurodevelopment disorder in which the interplay of genes and environment contributes to disease onset and establishment. The most consistent pathological feature in schizophrenic patients is an enlargement of the brain ventricles. Yet, so far, no study has related this finding with dysfunction of the choroid plexus (CP), the epithelial cell monolayer located within the brain ventricles that is responsible for the production of most of the cerebrospinal fluid (CSF). Enlarged brain ventricles are already present at the time of disease onset (young adulthood) and, of notice, isolated mild ventriculomegaly detected in utero is associated with subsequent mild neurodevelopmental abnormalities similar to those observed in children at high risk of developing schizophrenia. Here we propose that altered CP/CSF dynamics during neurodevelopment may be considered a risk, causative and/or participating factor for development of schizophrenia. PMID:22891052

  9. Surface-induced regulation of podosome organization and dynamics in cultured osteoclasts

    PubMed Central

    Geblinger, Dafna; Geiger, Benjamin; Addadi, Lia

    2010-01-01

    Bone is continuously repaired and remodeled through the well-coordinated activity of osteoblasts, which form new bone, and osteoclasts, which resorb it. How osteoclasts sense the properties of the bone surface remains unclear. Combining light and electron microscopy, we compared osteoclast behavior on three distinct surfaces: glass, calcite single crystals, and bone. Podosomes, the basic units of the adhesion structure, and their organization into super-structures, were found to be common to cells attached to all three substrates, while the structure of the resorption organelle, the so-called “ruffled border,” markedly differed. Moreover, the integrity, stability and dynamic behavior of the adhesion super-structures also fundamentally differed, depending on the substrate. We conclude that osteoclasts sense the local properties of the underlying substrate and respond to these signals, both locally and globally. PMID:19065685

  10. Adaptations of walking pattern on a compliant surface to regulate dynamic stability.

    PubMed

    MacLellan, Michael J; Patla, Aftab E

    2006-08-01

    Dynamic stability can be threatened by various travel surface changes that humans encounter on a daily basis. The central nervous system (CNS) must acquire appropriate information about upcoming surface changes and provide necessary proactive and reactive changes to maintain stability. The purpose of this study was to examine stability control by characterizing adaptations in step patterns, center of mass (COM) trajectory, and lower limb muscle activity when stepping onto and walking on a compliant surface. Eight young adults walked under two conditions: baseline ground walking and while walking on a large foam mat (compliant surface). Optotrak system was used to collect 3D-full body kinematics and electromyography was collected for the rectus femoris, biceps femoris, tibialis anterior, medial gastrocnemius, and soleus bilaterally. Vertical COM decreased on the compliant surface while medio-lateral COM was not affected. This lowering of the vertical COM peak would provide a more stable posture when walking on the surface. Toe trajectory during the swing phase was elevated to avoid tripping on the deformable compliant surface. Step width and length increased on the compliant surface which would increase base of support and provide better control of COM. Increases in gastrocnemius and soleus activity during push-off accounted for increases in step length seen on the compliant surface. Dynamic stability margin in the anterior-posterior direction demonstrated a constant overcompensation and subsequent correction in COM control. These proactive and reactive changes in motor patterns show how the CNS actively coordinates all body segments while traveling on a compliant surface in order to maximize stability. PMID:16491406

  11. The ubiquitin ligase HACE1 regulates Golgi membrane dynamics during the cell cycle

    PubMed Central

    Tang, Danming; Xiang, Yi; De Renzis, Stefano; Rink, Jochen; Zheng, Gen; Zerial, Marino; Wang, Yanzhuang

    2012-01-01

    Partitioning of the Golgi membrane into daughter cells during mammalian cell division occurs through a unique disassembly and reassembly process that is regulated by ubiquitination. However, the identity of the ubiquitin ligase is unknown. Here we show that the Homologous to the E6-AP Carboxyl Terminus (HECT) domain containing ubiquitin ligase HACE1 is targeted to the Golgi membrane through interactions with Rab proteins. The ubiquitin ligase activity of HACE1 in mitotic Golgi disassembly is required for subsequent postmitotic Golgi membrane fusion. Depletion of HACE1 using small interfering RNAs or expression of an inactive HACE1 mutant protein in cells impaired postmitotic Golgi membrane fusion. The identification of HACE1 as a Golgi-localized ubiquitin ligase provides evidence that ubiquitin has a critical role in Golgi biogenesis during the cell cycle. PMID:21988917

  12. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability

    PubMed Central

    Wu, Howard G; Miyamoto, Yohsuke R; Castro, Luis Nicolas Gonzalez; Ölveczky, Bence P; Smith, Maurice A

    2015-01-01

    Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning. PMID:24413700

  13. Regulation of Aedes aegypti Population Dynamics in Field Systems: Quantifying Direct and Delayed Density Dependence

    PubMed Central

    Walsh, Rachael K.; Aguilar, Cristobal L.; Facchinelli, Luca; Valerio, Laura; Ramsey, Janine M.; Scott, Thomas W.; Lloyd, Alun L.; Gould, Fred

    2013-01-01

    Transgenic strains of Aedes aegypti have been engineered to help control transmission of dengue virus. Although resources have been invested in developing the strains, we lack data on the ecology of mosquitoes that could impact the success of this approach. Although studies of intra-specific competition have been conducted using Ae. aegypti larvae, none of these studies examine mixed age cohorts at densities that occur in the field, with natural nutrient levels. Experiments were conducted in Mexico to determine the impact of direct and delayed density dependence on Ae. aegypti populations. Natural water, food, and larval densities were used to estimate the impacts of density dependence on larval survival, development, and adult body size. Direct and delayed density-dependent factors had a significant impact on larval survival, larval development, and adult body size. These results indicate that control methods attempting to reduce mosquito populations may be counteracted by density-dependent population regulation. PMID:23669230

  14. Evolutionarily Dynamic Alternative Splicing of GPR56 Regulates Regional Cerebral Cortical Patterning

    PubMed Central

    Bae, Byoung-Il; Tietjen, Ian; Atabay, Kutay D.; Evrony, Gilad D.; Johnson, Matthew B.; Asare, Ebenezer; Wang, Peter P.; Murayama, Ayako Y.; Im, Kiho; Lisgo, Steven N.; Overman, Lynne; Šestan, Nenad; Chang, Bernard S.; Barkovich, A. James; Grant, P. Ellen; Topçu, Meral; Politsky, Jeffrey; Okano, Hideyuki; Piao, Xianhua; Walsh, Christopher A.

    2015-01-01

    The human neocortex has numerous specialized functional areas whose formation is poorly understood. Here, we describe a 15–base pair deletion mutation in a regulatory element of GPR56 that selectively disrupts human cortex surrounding the Sylvian fissure bilaterally including “Broca’s area,” the primary language area, by disrupting regional GPR56 expression and blocking RFX transcription factor binding. GPR56 encodes a heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptor required for normal cortical development and is expressed in cortical progenitor cells. GPR56 expression levels regulate progenitor proliferation. GPR56 splice forms are highly variable between mice and humans, and the regulatory element of gyrencephalic mammals directs restricted lateral cortical expression. Our data reveal a mechanism by which control of GPR56 expression pattern by multiple alternative promoters can influence stem cell proliferation, gyral patterning, and, potentially, neocortex evolution. PMID:24531968

  15. Dynamic Processes in Regulation and Some Implications for Biofeedback and Biobehavioral Interventions

    PubMed Central

    Lehrer, Paul; Eddie, David

    2013-01-01

    Systems theory has long been applied in psychology, biology, and sociology. This paper applies newer methods of control systems modeling to the assessment of system stability in health and disease. Control systems can be characterized as open or closed systems with feedback loops. Feedback produces oscillatory activity, and the complexity of naturally occurring oscillatory patterns reflects the multiplicity of feedback mechanisms, such that many mechanisms operate simultaneously to control the system. Unstable systems, often associated with poor health, are characterized by absence of oscillation, random noise, or a very simple pattern of oscillation. This modeling approach can be applied to a diverse range of phenomena, including cardiovascular and brain activity, mood and thermal regulation, and social system stability. External system stressors such as disease, psychological stress, injury, or interpersonal conflict may perturb a system, yet simultaneously stimulate oscillatory processes and exercise control mechanisms. Resonance can occur in systems with negative feedback loops, causing high-amplitude oscillations at a single frequency. Resonance effects can be used to strengthen modulatory oscillations, but may obscure other information and control mechanisms, and weaken system stability. Positive as well as negative feedback loops are important for system function and stability. Examples are presented of oscillatory processes in heart rate variability, and regulation of autonomic, thermal, pancreatic and central nervous system processes, as well as in social/organizational systems such as marriages and business organizations. Resonance in negative feedback loops can help stimulate oscillations and exercise control reflexes, but also can deprive the system of important information. Empirical hypotheses derived from this approach are presented, including that moderate stress may enhance health and functioning. PMID:23572244

  16. Dynamic regulation of uncoupling protein 2 expression by microRNA-214 in hepatocellular carcinoma.

    PubMed

    Yu, Guangsheng; Wang, Jianlu; Xu, Kesen; Dong, Jiahong

    2016-07-01

    Gemcitabine (GEM), a commonly used chemotherapeutic agent in hepatocellular carcinoma (HCC) patients, uses oxidative stress induction as a common effector pathway. However, GEM alone or in combination with oxaliplatin hardly renders any survival benefits to HCC patients. We have recently shown that this is part due to the overexpression of the mitochondrial uncoupling protein 2 (UCP2) that in turn mediates resistance to GEM in HCC patients. However, not much is known about regulatory mechanisms underlying UCP2 overexpression in HCC. Differential protein expression in HCC cell lines did not show a concomitant change in UCP2 transcript level, indicating post-transcriptional or post-translational regulatory mechanism. In situ analysis revealed that UCP2 is a putative target of miR-214 miR-214 expression is significantly down-regulated in HCC patient samples as compared with normal adjacent tissues and in cell line, human hepatoblastoma cells (HuH6), with high UCP2 protein expression. We demonstrated using miR-214 mimic and antagomir that the miRNA targeted UCP2 expression by directly targeting the wild-type, but not a miR-214 seed mutant, 3' UTR of UCP2 Overexpression of miR-214 significantly attenuated cell proliferation. Finally, analysis in 20 HCC patients revealed an inverse correlation in expression of UCP2 and miR-214 (Pearson's correlation coefficient, r=-0.9792). Cumulatively, our data indicate that in the context of HCC, miR-214 acts as a putative tumour suppressor by targeting UCP2 and defines a novel mechanism of regulation of UCP2. PMID:27129291

  17. Renal nerves dynamically regulate renal blood flow in conscious, healthy rabbits.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter R; Zucker, Irving H

    2016-01-15

    Despite significant clinical interest in renal denervation as a therapy, the role of the renal nerves in the physiological regulation of renal blood flow (RBF) remains debated. We hypothesized that the renal nerves physiologically regulate beat-to-beat RBF variability (RBFV). This was tested in chronically instrumented, healthy rabbits that underwent either bilateral surgical renal denervation (DDNx) or a sham denervation procedure (INV). Artifact-free segments of RBF and arterial pressure (AP) from calmly resting, conscious rabbits were used to extract RBFV and AP variability for time-domain, frequency-domain, and nonlinear analysis. Whereas steady-state measures of RBF, AP, and heart rate did not statistically differ between groups, DDNx rabbits had greater RBFV than INV rabbits. AP-RBF transfer function analysis showed greater admittance gain in DDNx rabbits than in INV rabbits, particularly in the low-frequency (LF) range where systemic sympathetic vasomotion gives rise to AP oscillations. In the LF range, INV rabbits exhibited a negative AP-RBF phase shift and low coherence, consistent with the presence of an active control system. Neither of these features were present in the LF range of DDNx rabbits, which showed no phase shift and high coherence, consistent with a passive, Ohm's law pressure-flow relationship. Renal denervation did not significantly affect nonlinear RBFV measures of chaos, self-affinity, or complexity, nor did it significantly affect glomerular filtration rate or extracellular fluid volume. Cumulatively, these data suggest that the renal nerves mediate LF renal sympathetic vasomotion, which buffers RBF from LF AP oscillations in conscious, healthy rabbits. PMID:26538235

  18. A mast-seeding desert shrub regulates population dynamics and behavior of its heteromyid dispersers.

    PubMed

    Auger, Janene; Meyer, Susan E; Jenkins, Stephen H

    2016-04-01

    Granivorous rodent populations in deserts are primarily regulated through precipitation-driven resource pulses rather than pulses associated with mast-seeding, a pattern more common in mesic habitats. We studied heteromyid responses to mast-seeding in the desert shrub blackbrush (Coleogyne ramosissima), a regionally dominant species in the Mojave-Great Basin Desert transition zone. In a 5-year study at Arches National Park, Utah, USA, we quantified spatiotemporal variation in seed resources in mast and intermast years in blackbrush-dominated and mixed desert vegetation and measured responses of Dipodomys ordii (Ord's kangaroo rat) and Perognathus flavescens (plains pocket mouse). In blackbrush-dominated vegetation, blackbrush seeds comprised >79% of seed production in a mast year, but 0% in the first postmast year. Kangaroo rat abundance in blackbrush-dominated vegetation was highest in the mast year, declined sharply at the end of the first postmast summer, and then remained at low levels for 3 years. Pocket mouse abundance was not as strongly associated with blackbrush seed production. In mixed desert vegetation, kangaroo rat abundance was higher and more uniform through time. Kangaroo rats excluded the smaller pocket mice from resource-rich patches including a pipeline disturbance and also moved their home range centers closer to this disturbance in a year of low blackbrush seed production. Home range size for kangaroo rats was unrelated to seed resource density in the mast year, but resource-poor home ranges were larger (P < 0.001) in the first postmast year, when resources were limiting. Blackbrush seeds are higher in protein and fat but lower in carbohydrates than the more highly preferred seeds of Indian ricegrass (Achnatherum hymenoides) and have similar energy value per unit of handling time. Kangaroo rats cached seeds of these two species in similar spatial configurations, implying that they were equally valued as stored food resources. Blackbrush mast

  19. Structural dynamics and topology of phosphorylated phospholamban homopentamer reveal its role in the regulation of calcium transport in sarcoplasmic reticulum

    PubMed Central

    Vostrikov, Vitaly V.; Mote, Kaustubh R.; Verardi, Raffaello; Veglia, Gianluigi

    2013-01-01

    Phospholamban (PLN) inhibits the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), thereby regulating cardiac diastole. In membranes, PLN assembles into homopentamers that in both the phosphorylated and non-phosphorylated states have been proposed to form ion-selective channels. Here, we determined the structure of the phosphorylated pentamer using a combination of solution and solid-state nuclear magnetic resonance methods. We found that the pinwheel architecture of the homopentamer is preserved upon phosphorylation, with each monomer having an L-shaped conformation of each monomer. The TM domains form a hydrophobic pore of approximately 24 Å long, and 2 Å in diameter, which is inconsistent with canonical Ca2+ selective channels. Phosphorylation, however, enhances the conformational dynamics of the cytoplasmic region of PLN, causing the partial unwinding of the amphipathic helix. We propose that PLN oligomers act as storage for active monomers, keeping SERCA function within a physiological window. PMID:24207128

  20. Energetic modeling and single-molecule verification of dynamic regulation on receptor complexes by actin corrals and lipid raft domains

    NASA Astrophysics Data System (ADS)

    Lin, Chien Y.; Huang, Jung Y.; Lo, Leu-Wei

    2014-12-01

    We developed an energetic model by integrating the generalized Langevin equation with the Cahn-Hilliard equation to simulate the diffusive behaviors of receptor proteins in the plasma membrane of a living cell. Simulation results are presented to elaborate the confinement effects from actin corrals and protein-induced lipid domains. Single-molecule tracking data of epidermal growth factor receptors (EGFR) acquired on live HeLa cells agree with the simulation results and the mechanism that controls the diffusion of single-molecule receptors is clarified. We discovered that after ligand binding, EGFR molecules move into lipid nanodomains. The transition rates between different diffusion states of liganded EGFR molecules are regulated by the lipid domains. Our method successfully captures dynamic interactions of receptors at the single-molecule level and provides insight into the functional architecture of both the diffusing EGFR molecules and their local cellular environment.

  1. Networks and their applications to biological systems: From ecological dynamics to gene regulation

    NASA Astrophysics Data System (ADS)

    Sevim, Volkan

    networks. The ability to evolve robust mutants is known to depend on the network architecture. We seek answers to the following questions. How do the dynamical properties and state-space structures of networks with high and low robustness differ? Does selection operate on the global dynamical behavior of the networks? What kind of state-space structures are favored by selection? First, we analytically show that the model random networks we use are intrinsically chaotic, i.e., they do not undergo an order-to-chaos phase transition with increasing connectivity, unlike their variants found in the literature. Then, we provide a damage propagation analysis and an extensive statistical analysis of state spaces of these model networks to show that the change in their dynamical properties due to stabilizing selection for optimal phenotypes is minor. Most notably, the networks that are most robust to both mutations and noise are highly chaotic. Certain properties of chaotic networks, such as being able to produce large attractor basins, can be useful for maintaining a stable gene-expression pattern. Our findings indicate that conventional measures of stability, such as the damage-propagation rate, do not provide much information about robustness to mutations or noise in model gene regulatory networks.

  2. Carbon and nitrogen dynamics across a bedrock-regulated subarctic pH gradient

    NASA Astrophysics Data System (ADS)

    Tomczyk, N.; Heim, E. W.; Sadowsky, J.; Remiszewski, K.; Varner, R. K.; Bryce, J. G.; Frey, S. D.

    2014-12-01

    Bedrock geochemistry has been shown to influence landscape evolution due to nutrient limitation on primary production. There may also be less direct interactions between bedrock-derived chemicals and ecosystem function. Effects of calcium (Ca) and pH on soil carbon (C) and nitrogen (N) cycling have been shown in acid impacted forests o f North America. Understanding intrinsic factors that affect C and nutrient dynamics in subarctic ecosystems has implications for how these ecosystems will respond to a changing climate. How the soil microbial community allocates enzymes to acquire resources from the environment can indicate whether a system is nutrient or energy limited. This study examined whether bedrock geochemistry exerts pressure on nutrient cycles in the overlying soils. In thin, weakly developed soils, bedrock is the primary mineral material and is a source of vital nutrients. Nitrogen (N) and C are not derived from bedrock, but their cycling is still affected by reactions with geologically-derived chemicals. Our study sites near Abisko, Sweden (~68°N) were selected adjacent to five distinct bedrock outcrops (quartzite, slate, carbonate, and two different metasedimenty units). All sites were at a similar elevation (~700 m a.s.l.) and had similar vegetation (subarctic heath). Nutrient concentrations in bedrock and soils were measured in addition to soil microbial biomass and extracellular enzyme activity. We found a statistically significant correlation between soil Ca concentrations and soil pH (r = 0.88, p < 0.01). There were also significant relationships between soil pH and the ratio of C-acquiring to N-acquiring enzyme activity (r = -0.89, p < 0.01), soil pH and soil C-to-N ratio (r = -0.76, p < 0.01), and the ratio of C-acquiring to N-acquiring enzyme activity and soil C-to-N ratio (r = 0.78, p < 0.01). These results suggest that soil Ca concentrations influence C and N cycling dynamics in these soils through their effect on soil pH.

  3. Regulation Dynamics of Leishmania Differentiation: Deconvoluting Signals and Identifying Phosphorylation Trends*

    PubMed Central

    Tsigankov, Polina; Gherardini, Pier Federico; Helmer-Citterich, Manuela; Späth, Gerald F.; Myler, Peter J.; Zilberstein, Dan

    2014-01-01

    Leishmania are obligatory intracellular parasitic protozoa that cause a wide range of diseases in humans, cycling between extracellular promastigotes in the mid-gut of sand flies and intracellular amastigotes in the phagolysosomes of mammalian macrophages. Although many of the molecular mechanisms of development inside macrophages remain a mystery, the development of a host-free system that simulates phagolysosome conditions (37 °C and pH 5.5) has provided new insights into these processes. The time course of promastigote-to-amastigote differentiation can be divided into four morphologically distinct phases: I, signal perception (0–5 h after exposure); II, movement cessation and aggregation (5–10 h); III, amastigote morphogenesis (10–24 h); and IV, maturation (24–120 h). Transcriptomic and proteomic analyses have indicated that differentiation is a coordinated process that results in adaptation to life inside phagolysosomes. Recent phosphoproteomic analysis revealed extensive differences in phosphorylation between promastigotes and amastigotes and identified stage-specific phosphorylation motifs. We hypothesized that the differentiation signal activates a phosphorylation pathway that initiates Leishmania transformation, and here we used isobaric tags for relative and absolute quantitation to interrogate the dynamics of changes in the phosphorylation profile during Leishmania donovani promastigote-to-amastigote differentiation. Analysis of 163 phosphopeptides (from 106 proteins) revealed six distinct kinetic profiles; with increases in phosphorylation predominated during phases I and III, whereas phases II and IV were characterized by greater dephosphorylation. Several proteins (including a protein kinase) were phosphorylated in phase I after exposure to the complete differentiation signal (i.e. signal-specific; 37 °C and pH 5.5), but not after either of the physical parameters separately. Several other protein kinases (including regulatory subunits) and

  4. PPP1R42, a PP1 binding protein, regulates centrosome dynamics in ARPE-19 cells

    PubMed Central

    DeVaul, Nicole; Wang, Rong; Sperry, Ann O.

    2013-01-01

    Background The centrosome is the primary site for microtubule nucleation in cells and orchestrates reorganization of the microtubule cytoskeleton during the cell cycle. The activities of the centrosome must be closely aligned with progression of the cell cycle; misregulation of centrosome separation and duplication is a hallmark of cancer. In a subset of cells, including the developing spermatid, the centrosome becomes specialized to form the basal body thereby supporting growth of the axoneme in morphogenesis of cilia and flagella, structures critical for signaling and motility. Mammalian spermatogenesis is an excellent model system to investigate the transformations in cellular architecture that accompany these changes including formation of the flagellum. We have previously identified a leucine rich repeat protein (PPP1R42) that contains a protein phosphatase-1 (PP1) binding site and translocates from the apical nucleus to the centrosome at the base of the flagellum during spermiogenesis. In this manuscript we examine localization and function of PPP1R42 in a ciliated epithelial cell model as a first step in understanding the role of this protein in centrosome function and flagellar formation. Results We demonstrate that PPP1R42 localizes to the basal body in ARPE-19 retinal epithelial cells. Colocalization and co-immunoprecipitation experiments further show that PPP1R42 interacts with γ-tubulin. Inhibition of PPP1R42 with small interfering RNAs (siRNAs) causes accumulation of centrosomes indicating premature centrosome separation. Importantly, the activity of two signaling molecules that regulate centrosome separation, PP1 phosphatase and NEK2 kinase, changes when PPP1R42 is inhibited: PP1 activity is reduced with a corresponding increase in NEK2 activity. Conclusions We have identified a role for the PP1-binding protein, PPP1R42, in centrosome separation in ciliated ARPE-19 cells. Our finding that inhibition of PPP1R42 expression increases the number of

  5. Reciprocal Regulation of Mitochondrial Dynamics and Calcium Signaling in Astrocyte Processes

    PubMed Central

    Jackson, Joshua G.

    2015-01-01

    We recently showed that inhibition of neuronal activity, glutamate uptake, or reversed-Na+/Ca2+-exchange with TTX, TFB-TBOA, or YM-244769, respectively, increases mitochondrial mobility in astrocytic processes. In the present study, we examined the interrelationships between mitochondrial mobility and Ca2+ signaling in astrocyte processes in organotypic cultures of rat hippocampus. All of the treatments that increase mitochondrial mobility decreased basal Ca2+. As recently reported, we observed spontaneous Ca2+ spikes with half-lives of ∼1 s that spread ∼6 μm and are almost abolished by a TRPA1 channel antagonist. Virtually all of these Ca2+ spikes overlap mitochondria (98%), and 62% of mitochondria are overlapped by these spikes. Although tetrodotoxin, TFB-TBOA, or YM-244769 increased Ca2+ signaling, the specific effects on peak, decay time, and/or frequency were different. To more specifically manipulate mitochondrial mobility, we explored the effects of Miro motor adaptor proteins. We show that Miro1 and Miro2 are both expressed in astrocytes and that exogenous expression of Ca2+-insensitive Miro mutants (KK) nearly doubles the percentage of mobile mitochondria. Expression of Miro1KK had a modest effect on the frequency of these Ca2+ spikes but nearly doubled the decay half-life. The mitochondrial proton ionophore, FCCP, caused a large, prolonged increase in cytosolic Ca2+ followed by an increase in the decay time and the spread of the spontaneous Ca2+ spikes. Photo-ablation of mitochondria in individual astrocyte processes has similar effects on Ca2+. Together, these studies show that Ca2+ regulates mitochondrial mobility, and mitochondria in turn regulate Ca2+ signals in astrocyte processes. SIGNIFICANCE STATEMENT In neurons, the movement and positioning of mitochondria at sites of elevated activity are important for matching local energy and Ca2+ buffering capacity. Previously, we demonstrated that mitochondria are immobilized in astrocytes in response

  6. Dynamic membrane depolarization is an early regulator of ependymoglial cell response to spinal cord injury in axolotl.

    PubMed

    Sabin, Keith; Santos-Ferreira, Tiago; Essig, Jaclyn; Rudasill, Sarah; Echeverri, Karen

    2015-12-01

    Salamanders, such as the Mexican axolotl, are some of the few vertebrates fortunate in their ability to regenerate diverse structures after injury. Unlike mammals they are able to regenerate a fully functional spinal cord after injury. However, the molecular circuitry required to initiate a pro-regenerative response after spinal cord injury is not well understood. To address this question we developed a spinal cord injury model in axolotls and used in vivo imaging of labeled ependymoglial cells to characterize the response of these cells to injury. Using in vivo imaging of ion sensitive dyes we identified that spinal cord injury induces a rapid and dynamic change in the resting membrane potential of ependymoglial cells. Prolonged depolarization of ependymoglial cells after injury inhibits ependymoglial cell proliferation and subsequent axon regeneration. Using transcriptional profiling we identified c-Fos as a key voltage sensitive early response gene that is expressed specifically in the ependymoglial cells after injury. This data establishes that dynamic changes in the membrane potential after injury are essential for regulating the specific spatiotemporal expression of c-Fos that is critical for promoting faithful spinal cord regeneration in axolotl. PMID:26477559

  7. Drastic changes in conformational dynamics of the antiterminator M2-1 regulate transcription efficiency in Pneumovirinae

    PubMed Central

    Leyrat, Cedric; Renner, Max; Harlos, Karl; Huiskonen, Juha T; Grimes, Jonathan M

    2014-01-01

    The M2-1 protein of human metapneumovirus (HMPV) is a zinc-binding transcription antiterminator which is highly conserved among pneumoviruses. We report the structure of tetrameric HMPV M2-1. Each protomer features a N-terminal zinc finger domain and an α-helical tetramerization motif forming a rigid unit, followed by a flexible linker and an α-helical core domain. The tetramer is asymmetric, three of the protomers exhibiting a closed conformation, and one an open conformation. Molecular dynamics simulations and SAXS demonstrate a dynamic equilibrium between open and closed conformations in solution. Structures of adenosine monophosphate- and DNA- bound M2-1 establish the role of the zinc finger domain in base-specific recognition of RNA. Binding to ‘gene end’ RNA sequences stabilized the closed conformation of M2-1 leading to a drastic shift in the conformational landscape of M2-1. We propose a model for recognition of gene end signals and discuss the implications of these findings for transcriptional regulation in pneumoviruses. DOI: http://dx.doi.org/10.7554/eLife.02674.001 PMID:24842877

  8. Computational spatiotemporal analysis identifies WAVE2 and cofilin as joint regulators of costimulation-mediated T cell actin dynamics.

    PubMed

    Roybal, Kole T; Buck, Taráz E; Ruan, Xiongtao; Cho, Baek Hwan; Clark, Danielle J; Ambler, Rachel; Tunbridge, Helen M; Zhang, Jianwei; Verkade, Paul; Wülfing, Christoph; Murphy, Robert F

    2016-01-01

    Fluorescence microscopy is one of the most important tools in cell biology research because it provides spatial and temporal information to investigate regulatory systems inside cells. This technique can generate data in the form of signal intensities at thousands of positions resolved inside individual live cells. However, given extensive cell-to-cell variation, these data cannot be readily assembled into three- or four-dimensional maps of protein concentration that can be compared across different cells and conditions. We have developed a method to enable comparison of imaging data from many cells and applied it to investigate actin dynamics in T cell activation. Antigen recognition in T cells by the T cell receptor (TCR) is amplified by engagement of the costimulatory receptor CD28. We imaged actin and eight core actin regulators to generate over a thousand movies of T cells under conditions in which CD28 was either engaged or blocked in the context of a strong TCR signal. Our computational analysis showed that the primary effect of costimulation blockade was to decrease recruitment of the activator of actin nucleation WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) and the actin-severing protein cofilin to F-actin. Reconstitution of WAVE2 and cofilin activity restored the defect in actin signaling dynamics caused by costimulation blockade. Thus, we have developed and validated an approach to quantify protein distributions in time and space for the analysis of complex regulatory systems. PMID:27095595

  9. A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells

    PubMed Central

    Nitzan, Erez; Krispin, Shlomo; Pfaltzgraff, Elise R.; Klar, Avihu; Labosky, Patricia A.; Kalcheim, Chaya

    2013-01-01

    Understanding when and how multipotent progenitors segregate into diverse fates is a key question during embryonic development. The neural crest (NC) is an exemplary model system with which to investigate the dynamics of progenitor cell specification, as it generates a multitude of derivatives. Based on ‘in ovo’ lineage analysis, we previously suggested an early fate restriction of premigratory trunk NC to generate neural versus melanogenic fates, yet the timing of fate segregation and the underlying mechanisms remained unknown. Analysis of progenitors expressing a Foxd3 reporter reveals that prospective melanoblasts downregulate Foxd3 and have already segregated from neural lineages before emigration. When this downregulation is prevented, late-emigrating avian precursors fail to upregulate the melanogenic markers Mitf and MC/1 and the guidance receptor Ednrb2, generating instead glial cells that express P0 and Fabp. In this context, Foxd3 lies downstream of Snail2 and Sox9, constituting a minimal network upstream of Mitf and Ednrb2 to link melanogenic specification with migration. Consistent with the gain-of-function data in avians, loss of Foxd3 function in mouse NC results in ectopic melanogenesis in the dorsal tube and sensory ganglia. Altogether, Foxd3 is part of a dynamically expressed gene network that is necessary and sufficient to regulate fate decisions in premigratory NC. Their timely downregulation in the dorsal neural tube is thus necessary for the switch between neural and melanocytic phases of NC development. PMID:23615280

  10. Comparative transcriptomics reveals RhoE as a novel regulator of actin dynamics in bone-resorbing osteoclasts

    PubMed Central

    Georgess, Dan; Mazzorana, Marlène; Terrado, José; Delprat, Christine; Chamot, Christophe; Guasch, Rosa M.; Pérez-Roger, Ignacio; Jurdic, Pierre; Machuca-Gayet, Irma

    2014-01-01

    The function of osteoclasts (OCs), multinucleated giant cells (MGCs) of the monocytic lineage, is bone resorption. To resorb bone, OCs form podosomes. These are actin-rich adhesive structures that pattern into rings that drive OC migration and into “sealing-zones” (SZs) that confine the resorption lacuna. Although changes in actin dynamics during podosome patterning have been documented, the mechanisms that regulate these changes are largely unknown. From human monocytic precursors, we differentiated MGCs that express OC degradation enzymes but are unable to resorb the mineral matrix. We demonstrated that, despite exhibiting bona fide podosomes, these cells presented dysfunctional SZs. We then performed two-step differential transcriptomic profiling of bone-resorbing OCs versus nonresorbing MGCs to generate a list of genes implicated in bone resorption. From this list of candidate genes, we investigated the role of Rho/Rnd3. Using primary RhoE-deficient OCs, we demonstrated that RhoE is indispensable for OC migration and bone resorption by maintaining fast actin turnover in podosomes. We further showed that RhoE activates podosome component cofilin by inhibiting its Rock-mediated phosphorylation. We conclude that the RhoE-Rock-cofilin pathway, by promoting podosome dynamics and patterning, is central for OC migration, SZ formation, and, ultimately, bone resorption. PMID:24284899

  11. TTBK2 with EB1/3 regulates microtubule dynamics in migrating cells through KIF2A phosphorylation

    PubMed Central

    Watanabe, Takashi; Kakeno, Mai; Matsui, Toshinori; Sugiyama, Ikuko; Arimura, Nariko; Matsuzawa, Kenji; Shirahige, Aya; Ishidate, Fumiyoshi; Nishioka, Tomoki; Taya, Shinichiro; Hoshino, Mikio

    2015-01-01

    Microtubules (MTs) play critical roles in various cellular events, including cell migration. End-binding proteins (EBs) accumulate at the ends of growing MTs and regulate MT end dynamics by recruiting other plus end–tracking proteins (+TIPs). However, how EBs contribute to MT dynamics through +TIPs remains elusive. We focused on tau-tubulin kinase 2 (TTBK2) as an EB1/3-binding kinase and confirmed that TTBK2 acted as a +TIP. We identified MT-depolymerizing kinesin KIF2A as a novel substrate of TTBK2. TTBK2 phosphorylated KIF2A at S135 in intact cells in an EB1/3-dependent fashion and inactivated its MT-depolymerizing activity in vitro. TTBK2 depletion reduced MT lifetime (facilitated shrinkage and suppressed rescue) and impaired HeLa cell migration, and these phenotypes were partially restored by KIF2A co-depletion. Expression of nonphosphorylatable KIF2A, but not wild-type KIF2A, reduced MT lifetime and slowed down the cell migration. These findings indicate that TTBK2 with EB1/3 phosphorylates KIF2A and antagonizes KIF2A-induced depolymerization at MT plus ends for cell migration. PMID:26323690

  12. TTBK2 with EB1/3 regulates microtubule dynamics in migrating cells through KIF2A phosphorylation.

    PubMed

    Watanabe, Takashi; Kakeno, Mai; Matsui, Toshinori; Sugiyama, Ikuko; Arimura, Nariko; Matsuzawa, Kenji; Shirahige, Aya; Ishidate, Fumiyoshi; Nishioka, Tomoki; Taya, Shinichiro; Hoshino, Mikio; Kaibuchi, Kozo

    2015-08-31

    Microtubules (MTs) play critical roles in various cellular events, including cell migration. End-binding proteins (EBs) accumulate at the ends of growing MTs and regulate MT end dynamics by recruiting other plus end-tracking proteins (+TIPs). However, how EBs contribute to MT dynamics through +TIPs remains elusive. We focused on tau-tubulin kinase 2 (TTBK2) as an EB1/3-binding kinase and confirmed that TTBK2 acted as a +TIP. We identified MT-depolymerizing kinesin KIF2A as a novel substrate of TTBK2. TTBK2 phosphorylated KIF2A at S135 in intact cells in an EB1/3-dependent fashion and inactivated its MT-depolymerizing activity in vitro. TTBK2 depletion reduced MT lifetime (facilitated shrinkage and suppressed rescue) and impaired HeLa cell migration, and these phenotypes were partially restored by KIF2A co-depletion. Expression of nonphosphorylatable KIF2A, but not wild-type KIF2A, reduced MT lifetime and slowed down the cell migration. These findings indicate that TTBK2 with EB1/3 phosphorylates KIF2A and antagonizes KIF2A-induced depolymerization at MT plus ends for cell migration. PMID:26323690

  13. Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules

    PubMed Central

    Röhl, Alina; Wengler, Daniela; Madl, Tobias; Lagleder, Stephan; Tippel, Franziska; Herrmann, Monika; Hendrix, Jelle; Richter, Klaus; Hack, Gordon; Schmid, Andreas B.; Kessler, Horst; Lamb, Don C.; Buchner, Johannes

    2015-01-01

    The cochaperone Sti1/Hop physically links Hsp70 and Hsp90. The protein exhibits one binding site for Hsp90 (TPR2A) and two binding sites for Hsp70 (TPR1 and TPR2B). How these sites are used remained enigmatic. Here we show that Sti1 is a dynamic, elongated protein that consists of a flexible N-terminal module, a long linker and a rigid C-terminal module. Binding of Hsp90 and Hsp70 regulates the Sti1 conformation with Hsp90 binding determining with which site Hsp70 interacts. Without Hsp90, Sti1 is more compact and TPR2B is the high-affinity interaction site for Hsp70. In the presence of Hsp90, Hsp70 shifts its preference. The linker connecting the two modules is crucial for the interaction with Hsp70 and for client activation in vivo. Our results suggest that the interaction of Hsp70 with Sti1 is tightly regulated by Hsp90 to assure transfer of Hsp70 between the modules, as a prerequisite for the efficient client handover. PMID:25851214

  14. Dynamics of hyporheic flow and heat transport across a bed-to-bank continuum in a large regulated river

    NASA Astrophysics Data System (ADS)

    Gerecht, Katelyn E.; Cardenas, M. Bayani; Guswa, Andrew J.; Sawyer, Audrey H.; Nowinski, John D.; Swanson, Travis E.

    2011-03-01

    The lower Colorado River (LCR) near Austin, Texas is heavily regulated for hydropower generation. Daily water releases from a dam located 23 km upstream of our study site in the LCR caused the stage to fluctuate by more than 1.5 m about a mean depth of 1.3 m. As a result, the river switches from gaining to losing over a dam storage-release cycle, driving exchange between river water and groundwater. We assessed the hydrologic impacts of this by simultaneous temperature and head monitoring across a bed-to-bank transect. River-groundwater exchange flux is largest close to the bank and decreases away from the bank. Correspondingly, both the depth of the hyporheic zone and the exchange time are largest close to the bank. Adjacent to the bank, the streambed head response is hysteretic, with the hysteresis disappearing with distance from the bank, indicating that transient bank storage affects the magnitude and direction of vertical exchange close to the bank. Pronounced changes in streambed temperature are observed down to a meter. When the river stage is high, which coincides with when the river is coldest, downward advection of heat from a previous cycles' warm-water pulse warms the streambed. When the river is at its lowest stage but warmest temperature, upwelling groundwater cools the streambed. Future research should consider and focus on a more thorough understanding of the impacts of dam regulation on the hydrologic, thermal, biogeochemical, and ecologic dynamics of rivers and their hyporheic and riparian zones.

  15. Oscillatory control of Delta-like1 in cell interactions regulates dynamic gene expression and tissue morphogenesis

    PubMed Central

    Shimojo, Hiromi; Isomura, Akihiro; Ohtsuka, Toshiyuki; Kori, Hiroshi; Miyachi, Hitoshi; Kageyama, Ryoichiro

    2016-01-01

    Notch signaling regulates tissue morphogenesis through cell–cell interactions. The Notch effectors Hes1 and Hes7 are expressed in an oscillatory manner and regulate developmental processes such as neurogenesis and somitogenesis, respectively. Expression of the mRNA for the mouse Notch ligand Delta-like1 (Dll1) is also oscillatory. However, the dynamics of Dll1 protein expression are controversial, and their functional significance is unknown. Here, we developed a live-imaging system and found that Dll1 protein expression oscillated in neural progenitors and presomitic mesoderm cells. Notably, when Dll1 expression was accelerated or delayed by shortening or elongating the Dll1 gene, Dll1 oscillations became severely dampened or quenched at intermediate levels, as modeled mathematically. Under this condition, Hes1 and Hes7 oscillations were also dampened. In the presomitic mesoderm, steady Dll1 expression led to severe fusion of somites and their derivatives, such as vertebrae and ribs. In the developing brain, steady Dll1 expression inhibited proliferation of neural progenitors and accelerated neurogenesis, whereas optogenetic induction of Dll1 oscillation efficiently maintained neural progenitors. These results indicate that the appropriate timing of Dll1 expression is critical for the oscillatory networks and suggest the functional significance of oscillatory cell–cell interactions in tissue morphogenesis. PMID:26728556

  16. A dynamic Shh expression pattern, regulated by SHH and BMP signaling, coordinates fusion of primordia in the amniote face

    PubMed Central

    Hu, Diane; Young, Nathan M.; Li, Xin; Xu, Yanhua; Hallgrímsson, Benedikt; Marcucio, Ralph S.

    2015-01-01

    The mechanisms of morphogenesis are not well understood, yet shaping structures during development is essential for establishing correct organismal form and function. Here, we examine mechanisms that help to shape the developing face during the crucial period of facial primordia fusion. This period of development is a time when the faces of amniote embryos exhibit the greatest degree of similarity, and it probably results from the necessity for fusion to occur to establish the primary palate. Our results show that hierarchical induction mechanisms, consisting of iterative signaling by Sonic hedgehog (SHH) followed by Bone morphogenetic proteins (BMPs), regulate a dynamic expression pattern of Shh in the ectoderm covering the frontonasal (FNP) and maxillary (MxP) processes. Furthermore, this Shh expression domain contributes to the morphogenetic processes that drive the directional growth of the globular process of the FNP toward the lateral nasal process and MxP, in part by regulating cell proliferation in the facial mesenchyme. The nature of the induction mechanism that we discovered suggests that the process of fusion of the facial primordia is intrinsically buffered against producing maladaptive morphologies, such as clefts of the primary palate, because there appears to be little opportunity for variation to occur during expansion of the Shh expression domain in the ectoderm of the facial primordia. Ultimately, these results might explain why this period of development constitutes a phylotypic stage of facial development among amniotes. PMID:25605783

  17. Phosphorylation of Ser-180 of rat aquaporin-4 shows marginal affect on regulation of water permeability: molecular dynamics study.

    PubMed

    Sachdeva, Ruchi; Singh, Balvinder

    2014-04-01

    Water permeation through rat aquaporin-4 (rAQP4), predominantly found in mammalian brain is regulated by phosphorylation of Ser-180. The present study has been carried out to understand the structural mechanism of regulation of water permeability across the channel. Molecular dynamics (MD) simulations have been carried out to investigate the structural changes caused due to phosphorylation of Ser-180 in the tetrameric assembly of rAQP4 along with predicted C-terminal region (255-323). The interactions involving opposite charges are observed between cytoplasmic loops and the C-terminal region during MD simulations. This results in movement of C-terminal region of rAQP4 towards the cytoplasmic mouth of water channel. Despite this movement, there was a gap between C-terminal region and cytoplasmic mouth of the channel through which water molecules were able to gain entry into the channel. The interactions between C-terminus and loop D of neighboring monomers in a tetrameric assembly appear to prevent the complete closure of cytoplasmic mouth of the water channel. Further, the rates of water permeation through phosphorylated and unphosphorylated rAQP4 have also been compared. The simulation studies showed a continuous movement of water in a single file across pore of unphosphorylated as well as phosphorylated rAQP4. PMID:23651078

  18. TPC2 mediates new mechanisms of platelet dense granule membrane dynamics through regulation of Ca2+ release

    PubMed Central

    Ambrosio, Andrea L.; Boyle, Judith A.; Di Pietro, Santiago M.

    2015-01-01

    Platelet dense granules (PDGs) are acidic calcium stores essential for normal hemostasis. They develop from late endosomal compartments upon receiving PDG-specific proteins through vesicular trafficking, but their maturation process is not well understood. Here we show that two-pore channel 2 (TPC2) is a component of the PDG membrane that regulates PDG luminal pH and the pool of releasable Ca2+. Using a genetically encoded Ca2+ biosensor and a pore mutant TPC2, we establish the function of TPC2 in Ca2+ release from PDGs and the formation of perigranular Ca2+ nanodomains. For the first time, Ca2+ spikes around PDGs—or any organelle of the endolysosome family—are visualized in real time and revealed to precisely mark organelle “kiss-and-run” events. Further, the presence of membranous tubules transiently connecting PDGs is revealed and shown to be dramatically enhanced by TPC2 in a mechanism that requires ion flux through TPC2. “Kiss-and-run” events and tubule connections mediate transfer of membrane proteins and luminal content between PDGs. The results show that PDGs use previously unknown mechanisms of membrane dynamics and content exchange that are regulated by TPC2. PMID:26202466

  19. Structure and dynamics of polymyxin-resistance-associated response regulator PmrA in complex with promoter DNA

    PubMed Central

    Lou, Yuan-Chao; Weng, Tsai-Hsuan; Li, Yi-Chuan; Kao, Yi-Fen; Lin, Wei-Feng; Peng, Hwei-Ling; Chou, Shan-Ho; Hsiao, Chwan-Deng; Chen, Chinpan

    2015-01-01

    PmrA, an OmpR/PhoB family response regulator, manages genes for antibiotic resistance. Phosphorylation of OmpR/PhoB response regulator induces the formation of a symmetric dimer in the N-terminal receiver domain (REC), promoting two C-terminal DNA-binding domains (DBDs) to recognize promoter DNA to elicit adaptive responses. Recently, determination of the KdpE–DNA complex structure revealed an REC–DBD interface in the upstream protomer that may be necessary for transcription activation. Here, we report the 3.2-Å-resolution crystal structure of the PmrA–DNA complex, which reveals a similar yet different REC–DBD interface. However, NMR studies show that in the DNA-bound state, two domains tumble separately and an REC–DBD interaction is transiently populated in solution. Reporter gene analyses of PmrA variants with altered interface residues suggest that the interface is not crucial for supporting gene expression. We propose that REC–DBD interdomain dynamics and the DBD–DBD interface help PmrA interact with RNA polymerase holoenzyme to activate downstream gene transcription. PMID:26564787

  20. Dynamic Regulation of Activated Leukocyte Cell Adhesion Molecule–mediated Homotypic Cell Adhesion through the Actin CytoskeletonV⃞

    PubMed Central

    Nelissen, Judith M. D. T.; Peters, Inge M.; de Grooth, Bart G.; van Kooyk, Yvette; Figdor, Carl G.

    2000-01-01

    Restricted expression of activated leukocyte cell adhesion molecule (ALCAM) by hematopoietic cells suggests an important role in the immune system and hematopoiesis. To get insight into the mechanisms that control ALCAM-mediated adhesion we have investigated homotypic ALCAM–ALCAM interactions. Here, we demonstrate that the cytoskeleton regulates ALCAM-mediated cell adhesion because inhibition of actin polymerization by cytochalasin D (CytD) strongly induces homotypic ALCAM–ALCAM interactions. This induction of cell adhesion is likely due to clustering of ALCAM at the cell surface, which is observed after CytD treatment. Single-particle tracking demonstrated that the lateral mobility of ALCAM in the cell membrane is increased 30-fold after CytD treatment. In contrast, both surface distribution and adhesion of a glycosylphosphatidylinositol (GPI)-anchored ALCAM mutant are insensitive to CytD, despite the increase in lateral mobility of GPI-ALCAM upon CytD treatment. This demonstrates that clustering of ALCAM is essential for cell adhesion, whereas enhanced diffusion of ALCAM alone is not sufficient for cluster formation. In addition, upon ligand binding, both free diffusion and the freely dragged distance of wild-type ALCAM, but not of GPI-ALCAM, are reduced over time, suggesting strengthening of the cytoskeleton linkage. From these findings we conclude that activation of ALCAM-mediated adhesion is dynamically regulated through actin cytoskeleton-dependent clustering. PMID:10848629

  1. Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules.

    PubMed

    Röhl, Alina; Wengler, Daniela; Madl, Tobias; Lagleder, Stephan; Tippel, Franziska; Herrmann, Monika; Hendrix, Jelle; Richter, Klaus; Hack, Gordon; Schmid, Andreas B; Kessler, Horst; Lamb, Don C; Buchner, Johannes

    2015-01-01

    The cochaperone Sti1/Hop physically links Hsp70 and Hsp90. The protein exhibits one binding site for Hsp90 (TPR2A) and two binding sites for Hsp70 (TPR1 and TPR2B). How these sites are used remained enigmatic. Here we show that Sti1 is a dynamic, elongated protein that consists of a flexible N-terminal module, a long linker and a rigid C-terminal module. Binding of Hsp90 and Hsp70 regulates the Sti1 conformation with Hsp90 binding determining with which site Hsp70 interacts. Without Hsp90, Sti1 is more compact and TPR2B is the high-affinity interaction site for Hsp70. In the presence of Hsp90, Hsp70 shifts its preference. The linker connecting the two modules is crucial for the interaction with Hsp70 and for client activation in vivo. Our results suggest that the interaction of Hsp70 with Sti1 is tightly regulated by Hsp90 to assure transfer of Hsp70 between the modules, as a prerequisite for the efficient client handover. PMID:25851214

  2. EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization

    PubMed Central

    Morén, Björn; Shah, Claudio; Howes, Mark T.; Schieber, Nicole L.; McMahon, Harvey T.; Parton, Robert G.; Daumke, Oliver; Lundmark, Richard

    2012-01-01

    Eps15 homology domain–containing 2 (EHD2) belongs to the EHD-containing protein family of dynamin-related ATPases involved in membrane remodeling in the endosomal system. EHD2 dimers oligomerize into rings on highly curved membranes, resulting in stimulation of the intrinsic ATPase activity. In this paper, we report that EHD2 is specifically and stably associated with caveolae at the plasma membrane and not involved in clathrin-mediated endocytosis or endosomal recycling, as previously suggested. EHD2 interacts with pacsin2 and cavin1, and ordered membrane assembly of EHD2 is dependent on cavin1 and caveolar integrity. While the EHD of EHD2 is dispensable for targeting, we identified a loop in the nucleotide-binding domain that, together with ATP binding, is required for caveolar localization. EHD2 was not essential for the formation or shaping of caveolae, but high levels of EHD2 caused distortion and loss of endogenous caveolae. Assembly of EHD2 stabilized and constrained caveolae to the plasma membrane to control turnover, and depletion of EHD2, resulting in endocytic and more dynamic and short-lived caveolae. Thus, following the identification of caveolin and cavins, EHD2 constitutes a third structural component of caveolae involved in controlling the stability and turnover of this organelle. PMID:22323287

  3. Dynamic Surfaces for the Study of Mesenchymal Stem Cell Growth through Adhesion Regulation.

    PubMed

    Roberts, Jemma N; Sahoo, Jugal Kishore; McNamara, Laura E; Burgess, Karl V; Yang, Jingli; Alakpa, Enateri V; Anderson, Hilary J; Hay, Jake; Turner, Lesley-Anne; Yarwood, Stephen J; Zelzer, Mischa; Oreffo, Richard O C; Ulijn, Rein V; Dalby, Matthew J

    2016-07-26

    Out of their niche environment, adult stem cells, such as mesenchymal stem cells (MSCs), spontaneously differentiate. This makes both studying these important regenerative cells and growing large numbers of stem cells for clinical use challenging. Traditional cell culture techniques have fallen short of meeting this challenge, but materials science offers hope. In this study, we have used emerging rules of managing adhesion/cytoskeletal balance to prolong MSC cultures by fabricating controllable nanoscale cell interfaces using immobilized peptides that may be enzymatically activated to change their function. The surfaces can be altered (activated) at will to tip adhesion/cytoskeletal balance and initiate differentiation, hence better informing biological mechanisms of stem cell growth. Tools that are able to investigate the stem cell phenotype are important. While large phenotypical differences, such as the difference between an adipocyte and an osteoblast, are now better understood, the far more subtle differences between fibroblasts and MSCs are much harder to dissect. The development of technologies able to dynamically navigate small differences in adhesion are critical in the race to provide regenerative strategies using stem cells. PMID:27322014

  4. Mechanochemical regulation of oscillatory follicle cell dynamics in the developing Drosophila egg chamber

    PubMed Central

    Koride, Sarita; He, Li; Xiong, Li-Ping; Lan, Ganhui; Montell, Denise J.; Sun, Sean X.

    2014-01-01

    During tissue elongation from stage 9 to stage 10 in Drosophila oogenesis, the egg chamber increases in length by ∼1.7-fold while increasing in volume by eightfold. During these stages, spontaneous oscillations in the contraction of cell basal surfaces develop in a subset of follicle cells. This patterned activity is required for elongation of the egg chamber; however, the mechanisms generating the spatiotemporal pattern have been unclear. Here we use a combination of quantitative modeling and experimental perturbation to show that mechanochemical interactions are sufficient to generate oscillations of myosin contractile activity in the observed spatiotemporal pattern. We propose that follicle cells in the epithelial layer contract against pressure in the expanding egg chamber. As tension in the epithelial layer increases, Rho kinase signaling activates myosin assembly and contraction. The activation process is cooperative, leading to a limit cycle in the myosin dynamics. Our model produces asynchronous oscillations in follicle cell area and myosin content, consistent with experimental observations. In addition, we test the prediction that removal of the basal lamina will increase the average oscillation period. The model demonstrates that in principle, mechanochemical interactions are sufficient to drive patterning and morphogenesis, independent of patterned gene expression. PMID:24943847

  5. Dynamic myosin phosphorylation regulates contractile pulses and tissue integrity during epithelial morphogenesis

    PubMed Central

    Vasquez, Claudia G.; Tworoger, Mike

    2014-01-01

    Apical constriction is a cell shape change that promotes epithelial bending. Activation of nonmuscle myosin II (Myo-II) by kinases such as Rho-associated kinase (Rok) is important to generate contractile force during apical constriction. Cycles of Myo-II assembly and disassembly, or pulses, are associated with apical constriction during Drosophila melanogaster gastrulation. It is not understood whether Myo-II phosphoregulation organizes contractile pulses or whether pulses are important for tissue morphogenesis. Here, we show that Myo-II pulses are associated with pulses of apical Rok. Mutants that mimic Myo-II light chain phosphorylation or depletion of myosin phosphatase inhibit Myo-II contractile pulses, disrupting both actomyosin coalescence into apical foci and cycles of Myo-II assembly/disassembly. Thus, coupling dynamic Myo-II phosphorylation to upstream signals organizes contractile Myo-II pulses in both space and time. Mutants that mimic Myo-II phosphorylation undergo continuous, rather than incremental, apical constriction. These mutants fail to maintain intercellular actomyosin network connections during tissue invagination, suggesting that Myo-II pulses are required for tissue integrity during morphogenesis. PMID:25092658

  6. Regulation of intracellular membrane trafficking and cell dynamics by syntaxin-6

    PubMed Central

    Jung, Jae-Joon; Inamdar, Shivangi M.; Tiwari, Ajit; Choudhury, Amit

    2012-01-01

    Intracellular membrane trafficking along endocytic and secretory transport pathways plays a critical role in diverse cellular functions including both developmental and pathological processes. Briefly, proteins and lipids destined for transport to distinct locations are collectively assembled into vesicles and delivered to their target site by vesicular fusion. SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) proteins are required for these events, during which v-SNAREs (vesicle SNAREs) interact with t-SNAREs (target SNAREs) to allow transfer of cargo from donor vesicle to target membrane. Recently, the t-SNARE family member, syntaxin-6, has been shown to play an important role in the transport of proteins that are key to diverse cellular dynamic processes. In this paper, we briefly discuss the specific role of SNAREs in various mammalian cell types and comprehensively review the various roles of the Golgi- and endosome-localized t-SNARE, syntaxin-6, in membrane trafficking during physiological as well as pathological conditions. PMID:22489884

  7. Dynamic myosin phosphorylation regulates contractile pulses and tissue integrity during epithelial morphogenesis.

    PubMed

    Vasquez, Claudia G; Tworoger, Mike; Martin, Adam C

    2014-08-01

    Apical constriction is a cell shape change that promotes epithelial bending. Activation of nonmuscle myosin II (Myo-II) by kinases such as Rho-associated kinase (Rok) is important to generate contractile force during apical constriction. Cycles of Myo-II assembly and disassembly, or pulses, are associated with apical constriction during Drosophila melanogaster gastrulation. It is not understood whether Myo-II phosphoregulation organizes contractile pulses or whether pulses are important for tissue morphogenesis. Here, we show that Myo-II pulses are associated with pulses of apical Rok. Mutants that mimic Myo-II light chain phosphorylation or depletion of myosin phosphatase inhibit Myo-II contractile pulses, disrupting both actomyosin coalescence into apical foci and cycles of Myo-II assembly/disassembly. Thus, coupling dynamic Myo-II phosphorylation to upstream signals organizes contractile Myo-II pulses in both space and time. Mutants that mimic Myo-II phosphorylation undergo continuous, rather than incremental, apical constriction. These mutants fail to maintain intercellular actomyosin network connections during tissue invagination, suggesting that Myo-II pulses are required for tissue integrity during morphogenesis. PMID:25092658

  8. Regulation of microtubule dynamics by DIAPH3 influences amoeboid tumor cell mechanics and sensitivity to taxanes

    PubMed Central

    Morley, Samantha; You, Sungyong; Pollan, Sara; Choi, Jiyoung; Zhou, Bo; Hager, Martin H.; Steadman, Kenneth; Spinelli, Cristiana; Rajendran, Kavitha; Gertych, Arkadiusz; Kim, Jayoung; Adam, Rosalyn M.; Yang, Wei; Krishnan, Ramaswamy; Knudsen, Beatrice S.; Di Vizio, Dolores; Freeman, Michael R.

    2015-01-01

    Taxanes are widely employed chemotherapies for patients with metastatic prostate and breast cancer. Here, we show that loss of Diaphanous-related formin-3 (DIAPH3), frequently associated with metastatic breast and prostate cancers, correlates with increased sensitivity to taxanes. DIAPH3 interacted with microtubules (MT), and its loss altered several parameters of MT dynamics as well as decreased polarized force generation, contractility, and response to substrate stiffness. Silencing of DIAPH3 increased the cytotoxic response to taxanes in prostate and breast cancer cell lines. Analysis of drug activity for tubulin-targeted agents in the NCI-60 cell line panel revealed a uniform positive correlation between reduced DIAPH3 expression and drug sensitivity. Low DIAPH3 expression correlated with improved relapse-free survival in breast cancer patients treated with chemotherapeutic regimens containing taxanes. Our results suggest that inhibition of MT stability arising from DIAPH3 downregulation enhances susceptibility to MT poisons, and that the DIAPH3 network potentially reports taxane sensitivity in human tumors. PMID:26179371

  9. Molecular physiology of the dynamic regulation of carbon catabolite repression in Escherichia coli.

    PubMed

    Borirak, Orawan; Bekker, Martijn; Hellingwerf, Klaas J

    2014-06-01

    We report on the use of the chemostat as an optimal device to create time-invariant conditions that allow accurate sampling for various omics assays in Escherichia coli, in combination with recording of the dynamics of the physiological transition in the organism under study that accompany the initiation of glucose repression. E. coli cells respond to the addition of glucose not only with the well-known transcriptional response, as was revealed through quantitative PCR analysis of the transcript levels of key genes from the CRP (cAMP receptor protein) regulon, but also with an increased growth rate and a transient decrease in the efficiency of its aerobic catabolism. Less than half of a doubling time is required for the organism to recover to maximal values of growth rate and efficiency. Furthermore, calculations based on our results show that the specific glucose uptake rate (qs) and the H(+)/e(-) ratio increase proportionally, up to a growth rate of 0.4 h(-1), whilst biomass yield on glucose (Yx / s) drops during the first 15 min, followed by a gradual recovery. Surprisingly, the growth yields after the recovery phase show values even higher than the maximum theoretical yield. Possible explanations for these high yields are discussed. PMID:24603062

  10. Ror2 regulates branching, differentiation, and actin-cytoskeletal dynamics within the mammary epithelium

    PubMed Central

    Roarty, Kevin; Shore, Amy N.; Creighton, Chad J.

    2015-01-01

    Wnt signaling encompasses β-catenin–dependent and –independent networks. How receptor context provides Wnt specificity in vivo to assimilate multiple concurrent Wnt inputs throughout development remains unclear. Here, we identified a refined expression pattern of Wnt/receptor combinations associated with the Wnt/β-catenin–independent pathway in mammary epithelial subpopulations. Moreover, we elucidated the function of the alternative Wnt receptor Ror2 in mammary development and provided evidence for coordination of this pathway with Wnt/β-catenin–dependent signaling in the mammary epithelium. Lentiviral short hairpin RNA (shRNA)-mediated depletion of Ror2 in vivo increased branching and altered the differentiation of the mammary epithelium. Microarray analyses identified distinct gene level alterations within the epithelial compartments in the absence of Ror2, with marked changes observed in genes associated with the actin cytoskeleton. Modeling of branching morphogenesis in vitro defined specific defects in cytoskeletal dynamics accompanied by Rho pathway alterations downstream of Ror2 loss. The current study presents a model of Wnt signaling coordination in vivo and assigns an important role for Ror2 in mammary development. PMID:25624393

  11. Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics

    PubMed Central

    Baker, Michael J; Lampe, Philipp A; Stojanovski, Diana; Korwitz, Anne; Anand, Ruchika; Tatsuta, Takashi; Langer, Thomas

    2014-01-01

    The dynamic network of mitochondria fragments under stress allowing the segregation of damaged mitochondria and, in case of persistent damage, their selective removal by mitophagy. Mitochondrial fragmentation upon depolarisation of mitochondria is brought about by the degradation of central components of the mitochondrial fusion machinery. The OMA1 peptidase mediates the degradation of long isoforms of the dynamin-like GTPase OPA1 in the inner membrane. Here, we demonstrate that OMA1-mediated degradation of OPA1 is a general cellular stress response. OMA1 is constitutively active but displays strongly enhanced activity in response to various stress insults. We identify an amino terminal stress-sensor domain of OMA1, which is only present in homologues of higher eukaryotes and which modulates OMA1 proteolysis and activation. OMA1 activation is associated with its autocatalyic degradation, which initiates from both termini of OMA1 and results in complete OMA1 turnover. Autocatalytic proteolysis of OMA1 ensures the reversibility of the response and allows OPA1-mediated mitochondrial fusion to resume upon alleviation of stress. This differentiated stress response maintains the functional integrity of mitochondria and contributes to cell survival. PMID:24550258

  12. The dynamic shape factor of sodium chloride nanoparticles as regulated by drying rate

    SciTech Connect

    Wang, Z.; Lewis, E.; King, S. M.; Freney, E.; Rosenoern, T.; Smith, M.; Chen, Q.; Kuwata, M.; Poschl, U.; Wang, W.; Buseck, P. R.; Martin, S. T.

    2010-09-01

    The influence of drying rate on the dynamic shape factor {chi} of NaCl particles was investigated. The drying rate at the efflorescence relative humidity (ERH) of 45% was controlled in a laminar flow tube and varied from 5.5 {+-} 0.9 to 101 {+-} 3 RH s{sup -1} at ERH, where RH represents one percent unit of relative humidity. Dry particles having mobility diameters of 23-84 nm were studied, corresponding to aqueous particles of 37-129 nm at the RH (57%) prior to drying. At each mobility diameter and drying rate, the critical supersaturation of cloud-condensation activation was also measured. The mobility diameter and the critical supersaturation were combined in an analysis to determine the value of {chi}. The measured values varied from 1.02 to 1.26. For fixed particle diameter the {chi} value decreased with increasing drying rate. For fixed drying rate, a maximum occurred in {chi} between 35- and 40-nm dry mobility diameter, with a lower {chi} for both smaller and larger particles. The results of this study, in conjunction with the introduced apparatus for obtaining quantified drying rates, can allow the continued development of a more detailed understanding of the morphology of submicron salt particles, with the potential for the follow-on development of quantitative modeling of evaporation and crystal growth at these dimensions.

  13. Dynamic Surfaces for the Study of Mesenchymal Stem Cell Growth through Adhesion Regulation

    PubMed Central

    2016-01-01

    Out of their niche environment, adult stem cells, such as mesenchymal stem cells (MSCs), spontaneously differentiate. This makes both studying these important regenerative cells and growing large numbers of stem cells for clinical use challenging. Traditional cell culture techniques have fallen short of meeting this challenge, but materials science offers hope. In this study, we have used emerging rules of managing adhesion/cytoskeletal balance to prolong MSC cultures by fabricating controllable nanoscale cell interfaces using immobilized peptides that may be enzymatically activated to change their function. The surfaces can be altered (activated) at will to tip adhesion/cytoskeletal balance and initiate differentiation, hence better informing biological mechanisms of stem cell growth. Tools that are able to investigate the stem cell phenotype are important. While large phenotypical differences, such as the difference between an adipocyte and an osteoblast, are now better understood, the far more subtle differences between fibroblasts and MSCs are much harder to dissect. The development of technologies able to dynamically navigate small differences in adhesion are critical in the race to provide regenerative strategies using stem cells. PMID:27322014

  14. Structure-dynamic basis of splicing-dependent regulation in tissue-specific variants of the sodium-calcium exchanger.

    PubMed

    Lee, Su Youn; Giladi, Moshe; Bohbot, Hilla; Hiller, Reuben; Chung, Ka Young; Khananshvili, Daniel

    2016-03-01

    Tissue-specific splice variants of Na(+)/Ca(2+) exchangers contain 2 Ca(2+)-binding regulatory domains (CBDs), CBD1 and CBD2. Ca(2+) interaction with CBD1 activates sodium-calcium exchangers (NCXs), and Ca(2+) binding to CBD2 alleviates Na(+)-dependent inactivation. A combination of mutually exclusive (A, B) and cassette (C-F) exons in CBD2 raises functionally diverse splice variants through unknown mechanisms. Here, the effect of exons on CBDs backbone dynamics were investigated in the 2-domain tandem (CBD12) of the brain, kidney, and cardiac splice variants by using hydrogen-deuterium exchange mass spectrometry and stopped-flow techniques. Mutually exclusive exons stabilize interdomain interactions in the apoprotein, which primarily predefines the extent of responses to Ca(2+) binding. Deuterium uptake levels were up to 20% lower in the cardiac vs. the brain CBD12, reveling that elongation of the CBD2 FG loop by cassette exons rigidifies the interdomain Ca(2+) salt bridge at the 2-domain interface, which secondarily modulates the Ca(2+)-bound states. In matching splice variants, the extent of Ca(2+)-induced rigidification correlates with decreased (up to 10-fold) Ca(2+) off rates, where the cardiac CBD12 exhibits the slowest Ca(2+) off rates. Collectively, structurally disordered/dynamic segments at mutually exclusive and cassette exons have local and distant effects on the folded structures nearby the Ca(2+) binding sites, which may serve as a structure-dynamic basis for splicing-dependent regulation of NCX. PMID:26644350

  15. Flow regulation manipulates contemporary seasonal sedimentary dynamics in the reservoir fluctuation zone of the Three Gorges Reservoir, China.

    PubMed

    Tang, Qiang; Bao, Yuhai; He, Xiubin; Fu, Bojie; Collins, Adrian L; Zhang, Xinbao

    2016-04-01

    Since the launch of the Three Gorges Dam on the Yangtze River, a distinctive reservoir fluctuation zone has been created and significantly modified by regular dam operations. Sediment redistribution within this artificial landscape differs substantially from that in natural fluvial riparian zones, due to a specific hydrological regime comprising steps of water impoundment with increasing magnitudes and seasonal water level fluctuation holding a range of sediment fluxes. This study reinterpreted post-dam sedimentary dynamics in the reservoir fluctuation zone by stratigraphy determination of a 345-cm long sediment core, and related it to impact of the hydrological regime. Seasonality in absolute grain-size composition of suspended sediment was applied as a methodological basis for stratigraphic differentiation. Sedimentary laminations with relatively higher proportions of sandy fractions were ascribed to sedimentation during the dry season when proximal subsurface bank erosion dominates source contributions, while stratigraphy with a lower proportion of sandy fractions is possibly contributed by sedimentation during the wet season when distal upstream surface erosion prevails. Chronology determination revealed non-linear and high annual sedimentation rates ranging from 21.7 to 152.1cm/yr. Although channel geomorphology may primarily determine the spatial extent of sedimentation, seasonal sedimentary dynamics was predominantly governed by the frequency, magnitude, and duration of flooding. Summer inundation by natural floods with enhanced sediment loads produced from upstream basins induced higher sedimentation rates than water impoundment during the dry season when distal sediment supply was limited. We thus conclude that flow regulation manipulates contemporary seasonal sedimentary dynamics in the reservoir fluctuation zone, though little impact on total sediment retention rate was detected. Ongoing reductions in flow and sediment supply under human disturbance may

  16. DNA Methylation Dynamics Regulate the Formation of a Regenerative Wound Epithelium during Axolotl Limb Regeneration.

    PubMed

    Aguilar, Cristian; Gardiner, David M

    2015-01-01

    The formation of a blastema during regeneration of an axolotl limb involves important changes in the behavior and function of cells at the site of injury. One of the earliest events is the formation of the wound epithelium and subsequently the apical epidermal cap, which involves in vivo dedifferentiation that is controlled by signaling from the nerve. We have investigated the role of epigenetic modifications to the genome as a possible mechanism for regulating changes in gene expression patterns of keratinocytes of the wound and blastema epithelium that are involved in regeneration. We report a modulation of the expression DNMT3a, a de novo DNA methyltransferase, within the first 72 hours post injury that is dependent on nerve signaling. Treatment of skin wounds on the upper forelimb with decitabine, a DNA methyltransferase inhibitor, induced changes in gene expression and cellular behavior associated with a regenerative response. Furthermore, decitabine-treated wounds were able to participate in regeneration while untreated wounds inhibited a regenerative response. Elucidation of the specific epigenetic modifications that mediate cellular dedifferentiation likely will lead to insights for initiating a regenerative response in organisms that lack this ability. PMID:26308461

  17. Plasmodium falciparum epigenome: A distinct dynamic epigenetic regulation of gene expression

    PubMed Central

    Rawat, Mukul; Bhosale, Madhvi A.; Karmodiya, Krishanpal

    2015-01-01

    Histone modification profiles are predictive of gene expression and most of the knowledge gained is acquired through studies done in higher eukaryotes. However, genome-wide studies involving Plasmodium falciparum, the causative agent of malaria, have been rather few, at lower resolution (mostly using ChIP-on-chip), and covering limited number of histone modifications. In our recent study [1], we have performed extensive genome-wide analyses of multiple histone modifications including the active (H3K4me2, H3K4me3, H3K9ac, H3K14ac, H3K27ac and H4ac), inactive (H3K9me3 and H3K27me3), elongation (H3K79me3) and regulatory element (H3K4me1) in a stage-specific manner. Furthermore, we used a ligation-based method suitable for sequencing homopolymeric stretches as seen in P. falciparum for next-generation sequencing library amplification [2], enabling highly quantitative analysis of the extremely AT-rich P. falciparum genome. Our recently published study suggests that transcription regulation by virtue of poised chromatin and differential histone modifications is unique to P. falciparum [1]. Here we describe the experiments, quality controls and chromatin immunoprecipitation-sequencing data analysis of our associated study published in Epigenetics and Chromatin [1]. Stage-specific ChIP-sequencing data for histone modifications is submitted to Gene Expression Omnibus (GEO) database under the accession number GSE63369. PMID:26981368

  18. p120 catenin regulates lamellipodial dynamics and cell adhesion in cooperation with cortactin

    PubMed Central

    Boguslavsky, Shlomit; Grosheva, Inna; Landau, Elad; Shtutman, Michael; Cohen, Miriam; Arnold, Katya; Feinstein, Elena; Geiger, Benjamin; Bershadsky, Alexander

    2007-01-01

    The armadillo-family protein, p120 catenin (p120), binds to the juxtamembrane domain of classical cadherins and increases cell–cell junction stability. Overexpression of p120 modulates the activity of Rho family GTPases and augments cell migratory ability. Here we show that down-regulation of p120 in epithelial MCF-7 cells by siRNA leads to a striking decrease in lamellipodial persistence and focal adhesion formation. Similar alterations in lamellipodial activity were observed in MCF-7 cells treated with siRNA to cortactin, an activator of Arp2/3-dependent actin polymerization. We found that, in many cell types, p120 is colocalized with cortactin-containing actin structures not only at cell–cell junctions, but also at extrajunctional sites including membrane ruffles and actin-rich halos around endocytotic vesicles. p120 depletion led to dramatic loss of cortactin and its partner, Arp3, from the cell leading edges. Cortactin and p120 are shown to directly interact with each other via the cortactin N-terminal region. We propose that the mechanism underlying p120 functions at the leading edge involves its cooperation with cortactin. PMID:17576929

  19. p120 catenin regulates lamellipodial dynamics and cell adhesion in cooperation with cortactin.

    PubMed

    Boguslavsky, Shlomit; Grosheva, Inna; Landau, Elad; Shtutman, Michael; Cohen, Miriam; Arnold, Katya; Feinstein, Elena; Geiger, Benjamin; Bershadsky, Alexander

    2007-06-26

    The armadillo-family protein, p120 catenin (p120), binds to the juxtamembrane domain of classical cadherins and increases cell-cell junction stability. Overexpression of p120 modulates the activity of Rho family GTPases and augments cell migratory ability. Here we show that down-regulation of p120 in epithelial MCF-7 cells by siRNA leads to a striking decrease in lamellipodial persistence and focal adhesion formation. Similar alterations in lamellipodial activity were observed in MCF-7 cells treated with siRNA to cortactin, an activator of Arp2/3-dependent actin polymerization. We found that, in many cell types, p120 is colocalized with cortactin-containing actin structures not only at cell-cell junctions, but also at extrajunctional sites including membrane ruffles and actin-rich halos around endocytotic vesicles. p120 depletion led to dramatic loss of cortactin and its partner, Arp3, from the cell leading edges. Cortactin and p120 are shown to directly interact with each other via the cortactin N-terminal region. We propose that the mechanism underlying p120 functions at the leading edge involves its cooperation with cortactin. PMID:17576929

  20. Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction

    PubMed Central

    Koopmans, Tim; Kumawat, Kuldeep; Halayko, Andrew J; Gosens, Reinoud

    2016-01-01

    A defining feature of asthma is airway hyperresponsiveness (AHR), which underlies the exaggerated bronchoconstriction response of asthmatics. The role of the airway smooth muscle (ASM) in AHR has garnered increasing interest over the years, but how asthmatic ASM differs from healthy ASM is still an active topic of debate. WNT-5A is increasingly expressed in asthmatic ASM and has been linked with Th2-high asthma. Due to its link with calcium and cytoskeletal remodelling, we propose that WNT-5A may modulate ASM contractility. We demonstrated that WNT-5A can increase maximum isometric tension in bovine tracheal smooth muscle strips. In addition, we show that WNT-5A is preferentially expressed in contractile human airway myocytes compared to proliferative cells, suggesting an active role in maintaining contractility. Furthermore, WNT-5A treatment drives actin polymerisation, but has no effect on intracellular calcium flux. Next, we demonstrated that WNT-5A directly regulates TGF-β1-induced expression of α-SMA via ROCK-mediated actin polymerization. These findings suggest that WNT-5A modulates fundamental mechanisms that affect ASM contraction and thus may be of relevance for AHR in asthma. PMID:27468699

  1. Presence and Expression of Microbial Genes Regulating Soil Nitrogen Dynamics Along the Tanana River Successional Sequence

    NASA Astrophysics Data System (ADS)

    Boone, R. D.; Rogers, S. L.

    2004-12-01

    We report on work to assess the functional gene sequences for soil microbiota that control nitrogen cycle pathways along the successional sequence (willow, alder, poplar, white spruce, black spruce) on the Tanana River floodplain, Interior Alaska. Microbial DNA and mRNA were extracted from soils (0-10 cm depth) for amoA (ammonium monooxygenase), nifH (nitrogenase reductase), napA (nitrate reductase), and nirS and nirK (nitrite reductase) genes. Gene presence was determined by amplification of a conserved sequence of each gene employing sequence specific oligonucleotide primers and Polymerase Chain Reaction (PCR). Expression of the genes was measured via nested reverse transcriptase PCR amplification of the extracted mRNA. Amplified PCR products were visualized on agarose electrophoresis gels. All five successional stages show evidence for the presence and expression of microbial genes that regulate N fixation (free-living), nitrification, and nitrate reduction. We detected (1) nifH, napA, and nirK presence and amoA expression (mRNA production) for all five successional stages and (2) nirS and amoA presence and nifH, nirK, and napA expression for early successional stages (willow, alder, poplar). The results highlight that the existing body of previous process-level work has not sufficiently considered the microbial potential for a nitrate economy and free-living N fixation along the complete floodplain successional sequence.

  2. Chromatin Dynamics and the RNA Exosome Function in Concert to Regulate Transcriptional Homeostasis.

    PubMed

    Rege, Mayuri; Subramanian, Vidya; Zhu, Chenchen; Hsieh, Tsung-Han S; Weiner, Assaf; Friedman, Nir; Clauder-Münster, Sandra; Steinmetz, Lars M; Rando, Oliver J; Boyer, Laurie A; Peterson, Craig L

    2015-11-24

    The histone variant H2A.Z is a hallmark of nucleosomes flanking promoters of protein-coding genes and is often found in nucleosomes that carry lysine 56-acetylated histone H3 (H3-K56Ac), a mark that promotes replication-independent nucleosome turnover. Here, we find that H3-K56Ac promotes RNA polymerase II occupancy at many protein-coding and noncoding loci, yet neither H3-K56Ac nor H2A.Z has a significant impact on steady-state mRNA levels in yeast. Instead, broad effects of H3-K56Ac or H2A.Z on RNA levels are revealed only in the absence of the nuclear RNA exosome. H2A.Z is also necessary for the expression of divergent, promoter-proximal noncoding RNAs (ncRNAs) in mouse embryonic stem cells. Finally, we show that H2A.Z functions with H3-K56Ac to facilitate formation of chromosome interaction domains (CIDs). Our study suggests that H2A.Z and H3-K56Ac work in concert with the RNA exosome to control mRNA and ncRNA expression, perhaps in part by regulating higher-order chromatin structures. PMID:26586442

  3. Dynamic Changes in microRNAs may Regulate Robustness of Wnt/Notch Signaling

    NASA Astrophysics Data System (ADS)

    Gunaratne, Preethi

    2008-03-01

    The mechanisms by which highly reproducible patterns are formed during embryonic development and organismal evolution despite stochasticity at the single cell level is one of the remaining mysteries in Biology. It has been proposed that a hidden layer of regulation formed through the interaction of microRNAs with protein coding gene networks maybe responsible. Recently developed next generation sequencing technologies afford an unprecedented opportunity to uncover novel aspects of miRNA function and evolution. We find extensive heterogeneity in sequences that correspond to mmu-let-7 (targets Wnt1) and mmu-miR-191 (targets Notch1). Approximately 20% of let-7 and miR-191 have undergone modifications to increase stability and binding to the Wnt1 and Notch1 targets and are likely to be destroyed. In contrast, 80% bind the targets with imperfect complementarity and lower stability and are likely to be sequestered and prevented from forming protein. We propose that these two species together form a highly fluid system that is able to absorb stochastic perturbations in gene expression. A gene that goes on to be translated into functional protein therefore must escape both buffers by significantly high expression.

  4. Proteomic analysis reveals dynamic regulation of fruit development and sugar and acid accumulation in apple.

    PubMed

    Li, Mingjun; Li, Dongxia; Feng, Fengjuan; Zhang, Sheng; Ma, Fengwang; Cheng, Lailiang

    2016-09-01

    Understanding the fruit developmental process is critical for fruit quality improvement. Here, we report a comprehensive proteomic analysis of apple fruit development over five growth stages, from young fruit to maturity, coupled with metabolomic profiling. A tandem mass tag (TMT)-based comparative proteomics approach led to the identification and quantification of 7098 and 6247 proteins, respectively. This large-scale proteomic dataset presents a global view of the critical pathways involved in fruit development and metabolism. When linked with metabolomics data, these results provide new insights into the modulation of fruit development, the metabolism and storage of sugars and organic acids (mainly malate), and events within the energy-related pathways for respiration and glycolysis. We suggest that the key steps identified here (e.g. those involving the FK2, TST, EDR6, SPS, mtME and mtMDH switches), can be further targeted to confirm their roles in accumulation and balance of fructose, sucrose and malate. Moreover, our findings imply that the primary reason for decreases in amino acid concentrations during fruit development is related to a reduction in substrate flux via glycolysis, which is mainly regulated by fructose-bisphosphate aldolase and bisphosphoglycerate mutase. PMID:27535992

  5. A dynamic G-quadruplex region regulates the HIV-1 long terminal repeat promoter.

    PubMed

    Perrone, Rosalba; Nadai, Matteo; Frasson, Ilaria; Poe, Jerrod A; Butovskaya, Elena; Smithgall, Thomas E; Palumbo, Manlio; Palù, Giorgio; Richter, Sara N

    2013-08-22

    G-Quadruplexes, noncanonical nucleic acid structures, act as silencers in the promoter regions of human genes; putative G-quadruplex forming sequences are also present in promoters of other mammals, yeasts, and prokaryotes. Here we show that also the HIV-1 LTR promoter exploits G-quadruplex-mediated transcriptional regulation with striking similarities to eukaryotic promoters and that treatment with a G-quadruplex ligand inhibits HIV-1 infectivity. Computational analysis on 953 HIV-1 strains substantiated a highly conserved G-rich sequence corresponding to Sp1 and NF-κB binding sites. Biophysical/biochemical analysis proved that two mutually exclusive parallel-like intramolecular G-quadruplexes, stabilized by small molecule ligands, primarily fold in this region. Mutations disrupting G-quadruplex formation enhanced HIV promoter activity in cells, whereas treatment with a G-quadruplex ligand impaired promoter activity and displayed antiviral effects. These findings disclose the possibility of inhibiting the HIV-1 LTR promoter by G-quadruplex-interacting small molecules, providing a new pathway to development of anti-HIV-1 drugs with unprecedented mechanism of action. PMID:23865750

  6. Dynamic Regulation of Quaternary Organization of the M1 Muscarinic Receptor by Subtype-selective Antagonist Drugs.

    PubMed

    Pediani, John D; Ward, Richard J; Godin, Antoine G; Marsango, Sara; Milligan, Graeme

    2016-06-17

    Although rhodopsin-like G protein-coupled receptors can exist as both monomers and non-covalently associated dimers/oligomers, the steady-state proportion of each form and whether this is regulated by receptor ligands are unknown. Herein we address these topics for the M1 muscarinic acetylcholine receptor, a key molecular target for novel cognition enhancers, by using spatial intensity distribution analysis. This method can measure fluorescent particle concentration and assess oligomerization states of proteins within defined regions of living cells. Imaging and analysis of the basolateral surface of cells expressing some 50 molecules·μm(-2) human muscarinic M1 receptor identified a ∼75:25 mixture of receptor monomers and dimers/oligomers. Both sustained and shorter term treatment with the selective M1 antagonist pirenzepine resulted in a large shift in the distribution of receptor species to favor the dimeric/oligomeric state. Although sustained treatment with pirenzepine also resulted in marked up-regulation of the receptor, simple mass action effects were not the basis for ligand-induced stabilization of receptor dimers/oligomers. The related antagonist telenzepine also produced stabilization and enrichment of the M1 receptor dimer population, but the receptor subtype non-selective antagonists atropine and N-methylscopolamine did not. In contrast, neither pirenzepine nor telenzepine altered the quaternary organization of the related M3 muscarinic receptor. These data provide unique insights into the selective capacity of receptor ligands to promote and/or stabilize receptor dimers/oligomers and demonstrate that the dynamics of ligand regulation of the quaternary organization of G protein-coupled receptors is markedly more complex than previously appreciated. This may have major implications for receptor function and behavior. PMID:27080256

  7. Dynamic Regulation of Quaternary Organization of the M1 Muscarinic Receptor by Subtype-selective Antagonist Drugs*

    PubMed Central

    Pediani, John D.; Ward, Richard J.; Godin, Antoine G.; Marsango, Sara

    2016-01-01

    Although rhodopsin-like G protein-coupled receptors can exist as both monomers and non-covalently associated dimers/oligomers, the steady-state proportion of each form and whether this is regulated by receptor ligands are unknown. Herein we address these topics for the M1 muscarinic acetylcholine receptor, a key molecular target for novel cognition enhancers, by using spatial intensity distribution analysis. This method can measure fluorescent particle concentration and assess oligomerization states of proteins within defined regions of living cells. Imaging and analysis of the basolateral surface of cells expressing some 50 molecules·μm−2 human muscarinic M1 receptor identified a ∼75:25 mixture of receptor monomers and dimers/oligomers. Both sustained and shorter term treatment with the selective M1 antagonist pirenzepine resulted in a large shift in the distribution of receptor species to favor the dimeric/oligomeric state. Although sustained treatment with pirenzepine also resulted in marked up-regulation of the receptor, simple mass action effects were not the basis for ligand-induced stabilization of receptor dimers/oligomers. The related antagonist telenzepine also produced stabilization and enrichment of the M1 receptor dimer population, but the receptor subtype non-selective antagonists atropine and N-methylscopolamine did not. In contrast, neither pirenzepine nor telenzepine altered the quaternary organization of the related M3 muscarinic receptor. These data provide unique insights into the selective capacity of receptor ligands to promote and/or stabilize receptor dimers/oligomers and demonstrate that the dynamics of ligand regulation of the quaternary organization of G protein-coupled receptors is markedly more complex than previously appreciated. This may have major implications for receptor function and behavior. PMID:27080256

  8. Cell Wall Nonlinear Elasticity and Growth Dynamics: How Do Bacterial Cells Regulate Pressure and Growth?

    NASA Astrophysics Data System (ADS)

    Deng, Yi

    In my thesis, I study intact and bulging Escherichia coli cells using atomic force microscopy to separate the contributions of the cell wall and turgor pressure to the overall cell stiffness. I find strong evidence of power--law stress--stiffening in the E. coli cell wall, with an exponent of 1.22±0.12, such that the wall is significantly stiffer in intact cells (E = 23±8 MPa and 49±20 MPa in the axial and circumferential directions) than in unpressurized sacculi. These measurements also indicate that the turgor pressure in living cells E. coli is 29±3 kPa. The nonlinearity in cell elasticity serves as a plausible mechanism to balance the mechanical protection and tension measurement sensitivity of the cell envelope. I also study the growth dynamics of the Bacillus subtilis cell wall to help understand the mechanism of the spatiotemporal order of inserting new cell wall material. High density fluorescent markers are used to label the entire cell surface to capture the morphological changes of the cell surface at sub-cellular to diffraction-limited spatial resolution and sub-minute temporal resolution. This approach reveals that rod-shaped chaining B. subtilis cells grow and twist in a highly heterogeneous fashion both spatially and temporally. Regions of high growth and twisting activity have a typical length scale of 5 μm, and last for 10-40 minutes. Motivated by the quantification of the cell wall growth dynamics, two microscopy and image analysis techniques are developed and applied to broader applications beyond resolving bacterial growth. To resolve densely distributed quantum dots, we present a fast and efficient image analysis algorithm, namely Spatial Covariance Reconstruction (SCORE) microscopy that takes into account the blinking statistics of the fluorescence emitters. We achieve sub-diffraction lateral resolution of 100 nm from 5 to 7 seconds of imaging, which is at least an order of magnitude faster than single-particle localization based methods

  9. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum.

    PubMed

    Corral-Ramos, Cristina; Roca, M Gabriela; Di Pietro, Antonio; Roncero, M Isabel G; Ruiz-Roldán, Carmen

    2015-01-01

    In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum. PMID:25560310

  10. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum

    PubMed Central

    Corral-Ramos, Cristina; Roca, M Gabriela; Di Pietro, Antonio; Roncero, M Isabel G; Ruiz-Roldán, Carmen

    2015-01-01

    In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum. PMID:25560310

  11. Dynamic regulation of metabolic efficiency explains tolerance to acute hypoxia in humans.

    PubMed

    Schiffer, Tomas A; Ekblom, Björn; Lundberg, Jon O; Weitzberg, Eddie; Larsen, Filip J

    2014-10-01

    The maximum power principle dictates that open biological systems tend to self-organize to a level of efficiency that allows maximal power production. Applying this principle to cellular energetics and whole-body physiology would suggest that for every metabolic challenge, an optimal efficiency exists that maximizes power production. On exposure to hypoxia, it would be favorable if metabolic efficiency would rapidly adjust so as to better preserve work performance. We tested this idea in humans by measuring metabolic efficiency and exercise tolerance under normoxic (Fio2=20.9%) and hypoxic (Fio2=16%) conditions, where Fio2 is fraction of inhaled oxygen. The results were compared with respirometric analyses of skeletal muscle mitochondria from the same individuals. We found that among healthy trained subjects (n=14) with a wide range of metabolic efficiency (ME), those with a high ME during normoxic exercise were able to better maintain exercise capacity (Wmax) in hypoxia. On hypoxic exposure, these subjects acutely decreased their efficiency from 19.2 to 17.4%, thereby likely shifting it closer to a degree of efficiency where maximal power production is achieved. In addition, mitochondria from these subjects had a lower intrinsic respiration compared to subjects that showed a large drop in Wmax in hypoxia An acute shift in efficiency was also demonstrated in isolated mitochondria exposed to physiological levels of hypoxia as P/O ratio increased from 0.9 to 1.3 with hypoxic exposure. These findings suggest the existence of a physiological adaptive response by which metabolic efficiency is dynamically optimized to maximize power production. PMID:24970395

  12. Dynamic regulation of mechanosensitive channels: capacitance used to monitor patch tension in real time

    NASA Astrophysics Data System (ADS)

    Suchyna, Thomas M.; Besch, Steven R.; Sachs, Frederick

    2004-03-01

    All cells, from bacteria to human, are mechanically sensitive. The most rapid of these membrane protein transducers are mechanosensitive ion channels, ionic pores in the membrane that open and close in response to membrane tension. In specific sensory organs, these channels serve the senses of touch and hearing, and inform the central nervous system about the filling of hollow organs such as the bladder. Non-specialized cells use these channels to report on changes in cell volume and local strain. To preserve dynamic sensitivity, sensory receptors adapt to steady-state stimuli. Here we show that in rat astrocytes, the most abundant cells in the brain, this apparent adaptation to the stimulus is actually an inactivation. We have been able to track the time course of local strain by measuring attofarad changes in membrane capacitance and show that it is not correlated with loss of channel activity. The reduction in current with time is caused by an increased occupancy of low conductance states, and a reduction in the probability of opening, not a relaxation of local stress. The occupancy of these substates depends on the integrity of the cell's cytoplasm. However, while disruption of the cytoskeleton leads to a loss of inactivation, it leaves activation unaffected. The activation process is voltage-insensitive, closely correlated with changes in capacitance, and seems to arise solely from stress in the bilayer. The inactivation rate decreases with depolarization, and kinetic analysis suggests that the process involves multiple cytoplasmic ligands. Surprisingly, multivalent ions such as Gd+3 and Ca+2 that bind to the lipids and affect channel gating, do not affect the strain-induced increase in membrane capacitance; contrary to expectations, membrane elasticity is unchanged.

  13. Dynamics of glutathione regulation in Schistosoma mansoni: correlations with the acute effects of oltipraz

    SciTech Connect

    Morrison, D.D.

    1984-01-01

    Glutathione is present in adult Schistosoma mansoni (0.336 +/- 0.012 nmol/mg protein) at significantly lower levels than uninfected host tissues (1.051 +/- 0.013 nmol/mg protein, liver; 0.627 +/- 0.013 nmol/mg protein, kidney). Host hepatic glutathione levels decline significantly during the course of infection, while renal cortical glutathione levels are unaffected. Of the enzymes regulating glutathione utilization, glutathione reductase in the male parasite exhibits a specific activity of 10.3 +/- 4.2 nmol/mg protein, 15% of hepatic values. The apparent glutathione S-transferase activity was 26 +/- 7 ..mu..mol conjugate formed/min/mg protein with p-nitrobenzyl chloride as substrate (13% of hepatic values) and 526 +/- 18 ..mu..mol conjugate formed/min/mg protein with 1-chloro-2,4-dinitrobenzene as substrate (43% of hepatic values). Male schistosomes exhibited negligible glutathione peroxidase activity. Oltipraz, an antischistosomal compound, effected a significant depletion of parasite and host glutathione levels within 1 h of exposure in vivo and in vitro (at 250 mg/kg and 10 ..mu..M, respectively). Host tissue glutathionine levels returned to, or above, control levels by 6 h after oltipraz administration, while parasite glutathione levels remained significantly depressed. Uptake of (/sup 35/S) cysteine or (/sup 35/S) cystine by schistosomes was inhibited by oltipraz. However, the drug did not alter the relative distribution of label once incorporated into the parasite, indicating that the enzymes of glutathione synthesis were not directly inhibited.

  14. Localized RhoA GTPase activity regulates dynamics of endothelial monolayer integrity

    PubMed Central

    Szulcek, Robert; Beckers, Cora M.L.; Hodzic, Jasmina; de Wit, Jelle; Chen, Zhenlong; Grob, Tim; Musters, Rene J.P.; Minshall, Richard D.; van Hinsbergh, Victor W.M.; van Nieuw Amerongen, Geerten P.

    2013-01-01

    Aims Endothelial cells (ECs) control vascular permeability by forming a monolayer that is sealed by extracellular junctions. Various mediators modulate the endothelial barrier by acting on junctional protein complexes and the therewith connected F-actin cytoskeleton. Different Rho GTPases participate in this modulation, but their mechanisms are still partly resolved. Here, we aimed to elucidate whether the opening and closure of the endothelial barrier are associated with distinct localized RhoA activities at the subcellular level. Methods and results Live fluorescence resonance energy transfer (FRET) microscopy revealed spatially distinct RhoA activities associated with different aspects of the regulation of endothelial monolayer integrity. Unstimulated ECs were characterized by hotspots of RhoA activity at their periphery. Thrombin receptor activation in the femoral vein of male wistar rats and in cultured ECs enhanced RhoA activity at membrane protrusions, followed by a more sustained RhoA activity associated with cytoplasmic F-actin filaments, where prolonged RhoA activity coincided with cellular contractility. Unexpectedly, thrombin-induced peripheral RhoA hotspots were not spatially correlated to the formation of large inter-endothelial gaps. Rather, spontaneous RhoA activity at membrane protrusions coincided with the closure of inter-endothelial gaps. Electrical impedance measurements showed that RhoA signalling is essential for this protrusive activity and maintenance of barrier restoration. Conclusion Spontaneous RhoA activity at membrane protrusions is spatially associated with closure, but not formation of inter-endothelial gaps, whereas RhoA activity at distant contractile filaments contributes to thrombin-induced disruption of junctional integrity. Thus, these data indicate that distinct RhoA activities are associated with disruption and re-annealing of endothelial junctions. PMID:23536606

  15. Dynamic regulation of DNA methyltransferases in human oocytes and preimplantation embryos after assisted reproductive technologies.

    PubMed

    Petrussa, Laetitia; Van de Velde, Hilde; De Rycke, Martine

    2014-09-01

    DNA methylation is a key epigenetic modification which is essential for normal embryonic development. Major epigenetic reprogramming takes place during gametogenesis and in the early embryo; the complex DNA methylation patterns are established and maintained by DNA methyltransferases (DNMTs). However, the influence of assisted reproductive technologies (ART) on DNA methylation reprogramming enzymes has predominantly been studied in mice and less so in human oocytes and embryos. The expression and localization patterns of the four known DNMTs were analysed in human oocytes and IVF/ICSI embryos by immunocytochemistry and compared between a reference group of good quality fresh embryos and groups of abnormally developing embryos or embryo groups after cryopreservation. In humans, DNMT1o rather than DNMT1s seems to be the key player for maintaining methylation in early embryos. DNMT3b, rather than DNMT3a and DNMT3L, appears to ensure global DNA remethylation in the blastocysts before implantation. DNMT3L, an important regulator of maternal imprint methylation in mouse, was not detected in human oocytes (GV, MI and MII stage). Our study confirms the existence of species differences for mammalian DNA methylation enzymes. In poor quality fresh embryos, the switch towards nuclear DNMT3b expression was delayed and nuclear DNMT1, DNMT1s and DNMT3b expression was less common. Compared with the reference embryos, a smaller number of cryopreserved embryos showed nuclear DNMT1, while a delayed switch to nuclear DNMT3b and an extended DNMT1s temporal expression pattern were also observed. The spatial and temporal expression patterns of DNMTs seem to be disturbed in abnormally developing embryos and in embryos that have been cryopreserved. Further research must be performed in order to understand whether the potentially disturbed embryonic DNMT expression after cryopreservation has any long-term developmental consequences. PMID:24994815

  16. Dynamic regulation of d-serine release in the vertebrate retina

    PubMed Central

    Gustafson, Eric G; Stevens, Eric S; Miller, Robert F

    2015-01-01

    The present study aimed to investigate the functional properties of NMDA receptor coagonist release and to specifically evaluate whether light-evoked release mechanisms contribute to the availability of the coagonist d-serine. Two different methods were involved in our approach: (i) whole-cell recordings from identified retinal ganglion cells in the tiger salamander were used to study light adaptation with positive and negative contrast stimuli over a range of ± 1 log unit against a steady background illumination and (ii) the mechanisms for intensity encoding to a range of light intensities covering 6 log10 units were investigated. This latter study employed extracellular recordings of the proximal negative field potential, pharmacologically manipulated to generate a pure NMDA mediated response. For the adaptation study, we examined the light-evoked responses under control conditions, followed by light stimuli presented in the presence of d-serine, followed by light stimulation in the presence of dichlorokynurenic acid to block the coagonist site of NMDA receptors. For the brightness encoding studies, we examined the action of d-serine on each intensity used and then applied the enzyme d-serine deaminase to remove significant levels of d-serine. These studies provided new insights into the mechanisms that regulate coagonist availability in the vertebrate retina. Our results strongly support the idea that light-evoked coagonist release, a major component of which is d-serine, is needed to provide the full range of coagonist availability for optimal activation of NMDA receptors. PMID:25480802

  17. The Dynamics of Connexin Expression, Degradation and Localisation Are Regulated by Gonadotropins during the Early Stages of In Vitro Maturation of Swine Oocytes

    PubMed Central

    Santiquet, Nicolas; Robert, Claude; Richard, François J.

    2013-01-01

    Gap junctional communication (GJC) plays a primordial role in oocyte maturation and meiotic resumption in mammals by directing the transfer of numerous molecules between cumulus cells and the oocyte. Gap junctions are made of connexins (Cx), proteins that regulate GJC in numerous ways. Understanding the dynamic regulation of connexin arrangements during in vitro maturation (IVM) could provide a powerful tool for controlling meiotic resumption and consequently in vitro development of fully competent oocytes. However, physiological events happening during the early hours of IVM may still be elucidated. The present study reports the dynamic regulation of connexin expression, degradation and localization during this stage. Cx43, Cx45 and Cx60 were identified as the main connexins expressed in swine COC. Cx43 and Cx45 transcripts were judged too static to be a regulator of GJC, while Cx43 protein expression was highly responsive to gonadotropins, suggesting that it might be the principal regulator of GJC. In addition, the degradation of Cx43 expressed after 4.5 h of IVM in response to equine chorionic gonadotropin appeared to involve the proteasomal complex. Cx43 localisation appeared to be associated with GJC. Taken together, these results show for the first time that gonadotropins regulate Cx43 protein expression, degradation and localisation in porcine COC during the first several hours of IVM. Regulation of Cx43 may in turn, via GJC, participate in the development of fully competent oocytes. PMID:23861906

  18. 1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells.

    PubMed

    Ryan, Zachary C; Craig, Theodore A; Folmes, Clifford D; Wang, Xuewei; Lanza, Ian R; Schaible, Niccole S; Salisbury, Jeffrey L; Nair, K Sreekumaran; Terzic, Andre; Sieck, Gary C; Kumar, Rajiv

    2016-01-15

    Muscle weakness and myopathy are observed in vitamin D deficiency and chronic renal failure, where concentrations of the active vitamin D3 metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are low. To evaluate the mechanism of action of 1α,25(OH)2D3 in skeletal muscle, we examined mitochondrial oxygen consumption, dynamics, and biogenesis and changes in expression of nuclear genes encoding mitochondrial proteins in human skeletal muscle cells following treatment with 1α,25(OH)2D3. The mitochondrial oxygen consumption rate (OCR) increased in 1α,25(OH)2D3-treated cells. Vitamin D3 metabolites lacking a 1α-hydroxyl group (vitamin D3, 25-hydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) decreased or failed to increase OCR. 1α-Hydroxyvitamin D3 did not increase OCR. In 1α,25(OH)2D3-treated cells, mitochondrial volume and branching and expression of the pro-fusion protein OPA1 (optic atrophy 1) increased, whereas expression of the pro-fission proteins Fis1 (fission 1) and Drp1 (dynamin 1-like) decreased. Phosphorylated pyruvate dehydrogenase (PDH) (Ser-293) and PDH kinase 4 (PDK4) decreased in 1α,25(OH)2D3-treated cells. There was a trend to increased PDH activity in 1α,25(OH)2D3-treated cells (p = 0.09). 83 nuclear mRNAs encoding mitochondrial proteins were changed following 1α,25(OH)2D3 treatment; notably, PDK4 mRNA decreased, and PDP2 mRNA increased. MYC, MAPK13, and EPAS1 mRNAs, which encode proteins that regulate mitochondrial biogenesis, were increased following 1α,25(OH)2D3 treatment. Vitamin D receptor-dependent changes in the expression of 1947 mRNAs encoding proteins involved in muscle contraction, focal adhesion, integrin, JAK/STAT, MAPK, growth factor, and p53 signaling pathways were observed following 1α,25(OH)2D3 treatment. Five micro-RNAs were induced or repressed by 1α,25(OH)2D3. 1α,25(OH)2D3 regulates mitochondrial function, dynamics, and enzyme function, which are likely to influence muscle strength. PMID:26601949

  19. Lipid Droplet-Associated Proteins (LDAPs) Are Required for the Dynamic Regulation of Neutral Lipid Compartmentation in Plant Cells.

    PubMed

    Gidda, Satinder K; Park, Sunjung; Pyc, Michal; Yurchenko, Olga; Cai, Yingqi; Wu, Peng; Andrews, David W; Chapman, Kent D; Dyer, John M; Mullen, Robert T

    2016-04-01

    Eukaryotic cells compartmentalize neutral lipids into organelles called lipid droplets (LDs), and while much is known about the role of LDs in storing triacylglycerols in seeds, their biogenesis and function in nonseed tissues are poorly understood. Recently, we identified a class of plant-specific, lipid droplet-associated proteins (LDAPs) that are abundant components of LDs in nonseed cell types. Here, we characterized the three LDAPs in Arabidopsis (Arabidopsis thaliana) to gain insight to their targeting, assembly, and influence on LD function and dynamics. While all three LDAPs targeted specifically to the LD surface, truncation analysis of LDAP3 revealed that essentially the entire protein was required for LD localization. The association of LDAP3 with LDs was detergent sensitive, but the protein bound with similar affinity to synthetic liposomes of various phospholipid compositions, suggesting that other factors contributed to targeting specificity. Investigation of LD dynamics in leaves revealed that LD abundance was modulated during the diurnal cycle, and characterization of LDAP misexpression mutants indicated that all three LDAPs were important for this process. LD abundance was increased significantly during abiotic stress, and characterization of mutant lines revealed that LDAP1 and LDAP3 were required for the proper induction of LDs during heat and cold temperature stress, respectively. Furthermore, LDAP1 was required for proper neutral lipid compartmentalization and triacylglycerol degradation during postgerminative growth. Taken together, these studies reveal that LDAPs are required for the maintenance and regulation of LDs in plant cells and perform nonredundant functions in various physiological contexts, including stress response and postgerminative growth. PMID:26896396

  20. Profiling CCK-mediated pancreatic growth: the dynamic genetic program and the role of STATs as potential regulators

    PubMed Central

    Wang, Jackie Y.; Guo, LiLi; Ernst, Stephen A.; Williams, John A.

    2012-01-01

    Feeding mice with protease inhibitor (PI) leads to increased endogenous cholecystokinin (CCK) release and results in pancreatic growth. This adaptive response requires calcineurin (CN)-NFAT and AKT-mTOR pathways, but the genes involved, the dynamics of their expression, and other regulatory pathways remain unknown. Here, we examined the early (1–8 h) transcriptional program that underlies pancreatic growth. We found 314 upregulated and 219 downregulated genes with diverse temporal and functional profiles. Several new identifications include the following: stress response genes Gdf15 and Txnip, metabolic mediators Pitpnc1 and Hmges2, as well as components of growth factor response Fgf21, Atf3, and Egr1. The genes fell into seven self-organizing clusters, each with a distinct pattern of expression; a representative gene within each of the upregulated clusters (Egr1, Gadd45b, Rgs2, and Serpinb1a) was validated by qRT-PCR. Genes up at any point throughout the time course and CN-dependent genes were subjected to further bioinformatics-based networking and promoter analysis, yielding STATs as potential transcriptional regulators. As shown by PCR, qPCR, and Western blots, the active phospho-form of STAT3 and the Jak-STAT feedback inhibitor Socs2 were both increased throughout early pancreatic growth. Moreover, immunohistochemistry showed a CCK-dependent and acinar cell-specific increase in nuclear localization of p-STAT3, with >75% nuclear occupancy in PI-fed mice vs. <0.1% in controls. Thus, the study identified novel genes likely to be important for CCK-driven pancreatic growth, characterized and biologically validated the dynamic pattern of their expression and investigated STAT-Socs signaling as a new player in this trophic response. PMID:22010007

  1. Political dynamics promoting the incremental regulation of secondhand smoke: a case study of New South Wales, Australia

    PubMed Central

    Bryan-Jones, Katherine; Chapman, Simon

    2006-01-01

    Background The history of governmental responses to the accumulation of scientific evidence about the harms of secondhand smoke (SHS) presents an intriguing case study of incremental public health policy development. Australia has long been considered a world-leader in progressive tobacco control policies, but in the last decade has fallen behind other jurisdictions in introducing SHS legislation that protects all workers. Bars, clubs and pubs remain the only public indoor spaces where smoking is legally permitted, despite SHS exposure in the hospitality industry being higher and affecting more people than in any other setting after domestic exposure. This paper examines the political dynamics that have shaped this incremental approach to SHS. Methods In-depth interviews with 21 key stakeholders in the state of New South Wales (NSW), including politicians, their advisors, health officials and tobacco control advocates, were conducted and subjected to thematic content analysis. Interviewees' comments provided insights into the dynamics surrounding the debates and outcomes of SHS legislative attempts and the current political environment, and about how to progress SHS legislation. Results SHS restrictions have been delayed by several broad factors: the influence of industry groups successfully opposing regulation; issue wear-out; and political perceptions that there is not a salient constituency demanding that smoking be banned in bars and clubs. Interviewees also provided suggestions of strategies that advocates might utilise to best overcome the current political inertia of incremental compromises and achieve timely comprehensive smoking bans. Conclusion Advocates concerned to shorten the duration of incremental endgames must continue to insist that governments address SHS fundamentally as a health issue rather than making political concessions to industry groups, and should broaden and amplify community voices calling on governments to finish the job. Publicity to

  2. Raft endocytosis of AMF regulates mitochondrial dynamics through Rac1 signaling and the Gp78 ubiquitin ligase.

    PubMed

    Shankar, Jay; Kojic, Liliana D; St-Pierre, Pascal; Wang, Peter T C; Fu, Min; Joshi, Bharat; Nabi, Ivan R

    2013-08-01

    Gp78 is a cell surface receptor that also functions as an E3 ubiquitin ligase in the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. The Gp78 ligand, the glycolytic enzyme phosphoglucose isomerase (PGI; also called autocrine motility factor, AMF), functions as a cytokine upon secretion by tumor cells. AMF is internalized through a PI3K- and dynamin-dependent raft endocytic pathway to the smooth ER; however, the relationship between AMF and Gp78 ubiquitin ligase activity remains unclear. AMF uptake to the smooth ER is inhibited by the dynamin inhibitor, dynasore, is reduced in Gp78 knockdown cells and induces the dynamin-dependent downregulation of its cell surface receptor. AMF uptake is Rac1-dependent and is inhibited by expression of dominant-negative Rac1 and the Rac1 inhibitor NSC23766, and is therefore distinct from Cdc42- and RhoA-dependent raft endocytic pathways. AMF stimulates Rac1 activation, but this is reduced by dynasore treatment and is absent in Gp78-knockdown cells; therefore, AMF activities require Gp78-mediated endocytosis. AMF also prevents Gp78-induced degradation of the mitochondrial fusion proteins, mitofusin 1 and 2 in a dynamin-, Rac1- and phosphoinositide 3-kinase (PI3K)-dependent manner. Gp78 induces mitochondrial clustering and fission in a manner dependent on GP78 ubiquitin ligase activity, and this is also reversed by uptake of AMF. The raft-dependent endocytosis of AMF, therefore, promotes Rac1-PI3K signaling that feeds back to promote AMF endocytosis and also inhibits the ability of Gp78 to target the mitofusins for degradation, thereby preventing Gp78-dependent mitochondrial fission. Through regulation of an ER-localized ubiquitin ligase, the raft-dependent endocytosis of AMF represents an extracellular regulator of mitochondrial fusion and dynamics. PMID:23690547

  3. The Actin Binding Domain of βI-Spectrin Regulates the Morphological and Functional Dynamics of Dendritic Spines

    PubMed Central

    Nestor, Michael W.; Cai, Xiang; Stone, Michele R.; Bloch, Robert J.; Thompson, Scott M.

    2011-01-01

    Actin microfilaments regulate the size, shape and mobility of dendritic spines and are in turn regulated by actin binding proteins and small GTPases. The βI isoform of spectrin, a protein that links the actin cytoskeleton to membrane proteins, is present in spines. To understand its function, we expressed its actin-binding domain (ABD) in CA1 pyramidal neurons in hippocampal slice cultures. The ABD of βI-spectrin bundled actin in principal dendrites and was concentrated in dendritic spines, where it significantly increased the size of the spine head. These effects were not observed after expression of homologous ABDs of utrophin, dystrophin, and α-actinin. Treatment of slice cultures with latrunculin-B significantly decreased spine head size and decreased actin-GFP fluorescence in cells expressing the ABD of α-actinin, but not the ABD of βI-spectrin, suggesting that its presence inhibits actin depolymerization. We also observed an increase in the area of GFP-tagged PSD-95 in the spine head and an increase in the amplitude of mEPSCs at spines expressing the ABD of βI-spectrin. The effects of the βI-spectrin ABD on spine size and mEPSC amplitude were mimicked by expressing wild-type Rac3, a small GTPase that co-immunoprecipitates specifically with βI-spectrin in extracts of cultured cortical neurons. Spine size was normal in cells co-expressing a dominant negative Rac3 construct with the βI-spectrin ABD. We suggest that βI-spectrin is a synaptic protein that can modulate both the morphological and functional dynamics of dendritic spines, perhaps via interaction with actin and Rac3. PMID:21297961

  4. Stress dynamically regulates behavior and glutamatergic gene expression in hippocampus by opening a window of epigenetic plasticity

    PubMed Central

    Nasca, Carla; Zelli, Danielle; Bigio, Benedetta; Piccinin, Sonia; Scaccianoce, Sergio; Nisticò, Robert; McEwen, Bruce S.

    2015-01-01

    Excitatory amino acids play a key role in both adaptive and deleterious effects of stressors on the brain, and dysregulated glutamate homeostasis has been associated with psychiatric and neurological disorders. Here, we elucidate mechanisms of epigenetic plasticity in the hippocampus in the interactions between a history of chronic stress and familiar and novel acute stressors that alter expression of anxiety- and depressive-like behaviors. We demonstrate that acute restraint and acute forced swim stressors induce differential effects on these behaviors in naive mice and in mice with a history of chronic-restraint stress (CRS). They reveal a key role for epigenetic up- and down-regulation of the putative presynaptic type 2 metabotropic glutamate (mGlu2) receptors and the postsynaptic NR1/NMDA receptors in the hippocampus and particularly in the dentate gyrus (DG), a region of active neurogenesis and a target of antidepressant treatment. We show changes in DG long-term potentiation (LTP) that parallel behavioral responses, with habituation to the same acute restraint stressor and sensitization to a novel forced-swim stressor. In WT mice after CRS and in unstressed mice with a BDNF loss-of-function allele (BDNF Val66Met), we show that the epigenetic activator of histone acetylation, P300, plays a pivotal role in the dynamic up- and down-regulation of mGlu2 in hippocampus via histone-3-lysine-27-acetylation (H3K27Ac) when acute stressors are applied. These hippocampal responses reveal a window of epigenetic plasticity that may be useful for treatment of disorders in which glutamatergic transmission is dysregulated. PMID:26627246

  5. Stress dynamically regulates behavior and glutamatergic gene expression in hippocampus by opening a window of epigenetic plasticity.

    PubMed

    Nasca, Carla; Zelli, Danielle; Bigio, Benedetta; Piccinin, Sonia; Scaccianoce, Sergio; Nisticò, Robert; McEwen, Bruce S

    2015-12-01

    Excitatory amino acids play a key role in both adaptive and deleterious effects of stressors on the brain, and dysregulated glutamate homeostasis has been associated with psychiatric and neurological disorders. Here, we elucidate mechanisms of epigenetic plasticity in the hippocampus in the interactions between a history of chronic stress and familiar and novel acute stressors that alter expression of anxiety- and depressive-like behaviors. We demonstrate that acute restraint and acute forced swim stressors induce differential effects on these behaviors in naive mice and in mice with a history of chronic-restraint stress (CRS). They reveal a key role for epigenetic up- and down-regulation of the putative presynaptic type 2 metabotropic glutamate (mGlu2) receptors and the postsynaptic NR1/NMDA receptors in the hippocampus and particularly in the dentate gyrus (DG), a region of active neurogenesis and a target of antidepressant treatment. We show changes in DG long-term potentiation (LTP) that parallel behavioral responses, with habituation to the same acute restraint stressor and sensitization to a novel forced-swim stressor. In WT mice after CRS and in unstressed mice with a BDNF loss-of-function allele (BDNF Val66Met), we show that the epigenetic activator of histone acetylation, P300, plays a pivotal role in the dynamic up- and down-regulation of mGlu2 in hippocampus via histone-3-lysine-27-acetylation (H3K27Ac) when acute stressors are applied. These hippocampal responses reveal a window of epigenetic plasticity that may be useful for treatment of disorders in which glutamatergic transmission is dysregulated. PMID:26627246

  6. [The dynamic mitochondria-nuclear redistribution of FKBP51 during the process of adipocyte differentiation is regulated by PKA].

    PubMed

    Toneatto, Judith; Charó, Nancy L; Susperreguy, Sebastián; Piwien-Pilipuk, Graciela

    2013-01-01

    Glucocorticoids play an important role in adipogenesis via the glucocorticoid receptor (GR) that forms a heterocomplex with Hsp90-Hsp70 and a high molecular weight immunophilin FKBP51 or FKBP52. We have found that FKBP51 level of expression progressively increases, FKBP52 decreases, whereas Hsp90, Hsp70, and p23 remain unchanged when 3T3-L1 preadipocytes differentiate. Interestingly, FKBP51 translocates from mitochondria to the nucleus at the onset of adipogenesis. FKBP51 transiently concentrates in the nuclear lamina, at a time that this nuclear compartment undergoes its reorganization. FKBP51 nuclear localization is transient, after 48 h it cycles back to mitochondria. We found that the dynamic FKBP51 mitochondrial-nuclear shuttling is regulated by glucocorticoids and mainly on cAMP-PKA signaling since PKA inhibition by myristoilated-PKI, abrogated FKBP51 nuclear translocation induced by 3-isobutyl-1-methylxanthine (IBMX). It has been reported that PKA interacts with GR in a ligand dependent manner potentiating its transcriptional capacity. GR transcriptional capacity is reduced when cells are incubated in the presence of IBMX, forskolin or dibutyryl-cAMP, compounds that induced nuclear translocation of FKBP51, therefore PKA may exert a dual role in the control of GR. In summary, the presence of FKBP51 in the nucleus may be critical for GR transcriptional control, and possibly for the control of other transcription factors that are not members of the nuclear receptor family but are regulated by PKA signaling pathway, when transcription has to be strictly controlled to succeed in the acquisition of the adipocyte phenotype. PMID:24152393

  7. DNA Methylation in the Human Cerebral Cortex Is Dynamically Regulated throughout the Life Span and Involves Differentiated Neurons

    PubMed Central

    Campan, Mihaela; Long, Tiffany I.; Weisenberger, Daniel J.; Biniszkiewicz, Detlev; Jaenisch, Rudolf; Laird, Peter W.; Akbarian, Schahram

    2007-01-01

    The role of DNA cytosine methylation, an epigenetic regulator of chromatin structure and function, during normal and pathological brain development and aging remains unclear. Here, we examined by MethyLight PCR the DNA methylation status at 50 loci, encompassing primarily 5′ CpG islands of genes related to CNS growth and development, in temporal neocortex of 125 subjects ranging in age from 17 weeks of gestation to 104 years old. Two psychiatric disease cohorts—defined by chronic neurodegeneration (Alzheimer's) or lack thereof (schizophrenia)—were included. A robust and progressive rise in DNA methylation levels across the lifespan was observed for 8/50 loci (GABRA2, GAD1, HOXA1, NEUROD1, NEUROD2, PGR, STK11, SYK) typically in conjunction with declining levels of the corresponding mRNAs. Another 16 loci were defined by a sharp rise in DNA methylation levels within the first few months or years after birth. Disease-associated changes were limited to 2/50 loci in the Alzheimer's cohort, which appeared to reflect an acceleration of the age-related change in normal brain. Additionally, methylation studies on sorted nuclei provided evidence for bidirectional methylation events in cortical neurons during the transition from childhood to advanced age, as reflected by significant increases at 3, and a decrease at 1 of 10 loci. Furthermore, the DNMT3a de novo DNA methyl-transferase was expressed across all ages, including a subset of neurons residing in layers III and V of the mature cortex. Therefore, DNA methylation is dynamically regulated in the human cerebral cortex throughout the lifespan, involves differentiated neurons, and affects a substantial portion of genes predominantly by an age-related increase. PMID:17878930

  8. Regulation of Star Formation Rates in Multiphase Galactic Disks: Numerical Tests of the Thermal/Dynamical Equilibrium Model

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Kim, Woong-Tae; Ostriker, Eve C.

    2011-12-01

    We use vertically resolved numerical hydrodynamic simulations to study star formation and the interstellar medium (ISM) in galactic disks. We focus on outer-disk regions where diffuse H I dominates, with gas surface densities Σ = 3-20 M⊙ pc-2 and star-plus-dark matter volume densities ρsd = 0.003-0.5 M⊙ pc-3. Star formation occurs in very dense, self-gravitating clouds that form by mergers of smaller cold cloudlets. Turbulence, driven by momentum feedback from supernova events, destroys bound clouds and puffs up the disk vertically. Time-dependent radiative heating (FUV from recent star formation) offsets gas cooling. We use our simulations to test a new theory for self-regulated star formation. Consistent with this theory, the disks evolve to a state of vertical dynamical equilibrium and thermal equilibrium with both warm and cold phases. The range of star formation surface densities and midplane thermal pressures is ΣSFR ∼ 10-4 to 10-2 M⊙ kpc-2 yr-1 and P th/k B ∼ 102 to 104 cm-3 K. In agreement with observations, turbulent velocity dispersions are ~7 km s-1 and the ratio of the total (effective) to thermal pressure is Ptot/Pth ∼ 4-5, across this whole range (provided shielding is similar to the solar neighborhood). We show that ΣSFR is not well correlated with Σ alone, but rather with Σ ρsd1/2, because the vertical gravity from stars and dark matter dominates in outer disks. We also find that ΣSFR has a strong, nearly linear correlation with Ptot, which itself is within ~13% of the dynamical equilibrium estimate Ptot, DE. The quantitative relationships we find between &SigmaSFR and the turbulent and thermal pressures show that star formation is highly efficient for energy and momentum production, in contrast to the low efficiency of mass consumption. Star formation rates adjust until the ISM's energy and momentum losses are replenished by feedback within a dynamical time.

  9. H2A.Z Acidic Patch Couples Chromatin Dynamics to Regulation of Gene Expression Programs during ESC Differentiation

    PubMed Central

    Subramanian, Vidya; Mazumder, Aprotim; Surface, Lauren E.; Butty, Vincent L.; Fields, Paul A.; Alwan, Allison; Torrey, Lillian; Thai, Kevin K.; Levine, Stuart S.; Bathe, Mark; Boyer, Laurie A.

    2013-01-01

    that the divergent residues in the H2A.Z acidic patch comprise a unique domain that couples control of chromatin dynamics to the regulation of developmental gene expression patterns during lineage commitment. PMID:23990805

  10. Dynamic phospholipid interaction of β2e subunit regulates the gating of voltage-gated Ca2+ channels

    PubMed Central

    Kim, Dong-Il; Park, Yongsoo; Jang, Deok-Jin

    2015-01-01

    High voltage-activated Ca2+ (CaV) channels are protein complexes containing pore-forming α1 and auxiliary β and α2δ subunits. The subcellular localization and membrane interactions of the β subunits play a crucial role in regulating CaV channel inactivation and its lipid sensitivity. Here, we investigated the effects of membrane phosphoinositide (PI) turnover on CaV2.2 channel function. The β2 isoform β2e associates with the membrane through electrostatic and hydrophobic interactions. Using chimeric β subunits and liposome-binding assays, we determined that interaction between the N-terminal 23 amino acids of β2e and anionic phospholipids was sufficient for β2e membrane targeting. Binding of the β2e subunit N terminus to liposomes was significantly increased by inclusion of 1% phosphatidylinositol 4,5-bisphosphate (PIP2) in the liposomes, suggesting that, in addition to phosphatidylserine, PIs are responsible for β2e targeting to the plasma membrane. Membrane binding of the β2e subunit slowed CaV2.2 current inactivation. When membrane phosphatidylinositol 4-phosphate and PIP2 were depleted by rapamycin-induced translocation of pseudojanin to the membrane, however, channel opening was decreased and fast inactivation of CaV2.2(β2e) currents was enhanced. Activation of the M1 muscarinic receptor elicited transient and reversible translocation of β2e subunits from membrane to cytosol, but not that of β2a or β3, resulting in fast inactivation of CaV2.2 channels with β2e. These results suggest that membrane targeting of the β2e subunit, which is mediated by nonspecific electrostatic insertion, is dynamically regulated by receptor stimulation, and that the reversible association of β2e with membrane PIs results in functional changes in CaV channel gating. The phospholipid–protein interaction observed here provides structural insight into mechanisms of membrane–protein association and the role of phospholipids in ion channel regulation. PMID

  11. The Kinesin KIF21B Regulates Microtubule Dynamics and Is Essential for Neuronal Morphology, Synapse Function, and Learning and Memory.

    PubMed

    Muhia, Mary; Thies, Edda; Labonté, Dorthe; Ghiretti, Amy E; Gromova, Kira V; Xompero, Francesca; Lappe-Siefke, Corinna; Hermans-Borgmeyer, Irm; Kuhl, Dietmar; Schweizer, Michaela; Ohana, Ora; Schwarz, Jürgen R; Holzbaur, Erika L F; Kneussel, Matthias

    2016-05-01

    The kinesin KIF21B is implicated in several human neurological disorders, including delayed cognitive development, yet it remains unclear how KIF21B dysfunction may contribute to pathology. One limitation is that relatively little is known about KIF21B-mediated physiological functions. Here, we generated Kif21b knockout mice and used cellular assays to investigate the relevance of KIF21B in neuronal and in vivo function. We show that KIF21B is a processive motor protein and identify an additional role for KIF21B in regulating microtubule dynamics. In neurons lacking KIF21B, microtubules grow more slowly and persistently, leading to tighter packing in dendrites. KIF21B-deficient neurons exhibit decreased dendritic arbor complexity and reduced spine density, which correlate with deficits in synaptic transmission. Consistent with these observations, Kif21b-null mice exhibit behavioral changes involving learning and memory deficits. Our study provides insight into the cellular function of KIF21B and the basis for cognitive decline resulting from KIF21B dysregulation. PMID:27117409

  12. The Drosophila Prosecretory Transcription Factor dimmed Is Dynamically Regulated in Adult Enteroendocrine Cells and Protects Against Gram-Negative Infection.

    PubMed

    Beebe, Katherine; Park, Dongkook; Taghert, Paul H; Micchelli, Craig A

    2015-07-01

    The endocrine system employs peptide hormone signals to translate environmental changes into physiological responses. The diffuse endocrine system embedded in the gastrointestinal barrier epithelium is one of the largest and most diverse endocrine tissues. Furthermore, it is the only endocrine tissue in direct physical contact with the microbial environment of the gut lumen. However, it remains unclear how this sensory epithelium responds to specific pathogenic challenges in a dynamic and regulated manner. We demonstrate that the enteroendocrine cells of the adult Drosophila melanogaster midgut display a transient, sensitive, and systemic induction of the prosecretory factor dimmed (dimm) in response to the Gram-negative pathogen Pseudomonas entomophila (Pe). In enteroendocrine cells, dimm controls the levels of the targets Phm, dcat-4, and the peptide hormone, Allatostatin A. Finally, we identify dimm as a host factor that protects against Pe infection and controls the expression of antimicrobial peptides. We propose that dimm provides "gain" in enteroendocrine output during the adaptive response to episodic pathogen exposure. PMID:25999585

  13. Dynamic and Static Interactions between p120 Catenin and E-Cadherin Regulate the Stability of Cell-Cell Adhesion

    SciTech Connect

    Ishiyama, Noboru; Lee, Seung-Hye; Liu, Shuang; Li, Guang-Yao; Smith, Matthew J.; Reichardt, Louis F.; Ikura, Mitsuhiko

    2010-04-26

    The association of p120 catenin (p120) with the juxtamembrane domain (JMD) of the cadherin cytoplasmic tail is critical for the surface stability of cadherin-catenin cell-cell adhesion complexes. Here, we present the crystal structure of p120 isoform 4A in complex with the JMD core region (JMD{sub core}) of E-cadherin. The p120 armadillo repeat domain contains modular binding pockets that are complementary to electrostatic and hydrophobic properties of the JMD{sub core}. Single-residue mutations within the JMD{sub core}-binding site of p120 abolished its interaction with E- and N-cadherins in vitro and in cultured cells. These mutations of p120 enabled us to clearly differentiate between N-cadherin-dependent and -independent steps of neuronal dendritic spine morphogenesis crucial for synapse development. NMR studies revealed that p120 regulates the stability of cadherin-mediated cell-cell adhesion by associating with the majority of the JMD, including residues implicated in clathrin-mediated endocytosis and Hakai-dependent ubiquitination of E-cadherin, through its discrete dynamic and static binding sites.

  14. Chromatin dynamics and the role of G9a in gene regulation and enhancer silencing during early mouse development

    PubMed Central

    Zylicz, Jan J; Dietmann, Sabine; Günesdogan, Ufuk; Hackett, Jamie A; Cougot, Delphine; Lee, Caroline; Surani, M Azim

    2015-01-01

    Early mouse development is accompanied by dynamic changes in chromatin modifications, including G9a-mediated histone H3 lysine 9 dimethylation (H3K9me2), which is essential for embryonic development. Here we show that genome-wide accumulation of H3K9me2 is crucial for postimplantation development, and coincides with redistribution of enhancer of zeste homolog 2 (EZH2)-dependent histone H3 lysine 27 trimethylation (H3K27me3). Loss of G9a or EZH2 results in upregulation of distinct gene sets involved in cell cycle regulation, germline development and embryogenesis. Notably, the H3K9me2 modification extends to active enhancer elements where it promotes developmentally-linked gene silencing and directly marks promoters and gene bodies. This epigenetic mechanism is important for priming gene regulatory networks for critical cell fate decisions in rapidly proliferating postimplantation epiblast cells. DOI: http://dx.doi.org/10.7554/eLife.09571.001 PMID:26551560

  15. Regulated expression and dynamic changes in subnuclear localization of mammalian Rad18 under normal a