Science.gov

Sample records for regulates 3-phosphatidylinositide dynamics

  1. Protein kinase A regulates 3-phosphatidylinositide dynamics during platelet-derived growth factor-induced membrane ruffling and chemotaxis.

    PubMed

    Deming, Paula B; Campbell, Shirley L; Baldor, Linda C; Howe, Alan K

    2008-12-12

    Spatial regulation of the cAMP-dependent protein kinase (PKA) is required for chemotaxis in fibroblasts; however, the mechanism(s) by which PKA regulates the cell migration machinery remain largely unknown. Here we report that one function of PKA during platelet-derived growth factor (PDGF)-induced chemotaxis was to promote membrane ruffling by regulating phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) dynamics. Inhibition of PKA activity dramatically altered membrane dynamics and attenuated formation of peripheral membrane ruffles in response to PDGF. PKA inhibition also significantly decreased the number and size of PIP(3)-rich membrane ruffles in response to uniform stimulation and to gradients of PDGF. This ruffling defect was quantified using a newly developed method, based on computer vision edge-detection algorithms. PKA inhibition caused a marked attenuation in the bulk accumulation of PIP(3) following PDGF stimulation, without effects on PI3-kinase (PI3K) activity. The deficits in PIP(3) dynamics correlated with a significant inhibition of growth factor-induced membrane recruitment of endogenous Akt and Rac activation in PKA-inhibited cells. Simultaneous inhibition of PKA and Rac had an additive inhibitory effect on growth factor-induced ruffling dynamics. Conversely, the expression of a constitutively active Rac allele was able to rescue the defect in membrane ruffling and restore the localization of a fluorescent PIP(3) marker to membrane ruffles in PKA-inhibited cells, even in the absence of PI3K activity. These data demonstrate that, like Rac, PKA contributes to PIP(3) and membrane dynamics independently of direct regulation of PI3K activity and suggest that modulation of PIP(3)/3-phosphatidylinositol (3-PI) lipids represents a major target for PKA in the regulation of PDGF-induced chemotactic events.

  2. Protein Kinase A Regulates 3-Phosphatidylinositide Dynamics during Platelet-derived Growth Factor-induced Membrane Ruffling and Chemotaxis*S⃞

    PubMed Central

    Deming, Paula B.; Campbell, Shirley L.; Baldor, Linda C.; Howe, Alan K.

    2008-01-01

    Spatial regulation of the cAMP-dependent protein kinase (PKA) is required for chemotaxis in fibroblasts; however, the mechanism(s) by which PKA regulates the cell migration machinery remain largely unknown. Here we report that one function of PKA during platelet-derived growth factor (PDGF)-induced chemotaxis was to promote membrane ruffling by regulating phosphatidylinositol 3,4,5-trisphosphate (PIP3) dynamics. Inhibition of PKA activity dramatically altered membrane dynamics and attenuated formation of peripheral membrane ruffles in response to PDGF. PKA inhibition also significantly decreased the number and size of PIP3-rich membrane ruffles in response to uniform stimulation and to gradients of PDGF. This ruffling defect was quantified using a newly developed method, based on computer vision edge-detection algorithms. PKA inhibition caused a marked attenuation in the bulk accumulation of PIP3 following PDGF stimulation, without effects on PI3-kinase (PI3K) activity. The deficits in PIP3 dynamics correlated with a significant inhibition of growth factor-induced membrane recruitment of endogenous Akt and Rac activation in PKA-inhibited cells. Simultaneous inhibition of PKA and Rac had an additive inhibitory effect on growth factor-induced ruffling dynamics. Conversely, the expression of a constitutively active Rac allele was able to rescue the defect in membrane ruffling and restore the localization of a fluorescent PIP3 marker to membrane ruffles in PKA-inhibited cells, even in the absence of PI3K activity. These data demonstrate that, like Rac, PKA contributes to PIP3 and membrane dynamics independently of direct regulation of PI3K activity and suggest that modulation of PIP3/3-phosphatidylinositol (3-PI) lipids represents a major target for PKA in the regulation of PDGF-induced chemotactic events. PMID:18936099

  3. Metabolic regulation of mitochondrial dynamics

    PubMed Central

    Mishra, Prashant

    2016-01-01

    Mitochondria are renowned for their central bioenergetic role in eukaryotic cells, where they act as powerhouses to generate adenosine triphosphate from oxidation of nutrients. At the same time, these organelles are highly dynamic and undergo fusion, fission, transport, and degradation. Each of these dynamic processes is critical for maintaining a healthy mitochondrial population. Given the central metabolic function of mitochondria, it is not surprising that mitochondrial dynamics and bioenergetics reciprocally influence each other. We review the dynamic properties of mitochondria, with an emphasis on how these processes respond to cellular signaling events and how they affect metabolism. PMID:26858267

  4. Dynamics of bacterial gene regulation

    NASA Astrophysics Data System (ADS)

    Narang, Atul

    2009-03-01

    The phenomenon of diauxic growth is a classical problem of bacterial gene regulation. The most well studied example of this phenomenon is the glucose-lactose diauxie, which occurs because the expression of the lac operon is strongly repressed in the presence of glucose. This repression is often explained by appealing to molecular mechanisms such as cAMP activation and inducer exclusion. I will begin by analyzing data showing that these molecular mechanisms cannot explain the strong lac repression because they exert a relatively weak effect. I will then present a minimal model accounting only for enzyme induction and dilution, which yields strong repression despite the absence of catabolite repression and inducer exclusion. The model also explains the growth patterns observed in batch and continuous cultures of various bacterial strains and substrate mixtures. The talk will conclude with a discussion of the experimental evidence regarding positive feedback, the key component of the minimal model.

  5. Regulation of peroxisome dynamics by phosphorylation.

    PubMed

    Oeljeklaus, Silke; Schummer, Andreas; Mastalski, Thomas; Platta, Harald W; Warscheid, Bettina

    2016-05-01

    Peroxisomes are highly dynamic organelles that can rapidly change in size, abundance, and protein content in response to alterations in nutritional and other environmental conditions. These dynamic changes in peroxisome features, referred to as peroxisome dynamics, rely on the coordinated action of several processes of peroxisome biogenesis. Revealing the regulatory mechanisms of peroxisome dynamics is an emerging theme in cell biology. These mechanisms are inevitably linked to and synchronized with the biogenesis and degradation of peroxisomes. To date, the key players and basic principles of virtually all steps in the peroxisomal life cycle are known, but regulatory mechanisms remained largely elusive. A number of recent studies put the spotlight on reversible protein phosphorylation for the control of peroxisome dynamics and highlighted peroxisomes as hubs for cellular signal integration and regulation. Here, we will present and discuss the results of several studies performed using yeast and mammalian cells that convey a sense of the impact protein phosphorylation may have on the modulation of peroxisome dynamics by regulating peroxisomal matrix and membrane protein import, proliferation, inheritance, and degradation. We further put forward the idea to make use of current data on phosphorylation sites of peroxisomal and peroxisome-associated proteins reported in advanced large-scale phosphoproteomic studies.

  6. Dynamic Redox Regulation of IL-4 Signaling.

    PubMed

    Dwivedi, Gaurav; Gran, Margaret A; Bagchi, Pritha; Kemp, Melissa L

    2015-11-01

    Quantifying the magnitude and dynamics of protein oxidation during cell signaling is technically challenging. Computational modeling provides tractable, quantitative methods to test hypotheses of redox mechanisms that may be simultaneously operative during signal transduction. The interleukin-4 (IL-4) pathway, which has previously been reported to induce reactive oxygen species and oxidation of PTP1B, may be controlled by several other putative mechanisms of redox regulation; widespread proteomic thiol oxidation observed via 2D redox differential gel electrophoresis upon IL-4 treatment suggests more than one redox-sensitive protein implicated in this pathway. Through computational modeling and a model selection strategy that relied on characteristic STAT6 phosphorylation dynamics of IL-4 signaling, we identified reversible protein tyrosine phosphatase (PTP) oxidation as the primary redox regulatory mechanism in the pathway. A systems-level model of IL-4 signaling was developed that integrates synchronous pan-PTP oxidation with ROS-independent mechanisms. The model quantitatively predicts the dynamics of IL-4 signaling over a broad range of new redox conditions, offers novel hypotheses about regulation of JAK/STAT signaling, and provides a framework for interrogating putative mechanisms involving receptor-initiated oxidation.

  7. Dynamic regulation of endosymbiotic organelles by ubiquitination.

    PubMed

    Ling, Qihua; Jarvis, Paul

    2013-08-01

    Recent work has revealed that mitochondria and chloroplasts are subject to direct control by the ubiquitin-proteasome system (UPS). Ubiquitin E3 ligases are present at the outer membrane of both organelles where they mediate ubiquitination and turnover of other organellar proteins. Both organelles exhibit remarkable structural dynamism and UPS control is particularly concerned with these properties. In mitochondria, the UPS targets factors involved in organellar fission and fusion, with significant impacts upon organellar morphology, mitophagy, and apoptosis. In chloroplasts (and other plastids), the UPS targets components of the protein import machinery, facilitating reorganization of the organellar proteome to determine organellar development and functions. Acquisition of such regulatory control during evolution is perhaps linked to the dynamic characteristics of the two organelles, which are not paralleled in their prokaryotic relatives. Here we discuss our current understanding of the role of the UPS in the regulation of endosymbiotic organelles.

  8. Dynamical Length-Regulation of Microtubules

    NASA Astrophysics Data System (ADS)

    Melbinger, Anna; Reese, Louis; Frey, Erwin

    2012-02-01

    Microtubules (MTs) are vital constituents of the cytoskeleton. These stiff filaments are not only needed for mechanical support. They also fulfill highly dynamic tasks. For instance MTs build the mitotic spindle, which pulls the doubled set of chromosomes apart during mitosis. Hence, a well-regulated and adjustable MT length is essential for cell division. Extending a recently introduced model [1], we here study length-regulation of MTs. Thereby we account for both spontaneous polymerization and depolymerization triggered by motor proteins. In contrast to the polymerization rate, the effective depolymerization rate depends on the presence of molecular motors at the tip and thereby on crowding effects which in turn depend on the MT length. We show that these antagonistic effects result in a well-defined MT length. Stochastic simulations and analytic calculations reveal the exact regimes where regulation is feasible. Furthermore, the adjusted MT length and the ensuing strength of fluctuations are analyzed. Taken together, we make quantitative predictions which can be tested experimentally. These results should help to obtain deeper insights in the microscopic mechanisms underlying length-regulation. [4pt] [1] L.Reese, A.Melbinger, E.Frey, Biophys. J., 101, 9, 2190 (2011)

  9. Nitric oxide regulates vascular adaptive mitochondrial dynamics.

    PubMed

    Miller, Matthew W; Knaub, Leslie A; Olivera-Fragoso, Luis F; Keller, Amy C; Balasubramaniam, Vivek; Watson, Peter A; Reusch, Jane E B

    2013-06-15

    Cardiovascular disease risk factors, such as diabetes, hypertension, dyslipidemia, obesity, and physical inactivity, are all correlated with impaired endothelial nitric oxide synthase (eNOS) function and decreased nitric oxide (NO) production. NO-mediated regulation of mitochondrial biogenesis has been established in many tissues, yet the role of eNOS in vascular mitochondrial biogenesis and dynamics is unclear. We hypothesized that genetic eNOS deletion and 3-day nitric oxide synthase (NOS) inhibition in rodents would result in impaired mitochondrial biogenesis and defunct fission/fusion and autophagy profiles within the aorta. We observed a significant, eNOS expression-dependent decrease in mitochondrial electron transport chain (ETC) protein subunits from complexes I, II, III, and V in eNOS heterozygotes and eNOS null mice compared with age-matched controls. In response to NOS inhibition with NG-nitro-L-arginine methyl ester (L-NAME) treatment in Sprague Dawley rats, significant decreases were observed in ETC protein subunits from complexes I, III, and IV as well as voltage-dependent anion channel 1. Decreased protein content of upstream regulators of mitochondrial biogenesis, cAMP response element-binding protein and peroxisome proliferator-activated receptor-γ coactivator-1α, were observed in response to 3-day L-NAME treatment. Both genetic eNOS deletion and NOS inhibition resulted in decreased manganese superoxide dismutase protein. L-NAME treatment resulted in significant changes to mitochondrial dynamic protein profiles with decreased fusion, increased fission, and minimally perturbed autophagy. In addition, L-NAME treatment blocked mitochondrial adaptation to an exercise intervention in the aorta. These results suggest that eNOS/NO play a role in basal and adaptive mitochondrial biogenesis in the vasculature and regulation of mitochondrial turnover. PMID:23585138

  10. Dynamic regulation of photosynthesis in Chlamydomonas reinhardtii.

    PubMed

    Minagawa, Jun; Tokutsu, Ryutaro

    2015-05-01

    Plants and algae have acquired the ability to acclimatize to ever-changing environments to survive. During photosynthesis, light energy is converted by several membrane protein supercomplexes into electrochemical energy, which is eventually used to assimilate CO2 . The efficiency of photosynthesis is modulated by many environmental factors, including temperature, drought, CO2 concentration, and the quality and quantity of light. Recently, our understanding of such regulators of photosynthesis and the underlying molecular mechanisms has increased considerably. The photosynthetic supercomplexes undergo supramolecular reorganizations within a short time after receiving environmental cues. These reorganizations include state transitions that balance the excitation of the two photosystems: qE quenching, which thermally dissipates excess energy at the level of the light-harvesting antenna, and cyclic electron flow, which supplies the increased ATP demanded by CO2 assimilation and the pH gradient to activate qE quenching. This review focuses on the recent findings regarding the environmental regulation of photosynthesis in model organisms, paying particular attention to the unicellular green alga Chlamydomonas reinhardtii, which offer a glimpse into the dynamic behavior of photosynthetic machinery in nature.

  11. Intracardiac flow dynamics regulate atrioventricular valve morphogenesis

    PubMed Central

    Kalogirou, Stamatia; Malissovas, Nikos; Moro, Enrico; Argenton, Francesco; Stainier, Didier Y.R.; Beis, Dimitris

    2014-01-01

    Aims Valvular heart disease is responsible for considerable morbidity and mortality. Cardiac valves develop as the heart contracts, and they function throughout the lifetime of the organism to prevent retrograde blood flow. Their precise morphogenesis is crucial for cardiac function. Zebrafish is an ideal model to investigate cardiac valve development as it allows these studies to be carried out in vivo through non-invasive imaging. Accumulating evidence suggests a role for contractility and intracardiac flow dynamics in cardiac valve development. However, these two factors have proved difficult to uncouple, especially since altering myocardial function affects the intracardiac flow pattern. Methods and results Here, we describe novel zebrafish models of developmental valve defects. We identified two mutant alleles of myosin heavy chain 6 that can be raised to adulthood despite having only one functional chamber—the ventricle. The adult mutant ventricle undergoes remodelling, and the atrioventricular (AV) valves fail to form four cuspids. In parallel, we characterized a novel mutant allele of southpaw, a nodal-related gene involved in the establishment of left–right asymmetry, which exhibits randomized heart and endoderm positioning. We first observed that in southpaw mutants the relative position of the two cardiac chambers is altered, affecting the geometry of the heart, while myocardial function appears unaffected. Mutant hearts that loop properly or exhibit situs inversus develop normally, whereas midline, unlooped hearts exhibit defects in their transvalvular flow pattern during AV valve development as well as defects in valve morphogenesis. Conclusion Our data indicate that intracardiac flow dynamics regulate valve morphogenesis independently of myocardial contractility. PMID:25100766

  12. Dynamic Hydraulic Fluid Stimulation Regulated Intramedullary Pressure

    PubMed Central

    Hu, Minyi; Serra-Hsu, Frederick; Bethel, Neville; Lin, Liangjun; Ferreri, Suzanne; Cheng, Jiqi; Qin, Yi-Xian

    2013-01-01

    Physical signals within bone, i.e. generated from mechanical loading, have the potential to initiate skeletal adaptation. Strong evidence has pointed to bone fluid flow (BFF) as a media between an external load and the bone cells, in which altered velocity and pressure can ultimately initiate the mechanotransduction and the remodeling process within bone. Load-induced BFF can be altered by factors such as intramedullary pressure (ImP) and/or bone matrix strain, mediating bone adaptation. Previous studies have shown that BFF induced by ImP alone, with minimum bone strain, can initiate bone remodeling. However, identifying induced ImP dynamics and bone strain factor in vivo using a non-invasive method still remains challenging. To apply ImP as a means for alteration of BFF, it was hypothesized that non-invasive dynamic hydraulic stimulation (DHS) can induce local ImP with minimal bone strain to potentially elicit osteogenic adaptive responses via bone-muscle coupling. The goal of this study was to evaluate the immediate effects on local and distant ImP and strain in response to a range of loading frequencies using DHS. Simultaneous femoral and tibial ImP and bone strain values were measured in three 15-month-old female Sprague Dawley rats during DHS loading on the tibia with frequencies of 1Hz to 10Hz. DHS showed noticeable effects on ImP induction in the stimulated tibia in a nonlinear fashion in response to DHS over the range of loading frequencies, where peaked at 2Hz. DHS at various loading frequencies generated minimal bone strain in the tibiae. Maximal bone strain measured at all loading frequencies was less than 8με. No detectable induction of ImP or bone strain was observed in the femur. This study suggested that oscillatory DHS may regulate the local fluid dynamics with minimal mechanical strain in bone, which serves critically in bone adaptation. These results clearly implied DHS’s potential as an effective, non-invasive intervention for osteopenia and

  13. Chloride Regulation: A Dynamic Equilibrium Crucial for Synaptic Inhibition.

    PubMed

    Doyon, Nicolas; Vinay, Laurent; Prescott, Steven A; De Koninck, Yves

    2016-03-16

    Fast synaptic inhibition relies on tight regulation of intracellular Cl(-). Chloride dysregulation is implicated in several neurological and psychiatric disorders. Beyond mere disinhibition, the consequences of Cl(-) dysregulation are multifaceted and best understood in terms of a dynamical system involving complex interactions between multiple processes operating on many spatiotemporal scales. This dynamical perspective helps explain many unintuitive manifestations of Cl(-) dysregulation. Here we discuss how taking into account dynamical regulation of intracellular Cl(-) is important for understanding how synaptic inhibition fails, how to best detect that failure, why Cl(-) regulation is energetically so expensive, and the overall consequences for therapeutics. PMID:26985723

  14. Chloride Regulation: A Dynamic Equilibrium Crucial for Synaptic Inhibition.

    PubMed

    Doyon, Nicolas; Vinay, Laurent; Prescott, Steven A; De Koninck, Yves

    2016-03-16

    Fast synaptic inhibition relies on tight regulation of intracellular Cl(-). Chloride dysregulation is implicated in several neurological and psychiatric disorders. Beyond mere disinhibition, the consequences of Cl(-) dysregulation are multifaceted and best understood in terms of a dynamical system involving complex interactions between multiple processes operating on many spatiotemporal scales. This dynamical perspective helps explain many unintuitive manifestations of Cl(-) dysregulation. Here we discuss how taking into account dynamical regulation of intracellular Cl(-) is important for understanding how synaptic inhibition fails, how to best detect that failure, why Cl(-) regulation is energetically so expensive, and the overall consequences for therapeutics.

  15. Dynamics and regulation of plant interphase microtubules: a comparative view.

    PubMed

    Hashimoto, Takashi

    2003-12-01

    Microtubule and actin cytoskeletons are fundamental to a variety of cellular activities within eukaryotic organisms. Extensive information on the dynamics and functions of microtubules, as well as on their regulatory proteins, have been revealed in fungi and animals, and corresponding pictures are now slowly emerging in plants. During interphase, plant cells contain highly dynamic cortical microtubules that organize into ordered arrays, which are apparently regulated by distinct groups of microtubule regulators. Comparison with fungal and animal microtubules highlights both conserved and unique mechanisms for the regulation of the microtubule cytoskeleton in plants.

  16. Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model

    NASA Astrophysics Data System (ADS)

    Li, Ying; Liu, Zengrong

    MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.

  17. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics.

    PubMed

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-10-20

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design.

  18. Dynamic Regulation of Sarcomeric Actin Filaments in Striated Muscle

    PubMed Central

    Ono, Shoichiro

    2010-01-01

    In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin subunits within sarcomeric actin filaments are dynamically exchanged without altering overall sarcomeric structures. A number of regulators for actin dynamics have been identified, and malfunction of these regulators often result in disorganization of myofibril structures or muscle diseases. Therefore, proper regulation of actin dynamics in striated muscle is critical for assembly and maintenance of functional myofibrils. Recent studies have suggested that both enhancers of actin dynamics and stabilizers of actin filaments are important for sarcomeric actin organization. Further investigation of the regulatory mechanism of actin dynamics in striated muscle should be a key to understanding how myofibrils develop and operate. © 2010 Wiley-Liss, Inc. PMID:20737540

  19. Self-Regulated Dynamical Criticality in Human ECoG

    PubMed Central

    Solovey, Guillermo; Miller, Kai J.; Ojemann, Jeffrey G.; Magnasco, Marcelo O.; Cecchi, Guillermo A.

    2012-01-01

    Mounting experimental and theoretical results indicate that neural systems are poised near a critical state. In human subjects, however, most evidence comes from functional MRI studies, an indirect measurement of neuronal activity with poor temporal resolution. Electrocorticography (ECoG) provides a unique window into human brain activity: each electrode records, with high temporal resolution, the activity resulting from the sum of the local field potentials of ∼105 neurons. We show that the human brain ECoG recordings display features of self-regulated dynamical criticality: dynamical modes of activation drift around the critical stability threshold, moving in and out of the unstable region and equilibrating the global dynamical state at a very fast time scale. Moreover, the analysis also reveals differences between the resting state and a motor task, associated with increased stability of a fraction of the dynamical modes. PMID:22833717

  20. Regulation of Mitoflash Biogenesis and Signaling by Mitochondrial Dynamics

    PubMed Central

    Li, Wenwen; Sun, Tao; Liu, Beibei; Wu, Di; Qi, Wenfeng; Wang, Xianhua; Ma, Qi; Cheng, Heping

    2016-01-01

    Mitochondria are highly dynamic organelles undergoing constant network reorganization and exhibiting stochastic signaling events in the form of mitochondrial flashes (mitoflashes). Here we investigate whether and how mitochondrial network dynamics regulate mitoflash biogenesis and signaling. We found that mitoflash frequency was largely invariant when network fragmentized or redistributed in the absence of mitofusin (Mfn) 1, Mfn2, or Kif5b. However, Opa1 deficiency decreased spontaneous mitoflash frequency due to superimposing changes in respiratory function, whereas mitoflash response to non-metabolic stimulation was unchanged despite network fragmentation. In Drp1- or Mff-deficient cells whose mitochondria hyperfused into a single whole-cell reticulum, the frequency of mitoflashes of regular amplitude and duration was again unaltered, although brief and low-amplitude “miniflashes” emerged because of improved detection ability. As the network reorganized, however, the signal mass of mitoflash signaling was dynamically regulated in accordance with the degree of network connectivity. These findings demonstrate a novel functional role of mitochondrial network dynamics and uncover a magnitude- rather than frequency-modulatory mechanism in the regulation of mitoflash signaling. In addition, our data support a stochastic trigger model for the ignition of mitoflashes. PMID:27623243

  1. Regulation of Mitoflash Biogenesis and Signaling by Mitochondrial Dynamics.

    PubMed

    Li, Wenwen; Sun, Tao; Liu, Beibei; Wu, Di; Qi, Wenfeng; Wang, Xianhua; Ma, Qi; Cheng, Heping

    2016-01-01

    Mitochondria are highly dynamic organelles undergoing constant network reorganization and exhibiting stochastic signaling events in the form of mitochondrial flashes (mitoflashes). Here we investigate whether and how mitochondrial network dynamics regulate mitoflash biogenesis and signaling. We found that mitoflash frequency was largely invariant when network fragmentized or redistributed in the absence of mitofusin (Mfn) 1, Mfn2, or Kif5b. However, Opa1 deficiency decreased spontaneous mitoflash frequency due to superimposing changes in respiratory function, whereas mitoflash response to non-metabolic stimulation was unchanged despite network fragmentation. In Drp1- or Mff-deficient cells whose mitochondria hyperfused into a single whole-cell reticulum, the frequency of mitoflashes of regular amplitude and duration was again unaltered, although brief and low-amplitude "miniflashes" emerged because of improved detection ability. As the network reorganized, however, the signal mass of mitoflash signaling was dynamically regulated in accordance with the degree of network connectivity. These findings demonstrate a novel functional role of mitochondrial network dynamics and uncover a magnitude- rather than frequency-modulatory mechanism in the regulation of mitoflash signaling. In addition, our data support a stochastic trigger model for the ignition of mitoflashes. PMID:27623243

  2. Population dynamics and regulation in the cave salamander Speleomantes strinatii

    NASA Astrophysics Data System (ADS)

    Salvidio, Sebastiano

    2007-05-01

    Time series analysis has been used to evaluate the mechanisms regulating population dynamics of mammals and insects, but has been rarely applied to amphibian populations. In this study, the influence of endogenous (density-dependent) and exogenous (density-independent) factors regulating population dynamics of the terrestrial plethodontid salamander Speleomantes strinatii was analysed by means of time series and multiple regression analyses. During the period 1993 2005, S. strinatii population abundance, estimated by a standardised temporary removal method, displayed relatively low fluctuations, and the autocorrelation function (ACF) analysis showed that the time series had a noncyclic structure. The partial rate correlation function (PRCF) indicated that a strong first-order negative feedback dominated the endogenous dynamics. Stepwise multiple regression analysis showed that the only climatic factor influencing population growth rate was the minimum winter temperature. Thus, at least during the study period, endogenous, density-dependent negative feedback was the main factor affecting the growth rate of the salamander population, whereas stochastic environmental variables, such as temperature and rainfall, seemed to play a minor role in regulation. These results stress the importance of considering both exogenous and endogenous factors when analysing amphibian long-term population dynamics.

  3. Dynamic hydro-climatic networks in pristine and regulated rivers

    NASA Astrophysics Data System (ADS)

    Botter, G.; Basso, S.; Lazzaro, G.; Doulatyari, B.; Biswal, B.; Schirmer, M.; Rinaldo, A.

    2014-12-01

    Flow patterns observed at-a-station are the dynamical byproduct of a cascade of processes involving different compartments of the hydro-climatic network (e.g., climate, rainfall, soil, vegetation) that regulates the transformation of rainfall into streamflows. In complex branching rivers, flow regimes result from the heterogeneous arrangement around the stream network of multiple hydrologic cascades that simultaneously occur within distinct contributing areas. As such, flow regimes are seen as the integrated output of a complex "network of networks", which can be properly characterized by its degree of temporal variability and spatial heterogeneity. Hydrologic networks that generate river flow regimes are dynamic in nature. In pristine rivers, the time-variance naturally emerges at multiple timescales from climate variability (namely, seasonality and inter-annual fluctuations), implying that the magnitude (and the features) of the water flow between two nodes may be highly variable across different seasons and years. Conversely, the spatial distribution of river flow regimes within pristine rivers involves scale-dependent transport features, as well as regional climatic and soil use gradients, which in small and meso-scale catchments (A < 103 km2) are usually mild enough to guarantee quite uniform flow regimes and high spatial correlations. Human-impacted rivers, instead, constitute hybrid networks where observed spatio-temporal patterns are dominated by anthropogenic shifts, such as landscape alterations and river regulation. In regulated rivers, the magnitude and the features of water flows from node to node may change significantly through time due to damming and withdrawals. However, regulation may impact river regimes in a spatially heterogeneous manner (e.g. in localized river reaches), with a significant decrease of spatial correlations and network connectivity. Provided that the spatial and temporal dynamics of flow regimes in complex rivers may strongly

  4. The Regulation of Chromatin by Dynamic SUMO Modifications.

    PubMed

    Wilson, Nicole R; Hochstrasser, Mark

    2016-01-01

    Protein modification by the small ubiquitin-related modifier (SUMO) protein regulates numerous cellular pathways and mounting evidence reveals a critical role for SUMO in modulating gene expression. Dynamic sumoylation of transcription factors, chromatin-modifying enzymes, histones, and other chromatin-associated factors significantly affects the transcriptional status of the eukaryotic genome. Recent studies have employed high-throughput ChIP-Seq analyses to gain clues regarding the role of the SUMO pathway in regulating chromatin-based transactions. Indeed, the global distribution of SUMO across chromatin reveals an important function for SUMO in controlling transcription, particularly of genes involved in protein synthesis. These newly appreciated patterns of genome-wide sumoylation will inform more directed studies aimed at analyzing how the dynamics of gene expression are controlled by posttranslational SUMO modification. PMID:27631795

  5. Mammal population regulation, keystone processes and ecosystem dynamics.

    PubMed Central

    Sinclair, A R E

    2003-01-01

    The theory of regulation in animal populations is fundamental to understanding the dynamics of populations, the causes of mortality and how natural selection shapes the life history of species. In mammals, the great range in body size allows us to see how allometric relationships affect the mode of regulation. Resource limitation is the fundamental cause of regulation. Top-down limitation through predators is determined by four factors: (i). body size; (ii). the diversity of predators and prey in the system; (iii). whether prey are resident or migratory; and (iv). the presence of alternative prey for predators. Body size in mammals has two important consequences. First, mammals, particularly large species, can act as keystones that determine the diversity of an ecosystem. I show how keystone processes can, in principle, be measured using the example of the wildebeest in the Serengeti ecosystem. Second, mammals act as ecological landscapers by altering vegetation succession. Mammals alter physical structure, ecological function and species diversity in most terrestrial biomes. In general, there is a close interaction between allometry, population regulation, life history and ecosystem dynamics. These relationships are relevant to applied aspects of conservation and pest management. PMID:14561329

  6. Transcription dynamics of inducible genes modulated by negative regulations.

    PubMed

    Li, Yanyan; Tang, Moxun; Yu, Jianshe

    2015-06-01

    Gene transcription is a stochastic process in single cells, in which genes transit randomly between active and inactive states. Transcription of many inducible genes is also tightly regulated: It is often stimulated by extracellular signals, activated through signal transduction pathways and later repressed by negative regulations. In this work, we study the nonlinear dynamics of the mean transcription level of inducible genes modulated by the interplay of the intrinsic transcriptional randomness and the repression by negative regulations. In our model, we integrate negative regulations into gene activation process, and make the conventional assumption on the production and degradation of transcripts. We show that, whether or not the basal transcription is temporarily terminated when cells are stimulated, the mean transcription level grows in the typical up and down pattern commonly observed in immune response genes. With the help of numerical simulations, we clarify the delicate impact of the system parameters on the transcription dynamics, and demonstrate how our model generates the distinct temporal gene-induction patterns in mouse fibroblasts discerned in recent experiments.

  7. Kinesin regulation dynamics through cargo delivery, a single molecule investigation

    NASA Astrophysics Data System (ADS)

    Kovacs, Anthony; Kessler, Jonathan; Lin, Huawen; Dutcher, Susan; Wang, Yan Mei

    2015-03-01

    Kinesins are microtubule-based motors that deliver cargo to their destinations in a highly regulated manner. Although in recent years numerous regulators of cargo delivery have been identified, the regulation mechanism of kinesin through the cargo delivery and recycling process is not known. By performing single molecule fluorescence imaging measurements in Chlamydomonas flagella, which are 200 nm in diameter, 10 microns in length, and contain 9 sets of microtubule doublets, we tracked the intraflagellar transport (IFT) trains, BBSome cargo, and kinesin-2 motors through the cargo delivery process and determined the aforementioned dynamics. Upon arrival at the microtubule plus end at the flagellar tip, (1) IFT trains and BBSome cargo remain intact, dissociate together from kinesins and microtubules, and diffuse along flagellar membrane for a mean of 2.3 sec before commencing retrograde travel. (2) Kinesin motors remain bound to and diffuse along microtubules for 1.3 sec before dissociating into the flagellar lumen for recycling.

  8. Membrane tension regulates clathrin-coated pit dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Allen

    2014-03-01

    Intracellular organization depends on close communication between the extracellular environment and a network of cytoskeleton filaments. The interactions between cytoskeletal filaments and the plasma membrane lead to changes in membrane tension that in turns help regulate biological processes. Endocytosis is thought to be stimulated by low membrane tension and the removal of membrane increases membrane tension. While it is appreciated that the opposing effects of exocytosis and endocytosis have on keeping plasma membrane tension to a set point, it is not clear how membrane tension affects the dynamics of clathrin-coated pits (CCPs), the individual functional units of clathrin-mediated endocytosis. Furthermore, although it was recently shown that actin dynamics counteracts membrane tension during CCP formation, it is not clear what roles plasma membrane tension plays during CCP initiation. Based on the notion that plasma membrane tension is increased when the membrane area increases during cell spreading, we designed micro-patterned surfaces of different sizes to control the cell spreading sizes. Total internal reflection fluorescence microscopy of living cells and high content image analysis were used to quantify the dynamics of CCPs. We found that there is an increased proportion of CCPs with short (<20s) lifetime for cells on larger patterns. Interestingly, cells on larger patterns have higher CCP initiation density, an effect unexpected based on the conventional view of decreasing endocytosis with increasing membrane tension. Furthermore, by analyzing the intensity profiles of CCPs that were longer-lived, we found CCP intensity decreases with increasing cell size, indicating that the CCPs are smaller with increasing membrane tension. Finally, disruption of actin dynamics significantly increased the number of short-lived CCPs, but also decreased CCP initiation rate. Together, our study reveals new mechanistic insights into how plasma membrane tension regulates

  9. PACSIN1 regulates the dynamics of AMPA receptor trafficking.

    PubMed

    Widagdo, Jocelyn; Fang, Huaqiang; Jang, Se Eun; Anggono, Victor

    2016-01-01

    Dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses plays an important role in synaptic plasticity. We previously reported that the protein kinase C and casein kinase II substrate in neurons (PACSIN) forms a complex with AMPARs through its interaction with the protein interacting with C-kinase 1 (PICK1) to regulate NMDA receptor (NMDAR)-induced AMPAR endocytosis and cerebellar long-term depression. However, the molecular mechanism by which PACSIN regulates the dynamics of AMPAR trafficking remains unclear. Using a pH-sensitive green fluorescent protein, pHluorin, tagged to the extracellular domain of the GluA2 subunit of AMPARs, we demonstrate dual roles for PACSIN1 in controlling the internalization and recycling of GluA2 after NMDAR activation. Structure and function analysis reveals a requirement for the PACSIN1 F-BAR and SH3 domains in controlling these NMDAR-dependent processes. Interestingly, the variable region, which binds to PICK1, is not essential for NMDAR-dependent GluA2 internalization and is required only for the correct recycling of AMPARs. These results indicate that PACSIN is a versatile membrane deformation protein that links the endocytic and recycling machineries essential for dynamic AMPAR trafficking in neurons. PMID:27488904

  10. PACSIN1 regulates the dynamics of AMPA receptor trafficking

    PubMed Central

    Widagdo, Jocelyn; Fang, Huaqiang; Jang, Se Eun; Anggono, Victor

    2016-01-01

    Dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses plays an important role in synaptic plasticity. We previously reported that the protein kinase C and casein kinase II substrate in neurons (PACSIN) forms a complex with AMPARs through its interaction with the protein interacting with C-kinase 1 (PICK1) to regulate NMDA receptor (NMDAR)-induced AMPAR endocytosis and cerebellar long-term depression. However, the molecular mechanism by which PACSIN regulates the dynamics of AMPAR trafficking remains unclear. Using a pH-sensitive green fluorescent protein, pHluorin, tagged to the extracellular domain of the GluA2 subunit of AMPARs, we demonstrate dual roles for PACSIN1 in controlling the internalization and recycling of GluA2 after NMDAR activation. Structure and function analysis reveals a requirement for the PACSIN1 F-BAR and SH3 domains in controlling these NMDAR-dependent processes. Interestingly, the variable region, which binds to PICK1, is not essential for NMDAR-dependent GluA2 internalization and is required only for the correct recycling of AMPARs. These results indicate that PACSIN is a versatile membrane deformation protein that links the endocytic and recycling machineries essential for dynamic AMPAR trafficking in neurons. PMID:27488904

  11. Signaling networks regulating leukocyte podosome dynamics and function

    PubMed Central

    Dovas, Athanassios; Cox, Dianne

    2011-01-01

    Podosomes are ventral adhesion structures prominent in cells of the myeloid lineage. A common aspect of these cells is that they are highly motile and are required to traverse multiple tissue barriers in order to perform their functions. Recently podosomes have gathered attention from researchers as important cellular structures that can influence cell adhesion, motility and matrix remodeling. Adhesive and soluble ligands act via transmembrane receptors and propagate signals to the leukocyte cytoskeleton via small G proteins of the Rho family, tyrosine kinases and scaffold proteins and are able to induce podosome formation and rearrangements. Manipulation of the signals that regulate podosome formation and dynamics can therefore be a strategy to interfere with leukocyte functions in a multitude of pathological settings, such as infections, atherosclerosis and arthritis. Here, we review the major signaling molecules that act in the formation and regulation of podosomes. PMID:21342664

  12. The role of symmetry in the regulation of brain dynamics

    NASA Astrophysics Data System (ADS)

    Tang, Evelyn; Giusti, Chad; Cieslak, Matthew; Grafton, Scott; Bassett, Danielle

    Synchronous neural processes regulate a wide range of behaviors from attention to learning. Yet structural constraints on these processes are far from understood. We draw on new theoretical links between structural symmetries and the control of synchronous function, to offer a reconceptualization of the relationships between brain structure and function in human and non-human primates. By classifying 3-node motifs in macaque connectivity data, we find the most prevalent motifs can theoretically ensure a diversity of function including strict synchrony as well as control to arbitrary states. The least prevalent motifs are theoretically controllable to arbitrary states, which may not be desirable in a biological system. In humans, regions with high topological similarity of connections (a continuous notion related to symmetry) are most commonly found in fronto-parietal systems, which may account for their critical role in cognitive control. Collectively, our work underscores the role of symmetry and topological similarity in regulating dynamics of brain function.

  13. Dynamic regulation of transcription factors by nucleosome remodeling.

    PubMed

    Li, Ming; Hada, Arjan; Sen, Payel; Olufemi, Lola; Hall, Michael A; Smith, Benjamin Y; Forth, Scott; McKnight, Jeffrey N; Patel, Ashok; Bowman, Gregory D; Bartholomew, Blaine; Wang, Michelle D

    2015-06-05

    The chromatin landscape and promoter architecture are dominated by the interplay of nucleosome and transcription factor (TF) binding to crucial DNA sequence elements. However, it remains unclear whether nucleosomes mobilized by chromatin remodelers can influence TFs that are already present on the DNA template. In this study, we investigated the interplay between nucleosome remodeling, by either yeast ISW1a or SWI/SNF, and a bound TF. We found that a TF serves as a major barrier to ISW1a remodeling, and acts as a boundary for nucleosome repositioning. In contrast, SWI/SNF was able to slide a nucleosome past a TF, with concurrent eviction of the TF from the DNA, and the TF did not significantly impact the nucleosome positioning. Our results provide direct evidence for a novel mechanism for both nucleosome positioning regulation by bound TFs and TF regulation via dynamic repositioning of nucleosomes.

  14. Dynamic regulation of Polycomb group activity during plant development.

    PubMed

    Bemer, Marian; Grossniklaus, Ueli

    2012-11-01

    Polycomb group (PcG) complexes play important roles in phase transitions and cell fate determination in plants and animals, by epigenetically repressing sets of genes that promote either proliferation or differentiation. The continuous differentiation of new organs in plants, such as leaves or flowers, requires a highly dynamic PcG function, which can be induced, modulated, or repressed when necessary. In this review, we discuss the recent advance in understanding PcG function in plants and focus on the diverse molecular mechanisms that have been described to regulate and counteract PcG activity in Arabidopsis.

  15. Dynamic regulation of Polycomb group activity during plant development.

    PubMed

    Bemer, Marian; Grossniklaus, Ueli

    2012-11-01

    Polycomb group (PcG) complexes play important roles in phase transitions and cell fate determination in plants and animals, by epigenetically repressing sets of genes that promote either proliferation or differentiation. The continuous differentiation of new organs in plants, such as leaves or flowers, requires a highly dynamic PcG function, which can be induced, modulated, or repressed when necessary. In this review, we discuss the recent advance in understanding PcG function in plants and focus on the diverse molecular mechanisms that have been described to regulate and counteract PcG activity in Arabidopsis. PMID:22999383

  16. Extra-coding RNAs regulate neuronal DNA methylation dynamics

    PubMed Central

    Savell, Katherine E.; Gallus, Nancy V. N.; Simon, Rhiana C.; Brown, Jordan A.; Revanna, Jasmin S.; Osborn, Mary Katherine; Song, Esther Y.; O'Malley, John J.; Stackhouse, Christian T.; Norvil, Allison; Gowher, Humaira; Sweatt, J. David; Day, Jeremy J.

    2016-01-01

    Epigenetic mechanisms such as DNA methylation are essential regulators of the function and information storage capacity of neurons. DNA methylation is highly dynamic in the developing and adult brain, and is actively regulated by neuronal activity and behavioural experiences. However, it is presently unclear how methylation status at individual genes is targeted for modification. Here, we report that extra-coding RNAs (ecRNAs) interact with DNA methyltransferases and regulate neuronal DNA methylation. Expression of ecRNA species is associated with gene promoter hypomethylation, is altered by neuronal activity, and is overrepresented at genes involved in neuronal function. Knockdown of the Fos ecRNA locus results in gene hypermethylation and mRNA silencing, and hippocampal expression of Fos ecRNA is required for long-term fear memory formation in rats. These results suggest that ecRNAs are fundamental regulators of DNA methylation patterns in neuronal systems, and reveal a promising avenue for therapeutic targeting in neuropsychiatric disease states. PMID:27384705

  17. Reconstructing a network of stress-response regulators via dynamic system modeling of gene regulation.

    PubMed

    Wu, Wei-Sheng; Li, Wen-Hsiung; Chen, Bor-Sen

    2008-02-10

    Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs) that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene's expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA) to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specific stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably sufficient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  18. Fast Responding Voltage Regulator and Dynamic VAR Compensator

    SciTech Connect

    Divan, Deepak; Moghe, Rohit; Tholomier, Damien

    2014-12-31

    The objectives of this project were to develop a dynamic VAR compensator (DVC) for voltage regulation through VAR support to demonstrate the ability to achieve greater levels of voltage control on electricity distribution networks, and faster response compared to existing grid technology. The goal of the project was to develop a prototype Fast Dynamic VAR Compensator (Fast DVC) hardware device, and this was achieved. In addition to developing the dynamic VAR compensator device, Varentec in partnership with researchers at North Carolina State University (NCSU) successfully met the objectives to model the potential positive impact of such DVCs on representative power networks. This modeling activity validated the ability of distributed dynamic VAR compensators to provide fast voltage regulation and reactive power control required to respond to grid disturbances under high penetration of fluctuating and intermittent distributed energy resources (DERs) through extensive simulation studies. Specifically the following tasks were set to be accomplished: 1) Development of dynamic VAR compensator to support dynamic voltage variations on the grid through VAR control 2) Extensive testing of the DVC in the lab environment 3) Present the operational DVC device to the DOE at Varentec’s lab 4) Formulation of a detailed specification sheet, unit assembly document, test setup document, unit bring-up plan, and test plan 5) Extensive simulations of the DVC in a system with high PV penetration. Understanding the operation with many DVC on a single distribution system 6) Creation and submittal of quarterly and final reports conveying the design documents, unit performance data, modeling simulation charts and diagrams, and summary explanations of the satisfaction of program goals. This report details the various efforts that led to the development of the Fast DVC as well as the modeling & simulation results. The report begins with the introduction in Section II which outlines the

  19. MADS-complexes regulate transcriptome dynamics during pollen maturation

    PubMed Central

    Verelst, Wim; Twell, David; de Folter, Stefan; Immink, Richard; Saedler, Heinz; Münster, Thomas

    2007-01-01

    Background Differentiation processes are responsible for the diversity and functional specialization of the cell types that compose an organism. The outcome of these processes can be studied at molecular, physiologic, and biochemical levels by comparing different cell types, but the complexity and dynamics of the regulatory processes that specify the differentiation are largely unexplored. Results Here we identified the pollen-specific MIKC* class of MADS-domain transcription factors as major regulators of transcriptome dynamics during male reproductive cell development in Arabidopsis thaliana. Pollen transcript profiling of mutants deficient in different MIKC* protein complexes revealed that they control a transcriptional switch that directs pollen maturation and that is essential for pollen competitive ability. We resolved the functional redundancy among the MIKC* proteins and uncovered part of the underlying network by identifying the non-MIKC* MADS-box genes AGL18 and AGL29 as downstream regulators of a subset of the MIKC* MADS-controlled genes. Conclusion Our results provide a first, unique, and compelling insight into the complexity of a transcription factor network that directs cellular differentiation during pollen maturation, a process that is essential for male reproductive fitness in flowering plants. PMID:18034896

  20. Signal inhibition by a dynamically regulated pool of monophosphorylated MAPK

    PubMed Central

    Nagiec, Michal J.; McCarter, Patrick C.; Kelley, Joshua B.; Dixit, Gauri; Elston, Timothy C.; Dohlman, Henrik G.

    2015-01-01

    Protein kinases regulate a broad array of cellular processes and do so through the phosphorylation of one or more sites within a given substrate. Many protein kinases are themselves regulated through multisite phosphorylation, and the addition or removal of phosphates can occur in a sequential (processive) or a stepwise (distributive) manner. Here we measured the relative abundance of the monophosphorylated and dual-phosphorylated forms of Fus3, a member of the mitogen-activated protein kinase (MAPK) family in yeast. We found that upon activation with pheromone, a substantial proportion of Fus3 accumulates in the monophosphorylated state. Introduction of an additional copy of Fus3 lacking either phosphorylation site leads to dampened signaling. Conversely, cells lacking the dual-specificity phosphatase (msg5Δ) or that are deficient in docking to the MAPK-scaffold (Ste5ND) accumulate a greater proportion of dual-phosphorylated Fus3. The double mutant exhibits a synergistic, or “synthetic,” supersensitivity to pheromone. Finally, we present a predictive computational model that combines MAPK scaffold and phosphatase activities and is sufficient to account for the observed MAPK profiles. These results indicate that the monophosphorylated and dual-phosphorylated forms of the MAPK act in opposition to one another. Moreover, they reveal a new mechanism by which the MAPK scaffold acts dynamically to regulate signaling. PMID:26179917

  1. Regulators of Actin Dynamics in Gastrointestinal Tract Tumors.

    PubMed

    Steinestel, Konrad; Wardelmann, Eva; Hartmann, Wolfgang; Grünewald, Inga

    2015-01-01

    Reorganization of the actin cytoskeleton underlies cell migration in a wide variety of physiological and pathological processes, such as embryonic development, wound healing, and tumor cell invasion. It has been shown that actin assembly and disassembly are precisely regulated by intracellular signaling cascades that respond to changes in the cell microenvironment, ligand binding to surface receptors, or oncogenic transformation of the cell. Actin-nucleating and actin-depolymerizing (ANFs/ADFs) and nucleation-promoting factors (NPFs) regulate cytoskeletal dynamics at the leading edge of migrating cells, thereby modulating cell shape; these proteins facilitate cellular movement and mediate degradation of the surrounding extracellular matrix by secretion of lytic proteases, thus eliminating barriers for tumor cell invasion. Accordingly, expression and activity of these actin-binding proteins have been linked to enhanced metastasis and poor prognosis in a variety of malignancies. In this review, we will summarize what is known about expression patterns and the functional role of actin regulators in gastrointestinal tumors and evaluate first pharmacological approaches to prevent invasion and metastatic dissemination of malignant cells. PMID:26345720

  2. Regulators of Actin Dynamics in Gastrointestinal Tract Tumors

    PubMed Central

    Steinestel, Konrad; Wardelmann, Eva; Hartmann, Wolfgang; Grünewald, Inga

    2015-01-01

    Reorganization of the actin cytoskeleton underlies cell migration in a wide variety of physiological and pathological processes, such as embryonic development, wound healing, and tumor cell invasion. It has been shown that actin assembly and disassembly are precisely regulated by intracellular signaling cascades that respond to changes in the cell microenvironment, ligand binding to surface receptors, or oncogenic transformation of the cell. Actin-nucleating and actin-depolymerizing (ANFs/ADFs) and nucleation-promoting factors (NPFs) regulate cytoskeletal dynamics at the leading edge of migrating cells, thereby modulating cell shape; these proteins facilitate cellular movement and mediate degradation of the surrounding extracellular matrix by secretion of lytic proteases, thus eliminating barriers for tumor cell invasion. Accordingly, expression and activity of these actin-binding proteins have been linked to enhanced metastasis and poor prognosis in a variety of malignancies. In this review, we will summarize what is known about expression patterns and the functional role of actin regulators in gastrointestinal tumors and evaluate first pharmacological approaches to prevent invasion and metastatic dissemination of malignant cells. PMID:26345720

  3. Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation

    PubMed Central

    Cavazza, Alessia; Miccio, Annarita; Romano, Oriana; Petiti, Luca; Malagoli Tagliazucchi, Guidantonio; Peano, Clelia; Severgnini, Marco; Rizzi, Ermanno; De Bellis, Gianluca; Bicciato, Silvio; Mavilio, Fulvio

    2016-01-01

    Summary Human skin is maintained by the differentiation and maturation of interfollicular stem and progenitors cells. We used DeepCAGE, genome-wide profiling of histone modifications and retroviral integration analysis, to map transcripts, promoters, enhancers, and super-enhancers (SEs) in prospectively isolated keratinocytes and transit-amplifying progenitors, and retrospectively defined keratinocyte stem cells. We show that >95% of the active promoters are in common and differentially regulated in progenitors and differentiated keratinocytes, while approximately half of the enhancers and SEs are stage specific and account for most of the epigenetic changes occurring during differentiation. Transcription factor (TF) motif identification and correlation with TF binding site maps allowed the identification of TF circuitries acting on enhancers and SEs during differentiation. Overall, our study provides a broad, genome-wide description of chromatin dynamics and differential enhancer and promoter usage during epithelial differentiation, and describes a novel approach to identify active regulatory elements in rare stem cell populations. PMID:27050947

  4. Dynamic changes in histone acetylation regulate origins of DNA replication

    PubMed Central

    Unnikrishnan, Ashwin; Gafken, Philip R.; Tsukiyama, Toshio

    2011-01-01

    While histone modifications have been implicated in many DNA-dependent processes, their precise role in DNA replication remains largely unknown. Here, we describe a very efficient, single-step method to specifically purify histones located around an origin of replication from S. cerevisiae. Using high-resolution mass spectrometry, we have obtained a comprehensive view of the histone modifications surrounding the origin of replication throughout the cell cycle. We have discovered that histone H3 and H4 acetylation is dynamically regulated around an origin of replication, at the level of multiply-acetylated histones. Furthermore, we find that this acetylation is required for efficient origin activation during S-phase. PMID:20228802

  5. Methane dynamics regulated by microbial community response to permafrost thaw.

    PubMed

    McCalley, Carmody K; Woodcroft, Ben J; Hodgkins, Suzanne B; Wehr, Richard A; Kim, Eun-Hae; Mondav, Rhiannon; Crill, Patrick M; Chanton, Jeffrey P; Rich, Virginia I; Tyson, Gene W; Saleska, Scott R

    2014-10-23

    Permafrost contains about 50% of the global soil carbon. It is thought that the thawing of permafrost can lead to a loss of soil carbon in the form of methane and carbon dioxide emissions. The magnitude of the resulting positive climate feedback of such greenhouse gas emissions is still unknown and may to a large extent depend on the poorly understood role of microbial community composition in regulating the metabolic processes that drive such ecosystem-scale greenhouse gas fluxes. Here we show that changes in vegetation and increasing methane emissions with permafrost thaw are associated with a switch from hydrogenotrophic to partly acetoclastic methanogenesis, resulting in a large shift in the δ(13)C signature (10-15‰) of emitted methane. We used a natural landscape gradient of permafrost thaw in northern Sweden as a model to investigate the role of microbial communities in regulating methane cycling, and to test whether a knowledge of community dynamics could improve predictions of carbon emissions under loss of permafrost. Abundance of the methanogen Candidatus 'Methanoflorens stordalenmirensis' is a key predictor of the shifts in methane isotopes, which in turn predicts the proportions of carbon emitted as methane and as carbon dioxide, an important factor for simulating the climate feedback associated with permafrost thaw in global models. By showing that the abundance of key microbial lineages can be used to predict atmospherically relevant patterns in methane isotopes and the proportion of carbon metabolized to methane during permafrost thaw, we establish a basis for scaling changing microbial communities to ecosystem isotope dynamics. Our findings indicate that microbial ecology may be important in ecosystem-scale responses to global change. PMID:25341787

  6. Dynamic regulation of aquaporin-4 water channels in neurological disorders

    PubMed Central

    Hsu, Ying; Tran, Minh; Linninger, Andreas A.

    2015-01-01

    Aquaporin-4 water channels play a central role in brain water regulation in neurological disorders. Aquaporin-4 is abundantly expressed at the astroglial endfeet facing the cerebral vasculature and the pial membrane, and both its expression level and subcellular localization significantly influence brain water transport. However, measurements of aquaporin-4 levels in animal models of brain injury often report opposite trends of change at the injury core and the penumbra. Furthermore, aquaporin-4 channels play a beneficial role in brain water clearance in vasogenic edema, but a detrimental role in cytotoxic edema and exacerbate cell swelling. In light of current evidence, we still do not have a complete understanding of the role of aquaporin-4 in brain water transport. In this review, we propose that the regulatory mechanisms of aquaporin-4 at the transcriptional, translational, and post-translational levels jointly regulate water permeability in the short and long time scale after injury. Furthermore, in order to understand why aquaporin-4 channels play opposing roles in cytotoxic and vasogenic edema, we discuss experimental evidence on the dynamically changing osmotic gradients between blood, extracellular space, and the cytosol during the formation of cytotoxic and vasogenic edema. We conclude with an emerging picture of the distinct osmotic environments in cytotoxic and vasogenic edema, and propose that the directions of aquaporin-4-mediated water clearance in these two types of edema are distinct. The difference in water clearance pathways may provide an explanation for the conflicting observations of the roles of aquaporin-4 in edema resolution. PMID:26526878

  7. Dynamic regulation of aquaporin-4 water channels in neurological disorders.

    PubMed

    Hsu, Ying; Tran, Minh; Linninger, Andreas A

    2015-10-01

    Aquaporin-4 water channels play a central role in brain water regulation in neurological disorders. Aquaporin-4 is abundantly expressed at the astroglial endfeet facing the cerebral vasculature and the pial membrane, and both its expression level and subcellular localization significantly influence brain water transport. However, measurements of aquaporin-4 levels in animal models of brain injury often report opposite trends of change at the injury core and the penumbra. Furthermore, aquaporin-4 channels play a beneficial role in brain water clearance in vasogenic edema, but a detrimental role in cytotoxic edema and exacerbate cell swelling. In light of current evidence, we still do not have a complete understanding of the role of aquaporin-4 in brain water transport. In this review, we propose that the regulatory mechanisms of aquaporin-4 at the transcriptional, translational, and post-translational levels jointly regulate water permeability in the short and long time scale after injury. Furthermore, in order to understand why aquaporin-4 channels play opposing roles in cytotoxic and vasogenic edema, we discuss experimental evidence on the dynamically changing osmotic gradients between blood, extracellular space, and the cytosol during the formation of cytotoxic and vasogenic edema. We conclude with an emerging picture of the distinct osmotic environments in cytotoxic and vasogenic edema, and propose that the directions of aquaporin-4-mediated water clearance in these two types of edema are distinct. The difference in water clearance pathways may provide an explanation for the conflicting observations of the roles of aquaporin-4 in edema resolution. PMID:26526878

  8. Dynamic DNA methylation regulates neuronal intrinsic membrane excitability.

    PubMed

    Meadows, Jarrod P; Guzman-Karlsson, Mikael C; Phillips, Scott; Brown, Jordan A; Strange, Sarah K; Sweatt, J David; Hablitz, John J

    2016-01-01

    Epigenetic modifications, such as DNA cytosine methylation, contribute to the mechanisms underlying learning and memory by coordinating adaptive gene expression and neuronal plasticity. Transcription-dependent plasticity regulated by DNA methylation includes synaptic plasticity and homeostatic synaptic scaling. Memory-related plasticity also includes alterations in intrinsic membrane excitability mediated by changes in the abundance or activity of ion channels in the plasma membrane, which sets the threshold for action potential generation. We found that prolonged inhibition of DNA methyltransferase (DNMT) activity increased intrinsic membrane excitability of cultured cortical pyramidal neurons. Knockdown of the cytosine demethylase TET1 or inhibition of RNA polymerase blocked the increased membrane excitability caused by DNMT inhibition, suggesting that this effect was mediated by subsequent cytosine demethylation and de novo transcription. Prolonged DNMT inhibition blunted the medium component of the after-hyperpolarization potential, an effect that would increase neuronal excitability, and was associated with reduced expression of the genes encoding small-conductance Ca(2+)-activated K(+) (SK) channels. Furthermore, the specific SK channel blocker apamin increased neuronal excitability but was ineffective after DNMT inhibition. Our results suggested that DNMT inhibition enables transcriptional changes that culminate in decreased expression of SK channel-encoding genes and decreased activity of SK channels, thus providing a mechanism for the regulation of neuronal intrinsic membrane excitability by dynamic DNA cytosine methylation. This study has implications for human neurological and psychiatric diseases associated with dysregulated intrinsic excitability. PMID:27555660

  9. Impaired sympathetic vascular regulation in humans after acute dynamic exercise.

    PubMed Central

    Halliwill, J R; Taylor, J A; Eckberg, D L

    1996-01-01

    1. The reduction in vascular resistance which accompanies acute dynamic exercise does not subside immediately during recovery, resulting in a post-exercise hypotension. This sustained vasodilatation suggests that sympathetic vascular regulation is altered after exercise. 2. Therefore, we assessed the baroreflex control of sympathetic outflow in response to arterial pressure changes, and transduction of sympathetic activity into vascular resistance during a sympatho-excitatory stimulus (isometric handgrip exercise) after either exercise (60 min cycling at 60% peak aerobic power (VO2,peak)) or sham treatment (60 min seated rest) in nine healthy subjects. 3. Both muscle sympathetic nerve activity and calf vascular resistance were reduced after exercise (-29.7 +/- 8.8 and -25.3 +/- 9.1%, both P < 0.05). The baroreflex relation between diastolic pressure and sympathetic outflow was shifted downward after exercise (post-exercise intercept, 218 +/- 38 total integrated activity (heartbeat)-1; post-sham intercept, 318 +/- 51 total integrated activity (heartbeat)-1, P < 0.05), indicating less sympathetic outflow across all diastolic pressures. Further, the relation between sympathetic activity and vascular resistance was attenuated after exercise (post-exercise slope, 0.0031 +/- 0.0007 units (total integrated activity)-1 min; post-sham slope, 0.0100 +/- 0.0033 units (total integrated activity)-1 min, P < 0.05), indicating less vasoconstriction with any increase in sympathetic activity. 4. Thus, both baroreflex control of sympathetic outflow and the transduction of sympathetic activity into vascular resistance are altered after dynamic exercise. We conclude that the vasodilation which underlies post-exercise hypotension results from both neural and vascular phenomena. Images Figure 7 PMID:8866370

  10. Impaired sympathetic vascular regulation in humans after acute dynamic exercise

    NASA Technical Reports Server (NTRS)

    Halliwill, J. R.; Taylor, J. A.; Eckberg, D. L.

    1996-01-01

    1. The reduction in vascular resistance which accompanies acute dynamic exercise does not subside immediately during recovery, resulting in a post-exercise hypotension. This sustained vasodilatation suggests that sympathetic vascular regulation is altered after exercise. 2. Therefore, we assessed the baroreflex control of sympathetic outflow in response to arterial pressure changes, and transduction of sympathetic activity into vascular resistance during a sympatho-excitatory stimulus (isometric handgrip exercise) after either exercise (60 min cycling at 60% peak aerobic power (VO2,peak)) or sham treatment (60 min seated rest) in nine healthy subjects. 3. Both muscle sympathetic nerve activity and calf vascular resistance were reduced after exercise (-29.7 +/- 8.8 and -25.3 +/- 9.1%, both P < 0.05). The baroreflex relation between diastolic pressure and sympathetic outflow was shifted downward after exercise (post-exercise intercept, 218 +/- 38 total integrated activity (heartbeat)-1; post-sham intercept, 318 +/- 51 total integrated activity (heartbeat)-1, P < 0.05), indicating less sympathetic outflow across all diastolic pressures. Further, the relation between sympathetic activity and vascular resistance was attenuated after exercise (post-exercise slope, 0.0031 +/- 0.0007 units (total integrated activity)-1 min; post-sham slope, 0.0100 +/- 0.0033 units (total integrated activity)-1 min, P < 0.05), indicating less vasoconstriction with any increase in sympathetic activity. 4. Thus, both baroreflex control of sympathetic outflow and the transduction of sympathetic activity into vascular resistance are altered after dynamic exercise. We conclude that the vasodilation which underlies post-exercise hypotension results from both neural and vascular phenomena.

  11. Dynamics of adenylate cyclase regulation via heterotrimeric G-proteins.

    PubMed

    Milde, Markus; Werthmann, Ruth C; von Hayn, Kathrin; Bünemann, Moritz

    2014-04-01

    A wide variety of G-protein-coupled receptors either activate or inhibit ACs (adenylate cyclases), thereby regulating cellular cAMP levels and consequently inducing proper physiological responses. Stimulatory and inhibitory G-proteins interact directly with ACs, whereas G(q)-coupled receptors exert their effects primarily via Ca2+. Using the FRET-based cAMP sensor Epac1 (exchange protein directly activated by cAMP 1)-cAMPS (adenosine 3',5'-cyclic monophosphorothioate), we studied cAMP levels in single living VSMCs (vascular smooth muscle cells) or HUVECs (human umbilical vein endothelial cells) with subsecond temporal resolution. Stimulation of purinergic (VSMCs) or thrombin (HUVECs) receptors rapidly decreased cAMP levels in the presence of the β-adrenergic agonist isoprenaline via a rise in Ca2+ and subsequent inhibition of AC5 and AC6. Specifically in HUVECs, we observed that, in the continuous presence of thrombin, cAMP levels climbed slowly after the initial decline with a delay of a little less than 1 min. The underlying mechanism includes phospholipase A2 activity and cyclo-oxygenase-mediated synthesis of prostaglandins. We studied further the dynamics of the inhibition of ACs via G(i)-proteins utilizing FRET imaging to resolve interactions between fluorescently labelled G(i)-proteins and AC5. FRET between Gα(i1) and AC5 developed at much lower concentration of agonist compared with the overall G(i)-protein activity. We found the dissociation of Gα(i1) subunits and AC5 to occur slower than the G(i)-protein deactivation. This led us to the conclusion that AC5, by binding active Gα(i1), interferes with G-protein deactivation and reassembly and thereby might sensitize its own regulation. PMID:24646224

  12. Regulation of ubiquitin ligase dynamics by the nucleolus

    PubMed Central

    Mekhail, Karim; Khacho, Mireille; Carrigan, Amanda; Hache, Robert R.J.; Gunaratnam, Lakshman; Lee, Stephen

    2005-01-01

    Cellular pathways relay information through dynamic protein interactions. We have assessed the kinetic properties of the murine double minute protein (MDM2) and von Hippel-Lindau (VHL) ubiquitin ligases in living cells under physiological conditions that alter the stability of their respective p53 and hypoxia-inducible factor substrates. Photobleaching experiments reveal that MDM2 and VHL are highly mobile proteins in settings where their substrates are efficiently degraded. The nucleolar architecture converts MDM2 and VHL to a static state in response to regulatory cues that are associated with substrate stability. After signal termination, the nucleolus is able to rapidly release these proteins from static detention, thereby restoring their high mobility profiles. A protein surface region of VHL's β-sheet domain was identified as a discrete [H+]-responsive nucleolar detention signal that targets the VHL/Cullin-2 ubiquitin ligase complex to nucleoli in response to physiological fluctuations in environmental pH. Data shown here provide the first evidence that cells have evolved a mechanism to regulate molecular networks by reversibly switching proteins between a mobile and static state. PMID:16129783

  13. Regulation of phytoplankton dynamics by vitamin B12

    NASA Astrophysics Data System (ADS)

    Sañudo-Wilhelmy, S. A.; Gobler, C. J.; Okbamichael, M.; Taylor, G. T.

    2006-02-01

    Despite the biological necessity of vitamin B12 (cobalamin), its importance in phytoplankton ecology has been ignored for nearly three decades. Here we report strong and selective responses of phytoplankton communities to varying low levels (5-87 pM) of dissolved B12 in several coastal embayments. The ecological importance of this vitamin is inferred from observed declines in dissolved B12 levels as field populations of large (>5 μm) phytoplankton increased. In contrast, biomass of small (<5 μm) phytoplankton varied independently of B12 concentrations. These observations were corroborated by field-based nutrient amendment experiments, in which B12 additions stimulated growth of large phytoplankton taxa 6-fold over unamended controls. In contrast, small taxa (<5 μm) were largely unaffected. This study provides the first evidence of vitamin B12's influence on phytoplankton field population dynamics based on direct chemical measurements of cobalamin, and implicates B12 as an important organic regulator of photoautotrophic fertility in marine systems.

  14. Oscillatory Dynamics of the Extracellular Signal-regulated Kinase Pathway

    SciTech Connect

    Shankaran, Harish; Wiley, H. S.

    2010-12-01

    The extracellular signal-regulated kinase (ERK) pathway is a central signaling pathway in development and disease and is regulated by multiple negative and positive feedback loops. Recent studies have shown negative feedback from ERK to upstream regulators can give rise to biochemical oscillations with a periodicity of between 15-30 minutes. Feedback due to the stimulated transcription of negative regulators of the ERK pathway can also give rise to transcriptional oscillations with a periodicity of 1-2h. The biological significance of these oscillations is not clear, but recent evidence suggests that transcriptional oscillations participate in developmental processes, such as somite formation. Biochemical oscillations are more enigmatic, but could provide a mechanism for encoding different types of inputs into a common signaling pathway.

  15. Regulation of Microtubule Dynamics in Axon Regeneration: Insights from C. elegans

    PubMed Central

    Tang, Ngang Heok; Chisholm, Andrew D.

    2016-01-01

    The capacity of an axon to regenerate is regulated by its external environment and by cell-intrinsic factors. Studies in a variety of organisms suggest that alterations in axonal microtubule (MT) dynamics have potent effects on axon regeneration. We review recent findings on the regulation of MT dynamics during axon regeneration, focusing on the nematode Caenorhabditis elegans. In C. elegans the dual leucine zipper kinase (DLK) promotes axon regeneration, whereas the exchange factor for Arf6 (EFA-6) inhibits axon regeneration. Both DLK and EFA-6 respond to injury and control axon regeneration in part via MT dynamics. How the DLK and EFA-6 pathways are related is a topic of active investigation, as is the mechanism by which EFA-6 responds to axonal injury. We evaluate potential candidates, such as the MT affinity-regulating kinase PAR-1/MARK, in regulation of EFA-6 and axonal MT dynamics in regeneration. PMID:27350865

  16. Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis

    PubMed Central

    Kapelko, Magdalena; Lansink, Alfons Oude; Stefanou, Spiro E.

    2015-01-01

    This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change. PMID:26057878

  17. Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis.

    PubMed

    Kapelko, Magdalena; Oude Lansink, Alfons; Stefanou, Spiro E

    2015-01-01

    This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change.

  18. Hierarchical Biomolecular Dynamics: Picosecond Hydrogen Bonding Regulates Microsecond Conformational Transitions.

    PubMed

    Buchenberg, Sebastian; Schaudinnus, Norbert; Stock, Gerhard

    2015-03-10

    Biomolecules exhibit structural dynamics on a number of time scales, including picosecond (ps) motions of a few atoms, nanosecond (ns) local conformational transitions, and microsecond (μs) global conformational rearrangements. Despite this substantial separation of time scales, fast and slow degrees of freedom appear to be coupled in a nonlinear manner; for example, there is theoretical and experimental evidence that fast structural fluctuations are required for slow functional motion to happen. To elucidate a microscopic mechanism of this multiscale behavior, Aib peptide is adopted as a simple model system. Combining extensive molecular dynamics simulations with principal component analysis techniques, a hierarchy of (at least) three tiers of the molecule's free energy landscape is discovered. They correspond to chiral left- to right-handed transitions of the entire peptide that happen on a μs time scale, conformational transitions of individual residues that take about 1 ns, and the opening and closing of structure-stabilizing hydrogen bonds that occur within tens of ps and are triggered by sub-ps structural fluctuations. Providing a simple mechanism of hierarchical dynamics, fast hydrogen bond dynamics is found to be a prerequisite for the ns local conformational transitions, which in turn are a prerequisite for the slow global conformational rearrangement of the peptide. As a consequence of the hierarchical coupling, the various processes exhibit a similar temperature behavior which may be interpreted as a dynamic transition. PMID:26579778

  19. Dynamics of positive emotion regulation: associations with youth depressive symptoms.

    PubMed

    Fussner, Lauren M; Luebbe, Aaron M; Bell, Debora J

    2015-04-01

    Depression is frequently considered a disorder of impaired affect regulation with deficits across both positive and negative affective systems. However, where deficits in emotion regulation occur in youth, specifically regarding regulation of positive emotions, is relatively unknown. The current study tested whether deficits in broad (felt and expressed) and specific (up-regulation and maintenance) positive emotion processes are associated with youth depressive symptoms. Adolescents (n = 134; 65 girls) in grades 7 to 9 completed a self-report measure of depressive symptoms prior to participating in two parent-child interactions tasks, a rewarding trivia task and a problem-solving conflict task. During the interaction tasks, adolescent's overall self-reported experience and observed expression of positive affect (PA) was examined. Following the reward task, youth's ability to up-regulate PA (PA response) and maintain PA while buffering against NA (PA persistence) was explored observationally. Results suggested that reduced experience and expression of PA was associated with depression symptoms, but only in a context that elicited negative emotions. No association was found between PA response and depression symptoms; however, shorter PA persistence was associated with elevated depressive symptoms. Youth higher in depressive symptoms appear able to respond similarly to rewarding events, but fail to maintain PA and ward off NA when transitioning from a positive to negative task.

  20. Cortactin Branches Out: Roles in Regulating Protrusive Actin Dynamics

    PubMed Central

    Ammer, Amanda Gatesman; Weed, Scott A.

    2008-01-01

    Since its discovery in the early 1990’s, cortactin has emerged as a key signaling protein in many cellular processes, including cell adhesion, migration, endocytosis, and tumor invasion. While the list of cellular functions influenced by cortactin grows, the ability of cortactin to interact with and alter the cortical actin network is central to its role in regulating these processes. Recently, several advances have been made in our understanding of the interaction between actin and cortactin, providing insight into how these two proteins work together to provide a framework for normal and altered cellular function. This review examines how regulation of cortactin through post-translational modifications and interactions with multiple binding partners elicits changes in cortical actin cytoskeletal organization, impacting the regulation and formation of actin-rich motility structures. PMID:18615630

  1. A Nonlinear Discrete Dynamical Model for Transcriptional Regulation: Construction and Properties

    PubMed Central

    Goutsias, John; Kim, Seungchan

    2004-01-01

    Transcriptional regulation is a fundamental mechanism of living cells, which allows them to determine their actions and properties, by selectively choosing which proteins to express and by dynamically controlling the amounts of those proteins. In this article, we revisit the problem of mathematically modeling transcriptional regulation. First, we adopt a biologically motivated continuous model for gene transcription and mRNA translation, based on first-order rate equations, coupled with a set of nonlinear equations that model cis-regulation. Then, we view the processes of transcription and translation as being discrete, which, together with the need to use computational techniques for large-scale analysis and simulation, motivates us to model transcriptional regulation by means of a nonlinear discrete dynamical system. Classical arguments from chemical kinetics allow us to specify the nonlinearities underlying cis-regulation and to include both activators and repressors as well as the notion of regulatory modules in our formulation. We show that the steady-state behavior of the proposed discrete dynamical system is identical to that of the continuous model. We discuss several aspects of our model, related to homeostatic and epigenetic regulation as well as to Boolean networks, and elaborate on their significance. Simulations of transcriptional regulation of a hypothetical metabolic pathway illustrate several properties of our model, and demonstrate that a nonlinear discrete dynamical system may be effectively used to model transcriptional regulation in a biologically relevant way. PMID:15041638

  2. LncRNA HOTAIR: a master regulator of chromatin dynamics and cancer

    PubMed Central

    Bhan, Arunoday; Mandal, Subhrangsu S.

    2015-01-01

    Non-coding RNAs (ncRNAs) are emerging classes of regulatory RNA that play key roles in various cellular and physiological processes such as in gene regulation, chromatin dynamics, cell differentiation, development etc. NcRNAs are dysregulated in a variety of human disorders including cancers, neurological disorders, and immunological disorders. The mechanisms through which ncRNAs regulate various biological processes and human diseases still remain elusive. HOX antisense intergenic RNA (HOTAIR) is a recently discovered long non-coding RNA (lncRNA) that plays critical role in gene regulation and chromatin dynamics, appears to be misregulated in a variety of cancers. HOTAIR interacts with key epigenetic regulators such as histone methyltransferase PRC2 and histone demethylase LSD1 and regulates gene silencing. Here, we have reviewed recent advancements in understanding the functions and regulation of HOTAIR and its association with cancer and other diseases. PMID:26208723

  3. Dynamic Regulation of Hepatic Lipid Droplet Properties by Diet

    PubMed Central

    Crunk, Amanda E.; Monks, Jenifer; Murakami, Aya; Jackman, Matthew; MacLean, Paul S.; Ladinsky, Mark; Bales, Elise S.; Cain, Shannon; Orlicky, David J.; McManaman, James L.

    2013-01-01

    Cytoplasmic lipid droplets (CLD) are organelle-like structures that function in neutral lipid storage, transport and metabolism through the actions of specific surface-associated proteins. Although diet and metabolism influence hepatic CLD levels, how they affect CLD protein composition is largely unknown. We used non-biased, shotgun, proteomics in combination with metabolic analysis, quantitative immunoblotting, electron microscopy and confocal imaging to define the effects of low- and high-fat diets on CLD properties in fasted-refed mice. We found that the hepatic CLD proteome is distinct from that of CLD from other mammalian tissues, containing enzymes from multiple metabolic pathways. The hepatic CLD proteome is also differentially affected by dietary fat content and hepatic metabolic status. High fat feeding markedly increased the CLD surface density of perilipin-2, a critical regulator of hepatic neutral lipid storage, whereas it reduced CLD levels of betaine-homocysteine S-methyltransferase, an enzyme regulator of homocysteine levels linked to fatty liver disease and hepatocellular carcinoma. Collectively our data demonstrate that the hepatic CLD proteome is enriched in metabolic enzymes, and that it is qualitatively and quantitatively regulated by diet and metabolism. These findings implicate CLD in the regulation of hepatic metabolic processes, and suggest that their properties undergo reorganization in response to hepatic metabolic demands. PMID:23874434

  4. Cell Spreading Area Regulates Clathrin-Coated Pit Dynamics on Micropatterned Substrate

    PubMed Central

    Tan, Xinyu; Heureaux, Johanna; Liu, Allen P.

    2015-01-01

    Clathrin-mediated endocytosis (CME) is the most characterized pathway for the endocytic entry of proteins and lipids at the plasma membrane of eukaryotic cells. Numerous studies have probed the roles of different endocytic accessory proteins in regulating the dynamics of clathrin-coated pit (CCP) assembly. However, it is not completely clear how physical cues regulate CCP dynamics. Here we employ microcontact printing to control cell shape and examine CCP dynamics as a function of cell spreading area for three differently sized cells. Cells with a large spreading area had more short-lived CCPs but a higher CCP initiation rate. Interestingly, we found that fluorescence intensity of CCPs decreased with increasing cell spreading area in a manner that was dependent on the cortical actin network. Our results point to another facet of the regulation of CCP dynamics, suggesting that CME may be modulated while cells change their mechanical state and remodel their actin cytoskeleton during various processes. PMID:26205141

  5. Dynamic Regulation of the GABAA Receptor Function by Redox Mechanisms.

    PubMed

    Calvo, Daniel J; González, Andrea N Beltrán

    2016-09-01

    Oxidizing and reducing agents, which are currently involved in cell metabolism and signaling pathways, can regulate fast inhibitory neurotransmission mediated by GABA receptors in the nervous system. A number of in vitro studies have shown that diverse redox compounds, including redox metabolites and reactive oxygen and nitrogen species, modulate phasic and tonic responses mediated by neuronal GABAA receptors through both presynaptic and postsynaptic mechanisms. We review experimental data showing that many redox agents, which are normally present in neurons and glia or are endogenously generated in these cells under physiologic states or during oxidative stress (e.g., hydrogen peroxide, superoxide and hydroxyl radicals, nitric oxide, ascorbic acid, and glutathione), induce potentiating or inhibiting actions on different native and recombinant GABAA receptor subtypes. Based on these results, it is thought that redox signaling might represent a homeostatic mechanism that regulates the function of synaptic and extrasynaptic GABAA receptors in physiologic and pathologic conditions.

  6. Leading at the Front: How EB Proteins Regulate Microtubule Dynamics

    NASA Astrophysics Data System (ADS)

    Hawkins, Taviare

    2012-02-01

    Microtubules are the most rigid of the cytoskeletal filaments, they provide the cell's scaffolding, form the byways on which motor proteins transport intracellular cargo and reorganize to form the mitotic spindle when the cell needs to divide. These biopolymers are composed of alpha and beta tubulin monomers that create hollow cylindrical nanotubes with an outer diameter of 25 nm and an inner diameter of 17 nm. At steady state concentrations, microtubules undergo a process known as dynamic instability. During dynamic instability the length of individual microtubules is changing as the filament alternates between periods of growth to shrinkage (catastrophe) and shrinkage to growth (rescue). This process can be enhanced or diminished with the addition of microtubule associated proteins (MAPs). MAPs are microtubule binding proteins that stabilize, destabilize, or nucleate microtubules. We will discuss the effects of the stabilizing end-binding proteins (EB1, EB2 and EB3), on microtubule dynamics observed in vitro. The EBs are a unique family of MAPs known to tip track and enhance microtubule growth by stabilizing the ends. This is a different mechanism than those employed by structural MAPs such as tau or MAP4.

  7. A divergent canonical WNT-signaling pathway regulates microtubule dynamics

    PubMed Central

    Ciani, Lorenza; Krylova, Olga; Smalley, Matthew J.; Dale, Trevor C.; Salinas, Patricia C.

    2004-01-01

    Dishevelled (DVL) is associated with axonal microtubules and regulates microtubule stability through the inhibition of the serine/threonine kinase, glycogen synthase kinase 3β (GSK-3β). In the canonical WNT pathway, the negative regulator Axin forms a complex with β-catenin and GSK-3β, resulting in β-catenin degradation. Inhibition of GSK-3β by DVL increases β-catenin stability and TCF transcriptional activation. Here, we show that Axin associates with microtubules and unexpectedly stabilizes microtubules through DVL. In turn, DVL stabilizes microtubules by inhibiting GSK-3β through a transcription- and β-catenin–independent pathway. More importantly, axonal microtubules are stabilized after DVL localizes to axons. Increased microtubule stability is correlated with a decrease in GSK-3β–mediated phosphorylation of MAP-1B. We propose a model in which Axin, through DVL, stabilizes microtubules by inhibiting a pool of GSK-3β, resulting in local changes in the phosphorylation of cellular targets. Our data indicate a bifurcation in the so-called canonical WNT-signaling pathway to regulate microtubule stability. PMID:14734535

  8. mRNA modifications: Dynamic regulators of gene expression?

    PubMed Central

    Hoernes, Thomas Philipp; Hüttenhofer, Alexander; Erlacher, Matthias David

    2016-01-01

    ABSTRACT The expression of a gene is a tightly regulated process and is exerted by a myriad of different mechanisms. Recently, RNA modifications located in coding sequences of mRNAs, have been identified as potential regulators of gene expression. N6-methyladenosine (m6A), 5-methylcytosine (m5C), pseudouridine (Ψ) and N1-methyladenosine (m1A) have been found within open reading frames of mRNAs. The presence of these mRNA modifications has been implicated to modulate the fate of an mRNA, ranging from maturation to its translation and even degradation. However, many aspects concerning the biological functions of mRNA modifications remain elusive. Recently, systematic in vitro studies allowed a first glimpse of the direct interplay of mRNA modifications and the efficiency and fidelity of ribosomal translation. It thereby became evident that the effects of mRNA modifications were, astonishingly versatile, depending on the type, position or sequence context. The incorporation of a single modification could either prematurely terminate protein synthesis, reduce the peptide yield or alter the amino acid sequence identity. These results implicate that mRNA modifications are a powerful mechanism to post-transcriptionally regulate gene expression. PMID:27351916

  9. Dynamic regulation of the endocannabinoid system: implications for analgesia

    PubMed Central

    Sagar, Devi Rani; Gaw, A Gemma; Okine, Bright N; Woodhams, Stephen G; Wong, Amy; Kendall, David A; Chapman, Victoria

    2009-01-01

    The analgesic effects of cannabinoids are well documented, but these are often limited by psychoactive side-effects. Recent studies indicate that the endocannabinoid system is dynamic and altered under different pathological conditions, including pain states. Changes in this receptor system include altered expression of receptors, differential synthetic pathways for endocannabinoids are expressed by various cell types, multiple pathways of catabolism and the generation of biologically active metabolites, which may be engaged under different conditions. This review discusses the evidence that pain states alter the endocannabinoid receptor system at key sites involved in pain processing and how these changes may inform the development of cannabinoid-based analgesics. PMID:19814807

  10. Dynamic regulation of the endocannabinoid system: implications for analgesia.

    PubMed

    Sagar, Devi Rani; Gaw, A Gemma; Okine, Bright N; Woodhams, Stephen G; Wong, Amy; Kendall, David A; Chapman, Victoria

    2009-10-08

    The analgesic effects of cannabinoids are well documented, but these are often limited by psychoactive side-effects. Recent studies indicate that the endocannabinoid system is dynamic and altered under different pathological conditions, including pain states. Changes in this receptor system include altered expression of receptors, differential synthetic pathways for endocannabinoids are expressed by various cell types, multiple pathways of catabolism and the generation of biologically active metabolites, which may be engaged under different conditions. This review discusses the evidence that pain states alter the endocannabinoid receptor system at key sites involved in pain processing and how these changes may inform the development of cannabinoid-based analgesics.

  11. Catecholaminergic Regulation of Learning Rate in a Dynamic Environment

    PubMed Central

    Jepma, Marieke; Nassar, Matthew R.; Rangel-Gomez, Mauricio; Meeter, Martijn; Nieuwenhuis, Sander

    2016-01-01

    Adaptive behavior in a changing world requires flexibly adapting one’s rate of learning to the rate of environmental change. Recent studies have examined the computational mechanisms by which various environmental factors determine the impact of new outcomes on existing beliefs (i.e., the ‘learning rate’). However, the brain mechanisms, and in particular the neuromodulators, involved in this process are still largely unknown. The brain-wide neurophysiological effects of the catecholamines norepinephrine and dopamine on stimulus-evoked cortical responses suggest that the catecholamine systems are well positioned to regulate learning about environmental change, but more direct evidence for a role of this system is scant. Here, we report evidence from a study employing pharmacology, scalp electrophysiology and computational modeling (N = 32) that suggests an important role for catecholamines in learning rate regulation. We found that the P3 component of the EEG—an electrophysiological index of outcome-evoked phasic catecholamine release in the cortex—predicted learning rate, and formally mediated the effect of prediction-error magnitude on learning rate. P3 amplitude also mediated the effects of two computational variables—capturing the unexpectedness of an outcome and the uncertainty of a preexisting belief—on learning rate. Furthermore, a pharmacological manipulation of catecholamine activity affected learning rate following unanticipated task changes, in a way that depended on participants’ baseline learning rate. Our findings provide converging evidence for a causal role of the human catecholamine systems in learning-rate regulation as a function of environmental change. PMID:27792728

  12. Baroreflex regulation of blood pressure during dynamic exercise

    NASA Technical Reports Server (NTRS)

    Raven, P. B.; Potts, J. T.; Shi, X.; Blomqvist, C. G. (Principal Investigator)

    1997-01-01

    From the work of Potts et al. Papelier et al. and Shi et al. it is readily apparent that the arterial (aortic and carotid) baroreflexes are reset to function at the prevailing ABP of exercise. The blood pressure of exercise is the result of the hemodynamic (cardiac output and TPR) responses, which appear to be regulated by two redundant neural control systems, "Central Command" and the "exercise pressor reflex". Central Command is a feed-forward neural control system that operates in parallel with the neural regulation of the locomotor system and appears to establish the hemodynamic response to exercise. Within the central nervous system it appears that the HLR may be the operational site for Central Command. Specific neural sites within the HLR have been demonstrated in animals to be active during exercise. With the advent of positron emission tomography (PET) and single-photon emission computed tomography (SPECT), the anatomical areas of the human brain related to Central Command are being mapped. It also appears that the Nucleus Tractus Solitarius and the ventrolateral medulla may serve as an integrating site as they receive neural information from the working muscles via the group III/IV muscle afferents as well as from higher brain centers. This anatomical site within the CNS is now the focus of many investigations in which arterial baroreflex function, Central Command and the "exercise pressor reflex" appear to demonstrate inhibitory or facilitatory interaction. The concept of whether Central Command is the prime mover in the resetting of the arterial baroreceptors to function at the exercising ABP or whether the resetting is an integration of the "exercise pressor reflex" information with that of Central Command is now under intense investigation. However, it would be justified to conclude, from the data of Bevegard and Shepherd, Dicarlo and Bishop, Potts et al., and Papelier et al. that the act of exercise results in the resetting of the arterial baroreflex

  13. Dynamical self-regulation in self-propelled particle flows

    NASA Astrophysics Data System (ADS)

    Gopinath, Arvind; Hagan, Michael F.; Marchetti, M. Cristina; Baskaran, Aparna

    2012-06-01

    We study a continuum model of overdamped self-propelled particles with aligning interactions in two dimensions. Combining analytical theory and computations, we map out the phase diagram for the parameter space covered by the model. We find that the system self-organizes into two robust structures in different regions of parameter space: solitary waves composed of ordered swarms moving through a low density disordered background, and stationary radially symmetric asters. The self-regulating nature of the flow yields phase separation, ubiquitous in this class of systems, and controls the formation of solitary waves. Self-propulsion and the associated active convection play a crucial role in aster formation.

  14. Dynamic Regulation of AP-1 Transcriptional Complexes Directs Trophoblast Differentiation

    PubMed Central

    Kent, Lindsey N.; Rumi, M. A. Karim; Roby, Katherine F.

    2015-01-01

    Placentation is a process that establishes the maternal-fetal interface and is required for successful pregnancy. The epithelial component of the placenta consists of trophoblast cells, which possess the capacity for multilineage differentiation and are responsible for placenta-specific functions. FOS-like antigen 1 (FOSL1), a component of AP-1 transcription factor complexes, contributes to the regulation of placental development. FOSL1 expression is restricted to trophoblast giant cells and invasive trophoblast cells. In the present study, we characterized the FOSL1 regulatory pathway in rat trophoblast cells. Transcriptome profiling in control and FOSL1 knockdown cells identified FOSL1-dependent gene sets linked to endocrine and invasive functions. FOSL1 was shown to occupy AP-1 binding sites within these gene loci, as determined by chromatin immunoprecipitation (ChIP). Complementary in vivo experiments using trophoblast-specific lentiviral delivery of FOSL1 short hairpin RNAs (shRNAs) provided in vivo validation of FOSL1 targets. FOSL1 actions require a dimerization partner. Coimmunoprecipitation, coimmunolocalization, and ChIP analyses showed that FOSL1 interacts with JUNB and, to a lesser extent, JUN in differentiating trophoblast cells. Knockdown of FOSL1 and JUNB expression inhibited both endocrine and invasive properties of trophoblast cells. In summary, FOSL1 recruits JUNB to form AP-1 transcriptional complexes that specifically regulate the endocrine and invasive trophoblast phenotypes. PMID:26149388

  15. Inference of gene regulation functions from dynamic transcriptome data

    PubMed Central

    Hillenbrand, Patrick; Maier, Kerstin C; Cramer, Patrick; Gerland, Ulrich

    2016-01-01

    To quantify gene regulation, a function is required that relates transcription factor binding to DNA (input) to the rate of mRNA synthesis from a target gene (output). Such a ‘gene regulation function’ (GRF) generally cannot be measured because the experimental titration of inputs and simultaneous readout of outputs is difficult. Here we show that GRFs may instead be inferred from natural changes in cellular gene expression, as exemplified for the cell cycle in the yeast S. cerevisiae. We develop this inference approach based on a time series of mRNA synthesis rates from a synchronized population of cells observed over three cell cycles. We first estimate the functional form of how input transcription factors determine mRNA output and then derive GRFs for target genes in the CLB2 gene cluster that are expressed during G2/M phase. Systematic analysis of additional GRFs suggests a network architecture that rationalizes transcriptional cell cycle oscillations. We find that a transcription factor network alone can produce oscillations in mRNA expression, but that additional input from cyclin oscillations is required to arrive at the native behaviour of the cell cycle oscillator. DOI: http://dx.doi.org/10.7554/eLife.12188.001 PMID:27652904

  16. Growth, homeostatic regulation and stem cell dynamics in tissues

    PubMed Central

    Hannezo, E.; Prost, J.; Joanny, J.-F.

    2014-01-01

    The regulation of cell growth in animal tissues is a question of critical importance: most tissues contain different types of cells in interconversion and the fraction of each type has to be controlled in a precise way, by mechanisms that remain unclear. Here, we provide a theoretical framework for the homeostasis of stem-cell-containing epithelial tissues using mechanical equations, which describe the size of the tissue and kinetic equations, which describe the interconversions of the cell populations. We show that several features, such as the evolution of stem cell fractions during intestinal development, the shape of a developing intestinal wall, as well as the increase in the proliferative compartment in cancer initiation, can be studied and understood from generic modelling which does not rely on a particular regulatory mechanism. Finally, inspired by recent experiments, we propose a model where cell division rates are regulated by the mechanical stresses in the epithelial sheet. We show that pressure-controlled growth can, in addition to the previous features, also explain with few parameters the formation of stem cell compartments as well as the morphologies observed when a colonic crypt becomes cancerous. We also discuss optimal strategies of wound healing, in connection with experiments on the cornea. PMID:24478279

  17. TOG Proteins Are Spatially Regulated by Rac-GSK3β to Control Interphase Microtubule Dynamics

    PubMed Central

    Trogden, Kathryn P.; Rogers, Stephen L.

    2015-01-01

    Microtubules are regulated by a diverse set of proteins that localize to microtubule plus ends (+TIPs) where they regulate dynamic instability and mediate interactions with the cell cortex, actin filaments, and organelles. Although individual +TIPs have been studied in depth and we understand their basic contributions to microtubule dynamics, there is a growing body of evidence that these proteins exhibit cross-talk and likely function to collectively integrate microtubule behavior and upstream signaling pathways. In this study, we have identified a novel protein-protein interaction between the XMAP215 homologue in Drosophila, Mini spindles (Msps), and the CLASP homologue, Orbit. These proteins have been shown to promote and suppress microtubule dynamics, respectively. We show that microtubule dynamics are regionally controlled in cells by Rac acting to suppress GSK3β in the peripheral lamellae/lamellipodium. Phosphorylation of Orbit by GSK3β triggers a relocalization of Msps from the microtubule plus end to the lattice. Mutation of the Msps-Orbit binding site revealed that this interaction is required for regulating microtubule dynamic instability in the cell periphery. Based on our findings, we propose that Msps is a novel Rac effector that acts, in partnership with Orbit, to regionally regulate microtubule dynamics. PMID:26406596

  18. Dynamic regulation of DNA methylation during mammalian development.

    PubMed

    Guibert, Sylvain; Forné, Thierry; Weber, Michael

    2009-10-01

    DNA methylation occurs on cytosines, is catalyzed by DNA methyltransferases (DNMTs), and is present at high levels in all vertebrates. DNA methylation plays essential roles in maintaining genome integrity, but its implication in orchestrating gene-expression patterns remained a matter of debate for a long time. Recent efforts to map DNA methylation at the genome level helped to get a better picture of the distribution of this mark and revealed that DNA methylation is more dynamic between cell types than previously anticipated. In particular, these datasets showed that DNA methylation is targeted to important developmental genes and might act as a barrier to prevent accidental cellular reprogramming. In this review, we will discuss the distribution and function of DNA methylation in mammalian genomes, with particular emphasis on the waves of global DNA methylation reprogramming occurring in early embryos and primordial germ cells. PMID:22122638

  19. Dynamic Regulation of Schwann Cell Enhancers after Peripheral Nerve Injury*

    PubMed Central

    Hung, Holly A.; Sun, Guannan; Keles, Sunduz; Svaren, John

    2015-01-01

    Myelination of the peripheral nervous system is required for axonal function and long term stability. After peripheral nerve injury, Schwann cells transition from axon myelination to a demyelinated state that supports neuronal survival and ultimately remyelination of axons. Reprogramming of gene expression patterns during development and injury responses is shaped by the actions of distal regulatory elements that integrate the actions of multiple transcription factors. We used ChIP-seq to measure changes in histone H3K27 acetylation, a mark of active enhancers, to identify enhancers in myelinating rat peripheral nerve and their dynamics after demyelinating nerve injury. Analysis of injury-induced enhancers identified enriched motifs for c-Jun, a transcription factor required for Schwann cells to support nerve regeneration. We identify a c-Jun-bound enhancer in the gene for Runx2, a transcription factor induced after nerve injury, and we show that Runx2 is required for activation of other induced genes. In contrast, enhancers that lose H3K27ac after nerve injury are enriched for binding sites of the Sox10 and early growth response 2 (Egr2/Krox20) transcription factors, which are critical determinants of Schwann cell differentiation. Egr2 expression is lost after nerve injury, and many Egr2-binding sites lose H3K27ac after nerve injury. However, the majority of Egr2-bound enhancers retain H3K27ac, indicating that other transcription factors maintain active enhancer status after nerve injury. The global epigenomic changes in H3K27ac deposition pinpoint dynamic changes in enhancers that mediate the effects of transcription factors that control Schwann cell myelination and peripheral nervous system responses to nerve injury. PMID:25614629

  20. Circuit reactivation dynamically regulates synaptic plasticity in neocortex

    NASA Astrophysics Data System (ADS)

    Kruskal, Peter B.; Li, Lucy; Maclean, Jason N.

    2013-10-01

    Circuit reactivations involve a stereotyped sequence of neuronal firing and have been behaviourally linked to memory consolidation. Here we use multiphoton imaging and patch-clamp recording, and observe sparse and stereotyped circuit reactivations that correspond to UP states within active neurons. To evaluate the effect of the circuit on synaptic plasticity, we trigger a single spike-timing-dependent plasticity (STDP) pairing once per circuit reactivation. The pairings reliably fall within a particular epoch of the circuit sequence and result in long-term potentiation. During reactivation, the amplitude of plasticity significantly correlates with the preceding 20-25 ms of membrane depolarization rather than the depolarization at the time of pairing. This circuit-dependent plasticity provides a natural constraint on synaptic potentiation, regulating the inherent instability of STDP in an assembly phase-sequence model. Subthreshold voltage during endogenous circuit reactivations provides a critical informative context for plasticity and facilitates the stable consolidation of a spatiotemporal sequence.

  1. Dynamic regulation of erythropoiesis: A computer model of general applicability

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1979-01-01

    A mathematical model for the control of erythropoiesis was developed based on the balance between oxygen supply and demand at a renal oxygen detector which controls erythropoietin release and red cell production. Feedback regulation of tissue oxygen tension is accomplished by adjustments of hemoglobin levels resulting from the output of a renal-bone marrow controller. Special consideration was given to the determinants of tissue oxygenation including evaluation of the influence of blood flow, capillary diffusivity, oxygen uptake and oxygen-hemoglobin affinity. A theoretical analysis of the overall control system is presented. Computer simulations of altitude hypoxia, red cell infusion hyperoxia, and homolytic anemia demonstrate validity of the model for general human application in health and disease.

  2. Bassoon and piccolo regulate ubiquitination and link presynaptic molecular dynamics with activity-regulated gene expression.

    PubMed

    Ivanova, Daniela; Dirks, Anika; Fejtova, Anna

    2016-10-01

    Release of neurotransmitter is executed by complex multiprotein machinery, which is assembled around the presynaptic cytomatrix at the active zone. One well-established function of this proteinaceous scaffold is the spatial organization of synaptic vesicle cluster, the protein complexes that execute membrane fusion and compensatory endocytosis, and the transmembrane molecules important for alignment of pre- and postsynaptic structures. The presynaptic cytomatrix proteins function also in processes other than the formation of a static frame for assembly of the release apparatus and synaptic vesicle cycling. They actively contribute to the regulation of multiple steps in this process and are themselves an important subject of regulation during neuronal plasticity. We are only beginning to understand the mechanisms and signalling pathways controlling these regulations. They are mainly dependent on posttranslational modifications, including phosphorylation and small-molecules conjugation, such as ubiquitination. Ubiquitination of presynaptic proteins might lead to their degradation by proteasomes, but evidence is growing that this modification also affects their function independently of their degradation. Signalling from presynapse to nucleus, which works on a much slower time scale and more globally, emerged as an important mechanism for persistent usage-dependent and homeostatic neuronal plasticity. Recently, two new functions for the largest presynaptic scaffolding proteins bassoon and piccolo emerged. They were implied (1) in the regulation of specific protein ubiquitination and proteasome-mediated proteolysis that potentially contributes to short-term plasticity at the presynapse and (2) in the coupling of activity-induced molecular rearrangements at the presynapse with reprogramming of expression of neuronal activity-regulated genes.

  3. Ibuprofen regulation of microtubule dynamics in cystic fibrosis epithelial cells.

    PubMed

    Rymut, Sharon M; Kampman, Claire M; Corey, Deborah A; Endres, Tori; Cotton, Calvin U; Kelley, Thomas J

    2016-08-01

    High-dose ibuprofen, an effective anti-inflammatory therapy for the treatment of cystic fibrosis (CF), has been shown to preserve lung function in a pediatric population. Despite its efficacy, few patients receive ibuprofen treatment due to potential renal and gastrointestinal toxicity. The mechanism of ibuprofen efficacy is also unclear. We have previously demonstrated that CF microtubules are slower to reform after depolymerization compared with respective wild-type controls. Slower microtubule dynamics in CF cells are responsible for impaired intracellular transport and are related to inflammatory signaling. Here, it is identified that high-dose ibuprofen treatment in both CF cell models and primary CF nasal epithelial cells restores microtubule reformation rates to wild-type levels, as well as induce extension of microtubules to the cell periphery. Ibuprofen treatment also restores microtubule-dependent intracellular transport monitored by measuring intracellular cholesterol transport. These effects are specific to ibuprofen as other cyclooxygenase inhibitors have no effect on these measures. Effects of ibuprofen are mimicked by stimulation of AMPK and blocked by the AMPK inhibitor compound C. We conclude that high-dose ibuprofen treatment enhances microtubule formation in CF cells likely through an AMPK-related pathway. These findings define a potential mechanism to explain the efficacy of ibuprofen therapy in CF.

  4. Force regulated dynamics of RPA on a DNA fork

    PubMed Central

    Kemmerich, Felix E.; Daldrop, Peter; Pinto, Cosimo; Levikova, Maryna; Cejka, Petr; Seidel, Ralf

    2016-01-01

    Replication protein A (RPA) is a single-stranded DNA binding protein, involved in most aspects of eukaryotic DNA metabolism. Here, we study the behavior of RPA on a DNA substrate that mimics a replication fork. Using magnetic tweezers we show that both yeast and human RPA can open forked DNA when sufficient external tension is applied. In contrast, at low force, RPA becomes rapidly displaced by the rehybridization of the DNA fork. This process appears to be governed by the binding or the release of an RPA microdomain (toehold) of only few base-pairs length. This gives rise to an extremely rapid exchange dynamics of RPA at the fork. Fork rezipping rates reach up to hundreds of base-pairs per second, being orders of magnitude faster than RPA dissociation from ssDNA alone. Additionally, we show that RPA undergoes diffusive motion on ssDNA, such that it can be pushed over long distances by a rezipping fork. Generally the behavior of both human and yeast RPA homologs is very similar. However, in contrast to yeast RPA, the dissociation of human RPA from ssDNA is greatly reduced at low Mg2+ concentrations, such that human RPA can melt DNA in absence of force. PMID:27016742

  5. Force regulated dynamics of RPA on a DNA fork.

    PubMed

    Kemmerich, Felix E; Daldrop, Peter; Pinto, Cosimo; Levikova, Maryna; Cejka, Petr; Seidel, Ralf

    2016-07-01

    Replication protein A (RPA) is a single-stranded DNA binding protein, involved in most aspects of eukaryotic DNA metabolism. Here, we study the behavior of RPA on a DNA substrate that mimics a replication fork. Using magnetic tweezers we show that both yeast and human RPA can open forked DNA when sufficient external tension is applied. In contrast, at low force, RPA becomes rapidly displaced by the rehybridization of the DNA fork. This process appears to be governed by the binding or the release of an RPA microdomain (toehold) of only few base-pairs length. This gives rise to an extremely rapid exchange dynamics of RPA at the fork. Fork rezipping rates reach up to hundreds of base-pairs per second, being orders of magnitude faster than RPA dissociation from ssDNA alone. Additionally, we show that RPA undergoes diffusive motion on ssDNA, such that it can be pushed over long distances by a rezipping fork. Generally the behavior of both human and yeast RPA homologs is very similar. However, in contrast to yeast RPA, the dissociation of human RPA from ssDNA is greatly reduced at low Mg(2+) concentrations, such that human RPA can melt DNA in absence of force.

  6. Cortical dynamics during cell motility are regulated by CRL3(KLHL21) E3 ubiquitin ligase.

    PubMed

    Courtheoux, Thibault; Enchev, Radoslav I; Lampert, Fabienne; Gerez, Juan; Beck, Jochen; Picotti, Paola; Sumara, Izabela; Peter, Matthias

    2016-01-01

    Directed cell movement involves spatial and temporal regulation of the cortical microtubule (Mt) and actin networks to allow focal adhesions (FAs) to assemble at the cell front and disassemble at the rear. Mts are known to associate with FAs, but the mechanisms coordinating their dynamic interactions remain unknown. Here we show that the CRL3(KLHL21) E3 ubiquitin ligase promotes cell migration by controlling Mt and FA dynamics at the cell cortex. Indeed, KLHL21 localizes to FA structures preferentially at the leading edge, and in complex with Cul3, ubiquitylates EB1 within its microtubule-interacting CH-domain. Cells lacking CRL3(KLHL21) activity or expressing a non-ubiquitylatable EB1 mutant protein are unable to migrate and exhibit strong defects in FA dynamics, lamellipodia formation and cortical plasticity. Our study thus reveals an important mechanism to regulate cortical dynamics during cell migration that involves ubiquitylation of EB1 at focal adhesions. PMID:27641145

  7. Cortical dynamics during cell motility are regulated by CRL3KLHL21 E3 ubiquitin ligase

    PubMed Central

    Courtheoux, Thibault; Enchev, Radoslav I.; Lampert, Fabienne; Gerez, Juan; Beck, Jochen; Picotti, Paola; Sumara, Izabela; Peter, Matthias

    2016-01-01

    Directed cell movement involves spatial and temporal regulation of the cortical microtubule (Mt) and actin networks to allow focal adhesions (FAs) to assemble at the cell front and disassemble at the rear. Mts are known to associate with FAs, but the mechanisms coordinating their dynamic interactions remain unknown. Here we show that the CRL3KLHL21 E3 ubiquitin ligase promotes cell migration by controlling Mt and FA dynamics at the cell cortex. Indeed, KLHL21 localizes to FA structures preferentially at the leading edge, and in complex with Cul3, ubiquitylates EB1 within its microtubule-interacting CH-domain. Cells lacking CRL3KLHL21 activity or expressing a non-ubiquitylatable EB1 mutant protein are unable to migrate and exhibit strong defects in FA dynamics, lamellipodia formation and cortical plasticity. Our study thus reveals an important mechanism to regulate cortical dynamics during cell migration that involves ubiquitylation of EB1 at focal adhesions. PMID:27641145

  8. Cortical dynamics during cell motility are regulated by CRL3(KLHL21) E3 ubiquitin ligase.

    PubMed

    Courtheoux, Thibault; Enchev, Radoslav I; Lampert, Fabienne; Gerez, Juan; Beck, Jochen; Picotti, Paola; Sumara, Izabela; Peter, Matthias

    2016-09-19

    Directed cell movement involves spatial and temporal regulation of the cortical microtubule (Mt) and actin networks to allow focal adhesions (FAs) to assemble at the cell front and disassemble at the rear. Mts are known to associate with FAs, but the mechanisms coordinating their dynamic interactions remain unknown. Here we show that the CRL3(KLHL21) E3 ubiquitin ligase promotes cell migration by controlling Mt and FA dynamics at the cell cortex. Indeed, KLHL21 localizes to FA structures preferentially at the leading edge, and in complex with Cul3, ubiquitylates EB1 within its microtubule-interacting CH-domain. Cells lacking CRL3(KLHL21) activity or expressing a non-ubiquitylatable EB1 mutant protein are unable to migrate and exhibit strong defects in FA dynamics, lamellipodia formation and cortical plasticity. Our study thus reveals an important mechanism to regulate cortical dynamics during cell migration that involves ubiquitylation of EB1 at focal adhesions.

  9. Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos.

    PubMed

    Bothma, Jacques P; Garcia, Hernan G; Esposito, Emilia; Schlissel, Gavin; Gregor, Thomas; Levine, Michael

    2014-07-22

    We present the use of recently developed live imaging methods to examine the dynamic regulation of even-skipped (eve) stripe 2 expression in the precellular Drosophila embryo. Nascent transcripts were visualized via MS2 RNA stem loops. The eve stripe 2 transgene exhibits a highly dynamic pattern of de novo transcription, beginning with a broad domain of expression during nuclear cycle 12 (nc12), and progressive refinement during nc13 and nc14. The mature stripe 2 pattern is surprisingly transient, constituting just ∼15 min of the ∼90-min period of expression. Nonetheless, this dynamic transcription profile faithfully predicts the limits of the mature stripe visualized by conventional in situ detection methods. Analysis of individual transcription foci reveals intermittent bursts of de novo transcription, with duration cycles of 4-10 min. We discuss a multistate model of transcription regulation and speculate on its role in the dynamic repression of the eve stripe 2 expression pattern during development.

  10. Microtubules Regulate Focal Adhesion Dynamics through MAP4K4

    PubMed Central

    Yue, Jiping; Xie, Min; Gou, Xuewen; Lee, Philbert; Schneider, Michael D; Wu, Xiaoyang

    2014-01-01

    Disassembly of focal adhesions (FAs) allows cell retraction and integrin detachment from the ECM, processes critical for cell movement. Growth of MT (microtubule) can promote FA turnover by serving as tracks to deliver proteins essential for FA disassembly. The molecular nature of this FA “disassembly factor”, however, remains elusive. By quantitative proteomics, we identified MAP4K4 (mitogen-activated protein kinase kinase kinase kinase 4) as a FA regulator that associates with MTs. Conditional knockout (cKO) of MAP4K4 in skin stabilizes FAs and impairs epidermal migration. By exploring underlying mechanisms, we further show that MAP4K4 associates with EB2, a MT binding protein, and IQSEC1, a guanine nucleotide exchange factor (GEF) specific for Arf6, whose activation promotes integrin internalization. Together, our findings provide critical insights into FA disassembly, suggesting that MTs can deliver MAP4K4 toward FAs through EB2, where MAP4K4 can in turn activate Arf6 via IQSEC1 and enhance FA dissolution. PMID:25490267

  11. Microtubules regulate focal adhesion dynamics through MAP4K4.

    PubMed

    Yue, Jiping; Xie, Min; Gou, Xuewen; Lee, Philbert; Schneider, Michael D; Wu, Xiaoyang

    2014-12-01

    Disassembly of focal adhesions (FAs) allows cell retraction and integrin detachment from the extracellular matrix, processes critical for cell movement. Growth of microtubules (MTs) can promote FA turnover by serving as tracks to deliver proteins essential for FA disassembly. The molecular nature of this FA "disassembly factor," however, remains elusive. By quantitative proteomics, we identified mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) as an FA regulator that associates with MTs. Knockout of MAP4K4 stabilizes FAs and impairs cell migration. By exploring underlying mechanisms, we further show that MAP4K4 associates with ending binding 2 (EB2) and IQ motif and SEC7 domain-containing protein 1 (IQSEC1), a guanine nucleotide exchange factor specific for Arf6, whose activation promotes integrin internalization. Together, our findings provide critical insight into FA disassembly, suggesting that MTs can deliver MAP4K4 toward FAs through EB2, where MAP4K4 can, in turn, activate Arf6 via IQSEC1 and enhance FA dissolution. PMID:25490267

  12. Effects of whole body heating on dynamic baroreflex regulation of heart rate in humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.; Zhang, R.; Levine, B. D.

    2000-01-01

    The purpose of this project was to identify whether dynamic baroreflex regulation of heart rate (HR) is altered during whole body heating. In 14 subjects, dynamic baroreflex regulation of HR was assessed using transfer function analysis. In normothermic and heat-stressed conditions, each subject breathed at a fixed rate (0. 25 Hz) while beat-by-beat HR and systolic blood pressure (SBP) were obtained. Whole body heating significantly increased sublingual temperature, HR, and forearm skin blood flow. Spectral analysis of HR and SBP revealed that the heat stress significantly reduced HR and SBP variability within the high-frequency range (0.2-0.3 Hz), reduced SBP variability within the low-frequency range (0.03-0.15 Hz), and increased the ratio of low- to high-frequency HR variability (all P < 0.01). Transfer function gain analysis showed that the heat stress reduced dynamic baroreflex regulation of HR within the high-frequency range (from 1.04 +/- 0.06 to 0.54 +/- 0.6 beats. min(-1). mmHg(-1); P < 0.001) without significantly affecting the gain in the low-frequency range (P = 0.63). These data suggest that whole body heating reduced high-frequency dynamic baroreflex regulation of HR associated with spontaneous changes in blood pressure. Reduced vagal baroreflex regulation of HR may contribute to reduced orthostatic tolerance known to occur in humans during heat stress.

  13. Dynamics of Elongation Factor 2 Kinase Regulation in Cortical Neurons in Response to Synaptic Activity

    PubMed Central

    Kenney, Justin W.; Sorokina, Oksana; Genheden, Maja; Sorokin, Anatoly

    2015-01-01

    The rapid regulation of cell signaling in response to calcium in neurons is essential for real-time processing of large amounts of information in the brain. A vital regulatory component, and one of the most energy-intensive biochemical processes in cells, is the elongation phase of mRNA translation, which is controlled by the Ca2+/CaM-dependent elongation factor 2 kinase (eEF2K). However, little is known about the dynamics of eEF2K regulation in neurons despite its established role in learning and synaptic plasticity. To explore eEF2K dynamics in depth, we stimulated synaptic activity in mouse primary cortical neurons. We find that synaptic activity results in a rapid, but transient, increase in eEF2K activity that is regulated by a combination of AMPA and NMDA-type glutamate receptors and the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin complex 1 (mTORC1) pathways. We then used computational modeling to test the hypothesis that considering Ca2+-coordinated MEK/ERK, mTORC1, and eEF2k activation is sufficient to describe the observed eEF2K dynamics. Although such a model could partially fit the empirical findings, it also suggested that a crucial positive regulator of eEF2K was also necessary. Through additional modeling and empirical evidence, we demonstrate that AMP kinase (AMPK) is also an important regulator of synaptic activity-driven eEF2K dynamics in neurons. Our combined modeling and experimental findings provide the first evidence that it is necessary to consider the combined interactions of Ca2+ with MEK/ERK, mTORC1, and AMPK to adequately explain eEF2K regulation in neurons. PMID:25698741

  14. Dynamic Scaffolding of Socially Regulated Learning in a Computer-Based Learning Environment

    ERIC Educational Resources Information Center

    Molenaar, Inge; Roda, Claudia; van Boxtel, Carla; Sleegers, Peter

    2012-01-01

    The aim of this study is to test the effects of dynamically scaffolding social regulation of middle school students working in a computer-based learning environment. Dyads in the scaffolding condition (N=56) are supported with computer-generated scaffolds and students in the control condition (N=54) do not receive scaffolds. The scaffolds are…

  15. NOUGHT MAY ENDURE BUT MUTABILITY*: SPLICEOSOME DYNAMICS AND THE REGULATION OF SPLICING

    PubMed Central

    Smith, Duncan J.; Query, Charles C.; Konarska, Maria M.

    2008-01-01

    SUMMARY The spliceosome is both compositionally and conformationally dynamic. Each transition along the splicing pathway presents an opportunity for progression, pausing or discard, allowing splice site choice to be regulated throughout both the assembly and catalytic phases of the reaction. PMID:18570869

  16. Regulation of DNA conformations and dynamics in flows with hybrid field microfluidics

    PubMed Central

    Ren, Fangfang; Zu, Yingbo; Kumar Rajagopalan, Kartik; Wang, Shengnian

    2012-01-01

    Visualizing single DNA dynamics in flow provides a wealth of physical insights in biophysics and complex flow study. However, large signal fluctuations, generated from diversified conformations, deformation history dependent dynamics and flow induced stochastic tumbling, often frustrate its wide adoption in single molecule and polymer flow study. We use a hybrid field microfluidic (HFM) approach, in which an electric field is imposed at desired locations and appropriate moments to balance the flow stress on charged molecules, to effectively regulate the initial conformations and the deformation dynamics of macromolecules in flow. With λ-DNA and a steady laminar shear flow as the model system, we herein studied the performance of HFM on regulating DNA trapping, relaxation, coil-stretch transition, and accumulation. DNA molecules were found to get captured in the focused planes when motions caused by flow, and the electric field were balanced. The trapped macromolecules relaxed in two different routes while eventually became more uniform in size and globule conformations. When removing the electric field, the sudden stretching dynamics of DNA molecules exhibited a more pronounced extension overshoot in their transient response under a true step function of flow stress while similar behaviors to what other pioneering work in steady shear flow. Such regulation strategies could be useful to control the conformations of other important macromolecules (e.g., proteins) and help better reveal their molecular dynamics. PMID:24155864

  17. ABT737 enhances cholangiocarcinoma sensitivity to cisplatin through regulation of mitochondrial dynamics

    SciTech Connect

    Fan, Zhongqi; Yu, Huimei; Cui, Ni; Kong, Xianggui; Liu, Xiaomin; Chang, Yulei; Wu, Yao; Sun, Liankun; Wang, Guangyi

    2015-07-01

    Cholangiocarcinoma responses weakly to cisplatin. Mitochondrial dynamics participate in the response to various stresses, and mainly involve mitophagy and mitochondrial fusion and fission. Bcl-2 family proteins play critical roles in orchestrating mitochondrial dynamics, and are involved in the resistance to cisplatin. Here we reported that ABT737, combined with cisplatin, can promote cholangiocarcinoma cells to undergo apoptosis. We found that the combined treatment decreased the Mcl-1 pro-survival form and increased Bak. Cells undergoing cisplatin treatment showed hyperfused mitochondria, whereas fragmentation was dominant in the mitochondria of cells exposed to the combined treatment, with higher Fis1 levels, decreased Mfn2 and OPA1 levels, increased ratio of Drp1 60 kD to 80 kD form, and more Drp1 located on mitochondria. More p62 aggregates were observed in cells with fragmented mitochondria, and they gradually translocated to mitochondria. Mitophagy was induced by the combined treatment. Knockdown p62 decreased the Drp1 ratio, increased Tom20, and increased cell viability. Our data indicated that mitochondrial dynamics play an important role in the response of cholangiocarcinoma to cisplatin. ABT737 might enhance cholangiocarcinoma sensitivity to cisplatin through regulation of mitochondrial dynamics and the balance within Bcl-2 family proteins. Furthermore, p62 seems to be critical in the regulation of mitochondrial dynamics. - Highlights: • Cholangiocarcinoma may adapt to cisplatin through mitochondrial fusion. • ABT737 sensitizes cholangiocarcinoma to cisplatin by promoting fission and mitophagy. • p62 might participate in the regulation of mitochondrial fission and mitophagy.

  18. Dynamic localization of a cytoplasmic signal transduction response regulator controls morphogenesis during the Caulobacter cell cycle

    PubMed Central

    Jacobs, Christine; Hung, Dean; Shapiro, Lucy

    2001-01-01

    We present evidence that a bacterial signal transduction cascade that couples morphogenesis with cell cycle progression is regulated by dynamic localization of its components. Previous studies have implicated two histidine kinases, DivJ and PleC, and the response regulator, DivK, in the regulation of morphogenesis in the dimorphic bacterium Caulobacter crescentus. Here, we show that the cytoplasmic response regulator, DivK, exhibits a dynamic, cyclical localization that culminates in asymmetric distribution of DivK within the two cell types that are characteristic of the Caulobacter cell cycle; DivK is dispersed throughout the cytoplasm of the progeny swarmer cell and is localized to the pole of the stalked cell. The membrane-bound DivJ and PleC histidine kinases, which are asymmetrically localized at the opposite poles of the predivisional cell, control the temporal and spatial localization of DivK. DivJ mediates DivK targeting to the poles whereas PleC controls its release from one of the poles at times and places that are consistent with the activities and location of DivJ and PleC in the late predivisional cell. Thus, dynamic changes in subcellular location of multiple components of a signal transduction cascade may constitute a novel mode of prokaryotic regulation to generate and maintain cellular asymmetry. PMID:11274434

  19. Nuclear deformability and telomere dynamics are regulated by cell geometric constraints

    PubMed Central

    Makhija, Ekta; Jokhun, D. S.; Shivashankar, G. V.

    2016-01-01

    Forces generated by the cytoskeleton can be transmitted to the nucleus and chromatin via physical links on the nuclear envelope and the lamin meshwork. Although the role of these active forces in modulating prestressed nuclear morphology has been well studied, the effect on nuclear and chromatin dynamics remains to be explored. To understand the regulation of nuclear deformability by these active forces, we created different cytoskeletal states in mouse fibroblasts using micropatterned substrates. We observed that constrained and isotropic cells, which lack long actin stress fibers, have more deformable nuclei than elongated and polarized cells. This nuclear deformability altered in response to actin, myosin, formin perturbations, or a transcriptional down-regulation of lamin A/C levels in the constrained and isotropic geometry. Furthermore, to probe the effect of active cytoskeletal forces on chromatin dynamics, we tracked the spatiotemporal dynamics of heterochromatin foci and telomeres. We observed increased dynamics and decreased correlation of the heterochromatin foci and telomere trajectories in constrained and isotropic cell geometry. The observed enhanced dynamics upon treatment with actin depolymerizing reagents in elongated and polarized geometry were regained once the reagent was washed off, suggesting an inherent structural memory in chromatin organization. We conclude that active forces from the cytoskeleton and rigidity from lamin A/C nucleoskeleton can together regulate nuclear and chromatin dynamics. Because chromatin remodeling is a necessary step in transcription control and its memory, genome integrity, and cellular deformability during migration, our results highlight the importance of cell geometric constraints as critical regulators in cell behavior. PMID:26699462

  20. Dynamic Power Flow Controller: Compact Dynamic Phase Angle Regulators for Transmission Power Routing

    SciTech Connect

    2012-01-03

    GENI Project: Varentec is developing compact, low-cost transmission power controllers with fractional power rating for controlling power flow on transmission networks. The technology will enhance grid operations through improved use of current assets and by dramatically reducing the number of transmission lines that have to be built to meet increasing contributions of renewable energy sources like wind and solar. The proposed transmission controllers would allow for the dynamic control of voltage and power flow, improving the grid’s ability to dispatch power in real time to the places where it is most needed. The controllers would work as fail-safe devices whereby the grid would be restored to its present operating state in the event of a controller malfunction instead of failing outright. The ability to affordably and dynamically control power flow with adequate fail-safe switchgear could open up new competitive energy markets which are not possible under the current regulatory structure and technology base.

  1. Motivational dynamics of eating regulation: a self-determination theory perspective

    PubMed Central

    2012-01-01

    Within Western society, many people have difficulties adequately regulating their eating behaviors and weight. Although the literature on eating regulation is vast, little attention has been given to motivational dynamics involved in eating regulation. Grounded in Self-Determination Theory (SDT), the present contribution aims to provide a motivational perspective on eating regulation. The role of satisfaction and thwarting of the basic psychological needs for autonomy, competence, and relatedness is introduced as a mechanism to (a) explain the etiology of body image concerns and disordered eating and (b) understand the optimal regulation of ongoing eating behavior for healthy weight maintenance. An overview of empirical studies on these two research lines is provided. In a final section, the potential relevance and value of SDT in relation to prevailing theoretical models in the domain of eating regulation is discussed. Although research on SDT in the domain of eating regulation is still in its early stages and more research is clearly needed, this review suggests that the SDT represents a promising framework to more thoroughly study and understand the motivational processes involved in eating regulation and associated problems. PMID:22385782

  2. Motivational dynamics of eating regulation: a self-determination theory perspective.

    PubMed

    Verstuyf, Joke; Patrick, Heather; Vansteenkiste, Maarten; Teixeira, Pedro J

    2012-03-02

    Within Western society, many people have difficulties adequately regulating their eating behaviors and weight. Although the literature on eating regulation is vast, little attention has been given to motivational dynamics involved in eating regulation. Grounded in Self-Determination Theory (SDT), the present contribution aims to provide a motivational perspective on eating regulation. The role of satisfaction and thwarting of the basic psychological needs for autonomy, competence, and relatedness is introduced as a mechanism to (a) explain the etiology of body image concerns and disordered eating and (b) understand the optimal regulation of ongoing eating behavior for healthy weight maintenance. An overview of empirical studies on these two research lines is provided. In a final section, the potential relevance and value of SDT in relation to prevailing theoretical models in the domain of eating regulation is discussed. Although research on SDT in the domain of eating regulation is still in its early stages and more research is clearly needed, this review suggests that the SDT represents a promising framework to more thoroughly study and understand the motivational processes involved in eating regulation and associated problems.

  3. Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling

    PubMed Central

    Zschätzsch, Marlen; Oliva, Carlos; Langen, Marion; De Geest, Natalie; Özel, Mehmet Neset; Williamson, W Ryan; Lemon, William C; Soldano, Alessia; Munck, Sebastian; Hiesinger, P Robin; Sanchez-Soriano, Natalia; Hassan, Bassem A

    2014-01-01

    Axonal branching allows a neuron to connect to several targets, increasing neuronal circuit complexity. While axonal branching is well described, the mechanisms that control it remain largely unknown. We find that in the Drosophila CNS branches develop through a process of excessive growth followed by pruning. In vivo high-resolution live imaging of developing brains as well as loss and gain of function experiments show that activation of Epidermal Growth Factor Receptor (EGFR) is necessary for branch dynamics and the final branching pattern. Live imaging also reveals that intrinsic asymmetry in EGFR localization regulates the balance between dynamic and static filopodia. Elimination of signaling asymmetry by either loss or gain of EGFR function results in reduced dynamics leading to excessive branch formation. In summary, we propose that the dynamic process of axon branch development is mediated by differential local distribution of signaling receptors. DOI: http://dx.doi.org/10.7554/eLife.01699.001 PMID:24755286

  4. Aurora A orchestrates entosis by regulating a dynamic MCAK–TIP150 interaction

    PubMed Central

    Xia, Peng; Zhou, Jinhua; Song, Xiaoyu; Wu, Bing; Liu, Xing; Li, Di; Zhang, Shuyuan; Wang, Zhikai; Yu, Huijuan; Ward, Tarsha; Zhang, Jiancun; Li, Yinmei; Wang, Xiaoning; Chen, Yong; Guo, Zhen; Yao, Xuebiao

    2014-01-01

    Entosis, a cell-in-cell process, has been implicated in the formation of aneuploidy associated with an aberrant cell division control. Microtubule plus-end-tracking protein TIP150 facilitates the loading of MCAK onto the microtubule plus ends and orchestrates microtubule plus-end dynamics during cell division. Here we show that TIP150 cooperates with MCAK to govern entosis via a regulatory circuitry that involves Aurora A-mediated phosphorylation of MCAK. Our biochemical analyses show that MCAK forms an intra-molecular association, which is essential for TIP150 binding. Interestingly, Aurora A-mediated phosphorylation of MCAK modulates its intra-molecular association, which perturbs the MCAK–TIP150 interaction in vitro and inhibits entosis in vivo. To probe if MCAK–TIP150 interaction regulates microtubule plasticity to affect the mechanical properties of cells during entosis, we used an optical trap to measure the mechanical rigidity of live MCF7 cells. We find that the MCAK cooperates with TIP150 to promote microtubule dynamics and modulate the mechanical rigidity of the cells during entosis. Our results show that a dynamic interaction of MCAK–TIP150 orchestrated by Aurora A-mediated phosphorylation governs entosis via regulating microtubule plus-end dynamics and cell rigidity. These data reveal a previously unknown mechanism of Aurora A regulation in the control of microtubule plasticity during cell-in-cell processes. PMID:24847103

  5. Dynamic regulation of partner abundance mediates response of reef coral symbioses to environmental change.

    PubMed

    Cunning, R; Vaughan, N; Gillette, P; Capo, T R; Matté, J L; Baker, A C

    2015-05-01

    Regulating partner abunclance may allow symmotic organisms to mediate interaction outcomes, facilitating adaptive responses to environmental change. To explore the capacity for-adaptive regulation in an ecologically important endosymbiosis, we studied the population dynamics of symbiotic algae in reef-building corals under different abiotic contexts. We found high natural variability in symbiont abundance in corals across reefs, but this variability converged to different symbiont-specific abundances when colonies were maintained under constant conditions. When conditions changed seasonally, symbiont abundance readjusted to new equilibria. We explain these patterns using an a priori model of symbiotic costs and benefits to the coral host, which shows that the observed changes in symbiont abundance are consistent with the maximization of interaction benefit under different environmental conditions. These results indicate that, while regulating symbiont abundance helps hosts sustain maximum benefit in a dynamic environment, spatiotemporal variation in abiotic factors creates a broad range of symbiont abundances (and interaction outcomes) among corals that may account for observed natural variability in performance (e.g., growth rate) and stress tolerance (e.g., bleaching susceptibility). This cost or benefit framework provides a new perspective on the dynamic regulation of reef coral symbioses and illustrates that the dependence of interaction outcomes on biotic and abiotic contexts may be important in understanding how diverse mutualisms respond to environmental change.

  6. Dynamic regulation of partner abundance mediates response of reef coral symbioses to environmental change.

    PubMed

    Cunning, R; Vaughan, N; Gillette, P; Capo, T R; Matté, J L; Baker, A C

    2015-05-01

    Regulating partner abunclance may allow symmotic organisms to mediate interaction outcomes, facilitating adaptive responses to environmental change. To explore the capacity for-adaptive regulation in an ecologically important endosymbiosis, we studied the population dynamics of symbiotic algae in reef-building corals under different abiotic contexts. We found high natural variability in symbiont abundance in corals across reefs, but this variability converged to different symbiont-specific abundances when colonies were maintained under constant conditions. When conditions changed seasonally, symbiont abundance readjusted to new equilibria. We explain these patterns using an a priori model of symbiotic costs and benefits to the coral host, which shows that the observed changes in symbiont abundance are consistent with the maximization of interaction benefit under different environmental conditions. These results indicate that, while regulating symbiont abundance helps hosts sustain maximum benefit in a dynamic environment, spatiotemporal variation in abiotic factors creates a broad range of symbiont abundances (and interaction outcomes) among corals that may account for observed natural variability in performance (e.g., growth rate) and stress tolerance (e.g., bleaching susceptibility). This cost or benefit framework provides a new perspective on the dynamic regulation of reef coral symbioses and illustrates that the dependence of interaction outcomes on biotic and abiotic contexts may be important in understanding how diverse mutualisms respond to environmental change. PMID:26236853

  7. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development

    PubMed Central

    2014-01-01

    Background Development of eukaryotic organisms is controlled by transcription factors that trigger specific and global changes in gene expression programs. In plants, MADS-domain transcription factors act as master regulators of developmental switches and organ specification. However, the mechanisms by which these factors dynamically regulate the expression of their target genes at different developmental stages are still poorly understood. Results We characterized the relationship of chromatin accessibility, gene expression, and DNA binding of two MADS-domain proteins at different stages of Arabidopsis flower development. Dynamic changes in APETALA1 and SEPALLATA3 DNA binding correlated with changes in gene expression, and many of the target genes could be associated with the developmental stage in which they are transcriptionally controlled. We also observe dynamic changes in chromatin accessibility during flower development. Remarkably, DNA binding of APETALA1 and SEPALLATA3 is largely independent of the accessibility status of their binding regions and it can precede increases in DNA accessibility. These results suggest that APETALA1 and SEPALLATA3 may modulate chromatin accessibility, thereby facilitating access of other transcriptional regulators to their target genes. Conclusions Our findings indicate that different homeotic factors regulate partly overlapping, yet also distinctive sets of target genes in a partly stage-specific fashion. By combining the information from DNA-binding and gene expression data, we are able to propose models of stage-specific regulatory interactions, thereby addressing dynamics of regulatory networks throughout flower development. Furthermore, MADS-domain TFs may regulate gene expression by alternative strategies, one of which is modulation of chromatin accessibility. PMID:24581456

  8. TCTP regulates spindle microtubule dynamics by stabilizing polar microtubules during mouse oocyte meiosis.

    PubMed

    Jeon, Hyuk-Joon; You, Seung Yeop; Park, Yong Seok; Chang, Jong Wook; Kim, Jae-Sung; Oh, Jeong Su

    2016-04-01

    Dynamic changes in spindle structure and function are essential for maintaining genomic integrity during the cell cycle. Spindle dynamics are highly dependent on several microtubule-associated proteins that coordinate the dynamic behavior of microtubules, including microtubule assembly, stability and organization. Here, we show that translationally controlled tumor protein (TCTP) is a novel microtubule-associated protein that regulates spindle dynamics during meiotic maturation. TCTP was expressed and widely distributed in the cytoplasm with strong enrichment at the spindle microtubules during meiosis. TCTP was found to be phosphorylated during meiotic maturation, and was exclusively localized to the spindle poles. Knockdown of TCTP impaired spindle organization without affecting chromosome alignment. These spindle defects were mostly due to the destabilization of the polar microtubules. However, the stability of kinetochore microtubules attached to chromosomes was not affected by TCTP knockdown. Overexpression of a nonphosphorylable mutant of TCTP disturbed meiotic maturation, stabilizing the spindle microtubules. In addition, Plk1 was decreased by TCTP knockdown. Taken together, our results demonstrate that TCTP is a microtubule-associating protein required to regulate spindle microtubule dynamics during meiotic maturation in mouse oocytes.

  9. Dynamic Regulation of Integrin α6β4 During Angiogenesis: Potential Implications for Pathogenic Wound Healing

    PubMed Central

    Desai, Diana; Singh, Purva; Van De Water, Livingston; LaFlamme, Susan E.

    2013-01-01

    Objective Angiogenesis is an essential component of normal cutaneous wound repair, but is altered in pathogenic forms of wound healing, such as chronic wounds and fibrosis. We previously reported that endothelial expression of integrin α6β4 is developmentally regulated, with α6β4 expression correlating with tissue maturation and further showed that endothelial α6β4 is downregulated in explant angiogenesis assays. These data support the hypothesis that dynamic regulation of α6β4 may play an important role during new vessel formation in healing wounds. Approach To test this hypothesis, we examined the endothelial expression of α6β4 using a murine model of cutaneous wound healing and in vitro cultures of primary human dermal microvascular endothelial cells (HDMECs). Results Expression of α6β4 is downregulated during early stages of wound healing; angiogenic vessels in day 7 wounds do not express α6β4. Endothelial expression of α6β4 is resumed in day 14 wounds. Moreover, explanted HDMECs do not express α6β4, but expression is induced by treatment with histone deacetylase inhibitors. Innovation We provide in vivo data supporting a role for the dynamic regulation of α6β4 during vessel formation and remodeling during cutaneous wound repair and in vitro findings that suggest endothelial β4 expression is regulated transcriptionally, providing an important foundation for future studies to understand the transcriptional mechanisms involved in endothelial cell maturation during normal wound repair. Conclusion Our data indicate that α6β4 is dynamically regulated during angiogenesis and vessel maturation and suggest that disruption of this regulation may contribute to defective angiogenesis associated with diabetic wounds or cutaneous fibrosis. PMID:24527356

  10. Linker histone H1 and H3K56 acetylation are antagonistic regulators of nucleosome dynamics.

    PubMed

    Bernier, Morgan; Luo, Yi; Nwokelo, Kingsley C; Goodwin, Michelle; Dreher, Sarah J; Zhang, Pei; Parthun, Mark R; Fondufe-Mittendorf, Yvonne; Ottesen, Jennifer J; Poirier, Michael G

    2015-12-09

    H1 linker histones are highly abundant proteins that compact nucleosomes and chromatin to regulate DNA accessibility and transcription. However, the mechanisms that target H1 regulation to specific regions of eukaryotic genomes are unknown. Here we report fluorescence measurements of human H1 regulation of nucleosome dynamics and transcription factor (TF) binding within nucleosomes. H1 does not block TF binding, instead it suppresses nucleosome unwrapping to reduce DNA accessibility within H1-bound nucleosomes. We then investigated H1 regulation by H3K56 and H3K122 acetylation, two transcriptional activating histone post translational modifications (PTMs). Only H3K56 acetylation, which increases nucleosome unwrapping, abolishes H1.0 reduction of TF binding. These findings show that nucleosomes remain dynamic, while H1 is bound and H1 dissociation is not required for TF binding within the nucleosome. Furthermore, our H3K56 acetylation measurements suggest that a single-histone PTM can define regions of the genome that are not regulated by H1.

  11. [Dynamic accumulation regulation of curcumin, demethoxycurcumin and bisdemethoxyeurcumin in three strains of curcuma longae rhizome].

    PubMed

    Li, Qing-Miao; Yang, Wen-Yu; Tang, Xue-Mei; Zhang, Mei; Zhou, Xian-Jian; Shu, Guang-Ming; Zhao, Jun-Ning; Fang, Qing-Mao

    2014-06-01

    The paper is aimed to study the dynamic accumulation regulation of curcumin (Cur), demethoxycurcumin (DMC) and bisdemethoxyeurcumin (BDMC) in three strains of Curcuma longa, and provide scientific references for formalized cultivation, timely harvesting, quality control and breeding cultivation of C. longa. The accumulation regulation of the three curcumin derivatives was basically the same in rhizome of three strains. The relative contents decreased along with plant development growing, while the accumulation per hectare increased with plant development growing. The accumulation of curcuminoids per hectare could be taken as the assessment standard for the best harvest time of C. longa. A3 was the best strain in terms of Cur and BDMC content.

  12. Cooperative linear output regulation for networked systems by dynamic measurement output feedback

    NASA Astrophysics Data System (ADS)

    Li, Shaobao; Feng, Gang; Wang, Juan; Luo, Xiaoyuan; Guan, Xinping

    2016-04-01

    This paper investigates the cooperative linear output regulation problem of a class of heterogeneous networked systems with a common reference input but with different disturbances for individual nodes. A novel distributed control law is presented based on dynamic measurement output feedback. It is shown that the overall networked closed-loop control system is asymptotically stable and the output regulation errors asymptotically approach zero as time goes to infinity under a sufficient and necessary condition. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed control law.

  13. Effects of automobile steering characteristics on driver vehicle system dynamics in regulation tasks

    NASA Technical Reports Server (NTRS)

    Mcruer, D. T.; Klein, R.

    1975-01-01

    A regulation task which subjected the automobile to a random gust disturbance which is countered by driver control action is used to study the effects of various automobile steering characteristics on the driver/vehicle system. The experiments used a variable stability automobile specially configured to permit insertion of the simulated gust disturbance and the measurement of the driver/vehicle system characteristics. Driver/vehicle system dynamics were measured and interpreted as an effective open loop system describing function. Objective measures of system bandwidth, stability, and time delays were deduced and compared. These objective measures were supplemented by driver ratings. A tentative optimum range of vehicle dynamics for the directional regulation task was established.

  14. Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission–fusion balance within mitochondrial networks

    PubMed Central

    Moore, Andrew S.; Wong, Yvette C.; Simpson, Cory L.; Holzbaur, Erika L. F.

    2016-01-01

    Mitochondria form interconnected networks that dynamically remodel in response to cellular needs. Using live-cell imaging, we investigate the role of the actin cytoskeleton in regulating mitochondrial fission and fusion. We identify cycling of actin filaments onto and off of subsets of cellular mitochondria. The association of actin filaments with mitochondrial subpopulations is transient; actin quickly disassembles, then reassembles around a distinct subpopulation, efficiently cycling through all cellular mitochondria within 14 min. The focal assembly of actin induces local, Drp1-dependent fragmentation of the mitochondrial network. On actin disassembly, fragmented mitochondria undergo rapid fusion, leading to regional recovery of the tubular mitochondrial network. Cycling requires dynamic actin polymerization and is blocked by inhibitors of both Arp2/3 and formins. We propose that cyclic assembly of actin onto mitochondria modulates the fission/fusion balance, promotes network remodelling and content mixing, and thus may serve as an essential mechanism regulating mitochondrial network homeostasis. PMID:27686185

  15. Dynamic metabolic control theory. A methodology for investigating metabolic regulation using transient metabolic data.

    PubMed

    Liao, J C; Delgado, J

    1992-10-13

    The purposes of the dynamic metabolic control theory are to provide a theoretical basis for estimating the control coefficients using the transient metabolic responses and to gain insights into the metabolic regulation in the transient states. The numerical application of this theory is relatively straightforward: it involves a standard linear regression and a matrix multiplication. Although the equations are exact only for linear kinetics, they yield relatively good estimates of the control coefficients for nonlinear systems. PMID:1416609

  16. Adult plant development in triticale (× triticosecale wittmack) is controlled by dynamic genetic patterns of regulation.

    PubMed

    Würschum, Tobias; Liu, Wenxin; Alheit, Katharina V; Tucker, Matthew R; Gowda, Manje; Weissmann, Elmar A; Hahn, Volker; Maurer, Hans Peter

    2014-09-01

    Many biologically and agronomically important traits are dynamic and show temporal variation. In this study, we used triticale (× Triticosecale Wittmack) as a model crop to assess the genetic dynamics underlying phenotypic plasticity of adult plant development. To this end, a large mapping population with 647 doubled haploid lines derived from four partially connected families from crosses among six parents was scored for developmental stage at three different time points. Using genome-wide association mapping, we identified main effect and epistatic quantitative trait loci (QTL) at all three time points. Interestingly, some of these QTL were identified at all time points, whereas others appear to only contribute to the genetic architecture at certain developmental stages. Our results illustrate the temporal contribution of QTL to the genetic control of adult plant development and more generally, the temporal genetic patterns of regulation that underlie dynamic traits. PMID:25237110

  17. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis.

    PubMed

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L; Mohandas, Narla; Pachter, Lior; Conboy, John G

    2016-01-29

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentally-dynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ∼50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclear-localized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. We conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.

  18. Evidence for Dynamic Network Regulation of Drosophila Photoreceptor Function from Mutants Lacking the Neurotransmitter Histamine.

    PubMed

    Dau, An; Friederich, Uwe; Dongre, Sidhartha; Li, Xiaofeng; Bollepalli, Murali K; Hardie, Roger C; Juusola, Mikko

    2016-01-01

    Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1-R6 photoreceptors to those of the hdc (JK910) mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdc (JK910) photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdc (JK910) photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdc (JK910) R1-R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdc (JK910) mutant also restored their normal phasic feedback modulation to R1-R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons. PMID:27047343

  19. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis

    PubMed Central

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.; Mohandas, Narla; Pachter, Lior; Conboy, John G.

    2016-01-01

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentally-dynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ∼50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclear-localized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. We conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease. PMID:26531823

  20. Changes in dynamics upon oligomerization regulate substrate binding and allostery in amino acid kinase family members.

    PubMed

    Marcos, Enrique; Crehuet, Ramon; Bahar, Ivet

    2011-09-01

    Oligomerization is a functional requirement for many proteins. The interfacial interactions and the overall packing geometry of the individual monomers are viewed as important determinants of the thermodynamic stability and allosteric regulation of oligomers. The present study focuses on the role of the interfacial interactions and overall contact topology in the dynamic features acquired in the oligomeric state. To this aim, the collective dynamics of enzymes belonging to the amino acid kinase family both in dimeric and hexameric forms are examined by means of an elastic network model, and the softest collective motions (i.e., lowest frequency or global modes of motions) favored by the overall architecture are analyzed. Notably, the lowest-frequency modes accessible to the individual subunits in the absence of multimerization are conserved to a large extent in the oligomer, suggesting that the oligomer takes advantage of the intrinsic dynamics of the individual monomers. At the same time, oligomerization stiffens the interfacial regions of the monomers and confers new cooperative modes that exploit the rigid-body translational and rotational degrees of freedom of the intact monomers. The present study sheds light on the mechanism of cooperative inhibition of hexameric N-acetyl-L-glutamate kinase by arginine and on the allosteric regulation of UMP kinases. It also highlights the significance of the particular quaternary design in selectively determining the oligomer dynamics congruent with required ligand-binding and allosteric activities.

  1. Evidence for Dynamic Network Regulation of Drosophila Photoreceptor Function from Mutants Lacking the Neurotransmitter Histamine.

    PubMed

    Dau, An; Friederich, Uwe; Dongre, Sidhartha; Li, Xiaofeng; Bollepalli, Murali K; Hardie, Roger C; Juusola, Mikko

    2016-01-01

    Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1-R6 photoreceptors to those of the hdc (JK910) mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdc (JK910) photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdc (JK910) photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdc (JK910) R1-R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdc (JK910) mutant also restored their normal phasic feedback modulation to R1-R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons.

  2. Collapsin response mediator protein 4 regulates growth cone dynamics through the actin and microtubule cytoskeleton.

    PubMed

    Khazaei, Mohamad R; Girouard, Marie-Pier; Alchini, Ricardo; Ong Tone, Stephan; Shimada, Tadayuki; Bechstedt, Susanne; Cowan, Mitra; Guillet, Dominique; Wiseman, Paul W; Brouhard, Gary; Cloutier, Jean Francois; Fournier, Alyson E

    2014-10-24

    Coordinated control of the growth cone cytoskeleton underlies axon extension and guidance. Members of the collapsin response mediator protein (CRMP) family of cytosolic phosphoproteins regulate the microtubule and actin cytoskeleton, but their roles in regulating growth cone dynamics remain largely unexplored. Here, we examine how CRMP4 regulates the growth cone cytoskeleton. Hippocampal neurons from CRMP4-/- mice exhibited a selective decrease in axon extension and reduced growth cone area, whereas overexpression of CRMP4 enhanced the formation and length of growth cone filopodia. Biochemically, CRMP4 can impact both microtubule assembly and F-actin bundling in vitro. Through a structure function analysis of CRMP4, we found that the effects of CRMP4 on axon growth and growth cone morphology were dependent on microtubule assembly, whereas filopodial extension relied on actin bundling. Intriguingly, anterograde movement of EB3 comets, which track microtubule protrusion, slowed significantly in neurons derived from CRMP4-/- mice, and rescue of microtubule dynamics required CRMP4 activity toward both the actin and microtubule cytoskeleton. Together, this study identified a dual role for CRMP4 in regulating the actin and microtubule growth cone cytoskeleton. PMID:25225289

  3. Polysome profiling in liver identifies dynamic regulation of endoplasmic reticulum translatome by obesity and fasting.

    PubMed

    Fu, Suneng; Fan, Jason; Blanco, Joshua; Gimenez-Cassina, Alfredo; Danial, Nika N; Watkins, Steve M; Hotamisligil, Gökhan S

    2012-08-01

    Obesity-associated metabolic complications are generally considered to emerge from abnormalities in carbohydrate and lipid metabolism, whereas the status of protein metabolism is not well studied. Here, we performed comparative polysome and associated transcriptional profiling analyses to study the dynamics and functional implications of endoplasmic reticulum (ER)-associated protein synthesis in the mouse liver under conditions of obesity and nutrient deprivation. We discovered that ER from livers of obese mice exhibits a general reduction in protein synthesis, and comprehensive analysis of polysome-bound transcripts revealed extensive down-regulation of protein synthesis machinery, mitochondrial components, and bile acid metabolism in the obese translatome. Nutrient availability also plays an important but distinct role in remodeling the hepatic ER translatome in lean and obese mice. Fasting in obese mice partially reversed the overall translatomic differences between lean and obese nonfasted controls, whereas fasting of the lean mice mimicked many of the translatomic changes induced by the development of obesity. The strongest examples of such regulations were the reduction in Cyp7b1 and Slco1a1, molecules involved in bile acid metabolism. Exogenous expression of either gene significantly lowered plasma glucose levels, improved hepatic steatosis, but also caused cholestasis, indicating the fine balance bile acids play in regulating metabolism and health. Together, our work defines dynamic regulation of the liver translatome by obesity and nutrient availability, and it identifies a novel role for bile acid metabolism in the pathogenesis of metabolic abnormalities associated with obesity.

  4. VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle

    PubMed Central

    Cantarero, Lara; Sanz-García, Marta; Vinograd-Byk, Hadar; Renbaum, Paul; Levy-Lahad, Ephrat; Lazo, Pedro A.

    2015-01-01

    Cajal bodies (CBs) are nuclear organelles associated with ribonucleoprotein functions and RNA maturation. CBs are assembled on coilin, its main scaffold protein, in a cell cycle dependent manner. The Ser-Thr VRK1 (vaccinia-related kinase 1) kinase, whose activity is also cell cycle regulated, interacts with and phosphorylates coilin regulating assembly of CBs. Coilin phosphorylation is not necessary for its interaction with VRK1, but it occurs in mitosis and regulates coilin stability. Knockdown of VRK1 or VRK1 inactivation by serum deprivation causes a loss of coilin phosphorylation in Ser184 and of CBs formation, which are rescued with an active VRK1, but not by kinase-dead VRK1. The phosphorylation of coilin in Ser184 occurs during mitosis before assembly of CBs. Loss of coilin phosphorylation results in disintegration of CBs, and of coilin degradation that is prevented by proteasome inhibitors. After depletion of VRK1, coilin is ubiquitinated in nuclei, which is partly mediated by mdm2, but its proteasomal degradation occurs in cytosol and is prevented by blocking its nuclear export. We conclude that VRK1 is a novel regulator of CBs dynamics and stability in cell cycle by protecting coilin from ubiquitination and degradation in the proteasome, and propose a model of CB dynamics. PMID:26068304

  5. Post-translational Control of the Temporal Dynamics of Transcription Factor Activity Regulates Neurogenesis.

    PubMed

    Quan, Xiao-Jiang; Yuan, Liqun; Tiberi, Luca; Claeys, Annelies; De Geest, Natalie; Yan, Jiekun; van der Kant, Rob; Xie, Wei R; Klisch, Tiemo J; Shymkowitz, Joost; Rousseau, Frederic; Bollen, Mathieu; Beullens, Monique; Zoghbi, Huda Y; Vanderhaeghen, Pierre; Hassan, Bassem A

    2016-01-28

    Neurogenesis is initiated by the transient expression of the highly conserved proneural proteins, bHLH transcriptional regulators. Here, we discover a conserved post-translational switch governing the duration of proneural protein activity that is required for proper neuronal development. Phosphorylation of a single Serine at the same position in Scute and Atonal proneural proteins governs the transition from active to inactive forms by regulating DNA binding. The equivalent Neurogenin2 Threonine also regulates DNA binding and proneural activity in the developing mammalian neocortex. Using genome editing in Drosophila, we show that Atonal outlives its mRNA but is inactivated by phosphorylation. Inhibiting the phosphorylation of the conserved proneural Serine causes quantitative changes in expression dynamics and target gene expression resulting in neuronal number and fate defects. Strikingly, even a subtle change from Serine to Threonine appears to shift the duration of Atonal activity in vivo, resulting in neuronal fate defects. PMID:26824657

  6. Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6

    PubMed Central

    Dai, Yawei; Seeger, Markus; Weng, Jingwei; Song, Song; Wang, Wenning; Tan, Yan-Wen

    2016-01-01

    Cellular informational and metabolic processes are propagated with specific membrane fusions governed by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNARE). SNARE protein Ykt6 is highly expressed in brain neurons and plays a critical role in the membrane-trafficking process. Studies suggested that Ykt6 undergoes a conformational change at the interface between its longin domain and the SNARE core. In this work, we study the conformational state distributions and dynamics of rat Ykt6 by means of single-molecule Förster Resonance Energy Transfer (smFRET) and Fluorescence Cross-Correlation Spectroscopy (FCCS). We observed that intramolecular conformational dynamics between longin domain and SNARE core occurred at the timescale ~200 μs. Furthermore, this dynamics can be regulated and even eliminated by the presence of lipid dodecylphoshpocholine (DPC). Our molecular dynamic (MD) simulations have shown that, the SNARE core exhibits a flexible structure while the longin domain retains relatively stable in apo state. Combining single molecule experiments and theoretical MD simulations, we are the first to provide a quantitative dynamics of Ykt6 and explain the functional conformational change from a qualitative point of view. PMID:27493064

  7. Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6

    NASA Astrophysics Data System (ADS)

    Dai, Yawei; Seeger, Markus; Weng, Jingwei; Song, Song; Wang, Wenning; Tan, Yan-Wen

    2016-08-01

    Cellular informational and metabolic processes are propagated with specific membrane fusions governed by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNARE). SNARE protein Ykt6 is highly expressed in brain neurons and plays a critical role in the membrane-trafficking process. Studies suggested that Ykt6 undergoes a conformational change at the interface between its longin domain and the SNARE core. In this work, we study the conformational state distributions and dynamics of rat Ykt6 by means of single-molecule Förster Resonance Energy Transfer (smFRET) and Fluorescence Cross-Correlation Spectroscopy (FCCS). We observed that intramolecular conformational dynamics between longin domain and SNARE core occurred at the timescale ~200 μs. Furthermore, this dynamics can be regulated and even eliminated by the presence of lipid dodecylphoshpocholine (DPC). Our molecular dynamic (MD) simulations have shown that, the SNARE core exhibits a flexible structure while the longin domain retains relatively stable in apo state. Combining single molecule experiments and theoretical MD simulations, we are the first to provide a quantitative dynamics of Ykt6 and explain the functional conformational change from a qualitative point of view.

  8. ATX-2, the C. elegans Ortholog of Human Ataxin-2, Regulates Centrosome Size and Microtubule Dynamics

    PubMed Central

    Stubenvoll, Michael D.; Medley, Jeffrey C.; Irwin, Miranda

    2016-01-01

    Centrosomes are critical sites for orchestrating microtubule dynamics, and exhibit dynamic changes in size during the cell cycle. As cells progress to mitosis, centrosomes recruit more microtubules (MT) to form mitotic bipolar spindles that ensure proper chromosome segregation. We report a new role for ATX-2, a C. elegans ortholog of Human Ataxin-2, in regulating centrosome size and MT dynamics. ATX-2, an RNA-binding protein, forms a complex with SZY-20 in an RNA-independent fashion. Depleting ATX-2 results in embryonic lethality and cytokinesis failure, and restores centrosome duplication to zyg-1 mutants. In this pathway, SZY-20 promotes ATX-2 abundance, which inversely correlates with centrosome size. Centrosomes depleted of ATX-2 exhibit elevated levels of centrosome factors (ZYG-1, SPD-5, γ-Tubulin), increasing MT nucleating activity but impeding MT growth. We show that ATX-2 influences MT behavior through γ-Tubulin at the centrosome. Our data suggest that RNA-binding proteins play an active role in controlling MT dynamics and provide insight into the control of proper centrosome size and MT dynamics. PMID:27689799

  9. Extending the dynamic range of transcription factor action by translational regulation

    NASA Astrophysics Data System (ADS)

    Sokolowski, Thomas R.; Walczak, Aleksandra M.; Bialek, William; Tkačik, Gašper

    2016-02-01

    A crucial step in the regulation of gene expression is binding of transcription factor (TF) proteins to regulatory sites along the DNA. But transcription factors act at nanomolar concentrations, and noise due to random arrival of these molecules at their binding sites can severely limit the precision of regulation. Recent work on the optimization of information flow through regulatory networks indicates that the lower end of the dynamic range of concentrations is simply inaccessible, overwhelmed by the impact of this noise. Motivated by the behavior of homeodomain proteins, such as the maternal morphogen Bicoid in the fruit fly embryo, we suggest a scheme in which transcription factors also act as indirect translational regulators, binding to the mRNA of other regulatory proteins. Intuitively, each mRNA molecule acts as an independent sensor of the input concentration, and averaging over these multiple sensors reduces the noise. We analyze information flow through this scheme and identify conditions under which it outperforms direct transcriptional regulation. Our results suggest that the dual role of homeodomain proteins is not just a historical accident, but a solution to a crucial physics problem in the regulation of gene expression.

  10. Dynamic O-GlcNAc modification regulates CREB-mediated gene expression and memory formation.

    PubMed

    Rexach, Jessica E; Clark, Peter M; Mason, Daniel E; Neve, Rachael L; Peters, Eric C; Hsieh-Wilson, Linda C

    2012-01-22

    The transcription factor cyclic AMP-response element binding protein (CREB) is a key regulator of many neuronal processes, including brain development, circadian rhythm and long-term memory. Studies of CREB have focused on its phosphorylation, although the diversity of CREB functions in the brain suggests additional forms of regulation. Here we expand on a chemoenzymatic strategy for quantifying glycosylation stoichiometries to characterize the functional roles of CREB glycosylation in neurons. We show that CREB is dynamically modified with an O-linked β-N-acetyl-D-glucosamine sugar in response to neuronal activity and that glycosylation represses CREB-dependent transcription by impairing its association with CREB-regulated transcription coactivator (CRTC; also known as transducer of regulated CREB activity). Blocking glycosylation of CREB alters cellular function and behavioral plasticity, enhancing both axonal and dendritic growth and long-term memory consolidation. Our findings demonstrate a new role for O-glycosylation in memory formation and provide a mechanistic understanding of how glycosylation contributes to critical neuronal functions. Moreover, we identify a previously unknown mechanism for the regulation of activity-dependent gene expression, neural development and memory.

  11. Systems-level analysis of the regulation and function of p53 dynamics in cancer

    NASA Astrophysics Data System (ADS)

    Batchelor, Eric

    Living cells use complex signaling pathways to detect environmental stimuli and generate appropriate responses. As methods for quantifying intracellular signaling have improved, several signaling pathways have been found to transmit information using signals that pulse in time. The transcription factor p53 is a key tumor suppressor and stress-response regulator that exhibits pulsatile dynamics. In response to DNA double-strand breaks, the concentration of p53 in the cell nucleus increases in pulses with a fixed amplitude, duration, and period; the mean number of pulses increases with DNA damage. p53 regulates the expression of over 100 target genes involved in a range of cellular stress responses including apoptosis, cell cycle arrest, and changes in metabolism. p53 pulsing directly impacts p53 function: altering p53 dynamics by pharmacologically inhibiting p53 degradation changes patterns of target gene expression and cell fate. While p53 pulsing serves an important signaling function, it is less clear what it accomplishes mechanistically. Here we will describe our recent efforts to determine the impact of p53 pulsing on the dynamics and coordination of target gene expression.

  12. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis

    SciTech Connect

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.; Mohandas, Narla; Pachter, Lior; Conboy, John G.

    2015-11-03

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentallydynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ~50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclearlocalized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. Finally, we conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.

  13. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    NASA Astrophysics Data System (ADS)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  14. Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis

    PubMed Central

    Nepal, Chirag; Hadzhiev, Yavor; Previti, Christopher; Haberle, Vanja; Li, Nan; Takahashi, Hazuki; Suzuki, Ana Maria M.; Sheng, Ying; Abdelhamid, Rehab F.; Anand, Santosh; Gehrig, Jochen; Akalin, Altuna; Kockx, Christel E.M.; van der Sloot, Antoine A.J.; van IJcken, Wilfred F.J.; Armant, Olivier; Rastegar, Sepand; Watson, Craig; Strähle, Uwe; Stupka, Elia; Carninci, Piero; Lenhard, Boris; Müller, Ferenc

    2013-01-01

    Spatiotemporal control of gene expression is central to animal development. Core promoters represent a previously unanticipated regulatory level by interacting with cis-regulatory elements and transcription initiation in different physiological and developmental contexts. Here, we provide a first and comprehensive description of the core promoter repertoire and its dynamic use during the development of a vertebrate embryo. By using cap analysis of gene expression (CAGE), we mapped transcription initiation events at single nucleotide resolution across 12 stages of zebrafish development. These CAGE-based transcriptome maps reveal genome-wide rules of core promoter usage, structure, and dynamics, key to understanding the control of gene regulation during vertebrate ontogeny. They revealed the existence of multiple classes of pervasive intra- and intergenic post-transcriptionally processed RNA products and their developmental dynamics. Among these RNAs, we report splice donor site-associated intronic RNA (sRNA) to be specific to genes of the splicing machinery. For the identification of conserved features, we compared the zebrafish data sets to the first CAGE promoter map of Tetraodon and the existing human CAGE data. We show that a number of features, such as promoter type, newly discovered promoter properties such as a specialized purine-rich initiator motif, as well as sRNAs and the genes in which they are detected, are conserved in mammalian and Tetraodon CAGE-defined promoter maps. The zebrafish developmental promoterome represents a powerful resource for studying developmental gene regulation and revealing promoter features shared across vertebrates. PMID:24002785

  15. Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking

    PubMed Central

    Wilson, Carlos; González-Billault, Christian

    2015-01-01

    A proper balance between chemical reduction and oxidation (known as redox balance) is essential for normal cellular physiology. Deregulation in the production of oxidative species leads to DNA damage, lipid peroxidation and aberrant post-translational modification of proteins, which in most cases induces injury, cell death and disease. However, physiological concentrations of oxidative species are necessary to support important cell functions, such as chemotaxis, hormone synthesis, immune response, cytoskeletal remodeling, Ca2+ homeostasis and others. Recent evidence suggests that redox balance regulates actin and microtubule dynamics in both physiological and pathological contexts. Microtubules and actin microfilaments contain certain amino acid residues that are susceptible to oxidation, which reduces the ability of microtubules to polymerize and causes severing of actin microfilaments in neuronal and non-neuronal cells. In contrast, inhibited production of reactive oxygen species (ROS; e.g., due to NOXs) leads to aberrant actin polymerization, decreases neurite outgrowth and affects the normal development and polarization of neurons. In this review, we summarize emerging evidence suggesting that both general and specific enzymatic sources of redox species exert diverse effects on cytoskeletal dynamics. Considering the intimate relationship between cytoskeletal dynamics and trafficking, we also discuss the potential effects of redox balance on intracellular transport via regulation of the components of the microtubule and actin cytoskeleton as well as cytoskeleton-associated proteins, which may directly impact localization of proteins and vesicles across the soma, dendrites and axon of neurons. PMID:26483635

  16. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions.

    PubMed

    Doyle, Andrew D; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M

    2015-01-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils. PMID:26548801

  17. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    PubMed Central

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-01-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils. PMID:26548801

  18. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis

    DOE PAGES

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry L.; Mohandas, Narla; Pachter, Lior; Conboy, John G.

    2015-11-03

    Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentallydynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ~50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclearlocalized. Splicemore » site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. Finally, we conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.« less

  19. The GATA transcription factor GtaC regulates early developmental gene expression dynamics in Dictyostelium

    PubMed Central

    Santhanam, Balaji; Cai, Huaqing; Devreotes, Peter N.; Shaulsky, Gad; Katoh-Kurasawa, Mariko

    2015-01-01

    In many systems, including the social amoeba Dictyostelium discoideum, development is often marked by dynamic morphological and transcriptional changes orchestrated by key transcription factors. However, efforts to examine sequential genome-wide changes of gene regulation in developmental processes have been fairly limited. Here we report the developmental regulatory dynamics of GtaC, a GATA-type zinc-finger transcription factor, through the analyses of serial ChIP- and RNA-sequencing data. GtaC is essential for developmental progression, decoding extracellular cAMP pulses during early development and may play a role in mediating cell-type differentiation at later stages. We find that GtaC exhibits temporally distinctive DNA-binding patterns concordant with each developmental stage. We identify direct GtaC targets and observe cotemporaneous GtaC-binding and developmental expression regulation. Our results suggest that GtaC regulates multiple physiological processes as Dictyostelium transitions from a group of unicellular amoebae to an integrated multicellular organism. PMID:26144553

  20. Enabled negatively regulates diaphanous-driven actin dynamics in vitro and in vivo.

    PubMed

    Bilancia, Colleen G; Winkelman, Jonathan D; Tsygankov, Denis; Nowotarski, Stephanie H; Sees, Jennifer A; Comber, Kate; Evans, Iwan; Lakhani, Vinal; Wood, Will; Elston, Timothy C; Kovar, David R; Peifer, Mark

    2014-02-24

    Actin regulators facilitate cell migration by controlling cell protrusion architecture and dynamics. As the behavior of individual actin regulators becomes clear, we must address why cells require multiple regulators with similar functions and how they cooperate to create diverse protrusions. We characterized Diaphanous (Dia) and Enabled (Ena) as a model, using complementary approaches: cell culture, biophysical analysis, and Drosophila morphogenesis. We found that Dia and Ena have distinct biochemical properties that contribute to the different protrusion morphologies each induces. Dia is a more processive, faster elongator, paralleling the long, stable filopodia it induces in vivo, while Ena promotes filopodia with more dynamic changes in number, length, and lifetime. Acting together, Ena and Dia induce protrusions distinct from those induced by either alone, with Ena reducing Dia-driven protrusion length and number. Consistent with this, EnaEVH1 binds Dia directly and inhibits DiaFH1FH2-mediated nucleation in vitro. Finally, Ena rescues hemocyte migration defects caused by activated Dia.

  1. BAR Proteins PSTPIP1/2 Regulate Podosome Dynamics and the Resorption Activity of Osteoclasts

    PubMed Central

    Sztacho, Martin; Segeletz, Sandra; Sanchez-Fernandez, Maria Arantzazu; Czupalla, Cornelia; Niehage, Christian; Hoflack, Bernard

    2016-01-01

    Bone resorption in vertebrates relies on the ability of osteoclasts to assemble F-actin-rich podosomes that condense into podosomal belts, forming sealing zones. Sealing zones segregate bone-facing ruffled membranes from other membrane domains, and disassemble when osteoclasts migrate to new areas. How podosome/sealing zone dynamics is regulated remains unknown. We illustrate the essential role of the membrane scaffolding F-BAR-Proline-Serine-Threonine Phosphatase Interacting Proteins (PSTPIP) 1 and 2 in this process. Whereas PSTPIP2 regulates podosome assembly, PSTPIP1 regulates their disassembly. PSTPIP1 recruits, through its F-BAR domain, the protein tyrosine phosphatase non-receptor type 6 (PTPN6) that de-phosphophorylates the phosphatidylinositol 5-phosphatases SHIP1/2 bound to the SH3 domain of PSTPIP1. Depletion of any component of this complex prevents sealing zone disassembly and increases osteoclast activity. Thus, our results illustrate the importance of BAR domain proteins in podosome structure and dynamics, and identify a new PSTPIP1/PTPN6/SHIP1/2-dependent negative feedback mechanism that counterbalances Src and PI(3,4,5)P3 signalling to control osteoclast cell polarity and activity during bone resorption. PMID:27760174

  2. Dynamic regulation of genetic pathways and targets during aging in Caenorhabditis elegans

    PubMed Central

    Zhou, Tao; Shao, Jiaofang; Ren, Xiaoliang; Zhao, Zhongying

    2014-01-01

    Numerous genetic targets and some individual pathways associated with aging have been identified using the worm model. However, less is known about the genetic mechanisms of aging in genome wide, particularly at the level of multiple pathways as well as the regulatory networks during aging. Here, we employed the gene expression datasets of three time points during aging in Caenorhabditis elegans (C. elegans) and performed the approach of gene set enrichment analysis (GSEA) on each dataset between adjacent stages. As a result, multiple genetic pathways and targets were identified as significantly down- or up-regulated. Among them, 5 truly aging-dependent signaling pathways including MAPK signaling pathway, mTOR signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway and ErbB signaling pathway as well as 12 significantly associated genes were identified with dynamic expression pattern during aging. On the other hand, the continued declines in the regulation of several metabolic pathways have been demonstrated to display age-related changes. Furthermore, the reconstructed regulatory networks based on three of aging related Chromatin immunoprecipitation experiments followed by sequencing (ChIP–seq) datasets and the expression matrices of 154 involved genes in above signaling pathways provide new insights into aging at the multiple pathways level. The combination of multiple genetic pathways and targets needs to be taken into consideration in future studies of aging, in which the dynamic regulation would be uncovered. PMID:24739375

  3. Dynamic regulation of genetic pathways and targets during aging in Caenorhabditis elegans.

    PubMed

    He, Kan; Zhou, Tao; Shao, Jiaofang; Ren, Xiaoliang; Zhao, Zhongying; Liu, Dahai

    2014-03-01

    Numerous genetic targets and some individual pathways associated with aging have been identified using the worm model. However, less is known about the genetic mechanisms of aging in genome wide, particularly at the level of multiple pathways as well as the regulatory networks during aging. Here, we employed the gene expression datasets of three time points during aging in Caenorhabditis elegans (C. elegans) and performed the approach of gene set enrichment analysis (GSEA) on each dataset between adjacent stages. As a result, multiple genetic pathways and targets were identified as significantly down- or up-regulated. Among them, 5 truly aging-dependent signaling pathways including MAPK signaling pathway, mTOR signaling pathway, Wnt signaling pathway, TGF-beta signaling pathway and ErbB signaling pathway as well as 12 significantly associated genes were identified with dynamic expression pattern during aging. On the other hand, the continued declines in the regulation of several metabolic pathways have been demonstrated to display age-related changes. Furthermore, the reconstructed regulatory networks based on three of aging related Chromatin immunoprecipitation experiments followed by sequencing (ChIP-seq) datasets and the expression matrices of 154 involved genes in above signaling pathways provide new insights into aging at the multiple pathways level. The combination of multiple genetic pathways and targets needs to be taken into consideration in future studies of aging, in which the dynamic regulation would be uncovered.

  4. Transcription factor p63 bookmarks and regulates dynamic enhancers during epidermal differentiation

    PubMed Central

    Kouwenhoven, Evelyn N; Oti, Martin; Niehues, Hanna; van Heeringen, Simon J; Schalkwijk, Joost; Stunnenberg, Hendrik G; van Bokhoven, Hans; Zhou, Huiqing

    2015-01-01

    The transcription factor p63 plays a pivotal role in keratinocyte proliferation and differentiation in the epidermis. However, how p63 regulates epidermal genes during differentiation is not yet clear. Using epigenome profiling of differentiating human primary epidermal keratinocytes, we characterized a catalog of dynamically regulated genes and p63-bound regulatory elements that are relevant for epithelial development and related diseases. p63-bound regulatory elements occur as single or clustered enhancers, and remarkably, only a subset is active as defined by the co-presence of the active enhancer mark histone modification H3K27ac in epidermal keratinocytes. We show that the dynamics of gene expression correlates with the activity of p63-bound enhancers rather than with p63 binding itself. The activity of p63-bound enhancers is likely determined by other transcription factors that cooperate with p63. Our data show that inactive p63-bound enhancers in epidermal keratinocytes may be active during the development of other epithelial-related structures such as limbs and suggest that p63 bookmarks genomic loci during the commitment of the epithelial lineage and regulates genes through temporal- and spatial-specific active enhancers. PMID:26034101

  5. Dynamic Interplay Among Homeostatic, Hedonic, and Cognitive Feedback Circuits Regulating Body Weight

    PubMed Central

    Hammond, Ross A.; Rahmandad, Hazhir

    2014-01-01

    Obesity is associated with a prolonged imbalance between energy intake and expenditure, both of which are regulated by multiple feedback processes within and across individuals. These processes constitute 3 hierarchical control systems—homeostatic, hedonic, and cognitive—with extensive interaction among them. Understanding complex eating behavior requires consideration of all 3 systems and their interactions. Existing models of these processes are widely scattered, with relatively few attempts to integrate across mechanisms. We briefly review available empirical evidence and dynamic models, discussing challenges and potential for better integration. We conclude that developing richer models of dynamic interplay among systems should be a priority in the future study of obesity and that systems science modeling offers the potential to aid in this goal. PMID:24832422

  6. The role of Nox-mediated oxidation in the regulation of cytoskeletal dynamics.

    PubMed

    Valdivia, Alejandra; Duran, Charity; San Martin, Alejandra

    2015-01-01

    Nox generated ROS, particularly those derived from Nox1, Nox2 and Nox4, have emerged as important regulators of the actin cytoskeleton and cytoskeleton-supported cell functions, such as migration and adhesion. The effects of Nox-derived ROS on cytoskeletal remodeling may be largely attributed to the ability of ROS to directly modify proteins that constitute or are associated with the cytoskeleton. Additionally, Nox-derived ROS may participate in signaling pathways governing cytoskeletal remodeling. In addition to these more extensively studied signaling pathways involving Nox-derived ROS, there also exist redox sensitive pathways for which the source of ROS is unclear. ROS from as of yet undetermined sources play a role in modifying, and thus regulating, the activity of several proteins critical for remodeling of the actin cytoskeleton. In this review we discuss ROS sensitive targets that are likely to affect cytoskeletal dynamics, as well as the potential involvement of Nox proteins.

  7. Dynamic regulation of RNA editing in human brain development and disease.

    PubMed

    Hwang, Taeyoung; Park, Chul-Kee; Leung, Anthony K L; Gao, Yuan; Hyde, Thomas M; Kleinman, Joel E; Rajpurohit, Anandita; Tao, Ran; Shin, Joo Heon; Weinberger, Daniel R

    2016-08-01

    RNA editing is increasingly recognized as a molecular mechanism regulating RNA activity and recoding proteins. Here we surveyed the global landscape of RNA editing in human brain tissues and identified three unique patterns of A-to-I RNA editing rates during cortical development: stable high, stable low and increasing. RNA secondary structure and the temporal expression of adenosine deaminase acting on RNA (ADAR) contribute to cis- and trans-regulatory mechanisms of these RNA editing patterns, respectively. Interestingly, the increasing pattern was associated with neuronal maturation, correlated with mRNA abundance and potentially influenced miRNA binding energy. Gene ontology analyses implicated the increasing pattern in vesicle or organelle membrane-related genes and glutamate signaling pathways. We also found that the increasing pattern was selectively perturbed in spinal cord injury and glioblastoma. Our findings reveal global and dynamic aspects of RNA editing in brain, providing new insight into epitranscriptional regulation of sequence diversity. PMID:27348216

  8. The dynamics of NF-κB pathway regulated by circadian clock.

    PubMed

    Wang, Xia; Yu, Wenbao; Zheng, Lei

    2015-02-01

    The circadian clock regulates many physiological parameters involving immune response to infectious agents, which is mediated by activation of the transcription factor NF-κB. Thus, understanding the NF-κB dynamics regulated by circadian clocks will help in developing better therapeutics. To this end, we proposed a detailed model in the present work on the basis of understanding inflammatory response under control from circadian clocks. Our results show that the frequencies and amplitudes of the NF-κB oscillation are dependent on the strength and modes of coupling to circadian clock. This circadian control of NF-κB pathway can therefore serve as a useful mechanism in keeping the system in check and controlling inflammatory response induced by infection and other agents. The results are consistent with earlier experimental findings.

  9. The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1.

    PubMed

    Galande, Sanjeev; Purbey, Prabhat Kumar; Notani, Dimple; Kumar, P Pavan

    2007-10-01

    Compartmentalized distribution of functional components is a hallmark of the eukaryotic nucleus. Technological advances in recent years have provided unprecedented insights into the role of chromatin organization and interactions of various structural-functional components toward gene regulation. SATB1, the global chromatin organizer and transcription factor, has emerged as a key factor integrating higher-order chromatin architecture with gene regulation. Studies in recent years have unraveled the role of SATB1 in organization of chromatin 'loopscape' and its dynamic nature in response to physiological stimuli. SATB1 organizes the MHC class-I locus into distinct chromatin loops by tethering MARs to nuclear matrix at fixed distances. Silencing of SATB1 mimics the effects of IFNgamma treatment on chromatin loop architecture of the MHC class-I locus and altered expression of genes within the locus. At genome-wide level, SATB1 seems to play a role in organization of the transcriptionally poised chromatin.

  10. Nodal signaling regulates endodermal cell motility and actin dynamics via Rac1 and Prex1

    PubMed Central

    Housley, Michael P.; Weiner, Orion D.

    2012-01-01

    Embryo morphogenesis is driven by dynamic cell behaviors, including migration, that are coordinated with fate specification and differentiation, but how such coordination is achieved remains poorly understood. During zebrafish gastrulation, endodermal cells sequentially exhibit first random, nonpersistent migration followed by oriented, persistent migration and finally collective migration. Using a novel transgenic line that labels the endodermal actin cytoskeleton, we found that these stage-dependent changes in migratory behavior correlated with changes in actin dynamics. The dynamic actin and random motility exhibited during early gastrulation were dependent on both Nodal and Rac1 signaling. We further identified the Rac-specific guanine nucleotide exchange factor Prex1 as a Nodal target and showed that it mediated Nodal-dependent random motility. Reducing Rac1 activity in endodermal cells caused them to bypass the random migration phase and aberrantly contribute to mesodermal tissues. Together, our results reveal a novel role for Nodal signaling in regulating actin dynamics and migration behavior, which are crucial for endodermal morphogenesis and cell fate decisions. PMID:22945937

  11. NMR insights into dynamics regulated target binding of DLC8 dimer

    SciTech Connect

    Krishna Mohan, P.M.; Hosur, Ramakrishna V. . E-mail: hosur@tifr.res.in

    2007-04-20

    Conformational dynamics play a crucial role in biological function. Dynein light chain protein (DLC8) acts as a cargo adaptor, and exists as a dimer under physiological conditions and dissociates into monomer below pH 4. In the present NMR study, we identified some dynamic residues in the dimer using chemical shift perturbation approach by applying small pH change. As evidenced by gel filtration and CD studies, this small pH change does not alter the globular structural features of the protein. In fact, these changes result in small local stability perturbations as monitored using temperature dependence of amide proton chemical shifts, and influence the dynamics of the dimer substantially. Further, interaction studies of the protein with a peptide containing the recognition motif of cargo indicated that the efficacy of peptide binding decreases when the pH is reduced from 7 to 6. These observations taken together support the conception that dynamics can regulate cargo binding/trafficking by the DLC8 dimer.

  12. Light-activated regulation of cofilin dynamics using a photocaged hydrogen peroxide generator.

    PubMed

    Miller, Evan W; Taulet, Nicolas; Onak, Carl S; New, Elizabeth J; Lanselle, Julie K; Smelick, Gillian S; Chang, Christopher J

    2010-12-01

    Hydrogen peroxide (H2O2) can exert diverse signaling and stress responses within living systems depending on its spatial and temporal dynamics. Here we report a new small-molecule probe for producing H2O2 on demand upon photoactivation and its application for optical regulation of cofilin-actin rod formation in living cells. This chemical method offers many potential opportunities for dissecting biological roles for H2O2 as well as remote control of cell behavior via H2O2-mediated pathways.

  13. Novel regulation of Ski protein stability and endosomal sorting by actin cytoskeleton dynamics in hepatocytes.

    PubMed

    Vázquez-Victorio, Genaro; Caligaris, Cassandre; Del Valle-Espinosa, Eugenio; Sosa-Garrocho, Marcela; González-Arenas, Nelly R; Reyes-Cruz, Guadalupe; Briones-Orta, Marco A; Macías-Silva, Marina

    2015-02-13

    TGF-β-induced antimitotic signals are highly regulated during cell proliferation under normal and pathological conditions, such as liver regeneration and cancer. Up-regulation of the transcriptional cofactors Ski and SnoN during liver regeneration may favor hepatocyte proliferation by inhibiting TGF-β signals. In this study, we found a novel mechanism that regulates Ski protein stability through TGF-β and G protein-coupled receptor (GPCR) signaling. Ski protein is distributed between the nucleus and cytoplasm of normal hepatocytes, and the molecular mechanisms controlling Ski protein stability involve the participation of actin cytoskeleton dynamics. Cytoplasmic Ski is partially associated with actin and localized in cholesterol-rich vesicles. Ski protein stability is decreased by TGF-β/Smads, GPCR/Rho signals, and actin polymerization, whereas GPCR/cAMP signals and actin depolymerization promote Ski protein stability. In conclusion, TGF-β and GPCR signals differentially regulate Ski protein stability and sorting in hepatocytes, and this cross-talk may occur during liver regeneration.

  14. Evidence for Dynamic Network Regulation of Drosophila Photoreceptor Function from Mutants Lacking the Neurotransmitter Histamine

    PubMed Central

    Dau, An; Friederich, Uwe; Dongre, Sidhartha; Li, Xiaofeng; Bollepalli, Murali K.; Hardie, Roger C.; Juusola, Mikko

    2016-01-01

    Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1–R6 photoreceptors to those of the hdcJK910 mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdcJK910 photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdcJK910 photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdcJK910 R1–R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdcJK910 mutant also restored their normal phasic feedback modulation to R1–R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons. PMID:27047343

  15. DISC1-dependent Regulation of Mitochondrial Dynamics Controls the Morphogenesis of Complex Neuronal Dendrites*

    PubMed Central

    Norkett, Rosalind; Modi, Souvik; Birsa, Nicol; Atkin, Talia A.; Ivankovic, Davor; Pathania, Manav; Trossbach, Svenja V.; Korth, Carsten; Hirst, Warren D.; Kittler, Josef T.

    2016-01-01

    The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development. PMID:26553875

  16. Histone Methylation Dynamics and Gene Regulation Occur through the Sensing of One-Carbon Metabolism.

    PubMed

    Mentch, Samantha J; Mehrmohamadi, Mahya; Huang, Lei; Liu, Xiaojing; Gupta, Diwakar; Mattocks, Dwight; Gómez Padilla, Paola; Ables, Gene; Bamman, Marcas M; Thalacker-Mercer, Anna E; Nichenametla, Sailendra N; Locasale, Jason W

    2015-11-01

    S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) link one-carbon metabolism to methylation status. However, it is unknown whether regulation of SAM and SAH by nutrient availability can be directly sensed to alter the kinetics of key histone methylation marks. We provide evidence that the status of methionine metabolism is sufficient to determine levels of histone methylation by modulating SAM and SAH. This dynamic interaction led to rapid changes in H3K4me3, altered gene transcription, provided feedback regulation to one-carbon metabolism, and could be fully recovered upon restoration of methionine. Modulation of methionine in diet led to changes in metabolism and histone methylation in the liver. In humans, methionine variability in fasting serum was commensurate with concentrations needed for these dynamics and could be partly explained by diet. Together these findings demonstrate that flux through methionine metabolism and the sensing of methionine availability may allow direct communication to the chromatin state in cells.

  17. The vav oncogene antagonises EGFR signalling and regulates adherens junction dynamics during Drosophila eye development.

    PubMed

    Martín-Bermudo, Maria-Dolores; Bardet, Pierre-Luc; Bellaïche, Yohanns; Malartre, Marianne

    2015-04-15

    Organ shaping and patterning depends on the coordinated regulation of multiple processes. The Drosophila compound eye provides an excellent model to study the coordination of cell fate and cell positioning during morphogenesis. Here, we find that loss of vav oncogene function during eye development is associated with a disorganised retina characterised by the presence of additional cells of all types. We demonstrate that these defects result from two distinct roles of Vav. First, and in contrast to its well-established role as a positive effector of the EGF receptor (EGFR), we show that readouts of the EGFR pathway are upregulated in vav mutant larval eye disc and pupal retina, indicating that Vav antagonises EGFR signalling during eye development. Accordingly, decreasing EGFR signalling in vav mutant eyes restores retinal organisation and rescues most vav mutant phenotypes. Second, using live imaging in the pupal retina, we observe that vav mutant cells do not form stable adherens junctions, causing various defects, such as recruitment of extra primary pigment cells. In agreement with this role in junction dynamics, we observe that these phenotypes can be exacerbated by lowering DE-Cadherin or Cindr levels. Taken together, our findings establish that Vav acts at multiple times during eye development to prevent excessive cell recruitment by limiting EGFR signalling and by regulating junction dynamics to ensure the correct patterning and morphogenesis of the Drosophila eye.

  18. Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC.

    PubMed

    Che, Ting-Fang; Lin, Ching-Wen; Wu, Yi-Ying; Chen, Yu-Ju; Han, Chia-Li; Chang, Yih-leong; Wu, Chen-Tu; Hsiao, Tzu-Hung; Hong, Tse-Ming; Yang, Pan-Chyr

    2015-11-10

    Dysfunction of the mitochondria is well-known for being associated with cancer progression. In the present study, we analyzed the mitochondria proteomics of lung cancer cell lines with different invasion abilities and found that EGFR is highly expressed in the mitochondria of highly invasive non-small-cell lung cancer (NSCLC) cells. EGF induces the mitochondrial translocation of EGFR; further, it leads to mitochondrial fission and redistribution in the lamellipodia, upregulates cellular ATP production, and enhances motility in vitro and in vivo. Moreover, EGFR can regulate mitochondrial dynamics by interacting with Mfn1 and disturbing Mfn1 polymerization. Overexpression of Mfn1 reverses the phenotypes resulting from EGFR mitochondrial translocation. We show that the mitochondrial EGFR expressions are higher in paired samples of the metastatic lymph node as compared with primary lung tumor and are inversely correlated with the overall survival in NSCLC patients. Therefore, our results demonstrate that besides the canonical role of EGFR as a receptor tyrosine, the mitochondrial translocation of EGFR may enhance cancer invasion and metastasis through regulating mitochondria dynamics.

  19. Characterizing regulated reservoirs dynamics in regional to global scale hydrologic models

    NASA Astrophysics Data System (ADS)

    Beighley, E.; Yoon, Y.; Lee, H.; Pavelsky, T.; Allen, G. H.

    2015-12-01

    Lakes and reservoirs are widely used for water supply and flood control resulting in regulated release of outflows that are nonconcurrent with inflows. In hydrologic modeling applications, accounting for the regulated behavior of reservoirs distributed throughout a river system poses a significant challenge because detailed reservoir operation rules or strategies can be difficult or not possible to obtain. Building on this problem, this study addresses the science questions: Can we model reservoir water storage changes and outlet discharges based on satellite measurements of river water surface elevation and inundated area, and How does repeat cycle, mission duration and measurement uncertainty impact our ability to characterize reservoir behavior? A modeling framework suitable for regional to global applications and based on the forthcoming Surface Water and Ocean Topography (SWOT) satellite mission is presented. Although our framework can be combined with data assimilation techniques for real-time flood forecasting, our goal is to represent reservoir storage patterns in large-scale hydrologic models for simulating: (i) impacts of future climate and/or land cover conditions on water resources, and (ii) synthetic storm events (e.g., 100-yr flood) or event catalogs for flood hazard and risk assessments. In-situ and remotely sensed reservoir dynamics are presented for select locations in the Mississippi River Basin and used in the Hillslope River Routing (HRR) hydrologic model to simulate downstream flow dynamics.

  20. Homeostatic Responses Regulate Selfish Mitochondrial Genome Dynamics in C. elegans.

    PubMed

    Gitschlag, Bryan L; Kirby, Cait S; Samuels, David C; Gangula, Rama D; Mallal, Simon A; Patel, Maulik R

    2016-07-12

    Mutant mitochondrial genomes (mtDNA) can be viewed as selfish genetic elements that persist in a state of heteroplasmy despite having potentially deleterious metabolic consequences. We sought to study regulation of selfish mtDNA dynamics. We establish that the large 3.1-kb deletion-bearing mtDNA variant uaDf5 is a selfish genome in Caenorhabditis elegans. Next, we show that uaDf5 mutant mtDNA replicates in addition to, not at the expense of, wild-type mtDNA. These data suggest the existence of a homeostatic copy-number control that is exploited by uaDf5 to "hitchhike" to high frequency. We also observe activation of the mitochondrial unfolded protein response (UPR(mt)) in uaDf5 animals. Loss of UPR(mt) causes a decrease in uaDf5 frequency, whereas its constitutive activation increases uaDf5 levels. UPR(mt) activation protects uaDf5 from mitophagy. Taken together, we propose that mtDNA copy-number control and UPR(mt) represent two homeostatic response mechanisms that play important roles in regulating selfish mitochondrial genome dynamics. PMID:27411011

  1. Nucleotide Regulation of the Structure and Dynamics of G-Actin

    PubMed Central

    Saunders, Marissa G.; Tempkin, Jeremy; Weare, Jonathan; Dinner, Aaron R.; Roux, Benoît; Voth, Gregory A.

    2014-01-01

    Actin, a highly conserved cytoskeletal protein found in all eukaryotic cells, facilitates cell motility and membrane remodeling via a directional polymerization cycle referred to as treadmilling. The nucleotide bound at the core of each actin subunit regulates this process. Although the biochemical kinetics of treadmilling has been well characterized, the atomistic details of how the nucleotide affects polymerization remain to be definitively determined. There is increasing evidence that the nucleotide regulation (and other characteristics) of actin cannot be fully described from the minimum energy structure, but rather depends on a dynamic equilibrium between conformations. In this work we explore the conformational mobility of the actin monomer (G-actin) in a coarse-grained subspace using umbrella sampling to bias all-atom molecular-dynamics simulations along the variables of interest. The results reveal that ADP-bound actin subunits are more conformationally mobile than ATP-bound subunits. We used a multiscale analysis method involving coarse-grained and atomistic representations of these simulations to characterize how the nucleotide affects the low-energy states of these systems. The interface between subdomains SD2–SD4, which is important for polymerization, is stabilized in an actin filament-like (F-actin) conformation in ATP-bound G-actin. Additionally, the nucleotide modulates the conformation of the SD1-SD3 interface, a region involved in the binding of several actin-binding proteins. PMID:24739170

  2. Caudal Regulates the Spatiotemporal Dynamics of Pair-Rule Waves in Tribolium

    PubMed Central

    El-Sherif, Ezzat; Zhu, Xin; Fu, Jinping; Brown, Susan J.

    2014-01-01

    In the short-germ beetle Tribolium castaneum, waves of pair-rule gene expression propagate from the posterior end of the embryo towards the anterior and eventually freeze into stable stripes, partitioning the anterior-posterior axis into segments. Similar waves in vertebrates are assumed to arise due to the modulation of a molecular clock by a posterior-to-anterior frequency gradient. However, neither a molecular candidate nor a functional role has been identified to date for such a frequency gradient, either in vertebrates or elsewhere. Here we provide evidence that the posterior gradient of Tc-caudal expression regulates the oscillation frequency of pair-rule gene expression in Tribolium. We show this by analyzing the spatiotemporal dynamics of Tc-even-skipped expression in strong and mild knockdown of Tc-caudal, and by correlating the extension, level and slope of the Tc-caudal expression gradient to the spatiotemporal dynamics of Tc-even-skipped expression in wild type as well as in different RNAi knockdowns of Tc-caudal regulators. Further, we show that besides its absolute importance for stripe generation in the static phase of the Tribolium blastoderm, a frequency gradient might serve as a buffer against noise during axis elongation phase in Tribolium as well as vertebrates. Our results highlight the role of frequency gradients in pattern formation. PMID:25329152

  3. Muscle Lim Protein isoform negatively regulates striated muscle actin dynamics and differentiation

    PubMed Central

    Vafiadaki, Elizabeth; Arvanitis, Demetrios A.; Papalouka, Vasiliki; Terzis, Gerasimos; Roumeliotis, Theodoros I.; Spengos, Konstantinos; Garbis, Spiros D.; Manta, Panagiota; Kranias, Evangelia G.; Sanoudou, Despina

    2015-01-01

    Muscle Lim Protein (MLP) has emerged as a critical regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, have been directly associated with human cardiomyopathies, while aberrant expression patterns are reported in human cardiac and skeletal muscle diseases. Increasing evidence suggests that MLP has an important role in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles has not been delineated. We report the discovery of an alternative splice variant of MLP, designated as MLP-b, showing distinct expression in neuromuscular disease and direct roles in actin dynamics and muscle differentiation. This novel isoform originates by alternative splicing of exons 3 and 4. At the protein level, it contains the N-terminus first half LIM domain of MLP and a unique sequence of 22 amino acids. Physiologically it is expressed during early differentiation, whereas its overexpression reduces C2C12 differentiation and myotube formation. This may be mediated through its inhibition of MLP/CFL2-mediated F-actin dynamics. In differentiated striated muscles, MLP-b localizes to the sarcomeres and binds directly to Z-disc components including α-actinin, T-cap and MLP. Our findings unveil a novel player in muscle physiology and pathophysiology that is implicated in myogenesis as a negative regulator of myotube formation, and in differentiated striated muscles as a contributor to sarcomeric integrity. PMID:24860983

  4. A dynamic alternative splicing program regulates gene expression during terminal erythropoiesis

    PubMed Central

    Pimentel, Harold; Parra, Marilyn; Gee, Sherry; Ghanem, Dana; An, Xiuli; Li, Jie; Mohandas, Narla; Pachter, Lior; Conboy, John G.

    2014-01-01

    Alternative pre-messenger RNA splicing remodels the human transcriptome in a spatiotemporal manner during normal development and differentiation. Here we explored the landscape of transcript diversity in the erythroid lineage by RNA-seq analysis of five highly purified populations of morphologically distinct human erythroblasts, representing the last four cell divisions before enucleation. In this unique differentiation system, we found evidence of an extensive and dynamic alternative splicing program encompassing genes with many diverse functions. Alternative splicing was particularly enriched in genes controlling cell cycle, organelle organization, chromatin function and RNA processing. Many alternative exons exhibited differentiation-associated switches in splicing efficiency, mostly in late-stage polychromatophilic and orthochromatophilic erythroblasts, in concert with extensive cellular remodeling that precedes enucleation. A subset of alternative splicing switches introduces premature translation termination codons into selected transcripts in a differentiation stage-specific manner, supporting the hypothesis that alternative splicing-coupled nonsense-mediated decay contributes to regulation of erythroid-expressed genes as a novel part of the overall differentiation program. We conclude that a highly dynamic alternative splicing program in terminally differentiating erythroblasts plays a major role in regulating gene expression to ensure synthesis of appropriate proteome at each stage as the cells remodel in preparation for production of mature red cells. PMID:24442673

  5. The demography of climate-driven and density-regulated population dynamics in a perennial plant.

    PubMed

    Dahlgren, Johan P; Bengtsson, Karin; Ehrlén, Johan

    2016-04-01

    Identifying the internal and external drivers of population dynamics is a key objective in ecology, currently accentuated by the need to forecast the effects of climate change on species distributions and abundances. The interplay between environmental and density effects is one particularly important aspect of such forecasts. We examined the simultaneous impact of climate and intraspecific density on vital rates of the dwarf shrub Fumana procumbens over 20 yr, using generalized additive mixed models. We then analyzed effects on population dynamics using integral projection models. The population projection models accurately captured observed fluctuations in population size. Our analyses suggested the population was intrinsically regulated but with annual fluctuations in response to variation in weather. Simulations showed that implicitly assuming variation in demographic rates to be driven solely by the environment can overestimate extinction risks if there is density dependence. We conclude that density regulation can dampen effects of climate change on Fumana population size, and discuss the need to quantify density dependence in predictions of population responses to environmental changes. PMID:27220206

  6. Refilins are short-lived Actin-bundling proteins that regulate lamellipodium protrusion dynamics

    PubMed Central

    Gay, Olivia; Gilquin, Benoît; Assard, Nicole; Stuelsatz, Pascal; Delphin, Christian; Lachuer, Joël; Gidrol, Xavier; Baudier, Jacques

    2016-01-01

    ABSTRACT Refilins (RefilinA and RefilinB) are members of a novel family of Filamin binding proteins that function as molecular switches to conformationally alter the Actin filament network into bundles. We show here that Refilins are extremely labile proteins. An N-terminal PEST/DSG(X)2-4S motif mediates ubiquitin-independent rapid degradation. A second degradation signal is localized within the C-terminus. Only RefilinB is protected from rapid degradation by an auto-inhibitory domain that masks the PEST/DSG(X)2-4S motif. Dual regulation of RefilinA and RefilinB stability was confirmed in rat brain NG2 precursor cells (polydendrocyte). Using loss- and gain-of-function approaches we show that in these cells, and in U373MG cells, Refilins contribute to the dynamics of lamellipodium protrusion by catalysing Actin bundle formation within the lamella Actin network. These studies extend the Actin bundling function of the Refilin-Filamin complex to dynamic regulation of cell membrane remodelling. PMID:27744291

  7. Drought and Recovery: Independently Regulated Processes Highlighting the Importance of Protein Turnover Dynamics and Translational Regulation in Medicago truncatula.

    PubMed

    Lyon, David; Castillejo, Maria Angeles; Mehmeti-Tershani, Vlora; Staudinger, Christiana; Kleemaier, Christoph; Wienkoop, Stefanie

    2016-06-01

    Climate change in conjunction with population growth necessitates a systems biology approach to characterize plant drought acclimation as well as a more thorough understanding of the molecular mechanisms of stress recovery. Plants are exposed to a continuously changing environment. Extremes such as several weeks of drought are followed by rain. This requires a molecular plasticity of the plant enabling drought acclimation and the necessity of deacclimation processes for recovery and continuous growth.During drought stress and subsequent recovery, the metabolome and proteome are regulated through a sequence of molecular processes including synthesis and degradation and molecular interaction networks are part of this regulatory process. In order to study this complex regulatory network, a comprehensive analysis is presented for the first time, investigating protein turnover and regulatory classes of proteins and metabolites during a stress recovery scenario in the model legume Medicago truncatula The data give novel insights into the molecular capacity and differential processes required for acclimation and deacclimation of severe drought stressed plants.Functional cluster and network analyses unraveled independent regulatory mechanisms for stress and recovery with different dynamic phases that during the course of recovery define the plants deacclimation from stress. The combination of relative abundance levels and turnover analysis revealed an early transition phase that seems key for recovery initiation through water resupply and is independent from renutrition. Thus, a first indication for a metabolite and protein-based load capacity was observed necessary for the recovery from drought, an important but thus far ignored possible feature toward tolerance. The data indicate that apart from the plants molecular stress response mechanisms, plasticity may be related to the nutritional status of the plant prior to stress initiation. A new perspective and possible new

  8. Drought and Recovery: Independently Regulated Processes Highlighting the Importance of Protein Turnover Dynamics and Translational Regulation in Medicago truncatula*

    PubMed Central

    Lyon, David; Castillejo, Maria Angeles; Mehmeti-Tershani, Vlora; Staudinger, Christiana; Kleemaier, Christoph; Wienkoop, Stefanie

    2016-01-01

    Climate change in conjunction with population growth necessitates a systems biology approach to characterize plant drought acclimation as well as a more thorough understanding of the molecular mechanisms of stress recovery. Plants are exposed to a continuously changing environment. Extremes such as several weeks of drought are followed by rain. This requires a molecular plasticity of the plant enabling drought acclimation and the necessity of deacclimation processes for recovery and continuous growth. During drought stress and subsequent recovery, the metabolome and proteome are regulated through a sequence of molecular processes including synthesis and degradation and molecular interaction networks are part of this regulatory process. In order to study this complex regulatory network, a comprehensive analysis is presented for the first time, investigating protein turnover and regulatory classes of proteins and metabolites during a stress recovery scenario in the model legume Medicago truncatula. The data give novel insights into the molecular capacity and differential processes required for acclimation and deacclimation of severe drought stressed plants. Functional cluster and network analyses unraveled independent regulatory mechanisms for stress and recovery with different dynamic phases that during the course of recovery define the plants deacclimation from stress. The combination of relative abundance levels and turnover analysis revealed an early transition phase that seems key for recovery initiation through water resupply and is independent from renutrition. Thus, a first indication for a metabolite and protein-based load capacity was observed necessary for the recovery from drought, an important but thus far ignored possible feature toward tolerance. The data indicate that apart from the plants molecular stress response mechanisms, plasticity may be related to the nutritional status of the plant prior to stress initiation. A new perspective and possible

  9. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading

    PubMed Central

    O’Conor, Christopher J.; Leddy, Holly A.; Benefield, Halei C.; Liedtke, Wolfgang B.; Guilak, Farshid

    2014-01-01

    Mechanical loading of joints plays a critical role in maintaining the health and function of articular cartilage. The mechanism(s) of chondrocyte mechanotransduction are not fully understood, but could provide important insights into new physical or pharmacologic therapies for joint diseases. Transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable osmomechano-TRP channel, is highly expressed in articular chondrocytes, and loss of TRPV4 function is associated with joint arthropathy and osteoarthritis. The goal of this study was to examine the hypothesis that TRPV4 transduces dynamic compressive loading in articular chondrocytes. We first confirmed the presence of physically induced, TRPV4-dependent intracellular Ca2+ signaling in agarose-embedded chondrocytes, and then used this model system to study the role of TRPV4 in regulating the response of chondrocytes to dynamic compression. Inhibition of TRPV4 during dynamic loading prevented acute, mechanically mediated regulation of proanabolic and anticatabolic genes, and furthermore, blocked the loading-induced enhancement of matrix accumulation and mechanical properties. Furthermore, chemical activation of TRPV4 by the agonist GSK1016790A in the absence of mechanical loading similarly enhanced anabolic and suppressed catabolic gene expression, and potently increased matrix biosynthesis and construct mechanical properties. These findings support the hypothesis that TRPV4-mediated Ca2+ signaling plays a central role in the transduction of mechanical signals to support cartilage extracellular matrix maintenance and joint health. Moreover, these insights raise the possibility of therapeutically targeting TRPV4-mediated mechanotransduction for the treatment of diseases such as osteoarthritis, as well as to enhance matrix formation and functional properties of tissue-engineered cartilage as an alternative to bioreactor-based mechanical stimulation. PMID:24474754

  10. Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential.

    PubMed

    Ohnuki, Mari; Tanabe, Koji; Sutou, Kenta; Teramoto, Ito; Sawamura, Yuka; Narita, Megumi; Nakamura, Michiko; Tokunaga, Yumie; Nakamura, Masahiro; Watanabe, Akira; Yamanaka, Shinya; Takahashi, Kazutoshi

    2014-08-26

    Pluripotency can be induced in somatic cells by overexpressing transcription factors, including POU class 5 homeobox 1 (OCT3/4), sex determining region Y-box 2 (SOX2), Krüppel-like factor 4 (KLF4), and myelocytomatosis oncogene (c-MYC). However, some induced pluripotent stem cells (iPSCs) exhibit defective differentiation and inappropriate maintenance of pluripotency features. Here we show that dynamic regulation of human endogenous retroviruses (HERVs) is important in the reprogramming process toward iPSCs, and in re-establishment of differentiation potential. During reprogramming, OCT3/4, SOX2, and KLF4 transiently hyperactivated LTR7s--the long-terminal repeats of HERV type-H (HERV-H)--to levels much higher than in embryonic stem cells by direct occupation of LTR7 sites genome-wide. Knocking down LTR7s or long intergenic non-protein coding RNA, regulator of reprogramming (lincRNA-RoR), a HERV-H-driven long noncoding RNA, early in reprogramming markedly reduced the efficiency of iPSC generation. KLF4 and LTR7 expression decreased to levels comparable with embryonic stem cells once reprogramming was complete, but failure to resuppress KLF4 and LTR7s resulted in defective differentiation. We also observed defective differentiation and LTR7 activation when iPSCs had forced expression of KLF4. However, when aberrantly expressed KLF4 or LTR7s were suppressed in defective iPSCs, normal differentiation was restored. Thus, a major mechanism by which OCT3/4, SOX2, and KLF4 promote human iPSC generation and reestablish potential for differentiation is by dynamically regulating HERV-H LTR7s.

  11. A dynamic cell adhesion surface regulates tissue architecture in growth plate cartilage

    PubMed Central

    Romereim, Sarah M.; Conoan, Nicholas H.; Chen, Baojiang; Dudley, Andrew T.

    2014-01-01

    The architecture and morphogenetic properties of tissues are founded in the tissue-specific regulation of cell behaviors. In endochondral bones, the growth plate cartilage promotes bone elongation via regulated chondrocyte maturation within an ordered, three-dimensional cell array. A key event in the process that generates this cell array is the transformation of disordered resting chondrocytes into clonal columns of discoid proliferative cells aligned with the primary growth vector. Previous analysis showed that column-forming chondrocytes display planar cell divisions, and the resulting daughter cells rearrange by ∼90° to align with the lengthening column. However, these previous studies provided limited information about the mechanisms underlying this dynamic process. Here we present new mechanistic insights generated by application of a novel time-lapse confocal microscopy method along with immunofluorescence and electron microscopy. We show that, during cell division, daughter chondrocytes establish a cell-cell adhesion surface enriched in cadherins and β-catenin. Rearrangement into columns occurs concomitant with expansion of this adhesion surface in a process more similar to cell spreading than to migration. Column formation requires cell-cell adhesion, as reducing cadherin binding via chelation of extracellular calcium inhibits chondrocyte rearrangement. Importantly, physical indicators of cell polarity, such as cell body alignment, are not prerequisites for oriented cell behavior. Our results support a model in which regulation of adhesive surface dynamics and cortical tension by extrinsic signaling modifies the thermodynamic landscape to promote organization of daughter cells in the context of the three-dimensional growth plate tissue. PMID:24764078

  12. Dynamics of peptidergic secretory granule transport are regulated by neuronal stimulation

    PubMed Central

    2010-01-01

    Background Peptidergic neurons store and secrete the contents of large dense core vesicles (LDCVs) from axon terminals and from dendrites. Secretion of peptides requires a highly regulated exocytotic mechanism, plus coordinated synthesis and transport of LDCVs to their sites of release. Although these trafficking events are critical to function, little is known regarding the dynamic behavior of LDCVs and the mechanisms by which their transport is regulated. Sensory neurons also package opiate receptors in peptide-containing LDCVs, which is thought to be important in pain sensation. Since peptide granules cannot be refilled locally after their contents are secreted, it is particularly important to understand how neurons support regulated release of peptides. Results A vector encoding soluble peptidylglycine α-hydroxylating monooxygenase fused to green fluorescent protein was constructed to address these questions in cultured primary peptidergic neurons of the trigeminal ganglion using time lapse confocal microscopy. The time course of release differs with secretagogue; the secretory response to depolarization with K+ is rapid and terminates within 15 minutes, while phorbol ester stimulation of secretion is maintained over a longer period. The data demonstrate fundamental differences between LDCV dynamics in axons and growth cones under basal conditions. Conclusions Under basal conditions, LDCVs move faster away from the soma than toward the soma, but fewer LDCVs travel anterograde than retrograde. Stimulation decreased average anterograde velocity and increases granule pausing. Data from antibody uptake, quantification of enzyme secretion and appearance of pHluorin fluorescence demonstrate distributed release of peptides all along the axon, not just at terminals. PMID:20202202

  13. Drp1 levels constitutively regulate mitochondrial dynamics and cell survival in cortical neurons

    PubMed Central

    Uo, Takuma; Dworzak, Jenny; Kinoshita, Chizuru; Inman, Denise M.; Kinoshita, Yoshito; Horner, Philip J.; Morrison, Richard S.

    2009-01-01

    Mitochondria exist as dynamic networks that are constantly remodeled through the opposing actions of fusion and fission proteins. Changes in the expression of these proteins alter mitochondrial shape and size, and may promote or inhibit the propagation of apoptotic signals. Using mitochondrially targeted EGFP or DsRed2 to identify mitochondria, we observed a short, distinctly tubular mitochondrial morphology in postnatal cortical neurons in culture and in retinal ganglion cells in vivo, whereas longer, highly interconnected mitochondrial networks were detected in cortical astrocytes in vitro and non-neuronal cells in the retina in vivo. Differential expression patterns of fusion and fission proteins, in part, appear to determine these morphological differences as neurons expressed markedly high levels of Drp1 and OPA1 proteins compared to non-neuronal cells. This finding was corroborated using optic tissue samples. Moreover, cortical neurons expressed several splice variants of Drp1 including a neuron-specific isoform which incorporates exon 3. Knockdown or dominant negative interference of endogenous Drp1 significantly increased mitochondrial length in both neurons and non-neuronal cells, but caused cell death only in cortical neurons. Conversely, depletion of the fusion protein, Mfn2, but not Mfn1, caused extensive mitochondrial fission and cell death. Thus, Drp1 and Mfn2 in normal cortical neurons not only regulate mitochondrial morphology, but are also required for cell survival. The present findings point to unique patterns of Drp1 expression and selective vulnerability to reduced levels of Drp1 expression/activity in neurons, and demonstrate that the regulation of mitochondrial dynamics must be tightly regulated in neurons. PMID:19445933

  14. An experimental approach to identify dynamical models of transcriptional regulation in living cells

    NASA Astrophysics Data System (ADS)

    Fiore, G.; Menolascina, F.; di Bernardo, M.; di Bernardo, D.

    2013-06-01

    We describe an innovative experimental approach, and a proof of principle investigation, for the application of System Identification techniques to derive quantitative dynamical models of transcriptional regulation in living cells. Specifically, we constructed an experimental platform for System Identification based on a microfluidic device, a time-lapse microscope, and a set of automated syringes all controlled by a computer. The platform allows delivering a time-varying concentration of any molecule of interest to the cells trapped in the microfluidics device (input) and real-time monitoring of a fluorescent reporter protein (output) at a high sampling rate. We tested this platform on the GAL1 promoter in the yeast Saccharomyces cerevisiae driving expression of a green fluorescent protein (Gfp) fused to the GAL1 gene. We demonstrated that the System Identification platform enables accurate measurements of the input (sugars concentrations in the medium) and output (Gfp fluorescence intensity) signals, thus making it possible to apply System Identification techniques to obtain a quantitative dynamical model of the promoter. We explored and compared linear and nonlinear model structures in order to select the most appropriate to derive a quantitative model of the promoter dynamics. Our platform can be used to quickly obtain quantitative models of eukaryotic promoters, currently a complex and time-consuming process.

  15. Structural evidence for cooperative microtubule stabilization by Taxol and the endogenous dynamics regulator MAP4

    PubMed Central

    Xiao, Hui; Wang, Hui; Zhang, Xuechun; Tu, Zongcai; Bulinski, Chloë; Khrapunovich-Baine, Marina; Angeletti, Ruth Hogue; Horwitz, Susan Band

    2012-01-01

    Microtubules (MTs) composed of αβ-tubulin heterodimers are highly dynamic polymers, whose stability can be regulated by numerous endogenous and exogenous factors. Both the anti-mitotic drug, Taxol, and microtubule-associated proteins (MAPs) stabilize this dynamicity by binding to and altering the conformation of MTs. In the current study, amide hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) was used to examine the structural and dynamic properties of the MT complex with the microtubule binding domain of MAP4 (MTB-MAP4) in the presence and absence of Taxol. The changes in the HDX levels indicate that MTB-MAP4 may bind to both the outside and the luminal surfaces of the MTs, and that Taxol reduces both of these interactions. The MTB-MAP4 binding induces conformational rearrangements of α- and β-tubulin that promote an overall stabilization of MTs. Paradoxically, despite Taxol’s negative effects on MAP4 interactions with the MTs, its binding to the MTB-MAP4-MT complex further reduces the overall deuterium incorporation, suggesting that a more stable complex is formed in the presence of the drug. PMID:22270553

  16. Lrrk regulates the dynamic profile of dendritic Golgi outposts through the golgin Lava lamp.

    PubMed

    Lin, Chin-Hsien; Li, Hsun; Lee, Yi-Nan; Cheng, Ying-Ju; Wu, Ruey-Meei; Chien, Cheng-Ting

    2015-08-01

    Constructing the dendritic arbor of neurons requires dynamic movements of Golgi outposts (GOPs), the prominent component in the dendritic secretory pathway. GOPs move toward dendritic ends (anterograde) or cell bodies (retrograde), whereas most of them remain stationary. Here, we show that Leucine-rich repeat kinase (Lrrk), the Drosophila melanogaster homologue of Parkinson's disease-associated Lrrk2, regulates GOP dynamics in dendrites. Lrrk localized at stationary GOPs in dendrites and suppressed GOP movement. In Lrrk loss-of-function mutants, anterograde movement of GOPs was enhanced, whereas Lrrk overexpression increased the pool size of stationary GOPs. Lrrk interacted with the golgin Lava lamp and inhibited the interaction between Lva and dynein heavy chain, thus disrupting the recruitment of dynein to Golgi membranes. Whereas overexpression of kinase-dead Lrrk caused dominant-negative effects on GOP dynamics, overexpression of the human LRRK2 mutant G2019S with augmented kinase activity promoted retrograde movement. Our study reveals a pathogenic pathway for LRRK2 mutations causing dendrite degeneration. PMID:26216903

  17. NMDAR-regulated dynamics of layer 4 neuronal dendrites during thalamocortical reorganization in neonates.

    PubMed

    Mizuno, Hidenobu; Luo, Wenshu; Tarusawa, Etsuko; Saito, Yoshikazu M; Sato, Takuya; Yoshimura, Yumiko; Itohara, Shigeyoshi; Iwasato, Takuji

    2014-04-16

    Thalamocortical (TC) connectivity is reorganized by thalamic inputs during postnatal development; however, the dynamic characteristics of TC reorganization and the underlying mechanisms remain unexplored. We addressed this question using dendritic refinement of layer 4 (L4) stellate neurons in mouse barrel cortex (barrel cells) as a model; dendritic refinement of L4 neurons is a critical component of TC reorganization through which postsynaptic L4 neurons acquire their dendritic orientation toward presynaptic TC axon termini. Simultaneous labeling of TC axons and individual barrel cell dendrites allowed in vivo time-lapse imaging of dendritic refinement in the neonatal cortex. The barrel cells reinforced the dendritic orientation toward TC axons by dynamically moving their branches. In N-methyl-D-aspartate receptor (NMDAR)-deficient barrel cells, this dendritic motility was enhanced, and the orientation bias was not reinforced. Our data suggest that L4 neurons have "fluctuating" dendrites during TC reorganization and that NMDARs cell autonomously regulate these dynamics to establish fine-tuned circuits.

  18. Effect of cadence regulation on muscle activation patterns during robot assisted gait: a dynamic simulation study.

    PubMed

    Hussain, Shahid; Xie, Sheng Q; Jamwal, Prashant K

    2013-03-01

    Cadence or stride frequency is an important parameter being controlled in gait training of neurologically impaired subjects. The aim of this study was to examine the effects of cadence variation on muscle activation patterns during robot assisted unimpaired gait using dynamic simulations. A twodimensional (2-D) musculoskeletal model of human gait was developed considering eight major muscle groups along with existing ground contact force (GCF) model. A 2-D model of a robotic orthosis was also developed which provides actuation to the hip, knee and ankle joints in the sagittal plane to guide subjects limbs on reference trajectories. A custom inverse dynamics algorithm was used along with a quadratic minimization algorithm to obtain a feasible set of muscle activation patterns. Predicted patterns of muscle activations during slow, natural and fast cadence were compared and the mean muscle activations were found to be increasing with an increase in cadence. The proposed dynamic simulation provide important insight into the muscle activation variations with change in cadence during robot assisted gait and provide the basis for investigating the influence of cadence regulation on neuromuscular parameters of interest during robot assisted gait.

  19. Dynamic Regulation of APE1/Ref-1 as a Therapeutic Target Protein

    PubMed Central

    Choi, Sunga; Joo, Hee Kyoung

    2016-01-01

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein that plays a central role in the cellular response to DNA damage and redox regulation against oxidative stress. APE1/Ref-1 functions in the DNA base excision repair pathway, the redox regulation of several transcription factors, and the control of intracellular redox status through the inhibition of reactive oxygen species (ROS) production. APE1/Ref-1 is predominantly localized in the nucleus; however, its subcellular localization is dynamically regulated and it may be found in the mitochondria or elsewhere in the cytoplasm. Studies have identified a nuclear localization signal and a mitochondrial target sequence in APE1/Ref-1, as well as the involvement of the nuclear export system, as determinants of APE1/Ref-1 subcellular distribution. Recently, it was shown that APE1/Ref-1 is secreted in response to hyperacetylation at specific lysine residues. Additionally, post-translational modifications such as phosphorylation, S-nitrosation, and ubiquitination appear to play a role in fine-tuning the activities and subcellular localization of APE1/Ref-1. In this review, we will introduce the multifunctional role of APE1/Ref-1 and its potential usefulness as a therapeutic target in cancer and cardiovascular disease. PMID:27231670

  20. TLR Stimulation Dynamically Regulates Heme and Iron Export Gene Expression in Macrophages

    PubMed Central

    Philip, Mary; Chiu, Edison Y.; Hajjar, Adeline M.; Abkowitz, Janis L.

    2016-01-01

    Pathogenic bacteria have evolved multiple mechanisms to capture iron or iron-containing heme from host tissues or blood. In response, organisms have developed defense mechanisms to keep iron from pathogens. Very little of the body's iron store is available as free heme; rather nearly all body iron is complexed with heme or other proteins. The feline leukemia virus, subgroup C (FeLV-C) receptor, FLVCR, exports heme from cells. It was unknown whether FLVCR regulates heme-iron availability after infection, but given that other heme regulatory proteins are upregulated in macrophages in response to bacterial infection, we hypothesized that macrophages dynamically regulate FLVCR. We stimulated murine primary macrophages or macrophage cell lines with LPS and found that Flvcr is rapidly downregulated in a TLR4/MD2-dependent manner; TLR1/2 and TLR3 stimulation also decreased Flvcr expression. We identified several candidate TLR-activated transcription factors that can bind to the Flvcr promoter. Macrophages must balance the need to sequester iron from systemic circulating or intracellular pathogens with the macrophage requirement for heme and iron to produce reactive oxygen species. Our findings underscore the complexity of this regulation and point to a new role for FLVCR and heme export in macrophages responses to infection and inflammation. PMID:27006955

  1. Dynamic Regulation of APE1/Ref-1 as a Therapeutic Target Protein.

    PubMed

    Choi, Sunga; Joo, Hee Kyoung; Jeon, Byeong Hwa

    2016-05-01

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein that plays a central role in the cellular response to DNA damage and redox regulation against oxidative stress. APE1/Ref-1 functions in the DNA base excision repair pathway, the redox regulation of several transcription factors, and the control of intracellular redox status through the inhibition of reactive oxygen species (ROS) production. APE1/Ref-1 is predominantly localized in the nucleus; however, its subcellular localization is dynamically regulated and it may be found in the mitochondria or elsewhere in the cytoplasm. Studies have identified a nuclear localization signal and a mitochondrial target sequence in APE1/Ref-1, as well as the involvement of the nuclear export system, as determinants of APE1/Ref-1 subcellular distribution. Recently, it was shown that APE1/Ref-1 is secreted in response to hyperacetylation at specific lysine residues. Additionally, post-translational modifications such as phosphorylation, S-nitrosation, and ubiquitination appear to play a role in fine-tuning the activities and subcellular localization of APE1/Ref-1. In this review, we will introduce the multifunctional role of APE1/Ref-1 and its potential usefulness as a therapeutic target in cancer and cardiovascular disease.

  2. Dynamic Regulation of the Adenosine Kinase Gene during Early Postnatal Brain Development and Maturation

    PubMed Central

    Kiese, Katharina; Jablonski, Janos; Boison, Detlev; Kobow, Katja

    2016-01-01

    The ubiquitous metabolic intermediary and nucleoside adenosine is a “master regulator” in all living systems. Under baseline conditions adenosine kinase (ADK) is the primary enzyme for the metabolic clearance of adenosine. By regulating the availability of adenosine, ADK is a critical upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. ADK protein exists in the two isoforms nuclear ADK-L, and cytoplasmic ADK-S, which are subject to dynamic expression changes during brain development and in response to brain injury; however, gene expression changes of the Adk gene as well as regulatory mechanisms that direct the cell-type and isoform specific expression of ADK have never been investigated. Here we analyzed potential gene regulatory mechanisms that may influence Adk expression including DNA promoter methylation, histone modifications and transcription factor binding. Our data suggest binding of transcription factor SP1 to the Adk promoter influences the regulation of Adk expression. PMID:27812320

  3. Orexin system is expressed in avian muscle cells and regulates mitochondrial dynamics.

    PubMed

    Lassiter, Kentu; Greene, Elizabeth; Piekarski, Alissa; Faulkner, Olivia B; Hargis, Billy M; Bottje, Walter; Dridi, Sami

    2015-02-01

    Orexin A and B, orexigenic peptides produced primarily by the lateral hypothalamus that signal through two G protein-coupled receptors, orexin receptors 1/2, have been implicated in the regulation of several physiological processes in mammals. In avian (nonmammalian vertebrates) species; however, the physiological roles of orexin are not well defined. Here, we provide novel evidence that not only is orexin and its related receptors 1/2 (ORXR1/2) expressed in chicken muscle tissue and quail muscle (QM7) cell line, orexin appears to be a secretory protein in QM7 cells. In vitro administration of recombinant orexin A and B (rORX-A and B) differentially regulated prepro-orexin expression in a dose-dependent manner with up-regulation for rORX-A (P < 0.05) and downregulation for rORX-B (P < 0.05) in QM7 cells. While both peptides upregulated ORXR1 expression, only a high dose of rORX-B decreased the expression of ORXR2 (P < 0.05). The presence of orexin and its related receptors and the regulation of its own system in avian muscle cells indicate that orexin may have autocrine, paracrine, and/or endocrine roles. rORXs differentially regulated mitochondrial dynamics network. While rORX-A significantly induced the expression of mitochondrial fission-related genes (DNM1, MTFP1, MTFR1), rORX-B increased the expression of mitofusin 2, OPA1, and OMA1 genes that are involved in mitochondrial fusion. Concomitant with these changes, rORXs differentially regulated the expression of several mitochondrial metabolic genes (av-UCP, av-ANT, Ski, and NRF-1) and their related transcriptional regulators (PPARγ, PPARα, PGC-1α, PGC-1β, and FoxO-1) without affecting ATP synthesis. Taken together, our data represent the first evidence of the presence and secretion of orexin system in the muscle of nonmammalian species and its role in mitochondrial fusion and fission, probably through mitochondrial-related genes and their related transcription factors.

  4. Mechanism for dynamic regulation of iNOS expression after UVB-irradiation.

    PubMed

    Lu, Wei; Wu, Shiyong

    2013-08-01

    Ultraviolet B (UVB) induces an immediate activation of cNOSs, which contributes to the early release of nitric oxide after irradiation. UVB also induces the expression of iNOS, which peaks at both the mRNA and protein level near 24 h post-irradiation. The induced expression of iNOS contributes largely to the late elevation of nitric oxide after UVB irradiation. However, the regulation of iNOS expression in the early stages of UVB irradiation is not well studied. We previously reported that the UVB-induced early release of nitric oxide leads to the activation of PERK and GCN2, which phosphorylate the alpha-subunit of eIF2 and inhibit protein synthesis. In this report, we demonstrate that eIF2 phosphorylation plays a critical role in regulation of iNOS expression in the early-phase (with in 12 h) of UVB irradiation. Our data shows that with an increased phosphorylation of eIF2, the iNOS protein expression was reduced even though the iNOS mRNA expression was linearly increased in HaCaT and MEF cells after UVB irradiation. The UVB-induced dynamic up- and down-regulation of iNOS expression was almost completely lost in MEF(A/A) cells, which contain a nonphosphorylatable S51A mutation on eIF2. Our results suggest that the UVB-induced eIF2 phosphorylation does not only regulate iNOS expression at the translational level, but at the transcriptional level as well. PMID:22430947

  5. Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior.

    PubMed

    Ferenczi, Emily A; Zalocusky, Kelly A; Liston, Conor; Grosenick, Logan; Warden, Melissa R; Amatya, Debha; Katovich, Kiefer; Mehta, Hershel; Patenaude, Brian; Ramakrishnan, Charu; Kalanithi, Paul; Etkin, Amit; Knutson, Brian; Glover, Gary H; Deisseroth, Karl

    2016-01-01

    Motivation for reward drives adaptive behaviors, whereas impairment of reward perception and experience (anhedonia) can contribute to psychiatric diseases, including depression and schizophrenia. We sought to test the hypothesis that the medial prefrontal cortex (mPFC) controls interactions among specific subcortical regions that govern hedonic responses. By using optogenetic functional magnetic resonance imaging to locally manipulate but globally visualize neural activity in rats, we found that dopamine neuron stimulation drives striatal activity, whereas locally increased mPFC excitability reduces this striatal response and inhibits the behavioral drive for dopaminergic stimulation. This chronic mPFC overactivity also stably suppresses natural reward-motivated behaviors and induces specific new brainwide functional interactions, which predict the degree of anhedonia in individuals. These findings describe a mechanism by which mPFC modulates expression of reward-seeking behavior, by regulating the dynamical interactions between specific distant subcortical regions. PMID:26722001

  6. [Regulation of cortical cytoskeleton dynamics during migration of free-living amoebae].

    PubMed

    Kłopocka, Wanda; Redowicz, Maria Jolanta; Wasik, Anna

    2009-01-01

    Amoeba proteus and smaller by an order of magnitude (and evolutionary younger) Acanthamoeba castellanii have been for many years model cells for studies of amoeboidal (crawling) type of movement, characteristic also for some of metazoan cells such as fibroblasts, granulocytes and macrophages. Amoeboidal migration is indispensable of organization and dynamics of actin-based cytoskeleton. While there is a number of data on molecular mechanisms of motility of A. castellanii, there is very little known about bases of migration of A. proteus. Noteworthy, a large A. proteus (length approximately 600 microm) have been from over a century an object for studies on biology and physiology of cellular migration. This review describes the current knowledge on molecular aspects of force generation required for migration of these two amoebae and attempts to compare the functioning and regulation of actin cytoskeleton in these free-living unicellular species.

  7. SWI/SNF-directed stem cell lineage specification: dynamic composition regulates specific stages of skeletal myogenesis.

    PubMed

    Toto, Paula Coutinho; Puri, Pier Lorenzo; Albini, Sonia

    2016-10-01

    SWI/SNF chromatin-remodeling complexes are key regulators of the epigenetic modifications that determine whether stem cells maintain pluripotency or commit toward specific lineages through development and during postnatal life. Dynamic combinatorial assembly of multiple variants of SWI/SNF subunits is emerging as the major determinant of the functional versatility of SWI/SNF. Here, we summarize the current knowledge on the structural and functional properties of the alternative SWI/SNF complexes that direct stem cell fate toward skeletal muscle lineage and control distinct stages of skeletal myogenesis. In particular, we will refer to recent evidence pointing to the essential role of two SWI/SNF components not expressed in embryonic stem cells-the catalytic subunit BRM and the structural component BAF60C-whose induction in muscle progenitors coincides with the expansion of their transcriptional repertoire. PMID:27207468

  8. SWI/SNF-directed stem cell lineage specification: dynamic composition regulates specific stages of skeletal myogenesis.

    PubMed

    Toto, Paula Coutinho; Puri, Pier Lorenzo; Albini, Sonia

    2016-10-01

    SWI/SNF chromatin-remodeling complexes are key regulators of the epigenetic modifications that determine whether stem cells maintain pluripotency or commit toward specific lineages through development and during postnatal life. Dynamic combinatorial assembly of multiple variants of SWI/SNF subunits is emerging as the major determinant of the functional versatility of SWI/SNF. Here, we summarize the current knowledge on the structural and functional properties of the alternative SWI/SNF complexes that direct stem cell fate toward skeletal muscle lineage and control distinct stages of skeletal myogenesis. In particular, we will refer to recent evidence pointing to the essential role of two SWI/SNF components not expressed in embryonic stem cells-the catalytic subunit BRM and the structural component BAF60C-whose induction in muscle progenitors coincides with the expansion of their transcriptional repertoire.

  9. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics.

    PubMed

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M; Abel, Steven M; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S; Hansen, Scott D; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K; Kuriyan, John; Groves, Jay T

    2014-07-01

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average.

  10. Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior

    PubMed Central

    Grosenick, Logan; Warden, Melissa R.; Amatya, Debha; Katovich, Kiefer; Mehta, Hershel; Patenaude, Brian; Ramakrishnan, Charu; Kalanithi, Paul; Etkin, Amit; Knutson, Brian; Glover, Gary H.; Deisseroth, Karl

    2016-01-01

    Motivation for reward drives adaptive behaviors, whereas impairment of reward perception and experience (anhedonia) can contribute to psychiatric diseases, including depression and schizophrenia. We sought to test the hypothesis that the medial prefrontal cortex (mPFC) controls interactions among specific subcortical regions that govern hedonic responses. By using optogenetic functional magnetic resonance imaging to locally manipulate but globally visualize neural activity in rats, we found that dopamine neuron stimulation drives striatal activity, whereas locally increased mPFC excitability reduces this striatal response and inhibits the behavioral drive for dopaminergic stimulation. This chronic mPFC overactivity also stably suppresses natural reward-motivated behaviors and induces specific new brainwide functional interactions, which predict the degree of anhedonia in individuals. These findings describe a mechanism by which mPFC modulates expression of reward-seeking behavior, by regulating the dynamical interactions between specific distant subcortical regions. PMID:26722001

  11. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics.

    PubMed

    Ho, Chin Yee; Jaalouk, Diana E; Vartiainen, Maria K; Lammerding, Jan

    2013-05-23

    Laminopathies, caused by mutations in the LMNA gene encoding the nuclear envelope proteins lamins A and C, represent a diverse group of diseases that include Emery-Dreifuss muscular dystrophy (EDMD), dilated cardiomyopathy (DCM), limb-girdle muscular dystrophy, and Hutchison-Gilford progeria syndrome. Most LMNA mutations affect skeletal and cardiac muscle by mechanisms that remain incompletely understood. Loss of structural function and altered interaction of mutant lamins with (tissue-specific) transcription factors have been proposed to explain the tissue-specific phenotypes. Here we report in mice that lamin-A/C-deficient (Lmna(-/-)) and Lmna(N195K/N195K) mutant cells have impaired nuclear translocation and downstream signalling of the mechanosensitive transcription factor megakaryoblastic leukaemia 1 (MKL1), a myocardin family member that is pivotal in cardiac development and function. Altered nucleo-cytoplasmic shuttling of MKL1 was caused by altered actin dynamics in Lmna(-/-) and Lmna(N195K/N195K) mutant cells. Ectopic expression of the nuclear envelope protein emerin, which is mislocalized in Lmna mutant cells and also linked to EDMD and DCM, restored MKL1 nuclear translocation and rescued actin dynamics in mutant cells. These findings present a novel mechanism that could provide insight into the disease aetiology for the cardiac phenotype in many laminopathies, whereby lamin A/C and emerin regulate gene expression through modulation of nuclear and cytoskeletal actin polymerization.

  12. Lamin A/C and emerin regulate MKL1/SRF activity by modulating actin dynamics

    PubMed Central

    Ho, Chin Yee; Jaalouk, Diana E.; Vartiainen, Maria K.; Lammerding, Jan

    2013-01-01

    Laminopathies, caused by mutations in the LMNA gene encoding the nuclear envelope proteins lamins A and C, represent a diverse group of diseases that include Emery-Dreifuss Muscular Dystrophy (EDMD), dilated cardiomyopathy (DCM), limb-girdle muscular dystrophy, and Hutchison-Gilford progeria syndrome (HGPS).1 The majority of LMNA mutations affect skeletal and cardiac muscle by mechanisms that remain incompletely understood. Loss of structural function and disturbed interaction of mutant lamins with (tissue-specific) transcription factors have been proposed to explain the tissue-specific phenotypes.1 We report here that lamin A/C-deficient (Lmna−/−) and Lmna N195K mutant cells have impaired nuclear translocation and downstream signaling of the mechanosensitive transcription factor megakaryoblastic leukaemia 1 (MKL1), a myocardin family member that is pivotal in cardiac development and function.2 Disturbed nucleo-cytoplasmic shuttling of MKL1 was caused by altered actin dynamics in Lmna−/− and N195K mutant cells. Ectopic expression of the nuclear envelope protein emerin, which is mislocalized in Lmna mutant cells and also linked to EDMD and DCM, restored MKL1 nuclear translocation and rescued actin dynamics in mutant cells. These findings present a novel mechanism that could provide insight into the disease etiology for the cardiac phenotype in many laminopathies, whereby lamins A/C and emerin regulate gene expression through modulation of nuclear and cytoskeletal actin polymerization. PMID:23644458

  13. The Kinesin KIF1C and Microtubule Plus Ends Regulate Podosome Dynamics in Macrophages

    PubMed Central

    Kopp, Petra; Lammers, Reiner; Aepfelbacher, Martin; Woehlke, Günther; Rudel, Thomas; Machuy, Nikolaus; Steffen, Walter

    2006-01-01

    Microtubules are important for the turnover of podosomes, dynamic, actin-rich adhesions implicated in migration and invasion of monocytic cells. The molecular basis for this functional dependency, however, remained unclear. Here, we show that contact by microtubule plus ends critically influences the cellular fate of podosomes in primary human macrophages. In particular, we identify the kinesin KIF1C, a member of the Kinesin-3 family, as a plus-end–enriched motor that targets regions of podosome turnover. Expression of mutation constructs or small interfering RNA-/short hairpin RNA-based depletion of KIF1C resulted in decreased podosome dynamics and ultimately in podosome deficiency. Importantly, protein interaction studies showed that KIF1C binds to nonmuscle myosin IIA via its PTPD-binding domain, thus providing an interface between the actin and tubulin cytoskeletons, which may facilitate the subcellular targeting of podosomes by microtubules. This is the first report to implicate a kinesin in podosome regulation and also the first to describe a function for KIF1C in human cells. PMID:16554367

  14. Quantitative image analysis identifies pVHL as a key regulator of microtubule dynamic instability.

    PubMed

    Thoma, Claudio R; Matov, Alexandre; Gutbrodt, Katrin L; Hoerner, Christian R; Smole, Zlatko; Krek, Wilhelm; Danuser, Gaudenz

    2010-09-20

    Von Hippel-Lindau (VHL) tumor suppressor gene mutations predispose carriers to kidney cancer. The protein pVHL has been shown to interact with microtubules (MTs), which is critical to cilia maintenance and mitotic spindle orientation. However, the function for pVHL in the regulation of MT dynamics is unknown. We tracked MT growth via the plus end marker EB3 (end-binding protein 3)-GFP and inferred additional parameters of MT dynamics indirectly by spatiotemporal grouping of growth tracks from live cell imaging. Our data establish pVHL as a near-optimal MT-stabilizing protein: it attenuates tubulin turnover, both during MT growth and shrinkage, inhibits catastrophe, and enhances rescue frequencies. These functions are mediated, in part, by inhibition of tubulin guanosine triphosphatase activity in vitro and at MT plus ends and along the MT lattice in vivo. Mutants connected to the VHL cancer syndrome are differentially compromised in these activities. Thus, single cell-level analysis of pVHL MT regulatory function allows new predictions for genotype to phenotype associations that deviate from the coarser clinically defined mutant classifications. PMID:20855504

  15. Nestin regulates proliferation and invasion of gastrointestinal stromal tumor cells by altering mitochondrial dynamics.

    PubMed

    Wang, J; Cai, J; Huang, Y; Ke, Q; Wu, B; Wang, S; Han, X; Wang, T; Wang, Y; Li, W; Lao, C; Song, W; Xiang, A P

    2016-06-16

    Nestin is widely expressed in numerous tumors and has become a diagnostic and prognostic indicator. However, the exact mechanism by which nestin contributes to tumor malignancy remains poorly understood. Here, we found marked upregulation of nestin expression in highly proliferative and invasive gastrointestinal stromal tumor (GIST) specimens. Nestin knockdown in GIST cells reduced the proliferative and invasive activity owing to a decrease of mitochondrial intracellular reactive oxygen species (ROS) generation. Furthermore, nestin was co-localized with mitochondria, and knockdown of nestin increased mitochondrial elongation and influenced the mitochondrial function, including oxygen consumption rates, ATP generation and mitochondrial membrane potential and so on. In exploring the underlying mechanism, we demonstrated nestin knockdown inhibited the mitochondrial recruitment of Dynamin-related protein1 and induced the change of mitochondrial dynamics. Thus, nestin may have an important role in GIST malignancy by regulating mitochondrial dynamics and altering intracellular ROS levels. The findings provide new clues to reveal mechanisms by which nestin mediates the proliferation and invasion of GISTs.

  16. Ena/VASP regulates mDia2-initiated filopodial length, dynamics, and function.

    PubMed

    Barzik, Melanie; McClain, Leslie M; Gupton, Stephanie L; Gertler, Frank B

    2014-09-01

    Filopodia are long plasma membrane extensions involved in the formation of adhesive, contractile, and protrusive actin-based structures in spreading and migrating cells. Whether filopodia formed by different molecular mechanisms equally support these cellular functions is unresolved. We used Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP)-deficient MV(D7) fibroblasts, which are also devoid of endogenous mDia2, as a model system to investigate how these different actin regulatory proteins affect filopodia morphology and dynamics independently of one another. Filopodia initiated by either Ena/VASP or mDia2 contained similar molecular inventory but differed significantly in parameters such as number, length, F-actin organization, lifetime, and protrusive persistence. Moreover, in the absence of Ena/VASP, filopodia generated by mDia2 did not support initiation of integrin-dependent signaling cascades required for adhesion and subsequent lamellipodial extension, thereby causing a defect in early cell spreading. Coexpression of VASP with constitutively active mDia2(M/A) rescued these early adhesion defects. We conclude that Ena/VASP and mDia2 support the formation of filopodia with significantly distinct properties and that Ena/VASP regulates mDia2-initiated filopodial morphology, dynamics, and function.

  17. The Role of Distant Mutations and Allosteric Regulation on LovD Active Site Dynamics

    PubMed Central

    Jiménez-Osés, Gonzalo; Osuna, Sílvia; Gao, Xue; Sawaya, Michael R.; Gilson, Lynne; Collier, Steven J.; Huisman, Gjalt W.; Yeates, Todd O.; Tang, Yi; Houk, K. N.

    2014-01-01

    Natural enzymes have evolved to perform their cellular functions under complex selective pressures, which often require their catalytic activities to be regulated by other proteins. We contrasted a natural enzyme, LovD, which acts on a protein-bound (LovF) acyl substrate, with a laboratory-generated variant that was transformed by directed evolution to accept instead a small free acyl thioester, and no longer requires the acyl carrier protein. The resulting 29-mutant variant is 1000-fold more efficient in the synthesis of the drug simvastatin than the wild-type LovD. This is the first non-patent report of the enzyme currently used for the manufacture of simvastatin, as well as the intermediate evolved variants. Crystal structures and microsecond molecular dynamics simulations revealed the mechanism by which the laboratory-generated mutations free LovD from dependence on protein-protein interactions. Mutations dramatically altered conformational dynamics of the catalytic residues, obviating the need for allosteric modulation by the acyl carrier LovF. PMID:24727900

  18. Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity

    PubMed Central

    Dietrich, Marcelo O.; Liu, Zhong-Wu; Horvath, Tamas L.

    2014-01-01

    Summary Mitochondria are key organelles in the maintenance of cellular energy metabolism and integrity. Here we show that mitochondria number decrease but their size increase in orexigenic Agrp neurons during the transition from fasted to fed to over-fed state. These fusion-like dynamic changes were cell-type specific, as they occurred in the opposite direction in anorexigenic POMC neurons. Interfering with mitochondrial fusion mechanisms in Agrp neurons by cell-selectively knocking down mitofusin-1 (Mfn1) or mitofusin-2 (Mfn2) resulted in altered mitochondria size and density in these cells. Deficiency in mitofusins impaired the electric activity of Agrp neurons during high-fat diet, an event reversed by cell-selective administration of ATP. Agrp-specific Mfn1 or Mfn2 knockout mice gained less weight when fed a high-fat diet due to decreased fat mass. Overall, our data unmask an important role for mitochondrial dynamics governed by Mfn1 and Mfn2 in Agrp neurons in central regulation of whole body energy metabolism. PMID:24074868

  19. Mechanisms of allosteric gene regulation by NMR quantification of microsecond-millisecond protein dynamics.

    PubMed

    Kleckner, Ian R; Gollnick, Paul; Foster, Mark P

    2012-01-13

    The trp RNA-binding attenuation protein (TRAP) is a paradigmatic allosteric protein that regulates the tryptophan biosynthetic genes associated with the trp operon in bacilli. The ring-shaped 11-mer TRAP is activated for recognition of a specific trp-mRNA target by binding up to 11 tryptophan molecules. To characterize the mechanisms of tryptophan-induced TRAP activation, we have performed methyl relaxation dispersion (MRD) nuclear magnetic resonance (NMR) experiments that probe the time-dependent structure of TRAP in the microsecond-to-millisecond "chemical exchange" time window. We find significant side chain flexibility localized to the RNA and tryptophan binding sites of the apo protein and that these dynamics are dramatically reduced upon ligand binding. Analysis of the MRD NMR data provides insights into the structural nature of transiently populated conformations sampled in solution by apo TRAP. The MRD data are inconsistent with global two-state exchange, indicating that conformational sampling in apo TRAP is asynchronous. These findings imply a temporally heterogeneous population of structures that are incompatible with RNA binding and substantiate the study of TRAP as a paradigm for probing and understanding essential dynamics in allosteric, regulatory proteins. PMID:22115774

  20. Neuronal Actin Dynamics, Spine Density and Neuronal Dendritic Complexity Are Regulated by CAP2.

    PubMed

    Kumar, Atul; Paeger, Lars; Kosmas, Kosmas; Kloppenburg, Peter; Noegel, Angelika A; Peche, Vivek S

    2016-01-01

    Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2(gt/gt) mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2(gt/gt) with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2(gt/gt) neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics. PMID:27507934

  1. Neuronal Actin Dynamics, Spine Density and Neuronal Dendritic Complexity Are Regulated by CAP2

    PubMed Central

    Kumar, Atul; Paeger, Lars; Kosmas, Kosmas; Kloppenburg, Peter; Noegel, Angelika A.; Peche, Vivek S.

    2016-01-01

    Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2gt/gt mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2gt/gt with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2gt/gt neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics. PMID:27507934

  2. Dynamic regulation of Gata factor levels is more important than their identity.

    PubMed

    Ferreira, Rita; Wai, Albert; Shimizu, Ritsuko; Gillemans, Nynke; Rottier, Robbert; von Lindern, Marieke; Ohneda, Kinuko; Grosveld, Frank; Yamamoto, Masayuki; Philipsen, Sjaak

    2007-06-15

    Three Gata transcription factors (Gata1, -2, and -3) are essential for hematopoiesis. These factors are thought to play distinct roles because they do not functionally replace each other. For instance, Gata2 messenger RNA (mRNA) expression is highly elevated in Gata1-null erythroid cells, yet this does not rescue the defect. Here, we test whether Gata2 and -3 transgenes rescue the erythroid defect of Gata1-null mice, if expressed in the appropriate spatiotemporal pattern. Gata1, -2, and -3 transgenes driven by beta-globin regulatory elements, directing expression to late stages of differentiation, fail to rescue erythropoiesis in Gata1-null mutants. In contrast, when controlled by Gata1 regulatory elements, directing expression to the early stages of differentiation, Gata1, -2, and -3 do rescue the Gata1-null phenotype. The dramatic increase of endogenous Gata2 mRNA in Gata1-null progenitors is not reflected in Gata2 protein levels, invoking translational regulation. Our data show that the dynamic spatiotemporal regulation of Gata factor levels is more important than their identity and provide a paradigm for developmental control mechanisms that are hard-wired in cis-regulatory elements. PMID:17327407

  3. Bio-inspired Dynamic Gradients Regulated by Supramolecular Bindings in Receptor-Embedded Hydrogel Matrices.

    PubMed

    Luan, Xinglong; Zhang, Yihe; Wu, Jing; Jonkheijm, Pascal; Li, Guangtao; Jiang, Lei; Huskens, Jurriaan; An, Qi

    2016-08-01

    The kinetics of supramolecular bindings are fundamentally important for molecular motions and spatial-temporal distributions in biological systems, but have rarely been employed in preparing artificial materials. This report proposes a bio-inspired concept to regulate dynamic gradients through the coupled supramolecular binding and diffusion process in receptor-embedded hydrogel matrices. A new type of hydrogel that uses cyclodextrin (CD) as both the gelling moiety and the receptors is prepared as the diffusion matrices. The diffusible guest, 4-aminoazobenzene, quickly and reversibly binds to matrices-bound CD during diffusion and generates steeper gradients than regular diffusion. Weakened bindings induced through UV irradiation extend the gradients. Combined with numerical simulation, these results indicate that the coupled binding-diffusion could be viewed as slowed diffusion, regulated jointly by the binding constant and the equilibrium receptor concentrations, and gradients within a bio-relevant extent of 4 mm are preserved up to 90 h. This report should inspire design strategies of biomedical or cell-culturing materials. PMID:27547643

  4. Dynamic Switch of Negative Feedback Regulation in Drosophila Akt–TOR Signaling

    PubMed Central

    Kockel, Lutz; Kerr, Kimberly S.; Melnick, Michael; Brückner, Katja; Hebrok, Matthias; Perrimon, Norbert

    2010-01-01

    Akt represents a nodal point between the Insulin receptor and TOR signaling, and its activation by phosphorylation controls cell proliferation, cell size, and metabolism. The activity of Akt must be carefully balanced, as increased Akt signaling is frequently associated with cancer and as insufficient Akt signaling is linked to metabolic disease and diabetes mellitus. Using a genome-wide RNAi screen in Drosophila cells in culture, and in vivo analyses in the third instar wing imaginal disc, we studied the regulatory circuitries that define dAkt activation. We provide evidence that negative feedback regulation of dAkt occurs during normal Drosophila development in vivo. Whereas in cell culture dAkt is regulated by S6 Kinase (S6K)–dependent negative feedback, this feedback inhibition only plays a minor role in vivo. In contrast, dAkt activation under wild-type conditions is defined by feedback inhibition that depends on TOR Complex 1 (TORC1), but is S6K–independent. This feedback inhibition is switched from TORC1 to S6K only in the context of enhanced TORC1 activity, as triggered by mutations in tsc2. These results illustrate how the Akt–TOR pathway dynamically adapts the routing of negative feedback in response to the activity load of its signaling circuit in vivo. PMID:20585550

  5. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells

    SciTech Connect

    Kucharzewska, Paulina; Welch, Johanna E.; Svensson, Katrin J.; Belting, Mattias

    2010-10-01

    The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by {alpha}-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.

  6. Model-Driven Understanding of Palmitoylation Dynamics: Regulated Acylation of the Endoplasmic Reticulum Chaperone Calnexin

    PubMed Central

    Sandoz, Patrick A.; Savoglidis, Georgios; Hatzimanikatis, Vassily; van der Goot, F. Gisou

    2016-01-01

    Cellular functions are largely regulated by reversible post-translational modifications of proteins which act as switches. Amongst these, S-palmitoylation is unique in that it confers hydrophobicity. Due to technical difficulties, the understanding of this modification has lagged behind. To investigate principles underlying dynamics and regulation of palmitoylation, we have here studied a key cellular protein, the ER chaperone calnexin, which requires dual palmitoylation for function. Apprehending the complex inter-conversion between single-, double- and non- palmitoylated species required combining experimental determination of kinetic parameters with extensive mathematical modelling. We found that calnexin, due to the presence of two cooperative sites, becomes stably acylated, which not only confers function but also a remarkable increase in stability. Unexpectedly, stochastic simulations revealed that palmitoylation does not occur soon after synthesis, but many hours later. This prediction guided us to find that phosphorylation actively delays calnexin palmitoylation in resting cells. Altogether this study reveals that cells synthesize 5 times more calnexin than needed under resting condition, most of which is degraded. This unused pool can be mobilized by preventing phosphorylation or increasing the activity of the palmitoyltransferase DHHC6. PMID:26900856

  7. Bio‐inspired Dynamic Gradients Regulated by Supramolecular Bindings in Receptor‐Embedded Hydrogel Matrices

    PubMed Central

    Luan, Xinglong; Wu, Jing; Jonkheijm, Pascal; Li, Guangtao; Jiang, Lei

    2016-01-01

    Abstract The kinetics of supramolecular bindings are fundamentally important for molecular motions and spatial–temporal distributions in biological systems, but have rarely been employed in preparing artificial materials. This report proposes a bio‐inspired concept to regulate dynamic gradients through the coupled supramolecular binding and diffusion process in receptor‐embedded hydrogel matrices. A new type of hydrogel that uses cyclodextrin (CD) as both the gelling moiety and the receptors is prepared as the diffusion matrices. The diffusible guest, 4‐aminoazobenzene, quickly and reversibly binds to matrices‐bound CD during diffusion and generates steeper gradients than regular diffusion. Weakened bindings induced through UV irradiation extend the gradients. Combined with numerical simulation, these results indicate that the coupled binding–diffusion could be viewed as slowed diffusion, regulated jointly by the binding constant and the equilibrium receptor concentrations, and gradients within a bio‐relevant extent of 4 mm are preserved up to 90 h. This report should inspire design strategies of biomedical or cell‐culturing materials. PMID:27547643

  8. Top-level dynamics and the regulated gene response of feed-forward loop transcriptional motifs

    NASA Astrophysics Data System (ADS)

    Mayo, Michael; Abdelzaher, Ahmed; Perkins, Edward J.; Ghosh, Preetam

    2014-09-01

    Feed-forward loops are hierarchical three-node transcriptional subnetworks, wherein a top-level protein regulates the activity of a target gene via two paths: a direct-regulatory path, and an indirect route, whereby the top-level proteins act implicitly through an intermediate transcription factor. Using a transcriptional network of the model bacterium Escherichia coli, we confirmed that nearly all types of feed-forward loop were significantly overrepresented in the bacterial network. We then used mathematical modeling to study their dynamics by manipulating the rise times of the top-level protein concentration, termed the induction time, through alteration of the protein destruction rates. Rise times of the regulated proteins exhibited two qualitatively different regimes, depending on whether top-level inductions were "fast" or "slow." In the fast regime, rise times were nearly independent of rapid top-level inductions, indicative of biological robustness, and occurred when RNA production rate-limits the protein yield. Alternatively, the protein rise times were dependent upon slower top-level inductions, greater than approximately one bacterial cell cycle. An equation is given for this crossover, which depends upon three parameters of the direct-regulatory path: transcriptional cooperation at the DNA-binding site, a protein-DNA dissociation constant, and the relative magnitude of the top-level protien concentration.

  9. Top-level dynamics and the regulated gene response of feed-forward loop transcriptional motifs.

    PubMed

    Mayo, Michael; Abdelzaher, Ahmed; Perkins, Edward J; Ghosh, Preetam

    2014-09-01

    Feed-forward loops are hierarchical three-node transcriptional subnetworks, wherein a top-level protein regulates the activity of a target gene via two paths: a direct-regulatory path, and an indirect route, whereby the top-level proteins act implicitly through an intermediate transcription factor. Using a transcriptional network of the model bacterium Escherichia coli, we confirmed that nearly all types of feed-forward loop were significantly overrepresented in the bacterial network. We then used mathematical modeling to study their dynamics by manipulating the rise times of the top-level protein concentration, termed the induction time, through alteration of the protein destruction rates. Rise times of the regulated proteins exhibited two qualitatively different regimes, depending on whether top-level inductions were "fast" or "slow." In the fast regime, rise times were nearly independent of rapid top-level inductions, indicative of biological robustness, and occurred when RNA production rate-limits the protein yield. Alternatively, the protein rise times were dependent upon slower top-level inductions, greater than approximately one bacterial cell cycle. An equation is given for this crossover, which depends upon three parameters of the direct-regulatory path: transcriptional cooperation at the DNA-binding site, a protein-DNA dissociation constant, and the relative magnitude of the top-level protien concentration.

  10. Caldesmon regulates actin dynamics to influence cranial neural crest migration in Xenopus.

    PubMed

    Nie, Shuyi; Kee, Yun; Bronner-Fraser, Marianne

    2011-09-01

    Caldesmon (CaD) is an important actin modulator that associates with actin filaments to regulate cell morphology and motility. Although extensively studied in cultured cells, there is little functional information regarding the role of CaD in migrating cells in vivo. Here we show that nonmuscle CaD is highly expressed in both premigratory and migrating cranial neural crest cells of Xenopus embryos. Depletion of CaD with antisense morpholino oligonucleotides causes cranial neural crest cells to migrate a significantly shorter distance, prevents their segregation into distinct migratory streams, and later results in severe defects in cartilage formation. Demonstrating specificity, these effects are rescued by adding back exogenous CaD. Interestingly, CaD proteins with mutations in the Ca(2+)-calmodulin-binding sites or ErK/Cdk1 phosphorylation sites fail to rescue the knockdown phenotypes, whereas mutation of the PAK phosphorylation site is able to rescue them. Analysis of neural crest explants reveals that CaD is required for the dynamic arrangements of actin and, thus, for cell shape changes and process formation. Taken together, these results suggest that the actin-modulating activity of CaD may underlie its critical function and is regulated by distinct signaling pathways during normal neural crest migration. PMID:21795398

  11. SynCAM 1 Adhesion Dynamically Regulates Synapse Number and Impacts Plasticity and Learning

    PubMed Central

    Robbins, Elissa M.; Krupp, Alexander J.; de Arce, Karen Perez; Ghosh, Ananda K.; Fogel, Adam I.; Boucard, Antony; Südhof, Thomas C.; Stein, Valentin; Biederer, Thomas

    2010-01-01

    Summary Synaptogenesis is required for wiring neuronal circuits in the developing brain and continues to remodel adult networks. However, the molecules organizing synapse development and maintenance in vivo remain incompletely understood. We now demonstrate that the immunoglobulin adhesion molecule SynCAM 1 dynamically alters synapse number and plasticity. Overexpression of SynCAM 1 in transgenic mice promotes excitatory synapse number, while loss of SynCAM 1 results in fewer excitatory synapses. By turning off SynCAM 1 overexpression in transgenic brains, we show that it maintains the newly induced synapses. SynCAM 1 also functions at mature synapses to alter their plasticity by regulating long-term depression. Consistent with these effects on neuronal connectivity, SynCAM 1 expression affects spatial learning, with knock-out mice learning better. The reciprocal effects of increased SynCAM 1 expression and loss reveal that this adhesion molecule contributes to the regulation of synapse number and plasticity, and impacts how neuronal networks undergo activity-dependent changes. PMID:21145003

  12. The nuclear phenotypic plasticity observed in fish during rRNA regulation entails Cajal bodies dynamics

    SciTech Connect

    Alvarez, Marco; Nardocci, Gino; Thiry, Marc; Alvarez, Rodrigo; Reyes, Mauricio; Molina, Alfredo; Vera, M. Ines . E-mail: mvera@unab.cl

    2007-08-17

    Cajal bodies (CBs) are small mobile organelles found throughout the nucleoplasm of animal and plant cells. The dynamics of these organelles involves interactions with the nucleolus. The later has been found to play a substantial role in the compensatory response that evolved in eurythermal fish to adapt to the cyclic seasonal habitat changes, i.e., temperature and photoperiod. Contrary to being constitutive, rRNA synthesis is dramatically regulated between summer and winter, thus affecting ribosomal biogenesis which plays a central role in the acclimatization process. To examine whether CBs, up to now, never described in fish, were also sustaining the phenotypic plasticity observed in nuclei of fish undergoing seasonal acclimatization, we identified these organelles both, by transmission electronic microscopy and immunodetection with the marker protein p80-coilin. We found transcripts in all tissues analyzed. Furthermore we assessed that p80-coilin gene expression was always higher in summer-acclimatized fish when compared to that adapted to the cold season, indicating that p80-coilin expression is modulated upon seasonal acclimatization. Concurrently, CBs were more frequently found in summer-acclimatized carp which suggests that the organization of CBs is involved in adaptive processes and contribute to the phenotypic plasticity of fish cell nuclei observed concomitantly with profound reprogramming of nucleolar components and regulation of ribosomal rRNAs.

  13. Electronic and Structural Elements That Regulate the Excited-State Dynamics in Purine Nucleobase Derivatives

    PubMed Central

    2015-01-01

    The excited-state dynamics of the purine free base and 9-methylpurine are investigated using experimental and theoretical methods. Femtosecond broadband transient absorption experiments reveal that excitation of these purine derivatives in aqueous solution at 266 nm results primarily in ultrafast conversion of the S2(ππ*) state to the vibrationally excited 1nπ* state. Following vibrational and conformational relaxation, the 1nπ* state acts as a doorway state in the efficient population of the triplet manifold with an intersystem crossing lifetime of hundreds of picoseconds. Experiments show an almost 2-fold increase in the intersystem crossing rate on going from polar aprotic to nonpolar solvents, suggesting that a solvent-dependent energy barrier must be surmounted to access the singlet-to-triplet crossing region. Ab initio static and surface-hopping dynamics simulations lend strong support to the proposed relaxation mechanism. Collectively, the experimental and computational results demonstrate that the accessibility of the nπ* states and the topology of the potential energy surfaces in the vicinity of conical intersections are key elements in controlling the excited-state dynamics of the purine derivatives. From a structural perspective, it is shown that the purine chromophore is not responsible for the ultrafast internal conversion in the adenine and guanine monomers. Instead, C6 functionalization plays an important role in regulating the rates of radiative and nonradiative relaxation. C6 functionalization inhibits access to the 1nπ* state while simultaneously facilitating access to the 1ππ*(La)/S0 conical intersection, such that population of the 1nπ* state cannot compete with the relaxation pathways to the ground state involving ring puckering at the C2 position. PMID:25763596

  14. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion

    PubMed Central

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-01-01

    Secretagogin (SCGN), a Ca2+-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca2+-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  15. Cell Type-Specific Regulation of Immunological Synapse Dynamics by B7 Ligand Recognition

    PubMed Central

    Brzostek, Joanna; Gascoigne, Nicholas R. J.; Rybakin, Vasily

    2016-01-01

    B7 proteins CD80 (B7-1) and CD86 (B7-2) are expressed on most antigen-presenting cells and provide critical co-stimulatory or inhibitory input to T cells via their T-cell-expressed receptors: CD28 and CTLA-4. CD28 is expressed on effector T cells and regulatory T cells (Tregs), and CD28-dependent signals are required for optimum activation of effector T cell functions. CD28 ligation on effector T cells leads to formation of distinct molecular patterns and induction of cytoskeletal rearrangements at the immunological synapse (IS). CD28 plays a critical role in recruitment of protein kinase C (PKC)-θ to the effector T cell IS. CTLA-4 is constitutively expressed on the surface of Tregs, but it is expressed on effector T cells only after activation. As CTLA-4 binds to B7 proteins with significantly higher affinity than CD28, B7 ligand recognition by cells expressing both receptors leads to displacement of CD28 and PKC-θ from the IS. In Tregs, B7 ligand recognition leads to recruitment of CTLA-4 and PKC-η to the IS. CTLA-4 plays a role in regulation of T effector and Treg IS stability and cell motility. Due to their important roles in regulating T-cell-mediated responses, B7 receptors are emerging as important drug targets in oncology. In this review, we present an integrated summary of current knowledge about the role of B7 family receptor–ligand interactions in the regulation of spatial and temporal IS dynamics in effector and Tregs. PMID:26870040

  16. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion.

    PubMed

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-06-15

    Secretagogin (SCGN), a Ca(2+)-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca(2+)-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  17. Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes

    PubMed Central

    De Pittà, Maurizio; Goldberg, Mati; Volman, Vladislav; Berry, Hugues

    2009-01-01

    Recent years have witnessed an increasing interest in neuron–glia communication. This interest stems from the realization that glia participate in cognitive functions and information processing and are involved in many brain disorders and neurodegenerative diseases. An important process in neuron–glia communications is astrocyte encoding of synaptic information transfer—the modulation of intracellular calcium (Ca2 + ) dynamics in astrocytes in response to synaptic activity. Here, we derive and investigate a concise mathematical model for glutamate-induced astrocytic intracellular Ca2 +  dynamics that captures the essential biochemical features of the regulatory pathway of inositol 1,4,5-trisphosphate (IP3). Starting from the well-known two-variable (intracellular Ca2 +  and inactive IP3 receptors) Li–Rinzel model for calcium-induced calcium release, we incorporate the regulation of IP3 production and phosphorylation. Doing so, we extend it to a three-variable model (which we refer to as the ChI model) that could account for Ca2 +  oscillations with endogenous IP3 metabolism. This ChI model is then further extended into the G-ChI model to include regulation of IP3 production by external glutamate signals. Compared with previous similar models, our three-variable models include a more realistic description of IP3 production and degradation pathways, lumping together their essential nonlinearities within a concise formulation. Using bifurcation analysis and time simulations, we demonstrate the existence of new putative dynamical features. The cross-couplings between IP3 and Ca2 +  pathways endow the system with self-consistent oscillatory properties and favor mixed frequency–amplitude encoding modes over pure amplitude–modulation ones. These and additional results of our model are in general agreement with available experimental data and may have important implications for the role of astrocytes in the synaptic transfer of information

  18. Regulation of Gap Junction Dynamics by UNC-44/ankyrin and UNC-33/CRMP through VAB-8 in C. elegans Neurons

    PubMed Central

    Yan, Dong

    2016-01-01

    Gap junctions are present in both vertebrates and invertebrates from nematodes to mammals. Although the importance of gap junctions has been documented in many biological processes, the molecular mechanisms underlying gap junction dynamics remain unclear. Here, using the C. elegans PLM neurons as a model, we show that UNC-44/ankyrin acts upstream of UNC-33/CRMP in regulation of a potential kinesin VAB-8 to control gap junction dynamics, and loss-of-function in the UNC-44/UNC-33/VAB-8 pathway suppresses the turnover of gap junction channels. Therefore, we first show a signal pathway including ankyrin, CRMP, and kinesin in regulating gap junctions. PMID:27015090

  19. Xenopus TACC1 is a microtubule plus‐end tracking protein that can regulate microtubule dynamics during embryonic development

    PubMed Central

    Lucaj, Christopher M.; Evans, Matthew F.; Nwagbara, Belinda U.; Ebbert, Patrick T.; Baker, Charlie C.; Volk, Joseph G.; Francl, Andrew F.; Ruvolo, Sean P.

    2015-01-01

    Microtubule plus‐end dynamics are regulated by a family of proteins called plus‐end tracking proteins (+TIPs). We recently demonstrated that the transforming acidic coiled‐coil (TACC) domain family member, TACC3, can function as a +TIP to regulate microtubule dynamics in Xenopus laevis embryonic cells. Although it has been previously reported that TACC3 is the only TACC family member that exists in Xenopus, our examination of its genome determined that Xenopus, like all other vertebrates, contains three TACC family members. Here, we investigate the localization and function of Xenopus TACC1, the founding member of the TACC family. We demonstrate that it can act as a +TIP to regulate microtubule dynamics, and that the conserved C‐terminal TACC domain is required for its localization to plus‐ends. We also show that, in Xenopus embryonic mesenchymal cells, TACC1 and TACC3 are each required for maintaining normal microtubule growth speed but exhibit some functional redundancy in the regulation of microtubule growth lifetime. Given the conservation of TACC1 in Xenopus and other vertebrates, we propose that Xenopus laevis is a useful system to investigate unexplored cell biological functions of TACC1 and other TACC family members in the regulation of microtubule dynamics. © 2015 The Authors. Cytoskeleton, Published by Wiley Periodicals, Inc. PMID:26012630

  20. Computational analysis of the regulation of Ca2+ dynamics in rat ventricular myocytes

    NASA Astrophysics Data System (ADS)

    Bugenhagen, Scott M.; Beard, Daniel A.

    2015-10-01

    Force-frequency relationships of isolated cardiac myocytes show complex behaviors that are thought to be specific to both the species and the conditions associated with the experimental preparation. Ca2+ signaling plays an important role in shaping the force-frequency relationship, and understanding the properties of the force-frequency relationship in vivo requires an understanding of Ca2+ dynamics under physiologically relevant conditions. Ca2+ signaling is itself a complicated process that is best understood on a quantitative level via biophysically based computational simulation. Although a large number of models are available in the literature, the models are often a conglomeration of components parameterized to data of incompatible species and/or experimental conditions. In addition, few models account for modulation of Ca2+ dynamics via β-adrenergic and calmodulin-dependent protein kinase II (CaMKII) signaling pathways even though they are hypothesized to play an important regulatory role in vivo. Both protein-kinase-A and CaMKII are known to phosphorylate a variety of targets known to be involved in Ca2+ signaling, but the effects of these pathways on the frequency- and inotrope-dependence of Ca2+ dynamics are not currently well understood. In order to better understand Ca2+ dynamics under physiological conditions relevant to rat, a previous computational model is adapted and re-parameterized to a self-consistent dataset obtained under physiological temperature and pacing frequency and updated to include β-adrenergic and CaMKII regulatory pathways. The necessity of specific effector mechanisms of these pathways in capturing inotrope- and frequency-dependence of the data is tested by attempting to fit the data while including and/or excluding those effector components. We find that: (1) β-adrenergic-mediated phosphorylation of the L-type calcium channel (LCC) (and not of phospholamban (PLB)) is sufficient to explain the inotrope-dependence; and (2) that

  1. Non-monotonic Response to Monotonic Stimulus: Regulation of Glyoxylate Shunt Gene-Expression Dynamics in Mycobacterium tuberculosis

    PubMed Central

    Gennaro, Maria L.; Igoshin, Oleg A.

    2016-01-01

    Understanding how dynamical responses of biological networks are constrained by underlying network topology is one of the fundamental goals of systems biology. Here we employ monotone systems theory to formulate a theorem stating necessary conditions for non-monotonic time-response of a biochemical network to a monotonic stimulus. We apply this theorem to analyze the non-monotonic dynamics of the σB-regulated glyoxylate shunt gene expression in Mycobacterium tuberculosis cells exposed to hypoxia. We first demonstrate that the known network structure is inconsistent with observed dynamics. To resolve this inconsistency we employ the formulated theorem, modeling simulations and optimization along with follow-up dynamic experimental measurements. We show a requirement for post-translational modulation of σB activity in order to reconcile the network dynamics with its topology. The results of this analysis make testable experimental predictions and demonstrate wider applicability of the developed methodology to a wide class of biological systems. PMID:26900694

  2. Non-monotonic Response to Monotonic Stimulus: Regulation of Glyoxylate Shunt Gene-Expression Dynamics in Mycobacterium tuberculosis.

    PubMed

    Ascensao, Joao A; Datta, Pratik; Hancioglu, Baris; Sontag, Eduardo; Gennaro, Maria L; Igoshin, Oleg A

    2016-02-01

    Understanding how dynamical responses of biological networks are constrained by underlying network topology is one of the fundamental goals of systems biology. Here we employ monotone systems theory to formulate a theorem stating necessary conditions for non-monotonic time-response of a biochemical network to a monotonic stimulus. We apply this theorem to analyze the non-monotonic dynamics of the σB-regulated glyoxylate shunt gene expression in Mycobacterium tuberculosis cells exposed to hypoxia. We first demonstrate that the known network structure is inconsistent with observed dynamics. To resolve this inconsistency we employ the formulated theorem, modeling simulations and optimization along with follow-up dynamic experimental measurements. We show a requirement for post-translational modulation of σB activity in order to reconcile the network dynamics with its topology. The results of this analysis make testable experimental predictions and demonstrate wider applicability of the developed methodology to a wide class of biological systems. PMID:26900694

  3. Dynamic regulation of bone morphogenetic proteins in engineered osteochondral constructs by biomechanical stimulation.

    PubMed

    Nam, Jin; Perera, Priyangi; Rath, Bjoern; Agarwal, Sudha

    2013-03-01

    Osteochondral tissue-engineered grafts are proposed to hold greater potential to repair/regenerate damaged cartilage through enhanced biochemical and mechanical interactions with underlying subchondral bone as compared to simple engineered cartilage. Additionally, biomechanical stimulation of articular chondrocytes (ACs) or osteoblasts (OBs) was shown to induce greater morphogenesis of the engineered tissues composed of these cells. In this report, to define the advantages of biomechanical stimulation to osteochondral grafts for tissue engineering, we examined whether (1) ACs and OBs in three-dimensional (3D) osteochondral constructs support functional development of each other at the molecular level, and (2) biomechanical stimulation of osteochondral constructs further promotes the regenerative potential of such grafts. Various configurations of cell/scaffold assemblies, including chondral, osseous, and osteochondral constructs, were engineered with mechano-responsive electrospun poly(ɛ-caprolactone) scaffolds. These constructs were subjected to either static or dynamic (10% cyclic compressive strain at 1 Hz for 3 h/day) culture conditions for 2 weeks. The expression of bone morphogenetic proteins (BMPs) was examined to assess the regenerative potential of each treatment on the cells. Biomechanical stimulation augmented a marked upregulation of Bmp2, Bmp6, and Bmp7 as well as downregulation of BMP antagonist, Bmp3, in a time-specific manner in the ACs and OBs of 3D osteochondral constructs. More importantly, the presence of biomechanically stimulated OBs was especially crucial for the induction of Bmp6 in ACs, a BMP required for chondrocytic growth and differentiation. Biomechanical stimulation led to enhanced tissue morphogenesis possibly through this BMP regulation, evident by the improved effective compressive modulus of the osteochondral constructs (710 kPa of dynamic culture vs. 280 kPa of static culture). Similar BMP regulation was observed in the

  4. KATNAL1 Regulation of Sertoli Cell Microtubule Dynamics Is Essential for Spermiogenesis and Male Fertility

    PubMed Central

    Smith, Lee B.; Milne, Laura; Nelson, Nancy; Eddie, Sharon; Brown, Pamela; Atanassova, Nina; O'Bryan, Moira K.; O'Donnell, Liza; Rhodes, Danielle; Wells, Sara; Napper, Diane; Nolan, Patrick; Lalanne, Zuzanna; Cheeseman, Michael; Peters, Josephine

    2012-01-01

    Spermatogenesis is a complex process reliant upon interactions between germ cells (GC) and supporting somatic cells. Testicular Sertoli cells (SC) support GCs during maturation through physical attachment, the provision of nutrients, and protection from immunological attack. This role is facilitated by an active cytoskeleton of parallel microtubule arrays that permit transport of nutrients to GCs, as well as translocation of spermatids through the seminiferous epithelium during maturation. It is well established that chemical perturbation of SC microtubule remodelling leads to premature GC exfoliation demonstrating that microtubule remodelling is an essential component of male fertility, yet the genes responsible for this process remain unknown. Using a random ENU mutagenesis approach, we have identified a novel mouse line displaying male-specific infertility, due to a point mutation in the highly conserved ATPase domain of the novel KATANIN p60-related microtubule severing protein Katanin p60 subunit A-like1 (KATNAL1). We demonstrate that Katnal1 is expressed in testicular Sertoli cells (SC) from 15.5 days post-coitum (dpc) and that, consistent with chemical disruption models, loss of function of KATNAL1 leads to male-specific infertility through disruption of SC microtubule dynamics and premature exfoliation of spermatids from the seminiferous epithelium. The identification of KATNAL1 as an essential regulator of male fertility provides a significant novel entry point into advancing our understanding of how SC microtubule dynamics promotes male fertility. Such information will have resonance both for future treatment of male fertility and the development of non-hormonal male contraceptives. PMID:22654668

  5. Mitochondrial Dynamics Protein Drp1 Is Overexpressed in Oncocytic Thyroid Tumors and Regulates Cancer Cell Migration

    PubMed Central

    Ferreira-da-Silva, André; Valacca, Cristina; Rios, Elisabete; Pópulo, Helena; Soares, Paula; Sobrinho-Simões, Manuel; Scorrano, Luca; Máximo, Valdemar; Campello, Silvia

    2015-01-01

    Oncocytic cell tumors are characterized by the accumulation of morphologically abnormal mitochondria in their cells, suggesting a role for abnormal mitochondrial biogenesis in oncocytic cell transformation. Little is known about the reason for the dysmorphology of accumulated mitochondria. The proteins regulating the morphology of mitochondria, the "mitochondria-shaping" proteins, can modulate their size and number; however, nothing is known hitherto about a possible involvement of mitochondrial dynamics in oncocytic cell transformation in tumors. Our aim was to assess the status of the mitochondria morphology and its role in oncocytic cell transformation. We therefore evaluated the expression pattern of the main mitochondrial fusion and fission proteins in a series of thyroid cell tumor samples, as well as in thyroid tumor cell lines, with and without oncocytic cell features. The expression of mitochondrial fusion (Opa1, Mfn1 and Mfn2) and fission (Drp1 and Fis1) proteins were evaluated by immunohistochemistry (IHC) in a series of 88 human thyroid tumors. In vitro studies, for comparative purposes and to deepen the study, were performed using TPC1 - a papillary thyroid carcinoma derived cell line—and XTC.UC1, an oncocytic follicular thyroid carcinoma-derived cell line. Both IHC and in vitro protein analyses showed an overall increase in the levels of "mitochondrial-shaping" proteins in oncocytic thyroid tumors. Furthermore, overexpression of the pro-fission protein Drp1 was found to be associated with malignant oncocytic thyroid tumors. Interestingly, genetic and pharmacological blockage of Drp1 activity was able to influence thyroid cancer cells’ migration/invasion ability, a feature of tumor malignancy. In this study we show that unbalanced mitochondrial dynamics characterize the malignant features of thyroid oncocytic cell tumors, and participate in the acquisition of the migrating phenotype. PMID:25822260

  6. Mitochondrial dynamics protein Drp1 is overexpressed in oncocytic thyroid tumors and regulates cancer cell migration.

    PubMed

    Ferreira-da-Silva, André; Valacca, Cristina; Rios, Elisabete; Pópulo, Helena; Soares, Paula; Sobrinho-Simões, Manuel; Scorrano, Luca; Máximo, Valdemar; Campello, Silvia

    2015-01-01

    Oncocytic cell tumors are characterized by the accumulation of morphologically abnormal mitochondria in their cells, suggesting a role for abnormal mitochondrial biogenesis in oncocytic cell transformation. Little is known about the reason for the dysmorphology of accumulated mitochondria. The proteins regulating the morphology of mitochondria, the "mitochondria-shaping" proteins, can modulate their size and number; however, nothing is known hitherto about a possible involvement of mitochondrial dynamics in oncocytic cell transformation in tumors. Our aim was to assess the status of the mitochondria morphology and its role in oncocytic cell transformation. We therefore evaluated the expression pattern of the main mitochondrial fusion and fission proteins in a series of thyroid cell tumor samples, as well as in thyroid tumor cell lines, with and without oncocytic cell features. The expression of mitochondrial fusion (Opa1, Mfn1 and Mfn2) and fission (Drp1 and Fis1) proteins were evaluated by immunohistochemistry (IHC) in a series of 88 human thyroid tumors. In vitro studies, for comparative purposes and to deepen the study, were performed using TPC1--a papillary thyroid carcinoma derived cell line--and XTC.UC1, an oncocytic follicular thyroid carcinoma-derived cell line. Both IHC and in vitro protein analyses showed an overall increase in the levels of "mitochondrial-shaping" proteins in oncocytic thyroid tumors. Furthermore, overexpression of the pro-fission protein Drp1 was found to be associated with malignant oncocytic thyroid tumors. Interestingly, genetic and pharmacological blockage of Drp1 activity was able to influence thyroid cancer cells' migration/invasion ability, a feature of tumor malignancy. In this study we show that unbalanced mitochondrial dynamics characterize the malignant features of thyroid oncocytic cell tumors, and participate in the acquisition of the migrating phenotype.

  7. Exposure to Cocaine Dynamically Regulates the Intrinsic Membrane Excitability of Nucleus Accumbens Neurons

    PubMed Central

    Mu, Ping; Moyer, Jason T.; Ishikawa, Masago; Zhang, Yonghong; Panksepp, Jaak; Sorg, Barbara A.; Schlüter, Oliver M.; Dong, Yan

    2010-01-01

    Drug-induced malfunction of nucleus accumbens (NAc) neurons underlies a key pathophysiology of drug addiction. Drug-induced changes in intrinsic membrane excitability of NAc neurons are thought to be critical for producing behavioral alterations. Previous studies demonstrate that following short-term (2d) or long-term (21d) withdrawal from non-contingent cocaine injection, the intrinsic membrane excitability of NAc shell (NAcSh) neurons is decreased, and decreased membrane excitability of NAcSh neurons increases the acute locomotor response to cocaine. However, animals exhibit distinct cellular and behavioral alterations at different stages of cocaine exposure, suggesting that the decreased membrane excitability of NAc neurons may not be a persistent change. Here, we demonstrate that the membrane excitability of NAcSh neurons is differentially regulated depending on whether cocaine is administered contingently or non-contingently. Specifically, the membrane excitability of NAcSh MSNs was decreased at 2d after withdrawal from either 5-day intraperitoneal (i.p.) injections (15 mg/kg) or cocaine self-administration (SA). At 21d of withdrawal, the membrane excitability of NAcSh MSNs, which remained low in i.p.-pretreated rats, returned to a normal level in SA-pretreated rats. Furthermore, upon a re-exposure to cocaine after long-term withdrawal, the membrane excitability of NAcSh MSNs instantly returned to a normal level in i.p.-pretreated rats. On the other hand, in SA-pretreated rats, the re-exposure elevated the membrane excitability of NAcSh MSMs beyond the normal level. These results suggest that the dynamic alterations in membrane excitability of NAcSh MSNs, together with the dynamic changes in synaptic input, contribute differentially to the behavioral consequences of contingent and non-contingent cocaine administration. PMID:20220002

  8. Conformational Dynamics of Response Regulator RegX3 from Mycobacterium tuberculosis

    PubMed Central

    Ahmad, Ashfaq; Cai, Yongfei; Chen, Xingqiang; Shuai, Jianwei; Han, Aidong

    2015-01-01

    Two-component signal transduction systems (TCS) are vital for adaptive responses to various environmental stresses in bacteria, fungi and even plants. A TCS typically comprises of a sensor histidine kinase (SK) with its cognate response regulator (RR), which often has two domains—N terminal receiver domain (RD) and C terminal effector domain (ED). The histidine kinase phosphorylates the RD to activate the ED by promoting dimerization. However, despite significant progress on structural studies, how RR transmits activation signal from RD to ED remains elusive. Here we analyzed active to inactive transition process of OmpR/PhoB family using an active conformation of RegX3 from Mycobacterium tuberculosis as a model system by computational approaches. An inactive state of RegX3 generated from 150 ns molecular dynamic simulation has rotameric conformations of Thr79 and Tyr98 that are generally conserved in inactive RRs. Arg81 in loop β4α4 acts synergistically with loop β1α1 to change its interaction partners during active to inactive transition, potentially leading to the N-terminal movement of RegX3 helix α1. Global conformational dynamics of RegX3 is mainly dependent on α4β5 region, in particular seven ‘hot-spot’ residues (Tyr98 to Ser104), adjacent to which several coevolved residues at dimeric interface, including Ile76-Asp96, Asp97-Arg111 and Glu24-Arg113 pairs, are critical for signal transduction. Taken together, our computational analyses suggest a molecular linkage between Asp phosphorylation, proximal loops and α4β5α5 dimeric interface during RR active to inactive state transition, which is not often evidently defined from static crystal structures. PMID:26201027

  9. Dynamic modelling of microRNA regulation during mesenchymal stem cell differentiation

    PubMed Central

    2013-01-01

    Background Network inference from gene expression data is a typical approach to reconstruct gene regulatory networks. During chondrogenic differentiation of human mesenchymal stem cells (hMSCs), a complex transcriptional network is active and regulates the temporal differentiation progress. As modulators of transcriptional regulation, microRNAs (miRNAs) play a critical role in stem cell differentiation. Integrated network inference aimes at determining interrelations between miRNAs and mRNAs on the basis of expression data as well as miRNA target predictions. We applied the NetGenerator tool in order to infer an integrated gene regulatory network. Results Time series experiments were performed to measure mRNA and miRNA abundances of TGF-beta1+BMP2 stimulated hMSCs. Network nodes were identified by analysing temporal expression changes, miRNA target gene predictions, time series correlation and literature knowledge. Network inference was performed using NetGenerator to reconstruct a dynamical regulatory model based on the measured data and prior knowledge. The resulting model is robust against noise and shows an optimal trade-off between fitting precision and inclusion of prior knowledge. It predicts the influence of miRNAs on the expression of chondrogenic marker genes and therefore proposes novel regulatory relations in differentiation control. By analysing the inferred network, we identified a previously unknown regulatory effect of miR-524-5p on the expression of the transcription factor SOX9 and the chondrogenic marker genes COL2A1, ACAN and COL10A1. Conclusions Genome-wide exploration of miRNA-mRNA regulatory relationships is a reasonable approach to identify miRNAs which have so far not been associated with the investigated differentiation process. The NetGenerator tool is able to identify valid gene regulatory networks on the basis of miRNA and mRNA time series data. PMID:24219887

  10. Dexamethasone Treatment Leads to Enhanced Fear Extinction and Dynamic Fkbp5 Regulation in Amygdala.

    PubMed

    Sawamura, Takehito; Klengel, Torsten; Armario, Antonio; Jovanovic, Tanja; Norrholm, Seth D; Ressler, Kerry J; Andero, Raül

    2016-02-01

    Posttraumatic stress disorder (PTSD) is both a prevalent and debilitating trauma-related disorder associated with dysregulated fear learning at the core of many of its signs and symptoms. Improvements in the currently available psychological and pharmacological treatments are needed in order to improve PTSD treatment outcomes and to prevent symptom relapse. In the present study, we used a putative animal model of PTSD that included presentation of immobilization stress (IMO) followed by fear conditioning (FC) a week later. We then investigated the acute effects of GR receptor activation on the extinction (EXT) of conditioned freezing, using dexamethasone administered systemically which is known to result in suppression of the HPA axis. In our previous work, IMO followed by tone-shock-mediated FC was associated with impaired fear EXT. In this study, we administered dexamethasone 4 h before EXT training and then examined EXT retention (RET) 24 h later to determine whether dexamethasone suppression rescued EXT deficits. Dexamethasone treatment produced dose-dependent enhancement of both EXT and RET. Dexamethasone was also associated with reduced amygdala Fkbp5 mRNA expression following EXT and after RET. Moreover, DNA methylation of the Fkbp5 gene occurred in a dose-dependent and time course-dependent manner within the amygdala. Additionally, we found dynamic changes in epigenetic regulation, including Dnmt and Tet gene pathways, as a function of both fear EXT and dexamethasone suppression of the HPA axis. Together, these data suggest that dexamethasone may serve to enhance EXT by altering Fkbp5-mediated glucocorticoid sensitivity via epigenetic regulation of Fkbp5 expression.

  11. The function and dynamics of the apical scaffolding protein E3KARP are regulated by cell-cycle phosphorylation

    PubMed Central

    Sauvanet, Cécile; Garbett, Damien; Bretscher, Anthony

    2015-01-01

    We examine the dynamics and function of the apical scaffolding protein E3KARP/NHERF2, which consists of two PDZ domains and a tail containing an ezrin-binding domain. The exchange rate of E3KARP is greatly enhanced during mitosis due to phosphorylation at Ser-303 in its tail region. Whereas E3KARP can substitute for the function of the closely related scaffolding protein EBP50/NHERF1 in the formation of interphase microvilli, E3KARP S303D cannot. Moreover, the S303D mutation enhances the in vivo dynamics of the E3KARP tail alone, whereas in vitro the interaction of E3KARP with active ezrin is unaffected by S303D, implicating another factor regulating dynamics in vivo. A-Raf is found to be required for S303 phosphorylation in mitotic cells. Regulation of the dynamics of EBP50 is known to be dependent on its tail region but modulated by PDZ domain occupancy, which is not the case for E3KARP. Of interest, in both cases, the mechanisms regulating dynamics involve the tails, which are the most diverged region of the paralogues and probably evolved independently after a gene duplication event that occurred early in vertebrate evolution. PMID:26310448

  12. Design and optimization of photo bioreactor for O2 regulation and control by system dynamics and computer simulation.

    PubMed

    Hu, Dawei; Li, Ming; Zhou, Rui; Sun, Yi

    2012-01-01

    In this paper, a valid kinetic model of photo bioreactor (PBR) used for highly-effective cultivation of blue algae, Spirulina platensis, was developed for fully describing the dynamic characteristics of O(2) concentration, then a closed-loop PBR with Linear-Quadratic Gaussian (LQG) servo controller was established and optimized via digital simulation and dynamic response optimization, and the effectiveness of the closed-loop PBR was further tested and accredited by real-time simulation. The result showed that the closed-loop PBR could regulate and control the O(2) concentration in its gas phase according to the reference with desired dynamic response performance, hence microalgae with unique characteristic could be selected as a powerful tool for O(2) regulation and control whenever O(2) concentration in Bioregenerative Life Support System (BLSS) deviates from the nominal level in emergencies, and greatly enhance safety and reliability of BLSS on space and ground missions.

  13. Design and optimization of photo bioreactor for O2 regulation and control by system dynamics and computer simulation.

    PubMed

    Hu, Dawei; Li, Ming; Zhou, Rui; Sun, Yi

    2012-01-01

    In this paper, a valid kinetic model of photo bioreactor (PBR) used for highly-effective cultivation of blue algae, Spirulina platensis, was developed for fully describing the dynamic characteristics of O(2) concentration, then a closed-loop PBR with Linear-Quadratic Gaussian (LQG) servo controller was established and optimized via digital simulation and dynamic response optimization, and the effectiveness of the closed-loop PBR was further tested and accredited by real-time simulation. The result showed that the closed-loop PBR could regulate and control the O(2) concentration in its gas phase according to the reference with desired dynamic response performance, hence microalgae with unique characteristic could be selected as a powerful tool for O(2) regulation and control whenever O(2) concentration in Bioregenerative Life Support System (BLSS) deviates from the nominal level in emergencies, and greatly enhance safety and reliability of BLSS on space and ground missions. PMID:22153599

  14. Amygdala regulates risk of predation in rats foraging in a dynamic fear environment.

    PubMed

    Choi, June-Seek; Kim, Jeansok J

    2010-12-14

    In a natural environment, foragers constantly face the risk of encountering predators. Fear is a defensive mechanism evolved to protect animals from danger by balancing the animals' needs for primary resources with the risk of predation, and the amygdala is implicated in mediating fear responses. However, the functions of fear and amygdala in foraging behavior are not well characterized because of the technical difficulty in quantifying prey-predator interaction with real (unpredictable) predators. Thus, the present study investigated the rat's foraging behavior in a seminaturalistic environment when confronted with a predator-like robot programmed to surge toward the animal seeking food. Rats initially fled into the nest and froze (demonstrating fear) and then cautiously approached and seized the food as a function of decreasing nest-food and increasing food-robot distances. The likelihood of procuring food increased and decreased via lesioning/inactivating and disinhibiting the amygdala, respectively. These results indicate that the amygdala bidirectionally regulates risk behavior in rats foraging in a dynamic fear environment.

  15. ETS family transcriptional regulators drive chromatin dynamics and malignancy in squamous cell carcinomas

    PubMed Central

    Adam, Rene C; Keyes, Brice E; Wang, Ping; Zheng, Deyou; Fuchs, Elaine

    2015-01-01

    Tumor-initiating stem cells (SCs) exhibit distinct patterns of transcription factors and gene expression compared to healthy counterparts. Here, we show that dramatic shifts in large open-chromatin domain (super-enhancer) landscapes underlie these differences and reflect tumor microenvironment. By in vivo super-enhancer and transcriptional profiling, we uncover a dynamic cancer-specific epigenetic network selectively enriched for binding motifs of a transcription factor cohort expressed in squamous cell carcinoma SCs (SCC-SCs). Many of their genes, including Ets2 and Elk3, are themselves regulated by SCC-SC super-enhancers suggesting a cooperative feed-forward loop. Malignant progression requires these genes, whose knockdown severely impairs tumor growth and prohibits progression from benign papillomas to SCCs. ETS2-deficiency disrupts the SCC-SC super-enhancer landscape and downstream cancer genes while ETS2-overactivation in epidermal-SCs induces hyperproliferation and SCC super-enhancer-associated genes Fos, Junb and Klf5. Together, our findings unearth an essential regulatory network required for the SCC-SC chromatin landscape and unveil its importance in malignant progression. DOI: http://dx.doi.org/10.7554/eLife.10870.001 PMID:26590320

  16. Actin dynamics tune the integrated stress response by regulating eukaryotic initiation factor 2α dephosphorylation

    PubMed Central

    Chambers, Joseph E; Dalton, Lucy E; Clarke, Hanna J; Malzer, Elke; Dominicus, Caia S; Patel, Vruti; Moorhead, Greg; Ron, David; Marciniak, Stefan J

    2015-01-01

    Four stress-sensing kinases phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) to activate the integrated stress response (ISR). In animals, the ISR is antagonised by selective eIF2α phosphatases comprising a catalytic protein phosphatase 1 (PP1) subunit in complex with a PPP1R15-type regulatory subunit. An unbiased search for additional conserved components of the PPP1R15-PP1 phosphatase identified monomeric G-actin. Like PP1, G-actin associated with the functional core of PPP1R15 family members and G-actin depletion, by the marine toxin jasplakinolide, destabilised the endogenous PPP1R15A-PP1 complex. The abundance of the ternary PPP1R15-PP1-G-actin complex was responsive to global changes in the polymeric status of actin, as was its eIF2α-directed phosphatase activity, while localised G-actin depletion at sites enriched for PPP1R15 enhanced eIF2α phosphorylation and the downstream ISR. G-actin's role as a stabilizer of the PPP1R15-containing holophosphatase provides a mechanism for integrating signals regulating actin dynamics with stresses that trigger the ISR. DOI: http://dx.doi.org/10.7554/eLife.04872.001 PMID:25774599

  17. Histone H3.3 regulates dynamic chromatin states during spermatogenesis

    PubMed Central

    Yuen, Benjamin T. K.; Bush, Kelly M.; Barrilleaux, Bonnie L.; Cotterman, Rebecca; Knoepfler, Paul S.

    2014-01-01

    The histone variant H3.3 is involved in diverse biological processes, including development, transcriptional memory and transcriptional reprogramming, as well as diseases, including most notably malignant brain tumors. Recently, we developed a knockout mouse model for the H3f3b gene, one of two genes encoding H3.3. Here, we show that targeted disruption of H3f3b results in a number of phenotypic abnormalities, including a reduction in H3.3 histone levels, leading to male infertility, as well as abnormal sperm and testes morphology. Additionally, null germ cell populations at specific stages in spermatogenesis, in particular spermatocytes and spermatogonia, exhibited increased rates of apoptosis. Disruption of H3f3b also altered histone post-translational modifications and gene expression in the testes, with the most prominent changes occurring at genes involved in spermatogenesis. Finally, H3f3b null testes also exhibited abnormal germ cell chromatin reorganization and reduced protamine incorporation. Taken together, our studies indicate a major role for H3.3 in spermatogenesis through regulation of chromatin dynamics. PMID:25142466

  18. Dynamics of Emotion Regulation in Infants of Clinically Depressed and Nondepressed Mothers

    PubMed Central

    Manian, Nanmathi; Bornstein, Marc H.

    2010-01-01

    Background Emotional regulation (ER) has been conceptualized as an ongoing process of the individual’s emotion patterns in relation to moment-to-moment contextual demands. In contrast to traditional approaches of descriptively quantizing ER, we employed a dynamic approach to ER by examining key transitions in infants of clinically depressed and nondepressed mothers in the context of maternal still-face (SF). Methods Mothers with (n=48) and without a clinical diagnosis of depression (n=68) were seen in a modified SF paradigm with their 5-month-olds. Infant states and self-soothing behaviors were coded in 1-sec time intervals. Results Infants of nondepressed mothers used attentional regulatory strategies, whereas infants of depressed mothers used internally directed strategies of self-soothing to reduce negativity and maintain engagement with mother. Conclusions This study advances our understanding of processes underlying infant ER and points to possible mechanisms for the development of long-term maladaptive ER strategies in infants of depressed mothers. PMID:19788549

  19. Olfactory experiences dynamically regulate plasticity of dendritic spines in granule cells of Xenopus tadpoles in vivo

    PubMed Central

    Zhang, Li; Huang, Yubin; Hu, Bing

    2016-01-01

    Granule cells, rich in dendrites with densely punctated dendritic spines, are the most abundant inhibitory interneurons in the olfactory bulb. The dendritic spines of granule cells undergo remodeling during the development of the nervous system. The morphological plasticity of the spines’ response to different olfactory experiences in vivo is not fully known. In initial studies, a single granule cell in Xenopus tadpoles was labeled with GFP plasmids via cell electroporation; then, morphologic changes of the granule cell spines were visualized by in vivo confocal time-lapse imaging. With the help of long-term imaging, the total spine density, dynamics, and stability of four types of dendritic spines (mushroom, stubby, thin and filopodia) were obtained. Morphological analysis demonstrated that odor enrichment produced a remarkable increase in the spine density and stability of large mushroom spine. Then, with the help of short-term imaging, we analyzed the morphological transitions among different spines. We found that transitions between small spines (thin and filopodia) were more easily influenced by odor stimulation or olfactory deprivation. These results indicate that different olfactory experiences can regulate the morphological plasticity of different dendritic spines in the granule cell. PMID:27713557

  20. TADs as modular and dynamic units for gene regulation by hormones.

    PubMed

    Le Dily, François; Beato, Miguel

    2015-10-01

    During cell differentiation epigenetic processes permit the establishment of a cell type specific transcriptome by limiting the fraction of the genome that will be expressed. Based upon steady-state requirements and transcription factor expression, differentiated cells respond transiently to external cues by modulating the expression levels of subsets of genes. Increasing evidence demonstrates that the genome is organized non-randomly in a hierarchy of structures within the nuclear space, where chromosome territories are segmented into Topologically Associating Domains (TADs) and sub-domains. It remains poorly understood how this three-dimensional organization of the genome participates in the acquisition of a cell-specific program of gene expression. Furthermore, it is unknown whether this spatial framework influences the dynamic changes of gene expression that accompany alterations in the cell environment. In this review, we will discuss the impact of genome topology on the response of breast cancer cells to steroid hormones. We will cover steroid nuclear receptor mechanisms of action and discuss how topological organization of the genome, including segmentation into TADs, acts as a combinatorial platform to integrate signals whilst ultimately ensuring coordinate regulation of gene expression. PMID:26012375

  1. Actin dynamics tune the integrated stress response by regulating eukaryotic initiation factor 2α dephosphorylation.

    PubMed

    Chambers, Joseph E; Dalton, Lucy E; Clarke, Hanna J; Malzer, Elke; Dominicus, Caia S; Patel, Vruti; Moorhead, Greg; Ron, David; Marciniak, Stefan J

    2015-01-01

    Four stress-sensing kinases phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) to activate the integrated stress response (ISR). In animals, the ISR is antagonised by selective eIF2α phosphatases comprising a catalytic protein phosphatase 1 (PP1) subunit in complex with a PPP1R15-type regulatory subunit. An unbiased search for additional conserved components of the PPP1R15-PP1 phosphatase identified monomeric G-actin. Like PP1, G-actin associated with the functional core of PPP1R15 family members and G-actin depletion, by the marine toxin jasplakinolide, destabilised the endogenous PPP1R15A-PP1 complex. The abundance of the ternary PPP1R15-PP1-G-actin complex was responsive to global changes in the polymeric status of actin, as was its eIF2α-directed phosphatase activity, while localised G-actin depletion at sites enriched for PPP1R15 enhanced eIF2α phosphorylation and the downstream ISR. G-actin's role as a stabilizer of the PPP1R15-containing holophosphatase provides a mechanism for integrating signals regulating actin dynamics with stresses that trigger the ISR.

  2. Regulation of Mitotic Cytoskeleton Dynamics and Cytokinesis by Integrin-Linked Kinase in Retinoblastoma Cells

    PubMed Central

    Sharma, Manju; Assi, Kiran; Salh, Baljinder; Cox, Michael E.; Mills, Julia

    2014-01-01

    During cell division integrin-linked kinase (ILK) has been shown to regulate microtubule dynamics and centrosome clustering, processes involved in cell cycle progression, and malignant transformation. In this study, we examine the effects of downregulating ILK on mitotic function in human retinoblastoma cell lines. These retinal cancer cells, caused by the loss of function of two gene alleles (Rb1) that encode the retinoblastoma tumour suppressor, have elevated expression of ILK. Here we show that inhibition of ILK activity results in a concentration-dependent increase in nuclear area and multinucleated cells. Moreover, inhibition of ILK activity and expression increased the accumulation of multinucleated cells over time. In these cells, aberrant cytokinesis and karyokinesis correlate with altered mitotic spindle organization, decreased levels of cortical F-actin and centrosome de-clustering. Centrosome de-clustering, induced by ILK siRNA, was rescued in FLAG-ILK expressing Y79 cells as compared to those expressing FLAG-tag alone. Inhibition of ILK increased the proportion of cells exhibiting mitotic spindles and caused a significant G2/M arrest as early as 24 hours after exposure to QLT-0267. Live cell analysis indicate ILK downregulation causes an increase in multipolar anaphases and failed cytokinesis (bipolar and multipolar) of viable cells. These studies extend those indicating a critical function for ILK in mitotic cytoskeletal organization and describe a novel role for ILK in cytokinesis of Rb deficient cells. PMID:24911651

  3. Regulation of mitotic cytoskeleton dynamics and cytokinesis by integrin-linked kinase in retinoblastoma cells.

    PubMed

    Sikkema, William K A; Strikwerda, Arend; Sharma, Manju; Assi, Kiran; Salh, Baljinder; Cox, Michael E; Mills, Julia

    2014-01-01

    During cell division integrin-linked kinase (ILK) has been shown to regulate microtubule dynamics and centrosome clustering, processes involved in cell cycle progression, and malignant transformation. In this study, we examine the effects of downregulating ILK on mitotic function in human retinoblastoma cell lines. These retinal cancer cells, caused by the loss of function of two gene alleles (Rb1) that encode the retinoblastoma tumour suppressor, have elevated expression of ILK. Here we show that inhibition of ILK activity results in a concentration-dependent increase in nuclear area and multinucleated cells. Moreover, inhibition of ILK activity and expression increased the accumulation of multinucleated cells over time. In these cells, aberrant cytokinesis and karyokinesis correlate with altered mitotic spindle organization, decreased levels of cortical F-actin and centrosome de-clustering. Centrosome de-clustering, induced by ILK siRNA, was rescued in FLAG-ILK expressing Y79 cells as compared to those expressing FLAG-tag alone. Inhibition of ILK increased the proportion of cells exhibiting mitotic spindles and caused a significant G2/M arrest as early as 24 hours after exposure to QLT-0267. Live cell analysis indicate ILK downregulation causes an increase in multipolar anaphases and failed cytokinesis (bipolar and multipolar) of viable cells. These studies extend those indicating a critical function for ILK in mitotic cytoskeletal organization and describe a novel role for ILK in cytokinesis of Rb deficient cells. PMID:24911651

  4. Spatial heterogeneity and kinetic regulation of arsenic dynamics in mangrove sediments: the Sundarbans, Bangladesh.

    PubMed

    Sumon, Mahmud H; Hossain, Mahmud; Williams, Paul N; Mestrot, Adrien; Norton, Gareth J; Deacon, Claire M; Meharg, Andrew A

    2012-08-21

    The biogeochemistry of arsenic (As) in sediments is regulated by multiple factors such as particle size, dissolved organic matter (DOM), iron mobilization, and sediment binding characteristics, among others. Understanding the heterogeneity of factors affecting As deposition and the kinetics of mobilization, both horizontally and vertically, across sediment depositional environments was investigated in Sundarban mangrove ecosystems, Bengal Delta, Bangladesh. Sediment cores were collected from 3 different Sundarbans locations and As concentration down the profiles were found to be more associated with elevated Fe and Mn than with organic matter (OM). At one site chosen for field monitoring, sediment cores, pore and surface water, and in situ diffusive gradients in thin films (DGT) measurements (which were used to model As sediment pore-water concentrations and resupply from the solid phase) were sampled from four different subhabitats. Coarse-textured riverbank sediment porewaters were high in As, but with a limited resupply of As from the solid phase compared to fine-textured and high organic matter content forest floor sediments, where porewater As was low, but with much higher As resupply. Depositional environment (overbank verses forest floor) and biological activity (input of OM from forest biomass) considerably affected As dynamics over very short spatial distances in the mosaic of microhabitats that constitute a mangrove ecosystem.

  5. Landslides that never go catastrophic: dynamics of self-regulating earthflows along the Eel River, CA

    NASA Astrophysics Data System (ADS)

    Handwerger, A. L.; Roering, J. J.; Schmidt, D. A.

    2013-12-01

    The seasonal dynamics of earthflows are governed by complex mechanical-hydrologic interactions between landslide properties (e.g., size, topographic slope, material properties) and external forcings such as precipitation. While many studies have quantified the dynamics of individual earthflows, most have been in diverse climatic, tectonic, and lithologic settings such that a systematic comparison required to isolate these interactions is often infeasible. Here, we use satellite InSAR time series, precipitation data, and topographic data, including airborne lidar, to quantify relationships between precipitation, slide geometry, and kinematics for 10 slow-moving earthflows in the Eel River catchment, Northern California. We also apply a commonly used viscous-flow model to help interpret relationships between topographic slope and velocity. These 10 earthflows have areas from 0.16 to 3.1 km2, average topographic slopes angles from 9 to 15°, and downslope velocities from 0.2 to 1.2 m/yr. Each slide displays persistent year-round movement with distinct kinematic zones (e.g., source, transport, deposition). Consistent with the regional hydrologic patterns, the slides exhibit well-defined seasonal velocity changes indicating that they are driven by rainfall-induced changes in pore-water pressure along basal shear zones. Furthermore, each kinematic zone displays a synchronous response to rainfall, which suggests that periods of acceleration and deceleration are triggered across the entire shear zone. Since the response of these earthflows is similar in both timing and magnitude despite differences in landslide size, we suggest that these slides self-regulate to maintain a narrow range of pore-water pressures year-round, which allows for both seasonal velocity changes and persistent long-term (i.e. non-catastrophic) motion. Although dynamic patterns are consistent between slides, we find no clear correlation between the magnitude of the slope and velocity for individual

  6. Xist and Tsix Transcription Dynamics Is Regulated by the X-to-Autosome Ratio and Semistable Transcriptional States

    PubMed Central

    Loos, Friedemann; Maduro, Cheryl; Loda, Agnese; Lehmann, Johannes; Kremers, Gert-Jan; ten Berge, Derk; Grootegoed, J. Anton

    2016-01-01

    In female mammals, X chromosome inactivation (XCI) is a key process in the control of gene dosage compensation between X-linked genes and autosomes. Xist and Tsix, two overlapping antisense-transcribed noncoding genes, are central elements of the X inactivation center (Xic) regulating XCI. Xist upregulation results in the coating of the entire X chromosome by Xist RNA in cis, whereas Tsix transcription acts as a negative regulator of Xist. Here, we generated Xist and Tsix reporter mouse embryonic stem (ES) cell lines to study the genetic and dynamic regulation of these genes upon differentiation. Our results revealed mutually antagonistic roles for Tsix on Xist and vice versa and indicate the presence of semistable transcriptional states of the Xic locus predicting the outcome of XCI. These transcriptional states are instructed by the X-to-autosome ratio, directed by regulators of XCI, and can be modulated by tissue culture conditions. PMID:27528619

  7. Analysis of marker-defined HNSCC subpopulations reveals a dynamic regulation of tumor initiating properties.

    PubMed

    Bragado, Paloma; Estrada, Yeriel; Sosa, Maria Soledad; Avivar-Valderas, Alvaro; Cannan, David; Genden, Eric; Teng, Marita; Ranganathan, Aparna C; Wen, Huei-Chi; Kapoor, Avnish; Bernstein, Emily; Aguirre-Ghiso, Julio A

    2012-01-01

    Head and neck squamous carcinoma (HNSCC) tumors carry dismal long-term prognosis and the role of tumor initiating cells (TICs) in this cancer is unclear. We investigated in HNSCC xenografts whether specific tumor subpopulations contributed to tumor growth. We used a CFSE-based label retentions assay, CD49f (α6-integrin) surface levels and aldehyde dehydrogenase (ALDH) activity to profile HNSCC subpopulations. The tumorigenic potential of marker-positive and -negative subpopulations was tested in nude (Balb/c nu/nu) and NSG (NOD.Cg-Prkdc(scid) Il2rg(tm1Wjl)/SzJ) mice and chicken embryo chorioallantoic membrane (CAM) assays. Here we identified in HEp3, SQ20b and FaDu HNSCC xenografts a subpopulation of G0/G1-arrested slow-cycling CD49f(high)/ALDH1A1(high)/H3K4/K27me3(low) subpopulation (CD49f+) of tumor cells. A strikingly similar CD49f(high)/H3K27me3(low) subpopulation is also present in primary human HNSCC tumors and metastases. While only sorted CD49f(high)/ALDH(high), label retaining cells (LRC) proliferated immediately in vivo, with time the CD49f(low)/ALDH(low), non-LRC (NLRC) tumor cell subpopulations were also able to regain tumorigenic capacity; this was linked to restoration of CD49f(high)/ALDH(high), label retaining cells. In addition, CD49f is required for HEp3 cell tumorigenicity and to maintain low levels of H3K4/K27me3. CD49f+ cells also displayed reduced expression of the histone-lysine N-methyltransferase EZH2 and ERK1/2 phosphorylation. This suggests that although transiently quiescent, their unique chromatin structure is poised for rapid transcriptional activation. CD49f- cells can "reprogram" and also achieve this state eventually. We propose that in HNSCC tumors, epigenetic mechanisms likely driven by CD49f signaling dynamically regulate HNSCC xenograft phenotypic heterogeneity. This allows multiple tumor cell subpopulations to drive tumor growth suggesting that their dynamic nature renders them a "moving target" and their eradication might

  8. Analysis of Marker-Defined HNSCC Subpopulations Reveals a Dynamic Regulation of Tumor Initiating Properties

    PubMed Central

    Bragado, Paloma; Estrada, Yeriel; Sosa, Maria Soledad; Avivar-Valderas, Alvaro; Cannan, David; Genden, Eric; Teng, Marita; Ranganathan, Aparna C.; Wen, Huei-Chi; Kapoor, Avnish; Bernstein, Emily; Aguirre-Ghiso, Julio A.

    2012-01-01

    Head and neck squamous carcinoma (HNSCC) tumors carry dismal long-term prognosis and the role of tumor initiating cells (TICs) in this cancer is unclear. We investigated in HNSCC xenografts whether specific tumor subpopulations contributed to tumor growth. We used a CFSE-based label retentions assay, CD49f (α6-integrin) surface levels and aldehyde dehydrogenase (ALDH) activity to profile HNSCC subpopulations. The tumorigenic potential of marker-positive and -negative subpopulations was tested in nude (Balb/c nu/nu) and NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice and chicken embryo chorioallantoic membrane (CAM) assays. Here we identified in HEp3, SQ20b and FaDu HNSCC xenografts a subpopulation of G0/G1-arrested slow-cycling CD49fhigh/ALDH1A1high/H3K4/K27me3low subpopulation (CD49f+) of tumor cells. A strikingly similar CD49fhigh/H3K27me3low subpopulation is also present in primary human HNSCC tumors and metastases. While only sorted CD49fhigh/ALDHhigh, label retaining cells (LRC) proliferated immediately in vivo, with time the CD49flow/ALDHlow, non-LRC (NLRC) tumor cell subpopulations were also able to regain tumorigenic capacity; this was linked to restoration of CD49fhigh/ALDHhigh, label retaining cells. In addition, CD49f is required for HEp3 cell tumorigenicity and to maintain low levels of H3K4/K27me3. CD49f+ cells also displayed reduced expression of the histone-lysine N-methyltransferase EZH2 and ERK1/2phosphorylation. This suggests that although transiently quiescent, their unique chromatin structure is poised for rapid transcriptional activation. CD49f− cells can “reprogram” and also achieve this state eventually. We propose that in HNSCC tumors, epigenetic mechanisms likely driven by CD49f signaling dynamically regulate HNSCC xenograft phenotypic heterogeneity. This allows multiple tumor cell subpopulations to drive tumor growth suggesting that their dynamic nature renders them a “moving target” and their eradication might require more

  9. Integrin-linked kinase regulates oligodendrocyte cytoskeleton, growth cone, and adhesion dynamics.

    PubMed

    Michalski, John-Paul; Cummings, Sarah E; O'Meara, Ryan W; Kothary, Rashmi

    2016-02-01

    Integrin-linked kinase (ILK), a focal adhesion protein, brokers the link between cytoskeleton, cell membrane, and extracellular environment. Here, we demonstrate a role for ILK in laminin-2-mediated adhesion in primary murine oligodendrocytes (OLs) - with ILK loss leading to severe defects in process branching and outgrowth. These defects were partially recovered when the ILK-depleted OLs were instead grown on the non-integrin-activating substrate poly-l-lysine. Intriguingly, ILK loss on the neutral poly-l-lysine substrate led to swelling at the tips of OL processes, which we identified as enlarged growth cones. Employing the bloated ILK-depleted growth cones as template, we demonstrate the appearance of distinct cytoskeletal domains within OL growth cones bearing classic neuronal growth cone architecture. Further, microtubule organization was severely perturbed following ILK loss, with centripetal microtubule looping and failure to bundle occurring in a laminin-2-independent manner. Together, our work highlights differences in specific aspects of OL biology as driven by laminin-2-dependent or independent ILK governed mechanisms. We also reinforce the idea of OLs as growth cone bearing cells and describe the neuronal-like cytoskeleton therein. Finally, we demonstrate a role for ILK in OL growth cone maturation through microtubule regulation, the loss of which translates to decreased process length and myelin production capacity. We describe herein how different substrates fundamentally alter the oligodendrocyte's response to loss of integrin-linked kinase (ILK). On laminin-2 (Ln-2), ILK-depleted oligodendrocytes appear stunted and malformed, while on the non-integrin-activating substrate PLL branching and membrane formation are restored. We also reinforce the idea of oligodendrocytes as growth cone-bearing cells, detailing the growth cone's cytoskeletal architecture. Strikingly, loss of ILK on poly-l-lysine leads to growth cone swelling, the structure's size and

  10. Dynamic Regulation of Cell Volume and Extracellular ATP of Human Erythrocytes

    PubMed Central

    Leal Denis, M. Florencia; Alvarez, H. Ariel; Lauri, Natalia; Alvarez, Cora L.; Chara, Osvaldo; Schwarzbaum, Pablo J.

    2016-01-01

    Introduction The peptide mastoparan 7 (MST7) triggered in human erythrocytes (rbcs) the release of ATP and swelling. Since swelling is a well-known inducer of ATP release, and extracellular (ATPe), interacting with P (purinergic) receptors, can affect cell volume (Vr), we explored the dynamic regulation between Vr and ATPe. Methods and Treatments We made a quantitative assessment of MST7-dependent kinetics of Vr and of [ATPe], both in the absence and presence of blockers of ATP efflux, swelling and P receptors. Results In rbcs 10 μM MST7 promoted acute, strongly correlated changes in [ATPe] and Vr. Whereas MST7 induced increases of 10% in Vr and 190 nM in [ATPe], blocking swelling in a hyperosmotic medium + MST7 reduced [ATPe] by 40%. Pre-incubation of rbcs with 10 μM of either carbenoxolone or probenecid, two inhibitors of the ATP conduit pannexin 1, reduced [ATPe] by 40–50% and swelling by 40–60%, while in the presence of 80 U/mL apyrase, an ATPe scavenger, cell swelling was prevented. While exposure to 10 μM NF110, a blocker of ATP-P2X receptors mediating sodium influx, reduced [ATPe] by 48%, and swelling by 80%, incubation of cells in sodium free medium reduced swelling by 92%. Analysis and Discussion Results were analyzed by means of a mathematical model where ATPe kinetics and Vr kinetics were mutually regulated. Model dependent fit to experimental data showed that, upon MST7 exposure, ATP efflux required a fast 1960-fold increase of ATP permeability, mediated by two kinetically different conduits, both of which were activated by swelling and inactivated by time. Both experimental and theoretical results suggest that, following MST7 exposure, ATP is released via two conduits, one of which is mediated by pannexin 1. The accumulated ATPe activates P2X receptors, followed by sodium influx, resulting in cell swelling, which in turn further activates ATP release. Thus swelling and P2X receptors constitute essential components of a positive feedback loop

  11. Counteracting H3K4 methylation modulators Set1 and Jhd2 co-regulate chromatin dynamics and gene transcription

    PubMed Central

    Ramakrishnan, Saravanan; Pokhrel, Srijana; Palani, Sowmiya; Pflueger, Christian; Parnell, Timothy J.; Cairns, Bradley R.; Bhaskara, Srividya; Chandrasekharan, Mahesh B.

    2016-01-01

    Histone H3K4 methylation is connected to gene transcription from yeast to humans, but its mechanistic roles in transcription and chromatin dynamics remain poorly understood. We investigated the functions for Set1 and Jhd2, the sole H3K4 methyltransferase and H3K4 demethylase, respectively, in S. cerevisiae. Here, we show that Set1 and Jhd2 predominantly co-regulate genome-wide transcription. We find combined activities of Set1 and Jhd2 via H3K4 methylation contribute to positive or negative transcriptional regulation. Providing mechanistic insights, our data reveal that Set1 and Jhd2 together control nucleosomal turnover and occupancy during transcriptional co-regulation. Moreover, we find a genome-wide co-regulation of chromatin structure by Set1 and Jhd2 at different groups of transcriptionally active or inactive genes and at different regions within yeast genes. Overall, our study puts forth a model wherein combined actions of Set1 and Jhd2 via modulating H3K4 methylation−demethylation together control chromatin dynamics during various facets of transcriptional regulation. PMID:27325136

  12. Proinflammatory cytokines differentially regulate adipocyte mitochondrial metabolism, oxidative stress, and dynamics

    PubMed Central

    Hahn, Wendy S.; Kuzmicic, Jovan; Burrill, Joel S.; Donoghue, Margaret A.; Foncea, Rocio; Jensen, Michael D.; Lavandero, Sergio; Arriaga, Edgar A.

    2014-01-01

    Proinflammatory cytokines differentially regulate adipocyte mitochondrial metabolism, oxidative stress, and dynamics. Macrophage infiltration of adipose tissue and the chronic low-grade production of inflammatory cytokines have been mechanistically linked to the development of insulin resistance, the forerunner of type 2 diabetes mellitus. In this study, we evaluated the chronic effects of TNFα, IL-6, and IL-1β on adipocyte mitochondrial metabolism and morphology using the 3T3-L1 model cell system. TNFα treatment of cultured adipocytes led to significant changes in mitochondrial bioenergetics, including increased proton leak, decreased ΔΨm, increased basal respiration, and decreased ATP turnover. In contrast, although IL-6 and IL-1β decreased maximal respiratory capacity, they had no effect on ΔΨm and varied effects on ATP turnover, proton leak, or basal respiration. Only TNFα treatment of 3T3-L1 cells led to an increase in oxidative stress (as measured by superoxide anion production and protein carbonylation) and C16 ceramide synthesis. Treatment of 3T3-L1 adipocytes with cytokines led to decreased mRNA expression of key transcription factors and control proteins implicated in mitochondrial biogenesis, including PGC-1α and eNOS as well as deceased expression of COX IV and Cyt C. Whereas each cytokine led to effects on expression of mitochondrial markers, TNFα exclusively led to mitochondrial fragmentation and decreased the total level of OPA1 while increasing OPA1 cleavage, without expression of levels of mitofusin 2, DRP-1, or mitofilin being affected. In summary, these results indicate that inflammatory cytokines have unique and specialized effects on adipocyte metabolism, but each leads to decreased mitochondrial function and a reprogramming of fat cell biology. PMID:24595304

  13. Dynamic Trk and G Protein Signalings Regulate Dopaminergic Neurodifferentiation in Human Trophoblast Stem Cells

    PubMed Central

    Lee, Tony Tung-Yin; Tsai, Cheng-Fang; Chen, Hung-Sheng; Lai, Feng-Jie; Yokoyama, Kazunari K.; Hsieh, Tsung-Hsun; Wu, Ruey-Meei; Lee, Jau-nan

    2015-01-01

    Understanding the mechanisms in the generation of neural stem cells from pluripotent stem cells is a fundamental step towards successful management of neurodegenerative diseases in translational medicine. Albeit all-trans retinoic acid (RA) has been associated with axon outgrowth and nerve regeneration, the maintenance of differentiated neurons, the association with degenerative disease like Parkinson's disease, and its regulatory molecular mechanism from pluripotent stem cells to neural stem cells remain fragmented. We have previously reported that RA is capable of differentiation of human trophoblast stem cells to dopamine (DA) committed progenitor cells. Intracranial implantation of such neural progenitor cells into the 6-OHDA-lesioned substantia nigra pars compacta successfully regenerates dopaminergic neurons and integrity of the nigrostriatal pathway, ameliorating the behavioral deficits in the Parkinson’s disease rat model. Here, we demonstrated a dynamic molecular network in systematic analysis by addressing spatiotemporal molecular expression, intracellular protein-protein interaction and inhibition, imaging study, and genetic expression to explore the regulatory mechanisms of RA induction in the differentiation of human trophoblast stem cells to DA committed progenitor cells. We focused on the tyrosine receptor kinase (Trk), G proteins, canonical Wnt2B/β-catenin, genomic and non-genomic RA signaling transductions with Tyrosine hydroxylase (TH) gene expression as the differentiation endpoint. We found that at the early stage, integration of TrkA and G protein signalings aims for axonogenesis and morphogenesis, involving the novel RXRα/Gαq/11 and RARβ/Gβ signaling pathways. While at the later stage, five distinct signaling pathways together with epigenetic histone modifications emerged to regulate expression of TH, a precursor of dopamine. RA induction generated DA committed progenitor cells in one day. Our results provided substantial mechanistic

  14. Dynamic Trk and G Protein Signalings Regulate Dopaminergic Neurodifferentiation in Human Trophoblast Stem Cells.

    PubMed

    Tsai, Eing-Mei; Wang, Yu-Chih; Lee, Tony Tung-Yin; Tsai, Cheng-Fang; Chen, Hung-Sheng; Lai, Feng-Jie; Yokoyama, Kazunari K; Hsieh, Tsung-Hsun; Wu, Ruey-Meei; Lee, Jau-Nan

    2015-01-01

    Understanding the mechanisms in the generation of neural stem cells from pluripotent stem cells is a fundamental step towards successful management of neurodegenerative diseases in translational medicine. Albeit all-trans retinoic acid (RA) has been associated with axon outgrowth and nerve regeneration, the maintenance of differentiated neurons, the association with degenerative disease like Parkinson's disease, and its regulatory molecular mechanism from pluripotent stem cells to neural stem cells remain fragmented. We have previously reported that RA is capable of differentiation of human trophoblast stem cells to dopamine (DA) committed progenitor cells. Intracranial implantation of such neural progenitor cells into the 6-OHDA-lesioned substantia nigra pars compacta successfully regenerates dopaminergic neurons and integrity of the nigrostriatal pathway, ameliorating the behavioral deficits in the Parkinson's disease rat model. Here, we demonstrated a dynamic molecular network in systematic analysis by addressing spatiotemporal molecular expression, intracellular protein-protein interaction and inhibition, imaging study, and genetic expression to explore the regulatory mechanisms of RA induction in the differentiation of human trophoblast stem cells to DA committed progenitor cells. We focused on the tyrosine receptor kinase (Trk), G proteins, canonical Wnt2B/β-catenin, genomic and non-genomic RA signaling transductions with Tyrosine hydroxylase (TH) gene expression as the differentiation endpoint. We found that at the early stage, integration of TrkA and G protein signalings aims for axonogenesis and morphogenesis, involving the novel RXRα/Gαq/11 and RARβ/Gβ signaling pathways. While at the later stage, five distinct signaling pathways together with epigenetic histone modifications emerged to regulate expression of TH, a precursor of dopamine. RA induction generated DA committed progenitor cells in one day. Our results provided substantial mechanistic

  15. Enhancement of stress resilience through Hdac6-mediated regulation of glucocorticoid receptor chaperone dynamics

    PubMed Central

    Jochems, Jeanine; Teegarden, Sarah L; Chen, Yong; Boulden, Janette; Challis, Collin; Ben-Dor, Gabriel A; Kim, Sangwon F; Berton, Olivier

    2014-01-01

    Background Acetylation of Hsp90 regulates downstream hormone signaling via the glucocorticoid receptor (GR), but the role of this molecular mechanism in stress homeostasis remains poorly understood. We tested whether acetylation of Hsp90 in the brain predicts and modulates the behavioral sequelae of a mouse model of social stress. Methods Mice subjected to chronic social defeat stress (CSDS) were stratified into resilient and vulnerable subpopulations. HPA axis function was probed using a DEX/CRF test. Hsp90 acetylation, Hsp90-GR interactions and GR translocation were measured in the dorsal raphe nucleus (DRN). To manipulate Hsp90 acetylation, we pharmacologically inhibited Hdac6, a known deacetylase of Hsp90 or overexpressed a point-mutant that mimics the hyperacetylated state of Hsp90 at lysine K294 Results Lower acetylated Hsp90, higher GR-Hsp90 association and enhanced GR translocation were observed in DRN of vulnerable mice after CSDS. Administration of ACY-738, an Hdac6-selective inhibitor, led to Hsp90 hyperacetylation in brain and in neuronal culture. In cell-based assays, ACY-738 increased the relative association of Hsp90 with FKBP51 versus FKBP52 and inhibited hormone-induced GR translocation. This effect was replicated by overexpressing the acetylation-mimic point-mutant of Hsp90. In vivo, ACY-738 promoted resilience to CSDS and serotonin-selective viral overexpression of the acetylation-mimic mutant of Hsp90 in raphe neurons reproduced the behaviroral effect of ACY-738. Conclusions Hyperacetylation of Hsp90 is a predictor and causal molecular determinant of stress resilience in mice. Brain-penetrant Hdac6 inhibitors increase Hsp90 acetylation and modulate GR chaperone dynamics offering a promising strategy to curtail deleterious socioaffective effects of stress and glucocorticoids. PMID:25442004

  16. Crumbs is an essential regulator of cytoskeletal dynamics and cell-cell adhesion during dorsal closure in Drosophila

    PubMed Central

    Flores-Benitez, David; Knust, Elisabeth

    2015-01-01

    The evolutionarily conserved Crumbs protein is required for epithelial polarity and morphogenesis. Here we identify a novel role of Crumbs as a negative regulator of actomyosin dynamics during dorsal closure in the Drosophila embryo. Embryos carrying a mutation in the FERM (protein 4.1/ezrin/radixin/moesin) domain-binding motif of Crumbs die due to an overactive actomyosin network associated with disrupted adherens junctions. This phenotype is restricted to the amnioserosa and does not affect other embryonic epithelia. This function of Crumbs requires DMoesin, the Rho1-GTPase, class-I p21-activated kinases and the Arp2/3 complex. Data presented here point to a critical role of Crumbs in regulating actomyosin dynamics, cell junctions and morphogenesis. DOI: http://dx.doi.org/10.7554/eLife.07398.001 PMID:26544546

  17. Crumbs is an essential regulator of cytoskeletal dynamics and cell-cell adhesion during dorsal closure in Drosophila.

    PubMed

    Flores-Benitez, David; Knust, Elisabeth

    2015-11-06

    The evolutionarily conserved Crumbs protein is required for epithelial polarity and morphogenesis. Here we identify a novel role of Crumbs as a negative regulator of actomyosin dynamics during dorsal closure in the Drosophila embryo. Embryos carrying a mutation in the FERM (protein 4.1/ezrin/radixin/moesin) domain-binding motif of Crumbs die due to an overactive actomyosin network associated with disrupted adherens junctions. This phenotype is restricted to the amnioserosa and does not affect other embryonic epithelia. This function of Crumbs requires DMoesin, the Rho1-GTPase, class-I p21-activated kinases and the Arp2/3 complex. Data presented here point to a critical role of Crumbs in regulating actomyosin dynamics, cell junctions and morphogenesis.

  18. Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing

    NASA Astrophysics Data System (ADS)

    Cui, Jiaxi; Daniel, Daniel; Grinthal, Alison; Lin, Kaixiang; Aizenberg, Joanna

    2015-08-01

    Approaches for regulated fluid secretion, which typically rely on fluid encapsulation and release from a shelled compartment, do not usually allow a fine continuous modulation of secretion, and can be difficult to adapt for monitoring or function-integration purposes. Here, we report self-regulated, self-reporting secretion systems consisting of liquid-storage compartments in a supramolecular polymer-gel matrix with a thin liquid layer on top, and demonstrate that dynamic liquid exchange between the compartments, matrix and surface layer allows repeated, responsive self-lubrication of the surface and cooperative healing of the matrix. Depletion of the surface liquid or local material damage induces secretion of the stored liquid via a dynamic feedback between polymer crosslinking, droplet shrinkage and liquid transport that can be read out through changes in the system's optical transparency. We foresee diverse applications in fluid delivery, wetting and adhesion control, and material self-repair.

  19. Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing.

    PubMed

    Cui, Jiaxi; Daniel, Daniel; Grinthal, Alison; Lin, Kaixiang; Aizenberg, Joanna

    2015-08-01

    Approaches for regulated fluid secretion, which typically rely on fluid encapsulation and release from a shelled compartment, do not usually allow a fine continuous modulation of secretion, and can be difficult to adapt for monitoring or function-integration purposes. Here, we report self-regulated, self-reporting secretion systems consisting of liquid-storage compartments in a supramolecular polymer-gel matrix with a thin liquid layer on top, and demonstrate that dynamic liquid exchange between the compartments, matrix and surface layer allows repeated, responsive self-lubrication of the surface and cooperative healing of the matrix. Depletion of the surface liquid or local material damage induces secretion of the stored liquid via a dynamic feedback between polymer crosslinking, droplet shrinkage and liquid transport that can be read out through changes in the system's optical transparency. We foresee diverse applications in fluid delivery, wetting and adhesion control, and material self-repair. PMID:26099112

  20. VLN2 Regulates Plant Architecture by Affecting Microfilament Dynamics and Polar Auxin Transport in Rice[OPEN

    PubMed Central

    Wu, Shengyang; Xie, Yurong; Guo, Xiuping; Sheng, Peike; Wang, Juan; Wu, Chuanyin; Wang, Haiyang; Wan, Jianmin

    2015-01-01

    As a fundamental and dynamic cytoskeleton network, microfilaments (MFs) are regulated by diverse actin binding proteins (ABPs). Villins are one type of ABPs belonging to the villin/gelsolin superfamily, and their function is poorly understood in monocotyledonous plants. Here, we report the isolation and characterization of a rice (Oryza sativa) mutant defective in VILLIN2 (VLN2), which exhibits malformed organs, including twisted roots and shoots at the seedling stage. Cellular examination revealed that the twisted phenotype of the vln2 mutant is mainly caused by asymmetrical expansion of cells on the opposite sides of an organ. VLN2 is preferentially expressed in growing tissues, consistent with a role in regulating cell expansion in developing organs. Biochemically, VLN2 exhibits conserved actin filament bundling, severing and capping activities in vitro, with bundling and stabilizing activity being confirmed in vivo. In line with these findings, the vln2 mutant plants exhibit a more dynamic actin cytoskeleton network than the wild type. We show that vln2 mutant plants exhibit a hypersensitive gravitropic response, faster recycling of PIN2 (an auxin efflux carrier), and altered auxin distribution. Together, our results demonstrate that VLN2 plays an important role in regulating plant architecture by modulating MF dynamics, recycling of PIN2, and polar auxin transport. PMID:26486445

  1. Rationale and design of the Feeding Dynamic Intervention (FDI) study for self-regulation of energy intake in preschoolers.

    PubMed

    Eneli, Ihuoma U; Tylka, Tracy L; Hummel, Jessica; Watowicz, Rosanna P; Perez, Susana A; Kaciroti, Niko; Lumeng, Julie C

    2015-03-01

    In 2011, the Institute of Medicine Early Childhood Prevention Policies Report identified feeding dynamics as an important focus area for childhood obesity prevention and treatment. Feeding dynamics includes two central components: (1) caregiver feeding practices (i.e., determining how, when, where, and what they feed their children) and (2) child eating behaviors (i.e., determining how much and what to eat from what food caregivers have provided). Although there has been great interest in overweight and obesity prevention and treatment in young children, they have not focused comprehensively on feeding dynamics. Interventions on feeding dynamics that reduce caregivers' excessive controlling and restrictive feeding practices and encourage the development of children's self-regulation of energy intake may hold promise for tackling childhood obesity especially in the young child but currently lack an evidence base. This manuscript describes the rationale and design for a randomized controlled trial designed to compare a group of mothers and their 3-to 5-year old children who received an intervention focused primarily on feeding dynamics called the Feeding Dynamic Intervention (FDI) with a Wait-list Control Group (WLC). The primary aim of the study will be to investigate the efficacy of the FDI for decreasing Eating in the Absence of Hunger (EAH) and improving energy compensation (COMPX). The secondary aim will be to examine the effect of the FDI in comparison to the WLC on maternal self-reported feeding practices and child satiety responsiveness.

  2. Rationale and Design of the Feeding Dynamic Intervention (FDI) Study for Self-Regulation of Energy Intake in Preschoolers

    PubMed Central

    Eneli, Ihuoma U.; Tylka, Tracy L.; Hummel, Jessica; Watowicz, Rosanna P.; Perez, Susana A.; Kaciroti, Niko; Lumeng, Julie C.

    2015-01-01

    In 2011, the Institute of Medicine Early Childhood Prevention Policies Report identified feeding dynamics as an important focus area for childhood obesity prevention and treatment. Feeding dynamics include two central components: (1) caregiver feeding practices (i.e., determining how, when, where, and what they feed their children) and (2) child eating behaviors (i.e., determining how much and what to eat from what food caregivers have provided). Although there has been great interest in overweight and obesity prevention and treatment in young children, they have not focused comprehensively on feeding dynamics. Interventions on feeding dynamics that reduce caregivers’ excessive controlling and restrictive feeding practices and encourage the development of children’s self-regulation of energy intake may hold promise for tackling childhood obesity especially in the young child but currently lack an evidence base. This manuscript describes the rationale and design for a randomized controlled trial designed to compare a group of mothers and their 3-to 5-year old children who received an intervention focused primarily on feeding dynamics called the Feeding Dynamic Intervention (FDI) with a Wait-list Control Group (WLC). The primary aim of the study will be to investigate the efficacy of the FDI for decreasing Eating in the Absence of Hunger (EAH) and improving energy compensation (COMPX). The secondary aim will be to examine the effect of the FDI in comparison to the WLC on maternal self-reported feeding practices and child satiety responsiveness. PMID:25616192

  3. A kinetic model identifies phosphorylated estrogen receptor-α (ERα) as a critical regulator of ERα dynamics in breast cancer.

    PubMed

    Tian, Dan; Solodin, Natalia M; Rajbhandari, Prashant; Bjorklund, Kelsi; Alarid, Elaine T; Kreeger, Pamela K

    2015-05-01

    Receptor levels are a key mechanism by which cells regulate their response to stimuli. The levels of estrogen receptor-α (ERα) impact breast cancer cell proliferation and are used to predict prognosis and sensitivity to endocrine therapy. Despite the clinical application of this information, it remains unclear how different cellular processes interact as a system to control ERα levels. To address this question, experimental results from the ERα-positive human breast cancer cell line (MCF-7) treated with 17-β-estradiol or vehicle control were used to develop a mass-action kinetic model of ERα regulation. Model analysis determined that RNA dynamics could be captured through phosphorylated ERα (pERα)-dependent feedback on transcription. Experimental analysis confirmed that pERα-S118 binds to the estrogen receptor-1 (ESR1) promoter, suggesting that pERα can feedback on ESR1 transcription. Protein dynamics required a separate mechanism in which the degradation rate for pERα was 8.3-fold higher than nonphosphorylated ERα. Using a model with both mechanisms, the root mean square error was 0.078. Sensitivity analysis of this combined model determined that while multiple mechanisms regulate ERα levels, pERα-dependent feedback elicited the strongest effect. Combined, our computational and experimental results identify phosphorylation of ERα as a critical decision point that coordinates the cellular circuitry to regulate ERα levels.

  4. Bottom-up regulation of malaria population dynamics in mice co-infected with lung-migratory nematodes.

    PubMed

    Griffiths, Emily C; Fairlie-Clarke, Karen; Allen, Judith E; Metcalf, C Jessica E; Graham, Andrea L

    2015-12-01

    When and how populations are regulated by bottom up vs. top down processes, and how those processes are affected by co-occurring species, are poorly characterised across much of ecology. We are especially interested in the community ecology of parasites that must share a host. Here, we quantify how resources and immunity affect parasite propagation in experiments in near-replicate 'mesocosms'' - i.e. mice infected with malaria (Plasmodium chabaudi) and nematodes (Nippostrongylus brasiliensis). Nematodes suppressed immune responses against malaria, and yet malaria populations were smaller in co-infected hosts. Further analyses of within-host epidemiology revealed that nematode co-infection altered malaria propagation by suppressing target cell availability. This is the first demonstration that bottom-up resource regulation may have earlier and stronger effects than top-down immune mechanisms on within-host community dynamics. Our findings demonstrate the potential power of experimental ecology to disentangle mechanisms of population regulation in complex communities. PMID:26477454

  5. Projection-Specific Dynamic Regulation of Inhibition in Amygdala Micro-Circuits.

    PubMed

    Vogel, Elisabeth; Krabbe, Sabine; Gründemann, Jan; Wamsteeker Cusulin, Jaclyn I; Lüthi, Andreas

    2016-08-01

    Cannabinoid receptor type 1 (CB1R)-expressing CCK interneurons are key regulators of cortical circuits. Here we report that retrograde endocannabinoid signaling and CB1R-mediated regulation of inhibitory synaptic transmission onto basal amygdala principal neurons strongly depend on principal neuron projection target. Projection-specific asymmetries in the regulation of local inhibitory micro-circuits may contribute to the selective activation of distinct amygdala output pathways during behavioral changes. PMID:27497223

  6. Microtubule dynamics in vitro are regulated by the tubulin isotype composition.

    PubMed Central

    Panda, D; Miller, H P; Banerjee, A; Ludueña, R F; Wilson, L

    1994-01-01

    The growing and shortening dynamics of individual bovine brain microtubules at their plus ends at steady state in vitro, assembled from isotypically pure alpha beta II, alpha beta III, or alpha beta IV tubulin dimers, were determined by differential interference contrast video microscopy. Microtubules assembled from the purified alpha beta III isotype were considerably more dynamic than microtubules made from the alpha beta II or alpha beta IV isotypes or from unfractionated phosphocellulose-purified tubulin. Furthermore, increasing the proportion of the alpha beta II isotype in a mixture of the alpha beta II and alpha beta III isotypes suppressed microtubule dynamics, demonstrating that microtubule dynamics can be influenced by the tubulin isotype composition. The data support the hypothesis that cells might determine the dynamic properties and functions of its microtubules in part by altering the relative amounts of the different tubulin isotypes. Images PMID:7972064

  7. Evolution-development congruence in pattern formation dynamics: Bifurcations in gene expression and regulation of networks structures.

    PubMed

    Kohsokabe, Takahiro; Kaneko, Kunihiko

    2016-01-01

    Search for possible relationships between phylogeny and ontogeny is important in evolutionary-developmental biology. Here we uncover such relationships by numerical evolution and unveil their origin in terms of dynamical systems theory. By representing developmental dynamics of spatially located cells with gene expression dynamics with cell-to-cell interaction under external morphogen gradient, gene regulation networks are evolved under mutation and selection with the fitness to approach a prescribed spatial pattern of expressed genes. For most numerical evolution experiments, evolution of pattern over generations and development of pattern by an evolved network exhibit remarkable congruence. Both in the evolution and development pattern changes consist of several epochs where stripes are formed in a short time, while for other temporal regimes, pattern hardly changes. In evolution, these quasi-stationary regimes are generations needed to hit relevant mutations, while in development, they are due to some gene expression that varies slowly and controls the pattern change. The morphogenesis is regulated by combinations of feedback or feedforward regulations, where the upstream feedforward network reads the external morphogen gradient, and generates a pattern used as a boundary condition for the later patterns. The ordering from up to downstream is common in evolution and development, while the successive epochal changes in development and evolution are represented as common bifurcations in dynamical-systems theory, which lead to the evolution-development congruence. Mechanism of exceptional violation of the congruence is also unveiled. Our results provide a new look on developmental stages, punctuated equilibrium, developmental bottlenecks, and evolutionary acquisition of novelty in morphogenesis.

  8. The Armc10/SVH gene: genome context, regulation of mitochondrial dynamics and protection against Aβ-induced mitochondrial fragmentation.

    PubMed

    Serrat, R; Mirra, S; Figueiro-Silva, J; Navas-Pérez, E; Quevedo, M; López-Doménech, G; Podlesniy, P; Ulloa, F; Garcia-Fernàndez, J; Trullas, R; Soriano, E

    2014-04-10

    Mitochondrial function and dynamics are essential for neurotransmission, neural function and neuronal viability. Recently, we showed that the eutherian-specific Armcx gene cluster (Armcx1-6 genes), located in the X chromosome, encodes for a new family of proteins that localise to mitochondria, regulating mitochondrial trafficking. The Armcx gene cluster evolved by retrotransposition of the Armc10 gene mRNA, which is present in all vertebrates and is considered to be the ancestor gene. Here we investigate the genomic organisation, mitochondrial functions and putative neuroprotective role of the Armc10 ancestor gene. The genomic context of the Armc10 locus shows considerable syntenic conservation among vertebrates, and sequence comparisons and CHIP-data suggest the presence of at least three conserved enhancers. We also show that the Armc10 protein localises to mitochondria and that it is highly expressed in the brain. Furthermore, we show that Armc10 levels regulate mitochondrial trafficking in neurons, but not mitochondrial aggregation, by controlling the number of moving mitochondria. We further demonstrate that the Armc10 protein interacts with the KIF5/Miro1-2/Trak2 trafficking complex. Finally, we show that overexpression of Armc10 in neurons prevents Aβ-induced mitochondrial fission and neuronal death. Our data suggest both conserved and differential roles of the Armc10/Armcx gene family in regulating mitochondrial dynamics in neurons, and underscore a protective effect of the Armc10 gene against Aβ-induced toxicity. Overall, our findings support a further degree of regulation of mitochondrial dynamics in the brain of more evolved mammals.

  9. Transposable element dynamics and PIWI regulation impacts lncRNA and gene expression diversity in Drosophila ovarian cell cultures

    PubMed Central

    Sytnikova, Yuliya A.; Rahman, Reazur; Chirn, Gung-wei; Clark, Josef P.

    2014-01-01

    Piwi proteins and Piwi-interacting RNAs (piRNAs) repress transposable elements (TEs) from mobilizing in gonadal cells. To determine the spectrum of piRNA-regulated targets that may extend beyond TEs, we conducted a genome-wide survey for transcripts associated with PIWI and for transcripts affected by PIWI knockdown in Drosophila ovarian somatic sheet (OSS) cells, a follicle cell line expressing the Piwi pathway. Despite the immense sequence diversity among OSS cell piRNAs, our analysis indicates that TE transcripts are the major transcripts associated with and directly regulated by PIWI. However, several coding genes were indirectly regulated by PIWI via an adjacent de novo TE insertion that generated a nascent TE transcript. Interestingly, we noticed that PIWI-regulated genes in OSS cells greatly differed from genes affected in a related follicle cell culture, ovarian somatic cells (OSCs). Therefore, we characterized the distinct genomic TE insertions across four OSS and OSC lines and discovered dynamic TE landscapes in gonadal cultures that were defined by a subset of active TEs. Particular de novo TEs appeared to stimulate the expression of novel candidate long noncoding RNAs (lncRNAs) in a cell lineage-specific manner, and some of these TE-associated lncRNAs were associated with PIWI and overlapped PIWI-regulated genes. Our analyses of OSCs and OSS cells demonstrate that despite having a Piwi pathway to suppress endogenous mobile elements, gonadal cell TE landscapes can still dramatically change and create transcriptome diversity. PMID:25267525

  10. Transposable element dynamics and PIWI regulation impacts lncRNA and gene expression diversity in Drosophila ovarian cell cultures.

    PubMed

    Sytnikova, Yuliya A; Rahman, Reazur; Chirn, Gung-Wei; Clark, Josef P; Lau, Nelson C

    2014-12-01

    Piwi proteins and Piwi-interacting RNAs (piRNAs) repress transposable elements (TEs) from mobilizing in gonadal cells. To determine the spectrum of piRNA-regulated targets that may extend beyond TEs, we conducted a genome-wide survey for transcripts associated with PIWI and for transcripts affected by PIWI knockdown in Drosophila ovarian somatic sheet (OSS) cells, a follicle cell line expressing the Piwi pathway. Despite the immense sequence diversity among OSS cell piRNAs, our analysis indicates that TE transcripts are the major transcripts associated with and directly regulated by PIWI. However, several coding genes were indirectly regulated by PIWI via an adjacent de novo TE insertion that generated a nascent TE transcript. Interestingly, we noticed that PIWI-regulated genes in OSS cells greatly differed from genes affected in a related follicle cell culture, ovarian somatic cells (OSCs). Therefore, we characterized the distinct genomic TE insertions across four OSS and OSC lines and discovered dynamic TE landscapes in gonadal cultures that were defined by a subset of active TEs. Particular de novo TEs appeared to stimulate the expression of novel candidate long noncoding RNAs (lncRNAs) in a cell lineage-specific manner, and some of these TE-associated lncRNAs were associated with PIWI and overlapped PIWI-regulated genes. Our analyses of OSCs and OSS cells demonstrate that despite having a Piwi pathway to suppress endogenous mobile elements, gonadal cell TE landscapes can still dramatically change and create transcriptome diversity.

  11. Small GTPase RhoA regulates cytoskeleton dynamics during porcine oocyte maturation and early embryo development.

    PubMed

    Zhang, Yu; Duan, Xing; Cao, Rui; Liu, Hong-Lin; Cui, Xiang-Shun; Kim, Nam-Hyung; Rui, Rong; Sun, Shao-Chen

    2014-01-01

    Mammalian oocyte maturation is distinguished by asymmetric division that is regulated primarily by cytoskeleton, including microtubules and microfilaments. Small Rho GTPase RhoA is a key regulator of cytoskeletal organization which regulates cell polarity, migration, and division. In this study, we investigated the roles of RhoA in mammalian oocyte meiosis and early embryo cleavage. (1) Disrupting RhoA activity or knock down the expression of RhoA caused the failure of polar body emission. This may have been due to decreased actin assembly and subsequent spindle migration defects. The involvement of RhoA in this process may have been though its regulation of actin nucleators ROCK, p-Cofilin, and ARP2 expression. (2) In addition, spindle morphology was also disrupted and p-MAPK expression decreased in RhoA inhibited or RhoA KD oocytes, which indicated that RhoA also regulated MAPK phosphorylation for spindle formation. (3) Porcine embryo development was also suppressed by inhibiting RhoA activity. Two nuclei were observed in one blastomere, and actin expression was reduced, which indicated that RhoA regulated actin-based cytokinesis of porcine embryo. Thus, our results demonstrated indispensable roles for RhoA in regulating porcine oocyte meiosis and cleavage during early embryo development.

  12. Poly(ADP-ribose) polymers regulate DNA topoisomerase I (Top1) nuclear dynamics and camptothecin sensitivity in living cells

    PubMed Central

    Das, Subhendu K.; Rehman, Ishita; Ghosh, Arijit; Sengupta, Souvik; Majumdar, Papiya; Jana, Biman; Das, Benu Brata

    2016-01-01

    Topoisomerase 1 (Top1) is essential for removing the DNA supercoiling generated during replication and transcription. Anticancer drugs like camptothecin (CPT) and its clinical derivatives exert their cytotoxicity by reversibly trapping Top1 in covalent complexes on the DNA (Top1cc). Poly(ADP-ribose) polymerase (PARP) catalyses the addition of ADP-ribose polymers (PAR) onto itself and Top1. PARP inhibitors enhance the cytotoxicity of CPT in the clinical trials. However, the molecular mechanism by which PARylation regulates Top1 nuclear dynamics is not fully understood. Using live-cell imaging of enhanced green fluorescence tagged-human Top1, we show that PARP inhibitors (Veliparib, ABT-888) delocalize Top1 from the nucleolus to the nucleoplasm, which is independent of Top1–PARP1 interaction. Using fluorescence recovery after photobleaching and subsequent fitting of the data employing kinetic modelling we demonstrate that ABT-888 markedly increase CPT-induced bound/immobile fraction of Top1 (Top1cc) across the nuclear genome, suggesting Top1-PARylation counteracts CPT-induced stabilization of Top1cc. We further show Trp205 and Asn722 of Top1 are critical for subnuclear dynamics. Top1 mutant (N722S) was restricted to the nucleolus in the presence of CPT due to its deficiency in the accumulation of CPT-induced Top1-PARylation and Top1cc formation. This work identifies ADP-ribose polymers as key determinant for regulating Top1 subnuclear dynamics. PMID:27466387

  13. Poly(ADP-ribose) polymers regulate DNA topoisomerase I (Top1) nuclear dynamics and camptothecin sensitivity in living cells.

    PubMed

    Das, Subhendu K; Rehman, Ishita; Ghosh, Arijit; Sengupta, Souvik; Majumdar, Papiya; Jana, Biman; Das, Benu Brata

    2016-09-30

    Topoisomerase 1 (Top1) is essential for removing the DNA supercoiling generated during replication and transcription. Anticancer drugs like camptothecin (CPT) and its clinical derivatives exert their cytotoxicity by reversibly trapping Top1 in covalent complexes on the DNA (Top1cc). Poly(ADP-ribose) polymerase (PARP) catalyses the addition of ADP-ribose polymers (PAR) onto itself and Top1. PARP inhibitors enhance the cytotoxicity of CPT in the clinical trials. However, the molecular mechanism by which PARylation regulates Top1 nuclear dynamics is not fully understood. Using live-cell imaging of enhanced green fluorescence tagged-human Top1, we show that PARP inhibitors (Veliparib, ABT-888) delocalize Top1 from the nucleolus to the nucleoplasm, which is independent of Top1-PARP1 interaction. Using fluorescence recovery after photobleaching and subsequent fitting of the data employing kinetic modelling we demonstrate that ABT-888 markedly increase CPT-induced bound/immobile fraction of Top1 (Top1cc) across the nuclear genome, suggesting Top1-PARylation counteracts CPT-induced stabilization of Top1cc. We further show Trp205 and Asn722 of Top1 are critical for subnuclear dynamics. Top1 mutant (N722S) was restricted to the nucleolus in the presence of CPT due to its deficiency in the accumulation of CPT-induced Top1-PARylation and Top1cc formation. This work identifies ADP-ribose polymers as key determinant for regulating Top1 subnuclear dynamics.

  14. Interaction of CDK5RAP2 with EB1 to track growing microtubule tips and to regulate microtubule dynamics.

    PubMed

    Fong, Ka-Wing; Hau, Shiu-Yeung; Kho, Yik-Shing; Jia, Yue; He, Lisheng; Qi, Robert Z

    2009-08-01

    Mutations in cdk5rap2 are linked to autosomal recessive primary microcephaly, and attention has been paid to its function at centrosomes. In this report, we demonstrate that CDK5RAP2 localizes to microtubules and concentrates at the distal tips in addition to centrosomal localization. CDK5RAP2 interacts directly with EB1, a prototypic member of microtubule plus-end tracking proteins, and contains the basic and Ser-rich motif responsible for EB1 binding. The EB1-binding motif is conserved in the CDK5RAP2 sequences of chimpanzee, bovine, and dog but not in those of rat and mouse, suggesting a function gained during the evolution of mammals. The mutation of the Ile/Leu-Pro dipeptide within the motif abolishes EB1 interaction and plus-end attachment. In agreement with the mutational analysis, suppression of EB1 expression inhibits microtubule tip-tracking of CDK5RAP2. We have also found that the CDK5RAP2-EB1 complex regulates microtubule dynamics and stability. CDK5RAP2 depletion by RNA interference impacts the dynamic behaviors of microtubules. The CDK5RAP2-EB1 complex induces microtubule bundling and acetylation when expressed in cell cultures and stimulates microtubule assembly and bundle formation in vitro. Collectively, these results show that CDK5RAP2 targets growing microtubule tips in association with EB1 to regulate microtubule dynamics. PMID:19553473

  15. De novo transcriptome analysis reveals insights into dynamic homeostasis regulation of somatic embryogenesis in upland cotton (G. hirsutum L.).

    PubMed

    Cheng, Wen-Han; Zhu, Hua-Guo; Tian, Wen-Gang; Zhu, Shou-Hong; Xiong, Xian-Peng; Sun, Yu-Qiang; Zhu, Qian-Hao; Sun, Jie

    2016-10-01

    Plant regeneration via somatic embryogenesis (SE) is the key step for genetic improvement of cotton (Gossypium hirsutum L.) through genetic engineering mediated by Agrobacteria, but the molecular mechanisms underlying SE in cotton is still unclear. Here, RNA-Sequencing was used to analyze the genes expressed during SE and their expression dynamics using RNAs isolated from non-embryogenic callus (NEC), embryogenic callus (EC) and somatic embryos (SEs). A total of 101, 670 unigenes were de novo assembled. The genes differentially expressed (DEGs) amongst NEC, EC and SEs were identified, annotated and classified. More DEGs were found between SEs and EC than between EC and NEC. A significant number of DEGs were related to hormone homeostasis, stress and ROS responses, and metabolism of polyamines. To confirm the expression dynamics of selected DEGs involved in various pathways, experiments were set up to investigate the effects of hormones (Indole-3-butytric acid, IBA; Kinetin, KT), polyamines, H2O2 and stresses on SE. Our results showed that exogenous application of IBA and KT positively regulated the development of EC and SEs, and that polyamines and H2O2 promoted the conversion of EC into SEs. Furthermore, we found that low and moderate stress is beneficial for proliferation of EC and SEs formation. Together, our global analysis of transcriptomic dynamics reveals that hormone homeostasis, polyamines, and stress response synergistically regulating SE in cotton. PMID:27511192

  16. Enabled Negatively Regulates Diaphanous-Driven Actin Dynamics In Vitro and In Vivo

    PubMed Central

    Bilancia, Colleen G.; Winkelman, Jonathan D.; Tsygankov, Denis; Nowotarski, Stephanie H.; Sees, Jennifer A.; Comber, Kate; Evans, Iwan; Lakhani, Vinal; Wood, Will; Elston, Timothy C.; Kovar, David R.; Peifer, Mark

    2014-01-01

    Summary Actin regulators facilitate cell migration by controlling cell protrusion architecture and dynamics. As the behavior of individual actin regulators becomes clear, we must address why cells require multiple regulators with similar functions and how they cooperate to create diverse protrusions. We characterized Diaphanous (Dia) and Enabled (Ena) as a model, using complementary approaches: cell culture, biophysical analysis, and Drosophila morphogenesis. We found that Dia and Ena have distinct biochemical properties that contribute to the different protrusion morphologies each induces. Dia is a more processive, faster elongator, paralleling the long, stable filopodia it induces in vivo, while Ena promotes filopodia with more dynamic changes in number, length, and lifetime. Acting together, Ena and Dia induce protrusions distinct from those induced by either alone, with Ena reducing Dia-driven protrusion length and number. Consistent with this, EnaEVH1 binds Dia directly and inhibits DiaFH1FH2-mediated nucleation in vitro. Finally, Ena rescues hemocyte migration defects caused by activated Dia. PMID:24576424

  17. An integrated mechanism of pediatric pseudotumor cerebri syndrome: evidence of bioenergetic and hormonal regulation of cerebrospinal fluid dynamics

    PubMed Central

    Sheldon, Claire A.; Kwon, Young Joon; Liu, Grant T.; McCormack, Shana E.

    2015-01-01

    Pseudotumor cerebri syndrome (PTCS) is defined by the presence of elevated intracranial pressure (ICP) in the setting of normal brain parenchyma and cerebrospinal fluid (CSF). Headache, vision changes, and papilledema are common presenting features. Up to 10% of appropriately treated patients may experience permanent visual loss. The mechanism(s) underlying PTCS is unknown. PTCS occurs in association with a variety of conditions, including kidney disease, obesity, and adrenal insufficiency, suggesting endocrine and/or metabolic derangements may occur. Recent studies suggest that fluid and electrolyte balance in renal epithelia is regulated by a complex interaction of metabolic and hormonal factors; these cells share many of the same features as the choroid plexus cells in the central nervous system (CNS) responsible for regulation of CSF dynamics. Thus, we posit that similar factors may influence CSF dynamics in both types of fluid-sensitive tissues. Specifically, we hypothesize that, in patients with PTCS, mitochondrial metabolites (glutamate, succinate) and steroid hormones (cortisol, aldosterone) regulate CSF production and/or absorption. In this integrated mechanism review, we consider the clinical and molecular evidence for each metabolite and hormone in turn. We illustrate how related intracellular signaling cascades may converge in the choroid plexus, drawing on evidence from functionally similar tissues. PMID:25420176

  18. Coordinate Regulation of G Protein Signaling via Dynamic Interactions of Receptor and GAP

    PubMed Central

    Turcotte, Marc; Tang, Wei; Ross, Elliott M.

    2008-01-01

    Signal output from receptor–G-protein–effector modules is a dynamic function of the nucleotide exchange activity of the receptor, the GTPase-accelerating activity of GTPase-activating proteins (GAPs), and their interactions. GAPs may inhibit steady-state signaling but may also accelerate deactivation upon removal of stimulus without significantly inhibiting output when the receptor is active. Further, some effectors (e.g., phospholipase C-β) are themselves GAPs, and it is unclear how such effectors can be stimulated by G proteins at the same time as they accelerate G protein deactivation. The multiple combinations of protein–protein associations and interacting regulatory effects that allow such complex behaviors in this system do not permit the usual simplifying assumptions of traditional enzyme kinetics and are uniquely subject to systems-level analysis. We developed a kinetic model for G protein signaling that permits analysis of both interactive and independent G protein binding and regulation by receptor and GAP. We evaluated parameters of the model (all forward and reverse rate constants) by global least-squares fitting to a diverse set of steady-state GTPase measurements in an m1 muscarinic receptor–Gq–phospholipase C-β1 module in which GTPase activities were varied by ∼104-fold. We provide multiple tests to validate the fitted parameter set, which is consistent with results from the few previous pre-steady-state kinetic measurements. Results indicate that (1) GAP potentiates the GDP/GTP exchange activity of the receptor, an activity never before reported; (2) exchange activity of the receptor is biased toward replacement of GDP by GTP; (3) receptor and GAP bind G protein with negative cooperativity when G protein is bound to either GTP or GDP, promoting rapid GAP binding and dissociation; (4) GAP indirectly stabilizes the continuous binding of receptor to G protein during steady-state GTPase hydrolysis, thus further enhancing receptor activity

  19. Dynamic curvature regulation accounts for the symmetric and asymmetric beats of Chlamydomonas flagella.

    PubMed

    Sartori, Pablo; Geyer, Veikko F; Scholich, Andre; Jülicher, Frank; Howard, Jonathon

    2016-01-01

    Cilia and flagella are model systems for studying how mechanical forces control morphology. The periodic bending motion of cilia and flagella is thought to arise from mechanical feedback: dynein motors generate sliding forces that bend the flagellum, and bending leads to deformations and stresses, which feed back and regulate the motors. Three alternative feedback mechanisms have been proposed: regulation by the sliding forces, regulation by the curvature of the flagellum, and regulation by the normal forces that deform the cross-section of the flagellum. In this work, we combined theoretical and experimental approaches to show that the curvature control mechanism is the one that accords best with the bending waveforms of Chlamydomonas flagella. We make the surprising prediction that the motors respond to the time derivative of curvature, rather than curvature itself, hinting at an adaptation mechanism controlling the flagellar beat. PMID:27166516

  20. Dynamic curvature regulation accounts for the symmetric and asymmetric beats of Chlamydomonas flagella

    PubMed Central

    Sartori, Pablo; Geyer, Veikko F; Scholich, Andre; Jülicher, Frank; Howard, Jonathon

    2016-01-01

    Cilia and flagella are model systems for studying how mechanical forces control morphology. The periodic bending motion of cilia and flagella is thought to arise from mechanical feedback: dynein motors generate sliding forces that bend the flagellum, and bending leads to deformations and stresses, which feed back and regulate the motors. Three alternative feedback mechanisms have been proposed: regulation by the sliding forces, regulation by the curvature of the flagellum, and regulation by the normal forces that deform the cross-section of the flagellum. In this work, we combined theoretical and experimental approaches to show that the curvature control mechanism is the one that accords best with the bending waveforms of Chlamydomonas flagella. We make the surprising prediction that the motors respond to the time derivative of curvature, rather than curvature itself, hinting at an adaptation mechanism controlling the flagellar beat. DOI: http://dx.doi.org/10.7554/eLife.13258.001 PMID:27166516

  1. Dynamic phosphorylation of Histone Deacetylase 1 by Aurora kinases during mitosis regulates zebrafish embryos development.

    PubMed

    Loponte, Sara; Segré, Chiara V; Senese, Silvia; Miccolo, Claudia; Santaguida, Stefano; Deflorian, Gianluca; Citro, Simona; Mattoscio, Domenico; Pisati, Federica; Moser, Mirjam A; Visintin, Rosella; Seiser, Christian; Chiocca, Susanna

    2016-01-01

    Histone deacetylases (HDACs) catalyze the removal of acetyl molecules from histone and non-histone substrates playing important roles in chromatin remodeling and control of gene expression. Class I HDAC1 is a critical regulator of cell cycle progression, cellular proliferation and differentiation during development; it is also regulated by many post-translational modifications (PTMs). Herein we characterize a new mitosis-specific phosphorylation of HDAC1 driven by Aurora kinases A and B. We show that this phosphorylation affects HDAC1 enzymatic activity and it is critical for the maintenance of a proper proliferative and developmental plan in a complex organism. Notably, we find that Aurora-dependent phosphorylation of HDAC1 regulates histone acetylation by modulating the expression of genes directly involved in the developing zebrafish central nervous system. Our data represent a step towards the comprehension of HDAC1 regulation by its PTM code, with important implications in unravelling its roles both in physiology and pathology.

  2. Dynamic phosphorylation of Histone Deacetylase 1 by Aurora kinases during mitosis regulates zebrafish embryos development

    PubMed Central

    Loponte, Sara; Segré, Chiara V.; Senese, Silvia; Miccolo, Claudia; Santaguida, Stefano; Deflorian, Gianluca; Citro, Simona; Mattoscio, Domenico; Pisati, Federica; Moser, Mirjam A.; Visintin, Rosella; Seiser, Christian; Chiocca, Susanna

    2016-01-01

    Histone deacetylases (HDACs) catalyze the removal of acetyl molecules from histone and non-histone substrates playing important roles in chromatin remodeling and control of gene expression. Class I HDAC1 is a critical regulator of cell cycle progression, cellular proliferation and differentiation during development; it is also regulated by many post-translational modifications (PTMs). Herein we characterize a new mitosis-specific phosphorylation of HDAC1 driven by Aurora kinases A and B. We show that this phosphorylation affects HDAC1 enzymatic activity and it is critical for the maintenance of a proper proliferative and developmental plan in a complex organism. Notably, we find that Aurora-dependent phosphorylation of HDAC1 regulates histone acetylation by modulating the expression of genes directly involved in the developing zebrafish central nervous system. Our data represent a step towards the comprehension of HDAC1 regulation by its PTM code, with important implications in unravelling its roles both in physiology and pathology. PMID:27458029

  3. Pdlim7 Regulates Arf6-Dependent Actin Dynamics and Is Required for Platelet-Mediated Thrombosis in Mice

    PubMed Central

    Miller, Kaylie P.; Krcmery, Jennifer; Simon, Hans-Georg

    2016-01-01

    Upon vessel injury, platelets become activated and rapidly reorganize their actin cytoskeleton to adhere to the site of endothelial damage, triggering the formation of a fibrin-rich plug to prevent further blood loss. Inactivation of Pdlim7 provides the new perspective that regulation of actin cytoskeletal changes in platelets is dependent on the encoded PDZ-LIM protein. Loss-of-function of Pdlim7 triggers hypercoagulopathy and causes significant perinatal lethality in mice. Our in vivo and in vitro studies reveal that Pdlim7 is dynamically distributed along actin fibers, and lack of Pdlim7 leads to a marked inability to rearrange the actin cytoskeleton. Specifically, the absence of Pdlim7 prevents platelets from bundling actin fibers into a concentric ring that defines the round spread shape of activated platelets. Similarly, in mouse embryonic fibroblasts, loss of Pdlim7 abolishes the formation of stress fibers needed to adopt the typical elongated fibroblast shape. In addition to revealing a fundamental cell biological role in actin cytoskeletal organization, we also demonstrate a function of Pdlim7 in regulating the cycling between the GTP/GDP-bound states of Arf6. The small GTPase Arf6 is an essential factor required for actin dynamics, cytoskeletal rearrangements, and platelet activation. Consistent with our findings of significantly elevated initial F-actin ratios and subsequent morphological aberrations, loss of Pdlim7 causes a shift in balance towards an increased Arf6-GTP level in resting platelets. These findings identify a new Pdlim7-Arf6 axis controlling actin dynamics and implicate Pdlim7 as a primary endogenous regulator of platelet-dependent hemostasis. PMID:27792740

  4. Evolution‐development congruence in pattern formation dynamics: Bifurcations in gene expression and regulation of networks structures

    PubMed Central

    Kohsokabe, Takahiro

    2016-01-01

    ABSTRACT Search for possible relationships between phylogeny and ontogeny is important in evolutionary‐developmental biology. Here we uncover such relationships by numerical evolution and unveil their origin in terms of dynamical systems theory. By representing developmental dynamics of spatially located cells with gene expression dynamics with cell‐to‐cell interaction under external morphogen gradient, gene regulation networks are evolved under mutation and selection with the fitness to approach a prescribed spatial pattern of expressed genes. For most numerical evolution experiments, evolution of pattern over generations and development of pattern by an evolved network exhibit remarkable congruence. Both in the evolution and development pattern changes consist of several epochs where stripes are formed in a short time, while for other temporal regimes, pattern hardly changes. In evolution, these quasi‐stationary regimes are generations needed to hit relevant mutations, while in development, they are due to some gene expression that varies slowly and controls the pattern change. The morphogenesis is regulated by combinations of feedback or feedforward regulations, where the upstream feedforward network reads the external morphogen gradient, and generates a pattern used as a boundary condition for the later patterns. The ordering from up to downstream is common in evolution and development, while the successive epochal changes in development and evolution are represented as common bifurcations in dynamical‐systems theory, which lead to the evolution‐development congruence. Mechanism of exceptional violation of the congruence is also unveiled. Our results provide a new look on developmental stages, punctuated equilibrium, developmental bottlenecks, and evolutionary acquisition of novelty in morphogenesis. J. Exp. Zool. (Mol. Dev. Evol.) 326B:61–84, 2016. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution

  5. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, Daniel W.; Lange, Arnold C.

    1995-01-01

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  6. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOEpatents

    Shimer, D.W.; Lange, A.C.

    1995-05-23

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  7. Emotion regulation and the temporal dynamics of emotions: Effects of cognitive reappraisal and expressive suppression on emotional inertia.

    PubMed

    Koval, Peter; Butler, Emily A; Hollenstein, Tom; Lanteigne, Dianna; Kuppens, Peter

    2015-01-01

    The tendency for emotions to be predictable over time, labelled emotional inertia, has been linked to low well-being and is thought to reflect impaired emotion regulation. However, almost no studies have examined how emotion regulation relates to emotional inertia. We examined the effects of cognitive reappraisal and expressive suppression on the inertia of behavioural, subjective and physiological measures of emotion. In Study 1 (N = 111), trait suppression was associated with higher inertia of negative behaviours. We replicated this finding experimentally in Study 2 (N = 186). Furthermore, in Study 2, instructed suppressors and reappraisers both showed higher inertia of positive behaviours, and reappraisers displayed higher inertia of heart rate. Neither suppression nor reappraisal were associated with the inertia of subjective feelings in either study. Thus, the effects of suppression and reappraisal on the temporal dynamics of emotions depend on the valence and emotional response component in question.

  8. Dynamic subnuclear relocalization of WRKY40, a potential new mechanism of ABA-dependent transcription factor regulation.

    PubMed

    Geilen, Katja; Böhmer, Maik

    2015-01-01

    The phytohormone ABA plays a major role during plant development, e.g. seed maturation and seed germination, and during adaptation to abiotic stresses like stomatal aperture regulation. The three closely related WRKY transcription factors WRKY18, WRKY40 and WRKY60 function in ABA signal transduction. We recently demonstrated that WRKY18 and WRKY40 but not WRKY60 localize to nuclear bodies in A. thaliana mesophyll protoplasts. WRKY40, a negative regulator of ABA-dependent inhibition of seed germination, relocalizes from PNBs to the nucleoplasm in the presence of ABA in a dynamic and phosphorylation-dependent manner. We propose that subnuclear relocalization of WRKY40 might constitute a new regulatory mechanism of ABA-dependent modulation of transcription factor activity. PMID:26479147

  9. KCC2 regulates actin dynamics in dendritic spines via interaction with β-PIX.

    PubMed

    Llano, Olaya; Smirnov, Sergey; Soni, Shetal; Golubtsov, Andrey; Guillemin, Isabelle; Hotulainen, Pirta; Medina, Igor; Nothwang, Hans Gerd; Rivera, Claudio; Ludwig, Anastasia

    2015-06-01

    Chloride extrusion in mature neurons is largely mediated by the neuron-specific potassium-chloride cotransporter KCC2. In addition, independently of its chloride transport function, KCC2 regulates the development and morphology of dendritic spines through structural interactions with the actin cytoskeleton. The mechanism of this effect remains largely unknown. In this paper, we show a novel pathway for KCC2-mediated regulation of the actin cytoskeleton in neurons. We found that KCC2, through interaction with the b isoform of Rac/Cdc42 guanine nucleotide exchange factor β-PIX, regulates the activity of Rac1 GTPase and the phosphorylation of one of the major actin-regulating proteins, cofilin-1. KCC2-deficient neurons had abnormally high levels of phosphorylated cofilin-1. Consistently, dendritic spines of these neurons exhibited a large pool of stable actin, resulting in reduced spine motility and diminished density of functional synapses. In conclusion, we describe a novel signaling pathway that couples KCC2 to the cytoskeleton and regulates the formation of glutamatergic synapses. PMID:26056138

  10. The Drosophila effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB

    PubMed Central

    DeVorkin, Lindsay; Go, Nancy Erro; Hou, Ying-Chen Claire; Moradian, Annie; Morin, Gregg B.

    2014-01-01

    Increasing evidence reveals that a subset of proteins participates in both the autophagy and apoptosis pathways, and this intersection is important in normal physiological contexts and in pathological settings. In this paper, we show that the Drosophila effector caspase, Drosophila caspase 1 (Dcp-1), localizes within mitochondria and regulates mitochondrial morphology and autophagic flux. Loss of Dcp-1 led to mitochondrial elongation, increased levels of the mitochondrial adenine nucleotide translocase stress-sensitive B (SesB), increased adenosine triphosphate (ATP), and a reduction in autophagic flux. Moreover, we find that SesB suppresses autophagic flux during midoogenesis, identifying a novel negative regulator of autophagy. Reduced SesB activity or depletion of ATP by oligomycin A could rescue the autophagic defect in Dcp-1 loss-of-function flies, demonstrating that Dcp-1 promotes autophagy by negatively regulating SesB and ATP levels. Furthermore, we find that pro–Dcp-1 interacts with SesB in a nonproteolytic manner to regulate its stability. These data reveal a new mitochondrial-associated molecular link between nonapoptotic caspase function and autophagy regulation in vivo. PMID:24862573

  11. The Drosophila effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB.

    PubMed

    DeVorkin, Lindsay; Go, Nancy Erro; Hou, Ying-Chen Claire; Moradian, Annie; Morin, Gregg B; Gorski, Sharon M

    2014-05-26

    Increasing evidence reveals that a subset of proteins participates in both the autophagy and apoptosis pathways, and this intersection is important in normal physiological contexts and in pathological settings. In this paper, we show that the Drosophila effector caspase, Drosophila caspase 1 (Dcp-1), localizes within mitochondria and regulates mitochondrial morphology and autophagic flux. Loss of Dcp-1 led to mitochondrial elongation, increased levels of the mitochondrial adenine nucleotide translocase stress-sensitive B (SesB), increased adenosine triphosphate (ATP), and a reduction in autophagic flux. Moreover, we find that SesB suppresses autophagic flux during midoogenesis, identifying a novel negative regulator of autophagy. Reduced SesB activity or depletion of ATP by oligomycin A could rescue the autophagic defect in Dcp-1 loss-of-function flies, demonstrating that Dcp-1 promotes autophagy by negatively regulating SesB and ATP levels. Furthermore, we find that pro-Dcp-1 interacts with SesB in a nonproteolytic manner to regulate its stability. These data reveal a new mitochondrial-associated molecular link between nonapoptotic caspase function and autophagy regulation in vivo.

  12. KCC2 regulates actin dynamics in dendritic spines via interaction with β-PIX

    PubMed Central

    Llano, Olaya; Smirnov, Sergey; Soni, Shetal; Golubtsov, Andrey; Guillemin, Isabelle; Hotulainen, Pirta; Medina, Igor; Nothwang, Hans Gerd

    2015-01-01

    Chloride extrusion in mature neurons is largely mediated by the neuron-specific potassium-chloride cotransporter KCC2. In addition, independently of its chloride transport function, KCC2 regulates the development and morphology of dendritic spines through structural interactions with the actin cytoskeleton. The mechanism of this effect remains largely unknown. In this paper, we show a novel pathway for KCC2-mediated regulation of the actin cytoskeleton in neurons. We found that KCC2, through interaction with the b isoform of Rac/Cdc42 guanine nucleotide exchange factor β-PIX, regulates the activity of Rac1 GTPase and the phosphorylation of one of the major actin-regulating proteins, cofilin-1. KCC2-deficient neurons had abnormally high levels of phosphorylated cofilin-1. Consistently, dendritic spines of these neurons exhibited a large pool of stable actin, resulting in reduced spine motility and diminished density of functional synapses. In conclusion, we describe a novel signaling pathway that couples KCC2 to the cytoskeleton and regulates the formation of glutamatergic synapses. PMID:26056138

  13. SY 17-1 DYNAMIC REGULATION OF REDOX REGULATING FACTOR APE1/REF-1 ON THE OXIDATIVE STRESS AND VASCULAR INFLAMMATION.

    PubMed

    Jeon, Byeong Hwa

    2016-09-01

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein that plays a central role in the cellular response to DNA damage and redox regulation against oxidative stress. APE1/Ref-1 is essential for cellular survival and embryonic lethal in knockout mouse models. Heterozygous APE1/Ref-1 mice showed impaired endothelium-dependent vasorelaxation, reduced vascular NO levels, and are hypertensive. APE1/Ref-1 reduces intracellular reactive oxygen species production by negatively regulating the activity of the NADPH oxidase. APE1/Ref-1 is predominantly localized in the nucleus; however, its subcellular localization is dynamically regulated. Recently, it was shown that APE1/Ref-1 is secreted in response to hyperacetylation at specific lysine residues. We investigated the functions of extracellular APE1/Ref-1 with respect to leading anti-inflammatory signaling in TNF-α-stimulated endothelial cells in response to acetylation. Trichostatin A (TSA), an inhibitor of histone deacetylase, considerably suppressed vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-stimulated endothelial cells. During TSA-mediated acetylation in culture, a time-dependent increase in secreted APE1/Ref-1 was confirmed. Recombinant human APE1/Ref-1 with reducing activity induced a conformational change in TNFR1 by thiol-disulfide exchange. Following treatment with the neutralizing anti-APE1/Ref-1 antibody, inflammatory signals via the binding of TNF-α to TNFR1 were remarkably recovered. Furthermore, rhAPE1/Ref-1 inhibited IL-1β-induced VCAM-1 expression in endothelial cells, and it inhibited iNOS or COX-2 expression in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. These results strongly indicate that anti-inflammatory effects of secreted APE1/Ref-1 and its property of secreted APE1/Ref-1 may be useful as a therapeutic biomolecule in cardiovascular disease. PMID:27643268

  14. Setd1a and NURF mediate chromatin dynamics and gene regulation during erythroid lineage commitment and differentiation.

    PubMed

    Li, Ying; Schulz, Vincent P; Deng, Changwang; Li, Guangyao; Shen, Yong; Tusi, Betsabeh K; Ma, Gina; Stees, Jared; Qiu, Yi; Steiner, Laurie A; Zhou, Lei; Zhao, Keji; Bungert, Jörg; Gallagher, Patrick G; Huang, Suming

    2016-09-01

    The modulation of chromatin structure is a key step in transcription regulation in mammalian cells and eventually determines lineage commitment and differentiation. USF1/2, Setd1a and NURF complexes interact to regulate chromatin architecture in erythropoiesis, but the mechanistic basis for this regulation is hitherto unknown. Here we showed that Setd1a and NURF complexes bind to promoters to control chromatin structural alterations and gene activation in a cell context dependent manner. In human primary erythroid cells USF1/2, H3K4me3 and the NURF complex were significantly co-enriched at transcription start sites of erythroid genes, and their binding was associated with promoter/enhancer accessibility that resulted from nucleosome repositioning. Mice deficient for Setd1a, an H3K4 trimethylase, in the erythroid compartment exhibited reduced Ter119/CD71 positive erythroblasts, peripheral blood RBCs and hemoglobin levels. Loss of Setd1a led to a reduction of promoter-associated H3K4 methylation, inhibition of gene transcription and blockade of erythroid differentiation. This was associated with alterations in NURF complex occupancy at erythroid gene promoters and reduced chromatin accessibility. Setd1a deficiency caused decreased associations between enhancer and promoter looped interactions as well as reduced expression of erythroid genes such as the adult β-globin gene. These data indicate that Setd1a and NURF complexes are specifically targeted to and coordinately regulate erythroid promoter chromatin dynamics during erythroid lineage differentiation. PMID:27141965

  15. Setd1a and NURF mediate chromatin dynamics and gene regulation during erythroid lineage commitment and differentiation

    PubMed Central

    Li, Ying; Schulz, Vincent P.; Deng, Changwang; Li, Guangyao; Shen, Yong; Tusi, Betsabeh K.; Ma, Gina; Stees, Jared; Qiu, Yi; Steiner, Laurie A.; Zhou, Lei; Zhao, Keji; Bungert, Jörg; Gallagher, Patrick G.; Huang, Suming

    2016-01-01

    The modulation of chromatin structure is a key step in transcription regulation in mammalian cells and eventually determines lineage commitment and differentiation. USF1/2, Setd1a and NURF complexes interact to regulate chromatin architecture in erythropoiesis, but the mechanistic basis for this regulation is hitherto unknown. Here we showed that Setd1a and NURF complexes bind to promoters to control chromatin structural alterations and gene activation in a cell context dependent manner. In human primary erythroid cells USF1/2, H3K4me3 and the NURF complex were significantly co-enriched at transcription start sites of erythroid genes, and their binding was associated with promoter/enhancer accessibility that resulted from nucleosome repositioning. Mice deficient for Setd1a, an H3K4 trimethylase, in the erythroid compartment exhibited reduced Ter119/CD71 positive erythroblasts, peripheral blood RBCs and hemoglobin levels. Loss of Setd1a led to a reduction of promoter-associated H3K4 methylation, inhibition of gene transcription and blockade of erythroid differentiation. This was associated with alterations in NURF complex occupancy at erythroid gene promoters and reduced chromatin accessibility. Setd1a deficiency caused decreased associations between enhancer and promoter looped interactions as well as reduced expression of erythroid genes such as the adult β-globin gene. These data indicate that Setd1a and NURF complexes are specifically targeted to and coordinately regulate erythroid promoter chromatin dynamics during erythroid lineage differentiation. PMID:27141965

  16. Dynamics of chest wall volume regulation during constant work rate exercise in patients with chronic obstructive pulmonary disease

    PubMed Central

    Takara, L.S.; Cunha, T.M.; Barbosa, P.; Rodrigues, M.K.; Oliveira, M.F.; Nery, L.E.; Neder, J.A.

    2012-01-01

    This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(VCW) = rib cage (VRC) + abdomen (VAB)] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) VCW increased in relation to resting values. There was a noticeable heterogeneity in the patterns of VCW regulation as EEVCW increased non-linearly in 17/30 “hyperinflators” and decreased in 13/30 “non-hyperinflators” (P < 0.05). EEVAB decreased slightly in 8 of the “hyperinflators”, thereby reducing and slowing the rate of increase in end-inspiratory (EI) VCW (P < 0.05). In contrast, decreases in EEVCW in the “non-hyperinflators” were due to the combination of stable EEVRC with marked reductions in EEVAB. These patients showed lower EIVCW and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIVCW regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment. PMID:23250012

  17. Dynamics of re-constitution of the human nuclear proteome after cell division is regulated by NLS-adjacent phosphorylation

    PubMed Central

    Róna, Gergely; Borsos, Máté; Ellis, Jonathan J; Mehdi, Ahmed M; Christie, Mary; Környei, Zsuzsanna; Neubrandt, Máté; Tóth, Judit; Bozóky, Zoltán; Buday, László; Madarász, Emília; Bodén, Mikael; Kobe, Bostjan; Vértessy, Beáta G

    2014-01-01

    Phosphorylation by the cyclin-dependent kinase 1 (Cdk1) adjacent to nuclear localization signals (NLSs) is an important mechanism of regulation of nucleocytoplasmic transport. However, no systematic survey has yet been performed in human cells to analyze this regulatory process, and the corresponding cell-cycle dynamics have not yet been investigated. Here, we focused on the human proteome and found that numerous proteins, previously not identified in this context, are associated with Cdk1-dependent phosphorylation sites adjacent to their NLSs. Interestingly, these proteins are involved in key regulatory events of DNA repair, epigenetics, or RNA editing and splicing. This finding indicates that cell-cycle dependent events of genome editing and gene expression profiling may be controlled by nucleocytoplasmic trafficking. For in-depth investigations, we selected a number of these proteins and analyzed how point mutations, expected to modify the phosphorylation ability of the NLS segments, perturb nucleocytoplasmic localization. In each case, we found that mutations mimicking hyper-phosphorylation abolish nuclear import processes. To understand the mechanism underlying these phenomena, we performed a video microscopy-based kinetic analysis to obtain information on cell-cycle dynamics on a model protein, dUTPase. We show that the NLS-adjacent phosphorylation by Cdk1 of human dUTPase, an enzyme essential for genomic integrity, results in dynamic cell cycle-dependent distribution of the protein. Non-phosphorylatable mutants have drastically altered protein re-import characteristics into the nucleus during the G1 phase. Our results suggest a dynamic Cdk1-driven mechanism of regulation of the nuclear proteome composition during the cell cycle. PMID:25483092

  18. Role of the hydrological cycle in regulating the planetary climate system of a simple nonlinear dynamical model

    NASA Astrophysics Data System (ADS)

    Nordstrom, K. M.; Gupta, V. K.; Chase, T. N.

    2005-07-01

    We present the construction of a dynamic area fraction model (DAFM), representing a new class of models for an earth-like planet. The model presented here has no spatial dimensions, but contains coupled parameterizations for all the major components of the hydrological cycle involving liquid, solid and vapor phases. We investigate the nature of feedback processes with this model in regulating Earth's climate as a highly nonlinear coupled system. The model includes solar radiation, evapotranspiration from dynamically competing trees and grasses, an ocean, an ice cap, precipitation, dynamic clouds, and a static carbon greenhouse effect. This model therefore shares some of the characteristics of an Earth System Model of Intermediate complexity. We perform two experiments with this model to determine the potential effects of positive and negative feedbacks due to a dynamic hydrological cycle, and due to the relative distribution of trees and grasses, in regulating global mean temperature. In the first experiment, we vary the intensity of insolation on the model's surface both with and without an active (fully coupled) water cycle. In the second, we test the strength of feedbacks with biota in a fully coupled model by varying the optimal growing temperature for our two plant species (trees and grasses). We find that the negative feedbacks associated with the water cycle are far more powerful than those associated with the biota, but that the biota still play a significant role in shaping the model climate. third experiment, we vary the heat and moisture transport coefficient in an attempt to represent changing atmospheric circulations.

  19. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast.

    PubMed

    Miao, Yansong; Han, Xuemei; Zheng, Liangzhen; Xie, Ying; Mu, Yuguang; Yates, John R; Drubin, David G

    2016-01-01

    Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin-Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism.

  20. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast.

    PubMed

    Miao, Yansong; Han, Xuemei; Zheng, Liangzhen; Xie, Ying; Mu, Yuguang; Yates, John R; Drubin, David G

    2016-01-01

    Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin-Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism. PMID:27068241

  1. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast

    PubMed Central

    Miao, Yansong; Han, Xuemei; Zheng, Liangzhen; Xie, Ying; Mu, Yuguang; Yates, John R.; Drubin, David G.

    2016-01-01

    Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin–Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism. PMID:27068241

  2. Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications.

    PubMed

    Licht, Konstantin; Jantsch, Michael F

    2016-04-11

    Advances in next-generation sequencing and mass spectrometry have revealed widespread messenger RNA modifications and RNA editing, with dramatic effects on mammalian transcriptomes. Factors introducing, deleting, or interpreting specific modifications have been identified, and analogous with epigenetic terminology, have been designated "writers," "erasers," and "readers." Such modifications in the transcriptome are referred to as epitranscriptomic changes and represent a fascinating new layer of gene expression regulation that has only recently been appreciated. Here, we outline how RNA editing and RNA modification can rapidly affect gene expression, making both processes as well suited to respond to cellular stress and to regulate the transcriptome during development or circadian periods.

  3. Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications.

    PubMed

    Licht, Konstantin; Jantsch, Michael F

    2016-04-11

    Advances in next-generation sequencing and mass spectrometry have revealed widespread messenger RNA modifications and RNA editing, with dramatic effects on mammalian transcriptomes. Factors introducing, deleting, or interpreting specific modifications have been identified, and analogous with epigenetic terminology, have been designated "writers," "erasers," and "readers." Such modifications in the transcriptome are referred to as epitranscriptomic changes and represent a fascinating new layer of gene expression regulation that has only recently been appreciated. Here, we outline how RNA editing and RNA modification can rapidly affect gene expression, making both processes as well suited to respond to cellular stress and to regulate the transcriptome during development or circadian periods. PMID:27044895

  4. Seasonal temperature and precipitation regulate brook trout young-of-the-year abundance and population dynamics

    USGS Publications Warehouse

    Kanno, Yoichiro; Pregler, Kasey C.; Hitt, Nathaniel P.; Letcher, Benjamin H.; Hocking, Daniel; Wofford, John E.B.

    2015-01-01

    Our results indicate that YOY abundance is a key driver of brook trout population dynamics that is mediated by seasonal weather patterns. A reliable assessment of climate change impacts on brook trout needs to account for how alternations in seasonal weather patterns impact YOY abundance and how such relationships may differ across the range of brook trout distribution.

  5. The Role of Self-Efficacy, Goal, and Affect in Dynamic Motivational Self-Regulation

    ERIC Educational Resources Information Center

    Seo, Myeong-gu; Ilies, Remus

    2009-01-01

    In this paper, we examined the within-person relationship between self-efficacy and performance in an Internet-based stock investment simulation in which participants engaged in a series of stock trading activities trying to achieve performance goals in response to dynamic task environments (performance feedback and stock market movements).…

  6. Serotonin- and Training-Induced Dynamic Regulation of CREB2 in "Aplysia"

    ERIC Educational Resources Information Center

    Liu, Rong-Yu; Shah, Shreyansh; Cleary, Leonard J.; Byrne, John H.

    2011-01-01

    Long-term memory and plasticity, including long-term synaptic facilitation (LTF) of the "Aplysia" sensorimotor synapse, depend on the activation of transcription factors that regulate genes necessary for synaptic plasticity. In the present study we found that treatment with 5-HT and behavioral training produce biphasic changes in the expression of…

  7. Plasma Membrane Abundance of Human Aquaporin 5 Is Dynamically Regulated by Multiple Pathways.

    PubMed

    Kitchen, Philip; Öberg, Fredrik; Sjöhamn, Jennie; Hedfalk, Kristina; Bill, Roslyn M; Conner, Alex C; Conner, Matthew T; Törnroth-Horsefield, Susanna

    2015-01-01

    Aquaporin membrane protein channels mediate cellular water flow. Human aquaporin 5 (AQP5) is highly expressed in the respiratory system and secretory glands where it facilitates the osmotically-driven generation of pulmonary secretions, saliva, sweat and tears. Dysfunctional trafficking of AQP5 has been implicated in several human disease states, including Sjögren's syndrome, bronchitis and cystic fibrosis. In order to investigate how the plasma membrane expression levels of AQP5 are regulated, we studied real-time translocation of GFP-tagged AQP5 in HEK293 cells. We show that AQP5 plasma membrane abundance in transfected HEK293 cells is rapidly and reversibly regulated by at least three independent mechanisms involving phosphorylation at Ser156, protein kinase A activity and extracellular tonicity. The crystal structure of a Ser156 phosphomimetic mutant indicates that its involvement in regulating AQP5 membrane abundance is not mediated by a conformational change of the carboxy-terminus. We suggest that together these pathways regulate cellular water flow. PMID:26569106

  8. Dynamic Changes in Anger, Externalizing and Internalizing Problems: Attention and Regulation

    ERIC Educational Resources Information Center

    Kim, Jungmeen; Deater-Deckard, Kirby

    2011-01-01

    Background: Low levels of dispositional anger and a good attention span are critical to healthy social emotional development, with attention control reflecting effective cognitive self-regulation of negative emotions such as anger. Using a longitudinal design, we examined attention span as a moderator of reciprocal links between changes in anger…

  9. Plasma Membrane Abundance of Human Aquaporin 5 Is Dynamically Regulated by Multiple Pathways

    PubMed Central

    Kitchen, Philip; Öberg, Fredrik; Sjöhamn, Jennie; Hedfalk, Kristina; Bill, Roslyn M.; Conner, Alex C.; Conner, Matthew T.; Törnroth-Horsefield, Susanna

    2015-01-01

    Aquaporin membrane protein channels mediate cellular water flow. Human aquaporin 5 (AQP5) is highly expressed in the respiratory system and secretory glands where it facilitates the osmotically-driven generation of pulmonary secretions, saliva, sweat and tears. Dysfunctional trafficking of AQP5 has been implicated in several human disease states, including Sjögren’s syndrome, bronchitis and cystic fibrosis. In order to investigate how the plasma membrane expression levels of AQP5 are regulated, we studied real-time translocation of GFP-tagged AQP5 in HEK293 cells. We show that AQP5 plasma membrane abundance in transfected HEK293 cells is rapidly and reversibly regulated by at least three independent mechanisms involving phosphorylation at Ser156, protein kinase A activity and extracellular tonicity. The crystal structure of a Ser156 phosphomimetic mutant indicates that its involvement in regulating AQP5 membrane abundance is not mediated by a conformational change of the carboxy-terminus. We suggest that together these pathways regulate cellular water flow. PMID:26569106

  10. The transmembrane protein Crumbs displays complex dynamics during follicular morphogenesis and is regulated competitively by Moesin and aPKC

    PubMed Central

    Sherrard, Kristin M.; Fehon, Richard G.

    2015-01-01

    The transmembrane protein Crumbs (Crb) functions in apical polarity and epithelial integrity. To better understand its role in epithelial morphogenesis, we examined Crb localization and dynamics in the late follicular epithelium of Drosophila. Crb was unexpectedly dynamic during middle-to-late stages of egg chamber development, being lost from the marginal zone (MZ) in stage 9 before abruptly returning at the end of stage 10b, then undergoing a pulse of endocytosis in stage 12. The reappearance of MZ Crb is necessary to maintain an intact adherens junction and MZ. Although Crb has been proposed to interact through its juxtamembrane domain with Moesin (Moe), a FERM domain protein that regulates the cortical actin cytoskeleton, the functional significance of this interaction is poorly understood. We found that whereas the Crb juxtamembrane domain was not required for adherens junction integrity, it was necessary for MZ localization of Moe, aPKC and F-actin. Furthermore, Moe and aPKC functioned antagonistically, suggesting that Moe limits Crb levels by reducing its interactions with the apical Par network. Additionally, Moe mutant cells lost Crb from the apical membrane and accumulated excess Crb at the MZ, suggesting that Moe regulates Crb distribution at the membrane. Together, these studies reveal reciprocal interactions between Crb, Moe and aPKC during cellular morphogenesis. PMID:25926360

  11. Balance between Coiled-Coil Stability and Dynamics Regulates Activity of BvgS Sensor Kinase in Bordetella

    PubMed Central

    Lesne, E.; Krammer, E.-M.; Dupre, E.; Locht, C.; Lensink, M. F.

    2016-01-01

    ABSTRACT The two-component system BvgAS controls the expression of the virulence regulon of Bordetella pertussis. BvgS is a prototype of bacterial sensor kinases with extracytoplasmic Venus flytrap perception domains. Following its transmembrane segment, BvgS harbors a cytoplasmic Per-Arnt-Sim (PAS) domain and then a predicted 2-helix coiled coil that precede the dimerization-histidine-phosphotransfer domain of the kinase. BvgS homologs have a similar domain organization, or they harbor only a predicted coiled coil between the transmembrane and the dimerization-histidine-phosphotransfer domains. Here, we show that the 2-helix coiled coil of BvgS regulates the enzymatic activity in a mechanical manner. Its marginally stable hydrophobic interface enables a switch between a state of great rotational dynamics in the kinase mode and a more rigid conformation in the phosphatase mode in response to signal perception by the periplasmic domains. We further show that the activity of BvgS is controlled in the same manner if its PAS domain is replaced with the natural α-helical sequences of PAS-less homologs. Clamshell motions of the Venus flytrap domains trigger the shift of the coiled coil’s dynamics. Thus, we have uncovered a general mechanism of regulation for the BvgS family of Venus flytrap-containing two-component sensor kinases. PMID:26933056

  12. Dynamic self-regulating prosthesis (protesi autoregolantesi dinamica): the long-term results in the treatment of primary inguinal hernias.

    PubMed

    Valenti, Gabriele; Baldassarre, Emanuele; Testa, Alessandro; Arturi, Alessandro; Torino, Giovanni; Campisi, Costantino; Capuano, Giorgio

    2006-03-01

    The dynamic self-regulating prosthesis (protesi autoregolantesi dinamica, PAD) is a double-layered prosthesi, in use since 1992 in inguinal hernia repair. In 1999, we published the short-term results on 500 patients and herein we report the long-term follow-up. Five hundred eighty-five PAD procedures were performed on 500 adult male, unselected patients. Hernias were unilateral in 415 patients, were bilateral in 85 patients, were direct in 197 patients (33.7%), were indirect in 269 patients (46.0%), and were combined in 119 patients (20.3%). Four hundred sixty-four patients were alive at the follow-up period of minimum 5 years, whereas 36 died (7.2%) of causes unrelated to the hernia. No information was available on 73 patients (14.6%). Therefore, the follow-up was consisted of 391 patients (78.2%) with 469 hernias. The recurrence and testicular atrophy rates were nil. Three patients (0.77%) presented chronic pain and 18 (4.6%) suffered persistent discomfort or paresthesia. A hydrocoele was observed in one patient (0.2%). The long-term data confirm the efficacy of the dynamic self-regulating posthesis hernioplasty. We propose it as a standard of care in all cases of primary inguinal hernia in adult males, retaining it as a definitive and comfortable solution.

  13. Pseudo-transition Analysis Identifies the Key Regulators of Dynamic Metabolic Adaptations from Steady-State Data.

    PubMed

    Gerosa, Luca; Haverkorn van Rijsewijk, Bart R B; Christodoulou, Dimitris; Kochanowski, Karl; Schmidt, Thomas S B; Noor, Elad; Sauer, Uwe

    2015-10-28

    Hundreds of molecular-level changes within central metabolism allow a cell to adapt to the changing environment. A primary challenge in cell physiology is to identify which of these molecular-level changes are active regulatory events. Here, we introduce pseudo-transition analysis, an approach that uses multiple steady-state observations of (13)C-resolved fluxes, metabolites, and transcripts to infer which regulatory events drive metabolic adaptations following environmental transitions. Pseudo-transition analysis recapitulates known biology and identifies an unexpectedly sparse, transition-dependent regulatory landscape: typically a handful of regulatory events drive adaptation between carbon sources, with transcription mainly regulating TCA cycle flux and reactants regulating EMP pathway flux. We verify these observations using time-resolved measurements of the diauxic shift, demonstrating that some dynamic transitions can be approximated as monotonic shifts between steady-state extremes. Overall, we show that pseudo-transition analysis can explore the vast regulatory landscape of dynamic transitions using relatively few steady-state data, thereby guiding time-consuming, hypothesis-driven molecular validations. PMID:27136056

  14. The calcium ATPase SERCA2 regulates desmoplakin dynamics and intercellular adhesive strength through modulation of PKCα signaling

    PubMed Central

    Hobbs, Ryan P.; Amargo, Evangeline V.; Somasundaram, Agila; Simpson, Cory L.; Prakriya, Murali; Denning, Mitchell F.; Green, Kathleen J.

    2011-01-01

    Darier's disease (DD) is an inherited autosomal-dominant skin disorder characterized histologically by loss of adhesion between keratinocytes. DD is typically caused by mutations in sarcoendoplasmic reticulum Ca2+-ATPase isoform 2 (SERCA2), a major regulator of intracellular Ca2+ homeostasis in the skin. However, a defined role for SERCA2 in regulating intercellular adhesion remains poorly understood. We found that diminution of SERCA2 function by pharmacological inhibition or siRNA silencing in multiple human epidermal-derived cell lines was sufficient to disrupt desmosome assembly and weaken intercellular adhesive strength. Specifically, SERCA2-deficient cells exhibited up to a 60% reduction in border translocation of desmoplakin (DP), the desmosomal cytolinker protein necessary for intermediate filament (IF) anchorage to sites of robust cell-cell adhesion. In addition, loss of SERCA2 impaired the membrane translocation of protein kinase C α (PKCα), a known regulator of DP-IF association and desmosome assembly, to the plasma membrane by up to 70%. Exogenous activation of PKCα in SERCA2-deficient cells was sufficient to rescue the defective DP localization, desmosome assembly, and intercellular adhesive strength to levels comparable to controls. Our findings indicate that SERCA2-deficiency is sufficient to impede desmosome assembly and weaken intercellular adhesive strength via a PKCα-dependent mechanism, implicating SERCA2 as a novel regulator of PKCα signaling.—Hobbs, R. P., Amargo, E. V., Somasundaram, A., Simpson, C. L., Prakriya, M., Denning, M. F., Green, K. J. The calcium ATPase SERCA2 regulates desmoplakin dynamics and intercellular adhesive strength through modulation of PKCα signaling. PMID:21156808

  15. Clumpy molecular clouds - A dynamic model self-consistently regulated by T Tauri star formation

    NASA Technical Reports Server (NTRS)

    Norman, C.; Silk, J.

    1980-01-01

    A model is proposed which can account for the longevity, energetics, and dynamical structure of dark molecular clouds. Recent observations of a high space density of T Tauri stars in some dark clouds provide the basis for the assertion that high-velocity winds from these low mass pre-main-sequence stars provide a continuous dynamic input into molecular clouds. It is postulated that as clumps are driven above the Jeans mass, both by coalescence and the enhancement of ram pressure through continuing acceleration by protostellar winds, collapse is followed by the formation of low-mass stars that generate additional protostellar winds. Finally, it is found that star formation occurs on a relatively slow time scale, comparable to the cloud lifetime

  16. Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling.

    PubMed

    Kamimoto, Kenji; Kaneko, Kota; Kok, Cindy Yuet-Yin; Okada, Hajime; Miyajima, Atsushi; Itoh, Tohru

    2016-01-01

    Dynamic remodeling of the intrahepatic biliary epithelial tissue plays key roles in liver regeneration, yet the cellular basis for this process remains unclear. We took an unbiased approach based on in vivo clonal labeling and tracking of biliary epithelial cells in the three-dimensional landscape, in combination with mathematical simulation, to understand their mode of proliferation in a mouse liver injury model where the nascent biliary structure formed in a tissue-intrinsic manner. An apparent heterogeneity among biliary epithelial cells was observed: whereas most of the responders that entered the cell cycle upon injury exhibited a limited and tapering growth potential, a select population continued to proliferate, making a major contribution in sustaining the biliary expansion. Our study has highlighted a unique mode of epithelial tissue dynamics, which depends not on a hierarchical system driven by fixated stem cells, but rather, on a stochastically maintained progenitor population with persistent proliferative activity. PMID:27431614

  17. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels

    PubMed Central

    Steinacher, Arno; Bates, Declan G.; Akman, Ozgur E.; Soyer, Orkun S.

    2016-01-01

    Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for

  18. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.

    PubMed

    Steinacher, Arno; Bates, Declan G; Akman, Ozgur E; Soyer, Orkun S

    2016-01-01

    Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for

  19. Dynamic microtubule organization and mitochondrial transport are regulated by distinct Kinesin-1 pathways

    PubMed Central

    Melkov, Anna; Simchoni, Yasmin; Alcalay, Yehonatan; Abdu, Uri

    2015-01-01

    ABSTRACT The microtubule (MT) plus-end motor kinesin heavy chain (Khc) is well known for its role in long distance cargo transport. Recent evidence showed that Khc is also required for the organization of the cellular MT network by mediating MT sliding. We found that mutations in Khc and the gene of its adaptor protein, kinesin light chain (Klc) resulted in identical bristle morphology defects, with the upper part of the bristle being thinner and flatter than normal and failing to taper towards the bristle tip. We demonstrate that bristle mitochondria transport requires Khc but not Klc as a competing force to dynein heavy chain (Dhc). Surprisingly, we demonstrate for the first time that Dhc is the primary motor for both anterograde and retrograde fast mitochondria transport. We found that the upper part of Khc and Klc mutant bristles lacked stable MTs. When following dynamic MT polymerization via the use of GFP-tagged end-binding protein 1 (EB1), it was noted that at Khc and Klc mutant bristle tips, dynamic MTs significantly deviated from the bristle parallel growth axis, relative to wild-type bristles. We also observed that GFP-EB1 failed to concentrate as a focus at the tip of Khc and Klc mutant bristles. We propose that the failure of bristle tapering is due to defects in directing dynamic MTs at the growing tip. Thus, we reveal a new function for Khc and Klc in directing dynamic MTs during polarized cell growth. Moreover, we also demonstrate a novel mode of coordination in mitochondrial transport between Khc and Dhc. PMID:26581590

  20. Dynamic and Coordinated Epigenetic Regulation of Developmental Transitions in the Cardiac Lineage

    PubMed Central

    Wamstad, Joseph A.; Alexander, Jeffrey M.; Truty, Rebecca M.; Shrikumar, Avanti; Li, Fugen; Eilertson, Kirsten E.; Ding, Huiming; Wylie, John N.; Pico, Alexander R.; Capra, John A.; Erwin, Genevieve; Kattman, Steven J.; Keller, Gordon M.; Srivastava, Deepak; Levine, Stuart S.; Pollard, Katherine S.; Holloway, Alisha K.; Boyer, Laurie A.; Bruneau, Benoit G.

    2012-01-01

    SUMMARY Heart development is exquisitely sensitive to the precise temporal regulation of thousands of genes that govern developmental decisions during differentiation. However, we currently lack a detailed understanding of how chromatin and gene expression patterns are coordinated during developmental transitions in the cardiac lineage. Here, we interrogated the transcriptome and several histone modifications across the genome during defined stages of cardiac differentiation. We find distinct chromatin patterns that are coordinated with stage-specific expression of functionally related genes, including many human disease-associated genes. Moreover, we discover a novel pre-activation chromatin pattern at the promoters of genes associated with heart development and cardiac function. We further identify stage-specific distal enhancer elements and find enriched DNA binding motifs within these regions that predict sets of transcription factors that orchestrate cardiac differentiation. Together, these findings form a basis for understanding developmentally regulated chromatin transitions during lineage commitment and the molecular etiology of congenital heart disease. PMID:22981692

  1. Dynamics and Mechanism of A Quorum Sensing Network Regulated by Small RNAs in Vibrio Harveyi

    NASA Astrophysics Data System (ADS)

    Shen, Jian-Wei

    2011-03-01

    Bacterial quorum sensing (QS) has attracted much interests and it is an important process of cell communication. Recently, Bassler et al. studied the phenomena of QS regulated by small RNAs and the experimental data showed that small RNAs played important role in the QS of Vibrio harveyi and it can permit the fine-tuning of gene regulation and maintenance of homeostasis. According to Michaelis—Menten kinetics and mass action law in this paper, we construct a mathematical model to investigate the mechanism induced QS by coexist of small RNA and signal molecular (AI) and show that there are periodic oscillation when the time delay and Hill coefficient exceed a critical value and the periodic oscillation produces the change of concentration and induces QS. These results are fit to the experimental results. In the meanwhile, we also get some theoretical value of Hopf Bifurcation on time deday. In addition, we also find this network is robust against noise.

  2. Protecting High Energy Barriers: A New Equation to Regulate Boost Energy in Accelerated Molecular Dynamics Simulations

    PubMed Central

    2011-01-01

    Molecular dynamics (MD) is one of the most common tools in computational chemistry. Recently, our group has employed accelerated molecular dynamics (aMD) to improve the conformational sampling over conventional molecular dynamics techniques. In the original aMD implementation, sampling is greatly improved by raising energy wells below a predefined energy level. Recently, our group presented an alternative aMD implementation where simulations are accelerated by lowering energy barriers of the potential energy surface. When coupled with thermodynamic integration simulations, this implementation showed very promising results. However, when applied to large systems, such as proteins, the simulation tends to be biased to high energy regions of the potential landscape. The reason for this behavior lies in the boost equation used since the highest energy barriers are dramatically more affected than the lower ones. To address this issue, in this work, we present a new boost equation that prevents oversampling of unfavorable high energy conformational states. The new boost potential provides not only better recovery of statistics throughout the simulation but also enhanced sampling of statistically relevant regions in explicit solvent MD simulations. PMID:22241967

  3. Dynamic regulation of heart rate during acute hypotension: new insight into baroreflex function

    NASA Technical Reports Server (NTRS)

    Zhang, R.; Behbehani, K.; Crandall, C. G.; Zuckerman, J. H.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    2001-01-01

    To examine the dynamic properties of baroreflex function, we measured beat-to-beat changes in arterial blood pressure (ABP) and heart rate (HR) during acute hypotension induced by thigh cuff deflation in 10 healthy subjects under supine resting conditions and during progressive lower body negative pressure (LBNP). The quantitative, temporal relationship between ABP and HR was fitted by a second-order autoregressive (AR) model. The frequency response was evaluated by transfer function analysis. Results: HR changes during acute hypotension appear to be controlled by an ABP error signal between baseline and induced hypotension. The quantitative relationship between changes in ABP and HR is characterized by a second-order AR model with a pure time delay of 0.75 s containing low-pass filter properties. During LBNP, the change in HR/change in ABP during induced hypotension significantly decreased, as did the numerator coefficients of the AR model and transfer function gain. Conclusions: 1) Beat-to-beat HR responses to dynamic changes in ABP may be controlled by an error signal rather than directional changes in pressure, suggesting a "set point" mechanism in short-term ABP control. 2) The quantitative relationship between dynamic changes in ABP and HR can be described by a second-order AR model with a pure time delay. 3) The ability of the baroreflex to evoke a HR response to transient changes in pressure was reduced during LBNP, which was due primarily to a reduction of the static gain of the baroreflex.

  4. The regulation by phenolic compounds of soil organic matter dynamics under a changing environment.

    PubMed

    Min, Kyungjin; Freeman, Chris; Kang, Hojeong; Choi, Sung-Uk

    2015-01-01

    Phenolics are the most abundant plant metabolites and are believed to decompose slowly in soils compared to other soil organic matter (SOM). Thus, they have often been considered as a slow carbon (C) pool in soil dynamics models. Here, however, we review changes in our concept about the turnover rate of phenolics and quantification of different types of phenolics in soils. Also, we synthesize current research on the degradation of phenolics and their regulatory effects on decomposition. Environmental changes, such as elevated CO2, warming, nitrogen (N) deposition, and drought, could influence the production and form of phenolics, leading to a change in SOM dynamics, and thus we also review the fate of phenolics under environmental disturbances. Finally, we propose the use of phenolics as a tool to control rates of SOM decomposition to stabilize organic carbon in ecosystems. Further studies to clarify the role of phenolics in SOM dynamics should include improving quantification methods, elucidating the relationship between phenolics and soil microorganisms, and determining the interactive effects of combinations of environmental changes on the phenolics production and degradation and subsequent impact on SOM processing. PMID:26495314

  5. RNA-dependent dynamic histone acetylation regulates MCL1 alternative splicing

    PubMed Central

    Khan, Dilshad H.; Gonzalez, Carolina; Cooper, Charlton; Sun, Jian-Min; Chen, Hou Yu; Healy, Shannon; Xu, Wayne; Smith, Karen T.; Workman, Jerry L.; Leygue, Etienne; Davie, James R.

    2014-01-01

    Histone deacetylases (HDACs) and lysine acetyltransferases (KATs) catalyze dynamic histone acetylation at regulatory and coding regions of transcribed genes. Highly phosphorylated HDAC2 is recruited within corepressor complexes to regulatory regions, while the nonphosphorylated form is associated with the gene body. In this study, we characterized the nonphosphorylated HDAC2 complexes recruited to the transcribed gene body and explored the function of HDAC-complex-mediated dynamic histone acetylation. HDAC1 and 2 were coimmunoprecipitated with several splicing factors, including serine/arginine-rich splicing factor 1 (SRSF1) which has roles in alternative splicing. The co-chromatin immunoprecipitation of HDAC1/2 and SRSF1 to the gene body was RNA-dependent. Inhibition of HDAC activity and knockdown of HDAC1, HDAC2 or SRSF1 showed that these proteins were involved in alternative splicing of MCL1. HDAC1/2 and KAT2B were associated with nascent pre-mRNA in general and with MCL1 pre-mRNA specifically. Inhibition of HDAC activity increased the occupancy of KAT2B and acetylation of H3 and H4 of the H3K4 methylated alternative MCL1 exon 2 nucleosome. Thus, nonphosphorylated HDAC1/2 is recruited to pre-mRNA by splicing factors to act at the RNA level with KAT2B and other KATs to catalyze dynamic histone acetylation of the MCL1 alternative exon and alter the splicing of MCL1 pre-mRNA. PMID:24234443

  6. The Regulation by Phenolic Compounds of Soil Organic Matter Dynamics under a Changing Environment

    PubMed Central

    Min, Kyungjin; Freeman, Chris; Kang, Hojeong; Choi, Sung-Uk

    2015-01-01

    Phenolics are the most abundant plant metabolites and are believed to decompose slowly in soils compared to other soil organic matter (SOM). Thus, they have often been considered as a slow carbon (C) pool in soil dynamics models. Here, however, we review changes in our concept about the turnover rate of phenolics and quantification of different types of phenolics in soils. Also, we synthesize current research on the degradation of phenolics and their regulatory effects on decomposition. Environmental changes, such as elevated CO2, warming, nitrogen (N) deposition, and drought, could influence the production and form of phenolics, leading to a change in SOM dynamics, and thus we also review the fate of phenolics under environmental disturbances. Finally, we propose the use of phenolics as a tool to control rates of SOM decomposition to stabilize organic carbon in ecosystems. Further studies to clarify the role of phenolics in SOM dynamics should include improving quantification methods, elucidating the relationship between phenolics and soil microorganisms, and determining the interactive effects of combinations of environmental changes on the phenolics production and degradation and subsequent impact on SOM processing. PMID:26495314

  7. Dynamic clothing insulation. Measurements with a thermal manikin operating under the thermal comfort regulation mode.

    PubMed

    Oliveira, A Virgílio M; Gaspar, Adélio R; Quintela, Divo A

    2011-11-01

    The main objective of the present work is the assessment of the thermal insulation of clothing ensembles, both in static conditions and considering the effect of body movements. The different equations used to calculate the equivalent thermal resistance of the whole body, namely the serial, the global and the parallel methods, are considered and the results are presented and discussed for the basic, the effective and the total clothing insulations. The results show that the dynamic thermal insulation values are always lower than the corresponding static ones. The highest mean relative difference [(static-dynamic)/static] was obtained with the parallel method and the lowest with the serial. For I(cl) the mean relative differences varied from 0.5 to 13.4% with the serial method, from 5.6 to 14.6% with the global and from 7.2 to 17.7% with the parallel method. In addition, the dynamic tests presents the higher mean relative differences between the calculation methods. The results also show that the serial method always presents the higher values and the parallel method the lowest ones. The relative differences between the calculation methods {[(serial-global)/global] and [(parallel-global)/global]} were sometimes significant and associated to the non-uniform distribution of the clothing insulation. In fact, the ensembles with the highest thermal insulation values present the highest differences between the calculation methods.

  8. Dynamic regulation of novel and conserved miRNAs across various tissues of diverse Cucurbit spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNA genes (miRNAs) encoding small non-coding RNAs are abundant in plant genomes and play a key role in regulating several biological mechanisms. Five conserved miRNAs, miR156, miR168-1, miR168-2, miR164, and miR166 were selected for analysis from the 21 known plant miRNA families that were rec...

  9. Behavior control in the sensorimotor loop with short-term synaptic dynamics induced by self-regulating neurons.

    PubMed

    Toutounji, Hazem; Pasemann, Frank

    2014-01-01

    The behavior and skills of living systems depend on the distributed control provided by specialized and highly recurrent neural networks. Learning and memory in these systems is mediated by a set of adaptation mechanisms, known collectively as neuronal plasticity. Translating principles of recurrent neural control and plasticity to artificial agents has seen major strides, but is usually hampered by the complex interactions between the agent's body and its environment. One of the important standing issues is for the agent to support multiple stable states of behavior, so that its behavioral repertoire matches the requirements imposed by these interactions. The agent also must have the capacity to switch between these states in time scales that are comparable to those by which sensory stimulation varies. Achieving this requires a mechanism of short-term memory that allows the neurocontroller to keep track of the recent history of its input, which finds its biological counterpart in short-term synaptic plasticity. This issue is approached here by deriving synaptic dynamics in recurrent neural networks. Neurons are introduced as self-regulating units with a rich repertoire of dynamics. They exhibit homeostatic properties for certain parameter domains, which result in a set of stable states and the required short-term memory. They can also operate as oscillators, which allow them to surpass the level of activity imposed by their homeostatic operation conditions. Neural systems endowed with the derived synaptic dynamics can be utilized for the neural behavior control of autonomous mobile agents. The resulting behavior depends also on the underlying network structure, which is either engineered or developed by evolutionary techniques. The effectiveness of these self-regulating units is demonstrated by controlling locomotion of a hexapod with 18 degrees of freedom, and obstacle-avoidance of a wheel-driven robot. PMID:24904403

  10. Behavior control in the sensorimotor loop with short-term synaptic dynamics induced by self-regulating neurons

    PubMed Central

    Toutounji, Hazem; Pasemann, Frank

    2014-01-01

    The behavior and skills of living systems depend on the distributed control provided by specialized and highly recurrent neural networks. Learning and memory in these systems is mediated by a set of adaptation mechanisms, known collectively as neuronal plasticity. Translating principles of recurrent neural control and plasticity to artificial agents has seen major strides, but is usually hampered by the complex interactions between the agent's body and its environment. One of the important standing issues is for the agent to support multiple stable states of behavior, so that its behavioral repertoire matches the requirements imposed by these interactions. The agent also must have the capacity to switch between these states in time scales that are comparable to those by which sensory stimulation varies. Achieving this requires a mechanism of short-term memory that allows the neurocontroller to keep track of the recent history of its input, which finds its biological counterpart in short-term synaptic plasticity. This issue is approached here by deriving synaptic dynamics in recurrent neural networks. Neurons are introduced as self-regulating units with a rich repertoire of dynamics. They exhibit homeostatic properties for certain parameter domains, which result in a set of stable states and the required short-term memory. They can also operate as oscillators, which allow them to surpass the level of activity imposed by their homeostatic operation conditions. Neural systems endowed with the derived synaptic dynamics can be utilized for the neural behavior control of autonomous mobile agents. The resulting behavior depends also on the underlying network structure, which is either engineered or developed by evolutionary techniques. The effectiveness of these self-regulating units is demonstrated by controlling locomotion of a hexapod with 18 degrees of freedom, and obstacle-avoidance of a wheel-driven robot. PMID:24904403

  11. Molecular dynamics simulation of phosphorylation-induced conformational transitions in the mycobacterium tuberculosis response regulator PrrA

    SciTech Connect

    Chen, Guo; Mcmahon, Benjamin H; Tung, Chang - Shung

    2008-01-01

    Phosphorylation-activated modulation of response regulators (RR) is predominantly used by bacteria as a strategy in regulating their two-component signaling (TCS) systems, the underlying molecular mechanisms are however far from fully understood. In this work we have conducted a molecular dynamics (MD) simulation of the phosphorylation-induced conformational transitions of RRs with the Mycobacterium Tuberculosis PrrA as a particular example. Starting from the full-length inactive structure of PrrA we introduced a local disturbance by phosphorylating the conserved aspartic acid residue, Asp-58, in the regulatory domain. A Go-model-type algorithm packaged with AMBER force fields was then applied to simulate the dynamics upon phosphorylation. The MD simulation shows that the phosphorylation of Asp-58 facilitates PrrA, whose inactive state has a compact conformation with a closed interdomain interface, to open up with its interdomain separation being increased by an average of about 1.5 {angstrom} for a simulation of 20 ns. The trans-activation loop, which is completely buried within the interdomain interface in the inactive PrrA, is found to become more exposed with the phosphorylated structure as well. These results provide more structural details of how the phosphorylation of a local aspartate activates PrrA to undergo a global conformational rearrangement toward its extended active state. This work also indicates that MD simulations can serve as a fast tool to unravel the regulation mechanisms of all RRs, which is especially valuable when the structures of full-length active RRs are currently unavailable.

  12. Monocytes and Macrophages Regulate Immunity through Dynamic Networks of Survival and Cell Death

    PubMed Central

    Parihar, Arti; Eubank, Timothy D.; Doseff, Andrea I.

    2010-01-01

    Monocytes and macrophages are central cells of the innate immune system, responsible for defending against diverse pathogens. While they originate from a common myeloid precursor and share functions in innate immunity, each has a very distinct life span finely tuned by the apoptotic caspases. Normally, circulating monocytes are short-lived and undergo spontaneous apoptosis on a daily basis. Macrophages, however, have a longer life span. In chronic inflammatory diseases and, as recently recognized, in the tumor microenvironment, the inhibition of the apoptotic program promotes monocyte survival contributing to the accumulation of macrophages and the persistence of an inflammatory milieu. A complex network of differentiation factors and inflammatory stimuli determine monocyte/macrophage life span by blocking the apoptotic pathway and activating a myriad of survival pathways. Our understanding of apoptosis has flourished over the last decade, and its relevance in the regulation of the immune system is now indisputable. Nevertheless, how the complicated networks of survival and apoptotic regulators are integrated to determine cellular life span remains elusive. This review summarizes the contribution of the caspases and their regulators in monocyte/macrophage cell fate and discusses how these molecules orchestrate the initiation, maintenance, and resolution of inflammation. More provocatively, we discuss possible strategies to control inflammation by manipulating leukocyte life span. PMID:20375558

  13. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences

    PubMed Central

    Todor, Horia; Gooding, Jessica; Ilkayeva, Olga R.; Schmid, Amy K.

    2015-01-01

    Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes. PMID:26284786

  14. Tetraspanin CD82 Regulates the Spatiotemporal Dynamics of PKCα in Acute Myeloid Leukemia

    PubMed Central

    Termini, Christina M.; Lidke, Keith A.; Gillette, Jennifer M.

    2016-01-01

    Patients with acute myeloid leukemia (AML) have increased myeloid cells within their bone marrow that exhibit aberrant signaling. Therefore, therapeutic targets that modulate disrupted signaling cascades are of significant interest. In this study, we demonstrate that the tetraspanin membrane scaffold, CD82, regulates protein kinase c alpha (PKCα)-mediated signaling critical for AML progression. Utilizing a palmitoylation mutant form of CD82 with disrupted membrane organization, we find that the CD82 scaffold controls PKCα expression and activation. Combining single molecule and ensemble imaging measurements, we determine that CD82 stabilizes PKCα activation at the membrane and regulates the size of PKCα membrane clusters. Further evaluation of downstream effector signaling identified robust and sustained activation of ERK1/2 upon CD82 overexpression that results in enhanced AML colony formation. Together, these data propose a mechanism where CD82 membrane organization regulates sustained PKCα signaling that results in an aggressive leukemia phenotype. These observations suggest that the CD82 scaffold may be a potential therapeutic target for attenuating aberrant signal transduction in AML. PMID:27417454

  15. In vivo phosphorylation dynamics of the Bordetella pertussis virulence-controlling response regulator BvgA.

    PubMed

    Boulanger, Alice; Chen, Qing; Hinton, Deborah M; Stibitz, Scott

    2013-04-01

    We have used protein electrophoresis through polyacrylamide gels derivatized with the proprietary ligand Phos-tag™ to separate the response regulator BvgA from its phosphorylated counterpart BvgA∼P. This approach has allowed us to readily ascertain the degree of phosphorylation of BvgA in in vitro reactions, or in crude lysates of Bordetella pertussis grown under varying laboratory conditions. We have used this technique to examine the kinetics of BvgA phosphorylation after shift of B. pertussis cultures from non-permissive to permissive conditions, or of its dephosphorylation following a shift from permissive to non-permissive conditions. Our results provide the first direct evidence that levels of BvgA∼P in vivo correspond temporally to the expression of early and late BvgA-regulated virulence genes. We have also examined a number of other aspects of BvgA function predicted from previous studies and by analogy with other two-component response regulators. These include the site of BvgA phosphorylation, the exclusive role of the cognate BvgS sensor kinase in its phosphorylation in Bordetella pertussis, and the effect of the T194M mutation on phosphorylation. We also detected the phosphorylation of a small but consistent fraction of BvgA purified after expression in Escherichia coli.

  16. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences.

    PubMed

    Todor, Horia; Gooding, Jessica; Ilkayeva, Olga R; Schmid, Amy K

    2015-01-01

    Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.

  17. Epigenetic regulation of serotype expression antagonizes transcriptome dynamics in Paramecium tetraurelia.

    PubMed

    Cheaib, Miriam; Dehghani Amirabad, Azim; Nordström, Karl J V; Schulz, Marcel H; Simon, Martin

    2015-08-01

    Phenotypic variation of a single genotype is achieved by alterations in gene expression patterns. Regulation of such alterations depends on their time scale, where short-time adaptations differ from permanently established gene expression patterns maintained by epigenetic mechanisms. In the ciliate Paramecium, serotypes were described for an epigenetically controlled gene expression pattern of an individual multigene family. Paradoxically, individual serotypes can be triggered in Paramecium by alternating environments but are then stabilized by epigenetic mechanisms, thus raising the question to which extend their expression follows environmental stimuli. To characterize environmental adaptation in the context of epigenetically controlled serotype expression, we used RNA-seq to characterize transcriptomes of serotype pure cultures. The resulting vegetative transcriptome resource is first analysed for genes involved in the adaptive response to the altered environment. Secondly, we identified groups of genes that do not follow the adaptive response but show co-regulation with the epigenetically controlled serotype system, suggesting that their gene expression pattern becomes manifested by similar mechanisms. In our experimental set-up, serotype expression and the entire group of co-regulated genes were stable among environmental changes and only heat-shock genes altered expression of these gene groups. The data suggest that the maintenance of these gene expression patterns in a lineage represents epigenetically controlled robustness counteracting short-time adaptation processes. PMID:26231545

  18. Epigenetic regulation of serotype expression antagonizes transcriptome dynamics in Paramecium tetraurelia.

    PubMed

    Cheaib, Miriam; Dehghani Amirabad, Azim; Nordström, Karl J V; Schulz, Marcel H; Simon, Martin

    2015-08-01

    Phenotypic variation of a single genotype is achieved by alterations in gene expression patterns. Regulation of such alterations depends on their time scale, where short-time adaptations differ from permanently established gene expression patterns maintained by epigenetic mechanisms. In the ciliate Paramecium, serotypes were described for an epigenetically controlled gene expression pattern of an individual multigene family. Paradoxically, individual serotypes can be triggered in Paramecium by alternating environments but are then stabilized by epigenetic mechanisms, thus raising the question to which extend their expression follows environmental stimuli. To characterize environmental adaptation in the context of epigenetically controlled serotype expression, we used RNA-seq to characterize transcriptomes of serotype pure cultures. The resulting vegetative transcriptome resource is first analysed for genes involved in the adaptive response to the altered environment. Secondly, we identified groups of genes that do not follow the adaptive response but show co-regulation with the epigenetically controlled serotype system, suggesting that their gene expression pattern becomes manifested by similar mechanisms. In our experimental set-up, serotype expression and the entire group of co-regulated genes were stable among environmental changes and only heat-shock genes altered expression of these gene groups. The data suggest that the maintenance of these gene expression patterns in a lineage represents epigenetically controlled robustness counteracting short-time adaptation processes.

  19. Epigenetic regulation of serotype expression antagonizes transcriptome dynamics in Paramecium tetraurelia

    PubMed Central

    Cheaib, Miriam; Dehghani Amirabad, Azim; Nordström, Karl J. V.; Schulz, Marcel H.; Simon, Martin

    2015-01-01

    Phenotypic variation of a single genotype is achieved by alterations in gene expression patterns. Regulation of such alterations depends on their time scale, where short-time adaptations differ from permanently established gene expression patterns maintained by epigenetic mechanisms. In the ciliate Paramecium, serotypes were described for an epigenetically controlled gene expression pattern of an individual multigene family. Paradoxically, individual serotypes can be triggered in Paramecium by alternating environments but are then stabilized by epigenetic mechanisms, thus raising the question to which extend their expression follows environmental stimuli. To characterize environmental adaptation in the context of epigenetically controlled serotype expression, we used RNA-seq to characterize transcriptomes of serotype pure cultures. The resulting vegetative transcriptome resource is first analysed for genes involved in the adaptive response to the altered environment. Secondly, we identified groups of genes that do not follow the adaptive response but show co-regulation with the epigenetically controlled serotype system, suggesting that their gene expression pattern becomes manifested by similar mechanisms. In our experimental set-up, serotype expression and the entire group of co-regulated genes were stable among environmental changes and only heat-shock genes altered expression of these gene groups. The data suggest that the maintenance of these gene expression patterns in a lineage represents epigenetically controlled robustness counteracting short-time adaptation processes. PMID:26231545

  20. Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription.

    PubMed

    Di Cerbo, Vincenzo; Mohn, Fabio; Ryan, Daniel P; Montellier, Emilie; Kacem, Salim; Tropberger, Philipp; Kallis, Eleni; Holzner, Monika; Hoerner, Leslie; Feldmann, Angelika; Richter, Florian Martin; Bannister, Andrew J; Mittler, Gerhard; Michaelis, Jens; Khochbin, Saadi; Feil, Robert; Schuebeler, Dirk; Owen-Hughes, Tom; Daujat, Sylvain; Schneider, Robert

    2014-03-25

    Post-translational modifications of proteins have emerged as a major mechanism for regulating gene expression. However, our understanding of how histone modifications directly affect chromatin function remains limited. In this study, we investigate acetylation of histone H3 at lysine 64 (H3K64ac), a previously uncharacterized acetylation on the lateral surface of the histone octamer. We show that H3K64ac regulates nucleosome stability and facilitates nucleosome eviction and hence gene expression in vivo. In line with this, we demonstrate that H3K64ac is enriched in vivo at the transcriptional start sites of active genes and it defines transcriptionally active chromatin. Moreover, we find that the p300 co-activator acetylates H3K64, and consistent with a transcriptional activation function, H3K64ac opposes its repressive counterpart H3K64me3. Our findings reveal an important role for a histone modification within the nucleosome core as a regulator of chromatin function and they demonstrate that lateral surface modifications can define functionally opposing chromatin states. DOI: http://dx.doi.org/10.7554/eLife.01632.001.

  1. Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription

    PubMed Central

    Di Cerbo, Vincenzo; Mohn, Fabio; Ryan, Daniel P; Montellier, Emilie; Kacem, Salim; Tropberger, Philipp; Kallis, Eleni; Holzner, Monika; Hoerner, Leslie; Feldmann, Angelika; Richter, Florian Martin; Bannister, Andrew J; Mittler, Gerhard; Michaelis, Jens; Khochbin, Saadi; Feil, Robert; Schuebeler, Dirk; Owen-Hughes, Tom; Daujat, Sylvain; Schneider, Robert

    2014-01-01

    Post-translational modifications of proteins have emerged as a major mechanism for regulating gene expression. However, our understanding of how histone modifications directly affect chromatin function remains limited. In this study, we investigate acetylation of histone H3 at lysine 64 (H3K64ac), a previously uncharacterized acetylation on the lateral surface of the histone octamer. We show that H3K64ac regulates nucleosome stability and facilitates nucleosome eviction and hence gene expression in vivo. In line with this, we demonstrate that H3K64ac is enriched in vivo at the transcriptional start sites of active genes and it defines transcriptionally active chromatin. Moreover, we find that the p300 co-activator acetylates H3K64, and consistent with a transcriptional activation function, H3K64ac opposes its repressive counterpart H3K64me3. Our findings reveal an important role for a histone modification within the nucleosome core as a regulator of chromatin function and they demonstrate that lateral surface modifications can define functionally opposing chromatin states. DOI: http://dx.doi.org/10.7554/eLife.01632.001 PMID:24668167

  2. Regulation of Mnemiopsis leidyi dynamics by potential changes in temperature and zooplankton conditions in the Black Sea.

    NASA Astrophysics Data System (ADS)

    Salihoglu, B.; Fach, B.; Oguz, T.

    2009-04-01

    Providing a comprehensive understanding of the effects that cause formations of ctenophore blooms in the Black Sea is the main objective of this study. In order to analyse ctenophore dynamics in the Black Sea a zero-dimensional population based model of the ctenophore Mnemiopsis leidyi is developed. The stage resolving ctenophore model combines the modified form of stage resolving approach of Fennel, 2001 with the growth dynamics model of Kremer, 1976; Kremer and Reeve, 1989 under 4 stages of model-ctenophore. These stages include the different growth characteristics of egg, juvenile, transitional and adult stages. The dietary patterns of the different stages follows the observations obtained from the literature. The model is able to represent consistent development patterns, while reflecting the physiological complexity of a population of Mnemiopsis leidyi. Model results suggest that different nutritional requirement of each stage may serve as the bottlenecks for population growth and only when growth conditions are favorable for both larval and lobate stages, the high overall population growth rates may occur. Model is also used to analyse the influence of climatic changes on Mnemiopsis leidyi reproduction and outburst. This study presents and discussed how potential changes in temperature and zooplankton conditions in the Black Sea may regulate Mnemiopsis leidyi dynamics.

  3. Erk1/2 MAPK and Caldesmon Differentially Regulate Podosome Dynamics in A7r5 Vascular Smooth Muscle Cells

    PubMed Central

    Gu, Zhizhan; Kordowska, Jolanta; Williams, Geoffrey L.; Wang, C.-L. Albert; Hai, Chi-Ming

    2007-01-01

    We tested the hypothesis that the MEK/Erk/caldesmon phosphorylation cascade regulates PKC-mediated podosome dynamics in A7r5 cells. We observed the phosphorylation of MEK, Erk and caldesmon, and their translocation to the podosomes upon phorbol dibutyrate (PDBu) stimulation, together with the nuclear translocation of phospho-MEK and phospho-Erk. After MEK inhibition by U0126, Erk translocated to the interconnected actin-rich columns but failed to translocate to the nucleus, suggesting that podosomes served as a site for Erk phosphorylation. The interconnected actin-rich columns in U0126-treated, PDBu-stimulated cells contained α-actinin, caldesmon, vinculin, and metalloproteinase-2. Caldesmon and vinculin became integrated with F-actin at the columns, in contrast to their typical location at the ring of podosomes. Live-imaging experiments suggested the growth of these columns from podosomes that were slow to disassemble. The observed modulation of podosome size and life time in A7r5 cells overexpressing wild-type and phosphorylation-deficient caldesmon-GFP mutants in comparison to untransfected cells suggests that caldesmon and caldesmon phosphorylation modulate podosome dynamics in A7r5 cells. These results suggest that Erk1/2 and caldesmon differentially modulate PKC-mediated formation and/or dynamics of podosomes in A7r5 vascular smooth muscle cells. PMID:17239373

  4. Computational spatiotemporal analysis identifies WAVE2 and Cofilin as joint regulators of costimulation-mediated T cell actin dynamics

    PubMed Central

    Roybal, Kole T.; Buck, Taráz E.; Ruan, Xiongtao; Cho, Baek Hwan; Clark, Danielle J.; Ambler, Rachel; Tunbridge, Helen M.; Zhang, Jianwei; Verkade, Paul; Wülfing, Christoph; Murphy, Robert F.

    2016-01-01

    Fluorescence microscopy is one of the most important tools in cell biology research and it provides spatial and temporal information to investigate regulatory systems inside cells. This technique can generate data in the form of signal intensities at thousands of positions resolved inside individual live cells; however, given extensive cell-to-cell variation, methods do not currently exist to assemble these data into three- or four-dimensional maps of protein concentration that can be compared across different cells and conditions. Here, we have developed one such method and applied it to investigate actin dynamics in T cell activation. Antigen recognition in T cells by the T cell receptor (TCR) is amplified by engagement of the costimulatory receptor CD28 and we have determined how CD28 modulates actin dynamics. We imaged actin and eight core actin regulators under conditions where CD28 in the context of a strong TCR signal was engaged or blocked to yield over a thousand movies. Our computational analysis identified diminished recruitment of the activator of actin nucleation WAVE2 and the actin severing protein cofilin to F-actin as the dominant difference upon costimulation blockade. Reconstitution of WAVE2 and cofilin activity restored the defect in actin signaling dynamics upon costimulation blockade. Thus we have developed and validated an approach to quantify protein distributions in time and space for analysis of complex regulatory systems. PMID:27095595

  5. Erk1/2 MAPK and caldesmon differentially regulate podosome dynamics in A7r5 vascular smooth muscle cells

    SciTech Connect

    Gu Zhizhan; Kordowska, Jolanta; Williams, Geoffrey L.; Wang, C.-L. Albert; Hai, C.-M. . E-mail: Chi-Ming_Hai@brown.edu

    2007-03-10

    We tested the hypothesis that the MEK/Erk/caldesmon phosphorylation cascade regulates PKC-mediated podosome dynamics in A7r5 cells. We observed the phosphorylation of MEK, Erk and caldesmon, and their translocation to the podosomes upon phorbol dibutyrate (PDBu) stimulation, together with the nuclear translocation of phospho-MEK and phospho-Erk. After MEK inhibition by U0126, Erk translocated to the interconnected actin-rich columns but failed to translocate to the nucleus, suggesting that podosomes served as a site for Erk phosphorylation. The interconnected actin-rich columns in U0126-treated, PDBu-stimulated cells contained {alpha}-actinin, caldesmon, vinculin, and metalloproteinase-2. Caldesmon and vinculin became integrated with F-actin at the columns, in contrast to their typical location at the ring of podosomes. Live-imaging experiments suggested the growth of these columns from podosomes that were slow to disassemble. The observed modulation of podosome size and life time in A7r5 cells overexpressing wild-type and phosphorylation-deficient caldesmon-GFP mutants in comparison to untransfected cells suggests that caldesmon and caldesmon phosphorylation modulate podosome dynamics in A7r5 cells. These results suggest that Erk1/2 and caldesmon differentially modulate PKC-mediated formation and/or dynamics of podosomes in A7r5 vascular smooth muscle cells.

  6. Transcriptional regulation of cell cycle genes in response to abiotic stresses correlates with dynamic changes in histone modifications in maize.

    PubMed

    Zhao, Lin; Wang, Pu; Hou, Haoli; Zhang, Hao; Wang, Yapei; Yan, Shihan; Huang, Yan; Li, Hui; Tan, Junjun; Hu, Ao; Gao, Fei; Zhang, Qi; Li, Yingnan; Zhou, Hong; Zhang, Wei; Li, Lijia

    2014-01-01

    The histone modification level has been shown to be related with gene activation and repression in stress-responsive process, but there is little information on the relationship between histone modification and cell cycle gene expression responsive to environmental cues. In this study, the function of histone modifications in mediating the transcriptional regulation of cell cycle genes under various types of stress was investigated in maize (Zea mays L.). Abiotic stresses all inhibit the growth of maize seedlings, and induce total acetylation level increase compared with the control group in maize roots. The positive and negative regulation of the expression of some cell cycle genes leads to perturbation of cell cycle progression in response to abiotic stresses. Chromatin immunoprecipitation analysis reveals that dynamic histone acetylation change in the promoter region of cell cycle genes is involved in the control of gene expression in response to external stress and different cell cycle genes have their own characteristic patterns for histone acetylation. The data also showed that the combinations of hyperacetylation and hypoacetylation states of specific lysine sites on the H3 and H4 tails on the promoter regions of cell cycle genes regulate specific cell cycle gene expression under abiotic stress conditions, thus resulting in prolonged cell cycle duration and an inhibitory effect on growth and development in maize seedlings. PMID:25171199

  7. Biological modeling of complex chemotaxis behaviors for C. elegans under speed regulation--a dynamic neural networks approach.

    PubMed

    Xu, Jian-Xin; Deng, Xin

    2013-08-01

    In this paper, the modeling of several complex chemotaxis behaviors of C. elegans is explored, which include food attraction, toxin avoidance, and locomotion speed regulation. We first model the chemotaxis behaviors of food attraction and toxin avoidance separately. Then, an integrated chemotaxis behavioral model is proposed, which performs the two chemotaxis behaviors simultaneously. The novelty and the uniqueness of the proposed chemotaxis behavioral models are characterized by several attributes. First, all the chemotaxis behavioral model sare on biological basis, namely, the proposed chemotaxis behavior models are constructed by extracting the neural wire diagram from sensory neurons to motor neurons, where sensory neurons are specific for chemotaxis behaviors. Second, the chemotaxis behavioral models are able to perform turning and speed regulation. Third, chemotaxis behaviors are characterized by a set of switching logic functions that decide the orientation and speed. All models are implemented using dynamic neural networks (DNN) and trained using the real time recurrent learning (RTRL) algorithm. By incorporating a speed regulation mechanism, C. elegans can stop spontaneously when approaching food source or leaving away from toxin. The testing results and the comparison with experiment results verify that the proposed chemotaxis behavioral models can well mimic the chemotaxis behaviors of C. elegans in different environments.

  8. Quantitative Proteomics Reveals Factors Regulating RNA Biology as Dynamic Targets of Stress-induced SUMOylation in Arabidopsis *

    PubMed Central

    Miller, Marcus J.; Scalf, Mark; Rytz, Thérèse C.; Hubler, Shane L.; Smith, Lloyd M.; Vierstra, Richard D.

    2013-01-01

    The stress-induced attachment of small ubiquitin-like modifier (SUMO) to a diverse collection of nuclear proteins regulating chromatin architecture, transcription, and RNA biology has been implicated in protecting plants and animals against numerous environmental challenges. In order to better understand stress-induced SUMOylation, we combined stringent purification of SUMO conjugates with isobaric tag for relative and absolute quantification mass spectrometry and an advanced method to adjust for sample-to-sample variation so as to study quantitatively the SUMOylation dynamics of intact Arabidopsis seedlings subjected to stress. Inspection of 172 SUMO substrates during and after heat shock (37 °C) revealed that stress mostly increases the abundance of existing conjugates, as opposed to modifying new targets. Some of the most robustly up-regulated targets participate in RNA processing and turnover and RNA-directed DNA modification, thus implicating SUMO as a regulator of the transcriptome during stress. Many of these targets were also strongly SUMOylated during ethanol and oxidative stress, suggesting that their modification is crucial for general stress tolerance. Collectively, our quantitative data emphasize the importance of SUMO to RNA-related processes protecting plants from adverse environments. PMID:23197790

  9. Foxn1 Is Dynamically Regulated in Thymic Epithelial Cells during Embryogenesis and at the Onset of Thymic Involution.

    PubMed

    O'Neill, Kathy E; Bredenkamp, Nicholas; Tischner, Christin; Vaidya, Harsh J; Stenhouse, Frances H; Peddie, C Diana; Nowell, Craig S; Gaskell, Terri; Blackburn, C Clare

    2016-01-01

    Thymus function requires extensive cross-talk between developing T-cells and the thymic epithelium, which consists of cortical and medullary TEC. The transcription factor FOXN1 is the master regulator of TEC differentiation and function, and declining Foxn1 expression with age results in stereotypical thymic involution. Understanding of the dynamics of Foxn1 expression is, however, limited by a lack of single cell resolution data. We have generated a novel reporter of Foxn1 expression, Foxn1G, to monitor changes in Foxn1 expression during embryogenesis and involution. Our data reveal that early differentiation and maturation of cortical and medullary TEC coincides with precise sub-lineage-specific regulation of Foxn1 expression levels. We further show that initiation of thymic involution is associated with reduced cTEC functionality, and proportional expansion of FOXN1-negative TEC in both cortical and medullary sub-lineages. Cortex-specific down-regulation of Foxn1 between 1 and 3 months of age may therefore be a key driver of the early stages of age-related thymic involution. PMID:26983083

  10. Ezrin regulates focal adhesion and invadopodia dynamics by altering calpain activity to promote breast cancer cell invasion

    PubMed Central

    Hoskin, Victoria; Szeto, Alvin; Ghaffari, Abdi; Greer, Peter A.; Côté, Graham P.; Elliott, Bruce E.

    2015-01-01

    Up-regulation of the cytoskeleton linker protein ezrin frequently occurs in aggressive cancer types and is closely linked with metastatic progression. However, the underlying molecular mechanisms detailing how ezrin is involved in the invasive and metastatic phenotype remain unclear. Here we report a novel function of ezrin in regulating focal adhesion (FA) and invadopodia dynamics, two key processes required for efficient invasion to occur. We show that depletion of ezrin expression in invasive breast cancer cells impairs both FA and invadopodia turnover. We also demonstrate that ezrin-depleted cells display reduced calpain-mediated cleavage of the FA and invadopodia-associated proteins talin, focal adhesion kinase (FAK), and cortactin and reduced calpain-1–specific membrane localization, suggesting a requirement for ezrin in maintaining proper localization and activity of calpain-1. Furthermore, we show that ezrin is required for cell directionality, early lung seeding, and distant organ colonization but not primary tumor growth. Collectively our results unveil a novel mechanism by which ezrin regulates breast cancer cell invasion and metastasis. PMID:26246600

  11. Mechanisms of Beat-to-Beat Regulation of Cardiac Pacemaker Cell Function by Ca2+ Cycling Dynamics

    PubMed Central

    Yaniv, Yael; Stern, Michael D.; Lakatta, Edward G.; Maltsev, Victor A.

    2013-01-01

    Whether intracellular Ca2+ cycling dynamics regulate cardiac pacemaker cell function on a beat-to-beat basis remains unknown. Here we show that under physiological conditions, application of low concentrations of caffeine (2–4 mM) to isolated single rabbit sinoatrial node cells acutely reduces their spontaneous action potential cycle length (CL) and increases Ca2+ transient amplitude for several cycles. Numerical simulations, using a modified Maltsev-Lakatta coupled-clock model, faithfully reproduced these effects, and also the effects of CL prolongation and dysrhythmic spontaneous beating (produced by cytosolic Ca2+ buffering) and an acute CL reduction (produced by flash-induced Ca2+ release from a caged Ca2+ buffer), which we had reported previously. Three contemporary numerical models (including the original Maltsev-Lakatta model) failed to reproduce the experimental results. In our proposed new model, Ca2+ releases acutely change the CL via activation of the Na+/Ca2+ exchanger current. Time-dependent CL reductions after flash-induced Ca2+ releases (the memory effect) are linked to changes in Ca2+ available for pumping into sarcoplasmic reticulum which, in turn, changes the sarcoplasmic reticulum Ca2+ load, diastolic Ca2+ releases, and Na+/Ca2+ exchanger current. These results support the idea that Ca2+ regulates CL in cardiac pacemaker cells on a beat-to-beat basis, and suggest a more realistic numerical mechanism of this regulation. PMID:24094396

  12. Foxn1 Is Dynamically Regulated in Thymic Epithelial Cells during Embryogenesis and at the Onset of Thymic Involution

    PubMed Central

    O’Neill, Kathy E.; Bredenkamp, Nicholas; Tischner, Christin; Vaidya, Harsh J.; Stenhouse, Frances H.; Peddie, C. Diana; Nowell, Craig S.; Gaskell, Terri; Blackburn, C. Clare

    2016-01-01

    Thymus function requires extensive cross-talk between developing T-cells and the thymic epithelium, which consists of cortical and medullary TEC. The transcription factor FOXN1 is the master regulator of TEC differentiation and function, and declining Foxn1 expression with age results in stereotypical thymic involution. Understanding of the dynamics of Foxn1 expression is, however, limited by a lack of single cell resolution data. We have generated a novel reporter of Foxn1 expression, Foxn1G, to monitor changes in Foxn1 expression during embryogenesis and involution. Our data reveal that early differentiation and maturation of cortical and medullary TEC coincides with precise sub-lineage-specific regulation of Foxn1 expression levels. We further show that initiation of thymic involution is associated with reduced cTEC functionality, and proportional expansion of FOXN1-negative TEC in both cortical and medullary sub-lineages. Cortex-specific down-regulation of Foxn1 between 1 and 3 months of age may therefore be a key driver of the early stages of age-related thymic involution. PMID:26983083

  13. Macrophage dynamics are regulated by local macrophage proliferation and monocyte recruitment in injured pancreas.

    PubMed

    Van Gassen, Naomi; Van Overmeire, Eva; Leuckx, Gunter; Heremans, Yves; De Groef, Sofie; Cai, Ying; Elkrim, Yvon; Gysemans, Conny; Stijlemans, Benoît; Van de Casteele, Mark; De Baetselier, Patrick; De Leu, Nico; Heimberg, Harry; Van Ginderachter, Jo A

    2015-05-01

    Pancreas injury by partial duct ligation (PDL) activates a healing response, encompassing β-cell neogenesis and proliferation. Macrophages (MΦs) were recently shown to promote β-cell proliferation after PDL, but they remain poorly characterized. We assessed myeloid cell diversity and the factors driving myeloid cell dynamics following acute pancreas injury by PDL. In naive and sham-operated pancreas, the myeloid cell compartment consisted mainly of two distinct tissue-resident MΦ types, designated MHC-II(lo) and MHC-II(hi) MΦs, the latter being predominant. MHC-II(lo) and MHC-II(hi) pancreas MΦs differed at the molecular level, with MHC-II(lo) MΦs being more M2-activated. After PDL, there was an early surge of Ly6C(hi) monocyte infiltration in the pancreas, followed by a transient MHC-II(lo) MΦ peak and ultimately a restoration of the MHC-II(hi) MΦ-dominated steady-state equilibrium. These intricate MΦ dynamics in PDL pancreas depended on monocyte recruitment by C-C chemokine receptor 2 and macrophage-colony stimulating factor receptor as well as on macrophage-colony stimulating factor receptor-dependent local MΦ proliferation. Functionally, MHC-II(lo) MΦs were more angiogenic. We further demonstrated that, at least in C-C chemokine receptor 2-KO mice, tissue MΦs, rather than Ly6C(hi) monocyte-derived MΦs, contributed to β-cell proliferation. Together, our study fully characterizes the MΦ subsets in the pancreas and clarifies the complex dynamics of MΦs after PDL injury.

  14. Spontaneous Inward Opening of the Dopamine Transporter Is Triggered by PIP2-Regulated Dynamics of the N-Terminus

    PubMed Central

    2015-01-01

    We present the dynamic mechanism of concerted motions in a full-length molecular model of the human dopamine transporter (hDAT), a member of the neurotransmitter/sodium symporter (NSS) family, involved in state-to-state transitions underlying function. The findings result from an analysis of unbiased atomistic molecular dynamics simulation trajectories (totaling >14 μs) of the hDAT molecule immersed in lipid membrane environments with or without phosphatidylinositol 4,5-biphosphate (PIP2) lipids. The N-terminal region of hDAT (N-term) is shown to have an essential mechanistic role in correlated rearrangements of specific structural motifs relevant to state-to-state transitions in the hDAT. The mechanism involves PIP2-mediated electrostatic interactions between the N-term and the intracellular loops of the transporter molecule. Quantitative analyses of collective motions in the trajectories reveal that these interactions correlate with the inward-opening dynamics of hDAT and are allosterically coupled to the known functional sites of the transporter. The observed large-scale motions are enabled by specific reconfiguration of the network of ionic interactions at the intracellular end of the protein. The isomerization to the inward-facing state in hDAT is accompanied by concomitant movements in the extracellular vestibule and results in the release of an Na+ ion from the Na2 site and destabilization of the substrate dopamine in the primary substrate binding S1 site. The dynamic mechanism emerging from the findings highlights the involvement of the PIP2-regulated interactions between the N-term and the intracellular loop 4 in the functionally relevant conformational transitions that are also similar to those found to underlie state-to-state transitions in the leucine transporter (LeuT), a prototypical bacterial homologue of the NSS. PMID:26255829

  15. Suicide Gene-Engineered Stromal Cells Reveal a Dynamic Regulation of Cancer Metastasis

    NASA Astrophysics Data System (ADS)

    Shen, Keyue; Luk, Samantha; Elman, Jessica; Murray, Ryan; Mukundan, Shilpaa; Parekkadan, Biju

    2016-02-01

    Cancer-associated fibroblasts (CAFs) are a major cancer-promoting component in the tumor microenvironment (TME). The dynamic role of human CAFs in cancer progression has been ill-defined because human CAFs lack a unique marker needed for a cell-specific, promoter-driven knockout model. Here, we developed an engineered human CAF cell line with an inducible suicide gene to enable selective in vivo elimination of human CAFs at different stages of xenograft tumor development, effectively circumventing the challenge of targeting a cell-specific marker. Suicide-engineered CAFs were highly sensitive to apoptosis induction in vitro and in vivo by the addition of a simple small molecule inducer. Selection of timepoints for targeted CAF apoptosis in vivo during the progression of a human breast cancer xenograft model was guided by a bi-phasic host cytokine response that peaked at early timepoints after tumor implantation. Remarkably, we observed that the selective apoptosis of CAFs at these early timepoints did not affect primary tumor growth, but instead increased the presence of tumor-associated macrophages and the metastatic spread of breast cancer cells to the lung and bone. The study revealed a dynamic relationship between CAFs and cancer metastasis that has counter-intuitive ramifications for CAF-targeted therapy.

  16. Suicide Gene-Engineered Stromal Cells Reveal a Dynamic Regulation of Cancer Metastasis

    PubMed Central

    Shen, Keyue; Luk, Samantha; Elman, Jessica; Murray, Ryan; Mukundan, Shilpaa; Parekkadan, Biju

    2016-01-01

    Cancer-associated fibroblasts (CAFs) are a major cancer-promoting component in the tumor microenvironment (TME). The dynamic role of human CAFs in cancer progression has been ill-defined because human CAFs lack a unique marker needed for a cell-specific, promoter-driven knockout model. Here, we developed an engineered human CAF cell line with an inducible suicide gene to enable selective in vivo elimination of human CAFs at different stages of xenograft tumor development, effectively circumventing the challenge of targeting a cell-specific marker. Suicide-engineered CAFs were highly sensitive to apoptosis induction in vitro and in vivo by the addition of a simple small molecule inducer. Selection of timepoints for targeted CAF apoptosis in vivo during the progression of a human breast cancer xenograft model was guided by a bi-phasic host cytokine response that peaked at early timepoints after tumor implantation. Remarkably, we observed that the selective apoptosis of CAFs at these early timepoints did not affect primary tumor growth, but instead increased the presence of tumor-associated macrophages and the metastatic spread of breast cancer cells to the lung and bone. The study revealed a dynamic relationship between CAFs and cancer metastasis that has counter-intuitive ramifications for CAF-targeted therapy. PMID:26893143

  17. Ptch1 and Gli regulate Shh signalling dynamics via multiple mechanisms.

    PubMed

    Cohen, Michael; Kicheva, Anna; Ribeiro, Ana; Blassberg, Robert; Page, Karen M; Barnes, Chris P; Briscoe, James

    2015-01-01

    In the vertebrate neural tube, the morphogen Sonic Hedgehog (Shh) establishes a characteristic pattern of gene expression. Here we quantify the Shh gradient in the developing mouse neural tube and show that while the amplitude of the gradient increases over time, the activity of the pathway transcriptional effectors, Gli proteins, initially increases but later decreases. Computational analysis of the pathway suggests three mechanisms that could contribute to this adaptation: transcriptional upregulation of the inhibitory receptor Ptch1, transcriptional downregulation of Gli and the differential stability of active and inactive Gli isoforms. Consistent with this, Gli2 protein expression is downregulated during neural tube patterning and adaptation continues when the pathway is stimulated downstream of Ptch1. Moreover, the Shh-induced upregulation of Gli2 transcription prevents Gli activity levels from adapting in a different cell type, NIH3T3 fibroblasts, despite the upregulation of Ptch1. Multiple mechanisms therefore contribute to the intracellular dynamics of Shh signalling, resulting in different signalling dynamics in different cell types. PMID:25833741

  18. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism.

  19. Dynamic coupling of regulated binding sites and cycling myosin heads in striated muscle.

    PubMed

    Campbell, Kenneth S

    2014-03-01

    In an activated muscle, binding sites on the thin filament and myosin heads switch frequently between different states. Because the status of the binding sites influences the status of the heads, and vice versa, the binding sites and myosin heads are dynamically coupled. The functional consequences of this coupling were investigated using MyoSim, a new computer model of muscle. MyoSim extends existing models based on Huxley-type distribution techniques by incorporating Ca(2+) activation and cooperative effects. It can also simulate arbitrary cross-bridge schemes set by the researcher. Initial calculations investigated the effects of altering the relative speeds of binding-site and cross-bridge kinetics, and of manipulating cooperative processes. Subsequent tests fitted simulated force records to experimental data recorded using permeabilized myocardial preparations. These calculations suggest that the rate of force development at maximum activation is limited by myosin cycling kinetics, whereas the rate at lower levels of activation is limited by how quickly binding sites become available. Additional tests investigated the behavior of transiently activated cells by driving simulations with experimentally recorded Ca(2+) signals. The unloaded shortening profile of a twitching myocyte could be reproduced using a model with two myosin states, cooperative activation, and strain-dependent kinetics. Collectively, these results demonstrate that dynamic coupling of binding sites and myosin heads is important for contractile function.

  20. Carotid baroreflex regulation of sympathetic nerve activity during dynamic exercise in humans

    NASA Technical Reports Server (NTRS)

    Fadel, P. J.; Ogoh, S.; Watenpaugh, D. E.; Wasmund, W.; Olivencia-Yurvati, A.; Smith, M. L.; Raven, P. B.

    2001-01-01

    We sought to determine whether carotid baroreflex (CBR) control of muscle sympathetic nerve activity (MSNA) was altered during dynamic exercise. In five men and three women, 23.8 +/- 0.7 (SE) yr of age, CBR function was evaluated at rest and during 20 min of arm cycling at 50% peak O(2) uptake using 5-s periods of neck pressure and neck suction. From rest to steady-state arm cycling, mean arterial pressure (MAP) was significantly increased from 90.0 +/- 2.7 to 118.7 +/- 3.6 mmHg and MSNA burst frequency (microneurography at the peroneal nerve) was elevated by 51 +/- 14% (P < 0.01). However, despite the marked increases in MAP and MSNA during exercise, CBR-Delta%MSNA responses elicited by the application of various levels of neck pressure and neck suction ranging from +45 to -80 Torr were not significantly different from those at rest. Furthermore, estimated baroreflex sensitivity for the control of MSNA at rest was the same as during exercise (P = 0.74) across the range of neck chamber pressures. Thus CBR control of sympathetic nerve activity appears to be preserved during moderate-intensity dynamic exercise.

  1. Cross talk between matrix elasticity and mechanical force regulates myoblast traction dynamics.

    PubMed

    Al-Rekabi, Zeinab; Pelling, Andrew E

    2013-12-01

    Growing evidence suggests that critical cellular processes are profoundly influenced by the cross talk between extracellular nanomechanical forces and the material properties of the cellular microenvironment. Although many studies have examined either the effect of nanomechanical forces or the material properties of the microenvironment on biological processes, few have investigated the influence of both. Here, we performed simultaneous atomic force microscopy and traction force microscopy to demonstrate that muscle precursor cells (myoblasts) rapidly generate a significant increase in traction when stimulated with a local 10 nN force. Cells were cultured and nanomechanically stimulated on hydrogel substrates with controllable local elastic moduli varying from ~16-89 kPa, as confirmed with atomic force microscopy. Importantly, cellular traction dynamics in response to nanomechanical stimulation only occurred on substrates that were similar to the elasticity of working muscle tissue (~64-89 kPa) as opposed to substrates mimicking resting tissue (~16-51 kPa). The traction response was also transient, occurring within 30 s, and dissipating by 60 s, during constant nanomechanical stimulation. The observed biophysical dynamics are very much dependent on rho-kinase and myosin-II activity and likely contribute to the physiology of these cells. Our results demonstrate the fundamental ability of cells to integrate nanoscale information in the cellular microenvironment, such as nanomechanical forces and substrate mechanics, during the process of mechanotransduction.

  2. Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling

    PubMed Central

    Kamimoto, Kenji; Kaneko, Kota; Kok, Cindy Yuet-Yin; Okada, Hajime; Miyajima, Atsushi; Itoh, Tohru

    2016-01-01

    Dynamic remodeling of the intrahepatic biliary epithelial tissue plays key roles in liver regeneration, yet the cellular basis for this process remains unclear. We took an unbiased approach based on in vivo clonal labeling and tracking of biliary epithelial cells in the three-dimensional landscape, in combination with mathematical simulation, to understand their mode of proliferation in a mouse liver injury model where the nascent biliary structure formed in a tissue-intrinsic manner. An apparent heterogeneity among biliary epithelial cells was observed: whereas most of the responders that entered the cell cycle upon injury exhibited a limited and tapering growth potential, a select population continued to proliferate, making a major contribution in sustaining the biliary expansion. Our study has highlighted a unique mode of epithelial tissue dynamics, which depends not on a hierarchical system driven by fixated stem cells, but rather, on a stochastically maintained progenitor population with persistent proliferative activity. DOI: http://dx.doi.org/10.7554/eLife.15034.001 PMID:27431614

  3. Subtle balance of tropoelastin molecular shape and flexibility regulates dynamics and hierarchical assembly

    PubMed Central

    Yeo, Giselle C.; Tarakanova, Anna; Baldock, Clair; Wise, Steven G.; Buehler, Markus J.; Weiss, Anthony S.

    2016-01-01

    The assembly of the tropoelastin monomer into elastin is vital for conferring elasticity on blood vessels, skin, and lungs. Tropoelastin has dual needs for flexibility and structure in self-assembly. We explore the structure-dynamics-function interplay, consider the duality of molecular order and disorder, and identify equally significant functional contributions by local and global structures. To study these organizational stratifications, we perturb a key hinge region by expressing an exon that is universally spliced out in human tropoelastins. We find a herniated nanostructure with a displaced C terminus and explain by molecular modeling that flexible helices are replaced with substantial β sheets. We see atypical higher-order cross-linking and inefficient assembly into discontinuous, thick elastic fibers. We explain this dysfunction by correlating local and global structural effects with changes in the molecule’s assembly dynamics. This work has general implications for our understanding of elastomeric proteins, which balance disordered regions with defined structural modules at multiple scales for functional assembly. PMID:26998516

  4. Regulation of Structural Dynamics within a Signal Recognition Particle Promotes Binding of Protein Targeting Substrates*

    PubMed Central

    Gao, Feng; Kight, Alicia D.; Henderson, Rory; Jayanthi, Srinivas; Patel, Parth; Murchison, Marissa; Sharma, Priyanka; Goforth, Robyn L.; Kumar, Thallapuranam Krishnaswamy Suresh; Henry, Ralph L.; Heyes, Colin D.

    2015-01-01

    Protein targeting is critical in all living organisms and involves a signal recognition particle (SRP), an SRP receptor, and a translocase. In co-translational targeting, interactions among these proteins are mediated by the ribosome. In chloroplasts, the light-harvesting chlorophyll-binding protein (LHCP) in the thylakoid membrane is targeted post-translationally without a ribosome. A multidomain chloroplast-specific subunit of the SRP, cpSRP43, is proposed to take on the role of coordinating the sequence of targeting events. Here, we demonstrate that cpSRP43 exhibits significant interdomain dynamics that are reduced upon binding its SRP binding partner, cpSRP54. We showed that the affinity of cpSRP43 for the binding motif of LHCP (L18) increases when cpSRP43 is complexed to the binding motif of cpSRP54 (cpSRP54pep). These results support the conclusion that substrate binding to the chloroplast SRP is modulated by protein structural dynamics in which a major role of cpSRP54 is to improve substrate binding efficiency to the cpSRP. PMID:25918165

  5. Ptch1 and Gli regulate Shh signalling dynamics via multiple mechanisms

    PubMed Central

    Cohen, Michael; Kicheva, Anna; Ribeiro, Ana; Blassberg, Robert; Page, Karen M.; Barnes, Chris P.; Briscoe, James

    2015-01-01

    In the vertebrate neural tube, the morphogen Sonic Hedgehog (Shh) establishes a characteristic pattern of gene expression. Here we quantify the Shh gradient in the developing mouse neural tube and show that while the amplitude of the gradient increases over time, the activity of the pathway transcriptional effectors, Gli proteins, initially increases but later decreases. Computational analysis of the pathway suggests three mechanisms that could contribute to this adaptation: transcriptional upregulation of the inhibitory receptor Ptch1, transcriptional downregulation of Gli and the differential stability of active and inactive Gli isoforms. Consistent with this, Gli2 protein expression is downregulated during neural tube patterning and adaptation continues when the pathway is stimulated downstream of Ptch1. Moreover, the Shh-induced upregulation of Gli2 transcription prevents Gli activity levels from adapting in a different cell type, NIH3T3 fibroblasts, despite the upregulation of Ptch1. Multiple mechanisms therefore contribute to the intracellular dynamics of Shh signalling, resulting in different signalling dynamics in different cell types. PMID:25833741

  6. Subtle balance of tropoelastin molecular shape and flexibility regulates dynamics and hierarchical assembly.

    PubMed

    Yeo, Giselle C; Tarakanova, Anna; Baldock, Clair; Wise, Steven G; Buehler, Markus J; Weiss, Anthony S

    2016-02-01

    The assembly of the tropoelastin monomer into elastin is vital for conferring elasticity on blood vessels, skin, and lungs. Tropoelastin has dual needs for flexibility and structure in self-assembly. We explore the structure-dynamics-function interplay, consider the duality of molecular order and disorder, and identify equally significant functional contributions by local and global structures. To study these organizational stratifications, we perturb a key hinge region by expressing an exon that is universally spliced out in human tropoelastins. We find a herniated nanostructure with a displaced C terminus and explain by molecular modeling that flexible helices are replaced with substantial β sheets. We see atypical higher-order cross-linking and inefficient assembly into discontinuous, thick elastic fibers. We explain this dysfunction by correlating local and global structural effects with changes in the molecule's assembly dynamics. This work has general implications for our understanding of elastomeric proteins, which balance disordered regions with defined structural modules at multiple scales for functional assembly. PMID:26998516

  7. Subtle balance of tropoelastin molecular shape and flexibility regulates dynamics and hierarchical assembly.

    PubMed

    Yeo, Giselle C; Tarakanova, Anna; Baldock, Clair; Wise, Steven G; Buehler, Markus J; Weiss, Anthony S

    2016-02-01

    The assembly of the tropoelastin monomer into elastin is vital for conferring elasticity on blood vessels, skin, and lungs. Tropoelastin has dual needs for flexibility and structure in self-assembly. We explore the structure-dynamics-function interplay, consider the duality of molecular order and disorder, and identify equally significant functional contributions by local and global structures. To study these organizational stratifications, we perturb a key hinge region by expressing an exon that is universally spliced out in human tropoelastins. We find a herniated nanostructure with a displaced C terminus and explain by molecular modeling that flexible helices are replaced with substantial β sheets. We see atypical higher-order cross-linking and inefficient assembly into discontinuous, thick elastic fibers. We explain this dysfunction by correlating local and global structural effects with changes in the molecule's assembly dynamics. This work has general implications for our understanding of elastomeric proteins, which balance disordered regions with defined structural modules at multiple scales for functional assembly.

  8. Nicotinic receptors regulate the dynamic range of dopamine release in vivo.

    PubMed

    Koranda, Jessica L; Cone, Jackson J; McGehee, Daniel S; Roitman, Mitchell F; Beeler, Jeff A; Zhuang, Xiaoxi

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed presynaptically on dopamine axon terminals, and their activation by endogenous acetylcholine from striatal cholinergic interneurons enhances dopamine release both independently of and in concert with dopamine neuron activity. Acute nAChR inactivation is believed to enhance the contrast between low- and high-frequency dopamine cell activity. Although these studies reveal a key role for acute activation and inactivation of nAChRs in striatal microcircuitry, it remains unknown if chronic inactivation/desensitization of nAChRs can alter dopamine release dynamics. Using in vivo cyclic voltammetry in anaesthetized mice, we examined whether chronic inactivation of nAChRs modulates dopamine release across a parametric range of stimulation, varying both frequency and pulse number. Deletion of β2*nAChRs and chronic nicotine exposure greatly diminished dopamine release across the entire range of stimulation parameters. In addition, we observed a facilitation of dopamine release at low frequency and pulse number in wild-type mice that is absent in the β2* knockout and chronic nicotine mice. These data suggest that deletion or chronic desensitization of nAChRs reduces the dynamic range of dopamine release in response to dopamine cell activity, decreasing rather than increasing contrast between high and low dopamine activity.

  9. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism. PMID:26807480

  10. Cross talk between matrix elasticity and mechanical force regulates myoblast traction dynamics

    NASA Astrophysics Data System (ADS)

    Al-Rekabi, Zeinab; Pelling, Andrew E.

    2013-12-01

    Growing evidence suggests that critical cellular processes are profoundly influenced by the cross talk between extracellular nanomechanical forces and the material properties of the cellular microenvironment. Although many studies have examined either the effect of nanomechanical forces or the material properties of the microenvironment on biological processes, few have investigated the influence of both. Here, we performed simultaneous atomic force microscopy and traction force microscopy to demonstrate that muscle precursor cells (myoblasts) rapidly generate a significant increase in traction when stimulated with a local 10 nN force. Cells were cultured and nanomechanically stimulated on hydrogel substrates with controllable local elastic moduli varying from ˜16-89 kPa, as confirmed with atomic force microscopy. Importantly, cellular traction dynamics in response to nanomechanical stimulation only occurred on substrates that were similar to the elasticity of working muscle tissue (˜64-89 kPa) as opposed to substrates mimicking resting tissue (˜16-51 kPa). The traction response was also transient, occurring within 30 s, and dissipating by 60 s, during constant nanomechanical stimulation. The observed biophysical dynamics are very much dependent on rho-kinase and myosin-II activity and likely contribute to the physiology of these cells. Our results demonstrate the fundamental ability of cells to integrate nanoscale information in the cellular microenvironment, such as nanomechanical forces and substrate mechanics, during the process of mechanotransduction.

  11. CaM/BAG5/Hsc70 signaling complex dynamically regulates leaf senescence

    PubMed Central

    Li, Luhua; Xing, Yangfei; Chang, Dong; Fang, Shasha; Cui, Boyang; Li, Qi; Wang, Xuejie; Guo, Shang; Yang, Xue; Men, Shuzhen; Shen, Yuequan

    2016-01-01

    Calcium signaling plays an essential role in plant cell physiology, and chaperone-mediated protein folding directly regulates plant programmed cell death. The Arabidopsis thaliana protein AtBAG5 (Bcl-2-associated athanogene 5) is unique in that it contains both a BAG domain capable of binding Hsc70 (Heat shock cognate protein 70) and a characteristic IQ motif that is specific for Ca2+-free CaM (Calmodulin) binding and hence acts as a hub linking calcium signaling and the chaperone system. Here, we determined crystal structures of AtBAG5 alone and in complex with Ca2+-free CaM. Structural and biochemical studies revealed that Ca2+-free CaM and Hsc70 bind AtBAG5 independently, whereas Ca2+-saturated CaM and Hsc70 bind AtBAG5 with negative cooperativity. Further in vivo studies confirmed that AtBAG5 localizes to mitochondria and that its overexpression leads to leaf senescence symptoms including decreased chlorophyll retention and massive ROS production in dark-induced plants. Mutants interfering the CaM/AtBAG5/Hsc70 complex formation leads to different phenotype of leaf senescence. Collectively, we propose that the CaM/AtBAG5/Hsc70 signaling complex plays an important role in regulating plant senescence. PMID:27539741

  12. Novel Inhibitors Complexed with Glutamate Dehydrogenase: ALLOSTERIC REGULATION BY CONTROL OF PROTEIN DYNAMICS

    SciTech Connect

    Li, Ming; Smith, Christopher J.; Walker, Matthew T.; Smith, Thomas J.

    2009-12-01

    Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate using NAD(P){sup +} as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently discovered hyperinsulinism/hyperammonemia disorder showed that the loss of allosteric inhibition of GDH by GTP causes excessive secretion of insulin. Subsequent studies demonstrated that wild-type and hyperinsulinemia/hyperammonemia forms of GDH are inhibited by the green tea polyphenols, epigallocatechin gallate and epicatechin gallate. This was followed by high throughput studies that identified more stable inhibitors, including hexachlorophene, GW5074, and bithionol. Shown here are the structures of GDH complexed with these three compounds. Hexachlorophene forms a ring around the internal cavity in GDH through aromatic stacking interactions between the drug and GDH as well as between the drug molecules themselves. In contrast, GW5074 and bithionol both bind as pairs of stacked compounds at hexameric 2-fold axes between the dimers of subunits. The internal core of GDH contracts when the catalytic cleft closes during enzymatic turnover. None of the drugs cause conformational changes in the contact residues, but all bind to key interfaces involved in this contraction process. Therefore, it seems likely that the drugs inhibit enzymatic turnover by inhibiting this transition. Indeed, this expansion/contraction process may play a major role in the inter-subunit communication and allosteric regulation observed in GDH.

  13. The evolutionary dynamics of major regulators for sexual development among Hymenoptera species

    PubMed Central

    Biewer, Matthias; Schlesinger, Francisca; Hasselmann, Martin

    2015-01-01

    All hymenopteran species, such as bees, wasps and ants, are characterized by the common principle of haplodiploid sex determination in which haploid males arise from unfertilized eggs and females from fertilized eggs. The underlying molecular mechanism has been studied in detail in the western honey bee Apis mellifera, in which the gene complementary sex determiner (csd) acts as primary signal of the sex determining pathway, initiating female development by csd-heterozygotes. Csd arose from gene duplication of the feminizer (fem) gene, a transformer (tra) ortholog, and mediates in conjunction with transformer2 (tra2) sex-specific splicing of fem. Comparative molecular analyses identified fem/tra and its downstream target doublesex (dsx) as conserved unit within the sex determining pathway of holometabolous insects. In this study, we aim to examine evolutionary differences among these key regulators. Our main hypothesis is that sex determining key regulators in Hymenoptera species show signs of coevolution within single phylogenetic lineages. We take advantage of several newly sequenced genomes of bee species to test this hypothesis using bioinformatic approaches. We found evidences that duplications of fem are restricted to certain bee lineages and notable amino acid differences of tra2 between Apis and non-Apis species propose structural changes in Tra2 protein affecting co-regulatory function on target genes. These findings may help to gain deeper insights into the ancestral mode of hymenopteran sex determination and support the common view of the remarkable evolutionary flexibility in this regulatory pathway. PMID:25914717

  14. PAK–PIX interactions regulate adhesion dynamics and membrane protrusion to control neurite outgrowth

    PubMed Central

    Santiago-Medina, Miguel; Gregus, Kelly A.; Gomez, Timothy M.

    2013-01-01

    Summary The roles of P21-activated kinase (PAK) in the regulation of axon outgrowth downstream of extracellular matrix (ECM) proteins are poorly understood. Here we show that PAK1–3 and PIX are expressed in the developing spinal cord and differentially localize to point contacts and filopodial tips within motile growth cones. Using a specific interfering peptide called PAK18, we found that axon outgrowth is robustly stimulated on laminin by partial inhibition of PAK–PIX interactions and PAK function, whereas complete inhibition of PAK function stalls axon outgrowth. Furthermore, modest inhibition of PAK–PIX stimulates the assembly and turnover of growth cone point contacts, whereas strong inhibition over-stabilizes adhesions. Point mutations within PAK confirm the importance of PIX binding. Together our data suggest that regulation of PAK–PIX interactions in growth cones controls neurite outgrowth by influencing the activity of several important mediators of actin filament polymerization and retrograde flow, as well as integrin-dependent adhesion to laminin. PMID:23321640

  15. Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics.

    PubMed

    Le, T L; Yap, A S; Stow, J L

    1999-07-12

    E-Cadherin plays critical roles in many aspects of cell adhesion, epithelial development, and the establishment and maintenance of epithelial polarity. The fate of E-cadherin once it is delivered to the basolateral cell surface, and the mechanisms which govern its participation in adherens junctions, are not well understood. Using surface biotinylation and recycling assays, we observed that some of the cell surface E-cadherin is actively internalized and is then recycled back to the plasma membrane. The pool of E-cadherin undergoing endocytosis and recycling was markedly increased in cells without stable cell-cell contacts, i.e., in preconfluent cells and after cell contacts were disrupted by depletion of extracellular Ca2+, suggesting that endocytic trafficking of E-cadherin is regulated by cell-cell contact. The reformation of cell junctions after replacement of Ca2+ was then found to be inhibited when recycling of endocytosed E-cadherin was disrupted by bafilomycin treatment. The endocytosis and recycling of E-cadherin and of the transferrin receptor were similarly inhibited by potassium depletion and by bafilomycin treatment, and both proteins were accumulated in intracellular compartments by an 18 degrees C temperature block, suggesting that endocytosis may occur via a clathrin-mediated pathway. We conclude that a pool of surface E-cadherin is constantly trafficked through an endocytic, recycling pathway and that this may provide a mechanism for regulating the availability of E-cadherin for junction formation in development, tissue remodeling, and tumorigenesis.

  16. Dynamics of the Transcriptome during Human Spermatogenesis: Predicting the Potential Key Genes Regulating Male Gametes Generation.

    PubMed

    Zhu, Zijue; Li, Chong; Yang, Shi; Tian, Ruhui; Wang, Junlong; Yuan, Qingqing; Dong, Hui; He, Zuping; Wang, Shengyue; Li, Zheng

    2016-01-01

    Many infertile men are the victims of spermatogenesis disorder. However, conventional clinical test could not provide efficient information on the causes of spermatogenesis disorder and guide the doctor how to treat it. More effective diagnosis and treating methods could be developed if the key genes that regulate spermatogenesis were determined. Many works have been done on animal models, while there are few works on human beings due to the limited sample resources. In current work, testis tissues were obtained from 27 patients with obstructive azoospermia via surgery. The combination of Fluorescence Activated Cell Sorting and Magnetic Activated Cell Sorting was chosen as the efficient method to sort typical germ cells during spermatogenesis. RNA Sequencing was carried out to screen the change of transcriptomic profile of the germ cells during spermatogenesis. Differential expressed genes were clustered according to their expression patterns. Gene Ontology annotation, pathway analysis, and Gene Set Enrichment Analysis were carried out on genes with specific expression patterns and the potential key genes such as HOXs, JUN, SP1, and TCF3 which were involved in the regulation of spermatogenesis, with the potential value serve as molecular tools for clinical purpose, were predicted. PMID:26753906

  17. CaM/BAG5/Hsc70 signaling complex dynamically regulates leaf senescence.

    PubMed

    Li, Luhua; Xing, Yangfei; Chang, Dong; Fang, Shasha; Cui, Boyang; Li, Qi; Wang, Xuejie; Guo, Shang; Yang, Xue; Men, Shuzhen; Shen, Yuequan

    2016-01-01

    Calcium signaling plays an essential role in plant cell physiology, and chaperone-mediated protein folding directly regulates plant programmed cell death. The Arabidopsis thaliana protein AtBAG5 (Bcl-2-associated athanogene 5) is unique in that it contains both a BAG domain capable of binding Hsc70 (Heat shock cognate protein 70) and a characteristic IQ motif that is specific for Ca(2+)-free CaM (Calmodulin) binding and hence acts as a hub linking calcium signaling and the chaperone system. Here, we determined crystal structures of AtBAG5 alone and in complex with Ca(2+)-free CaM. Structural and biochemical studies revealed that Ca(2+)-free CaM and Hsc70 bind AtBAG5 independently, whereas Ca(2+)-saturated CaM and Hsc70 bind AtBAG5 with negative cooperativity. Further in vivo studies confirmed that AtBAG5 localizes to mitochondria and that its overexpression leads to leaf senescence symptoms including decreased chlorophyll retention and massive ROS production in dark-induced plants. Mutants interfering the CaM/AtBAG5/Hsc70 complex formation leads to different phenotype of leaf senescence. Collectively, we propose that the CaM/AtBAG5/Hsc70 signaling complex plays an important role in regulating plant senescence. PMID:27539741

  18. Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval

    NASA Astrophysics Data System (ADS)

    Tennant, Jonathan P.; Mannion, Philip D.; Upchurch, Paul

    2016-09-01

    Reconstructing deep time trends in biodiversity remains a central goal for palaeobiologists, but our understanding of the magnitude and tempo of extinctions and radiations is confounded by uneven sampling of the fossil record. In particular, the Jurassic/Cretaceous (J/K) boundary, 145 million years ago, remains poorly understood, despite an apparent minor extinction and the radiation of numerous important clades. Here we apply a rigorous subsampling approach to a comprehensive tetrapod fossil occurrence data set to assess the group's macroevolutionary dynamics through the J/K transition. Although much of the signal is exclusively European, almost every higher tetrapod group was affected by a substantial decline across the boundary, culminating in the extinction of several important clades and the ecological release and radiation of numerous modern tetrapod groups. Variation in eustatic sea level was the primary driver of these patterns, controlling biodiversity through availability of shallow marine environments and via allopatric speciation on land.

  19. Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval.

    PubMed

    Tennant, Jonathan P; Mannion, Philip D; Upchurch, Paul

    2016-01-01

    Reconstructing deep time trends in biodiversity remains a central goal for palaeobiologists, but our understanding of the magnitude and tempo of extinctions and radiations is confounded by uneven sampling of the fossil record. In particular, the Jurassic/Cretaceous (J/K) boundary, 145 million years ago, remains poorly understood, despite an apparent minor extinction and the radiation of numerous important clades. Here we apply a rigorous subsampling approach to a comprehensive tetrapod fossil occurrence data set to assess the group's macroevolutionary dynamics through the J/K transition. Although much of the signal is exclusively European, almost every higher tetrapod group was affected by a substantial decline across the boundary, culminating in the extinction of several important clades and the ecological release and radiation of numerous modern tetrapod groups. Variation in eustatic sea level was the primary driver of these patterns, controlling biodiversity through availability of shallow marine environments and via allopatric speciation on land. PMID:27587285

  20. Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval.

    PubMed

    Tennant, Jonathan P; Mannion, Philip D; Upchurch, Paul

    2016-09-02

    Reconstructing deep time trends in biodiversity remains a central goal for palaeobiologists, but our understanding of the magnitude and tempo of extinctions and radiations is confounded by uneven sampling of the fossil record. In particular, the Jurassic/Cretaceous (J/K) boundary, 145 million years ago, remains poorly understood, despite an apparent minor extinction and the radiation of numerous important clades. Here we apply a rigorous subsampling approach to a comprehensive tetrapod fossil occurrence data set to assess the group's macroevolutionary dynamics through the J/K transition. Although much of the signal is exclusively European, almost every higher tetrapod group was affected by a substantial decline across the boundary, culminating in the extinction of several important clades and the ecological release and radiation of numerous modern tetrapod groups. Variation in eustatic sea level was the primary driver of these patterns, controlling biodiversity through availability of shallow marine environments and via allopatric speciation on land.

  1. Subcellular Dynamics of Multifunctional Protein Regulation: Mechanisms of GAPDH Intracellular Translocation

    PubMed Central

    Sirover, Michael A.

    2012-01-01

    Multidimensional proteins such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) exhibit distinct activities unrelated to their originally identified functions. Apart from glycolysis, GAPDH participates in iron metabolism, membrane trafficking, histone biosynthesis, the maintenance of DNA integrity and receptor mediated cell signaling. Further, multifunctional proteins exhibit distinct changes in their subcellular localization reflecting their new activities. As such, GAPDH is not only a cytosolic protein but is localized in the membrane, the nucleus, polysomes, the ER and the Golgi. In addition, although the initial subcellular localizations of multifunctional proteins may be of significance, dynamic changes in intracellular distribution may occur as a consequence of those new activities. As such, regulatory mechanisms may exist through which cells control multifunctional protein expression as a function of their subcellular localization. The temporal sequence through which subcellular translocation and the acquisition of new GAPDH functions is considered as well as post-translational modification as a basis for its intracellular transport. PMID:22388977

  2. Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval

    PubMed Central

    Tennant, Jonathan P.; Mannion, Philip D.; Upchurch, Paul

    2016-01-01

    Reconstructing deep time trends in biodiversity remains a central goal for palaeobiologists, but our understanding of the magnitude and tempo of extinctions and radiations is confounded by uneven sampling of the fossil record. In particular, the Jurassic/Cretaceous (J/K) boundary, 145 million years ago, remains poorly understood, despite an apparent minor extinction and the radiation of numerous important clades. Here we apply a rigorous subsampling approach to a comprehensive tetrapod fossil occurrence data set to assess the group's macroevolutionary dynamics through the J/K transition. Although much of the signal is exclusively European, almost every higher tetrapod group was affected by a substantial decline across the boundary, culminating in the extinction of several important clades and the ecological release and radiation of numerous modern tetrapod groups. Variation in eustatic sea level was the primary driver of these patterns, controlling biodiversity through availability of shallow marine environments and via allopatric speciation on land. PMID:27587285

  3. Dynamic Regulation of Histone Modifications in Xenopus Oocytes through Histone Exchange

    PubMed Central

    Stewart, M. David; Sommerville, John; Wong, Jiemin

    2006-01-01

    Histone H3 lysine 9 (H3K9) methylation has broad roles in transcriptional repression, gene silencing, maintenance of heterochromatin, and epigenetic inheritance of heterochromatin. Using Xenopus laevis oocytes, we have previously shown that targeting G9a, an H3K9 histone methyltransferase, to chromatin increases H3K9 methylation and consequently represses transcription. Here we report that treatment with trichostatin A induces histone acetylation and is sufficient to activate transcription repressed by G9a, and this activation is accompanied by a reduction in dimethyl H3K9 (H3K9me2). We tested the possibility that the reduction in H3K9me2 was due to the replacement of methylated H3 with unmethylated H3.3. Surprisingly, we found that both free H3 and H3.3 are continually exchanged with chromatin-associated histones. This dynamic exchange of chromatin-associated H3 with free H3/H3.3 was not affected by alterations in transcriptional activity, elongation, acetylation, H3K9 methylation, or DNA replication. In support of this continual histone exchange model, we show that maintenance of H3K9 methylation at a specific site requires the continual presence of an H3K9 histone methyltransferase. Upon dissociation of the methyltransferase, H3K9 methylation decreases. Taken together, our data suggest that chromatin-associated and non-chromatin-associated histones are continually exchanged in the Xenopus oocyte, creating a highly dynamic chromatin environment. PMID:16943430

  4. Cryptochrome 1 regulates the circadian clock through dynamic interactions with the BMAL1 C-terminus

    PubMed Central

    Sammons, Patrick J.; Khan, Sanjoy K.; Parsley, Nicole C.; Ramanathan, Chidambaram; Lee, Hsiau-Wei; Liu, Andrew C.; Partch, Carrie L.

    2015-01-01

    The molecular circadian clock in mammals is generated from transcriptional activation by the bHLH-PAS transcription factor CLOCK–BMAL1 and subsequent repression by PERIOD and CRYPTOCHROME (CRY). The mechanism by which CRYs repress CLOCK–BMAL1 to close the negative feedback loop and generate 24-hour timing is not known. Here we show that CRY1 competes for binding with coactivators to the intrinsically unstructured C-terminal transactivation domain (TAD) of BMAL1 to establish a functional switch between activation and repression of CLOCK–BMAL1. Mutations within the TAD that alter affinities for coregulators change the balance of repression and activation to consequently change intrinsic circadian period or eliminate cycling altogether. Our results suggest that CRY1 fulfills its role as an essential circadian repressor by sequestering the TAD from coactivators and highlight regulation of the BMAL1 TAD as a critical mechanism for establishing circadian timing. PMID:25961797

  5. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop.

    PubMed

    Fenalti, Gustavo; Law, Ruby H P; Buckle, Ashley M; Langendorf, Christopher; Tuck, Kellie; Rosado, Carlos J; Faux, Noel G; Mahmood, Khalid; Hampe, Christiane S; Banga, J Paul; Wilce, Matthew; Schmidberger, Jason; Rossjohn, Jamie; El-Kabbani, Ossama; Pike, Robert N; Smith, A Ian; Mackay, Ian R; Rowley, Merrill J; Whisstock, James C

    2007-04-01

    Gamma-aminobutyric acid (GABA) is synthesized by two isoforms of the pyridoxal 5'-phosphate-dependent enzyme glutamic acid decarboxylase (GAD65 and GAD67). GAD67 is constitutively active and is responsible for basal GABA production. In contrast, GAD65, an autoantigen in type I diabetes, is transiently activated in response to the demand for extra GABA in neurotransmission, and cycles between an active holo form and an inactive apo form. We have determined the crystal structures of N-terminal truncations of both GAD isoforms. The structure of GAD67 shows a tethered loop covering the active site, providing a catalytic environment that sustains GABA production. In contrast, the same catalytic loop is inherently mobile in GAD65. Kinetic studies suggest that mobility in the catalytic loop promotes a side reaction that results in cofactor release and GAD65 autoinactivation. These data reveal the molecular basis for regulation of GABA homeostasis.

  6. Centrosome maturation requires YB-1 to regulate dynamic instability of microtubules for nucleus reassembly

    PubMed Central

    Kawaguchi, Atsushi; Asaka, Masamitsu N.; Matsumoto, Ken; Nagata, Kyosuke

    2015-01-01

    Microtubule formation from the centrosome increases dramatically at the onset of mitosis. This process is termed centrosome maturation. However, regulatory mechanisms of microtubule assembly from the centrosome in response to the centrosome maturation are largely unknown. Here we found that YB-1, a cellular cancer susceptibility protein, is required for the centrosome maturation. Phosphorylated YB-1 accumulated in the centrosome at mitotic phase. By YB-1 knockdown, microtubules were found detached from the centrosome at telophase and an abnormal nuclear shape called nuclear lobulation was found due to defective reassembly of nuclear envelope by mis-localization of non-centrosomal microtubules. In conclusion, we propose that YB-1 is important for the assembly of centrosomal microtubule array for temporal and spatial regulation of microtubules. PMID:25740062

  7. Regulation of Aedes aegypti Population Dynamics in Field Systems: Quantifying Direct and Delayed Density Dependence

    PubMed Central

    Walsh, Rachael K.; Aguilar, Cristobal L.; Facchinelli, Luca; Valerio, Laura; Ramsey, Janine M.; Scott, Thomas W.; Lloyd, Alun L.; Gould, Fred

    2013-01-01

    Transgenic strains of Aedes aegypti have been engineered to help control transmission of dengue virus. Although resources have been invested in developing the strains, we lack data on the ecology of mosquitoes that could impact the success of this approach. Although studies of intra-specific competition have been conducted using Ae. aegypti larvae, none of these studies examine mixed age cohorts at densities that occur in the field, with natural nutrient levels. Experiments were conducted in Mexico to determine the impact of direct and delayed density dependence on Ae. aegypti populations. Natural water, food, and larval densities were used to estimate the impacts of density dependence on larval survival, development, and adult body size. Direct and delayed density-dependent factors had a significant impact on larval survival, larval development, and adult body size. These results indicate that control methods attempting to reduce mosquito populations may be counteracted by density-dependent population regulation. PMID:23669230

  8. RAB-11 Permissively Regulates Spindle Alignment by Modulating Metaphase Microtubule Dynamics in Caenorhabditis elegans Early Embryos

    PubMed Central

    Zhang, Haining; Squirrell, Jayne M.

    2008-01-01

    Alignment of the mitotic spindle along a preformed axis of polarity is crucial for generating cell diversity in many organisms, yet little is known about the role of the endomembrane system in this process. RAB-11 is a small GTPase enriched in recycling endosomes. When we depleted RAB-11 by RNAi in Caenorhabditis elegans, the spindle of the one-cell embryo failed to align along the axis of polarity in metaphase and underwent violent movements in anaphase. The distance between astral microtubules ends and the anterior cortex was significantly increased in rab-11(RNAi) embryos specifically during metaphase, possibly accounting for the observed spindle alignment defects. Additionally, we found that normal ER morphology requires functional RAB-11, particularly during metaphase. We hypothesize that RAB-11, in conjunction with the ER, acts to regulate cell cycle–specific changes in astral microtubule length to ensure proper spindle alignment in Caenorhabditis elegans early embryos. PMID:18385514

  9. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability

    PubMed Central

    Wu, Howard G; Miyamoto, Yohsuke R; Castro, Luis Nicolas Gonzalez; Ölveczky, Bence P; Smith, Maurice A

    2015-01-01

    Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning. PMID:24413700

  10. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability.

    PubMed

    Wu, Howard G; Miyamoto, Yohsuke R; Gonzalez Castro, Luis Nicolas; Ölveczky, Bence P; Smith, Maurice A

    2014-02-01

    Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning.

  11. Renal nerves dynamically regulate renal blood flow in conscious, healthy rabbits.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter R; Zucker, Irving H

    2016-01-15

    Despite significant clinical interest in renal denervation as a therapy, the role of the renal nerves in the physiological regulation of renal blood flow (RBF) remains debated. We hypothesized that the renal nerves physiologically regulate beat-to-beat RBF variability (RBFV). This was tested in chronically instrumented, healthy rabbits that underwent either bilateral surgical renal denervation (DDNx) or a sham denervation procedure (INV). Artifact-free segments of RBF and arterial pressure (AP) from calmly resting, conscious rabbits were used to extract RBFV and AP variability for time-domain, frequency-domain, and nonlinear analysis. Whereas steady-state measures of RBF, AP, and heart rate did not statistically differ between groups, DDNx rabbits had greater RBFV than INV rabbits. AP-RBF transfer function analysis showed greater admittance gain in DDNx rabbits than in INV rabbits, particularly in the low-frequency (LF) range where systemic sympathetic vasomotion gives rise to AP oscillations. In the LF range, INV rabbits exhibited a negative AP-RBF phase shift and low coherence, consistent with the presence of an active control system. Neither of these features were present in the LF range of DDNx rabbits, which showed no phase shift and high coherence, consistent with a passive, Ohm's law pressure-flow relationship. Renal denervation did not significantly affect nonlinear RBFV measures of chaos, self-affinity, or complexity, nor did it significantly affect glomerular filtration rate or extracellular fluid volume. Cumulatively, these data suggest that the renal nerves mediate LF renal sympathetic vasomotion, which buffers RBF from LF AP oscillations in conscious, healthy rabbits. PMID:26538235

  12. Sex, age and hunger regulate behavioral prioritization through dynamic modulation of chemoreceptor expression

    PubMed Central

    Ryan, Deborah A.; Miller, Renee M.; Lee, KyungHwa; Neal, Scott; Fagan, Kelli A.; Sengupta, Piali; Portman, Douglas S.

    2014-01-01

    Background Adaptive behavioral prioritization requires flexible outputs from fixed neural circuits. In C. elegans, the prioritization of feeding vs. mate-searching depends on biological sex (males will abandon food to search for mates, while hermaphrodites will not) as well as developmental stage and feeding status. Previously, we found that males are less attracted than hermaphrodites to the food-associated odorant diacetyl, suggesting that sensory modulation may contribute to behavioral prioritization. Results We find that somatic sex acts cell-autonomously to reconfigure the olfactory circuit by regulating a key chemoreceptor, odr-10, in the AWA neurons. Moreover, we find that odr-10 has a significant role in food detection, the regulation of which contributes to sex differences in behavioral prioritization. Overexpression of odr-10 increases male food attraction and decreases off-food exploration; conversely, odr-10 loss impairs food taxis in both sexes. In larvae, both sexes prioritize feeding over exploration; correspondingly, the sexes have equal odr-10 expression and food attraction. Food deprivation, which transiently favors feeding over exploration in adult males, increases male food attraction by activating odr-10 expression. Furthermore, the weak expression of odr-10 in well-fed adult males has important adaptive value, allowing males to efficiently locate mates in a patchy food environment. Conclusions We find that modulated expression of a single chemoreceptor plays a key role in naturally occurring variation in the prioritization of feeding and exploration. The convergence of three independent regulatory inputs—somatic sex, age, and feeding status—on chemoreceptor expression highlights sensory function as a key source of plasticity in neural circuits. PMID:25438941

  13. α-SNAP regulates dynamic, on-site assembly and calcium selectivity of Orai1 channels

    PubMed Central

    Li, Peiyao; Miao, Yong; Dani, Adish; Vig, Monika

    2016-01-01

    Orai1 forms a highly calcium-selective pore of the calcium release activated channel, and α-SNAP is necessary for its function. Here we show that α-SNAP regulates on-site assembly of Orai1 dimers into calcium-selective multimers. We find that Orai1 is a dimer in resting primary mouse embryonic fibroblasts but displays variable stoichiometry in the plasma membrane of store-depleted cells. Remarkably, α-SNAP depletion induces formation of higher-order Orai1 oligomers, which permeate significant levels of sodium via Orai1 channels. Sodium permeation in α-SNAP–deficient cells cannot be corrected by tethering multiple Stim1 domains to Orai1 C-terminal tail, demonstrating that α-SNAP regulates functional assembly and calcium selectivity of Orai1 multimers independently of Stim1 levels. Fluorescence nanoscopy reveals sustained coassociation of α-SNAP with Stim1 and Orai1, and α-SNAP–depleted cells show faster and less constrained mobility of Orai1 within ER-PM junctions, suggesting Orai1 and Stim1 coentrapment without stable contacts. Furthermore, α-SNAP depletion significantly reduces fluorescence resonance energy transfer between Stim1 and Orai1 N-terminus but not C-terminus. Taken together, these data reveal a unique role of α-SNAP in the on-site functional assembly of Orai1 subunits and suggest that this process may, in part, involve enabling crucial low-affinity interactions between Orai1 N-terminus and Stim1. PMID:27335124

  14. N2 fixation in marine heterotrophic bacteria: dynamics of environmental and molecular regulation.

    PubMed Central

    Coyer, J A; Cabello-Pasini, A; Swift, H; Alberte, R S

    1996-01-01

    Molecular and immunological techniques were used to examine N2 fixation in a ubiquitous heterotrophic marine bacterium, the facultative anaerobic Vibrio natriegens. When batch cultures were shifted from aerobic N-replete to anaerobic N-deplete conditions, transcriptional and post-translational regulation of N2 fixation was observed. Levels of nifHDK mRNA encoding the nitrogenase enzyme were highest at 140 min postshift and undetectable between 6 and 9 h later. Immunologically determined levels of nitrogenase enzyme (Fe protein) were highest between 6 and 15 h postshift, and nitrogenase activity peaked between 6 and 9 h postshift, declining by a factor of 2 after 12-15 h. Unlike their regulation in cyanobacteria, Fe protein and nitrogenase activity were present when nifHDK mRNA was absent in V. natriegens, indicating that nitrogenase is stored and stable under anaerobic conditions. Both nifHDK mRNA and Fe protein disappeared within 40 min after cultures were shifted from N2-fixing conditions (anaerobic, N-deplete) to non- N2-fixing conditions (aerobic, N-enriched) but reappeared when shifted to conditions favoring N2 fixation. Thus, unlike other N2-fixing heterotrophic bacteria, nitrogenase must be resynthesized after aerobic exposure in V. natriegens. Immunological detection based on immunoblot (Western) analysis and immunogold labeling correlated positively with nitrogenase activity; no localization of nitrogenase was observed. Because V. natriegens continues to fix N2 for many hours after anaerobic induction, this species may play an important role in providing "new" nitrogen in marine ecosystems. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:11607653

  15. α-SNAP regulates dynamic, on-site assembly and calcium selectivity of Orai1 channels.

    PubMed

    Li, Peiyao; Miao, Yong; Dani, Adish; Vig, Monika

    2016-08-15

    Orai1 forms a highly calcium-selective pore of the calcium release activated channel, and α-SNAP is necessary for its function. Here we show that α-SNAP regulates on-site assembly of Orai1 dimers into calcium-selective multimers. We find that Orai1 is a dimer in resting primary mouse embryonic fibroblasts but displays variable stoichiometry in the plasma membrane of store-depleted cells. Remarkably, α-SNAP depletion induces formation of higher-order Orai1 oligomers, which permeate significant levels of sodium via Orai1 channels. Sodium permeation in α-SNAP-deficient cells cannot be corrected by tethering multiple Stim1 domains to Orai1 C-terminal tail, demonstrating that α-SNAP regulates functional assembly and calcium selectivity of Orai1 multimers independently of Stim1 levels. Fluorescence nanoscopy reveals sustained coassociation of α-SNAP with Stim1 and Orai1, and α-SNAP-depleted cells show faster and less constrained mobility of Orai1 within ER-PM junctions, suggesting Orai1 and Stim1 coentrapment without stable contacts. Furthermore, α-SNAP depletion significantly reduces fluorescence resonance energy transfer between Stim1 and Orai1 N-terminus but not C-terminus. Taken together, these data reveal a unique role of α-SNAP in the on-site functional assembly of Orai1 subunits and suggest that this process may, in part, involve enabling crucial low-affinity interactions between Orai1 N-terminus and Stim1.

  16. Dynamic Processes in Regulation and Some Implications for Biofeedback and Biobehavioral Interventions

    PubMed Central

    Lehrer, Paul; Eddie, David

    2013-01-01

    Systems theory has long been applied in psychology, biology, and sociology. This paper applies newer methods of control systems modeling to the assessment of system stability in health and disease. Control systems can be characterized as open or closed systems with feedback loops. Feedback produces oscillatory activity, and the complexity of naturally occurring oscillatory patterns reflects the multiplicity of feedback mechanisms, such that many mechanisms operate simultaneously to control the system. Unstable systems, often associated with poor health, are characterized by absence of oscillation, random noise, or a very simple pattern of oscillation. This modeling approach can be applied to a diverse range of phenomena, including cardiovascular and brain activity, mood and thermal regulation, and social system stability. External system stressors such as disease, psychological stress, injury, or interpersonal conflict may perturb a system, yet simultaneously stimulate oscillatory processes and exercise control mechanisms. Resonance can occur in systems with negative feedback loops, causing high-amplitude oscillations at a single frequency. Resonance effects can be used to strengthen modulatory oscillations, but may obscure other information and control mechanisms, and weaken system stability. Positive as well as negative feedback loops are important for system function and stability. Examples are presented of oscillatory processes in heart rate variability, and regulation of autonomic, thermal, pancreatic and central nervous system processes, as well as in social/organizational systems such as marriages and business organizations. Resonance in negative feedback loops can help stimulate oscillations and exercise control reflexes, but also can deprive the system of important information. Empirical hypotheses derived from this approach are presented, including that moderate stress may enhance health and functioning. PMID:23572244

  17. Renal nerves dynamically regulate renal blood flow in conscious, healthy rabbits.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter R; Zucker, Irving H

    2016-01-15

    Despite significant clinical interest in renal denervation as a therapy, the role of the renal nerves in the physiological regulation of renal blood flow (RBF) remains debated. We hypothesized that the renal nerves physiologically regulate beat-to-beat RBF variability (RBFV). This was tested in chronically instrumented, healthy rabbits that underwent either bilateral surgical renal denervation (DDNx) or a sham denervation procedure (INV). Artifact-free segments of RBF and arterial pressure (AP) from calmly resting, conscious rabbits were used to extract RBFV and AP variability for time-domain, frequency-domain, and nonlinear analysis. Whereas steady-state measures of RBF, AP, and heart rate did not statistically differ between groups, DDNx rabbits had greater RBFV than INV rabbits. AP-RBF transfer function analysis showed greater admittance gain in DDNx rabbits than in INV rabbits, particularly in the low-frequency (LF) range where systemic sympathetic vasomotion gives rise to AP oscillations. In the LF range, INV rabbits exhibited a negative AP-RBF phase shift and low coherence, consistent with the presence of an active control system. Neither of these features were present in the LF range of DDNx rabbits, which showed no phase shift and high coherence, consistent with a passive, Ohm's law pressure-flow relationship. Renal denervation did not significantly affect nonlinear RBFV measures of chaos, self-affinity, or complexity, nor did it significantly affect glomerular filtration rate or extracellular fluid volume. Cumulatively, these data suggest that the renal nerves mediate LF renal sympathetic vasomotion, which buffers RBF from LF AP oscillations in conscious, healthy rabbits.

  18. A mast-seeding desert shrub regulates population dynamics and behavior of its heteromyid dispersers.

    PubMed

    Auger, Janene; Meyer, Susan E; Jenkins, Stephen H

    2016-04-01

    Granivorous rodent populations in deserts are primarily regulated through precipitation-driven resource pulses rather than pulses associated with mast-seeding, a pattern more common in mesic habitats. We studied heteromyid responses to mast-seeding in the desert shrub blackbrush (Coleogyne ramosissima), a regionally dominant species in the Mojave-Great Basin Desert transition zone. In a 5-year study at Arches National Park, Utah, USA, we quantified spatiotemporal variation in seed resources in mast and intermast years in blackbrush-dominated and mixed desert vegetation and measured responses of Dipodomys ordii (Ord's kangaroo rat) and Perognathus flavescens (plains pocket mouse). In blackbrush-dominated vegetation, blackbrush seeds comprised >79% of seed production in a mast year, but 0% in the first postmast year. Kangaroo rat abundance in blackbrush-dominated vegetation was highest in the mast year, declined sharply at the end of the first postmast summer, and then remained at low levels for 3 years. Pocket mouse abundance was not as strongly associated with blackbrush seed production. In mixed desert vegetation, kangaroo rat abundance was higher and more uniform through time. Kangaroo rats excluded the smaller pocket mice from resource-rich patches including a pipeline disturbance and also moved their home range centers closer to this disturbance in a year of low blackbrush seed production. Home range size for kangaroo rats was unrelated to seed resource density in the mast year, but resource-poor home ranges were larger (P < 0.001) in the first postmast year, when resources were limiting. Blackbrush seeds are higher in protein and fat but lower in carbohydrates than the more highly preferred seeds of Indian ricegrass (Achnatherum hymenoides) and have similar energy value per unit of handling time. Kangaroo rats cached seeds of these two species in similar spatial configurations, implying that they were equally valued as stored food resources. Blackbrush mast

  19. A mast-seeding desert shrub regulates population dynamics and behavior of its heteromyid dispersers.

    PubMed

    Auger, Janene; Meyer, Susan E; Jenkins, Stephen H

    2016-04-01

    Granivorous rodent populations in deserts are primarily regulated through precipitation-driven resource pulses rather than pulses associated with mast-seeding, a pattern more common in mesic habitats. We studied heteromyid responses to mast-seeding in the desert shrub blackbrush (Coleogyne ramosissima), a regionally dominant species in the Mojave-Great Basin Desert transition zone. In a 5-year study at Arches National Park, Utah, USA, we quantified spatiotemporal variation in seed resources in mast and intermast years in blackbrush-dominated and mixed desert vegetation and measured responses of Dipodomys ordii (Ord's kangaroo rat) and Perognathus flavescens (plains pocket mouse). In blackbrush-dominated vegetation, blackbrush seeds comprised >79% of seed production in a mast year, but 0% in the first postmast year. Kangaroo rat abundance in blackbrush-dominated vegetation was highest in the mast year, declined sharply at the end of the first postmast summer, and then remained at low levels for 3 years. Pocket mouse abundance was not as strongly associated with blackbrush seed production. In mixed desert vegetation, kangaroo rat abundance was higher and more uniform through time. Kangaroo rats excluded the smaller pocket mice from resource-rich patches including a pipeline disturbance and also moved their home range centers closer to this disturbance in a year of low blackbrush seed production. Home range size for kangaroo rats was unrelated to seed resource density in the mast year, but resource-poor home ranges were larger (P < 0.001) in the first postmast year, when resources were limiting. Blackbrush seeds are higher in protein and fat but lower in carbohydrates than the more highly preferred seeds of Indian ricegrass (Achnatherum hymenoides) and have similar energy value per unit of handling time. Kangaroo rats cached seeds of these two species in similar spatial configurations, implying that they were equally valued as stored food resources. Blackbrush mast

  20. Energetic modeling and single-molecule verification of dynamic regulation on receptor complexes by actin corrals and lipid raft domains

    NASA Astrophysics Data System (ADS)

    Lin, Chien Y.; Huang, Jung Y.; Lo, Leu-Wei

    2014-12-01

    We developed an energetic model by integrating the generalized Langevin equation with the Cahn-Hilliard equation to simulate the diffusive behaviors of receptor proteins in the plasma membrane of a living cell. Simulation results are presented to elaborate the confinement effects from actin corrals and protein-induced lipid domains. Single-molecule tracking data of epidermal growth factor receptors (EGFR) acquired on live HeLa cells agree with the simulation results and the mechanism that controls the diffusion of single-molecule receptors is clarified. We discovered that after ligand binding, EGFR molecules move into lipid nanodomains. The transition rates between different diffusion states of liganded EGFR molecules are regulated by the lipid domains. Our method successfully captures dynamic interactions of receptors at the single-molecule level and provides insight into the functional architecture of both the diffusing EGFR molecules and their local cellular environment.

  1. Energetic modeling and single-molecule verification of dynamic regulation on receptor complexes by actin corrals and lipid raft domains.

    PubMed

    Lin, Chien Y; Huang, Jung Y; Lo, Leu-Wei

    2014-12-01

    We developed an energetic model by integrating the generalized Langevin equation with the Cahn-Hilliard equation to simulate the diffusive behaviors of receptor proteins in the plasma membrane of a living cell. Simulation results are presented to elaborate the confinement effects from actin corrals and protein-induced lipid domains. Single-molecule tracking data of epidermal growth factor receptors (EGFR) acquired on live HeLa cells agree with the simulation results and the mechanism that controls the diffusion of single-molecule receptors is clarified. We discovered that after ligand binding, EGFR molecules move into lipid nanodomains. The transition rates between different diffusion states of liganded EGFR molecules are regulated by the lipid domains. Our method successfully captures dynamic interactions of receptors at the single-molecule level and provides insight into the functional architecture of both the diffusing EGFR molecules and their local cellular environment. PMID:25481171

  2. Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated

    PubMed Central

    1993-01-01

    We have used laser optical trapping and nanometer-level motion analysis to investigate the cytoskeletal associations and surface dynamics of beta 1 integrin, a cell-substrate adhesion molecule, on the dorsal surfaces of migrating fibroblast cells. A single-beam optical gradient trap (laser tweezers) was used to restrain polystyrene beads conjugated with anti-beta 1 integrin mAbs and place them at desired locations on the cell exterior. This technique was used to demonstrate a spatial difference in integrin-cytoskeleton interactions in migrating cells. We found a distinct increase in the stable attachment of beads, and subsequent rearward flow, on the lamellipodia of locomoting cells compared with the retracting portions. Complementary to the enhanced linkage of integrin at the cell lamellipodium, the membrane was more deformable at the rear versus the front of moving cells while nonmotile cells did not exhibit this asymmetry in membrane architecture. Video microscopy and nanometer-precision tracking routines were used to study the surface dynamics of integrin on the lamellipodia of migrating cells by monitoring the displacements of colloidal gold particles coated with anti-beta 1 integrin mAbs. Small gold aggregates were rapidly transported preferentially to the leading edge of the lamellipod where they resumed diffusion restricted along the edge. This fast transport was characterized by brief periods of directed movement ("jumps") having an instantaneous velocity of 37 +/- 15 microns/min (SD), separated by periods of diffusion. In contrast, larger aggregates of gold particles and the large latex beads underwent slow, steady rearward movement (0.85 +/- 0.44 micron/min) (SD) at a rate similar to that reported for other capping events and for migration of these cells. Cell lines containing mutated beta 1 integrins were used to show that the cytoplasmic domain is essential for an asymmetry in attachment of integrin to the underlying cytoskeletal network and is also

  3. Networks and their applications to biological systems: From ecological dynamics to gene regulation

    NASA Astrophysics Data System (ADS)

    Sevim, Volkan

    networks. The ability to evolve robust mutants is known to depend on the network architecture. We seek answers to the following questions. How do the dynamical properties and state-space structures of networks with high and low robustness differ? Does selection operate on the global dynamical behavior of the networks? What kind of state-space structures are favored by selection? First, we analytically show that the model random networks we use are intrinsically chaotic, i.e., they do not undergo an order-to-chaos phase transition with increasing connectivity, unlike their variants found in the literature. Then, we provide a damage propagation analysis and an extensive statistical analysis of state spaces of these model networks to show that the change in their dynamical properties due to stabilizing selection for optimal phenotypes is minor. Most notably, the networks that are most robust to both mutations and noise are highly chaotic. Certain properties of chaotic networks, such as being able to produce large attractor basins, can be useful for maintaining a stable gene-expression pattern. Our findings indicate that conventional measures of stability, such as the damage-propagation rate, do not provide much information about robustness to mutations or noise in model gene regulatory networks.

  4. Carbon and nitrogen dynamics across a bedrock-regulated subarctic pH gradient

    NASA Astrophysics Data System (ADS)

    Tomczyk, N.; Heim, E. W.; Sadowsky, J.; Remiszewski, K.; Varner, R. K.; Bryce, J. G.; Frey, S. D.

    2014-12-01

    Bedrock geochemistry has been shown to influence landscape evolution due to nutrient limitation on primary production. There may also be less direct interactions between bedrock-derived chemicals and ecosystem function. Effects of calcium (Ca) and pH on soil carbon (C) and nitrogen (N) cycling have been shown in acid impacted forests o f North America. Understanding intrinsic factors that affect C and nutrient dynamics in subarctic ecosystems has implications for how these ecosystems will respond to a changing climate. How the soil microbial community allocates enzymes to acquire resources from the environment can indicate whether a system is nutrient or energy limited. This study examined whether bedrock geochemistry exerts pressure on nutrient cycles in the overlying soils. In thin, weakly developed soils, bedrock is the primary mineral material and is a source of vital nutrients. Nitrogen (N) and C are not derived from bedrock, but their cycling is still affected by reactions with geologically-derived chemicals. Our study sites near Abisko, Sweden (~68°N) were selected adjacent to five distinct bedrock outcrops (quartzite, slate, carbonate, and two different metasedimenty units). All sites were at a similar elevation (~700 m a.s.l.) and had similar vegetation (subarctic heath). Nutrient concentrations in bedrock and soils were measured in addition to soil microbial biomass and extracellular enzyme activity. We found a statistically significant correlation between soil Ca concentrations and soil pH (r = 0.88, p < 0.01). There were also significant relationships between soil pH and the ratio of C-acquiring to N-acquiring enzyme activity (r = -0.89, p < 0.01), soil pH and soil C-to-N ratio (r = -0.76, p < 0.01), and the ratio of C-acquiring to N-acquiring enzyme activity and soil C-to-N ratio (r = 0.78, p < 0.01). These results suggest that soil Ca concentrations influence C and N cycling dynamics in these soils through their effect on soil pH.

  5. Dynamic membrane depolarization is an early regulator of ependymoglial cell response to spinal cord injury in axolotl.

    PubMed

    Sabin, Keith; Santos-Ferreira, Tiago; Essig, Jaclyn; Rudasill, Sarah; Echeverri, Karen

    2015-12-01

    Salamanders, such as the Mexican axolotl, are some of the few vertebrates fortunate in their ability to regenerate diverse structures after injury. Unlike mammals they are able to regenerate a fully functional spinal cord after injury. However, the molecular circuitry required to initiate a pro-regenerative response after spinal cord injury is not well understood. To address this question we developed a spinal cord injury model in axolotls and used in vivo imaging of labeled ependymoglial cells to characterize the response of these cells to injury. Using in vivo imaging of ion sensitive dyes we identified that spinal cord injury induces a rapid and dynamic change in the resting membrane potential of ependymoglial cells. Prolonged depolarization of ependymoglial cells after injury inhibits ependymoglial cell proliferation and subsequent axon regeneration. Using transcriptional profiling we identified c-Fos as a key voltage sensitive early response gene that is expressed specifically in the ependymoglial cells after injury. This data establishes that dynamic changes in the membrane potential after injury are essential for regulating the specific spatiotemporal expression of c-Fos that is critical for promoting faithful spinal cord regeneration in axolotl.

  6. CRMP4 and CRMP2 Interact to Coordinate Cytoskeleton Dynamics, Regulating Growth Cone Development and Axon Elongation.

    PubMed

    Tan, Minghui; Cha, Caihui; Ye, Yongheng; Zhang, Jifeng; Li, Sumei; Wu, Fengming; Gong, Sitang; Guo, Guoqing

    2015-01-01

    Cytoskeleton dynamics are critical phenomena that underpin many fundamental cellular processes. Collapsin response mediator proteins (CRMPs) are highly expressed in the developing nervous system, mediating growth cone guidance, neuronal polarity, and axonal elongation. However, whether and how CRMPs associate with microtubules and actin coordinated cytoskeletal dynamics remain unknown. In this study, we demonstrated that CRMP2 and CRMP4 interacted with tubulin and actin in vitro and colocalized with the cytoskeleton in the transition-zone in developing growth cones. CRMP2 and CRMP4 also interacted with one another coordinately to promote growth cone development and axonal elongation. Genetic silencing of CRMP2 enhanced, whereas overexpression of CRMP2 suppressed, the inhibitory effects of CRMP4 knockdown on axonal development. In addition, knockdown of CRMP2 or overexpression of truncated CRMP2 reversed the promoting effect of CRMP4. With the overexpression of truncated CRMP2 or CRMP4 lacking the cytoskeleton interaction domain, the promoting effect of CRMP was suppressed. These data suggest a model in which CRMP2 and CRMP4 form complexes to bridge microtubules and actin and thus work cooperatively to regulate growth cone development and axonal elongation.

  7. Dynamic membrane depolarization is an early regulator of ependymoglial cell response to spinal cord injury in axolotl.

    PubMed

    Sabin, Keith; Santos-Ferreira, Tiago; Essig, Jaclyn; Rudasill, Sarah; Echeverri, Karen

    2015-12-01

    Salamanders, such as the Mexican axolotl, are some of the few vertebrates fortunate in their ability to regenerate diverse structures after injury. Unlike mammals they are able to regenerate a fully functional spinal cord after injury. However, the molecular circuitry required to initiate a pro-regenerative response after spinal cord injury is not well understood. To address this question we developed a spinal cord injury model in axolotls and used in vivo imaging of labeled ependymoglial cells to characterize the response of these cells to injury. Using in vivo imaging of ion sensitive dyes we identified that spinal cord injury induces a rapid and dynamic change in the resting membrane potential of ependymoglial cells. Prolonged depolarization of ependymoglial cells after injury inhibits ependymoglial cell proliferation and subsequent axon regeneration. Using transcriptional profiling we identified c-Fos as a key voltage sensitive early response gene that is expressed specifically in the ependymoglial cells after injury. This data establishes that dynamic changes in the membrane potential after injury are essential for regulating the specific spatiotemporal expression of c-Fos that is critical for promoting faithful spinal cord regeneration in axolotl. PMID:26477559

  8. TTBK2 with EB1/3 regulates microtubule dynamics in migrating cells through KIF2A phosphorylation

    PubMed Central

    Watanabe, Takashi; Kakeno, Mai; Matsui, Toshinori; Sugiyama, Ikuko; Arimura, Nariko; Matsuzawa, Kenji; Shirahige, Aya; Ishidate, Fumiyoshi; Nishioka, Tomoki; Taya, Shinichiro; Hoshino, Mikio

    2015-01-01

    Microtubules (MTs) play critical roles in various cellular events, including cell migration. End-binding proteins (EBs) accumulate at the ends of growing MTs and regulate MT end dynamics by recruiting other plus end–tracking proteins (+TIPs). However, how EBs contribute to MT dynamics through +TIPs remains elusive. We focused on tau-tubulin kinase 2 (TTBK2) as an EB1/3-binding kinase and confirmed that TTBK2 acted as a +TIP. We identified MT-depolymerizing kinesin KIF2A as a novel substrate of TTBK2. TTBK2 phosphorylated KIF2A at S135 in intact cells in an EB1/3-dependent fashion and inactivated its MT-depolymerizing activity in vitro. TTBK2 depletion reduced MT lifetime (facilitated shrinkage and suppressed rescue) and impaired HeLa cell migration, and these phenotypes were partially restored by KIF2A co-depletion. Expression of nonphosphorylatable KIF2A, but not wild-type KIF2A, reduced MT lifetime and slowed down the cell migration. These findings indicate that TTBK2 with EB1/3 phosphorylates KIF2A and antagonizes KIF2A-induced depolymerization at MT plus ends for cell migration. PMID:26323690

  9. Comparative transcriptomics reveals RhoE as a novel regulator of actin dynamics in bone-resorbing osteoclasts.

    PubMed

    Georgess, Dan; Mazzorana, Marlène; Terrado, José; Delprat, Christine; Chamot, Christophe; Guasch, Rosa M; Pérez-Roger, Ignacio; Jurdic, Pierre; Machuca-Gayet, Irma

    2014-02-01

    The function of osteoclasts (OCs), multinucleated giant cells (MGCs) of the monocytic lineage, is bone resorption. To resorb bone, OCs form podosomes. These are actin-rich adhesive structures that pattern into rings that drive OC migration and into "sealing-zones" (SZs) that confine the resorption lacuna. Although changes in actin dynamics during podosome patterning have been documented, the mechanisms that regulate these changes are largely unknown. From human monocytic precursors, we differentiated MGCs that express OC degradation enzymes but are unable to resorb the mineral matrix. We demonstrated that, despite exhibiting bona fide podosomes, these cells presented dysfunctional SZs. We then performed two-step differential transcriptomic profiling of bone-resorbing OCs versus nonresorbing MGCs to generate a list of genes implicated in bone resorption. From this list of candidate genes, we investigated the role of Rho/Rnd3. Using primary RhoE-deficient OCs, we demonstrated that RhoE is indispensable for OC migration and bone resorption by maintaining fast actin turnover in podosomes. We further showed that RhoE activates podosome component cofilin by inhibiting its Rock-mediated phosphorylation. We conclude that the RhoE-Rock-cofilin pathway, by promoting podosome dynamics and patterning, is central for OC migration, SZ formation, and, ultimately, bone resorption.

  10. Comparative transcriptomics reveals RhoE as a novel regulator of actin dynamics in bone-resorbing osteoclasts

    PubMed Central

    Georgess, Dan; Mazzorana, Marlène; Terrado, José; Delprat, Christine; Chamot, Christophe; Guasch, Rosa M.; Pérez-Roger, Ignacio; Jurdic, Pierre; Machuca-Gayet, Irma

    2014-01-01

    The function of osteoclasts (OCs), multinucleated giant cells (MGCs) of the monocytic lineage, is bone resorption. To resorb bone, OCs form podosomes. These are actin-rich adhesive structures that pattern into rings that drive OC migration and into “sealing-zones” (SZs) that confine the resorption lacuna. Although changes in actin dynamics during podosome patterning have been documented, the mechanisms that regulate these changes are largely unknown. From human monocytic precursors, we differentiated MGCs that express OC degradation enzymes but are unable to resorb the mineral matrix. We demonstrated that, despite exhibiting bona fide podosomes, these cells presented dysfunctional SZs. We then performed two-step differential transcriptomic profiling of bone-resorbing OCs versus nonresorbing MGCs to generate a list of genes implicated in bone resorption. From this list of candidate genes, we investigated the role of Rho/Rnd3. Using primary RhoE-deficient OCs, we demonstrated that RhoE is indispensable for OC migration and bone resorption by maintaining fast actin turnover in podosomes. We further showed that RhoE activates podosome component cofilin by inhibiting its Rock-mediated phosphorylation. We conclude that the RhoE-Rock-cofilin pathway, by promoting podosome dynamics and patterning, is central for OC migration, SZ formation, and, ultimately, bone resorption. PMID:24284899

  11. Reciprocal Regulation of Mitochondrial Dynamics and Calcium Signaling in Astrocyte Processes

    PubMed Central

    Jackson, Joshua G.

    2015-01-01

    We recently showed that inhibition of neuronal activity, glutamate uptake, or reversed-Na+/Ca2+-exchange with TTX, TFB-TBOA, or YM-244769, respectively, increases mitochondrial mobility in astrocytic processes. In the present study, we examined the interrelationships between mitochondrial mobility and Ca2+ signaling in astrocyte processes in organotypic cultures of rat hippocampus. All of the treatments that increase mitochondrial mobility decreased basal Ca2+. As recently reported, we observed spontaneous Ca2+ spikes with half-lives of ∼1 s that spread ∼6 μm and are almost abolished by a TRPA1 channel antagonist. Virtually all of these Ca2+ spikes overlap mitochondria (98%), and 62% of mitochondria are overlapped by these spikes. Although tetrodotoxin, TFB-TBOA, or YM-244769 increased Ca2+ signaling, the specific effects on peak, decay time, and/or frequency were different. To more specifically manipulate mitochondrial mobility, we explored the effects of Miro motor adaptor proteins. We show that Miro1 and Miro2 are both expressed in astrocytes and that exogenous expression of Ca2+-insensitive Miro mutants (KK) nearly doubles the percentage of mobile mitochondria. Expression of Miro1KK had a modest effect on the frequency of these Ca2+ spikes but nearly doubled the decay half-life. The mitochondrial proton ionophore, FCCP, caused a large, prolonged increase in cytosolic Ca2+ followed by an increase in the decay time and the spread of the spontaneous Ca2+ spikes. Photo-ablation of mitochondria in individual astrocyte processes has similar effects on Ca2+. Together, these studies show that Ca2+ regulates mitochondrial mobility, and mitochondria in turn regulate Ca2+ signals in astrocyte processes. SIGNIFICANCE STATEMENT In neurons, the movement and positioning of mitochondria at sites of elevated activity are important for matching local energy and Ca2+ buffering capacity. Previously, we demonstrated that mitochondria are immobilized in astrocytes in response

  12. Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules.

    PubMed

    Röhl, Alina; Wengler, Daniela; Madl, Tobias; Lagleder, Stephan; Tippel, Franziska; Herrmann, Monika; Hendrix, Jelle; Richter, Klaus; Hack, Gordon; Schmid, Andreas B; Kessler, Horst; Lamb, Don C; Buchner, Johannes

    2015-01-01

    The cochaperone Sti1/Hop physically links Hsp70 and Hsp90. The protein exhibits one binding site for Hsp90 (TPR2A) and two binding sites for Hsp70 (TPR1 and TPR2B). How these sites are used remained enigmatic. Here we show that Sti1 is a dynamic, elongated protein that consists of a flexible N-terminal module, a long linker and a rigid C-terminal module. Binding of Hsp90 and Hsp70 regulates the Sti1 conformation with Hsp90 binding determining with which site Hsp70 interacts. Without Hsp90, Sti1 is more compact and TPR2B is the high-affinity interaction site for Hsp70. In the presence of Hsp90, Hsp70 shifts its preference. The linker connecting the two modules is crucial for the interaction with Hsp70 and for client activation in vivo. Our results suggest that the interaction of Hsp70 with Sti1 is tightly regulated by Hsp90 to assure transfer of Hsp70 between the modules, as a prerequisite for the efficient client handover.

  13. Hsp90 regulates the dynamics of its cochaperone Sti1 and the transfer of Hsp70 between modules

    PubMed Central

    Röhl, Alina; Wengler, Daniela; Madl, Tobias; Lagleder, Stephan; Tippel, Franziska; Herrmann, Monika; Hendrix, Jelle; Richter, Klaus; Hack, Gordon; Schmid, Andreas B.; Kessler, Horst; Lamb, Don C.; Buchner, Johannes

    2015-01-01

    The cochaperone Sti1/Hop physically links Hsp70 and Hsp90. The protein exhibits one binding site for Hsp90 (TPR2A) and two binding sites for Hsp70 (TPR1 and TPR2B). How these sites are used remained enigmatic. Here we show that Sti1 is a dynamic, elongated protein that consists of a flexible N-terminal module, a long linker and a rigid C-terminal module. Binding of Hsp90 and Hsp70 regulates the Sti1 conformation with Hsp90 binding determining with which site Hsp70 interacts. Without Hsp90, Sti1 is more compact and TPR2B is the high-affinity interaction site for Hsp70. In the presence of Hsp90, Hsp70 shifts its preference. The linker connecting the two modules is crucial for the interaction with Hsp70 and for client activation in vivo. Our results suggest that the interaction of Hsp70 with Sti1 is tightly regulated by Hsp90 to assure transfer of Hsp70 between the modules, as a prerequisite for the efficient client handover. PMID:25851214

  14. Live Imaging of Influenza Infection of the Trachea Reveals Dynamic Regulation of CD8+ T Cell Motility by Antigen

    PubMed Central

    Lambert Emo, Kris; Hyun, Young-min; Barilla, Christopher; Gerber, Scott; Fowell, Deborah; Kim, Minsoo

    2016-01-01

    During a primary influenza infection, cytotoxic CD8+ T cells need to infiltrate the infected airways and engage virus-infected epithelial cells. The factors that regulate T cell motility in the infected airway tissue are not well known. To more precisely study T cell infiltration of the airways, we developed an experimental model system using the trachea as a site where live imaging can be performed. CD8+ T cell motility was dynamic with marked changes in motility on different days of the infection. In particular, significant changes in average cell velocity and confinement were evident on days 8–10 during which the T cells abruptly but transiently increase velocity on day 9. Experiments to distinguish whether infection itself or antigen affect motility revealed that it is antigen, not active infection per se that likely affects these changes as blockade of peptide/MHC resulted in increased velocity. These observations demonstrate that influenza tracheitis provides a robust experimental foundation to study molecular regulation of T cell motility during acute virus infection. PMID:27644089

  15. A novel role for the CBF3 kinetochore–scaffold complex in regulating septin dynamics and cytokinesis

    PubMed Central

    Gillis, Amethyst N.; Thomas, Scott; Hansen, Scott D.; Kaplan, Kenneth B.

    2005-01-01

    In budding yeast, the kinetochore scaffold complex centromere binding factor 3 (CBF3) is required to form kinetochores on centromere DNA and to allow proper chromosome segregation. We have previously shown that SKP1 and SGT1 balance the assembly and turnover of CBF3 complexes, a cycle that we suggest is independent of its role in chromosome segregation (Rodrigo-Brenni, M.C., S. Thomas, D.C. Bouck, and K.B. Kaplan. 2004. Mol. Biol. Cell. 15:3366–3378). We provide evidence that this cycle contributes to a second, kinetochore-independent function of CBF3. In this study, we show that inhibiting the assembly of CBF3 causes disorganized septins and defects in cell polarity that give rise to cytokinesis failures. Specifically, we show that septin ring separation and disassembly is delayed in anaphase, suggesting that CBF3 regulates septin dynamics. Only mutations that affect the CBF3 cycle, and not mutants in outer kinetochore subunits, cause defects in septins. These results demonstrate a novel role for CBF3 in regulating cytokinesis, a role that is reminiscent of passenger proteins. Consistent with this possibility, we find that CBF3 interacts with Bir1p, the homologue of the passenger protein Survivin. Mutants in Bir1p similarly affect septin organization, leading us to propose that CBF3 and Bir1p act as passenger proteins to coordinate chromosome segregation with cytokinesis. PMID:16330709

  16. Systems dynamic modeling of a guard cell Cl- channel mutant uncovers an emergent homeostatic network regulating stomatal transpiration.

    PubMed

    Wang, Yizhou; Papanatsiou, Maria; Eisenach, Cornelia; Karnik, Rucha; Williams, Mary; Hills, Adrian; Lew, Virgilio L; Blatt, Michael R

    2012-12-01

    Stomata account for much of the 70% of global water usage associated with agriculture and have a profound impact on the water and carbon cycles of the world. Stomata have long been modeled mathematically, but until now, no systems analysis of a plant cell has yielded detail sufficient to guide phenotypic and mutational analysis. Here, we demonstrate the predictive power of a systems dynamic model in Arabidopsis (Arabidopsis thaliana) to explain the paradoxical suppression of channels that facilitate K(+) uptake, slowing stomatal opening, by mutation of the SLAC1 anion channel, which mediates solute loss for closure. The model showed how anion accumulation in the mutant suppressed the H(+) load on the cytosol and promoted Ca(2+) influx to elevate cytosolic pH (pH(i)) and free cytosolic Ca(2+) concentration ([Ca(2+)](i)), in turn regulating the K(+) channels. We have confirmed these predictions, measuring pH(i) and [Ca(2+)](i) in vivo, and report that experimental manipulation of pH(i) and [Ca(2+)](i) is sufficient to recover K(+) channel activities and accelerate stomatal opening in the slac1 mutant. Thus, we uncover a previously unrecognized signaling network that ameliorates the effects of the slac1 mutant on transpiration by regulating the K(+) channels. Additionally, these findings underscore the importance of H(+)-coupled anion transport for pH(i) homeostasis.

  17. Structure and dynamics of polymyxin-resistance-associated response regulator PmrA in complex with promoter DNA

    PubMed Central

    Lou, Yuan-Chao; Weng, Tsai-Hsuan; Li, Yi-Chuan; Kao, Yi-Fen; Lin, Wei-Feng; Peng, Hwei-Ling; Chou, Shan-Ho; Hsiao, Chwan-Deng; Chen, Chinpan

    2015-01-01

    PmrA, an OmpR/PhoB family response regulator, manages genes for antibiotic resistance. Phosphorylation of OmpR/PhoB response regulator induces the formation of a symmetric dimer in the N-terminal receiver domain (REC), promoting two C-terminal DNA-binding domains (DBDs) to recognize promoter DNA to elicit adaptive responses. Recently, determination of the KdpE–DNA complex structure revealed an REC–DBD interface in the upstream protomer that may be necessary for transcription activation. Here, we report the 3.2-Å-resolution crystal structure of the PmrA–DNA complex, which reveals a similar yet different REC–DBD interface. However, NMR studies show that in the DNA-bound state, two domains tumble separately and an REC–DBD interaction is transiently populated in solution. Reporter gene analyses of PmrA variants with altered interface residues suggest that the interface is not crucial for supporting gene expression. We propose that REC–DBD interdomain dynamics and the DBD–DBD interface help PmrA interact with RNA polymerase holoenzyme to activate downstream gene transcription. PMID:26564787

  18. Phosphorylation of Ser-180 of rat aquaporin-4 shows marginal affect on regulation of water permeability: molecular dynamics study.

    PubMed

    Sachdeva, Ruchi; Singh, Balvinder

    2014-04-01

    Water permeation through rat aquaporin-4 (rAQP4), predominantly found in mammalian brain is regulated by phosphorylation of Ser-180. The present study has been carried out to understand the structural mechanism of regulation of water permeability across the channel. Molecular dynamics (MD) simulations have been carried out to investigate the structural changes caused due to phosphorylation of Ser-180 in the tetrameric assembly of rAQP4 along with predicted C-terminal region (255-323). The interactions involving opposite charges are observed between cytoplasmic loops and the C-terminal region during MD simulations. This results in movement of C-terminal region of rAQP4 towards the cytoplasmic mouth of water channel. Despite this movement, there was a gap between C-terminal region and cytoplasmic mouth of the channel through which water molecules were able to gain entry into the channel. The interactions between C-terminus and loop D of neighboring monomers in a tetrameric assembly appear to prevent the complete closure of cytoplasmic mouth of the water channel. Further, the rates of water permeation through phosphorylated and unphosphorylated rAQP4 have also been compared. The simulation studies showed a continuous movement of water in a single file across pore of unphosphorylated as well as phosphorylated rAQP4. PMID:23651078

  19. Oscillatory control of Delta-like1 in cell interactions regulates dynamic gene expression and tissue morphogenesis

    PubMed Central

    Shimojo, Hiromi; Isomura, Akihiro; Ohtsuka, Toshiyuki; Kori, Hiroshi; Miyachi, Hitoshi; Kageyama, Ryoichiro

    2016-01-01

    Notch signaling regulates tissue morphogenesis through cell–cell interactions. The Notch effectors Hes1 and Hes7 are expressed in an oscillatory manner and regulate developmental processes such as neurogenesis and somitogenesis, respectively. Expression of the mRNA for the mouse Notch ligand Delta-like1 (Dll1) is also oscillatory. However, the dynamics of Dll1 protein expression are controversial, and their functional significance is unknown. Here, we developed a live-imaging system and found that Dll1 protein expression oscillated in neural progenitors and presomitic mesoderm cells. Notably, when Dll1 expression was accelerated or delayed by shortening or elongating the Dll1 gene, Dll1 oscillations became severely dampened or quenched at intermediate levels, as modeled mathematically. Under this condition, Hes1 and Hes7 oscillations were also dampened. In the presomitic mesoderm, steady Dll1 expression led to severe fusion of somites and their derivatives, such as vertebrae and ribs. In the developing brain, steady Dll1 expression inhibited proliferation of neural progenitors and accelerated neurogenesis, whereas optogenetic induction of Dll1 oscillation efficiently maintained neural progenitors. These results indicate that the appropriate timing of Dll1 expression is critical for the oscillatory networks and suggest the functional significance of oscillatory cell–cell interactions in tissue morphogenesis. PMID:26728556

  20. Dynamics of hyporheic flow and heat transport across a bed-to-bank continuum in a large regulated river

    NASA Astrophysics Data System (ADS)

    Gerecht, Katelyn E.; Cardenas, M. Bayani; Guswa, Andrew J.; Sawyer, Audrey H.; Nowinski, John D.; Swanson, Travis E.

    2011-03-01

    The lower Colorado River (LCR) near Austin, Texas is heavily regulated for hydropower generation. Daily water releases from a dam located 23 km upstream of our study site in the LCR caused the stage to fluctuate by more than 1.5 m about a mean depth of 1.3 m. As a result, the river switches from gaining to losing over a dam storage-release cycle, driving exchange between river water and groundwater. We assessed the hydrologic impacts of this by simultaneous temperature and head monitoring across a bed-to-bank transect. River-groundwater exchange flux is largest close to the bank and decreases away from the bank. Correspondingly, both the depth of the hyporheic zone and the exchange time are largest close to the bank. Adjacent to the bank, the streambed head response is hysteretic, with the hysteresis disappearing with distance from the bank, indicating that transient bank storage affects the magnitude and direction of vertical exchange close to the bank. Pronounced changes in streambed temperature are observed down to a meter. When the river stage is high, which coincides with when the river is coldest, downward advection of heat from a previous cycles' warm-water pulse warms the streambed. When the river is at its lowest stage but warmest temperature, upwelling groundwater cools the streambed. Future research should consider and focus on a more thorough understanding of the impacts of dam regulation on the hydrologic, thermal, biogeochemical, and ecologic dynamics of rivers and their hyporheic and riparian zones.

  1. Live Imaging of Influenza Infection of the Trachea Reveals Dynamic Regulation of CD8+ T Cell Motility by Antigen.

    PubMed

    Lambert Emo, Kris; Hyun, Young-Min; Reilly, Emma; Barilla, Christopher; Gerber, Scott; Fowell, Deborah; Kim, Minsoo; Topham, David J

    2016-09-01

    During a primary influenza infection, cytotoxic CD8+ T cells need to infiltrate the infected airways and engage virus-infected epithelial cells. The factors that regulate T cell motility in the infected airway tissue are not well known. To more precisely study T cell infiltration of the airways, we developed an experimental model system using the trachea as a site where live imaging can be performed. CD8+ T cell motility was dynamic with marked changes in motility on different days of the infection. In particular, significant changes in average cell velocity and confinement were evident on days 8-10 during which the T cells abruptly but transiently increase velocity on day 9. Experiments to distinguish whether infection itself or antigen affect motility revealed that it is antigen, not active infection per se that likely affects these changes as blockade of peptide/MHC resulted in increased velocity. These observations demonstrate that influenza tracheitis provides a robust experimental foundation to study molecular regulation of T cell motility during acute virus infection. PMID:27644089

  2. Regulation of the ROS response dynamics and organization to PDGF motile stimuli revealed by single nanoparticle imaging.

    PubMed

    Bouzigues, Cedric I; Nguyên, Thanh-Liêm; Ramodiharilafy, Rivo; Claeson, Amy; Tharaux, Pierre-Louis; Alexandrou, Antigoni

    2014-05-22

    Although reactive oxygen species (ROS) are better known for their harmful effects, more recently, H2O2, one of the ROS, was also found to act as a secondary messenger. However, details of spatiotemporal organization of specific signaling pathways that H2O2 is involved in are currently missing. Here, we use single nanoparticle imaging to measure the local H2O2 concentration and reveal regulation of the ROS response dynamics and organization to platelet-derived growth factor (PDGF) signaling. We demonstrate that H2O2 production is controlled by PDGFR kinase activity and EGFR transactivation, requires a persistent stimulation, and is regulated by membrane receptor diffusion. This temporal filtering is impaired in cancer cells, which may determine their pathological migration. H2O2 subcellular mapping reveals that an external PDGF gradient induces an amplification-free asymmetric H2O2 concentration profile. These results support a general model for the control of signal transduction based only on membrane receptor diffusion and second messenger degradation.

  3. Flow regulation manipulates contemporary seasonal sedimentary dynamics in the reservoir fluctuation zone of the Three Gorges Reservoir, China.

    PubMed

    Tang, Qiang; Bao, Yuhai; He, Xiubin; Fu, Bojie; Collins, Adrian L; Zhang, Xinbao

    2016-04-01

    Since the launch of the Three Gorges Dam on the Yangtze River, a distinctive reservoir fluctuation zone has been created and significantly modified by regular dam operations. Sediment redistribution within this artificial landscape differs substantially from that in natural fluvial riparian zones, due to a specific hydrological regime comprising steps of water impoundment with increasing magnitudes and seasonal water level fluctuation holding a range of sediment fluxes. This study reinterpreted post-dam sedimentary dynamics in the reservoir fluctuation zone by stratigraphy determination of a 345-cm long sediment core, and related it to impact of the hydrological regime. Seasonality in absolute grain-size composition of suspended sediment was applied as a methodological basis for stratigraphic differentiation. Sedimentary laminations with relatively higher proportions of sandy fractions were ascribed to sedimentation during the dry season when proximal subsurface bank erosion dominates source contributions, while stratigraphy with a lower proportion of sandy fractions is possibly contributed by sedimentation during the wet season when distal upstream surface erosion prevails. Chronology determination revealed non-linear and high annual sedimentation rates ranging from 21.7 to 152.1cm/yr. Although channel geomorphology may primarily determine the spatial extent of sedimentation, seasonal sedimentary dynamics was predominantly governed by the frequency, magnitude, and duration of flooding. Summer inundation by natural floods with enhanced sediment loads produced from upstream basins induced higher sedimentation rates than water impoundment during the dry season when distal sediment supply was limited. We thus conclude that flow regulation manipulates contemporary seasonal sedimentary dynamics in the reservoir fluctuation zone, though little impact on total sediment retention rate was detected. Ongoing reductions in flow and sediment supply under human disturbance may

  4. Flow regulation manipulates contemporary seasonal sedimentary dynamics in the reservoir fluctuation zone of the Three Gorges Reservoir, China.

    PubMed

    Tang, Qiang; Bao, Yuhai; He, Xiubin; Fu, Bojie; Collins, Adrian L; Zhang, Xinbao

    2016-04-01

    Since the launch of the Three Gorges Dam on the Yangtze River, a distinctive reservoir fluctuation zone has been created and significantly modified by regular dam operations. Sediment redistribution within this artificial landscape differs substantially from that in natural fluvial riparian zones, due to a specific hydrological regime comprising steps of water impoundment with increasing magnitudes and seasonal water level fluctuation holding a range of sediment fluxes. This study reinterpreted post-dam sedimentary dynamics in the reservoir fluctuation zone by stratigraphy determination of a 345-cm long sediment core, and related it to impact of the hydrological regime. Seasonality in absolute grain-size composition of suspended sediment was applied as a methodological basis for stratigraphic differentiation. Sedimentary laminations with relatively higher proportions of sandy fractions were ascribed to sedimentation during the dry season when proximal subsurface bank erosion dominates source contributions, while stratigraphy with a lower proportion of sandy fractions is possibly contributed by sedimentation during the wet season when distal upstream surface erosion prevails. Chronology determination revealed non-linear and high annual sedimentation rates ranging from 21.7 to 152.1cm/yr. Although channel geomorphology may primarily determine the spatial extent of sedimentation, seasonal sedimentary dynamics was predominantly governed by the frequency, magnitude, and duration of flooding. Summer inundation by natural floods with enhanced sediment loads produced from upstream basins induced higher sedimentation rates than water impoundment during the dry season when distal sediment supply was limited. We thus conclude that flow regulation manipulates contemporary seasonal sedimentary dynamics in the reservoir fluctuation zone, though little impact on total sediment retention rate was detected. Ongoing reductions in flow and sediment supply under human disturbance may

  5. Dynamic formation of ER-PM junctions presents a lipid phosphatase to regulate phosphoinositides.

    PubMed

    Dickson, Eamonn J; Jensen, Jill B; Vivas, Oscar; Kruse, Martin; Traynor-Kaplan, Alexis E; Hille, Bertil

    2016-04-11

    Endoplasmic reticulum-plasma membrane (ER-PM) contact sites play an integral role in cellular processes such as excitation-contraction coupling and store-operated calcium entry (SOCE). Another ER-PM assembly is one tethered by the extended synaptotagmins (E-Syt). We have discovered that at steady state, E-Syt2 positions the ER and Sac1, an integral ER membrane lipid phosphatase, in discrete ER-PM junctions. Here, Sac1 participates in phosphoinositide homeostasis by limiting PM phosphatidylinositol 4-phosphate (PI(4)P), the precursor of PI(4,5)P2 Activation of G protein-coupled receptors that deplete PM PI(4,5)P2disrupts E-Syt2-mediated ER-PM junctions, reducing Sac1's access to the PM and permitting PM PI(4)P and PI(4,5)P2to recover. Conversely, depletion of ER luminal calcium and subsequent activation of SOCE increases the amount of Sac1 in contact with the PM, depleting PM PI(4)P. Thus, the dynamic presence of Sac1 at ER-PM contact sites allows it to act as a cellular sensor and controller of PM phosphoinositides, thereby influencing many PM processes. PMID:27044890

  6. The dynamic shape factor of sodium chloride nanoparticles as regulated by drying rate

    SciTech Connect

    Wang, Z.; Lewis, E.; King, S. M.; Freney, E.; Rosenoern, T.; Smith, M.; Chen, Q.; Kuwata, M.; Poschl, U.; Wang, W.; Buseck, P. R.; Martin, S. T.

    2010-09-01

    The influence of drying rate on the dynamic shape factor {chi} of NaCl particles was investigated. The drying rate at the efflorescence relative humidity (ERH) of 45% was controlled in a laminar flow tube and varied from 5.5 {+-} 0.9 to 101 {+-} 3 RH s{sup -1} at ERH, where RH represents one percent unit of relative humidity. Dry particles having mobility diameters of 23-84 nm were studied, corresponding to aqueous particles of 37-129 nm at the RH (57%) prior to drying. At each mobility diameter and drying rate, the critical supersaturation of cloud-condensation activation was also measured. The mobility diameter and the critical supersaturation were combined in an analysis to determine the value of {chi}. The measured values varied from 1.02 to 1.26. For fixed particle diameter the {chi} value decreased with increasing drying rate. For fixed drying rate, a maximum occurred in {chi} between 35- and 40-nm dry mobility diameter, with a lower {chi} for both smaller and larger particles. The results of this study, in conjunction with the introduced apparatus for obtaining quantified drying rates, can allow the continued development of a more detailed understanding of the morphology of submicron salt particles, with the potential for the follow-on development of quantitative modeling of evaporation and crystal growth at these dimensions.

  7. Conformational dynamics of a membrane protein chaperone enables spatially regulated substrate capture and release

    PubMed Central

    Liang, Fu-Cheng; Kroon, Gerard; McAvoy, Camille Z.; Chi, Chris; Wright, Peter E.; Shan, Shu-ou

    2016-01-01

    Membrane protein biogenesis poses enormous challenges to cellular protein homeostasis and requires effective molecular chaperones. Compared with chaperones that promote soluble protein folding, membrane protein chaperones require tight spatiotemporal coordination of their substrate binding and release cycles. Here we define the chaperone cycle for cpSRP43, which protects the largest family of membrane proteins, the light harvesting chlorophyll a/b-binding proteins (LHCPs), during their delivery. Biochemical and NMR analyses demonstrate that cpSRP43 samples three distinct conformations. The stromal factor cpSRP54 drives cpSRP43 to the active state, allowing it to tightly bind substrate in the aqueous compartment. Bidentate interactions with the Alb3 translocase drive cpSRP43 to a partially inactive state, triggering selective release of LHCP’s transmembrane domains in a productive unloading complex at the membrane. Our work demonstrates how the intrinsic conformational dynamics of a chaperone enables spatially coordinated substrate capture and release, which may be general to other ATP-independent chaperone systems. PMID:26951662

  8. Dynamic Surfaces for the Study of Mesenchymal Stem Cell Growth through Adhesion Regulation.

    PubMed

    Roberts, Jemma N; Sahoo, Jugal Kishore; McNamara, Laura E; Burgess, Karl V; Yang, Jingli; Alakpa, Enateri V; Anderson, Hilary J; Hay, Jake; Turner, Lesley-Anne; Yarwood, Stephen J; Zelzer, Mischa; Oreffo, Richard O C; Ulijn, Rein V; Dalby, Matthew J

    2016-07-26

    Out of their niche environment, adult stem cells, such as mesenchymal stem cells (MSCs), spontaneously differentiate. This makes both studying these important regenerative cells and growing large numbers of stem cells for clinical use challenging. Traditional cell culture techniques have fallen short of meeting this challenge, but materials science offers hope. In this study, we have used emerging rules of managing adhesion/cytoskeletal balance to prolong MSC cultures by fabricating controllable nanoscale cell interfaces using immobilized peptides that may be enzymatically activated to change their function. The surfaces can be altered (activated) at will to tip adhesion/cytoskeletal balance and initiate differentiation, hence better informing biological mechanisms of stem cell growth. Tools that are able to investigate the stem cell phenotype are important. While large phenotypical differences, such as the difference between an adipocyte and an osteoblast, are now better understood, the far more subtle differences between fibroblasts and MSCs are much harder to dissect. The development of technologies able to dynamically navigate small differences in adhesion are critical in the race to provide regenerative strategies using stem cells. PMID:27322014

  9. Mechanochemical regulation of oscillatory follicle cell dynamics in the developing Drosophila egg chamber.

    PubMed

    Koride, Sarita; He, Li; Xiong, Li-Ping; Lan, Ganhui; Montell, Denise J; Sun, Sean X

    2014-11-01

    During tissue elongation from stage 9 to stage 10 in Drosophila oogenesis, the egg chamber increases in length by ∼1.7-fold while increasing in volume by eightfold. During these stages, spontaneous oscillations in the contraction of cell basal surfaces develop in a subset of follicle cells. This patterned activity is required for elongation of the egg chamber; however, the mechanisms generating the spatiotemporal pattern have been unclear. Here we use a combination of quantitative modeling and experimental perturbation to show that mechanochemical interactions are sufficient to generate oscillations of myosin contractile activity in the observed spatiotemporal pattern. We propose that follicle cells in the epithelial layer contract against pressure in the expanding egg chamber. As tension in the epithelial layer increases, Rho kinase signaling activates myosin assembly and contraction. The activation process is cooperative, leading to a limit cycle in the myosin dynamics. Our model produces asynchronous oscillations in follicle cell area and myosin content, consistent with experimental observations. In addition, we test the prediction that removal of the basal lamina will increase the average oscillation period. The model demonstrates that in principle, mechanochemical interactions are sufficient to drive patterning and morphogenesis, independent of patterned gene expression. PMID:24943847

  10. Dynamic myosin phosphorylation regulates contractile pulses and tissue integrity during epithelial morphogenesis

    PubMed Central

    Vasquez, Claudia G.; Tworoger, Mike

    2014-01-01

    Apical constriction is a cell shape change that promotes epithelial bending. Activation of nonmuscle myosin II (Myo-II) by kinases such as Rho-associated kinase (Rok) is important to generate contractile force during apical constriction. Cycles of Myo-II assembly and disassembly, or pulses, are associated with apical constriction during Drosophila melanogaster gastrulation. It is not understood whether Myo-II phosphoregulation organizes contractile pulses or whether pulses are important for tissue morphogenesis. Here, we show that Myo-II pulses are associated with pulses of apical Rok. Mutants that mimic Myo-II light chain phosphorylation or depletion of myosin phosphatase inhibit Myo-II contractile pulses, disrupting both actomyosin coalescence into apical foci and cycles of Myo-II assembly/disassembly. Thus, coupling dynamic Myo-II phosphorylation to upstream signals organizes contractile Myo-II pulses in both space and time. Mutants that mimic Myo-II phosphorylation undergo continuous, rather than incremental, apical constriction. These mutants fail to maintain intercellular actomyosin network connections during tissue invagination, suggesting that Myo-II pulses are required for tissue integrity during morphogenesis. PMID:25092658

  11. Mechanochemical regulation of oscillatory follicle cell dynamics in the developing Drosophila egg chamber.

    PubMed

    Koride, Sarita; He, Li; Xiong, Li-Ping; Lan, Ganhui; Montell, Denise J; Sun, Sean X

    2014-11-01

    During tissue elongation from stage 9 to stage 10 in Drosophila oogenesis, the egg chamber increases in length by ∼1.7-fold while increasing in volume by eightfold. During these stages, spontaneous oscillations in the contraction of cell basal surfaces develop in a subset of follicle cells. This patterned activity is required for elongation of the egg chamber; however, the mechanisms generating the spatiotemporal pattern have been unclear. Here we use a combination of quantitative modeling and experimental perturbation to show that mechanochemical interactions are sufficient to generate oscillations of myosin contractile activity in the observed spatiotemporal pattern. We propose that follicle cells in the epithelial layer contract against pressure in the expanding egg chamber. As tension in the epithelial layer increases, Rho kinase signaling activates myosin assembly and contraction. The activation process is cooperative, leading to a limit cycle in the myosin dynamics. Our model produces asynchronous oscillations in follicle cell area and myosin content, consistent with experimental observations. In addition, we test the prediction that removal of the basal lamina will increase the average oscillation period. The model demonstrates that in principle, mechanochemical interactions are sufficient to drive patterning and morphogenesis, independent of patterned gene expression.

  12. The Meiotic Nuclear Lamina Regulates Chromosome Dynamics and Promotes Efficient Homologous Recombination in the Mouse

    PubMed Central

    Schmitt, Johannes; Göb, Eva; Baar, Johannes; Ortega, Sagrario; Benavente, Ricardo; Alsheimer, Manfred

    2013-01-01

    The nuclear lamina is the structural scaffold of the nuclear envelope and is well known for its central role in nuclear organization and maintaining nuclear stability and shape. In the past, a number of severe human disorders have been identified to be associated with mutations in lamins. Extensive research on this topic has provided novel important clues about nuclear lamina function. These studies have contributed to the knowledge that the lamina constitutes a complex multifunctional platform combining both structural and regulatory functions. Here, we report that, in addition to the previously demonstrated significance for somatic cell differentiation and maintenance, the nuclear lamina is also an essential determinant for germ cell development. Both male and female mice lacking the short meiosis-specific A-type lamin C2 have a severely defective meiosis, which at least in the male results in infertility. Detailed analysis revealed that lamin C2 is required for telomere-driven dynamic repositioning of meiotic chromosomes. Loss of lamin C2 affects precise synapsis of the homologs and interferes with meiotic double-strand break repair. Taken together, our data explain how the nuclear lamina contributes to meiotic chromosome behaviour and accurate genome haploidization on a mechanistic level. PMID:23382700

  13. Dynamic Surfaces for the Study of Mesenchymal Stem Cell Growth through Adhesion Regulation.

    PubMed

    Roberts, Jemma N; Sahoo, Jugal Kishore; McNamara, Laura E; Burgess, Karl V; Yang, Jingli; Alakpa, Enateri V; Anderson, Hilary J; Hay, Jake; Turner, Lesley-Anne; Yarwood, Stephen J; Zelzer, Mischa; Oreffo, Richard O C; Ulijn, Rein V; Dalby, Matthew J

    2016-07-26

    Out of their niche environment, adult stem cells, such as mesenchymal stem cells (MSCs), spontaneously differentiate. This makes both studying these important regenerative cells and growing large numbers of stem cells for clinical use challenging. Traditional cell culture techniques have fallen short of meeting this challenge, but materials science offers hope. In this study, we have used emerging rules of managing adhesion/cytoskeletal balance to prolong MSC cultures by fabricating controllable nanoscale cell interfaces using immobilized peptides that may be enzymatically activated to change their function. The surfaces can be altered (activated) at will to tip adhesion/cytoskeletal balance and initiate differentiation, hence better informing biological mechanisms of stem cell growth. Tools that are able to investigate the stem cell phenotype are important. While large phenotypical differences, such as the difference between an adipocyte and an osteoblast, are now better understood, the far more subtle differences between fibroblasts and MSCs are much harder to dissect. The development of technologies able to dynamically navigate small differences in adhesion are critical in the race to provide regenerative strategies using stem cells.

  14. Dynamic Surfaces for the Study of Mesenchymal Stem Cell Growth through Adhesion Regulation

    PubMed Central

    2016-01-01

    Out of their niche environment, adult stem cells, such as mesenchymal stem cells (MSCs), spontaneously differentiate. This makes both studying these important regenerative cells and growing large numbers of stem cells for clinical use challenging. Traditional cell culture techniques have fallen short of meeting this challenge, but materials science offers hope. In this study, we have used emerging rules of managing adhesion/cytoskeletal balance to prolong MSC cultures by fabricating controllable nanoscale cell interfaces using immobilized peptides that may be enzymatically activated to change their function. The surfaces can be altered (activated) at will to tip adhesion/cytoskeletal balance and initiate differentiation, hence better informing biological mechanisms of stem cell growth. Tools that are able to investigate the stem cell phenotype are important. While large phenotypical differences, such as the difference between an adipocyte and an osteoblast, are now better understood, the far more subtle differences between fibroblasts and MSCs are much harder to dissect. The development of technologies able to dynamically navigate small differences in adhesion are critical in the race to provide regenerative strategies using stem cells. PMID:27322014

  15. Regulation of microtubule dynamics by DIAPH3 influences amoeboid tumor cell mechanics and sensitivity to taxanes

    PubMed Central

    Morley, Samantha; You, Sungyong; Pollan, Sara; Choi, Jiyoung; Zhou, Bo; Hager, Martin H.; Steadman, Kenneth; Spinelli, Cristiana; Rajendran, Kavitha; Gertych, Arkadiusz; Kim, Jayoung; Adam, Rosalyn M.; Yang, Wei; Krishnan, Ramaswamy; Knudsen, Beatrice S.; Di Vizio, Dolores; Freeman, Michael R.

    2015-01-01

    Taxanes are widely employed chemotherapies for patients with metastatic prostate and breast cancer. Here, we show that loss of Diaphanous-related formin-3 (DIAPH3), frequently associated with metastatic breast and prostate cancers, correlates with increased sensitivity to taxanes. DIAPH3 interacted with microtubules (MT), and its loss altered several parameters of MT dynamics as well as decreased polarized force generation, contractility, and response to substrate stiffness. Silencing of DIAPH3 increased the cytotoxic response to taxanes in prostate and breast cancer cell lines. Analysis of drug activity for tubulin-targeted agents in the NCI-60 cell line panel revealed a uniform positive correlation between reduced DIAPH3 expression and drug sensitivity. Low DIAPH3 expression correlated with improved relapse-free survival in breast cancer patients treated with chemotherapeutic regimens containing taxanes. Our results suggest that inhibition of MT stability arising from DIAPH3 downregulation enhances susceptibility to MT poisons, and that the DIAPH3 network potentially reports taxane sensitivity in human tumors. PMID:26179371

  16. Dynamic formation of ER–PM junctions presents a lipid phosphatase to regulate phosphoinositides

    PubMed Central

    Jensen, Jill B.; Vivas, Oscar; Kruse, Martin; Traynor-Kaplan, Alexis E.; Hille, Bertil

    2016-01-01

    Endoplasmic reticulum–plasma membrane (ER–PM) contact sites play an integral role in cellular processes such as excitation–contraction coupling and store-operated calcium entry (SOCE). Another ER–PM assembly is one tethered by the extended synaptotagmins (E-Syt). We have discovered that at steady state, E-Syt2 positions the ER and Sac1, an integral ER membrane lipid phosphatase, in discrete ER–PM junctions. Here, Sac1 participates in phosphoinositide homeostasis by limiting PM phosphatidylinositol 4-phosphate (PI(4)P), the precursor of PI(4,5)P2. Activation of G protein–coupled receptors that deplete PM PI(4,5)P2 disrupts E-Syt2–mediated ER–PM junctions, reducing Sac1’s access to the PM and permitting PM PI(4)P and PI(4,5)P2 to recover. Conversely, depletion of ER luminal calcium and subsequent activation of SOCE increases the amount of Sac1 in contact with the PM, depleting PM PI(4)P. Thus, the dynamic presence of Sac1 at ER–PM contact sites allows it to act as a cellular sensor and controller of PM phosphoinositides, thereby influencing many PM processes. PMID:27044890

  17. Molecular physiology of the dynamic regulation of carbon catabolite repression in Escherichia coli.

    PubMed

    Borirak, Orawan; Bekker, Martijn; Hellingwerf, Klaas J

    2014-06-01

    We report on the use of the chemostat as an optimal device to create time-invariant conditions that allow accurate sampling for various omics assays in Escherichia coli, in combination with recording of the dynamics of the physiological transition in the organism under study that accompany the initiation of glucose repression. E. coli cells respond to the addition of glucose not only with the well-known transcriptional response, as was revealed through quantitative PCR analysis of the transcript levels of key genes from the CRP (cAMP receptor protein) regulon, but also with an increased growth rate and a transient decrease in the efficiency of its aerobic catabolism. Less than half of a doubling time is required for the organism to recover to maximal values of growth rate and efficiency. Furthermore, calculations based on our results show that the specific glucose uptake rate (qs) and the H(+)/e(-) ratio increase proportionally, up to a growth rate of 0.4 h(-1), whilst biomass yield on glucose (Yx / s) drops during the first 15 min, followed by a gradual recovery. Surprisingly, the growth yields after the recovery phase show values even higher than the maximum theoretical yield. Possible explanations for these high yields are discussed.

  18. Dynamic Regulation of Quaternary Organization of the M1 Muscarinic Receptor by Subtype-selective Antagonist Drugs*

    PubMed Central

    Pediani, John D.; Ward, Richard J.; Godin, Antoine G.; Marsango, Sara

    2016-01-01

    Although rhodopsin-like G protein-coupled receptors can exist as both monomers and non-covalently associated dimers/oligomers, the steady-state proportion of each form and whether this is regulated by receptor ligands are unknown. Herein we address these topics for the M1 muscarinic acetylcholine receptor, a key molecular target for novel cognition enhancers, by using spatial intensity distribution analysis. This method can measure fluorescent particle concentration and assess oligomerization states of proteins within defined regions of living cells. Imaging and analysis of the basolateral surface of cells expressing some 50 molecules·μm−2 human muscarinic M1 receptor identified a ∼75:25 mixture of receptor monomers and dimers/oligomers. Both sustained and shorter term treatment with the selective M1 antagonist pirenzepine resulted in a large shift in the distribution of receptor species to favor the dimeric/oligomeric state. Although sustained treatment with pirenzepine also resulted in marked up-regulation of the receptor, simple mass action effects were not the basis for ligand-induced stabilization of receptor dimers/oligomers. The related antagonist telenzepine also produced stabilization and enrichment of the M1 receptor dimer population, but the receptor subtype non-selective antagonists atropine and N-methylscopolamine did not. In contrast, neither pirenzepine nor telenzepine altered the quaternary organization of the related M3 muscarinic receptor. These data provide unique insights into the selective capacity of receptor ligands to promote and/or stabilize receptor dimers/oligomers and demonstrate that the dynamics of ligand regulation of the quaternary organization of G protein-coupled receptors is markedly more complex than previously appreciated. This may have major implications for receptor function and behavior. PMID:27080256

  19. Dynamic Regulation of Quaternary Organization of the M1 Muscarinic Receptor by Subtype-selective Antagonist Drugs.

    PubMed

    Pediani, John D; Ward, Richard J; Godin, Antoine G; Marsango, Sara; Milligan, Graeme

    2016-06-17

    Although rhodopsin-like G protein-coupled receptors can exist as both monomers and non-covalently associated dimers/oligomers, the steady-state proportion of each form and whether this is regulated by receptor ligands are unknown. Herein we address these topics for the M1 muscarinic acetylcholine receptor, a key molecular target for novel cognition enhancers, by using spatial intensity distribution analysis. This method can measure fluorescent particle concentration and assess oligomerization states of proteins within defined regions of living cells. Imaging and analysis of the basolateral surface of cells expressing some 50 molecules·μm(-2) human muscarinic M1 receptor identified a ∼75:25 mixture of receptor monomers and dimers/oligomers. Both sustained and shorter term treatment with the selective M1 antagonist pirenzepine resulted in a large shift in the distribution of receptor species to favor the dimeric/oligomeric state. Although sustained treatment with pirenzepine also resulted in marked up-regulation of the receptor, simple mass action effects were not the basis for ligand-induced stabilization of receptor dimers/oligomers. The related antagonist telenzepine also produced stabilization and enrichment of the M1 receptor dimer population, but the receptor subtype non-selective antagonists atropine and N-methylscopolamine did not. In contrast, neither pirenzepine nor telenzepine altered the quaternary organization of the related M3 muscarinic receptor. These data provide unique insights into the selective capacity of receptor ligands to promote and/or stabilize receptor dimers/oligomers and demonstrate that the dynamics of ligand regulation of the quaternary organization of G protein-coupled receptors is markedly more complex than previously appreciated. This may have major implications for receptor function and behavior. PMID:27080256

  20. Proteomic analysis reveals dynamic regulation of fruit development and sugar and acid accumulation in apple.

    PubMed

    Li, Mingjun; Li, Dongxia; Feng, Fengjuan; Zhang, Sheng; Ma, Fengwang; Cheng, Lailiang

    2016-09-01

    Understanding the fruit developmental process is critical for fruit quality improvement. Here, we report a comprehensive proteomic analysis of apple fruit development over five growth stages, from young fruit to maturity, coupled with metabolomic profiling. A tandem mass tag (TMT)-based comparative proteomics approach led to the identification and quantification of 7098 and 6247 proteins, respectively. This large-scale proteomic dataset presents a global view of the critical pathways involved in fruit development and metabolism. When linked with metabolomics data, these results provide new insights into the modulation of fruit development, the metabolism and storage of sugars and organic acids (mainly malate), and events within the energy-related pathways for respiration and glycolysis. We suggest that the key steps identified here (e.g. those involving the FK2, TST, EDR6, SPS, mtME and mtMDH switches), can be further targeted to confirm their roles in accumulation and balance of fructose, sucrose and malate. Moreover, our findings imply that the primary reason for decreases in amino acid concentrations during fruit development is related to a reduction in substrate flux via glycolysis, which is mainly regulated by fructose-bisphosphate aldolase and bisphosphoglycerate mutase.

  1. Proteomic analysis reveals dynamic regulation of fruit development and sugar and acid accumulation in apple.

    PubMed

    Li, Mingjun; Li, Dongxia; Feng, Fengjuan; Zhang, Sheng; Ma, Fengwang; Cheng, Lailiang

    2016-09-01

    Understanding the fruit developmental process is critical for fruit quality improvement. Here, we report a comprehensive proteomic analysis of apple fruit development over five growth stages, from young fruit to maturity, coupled with metabolomic profiling. A tandem mass tag (TMT)-based comparative proteomics approach led to the identification and quantification of 7098 and 6247 proteins, respectively. This large-scale proteomic dataset presents a global view of the critical pathways involved in fruit development and metabolism. When linked with metabolomics data, these results provide new insights into the modulation of fruit development, the metabolism and storage of sugars and organic acids (mainly malate), and events within the energy-related pathways for respiration and glycolysis. We suggest that the key steps identified here (e.g. those involving the FK2, TST, EDR6, SPS, mtME and mtMDH switches), can be further targeted to confirm their roles in accumulation and balance of fructose, sucrose and malate. Moreover, our findings imply that the primary reason for decreases in amino acid concentrations during fruit development is related to a reduction in substrate flux via glycolysis, which is mainly regulated by fructose-bisphosphate aldolase and bisphosphoglycerate mutase. PMID:27535992

  2. DNA Methylation Dynamics Regulate the Formation of a Regenerative Wound Epithelium during Axolotl Limb Regeneration.

    PubMed

    Aguilar, Cristian; Gardiner, David M

    2015-01-01

    The formation of a blastema during regeneration of an axolotl limb involves important changes in the behavior and function of cells at the site of injury. One of the earliest events is the formation of the wound epithelium and subsequently the apical epidermal cap, which involves in vivo dedifferentiation that is controlled by signaling from the nerve. We have investigated the role of epigenetic modifications to the genome as a possible mechanism for regulating changes in gene expression patterns of keratinocytes of the wound and blastema epithelium that are involved in regeneration. We report a modulation of the expression DNMT3a, a de novo DNA methyltransferase, within the first 72 hours post injury that is dependent on nerve signaling. Treatment of skin wounds on the upper forelimb with decitabine, a DNA methyltransferase inhibitor, induced changes in gene expression and cellular behavior associated with a regenerative response. Furthermore, decitabine-treated wounds were able to participate in regeneration while untreated wounds inhibited a regenerative response. Elucidation of the specific epigenetic modifications that mediate cellular dedifferentiation likely will lead to insights for initiating a regenerative response in organisms that lack this ability.

  3. Dynamic Changes in microRNAs may Regulate Robustness of Wnt/Notch Signaling

    NASA Astrophysics Data System (ADS)

    Gunaratne, Preethi

    2008-03-01

    The mechanisms by which highly reproducible patterns are formed during embryonic development and organismal evolution despite stochasticity at the single cell level is one of the remaining mysteries in Biology. It has been proposed that a hidden layer of regulation formed through the interaction of microRNAs with protein coding gene networks maybe responsible. Recently developed next generation sequencing technologies afford an unprecedented opportunity to uncover novel aspects of miRNA function and evolution. We find extensive heterogeneity in sequences that correspond to mmu-let-7 (targets Wnt1) and mmu-miR-191 (targets Notch1). Approximately 20% of let-7 and miR-191 have undergone modifications to increase stability and binding to the Wnt1 and Notch1 targets and are likely to be destroyed. In contrast, 80% bind the targets with imperfect complementarity and lower stability and are likely to be sequestered and prevented from forming protein. We propose that these two species together form a highly fluid system that is able to absorb stochastic perturbations in gene expression. A gene that goes on to be translated into functional protein therefore must escape both buffers by significantly high expression.

  4. Presence and Expression of Microbial Genes Regulating Soil Nitrogen Dynamics Along the Tanana River Successional Sequence

    NASA Astrophysics Data System (ADS)

    Boone, R. D.; Rogers, S. L.

    2004-12-01

    We report on work to assess the functional gene sequences for soil microbiota that control nitrogen cycle pathways along the successional sequence (willow, alder, poplar, white spruce, black spruce) on the Tanana River floodplain, Interior Alaska. Microbial DNA and mRNA were extracted from soils (0-10 cm depth) for amoA (ammonium monooxygenase), nifH (nitrogenase reductase), napA (nitrate reductase), and nirS and nirK (nitrite reductase) genes. Gene presence was determined by amplification of a conserved sequence of each gene employing sequence specific oligonucleotide primers and Polymerase Chain Reaction (PCR). Expression of the genes was measured via nested reverse transcriptase PCR amplification of the extracted mRNA. Amplified PCR products were visualized on agarose electrophoresis gels. All five successional stages show evidence for the presence and expression of microbial genes that regulate N fixation (free-living), nitrification, and nitrate reduction. We detected (1) nifH, napA, and nirK presence and amoA expression (mRNA production) for all five successional stages and (2) nirS and amoA presence and nifH, nirK, and napA expression for early successional stages (willow, alder, poplar). The results highlight that the existing body of previous process-level work has not sufficiently considered the microbial potential for a nitrate economy and free-living N fixation along the complete floodplain successional sequence.

  5. DNA Methylation Dynamics Regulate the Formation of a Regenerative Wound Epithelium during Axolotl Limb Regeneration

    PubMed Central

    Aguilar, Cristian; Gardiner, David M.

    2015-01-01

    The formation of a blastema during regeneration of an axolotl limb involves important changes in the behavior and function of cells at the site of injury. One of the earliest events is the formation of the wound epithelium and subsequently the apical epidermal cap, which involves in vivo dedifferentiation that is controlled by signaling from the nerve. We have investigated the role of epigenetic modifications to the genome as a possible mechanism for regulating changes in gene expression patterns of keratinocytes of the wound and blastema epithelium that are involved in regeneration. We report a modulation of the expression DNMT3a, a de novo DNA methyltransferase, within the first 72 hours post injury that is dependent on nerve signaling. Treatment of skin wounds on the upper forelimb with decitabine, a DNA methyltransferase inhibitor, induced changes in gene expression and cellular behavior associated with a regenerative response. Furthermore, decitabine-treated wounds were able to participate in regeneration while untreated wounds inhibited a regenerative response. Elucidation of the specific epigenetic modifications that mediate cellular dedifferentiation likely will lead to insights for initiating a regenerative response in organisms that lack this ability. PMID:26308461

  6. Dynamic Phosphorylation of HP1α Regulates Mitotic Progression in Human Cells

    PubMed Central

    Chakraborty, Arindam; Prasanth, Kannanganattu V.; Prasanth, Supriya G.

    2014-01-01

    Heterochromatin protein 1α (HP1α), a key player in the establishment and maintenance of higher-order chromatin regulates key cellular processes, including metaphase chromatid cohesion and centromere organization. However, how HP1α controls these processes is not well understood. Here we demonstrate that post-translational modifications of HP1α dictate its mitotic functions. HP1α is constitutively phosphorylated within its N-terminus whereas phosphorylation within the hinge domain occurs preferentially at G2/M phase of the cell cycle. The hinge-phosphorylated form of HP1α specifically localizes to kinetochores during early mitosis and this phosphorylation mediated by NDR1 kinase is required for mitotic progression and for Sgo1 binding to mitotic centromeres. Cells lacking NDR kinase show loss of mitosis-specific phosphorylation of HP1α leading to prometaphase arrest. Our results reveal that NDR kinase catalyzes the hinge-specific phosphorylation of human HP1α during G2/M in vivo and this orchestrates accurate chromosome alignment and mitotic progression. PMID:24619172

  7. Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction

    PubMed Central

    Koopmans, Tim; Kumawat, Kuldeep; Halayko, Andrew J; Gosens, Reinoud

    2016-01-01

    A defining feature of asthma is airway hyperresponsiveness (AHR), which underlies the exaggerated bronchoconstriction response of asthmatics. The role of the airway smooth muscle (ASM) in AHR has garnered increasing interest over the years, but how asthmatic ASM differs from healthy ASM is still an active topic of debate. WNT-5A is increasingly expressed in asthmatic ASM and has been linked with Th2-high asthma. Due to its link with calcium and cytoskeletal remodelling, we propose that WNT-5A may modulate ASM contractility. We demonstrated that WNT-5A can increase maximum isometric tension in bovine tracheal smooth muscle strips. In addition, we show that WNT-5A is preferentially expressed in contractile human airway myocytes compared to proliferative cells, suggesting an active role in maintaining contractility. Furthermore, WNT-5A treatment drives actin polymerisation, but has no effect on intracellular calcium flux. Next, we demonstrated that WNT-5A directly regulates TGF-β1-induced expression of α-SMA via ROCK-mediated actin polymerization. These findings suggest that WNT-5A modulates fundamental mechanisms that affect ASM contraction and thus may be of relevance for AHR in asthma. PMID:27468699

  8. DNA Methylation Dynamics Regulate the Formation of a Regenerative Wound Epithelium during Axolotl Limb Regeneration.

    PubMed

    Aguilar, Cristian; Gardiner, David M

    2015-01-01

    The formation of a blastema during regeneration of an axolotl limb involves important changes in the behavior and function of cells at the site of injury. One of the earliest events is the formation of the wound epithelium and subsequently the apical epidermal cap, which involves in vivo dedifferentiation that is controlled by signaling from the nerve. We have investigated the role of epigenetic modifications to the genome as a possible mechanism for regulating changes in gene expression patterns of keratinocytes of the wound and blastema epithelium that are involved in regeneration. We report a modulation of the expression DNMT3a, a de novo DNA methyltransferase, within the first 72 hours post injury that is dependent on nerve signaling. Treatment of skin wounds on the upper forelimb with decitabine, a DNA methyltransferase inhibitor, induced changes in gene expression and cellular behavior associated with a regenerative response. Furthermore, decitabine-treated wounds were able to participate in regeneration while untreated wounds inhibited a regenerative response. Elucidation of the specific epigenetic modifications that mediate cellular dedifferentiation likely will lead to insights for initiating a regenerative response in organisms that lack this ability. PMID:26308461

  9. Regulation of Mouse Oocyte Microtubule and Organelle Dynamics by PADI6 and the Cytoplasmic Lattices

    PubMed Central

    Kan, Rui; Yurttas, Piraye; Kim, Boram; Jin, Mei; Wo, Luccie; Lee, Bora; Gosden, Roger; Coonrod, Scott A.

    2010-01-01

    Organelle positioning and movement in oocytes is largely mediated by microtubules (MTs) and their associated motor proteins. While yet to be studied in germ cells, cargo trafficking in somatic cells is also facilitated by specific recognition of acetylated MTs by motor proteins. We have previously shown that oocyte-restricted PADI6 is essential for formation of a novel oocyte-restricted fibrous structure, the cytoplasmic lattices (CPLs). Here, we show that α-tubulin appears to be associated with the PADI6/CPL complex. Next, we demonstrate that organelle positioning and redistribution is defective in PADI6-null oocytes and that alteration of MT polymerization or MT motor activity does not induce organelle redistribution in these oocytes. Finally, we report that levels of acetylated microtubules are dramatically suppressed in the cytoplasm of PADI6-null oocytes, suggesting that the observed organelle redistribution failure is due to defects in stable cytoplasmic MTs. These results demonstrate that the PADI6/CPL superstructure plays a key role in regulating MT-mediated organelle positioning and movement. PMID:21147087

  10. Luminescence control in the marine bacterium Vibrio fischeri: An analysis of the dynamics of lux regulation.

    PubMed

    James, S; Nilsson, P; James, G; Kjelleberg, S; Fagerström, T

    2000-03-01

    A mathematical model has been developed based on the fundamental properties of the control system formed by the lux genes and their products in Vibrio fischeri. The model clearly demonstrates how the components of this system work together to create two, stable metabolic states corresponding to the expression of the luminescent and non-luminescent phenotypes. It is demonstrated how the cell can "switch" between these steady states due to changes in parameters describing metabolic processes and the extracellular concentration of the signal molecule N-3-oxohexanoyl-l-homoserine lactone. In addition, it is shown how these parameters influence how sensitive the switch mechanism is to cellular LuxR and N-3-oxohexanoyl-l-homoserine lactone and complex concentration. While these properties could lead to the collective phenomenon known as quorum sensing, the model also predicts that under certain metabolic circumstances, basal expression of the lux genes could cause a cell to luminesce in the absence of extracellular signal molecule. Finally, the model developed in this study provides a basis for analysing the impact of other levels of control upon lux regulation.

  11. Plasmodium falciparum epigenome: A distinct dynamic epigenetic regulation of gene expression

    PubMed Central

    Rawat, Mukul; Bhosale, Madhvi A.; Karmodiya, Krishanpal

    2015-01-01

    Histone modification profiles are predictive of gene expression and most of the knowledge gained is acquired through studies done in higher eukaryotes. However, genome-wide studies involving Plasmodium falciparum, the causative agent of malaria, have been rather few, at lower resolution (mostly using ChIP-on-chip), and covering limited number of histone modifications. In our recent study [1], we have performed extensive genome-wide analyses of multiple histone modifications including the active (H3K4me2, H3K4me3, H3K9ac, H3K14ac, H3K27ac and H4ac), inactive (H3K9me3 and H3K27me3), elongation (H3K79me3) and regulatory element (H3K4me1) in a stage-specific manner. Furthermore, we used a ligation-based method suitable for sequencing homopolymeric stretches as seen in P. falciparum for next-generation sequencing library amplification [2], enabling highly quantitative analysis of the extremely AT-rich P. falciparum genome. Our recently published study suggests that transcription regulation by virtue of poised chromatin and differential histone modifications is unique to P. falciparum [1]. Here we describe the experiments, quality controls and chromatin immunoprecipitation-sequencing data analysis of our associated study published in Epigenetics and Chromatin [1]. Stage-specific ChIP-sequencing data for histone modifications is submitted to Gene Expression Omnibus (GEO) database under the accession number GSE63369. PMID:26981368

  12. TACC3 is a microtubule plus end-tracking protein that promotes axon elongation and also regulates microtubule plus end dynamics in multiple embryonic cell types.

    PubMed

    Nwagbara, Belinda U; Faris, Anna E; Bearce, Elizabeth A; Erdogan, Burcu; Ebbert, Patrick T; Evans, Matthew F; Rutherford, Erin L; Enzenbacher, Tiffany B; Lowery, Laura Anne

    2014-11-01

    Microtubule plus end dynamics are regulated by a conserved family of proteins called plus end-tracking proteins (+TIPs). It is unclear how various +TIPs interact with each other and with plus ends to control microtubule behavior. The centrosome-associated protein TACC3, a member of the transforming acidic coiled-coil (TACC) domain family, has been implicated in regulating several aspects of microtubule dynamics. However, TACC3 has not been shown to function as a +TIP in vertebrates. Here we show that TACC3 promotes axon outgrowth and regulates microtubule dynamics by increasing microtubule plus end velocities in vivo. We also demonstrate that TACC3 acts as a +TIP in multiple embryonic cell types and that this requires the conserved C-terminal TACC domain. Using high-resolution live-imaging data on tagged +TIPs, we show that TACC3 localizes to the extreme microtubule plus end, where it lies distal to the microtubule polymerization marker EB1 and directly overlaps with the microtubule polymerase XMAP215. TACC3 also plays a role in regulating XMAP215 stability and localizing XMAP215 to microtubule plus ends. Taken together, our results implicate TACC3 as a +TIP that functions with XMAP215 to regulate microtubule plus end dynamics.

  13. Cell Wall Nonlinear Elasticity and Growth Dynamics: How Do Bacterial Cells Regulate Pressure and Growth?

    NASA Astrophysics Data System (ADS)

    Deng, Yi

    In my thesis, I study intact and bulging Escherichia coli cells using atomic force microscopy to separate the contributions of the cell wall and turgor pressure to the overall cell stiffness. I find strong evidence of power--law stress--stiffening in the E. coli cell wall, with an exponent of 1.22±0.12, such that the wall is significantly stiffer in intact cells (E = 23±8 MPa and 49±20 MPa in the axial and circumferential directions) than in unpressurized sacculi. These measurements also indicate that the turgor pressure in living cells E. coli is 29±3 kPa. The nonlinearity in cell elasticity serves as a plausible mechanism to balance the mechanical protection and tension measurement sensitivity of the cell envelope. I also study the growth dynamics of the Bacillus subtilis cell wall to help understand the mechanism of the spatiotemporal order of inserting new cell wall material. High density fluorescent markers are used to label the entire cell surface to capture the morphological changes of the cell surface at sub-cellular to diffraction-limited spatial resolution and sub-minute temporal resolution. This approach reveals that rod-shaped chaining B. subtilis cells grow and twist in a highly heterogeneous fashion both spatially and temporally. Regions of high growth and twisting activity have a typical length scale of 5 μm, and last for 10-40 minutes. Motivated by the quantification of the cell wall growth dynamics, two microscopy and image analysis techniques are developed and applied to broader applications beyond resolving bacterial growth. To resolve densely distributed quantum dots, we present a fast and efficient image analysis algorithm, namely Spatial Covariance Reconstruction (SCORE) microscopy that takes into account the blinking statistics of the fluorescence emitters. We achieve sub-diffraction lateral resolution of 100 nm from 5 to 7 seconds of imaging, which is at least an order of magnitude faster than single-particle localization based methods

  14. Dynamic regulation of metabolic efficiency explains tolerance to acute hypoxia in humans.

    PubMed

    Schiffer, Tomas A; Ekblom, Björn; Lundberg, Jon O; Weitzberg, Eddie; Larsen, Filip J

    2014-10-01

    The maximum power principle dictates that open biological systems tend to self-organize to a level of efficiency that allows maximal power production. Applying this principle to cellular energetics and whole-body physiology would suggest that for every metabolic challenge, an optimal efficiency exists that maximizes power production. On exposure to hypoxia, it would be favorable if metabolic efficiency would rapidly adjust so as to better preserve work performance. We tested this idea in humans by measuring metabolic efficiency and exercise tolerance under normoxic (Fio2=20.9%) and hypoxic (Fio2=16%) conditions, where Fio2 is fraction of inhaled oxygen. The results were compared with respirometric analyses of skeletal muscle mitochondria from the same individuals. We found that among healthy trained subjects (n=14) with a wide range of metabolic efficiency (ME), those with a high ME during normoxic exercise were able to better maintain exercise capacity (Wmax) in hypoxia. On hypoxic exposure, these subjects acutely decreased their efficiency from 19.2 to 17.4%, thereby likely shifting it closer to a degree of efficiency where maximal power production is achieved. In addition, mitochondria from these subjects had a lower intrinsic respiration compared to subjects that showed a large drop in Wmax in hypoxia An acute shift in efficiency was also demonstrated in isolated mitochondria exposed to physiological levels of hypoxia as P/O ratio increased from 0.9 to 1.3 with hypoxic exposure. These findings suggest the existence of a physiological adaptive response by which metabolic efficiency is dynamically optimized to maximize power production.

  15. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum.

    PubMed

    Corral-Ramos, Cristina; Roca, M Gabriela; Di Pietro, Antonio; Roncero, M Isabel G; Ruiz-Roldán, Carmen

    2015-01-01

    In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum.

  16. Dynamic regulation of mechanosensitive channels: capacitance used to monitor patch tension in real time

    NASA Astrophysics Data System (ADS)

    Suchyna, Thomas M.; Besch, Steven R.; Sachs, Frederick

    2004-03-01

    All cells, from bacteria to human, are mechanically sensitive. The most rapid of these membrane protein transducers are mechanosensitive ion channels, ionic pores in the membrane that open and close in response to membrane tension. In specific sensory organs, these channels serve the senses of touch and hearing, and inform the central nervous system about the filling of hollow organs such as the bladder. Non-specialized cells use these channels to report on changes in cell volume and local strain. To preserve dynamic sensitivity, sensory receptors adapt to steady-state stimuli. Here we show that in rat astrocytes, the most abundant cells in the brain, this apparent adaptation to the stimulus is actually an inactivation. We have been able to track the time course of local strain by measuring attofarad changes in membrane capacitance and show that it is not correlated with loss of channel activity. The reduction in current with time is caused by an increased occupancy of low conductance states, and a reduction in the probability of opening, not a relaxation of local stress. The occupancy of these substates depends on the integrity of the cell's cytoplasm. However, while disruption of the cytoskeleton leads to a loss of inactivation, it leaves activation unaffected. The activation process is voltage-insensitive, closely correlated with changes in capacitance, and seems to arise solely from stress in the bilayer. The inactivation rate decreases with depolarization, and kinetic analysis suggests that the process involves multiple cytoplasmic ligands. Surprisingly, multivalent ions such as Gd+3 and Ca+2 that bind to the lipids and affect channel gating, do not affect the strain-induced increase in membrane capacitance; contrary to expectations, membrane elasticity is unchanged.

  17. Plasma Membrane Factor XIIIA Transglutaminase Activity Regulates Osteoblast Matrix Secretion and Deposition by Affecting Microtubule Dynamics

    PubMed Central

    Al-Jallad, Hadil F.; Myneni, Vamsee D.; Piercy-Kotb, Sarah A.; Chabot, Nicolas; Mulani, Amina; Keillor, Jeffrey W.; Kaartinen, Mari T.

    2011-01-01

    Transglutaminase activity, arising potentially from transglutaminase 2 (TG2) and Factor XIIIA (FXIIIA), has been linked to osteoblast differentiation where it is required for type I collagen and fibronectin matrix deposition. In this study we have used an irreversible TG-inhibitor to ‘block –and-track’ enzyme(s) targeted during osteoblast differentiation. We show that the irreversible TG-inhibitor is highly potent in inhibiting osteoblast differentiation and mineralization and reduces secretion of both fibronectin and type I collagen and their release from the cell surface. Tracking of the dansyl probe by Western blotting and immunofluorescence microscopy demonstrated that the inhibitor targets plasma membrane-associated FXIIIA. TG2 appears not to contribute to crosslinking activity on the osteoblast surface. Inhibition of FXIIIA with NC9 resulted in defective secretory vesicle delivery to the plasma membrane which was attributable to a disorganized microtubule network and decreased microtubule association with the plasma membrane. NC9 inhibition of FXIIIA resulted in destabilization of microtubules as assessed by cellular Glu-tubulin levels. Furthermore, NC9 blocked modification of Glu-tubulin into 150 kDa high-molecular weight Glu-tubulin form which was specifically localized to the plasma membrane. FXIIIA enzyme and its crosslinking activity were colocalized with plasma membrane-associated tubulin, and thus, it appears that FXIIIA crosslinking activity is directed towards stabilizing the interaction of microtubules with the plasma membrane. Our work provides the first mechanistic cues as to how transglutaminase activity could affect protein secretion and matrix deposition in osteoblasts and suggests a novel function for plasma membrane FXIIIA in microtubule dynamics. PMID:21283799

  18. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum.

    PubMed

    Corral-Ramos, Cristina; Roca, M Gabriela; Di Pietro, Antonio; Roncero, M Isabel G; Ruiz-Roldán, Carmen

    2015-01-01

    In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum. PMID:25560310

  19. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum

    PubMed Central

    Corral-Ramos, Cristina; Roca, M Gabriela; Di Pietro, Antonio; Roncero, M Isabel G; Ruiz-Roldán, Carmen

    2015-01-01

    In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum. PMID:25560310

  20. T cell activation regulates CD6 alternative splicing by transcription dynamics and SRSF1.

    PubMed

    da Glória, Vânia G; Martins de Araújo, Mafalda; Mafalda Santos, Ana; Leal, Rafaela; de Almeida, Sérgio F; Carmo, Alexandre M; Moreira, Alexandra

    2014-07-01

    The T cell-surface glycoprotein CD6 is a modulator of cellular responses and has been implicated in several autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and psoriasis. During Ag presentation, CD6 is targeted to the immunological synapse in a ligand binding-dependent manner, in which CD6 domain 3 directly contacts CD166, expressed on the APC. T cell activation results in the induction of CD6Δd3, an alternatively spliced isoform that lacks the ligand-binding domain and thus no longer localizes at the immunological synapse. In this study, we investigated the molecular mechanisms regulating the expression of CD6Δd3 upon human primary T cell activation. Using chromatin immunoprecipitation, we observed an increase in RNA polymerase II occupancy along the CD6 gene and augmented CD6 transcription. We showed that activation leads to transcription-related chromatin modifications, revealed by higher CD6 acetylation levels. Modulation of chromatin conformation using a histone deacetylase inhibitor that increases transcription rate causes an increase of exon 5 skipping. We further showed that the splicing factor SRSF1 binds to a regulatory element in CD6 intron 4, activating exon 5 splicing and promoting exon 5 inclusion. Concomitant with T cell activation-induced exon 5 skipping, we observed a downregulation of SRSF1. Using RNA immunoprecipitation, we showed that in activated T cells, SRSF1 recruitment to the CD6 transcript is impaired by increased chromatin acetylation levels. We propose that upon T cell activation, SRSF1 becomes limiting, and its function in CD6 exon 5 splicing is countered by an increase in CD6 transcription, dependent on chromatin acetylation.

  1. Dynamic regulation of DNA methyltransferases in human oocytes and preimplantation embryos after assisted reproductive technologies.

    PubMed

    Petrussa, Laetitia; Van de Velde, Hilde; De Rycke, Martine

    2014-09-01

    DNA methylation is a key epigenetic modification which is essential for normal embryonic development. Major epigenetic reprogramming takes place during gametogenesis and in the early embryo; the complex DNA methylation patterns are established and maintained by DNA methyltransferases (DNMTs). However, the influence of assisted reproductive technologies (ART) on DNA methylation reprogramming enzymes has predominantly been studied in mice and less so in human oocytes and embryos. The expression and localization patterns of the four known DNMTs were analysed in human oocytes and IVF/ICSI embryos by immunocytochemistry and compared between a reference group of good quality fresh embryos and groups of abnormally developing embryos or embryo groups after cryopreservation. In humans, DNMT1o rather than DNMT1s seems to be the key player for maintaining methylation in early embryos. DNMT3b, rather than DNMT3a and DNMT3L, appears to ensure global DNA remethylation in the blastocysts before implantation. DNMT3L, an important regulator of maternal imprint methylation in mouse, was not detected in human oocytes (GV, MI and MII stage). Our study confirms the existence of species differences for mammalian DNA methylation enzymes. In poor quality fresh embryos, the switch towards nuclear DNMT3b expression was delayed and nuclear DNMT1, DNMT1s and DNMT3b expression was less common. Compared with the reference embryos, a smaller number of cryopreserved embryos showed nuclear DNMT1, while a delayed switch to nuclear DNMT3b and an extended DNMT1s temporal expression pattern were also observed. The spatial and temporal expression patterns of DNMTs seem to be disturbed in abnormally developing embryos and in embryos that have been cryopreserved. Further research must be performed in order to understand whether the potentially disturbed embryonic DNMT expression after cryopreservation has any long-term developmental consequences. PMID:24994815

  2. Regulation of GABAA Receptor Dynamics by Interaction with Purinergic P2X2 Receptors*

    PubMed Central

    Shrivastava, Amulya Nidhi; Triller, Antoine; Sieghart, Werner; Sarto-Jackson, Isabella

    2011-01-01

    γ-Aminobutyric acid type A receptors (GABAARs) in the spinal cord are evolving as an important target for drug development against pain. Purinergic P2X2 receptors (P2X2Rs) are also expressed in spinal cord neurons and are known to cross-talk with GABAARs. Here, we investigated a possible “dynamic” interaction between GABAARs and P2X2Rs using co-immunoprecipitation and fluorescence resonance energy transfer (FRET) studies in human embryonic kidney (HEK) 293 cells along with co-localization and single particle tracking studies in spinal cord neurons. Our results suggest that a significant proportion of P2X2Rs forms a transient complex with GABAARs inside the cell, thus stabilizing these receptors and using them for co-trafficking to the cell surface, where P2X2Rs and GABAARs are primarily located extra-synaptically. Furthermore, agonist-induced activation of P2X2Rs results in a Ca2+-dependent as well as an apparently Ca2+-independent increase in the mobility and an enhanced degradation of GABAARs, whereas P2X2Rs are stabilized and form larger clusters. Antagonist-induced blocking of P2XRs results in co-stabilization of this receptor complex at the cell surface. These results suggest a novel mechanism where association of P2X2Rs and GABAARs could be used for specific targeting to neuronal membranes, thus providing an extrasynaptic receptor reserve that could regulate the excitability of neurons. We further conclude that blocking the excitatory activity of excessively released ATP under diseased state by P2XR antagonists could simultaneously enhance synaptic inhibition mediated by GABAARs. PMID:21343285

  3. Dynamics of glutathione regulation in Schistosoma mansoni: correlations with the acute effects of oltipraz

    SciTech Connect

    Morrison, D.D.

    1984-01-01

    Glutathione is present in adult Schistosoma mansoni (0.336 +/- 0.012 nmol/mg protein) at significantly lower levels than uninfected host tissues (1.051 +/- 0.013 nmol/mg protein, liver; 0.627 +/- 0.013 nmol/mg protein, kidney). Host hepatic glutathione levels decline significantly during the course of infection, while renal cortical glutathione levels are unaffected. Of the enzymes regulating glutathione utilization, glutathione reductase in the male parasite exhibits a specific activity of 10.3 +/- 4.2 nmol/mg protein, 15% of hepatic values. The apparent glutathione S-transferase activity was 26 +/- 7 ..mu..mol conjugate formed/min/mg protein with p-nitrobenzyl chloride as substrate (13% of hepatic values) and 526 +/- 18 ..mu..mol conjugate formed/min/mg protein with 1-chloro-2,4-dinitrobenzene as substrate (43% of hepatic values). Male schistosomes exhibited negligible glutathione peroxidase activity. Oltipraz, an antischistosomal compound, effected a significant depletion of parasite and host glutathione levels within 1 h of exposure in vivo and in vitro (at 250 mg/kg and 10 ..mu..M, respectively). Host tissue glutathionine levels returned to, or above, control levels by 6 h after oltipraz administration, while parasite glutathione levels remained significantly depressed. Uptake of (/sup 35/S) cysteine or (/sup 35/S) cystine by schistosomes was inhibited by oltipraz. However, the drug did not alter the relative distribution of label once incorporated into the parasite, indicating that the enzymes of glutathione synthesis were not directly inhibited.

  4. Dynamic regulation of NGFI-A (zif268, egr1) gene expression in the striatum.

    PubMed

    Moratalla, R; Robertson, H A; Graybiel, A M

    1992-07-01

    The expression of immediate-early genes of the fos/jun leucine zipper family can be regulated in striatal neurons by stimuli affecting the dopaminergic nigrostriatal system. The regulatory effects are gene specific, region specific, and striatal compartment specific. In the experiments reported here, we have explored the possibility that dopaminergic stimulation might also affect striatal expression of NGFI-A, a member of the zinc finger family of immediate-early genes. We treated healthy adult rats with amphetamine or cocaine and monitored the acute response of striatal neurons by in situ hybridization with oligonucleotide probes for NGFI-A mRNA. Both drugs evoked rapid, anatomically patterned increases in NGFI-A mRNA expression in the dorsal striatum (caudoputamen) and in the ventral striatum (nucleus accumbens, olfactory tubercle). The main response to each drug was in medium-sized neurons, known to be the projection neurons of the striatum. At every dose of amphetamine eliciting a response, the increased NGFI-A mRNA expression was preferentially concentrated in striosomes of the rostral caudoputamen, whereas cocaine at each dose given induced expression of NGFI-A mRNA in both striosomes and matrix at these striatal levels. The two indirect agonists evoked NGFI-A expression in both striatal compartments farther caudally, especially in the central and medial caudoputamen. Activation by both drugs was blocked by pretreatment with the D1-selective dopamine receptor antagonist SCH23390. These patterns of NGFI-A activation are remarkably similar to those found for Fos-like immunoreactivity following acute amphetamine and cocaine treatments, suggesting that coordinate activation of members of at least two immediate-early gene families occurs in the striatum following catecholaminergic stimulation. Such patterns of induction strongly support the view that the genomic responsiveness of the striosome and of the matrix compartments of the rostral striatum are distinct at

  5. The Dynamics of Connexin Expression, Degradation and Localisation Are Regulated by Gonadotropins during the Early Stages of In Vitro Maturation of Swine Oocytes

    PubMed Central

    Santiquet, Nicolas; Robert, Claude; Richard, François J.

    2013-01-01

    Gap junctional communication (GJC) plays a primordial role in oocyte maturation and meiotic resumption in mammals by directing the transfer of numerous molecules between cumulus cells and the oocyte. Gap junctions are made of connexins (Cx), proteins that regulate GJC in numerous ways. Understanding the dynamic regulation of connexin arrangements during in vitro maturation (IVM) could provide a powerful tool for controlling meiotic resumption and consequently in vitro development of fully competent oocytes. However, physiological events happening during the early hours of IVM may still be elucidated. The present study reports the dynamic regulation of connexin expression, degradation and localization during this stage. Cx43, Cx45 and Cx60 were identified as the main connexins expressed in swine COC. Cx43 and Cx45 transcripts were judged too static to be a regulator of GJC, while Cx43 protein expression was highly responsive to gonadotropins, suggesting that it might be the principal regulator of GJC. In addition, the degradation of Cx43 expressed after 4.5 h of IVM in response to equine chorionic gonadotropin appeared to involve the proteasomal complex. Cx43 localisation appeared to be associated with GJC. Taken together, these results show for the first time that gonadotropins regulate Cx43 protein expression, degradation and localisation in porcine COC during the first several hours of IVM. Regulation of Cx43 may in turn, via GJC, participate in the development of fully competent oocytes. PMID:23861906

  6. 1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells.

    PubMed

    Ryan, Zachary C; Craig, Theodore A; Folmes, Clifford D; Wang, Xuewei; Lanza, Ian R; Schaible, Niccole S; Salisbury, Jeffrey L; Nair, K Sreekumaran; Terzic, Andre; Sieck, Gary C; Kumar, Rajiv

    2016-01-15

    Muscle weakness and myopathy are observed in vitamin D deficiency and chronic renal failure, where concentrations of the active vitamin D3 metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are low. To evaluate the mechanism of action of 1α,25(OH)2D3 in skeletal muscle, we examined mitochondrial oxygen consumption, dynamics, and biogenesis and changes in expression of nuclear genes encoding mitochondrial proteins in human skeletal muscle cells following treatment with 1α,25(OH)2D3. The mitochondrial oxygen consumption rate (OCR) increased in 1α,25(OH)2D3-treated cells. Vitamin D3 metabolites lacking a 1α-hydroxyl group (vitamin D3, 25-hydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) decreased or failed to increase OCR. 1α-Hydroxyvitamin D3 did not increase OCR. In 1α,25(OH)2D3-treated cells, mitochondrial volume and branching and expression of the pro-fusion protein OPA1 (optic atrophy 1) increased, whereas expression of the pro-fission proteins Fis1 (fission 1) and Drp1 (dynamin 1-like) decreased. Phosphorylated pyruvate dehydrogenase (PDH) (Ser-293) and PDH kinase 4 (PDK4) decreased in 1α,25(OH)2D3-treated cells. There was a trend to increased PDH activity in 1α,25(OH)2D3-treated cells (p = 0.09). 83 nuclear mRNAs encoding mitochondrial proteins were changed following 1α,25(OH)2D3 treatment; notably, PDK4 mRNA decreased, and PDP2 mRNA increased. MYC, MAPK13, and EPAS1 mRNAs, which encode proteins that regulate mitochondrial biogenesis, were increased following 1α,25(OH)2D3 treatment. Vitamin D receptor-dependent changes in the expression of 1947 mRNAs encoding proteins involved in muscle contraction, focal adhesion, integrin, JAK/STAT, MAPK, growth factor, and p53 signaling pathways were observed following 1α,25(OH)2D3 treatment. Five micro-RNAs were induced or repressed by 1α,25(OH)2D3. 1α,25(OH)2D3 regulates mitochondrial function, dynamics, and enzyme function, which are likely to influence muscle strength. PMID:26601949

  7. 1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells.

    PubMed

    Ryan, Zachary C; Craig, Theodore A; Folmes, Clifford D; Wang, Xuewei; Lanza, Ian R; Schaible, Niccole S; Salisbury, Jeffrey L; Nair, K Sreekumaran; Terzic, Andre; Sieck, Gary C; Kumar, Rajiv

    2016-01-15

    Muscle weakness and myopathy are observed in vitamin D deficiency and chronic renal failure, where concentrations of the active vitamin D3 metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are low. To evaluate the mechanism of action of 1α,25(OH)2D3 in skeletal muscle, we examined mitochondrial oxygen consumption, dynamics, and biogenesis and changes in expression of nuclear genes encoding mitochondrial proteins in human skeletal muscle cells following treatment with 1α,25(OH)2D3. The mitochondrial oxygen consumption rate (OCR) increased in 1α,25(OH)2D3-treated cells. Vitamin D3 metabolites lacking a 1α-hydroxyl group (vitamin D3, 25-hydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) decreased or failed to increase OCR. 1α-Hydroxyvitamin D3 did not increase OCR. In 1α,25(OH)2D3-treated cells, mitochondrial volume and branching and expression of the pro-fusion protein OPA1 (optic atrophy 1) increased, whereas expression of the pro-fission proteins Fis1 (fission 1) and Drp1 (dynamin 1-like) decreased. Phosphorylated pyruvate dehydrogenase (PDH) (Ser-293) and PDH kinase 4 (PDK4) decreased in 1α,25(OH)2D3-treated cells. There was a trend to increased PDH activity in 1α,25(OH)2D3-treated cells (p = 0.09). 83 nuclear mRNAs encoding mitochondrial proteins were changed following 1α,25(OH)2D3 treatment; notably, PDK4 mRNA decreased, and PDP2 mRNA increased. MYC, MAPK13, and EPAS1 mRNAs, which encode proteins that regulate mitochondrial biogenesis, were increased following 1α,25(OH)2D3 treatment. Vitamin D receptor-dependent changes in the expression of 1947 mRNAs encoding proteins involved in muscle contraction, focal adhesion, integrin, JAK/STAT, MAPK, growth factor, and p53 signaling pathways were observed following 1α,25(OH)2D3 treatment. Five micro-RNAs were induced or repressed by 1α,25(OH)2D3. 1α,25(OH)2D3 regulates mitochondrial function, dynamics, and enzyme function, which are likely to influence muscle strength.

  8. Political dynamics promoting the incremental regulation of secondhand smoke: a case study of New South Wales, Australia

    PubMed Central

    Bryan-Jones, Katherine; Chapman, Simon

    2006-01-01

    Background The history of governmental responses to the accumulation of scientific evidence about the harms of secondhand smoke (SHS) presents an intriguing case study of incremental public health policy development. Australia has long been considered a world-leader in progressive tobacco control policies, but in the last decade has fallen behind other jurisdictions in introducing SHS legislation that protects all workers. Bars, clubs and pubs remain the only public indoor spaces where smoking is legally permitted, despite SHS exposure in the hospitality industry being higher and affecting more people than in any other setting after domestic exposure. This paper examines the political dynamics that have shaped this incremental approach to SHS. Methods In-depth interviews with 21 key stakeholders in the state of New South Wales (NSW), including politicians, their advisors, health officials and tobacco control advocates, were conducted and subjected to thematic content analysis. Interviewees' comments provided insights into the dynamics surrounding the debates and outcomes of SHS legislative attempts and the current political environment, and about how to progress SHS legislation. Results SHS restrictions have been delayed by several broad factors: the influence of industry groups successfully opposing regulation; issue wear-out; and political perceptions that there is not a salient constituency demanding that smoking be banned in bars and clubs. Interviewees also provided suggestions of strategies that advocates might utilise to best overcome the current political inertia of incremental compromises and achieve timely comprehensive smoking bans. Conclusion Advocates concerned to shorten the duration of incremental endgames must continue to insist that governments address SHS fundamentally as a health issue rather than making political concessions to industry groups, and should broaden and amplify community voices calling on governments to finish the job. Publicity to

  9. Lipid Droplet-Associated Proteins (LDAPs) Are Required for the Dynamic Regulation of Neutral Lipid Compartmentation in Plant Cells.

    PubMed

    Gidda, Satinder K; Park, Sunjung; Pyc, Michal; Yurchenko, Olga; Cai, Yingqi; Wu, Peng; Andrews, David W; Chapman, Kent D; Dyer, John M; Mullen, Robert T

    2016-04-01

    Eukaryotic cells compartmentalize neutral lipids into organelles called lipid droplets (LDs), and while much is known about the role of LDs in storing triacylglycerols in seeds, their biogenesis and function in nonseed tissues are poorly understood. Recently, we identified a class of plant-specific, lipid droplet-associated proteins (LDAPs) that are abundant components of LDs in nonseed cell types. Here, we characterized the three LDAPs in Arabidopsis (Arabidopsis thaliana) to gain insight to their targeting, assembly, and influence on LD function and dynamics. While all three LDAPs targeted specifically to the LD surface, truncation analysis of LDAP3 revealed that essentially the entire protein was required for LD localization. The association of LDAP3 with LDs was detergent sensitive, but the protein bound with similar affinity to synthetic liposomes of various phospholipid compositions, suggesting that other factors contributed to targeting specificity. Investigation of LD dynamics in leaves revealed that LD abundance was modulated during the diurnal cycle, and characterization of LDAP misexpression mutants indicated that all three LDAPs were important for this process. LD abundance was increased significantly during abiotic stress, and characterization of mutant lines revealed that LDAP1 and LDAP3 were required for the proper induction of LDs during heat and cold temperature stress, respectively. Furthermore, LDAP1 was required for proper neutral lipid compartmentalization and triacylglycerol degradation during postgerminative growth. Taken together, these studies reveal that LDAPs are required for the maintenance and regulation of LDs in plant cells and perform nonredundant functions in various physiological contexts, including stress response and postgerminative growth. PMID:26896396

  10. Stress dynamically regulates behavior and glutamatergic gene expression in hippocampus by opening a window of epigenetic plasticity

    PubMed Central

    Nasca, Carla; Zelli, Danielle; Bigio, Benedetta; Piccinin, Sonia; Scaccianoce, Sergio; Nisticò, Robert; McEwen, Bruce S.

    2015-01-01

    Excitatory amino acids play a key role in both adaptive and deleterious effects of stressors on the brain, and dysregulated glutamate homeostasis has been associated with psychiatric and neurological disorders. Here, we elucidate mechanisms of epigenetic plasticity in the hippocampus in the interactions between a history of chronic stress and familiar and novel acute stressors that alter expression of anxiety- and depressive-like behaviors. We demonstrate that acute restraint and acute forced swim stressors induce differential effects on these behaviors in naive mice and in mice with a history of chronic-restraint stress (CRS). They reveal a key role for epigenetic up- and down-regulation of the putative presynaptic type 2 metabotropic glutamate (mGlu2) receptors and the postsynaptic NR1/NMDA receptors in the hippocampus and particularly in the dentate gyrus (DG), a region of active neurogenesis and a target of antidepressant treatment. We show changes in DG long-term potentiation (LTP) that parallel behavioral responses, with habituation to the same acute restraint stressor and sensitization to a novel forced-swim stressor. In WT mice after CRS and in unstressed mice with a BDNF loss-of-function allele (BDNF Val66Met), we show that the epigenetic activator of histone acetylation, P300, plays a pivotal role in the dynamic up- and down-regulation of mGlu2 in hippocampus via histone-3-lysine-27-acetylation (H3K27Ac) when acute stressors are applied. These hippocampal responses reveal a window of epigenetic plasticity that may be useful for treatment of disorders in which glutamatergic transmission is dysregulated. PMID:26627246

  11. Raft endocytosis of AMF regulates mitochondrial dynamics through Rac1 signaling and the Gp78 ubiquitin ligase.

    PubMed

    Shankar, Jay; Kojic, Liliana D; St-Pierre, Pascal; Wang, Peter T C; Fu, Min; Joshi, Bharat; Nabi, Ivan R

    2013-08-01

    Gp78 is a cell surface receptor that also functions as an E3 ubiquitin ligase in the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. The Gp78 ligand, the glycolytic enzyme phosphoglucose isomerase (PGI; also called autocrine motility factor, AMF), functions as a cytokine upon secretion by tumor cells. AMF is internalized through a PI3K- and dynamin-dependent raft endocytic pathway to the smooth ER; however, the relationship between AMF and Gp78 ubiquitin ligase activity remains unclear. AMF uptake to the smooth ER is inhibited by the dynamin inhibitor, dynasore, is reduced in Gp78 knockdown cells and induces the dynamin-dependent downregulation of its cell surface receptor. AMF uptake is Rac1-dependent and is inhibited by expression of dominant-negative Rac1 and the Rac1 inhibitor NSC23766, and is therefore distinct from Cdc42- and RhoA-dependent raft endocytic pathways. AMF stimulates Rac1 activation, but this is reduced by dynasore treatment and is absent in Gp78-knockdown cells; therefore, AMF activities require Gp78-mediated endocytosis. AMF also prevents Gp78-induced degradation of the mitochondrial fusion proteins, mitofusin 1 and 2 in a dynamin-, Rac1- and phosphoinositide 3-kinase (PI3K)-dependent manner. Gp78 induces mitochondrial clustering and fission in a manner dependent on GP78 ubiquitin ligase activity, and this is also reversed by uptake of AMF. The raft-dependent endocytosis of AMF, therefore, promotes Rac1-PI3K signaling that feeds back to promote AMF endocytosis and also inhibits the ability of Gp78 to target the mitofusins for degradation, thereby preventing Gp78-dependent mitochondrial fission. Through regulation of an ER-localized ubiquitin ligase, the raft-dependent endocytosis of AMF represents an extracellular regulator of mitochondrial fusion and dynamics.

  12. [The dynamic mitochondria-nuclear redistribution of FKBP51 during the process of adipocyte differentiation is regulated by PKA].

    PubMed

    Toneatto, Judith; Charó, Nancy L; Susperreguy, Sebastián; Piwien-Pilipuk, Graciela

    2013-01-01

    Glucocorticoids play an important role in adipogenesis via the glucocorticoid receptor (GR) that forms a heterocomplex with Hsp90-Hsp70 and a high molecular weight immunophilin FKBP51 or FKBP52. We have found that FKBP51 level of expression progressively increases, FKBP52 decreases, whereas Hsp90, Hsp70, and p23 remain unchanged when 3T3-L1 preadipocytes differentiate. Interestingly, FKBP51 translocates from mitochondria to the nucleus at the onset of adipogenesis. FKBP51 transiently concentrates in the nuclear lamina, at a time that this nuclear compartment undergoes its reorganization. FKBP51 nuclear localization is transient, after 48 h it cycles back to mitochondria. We found that the dynamic FKBP51 mitochondrial-nuclear shuttling is regulated by glucocorticoids and mainly on cAMP-PKA signaling since PKA inhibition by myristoilated-PKI, abrogated FKBP51 nuclear translocation induced by 3-isobutyl-1-methylxanthine (IBMX). It has been reported that PKA interacts with GR in a ligand dependent manner potentiating its transcriptional capacity. GR transcriptional capacity is reduced when cells are incubated in the presence of IBMX, forskolin or dibutyryl-cAMP, compounds that induced nuclear translocation of FKBP51, therefore PKA may exert a dual role in the control of GR. In summary, the presence of FKBP51 in the nucleus may be critical for GR transcriptional control, and possibly for the control of other transcription factors that are not members of the nuclear receptor family but are regulated by PKA signaling pathway, when transcription has to be strictly controlled to succeed in the acquisition of the adipocyte phenotype.

  13. [The dynamic mitochondria-nuclear redistr