Science.gov

Sample records for regulates adrenocortical development

  1. Adrenocortical Activity and Emotion Regulation.

    ERIC Educational Resources Information Center

    Stansbury, Kathy; Gunnar, Megan R.

    1994-01-01

    This essay argues that the activity of the hypothalamic-pituitary-adrenocortical (HPA) system does not appear to be related to emotion regulation processes in children, although individual differences in emotion processes related to negative emotion temperaments appear to be associated with individual differences in HPA reactivity among normally…

  2. Gene expression and regulation in adrenocortical tumorigenesis.

    PubMed

    Fonseca, Annabelle L; Healy, James; Kunstman, John W; Korah, Reju; Carling, Tobias

    2012-12-27

    Adrenocortical tumors are frequently found in the general population, and may be benign adrenocortical adenomas or malignant adrenocortical carcinomas. Unfortunately the clinical, biochemical and histopathological distinction between benign and malignant adrenocortical tumors may be difficult in the absence of widely invasive or metastatic disease, and hence attention has turned towards a search for molecular markers. The study of rare genetic diseases that are associated with the development of adrenocortical carcinomas has contributed to our understanding of adrenocortical tumorigenesis. In addition, comprehensive genomic hybridization, methylation profiling, and genome wide mRNA and miRNA profiling have led to improvements in our understanding, as well as demonstrated several genes and pathways that may serve as diagnostic or prognostic markers.

  3. A comparative proteomic study identified calreticulin and prohibitin up-regulated in adrenocortical carcinomas

    PubMed Central

    2013-01-01

    Background Identifying novel tumor biomarkers to develop more effective diagnostic and therapeutic strategies for patients with ACC is urgently needed. The aim of the study was to compare the proteomic profiles between adrenocortical carcinomas (ACC) and normal adrenocortical tissues in order to identify novel potential biomarkers for ACC. Methods The protein samples from 12 ACC tissues and their paired adjacent normal adrenocortical tissues were profiled with two-dimensional electrophoresis; and differentially expressed proteins were identified by mass spectrometry. Expression patterns of three differently expressed proteins calreticulin, prohibitin and HSP60 in ACC, adrenocortical adenomas (ACA) and normal adrenocortical tissues were further validated by immunohistochemistry. Results In our proteomic study, we identified 20 up-regulated and 9 down-regulated proteins in ACC tissues compared with paired normal controls. Most of the up-regulated proteins were focused in protein binding and oxidoreductase activity in Gene Ontology (GO) molecular function classification. By immunohistochemistry, two biomarkers calreticulin and prohibitin were validated to be overexpressed in ACC compared with adrenocortical adenomas (ACA) and normal tissues, but also calreticulin overexpression was significantly associated with tumor stages of ACC. Conclusion For the first time, calreticulin and prohibitin were identified to be novel candidate biomarkers for ACC, and their roles during ACC carcinogenesis and clinical significance deserves further investigation. Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1897372598927465 PMID:23587357

  4. New evidences on the regulation of SF-1 expression by POD1/TCF21 in adrenocortical tumor cells

    PubMed Central

    França, Monica Malheiros; Lerario, Antonio M.; Fragoso, Maria Candida B.V.; Lotfi, Claudimara Ferini Pacicco

    2017-01-01

    OBJECTIVES: Transcription Factor 21 represses steroidogenic factor 1, a nuclear receptor required for gonadal development, sex determination and the regulation of adrenogonadal steroidogenesis. The aim of this study was to investigate whether silencing or overexpression of the gene Transcription Factor 21 could modulate the gene and protein expression of steroidogenic factor 1 in adrenocortical tumors. METHODS: We analyzed the gene expression of steroidogenic factor 1 using qPCR after silencing endogenous Transcription Factor 21 in pediatric adrenal adenoma-T7 cells through small interfering RNA. In addition, using overexpression of Transcription Factor 21 in human adrenocortical carcinoma cells, we analyzed the protein expression of steroidogenic factor 1 using Western blotting. RESULTS: Transcription Factor 21 knockdown increased the mRNA expression of steroidogenic factor 1 by 5.97-fold in pediatric adrenal adenoma-T7 cells. Additionally, Transcription Factor 21 overexpression inhibited the protein expression of steroidogenic factor 1 by 0.41-fold and 0.64-fold in two different adult adrenocortical carcinoma cell cultures, H295R and T36, respectively. CONCLUSIONS: Transcription Factor 21 is downregulated in adrenocortical carcinoma cells. Taken together, these findings support the hypothesis that Transcription Factor 21 is a regulator of steroidogenic factor 1 and is a tumor suppressor gene in pediatric and adult adrenocortical tumors. PMID:28658440

  5. New evidences on the regulation of SF-1 expression by POD1/TCF21 in adrenocortical tumor cells.

    PubMed

    França, Monica Malheiros; Lerario, Antonio M; Fragoso, Maria Candida B V; Lotfi, Claudimara Ferini Pacicco

    2017-06-01

    Transcription Factor 21 represses steroidogenic factor 1, a nuclear receptor required for gonadal development, sex determination and the regulation of adrenogonadal steroidogenesis. The aim of this study was to investigate whether silencing or overexpression of the gene Transcription Factor 21 could modulate the gene and protein expression of steroidogenic factor 1 in adrenocortical tumors. We analyzed the gene expression of steroidogenic factor 1 using qPCR after silencing endogenous Transcription Factor 21 in pediatric adrenal adenoma-T7 cells through small interfering RNA. In addition, using overexpression of Transcription Factor 21 in human adrenocortical carcinoma cells, we analyzed the protein expression of steroidogenic factor 1 using Western blotting. Transcription Factor 21 knockdown increased the mRNA expression of steroidogenic factor 1 by 5.97-fold in pediatric adrenal adenoma-T7 cells. Additionally, Transcription Factor 21 overexpression inhibited the protein expression of steroidogenic factor 1 by 0.41-fold and 0.64-fold in two different adult adrenocortical carcinoma cell cultures, H295R and T36, respectively. Transcription Factor 21 is downregulated in adrenocortical carcinoma cells. Taken together, these findings support the hypothesis that Transcription Factor 21 is a regulator of steroidogenic factor 1 and is a tumor suppressor gene in pediatric and adult adrenocortical tumors.

  6. Regulation of the adrenocortical stem cell niche: implications for disease

    PubMed Central

    Walczak, Elisabeth M.; Hammer, Gary D.

    2015-01-01

    Stem cells are endowed with the potential for self-renewal and multipotency. Pluripotent embryonic stem cells have an early role in the formation of the three germ layers (ectoderm, mesoderm and endoderm), whereas adult tissue stem cells and progenitor cells are critical mediators of organ homeostasis. The adrenal cortex is an exceptionally dynamic endocrine organ that is homeostatically maintained by paracrine and endocrine signals throughout postnatal life. In the past decade, much has been learned about the stem and progenitor cells of the adrenal cortex and the multiple roles that these cell populations have in normal development and homeostasis of the adrenal gland and in adrenal diseases. In this Review, we discuss the evidence for the presence of adrenocortical stem cells, as well as the various signalling molecules and transcriptional networks that are critical for the embryological establishment and postnatal maintenance of this vital population of cells. The implications of these pathways and cells in the pathophysiology of disease are also addressed. PMID:25287283

  7. Postnatal foraging demands alter adrenocortical activity and psychosocial development.

    PubMed

    Lyons, D M; Kim, S; Schatzberg, A F; Levine, S

    1998-05-01

    Mother squirrel monkeys stop carrying infants at earlier ages in high-demand (HD) conditions where food is difficult to find relative to low-demand (LD) conditions. To characterize these transitions in psychosocial development, from 10- to 21-weeks postpartum we collected measures of behavior, adrenocortical activity, and social transactions coded for initiator (mother or infant), goal (make-contact or break-contact), and outcome (success or failure). Make-contact attempts were most often initiated by HD infants, but mothers often opposed these attempts and less than 50% were successful. Break-contact attempts were most often initiated by LD infants, but mothers often opposed these attempts and fewer LD than HD infant break-contact attempts were successful. Plasma levels of cortisol were significantly higher in HD than LD mothers, but differences in adrenocortical activity were less consistent in their infants. HD and LD infants also spent similar amounts of time nursing on their mothers and feeding on solid foods. By rescheduling some transitions in development (carry-->self-transport), and not others (nursing-->self-feeding), mothers may have partially protected infants from the immediate impact of an otherwise stressful foraging task.

  8. Emotional and Adrenocortical Regulation in Early Adolescence: Prediction by Attachment Security and Disorganization in Infancy

    ERIC Educational Resources Information Center

    Spangler, Gottfried; Zimmermann, Peter

    2014-01-01

    The aim of the present study was to examine differences in emotion expression and emotion regulation in emotion-eliciting situations in early adolescence from a bio-psycho-social perspective, specifically investigating the influence of early mother-infant attachment and attachment disorganization on behavioural and adrenocortical responses. The…

  9. Emotional and Adrenocortical Regulation in Early Adolescence: Prediction by Attachment Security and Disorganization in Infancy

    ERIC Educational Resources Information Center

    Spangler, Gottfried; Zimmermann, Peter

    2014-01-01

    The aim of the present study was to examine differences in emotion expression and emotion regulation in emotion-eliciting situations in early adolescence from a bio-psycho-social perspective, specifically investigating the influence of early mother-infant attachment and attachment disorganization on behavioural and adrenocortical responses. The…

  10. GATA4 Is a Critical Regulator of Gonadectomy-Induced Adrenocortical Tumorigenesis in Mice

    PubMed Central

    Krachulec, Justyna; Vetter, Melanie; Schrade, Anja; Löbs, Ann-Kathrin; Bielinska, Malgorzata; Cochran, Rebecca; Kyrönlahti, Antti; Pihlajoki, Marjut; Parviainen, Helka; Jay, Patrick Y.; Heikinheimo, Markku

    2012-01-01

    In response to gonadectomy certain inbred mouse strains develop sex steroidogenic adrenocortical neoplasms. One of the hallmarks of neoplastic transformation is expression of GATA4, a transcription factor normally present in gonadal but not adrenal steroidogenic cells of the adult mouse. To show that GATA4 directly modulates adrenocortical tumorigenesis and is not merely a marker of gonadal-like differentiation in the neoplasms, we studied mice with germline or conditional loss-of-function mutations in the Gata4 gene. Germline Gata4 haploinsufficiency was associated with attenuated tumor growth and reduced expression of sex steroidogenic genes in the adrenal glands of ovariectomized B6D2F1 and B6AF1 mice. At 12 months after ovariectomy, wild-type B6D2F1 mice had biochemical and histological evidence of adrenocortical estrogen production, whereas Gata4+/− B6D2F1 mice did not. Germline Gata4 haploinsufficiency exacerbated the secondary phenotype of postovariectomy obesity in B6D2F1 mice, presumably by limiting ectopic estrogen production in the adrenal glands. Amhr2-cre-mediated deletion of floxed Gata4 (Gata4F) in nascent adrenocortical neoplasms of ovariectomized B6.129 mice reduced tumor growth and the expression of gonadal-like markers in a Gata4F dose-dependent manner. We conclude that GATA4 is a key modifier of gonadectomy-induced adrenocortical neoplasia, postovariectomy obesity, and sex steroidogenic cell differentiation. PMID:22461617

  11. Transforming growth factor beta 1: an autocrine regulator of adrenocortical steroidogenesis.

    PubMed

    Feige, J J; Cochet, C; Savona, C; Shi, D L; Keramidas, M; Defaye, G; Chambaz, E M

    1991-01-01

    Transforming growth factor beta 1 (TGF beta 1) is a member of a large family of structurally related regulatory polypeptides which comprises both functionally similar (TGF beta 1, TGF beta 2, TGF beta 3, TGF beta 4 and TGF beta 5) and functionally distinct proteins. In the past few years, TGF beta 1 has emerged as a multifunctional protein. One of its remarkable properties is its capacity to negatively modulate the differentiated, steroidogenic adrenocortical functions. We present here a review of the results from our recent work related to the effects of TGF beta 1 on bovine adrenocortical cell (zona fasciculata-reticularis) functions. We identified the steroid 17 alpha-hydroxylase (P-450 17 alpha) biosynthetic enzyme and the angiotensin II receptor as major targets whose expression are negatively regulated by TGF beta 1 in these cells. We characterized TGF beta 1 receptors at the surface of adrenocortical cells (mainly type I and type III receptors) and observed that their number is increased under ACTH treatment. Furthermore, we could detect the presence of immunoreactive TGF beta 1 in the bovine adrenal cortex whereas it was undetectable in the adrenal medulla and in the capsule. We also observed that adrenocortical cells secrete TGF beta 1 under a latent form together with large amounts of alpha 2-macroglobulin, a protease inhibitor known to be implied in the latency of TGF beta in serum. Taken together, these observations led us to a working hypothesis, proposing TGF beta 1 as an autocrine and/or paracrine regulator of adrenocortical steroidogenic functions. This concept points out the physiological activation of the latent TGF beta 1 complex as the important limiting step controlling its action in the adrenal cortex.

  12. Regulation of IGF - mTOR signalling by miRNA in childhood adrenocortical tumors

    PubMed Central

    Doghman, Mabrouka; Wakil, Abeer EL; Cardinaud, Bruno; Thomas, Emilie; Wang, Jinling; Zhao, Wei; Peralta-Del Valle, Maria Helena C.; Figueiredo, Bonald C.; Zambetti, Gerard P.; Lalli, Enzo

    2010-01-01

    MicroRNAs (miRNAs) act at the post-transcriptional level to control gene expression in virtually every biological process, including oncogenesis. Here we report the identification of a set of miRNAs that are differentially regulated in childhood adrenocortical tumors, including miR-99a and miR-100. Functional analysis of these miRNAs in adrenocortical tumor cell lines showed that they coordinately regulate expression of the IGF-mTOR-raptor signalling pathway through binding sites in their 3′ UTRs. In these cells, the active Ser2448-phosphorylated form of mTOR is present only in mitotic cells in association with the mitotic spindle and midbody in the G2/M phases of the cell cycle. Pharmacological inhibition of mTOR signalling by everolimus greatly reduces tumor cell growth in vitro and in vivo. Our results reveal a novel mechanism of regulation of mTOR signalling by miRNAs, and they lay the groundwork for clinical evaluation of mTOR pathway drugs for treatment of adrenocortical cancer. PMID:20484036

  13. Regulation of the hypothalamic-pituitary-adrenocortical stress response

    PubMed Central

    Herman, James P.; McKlveen, Jessica M.; Ghosal, Sriparna; Kopp, Brittany; Wulsin, Aynara; Makinson, Ryan; Scheimann, Jessie; Myers, Brent

    2016-01-01

    The hypothalamo-pituitary-adrenocortical (HPA axis) is required for stress adaptation. Activation of the HPA axis causes secretion of glucocorticoids, which act on multiple organ systems to redirect energy resources to meet real or anticipated demand. The HPA stress response is driven primarily by neural mechanisms, invoking corticotrophin releasing hormone (CRH) release from hypothalamic paraventricular nucleus (PVN) neurons. Pathways activating CRH release are stressor dependent: reactive responses to homeostatic disruption frequently involve direct noradrenergic or peptidergic drive of PVN neurons by sensory relays, whereas anticipatory responses use oligosynaptic pathways originating in upstream limbic structures. Anticipatory responses are driven largely by disinhibition, mediated by trans-synaptic silencing of tonic PVN inhibition via GABAergic neurons in the amygdala. Stress responses are inhibited by negative feedback mechanisms, whereby glucocorticoids act to diminish drive (brainstem), promote trans-synaptic inhibition by limbic structures (e.g, hippocampus). Glucocorticoids also act at the PVN to rapidly inhibit CRH neuronal activity via membrane glucocorticoid receptors. Chronic stress-induced activation of the HPA axis takes many forms (chronic basal hypersecretion, sensitized stress responses, even adrenal exhaustion), with manifestation dependent upon factors such as stressor chronicity, intensity, frequency and modality. Neural mechanisms driving chronic stress responses can be distinct from those controlling acute reactions, including recruitment of novel limbic, hypothalamic and brainstem circuits. Importantly, an individual’s response to acute or chronic stress is determined by numerous factors, including genetics, early life experience, environmental conditions, sex and age. The context in which stressors occur will determine whether an individual’s acute or chronic stress responses are adaptive or maladaptive (pathological). PMID:27065163

  14. PCP4: a regulator of aldosterone synthesis in human adrenocortical tissues

    PubMed Central

    Felizola, Saulo J. A.; Nakamura, Yasuhiro; Ono, Yoshikiyo; Kitamura, Kanako; Kikuchi, Kumi; Onodera, Yoshiaki; Ise, Kazue; Takase, Kei; Sugawara, Akira; Hattangady, Namita; Rainey, William E.; Satoh, Fumitoshi; Sasano, Hironobu

    2014-01-01

    Purkinje cell protein 4 (PCP4) is a calmodulin (CaM) binding protein that accelerates calcium association and dissociation with CaM. It has been previously detected in aldosterone-producing adenomas (APA) but details on its expression and function in adrenocortical tissues have remained unknown. Therefore, we performed the immunohistochemical analysis of PCP4 in the following tissues: normal adrenal (NA; n=15), APA (n=15), cortisol producing adenomas (CPA; n=15) and idiopathic hyperaldosteronism cases (IHA; n=5). APA samples (n=45) were also submitted to quantitative RT-PCR (qPCR) of PCP4, CYP11B1, and CYP11B2, as well as DNA sequencing for KCNJ5 mutations. Transient transfection analysis using PCP4 siRNA was also performed in H295R adrenocortical carcinoma cells, following ELISA analysis, and CYP11B2 luciferase assays were also performed after PCP4 vector transfection in order to study the regulation of PCP4 protein expression. In our findings, PCP4 immunoreactivity was predominantly detected in APA and in the zona glomerulosa (ZG) of NA and IHA. In APA, the mRNA levels of PCP4 were significantly correlated with those of CYP11B2 (P<0.0001) and were significantly higher in cases with KCNJ5 mutation than wild-type (P=0.005). Following PCP4 vector transfection, CYP11B2 luciferase reporter activity was significantly higher than controls in the presence of angiotensin-II. Knockdown of PCP4 resulted in a significant decrease in CYP11B2 mRNA levels (P=0.012) and aldosterone production (P=0.011). Our results indicate that PCP4 is a regulator of aldosterone production in normal, hyperplastic and neoplastic human adrenocortical cells. PMID:24403568

  15. Adrenocortical carcinoma

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001663.htm Adrenocortical carcinoma To use the sharing features on this page, please enable JavaScript. Adrenocortical carcinoma (ACC) is a cancer of the adrenal glands . ...

  16. Hormonal regulation of focal adhesions in bovine adrenocortical cells: induction of paxillin dephosphorylation by adrenocorticotropic hormone.

    PubMed Central

    Vilgrain, I; Chinn, A; Gaillard, I; Chambaz, E M; Feige, J J

    1998-01-01

    A study of bovine adrenocortical cell shape on adrenocorticotropic hormone (ACTH) challenge showed that the cells round up and develop arborized processes. This effect was found to be (1) specific for ACTH because angiotensin II and basic fibroblast growth factor have no effect; (2) mediated by a cAMP-dependent pathway because forskolin reproduces the effect of the hormone; (3) inhibited by sodium orthovanadate, a phosphotyrosine phosphatase inhibitor, but unchanged by okadaic acid, a serine/threonine phosphatase inhibitor; and (4) correlated with a complete loss of focal adhesions. Biochemical studies of the focal-adhesion-associated proteins showed that pp125fak, vinculin (110 kDa) and paxillin (70 kDa) were detected in the Triton X-100-insoluble fraction from adrenocortical cells. During cell adhesion on fibronectin as substratum, two major phosphotyrosine-containing proteins of molecular masses 125 and 68 kDa were immunodetected in the same fraction. A dramatic decrease in the extent of tyrosine phosphorylation of these proteins was observed within 60 min after treatment with ACTH. No change in pp125fak tyrosine phosphorylation nor in Src activity was detected. In contrast, paxillin was found to be tyrosine-dephosphorylated in a time-dependent manner in ACTH-treated cells. Sodium orthovanadate completely prevented the effect of ACTH. These observations suggest a possible role for phosphotyrosine phosphatases in hormone-dependent cellular regulatory processes. PMID:9601084

  17. Hormonal regulation of focal adhesions in bovine adrenocortical cells: induction of paxillin dephosphorylation by adrenocorticotropic hormone.

    PubMed

    Vilgrain, I; Chinn, A; Gaillard, I; Chambaz, E M; Feige, J J

    1998-06-01

    A study of bovine adrenocortical cell shape on adrenocorticotropic hormone (ACTH) challenge showed that the cells round up and develop arborized processes. This effect was found to be (1) specific for ACTH because angiotensin II and basic fibroblast growth factor have no effect; (2) mediated by a cAMP-dependent pathway because forskolin reproduces the effect of the hormone; (3) inhibited by sodium orthovanadate, a phosphotyrosine phosphatase inhibitor, but unchanged by okadaic acid, a serine/threonine phosphatase inhibitor; and (4) correlated with a complete loss of focal adhesions. Biochemical studies of the focal-adhesion-associated proteins showed that pp125fak, vinculin (110 kDa) and paxillin (70 kDa) were detected in the Triton X-100-insoluble fraction from adrenocortical cells. During cell adhesion on fibronectin as substratum, two major phosphotyrosine-containing proteins of molecular masses 125 and 68 kDa were immunodetected in the same fraction. A dramatic decrease in the extent of tyrosine phosphorylation of these proteins was observed within 60 min after treatment with ACTH. No change in pp125fak tyrosine phosphorylation nor in Src activity was detected. In contrast, paxillin was found to be tyrosine-dephosphorylated in a time-dependent manner in ACTH-treated cells. Sodium orthovanadate completely prevented the effect of ACTH. These observations suggest a possible role for phosphotyrosine phosphatases in hormone-dependent cellular regulatory processes.

  18. Adrenocortical endocrine disruption.

    PubMed

    Harvey, Philip W

    2016-01-01

    The adrenal has been neglected in endocrine disruption regulatory testing strategy. The adrenal is a vital organ, adrenocortical insufficiency is recognised in life threatening "adrenal crises" and Addison's disease, and the consequences of off-target toxicological inhibition of adrenocortical steroidogenesis is well recognised in clinical medicine, where drugs such as aminoglutethimide and etomidate killed patients via unrecognised inhibition of adrenocortical steroidogenic enzymes (e.g. CYP11B1) along the cortisol and aldosterone pathways. The consequences of adrenocortical dysfunction during early development are also recognised in the congenital salt wasting and adrenogenital syndromes presenting neonatally, yet despite a remit to focus on developmental and reproductive toxicity mechanisms of endocrine disruption by many regulatory agencies (USEPA EDSTAC; REACH) the assessment of adrenocortical function has largely been ignored. Further, every step in the adrenocortical steroidogenic pathway (ACTH receptor, StAR, CYP's 11A1, 17, 21, 11B1, 11B2, and 3-hydroxysteroid dehydrogenase Δ4,5 isomerase) is known to be a potential target with multiple examples of chemicals inhibiting these targets. Many of these chemicals have been detected in human and wildlife tissues. This raises the question of whether exposure to low level environmental chemicals may be affecting adrenocortical function. This review examines the omission of adrenocortical testing in the current regulatory frameworks; the characteristics that make the adrenal cortex particularly vulnerable to toxic insult; chemicals and their toxicological targets within the adrenocortical steroidogenic pathways; the typical manifestations of adrenocortical toxicity (e.g. human iatrogenically induced pharmacotoxicological adrenal insufficiency, manifestations in typical mammalian regulatory general toxicology studies, manifestations in wildlife) and models of adrenocortical functional assessment. The utility of the

  19. Endothelial cells regulate β-catenin activity in adrenocortical cells via secretion of basic fibroblast growth factor.

    PubMed

    Schwafertz, Carolin; Schinner, Sven; Kühn, Markus C; Haase, Matthias; Asmus, Amelie; Mülders-Opgenoorth, Birgit; Ansurudeen, Ishrath; Hornsby, Peter J; Morawietz, Henning; Oetjen, Elke; Schott, Matthias; Willenberg, Holger S

    2017-02-05

    Endothelial cell-derived products influence the synthesis of aldosterone and cortisol in human adrenocortical cells by modulating proteins such as steroidogenic acute-regulatory (StAR) protein, steroidogenic factor (SF)-1 and CITED2. However, the potential endothelial cell-derived factors that mediate this effect are still unknown. The current study was perfomed to look into the control of β-catenin activity by endothelial cell-derived factors and to identify a mechanism by which they affect β-catenin activity in adrenocortical NCIH295R cells. Using reporter gene assays and Western blotting, we found that endothelial cell-conditioned medium (ECCM) led to nuclear translocation of β-catenin and an increase in β-catenin-dependent transcription that could be blocked by U0126, an inhibitor of the mitogen-activated protein kinase pathway. Furthermore, we found that a receptor tyrosin kinase (RTK) was involved in ECCM-induced β-catenin-dependent transcription. Through selective inhibition of RTK using Su5402, it was shown that receptors responding to basic fibroblast growth factor (bFGF) mediate the action of ECCM. Adrenocortical cells treated with bFGF showed a significant greater level of bFGF mRNA. In addition, HUVECs secrete bFGF in a density-dependent manner. In conclusion, the data suggest that endothelial cells regulate β-catenin activity in adrenocortical cells also via secretion of basic fibroblast growth factor.

  20. Integrated genome-wide analysis of genomic changes and gene regulation in human adrenocortical tissue samples.

    PubMed

    Gara, Sudheer Kumar; Wang, Yonghong; Patel, Dhaval; Liu-Chittenden, Yi; Jain, Meenu; Boufraqech, Myriem; Zhang, Lisa; Meltzer, Paul S; Kebebew, Electron

    2015-10-30

    To gain insight into the pathogenesis of adrenocortical carcinoma (ACC) and whether there is progression from normal-to-adenoma-to-carcinoma, we performed genome-wide gene expression, gene methylation, microRNA expression and comparative genomic hybridization (CGH) analysis in human adrenocortical tissue (normal, adrenocortical adenomas and ACC) samples. A pairwise comparison of normal, adrenocortical adenomas and ACC gene expression profiles with more than four-fold expression differences and an adjusted P-value < 0.05 revealed no major differences in normal versus adrenocortical adenoma whereas there are 808 and 1085, respectively, dysregulated genes between ACC versus adrenocortical adenoma and ACC versus normal. The majority of the dysregulated genes in ACC were downregulated. By integrating the CGH, gene methylation and expression profiles of potential miRNAs with the gene expression of dysregulated genes, we found that there are higher alterations in ACC versus normal compared to ACC versus adrenocortical adenoma. Importantly, we identified several novel molecular pathways that are associated with dysregulated genes and further experimentally validated that oncostatin m signaling induces caspase 3 dependent apoptosis and suppresses cell proliferation. Finally, we propose that there is higher number of genomic changes from normal-to-adenoma-to-carcinoma and identified oncostatin m signaling as a plausible druggable pathway for therapeutics.

  1. Animal models of adrenocortical tumorigenesis

    PubMed Central

    Beuschlein, Felix; Galac, Sara; Wilson, David B.

    2011-01-01

    Over the past decade, research on human adrenocortical neoplasia has been dominated by gene expression profiling of tumor specimens and by analysis of genetic disorders associated with a predisposition to these tumors. Although these studies have identified key genes and associated signaling pathways that are dysregulated in adrenocortical neoplasms, the molecular events accounting for the frequent occurrence of benign tumors and low rate of malignant transformation remain unknown. Moreover, the prognosis for patients with adrenocortical carcinoma remains poor, so new medical treatments are needed. Naturally occurring and genetically engineered animal models afford a means to investigate adrenocortical tumorigenesis and to develop novel therapeutics. This comparative review highlights adrenocortical tumor models useful for either mechanistic studies or preclinical testing. Three model species – mouse, ferret, and dog – are reviewed, and their relevance to adrenocortical tumors in humans is discussed. PMID:22100615

  2. Adrenocortical regulation, eating in the absence of hunger and BMI in young children.

    PubMed

    Francis, L A; Granger, D A; Susman, E J

    2013-05-01

    The purpose of this study was to examine relations among adrenocortical regulation, eating in the absence of hunger, and body mass index (BMI) in children ages 5-9years (N=43). Saliva was collected before and after the Trier Social Stress Test for Children (TSST-C), and was later assayed for cortisol. Area under the curve with respect to increase (AUCi) was used as a measure of changes in cortisol release from baseline to 60min post-TSST-C. Age- and sex-specific BMI scores were calculated from measured height and weight, and eating in the absence of hunger was assessed using weighed food intake during a behavioral procedure. We also included a measure of parents' report of child impulsivity, as well as family demographic information. Participants were stratified by age into younger (5-7years) and older (8-9years) groups. In younger children, parents' reports of child impulsivity were significantly and positively associated with BMI; cortisol AUCi was not associated with BMI or eating in the absence of hunger. In older children, however, greater stress-related cortisol AUCi was related to higher BMI scores and greater energy intake in the absence of hunger. The results suggest that cortisol AUCi in response to psychosocial stress may be linked to problems with energy balance in children, with some variation by age.

  3. Adrenocorticotropic hormone in serial cerebrospinal fluid in man - Subject to acute regulation by the hypothalamic-pituitary-adrenocortical system?

    PubMed

    Kellner, Michael; Wortmann, Viola; Salzwedel, Cornelie; Kober, Daniel; Petzoldt, Martin; Urbanowicz, Tatiana; Pulic, Mersija; Boelmans, Kai; Yassouridis, Alexander; Wiedemann, Klaus

    2016-05-30

    Acute regulation of adrenocorticotropic hormone (ACTH) in cerebrospinal fluid (CSF) by the hypothalamic-pituitary-adrenocortical system has not been investigated in man. In a pilot study in healthy male volunteers we measured ACTH every twenty minutes in serial CSF for three hours after an intravenous placebo, hydrocortisone (100mg) or insulin (2mg/kg) injection. No acute inhibitory or stimulatory effects of these interventions were discovered. Our results corroborate previous findings in rhesus monkeys. The regulation of CSF ACTH and its potential relevance for behavioral alterations in health and disease (e.g. major depression or anorexia nervosa) in humans need further study.

  4. The Role of gsp Mutations on the Development of Adrenocortical Tumors and Adrenal Hyperplasia

    PubMed Central

    Villares Fragoso, Maria Candida Barisson; Wanichi, Ingrid Quevedo; Cavalcante, Isadora Pontes; Mariani, Beatriz Marinho de Paula

    2016-01-01

    Somatic GNAS point mutations, commonly known as gsp mutations, are involved in the pathogenesis of McCune–Albright syndrome (MAS) and have also been described in autonomous hormone-producing tumors, such as somatotropinoma, corticotrophoma, thyroid cancer, ovarian and testicular Leydig cell tumors, and primary macronodular adrenocortical hyperplasia (PMAH) (1–3). The involvement of gsp mutations in adrenal tumors was first described by Lyons et al. Since then, several studies have detected the presence of gsp mutations in adrenal tumors, but none of them could explain its presence along or the mechanism that leads to tumor formation and hormone hypersecretion. As a result, the molecular pathogenesis of the majority of sporadic adrenocortical tumors remains unclear (3). PMAH has also been reported with gsp somatic mutations in a few cases. Fragoso et al. identified two distinct gsp somatic mutations affecting arginine residues on codon 201 of GNAS in a few patients with PMAH who lacked any features or manifestations of MAS. Followed by this discovery, other studies have continued looking for gsp mutations based on strong prior evidence demonstrating that increased cAMP signaling is sufficient for cell proliferation and cortisol production (2, 4). With consideration for the previously reported findings, we conjecture that although somatic activating mutations in GNAS are a rare molecular event, these mutations could probably be sufficient to induce the development of macronodule hyperplasia and variable cortisol secretion. In this manuscript, we revised the presence of gsp mutations associated with adrenal cortical tumors and hyperplasia. PMID:27512387

  5. The Role of gsp Mutations on the Development of Adrenocortical Tumors and Adrenal Hyperplasia.

    PubMed

    Villares Fragoso, Maria Candida Barisson; Wanichi, Ingrid Quevedo; Cavalcante, Isadora Pontes; Mariani, Beatriz Marinho de Paula

    2016-01-01

    Somatic GNAS point mutations, commonly known as gsp mutations, are involved in the pathogenesis of McCune-Albright syndrome (MAS) and have also been described in autonomous hormone-producing tumors, such as somatotropinoma, corticotrophoma, thyroid cancer, ovarian and testicular Leydig cell tumors, and primary macronodular adrenocortical hyperplasia (PMAH) (1-3). The involvement of gsp mutations in adrenal tumors was first described by Lyons et al. Since then, several studies have detected the presence of gsp mutations in adrenal tumors, but none of them could explain its presence along or the mechanism that leads to tumor formation and hormone hypersecretion. As a result, the molecular pathogenesis of the majority of sporadic adrenocortical tumors remains unclear (3). PMAH has also been reported with gsp somatic mutations in a few cases. Fragoso et al. identified two distinct gsp somatic mutations affecting arginine residues on codon 201 of GNAS in a few patients with PMAH who lacked any features or manifestations of MAS. Followed by this discovery, other studies have continued looking for gsp mutations based on strong prior evidence demonstrating that increased cAMP signaling is sufficient for cell proliferation and cortisol production (2, 4). With consideration for the previously reported findings, we conjecture that although somatic activating mutations in GNAS are a rare molecular event, these mutations could probably be sufficient to induce the development of macronodule hyperplasia and variable cortisol secretion. In this manuscript, we revised the presence of gsp mutations associated with adrenal cortical tumors and hyperplasia.

  6. Expression of adiponectin receptors in mouse adrenal glands and the adrenocortical Y-1 cell line: adiponectin regulates steroidogenesis.

    PubMed

    Li, Ping; Sun, Fei; Cao, Huang-Ming; Ma, Qin-Yun; Pan, Chun-Ming; Ma, Jun-Hua; Zhang, Xiao-Na; Jiang, He; Song, Huai-Dong; Chen, Ming-Dao

    2009-12-25

    Obesity is frequently associated with malfunctions of the hypothalamus-pituitary-adrenal (HPA) axis and hyperaldosteronism, but the mechanism underlying this association remains unclear. Since the adrenal glands are embedded in adipose tissue, direct cross-talk between adipose tissue and the adrenal gland has been proposed. A previous study found that adiponectin receptor mRNA was expressed in human adrenal glands and aldosterone-producing adenoma (APA). However, the expression of adiponectin receptors in adrenal glands has not been confirmed at the protein level or in other species. Furthermore, it is unclear whether adiponectin receptors expressed in adrenal cells are functional. We found, for the first time, that adiponectin receptor (AdipoR1 and AdipoR2) mRNA and protein were expressed in mouse adrenal and adrenocortical Y-1 cells. However, adiponectin itself was not expressed in mouse adrenal or Y-1 cells. Furthermore, adiponectin acutely reduced basal levels of corticosterone and aldosterone secretion. ACTH-induced steroid secretion was also inhibited by adiponectin, and this was accompanied by a parallel change in the expression of the key genes involved in steroidogenesis. These findings indicate that adiponectin may take part in the modulation of steroidogenesis. Thus, adiponectin is likely to have physiological and/or pathophysiological significance as an endocrine regulator of adrenocortical function.

  7. The Role of the Pituitary-Adrenocortical Axis System in the Regulation of Secretion of Digestive Glands of Wrestlers during Sports and Postsports Ontogenesis

    ERIC Educational Resources Information Center

    Panov, Sergei F.; Panova, Irina P.; Volunskaya, Elena V.; Chebotarev, Andrei V.

    2016-01-01

    According to many researchers its necessary to research a hormonal profile in order to determine mechanisms of regulation of functions of the digestive conveyor during sports activities. In the paper the results of the carried out research on studying of a role of pituitary-adrenocortical axis system of adaptive reactions in activities of the…

  8. Adrenocortical Carcinoma

    PubMed Central

    Kim, Alex C.; Sabolch, Aaron; Raymond, Victoria M.; Kandathil, Asha; Caoili, Elaine M.; Jolly, Shruti; Miller, Barbra S.; Giordano, Thomas J.

    2014-01-01

    Adrenocortical carcinoma (ACC) is a rare endocrine malignancy, often with an unfavorable prognosis. Here we summarize the knowledge about diagnosis, epidemiology, pathophysiology, and therapy of ACC. Over recent years, multidisciplinary clinics have formed and the first international treatment trials have been conducted. This review focuses on evidence gained from recent basic science and clinical research and provides perspectives from the experience of a large multidisciplinary clinic dedicated to the care of patients with ACC. PMID:24423978

  9. Prenatal Maternal Stress Predicts Methylation of Genes Regulating the Hypothalamic-Pituitary-Adrenocortical System in Mothers and Newborns in the Democratic Republic of Congo

    ERIC Educational Resources Information Center

    Kertes, Darlene A.; Kamin, Hayley S.; Hughes, David A.; Rodney, Nicole C.; Bhatt, Samarth; Mulligan, Connie J.

    2016-01-01

    Exposure to stress early in life permanently shapes activity of the hypothalamic-pituitary-adrenocortical (HPA) axis and the brain. Prenatally, glucocorticoids pass through the placenta to the fetus with postnatal impacts on brain development, birth weight (BW), and HPA axis functioning. Little is known about the biological mechanisms by which…

  10. Prenatal Maternal Stress Predicts Methylation of Genes Regulating the Hypothalamic-Pituitary-Adrenocortical System in Mothers and Newborns in the Democratic Republic of Congo

    ERIC Educational Resources Information Center

    Kertes, Darlene A.; Kamin, Hayley S.; Hughes, David A.; Rodney, Nicole C.; Bhatt, Samarth; Mulligan, Connie J.

    2016-01-01

    Exposure to stress early in life permanently shapes activity of the hypothalamic-pituitary-adrenocortical (HPA) axis and the brain. Prenatally, glucocorticoids pass through the placenta to the fetus with postnatal impacts on brain development, birth weight (BW), and HPA axis functioning. Little is known about the biological mechanisms by which…

  11. Adrenocortical hypertrophy: establishing cause and toxicological significance.

    PubMed

    Harvey, Philip W; Sutcliffe, Catherine

    2010-10-01

    The primary cause of adrenocortical hypertrophy is increased adrenocorticotrophic hormone (ACTH) stimulation. In toxicology studies, such a condition can arise as a result of the stress response, but it may also occur due to deficient glucocorticoid feedback regulation of ACTH due to toxicity to the adrenal cortex. This latter condition is defined as adrenocortical insufficiency and represents a serious adverse toxic effect on the function of the adrenal cortex. Adrenocortical hypertrophy may occur in the absence of other adrenocortical lesions such that a toxicopathological mechanism is not obvious, for example by pharmacological inhibition of steroidogenesis at the biochemical level. This review discusses the different aetiological factors and mechanisms producing adrenocortical hypertrophy. The need for further evidence in ascribing findings to stress is discussed, as is a protocol for establishing differential diagnoses between stress-induced and toxicity-induced adrenocortical hypertrophy, which is useful in cases where there are no other histopathological lesions in the adrenal cortex. It is concluded that all cases of adrenocortical hypertrophy require further investigation or evidence to ascribe such findings to either stress or adrenocortical inhibition/insufficiency, and that all cases of adrenocortical insufficiency (whether due to a histopathological lesion or reversible pharmacological enzyme inhibition) represent a serious adverse effect that must be properly considered in toxicological risk assessment. Copyright © 2010 John Wiley & Sons, Ltd.

  12. Evidence for the role of adrenocortical hormones in the regulation of noradrenaline and dopamine metabolism in certain brain areas.

    PubMed Central

    Rastogi, R B; Singhal, R L

    1978-01-01

    1 Bilateral adrenalectomy suppressed body growth and increased the activity of tyrosine hydroxylase in rat striatum in a time-dependent manner. Fifteen days after adrenalectomy, the concentrations of noradrenaline were decreased significantly in hypothalamus and striatum, as were those of dopamine in brain stem and striatum. 2 Catechol-O-methyltransferase failed to change in response to adrenalectomy, but the activity of monoamine oxidase in cortex was significantly increased 7 days after surgery. These changes in various neurochemical parameters were even more pronounced 15 days after adrenal ablation. 3 Administration of corticosterone (10 mg/kg i.p.) to adrenalectomized rats effectively reversed the observed effects on brain amine metabolism. Corticosterone treatment for 7 days beginning from the 8th day of adrenalectomy virtually restored the concentrations of noradrenaline and dopamine as well as the activities of striatal tyrosine hydroxylase and cerebrocortical monoamine oxidase to the values seen for sham-operated controls. 4 Our data suggest that changes seen in brain noradrenaline and dopamine of adrenalectomized rats are specific to adrenocortical steroids and that these hormones play a role in the regulation of catecholamine formation. PMID:23193

  13. Prenatal Maternal Stress Predicts Methylation of Genes Regulating the Hypothalamic-Pituitary-Adrenocortical System in Mothers and Newborns in the Democratic Republic of Congo

    PubMed Central

    Kertes, Darlene A.; Kamin, Hayley S.; Hughes, David A.; Rodney, Nicole C.; Bhatt, Samarth; Mulligan, Connie J.

    2016-01-01

    Exposure to stress early in life permanently shapes activity of the hypothalamic-pituitary-adrenocortical (HPA) axis and the brain. Prenatally, glucocorticoids pass through the placenta to the fetus with postnatal impacts on brain development, birth weight, and HPA axis functioning. Little is known about the biological mechanisms by which prenatal stress affects postnatal functioning. This study addresses this gap by examining the effect of chronic stress and traumatic war-related stress on epigenetic changes in four key genes regulating the HPA axis in neonatal cord blood, placenta, and maternal blood: CRH, CRHBP, NR3C1, and FKBP5. Participants were 24 mother-newborn dyads in the conflict-ridden region of the eastern Democratic Republic of Congo. Birth weight data were collected at delivery and maternal interviews were conducted to assess culturally relevant chronic and war-related stressors. Chronic stress and war trauma had widespread effects on HPA axis gene methylation, with significant effects observed at transcription factor binding sites in all target genes tested. Some changes in methylation were unique to chronic or war stress, whereas others were observed across both stressor types. Moreover, stress exposures impacted maternal and fetal tissues differently, supporting theoretical models that stress impacts vary according to life phase. Methylation in several NR3C1 and CRH CpG sites, all located at transcription factor binding sites, was associated with birth weight. These findings suggest that prenatal stress exposure impacts development via epigenetic changes in HPA axis genes. PMID:26822443

  14. Prenatal Maternal Stress Predicts Methylation of Genes Regulating the Hypothalamic-Pituitary-Adrenocortical System in Mothers and Newborns in the Democratic Republic of Congo.

    PubMed

    Kertes, Darlene A; Kamin, Hayley S; Hughes, David A; Rodney, Nicole C; Bhatt, Samarth; Mulligan, Connie J

    2016-01-01

    Exposure to stress early in life permanently shapes activity of the hypothalamic-pituitary-adrenocortical (HPA) axis and the brain. Prenatally, glucocorticoids pass through the placenta to the fetus with postnatal impacts on brain development, birth weight (BW), and HPA axis functioning. Little is known about the biological mechanisms by which prenatal stress affects postnatal functioning. This study addresses this gap by examining the effect of chronic stress and traumatic war-related stress on epigenetic changes in four key genes regulating the HPA axis in neonatal cord blood, placenta, and maternal blood: CRH, CRHBP, NR3C1, and FKBP5. Participants were 24 mother-newborn dyads in the conflict-ridden region of the eastern Democratic Republic of Congo. BW data were collected at delivery and maternal interviews were conducted to assess culturally relevant chronic and war-related stressors. Chronic stress and war trauma had widespread effects on HPA axis gene methylation, with significant effects observed at transcription factor binding (TFB) sites in all target genes tested. Some changes in methylation were unique to chronic or war stress, whereas others were observed across both stressor types. Moreover, stress exposures impacted maternal and fetal tissues differently, supporting theoretical models that stress impacts vary according to life phase. Methylation in several NR3C1 and CRH CpG sites, all located at TFB sites, was associated with BW. These findings suggest that prenatal stress exposure impacts development via epigenetic changes in HPA axis genes.

  15. Abnormal regulation of adenosine 3′,5′-monophosphate and corticosterone formation in an adrenocortical carcinoma

    PubMed Central

    Ney, R. L.; Hochella, N. J.; Grahame-Smith, D. G.; Dexter, R. N.; Butcher, R. W.

    1969-01-01

    A spontaneously occurring rat adrenocortical carcinoma which produces corticosterone was maintained by transplantation. The carcinoma appeared to utilize corticosterone biosynthetic steps similar to those of the normal adrenal, but the tumor produced only about 1-10% as much corticosterone per unit tissue weight as nontumorous adrenal glands. The tumor demonstrated little or no increase in corticosterone production in response to adrenocorticotropic hormone (ACTH) either in vivo or in vitro. In normal adrenals, ACTH increases the activity of adenyl cyclase which catalyzes the conversion of adenosine triphosphate (ATP) to adenosine-3′,5′-monophosphate (cyclic AMP), the latter then serving as an intracellular regulator of steroidogenesis. ACTH failed to increase cyclic AMP levels in the tumor in vivo or in slices in vitro, conditions under which there were 50- and 20-fold increases in nontumorous adrenals. However, in homogenates fortified with exogenous ATP, adenyl cyclase activity was comparable in the tumor and adrenals, and cyclic AMP formation was increased 3-fold by ACTH in each. As measured in homogenates, the tumor did not possess a greater ability to destroy cyclic AMP than did normal adrenals. Although ATP levels in the carcinoma were found to be considerably lower than those in normal adrenals, it was not clear that this finding can explain the inability of ACTH to increase cyclic AMP levels in intact tumor cells. While the failure to normally influence cyclic AMP levels in the carcinoma cells could be an important factor in the lack of a steroid response to ACTH, several lines of evidence suggest that the tumor possesses one or more additional abnormalities in the regulation of steroidogenesis. First, in the absence of ACTH stimulation, the tissue concentrations of cyclic AMP were comparable in the tumor and in nontumorous adrenals, but these cyclic AMP levels were associated with a lower level of steroidogenesis in the tumor. Second, tumor slices

  16. Corticotropin (ACTH) regulates alternative RNA splicing in Y1 mouse adrenocortical tumor cells.

    PubMed

    Schimmer, Bernard P; Cordova, Martha

    2015-06-15

    The stimulatory effect of ACTH on gene expression is well documented and is thought to be a major mechanism by which ACTH maintains the functional and structural integrity of the gland. Previously, we showed that ACTH regulates the accumulation of over 1200 transcripts in Y1 adrenal cells, including a cluster with functions in alternative splicing of RNA. On this basis, we postulated that some of the effects of ACTH on the transcription landscape of Y1 cells are mediated by alternative splicing. In this study, we demonstrate that ACTH regulates the alternative splicing of four transcripts - Gnas, Cd151, Dab2 and Tia1. Inasmuch as alternative splicing potentially affects transcripts from more than two-thirds of the mouse genome, we suggest that these findings are representative of a genome-wide effect of ACTH that impacts on the mRNA and protein composition of the adrenal cortex.

  17. Orexin-A regulates cell apoptosis in human H295R adrenocortical cells via orexin receptor type 1 through the AKT signaling pathway.

    PubMed

    Chang, Xiaocen; Zhao, Yuyan; Ju, Shujing; Guo, Lei

    2015-11-01

    Numerous studies have demonstrated the ability of orexin-A to regulate adrenocortical cells through the mitogen-activated protein kinase signaling pathway. In the present study, human H295R adrenocortical cells were exposed to orexin‑A (10‑10-10‑6 M), with orexin receptor type 1 (OX1 receptor) antagonist SB334867 or AKT antagonist PF‑04691502. It was found that orexin‑A stimulated H295R cell proliferation, reduced the pro‑apoptotic activity of caspase‑3 to protect against apoptotic cell death and increased cortisol secretion. Furthermore, phospho‑AKT protein was increased by orexin‑A. SB334867 (10‑6 M) and PF‑04691502 (10‑6 M) abolished the effects of orexin‑A (10‑6 M). These results suggested that the orexin‑A/OX1 receptor axis has a significant pro-survival function in adrenal cells, which is mediated by AKT activation. Further studies investigating the effects of orexin-A-upregulation may further elucidate the diverse biological effects of orexin-A in adrenal cells.

  18. Adrenocortical Gap Junctions and Their Functions

    PubMed Central

    Bell, Cheryl L.; Murray, Sandra A.

    2016-01-01

    Adrenal cortical steroidogenesis and proliferation are thought to be modulated by gap junction-mediated direct cell–cell communication of regulatory molecules between cells. Such communication is regulated by the number of gap junction channels between contacting cells, the rate at which information flows between these channels, and the rate of channel turnover. Knowledge of the factors regulating gap junction-mediated communication and the turnover process are critical to an understanding of adrenal cortical cell functions, including development, hormonal response to adrenocorticotropin, and neoplastic dedifferentiation. Here, we review what is known about gap junctions in the adrenal gland, with particular attention to their role in adrenocortical cell steroidogenesis and proliferation. Information and insight gained from electrophysiological, molecular biological, and imaging (immunocytochemical, freeze fracture, transmission electron microscopic, and live cell) techniques will be provided. PMID:27445985

  19. Does somatostatin have a role in the regulation of cortisol secretion in primary pigmented nodular adrenocortical disease (ppnad)? a clinical and in vitro investigation.

    PubMed

    Bram, Zakariae; Xekouki, Paraskevi; Louiset, Estelle; Keil, Meg F; Avgeropoulos, Dimitrios; Giatzakis, Christoforos; Nesterova, Maria; Sinaii, Ninet; Hofland, Leo J; Cherqaoui, Rabia; Lefebvre, Hervé; Stratakis, Constantine A

    2014-05-01

    Somatostatin (SST) receptors (SSTRs) are expressed in a number of tissues, including the adrenal cortex, but their role in cortisol secretion has not been well characterized. The objective of the study was to investigate the expression of SSTRs in the adrenal cortex and cultured adrenocortical cells from primary pigmented nodular adrenocortical disease (PPNAD) tissues and to test the effect of a single injection of 100 μg of the SST analog octreotide on cortisol secretion in patients with PPNAD. The study was conducted at an academic research laboratory and clinical research center. Expression of SSTRs was examined in 26 PPNAD tissues and the immortalized PPNAD cell line CAR47. Ten subjects with PPNAD underwent a randomized, single-blind, crossover study of their cortisol secretion every 30 minutes over 12 hours (6:00 pm to 6:00 am) before and after the midnight administration of octreotide 100 μg sc. SSTRs expression was investigated by quantitative PCR and immunohistochemistry. The CAR47 and primary cell lines were studied in vitro. The data of the 10 patients were analyzed before and after the administration of octreotide. All SSTRs, especially SSTR1-3, were expressed in PPNAD at significantly higher levels than in normal adrenal. SST was found to differentially regulate expression of its own receptors in the CAR47 cell line. However, the administration of octreotide to patients with PPNAD did not significantly affect cortisol secretion. SSTRs are overexpressed in PPNAD tissues in comparison with normal adrenal cortex. Octreotide did not exert any significant effect on cortisol secretion in a short clinical pilot study in a small number of patients with PPNAD, but long-acting SST analogs targeting multiple SSTRs may be worth investigating in this condition.

  20. Does Somatostatin Have a Role in the Regulation of Cortisol Secretion in Primary Pigmented Nodular Adrenocortical Disease (PPNAD)? A Clinical and in Vitro Investigation

    PubMed Central

    Bram, Zakariae; Xekouki, Paraskevi; Louiset, Estelle; Keil, Meg F.; Avgeropoulos, Dimitrios; Giatzakis, Christoforos; Nesterova, Maria; Sinaii, Ninet; Hofland, Leo J.; Cherqaoui, Rabia; Lefebvre, Hervé

    2014-01-01

    Context: Somatostatin (SST) receptors (SSTRs) are expressed in a number of tissues, including the adrenal cortex, but their role in cortisol secretion has not been well characterized. Objectives: The objective of the study was to investigate the expression of SSTRs in the adrenal cortex and cultured adrenocortical cells from primary pigmented nodular adrenocortical disease (PPNAD) tissues and to test the effect of a single injection of 100 μg of the SST analog octreotide on cortisol secretion in patients with PPNAD. Setting and Design: The study was conducted at an academic research laboratory and clinical research center. Expression of SSTRs was examined in 26 PPNAD tissues and the immortalized PPNAD cell line CAR47. Ten subjects with PPNAD underwent a randomized, single-blind, crossover study of their cortisol secretion every 30 minutes over 12 hours (6:00 pm to 6:00 am) before and after the midnight administration of octreotide 100 μg sc. Methods: SSTRs expression was investigated by quantitative PCR and immunohistochemistry. The CAR47 and primary cell lines were studied in vitro. The data of the 10 patients were analyzed before and after the administration of octreotide. Results: All SSTRs, especially SSTR1–3, were expressed in PPNAD at significantly higher levels than in normal adrenal. SST was found to differentially regulate expression of its own receptors in the CAR47 cell line. However, the administration of octreotide to patients with PPNAD did not significantly affect cortisol secretion. Conclusions: SSTRs are overexpressed in PPNAD tissues in comparison with normal adrenal cortex. Octreotide did not exert any significant effect on cortisol secretion in a short clinical pilot study in a small number of patients with PPNAD, but long-acting SST analogs targeting multiple SSTRs may be worth investigating in this condition. PMID:24512486

  1. Adiponectin and adiponectin receptor system in the rat adrenal gland: ontogenetic and physiologic regulation, and its involvement in regulating adrenocortical growth and steroidogenesis.

    PubMed

    Paschke, Lukasz; Zemleduch, Tomasz; Rucinski, Marcin; Ziolkowska, Agnieszka; Szyszka, Marta; Malendowicz, Ludwik K

    2010-09-01

    Adiponectin (ADN) is a regulatory peptide secreted mostly by adipose tissue and acting via two receptors: AdipoR1 and AdipoR2. Our aim was to investigate expression of adiponectin system genes in the rat adrenal gland as well as its ontogenetic and physiological control. Furthermore, we examined the effects of acute and prolonged activation of HPA axis on ADN system in adipose tissue. By means of QPCR, ADN and AdipoR1 expression was demonstrated in rat adrenal cortex both at mRNA and protein levels, while AdipoR2 could only be detected at mRNA levels. ADN expression level was significantly upregulated in a developing and regenerating adrenal cortex. Globular domain of adiponectin at 10(-9) M stimulated corticosterone output and BrdU incorporation by cultured rat adrenocortical cells. Moreover, both acute (ACTH and ether stress) and prolonged (ACTH) adrenal stimulation resulted in lowered ADN levels, while expression of AdipoR1 and AdipoR2 was upregulated by the acute treatment. Depending on its site of origin, visceral (VAT) or subcutaneous (SAT) adipose tissue responded differently to alterations in HPA axis. VAT expression of ADN and its receptors remained almost unchanged by experimental manipulations. In SAT, on the other hand, expression of ADN and AdipoR2 was markedly increased by ACTH treatment and stress, while dexamethasone suppressed ADN and AdipoR1 mRNA levels. The results of this study provide new evidence for direct and indirect interactions between adipokines and HPA axis.

  2. Pregnane Glycosides Interfere With Steroidogenic Enzymes to Down-Regulate Corticosteroid Production in Human Adrenocortical H295R Cells

    PubMed Central

    KOMARNYTSKY, SLAVKO; ESPOSITO, DEBORA; POULEV, ALEXANDER; RASKIN, ILYA

    2013-01-01

    A group of bioactive steroidal glycosides (pregnanes) with anorectic activity in animals was isolated from several genera of milkweeds including Hoodia and Asclepias. In this study, we investigated the effects, structure-activity relationships, and mechanism of action of pregnane glycosides on steroidogenesis in human adrenocortical H295R cells. Administration of pregnane glycosides for 24 h suppressed the basal and forskolin-stimulated release of androstenedione, corticosterone, and cortisone from H295R cells. The conversion of progesterone to 11-deoxycorticosterone and 17-hydroxyprogesterone to either androstenedione or 11-deoxycortisol was most strongly affected, with 12-cinnamoyl-, benzoyl-, and tigloyl-containing pregnanes showing the highest activity. Incubation of pregnane glycosides for 24 h had no effect on mRNA transcripts of CYP11A1, CYP21A1, CYP11B1 cytochrome enzymes and steroidogenic acute regulatory protein (StaR) protein, yet resulted in twofold decrease in HSD3B1 mRNA levels. At the same time, pregnane glycosides had no effect on the CYP1, 2, or 3 drug and steroid metabolism enzymes and showed weak Na+/K+ ATPase and glucocorticoid receptor binding. Taken together, these data suggest that pregnane glycosides specifically suppress steroidogenesis through strong inhibition of 11β-hydroxylase and steroid 17-alpha-monooxygenase, and weak inhibition of cytochrome P450 side chain cleavage enzyme and 21β-hydroxylase, but not 3β-hydroxysteroid dehydrogenase/isomerase. PMID:23065845

  3. Adrenocortical Insufficiency in Horses and Foals

    PubMed Central

    Hart, Kelsey A.; Barton, Michelle H.

    2010-01-01

    SYNOPSIS The adrenal cortices produce a variety of steroid hormones (corticosteroids) that play vital roles in a number of physiologic processes, including: electrolyte and fluid balance; cardiovascular homeostasis; carbohydrate, protein and lipid metabolism; immune and inflammatory responses; and sexual development and reproductive function. While permanent adrenocortical insufficiency is rare in all species, emerging evidence in both human and equine medicine suggests that transient, reversible adrenocortical dysfunction resulting in cortisol insufficiency frequently develops during critical illness. This syndrome is termed relative adrenal insufficiency (RAI) or critical illness-related corticosteroid insufficiency (CIRCI), and can contribute substantially to morbidity and mortality associated with the primary disease. Thus, this review will primarily cover the mechanisms, diagnosis and clinical consequences of adrenocortical insufficiency, with particular focus on our current understanding of RAI/CIRCI in horses and foals. PMID:21392651

  4. Adrenocortical Zonation, Renewal, and Remodeling

    PubMed Central

    Pihlajoki, Marjut; Dörner, Julia; Cochran, Rebecca S.; Heikinheimo, Markku; Wilson, David B.

    2015-01-01

    The adrenal cortex is divided into concentric zones. In humans the major cortical zones are the zona glomerulosa, zona fasciculata, and zona reticularis. The adrenal cortex is a dynamic organ in which senescent cells are replaced by newly differentiated ones. This constant renewal facilitates organ remodeling in response to physiological demand for steroids. Cortical zones can reversibly expand, contract, or alter their biochemical profiles to accommodate needs. Pools of stem/progenitor cells in the adrenal capsule, subcapsular region, and juxtamedullary region can differentiate to repopulate or expand zones. Some of these pools appear to be activated only during specific developmental windows or in response to extreme physiological demand. Senescent cells can also be replenished through direct lineage conversion; for example, cells in the zona glomerulosa can transform into cells of the zona fasciculata. Adrenocortical cell differentiation, renewal, and function are regulated by a variety of endocrine/paracrine factors including adrenocorticotropin, angiotensin II, insulin-related growth hormones, luteinizing hormone, activin, and inhibin. Additionally, zonation and regeneration of the adrenal cortex are controlled by developmental signaling pathways, such as the sonic hedgehog, delta-like homolog 1, fibroblast growth factor, and WNT/β-catenin pathways. The mechanisms involved in adrenocortical remodeling are complex and redundant so as to fulfill the offsetting goals of organ homeostasis and stress adaptation. PMID:25798129

  5. Pediatric adrenocortical tumors: what they can tell us on adrenal development and comparison with adult adrenal tumors.

    PubMed

    Lalli, Enzo; Figueiredo, Bonald C

    2015-01-01

    Adrenocortical tumors (ACT) in children are very rare and are most frequently diagnosed in the context of the Li-Fraumeni syndrome, a multiple cancer syndrome linked to germline mutations of the tumor suppressor gene TP53 with loss of heterozygosity in the tumors. A peak of children ACT incidence is present in the states of southern Brazil, where they are linked to the high prevalence in the population of a specific TP53 mutation (R337H). Children ACT have specific features distinguishing them from adult tumors in their pathogenetic mechanisms, genomic profiles, and prognosis. Epidemiological and molecular evidence suggests that in most cases they are derived from the fetal adrenal.

  6. [Important action of improving adrenocortical function for certain diseases recovery].

    PubMed

    Shen, Zi-yin; Dong, Jing-cheng; Cai, Ding-fang

    2007-04-01

    It has been found that the hypofunction status of hypothalamus-pituitary-adrenal (HPA) axis exists in patients with Shen-yang deficiency syndrome of TCM, also presents in most asthma patients. Seasonal attack of asthma can be prevented with Shen-tonifying drugs by improving adrenocortical function. Since patients subject to long-term glucocorticoids display hypofunction condition of HPA axis, Shen-tonifying drugs should be helpful to gluocorticoid withdrawal for getting higher success rate. Basic researches also indicated that the activating of adrenocortical stem cells and promoting regeneration of adrenal cortex is one of the mechanisms underlying improvement of adrenocortical function. Series of research showed that hypofunction of adrenocortex is the general pathological change in some diseases, so, Shen-tonifying drugs act a part in unitarily modulating the adrenocortical function, to get the therapeutic effect of both regulating the whole and improving the local.

  7. Pediatric Adrenocortical Tumors: What They Can Tell Us on Adrenal Development and Comparison with Adult Adrenal Tumors

    PubMed Central

    Lalli, Enzo; Figueiredo, Bonald C.

    2015-01-01

    Adrenocortical tumors (ACT) in children are very rare and are most frequently diagnosed in the context of the Li-Fraumeni syndrome, a multiple cancer syndrome linked to germline mutations of the tumor suppressor gene TP53 with loss of heterozygosity in the tumors. A peak of children ACT incidence is present in the states of southern Brazil, where they are linked to the high prevalence in the population of a specific TP53 mutation (R337H). Children ACT have specific features distinguishing them from adult tumors in their pathogenetic mechanisms, genomic profiles, and prognosis. Epidemiological and molecular evidence suggests that in most cases they are derived from the fetal adrenal. PMID:25741319

  8. Global gene expression response to telomerase in bovine adrenocortical cells

    SciTech Connect

    Perrault, Steven D.; Hornsby, Peter J.; Betts, Dean H. . E-mail: bettsd@uoguelph.ca

    2005-09-30

    The infinite proliferative capability of most immortalized cells is dependent upon the presence of the enzyme telomerase and its ability to maintain telomere length and structure. However, telomerase may be involved in a greater system than telomere length regulation, as recent evidence has shown it capable of increasing wound healing in vivo, and improving cellular proliferation rate and survival from apoptosis in vitro. Here, we describe the global gene expression response to ectopic telomerase expression in an in vitro bovine adrenocortical cell model. Telomerase-immortalized cells showed an increased ability for proliferation and survival in minimal essential medium above cells transgenic for GFP. cDNA microarray analyses revealed an altered cell state indicative of increased adrenocortical cell proliferation regulated by the IGF2 pathway and alterations in members of the TGF-B family. As well, we identified alterations in genes associated with development and wound healing that support a model that high telomerase expression induces a highly adaptable, progenitor-like state.

  9. Update in adrenocortical carcinoma.

    PubMed

    Fassnacht, Martin; Kroiss, Matthias; Allolio, Bruno

    2013-12-01

    Adrenocortical carcinoma (ACC) is an orphan malignancy that has attracted increasing attention during the last decade. Here we provide an update on advances in the field since our last review published in this journal in 2006. The Wnt/β-catenin pathway and IGF-2 signaling have been confirmed as frequently altered signaling pathways in ACC, but recent data suggest that they are probably not sufficient for malignant transformation. Thus, major players in the pathogenesis are still unknown. For diagnostic workup, comprehensive hormonal assessment and detailed imaging are required because in most ACCs, evidence for autonomous steroid secretion can be found and computed tomography or magnetic resonance imaging (if necessary, combined with functional imaging) can differentiate benign from malignant adrenocortical tumors. Surgery is potentially curative in localized tumors. Thus, we recommend a complete resection including lymphadenectomy by an expert surgeon. The pathology report should demonstrate the adrenocortical origin of the lesion (eg, by steroidogenic factor 1 staining) and provide Weiss score, resection status, and quantitation of the proliferation marker Ki67 to guide further treatment. Even after complete surgery, recurrence is frequent and adjuvant mitotane treatment improves outcome, but uncertainty exists as to whether all patients benefit from this therapy. In advanced ACC, mitotane is still the standard of care. Based on the FIRM-ACT trial, mitotane plus etoposide, doxorubicin, and cisplatin is now the established first-line cytotoxic therapy. However, most patients will experience progress and require salvage therapies. Thus, new treatment concepts are urgently needed. The ongoing international efforts including comprehensive "-omic approaches" and next-generation sequencing will improve our understanding of the pathogenesis and hopefully lead to better therapies.

  10. Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: a review of animal models and human studies across development.

    PubMed

    Hostinar, Camelia E; Sullivan, Regina M; Gunnar, Megan R

    2014-01-01

    Discovering the stress-buffering effects of social relationships has been one of the major findings in psychobiology in the last century. However, an understanding of the underlying neurobiological and psychological mechanisms of this buffering is only beginning to emerge. An important avenue of this research concerns the neurocircuitry that can regulate the activity of the hypothalamic-pituitary-adrenocortical (HPA) axis. The present review is a translational effort aimed at integrating animal models and human studies of the social regulation of the HPA axis from infancy to adulthood, specifically focusing on the process that has been named social buffering. This process has been noted across species and consists of a dampened HPA axis stress response to threat or challenge that occurs with the presence or assistance of a conspecific. We describe aspects of the relevant underlying neurobiology when enough information exists and expose major gaps in our understanding across all domains of the literatures we aimed to integrate. We provide a working conceptual model focused on the role of oxytocinergic systems and prefrontal neural networks as 2 of the putative biological mediators of this process, and propose that the role of early experiences is critical in shaping later social buffering effects. This synthesis points to both general future directions and specific experiments that need to be conducted to build a more comprehensive model of the HPA social buffering effect across the life span that incorporates multiple levels of analysis: neuroendocrine, behavioral, and social.

  11. Alterations of Phosphodiesterases in Adrenocortical Tumors

    PubMed Central

    Hannah-Shmouni, Fady; Faucz, Fabio R.; Stratakis, Constantine A.

    2016-01-01

    Alterations in the cyclic (c)AMP-dependent signaling pathway have been implicated in the majority of benign adrenocortical tumors (ACTs) causing Cushing syndrome (CS). Phosphodiesterases (PDEs) are enzymes that regulate cyclic nucleotide levels, including cyclic adenosine monophosphate (cAMP). Inactivating mutations and other functional variants in PDE11A and PDE8B, two cAMP-binding PDEs, predispose to ACTs. The involvement of these two genes in ACTs was initially revealed by a genome-wide association study in patients with micronodular bilateral adrenocortical hyperplasia. Thereafter, PDE11A or PDE8B genetic variants have been found in other ACTs, including macronodular adrenocortical hyperplasias and cortisol-producing adenomas. In addition, downregulation of PDE11A expression and inactivating variants of the gene have been found in hereditary and sporadic testicular germ cell tumors, as well as in prostatic cancer. PDEs confer an increased risk of ACT formation probably through, primarily, their action on cAMP levels, but other actions might be possible. In this report, we review what is known to date about PDE11A and PDE8B and their involvement in the predisposition to ACTs. PMID:27625633

  12. Toying with fate: Redirecting the differentiation of adrenocortical progenitor cells into gonadal-like tissue.

    PubMed

    Röhrig, Theresa; Pihlajoki, Marjut; Ziegler, Ricarda; Cochran, Rebecca S; Schrade, Anja; Schillebeeckx, Maximiliaan; Mitra, Robi D; Heikinheimo, Markku; Wilson, David B

    2015-06-15

    Cell fate decisions are integral to zonation and remodeling of the adrenal cortex. Animal models exhibiting ectopic differentiation of gonadal-like cells in the adrenal cortex can shed light on the molecular mechanisms regulating steroidogenic cell fate. In one such model, prepubertal gonadectomy (GDX) of mice triggers the formation of adrenocortical neoplasms that resemble luteinized ovarian stroma. Transcriptomic analysis and genome-wide DNA methylation mapping have identified genetic and epigenetic markers of GDX-induced adrenocortical neoplasia. Members of the GATA transcription factor family have emerged as key regulators of cell fate in this model. Expression of Gata4 is pivotal for the accumulation of gonadal-like cells in the adrenal glands of gonadectomized mice, whereas expression of Gata6 limits the spontaneous and GDX-induced differentiation of gonadal-like cells in the adrenal cortex. Additionally, Gata6 is essential for proper development of the adrenal X-zone, a layer analogous to the fetal zone of the human adrenal cortex. The relevance of these observations to developmental signaling pathways in the adrenal cortex, to other animal models of altered adrenocortical cell fate, and to human diseases is discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Toying with fate: Redirecting the differentiation of adrenocortical progenitor cells into gonadal-like tissue

    PubMed Central

    Röhrig, Theresa; Pihlajoki, Marjut; Ziegler, Ricarda; Cochran, Rebecca S.; Schrade, Anja; Schillebeeckx, Maximiliaan; Mitra, Robi D.; Heikinheimo, Markku; Wilson, David B.

    2014-01-01

    Cell fate decisions are integral to zonation and remodeling of the adrenal cortex. Animal models exhibiting ectopic differentiation of gonadal-like cells in the adrenal cortex can shed light on the molecular mechanisms regulating steroidogenic cell fate. In one such model, prepubertal gonadectomy (GDX) of mice triggers the formation of adrenocortical neoplasms that resemble luteinized ovarian stroma. Transcriptomic analysis and genome-wide DNA methylation mapping have identified genetic and epi-genetic markers of GDX-induced adrenocortical neoplasia. Members of the GATA transcription factor family have emerged as key regulators of cell fate in this model. Expression of Gata4 is pivotal for the accumulation of gonadal-like cells in the adrenal glands of gonadectomized mice, whereas expression of Gata6 limits the spontaneous and GDX-induced differentiation of gonadal-like cells in the adrenal cortex. Additionally, Gata6 is essential for proper development of the adrenal X-zone, a layer analogous to the fetal zone of the human adrenal cortex. The relevance of these observations to developmental signaling pathways in the adrenal cortex, to other animal models of altered adrenocortical cell fate, and to human diseases is discussed. PMID:25498963

  14. Mouse models of adrenocortical tumors

    PubMed Central

    Basham, Kaitlin J.; Hung, Holly A.; Lerario, Antonio M.; Hammer, Gary D.

    2016-01-01

    The molecular basis of the organogenesis, homeostasis, and tumorigenesis of the adrenal cortex has been the subject of intense study for many decades. Specifically, characterization of tumor predisposition syndromes with adrenocortical manifestations and molecular profiling of sporadic adrenocortical tumors have led to the discovery of key molecular pathways that promote pathological adrenal growth. However, given the observational nature of such studies, several important questions regarding the molecular pathogenesis of adrenocortical tumors have remained. This review will summarize naturally occurring and genetically engineered mouse models that have provided novel tools to explore the molecular and cellular underpinnings of adrenocortical tumors. New paradigms of cancer initiation, maintenance, and progression that have emerged from this work will be discussed. PMID:26678830

  15. General Information about Adrenocortical Carcinoma

    MedlinePlus

    ... that forms in the adrenal medulla is called pheochromocytoma and is not discussed in this summary. See the PDQ summary on Pheochromocytoma and Paraganglioma for more information. Adrenocortical carcinoma and ...

  16. Development of mitotane lipid nanocarriers and enantiomers: two-in-one solution to efficiently treat adreno-cortical carcinoma.

    PubMed

    Menaa, F; Menaa, B

    2012-01-01

    Adrenocortical carcinoma (ACC) is a rare but aggressive malignancy with a poor prognosis. Treatment options for advanced ACC are limited. Indeed, radical tumor resection can lead to local or metastatic recurrence, and mitotane (Lysodren(®)), the only recognized adrenolytic drug, offers modest response rates, notably due to some of its physico-chemical and pharmacological properties (i.e. hydrophobicity, low bioavailability). Meantime, high cumulative doses of Lysodren(®) usually cause systemic toxicities. To reduce adverse health effects, the search of safe and efficient mitotane nano-formulations as well as the full characterization and testing of its enantiomers can represent valuable therapeutic options. Interestingly, recent investigations showed that solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) could considerably improve the efficacy of mitotane (i.e. enhanced solubility and bioavailability, progressive release of the loaded drug into blood and targeted tissues) as well as its safety (i.e. lower toxicity, higher biocompatibility). These two nano-carriers for mitotane delivery and targeting are of particular interest over other polymeric particles (i.e. low-cost, efficient and simple scaling to an industrial production level following green methods). Besides, emerging studies suggested that the S-(-)- mitotane is more potent than the R-(+)-mitotane for ACC treatment. Therefore, the production of pure and active S-(-)-mitotane might offer synergic or additive benefits for ACC patients when combined to solid lipid-based nanocarriers. In this review, we first provide an updated overview of the ACC disease before emphasizing on the promising mitotane drug nano-systems, as well as on the separation, purification and production of single mitotane enantiomer using state-of-art chromatographic-based methods.

  17. In Search of Adrenocortical Stem and Progenitor Cells

    PubMed Central

    Kim, Alex C.; Barlaskar, Ferdous M.; Heaton, Joanne H.; Else, Tobias; Kelly, Victoria R.; Krill, Kenneth T.; Scheys, Joshua O.; Simon, Derek P.; Trovato, Alessia; Yang, Wei-Hsiung; Hammer, Gary D.

    2009-01-01

    Scientists have long hypothesized the existence of tissue-specific (somatic) stem cells and have searched for their location in different organs. The theory that adrenocortical organ homeostasis is maintained by undifferentiated stem or progenitor cells can be traced back nearly a century. Similar to other organ systems, it is widely believed that these rare cells of the adrenal cortex remain relatively undifferentiated and quiescent until needed to replenish the organ, at which time they undergo proliferation and terminal differentiation. Historical studies examining cell cycle activation by label retention assays and regenerative potential by organ transplantation experiments suggested that the adrenocortical progenitors reside in the outer periphery of the adrenal gland. Over the past decade, the Hammer laboratory, building on this hypothesis and these observations, has endeavored to understand the mechanisms of adrenocortical development and organ maintenance. In this review, we summarize the current knowledge of adrenal organogenesis. We present evidence for the existence and location of adrenocortical stem/progenitor cells and their potential contribution to adrenocortical carcinomas. Data described herein come primarily from studies conducted in the Hammer laboratory with incorporation of important related studies from other investigators. Together, the work provides a framework for the emerging somatic stem cell field as it relates to the adrenal gland. PMID:19403887

  18. [Adrenocortical tumors--new perspectives].

    PubMed

    Latronico, Ana Claudia; Mendonça, Berenice B de

    2004-10-01

    A high frequency of adrenocortical tumors has been observed in Brazilian children and adults from South and Southwestern regions. The valuable national experience in the management of these tumors have resulted in several and relevant basic and clinical reports. However, the creation of an adrenocortical tumor national registry, the uniformity of approaches and collaborative studies are target to pursue. In this review article, we briefly described the fundamental points which were discussed in two scientific events on adrenocortical tumors: "International Consensus Conference on Treatment of Adrenal Cancer" and "I Simposio de Diagnóstico e Tratamento dos Tumores Adrenocorticais". The task force involving several Brazilian centers will increase the progress in the diagnosis, prognosis and treatment of this devastating disorder.

  19. Adrenocortical reserves in hyperthyroidism.

    PubMed

    Agbaht, Kemal; Gullu, Sevim

    2014-02-01

    Explicit data regarding the changes in adrenocortical reserves during hyperthyroidism do not exist. We aimed to document the capability (response) of adrenal gland to secrete cortisol and DHEA-S during hyperthyroidism compared to euthyroidism, and to describe factors associated with these responses. A standard-dose (0.25 mg/i.v.) ACTH stimulation test was performed to the same patients before hyperthyroidism treatment, and after attainment of euthyroidism. Baseline cortisol (Cor(0)), DHEA-S (DHEA-S(0)), cortisol binding globulin (CBG), ACTH, calculated free cortisol (by Coolen's equation = CFC), free cortisol index (FCI), 60-min cortisol (Cor(60)), and DHEA-S (DHEA-S(60)), delta cortisol (ΔCor), delta DHEA-S (ΔDHEA-S) responses were evaluated. Forty-one patients [22 females, 49.5 ± 15.2 years old, 32 Graves disease, nine toxic nodular goiter] had similar Cor(0), DHEA-S(0), CFC, FCI, and DHEA-S(60) in hyperthyroid and euthyroid states. Cor(60), ΔCor, and ΔDHEA-S were lower in hyperthyroidism. In four (10 %) patients the peak ACTH-stimulated cortisol values were lower than 18 μg/dL. When the test repeated after attainment of euthyroidism, all of the patients had normal cortisol response. Regression analysis demonstrated an independent association of Cor(60) with free T3 in hyperthyroidism. However, the predictors of CFC, FCI, and DHEA-S levels were serum creatinine levels in hyperthyroidism, and both creatinine and transaminase levels in euthyroidism. ACTH-stimulated peak cortisol, delta cortisol, and delta DHEA-S levels are decreased during hyperthyroidism, probably due to increased turnover. Since about 10 % of the subjects with hyperthyroidism are at risk for adrenal insufficiency, clinicians dealing with Graves' disease should be alert to the possibility of adrenal insufficiency during hyperthyroid stage.

  20. Maternal Dietary Restriction During the Periconceptional Period in Normal-Weight or Obese Ewes Results in Adrenocortical Hypertrophy, an Up-Regulation of the JAK/STAT and Down-Regulation of the IGF1R Signaling Pathways in the Adrenal of the Postnatal Lamb

    PubMed Central

    Zhang, Song; Morrison, Janna L.; Gill, Amreet; Rattanatray, Leewen; MacLaughlin, Severence M.; Kleemann, David; Walker, Simon K.

    2013-01-01

    Maternal dietary restriction during the periconceptional period results in an increase in adrenal growth and in the cortisol stress response in the offspring. The intraadrenal mechanisms that result in the programming of these changes are not clear. Activation of the IGF and the signal transducer and activator of transcription (STAT)/suppressors of cytokine signaling (SOCS) pathways regulate adrenal growth. We have used an embryo transfer model in sheep to investigate the impact of exposure to either dietary restriction in normal or obese mothers or to maternal obesity during the periconceptional period on adrenal growth and function in the offspring. We assessed the adrenal abundance of key signaling molecules in the IGF-I and Janus kinase/STAT/SOCS pathways including IGF-I receptor, IGF-II receptor, Akt, mammalian target of rapamycin, ribosomal protein S6, eukaryotic translation initiation factor 4E-binding protein 1, eukaryotic translation initiation factor 4E, STAT1, STAT3, STAT5, SOCS1, and SOCS3 in female and male postnatal lambs. Maternal dietary restriction in the periconceptional period resulted in the hypertrophy of the adrenocortical cells in the zona fasciculata-reticularis and an up-regulation in STAT1, phospho-STAT1, and phospho-STAT3 (Ser727) abundance and a down-regulation in IGF-I receptor, Akt, and phospho-Akt abundance in the adrenal cortex of the postnatal lamb. These studies highlight that weight loss around the time of conception, independent of the starting maternal body weight, results in the activation of the adrenal Janus kinase/STAT pathway and adrenocortical hypertrophy. Thus, signals of adversity around the time of conception have a long-term impact on the mechanisms that regulate adrenocortical growth. PMID:24108072

  1. Maternal dietary restriction during the periconceptional period in normal-weight or obese ewes results in adrenocortical hypertrophy, an up-regulation of the JAK/STAT and down-regulation of the IGF1R signaling pathways in the adrenal of the postnatal lamb.

    PubMed

    Zhang, Song; Morrison, Janna L; Gill, Amreet; Rattanatray, Leewen; MacLaughlin, Severence M; Kleemann, David; Walker, Simon K; McMillen, I Caroline

    2013-12-01

    Maternal dietary restriction during the periconceptional period results in an increase in adrenal growth and in the cortisol stress response in the offspring. The intraadrenal mechanisms that result in the programming of these changes are not clear. Activation of the IGF and the signal transducer and activator of transcription (STAT)/suppressors of cytokine signaling (SOCS) pathways regulate adrenal growth. We have used an embryo transfer model in sheep to investigate the impact of exposure to either dietary restriction in normal or obese mothers or to maternal obesity during the periconceptional period on adrenal growth and function in the offspring. We assessed the adrenal abundance of key signaling molecules in the IGF-I and Janus kinase/STAT/SOCS pathways including IGF-I receptor, IGF-II receptor, Akt, mammalian target of rapamycin, ribosomal protein S6, eukaryotic translation initiation factor 4E-binding protein 1, eukaryotic translation initiation factor 4E, STAT1, STAT3, STAT5, SOCS1, and SOCS3 in female and male postnatal lambs. Maternal dietary restriction in the periconceptional period resulted in the hypertrophy of the adrenocortical cells in the zona fasciculata-reticularis and an up-regulation in STAT1, phospho-STAT1, and phospho-STAT3 (Ser727) abundance and a down-regulation in IGF-I receptor, Akt, and phospho-Akt abundance in the adrenal cortex of the postnatal lamb. These studies highlight that weight loss around the time of conception, independent of the starting maternal body weight, results in the activation of the adrenal Janus kinase/STAT pathway and adrenocortical hypertrophy. Thus, signals of adversity around the time of conception have a long-term impact on the mechanisms that regulate adrenocortical growth.

  2. Novel Targeted Therapies in Adrenocortical Carcinoma

    PubMed Central

    Konda, Bhavana; Kirschner, Lawrence S.

    2016-01-01

    Purpose of review Adrenocortical carcinoma is a rare cancer, but one that carries a poor prognosis due to its aggressive nature and unresponsiveness to conventional chemotherapeutic strategies. Over the past 12 years, there has been renewed interest in developing new therapies for this cancer, including identifying key signaling nodes responsible for cell proliferation. Recent findings Clinical trials of tyrosine kinase inhibitors as monotherapy have generally been disappointing, although the identification of exceptional responders may lead to the identification of targeted therapies that may produce responses in subsets of patients. Agents targeted to the Wnt signaling pathway, a known player in adrenal carcinogenesis, have been developed although have not yet been used specifically for adrenal cancer. There is current excitement about inhibitors of acetyl-coA cholesterol acetyl transferase 1 (ACAT1), an enzyme required for intracellular cholesterol handling, although trials are still underway. Tools to target other proteins such as SF1 and mTOR have been developed and are moving towards clinical application. Summary Progress is being made in the fight against adrenocortical carcinoma with the identification of new therapeutic targets and new means by which to attack them. Continued improvement in the prognosis for patients with adrenal cancer is expected as this research continues. PMID:27119750

  3. Feminizing Adrenocortical Carcinoma with Distinct Histopathological Findings

    PubMed Central

    Hatano, Masako; Takenaka, Yasuhiro; Inoue, Ikuo; Homma, Keiko; Hasegawa, Tomonobu; Sasano, Hisanobu; Awata, Takuya; Katayama, Shigehiro

    2016-01-01

    We herein present a 60-year-old man with adrenocortical carcinoma who had gynecomastia. An endocrinological examination revealed increased levels of serum estradiol and dehydroepiandrosterone-sulfate (DHEA-S) and reduced levels of free testosterone. Magnetic resonance imaging showed an adrenal tumor with heterogeneous intensity. Iodine-131 adosterol scintigraphy showed an increased uptake at the same site. Because feminizing adrenocortical carcinoma was suspected, right adrenalectomy was performed; the pathological diagnosis was adrenocortical carcinoma. The results of immunostaining indicated a virilizing tumor. Aromatase activity was identified on RT-PCR. As disorganized steroidogenesis is pathologically present in adrenocortical carcinoma, this diagnosis should be made with caution. PMID:27853073

  4. H295R Human Adrenocortical Carcinoma Cells as a Screening Platform for Steroidogenesis (NC SOT)

    EPA Science Inventory

    Proper biosynthesis and metabolism of steroid hormones is essential for development and reproduction. Disruption of steroidogenesis by environmental toxicants results in altered hormone levels causing adverse reproductive and developmental effects. H295R human adrenocortical carc...

  5. H295R Human Adrenocortical Carcinoma Cells as a Screening Platform for Steroidogenesis (NC SOT)

    EPA Science Inventory

    Proper biosynthesis and metabolism of steroid hormones is essential for development and reproduction. Disruption of steroidogenesis by environmental toxicants results in altered hormone levels causing adverse reproductive and developmental effects. H295R human adrenocortical carc...

  6. Isolation of rat adrenocortical mitochondria

    SciTech Connect

    Solinas, Paola; Fujioka, Hisashi; Tandler, Bernard; Hoppel, Charles L.

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer A method for isolation of adrenocortical mitochondria from the adrenal gland of rats is described. Black-Right-Pointing-Pointer The purified isolated mitochondria show excellent morphological integrity. Black-Right-Pointing-Pointer The properties of oxidative phosphorylation are excellent. Black-Right-Pointing-Pointer The method increases the opportunity of direct analysis of adrenal mitochondria from small animals. -- Abstract: This report describes a relatively simple and reliable method for isolating adrenocortical mitochondria from rats in good, reasonably pure yield. These organelles, which heretofore have been unobtainable in isolated form from small laboratory animals, are now readily accessible. A high degree of mitochondrial purity is shown by the electron micrographs, as well as the structural integrity of each mitochondrion. That these organelles have retained their functional integrity is shown by their high respiratory control ratios. In general, the biochemical performance of these adrenal cortical mitochondria closely mirrors that of typical hepatic or cardiac mitochondria.

  7. Neonatal handling alters the development of the adrenocortical response to stress in a wild songbird (eastern bluebird, Sialia sialis).

    PubMed

    Lynn, Sharon E; Kern, Michael D; Phillips, Megan M

    2013-06-01

    Neonatal handling of captive vertebrates can shape the development of their hypothalamo-pituitary-adrenal (HPA) axis and alter their ability to respond to stressful stimuli later in life. However, the long-term effects of such handling on this endocrine axis in free-living species are not well understood. We investigated the effects of age and neonatal handling on corticosterone secretion in response to restraint in eastern bluebird (Sialia sialis) chicks. We found that unhandled ("naïve") and handled ("experienced") chicks exhibited no corticosterone response to handling early in development. Thereafter, naïve individuals exhibited the progressive development of a corticosterone response with age, and by day 12 post-hatch, the response resembled that of adult bluebirds. Experienced nestlings, which were handled every other day from the day of hatch, showed a similar pattern of HPA development until day 12 post-hatch, when their corticosterone response was significantly reduced compared to that of naïve nestlings. In contrast, chicks that were handled only once, when 10days old, did not show a reduced corticosterone response at 12days old. Taken together, our data suggest that a certain threshold of accumulated neonatal handling episodes is necessary to depress corticosterone secretion, and/or that the cumulative effects of several handling episodes only manifest themselves once the HPA axis is fully developed. Our findings, in concert with studies on two other wild species, indicate that routine handling of nestlings in the field can alter their responses to stress in a species-specific manner, potentially leading to important fitness consequences. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. The effects of neonatal handling on adrenocortical responsiveness, morphological development and corticosterone binding globulin in nestling American kestrels (Falco sparverius).

    PubMed

    Whitman, Buddy A; Breuner, Creagh W; Dufty, Alfred M

    2011-06-01

    Early developmental experiences play an important role in development of the adult phenotype. We investigated the effects of neonatal handling on the hypothalamic-pituitary-adrenal axis in a free-living avian species, the American kestrel (Falco sparverius). In the handled group (H), kestrel chicks were handled for 15 min/day from hatching until 26 days of age, after which time blood samples were collected for analysis of adrenal responsiveness and corticosterone binding globulin (CBG) levels. The non-handled control group (NH) was left undisturbed until 26 days of age when blood samples were collected and analyzed as above. Handled and NH kestrels did not differ in body condition index. Both total corticosterone (CORT) and CBG capacity were dampened significantly in H kestrels. However, free CORT did not differ between the two groups. In addition, hormone challenges of corticotropin releasing factor and adrenocorticotropin hormone were compared to saline injections to determine if the pituitary or the adrenal glands, respectively, were rendered more or less sensitive by handling. There was no difference in the responsiveness of H and NH kestrels to either hormone challenge. It is clear from these data that handling had an affect on fledgling phenotypic development, although whether the effects are permanent or ephemeral is unknown. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Neuropeptides and the hypothalamic-pituitary-adrenocortical (HPA) system: review of recent research strategies in depression.

    PubMed

    Hatzinger, M

    2000-04-01

    Depressed patients show a variety of alterations in hypothalamic-pituitary-adrenocortical (HPA) system regulation which is reflected by increased pituitary-adrenocortical hormone secretion at baseline and a number of aberrant neuroendocrine function tests. The latter include the combined dexamethasone (DEX) suppression/corticotropin-releasing hormone (CRH) challenge test, in which CRH was able to override DEX induced suppression of ACTH and cortisol secretion. Whereas the abnormal HPA activation in these patients improved in parallel with clinical remission, persistent HPA dysregulation was associated with an increased risk of relapse. Moreover, healthy subjects at high genetic risk for depression also showed this phenomenon as a trait marker. In consequence, it has been concluded that HPA alteration and development as well as course of depression may be causally related. As evidenced from clinical and preclinical studies, underlying mechanisms of these abnormalities involve impairment of central corticosteroid receptor function which leads to enhanced activity of hypothalamic neurons synthesising and releasing vasopressin and CRH. These neuropeptides mediate not only neuroendocrine but also behavioural effects. Recent research provided evidence that CRH can induce depression-like symptoms in animals and that these signs are mediated through the CRH1 receptor subtype. Hence, therapeutical application of new compounds acting more specifically on the HPA system such as CRH1 receptor antagonists appear to be a promising approach for future treatment options of depression. In conclusion, research in neuroendocrinology provided new insights into the underlying pathophysiology of depression and, in consequence, may lead to the development of new therapeutic tools.

  10. Feminizing adrenocortical tumors: Literature review

    PubMed Central

    Chentli, Farida; Bekkaye, Ilyes; Azzoug, Said

    2015-01-01

    Feminizing adrenal tumors (FAT) are extremely rare tumors prevailing in males. Clinical manifestations are gynecomastia and/or other hypogonadism features in adults. They are rarer in pediatric population and their main manifestation is peripheral sexual precocity. In women genital bleeding, uterus hypertrophy, high blood pressure and/or abdomen mass may be the only manifestations. On the biological point, estrogen overproduction with or without increase in other adrenal hormones are the main abnormalities. Radiological examination usually shows the tumor, describes its limits and its eventual metastases. Adrenal and endocrine origins are confirmed by biochemical assessments and histology, but that one is unable to distinguish between benign and malignant tumors, except if metastases are already present. Immunostaining using anti-aromatase antibodies is the only tool that distinguishes FAT from other adrenocortical tumors. Abdominal surgery is the best and the first line treatment. For large tumors (≥10 cm), an open access is preferred to coeliosurgery, but for the small ones, or when the surgeon is experienced, endoscopic surgery seems to give excellent results. Surgery can be preceded by adrenolytic agents such as ortho paraprime dichloro diphenyl dichloroethane (Mitotane), ketoconazole or by aromatase inhibitors, but till now there is not any controlled study to compare the benefit of different drugs. New anti-estrogens can be used too, but their results need to be confirmed in malignant tumors resistant to classical chemotherapy and to conventional radiotherapy. Targeted therapy can be used too, as in other adrenocortical tumors, but the results need to be confirmed. PMID:25932386

  11. Adrenocortical tumors and insulin resistance: What is the first step?

    PubMed

    Altieri, Barbara; Tirabassi, Giacomo; Della Casa, Silvia; Ronchi, Cristina L; Balercia, Giancarlo; Orio, Francesco; Pontecorvi, Alfredo; Colao, Annamaria; Muscogiuri, Giovanna

    2016-06-15

    The pathogenetic mechanisms underlying the onset of adrenocortical tumors (ACTs) are still largely unknown. Recently, more attention has been paid to the role of insulin and insulin-like growth factor (IGF) system on general tumor development and progression. Increased levels of insulin, IGF-1 and IGF-2 are associated with tumor cell growth and increased risk of cancer promotion and progression in patients with type 2 diabetes. Insulin resistance and compensatory hyperinsulinemia may play a role in adrenal tumor growth through the activation of insulin and IGF-1 receptors. Interestingly, apparently non-functioning ACTs are often associated with a high prevalence of insulin resistance and metabolic syndrome. However, it is unclear if ACT develops from a primary insulin resistance and compensatory hyperinsulinemia or if insulin resistance is only secondary to the slight cortisol hypersecretion by ACT. The aim of this review is to summarize the current evidence regarding the relationship between hyperinsulinemia and adrenocortical tumors. © 2015 UICC.

  12. Mouse Models Recapitulating Human Adrenocortical Tumors: What Is Lacking?

    PubMed Central

    Leccia, Felicia; Batisse-Lignier, Marie; Sahut-Barnola, Isabelle; Val, Pierre; Lefrançois-Martinez, A-Marie; Martinez, Antoine

    2016-01-01

    Adrenal cortex tumors are divided into benign forms, such as primary hyperplasias and adrenocortical adenomas (ACAs), and malignant forms or adrenocortical carcinomas (ACCs). Primary hyperplasias are rare causes of adrenocorticotropin hormone-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely “functional,” i.e., producing steroids. When functional, adenomas result in endocrine disorders, such as Cushing’s syndrome (hypercortisolism) or Conn’s syndrome (hyperaldosteronism). By contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors (ACTs) led to the identification of potentially causative genes, most of them being involved in protein kinase A (PKA), Wnt/β-catenin, and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders, and in fine to provide in vivo tools for therapeutic screens. In this article, we will provide an overview on the existing mouse models (xenografted and genetically engineered) of ACTs by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases. PMID:27471492

  13. Pubertal outcome in a female with virilizing adrenocortical carcinoma

    PubMed Central

    Breidbart, Emily; Cameo, Tamara; Garvin, James H.; Hibshoosh, Hanina

    2016-01-01

    Adrenocortical tumors are neoplasms that rarely occur in pediatric patients. Adrenocortical carcinoma (ACC) is even more uncommon, and is an aggressive malignancy with 5-year survival of 55% in a registry series. There is a lack of information on long-term endocrine outcome in survivors. We describe a 10-year follow-up in a patient who presented at 3 years 5 months with a 1-year history of axillary odor and 6 months’ history of pubic hair development with an increased clitoral size. Androgen levels were increased and a pelvic sonogram revealed a suprarenal mass of the left kidney. The tumor was successfully removed. At 6 years 11 months, androgen levels increased again. Workup for tumor recurrence was negative and the findings likely represented early adrenarche. The patient had menarche at an appropriate time and attained a height appropriate for her family. PMID:26812773

  14. Occult Adrenocortical Carcinoma and Unexpected Early Childhood Death.

    PubMed

    Pilla, Mark; Gilbert, John; Moore, Lynette; Byard, Roger W

    2017-01-01

    A four-year-old previously well boy collapsed unexpectedly and was taken immediately to hospital, where he developed seizures and cardiogenic shock with lethal, rapidly progressing multi-organ failure. At autopsy, the height was >90th percentile and there were indications of early virilization. Internally, a friable tumor of the left adrenal gland was identified that had invaded the left renal vein and inferior vena cava. Histology revealed typical features of an adrenocortical carcinoma with aggregated trabeculae of cells containing abundant eosinophilic cytoplasm and large pleomorphic nuclei. There was strong positive cytoplasmic staining for inhibin; mitochondria were shown on electron microscopy to contain prominent electron-dense granules. Death was due to massive pulmonary tumor embolism. Although adrenocortical carcinomas are very rare and are more commonly found in adults, the current case demonstrates that they may also occur in childhood and be responsible for unexpected death by the very unusual mechanism of tumor embolism.

  15. TCGA analysis of adrenocortical carcinoma - TCGA

    Cancer.gov

    In the most comprehensive molecular characterization to date of adrenocortical carcinoma, a rare cancer of the adrenal cortex, researchers extensively analyzed 91 cases for alterations in the tumor genomes.

  16. Effects of ToxCast Phase I Chemicals on Steroidogenesis in H295R Human Adrenocortical Carcinoma cells (SOT)

    EPA Science Inventory

    Steroid hormones are essential for proper development and reproduction. Disruption of steroidogenesis by environmental toxicants results in altered hormone levels causing adverse reproductive and developmental effects. H295R human adrenocortical carcinoma cells were used to evalu...

  17. Effects of ToxCast Phase I Chemicals on Steroidogenesis in H295R Human Adrenocortical Carcinoma cells (SOT)

    EPA Science Inventory

    Steroid hormones are essential for proper development and reproduction. Disruption of steroidogenesis by environmental toxicants results in altered hormone levels causing adverse reproductive and developmental effects. H295R human adrenocortical carcinoma cells were used to evalu...

  18. Role of intramitochondrial arachidonic acid and acyl-CoA synthetase 4 in angiotensin II-regulated aldosterone synthesis in NCI-H295R adrenocortical cell line.

    PubMed

    Mele, Pablo G; Duarte, Alejandra; Paz, Cristina; Capponi, Alessandro; Podestá, Ernesto J

    2012-07-01

    Although the role of arachidonic acid (AA) in angiotensin II (ANG II)- and potassium-stimulated steroid production in zona glomerulosa cells is well documented, the mechanism responsible for AA release is not fully described. In this study we evaluated the mechanism involved in the release of intramitochondrial AA and its role in the regulation of aldosterone synthesis by ANG II in glomerulosa cells. We show that ANG II and potassium induce the expression of acyl-coenzyme A (CoA) thioesterase 2 and acyl-CoA synthetase 4, two enzymes involved in intramitochondrial AA generation/export system well characterized in other steroidogenic systems. We demonstrate that mitochondrial ATP is required for AA generation/export system, steroid production, and steroidogenic acute regulatory protein induction. We also demonstrate the role of protein tyrosine phosphatases regulating acyl-CoA synthetase 4 and steroidogenic acute regulatory protein induction, and hence ANG II-stimulated aldosterone synthesis.

  19. Genetics and epigenetics of adrenocortical tumors.

    PubMed

    Lerario, Antonio M; Moraitis, Andreas; Hammer, Gary D

    2014-04-05

    Adrenocortical tumors are common neoplasms. Most are benign, nonfunctional and clinically irrelevant. However, adrenocortical carcinoma is a rare disease with a dismal prognosis and no effective treatment apart from surgical resection. The molecular genetics of adrenocortical tumors remain poorly understood. For decades, molecular studies relied on a small number of samples and were directed to candidate-genes. This approach, based on the elucidation of the genetics of rare genetic syndromes in which adrenocortical tumors are a manifestation, has led to the discovery of major dysfunctional molecular pathways in adrenocortical tumors, such as the IGF pathway, the Wnt pathway and TP53. However, with the advent of high-throughput methodologies and the organization of international consortiums to obtain a larger number of samples and high-quality clinical data, this paradigm is rapidly changing. In the last decade, genome-wide expression profile studies, microRNA profiling and methylation profiling allowed the identification of subgroups of tumors with distinct genetic markers, molecular pathways activation patterns and clinical behavior. As a consequence, molecular classification of tumors has proven to be superior to traditional histological and clinical methods in prognosis prediction. In addition, this knowledge has also allowed the proposal of molecular-targeted approaches to provide better treatment options for advanced disease. This review aims to summarize the most relevant data on the rapidly evolving field of genetics of adrenal disorders.

  20. GENETICS AND EPIGENETICS OF ADRENOCORTICAL TUMORS

    PubMed Central

    Lerario, Antonio M.; Moraitis, Andreas; Hammer, Gary D.

    2014-01-01

    Adrenocortical tumors are common neoplasms. Most are benign, nonfunctional and clinically irrelevant. However, adrenocortical carcinoma is a rare disease with a dismal prognosis and no effective treatment apart from surgical resection. The molecular genetics of adrenocortical tumors remain poorly understood. For decades, molecular studies relied on a small number of samples and were directed to candidate-genes. This approach, based on the elucidation of the genetics of rare genetic syndromes in which adrenocortical tumors are a manifestation, has led to the discovery of major dysfunctional molecular pathways in adrenocortical tumors, such as the IGF pathway, the Wnt pathway and TP53. However, with the advent of high-throughput methodologies and the organization of international consortiums to obtain a larger number of samples and high-quality clinical data, this paradigm is rapidly changing. In the last decade, genome-wide expression profile studies, microRNA profiling and methylation profiling allowed the identification of subgroups of tumors with distinct genetic markers, molecular pathways activation patterns and clinical behavior. As a consequence, molecular classification of tumors has proven to be superior to traditional histological and clinical methods in prognosis prediction. In addition, this knowledge has also allowed the proposal of molecular-targeted approaches aiming better treatment options for advanced disease. This review aims to summarize the most relevant data on the rapidly evolving field of genetics of adrenal disorders. PMID:24220673

  1. Pubertal development and regulation

    PubMed Central

    Abreu, Ana Paula; Kaiser, Ursula B

    2016-01-01

    Puberty marks the end of childhood and is a period when individuals undergo physiological and psychological changes to achieve sexual maturation and fertility. The hypothalamic-pituitary-gonadal axis controls puberty and reproduction and is tightly regulated by a complex network of excitatory and inhibitory factors. This axis is active in the embryonic and early postnatal stages of life and is subsequently restrained during childhood, and its reactivation culminates in puberty initiation. The mechanisms underlying this reactivation are not completely known. The age of puberty onset varies between individuals and the timing of puberty initiation is associated with several health outcomes in adult life. In this Series paper, we discuss pubertal markers, epidemiological trends of puberty initiation over time, and the mechanisms whereby genetic, metabolic, and other factors control secretion of gonadotropin-releasing hormone to determine initiation of puberty. PMID:26852256

  2. Pubertal development and regulation.

    PubMed

    Abreu, Ana Paula; Kaiser, Ursula B

    2016-03-01

    Puberty marks the end of childhood and is a period when individuals undergo physiological and psychological changes to achieve sexual maturation and fertility. The hypothalamic-pituitary-gonadal axis controls puberty and reproduction and is tightly regulated by a complex network of excitatory and inhibitory factors. This axis is active in the embryonic and early postnatal stages of life and is subsequently restrained during childhood, and its reactivation culminates in puberty initiation. The mechanisms underlying this reactivation are not completely known. The age of puberty onset varies between individuals and the timing of puberty initiation is associated with several health outcomes in adult life. In this Series paper, we discuss pubertal markers, epidemiological trends of puberty initiation over time, and the mechanisms whereby genetic, metabolic, and other factors control secretion of gonadotropin-releasing hormone to determine initiation of puberty.

  3. Adrenocortical carcinoma in two female children.

    PubMed

    Albaugh, G; Chen, M

    2001-01-01

    Adrenocortical carcinoma is a rare tumor in children. This tumor is more likely to be hormonally active in children than in adults and tends to cause a variety of symptoms, which may mimic other benign endocrinopathies. These tumors are usually diagnosed at advanced stages and portend a dismal prognosis. We describe two cases of adrenocortical carcinoma. One child presented with Cushingoid symptoms secondary to hypercortisolism, including amenorrhea, hirsutism and weight gain. The other child presented with precocious puberty. Both children underwent resection of the tumors. We describe their presenting symptoms, postoperative course, adjuvant therapy and clinical course. Pertinent literature regarding the anatomy of the adrenal gland, pathology of adrenocortical carcinoma, factors influencing outcome, diagnostic modalities and treatment, are discussed.

  4. Hypothalamic-pituitary-adrenocortical axis: neuropsychiatric aspects.

    PubMed

    Jacobson, Lauren

    2014-04-01

    Evidence of aberrant hypothalamic-pituitary-adrenocortical (HPA) activity in many psychiatric disorders, although not universal, has sparked long-standing interest in HPA hormones as biomarkers of disease or treatment response. HPA activity may be chronically elevated in melancholic depression, panic disorder, obsessive-compulsive disorder, and schizophrenia. The HPA axis may be more reactive to stress in social anxiety disorder and autism spectrum disorders. In contrast, HPA activity is more likely to be low in PTSD and atypical depression. Antidepressants are widely considered to inhibit HPA activity, although inhibition is not unanimously reported in the literature. There is evidence, also uneven, that the mood stabilizers lithium and carbamazepine have the potential to augment HPA measures, while benzodiazepines, atypical antipsychotics, and to some extent, typical antipsychotics have the potential to inhibit HPA activity. Currently, the most reliable use of HPA measures in most disorders is to predict the likelihood of relapse, although changes in HPA activity have also been proposed to play a role in the clinical benefits of psychiatric treatments. Greater attention to patient heterogeneity and more consistent approaches to assessing treatment effects on HPA function may solidify the value of HPA measures in predicting treatment response or developing novel strategies to manage psychiatric disease. © 2014 American Physiological Society.

  5. Interparental Aggression and Adolescent Adjustment: The Role of Emotional Insecurity and Adrenocortical Activity.

    PubMed

    Bergman, Kathleen N; Cummings, E Mark; Davies, Patrick T

    2014-10-01

    Adolescents exposed to interparental aggression are at increased risk for developing adjustment problems. The present study explored intervening variables in these pathways in a community sample that included 266 adolescents between 12 and 16 years old (M = 13.82; 52.5% boys, 47.5% girls). A moderated mediation model examined the moderating role of adrenocortical reactivity on the meditational capacity of their emotional insecurity in this context. Information from multiple reporters and adolescents' adrenocortical response to conflict were obtained during laboratory sessions attended by mothers, fathers and their adolescent child. A direct relationship was found between marital aggression and adolescents' internalizing behavior problems. Adolescents' emotional insecurity mediated the relationship between marital aggression and adolescents' depression and anxiety. Adrenocortical reactivity moderated the pathway between emotional insecurity and adolescent adjustment. The implications for further understanding the psychological and physiological effects of adolescents' exposure to interparental aggression and violence are discussed.

  6. Adrenocortical Tumors and Hyperplasias in Childhood - Etiology, Genetics, Clinical Presentation and Therapy

    PubMed Central

    Sutter, Jennifer A.; Grimberg, Adda

    2007-01-01

    Adrenocortical tumors are rare in children and are associated with a poor prognosis when malignant. The fund of knowledge regarding etiology, presentation and clinical outcomes remains limited. Evaluation of genetic disorders associated with the development of adrenocortical disorders has allowed researchers to identify a number of mutations that may be involved in tumorigenesis, including alterations in the GNAS1, PRKAR1A, TP53 and IGF2 genes. Clinical presentation in children is associated most commonly with young age, female gender and symptoms of virilization. Most children have localized disease at presentation which may be associated with a better prognosis when compared to adults. Surgical resection remains the only potentially curative treatment and mitotane, the most frequently used chemotherapeutic agent, has a poor response rate and is highly toxic. Broader participation in multi-center research, such as the International Pediatric Adrenocortical Tumor Registry, is needed to collect sufficient data to better guide our clinical management. PMID:17021581

  7. Glucocorticoid control of steroidogenesis in isolated rat adrenocortical cells.

    PubMed

    Carsia, R V; Malamed, S

    1983-08-17

    The role of end-product glucocorticoids in the regulation of corticosteroidogenesis in isolated adrenocortical cells was investigated. Trypsin-isolated cells from male rat adrenal glands were incubated with or without corticotropin (ACTH) and with or without corticosterone. Endogenous corticosterone production was determined by radioimmunoassay at the end of incubation. Cessation of ACTH-induced corticosterone production was apparent after 2-4 h of incubation. The suppression occurred later with lower cell concentrations. Corticosterone production was partially restored after washing the suppressed cells. Supernatant fluid from suppressed cell suspensions also suppressed steroidogenesis of a fresh population of cells. However, the suppressing property of the supernatant fluid was abolished after the removal of corticosterone by charcoal-dextran treatment, suggesting that corticosterone or other steroids caused the suppression. Exogenous corticosterone induced suppression over a wide range of ACTH concentrations, but did not change the half-maximal steroidogenic concentration of ACTH, indicating that the suppression does not change the sensitivity of the cells to ACTH. Suppression occurred within 30-60 min after corticosterone had been added to the incubation medium either at the start of incubation or while steroidogenesis was in progress. Suppression varied directly with the concentration of exogenous corticosterone. These data indicate that glucocorticoids can directly and acutely suppress corticosteroidogenesis and thus control adrenocortical function in concert with other regulators such as ACTH and Ca2+.

  8. 5th International ACC Symposium: Classification of Adrenocortical Cancers from Pathology to Integrated Genomics: Real Advances or Lost in Translation?

    PubMed

    de Krijger, Ronald E; Bertherat, Jérôme

    2016-02-01

    For the clinician, despite its rarity, adrenocortical cancer is a heterogeneous tumor both in term of steroid excess and tumor evolution. For patient management, it is crucial to have an accurate vision of this heterogeneity, in order to use a correct tumor classification. Pathology is the best way to classify operated adrenocortical tumors: to recognize their adrenocortical nature and to differentiate benign from malignant tumors. Among malignant tumors pathology also aims at prognosis assessment. Although progress has being made for prognosis assessment, there is still a need for improvement. Recent studies have established the value of Ki67 for adrenocortical cancer (ACC) prognostication, aiming also at standardization to reduce variability. The use of genomics to study adrenocortical tumors gives a very new insight in their pathogenesis and molecular classification. Genomics studies of ACC give now a clear description of the mRNA (transcriptome) and miRNA expression profile, as well as chromosomal and methylation alterations. Exome sequencing also established firmly the list of the main ACC driver genes. Interestingly, genomics study of ACC also revealed subtypes of malignant tumors with different pattern of molecular alterations, associated with different outcome. This leads to a new vision of adrenocortical tumors classification based on molecular analysis. Interestingly, these molecular classifications meet also the results of pathological analysis. This opens new perspectives on the development and use of various molecular tools to classify, along with pathological analysis, ACC, and guides patient management at the area of precision medicine.

  9. The effect of types I and III interferons on adrenocortical cells and its possible implications for autoimmune Addison's disease.

    PubMed

    Hellesen, A; Edvardsen, K; Breivik, L; Husebye, E S; Bratland, E

    2014-06-01

    Autoimmune Addison's disease (AAD) is caused by selective destruction of the hormone-producing cells of the adrenal cortex. As yet, little is known about the potential role played by environmental factors in this process. Type I and/or type III interferons (IFNs) are signature responses to virus infections, and have also been implicated in the pathogenesis of autoimmune endocrine disorders such as type 1 diabetes and autoimmune thyroiditis. Transient development of AAD and exacerbation of established or subclinical disease, as well as the induction of autoantibodies associated with AAD, have been reported following therapeutic administration of type I IFNs. We therefore hypothesize that exposure to such IFNs could render the adrenal cortex susceptible to autoimmune attack in genetically predisposed individuals. In this study, we investigated possible immunopathological effects of type I and type III IFNs on adrenocortical cells in relation to AAD. Both types I and III IFNs exerted significant cytotoxicity on NCI-H295R adrenocortical carcinoma cells and potentiated IFN-γ- and polyinosine-polycytidylic acid [poly (I : C)]-induced chemokine secretion. Furthermore, we observed increased expression of human leucocyte antigen (HLA) class I molecules and up-regulation of 21-hydroxylase, the primary antigenic target in AAD. We propose that these combined effects could serve to initiate or aggravate an ongoing autoimmune response against the adrenal cortex in AAD. © 2014 British Society for Immunology.

  10. The effect of types I and III interferons on adrenocortical cells and its possible implications for autoimmune Addison's disease

    PubMed Central

    Hellesen, A; Edvardsen, K; Breivik, L; Husebye, E S; Bratland, E

    2014-01-01

    Autoimmune Addison's disease (AAD) is caused by selective destruction of the hormone-producing cells of the adrenal cortex. As yet, little is known about the potential role played by environmental factors in this process. Type I and/or type III interferons (IFNs) are signature responses to virus infections, and have also been implicated in the pathogenesis of autoimmune endocrine disorders such as type 1 diabetes and autoimmune thyroiditis. Transient development of AAD and exacerbation of established or subclinical disease, as well as the induction of autoantibodies associated with AAD, have been reported following therapeutic administration of type I IFNs. We therefore hypothesize that exposure to such IFNs could render the adrenal cortex susceptible to autoimmune attack in genetically predisposed individuals. In this study, we investigated possible immunopathological effects of type I and type III IFNs on adrenocortical cells in relation to AAD. Both types I and III IFNs exerted significant cytotoxicity on NCI-H295R adrenocortical carcinoma cells and potentiated IFN-γ-and polyinosine-polycytidylic acid [poly (I : C)]-induced chemokine secretion. Furthermore, we observed increased expression of human leucocyte antigen (HLA) class I molecules and up-regulation of 21-hydroxylase, the primary antigenic target in AAD. We propose that these combined effects could serve to initiate or aggravate an ongoing autoimmune response against the adrenal cortex in AAD. PMID:24666275

  11. DAX1 Overexpression in Pediatric Adrenocortical Tumors: A Synergic Role with SF1 in Tumorigenesis.

    PubMed

    de Sousa, G R V; Soares, I C; Faria, A M; Domingues, V B; Wakamatsu, A; Lerario, A M; Alves, V A F; Zerbini, M C N; Mendonca, B B; Fragoso, M C B V; Latronico, A C; Almeida, M Q

    2015-08-01

    DAX1 transcription factor is a key determinant of adrenogonadal development, acting as a repressor of SF1 targets in steroidogenesis. It was recently demonstrated that DAX1 regulates pluripotency and differentiation in murine embryonic stem cells. In this study, we investigated DAX1 expression in adrenocortical tumors (ACTs) and correlated it with SF1 expression and clinical parameters. DAX1 and SF1 protein expression were assessed in 104 ACTs from 34 children (25 clinically benign and 9 malignant) and 70 adults (40 adenomas and 30 carcinomas). DAX1 gene expression was studied in 49 ACTs by quantitative real-time PCR. A strong DAX1 protein expression was demonstrated in 74% (25 out of 34) and 24% (17 out of 70) of pediatric and adult ACTs, respectively (χ(2)=10.1, p=0.002). In the pediatric group, ACTs with a strong DAX1 expression were diagnosed at earlier ages than ACTs with weak expression [median 1.2 (range, 0.5-4.5) vs. 2.2 (0.9-9.4), p=0.038]. DAX1 expression was not associated with functional status in ACTs. Interestingly, a positive correlation was observed between DAX1 and SF1 protein expression in both pediatric and adult ACTs (r=0.55 for each group separately; p<0.0001). In addition, DAX1 gene expression was significantly correlated with SF1 gene expression (p<0.0001, r=0.54). In conclusion, DAX1 strong protein expression was more frequent in pediatric than in adult ACTs. Additionally, DAX1 and SF1 expression positively correlated in ACTs, suggesting that these transcription factors might cooperate in adrenocortical tumorigenesis. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Maternal-Child Adrenocortical Attunement in Early Childhood: Continuity and Change

    PubMed Central

    Hibel, Leah C.; Granger, Douglas A.; Blair, Clancy; Finegood, Eric D.

    2017-01-01

    This study evaluated continuity and change in maternal-child hypothalamic-pituitary-adrenal axis attunement in early childhood. Participants were drawn from a prospective study of 1,292 mother–child dyads, which were racially diverse, predominantly low-income, and non-urban. Child focused stress tasks designed to elicit anger, fear, and frustration were administered during early infancy, later infancy, and toddlerhood. Mothers’ and children’s saliva samples (later assayed for cortisol) were collected before and after the tasks. The strength of mother–child adrenocortical attunement was conserved across infancy and toddlerhood. The magnitude of maternal-child adrenocortical attunement decreased in response to the child-focused stress tasks. Maternal sensitivity and the child’s task-related emotional reactivity moderated adrenocortical attunement across the task, with greater maternal sensitivity during a free-play, and lower levels of child emotional reactivity during the stress tasks, stabilizing attunement from pre- to post-task levels. The findings advance our understanding of individual differences in the social regulation of adrenocortical activity in early childhood. PMID:25417896

  13. Pathway Implications of Aberrant Global Methylation in Adrenocortical Cancer

    PubMed Central

    Legendre, Christophe R.; Demeure, Michael J.; Whitsett, Timothy G.; Gooden, Gerald C.; Bussey, Kimberly J.; Jung, Sungwon; Waibhav, Tembe; Kim, Seungchan; Salhia, Bodour

    2016-01-01

    Context Adrenocortical carcinomas (ACC) are a rare tumor type with a poor five-year survival rate and limited treatment options. Objective Understanding of the molecular pathogenesis of this disease has been aided by genomic analyses highlighting alterations in TP53, WNT, and IGF signaling pathways. Further elucidation is needed to reveal therapeutically actionable targets in ACC. Design In this study, global DNA methylation levels were assessed by the Infinium HumanMethylation450 BeadChip Array on 18 ACC tumors and 6 normal adrenal tissues. A new, non-linear correlation approach, the discretization method, assessed the relationship between DNA methylation/gene expression across ACC tumors. Results This correlation analysis revealed epigenetic regulation of genes known to modulate TP53, WNT, and IGF signaling, as well as silencing of the tumor suppressor MARCKS, previously unreported in ACC. Conclusions DNA methylation may regulate genes known to play a role in ACC pathogenesis as well as known tumor suppressors. PMID:26963385

  14. Evening Activities as a Potential Confound in Research on the Adrenocortical System in Children

    ERIC Educational Resources Information Center

    Kertes, Darlene A.; Gunnar, Megan R.

    2004-01-01

    The relation among children's evening activities, behavioral characteristics, and activity of the hypothalamic-pituitary-adrenocortical axis was assessed in normally developing children ages 7 to 10 years. Salivary cortisol at bedtime was compared on evenings when children had structured activities outside of the home with unstructured evenings at…

  15. Cytochrome b5 Expression in Gonadectomy-induced Adrenocortical Neoplasms of the Domestic Ferret (Mustela putorius furo)

    PubMed Central

    Wagner, S.; Kiupel, M.; Peterson, R.A.; Heikinheimo, M.; Wilson, D.B.

    2008-01-01

    Whereas the adrenal glands of healthy ferrets produce only limited amounts of androgenic steroids, adrenocortical neoplasms that arise in neutered ferrets typically secrete androgens or their derivative, estrogen. The 17,20-lyase activity of cytochrome P450 17α-hydroxylase/17,20-lyase (P450c17) must increase to permit androgen biosynthesis in neoplastic adrenal tissue. We screened ferret adrenocortical tumor specimens for expression of cytochrome b5 (cyt b5), an allosteric regulator that selectively enhances the 17,20-lyase activity of P450c17. Cyt b5 immunoreactivity was evident in 24 of 25 (96 %) adrenocortical adenomas/carcinomas from ferrets with signs of ectopic sex steroid production. Normal adrenocortical cells lacked cyt b5, which may account for the low production of adrenal androgens in healthy ferrets. Other markers characteristic of gonadal somatic cells, such as luteinizing hormone receptor, aromatase, and GATA4, were co-expressed with cyt b5 in some of the tumors. We conclude that cyt b5 is upregulated during gonadectomy-induced adrenocortical neoplasia and is a marker of androgen synthetic potential in these tumors. PMID:18587089

  16. Epigenetic regulation of muscle development.

    PubMed

    Barreiro, Esther; Tajbakhsh, Shahragim

    2017-03-28

    In eukaryote cells, chromatin appears in several forms and is composed of genomic DNA, protein and RNA. The protein content of chromatin is composed primarily of core histones that are packaged into nucleosomes resulting in the condensation of the DNA. Several epigenetic mechanisms regulate the stability of the nucleosomes and the protein-protein interactions that modify the transcriptional activity of the DNA. Interestingly, epigenetic control of gene expression has recently emerged as a relevant mechanism involved in the regulation of many different biological processes including that of muscle development, muscle mass maintenance, function, and phenotype in health and disease. Recent investigations have shed light into the epigenetic control of biological mechanisms that are key regulators of embryonic muscle development and postnatal myogenesis. In the present review article, we provide a summary of the contents discussed in session 08, titled "Epigenetics of muscle regeneration", during the course of the 45th European Muscle Conference, which was celebrated in Montpellier (France) in September 2016. The main theme of that session was to highlight the most recent progress on the role of epigenetics in the regulation of muscle development and regeneration. The current mini-review has been divided into two major sections. On the one hand, a brief introduction on the topic of myogenesis is offered for the non-specialized reader. On the other, a brief overview of the most relevant epigenetic players that have been shown to control muscle development and regeneration is given.

  17. Fat cells may be the obesity-hypertension link: human adipogenic factors stimulate aldosterone secretion from adrenocortical cells.

    PubMed

    Ehrhart-Bornstein, Monika; Arakelyan, Karen; Krug, Alexander W; Scherbaum, Werner A; Bornstein, Stefan R

    2004-11-01

    Obesity has become an epidemic problem in Western societies contributing to several disease processes including metabolic diseases, hypertension, and cardiovascular disease. Overweight and obesity are frequently associated with increased plasma levels of aldosterone suggesting a direct link between obesity hypertension and increased mineralocorticoid levels. The adipocyte has long been suggested to be directly involved in the regulation of the body's homeostasis and recent evidence now proves that human fat is a highly active endocrine tissue. We therefore tested the hypothesis that adipocyte secretory products directly stimulate adrenocortical aldosterone secretion. Indeed, secretory products from isolated human adipocytes strongly stimulated steroidogenesis in human adrenocortical cells (NCI-H295R), as well as in bovine adrenocortical cells with a predominant effect on mineralocorticoid secretion. In conclusion, a possible direct link exists between fat tissue metabolism and adrenal mineralocorticoid secretion that may be responsible for obesity-related hypertension.

  18. Novel markers of gonadectomy-induced adrenocortical neoplasia in the mouse and ferret

    PubMed Central

    Schillebeeckx, Maximiliaan; Pihlajoki, Marjut; Gretzinger, Elisabeth; Yang, Wei; Thol, Franziska; Hiller, Theresa; Löbs, Ann-Kathrin; Röhrig, Theresa; Schrade, Anja; Cochran, Rebecca; Jay, Patrick Y.; Heikinheimo, Markku; Mitra, Robi D.; Wilson, David B.

    2014-01-01

    Gonadectomy (GDX) induces sex steroid-producing adrenocortical tumors in certain mouse strains and in the domestic ferret. Transcriptome analysis and DNA methylation mapping were used to identify novel genetic and epigenetic markers of GDX-induced adrenocortical neoplasia in female DBA/2J mice. Markers were validated using a combination of laser capture microdissection, quantitative RT-PCR, in situ hybridization, and immunohistochemistry. Microarray expression profiling of whole adrenal mRNA from ovariectomized vs. intact mice demonstrated selective upregulation of gonadal-like genes including Spinlw1 and Insl3 in GDX-induced adrenocortical tumors of the mouse. A complementary candidate gene approach identified Foxl2 as another gonadal-like marker expressed in GDX-induced neoplasms of the mouse and ferret. That both “male-specific” (Spinlw1) and “female-specific” (Foxl2) markers were identified is noteworthy and implies that the neoplasms exhibit mixed characteristics of male and female gonadal somatic cells. Genome-wide methylation analysis showed that two genes with hypomethylated promoters, Igfbp6 and Foxs1, are upregulated in GDX-induced adrenocortical neoplasms. These new genetic and epigenetic markers may prove useful for studies of steroidogenic cell development and for diagnostic testing. PMID:25289806

  19. Adjuvant mitotane treatment for adrenocortical carcinoma.

    PubMed

    Terzolo, Massimo; Angeli, Alberto; Fassnacht, Martin; Daffara, Fulvia; Tauchmanova, Libuse; Conton, Pier Antonio; Rossetto, Ruth; Buci, Lisa; Sperone, Paola; Grossrubatscher, Erika; Reimondo, Giuseppe; Bollito, Enrico; Papotti, Mauro; Saeger, Wolfgang; Hahner, Stefanie; Koschker, Ann-Cathrin; Arvat, Emanuela; Ambrosi, Bruno; Loli, Paola; Lombardi, Gaetano; Mannelli, Massimo; Bruzzi, Paolo; Mantero, Franco; Allolio, Bruno; Dogliotti, Luigi; Berruti, Alfredo

    2007-06-07

    Adrenocortical carcinoma is a rare neoplasm characterized by a high risk of recurrence after radical resection. Whether the use of mitotane is beneficial as an adjuvant treatment has been controversial. Our aim was to evaluate the efficacy of adjuvant mitotane in prolonging recurrence-free survival. We performed a retrospective analysis involving 177 patients with adrenocortical cancer who had undergone radical surgery at 8 centers in Italy and 47 centers in Germany between 1985 and 2005. Adjuvant mitotane was administered to 47 Italian patients after radical surgery (mitotane group), whereas 55 Italian patients and 75 German patients (control groups 1 and 2, respectively) did not receive adjuvant treatment after surgery. Baseline features in the mitotane group and the control group from Italy were similar; the German patients were significantly older (P=0.03) and had more stage I or II adrenocortical carcinomas (P=0.02) than did patients in the mitotane group. Recurrence-free survival was significantly prolonged in the mitotane group, as compared with the two control groups (median recurrence-free survival, 42 months, as compared with 10 months in control group 1 and 25 months in control group 2). Hazard ratios for recurrence were 2.91 (95% confidence interval [CI], 1.77 to 4.78; P<0.001) and 1.97 (95% CI, 1.21 to 3.20; P=0.005), respectively. Multivariate analysis indicated that mitotane treatment had a significant advantage for recurrence-free survival. Adverse events associated with mitotane were mainly of grade 1 or 2, but temporary dose reduction was needed in 13% of patients. Adjuvant mitotane may prolong recurrence-free survival in patients with radically resected adrenocortical carcinoma. Copyright 2007 Massachusetts Medical Society.

  20. Adjuvant and Definitive Radiotherapy for Adrenocortical Carcinoma

    SciTech Connect

    Sabolch, Aaron; Feng, Mary; Griffith, Kent; Hammer, Gary; Doherty, Gerard; Ben-Josef, Edgar

    2011-08-01

    Purpose: To evaluate the impact of both adjuvant and definitive radiotherapy on local control of adrenocortical carcinoma. Methods and Materials: Outcomes were analyzed from 58 patients with 64 instances of treatment for adrenocortical carcinoma at the University of Michigan's Multidisciplinary Adrenal Cancer Clinic. Thirty-seven of these instances were for primary disease, whereas the remaining 27 were for recurrent disease. Thirty-eight of the treatment regimens involved surgery alone, 10 surgery plus adjuvant radiotherapy, and 16 definitive radiotherapy for unresectable disease. The effects of patient, tumor, and treatment factors were modeled simultaneously using multiple variable Cox proportional hazards regression for associations with local recurrence, distant recurrence, and overall survival. Results: Local failure occurred in 16 of the 38 instances that involved surgery alone, in 2 of the 10 that consisted of surgery plus adjuvant radiotherapy, and in 1 instance of definitive radiotherapy. Lack of radiotherapy use was associated with 4.7 times the risk of local failure compared with treatment regimens that involved radiotherapy (95% confidence interval, 1.2-19.0; p = 0.030). Conclusions: Radiotherapy seems to significantly lower the risk of local recurrence/progression in patients with adrenocortical carcinoma. Adjuvant radiotherapy should be strongly considered after surgical resection.

  1. Genomic landscape of pediatric adrenocortical tumors

    PubMed Central

    Pinto, Emilia M.; Chen, Xiang; Easton, John; Finkelstein, David; Liu, Zhifa; Pounds, Stanley; Rodriguez-Galindo, Carlos; Lund, Troy C.; Mardis, Elaine R.; Wilson, Richard K.; Boggs, Kristy; Yergeau, Donald; Cheng, Jinjun; Mulder, Heather L.; Manne, Jayanthi; Jenkins, Jesse; Mastellaro, Maria J.; Figueiredo, Bonald C.; Dyer, Michael A.; Pappo, Alberto; Zhang, Jinghui; Downing, James R.; Ribeiro, Raul C.; Zambetti, Gerard P.

    2015-01-01

    Pediatric adrenocortical carcinoma is a rare malignancy with poor prognosis. Here we analyze 37 adrenocortical tumors (ACTs) by whole genome, whole exome and/or transcriptome sequencing. Most cases (91%) show loss of heterozygosity (LOH) of chromosome 11p, with uniform selection against the maternal chromosome. IGF2 on chromosome 11p is overexpressed in 100% of the tumors. TP53 mutations and chromosome 17 LOH with selection against wild-type TP53 are observed in 28 ACTs (76%). Chromosomes 11p and 17 undergo copy-neutral LOH early during tumorigenesis, suggesting tumor-driver events. Additional genetic alterations include recurrent somatic mutations in ATRX and CTNNB1 and integration of human herpesvirus-6 in chromosome 11p. A dismal outcome is predicted by concomitant TP53 and ATRX mutations and associated genomic abnormalities, including massive structural variations and frequent background mutations. Collectively, these findings demonstrate the nature, timing and potential prognostic significance of key genetic alterations in pediatric ACT and outline a hypothetical model of pediatric adrenocortical tumorigenesis. PMID:25743702

  2. Genomic landscape of paediatric adrenocortical tumours.

    PubMed

    Pinto, Emilia M; Chen, Xiang; Easton, John; Finkelstein, David; Liu, Zhifa; Pounds, Stanley; Rodriguez-Galindo, Carlos; Lund, Troy C; Mardis, Elaine R; Wilson, Richard K; Boggs, Kristy; Yergeau, Donald; Cheng, Jinjun; Mulder, Heather L; Manne, Jayanthi; Jenkins, Jesse; Mastellaro, Maria J; Figueiredo, Bonald C; Dyer, Michael A; Pappo, Alberto; Zhang, Jinghui; Downing, James R; Ribeiro, Raul C; Zambetti, Gerard P

    2015-03-06

    Paediatric adrenocortical carcinoma is a rare malignancy with poor prognosis. Here we analyse 37 adrenocortical tumours (ACTs) by whole-genome, whole-exome and/or transcriptome sequencing. Most cases (91%) show loss of heterozygosity (LOH) of chromosome 11p, with uniform selection against the maternal chromosome. IGF2 on chromosome 11p is overexpressed in 100% of the tumours. TP53 mutations and chromosome 17 LOH with selection against wild-type TP53 are observed in 28 ACTs (76%). Chromosomes 11p and 17 undergo copy-neutral LOH early during tumorigenesis, suggesting tumour-driver events. Additional genetic alterations include recurrent somatic mutations in ATRX and CTNNB1 and integration of human herpesvirus-6 in chromosome 11p. A dismal outcome is predicted by concomitant TP53 and ATRX mutations and associated genomic abnormalities, including massive structural variations and frequent background mutations. Collectively, these findings demonstrate the nature, timing and potential prognostic significance of key genetic alterations in paediatric ACT and outline a hypothetical model of paediatric adrenocortical tumorigenesis.

  3. Cerebellin and des-cerebellin exert ACTH-like effects on corticosterone secretion and the intracellular signaling pathway gene expression in cultured rat adrenocortical cells--DNA microarray and QPCR studies.

    PubMed

    Rucinski, Marcin; Ziolkowska, Agnieszka; Szyszka, Marta; Malendowicz, Ludwik K

    2009-04-01

    Precerebellins (Cbln) belong to the C1q/TNF superfamily of secreted proteins which have diverse functions. They are abundantly expressed in the cerebellum, however, three of them are also expressed in the rat adrenal gland. All members of the Cbln family form homomeric and heteromeric complexes with each other in vitro and it was suggested that such complexes play a crucial role in normal development of the cerebellum. The aim of our study was to investigate whether Cbln1-derived peptides, cerebellin (CER) and des-Ser1-cerebellin (desCER) are involved in regulating biological functions of rat adrenocortical cells. In the primary culture of rat adrenocortical cells, 24 h exposure to CER or desCER notably stimulated corticosterone output and inhibited proliferative activity and similar effects were evoked by ACTH. To study gene transcript regulation by CER, desCER and ACTH, we applied Oligo GEArray DNA Microarray: Rat Signal Transduction Pathway Finder. In relation to the control culture, 13 of the 113 transcripts present on the array were differentially expressed. These transcripts were either up- or down-regulated by ACTH and/or CER or desCER treatment. Validation of DNA Microarray data by QPCR revealed that only 5 of 13 genes studied were differentially expressed. Of those genes, Fos and Icam1 were up-regulated and Egr1 was down-regulated by ACTH, CER and desCER. The remaining two genes, Fasn (insulin signaling pathway) and Hspb1 (HSP27) (stress signaling pathway), were regulated only by CER and desCER, but not by ACTH. Thus, both CER and desCER have effects similar to and different from corticotrophin on the intracellular signaling pathway gene expression in cultured rat adrenocortical cells.

  4. Amplification of the Insulin-Like Growth Factor 1 Receptor Gene Is a Rare Event in Adrenocortical Adenocarcinomas: Searching for Potential Mechanisms of Overexpression

    PubMed Central

    Ribeiro, Tamaya Castro; Jorge, Alexander Augusto; Almeida, Madson Q.; Mariani, Beatriz Marinho de Paula; Nishi, Mirian Yumi; Mendonca, Berenice Bilharinho; Fragoso, Maria Candida Barisson Villares

    2014-01-01

    Context. IGF1R overexpression appears to be a prognostic biomarker of metastatic pediatric adrenocortical tumors. However, the molecular mechanisms that are implicated in its upregulation remain unknown. Aim. To investigate the potential mechanisms involved in IGF1R overexpression. Patients and Methods. We studied 64 adrenocortical tumors. IGF1R copy number variation was determined in all patients using MLPA and confirmed using real time PCR. In a subgroup of 32 patients, automatic sequencing was used to identify IGF1R allelic variants and the expression of microRNAs involved in IGF1R regulation by real time PCR. Results. IGF1R amplification was detected in an adrenocortical carcinoma that was diagnosed in a 46-year-old woman with Cushing's syndrome and virilization. IGF1R overexpression was demonstrated in this case. In addition, gene amplification of other loci was identified in this adrenocortical malignant tumor, but no IGF1R copy number variation was evidenced in the remaining cases. Automatic sequencing revealed three known polymorphisms but they did not correlate with its expression. Expression of miR-100, miR-145, miR-375, and miR-126 did not correlate with IGF1R expression. Conclusion. We demonstrated amplification and overexpression of IGF1R gene in only one adrenocortical carcinoma, suggesting that these combined events are uncommon. In addition, IGF1R polymorphisms and abnormal microRNA expression did not correlate with IGF1R upregulation in adrenocortical tumors. PMID:25110710

  5. Redox Regulation of Plant Development

    PubMed Central

    Considine, Michael J.

    2014-01-01

    Abstract Significance: We provide a conceptual framework for the interactions between the cellular redox signaling hub and the phytohormone signaling network that controls plant growth and development to maximize plant productivity under stress-free situations, while limiting growth and altering development on exposure to stress. Recent Advances: Enhanced cellular oxidation plays a key role in the regulation of plant growth and stress responses. Oxidative signals or cycles of oxidation and reduction are crucial for the alleviation of dormancy and quiescence, activating the cell cycle and triggering genetic and epigenetic control that underpin growth and differentiation responses to changing environmental conditions. Critical Issues: The redox signaling hub interfaces directly with the phytohormone network in the synergistic control of growth and its modulation in response to environmental stress, but a few components have been identified. Accumulating evidence points to a complex interplay of phytohormone and redox controls that operate at multiple levels. For simplicity, we focus here on redox-dependent processes that control root growth and development and bud burst. Future Directions: The multiple roles of reactive oxygen species in the control of plant growth and development have been identified, but increasing emphasis should now be placed on the functions of redox-regulated proteins, along with the central roles of reductants such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin in the regulation of the genetic and epigenetic factors that modulate the growth and vigor of crop plants, particularly within an agricultural context. Antioxid. Redox Signal. 21, 1305–1326. PMID:24180689

  6. A case of pediatric virilizing adrenocortical tumor resulting in hypothalamic-pituitary activation and central precocious puberty following surgical removal.

    PubMed

    Miyoshi, Yoko; Oue, Takaharu; Oowari, Mitsugu; Soh, Hideki; Tachibana, Makiko; Kimura, Sadami; Kiyohara, Yuki; Yamada, Hiroyuki; Bessyo, Kazuhiko; Mushiake, Sotaro; Homma, Keiko; Hasegawa, Tomonobu; Sasano, Hironobu; Ozono, Keiichi

    2009-01-01

    We present a 6-year-old boy with a virilizing adrenocortical tumor who initially presented with peripheral precocious puberty. Development of facial acne, pubic hair and a growth spurt were noted at the age of five. A low-pitched voice as well as maturation of external genitalia was noted at the age of six. Both serum and urinary levels of adrenal androgens were elevated. Abdominal computed tomography revealed a large right suprarenal mass and he underwent surgical resection without any complications. The histological diagnosis was adrenocortical carcinoma according to the criteria of Weiss. Following surgical removal of the androgen-producing tumor, the patient subsequently developed hypothalamic-pituitary activation and demonstrated central precocious puberty. He was treated with a gonadotropin-releasing hormone agonist in order to delay further pubertal progression. Clinical follow-up of potential secondary effects of excess hormone secretion after removal is important in some pediatric patients with virilizing adrenocortical tumor.

  7. Regulation Development for Drinking Water Contaminants

    EPA Pesticide Factsheets

    To explain what process and information underlies regulations including how the Safe Drinking Water Act applies to regulation development i.e. how does the drinking water law translate into regulations.

  8. Laparoscopic Adrenalectomy for Large Adrenocortical Carcinoma

    PubMed Central

    al Qadhi, Hani; al Wahaibi, Khalifa; Rizvi, Syed G.

    2015-01-01

    Background: Adrenocortical cancer (ACC) is a rare disease that is difficult to treat. Laparoscopic adrenalectomy (LA) is performed, even for large adrenocortical carcinomas. However, the oncological effectiveness of LA remains unclear. This review presents the current knowledge of the feasibility and oncological effectiveness of laparoscopic surgery for ACC, with an analysis of data for outcomes and other parameters. Database: A systematic review of the literature was performed by searching the PubMed and Medline databases for all relevant articles in English, published between January 1992 and August 2014 on LA for adrenocortical carcinoma. Discussion: The search resulted in retrieval of 29 studies, of which 10 addressed the outcome of LA versus open adrenalectomy (OA) and included 844 patients eligible for this review. Among these, 206 patients had undergone LA approaches, and 638 patients had undergone OA. Among the 10 studies that compared the outcomes obtained with LA and OA for ACC, 5 noted no statistically significant difference between the 2 groups in the oncological outcomes of recurrence and disease-free survival, whereas the remaining 5 reported inferior outcomes in the LA group. Using a paired t test for statistical analysis, except for tumor size, we found no significant difference in local recurrence, peritoneal carcinomatosis, positive resection margin, and time to recurrence between the LA and OA groups. The overall mean tumor size in patients undergoing LA and OA was 7.1 and 11.2 cm, respectively (P = .0003), and the mean overall recurrence was 61.5 and 57.9%, respectively. The outcome of LA is believed to depend to a large extent on the size and stage of the lesion (I and II being favorable) and the surgical expertise in the center where the patient undergoes the operation. However, the present review shows no difference in the outcome between the 2 approaches across all stages. A poor outcome is likely to result from inadequate surgery

  9. Adrenocortical carcinoma: Report of two cases.

    PubMed

    Aparna, C; Renuka, I V; Saila Bala, G; Annapurna, P

    2011-07-01

    Adrenocortical carcinoma (ACC) is a rare neoplasm with a slight predilection for female patients. We report two cases of ACC. The first case was of a 7-year-old girl who presented with clitoromegaly. The second case was of a 22-Year-old female who presented with a lump in the abdomen and features of Cushing's syndrome with virilization.The clinical, biochemical, histological features along with differential diagnosis are discussed. These cases are presented because of their rarity, and also to highlight the importance of differentiating ACC from an adenoma particularly in pediatric patients.

  10. Adrenocortical carcinoma: Report of two cases

    PubMed Central

    Aparna, C.; Renuka, I. V.; Saila Bala, G.; Annapurna, P.

    2011-01-01

    Adrenocortical carcinoma (ACC) is a rare neoplasm with a slight predilection for female patients. We report two cases of ACC. The first case was of a 7-year-old girl who presented with clitoromegaly. The second case was of a 22-Year-old female who presented with a lump in the abdomen and features of Cushing's syndrome with virilization.The clinical, biochemical, histological features along with differential diagnosis are discussed. These cases are presented because of their rarity, and also to highlight the importance of differentiating ACC from an adenoma particularly in pediatric patients. PMID:21897902

  11. Virilizing Adrenocortical Carcinoma Advancing to Central Precocious Puberty after Surgery

    PubMed Central

    Kim, Min Sun; Yang, Eu Jeen; Cho, Dong Hyu; Hwang, Pyung Han

    2015-01-01

    Adrenocortical carcinoma (ACC) in pediatric and adolescent patients is rare, and it is associated with various clinical symptoms. We introduce the case of an 8-year-old boy with ACC who presented with peripheral precocious puberty at his first visit. He displayed penis enlargement with pubic hair and facial acne. His serum adrenal androgen levels were elevated, and abdominal computed tomography revealed a right suprarenal mass. After complete surgical resection, the histological diagnosis was ACC. Two months after surgical removal of the mass, he subsequently developed central precocious puberty. He was treated with a gonadotropin-releasing hormone agonist to delay further pubertal progression. In patients with functioning ACC and surgical removal, clinical follow-up and hormonal marker examination for the secondary effects of excessive hormone secretion may be a useful option at least every 2 or 3 months after surgery. PMID:26019766

  12. Virilizing adrenocortical carcinoma advancing to central precocious puberty after surgery.

    PubMed

    Kim, Min Sun; Yang, Eu Jeen; Cho, Dong Hyu; Hwang, Pyung Han; Lee, Dae-Yeol

    2015-05-01

    Adrenocortical carcinoma (ACC) in pediatric and adolescent patients is rare, and it is associated with various clinical symptoms. We introduce the case of an 8-year-old boy with ACC who presented with peripheral precocious puberty at his first visit. He displayed penis enlargement with pubic hair and facial acne. His serum adrenal androgen levels were elevated, and abdominal computed tomography revealed a right suprarenal mass. After complete surgical resection, the histological diagnosis was ACC. Two months after surgical removal of the mass, he subsequently developed central precocious puberty. He was treated with a gonadotropin-releasing hormone agonist to delay further pubertal progression. In patients with functioning ACC and surgical removal, clinical follow-up and hormonal marker examination for the secondary effects of excessive hormone secretion may be a useful option at least every 2 or 3 months after surgery.

  13. Current and Emerging Therapeutic Options in Adrenocortical Cancer Treatment

    PubMed Central

    Stigliano, Antonio; Cerquetti, Lidia; Sampaoli, Camilla; Bucci, Barbara; Toscano, Vincenzo

    2012-01-01

    Adrenocortical carcinoma (ACC) is a very rare endocrine tumour, with variable prognosis, depending on tumour stage and time of diagnosis. The overall survival is five years from detection. Radical surgery is considered the therapy of choice in the first stages of ACC. However postoperative disease-free survival at 5 years is only around 30% and recurrence rates are frequent. o,p'DDD (ortho-, para'-, dichloro-, diphenyl-, dichloroethane, or mitotane), an adrenolytic drug with significant toxicity and unpredictable therapeutic response, is used in the treatment of ACC. Unfortunately, treatment for this aggressive cancer is still ineffective. Over the past years, the growing interest in ACC has contributed to the development of therapeutic strategies in order to contrast the neoplastic spread. In this paper we discuss the most promising therapies which can be used in this endocrine neoplasia. PMID:22934112

  14. Comparison of adrenocortical zonation in C57BL/6J and DDD mice.

    PubMed

    Tanaka, S; Matsuzawa, A

    1995-10-01

    Adrenal weights and adrenocortical zonation were compared in two inbred mouse strains, C57BL/6J and DDD, which are different in both origin and genetic background. Clear strain and sex differences were observed in the adrenal weight and the morphology of the zona fasciculata, z. reticularis and X zone. DDD adrenals were larger than C57BL/6J ones regardless of sex. The z. fasciculata was thicker in female than male DDD mice. The z. reticularis of DDD males developed nodules at 70 days of age, followed by an increase in size with age, while that of C57BL/6J males did not. Parous females experiencing pregnancy, gestation and lactation also developed similar nodules, but virgins did not. The X zone degeneration occurred earlier in males than in females. This zone disappeared before 5 weeks of age in males but gradually decreased in thickness with age in DDD virgins. The female X zone was thicker and degenerated with vacuolation in DDD, while it was thinner and degenerated without vacuolation in C57BL/6J. Such clear strain differences in the inner cortices, z. reticularis and X zone, suggested that their morphology might be regulated primarily by genetics and modified by endocrinology.

  15. Regulated proteolysis in bacterial development

    PubMed Central

    Konovalova, Anna; Søgaard-Andersen, Lotte; Kroos, Lee

    2013-01-01

    Bacteria use proteases to control three types of events temporally and spatially during processes of morphological development. These events are destruction of regulatory proteins, activation of regulatory proteins, and production of signals. While some of these events are entirely cytoplasmic, others involve intramembrane proteolysis of a substrate, trans-membrane signaling, or secretion. In some cases, multiple proteolytic events are organized into pathways, e.g., turnover of a regulatory protein activates a protease that generates a signal. We review well-studied and emerging examples, and identify recurring themes and important questions for future research. We focus primarily on paradigms learned from studies of model organisms, but we note connections to regulated proteolytic events that govern bacterial adaptation, biofilm formation and disassembly, and pathogenesis. PMID:24354618

  16. The Social Buffering of the Hypothalamic-Pituitary-Adrenocortical Axis in Humans: Developmental and Experiential Determinants

    PubMed Central

    Gunnar, Megan R.; Hostinar, Camelia E.

    2015-01-01

    Social buffering, a subset of social support, is the process through which the availability of a conspecific reduces the activity of stress-mediating neurobiological systems. While its role in coping and resilience is significant, we know little about its developmental history in humans. This brief review presents an integrative developmental account of the social buffering of hypothalamic-pituitary-adrenocortical (HPA) stress reactivity in humans, from infancy to adulthood. During infancy, parents are powerful stress-regulators for children, but child temperament also plays a role and interacts with parenting quality to predict the magnitude of stress responses to fear or pain stimuli. Recent work indicates that parental support remains a potent stress buffer into late childhood, but that it loses its effectiveness as a buffer of the HPA axis by adolescence. Puberty may be the switch that alters the potency of parental buffering. In Beginning in middle childhood, friends may serve as stress buffers, particularly when other peers are the source of stress. By adulthood romantic partners assume this protective role, though studies often reveal sex differences that are currently not well understood. Translational research across species will be critical for developing a mechanistic understanding of social buffering and the processes involved in developmental changes noted in this review. PMID:26230646

  17. Modulation of the adrenocortical response to acute stress with respect to brood value, reproductive success and survival in the Eurasian hoopoe.

    PubMed

    Schmid, Baptiste; Tam-Dafond, Laura; Jenni-Eiermann, Susanne; Arlettaz, Raphaël; Schaub, Michael; Jenni, Lukas

    2013-09-01

    Reproducing parents face the difficult challenge of trading-off investment in current reproduction against presumed future survival and reproduction. Glucocorticoids are supposed to mediate this trade-off because the adrenocortical response to stress disrupts normal reproductive behaviour in favour of self-maintenance and own survival. According to the brood-value hypothesis, individuals with a low survival probability until the next reproductive season have to invest in current reproduction, a process driven by a down-regulation of their adrenocortical response. If the adrenocortical response to stress effectively mediates the trade-off between current reproduction versus future survival and reproduction, we expect a negative relationship with reproductive success and a positive correlation of the adrenocortical stress response with survival. We studied the relationship between corticosterone secretion in parents and their current brood value, reproductive success and survival in a short-lived multi-brooded bird, the Eurasian hoopoe Upupa epops. The adrenocortical response to acute handling stress was correlated with the brood value within the individual (first and second broods of the year) and between individuals. Birds breeding late in the season mounted a lower total corticosterone response to acute stress than birds breeding earlier, while females showed lower levels than males. We observed a negative relationship between the adrenocortical stress response and rearing success or fledging success in females, as predicted by the brood-value hypothesis. However, we could not evidence a clear link between the adrenocortical stress response and survival. Future research testing the brood-value hypothesis and trade-offs between current reproduction and future survival should also measure free corticosterone and carefully differentiate between cross-sectional (i.e. between-individual) and individual-based experimental studies.

  18. Aging of the rat adrenocortical cell: response to ACTH and cyclic AMP in vitro.

    PubMed

    Malamed, S; Carsia, R V

    1983-03-01

    To study intrinsic age-related changes in adrenocortical steroid production, cells isolated from rats of different ages (3 to 24 months) were used. Acute (2 hour) corticosterone production in response to stimulation by adrenocorticotrophic hormone (ACTH) and adenosine 3':5'-cyclic monophosphate (cAMP) was measured by radioimmunoassay. With age, adrenocortical cells lose much of their ability to produce corticosterone in the absence or presence of ACTH or cAMP. The loss is progressive from 6 to 24 months of age. Analysis of the data suggests that from 6 to 12 months, an intracellular steroidogenic lesion develops; in addition there may be a loss in ACTH receptors on the plasma membrane. After 12 months these defects increase and are accompanied by a decrease in receptor sensitivity to ACTH.

  19. Adrenocortical suppression in highland chick embryos is restored during incubation at sea level.

    PubMed

    Salinas, Carlos E; Villena, Mercedes; Blanco, Carlos E; Giussani, Dino A

    2011-01-01

    By combining the chick embryo model with incubation at high altitude, this study tested the hypothesis that development at high altitude is related to a fetal origin of adrenocortical but not adrenomedullary suppression and that hypoxia is the mechanism underlying the relationship. Fertilized eggs from sea-level or high altitude hens were incubated at sea level or high altitude. Fertilized eggs from sea-level hens were also incubated at altitude with oxygen supplementation. At day 20 of incubation, embryonic blood was taken for measurement of plasma corticotropin, corticosterone, and Po(2). Following biometry, the adrenal glands were collected and frozen for measurement of catecholamine content. Development of chick embryos at high altitude led to pronounced adrenocortical blunting, but an increase in adrenal catecholamine content. These effects were similar whether the fertilized eggs were laid by sea-level or high altitude hens. The effects of high altitude on the stress axes were completely prevented by incubation at high altitude with oxygen supplementation. When chick embryos from high altitude hens were incubated at sea level, plasma hormones and adrenal catecholamine content were partially restored toward levels measured in sea-level chick embryos. There was a significant correlation between adrenocortical blunting and elevated adrenal catecholamine content with both asymmetric growth restriction and fetal hypoxia. The data support the hypothesis tested and provide evidence to isolate the direct contribution of developmental hypoxia to alterations in the stress system.

  20. HLA antigens in patients with adrenocortical hyperfunction.

    PubMed

    Lada, G; Gyódi, E; Gláz, E

    1977-01-01

    The HLA antigen frequencies in 100 Caucasian patients with adrenocortical hyperfunction were compared with those found in 352 healthy unrelated subjects. Fourteen antigens on the HLA--A locus, seventeen antigens on the HLA--B locus and three antigens on the HLA--C locus were determined using the standard NIH microlymphocytotoxicity test. The frequency of HLA--A1 antigen in the patient group was 49% as compared with 28% in the controls (pcorr less than 0.01). An increased frequency of HLA--B8 and HLA-BW35 antigens was also found, but the difference was not significant. Increased A1--B8 and A1--BW35 haplotype frequencies were observed. The relationship between the HLA system and various endogenous and exogenous factors eliciting hypercorticism, together with complementary family studies indicate that the HLA system may be a useful genetic marker of the disease susceptibility gene.

  1. Celecoxib reduces glucocorticoids in vitro and in a mouse model with adrenocortical hyperplasia

    PubMed Central

    Liu, Sisi; Saloustros, Emmanouil; Berthon, Annabel; Starost, Matthew F.; Sahut-Barnola, Isabelle; Salpea, Paraskevi; Szarek, Eva; Faucz, Fabio R.; Martinez, Antoine; Stratakis, Constantine A.

    2015-01-01

    Primary pigmented nodular adrenocortical disease (PPNAD), whether in the context of Carney complex (CNC) or isolated, leads to adrenocorticotropin hormone (ACTH) - independent Cushing’s syndrome (CS). CNC and PPNAD are caused typically by inactivating mutations of PRKAR1A, a gene coding for the type 1a regulatory subunit (R1α) of cAMP–dependent protein kinase (PKA). Mice lacking Prkar1a, specifically in the adrenal cortex (AdKO) developed CS caused by bilateral adrenal hyperplasia (BAH), which is formed from the abnormal proliferation of fetal-like adrenocortical cells. Celecoxib is a cyclooxygenase-2 (COX2) inhibitor. In bone, Prkar1a inhibition is associated with COX2 activation and prostaglandin E2 (PGE2) production that, in turn, activates proliferation of bone stromal cells. We hypothesized that COX2 inhibition may have an effect in PPNAD. In vitro treatment of human cell lines, including one from a patient with PPNAD, with Celecoxib resulted in decreased cell viability. We then treated AdKO and control mice with 1,500 mg/kg Celecoxib or vehicle. Celecoxib treatment led to decreased PGE2 and corticosterone levels, reduced proliferation and increased apoptosis of adrenocortical cells, and decreased steroidogenic gene expression. We conclude that, in vitro and in vivo, Celecoxib led to decreased steroidogenesis. In a mouse model of PPNAD, Celecoxib caused histological changes that reversed, at least in part, BAH and this was associated with a reduction of corticosterone levels. PMID:26438728

  2. Marked transient hypercholesterolemia caused by low-dose mitotane as adjuvant chemotherapy for adrenocortical carcinoma.

    PubMed

    Tada, Hayato; Nohara, Atsushi; Kawashiri, Masa-Aki; Inazu, Akihiro; Mabuchi, Hiroshi; Yamagishi, Masakazu

    2014-01-01

    We herein report a case of marked transient hypercholesterolemia in a man receiving low-dose mitotane as adjuvant chemotherapy for adrenocortical carcinoma.A 58-year-old man without any clinical symptoms or history of hypercholesterolemia was admitted to our hospital to treat an adrenocortical carcinoma detected on general screening using computed tomography. He reported no chest symptom and did not exhibit any established risk factors for coronary artery disease, such as diabetes, obesity, hypertension or relevant family history, with the exception of current smoking, on admission. A stress electrocardiogram showed negative findings. The left adrenal tumor as well as left kidney, spleen and distal portion of the pancreas were subsequently resected using radical surgery. The histopathological findings confirmed the preoperative diagnosis of adrenocortical carcinoma. After the operation, treatment with low-dose mitotane (1g/day) was introduced as adjuvant chemotherapy. Interestingly, the patient developed marked hyper-LDL cholesterolemia at a level equivalent to that of familial hypercholesterolemia (LDL cholesterol level ~ 300 mg/dL) following the introduction of mitotane, without evidence of primary or secondary hypercholesterolemia due to other causes. A coronary angiogram performed to assess the new-onset angina revealed three-vessel disease, which was later revascularized via percutaneous coronary intervention eight months after the start of mitotane therapy. The cholesterol level normalized with the suspension of mitotane. This case suggests that mitotane can cause severe hypercholesterolemia, potentially resulting in coronary atherosclerosis.

  3. Adrenocortical tumors associated with the TP53 p.R337H germline mutation can be identified during child-care consultations.

    PubMed

    Mastellaro, Maria J; Ribeiro, Raul C; Oliveira-Filho, Antônio G; Seidinger, Ana L; Cardinalli, Izilda A; Miranda, Eliana C M; Aguiar, Simone S; Brandalise, Silvia R; Yunes, José A; Barros-Filho, Antônio A

    2017-08-30

    To evaluate the clinical features associated with adrenocortical hormone overexpression and familial cancer profiling as potential markers for early detection of adrenocortical tumors in children from South and Southeast Brazil. The clinical manifestations and anthropometric measurements of 103 children diagnosed with adrenocortical tumors were analyzed. Between 1982 and 2011, 69 girls and 34 boys diagnosed with adrenocortical tumors were followed-up for a median time of 9.0 years (0-34 years). Signs of androgen overproduction alone (n=75) or associated with cortisol (n=18) were present in 90.3%. TP53 p.R337H mutation was found in 90.5% of patients. Stages I, II, III, and IV were observed in 45.6%, 27.2%, 19.4%, and 7.8% of patients, respectively. At diagnosis, there were no significant differences in height (p=0.92) and weight (p=0.22) among children with adrenocortical tumors, but children with virilization alone had significantly higher height-for-age Z-scores (0.92±1.4) than children with hypercortisolism alone or combined (-0.32±1.8; p=0.03). The five-year overall survival was 76.7% (SD±4.2). Patients with advanced-stage disease had a significantly worse prognosis than those with limited disease (p<0.001). During follow-up, ten of 55 p.R337H carrier parents developed cancer, whereas none of the 55 non-carriers did. Signs of adrenocortical hormone overproduction appear early, even in cases with early-stage. These signs can be identified at the physical examination and anthropometric measurements. In southern Brazil, pediatric adrenocortical tumor is a sentinel cancer for detecting families with germline p.R337H mutation in TP53 gene. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  4. Progression to Adrenocortical Tumorigenesis in Mice and Humans through Insulin-Like Growth Factor 2 and β-Catenin

    PubMed Central

    Heaton, Joanne H.; Wood, Michelle A.; Kim, Alex C.; Lima, Lorena O.; Barlaskar, Ferdous M.; Almeida, Madson Q.; Fragoso, Maria C.B.V.; Kuick, Rork; Lerario, Antonio M.; Simon, Derek P.; Soares, Ibere C.; Starnes, Elisabeth; Thomas, Dafydd G.; Latronico, Ana C.; Giordano, Thomas J.; Hammer, Gary D.

    2013-01-01

    Dysregulation of the WNT and insulin-like growth factor 2 (IGF2) signaling pathways has been implicated in sporadic and syndromic forms of adrenocortical carcinoma (ACC). Abnormal β-catenin staining and CTNNB1 mutations are reported to be common in both adrenocortical adenoma and ACC, whereas elevated IGF2 expression is associated primarily with ACC. To better understand the contribution of these pathways in the tumorigenesis of ACC, we examined clinicopathological and molecular data and used mouse models. Evaluation of adrenal tumors from 118 adult patients demonstrated an increase in CTNNB1 mutations and abnormal β-catenin accumulation in both adrenocortical adenoma and ACC. In ACC, these features were adversely associated with survival. Mice with stabilized β-catenin exhibited a temporal progression of increased adrenocortical hyperplasia, with subsequent microscopic and macroscopic adenoma formation. Elevated Igf2 expression alone did not cause hyperplasia. With the combination of stabilized β-catenin and elevated Igf2 expression, adrenal glands were larger, displayed earlier onset of hyperplasia, and developed more frequent macroscopic adenomas (as well as one carcinoma). Our results are consistent with a model in which dysregulation of one pathway may result in adrenal hyperplasia, but accumulation of a second or multiple alterations is necessary for tumorigenesis. PMID:22800756

  5. Adrenocortical Expression Profiling of Cattle with Distinct Juvenile Temperament Types.

    PubMed

    Friedrich, Juliane; Brand, Bodo; Graunke, Katharina Luise; Langbein, Jan; Schwerin, Manfred; Ponsuksili, Siriluck

    2017-01-01

    Temperament affects ease of handling, animal welfare, and economically important production traits in cattle. The use of gene expression profiles as molecular traits provides a novel means of gaining insight into behavioural genetics. In this study, differences in adrenocortical expression profiles between 60 F2 cows (Charolais × German Holstein) of distinct temperament types were analysed. The cows were assessed in a novel-human test at an age of 90 days. Most of the adrenal cortex transcripts which were differentially expressed (FDR <0.05) were found between temperament types of 'fearful/neophobic-alert' and all other temperament types. These transcripts belong to several biological functions like NRF2-mediated oxidative stress response, Glucocorticoid Receptor Signalling and Complement System. Overall, the present study provides new insight into transcriptional differences in the adrenal cortex between cows of distinct temperament types. Genetic regulations of such molecular traits facilitate uncovering positional and functional gene candidates for temperament type in cattle.

  6. c-Ki-ras oncogene amplification and FGF2 signaling pathways in the mouse Y1 adrenocortical cell line.

    PubMed

    Forti, Fábio L; Costa, Erico T; Rocha, Kátia M; Moraes, Miriam S; Armelin, Hugo A

    2006-06-01

    The mouse Y1 adrenocortical tumor cell line is highly responsive to FGF2-(Fibroblast Growth Factor 2) and possesses amplified and over-expressed c-Ki-ras proto-oncogene. We previously reported that this genetic lesion leads to high constitutive levels of activation of the c-Ki-Ras-GTP-->PI3K-->Akt signaling pathway (Forti et al. 2002). On the other hand, activation levels of another important pathway downstream of c-Ki-Ras-GTP, namely, Raf-->MEK-->ERK, remain strictly dependent on FGF2 stimulation (Rocha et al. 2003). Here we show that, first, FGF2 transiently up-regulates the c-Ki-Ras-GTP-->PI3K-->Akt pathway, in spite of its high basal levels. Second, c-Ki-Ras-GTP transient up-regulation likely underlies activation of the ERK1/2 pathway by FGF2. Third, c-Ki-Ras-GTP high basal levels suppress activation of the c-H-Ras onco-protein. But, Y1 cells, expressing dominant negative mutant RasN17, display a rapid and transient up-regulation of c-H-Ras-GTP upon FGF2 treatment. Elucidation of FGF2-signaling pathways in Y1 tumor cells can uncover new targets for drug development of interest in cancer therapy.

  7. Strigolactones are regulators of root development.

    PubMed

    Koltai, Hinanit

    2011-05-01

    Strigolactones (SLs) have been defined as a new group of plant hormones or their derivatives that suppress lateral shoot branching. Recently, a new role for SLs was discovered, in the regulation of root development. Strigolactones were shown to alter root architecture and affect root-hair elongation. Here, I review the recent findings regarding the effects of SLs on root growth and development, and their association with changes in auxin flux. The networking between SLs and other plant hormones that regulate root development is also presented. Strigolactone regulation of plant development suggests that they are coordinators of shoot and root development and mediators of plant responses to environmental conditions.

  8. Development of gas pressure vortex regulator

    NASA Astrophysics Data System (ADS)

    Uss, A. Yu.; Chernyshyov, A. V.; Krylov, V. I.

    2017-08-01

    The present paper describes the applications of vortex regulators and the current state of the issue on the use and development of such devices. A patent review has been carried out. Automatic control systems using a vortex regulator are considered. Based on the analysis and preliminary numerical calculation of gas flow in the working cavity of the regulator, a new design of a vortex gas pressure regulator has been developed. An experimental sample of the device was made using additive technologies and a number of tests were carried out. The results of experimental studies confirmed the adequacy of the created mathematical model. Based on further numerical studies a new design of a vortex regulator with a distributed feed of the process control flow as well as with the regulated swirl of the supply and control process flows has been developed.

  9. The challenge of developmental therapeutics for adrenocortical carcinoma

    PubMed Central

    Costa, Ricardo; Carneiro, Benedito A.; Tavora, Fabio; Pai, Sachin G.; Kaplan, Jason B.; Chae, Young Kwang; Chandra, Sunandana; Kopp, Peter A.; Giles, Francis J.

    2016-01-01

    Adrenocortical carcinoma (ACC) is a rare disease with an estimated incidence of only 0.7 new cases per million per year. Approximately 30-70% of the patients present with advanced disease with very poor prognosis and without effective therapeutic options. In the recent years, unprecedented progresses in cancer biology and genomics have fostered the development of numerous targeted therapies for various malignancies. Immunotherapy has also transformed the treatment landscape of malignancies such as melanoma, among others. However, these advances have not brought meaningful benefits for patients with ACC. Extensive genomic analyses of ACC have revealed numerous signal transduction pathway aberrations (e.g., insulin growth factor receptor and Wnt/β-catenin pathways) that play a central role in pathophysiology. These molecular alterations have been explored as potential therapeutic targets for drug development. This manuscript summarizes recent discoveries in ACC biology, reviews the results of early clinical studies with targeted therapies, and provides the rationale for emerging treatment strategies such as immunotherapy. PMID:27102148

  10. Phenotypic checkpoints regulate neuronal development.

    PubMed

    Ben-Ari, Yehezkel; Spitzer, Nicholas C

    2010-11-01

    Nervous system development proceeds by sequential gene expression mediated by cascades of transcription factors in parallel with sequences of patterned network activity driven by receptors and ion channels. These sequences are cell type- and developmental stage-dependent and modulated by paracrine actions of substances released by neurons and glia. How and to what extent these sequences interact to enable neuronal network development is not understood. Recent evidence demonstrates that CNS development requires intermediate stages of differentiation providing functional feedback that influences gene expression. We suggest that embryonic neuronal functions constitute a series of phenotypic checkpoint signatures; neurons failing to express these functions are delayed or developmentally arrested. Such checkpoints are likely to be a general feature of neuronal development and constitute presymptomatic signatures of neurological disorders when they go awry.

  11. Lower expression of ATM and gene deletion is more frequent in adrenocortical carcinomas than adrenocortical adenomas.

    PubMed

    Ye, Junna; Qi, Yan; Wang, Weiqing; Sun, Fukang; Wei, Qin; Su, Tingwei; Zhou, Weiwei; Jiang, Yiran; Yuan, Wenqi; Cai, Jianfei; Cui, Bin; Ning, Guang

    2012-06-01

    Adrenocortical carcinoma (ACC) is a rare endocrine malignancy accounting for approximately 0.02-0.2% of all cancer deaths. The molecular pathogenesis of ACC has been the hot topic of recent reviews but it is still poorly understood. It is imperative to have a better understanding on the pathophysiology of ACC so as to establish precise diagnosis and effective treatment. This study aims to identify the molecular markers between ACCs and adrenocortical adenomas (ACAs). With MLPA, we checked on 10 ACA and 9 ACC tissue samples. The MLPA results showed deletion on chromosomes 18q, 11q, 11p, and 13q and duplication on chromosomes 3q, 4q, 6p, and 19p. There was a significant difference in the number of aberration copies of the ataxia telangiectasia-mutated (ATM) gene located on chromosome 11q22-q23 between ACCs and ACAs. Five out of 9 (56%) ACC specimens had deletion of ATM (P = 0.011). RT-PCR result then demonstrated that ATM mRNA level is lower in ACCs than in ACAs (P < 0.001). In addition, immunohistochemistry (IHC) study of the 19 ACA and 18 ACC samples confirmed lower expression of ATM protein in ACCs than in ACAs (P < 0.001). The study demonstrated that ATM expression was diminished in ACC than in ACA, suggesting an important role of ATM in the tumorigenesis of ACC.

  12. Mitotane treatment for adrenocortical carcinoma: an overview.

    PubMed

    De Francia, S; Ardito, A; Daffara, F; Zaggia, B; Germano, A; Berruti, A; Di Carlo, F

    2012-03-01

    Adrenocortical carcinoma (ACC) is a rare aggressive endocrine neoplasm characterized by a 5-year survival of less than 50%. Due to the widespread use of imaging techniques in clinics, ACC is increasingly recognized as an incidentally discovered tumor. Mostly characterized by poor prognosis, ACC is often diagnosed at an advanced stage of disease. Early diagnosis is uncommon; when diagnosed, ACCs are usually large and have invaded adjacent organs, even if metastatic spread to distant sites can be absent. Complete surgical resection is the only potentially curative treatment for patients with localized disease; however, due to a recurrence rate of 50-70% after apparent radical surgery, there is a strong rationale for a concomitant systemic treatment. Adrenolytic therapy with mitotane (o,p›-DDD), administered alone or in combination with others antineoplastic agents, is the primary treatment for patients with advanced ACC and is increasingly used also in an adjuvant setting, even if controversy exists on this issue due to the limitations of the available literature. Despite being in use for many years, the rarity of ACC precluded the organization of randomized trials; thus, many areas of uncertainty and controversy remain regarding the role of this old drug in the clinical management of patients with ACC. The purpose of this paper is to review the current evidence on mitotane treatment in patients with advanced disease and in ACC patients after complete surgical resection as adjuvant treatment.

  13. Ephrin regulation of palate development

    PubMed Central

    Benson, M. Douglas; Serrano, Maria J.

    2012-01-01

    Studies of palate development are motivated by the all too common incidence of cleft palate, a birth defect that imposes a tremendous health burden and can leave lasting disfigurement. Although, mechanistic studies of palate growth and fusion have focused on growth factors such as Transforming Growth Factor ß-3 (Tgfß3), recent studies have revealed that the ephrin family of membrane bound ligands and their receptors, the Ephs, play central roles in palatal morphogenesis, growth, and fusion. In this mini-review, we will discuss the recent findings by our group and others on the functions of ephrins in palatal development. PMID:23055980

  14. Aging effects on oxidative phosphorylation in rat adrenocortical mitochondria.

    PubMed

    Solinas, Paola; Fujioka, Hisashi; Radivoyevitch, Tomas; Tandler, Bernard; Hoppel, Charles L

    2014-06-01

    Does aging in itself lead to alteration in adrenocortical mitochondrial oxidative phosphorylation? Mitochondria from Fischer 344 (F344) rats (6 and 24 months old), Brown Norway rats (6 and 32 months old) and F344-Brown Norway hybrid rats (6 and 30 months old) were compared. Mitochondria were isolated from extirpated adrenal cortex. The yields of mitochondria were quantitatively similar in all rat strains irrespective of age. In order to assess the activity of each mitochondrial complex, several different substrates were tested and the rate of oxidative phosphorylation measured. Aging does not affect mitochondrial activity except in the F344 rat adrenal cortex where the maximal ADP-stimulated oxidative phosphorylation decreased with age. We hypothesize that impaired synthesis of steroid hormones by the adrenal cortex with age in F344 rats might be due to decreased adrenocortical mitochondrial oxidative phosphorylation. We conclude that aging results in adrenocortical mitochondria effects that are non-uniform across different rat strains.

  15. Outcomes after resection of cortisol-secreting adrenocortical carcinoma

    PubMed Central

    Margonis, Georgios Antonios; Kim, Yuhree; Tran, Thuy B.; Postlewait, Lauren M.; Maithel, Shishir K.; Wang, Tracy S.; Glenn, Jason A.; Hatzaras, Ioannis; Shenoy, Rivfka; Phay, John E.; Keplinger, Kara; Fields, Ryan C.; Jin, Linda X.; Weber, Sharon M.; Salem, Ahmed; Sicklick, Jason K.; Gad, Shady; Yopp, Adam C.; Mansour, John C.; Duh, Quan-Yang; Seiser, Natalie; Solorzano, Carmen C.; Kiernan, Colleen M.; Votanopoulos, Konstantinos I.; Levine, Edward A.; Poultsides, George A.; Pawlik, Timothy M.

    2016-01-01

    BACKGROUND We sought to define the impact of cortisol-secreting status on outcomes after surgical resection of adrenocortical carcinoma (ACC). METHODS The U.S ACC group database was queried to identify patients who underwent ACC resection between 1993 and 2014. The short-term and long-term outcomes were assessed. RESULTS The incidence of all functional and cortisol-secreting tumors was 40.6% and 22.6%, respectively. On multivariable analysis, cortisol secretion remained associated with an increased risk of postoperative complications (odds ratio = 2.25, 95 % confidence interval = 1.04 to 4.88; P = .04). At a median follow-up of 17.6 months, 118 patients (50.4%) had developed a recurrence. On multivariable analysis, after adjusting for patient and disease-related factors cortisol secretion independently predicted shorter recurrence-free survival (Hazard ratio = 2.05, 95% confidence interval = 1.16 to 3.60; P = .01). CONCLUSIONS Cortisol secretion was associated with an increased risk of postoperative morbidity. Recurrence remains high among patients with ACC after surgery; cortisol secretion was independently associated with a shorter recurrence-free survival. Tailoring postoperative surveillance of ACC patients based on their cortisol secreting status may be important. PMID:26810939

  16. Familial Adrenocortical Carcinoma in Association With Lynch Syndrome

    PubMed Central

    Challis, Benjamin G.; Kandasamy, Narayanan; Powlson, Andrew S.; Koulouri, Olympia; Annamalai, Anand Kumar; Happerfield, Lisa; Marker, Alison J.; Arends, Mark J.; Nik-Zainal, Serena

    2016-01-01

    Context: Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a poor prognosis. Although the majority of childhood ACC arises in the context of inherited cancer susceptibility syndromes, it remains less clear whether a hereditary tumor predisposition exists for the development of ACC in adults. Here, we report the first occurrence of familial ACC in a kindred with Lynch syndrome resulting from a pathogenic germline MSH2 mutation. Case: A 54-year-old female with a history of ovarian and colorectal malignancy was found to have an ACC. A detailed family history revealed her mother had died of ACC and her sister had previously been diagnosed with endometrial and colorectal cancers. A unifying diagnosis of Lynch syndrome was considered, and immunohistochemical analyses demonstrated loss of MSH2 and MSH6 expression in both AACs (proband and her mother) and in the endometrial carcinoma of her sister. Subsequent genetic screening confirmed the presence of a germline MSH2 mutation (resulting in deletions of exons 1–3) in the proband and her sister. Conclusion: Our findings provide strong support for the recent proposal that ACC should be considered a Lynch syndrome-associated tumor and included in the Amsterdam II clinical diagnostic criteria. We also suggest that screening for ACC should be considered in cancer surveillance strategies directed at individuals with germline mutations in DNA mismatch repair genes. PMID:27144940

  17. Brain Metastasis in Patients With Adrenocortical Carcinoma: A Clinical Series

    PubMed Central

    Tageja, Nishant; Rosenberg, Avi; Mahalingam, Sowmya; Quezado, Martha; Velarde, Margarita; Edgerly, Maureen; Fojo, Tito

    2015-01-01

    Introduction: Adrenocortical carcinoma (ACC) is a heterogeneous and rare disease. At presentation or at the time of a recurrence, the disease commonly spreads to the liver, lungs, lymph nodes, and bones. The brain has only rarely been reported as a site of metastases. Objective: The aims of this report were to describe the clinical characteristics of patients with ACC who developed brain metastasis and were evaluated at the National Cancer Institute. Methods: We describe the history and clinical presentation of six patients with ACC and metastatic disease in the brain. Images of the six patients and pathology slides were reviewed when available. Results: The median age at the time of the diagnosis of ACC was 42 years. The median time from the initial diagnosis until the presentation of brain metastasis was 43 months. As a group the patients had previously received multiples lines of chemotherapy (median of three), and they presented with one to three metastatic brain lesions. Four patients underwent metastasectomy, one had radiosurgery, and one had both modalities. Two patients are still alive, three died, between 2 and 14 months after the diagnosis of brain metastases, and one was lost to follow-up. Conclusion: Patients with advanced ACC can rarely present with metastasis to the brain, most often long after the initial diagnosis. Timely diagnosis of brain metastasis with appropriate intervention after discussion in a multidisciplinary meeting can improve the prognosis in this particular scenario. PMID:25412413

  18. How is Adrenocortical Cancer being Managed in the UK?

    PubMed Central

    Aspinall, Sebastian R; Imisairi, AH; Bliss, RD; Scott-Coombes, D; Harrison, BJ; Lennard, TWJ

    2009-01-01

    INTRODUCTION Adrenocortical carcinomas are rare. This case series is reported to give an overview of how adrenocortical carcinoma is currently managed in the UK. PATIENTS AND METHODS A retrospective review was made of case notes from patients with adrenocortical carcinomas presenting to the authors (TWJL, RDB, BJH, and DS-C) over the past 10 years in Newcastle, Sheffield and Cardiff. RESULTS Newcastle treated twelve, Sheffield eleven and Cardiff seven cases. The median follow-up was 25.5 months (range, 1–102 months). All tumours were greater than 5 cm in diameter. The majority presented with symptoms of hormone excess. Adrenalectomy was performed in 83% – this was radical in 30% and followed by excision of recurrence in 13%. Adjuvant mitotane was given in 64% of patients, in combination with cytotoxic chemotherapy in 20%. One-third of patients did not receive any adjuvant therapy. There was no significant difference in survival between the three centres. The majority of patients (57%) died during the period of follow-up of this study. The median survival was 37 months (range, 2–102 months). CONCLUSIONS The size of tumour, stage and mode of presentation, age and overall survival of patients in this study are comparable to published series of adrenocortical carcinomas from major endocrine surgical centres world-wide. Despite controversies about benefits, adjuvant mitotane was used in the majority of cases, whereas cytotoxic chemotherapy was only used in the minority. The exact role of adjuvant therapy in the management of adrenocortical carcinoma is not as well established as for other more common malignancies. Establishing a database for adrenocortical carcinomas in the UK would contribute to our understanding of the management of this disease. PMID:19558758

  19. Mother-child adrenocortical synchrony; Moderation by dyadic relational behavior.

    PubMed

    Pratt, Maayan; Apter-Levi, Yael; Vakart, Adam; Kanat-Maymon, Yaniv; Zagoory-Sharon, Orna; Feldman, Ruth

    2017-03-01

    Mother-child adrenocortical synchrony, the coupling of cortisol (CT) secretion in mother and child, has been associated with shared parent-child experiences and maladaptive familial contexts. Yet, few studies tested adrenocortical synchrony in diurnal CT patterns. Guided by the bio-behavioral synchrony model, we examined whether mother-child relational behavior and maternal psychopathology may moderate the degree of concordance between mother and child's diurnal CT. Ninety-seven mothers and their six-year old children participated in two groups; mothers diagnosed with major depression disorder (N=28) and non-depressed controls (N=69). Mother-child interactions were observed and coded for dyadic reciprocity and dyadic tension and diurnal cortisol was collected from mother and child over two consecutive weekend days. Concordance between maternal and child's diurnal CT was found, significant above and beyond time of measurement. Maternal depression, while associated with attenuated child diurnal CT variability, was unrelated to adrenocortical synchrony. Higher child diurnal CT production predicted a stronger linkage between maternal and child's diurnal CT, suggesting that greater child physiological stress is associated with increased susceptibility to the influences of maternal stress physiology. Mother-child reciprocity was related to lower adrenocortical synchrony. Findings suggest that higher adrenocortical synchrony is associated with greater physiological stress and less adaptive dyadic relational patterns. Results raise the possibility that diurnal adrenocortical synchrony taps a unique aspect of HPA-axis functioning whose role in the cross-generational transfer of stress physiology requires further research. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Infantile adrenocortical tumor with an activating GNAS1 mutation.

    PubMed

    Sidhu, Alpa; Debelenko, Larisa; Misra, Vinod K

    2013-01-01

    Pediatric adrenocortical tumors (ACTs) are rare and are frequently associated with tumor predisposition syndromes. Somatic GNAS1 mutations are associated with adrenocortical hyperplasia, but have not typically been reported in ACTs. We report on genetic and histopathological findings in a 3-month-old infant presenting with a unilateral cortisol-producing ACT with malignant features. We performed a detailed clinical evaluation of the patient along with molecular genetic testing of genes associated with ACTs in both tumor tissue and peripheral lymphocytes. We also performed a histopathological analysis of the tumor tissue. The patient was found to have a p.R201C-activating mutation in exon 8 of the GNAS1 gene in adrenocortical tumor tissue but not peripheral lymphocytes. This mutation is the characteristic genetic change in McCune-Albright syndrome. In contrast to previously reported GNAS1-positive tumors characterized by bimodal diffuse and nodular adrenocortical hypertrophy, our patient had a single adrenocortical mass that showed features of malignancy, including areas of necrosis, microcystic degeneration, and venous and capsular microinvasion-changes that have been seen previously in Beckwith-Wiedemann syndrome. However, our patient did not have clinical features of Beckwith-Wiedemann syndrome. Further analysis revealed abnormal allele-specific hypomethylation of the KCNQ1OT1 gene in the tumor sample but not peripheral lymphocytes. This is a novel case of an activating GNAS1 mutation associated with an epigenetic alteration that may be related to adrenocortical tumorigenesis. Our findings may have implications in the molecular pathogenesis of pediatric ACTs.

  1. Clinical and functional impact of TARBP2 over-expression in adrenocortical carcinoma

    PubMed Central

    Caramuta, Stefano; Lee, Linkiat; Özata, Deniz M; Akçakaya, Pinar; Xie, Hong; Höög, Anders; Zedenius, Jan; Bäckdahl, Martin; Larsson, Catharina; Lui, Weng-Onn

    2013-01-01

    Deregulation of microRNA (miRNA) expression in adrenocortical carcinomas (ACCs) has been documented to have diagnostic, prognostic, as well as functional implications. Here, we evaluated the mRNA expression of DROSHA, DGCR8, DICER (DICER1), TARBP2, and PRKRA, the core components in the miRNA biogenesis pathway, in a cohort of 73 adrenocortical tumors (including 43 adenomas and 30 carcinomas) and nine normal adrenal cortices using a RT-qPCR approach. Our results show a significant over-expression of TARBP2, DICER, and DROSHA in the carcinomas compared with adenomas or adrenal cortices (P<0.001 for all comparisons). Using western blot and immunohistochemistry analyses, we confirmed the higher expression of TARBP2, DICER, and DROSHA at the protein level in carcinoma cases. Furthermore, we demonstrate that mRNA expression of TARBP2, but not DICER or DROSHA, is a strong molecular predictor to discriminate between adenomas and carcinomas. Functionally, we showed that inhibition of TARBP2 expression in human NCI-H295R ACC cells resulted in a decreased cell proliferation and induction of apoptosis. TARBP2 over-expression was not related to gene mutations; however, copy number gain of the TARBP2 gene was observed in 57% of the carcinomas analyzed. In addition, we identified that miR-195 and miR-497 could directly regulate TARBP2 and DICER expression in ACC cells. This is the first study to demonstrate the deregulation of miRNA-processing factors in adrenocortical tumors and to show the clinical and biological impact of TARBP2 over-expression in this tumor type. PMID:23671264

  2. Chronic effects of mercuric chloride ingestion on rat adrenocortical function

    SciTech Connect

    Agrawal, R.; Chansouria, J.P.N. )

    1989-09-01

    Mercurial contamination of environment has increased. Mercury accumulates in various organs and adversely affects their functions. Some of the most prominent toxic effects of inorganic mercury compounds include neurotoxicity, hepatotoxicity and nephrotoxicity. Besides this, mercury has also been reported to affect various endocrine glands like pituitary, thyroid, gonadal and adrenal glands. There have been no reports on the toxic effects of chronic oral administration of varying doses of mercuric chloride on adrenocortical function in albino rats. The present work was undertaken to study the adrenocortical response to chronic oral administration of mercuric chloride of varying dose and duration in albino rats.

  3. Regulation of geothermal energy development in Colorado

    SciTech Connect

    Coe, B.A.; Forman, N.A.

    1980-01-01

    The regulatory system is presented in a format to help guide geothermal energy development. State, local, and federal agencies, legislation, and regulations are presented. Information sources are listed. (MHR)

  4. Gene Regulation Networks for Modeling Drosophila Development

    NASA Technical Reports Server (NTRS)

    Mjolsness, E.

    1999-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila Melanogaster.

  5. Neurosteroid regulation of CNS development

    PubMed Central

    Mellon, Synthia H.

    2007-01-01

    Neurosteroids are a relatively new class of neuroactive compounds, brought to prominence in the past two decades. Despite knowing of their presence in the nervous system of various species for over twenty years and knowing of their functions as GABAA and NMDA ligands, new and unexpected functions of these compounds are continuously being identified. Absence or reduced concentrations of neurosteroids during development and in adults may be associated with neurodevelopmental, psychiatric, or behavioral disorders. Treatment with physiologic or pharmacologic concentrations of these compounds may also promote neurogenesis, neuronal survival, myelination, increased memory, and reduced neurotoxicity. This review highlights what is currently known about the neurodevelopmental functions and mechanisms of action of four distinct neurosteroids – pregnenolone, progesterone, allopregnanolone and dehydroepiandrosterone. PMID:17651807

  6. Shale gas development: a smart regulation framework.

    PubMed

    Konschnik, Katherine E; Boling, Mark K

    2014-01-01

    Advances in directional drilling and hydraulic fracturing have sparked a natural gas boom from shale formations in the United States. Regulators face a rapidly changing industry comprised of hundreds of players, operating tens of thousands of wells across 30 states. They are often challenged to respond by budget cuts, a brain drain to industry, regulations designed for conventional gas developments, insufficient information, and deeply polarized debates about hydraulic fracturing and its regulation. As a result, shale gas governance remains a halting patchwork of rules, undermining opportunities to effectively characterize and mitigate development risk. The situation is dynamic, with research and incremental regulatory advances underway. Into this mix, we offer the CO/RE framework--characterization of risk, optimization of mitigation strategies, regulation, and enforcement--to design tailored governance strategies. We then apply CO/RE to three types of shale gas risks, to illustrate its potential utility to regulators.

  7. Adrenocortical carcinoma (ACC): diagnosis, prognosis, and treatment

    PubMed Central

    Libé, Rossella

    2015-01-01

    Adrenocortical carticnoma (ACC) is a rare malignancy with an incidence of 0.7–2.0 cases/million habitants/year. The diagnosis of malignancy relies on careful investigations of clinical, biological, and imaging features before surgery and pathological examination after tumor removal. Most patients present with steroid hormone excess or abdominal mass effects, but 15% of patients with ACC is initially diagnosed incidentally. After the diagnosis, in order to assess the ACC prognosis and establish an adequate basis for treatment decisions different tools are proposed. The stage classification proposed by the European Network for the Study of Adrenal Tumors (ENSAT) is recommended. Pathology reports define the Weiss score, the resection status and the proliferative index, including the mitotic count and the Ki67 index. As far as the treatment is concerned, in case of tumor limited to the adrenal gland, the complete resection of the tumor is the first option. Most patients benefit from adjuvant mitotane treatment. In metastatic disease, mitotane is the cornerstone of initial treatment, and cytotoxic drugs should be added in case of progression. Recently, the First International Randomized (FIRM-ACT) Trial in metastatic ACC reported the association between mitotane and etoposide/doxorubicin/cisplatin (EDP) as the new standard in first line treatment of ACC. In last years, new targeted therapies, including the IGF-1 receptor inhibitors, have been investigated, but their efficacy remains limited. Thus, new treatment concepts are urgently needed. The ongoing “omic approaches” and next-generation sequencing will improve our understanding of the pathogenesis and hopefully will lead to better therapies. PMID:26191527

  8. Adrenocortical suppression and recovery after continuous hypnotic infusion: etomidate versus its soft analogue cyclopropyl-methoxycarbonyl metomidate.

    PubMed

    Ge, Rile; Pejo, Ervin; Cotten, Joseph F; Raines, Douglas E

    2013-01-30

    Etomidate is no longer administered as a continuous infusion for anesthetic maintenance or sedation, because it results in profound and persistent suppression of adrenocortical steroid synthesis with potentially lethal consequences in critically ill patients. We hypothesized that rapidly metabolized soft analogues of etomidate could be developed that do not produce persistent adrenocortical dysfunction even after prolonged continuous infusion. We hope that such agents might also provide more rapid and predictable anesthetic emergence. We have developed the soft etomidate analogue cyclopropyl-methoxycarbonyl etomidate (CPMM). Upon termination of 120-minute continuous infusions, hypnotic and encephalographic recoveries occur in four minutes. The aims of this study were to assess adrenocortical function during and following 120-minute continuous infusion of CPMM and to compare the results with those obtained using etomidate. Dexamethasone-suppressed rats were randomized into an etomidate group, CPMM group, or control group. Rats in the etomidate and CPMM groups received 120-minute continuous infusions of etomidate and CPMM, respectively. Rats in the control group received neither hypnotic. In the first study, adrenocortical function during hypnotic infusion was assessed by administering adrenocorticotropic hormone (ACTH) 90 minutes after the start of the hypnotic infusion and measuring plasma corticosterone concentrations at the end of the infusion 30 minutes later. In the second study, adrenocortical recovery following hypnotic infusion was assessed by administering ACTH every 30 minutes after infusion termination and measuring plasma corticosterone concentrations 30 minutes after each ACTH dose. During hypnotic infusion, ACTH-stimulated serum corticosterone concentrations were significantly lower in the CPMM and etomidate groups than in the control group (100 ± 64 ng/ml and 33 ± 32 ng/ml versus 615 ± 265 ng/ml, respectively). After hypnotic infusion, ACTH

  9. 5th International ACC Symposium: Future and Current Therapeutic Trials in Adrenocortical Carcinoma.

    PubMed

    Hoff, Ana O; Berruti, Alfredo

    2016-02-01

    Adrenocortical carcinoma (ACC) is a rare and complex disease associated with a high mortality rate. Despite intensive translational and clinical research, prognosis remains poor. Over the past decade, a significant effort has been made to develop multinational, collaborative studies to better understand the pathogenesis and clinical features of this rare disease in attempt to improve the therapeutic strategies and patient outcome. The results of both standard and newer treatments are discussed in this review as well as the recent discovery of pathways involved in ACC pathogenesis that provide the rationale to introduce new molecular target therapies. Finally, remaining issues regarding how to improve available therapies in adjuvant setting are raised and addressed.

  10. P53/Rb inhibition induces metastatic adrenocortical carcinomas in a preclinical transgenic model.

    PubMed

    Batisse-Lignier, M; Sahut-Barnola, I; Tissier, F; Dumontet, T; Mathieu, M; Drelon, C; Pointud, J-C; Damon-Soubeyrand, C; Marceau, G; Kemeny, J-L; Bertherat, J; Tauveron, I; Val, P; Martinez, A; Lefrançois-Martinez, A-M

    2017-04-03

    Adrenocortical carcinoma (ACC) is a rare cancer with poor prognosis. Pan-genomic analyses identified p53/Rb and WNT/β-catenin signaling pathways as main contributors to the disease. However, isolated β-catenin constitutive activation failed to induce malignant progression in mouse adrenocortical tumors. Therefore, there still was a need for a relevant animal model to study ACC pathogenesis and to test new therapeutic approaches. Here, we have developed a transgenic mice model with adrenocortical specific expression of SV40 large T-antigen (AdTAg mice), to test the oncogenic potential of p53/Rb inhibition in the adrenal gland. All AdTAg mice develop large adrenal carcinomas that eventually metastasize to the liver and lungs, resulting in decreased overall survival. Consistent with ACC in patients, adrenal tumors in AdTAg mice autonomously produce large amounts of glucocorticoids and spontaneously activate WNT/β-catenin signaling pathway during malignant progression. We show that this activation is associated with downregulation of secreted frizzled related proteins (Sfrp) and Znrf3 that act as inhibitors of the WNT signaling. We also show that mTORC1 pathway activation is an early event during neoplasia expansion and further demonstrate that mTORC1 pathway is activated in ACC patients. Preclinical inhibition of mTORC1 activity induces a marked reduction in tumor size, associated with induction of apoptosis and inhibition of proliferation that results in normalization of corticosterone plasma levels in AdTAg mice. Altogether, these data establish AdTAg mice as the first preclinical model for metastatic ACC.Oncogene advance online publication, 3 April 2017; doi:10.1038/onc.2017.54.

  11. Different expression of protein kinase A (PKA) regulatory subunits in cortisol-secreting adrenocortical tumors: Relationship with cell proliferation

    SciTech Connect

    Mantovani, G.; Lania, A.G.; Bondioni, S.; Peverelli, E.; Pedroni, C.; Ferrero, S.; Pellegrini, C.; Vicentini, L.; Arnaldi, G.; Bosari, S.; Beck-Peccoz, P.; Spada, A.

    2008-01-01

    The four regulatory subunits (R1A, R1B, R2A, R2B) of protein kinase A (PKA) are differentially expressed in several cancer cell lines and exert distinct roles in growth control. Mutations of the R1A gene have been found in patients with Carney complex and in a minority of sporadic primary pigmented nodular adrenocortical disease (PPNAD). The aim of this study was to evaluate the expression of PKA regulatory subunits in non-PPNAD adrenocortical tumors causing ACTH-independent Cushing's syndrome and to test the impact of differential expression of these subunits on cell growth. Immunohistochemistry demonstrated a defective expression of R2B in all cortisol-secreting adenomas (n = 16) compared with the normal counterpart, while both R1A and R2A were expressed at high levels in the same tissues. Conversely, carcinomas (n = 5) showed high levels of all subunits. Sequencing of R1A and R2B genes revealed a wild type sequence in all tissues. The effect of R1/R2 ratio on proliferation was assessed in mouse adrenocortical Y-1 cells. The R2-selective cAMP analogue 8-Cl-cAMP dose-dependently inhibited Y-1 cell proliferation and induced apoptosis, while the R1-selective cAMP analogue 8-HA-cAMP stimulated cell proliferation. Finally, R2B gene silencing induced up-regulation of R1A protein, associated with an increase in cell proliferation. In conclusion, we propose that a high R1/R2 ratio favors the proliferation of well differentiated and hormone producing adrenocortical cells, while unbalanced expression of these subunits is not required for malignant transformation.

  12. Honduras geothermal development: Regulations and opportunities

    SciTech Connect

    Goff, S.J.; Winchester, W.W.

    1994-09-01

    The US Department of Energy (DOE) through the Assistant Secretary for Policy, Planning, and Evaluation funded a project to review and evaluate existing power sector laws and regulations in Honduras. Also included in the scope of the project was a review of regulations pertaining to the privatization of state-run companies. We paid particular attention to regulations which might influence opportunities to develop and commercialize Honduras` geothermal resources. We believe that Honduras is well on the road to attracting foreign investment and has planned or has already in place much of the infrastructure and legal guarantees which encourage the influx of private funds from abroad. In addition, in light of current power rationing and Honduras` new and increasing awareness of the negative effects of power sector development on the environment, geothermal energy development is even more attractive. Combined, these factors create a variety of opportunities. The potential for private sector development of geothermal positive.

  13. Targeted disruption of beta-catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex.

    PubMed

    Kim, Alex C; Reuter, Anne L; Zubair, Mohamad; Else, Tobias; Serecky, Kerri; Bingham, Nathan C; Lavery, Gareth G; Parker, Keith L; Hammer, Gary D

    2008-08-01

    The nuclear receptor steroidogenic factor 1 (Sf1, Nr5a1) is essential for adrenal development and regulates genes that specify differentiated adrenocortical function. The transcriptional coactivator beta-catenin reportedly synergizes with Sf1 to regulate a subset of these target genes; moreover, Wnt family members, signaling via beta-catenin, are also implicated in adrenocortical development. To investigate the role of beta-catenin in the adrenal cortex, we used two Sf1/Cre transgenes to inactivate conditional beta-catenin alleles. Inactivation of beta-catenin mediated by Sf1/Cre(high), a transgene expressed at high levels, caused adrenal aplasia in newborn mice. Analysis of fetal adrenal development with Sf1/Cre(high)-mediated beta-catenin inactivation showed decreased proliferation in presumptive adrenocortical precursor cells. By contrast, the Sf1/Cre(low) transgene effected a lesser degree of beta-catenin inactivation that did not affect all adrenocortical cells, permitting adrenal survival to reveal age-dependent degeneration of the cortex. These results define crucial roles for beta-catenin--presumably as part of the Wnt canonical signaling pathway--in both embryonic development of the adrenal cortex and in maintenance of the adult organ.

  14. Metabolic reprogramming: a new relevant pathway in adult adrenocortical tumors

    PubMed Central

    Longatto-Filho, Adhemar; Faria, André M.; Fragoso, Maria C. B. V.; Lovisolo, Silvana M.; Lerário, Antonio M.; Almeida, Madson Q.

    2015-01-01

    Adrenocortical carcinomas (ACCs) are complex neoplasias that may present unexpected clinical behavior, being imperative to identify new biological markers that can predict patient prognosis and provide new therapeutic options. The main aim of the present study was to evaluate the prognostic value of metabolism-related key proteins in adrenocortical carcinoma. The immunohistochemical expression of MCT1, MCT2, MCT4, CD147, CD44, GLUT1 and CAIX was evaluated in a series of 154 adult patients with adrenocortical neoplasia and associated with patients' clinicopathological parameters. A significant increase in was found for membranous expression of MCT4, GLUT1 and CAIX in carcinomas, when compared to adenomas. Importantly MCT1, GLUT1 and CAIX expressions were significantly associated with poor prognostic variables, including high nuclear grade, high mitotic index, advanced tumor staging, presence of metastasis, as well as shorter overall and disease free survival. In opposition, MCT2 membranous expression was associated with favorable prognostic parameters. Importantly, cytoplasmic expression of CD147 was identified as an independent predictor of longer overall survival and cytoplasmic expression of CAIX as an independent predictor of longer disease-free survival. We provide evidence for a metabolic reprogramming in adrenocortical malignant tumors towards the hyperglycolytic and acid-resistant phenotype, which was associated with poor prognosis. PMID:26587828

  15. Multi-column chromatography of urinary steriods and adrenocortical dysfunction.

    PubMed

    Sayegh, J F; Vestergaard, P

    1978-01-01

    The potential of the multi-column assay for urinary neutral steroids in work with samples from patients with adrenocortical pathology is demonstrated through analyses performed on urine samples from Cushing and congenital adrenal hyperplasia cases, after modification of the routine methodology to include the quantitation of additional steroids of particular importance for pathological samples.

  16. Stress, reproduction, and adrenocortical modulation in amphibians and reptiles.

    PubMed

    Moore, Ignacio T; Jessop, Tim S

    2003-01-01

    While the hypothalamo-pituitary-adrenocortical (HPA) response to stress appears to be conserved in vertebrates, the manner in which it is activated and its actions vary. We examine two trends in the stress biology literature that have been addressed in amphibian and reptilian species: (1). variable interactions among stress, corticosterone, and reproduction and (2). adrenocortical modulation. In the first topic we examine context-dependent interactions among stress, corticosterone, and reproduction. An increasing number of studies report positive associations between reproduction and corticosterone that contradict the generalization that stress inhibits reproduction. Moderately elevated levels of stress hormones appear to facilitate reproduction by mobilizing energy stores. In contrast, pronounced activation of the HPA axis and extremely elevated levels of stress hormones appear to inhibit reproduction. Much of these contrasting effects of stress and reproduction can be explained by expanding the Energetics-Hormone Vocalization Model, proposed for anuran calling behavior, to other taxa. In the second topic, a number of amphibians and reptiles modulate their HPA stress response. Adrenocortical modulation can occur at multiple levels and due to a variety of factors. However, we have little information as to the physiological basis for the variability. We suggest that several ecologically based ideas, such as variability in the length of the breeding season and lifetime reproductive opportunities, can be used to explain the utility of adrenocortical modulation in these taxa.

  17. Orion Suit Loop Variable Pressure Regulator Development

    NASA Technical Reports Server (NTRS)

    Mosher, Michael; Lewis, John F.; Campbell, Melissa

    2012-01-01

    The Orion Multi Purpose Crew Vehicle (MPCV) integrates the cabin and pressure suits with the core life support systems to provide life support during contingency depressurized cabin operations. To provide the multiple suit pressures between nominal pressurized cabin suited operations, suit leak checks, depressurized cabin suited operations, and elevated suit pressure for denitrification, a variable pressure regulator is needed. This paper documents the development of the suit loop regulator for Orion.

  18. Orion Suit Loop Variable Pressure Regulator Development

    NASA Technical Reports Server (NTRS)

    Mosher, Michael; Vassallo, Andrew; Lewis, John F.; Campbell, Melissa

    2014-01-01

    The Orion Multi Purpose Crew Vehicle (MPCV) integrates the cabin and pressure suits with the core life support systems to provide life support during contingency depressurized cabin operations. To provide the multipule suit pressures between nominal pressurized cabin suited operations, suit leak checks, depressurized cabin suited operations, and elevated suit pressure for denitrification, a variable pressure regulator is needed. This paper documents the development and integrated testing of the suit loop regulator for Orion.

  19. Signaling hierarchy regulating human endothelial cell development

    USDA-ARS?s Scientific Manuscript database

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these stud...

  20. Livin/BIRC7 expression as malignancy marker in adrenocortical tumors

    PubMed Central

    Altieri, Barbara; Sbiera, Silviu; Casa, Silvia Della; Weigand, Isabel; Wild, Vanessa; Steinhauer, Sonja; Fadda, Guido; Kocot, Arkadius; Bekteshi, Michaela; Mambretti, Egle M; Rosenwald, Andreas; Pontecorvi, Alfredo; Fassnacht, Martin; Ronchi, Cristina L

    2017-01-01

    Livin/BIRC7 is a member of the inhibitors of apoptosis proteins family, which are involved in tumor development through the inhibition of caspases. Aim was to investigate the expression of livin and other members of its pathway in adrenocortical tumors and in the adrenocortical carcinoma (ACC) cell line NCI-H295R. The mRNA expression of livin, its isoforms α and β, XIAP, CASP3 and DIABLO was evaluated by qRT-PCR in 82 fresh-frozen adrenal tissues (34 ACC, 25 adenomas = ACA, 23 normal adrenal glands = NAG). Livin protein expression was assessed by immunohistochemistry in 270 paraffin-embedded tissues (192 ACC, 58 ACA, 20 NAG). Livin, CASP3 and cleaved caspase-3 were evaluated in NCI-H295R after induction of livin overexpression. Relative livin mRNA expression was significantly higher in ACC than in ACA and NAG (0.060 ± 0.116 vs 0.004 ± 0.014 and 0.002 ± 0.009, respectively, p < 0.01), being consistently higher in tumors than in adjacent NAG and isoform β more expressed than α. No significant differences in CASP3, XIAP and DIABLO levels were found among these groups. In immunohistochemistry, livin was localized in both cytoplasm and nuclei. The ratio between cytoplasmic and nuclear staining was significantly higher in ACC (1.51 ± 0.66) than in ACA (0.80 ± 0.35) and NAG (0.88 ± 0.27; p < 0.0001). No significant correlations were observed between livin expression and histopathological parameters or clinical outcome. In NCI-H295R cells, the livin overexpression slightly reduced the activation of CASP3, but did not correlate with cell viability. In conclusion, livin is specifically over-expressed in ACC, suggesting that it might be involved in adrenocortical tumorigenesis and represent a new molecular marker of malignancy. PMID:28030838

  1. Investigation of N-cadherin/β-catenin expression in adrenocortical tumors.

    PubMed

    Rubin, Beatrice; Regazzo, Daniela; Redaelli, Marco; Mucignat, Carla; Citton, Marilisa; Iacobone, Maurizio; Scaroni, Carla; Betterle, Corrado; Mantero, Franco; Fassina, Ambrogio; Pezzani, Raffaele; Boscaro, Marco

    2016-10-01

    β-catenin is a multifunctional protein; it is a key component of the Wnt signaling, and it plays a central role in cadherin-based adhesions. Cadherin loss promotes tumorigenesis by releasing membrane-bound β-catenin, hence stimulating Wnt signaling. Cadherins seem to be involved in tumor development, but these findings are limited in adrenocortical tumors (ACTs). The objective of this study was to evaluate alterations in key components of cadherin/catenin adhesion system and of Wnt pathway. This study included eight normal adrenal samples (NA) and 95 ACT: 24 adrenocortical carcinomas (ACCs) and 71 adrenocortical adenomas (ACAs). β-catenin mutations were evaluated by sequencing, and β-catenin and cadherin (E-cadherin and N-cadherin) expression was analyzed by quantitative reverse transcription PCR (qRT-PCR) and by immunohistochemistry (IHC). We identified 18 genetic alterations in β-catenin gene. qRT-PCR showed overexpression of β-catenin in 50 % of ACC (12/24) and in 48 % of ACA (21/44). IHC data were in accordance with qRT-PCR results: 47 % of ACC (7/15) and 33 % of ACA (11/33) showed increased cytoplasmic or nuclear β-catenin accumulation. N-cadherin downregulation has been found in 83 % of ACC (20/24) and in 59 % of ACA (26/44). Similar results were obtained by IHC: N-cadherin downregulation was observed in 100 % (15/15) of ACC and in 55 % (18/33) of ACA. β-catenin overexpression together with the aberrant expression of N-cadherin may play important role in ACT tumorigenesis. The study of differentially expressed genes (such as N-cadherin and β-catenin) may enhance our understanding of the biology of ACT and may contribute to the discovery of new diagnostic and prognostic tools.

  2. Regulation of Murine Natural Killer Cell Development

    PubMed Central

    Goh, Wilford; Huntington, Nicholas D.

    2017-01-01

    Natural killer (NK) cells are effector lymphocytes of the innate immune system that are known for their ability to kill transformed and virus-infected cells. NK cells originate from hematopoietic stem cells in the bone marrow, and studies on mouse models have revealed that NK cell development is a complex, yet tightly regulated process, which is dependent on both intrinsic and extrinsic factors. The development of NK cells can be broadly categorized into two phases: lineage commitment and maturation. Efforts to better define the developmental framework of NK cells have led to the identification of several murine NK progenitor populations and mature NK cell subsets, each defined by a varied set of cell surface markers. Nevertheless, the relationship between some of these NK cell subsets remains to be determined. The classical approach to studying both NK cell development and function is to identify the transcription factors involved and elucidate the mechanistic action of each transcription factor. In this regard, recent studies have provided further insight into the mechanisms by which transcription factors, such as ID2, FOXO1, Kruppel-like factor 2, and GATA-binding protein 3 regulate various aspects of NK cell biology. It is also becoming evident that the biology of NK cells is not only transcriptionally regulated but also determined by epigenetic alterations and posttranscriptional regulation of gene expression by microRNAs. This review summarizes recent progress made in NK development, focusing primarily on transcriptional regulators and their mechanistic actions. PMID:28261203

  3. Adrenocortical cancer (ACC) - literature overview and own experience.

    PubMed

    Dworakowska, Dorota; Drabarek, Agata; Wenzel, Ingrid; Babińska, Anna; Świątkowska-Stodulska, Renata; Sworczak, Krzysztof

    2014-01-01

    Adrenocortical carcinoma (ACC) is a malignant endocrine tumour. The rarity of the disease has stymied therapeutic development. Age distribution shows two peaks: the first and fifth decades of life, with children and women more frequently affected. Although 60-70% of ACCs are biochemically found to overproduce hormones, it is not clinically apparent in many cases. If present, endocrine symptoms include signs of hypercortisolaemia, virilisation or gynaecomastia. ACC carries a poor prognosis, and a cure can be achieved only by complete surgical resection. Mitotane is used both as an adjuvant treatment and also in non-operative patients. The role of radio- and chemotherapy is still controversial. The post-operative disease free survival is low and oscillates around 30% due to high tumour recurrence rate. The diagnosis is based on tumour histological assessment with the use of the Weiss score, however urinary steroid profiling (if available) can serve to differentiate between ACC and other adrenal tumours. Conventional prognostic markers in ACC include stage and grade of disease, and, as currently reported, the presence of hypercortisolaemia. Molecular analysis has had a significant impact on the understanding of the pathogenetic mechanism of ACC development and the evaluation of prognostic and predictive markers, among which alterations of the IGF system, the Wnt pathway, p53 and molecules involved in cancer cell invasion properties and angiogenesis seem to be very promising. We here summarise our own experience related to the management of ACC and present a literature overview. We have not aimed to include a detailed summary of the molecular alterations biology described in ACC, as this has already been addressed in other papers.

  4. [Effect of fetal adrenal hormones on the reactivity of the hypothalamo-hypophyseal-adrenocortical system in the adult rat].

    PubMed

    Dygalo, N N; Naumenko, E V

    1984-01-01

    It was found in the experiments on adult males, descendants of the intact or adrenalectomized (prior to mating) female rats which were injected during the pregnancy with adrenaline, hydrocortisone or saline solution, that the reaction of their hypophysial-adrenocortical system to emotional stress or injection of noradrenaline into brain were inversely proportional to the content of corticosteroids, rather than of adrenaline, in the blood of their mothers during the pregnancy. On the other hand, the coupled changes of the levels of corticosteroids and adrenaline in the blood of pregnant mothers only was accompanied by the marked decrease in the sensitivity of brain cholinergic mechanisms in descendants. Hence, the changes of the levels of both adrenaline and corticosterids in the blood of pregnant females modify the reactivity of hypophysial-adrenocortical system of adult descendants, apparently, via the development of brain neurochemical mechanisms in the foetuses. But the role of these hormones is different.

  5. Genetic regulation of vertebrate eye development.

    PubMed

    Zagozewski, J L; Zhang, Q; Eisenstat, D D

    2014-11-01

    Eye development is a complex and highly regulated process that consists of several overlapping stages: (i) specification then splitting of the eye field from the developing forebrain; (ii) genesis and patterning of the optic vesicle; (iii) regionalization of the optic cup into neural retina and retina pigment epithelium; and (iv) specification and differentiation of all seven retinal cell types that develop from a pool of retinal progenitor cells in a precise temporal and spatial manner: retinal ganglion cells, horizontal cells, cone photoreceptors, amacrine cells, bipolar cells, rod photoreceptors and Müller glia. Genetic regulation of the stages of eye development includes both extrinsic (such as morphogens, growth factors) and intrinsic factors (primarily transcription factors of the homeobox and basic helix-loop helix families). In the following review, we will provide an overview of the stages of eye development highlighting the role of several important transcription factors in both normal developmental processes and in inherited human eye diseases.

  6. Advanced Power Regulator Developed for Spacecraft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The majority of new satellites generate electrical power using photovoltaic solar arrays and store energy in batteries for use during eclipse periods. Careful regulation of battery charging during insolation can greatly increase the expected lifetime of the satellite. The battery charge regulator is usually custom designed for each satellite and its specific mission. Economic competition in the small satellite market requires battery charge regulators that are lightweight, efficient, inexpensive, and modular enough to be used in a wide variety of satellites. A new battery charge regulator topology has been developed at the NASA Lewis Research Center to address these needs. The new regulator topology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. A transformer-isolated buck converter is connected such that the high input line is connected in series with the output. This "bypass connection" biases the converter's output onto the solar array voltage. Because of this biasing, the converter only processes the fraction of power necessary to charge the battery above the solar array voltage. Likewise, the same converter hookup can be used to regulate the battery output to the spacecraft power bus with similar fractional power processing.

  7. Development of Critical Thinking with Metacognitive Regulation

    ERIC Educational Resources Information Center

    Gotoh, Yasushi

    2016-01-01

    In this research the author defines critical thinking as the set of skills and dispositions which enable one to solve problems logically and to attempt to reflect autonomously by means of Metacognitive regulation on one's own problem-solving processes. In order to develop their critical thinking, it is important for students to be able to use this…

  8. Sustainable development in British land use regulation

    SciTech Connect

    Basiago, A.D.

    1995-12-01

    Sustainable development is a new international theory of development founded on principles of futurity, environment, equity and participation. It is the legacy of twenty years of international environmental law that has established a doctrine of global trusteeship. Sustainable development has entered British land use regulation through the Maastricth Treaty; the EU`s Fifth Environmental Action Program; as well as the British government`s Planning Policy Guidance notes on land use principles, local plans, transport and historic preservation, and its white papers. The Earth Summit accord Agenda 21 is a blueprint on how to make development socially, economically and environmentally sustainable. Under its terms, Britain has prepared a national sustainable development strategy for the UN`s Commission on Sustainable Development. It features Local Agenda 21 strategies in which local authorities develop policies for sustainable development and establish partnerships with other sectors. In this paper, the Local Agenda 21 strategies of seven local authorities are evaluated according to the paradigm introduced in Agenda 21 and elaborated by Kahn that describes sustainable development as a dynamic system of integrated and interlinked economic, social and environmental sustainability. The author concludes that sustainable development in British land use regulation is guided by notions of economic development, social justice and environmental planning and not by the dynamic, integrated model of Agenda 21. 46 refs., 3 figs.

  9. Regulative development of Xenopus laevis in microgravity

    NASA Astrophysics Data System (ADS)

    Black, S.; Larkin, K.; Jacqmotte, N.; Wassersug, R.; Pronych, S.; Souza, K.

    To test whether gravity is required for normal amphibian development, Xenopus leavis females were induced to ovulate aboard the orbiting Space Shuttle. Eggs were fertilized in vitro, and although early embryonic stages showed some abnormalities, the embryos were able to regulate and produce nearly normal larvae. These results demonstrate for the first time that a vertebrate can ovulate in the virtual absence of gravity, and that the eggs can develop to a free-living stage.

  10. Regulative development of Xenopus laevis in microgravity

    NASA Technical Reports Server (NTRS)

    Black, S.; Larkin, K.; Jacqmotte, N.; Wassersug, R.; Pronych, S.; Souza, K.

    1996-01-01

    To test whether gravity is required for normal amphibian development, Xenopus leavis females were induced to ovulate aboard the orbiting Space Shuttle. Eggs were fertilized in vitro, and although early embryonic stages showed some abnormalities, the embryos were able to regulate and produce nearly normal larvae. These results demonstrate for the first time that a vertebrate can ovulate in the virtual absence of gravity, and that the eggs can develop to a free-living stage.

  11. Regulators of ovarian preantral follicle development.

    PubMed

    McGee, Elizabeth A; Raj, Renju S

    2015-05-01

    Preantral follicle development has become an increasingly recognized area of study in the last two decades. Factors that regulate the growth survival and differentiation of these small, yet complex structures have been identified. The field of fertility preservation and a need for increased numbers of mature oocytes for stem cell research revealed how little we knew of how follicles got from the primordial stage to the antral stage with a healthy and competent oocyte inside. This work discusses the role of gonadotropins in regulating preantral follicles and also the role of the TGF-β family members and their associated Smad signaling molecules in preantral follicle development. Preantral follicle development is a necessary step to fertility in females and further understanding of this process is essential for progress in both infertility care and the enlarging field of in vitro folliculogenesis.

  12. Epigenetic Regulation in Neural Crest Development

    PubMed Central

    Hu, Na; Strobl-Mazzulla, Pablo H.; Bronner, Marianne E.

    2014-01-01

    The neural crest is a migratory and multipotent cell population that plays a crucial many aspects of embryonic development. In all vertebrate embryos, these cells emerge from the dorsal neural tube then migrate long distances to different regions of the body, where they contribute to formation of many cell types and structures. These include much of the peripheral nervous system, craniofacial skeleton, smooth muscle, and pigmentation of the skin. The best-studied regulatory events guiding neural crest development are mediated by transcription factors and signaling molecules. In recent years, however, growing evidence supports an important role for epigenetic regulation as an additional mechanism for controlling the timing and level of gene expression at different stages of neural crest development. Here, we summarize the process of neural crest formation, with focus on the role of epigenetic regulation in neural crest specification, migration, and differentiation as well as in neural crest related birth defects and diseases. PMID:25446277

  13. Metastatic virilizing adrenocortical carcinoma: a rare case of cure with surgery and mitotane therapy.

    PubMed

    Chalasani, Sreelatha; Vats, Hemender Singh; Banerjee, Tarit K; McKenzie, Alan K

    2009-06-01

    A 57-year-old white woman with metastases to lungs and liver from virilizing adrenocortical carcinoma (ACC) was treated with radical nephroadrenalectomy followed by oral mitotane 3 to 6 g/day for 5 months. She developed complete response and remained free of disease for more than 25 years. Here we present the case and review the literature. ACC is a rare tumor and may occur at any age. About 60% are functional tumors with hormonal secretions and clinical manifestations due to specific hormone secretions: Cushing's syndrome due to cortisone, virilizing tumor due to androgens, feminizing tumor due to estrogens, or hypertension due to aldosterone. Stage I and II disease is curable with surgery. Stage III and IV disease may benefit from mitotane orally with gradual adjustment of the dosage to a tolerable level. Plasma mitotane level at 14 to 20 g/L results in optimal response both in hormonal secretion and symptom control, as well as tumor regression. Addition of chemotherapy (streptozotocin or a combination of etoposide, cisplatin and doxorubicin) to mitotane also produced responses along with increased survival among responders. An international study has been started by randomizing between two of the above combinations by the Collaborative Group for Adrenocortical Carcinoma Treatment.

  14. Feminizing adrenocortical adenoma presenting as heterosexual precocious puberty: report of one case.

    PubMed

    Hsiao, Hui-Pin; Chao, Mei-Chyn; Lin, Chao-Yu; Chen, Hsiu-Lin; Chen, Shiu-Lin; Chiou, Shyh-Shin; Chen, Bai-Hsiun

    2005-01-01

    We report on a case of a 2 2/12-year-old boy with heterosexual precocious puberty secondary to a feminizing adrenocortical adenoma. The boy, with no previous history of disease or treatment, presented with bilateral gynecomastia and pubic hair development (Tanner III breasts and Tanner II pubic hair). Plasma estradiol and testosterone were 410.9 pg/ml and 126.2 ng/dl respectively. Basal plasma LH and FSH levels were within the normal range. Bolus i.v. injection of GnRH showed unresponsiveness of LH and FSH. Abdominal echography and abdominal magnetic resonance imaging revealed a well-defined mass at the left suprarenal region (measuring 4.0 x 2.7 x 3.6 cm in size). After removal of the adrenal tumor, the estradiol and testosterone levels fell to normal in 2 weeks. The gynecomastia and pubic hair regressed with time. The pathology of the tumor showed compact pattern with polygonal cells containing moderate eosinophilic cytoplasm without mitotic figure. These findings were consistent with an adrenocortical adenoma secreting estradiol and testosterone as the cause of the patient's heterosexual precocious puberty.

  15. Energy-conserving development regulations: current practice

    SciTech Connect

    Not Available

    1980-05-01

    Almost every aspect of land development has an effect on energy use, from minute architectural details to broad considerations of urban density. Energy-efficiency depends in part on how development is planned and carried out. Conventional development regulations, such as zoning ordinances and subdivision regulations, can be adapted in many ways to promote energy conservation at the community level. This report is about energy-efficient site and neighborhood design. It examines recent experiences of local governments that have adopted new development regulations or amended existing ones to promote energy conservation, more efficient generation and distribution, or a switch to alternative, renewable sources. Although much has been written in recent years about saving energy through community design, actual experience in applying these new ideas is still limited. To date, most communities have focused their efforts on studying the problem, documenting consumption patterns, and writing reports and plans. Only a handful have amended their land-use controls for the express purpose of saving energy. This study identifies 13 of these pioneering communities, after undertaking a survey of over 1400 local, regional, and state planning agencies. It takes a look at their experiences, to learn what has been done, how well it has worked, and what problems have been encountered.

  16. Maternal DNA Methylation Regulates Early Trophoblast Development

    PubMed Central

    Branco, Miguel R.; King, Michelle; Perez-Garcia, Vicente; Bogutz, Aaron B.; Caley, Matthew; Fineberg, Elena; Lefebvre, Louis; Cook, Simon J.; Dean, Wendy; Hemberger, Myriam; Reik, Wolf

    2016-01-01

    Summary Critical roles for DNA methylation in embryonic development are well established, but less is known about its roles during trophoblast development, the extraembryonic lineage that gives rise to the placenta. We dissected the role of DNA methylation in trophoblast development by performing mRNA and DNA methylation profiling of Dnmt3a/3b mutants. We find that oocyte-derived methylation plays a major role in regulating trophoblast development but that imprinting of the key placental regulator Ascl2 is only partially responsible for these effects. We have identified several methylation-regulated genes associated with trophoblast differentiation that are involved in cell adhesion and migration, potentially affecting trophoblast invasion. Specifically, trophoblast-specific DNA methylation is linked to the silencing of Scml2, a Polycomb Repressive Complex 1 protein that drives loss of cell adhesion in methylation-deficient trophoblast. Our results reveal that maternal DNA methylation controls multiple differentiation-related and physiological processes in trophoblast via both imprinting-dependent and -independent mechanisms. PMID:26812015

  17. The roles of placental growth hormone and placental lactogen in the regulation of human fetal growth and development.

    PubMed

    Handwerger, S; Freemark, M

    2000-04-01

    The human growth hormone (hGH)/human placental lactogen (hPL) gene family, which consists of two GH and three PL genes, is important in the regulation of maternal and fetal metabolism and the growth and development of the fetus. During pregnancy, pituitary GH (hGH-N) expression in the mother is suppressed; and hGH-V, a GH variant expressed by the placenta, becomes the predominant GH in the mother. hPL, which is the product of the hPL-A and hPL-B genes, is secreted into both the maternal and fetal circulations after the sixth week of pregnancy. hGH-V and hPL act in concert in the mother to stimulate insulin-like growth factor (IGF) production and modulate intermediary metabolism, resulting in an increase in the availability of glucose and amino acids to the fetus. In the fetus, hPL acts via lactogenic receptors and possibly a unique PL receptor to modulate embryonic development, regulate intermediary metabolism and stimulate the production of IGFs, insulin, adrenocortical hormones and pulmonary surfactant. hGH-N, which is expressed by the fetal pituitary, has little or no physiological actions in the fetus until late in pregnancy due to the lack of functional GH receptors on fetal tissues. hGH-V, which is also a potent somatogenic hormone, is not released into the fetus. Taken together, studies of the hGH/hPL gene family during pregnancy reveal a complex interaction of the hormones with one another and with other growth factors. Additional investigations are necessary to clarify the relative roles of the family members in the regulation of fetal growth and development and the factors that modulate the expression of the genes.

  18. Gallium-67 uptake by a benign adrenocortical adenoma

    SciTech Connect

    Jackson, J.A.; Naul, L.G.; Montgomery, J.L.; Carpentier, W.R.; Roberts, J.W.

    1988-08-01

    A 55-yr-old man presented with an atypical relapsing meningitis and was found to have intense unilateral adrenal uptake by /sup 67/Ga imaging. Computed tomography showed a 4-cm right adrenal mass which was hypointense on the T1-weighted images and mildly hyperintense on the T2-weighted images of a magnetic resonance (MR) scan. At surgery, a coincidental benign adrenocortical adenoma was found. Because /sup 67/Ga uptake is usually associated with inflammatory or malignant lesions and malignant adrenal lesions are hyperintense on T2-weighted MR images, these findings contributed to diagnostic uncertainty in this patient. Thus, a nonhyperfunctional adrenocortical adenoma may be associated with abnormal /sup 67/Ga uptake and atypical MR findings.

  19. Acute self-suppression of corticosteroidogenesis in isolated adrenocortical cells.

    PubMed

    Carsia, R V; Malamed, S

    1979-10-01

    The relation between steroidogenesis induced by ACTH and that induced by exogenous concentrations of glucocorticoids was studied in isolated adrenocortical cells. Exogenous corticosterone and cortisol, in concentrations within the production capacity of the adrenal gland, suppressed steroidogenesis induced by ACTH in rat and beef cells, respectively. The precursors pregnenolone and progesterone enhanced steroidogenesis in both rat and beef cells. Aldosterone in rat cells and 17 beta-estradiol in rat and beef cells had little if any effect on steroidogenesis. Either suppression or stimulation by exogenous steroids was acute, that is, after 2-h incubation for rat cells and 1-h incubation for beef cells. A direct suppressive action of end product glucocorticoids is indicated. This observed self-suppression of adrenocortical cells suggests the existence of a mechanism for the find adjustment of steroidogenesis that operates in addition to the classical control exerted by the anterior pituitary.

  20. [Irreversible coma following hypoglycemia in Sheehan syndrome with adrenocortical insufficiency].

    PubMed

    Sas, A M; Meynaar, I A; Laven, J S; Bakker, S L; Feelders, R A

    2003-08-23

    A 24-year-old woman of Somali origin delivered at term after an uncomplicated pregnancy. Post-partum haemorrhage resulted in hypovolaemic shock which was treated by hysterectomy. Five days later she became comatose due to unrecognised hypoglycaemia which caused severe irreversible brain damage and status epilepticus. Treatment in the intensive care unit with artificial respiration, prednisolone, desmopressin, inotropic support, barbiturates and an anaesthetic under EEG guidance was unsuccessful. The patient died 28 days post-partum. The hypoglycaemia was due to a combination of (a) inadequate glucose intake and (b) lack of counter-regulatory mechanisms due to a deficiency of steroids and growth hormone as a result of loss of pituitary function (Sheehan syndrome) together with adrenocortical insufficiency. The combination of Sheehan syndrome and primary adrenocortical insufficiency has not been described previously in the literature.

  1. Advanced Power Regulator Developed for Spacecraft

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The majority of new satellites generate electrical power using photovoltaic solar arrays and store energy in batteries for use during eclipse periods. Careful regulation of battery charging during insolation can greatly increase the expected lifetime of the satellite. The battery charge regulator is usually custom designed for each satellite and its specific mission. Economic competition in the small satellite market requires battery charge regulators that are lightweight, efficient, inexpensive, and modular enough to be used in a wide variety of satellites. A new battery charge regulator topology has been developed at the NASA Lewis Research Center to address these needs. The new regulator topology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. A transformer-isolated buck converter is connected such that the high input line is connected in series with the output. This "bypass connection" biases the converter's output onto the solar array voltage. Because of this biasing, the converter only processes the fraction of power necessary to charge the battery above the solar array voltage. Likewise, the same converter hookup can be used to regulate the battery output to the spacecraft power bus with similar fractional power processing. The advantages of this scheme are: 1) Because only a fraction of the power is processed through the dc-dc converter, the single- stage conversion efficiency is 94 to 98 percent; 2) Costly, high-efficiency dc-dc converters are not necessary for high end-to-end system efficiency; 3) The system is highly fault tolerant because the bypass connection will still deliver power if the dc-dc converter fails; and 4) The converters can easily be connected in parallel, allowing higher power systems to be built from a common building block. This new technology will be spaceflight tested in the Photovoltaic Regulator Kit Experiment

  2. Functioning adrenocortical tumors in children-secretory behavior.

    PubMed

    Ghazi, Ali A; Mofid, Djafar; Salehian, Mohamad Taghi; Amirbaigloo, Alireza; Zare, Khandan; Jafari, Bahar; Rahimi, Farzaneh

    2013-01-01

    Adrenocortical tumors are rare childhood neoplasms. More than 95% are functional and present with virilization, Cushing's syndrome, hypertension, or hyperestrogenism. The objective of this paper is to present the clinical, laboratory and pathological findings of this rare disease and to highlight the secretory behavior of these tumors. Clinical and laboratory data of seven Iranian children and adolescents aged between 2 and 16 years with functioning adrenocortical tumors are presented. Five patients had virilization and two had Cushing's syndrome at the time of diagnosis. In all subjects, the tumors were removed successfully by open surgery, during which a blood sample was drawn from the corresponding adrenal vein for hormonal evaluation. Peripheral blood evaluation revealed that in addition to the dominant hormone (testosterone in the cases presenting with virilization and cortisol in those with Cushing's syndrome), significant amounts of other hormones were secreted from these tumors. Adrenal vein evaluation revealed that testosterone, dehydroepiandrosterone sulfate, estradiol, 17(OH) progesterone, and cortisol were directly released from the tumor. The tumors weighed between 36-103 grams. The patients have since been followed for 5 to 20 years, and there have been no signs or symptoms of relapse in any of the patients. The study shows that functioning adrenocortical tumors should be considered in children and adolescents presenting with hyperandrogenism, Cushing's syndrome, or hyperestrogenism. A diagnosis of a functioning adrenocortical tumor requires surgical removal as early as possible to prevent the untoward effects of virilization or corticosteroid excess. Evaluation of adrenal vein hormones showed that the steroids are secreted directly from the tumor and peripheral conversion has little contribution to the serum levels.

  3. Chylous ascites after resection of giant adrenocortical carcinoma

    PubMed Central

    Karakoyun, Rojbin; Demirci, Erkan; Alikanoglu, Arsenal Sezgin

    2016-01-01

    Postoperative chylous ascites (PCA) is a rare clinical state that occurs during abdominal surgery. Despite its rarity, the need to diagnose and treat PCA is increasing in importance with the increased number of wide resections and lymph node dissections being performed and the serious consequences of treatment. Here we describe the PCA complications we observed after resection for treating a case of giant adrenocortical carcinoma and we have the brief review of the PCA complication. PMID:28149812

  4. Adrenocortical carcinoma: modern management and evolving treatment strategies

    PubMed Central

    McDuffie, Lucas A; Aufforth, Rachel D

    2016-01-01

    Adrenocortical carcinoma (ACC) is a rare cancer with a poor prognosis. Unlike many other cancers, there has been little improvement in patient outcome over the past several decades. However, as scientific advancements are made and our understanding of the molecular genetics involved in ACC improve then progress may be achieved in this devastating disease. This review focuses on recent literature published in the field of ACC from 2010 to 2015 with an emphasis on improving diagnosis, staging and treatment for ACC. PMID:27213037

  5. Plurihormonal Cosecretion by a Case of Adrenocortical Oncocytic Neoplasm

    PubMed Central

    Corrales, J. J.; Robles-Lázaro, C.; Sánchez-Marcos, A. I.; González-Sánchez, M. C.; Antúnez-Plaza, P.; Miralles, J. M.

    2016-01-01

    Adrenocortical oncocytic neoplasms (oncocytomas) are extremely rare; only approximately 159 cases have been described so far. The majority are nonfunctional and benign. We describe an unusual case of a functional oncocytoma secreting an excess of glucocorticoids (cortisol) and androgens (androstenedione and DHEAS), a pattern of plurihormonal cosecretion previously not reported in men, presenting with endocrine manifestations of Cushing's syndrome. The neoplasm was considered to be of uncertain malignant potential (borderline) according to the Lin-Weiss-Bisceglia criteria. PMID:27413559

  6. Tissue Interactions Regulating Tooth Development and Renewal.

    PubMed

    Balic, Anamaria; Thesleff, Irma

    2015-01-01

    Reciprocal interactions between epithelial and mesenchymal tissues play a fundamental role in the morphogenesis of teeth and regulate all aspects of tooth development. Extensive studies on mouse tooth development over the past 25 years have uncovered the molecular details of the signaling networks mediating these interactions (reviewed by Jussila & Thesleff, 2012; Lan, Jia, & Jiang, 2014). Five conserved signaling pathways, namely, the Wnt, BMP, FGF, Shh, and Eda, are involved in the mediation of the successive reciprocal epithelial-mesenchymal cross talk which follows the general principle of morphogenetic interactions (Davidson, 1993). The pathways regulate the expression of transcription factors which confer the identity of dental epithelium and mesenchyme. The signals and transcription factors are integrated in complex signaling networks whose fine-tuning allows the generation of the variation in tooth morphologies. In this review, we describe the principles and molecular mechanisms of the epithelial-mesenchymal interactions regulating successive stages of tooth formation: (i) the initiation of tooth development, with special reference to the shift of tooth-forming potential from epithelium to mesenchyme; (ii) the morphogenesis of the tooth crown, focusing on the roles of epithelial signaling centers; (iii) the differentiation of odontoblasts and ameloblasts, which produce dentin and enamel, respectively; and (iv) the maintenance of dental stem cells, which support the continuous growth of teeth. © 2015 Elsevier Inc. All rights reserved.

  7. Interparental Aggression and Infant Patterns of Adrenocortical and Behavioral Stress Responses

    PubMed Central

    Towe-Goodman, Nissa R.; Stifter, Cynthia A.; Mills-Koonce, W. Roger; Granger, Douglas A.

    2011-01-01

    Drawing on emotional security theory, this study examined linkages between interparental aggression, infant self-regulatory behaviors, and patterns of physiological and behavioral stress responses in a diverse sample of 735 infants residing in predominately low-income, nonmetropolitan communities. Latent profile analysis revealed four classes of adrenocortical and behavioral stress response patterns at 7-months of age, using assessments of behavioral and cortisol reactivity to an emotion eliciting challenge, as well as global ratings of the child’s negative affect and basal cortisol levels. The addition of covariates within the latent profile model suggested that children with more violence in the home and who used less caregiver-oriented regulation strategies were more likely to exhibit a pattern of high cortisol reactivity with moderate signs of distress rather than the average stress response, suggesting possible patterns of adaptation in violent households. PMID:22127795

  8. Supportive behaviors in adolescent romantic relationships moderate adrenocortical attunement.

    PubMed

    Ha, Thao; Yeung, Ellen Wanheung; Rogers, Adam A; Poulsen, Franklin O; Kornienko, Olga; Granger, Douglas A

    2016-12-01

    This study investigated dyadic adrenocortical attunement within adolescent romantic relationships. An ethnically diverse sample (42% Latino) of adolescent heterosexual dating couples (N=91 dyads, Mage=16.5 years, SD=0.99) donated eight saliva samples (later assayed for cortisol) over the course of a 3-h laboratory session. Supportive behaviors were coded during a conflict and jealousy interaction task from video recordings, and participants completed pre-and-post task questionnaires. Parallel process latent growth models revealed a strong positive association between the couples' cortisol intercept, indicating that couples show attunement in initial levels of cortisol. Further, observed supportive behavior moderated the strength of the association between dyadic cortisol slopes. The results imply that low levels of supportive behavior predicted stronger adrenocortical attunement in the change in cortisol levels over time between adolescent romantic partners. These findings indicate that even early romantic relationships exhibit coordination of physiological activity. Findings raise the possibility that adrenocortical attunement may be a dyadic pathway through which the proximal social context of early romantic relationships is translated into risk or resilience in health and behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Hereditary adrenocortical unresponsiveness to adrenocorticotropin with a postreceptor defect.

    PubMed

    Yamaoka, T; Kudo, T; Takuwa, Y; Kawakami, Y; Itakura, M; Yamashita, K

    1992-07-01

    We report two cases in one pedigree with hereditary adrenocortical unresponsiveness to ACTH (HACUA) where it is suggested that the pathogenic defect occurs after cAMP generation. Although the patients showed increased plasma ACTH, decreased plasma cortisol and dehydroepiandrosterone, and no steroidogenic response to exogenous ACTH, they responded normally to both furosemide administration and to a low sodium diet by showing increases in plasma aldosterone. The peripheral blood mononuclear leukocytes (MNLs) from these patients possessed ACTH receptors similar to adrenocortical ones, which was in contrast to a previously reported case with a deficiency of ACTH receptors in the MNLs. Furthermore, ACTH receptors in the patients' MNLs were functionally coupled to adenylate cyclase. Dibutyryl cAMP infusion did not, however, increase plasma cortisol nor aldosterone in these patients in a sharp contrast to its remarkable increase in a normal control subject. These results suggest that these patients represent a new subtype of HACUA with a failure of intracellular reception of the cAMP message in adrenocortical cells. We propose to classify our patients with a postreceptor defect as HACUA type II using an analogy to pseudohypoparathyroidism type II.

  10. Sterol Regulation of Metabolism, Homeostasis and Development

    PubMed Central

    Wollam, Joshua; Antebi, Adam

    2014-01-01

    Sterol metabolites are critical signaling molecules that regulate metabolism, development, and homeostasis. Oxysterols, bile acids, and steroids work primarily through cognate sterol-responsive nuclear hormone receptors to control these processes through feed-forward and feedback mechanisms. These signaling pathways are conserved from simple invertebrates to mammals. Indeed, results from various model organisms have yielded fundamental insights into cholesterol and bile acid homeostasis, lipid and glucose metabolism, protective mechanisms, tissue differentiation, development, reproduction, and even aging. Here, we review how sterols act through evolutionarily ancient mechanisms to control these processes. PMID:21495846

  11. Limb development: a paradigm of gene regulation.

    PubMed

    Petit, Florence; Sears, Karen E; Ahituv, Nadav

    2017-04-01

    The limb is a commonly used model system for developmental biology. Given the need for precise control of complex signalling pathways to achieve proper patterning, the limb is also becoming a model system for gene regulation studies. Recent developments in genomic technologies have enabled the genome-wide identification of regulatory elements that control limb development, yielding insights into the determination of limb morphology and forelimb versus hindlimb identity. The modulation of regulatory interactions - for example, through the modification of regulatory sequences or chromatin architecture - can lead to morphological evolution, acquired regeneration capacity or limb malformations in diverse species, including humans.

  12. Evaluation of 9-cis retinoic acid and mitotane as antitumoral agents in an adrenocortical xenograft model.

    PubMed

    Nagy, Zoltán; Baghy, Kornélia; Hunyadi-Gulyás, Éva; Micsik, Tamás; Nyírő, Gábor; Rácz, Gergely; Butz, Henriett; Perge, Pál; Kovalszky, Ilona; Medzihradszky, Katalin F; Rácz, Károly; Patócs, Attila; Igaz, Peter

    2015-01-01

    The available drug treatment options for adrenocortical carcinoma (ACC) are limited. In our previous studies, the in vitro activity of 9-cis retinoic acid (9-cisRA) on adrenocortical NCI-H295R cells was shown along with its antitumoral effects in a small pilot xenograft study. Our aim was to dissect the antitumoral effects of 9-cisRA on ACC in a large-scale xenograft study involving mitotane, 9-cisRA and their combination. 43 male SCID mice inoculated with NCI-H295R cells were treated in four groups (i. control, ii. 9-cisRA, iii. mitotane, iv. 9-cisRA + mitotane) for 28 days. Tumor size follow-up, histological and immunohistochemical (Ki-67) analysis, tissue gene expression microarray, quantitative real-time-PCR for the validation of microarray results and to detect circulating microRNAs were performed. Protein expression was studied by proteomics and Western-blot validation. Only mitotane alone and the combination of 9-cisRA and mitotane resulted in significant tumor size reduction. The Ki-67 index was significantly reduced in both 9-cisRA and 9-cisRA+mitotane groups. Only modest changes at the mRNA level were found: the 9-cisRA-induced overexpression of apolipoprotein A4 and down-regulation of phosphodiesterase 4A was validated. The expression of circulating hsa-miR-483-5p was significantly reduced in the combined treatment group. The SET protein was validated as being significantly down-regulated in the combined mitotane+9-cisRA group. 9-cisRA might be a helpful additive agent in the treatment of ACC in combination with mitotane. Circulating hsa-miR-483-5p could be utilized for monitoring the treatment efficacy in ACC patients, and the treatment-induced reduction in protein SET expression might raise its relevance in ACC biology.

  13. Evaluation of 9-cis retinoic acid and mitotane as antitumoral agents in an adrenocortical xenograft model

    PubMed Central

    Nagy, Zoltán; Baghy, Kornélia; Hunyadi-Gulyás, Éva; Micsik, Tamás; Nyírő, Gábor; Rácz, Gergely; Butz, Henriett; Perge, Pál; Kovalszky, Ilona; Medzihradszky, Katalin F; Rácz, Károly; Patócs, Attila; Igaz, Peter

    2015-01-01

    The available drug treatment options for adrenocortical carcinoma (ACC) are limited. In our previous studies, the in vitro activity of 9-cis retinoic acid (9-cisRA) on adrenocortical NCI-H295R cells was shown along with its antitumoral effects in a small pilot xenograft study. Our aim was to dissect the antitumoral effects of 9-cisRA on ACC in a large-scale xenograft study involving mitotane, 9-cisRA and their combination. 43 male SCID mice inoculated with NCI-H295R cells were treated in four groups (i. control, ii. 9-cisRA, iii. mitotane, iv. 9-cisRA + mitotane) for 28 days. Tumor size follow-up, histological and immunohistochemical (Ki-67) analysis, tissue gene expression microarray, quantitative real-time-PCR for the validation of microarray results and to detect circulating microRNAs were performed. Protein expression was studied by proteomics and Western-blot validation. Only mitotane alone and the combination of 9-cisRA and mitotane resulted in significant tumor size reduction. The Ki-67 index was significantly reduced in both 9-cisRA and 9-cisRA+mitotane groups. Only modest changes at the mRNA level were found: the 9-cisRA-induced overexpression of apolipoprotein A4 and down-regulation of phosphodiesterase 4A was validated. The expression of circulating hsa-miR-483-5p was significantly reduced in the combined treatment group. The SET protein was validated as being significantly down-regulated in the combined mitotane+9-cisRA group. 9-cisRA might be a helpful additive agent in the treatment of ACC in combination with mitotane. Circulating hsa-miR-483-5p could be utilized for monitoring the treatment efficacy in ACC patients, and the treatment-induced reduction in protein SET expression might raise its relevance in ACC biology. PMID:26885453

  14. Outcomes of Adjuvant Mitotane after Resection of Adrenocortical Carcinoma: A 13-Institution Study by the US Adrenocortical Carcinoma Group

    PubMed Central

    Postlewait, Lauren M; Ethun, Cecilia G; Tran, Thuy B; Prescott, Jason D; Pawlik, Timothy M; Wang, Tracy S; Glenn, Jason; Hatzaras, Ioannis; Shenoy, Rivfka; Phay, John E; Keplinger, Kara; Fields, Ryan C; Jin, Linda X; Weber, Sharon M; Salem, Ahmed; Sicklick, Jason K; Gad, Shady; Yopp, Adam C; Mansour, John C; Duh, Quan-Yang; Seiser, Natalie; Solorzano, Carmen C; Kiernan, Colleen M; Votanopoulos, Konstantinos I; Levine, Edward A; Staley, Charles A; Poultsides, George A; Maithel, Shishir K

    2016-01-01

    BACKGROUND Current treatment guidelines recommend adjuvant mitotane after resection of adrenocortical carcinoma with high-risk features (eg, tumor rupture, positive margins, positive lymph nodes, high grade, elevated mitotic index, and advanced stage). Limited data exist on the outcomes associated with these practice guidelines. STUDY DESIGN Patients who underwent resection of adrenocortical carcinoma from 1993 to 2014 at the 13 academic institutions of the US Adrenocortical Carcinoma Group were included. Factors associated with mitotane administration were determined. Primary end points were recurrence-free survival (RFS) and overall survival (OS). RESULTS Of 207 patients, 88 (43%) received adjuvant mitotane. Receipt of mitotane was associated with hormonal secretion (58% vs 32%; p = 0.001), advanced TNM stage (stage IV: 42% vs 23%; p = 0.021), adjuvant chemotherapy (37% vs 5%; p < 0.001), and adjuvant radiation (17% vs 5%; p = 0.01), but was not associated with tumor rupture, margin status, or N-stage. Median follow-up was 44 months. Adjuvant mitotane was associated with decreased RFS (10.0 vs 27.9 months; p = 0.007) and OS (31.7 vs 58.9 months; p = 0.006). On multivariable analysis, mitotane was not independently associated with RFS or OS, and margin status, advanced TNM stage, and receipt of chemotherapy were associated with survival. After excluding all patients who received chemotherapy, adjuvant mitotane remained associated with decreased RFS and similar OS; multivariable analyses again showed no association with recurrence or survival. Stage-specific analyses in both cohorts revealed no association between adjuvant mitotane and improved RFS or OS. CONCLUSIONS When accounting for stage and adverse tumor and treatment-related factors, adjuvant mitotane after resection of adrenocortical carcinoma is not associated with improved RFS or OS. Current guidelines should be revisited and prospective trials are needed. PMID:26775162

  15. Brassinosteroids Regulate Root Growth, Development, and Symbiosis.

    PubMed

    Wei, Zhuoyun; Li, Jia

    2016-01-04

    Brassinosteroids (BRs) are natural plant hormones critical for growth and development. BR deficient or signaling mutants show significantly shortened root phenotypes. However, for a long time, it was thought that these phenotypes were solely caused by reduced cell elongation in the mutant roots. Functions of BRs in regulating root development have been largely neglected. Nonetheless, recent detailed analyses, revealed that BRs are not only involved in root cell elongation but are also involved in many aspects of root development, such as maintenance of meristem size, root hair formation, lateral root initiation, gravitropic response, mycorrhiza formation, and nodulation in legume species. In this review, current findings on the functions of BRs in mediating root growth, development, and symbiosis are discussed.

  16. Opposing Transcriptional Mechanisms Regulate Toxoplasma Development

    PubMed Central

    Hong, Dong-Pyo; Radke, Joshua B.

    2017-01-01

    ABSTRACT The Toxoplasma biology that underlies human chronic infection is developmental conversion of the acute tachyzoite stage into the latent bradyzoite stage. We investigated the roles of two alkaline-stress-induced ApiAP2 transcription factors, AP2IV-3 and AP2IX-9, in bradyzoite development. These factors were expressed in two overlapping waves during bradyzoite development, with AP2IX-9 increasing expression earlier than AP2IV-3, which peaked as AP2IX-9 expression was declining. Disruption of the AP2IX-9 gene enhanced, while deletion of AP2IV-3 gene decreased, tissue cyst formation, demonstrating that these factors have opposite functions in bradyzoite development. Conversely, conditional overexpression of FKBP-modified AP2IX-9 or AP2IV-3 with the small molecule Shield 1 had a reciprocal effect on tissue cyst formation, confirming the conclusions of the knockout experiments. The AP2IX-9 repressor and AP2IV-3 activator tissue cyst phenotypes were borne out in gene expression studies that determined that many of the same bradyzoite genes were regulated in an opposite manner by these transcription factors. A common gene target was the canonical bradyzoite marker BAG1, and mechanistic experiments determined that, like AP2IX-9, AP2IV-3 regulates a BAG1 promoter-luciferase reporter and specifically binds the BAG1 promoter in parasite chromatin. Altogether, these results suggest that the AP2IX-9 transcriptional repressor and the AP2IV-3 transcriptional activator likely compete to control bradyzoite gene expression, which may permit Toxoplasma to better adapt to different tissue environments and select a suitable host cell for long-term survival of the dormant tissue cyst. IMPORTANCE Toxoplasma infections are lifelong because of the development of the bradyzoite tissue cyst, which is effectively invisible to the immune system. Despite the important clinical consequences of this developmental pathway, the molecular basis of the switch mechanisms that control tissue

  17. Pregnancy in a patient with adrenocortical carcinoma during treatment with Mitotane - a case report.

    PubMed

    Baszko-Błaszyk, Daria; Ochmańska, Katarzyna; Waśko, Ryszard; Sowiński, Jerzy

    2011-01-01

    We present the case of a female patient with virilising adrenocortical carcinoma treated surgically who conceived during adjuvant treatment with mitotane. We discuss the frequently erroneous routine treatment with oral hormonal contraception without thorough differential diagnosis in female patients with oligo-/amenorrhea and subsequent delay in the proper diagnosis of adrenocortical carcinoma.

  18. PRKACA: the catalytic subunit of protein kinase A and adrenocortical tumors

    PubMed Central

    Berthon, Annabel S.; Szarek, Eva; Stratakis, Constantine A.

    2015-01-01

    Cyclic-AMP (cAMP)-dependent protein kinase (PKA) is the main effector of cAMP signaling in all tissues. Inactivating mutations of the PRKAR1A gene, coding for the type 1A regulatory subunit of PKA, are responsible for Carney complex and primary pigmented nodular adrenocortical disease (PPNAD). PRKAR1A inactivation and PKA dysregulation have been implicated in various types of adrenocortical pathologies associated with ACTH-independent Cushing syndrome (AICS) from PPNAD to adrenocortical adenomas and cancer, and other forms of bilateral adrenocortical hyperplasias (BAH). More recently, mutations of PRKACA, the gene coding for the catalytic subunit C alpha (Cα), were also identified in the pathogenesis of adrenocortical tumors. PRKACA copy number gain was found in the germline of several patients with cortisol-producing BAH, whereas the somatic Leu206Arg (c.617A>C) recurrent PRKACA mutation was found in as many as half of all adrenocortical adenomas associated with AICS. In vitro analysis demonstrated that this mutation led to constitutive Cα activity, unregulated by its main partners, the PKA regulatory subunits. In this review, we summarize the current understanding of the involvement of PRKACA in adrenocortical tumorigenesis, and our understanding of PKA's role in adrenocortical lesions. We also discuss potential therapeutic advances that can be made through targeting of PRKACA and the PKA pathway. PMID:26042218

  19. Gpr177 regulates pulmonary vasculature development.

    PubMed

    Jiang, Ming; Ku, Wei-yao; Fu, Jiang; Offermanns, Stefan; Hsu, Wei; Que, Jianwen

    2013-09-01

    Establishment of the functional pulmonary vasculature requires intimate interaction between the epithelium and mesenchyme. Previous genetic studies have led to inconsistent conclusions about the contribution of epithelial Wnts to pulmonary vasculature development. This discrepancy is possibly due to the functional redundancy among different Wnts. Here, we use Shh-Cre to conditionally delete Gpr177 (the mouse ortholog of Drosophila Wntless, Wls), a chaperon protein important for the sorting and secretion of Wnt proteins. Deletion of epithelial Gpr177 reduces Wnt signaling activity in both the epithelium and mesenchyme, resulting in severe hemorrhage and abnormal vasculature, accompanied by branching defects and abnormal epithelial differentiation. We then used multiple mouse models to demonstrate that Wnt/β-catenin signaling is not only required for the proliferation and differentiation of mesenchyme, but also is important for the maintenance of smooth muscle cells through the regulation of the transcription factor Kruppel-like factor 2 (Klf2). Together, our studies define a novel mechanism by which epithelial Wnts regulate the normal development and maintenance of pulmonary vasculature. These findings provide insight into the pathobiology of congenital lung diseases, such as alveolar capillary dysplasia (ACD), that have abnormal alveolar development and dysmorphic pulmonary vasculature.

  20. Integrin function and regulation in development.

    PubMed

    Tarone, G; Hirsch, E; Brancaccio, M; De Acetis, M; Barberis, L; Balzac, F; Retta, S F; Botta, C; Altruda, F; Silengo, L; Retta, F

    2000-01-01

    Integrins are a large family of membrane receptors, consisting of alpha and beta subunits, that play a pivotal role in the interaction of cells with the extracellular matrix. Such interaction regulates the organization of cells in organs and tissues during development as well as cell differentiation and proliferation. We have shown that unfertilized oocytes express integrins that might be important during fertilization. We also analyzed nervous system and muscle tissue development showing that integrin expression is precisely regulated during organization of these tissues. The results indicate that two distinct integrin alpha subunits mediate the outgrowth of processes in nerve and glial cells. Alpha1 integrin, a laminin receptor, is up-regulated by nerve growth factor and other differentiation stimuli and is involved in neurite extension by nerve cells. In contrast, process extension by glial cells is likely to involve the alphaV integrin. Moreover, the latter integrin subunit is also transiently expressed in muscle of the embryo body where it localizes predominantly at developing myotendinous junctions. After birth this integrin disappears and is substituted by the alpha7 subunit. At the same time, important changes also occur in the expression of the associated beta subunit. In fact, the beta1A isoform which is expressed in fetal muscles, is substituted by beta1D. These isoforms are generated by alternative splicing and differ in only a few amino acid residues at the COOH terminus of the protein. This region of the molecule is exposed at the cytoplasmic face of the plasma membrane and is connected to the actin filaments. Our results show that beta1D, which is expressed only in striated muscle tissues, binds to both cytoskeletal and extracellular matrix proteins with an affinity higher than beta1A. Thus, beta1D provides a stronger link between the cytoskeleton and extracellular matrix necessary to support mechanical tension during muscle contraction. These

  1. Pten Regulates Epithelial Cytodifferentiation during Prostate Development

    PubMed Central

    Lokody, Isabel B.; Francis, Jeffrey C.; Gardiner, Jennifer R.; Erler, Janine T.; Swain, Amanda

    2015-01-01

    Gene expression and functional studies have indicated that the molecular programmes involved in prostate development are also active in prostate cancer. PTEN has been implicated in human prostate cancer and is frequently mutated in this disease. Here, using the Nkx3.1:Cre mouse strain and a genetic deletion approach, we investigate the role of Pten specifically in the developing mouse prostate epithelia. In contrast to its role in other developing organs, this gene is dispensable for the initial developmental processes such as budding and branching. However, as cytodifferentiation progresses, abnormal luminal cells fill the ductal lumens together with augmented epithelial proliferation. This phenotype resembles the hyperplasia seen in postnatal Pten deletion models that develop neoplasia at later stages. Consistent with this, gene expression analysis showed a number of genes affected that are shared with Pten mutant prostate cancer models, including a decrease in androgen receptor regulated genes. In depth analysis of the phenotype of these mice during development revealed that loss of Pten leads to the precocious differentiation of epithelial cells towards a luminal cell fate. This study provides novel insight into the role of Pten in prostate development as part of the process of coordinating the differentiation and proliferation of cell types in time and space to form a functional organ. PMID:26076167

  2. Pancreatic Mesenchyme Regulates Epithelial Organogenesis throughout Development

    PubMed Central

    Landsman, Limor; Nijagal, Amar; Whitchurch, Theresa J.; VanderLaan, Renee L.; Zimmer, Warren E.; MacKenzie, Tippi C.; Hebrok, Matthias

    2011-01-01

    The developing pancreatic epithelium gives rise to all endocrine and exocrine cells of the mature organ. During organogenesis, the epithelial cells receive essential signals from the overlying mesenchyme. Previous studies, focusing on ex vivo tissue explants or complete knockout mice, have identified an important role for the mesenchyme in regulating the expansion of progenitor cells in the early pancreas epithelium. However, due to the lack of genetic tools directing expression specifically to the mesenchyme, the potential roles of this supporting tissue in vivo, especially in guiding later stages of pancreas organogenesis, have not been elucidated. We employed transgenic tools and fetal surgical techniques to ablate mesenchyme via Cre-mediated mesenchymal expression of Diphtheria Toxin (DT) at the onset of pancreas formation, and at later developmental stages via in utero injection of DT into transgenic mice expressing the Diphtheria Toxin receptor (DTR) in this tissue. Our results demonstrate that mesenchymal cells regulate pancreatic growth and branching at both early and late developmental stages by supporting proliferation of precursors and differentiated cells, respectively. Interestingly, while cell differentiation was not affected, the expansion of both the endocrine and exocrine compartments was equally impaired. To further elucidate signals required for mesenchymal cell function, we eliminated β-catenin signaling and determined that it is a critical pathway in regulating mesenchyme survival and growth. Our study presents the first in vivo evidence that the embryonic mesenchyme provides critical signals to the epithelium throughout pancreas organogenesis. The findings are novel and relevant as they indicate a critical role for the mesenchyme during late expansion of endocrine and exocrine compartments. In addition, our results provide a molecular mechanism for mesenchymal expansion and survival by identifying β-catenin signaling as an essential mediator

  3. Adrenocortical activity and the Brazelton Neonatal Assessment Scale: moderating effects of the newborn's biomedical status.

    PubMed

    Gunnar, M R; Isensee, J; Fust, L S

    1987-12-01

    The Brazelton Neonatal Behavioral Assessment Scale with Kansas Supplement (NBAS-K) was administered midway between feedings to 60 newborns who were between 32 and 122 hours old. 35 of the newborns were classified as extremely healthy and normal (Subgroup I), whereas 25 (Subgroup II) were characterized by slight perinatal problems including gestational age 36-37 weeks or 42+ weeks, and fetal distress during labor. All of the newborns were healthy enough to be cared for in a healthy newborn, Level I nursery. Immediately following administration of the NBAS-K, a blood sample was obtained for plasma cortisol determination. Correlations between behavioral responding on the NBAS-K and levels of plasma cortisol revealed few significant relations for the sample as a whole. When the 2 subgroups were examined separately, a number of significant relations emerged. Newborns in Subgroup I who were more competent in their motor control and state regulation capacities as assessed by Lester's Cluster Scores for the NBAS-K exhibited higher levels of plasma cortisol. In contrast, newborns in Subgroup II who exhibited a greater adrenocortical response to the examination showed more behaviors indicative of high behavioral arousal and distress. This pattern of relations for Subgroup II appeared to be mediated by the number of hours that had elapsed since delivery. As postpartum time increased, the strength of the association between adrenocortical activity and behavioral arousal/distress decreased for Subgroup II. A systems theory approach is used to interpret the difference in patterns of correlations found for the 2 subgroups.

  4. Plant development regulation: Overview and perspectives.

    PubMed

    Yruela, Inmaculada

    2015-06-15

    Plant development, as occur in other eukaryotes, is conducted through a complex network of hormones, transcription factors, enzymes and micro RNAs, among other cellular components. They control developmental processes such as embryo, apical root and shoot meristem, leaf, flower, or seed formation, among others. The research in these topics has been very active in last decades. Recently, an explosion of new data concerning regulation mechanisms as well as the response of these processes to environmental changes has emerged. Initially, most of investigations were carried out in the model eudicot Arabidopsis but currently data from other plant species are available in the literature, although they are still limited. The aim of this review is focused on summarize the main molecular actors involved in plant development regulation in diverse plant species. A special attention will be given to the major families of genes and proteins participating in these regulatory mechanisms. The information on the regulatory pathways where they participate will be briefly cited. Additionally, the importance of certain structural features of such proteins that confer ductility and flexibility to these mechanisms will also be reported and discussed. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Regulation of appressorium development in pathogenic fungi

    PubMed Central

    Ryder, Lauren S; Talbot, Nicholas J

    2015-01-01

    Many plant pathogenic fungi have the capacity to breach the intact cuticles of their plant hosts using specialised infection cells called appressoria. These cells exert physical force to rupture the plant surface, or deploy enzymes in a focused way to digest the cuticle and plant cell wall. They also provide the means by which focal secretion of effectors occurs at the point of plant infection. Development of appressoria is linked to re-modelling of the actin cytoskeleton, mediated by septin GTPases, and rapid cell wall differentiation. These processes are regulated by perception of plant cell surface components, and starvation stress, but also linked to cell cycle checkpoints that control the overall progression of infection-related development. PMID:26043436

  6. Genetic and hormonal regulation of cambial development.

    PubMed

    Ursache, Robertas; Nieminen, Kaisa; Helariutta, Ykä

    2013-01-01

    The stems and roots of most dicot plants increase in diameter by radial growth, due to the activity of secondary meristems. Two types of meristems function in secondary plant body formation: the vascular cambium, which gives rise to secondary xylem and phloem, and the cork cambium, which produces a bark layer that replaces the epidermis and protects the plant stem from mechanical damage and pathogens. Cambial development, the initiation and activity of the vascular cambium, leads to an accumulation of wood, the secondary xylem tissue. The thick, cellulose-rich cell walls of wood provide a source of cellulose and have the potential to be used as a raw material for sustainable and renewable energy production. In this review, we will discuss what is known about the mechanisms regulating the cambium and secondary tissue development.

  7. Regulation of appressorium development in pathogenic fungi.

    PubMed

    Ryder, Lauren S; Talbot, Nicholas J

    2015-08-01

    Many plant pathogenic fungi have the capacity to breach the intact cuticles of their plant hosts using specialised infection cells called appressoria. These cells exert physical force to rupture the plant surface, or deploy enzymes in a focused way to digest the cuticle and plant cell wall. They also provide the means by which focal secretion of effectors occurs at the point of plant infection. Development of appressoria is linked to re-modelling of the actin cytoskeleton, mediated by septin GTPases, and rapid cell wall differentiation. These processes are regulated by perception of plant cell surface components, and starvation stress, but also linked to cell cycle checkpoints that control the overall progression of infection-related development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Inheritable stimulatory effects of caffeine on steroidogenic acute regulatory protein expression and cortisol production in human adrenocortical cells.

    PubMed

    Ping, Jie; Lei, You-Ying; Liu, Lian; Wang, Ting-ting; Feng, Ying-hong; Wang, Hui

    2012-01-05

    Caffeine is the most widely consumed psychoactive substance in the world. It can elevate the level of glucocorticoid which is involved in metabolism regulation, stress response, and immune function. However, the specific mechanism has yet to be elucidated. Glucocorticoid is steroid hormone synthesized in adrenal cortex and the key rate-limiting step in its biosynthesis is mediated by steroidogenic acute regulatory protein (StAR). This study was designed to investigate the direct effects and inheritable epigenetic mechanisms of caffeine on cortisol production and StAR expression in human adrenocortical cells. The human adrenocortical cell line NCI-H295A was cultured with 0.4-40μM caffeine. There was a significant increase of the cortisol production in cells. In both acutely and chronically caffeine-treated cell groups, mRNA and protein expressions of StAR were stimulated in a dose-dependent manner. DNA methylation detection via bisulfite-sequencing PCR (BSP) uncovered a single site CpG demethylation at nt -682 within the StAR promoter region. Then we investigated how long the increased StAR expression and the single CpG demethylation could last. The caffeine was withdrawn after 48h of treatment and then the cells were continually subcultured for up to 5 and 10 passages, respectively. The results showed that the StAR expression at post-caffeine passage 10 still increased, as compared with that in the control. The caffeine-induced demethylation at nt -682 in StAR promoter underwent a similar time course as StAR expression does. The present study reveals the direct effect and possible inheritable epigenetic mechanism of caffeine on steroidogenesis in human adrenocortical cells and has implications for our understanding of the consumption of caffeine. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. [Regulation of child development: genetic aspects].

    PubMed

    Ivanov, V I

    1999-01-01

    Since antiquity numerous attempts have been made to evaluate a relative role of heredity and the environment in human development. In the last quarter of the 19th century Francis Galton formulated this problem as a dilemma of "Nature or Nurture"? Actually, human development is the fulfillment of a genetic programme inherited by an individual from his/her parents under quite definite environmental conditions. So, Galton's query is rather to be reformulated into a statement--"Nature or Nurture". The genetic programme of an individual is established during fertilization when the haploid nuclei of an egg-cell and sperm are united to form a diploid nucleus of the zygote. During subsequent proliferation and differentiation, the zygote progressively develops into an embryo, fetus, neonate and so on. Little known about genetic factors regulating human embryogenesis and fetogenesis. Some important inferences were made when it was found that many regulatory genes and gene families comprehensively investigated in Drosophila are close homologues to respective human genes. Among such genes are those coding for transcription factors presumably taking part in cascade regulation of embryogenesis. Some mutations of these genes were found to be involved in the origin of certain malformations in humans (Sonic Hedgehog, HOXD13 etc.). Within a wide spectrum of human malformation syndromes, a considerable part is comprised by chromosomal disorders, especially those related to partial aneusomies (some 2,000 forms). Clinical manifestations of such chromosomal syndromes are highly variable, which calls for application of computer-assisted devices for their classification and diagnosis. In addition to a number of well elaborated English- and French-language databases, Russian-language computer banks of cytogenetic and clinical data aimed at practical use in genetic health care, teaching, and research are already available; among them there are "SYNGEN", "CHRODYS", "CHRODYS-PHOTO" elaborated

  10. Comparison of the Effects of PRKAR1A and PRKAR2B Depletion on Signaling Pathways, Cell Growth, and Cell Cycle Control of Adrenocortical Cells

    PubMed Central

    Basso, F.; Rocchetti, F.; Rodriguez, S.; Nesterova, M.; Cormier, F.; Stratakis, C.; Ragazzon, B.; Bertherat, J.; Rizk-Rabin, M.

    2016-01-01

    The cyclic AMP/protein kinase A signaling cascade is one of the main pathways involved in the pathogenesis of adrenocortical tumors. The PKA R1A and R2B proteins are the most abundant regulatory subunits in endocrine tissues. Inactivating mutations of PRKAR1A are associated with Carney complex and a subset of sporadic tumors and the abundance of R2B protein is low in a subset of secreting adrenocortical adenomas. We previously showed that PRKAR1A and PRKAR2B inactivation have anti-apoptotic effects on the adrenocortical carcinoma cell line H295R. The aim of this study was to compare the effects of PRKAR1A and PRKAR2B depletion on cell proliferation, apoptosis, cell signaling pathways, and cell cycle regulation. We found that PRKAR2B depletion is compensated by an upregulation in the abundance of R1A protein, whereas PRKAR1A depletion has no effect on the production of R2B. The depletion of either PRKAR1A or PRKAR2B promotes the expression of Bcl-xL and resistance to apoptosis; and is associated with a high percentage of cells in S and G2 phase, activates PKA and MEK/ERK pathways, and impairs the expression of IkB leading to activate the NF-κB pathway. Nonetheless, we observed differences in the regulation of cyclins. The depletion of PRKAR1A leads to the accumulation of cyclin D1 and p27kip, whereas the depletion of PRKAR2B promotes the accumulation of cyclin A, B, cdk1, cdc2, and p21Cip. In conclusion, although the depletion of PRKAR1A and PRKAR2B in adrenocortical cells has similar effects on cell proliferation and apoptosis; loss of these PKA subunits differentially affects cyclin expression. PMID:25268545

  11. Comparison of the effects of PRKAR1A and PRKAR2B depletion on signaling pathways, cell growth, and cell cycle control of adrenocortical cells.

    PubMed

    Basso, F; Rocchetti, F; Rodriguez, S; Nesterova, M; Cormier, F; Stratakis, C A; Ragazzon, B; Bertherat, J; Rizk-Rabin, M

    2014-11-01

    The cyclic AMP/protein kinase A signaling cascade is one of the main pathways involved in the pathogenesis of adrenocortical tumors. The PKA R1A and R2B proteins are the most abundant regulatory subunits in endocrine tissues. Inactivating mutations of PRKAR1A are associated with Carney complex and a subset of sporadic tumors and the abundance of R2B protein is low in a subset of secreting adrenocortical adenomas. We previously showed that PRKAR1A and PRKAR2B inactivation have anti-apoptotic effects on the adrenocortical carcinoma cell line H295R. The aim of this study was to compare the effects of PRKAR1A and PRKAR2B depletion on cell proliferation, apoptosis, cell signaling pathways, and cell cycle regulation. We found that PRKAR2B depletion is compensated by an upregulation of R1A protein, whereas PRKAR1A depletion has no effect on the production of R2B. The depletion of either PRKAR1A or PRKAR2B promotes the expression of Bcl-xL and resistance to apoptosis; and is associated with a high percentage of cells in S and G2 phase, activates PKA and MEK/ERK pathways, and impairs the expression of IkB leading to activate the NF-κB pathway. However, we observed differences in the regulation of cyclins. The depletion of PRKAR1A leads to the accumulation of cyclin D1 and p27kip, whereas the depletion of PRKAR2B promotes the accumulation of cyclin A, B, cdk1, cdc2, and p21Cip. In conclusion, although the depletion of PRKAR1A and PRKAR2B in adrenocortical cells has similar effects on cell proliferation and apoptosis; loss of these PKA subunits differentially affects cyclin expression. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Effects of centrifugation on gonadal and adrenocortical steroids in rats

    NASA Technical Reports Server (NTRS)

    Kakihana, R.; Butte, J. C.

    1980-01-01

    Many endocrine systems are sensitive to external changes in the environment. Both the pituitary adrenal and pituitary gonadal systems are affected by stress including centrifugation stress. The effect of centrifugation on the pituitary gonadal and pituitary adrenocortical systems was examined by measuring the gonadal and adrenal steroids in the plasma and brain following different duration and intensity of centrifugation stress in rats. Two studies were completed and the results are presented. The second study was carried out to describe the developmental changes of brain, plasma and testicular testosterone and dihydrotestosterone in Sprague Dawley rats so that the effect of centrifugation stress on the pituitary gonadal syatem could be better evaluated in future studies.

  13. Transcriptional Regulation of Mononuclear Phagocyte Development

    PubMed Central

    Tussiwand, Roxane; Gautier, Emmanuel L.

    2015-01-01

    Mononuclear phagocytes (MP) are a quite unique subset of hematopoietic cells, which comprise dendritic cells (DC), monocytes as well as monocyte-derived and tissue-resident macrophages. These cells are extremely diverse with regard to their origin, their phenotype as well as their function. Developmentally, DC and monocytes are constantly replenished from a bone marrow hematopoietic progenitor. The ontogeny of macrophages is more complex and is temporally linked and specified by the organ where they reside, occurring early during embryonic or perinatal life. The functional heterogeneity of MPs is certainly a consequence of the tissue of residence and also reflects the diverse ontogeny of the subsets. In this review, we will highlight the developmental pathways of murine MP, with a particular emphasis on the transcriptional factors that regulate their development and function. Finally, we will discuss and point out open questions in the field. PMID:26539196

  14. Synchronous adrenocortical neoplasms, paragangliomas, and pheochromocytomas: syndromic considerations regarding an unusual constellation of endocrine tumors.

    PubMed

    LeBlanc, Melissa; Tabrizi, Mohsen; Kapsner, Patricia; Hanson, Joshua Anspach

    2014-12-01

    The most common clinical syndromes presenting with paragangliomas and/or pheochromocytomas as their endocrine components are multiple endocrine neoplasia type 2, neurofibromatosis, Von Hippel-Lindau syndrome, Carney-Stratakis syndrome, Carney triad, and the recently described hereditary paraganglioma syndrome. Only Carney triad is known to also present with adrenocortical adenomas, currently representing the only described syndrome in which all 3 of the aforementioned tumors are found together. In most cases, prototypical lesions of the triad such as gastrointestinal stromal tumor and pulmonary chondromas are also seen. We present a case of a young woman with synchronous paragangliomas, adrenal/extra-adrenal cortical neoplasms, and pheochromocytoma without genetic mutations for multiple endocrine neoplasia 2, Von Hippel-Lindau syndrome, neurofibromatosis, and succinate dehydrogenase. We speculate that this represents a previously undescribed presentation of Carney triad and, at the very least, indicates the need for monitoring for the development of other tumors of the triad.

  15. A case report of adrenocortical carcinosarcoma with oncocytic and primitive neuroectodermal-like features.

    PubMed

    Kao, Chia-Sui; Grignon, David J; Ulbright, Thomas M; Idrees, Muhammad T

    2013-09-01

    Adrenocortical carcinosarcomas are rare aggressive neoplasms; only a few have been reported to date, all with dismal prognosis. These were reported as having varying morphology. We have encountered a case of adrenal carcinosarcoma with an undifferentiated component bearing similarities to primitive neuroectodermal tumors and other areas of oncocytic differentiation. The 48-year-old woman patient presented with abdominal pain and unintended, excessive weight loss. Computed tomographic imaging revealed a tumor located adjacent to the liver and kidney necessitating a partial nephrectomy and hepatectomy. Histologically, the tumor exhibited malignant features. Melan-A, inhibin, calretinin, cytokeratin AE1/AE3, synaptophysin, and neuron-specific enolase were positive immunohistochemically. The patient developed metastasis within 2 months of surgery and is currently alive with disease after chemotherapy. Adrenal carcinosarcoma is a rare highly aggressive malignancy with a wide morphologic spectrum. Recognition of variant morphology and applying correct immunohistochemical studies will aid in reaching an accurate diagnosis.

  16. SIGNALS AND REGULATORS THAT GOVERN STREPTOMYCES DEVELOPMENT

    PubMed Central

    McCormick, Joseph R.; Flärdh, Klas

    2012-01-01

    Streptomyces coelicolor is the genetically best characterized species of a populous genus belonging to the Gram-positive Actinobacteria. Streptomycetes are filamentous soil organisms, well known for the production of a plethora of biologically active secondary metabolic compounds. The Streptomyces developmental life cycle is uniquely complex, and involves coordinated multicellular development with both physiological and morphological differentiation of several cell types, culminating in production of secondary metabolites and dispersal of mature spores. This review presents a current appreciation of the signaling mechanisms used to orchestrate the decision to undergo morphological differentiation, and the regulators and regulatory networks that direct the intriguing development of multigenomic hyphae, first to form specialized aerial hyphae, and then to convert them into chains of dormant spores. This current view of S. coelicolor development is destined for rapid evolution as data from “-omics” studies shed light on gene regulatory networks, new genetic screens identify hitherto unknown players, and the resolution of our insights into the underlying cell biological processes steadily improve. PMID:22092088

  17. Apoptosis regulates notochord development in Xenopus

    PubMed Central

    Malikova, Marina; Van Stry, Melanie

    2009-01-01

    The notochord is the defining characteristic of the chordate embryo, and plays critical roles as a signaling center and as the primitive skeleton. In this study we show that early notochord development in Xenopus embryos is regulated by apoptosis. We find apoptotic cells in the notochord beginning at the neural groove stage and increasing in number as the embryo develops. These dying cells are distributed in an anterior to posterior pattern that is correlated with notochord extension through vacuolization. In axial mesoderm explants, inhibition of this apoptosis causes the length of the notochord to approximately double compared to controls. In embryos however, inhibition of apoptosis decreases the length of the notochord and it is severely kinked. This kinking also spreads from the anterior with developmental stage such that by the tadpole stage, the notochord lacks any recognizable structure, although notochord markers are expressed in a normal temporal pattern. Extension of the somites and neural plate mirror that of the notochord in these embryos, and the somites are severely disorganized. These data indicate that apoptosis is required for normal notochord development during the formation of the anterior-posterior axis, and its role in this process is discussed. PMID:17920580

  18. Non-Invasive Measurement of Adrenocortical Activity in Blue-Fronted Parrots (Amazona aestiva, Linnaeus, 1758)

    PubMed Central

    Ferreira, João C. P.; Fujihara, Caroline J.; Fruhvald, Erika; Trevisol, Eduardo; Destro, Flavia C.; Teixeira, Carlos R.; Pantoja, José C. F.; Schmidt, Elizabeth M. S.; Palme, Rupert

    2015-01-01

    Parrots kept in zoos and private households often develop psychological and behavioural disorders. Despite knowing that such disorders have a multifactorial aetiology and that chronic stress is involved, little is known about their development mainly due to a poor understanding of the parrots’ physiology and the lack of validated methods to measure stress in these species. In birds, blood corticosterone concentrations provide information about adrenocortical activity. However, blood sampling techniques are difficult, highly invasive and inappropriate to investigate stressful situations and welfare conditions. Thus, a non-invasive method to measure steroid hormones is critically needed. Aiming to perform a physiological validation of a cortisone enzyme immunoassay (EIA) to measure glucocorticoid metabolites (GCM) in droppings of 24 Blue-fronted parrots (Amazona aestiva), two experiments were designed. During the experiments all droppings were collected at 3-h intervals. Initially, birds were sampled for 24 h (experiment 1) and one week later assigned to four different treatments (experiment 2): Control (undisturbed), Saline (0.2 mL of 0.9% NaCl IM), Dexamethasone (1 mg/kg IM) and Adrenocorticotropic hormone (ACTH; 25 IU IM). Treatments (always one week apart) were applied to all animals in a cross-over study design. A daily rhythm pattern in GCM excretion was detected but there were no sex differences (first experiment). Saline and dexamethasone treatments had no effect on GCM (not different from control concentrations). Following ACTH injection, GCM concentration increased about 13.1-fold (median) at the peak (after 3–9 h), and then dropped to pre-treatment concentrations. By a successful physiological validation, we demonstrated the suitability of the cortisone EIA to non-invasively monitor increased adrenocortical activity, and thus, stress in the Blue-fronted parrot. This method opens up new perspectives for investigating the connection between behavioural

  19. Non-Invasive Measurement of Adrenocortical Activity in Blue-Fronted Parrots (Amazona aestiva, Linnaeus, 1758).

    PubMed

    Ferreira, João C P; Fujihara, Caroline J; Fruhvald, Erika; Trevisol, Eduardo; Destro, Flavia C; Teixeira, Carlos R; Pantoja, José C F; Schmidt, Elizabeth M S; Palme, Rupert

    2015-01-01

    Parrots kept in zoos and private households often develop psychological and behavioural disorders. Despite knowing that such disorders have a multifactorial aetiology and that chronic stress is involved, little is known about their development mainly due to a poor understanding of the parrots' physiology and the lack of validated methods to measure stress in these species. In birds, blood corticosterone concentrations provide information about adrenocortical activity. However, blood sampling techniques are difficult, highly invasive and inappropriate to investigate stressful situations and welfare conditions. Thus, a non-invasive method to measure steroid hormones is critically needed. Aiming to perform a physiological validation of a cortisone enzyme immunoassay (EIA) to measure glucocorticoid metabolites (GCM) in droppings of 24 Blue-fronted parrots (Amazona aestiva), two experiments were designed. During the experiments all droppings were collected at 3-h intervals. Initially, birds were sampled for 24 h (experiment 1) and one week later assigned to four different treatments (experiment 2): Control (undisturbed), Saline (0.2 mL of 0.9% NaCl IM), Dexamethasone (1 mg/kg IM) and Adrenocorticotropic hormone (ACTH; 25 IU IM). Treatments (always one week apart) were applied to all animals in a cross-over study design. A daily rhythm pattern in GCM excretion was detected but there were no sex differences (first experiment). Saline and dexamethasone treatments had no effect on GCM (not different from control concentrations). Following ACTH injection, GCM concentration increased about 13.1-fold (median) at the peak (after 3-9 h), and then dropped to pre-treatment concentrations. By a successful physiological validation, we demonstrated the suitability of the cortisone EIA to non-invasively monitor increased adrenocortical activity, and thus, stress in the Blue-fronted parrot. This method opens up new perspectives for investigating the connection between behavioural

  20. The Development of Self-Regulation across Early Childhood

    ERIC Educational Resources Information Center

    Montroy, Janelle J.; Bowles, Ryan P.; Skibbe, Lori E.; McClelland, Megan M.; Morrison, Frederick J.

    2016-01-01

    The development of early childhood self-regulation is often considered an early life marker for later life successes. Yet little longitudinal research has evaluated whether there are different trajectories of self-regulation development across children. This study investigates the development of behavioral self-regulation between the ages of 3 and…

  1. The Development of Self-Regulation across Early Childhood

    ERIC Educational Resources Information Center

    Montroy, Janelle J.; Bowles, Ryan P.; Skibbe, Lori E.; McClelland, Megan M.; Morrison, Frederick J.

    2016-01-01

    The development of early childhood self-regulation is often considered an early life marker for later life successes. Yet little longitudinal research has evaluated whether there are different trajectories of self-regulation development across children. This study investigates the development of behavioral self-regulation between the ages of 3 and…

  2. Adipocyte-Derived Hormone Leptin Is a Direct Regulator of Aldosterone Secretion, Which Promotes Endothelial Dysfunction and Cardiac Fibrosis.

    PubMed

    Huby, Anne-Cécile; Antonova, Galina; Groenendyk, Jake; Gomez-Sanchez, Celso E; Bollag, Wendy B; Filosa, Jessica A; Belin de Chantemèle, Eric J

    2015-12-01

    In obesity, the excessive synthesis of aldosterone contributes to the development and progression of metabolic and cardiovascular dysfunctions. Obesity-induced hyperaldosteronism is independent of the known regulators of aldosterone secretion, but reliant on unidentified adipocyte-derived factors. We hypothesized that the adipokine leptin is a direct regulator of aldosterone synthase (CYP11B2) expression and aldosterone release and promotes cardiovascular dysfunction via aldosterone-dependent mechanisms. Immunostaining of human adrenal cross-sections and adrenocortical cells revealed that adrenocortical cells coexpress CYP11B2 and leptin receptors. Measurements of adrenal CYP11B2 expression and plasma aldosterone levels showed that increases in endogenous (obesity) or exogenous (infusion) leptin dose-dependently raised CYP11B2 expression and aldosterone without elevating plasma angiotensin II, potassium or corticosterone. Neither angiotensin II receptors blockade nor α and β adrenergic receptors inhibition blunted leptin-induced aldosterone secretion. Identical results were obtained in cultured adrenocortical cells. Enhanced leptin signaling elevated CYP11B2 expression and plasma aldosterone, whereas deficiency in leptin or leptin receptors blunted obesity-induced increases in CYP11B2 and aldosterone, ruling out a role for obesity per se. Leptin increased intracellular calcium, elevated calmodulin and calmodulin-kinase II expression, whereas calcium chelation blunted leptin-mediated increases in CYP11B2, in adrenocortical cells. Mineralocorticoid receptor blockade blunted leptin-induced endothelial dysfunction and increases in cardiac fibrotic markers. Leptin is a newly described regulator of aldosterone synthesis that acts directly on adrenal glomerulosa cells to increase CYP11B2 expression and enhance aldosterone production via calcium-dependent mechanisms. Furthermore, leptin-mediated aldosterone secretion contributes to cardiovascular disease by promoting

  3. Mutational analysis of PRKAR1A and Gs(alpha) in sporadic adrenocortical tumors.

    PubMed

    Libé, R; Mantovani, G; Bondioni, S; Lania, A G; Pedroni, C; Beck-Peccoz, P; Spada, A

    2005-05-01

    Little is known about the pathogenesis of adrenocortical tumors. The cAMP-dependent pathway is physiologically activated by ACTH in adrenocortical cells and different components of this cascade may be altered in some functioning adrenocortical tumors. Recently, mutations of the gene encoding the PKA type 1 A regulatory subunit (R1 A), PRKAR1A, associated with loss of heterozygosity (LOH) at PRKAR1A locus, have been demonstrated in primary pigmented nodular adrenocortical disease (PPNAD), either isolated or associated with Carney complex. Moreover, activating mutations of the Gs(alpha) gene (the gsp oncogene) have also been found in a small number of adrenocortical cortisol-secreting adenomas. Aim of this study was to investigate the presence of such genetic alterations on a series of 10 ACTH-independent Cushing syndrome due to non-PPNAD adrenocortical adenomas. The coding sequence of PRKAR1A, evaluated by PCR and direct sequencing analysis, revealed the absence of mutations while heterozygosity for at least 1 polymorphism excluded LOH in most tumors. In one single adenoma gsp mutation was detected. In conclusion, we provide additional evidence that the only mutational changes able to activate the cAMP pathway so far identified, i.e. PRKAR1A mutations and gsp oncogene, are a rare event in adrenocortical tumors.

  4. Cyfip1 Regulates Presynaptic Activity during Development

    PubMed Central

    Hsiao, Kuangfu; Harony-Nicolas, Hala; Buxbaum, Joseph D.

    2016-01-01

    Copy number variations encompassing the gene encoding Cyfip1 have been associated with a variety of human diseases, including autism and schizophrenia. Here we show that juvenile mice hemizygous for Cyfip1 have altered presynaptic function, enhanced protein translation, and increased levels of F-actin. In developing hippocampus, reduced Cyfip1 levels serve to decrease paired pulse facilitation and increase miniature EPSC frequency without a change in amplitude. Higher-resolution examination shows these changes to be caused primarily by an increase in presynaptic terminal size and enhanced vesicle release probability. Short hairpin-mediated knockdown of Cyfip1 coupled with expression of mutant Cyfip1 proteins indicates that the presynaptic alterations are caused by dysregulation of the WAVE regulatory complex. Such dysregulation occurs downstream of Rac1 as acute exposure to Rac1 inhibitors rescues presynaptic responses in culture and in hippocampal slices. The data serve to highlight an early and essential role for Cyfip1 in the generation of normally functioning synapses and suggest a means by which changes in Cyfip1 levels could impact the generation of neural networks and contribute to abnormal and maladaptive behaviors. SIGNIFICANCE STATEMENT Several developmental brain disorders have been associated with gene duplications and deletions that serve to increase or decrease levels of encoded proteins. Cyfip1 is one such protein, but the role it plays in brain development is poorly understood. We asked whether decreased Cyfip1 levels altered the function of developing synapses. The data show that synapses with reduced Cyfip1 are larger and release neurotransmitter more rapidly. These effects are due to Cyfip1's role in actin polymerization and are reversed by expression of a Cyfip1 mutant protein retaining actin regulatory function or by inhibiting Rac1. Thus, Cyfip1 has a more prominent early role regulating presynaptic activity during a stage of development when

  5. Transcriptional regulation of cranial sensory placode development

    PubMed Central

    Moody, Sally A.; LaMantia, Anthony-Samuel

    2015-01-01

    Cranial sensory placodes derive from discrete patches of the head ectoderm, and give rise to numerous sensory structures. During gastrulation, a specialized “neural border zone” forms around the neural plate in response to interactions between the neural and non-neural ectoderm and signals from adjacent mesodermal and/or endodermal tissues. This zone subsequently gives rise to two distinct precursor populations of the peripheral nervous system: the neural crest and the pre-placodal ectoderm (PPE). The PPE is a common field from which all cranial sensory placodes arise (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, otic). Members of the Six family of transcription factors are major regulators of PPE specification, in partnership with co-factor proteins such as Eya. Six gene activity also maintains tissue boundaries between the PPE, neural crest and epidermis by repressing genes that specify the fates of those adjacent ectodermally-derived domains. As the embryo acquires anterior-posterior identity, the PPE becomes transcriptionally regionalized, and it subsequently subdivides into specific placodes with distinct developmental fates in response to signaling from adjacent tissues. Each placode is characterized by a unique transcriptional program that leads to the differentiation of highly specialized cells, such as neurosecretory cells, somatic sensory receptor cells, chemosensory neurons, peripheral glia and supporting cells. In this review, we summarize the transcriptional and signaling factors that regulate key steps of placode development, influence subsequent sensory neuron specification, and discuss what is known about mutations in some of the essential PPE genes that underlie human congenital syndromes. PMID:25662264

  6. Evolutionary development of redox regulation in chloroplasts.

    PubMed

    Balsera, Monica; Uberegui, Estefania; Schürmann, Peter; Buchanan, Bob B

    2014-09-20

    The post-translational modification of thiol groups stands out as a key strategy that cells employ for metabolic regulation and adaptation to changing environmental conditions. Nowhere is this more evident than in chloroplasts-the O2-evolving photosynthetic organelles of plant cells that are fitted with multiple redox systems, including the thioredoxin (Trx) family of oxidoreductases functional in the reversible modification of regulatory thiols of proteins in all types of cells. The best understood member of this family in chloroplasts is the ferredoxin-linked thioredoxin system (FTS) by which proteins are modified via light-dependent disulfide/dithiol (S-S/2SH) transitions. Discovered in the reductive activation of enzymes of the Calvin-Benson cycle in illuminated chloroplast preparations, recent studies have extended the role of the FTS far beyond its original boundaries to include a spectrum of cellular processes. Together with the NADP-linked thioredoxin reductase C-type (NTRC) and glutathione/glutaredoxin systems, the FTS also plays a central role in the response of chloroplasts to different types of stress. The comparisons of redox regulatory networks functional in chloroplasts of land plants with those of cyanobacteria-prokaryotes considered to be the ancestors of chloroplasts-and different types of algae summarized in this review have provided new insight into the evolutionary development of redox regulation, starting with the simplest O2-evolving organisms. The evolutionary appearance, mode of action, and specificity of the redox regulatory systems functional in chloroplasts, as well as the types of redox modification operating under diverse environmental conditions stand out as areas for future study.

  7. Adrenal incidentalomas: risk of adrenocortical carcinoma and clinical outcomes.

    PubMed

    O'Neill, Christine J; Spence, Andrew; Logan, Barney; Suliburk, James W; Soon, Patsy S; Learoyd, Diana L; Sidhu, Stan B; Sywak, Mark S

    2010-10-01

    The number of incidentally discovered adrenal lesions is increasing due to the widespread use of abdominal imaging. Although most incidentalomas are benign, larger suspicious lesions will require adrenalectomy. The aim of this study is to determine the risk of malignancy in patients undergoing surgery for adrenal incidentaloma; and to compare clinical outcomes in those with adrenocortical carcinoma (ACC) based on the mode of presentation. A retrospective study of consecutive patients who underwent adrenalectomy between 1995 and 2008 was performed. Data were retrieved from a prospectively maintained adrenal tumor database. Those with adrenal incidentaloma were selected and histopathology reviewed. All patients with ACC (presenting with symptoms or incidentally) during the same time period were identified and clinical outcomes compared. Adrenalectomy was performed in 274 patients of whom 73 (27%) were characterized pre-operatively as incidentaloma. Benign, non-functioning adrenocortical adenoma was the most common histopathological finding (46 patients, 63%). There was a trend (P = 0.08) towards increased survival amongst the seven patients with ACC presenting incidentally compared to the nine patients with symptomatic ACC. Adrenal incidentalomas have a small but important risk of malignancy. ACC presenting as incidentaloma appear to have a more favorable prognosis than symptomatic or functioning ACC. J. Surg. Oncol. 2010;102:450-453. © 2010 Wiley-Liss, Inc.

  8. Bilateral Adrenocortical Masses Producing Aldosterone and Cortisol Independently

    PubMed Central

    Lee, Seung-Eun; Lee, You-Bin; Seok, Hyeri; Shin, In Seub; Eun, Yeong Hee; Kim, Jung-Han; Oh, Young Lyun

    2015-01-01

    A 31-year-old woman was referred to our hospital with symptoms of hypertension and bilateral adrenocortical masses with no feature of Cushing syndrome. The serum aldosterone/renin ratio was elevated and the saline loading test showed no suppression of the plasma aldosterone level, consistent with a diagnosis of primary hyperaldosteronism. Overnight and low-dose dexamethasone suppression tests showed no suppression of serum cortisol, indicating a secondary diagnosis of subclinical Cushing syndrome. Adrenal vein sampling during the low-dose dexamethasone suppression test demonstrated excess secretion of cortisol from the left adrenal mass. A partial right adrenalectomy was performed, resulting in normalization of blood pressure, hypokalemia, and high aldosterone level, implying that the right adrenal mass was the main cause of the hyperaldosteronism. A total adrenalectomy for the left adrenal mass was later performed, resulting in a normalization of cortisol level. The final diagnosis was bilateral adrenocortical adenomas, which were secreting aldosterone and cortisol independently. This case is the first report of a concurrent cortisol-producing left adrenal adenoma and an aldosterone-producing right adrenal adenoma in Korea, as demonstrated by adrenal vein sampling and sequential removal of adrenal masses. PMID:26248855

  9. Role of ALADIN in Human Adrenocortical Cells for Oxidative Stress Response and Steroidogenesis

    PubMed Central

    Jühlen, Ramona; Idkowiak, Jan; Taylor, Angela E.; Kind, Barbara; Arlt, Wiebke; Huebner, Angela; Koehler, Katrin

    2015-01-01

    Triple A syndrome is caused by mutations in AAAS encoding the protein ALADIN. We investigated the role of ALADIN in the human adrenocortical cell line NCI-H295R1 by either over-expression or down-regulation of ALADIN. Our findings indicate that AAAS knock-down induces a down-regulation of genes coding for type II microsomal cytochrome P450 hydroxylases CYP17A1 and CYP21A2 and their electron donor enzyme cytochrome P450 oxidoreductase, thereby decreasing biosynthesis of precursor metabolites required for glucocorticoid and androgen production. Furthermore we demonstrate that ALADIN deficiency leads to increased susceptibility to oxidative stress and alteration in redox homeostasis after paraquat treatment. Finally, we show significantly impaired nuclear import of DNA ligase 1, aprataxin and ferritin heavy chain 1 in ALADIN knock-down cells. We conclude that down-regulating ALADIN results in decreased oxidative stress response leading to alteration in steroidogenesis, highlighting our knock-down cell model as an important in-vitro tool for studying the adrenal phenotype in triple A syndrome. PMID:25867024

  10. Blunted Opiate Modulation of Hypothalamic-Pituitary-Adrenocortical Activity in Men and Women Who Smoke

    PubMed Central

    al’Absi, Mustafa; Wittmers, Lorentz E.; Hatsukami, Dorothy; Westra, Ruth

    2016-01-01

    Objective To examine the extent to which nicotine dependence alters endogenous opioid regulation of the hypothalamic-pituitary-adrenocortical (HPA) axis functions. Endogenous opiates play an important role in regulating mood, pain, and drug reward. They also regulate the HPA functions. Previous work has demonstrated an abnormal HPA response to psychological stress among dependent smokers. Methods Smokers and nonsmokers (total n = 48 participants) completed two sessions during which a placebo or 50 mg of naltrexone was administered, using a double-blind design. Blood and saliva samples, cardiovascular and mood measures were obtained during a resting absorption period, after exposure to two noxious stimuli, and during an extended recovery period. Thermal pain threshold and tolerance were assessed in both sessions. Participants also rated pain during a 90-second cold pressor test. Results Opioid blockade increased adrenocorticotropin, plasma cortisol, and salivary cortisol levels; these increases were enhanced by exposure to the noxious stimuli. These responses were blunted in smokers relative to nonsmokers. Smokers tended to report less pain than nonsmokers, and women reported more pain during both pain procedures, although sex differences in pain were significant only among nonsmokers. Conclusions We conclude that nicotine dependence is associated with attenuated opioid modulation of the HPA. This dysregulation may play a role in the previously observed blunted responses to stress among dependent smokers. PMID:18799426

  11. Regulation & Development of Membrane Transport Processes.

    DTIC Science & Technology

    1985-05-15

    conducted studies on the regulation of a variety of trans- port processes as a function of cell cycle, growth phase, malignant transfor- mation, hormone ...fertilization of ideas. The contributions dealt with regulatory processes evoked by two kinds of stim- uli: (1) external stimuli, such as hormones or...Mineralocorticoid Regulation of Sodium and Potassium Transport by the Cortical Collecting Duct 89 Bruce M. Koeppen and Gerhard H. Giebisch 6. Hormonal Regulation of

  12. Cell Cycle Regulators during Human Atrial Development

    PubMed Central

    Kim, Won Ho; Joo, Chan Uhng; Ku, Ja Hong; Ryu, Chul Hee; Koh, Keum Nim; Koh, Gou Young; Ko, Jae Ki

    1998-01-01

    Objectives The molecular mechanisms that regulate cardiomyocyte cell cycle and terminal differentiation in humans remain largely unknown. To determine which cyclins, cyclin dependent kinases (CDKs) and cyclin kinase inhibitors (CKIs) are important for cardiomyocyte proliferation, we have examined protein levels of cyclins, CDKs and CKIs during normal atrial development in humans. Methods Atrial tissues were obtained in the fetus from inevitable abortion and in the adult during surgery, Cyclin and CDK proteins were determined by Western blot analysis, CDK activities were determined by phosphorylation amount using specific substrate. Results Most cyclins and CDKs were high during the fetal period and their levels decreased at different rates during the adult period. While the protein levels of cyclin D1, cyclin D3, CDK4, CDK6 and CDK2 were still detectable in adult atria, the protein levels of cyclin E, cyclin A, cyclin B, cdc2 and PCNA were not detectable. Interestingly, p27KIP 1 protein increased markedly in the adult period, while p21C IP 1 protein in atria was detectable only in the fetal period. While the activities of CDK6, CDK2 and cdc2 decreased markedly, the activity of CDK4 did not change from the fetal period to the adult period. Conclusion These findings indicate that marked reduction of protein levels and activities of cyclins and CDKs, and marked induction of p27KIP 1 in atria, are associated with the withdrawal of cardiac cell cycle in adult humans. PMID:9735660

  13. Cytokinin signaling regulates cambial development in poplar.

    PubMed

    Nieminen, Kaisa; Immanen, Juha; Laxell, Marjukka; Kauppinen, Leila; Tarkowski, Petr; Dolezal, Karel; Tähtiharju, Sari; Elo, Annakaisa; Decourteix, Mélanie; Ljung, Karin; Bhalerao, Rishikesh; Keinonen, Kaija; Albert, Victor A; Helariutta, Ykä

    2008-12-16

    Although a substantial proportion of plant biomass originates from the activity of vascular cambium, the molecular basis of radial plant growth is still largely unknown. To address whether cytokinins are required for cambial activity, we studied cytokinin signaling across the cambial zones of 2 tree species, poplar (Populus trichocarpa) and birch (Betula pendula). We observed an expression peak for genes encoding cytokinin receptors in the dividing cambial cells. We reduced cytokinin levels endogenously by engineering transgenic poplar trees (P. tremula x tremuloides) to express a cytokinin catabolic gene, Arabidopsis CYTOKININ OXIDASE 2, under the promoter of a birch CYTOKININ RECEPTOR 1 gene. Transgenic trees showed reduced concentration of a biologically active cytokinin, correlating with impaired cytokinin responsiveness. In these trees, both apical and radial growth was compromised. However, radial growth was more affected, as illustrated by a thinner stem diameter than in WT at same height. To dissect radial from apical growth inhibition, we performed a reciprocal grafting experiment. WT scion outgrew the diameter of transgenic stock, implicating cytokinin activity as a direct determinant of radial growth. The reduced radial growth correlated with a reduced number of cambial cell layers. Moreover, expression of a cytokinin primary response gene was dramatically reduced in the thin-stemmed transgenic trees. Thus, a reduced level of cytokinin signaling is the primary basis for the impaired cambial growth observed. Together, our results show that cytokinins are major hormonal regulators required for cambial development.

  14. Temperament moderates the influence of periadolescent social experience on behavior and adrenocortical activity in adult male rats.

    PubMed

    Caruso, M J; McClintock, M K; Cavigelli, S A

    2014-08-01

    Adolescence is a period of significant behavioral and physiological maturation, particularly related to stress responses. Animal studies that have tested the influence of adolescent social experiences on stress-related behavioral and physiological development have led to complex results. We used a rodent model of neophobia to test the hypothesis that the influence of adolescent social experience on adult behavior and adrenocortical function is modulated by pre-adolescent temperament. Exploratory activity was assessed in 53 male Sprague-Dawley rats to classify temperament and then they were housed in one of the three conditions during postnatal days (PND) 28-46: (1) with familiar kin, (2) with novel social partners, or (3) individually with no social partners. Effects on adult adrenocortical function were evaluated from fecal samples collected while rats were individually-housed and exposed to a 1-hour novel social challenge during PND 110-114. Adolescent-housing with novel or no social partners led to reduced adult glucocorticoid production compared to adolescent-housing with familiar littermates. Additionally, highly-exploratory pre-weanling rats that were housed with novel social partners during adolescence exhibited increased exploratory behavior and a more rapid return to basal glucocorticoid production in adulthood compared to those housed with familiar or no social partners during adolescence and compared to low-exploratory rats exposed to novel social partners. In sum, relatively short-term adolescent social experiences can cause transient changes in temperament and potentially longer-term changes in recovery of glucocorticoid production in response to adult social challenges. Furthermore, early temperament may modulate the influence of adolescent experiences on adult behavioral and adrenocortical function. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Single nucleotide polymorphism microarray analysis in cortisol-secreting adrenocortical adenomas identifies new candidate genes and pathways.

    PubMed

    Ronchi, Cristina L; Leich, Ellen; Sbiera, Silviu; Weismann, Dirk; Rosenwald, Andreas; Allolio, Bruno; Fassnacht, Martin

    2012-03-01

    The genetic mechanisms underlying adrenocortical tumor development are still largely unknown. We used high-resolution single nucleotide polymorphism microarrays (Affymetrix SNP 6.0) to detect copy number alterations (CNAs) and copy-neutral losses of heterozygosity (cnLOH) in 15 cortisol-secreting adrenocortical adenomas with matched blood samples. We focused on microalterations aiming to discover new candidate genes involved in early tumorigenesis and/or autonomous cortisol secretion. We identified 962 CNAs with a median of 18 CNAs per sample. Half of them involved noncoding regions, 89% were less than 100 kb, and 28% were found in at least two samples. The most frequently gained regions were 5p15.33, 6q16.1, 7p22.3-22.2, 8q24.3, 9q34.2-34.3, 11p15.5, 11q11, 12q12, 16q24.3, 20p11.1-20q21.11, and Xq28 (≥20% of cases), most of them being identified in the same three adenomas. These regions contained among others genes like NOTCH1, CYP11B2, HRAS, and IGF2. Recurrent losses were less common and smaller than gains, being mostly localized at 1p, 6q, and 11q. Pathway analysis revealed that Notch signaling was the most frequently altered. We identified 46 recurrent CNAs that each affected a single gene (31 gains and 15 losses), including genes involved in steroidogenesis (CYP11B1) or tumorigenesis (CTNNB1, EPHA7, SGK1, STIL, FHIT). Finally, 20 small cnLOH in four cases affecting 15 known genes were found. Our findings provide the first high-resolution genome-wide view of chromosomal changes in cortisol-secreting adenomas and identify novel candidate genes, such as HRAS, EPHA7, and SGK1. Furthermore, they implicate that the Notch1 signaling pathway might be involved in the molecular pathogenesis of adrenocortical tumors.

  16. Development of a Fluidic Oxygen Regulator

    DTIC Science & Technology

    1977-01-01

    IMaJ «aa^^ ■"-i*--’L’ "’"’-—"’"lllMini pp Figure 5a. Breadboard of 0_ Regulator Figure 5b. Breadboard of O , Regulator (second view) 12 "’■■- "max i

  17. In healthy young and elderly adults, hypothalamic-pituitary-adrenocortical axis reactivity (HPA AR) varies with increasing pharmacological challenge and with age, but not with gender.

    PubMed

    Hatzinger, Martin; Brand, Serge; Herzig, Natalie; Holsboer-Trachsler, Edith

    2011-10-01

    Hypothalamic-pituitary-adrenocortical axis reactivity (HPA AR) is the key indicator of the psychophysiological response to stress. The HPA AR may vary with age and gender. To investigate these factors concurrently, the aims of the present study were to observe HPA AR (plasma ACTH and plasma cortisol) in response to a pharmacological challenge (dexamethasone/corticotropin releasing hormone test: DEX/CRH-test) and as a function of age and gender. 19 young (10 females and 9 males; mean age = 24.05 years) and 23 elderly (11 females and 12 males; mean age = 71.61 years) healthy volunteers took part in the study. To assess HPA AR, participants underwent the combined DEX/CRH test applied with the following DEX doses: 0.75, 1.5, and 3.0 mg, respectively. A dose-dependent response was observed in young adult participants, but not in elderly participants. With increasing DEX doses, ACTH and cortisol values decreased in young adult participants, while the decrease was blunted among elderly compared to young adult participants. No differences were observed for gender. Results point to diminished HPA axis sensitivity as an effect of normal aging, irrespective of gender. Therefore, altered HPA regulation in old age should be taken into account for developing new therapeutic approaches acting on the HPA axis and its receptor mechanisms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Future Regulations – A Catalyst for Technology Development

    EPA Science Inventory

    Summary of current mobile source regulations and EPA mobile source regulatory authority with an emphasis on how EPA regulations are a driver for the development and introduction of automotive technology.

  19. Developing self-regulation in early childhood☆

    PubMed Central

    Rothbart, Mary K.; Tang, Yiyuan

    2014-01-01

    Studies using fMRI at rest and during task performance have revealed a set of brain areas and their connections that can be linked to the ability of children to regulate their thoughts, actions and emotions. Higher self-regulation has also been related favorable outcomes in adulthood. These findings have set the occasion for methods of improving self-regulation via training. A tool kit of such methods is now available. It remains to be seen if educators will use these new findings and tools to forge practical methods for improving the lives of the world's children. PMID:24563845

  20. Analysis of circulating microRNAs in adrenocortical tumors.

    PubMed

    Szabó, Diana Rita; Luconi, Michaela; Szabó, Peter M; Tóth, Miklós; Szücs, Nikolette; Horányi, János; Nagy, Zoltán; Mannelli, Massimo; Patócs, Attila; Rácz, Károly; Igaz, Peter

    2014-03-01

    Differential diagnosis of adrenocortical adenoma (ACA) and carcinoma is of pivotal clinical relevance, as the prognosis and clinical management of benign and malignant adrenocortical tumors (ACTs) is entirely different. Circulating microRNAs (miRNAs) are promising biomarker candidates of malignancy in several tumors; however, there are still numerous technical problems associated with their analysis. The objective of our study was to investigate circulating miRNAs in ACTs and to evaluate their potential applicability as biomarkers of malignancy. We have also addressed technical questions including the choice of profiling and reference gene used. A total of 25 preoperative plasma samples obtained from patients with ACAs and carcinomas were studied by microarray and quantitative real-time PCR. None of the three miRNAs (hsa-miR-192, hsa-mir-197 and hsa-miR-1281) found as differentially expressed in plasma samples in our microarray screening could be validated by quantitative real-time PCR. In contrast, of the selected eight miRNAs reported in the literature as differentially expressed in ACT tissues, five (hsa-miR-100, hsa-miR-181b, hsa-miR-184, hsa-miR-210 and hsa-miR-483-5p) showed a statistically significant overexpression in adrenocortical cancer vs adenoma when normalized on hsa-miR-16 as a reference gene. Receiver operator characteristic analysis of data revealed that the combination of dCThsa-miR-210 - dCThsa-miR-181b and dCThsa-miR-100/dCThsa-miR-181b showed the highest diagnostic accuracy (area under curve 0.87 and 0.85, respectively). In conclusion, we have found significant differences in expression of circulating miRNAs between ACAs and carcinomas, but their diagnostic accuracy is not yet high enough for clinical application. Further studies on larger cohorts of patients are needed to assess the diagnostic and prognostic potential application of circulating miRNA markers.

  1. Modulation of proteomic profile in H295R adrenocortical cell line induced by mitotane.

    PubMed

    Stigliano, A; Cerquetti, L; Borro, M; Gentile, G; Bucci, B; Misiti, S; Piergrossi, P; Brunetti, E; Simmaco, M; Toscano, V

    2008-03-01

    Mitotane, 1,1-dichloro-2-(o-chlorophenyl)-2-(p-chloro-phenyl) ethane (o,p'-DDD), is a compound that represents the effective agent in the treatment of the adrenocortical carcinoma (ACC), able to block cortisol synthesis. In this type of cancer, the biological mechanism induced by this treatment remains still unknown. In this study, we have already shown a greater impairment in the first steps of the steroidogenesis and recognized a little effect on cell cycle. We also evaluated the variation of proteomic profile of the H295R ACC cell line, either in total cell extract or in mitochondria-enriched fraction after treatment with mitotane. In total cell extracts, triose phosphate isomerase, alpha-enolase, D-3-phosphoglycerate dehydrogenase, peroxiredoxin II and VI, heat shock protein 27, prohibitin, histidine triad nucleotide-binding protein, and profilin-1 showed a different expression. In the mitochondrial fraction, the following proteins appeared to be down regulated: aldolase A, peroxiredoxin I, heterogenous nuclear ribonucleoprotein A2/B1, tubulin-beta isoform II, heat shock cognate 71 kDa protein, and nucleotide diphosphate kinase, whereas adrenodoxin reductase, cathepsin D, and heat shock 70 kDa protein 1A were positively up-regulated. This study represents the first proteomic study on the mitotane effects on ACC. It permits to identify some protein classes affected by the drug involved in energetic metabolism, stress response, cytoskeleton structure, and tumorigenesis.

  2. [11C]metomidate positron emission tomography of adrenocortical tumors in correlation with histopathological findings.

    PubMed

    Hennings, Joakim; Lindhe, Orjan; Bergström, Mats; Långström, Bengt; Sundin, Anders; Hellman, Per

    2006-04-01

    Adrenal incidentalomas are common findings necessitating extensive laboratory work-up and repetitive radiological examinations. Positron emission tomography (PET) using (11)C-labeled metomidate (MTO) has previously been described as a tool for specific adrenocortical imaging. We evaluated 212 MTO-PET examinations in 173 patients to identify its role in the management of adrenal tumors. Seventy-five histopathological examinations from 73 patients were retrospectively analyzed. All examinations were performed at a referral center. Patients who were operated or biopsied due to adrenal tumors had histopathological diagnoses of adrenocortical adenoma (n = 26), adrenocortical cancer (ACC; n = 13), adrenocortical hyperplasia (n = 8), pheochromocytoma (n = 6), metastasis (n = 3), and tumors of nonadrenal origin (n = 19). The main outcome measures were statistical analyses and findings while scrutinizing images. The hypothesis that MTO-PET is of value in the management of adrenal tumors, especially incidentaloma, was stated before data collection. Sensitivity was 0.89 and specificity was 0.96 for MTO-PET in proving adrenocortical origin of the lesions. Pheochromocytomas, metastases to the adrenal gland, and nonadrenal masses were all MTO negative. PET measurements using standardized uptake values (SUV) in pathological adrenocortical tissue could differentiate lesions larger than 1-1.5 cm from normal adrenocortical tissue. SUV was higher in aldosterone-hypersecreting adenomas, and the SUV ratio between the tumor and the contralateral gland was significantly higher in all hormonally hypersecreting adenomas as well as in ACC. MTO-PET is a specific and sensitive method for diagnosing adrenocortical tumors. MTO-PET is useful in the imaging work-up of adrenal incidentalomas and may be beneficial for the examination of patients with primary aldosteronism or ACC.

  3. Design and develop speed/pressure regulator

    SciTech Connect

    Hasanul Basher, A.M.

    1993-09-01

    The Physics Division at Oak Ridge National Laboratory has several recirculating water cooling systems. One of them supplies deionized water at 150 psi, which is mainly used for cooling magnet windings at the Oak Ridge Isochronous Cyclotron (ORIC). The system has three 125-hp water pumps, each of which is capable of supplying water at the rate of 1000 gpm. One of the major requirements of this water supply system is that the supply pressure must be kept constant. An adjustable-frequency speed controller was recently installed to control the speed of one of the pump motors. A servo-system was provided with the adjustable-frequency controller for regulating motor speed and, subsequently, the water pressure. After unsuccessful attempts to operate the servo, it was concluded that the regulator may not work for the existing system. Prior to installation of the variable-frequency controller, pressure regulation was accomplished with a pneumatically controlled load by-pass valve. To maintain constant pressure in the system, it is necessary to run always at full load, even if full load is not on the system. Hence, there is a waste of energy when full load is not connected to the system. So, designing and implementing one regulator that works at any load condition has become necessary. This report discusses the design of such a pressure regulator.

  4. GLUT1 expression in pediatric adrenocortical tumors: a promising candidate to predict clinical behavior.

    PubMed

    Pinheiro, Céline; Granja, Sara; Longatto-Filho, Adhemar; Faria, André M; Fragoso, Maria C B V; Lovisolo, Silvana M; Bonatelli, Murilo; Costa, Ricardo F A; Lerário, Antonio M; Almeida, Madson Q; Baltazar, Fátima; Zerbini, Maria C N

    2017-09-08

    Discrimination between benign and malignant tumors is a challenging process in pediatric adrenocortical tumors. New insights in the metabolic profile of pediatric adrenocortical tumors may contribute to this distinction, predict prognosis, as well as identify new molecular targets for therapy. The aim of this work is to characterize the expression of the metabolism-related proteins MCT1, MCT2, MCT4, CD147, CD44, GLUT1 and CAIX in a series of pediatric adrenocortical tumors. A total of 50 pediatric patients presenting adrenocortical tumors, including 41 clinically benign and 9 clinically malignant tumors, were included. Protein expression was evaluated using immunohistochemistry in samples arranged in tissue microarrays. The immunohistochemical analysis showed a significant increase in plasma membrane expression of GLUT1 in malignant lesions, when compared to benign lesions (p=0.004), being the expression of this protein associated with shorter overall and disease-free survival (p=0.004 and p=0.001, respectively). Although significant differences were not observed for proteins other than GLUT1, MCT1, MCT4 and CD147 were highly expressed in pediatric adrenocortical neoplasias (around 90%). GLUT1 expression was differentially expressed in pediatric adrenocortical tumors, with higher expression in clinically malignant tumors, and associated with shorter survival, suggesting a metabolic remodeling towards a hyperglycolytic phenotype in this malignancy.

  5. Hepatocyte Growth Factor/cMET Pathway Activation Enhances Cancer Hallmarks in Adrenocortical Carcinoma.

    PubMed

    Phan, Liem M; Fuentes-Mattei, Enrique; Wu, Weixin; Velazquez-Torres, Guermarie; Sircar, Kanishka; Wood, Christopher G; Hai, Tao; Jimenez, Camilo; Cote, Gilbert J; Ozsari, Levent; Hofmann, Marie-Claude; Zheng, Siyuan; Verhaak, Roeland; Pagliaro, Lance; Cortez, Maria Angelica; Lee, Mong-Hong; Yeung, Sai-Ching J; Habra, Mouhammed Amir

    2015-10-01

    Adrenocortical carcinoma is a rare malignancy with poor prognosis and limited response to chemotherapy. Hepatocyte growth factor (HGF) and its receptor cMET augment cancer growth and resistance to chemotherapy, but their role in adrenocortical carcinoma has not been examined. In this study, we investigated the association between HGF/cMET expression and cancer hallmarks of adrenocortical carcinoma. Transcriptomic and immunohistochemical analyses indicated that increased HGF/cMET expression in human adrenocortical carcinoma samples was positively associated with cancer-related biologic processes, including proliferation and angiogenesis, and negatively correlated with apoptosis. Accordingly, treatment of adrenocortical carcinoma cells with exogenous HGF resulted in increased cell proliferation in vitro and in vivo while short hairpin RNA-mediated knockdown or pharmacologic inhibition of cMET suppressed cell proliferation and tumor growth. Moreover, exposure of cells to mitotane, cisplatin, or radiation rapidly induced pro-cMET expression and was associated with an enrichment of genes (e.g., CYP450 family) related to therapy resistance, further implicating cMET in the anticancer drug response. Together, these data suggest an important role for HGF/cMET signaling in adrenocortical carcinoma growth and resistance to commonly used treatments. Targeting cMET, alone or in combination with other drugs, could provide a breakthrough in the management of this aggressive cancer.

  6. Analysis of histological and immunohistochemical patterns of benign and malignant adrenocortical tumors by computerized morphometry.

    PubMed

    Dalino Ciaramella, Paolo; Vertemati, Maurizio; Petrella, Duccio; Bonacina, Edgardo; Grossrubatscher, Erika; Duregon, Eleonora; Volante, Marco; Papotti, Mauro; Loli, Paola

    2017-07-01

    Diagnosis of benign and purely localized malignant adrenocortical lesions is still a complex issue. Moreover, histology-based diagnosis may suffer of a moment of subjectivity due to inter- and intra-individual variations. The aim of the present study was to assess, by computerized morphometry, the morphological features in benign and malignant adrenocortical neoplasms. Eleven adrenocortical adenomas (ACA) were compared with 18 adrenocortical cancers (ACC). All specimens were stained with H&E, cellular proliferation marker Ki-67 and reticulin. We generated a morphometric model based on the analysis of volume fractions occupied by Ki-67 positive and negative cells (nuclei and cytoplasm), vascular and inflammatory compartment; we also analyzed the surface fraction occupied by reticulin. We compared the quantitative data of Ki-67 obtained by morphometry with the quantification resulting from pathologist's visual reading. The volume fraction of Ki-67 positive cells in ACCs was higher than in ACAs. The volume fraction of nuclei in unit volume and the nuclear/cytoplasmic ratio in both Ki-67 negative cells and Ki-67 positive cells were prominent in ACCs. The surface fraction of reticulin was considerably lower in ACCs. Our computerized morphometric model is simple, reproducible and can be used by the pathologist in the histological workup of adrenocortical tumors to achieve precise and reader-independent quantification of several morphological characteristics of adrenocortical tumors. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Complex Glycerol Kinase Deficiency and Adrenocortical Insufficiency in Two Neonates

    PubMed Central

    Korkut, Sabriye; Baştuğ, Osman; Raygada, Margarita; Hatipoğlu, Nihal; Kurtoğlu, Selim; Kendirci, Mustafa; Lyssikatos, Charalampos; Stratakis, Constantine A.

    2016-01-01

    Contiguous gene deletions of chromosome Xp21 can lead to glycerol kinase deficiency and severe adrenocortical insufficiency (AI) in a male newborn among other problems. We describe our experience with two such patients who presented with dysmorphic facies, AI, and pseudo-hypertriglyceridemia. Both infants had normal serum 17-hidroxyprogesterone levels, and adrenal glands could not be observed with ultrasonography. Creatine kinase and triglyceride levels were measured to elucidate the etiology of adrenal hypoplasia and were above normal limits in both cases. Both patients required steroid and salt supplementation. They were both found to have Xp21.2 deletions (DMD, NR0B1, GK, IL1RAPL1). We conclude that AI in the context of other genetic abnormalities should prompt chromosomal investigations in the absence of another unifying explanation. PMID:27087023

  8. Complex Glycerol Kinase Deficiency and Adrenocortical Insufficiency in Two Neonates.

    PubMed

    Korkut, Sabriye; Baştuğ, Osman; Raygada, Margarita; Hatipoğlu, Nihal; Kurtoğlu, Selim; Kendirci, Mustafa; Lyssikatos, Charalampos; Stratakis, Constantine A

    2016-12-01

    Contiguous gene deletions of chromosome Xp21 can lead to glycerol kinase deficiency and severe adrenocortical insufficiency (AI) in a male newborn among other problems. We describe our experience with two such patients who presented with dysmorphic facies, AI, and pseudo-hypertriglyceridemia. Both infants had normal serum 17-hidroxyprogesterone levels, and adrenal glands could not be observed with ultrasonography. Creatine kinase and triglyceride levels were measured to elucidate the etiology of adrenal hypoplasia and were above normal limits in both cases. Both patients required steroid and salt supplementation. They were both found to have Xp21.2 deletions (DMD, NR0B1, GK, IL1RAPL1). We conclude that AI in the context of other genetic abnormalities should prompt chromosomal investigations in the absence of another unifying explanation.

  9. Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma.

    PubMed

    Zheng, Siyuan; Cherniack, Andrew D; Dewal, Ninad; Moffitt, Richard A; Danilova, Ludmila; Murray, Bradley A; Lerario, Antonio M; Else, Tobias; Knijnenburg, Theo A; Ciriello, Giovanni; Kim, Seungchan; Assie, Guillaume; Morozova, Olena; Akbani, Rehan; Shih, Juliann; Hoadley, Katherine A; Choueiri, Toni K; Waldmann, Jens; Mete, Ozgur; Robertson, A Gordon; Wu, Hsin-Ta; Raphael, Benjamin J; Shao, Lina; Meyerson, Matthew; Demeure, Michael J; Beuschlein, Felix; Gill, Anthony J; Sidhu, Stan B; Almeida, Madson Q; Fragoso, Maria C B V; Cope, Leslie M; Kebebew, Electron; Habra, Mouhammed A; Whitsett, Timothy G; Bussey, Kimberly J; Rainey, William E; Asa, Sylvia L; Bertherat, Jérôme; Fassnacht, Martin; Wheeler, David A; Hammer, Gary D; Giordano, Thomas J; Verhaak, Roel G W

    2016-05-09

    We describe a comprehensive genomic characterization of adrenocortical carcinoma (ACC). Using this dataset, we expand the catalogue of known ACC driver genes to include PRKAR1A, RPL22, TERF2, CCNE1, and NF1. Genome wide DNA copy-number analysis revealed frequent occurrence of massive DNA loss followed by whole-genome doubling (WGD), which was associated with aggressive clinical course, suggesting WGD is a hallmark of disease progression. Corroborating this hypothesis were increased TERT expression, decreased telomere length, and activation of cell-cycle programs. Integrated subtype analysis identified three ACC subtypes with distinct clinical outcome and molecular alterations which could be captured by a 68-CpG probe DNA-methylation signature, proposing a strategy for clinical stratification of patients based on molecular markers. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Surgical treatment of adrenocortical tumors: 21 cases (1990-1996).

    PubMed

    Anderson, C R; Birchard, S J; Powers, B E; Belandria, G A; Kuntz, C A; Withrow, S J

    2001-01-01

    Twenty-four adrenocortical tumors were surgically removed from 21 dogs. Histopathological examination confirmed 18 carcinomas and six adenomas. Four dogs died in the perioperative period. Fifteen of the 17 dogs that survived the perioperative period had long-term resolution of their clinical signs. Two dogs with incompletely resected tumors were treated with mitotane to control their clinical signs. Overall median Kaplan-Meier life-table survival for dogs with carcinomas was 778 days (range, one to 1,593 days). Median survival for dogs with adenomas was not reached (range, 11 to 730 days). Histopathological diagnosis, histopathological cellular features, age of the dog, and tumor size were not prognostic of outcome.

  11. An endocrinologist's view on relative adrenocortical insufficiency in rheumatoid arthritis.

    PubMed

    Imrich, Richard; Vlcek, Miroslav; Aldag, Jean C; Kerlik, Jana; Radikova, Zofia; Rovensky, Jozef; Vigas, Milan; Masi, Alfonse T

    2010-04-01

    The concept of relative adrenal insufficiency (RAI) has been originally introduced to describe a situation in which critically ill patients, without any prior risk or evidence for adrenal insufficiency, have total serum cortisol levels inadequate for the severity of patients' illness. The concept provided a framework for other disease states, in which higher than normal adrenal function could be expected, such as in chronic inflammation. An intense research in RAI field highlighted some new methodological aspects that significantly improved assessment of adrenal function in chronic illness. Measurement of salivary cortisol may provide additional information on locally available cortisol in target tissues. Low levels of dehydroepiandrosterone (DHEAS) for given age and gender were confirmed as a simple and reliable indicator of decreased adrenal function, even in subjects with normal baseline cortisol or normal corticotropin-stimulated cortisol response. Combined lower DHEAS and lower baseline cortisol levels could be an example of hypocompetence of adrenocortical function, yet clinically not apparent.

  12. Actual 10-year survivors following resection of adrenocortical carcinoma.

    PubMed

    Tran, Thuy B; Postlewait, Lauren M; Maithel, Shishir K; Prescott, Jason D; Wang, Tracy S; Glenn, Jason; Phay, John E; Keplinger, Kara; Fields, Ryan C; Jin, Linda X; Weber, Sharon M; Salem, Ahmed; Sicklick, Jason K; Gad, Shady; Yopp, Adam C; Mansour, John C; Duh, Quan-Yang; Seiser, Natalie; Solorzano, Carmen C; Kiernan, Colleen M; Votanopoulos, Konstantinos I; Levine, Edward A; Hatzaras, Ioannis; Shenoy, Rivfka; Pawlik, Timothy M; Norton, Jeffrey A; Poultsides, George A

    2016-12-01

    Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy with limited therapeutic options beyond surgical resection. The characteristics of actual long-term survivors following surgical resection for ACC have not been previously reported. Patients who underwent resection for ACC at one of 13 academic institutions participating in the US Adrenocortical Carcinoma Group from 1993 to 2014 were analyzed. Patients were stratified into four groups: early mortality (died within 2 years), late mortality (died within 2-5 years), actual 5-year survivor (survived at least 5 years), and actual 10-year survivor (survived at least 10 years). Patients with less than 5 years of follow-up were excluded. Among the 180 patients available for analysis, there were 49 actual 5-year survivors (27%) and 12 actual 10-year survivors (7%). Patients who experienced early mortality had higher rates of cortisol-secreting tumors, nodal metastasis, synchronous distant metastasis, and R1 or R2 resections (all P < 0.05). The need for multi-visceral resection, perioperative blood transfusion, and adjuvant therapy correlated with early mortality. However, nodal involvement, distant metastasis, and R1 resection did not preclude patients from becoming actual 10-year survivors. Ten of twelve actual 10-year survivors were women, and of the seven 10-year survivors who experienced disease recurrence, five had undergone repeat surgery to resect the recurrence. Surgery for ACC can offer a 1 in 4 chance of actual 5-year survival and a 1 in 15 chance of actual 10-year survival. Long-term survival was often achieved with repeat resection for local or distant recurrence, further underscoring the important role of surgery in managing patients with ACC. J. Surg. Oncol. 2016;114:971-976. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Actual 10-Year Survivors Following Resection of Adrenocortical Carcinoma

    PubMed Central

    Tran, Thuy B.; Postlewait, Lauren M.; Maithel, Shishir K.; Prescott, Jason D.; Wang, Tracy S.; Glenn, Jason; Phay, John E.; Keplinger, Kara; Fields, Ryan C.; Jin, Linda X.; Weber, Sharon M.; Salem, Ahmed; Sicklick, Jason K.; Gad, Shady; Yopp, Adam C.; Mansour, John C.; Duh, Quan-Yang; Seiser, Natalie; Solorzano, Carmen C.; Kiernan, Colleen M.; Votanopoulos, Konstantinos I.; Levine, Edward A.; Hatzaras, Ioannis; Shenoy, Rivfka; Pawlik, Timothy M.; Norton, Jeffrey A.; Poultsides, George A.

    2017-01-01

    Background Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy with limited therapeutic options beyond surgical resection. The characteristics of actual long-term survivors following surgical resection for ACC have not been previously reported. Method Patients who underwent resection for ACC at one of 13 academic institutions participating in the US Adrenocortical Carcinoma Group from 1993 to 2014 were analyzed. Patients were stratified into four groups: early mortality (died within 2 years), late mortality (died within 2–5 years), actual 5-year survivor (survived at least 5 years), and actual 10-year survivor (survived at least 10 years). Patients with less than 5 years of follow-up were excluded. Results Among the 180 patients available for analysis, there were 49 actual 5-year survivors (27%) and 12 actual 10-year survivors (7%). Patients who experienced early mortality had higher rates of cortisol-secreting tumors, nodal metastasis, synchronous distant metastasis, and R1 or R2 resections (all P < 0.05). The need for multi-visceral resection, perioperative blood transfusion, and adjuvant therapy correlated with early mortality. However, nodal involvement, distant metastasis, and R1 resection did not preclude patients from becoming actual 10-year survivors. Ten of twelve actual 10-year survivors were women, and of the seven 10-year survivors who experienced disease recurrence, five had undergone repeat surgery to resect the recurrence. Conclusion Surgery for ACC can offer a 1 in 4 chance of actual 5-year survival and a 1 in 15 chance of actual 10-year survival. Long-term survival was often achieved with repeat resection for local or distant recurrence, further underscoring the important role of surgery in managing patients with ACC. PMID:27633419

  14. Lymphadenectomy for Adrenocortical Carcinoma: Is There a Therapeutic Benefit?

    PubMed Central

    Gerry, Jon M.; Tran, Thuy B.; Postlewait, Lauren M.; Maithel, Shishir K.; Prescott, Jason D.; Wang, Tracy S.; Glenn, Jason A.; Phay, John E.; Keplinger, Kara; Fields, Ryan C.; Jin, Linda X.; Weber, Sharon M.; Salem, Ahmed; Sicklick, Jason K.; Gad, Shady; Yopp, Adam C.; Mansour, John C.; Duh, Quan-Yang; Seiser, Natalie; Solorzano, Carmen C.; Kiernan, Colleen M.; Votanopoulos, Konstantinos I.; Levine, Edward A.; Hatzaras, Ioannis; Shenoy, Rivfka; Pawlik, Timothy M.; Norton, Jeffrey A.; Poultsides, George A.

    2017-01-01

    Background Lymph node metastasis is an established predictor of poor outcome for adrenocortical carcinoma (ACC); however, routine lymphadenectomy during surgical resection of ACC is not widely performed and its therapeutic role remains unclear. Methods Patients undergoing margin-negative resection for localized ACC were identified from a multi-institutional database. Patients were stratified into 2 groups based on the surgeon’s effort or not to perform a lymphadenectomy as documented in the operative note. Clinical, pathologic, and outcome data were compared between the 2 groups. Results Of 120 patients who met inclusion criteria from 1993 to 2014, 32 (27 %) underwent lymphadenectomy. Factors associated with lymphadenectomy were tumor size (12 vs. 9.5 cm; p = .007), palpable mass at presentation (26 vs. 12 %; p = .07), suspicious lymph nodes on preoperative imaging (44 vs. 7 %; p < .001), and need for multivisceral resection (78 vs. 36 %; p <.001). Median number of lymph nodes harvested was higher in the lymphadenectomy group (5.5 vs. 0; p < .001). In-hospital mortality (0 vs. 1.3 %; p =.72) and grade 3/4 complication rates (0 vs. 12 %; p = .061) were not significantly different. Patients who underwent lymphadenectomy had improved overall survival (5-year 76 vs. 59 %; p = .041). The benefit of lymphadenectomy on overall survival persisted on multivariate analysis (HR = 0.17; p = .006) controlling for adverse preoperative and intraoperative factors associated with lymphadenectomy, such as tumor size, palpable mass, irregular tumor edges, suspicious nodes on imaging, and multivisceral resection. Conclusions In this multicenter study of adrenocortical carcinoma patients undergoing R0 resection, the surgeon’s effort to dissect peritumoral lymph nodes was independently associated with improved overall survival. PMID:27590329

  15. Noninvasive monitoring of adrenocortical function in captive jaguars (Panthera onca).

    PubMed

    Conforti, Valéria A; Morato, Ronaldo G; Augusto, Anderson M; de Oliveira e Sousa, Lúcio; de Avila, David M; Brown, Janine L; Reeves, Jerry J

    2012-01-01

    Jaguars are threatened with extinction throughout their range. A sustainable captive population can serve as a hedge against extinction, but only if they are healthy and reproduce. Understanding how jaguars respond to stressors may help improve the captive environment and enhance their wellbeing. Thus, our objectives were to: (1) conduct an adrenocorticotrophic hormone (ACTH) challenge to validate a cortisol radioimmunoassay (RIA) for noninvasive monitoring of adrenocortical function in jaguars; (2) investigate the relationship between fecal corticoid (FCM) and androgen metabolite (FAM) concentrations in males during the ACTH challenge; and (3) establish a range of physiological concentrations of FCMs for the proposed protocol. Seven jaguars (3 M, 4 F) received 500 IU/animal of ACTH. Pre- and post-ACTH fecal samples were assayed for corticoid (M and F) and androgen metabolites (M) by RIA. Concentrations of FCMs increased (P80.01) after ACTH injection (pre-ACTH: 0.90 ± 0.12 µg/g dry feces; post-ACTH: 2.55 ± 0.25 µg/g). Considering pre- and post-ACTH samples, FCM concentrations were higher (P80.01) in males (2.15 ± 0.20 µg/g) than in females (1.30 ± 0.20 µg/g), but the magnitude of the response to ACTH was comparable (P>0.05) between genders. After ACTH injection, FAMs increased in two (of 3) males; in one male, FCMs and FAMs were positively correlated (0.60; P80.01). Excretion of FCMs was assessed in 16 jaguars (7 M, 9 F) and found to be highly variable (range, 80.11-1.56 µg/g). In conclusion, this study presents a cortisol RIA for monitoring adrenocortical function in jaguars noninvasively. © 2011 Wiley Periodicals, Inc.

  16. StAR Protein Stability in Y1 and Kin-8 Mouse Adrenocortical Cells

    PubMed Central

    Clark, Barbara J.; Hudson, Elizabeth A.

    2015-01-01

    The steroidogenic acute regulatory protein (STAR) protein expression is required for cholesterol transport into mitochondria to initiate steroidogenesis in the adrenal and gonads. STAR is synthesized as a 37 kDa precursor protein which is targeted to the mitochondria and imported and processed to an intra-mitochondrial 30 kDa protein. Tropic hormone stimulation of the cAMP-dependent protein kinase A (PKA) signaling pathway is the major contributor to the transcriptional and post-transcriptional regulation of STAR synthesis. Many studies have focused on the mechanisms of cAMP-PKA mediated control of STAR synthesis while there are few reports on STAR degradation pathways. The objective of this study was to determine the effect of cAMP-PKA-dependent signaling on STAR protein stability. We have used the cAMP-PKA responsive Y1 mouse adrenocortical cells and the PKA-deficient Kin-8 cells to measure STAR phosphorylation and protein half-life. Western blot analysis and standard radiolabeled pulse-chase experiments were used to determine STAR phosphorylation status and protein half-life, respectively. Our data demonstrate that PKA-dependent STAR phosphorylation does not contribute to 30 kDa STAR protein stability in the mitochondria. We further show that inhibition of the 26S proteasome does not block precursor STAR phosphorylation or steroid production in Y1 cells. These data suggest STAR can maintain function and promote steroidogenesis under conditions of proteasome inhibition. PMID:25749137

  17. StAR Protein Stability in Y1 and Kin-8 Mouse Adrenocortical Cells.

    PubMed

    Clark, Barbara J; Hudson, Elizabeth A

    2015-03-04

    The steroidogenic acute regulatory protein (STAR) protein expression is required for cholesterol transport into mitochondria to initiate steroidogenesis in the adrenal and gonads. STAR is synthesized as a 37 kDa precursor protein which is targeted to the mitochondria and imported and processed to an intra-mitochondrial 30 kDa protein. Tropic hormone stimulation of the cAMP-dependent protein kinase A (PKA) signaling pathway is the major contributor to the transcriptional and post-transcriptional regulation of STAR synthesis. Many studies have focused on the mechanisms of cAMP-PKA mediated control of STAR synthesis while there are few reports on STAR degradation pathways. The objective of this study was to determine the effect of cAMP-PKA-dependent signaling on STAR protein stability. We have used the cAMP-PKA responsive Y1 mouse adrenocortical cells and the PKA-deficient Kin-8 cells to measure STAR phosphorylation and protein half-life. Western blot analysis and standard radiolabeled pulse-chase experiments were used to determine STAR phosphorylation status and protein half-life, respectively. Our data demonstrate that PKA-dependent STAR phosphorylation does not contribute to 30 kDa STAR protein stability in the mitochondria. We further show that inhibition of the 26S proteasome does not block precursor STAR phosphorylation or steroid production in Y1 cells. These data suggest STAR can maintain function and promote steroidogenesis under conditions of proteasome inhibition.

  18. The expression of steroidogenic acute regulatory protein (StAR) in bovine adrenocortical cells.

    PubMed

    Nicol, M R; Wang, H; Ivell, R; Morley, S D; Walker, S W; Mason, J I

    1998-01-01

    StAR protein may facilitate rapid transfer of cholesterol from the outer to the inner mitochondrial membrane, the site at which cholesterol is converted to pregnenolone by the cholesterol side chain cleavage complex. We have studied the effect of ACTH treatment on StAR mRNA and protein levels in bovine adrenocortical cells in primary culture. Cells were initially cultured for 3 days after isolation, and then treated with ACTH (10(-8) M) for various times up to 24 hours. Northern analysis of total BAC mRNA, using a [alpha32P]-labelled cDNA probe encoding a 5' region of bovine StAR mRNA, revealed two principal hybridising species of 1.6 and 3.0 kb. Western immunoblot analysis revealed a principal band at 30 kDa. Levels of both StAR mRNA and protein showed an increase at 1 hour, reached a maximum at around 6 hours and declined to basal levels at 24 hours. Cortisol secretion (measured by RIA) showed a similar change over the same period. From these results it appears that StAR mRNA and protein levels in BAC are acutely regulated in concert with ACTH-stimulated cortisol secretion.

  19. Contributions of Steroidogenic Factor 1 to the Transcription Landscape of Y1 Mouse Adrenocortical Tumor Cells

    PubMed Central

    Schimmer, Bernard P.; Tsao, Jennivine; Cordova, Martha; Mostafavi, Sara; Morris, Quaid; Scheys, Joshua O.

    2011-01-01

    Summary The contribution of steroidogenic factor 1 (SF–1) to the gene expression profile of Y1 mouse adrenocortical cells was evaluated using short hairpin RNAs to knockdown SF–1. The reduced level of SF–1 RNA was associated with global changes that affected the accumulation of more than 2,000 transcripts. Among the down-regulated transcripts were several with functions in steroidogenesis that were affected to different degrees—i.e., Mc2r >Scarb1 > Star ≥ Hsd3b1 > Cyp11b1. For Star and Cyp11b1, the different levels of expression correlated with the amount of residual SF-1 bound to the proximal promoter regions. The knockdown of SF–1 did not affect the accumulation of Cyp11a1 transcripts even though the amount of SF–1 bound to the proximal promoter of the gene was reduced to background levels. Our results indicate that transcripts with functions in steroidogenesis vary in their dependence on SF–1 for constitutive expression. On a more global scale, SF–1 knockdown affects the accumulation of a large number of transcripts, most of which are not recognizably involved in steroid hormone biosynthesis. PMID:21111771

  20. GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo

    PubMed Central

    Zolea, Fabiana; Rizza, Pietro; Avena, Paola; Malivindi, Rocco; De Luca, Arianna; Campana, Carmela; Martire, Emilia; Domanico, Francesco; Fallo, Francesco; Carpinelli, Giulia; Cerquetti, Lidia; Amendola, Donatella; Stigliano, Antonio; Pezzi, Vincenzo

    2015-01-01

    We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC. PMID:26131713

  1. Developing Self-Regulated Learners in Secondary Schools

    ERIC Educational Resources Information Center

    Salter, Prue

    2012-01-01

    This paper draws on emerging data from a doctoral study exploring how schools approach the development of self-regulated learners in Years 7-12. The research is exploring stakeholders' attitudes, beliefs, experiences and perceptions around the development of self-regulated learning (SRL) in contemporary secondary schools and how new and emerging…

  2. Harnessing the power of the endosome to regulate neural development

    PubMed Central

    Yap, Chan Choo; Winckler, Bettina

    2012-01-01

    Endocytosis and endosomal trafficking play a multitude of roles in cellular function beyond regulating entry of essential nutrients. In this review, we discuss the cell biological principles of endosomal trafficking, the neuronal adaptations to endosomal organization, and the role of endosomal trafficking in neural development. In particular, we consider how cell fate decisions, polarity, migration, and axon outgrowth and guidance are influenced by five endosomal tricks: dynamic modulation of receptor levels by endocytosis and recycling, cargo-specific responses via cargo-specific endocytic regulators, cell type-specific endocytic regulation, ligand-specific endocytic regulation, and endosomal regulation of ligand processing and trafficking. PMID:22578496

  3. p53 Mutations in human adrenocortical neoplasms: Immunohistochemical and molecular studies

    SciTech Connect

    Reincke, M.; Allolio, B.; Travis, W.H.; Linehan, H.M.; Karl, M.; Mastorakos, G.; Chrousos, G.P.

    1994-03-01

    p53 is a recessive tumor suppressor gene located on chromosome 17p. Mutations in the p53 gene play an important role in the tumorigenesis of diverse types of human neoplasms including breast and colon cancers. More than 90% of all mutations discovered in such tumors have been detected in 4 hot spot areas that lie between exons 5 and 8. In contrast to wild-type p53, mutant p53 accumulates intracellularly and can be easily detected by immunohistochemistry. The authors therefore investigated the frequency of p53 mutations in human adrenocortical neoplasms using molecular biology and immunohistochemistry techniques. Five patients with adrenocortical adenomas (5 female; ages 39-72 yr), 11 patients with adrenocortical carcinomas (8 female, 3 male; ages 15-50 yr), and two adrenocortical tumor cell lines were studied. After DNA extraction from frozen tumor tissue or paraffin-embedded material, exons 5 through 8 were amplified using the polymerase chain reaction and directly sequenced by the dideoxy termination method. Immunohistochemistry was performed on paraffin-embedded tumor specimens obtained during adrenalectomy using a monoclonal antibody reacting with both wild-type and mutant p53. Prevalence of mutations was adenomas, 0/5, carcinomas, 3/11, and adrenocortical cell lines, 2/2. Single point mutations were detected in 3 cases (exons 5, 6, and 7, respectively), and rearrangements of exon 7/8 and 8 were found in 2 cases. Immunohistochemistry detected strong nuclear and/or cytoplasmic p53 immunoreactivity in all adrenocortical carcinomas with point mutations of the p53 gene but not in adenomas and carcinomas with the wild-type sequence or with deletion/rearrangement of the p53 gene. They conclude that p53 plays a role in the tumorigenesis of adrenocortical carcinomas but is of less importance to benign adenomas. 27 refs., 3 figs., 2 tabs.

  4. Expression of LIN28 and its regulatory microRNAs in adult adrenocortical cancer.

    PubMed

    Faria, André M; Sbiera, Silviu; Ribeiro, Tamaya C; Soares, Iberê C; Mariani, Beatriz M P; Freire, Daniel S; de Sousa, Gabriela R V; Lerario, Antônio M; Ronchi, Cristina L; Deutschbein, Timo; Wakamatsu, Alda; Alves, Venancio A F; Zerbini, Maria Claudia N; Mendonca, Berenice B; Fragoso, Maria Candida B V; Latronico, Ana Claudia; Fassnacht, Martin; Almeida, Madson Q

    2015-04-01

    LIN28 control cells reprogramming and pluripotency mainly through miRNA regulation and has been overexpressed in many advanced cancers. In this study, we evaluated the prognostic role of LIN28 and its regulatory miRNAs in a large cohort of adrenocortical tumours (ACTs). LIN28 protein expression was assessed in 266 adults ACTs (78 adenomas and 188 carcinomas) from Brazil and Germany. LIN28A and LIN28B gene expression was analysed in 59 ACTs (31 adenomas and 28 carcinomas) and copy number variation in 39 ACTs. In addition, we determined the expression of let-7 family, mir-9, mir-30 and mir-125 in 28 carcinomas. LIN28A gene was overexpressed in aggressive ACCs when compared with adenomas and nonaggressive ACCs, but no LIN28A copy number variation was found in ACTs. Unexpectedly, weak LIN28 protein expression was significantly associated with reduced disease-free survival in ACC patients (P = 0·01), but for overall survival only a trend was detectable (P = 0·117). In the multivariate analysis, only Ki67 index ≥10% (HR 4·6, P = 0·000) and weak LIN28 protein expression (HR 2·0, P = 0·03) were independent predictors of recurrence in ACC patients. Interestingly, mir-9 expression, a negative LIN28A/B regulator, was significantly higher in aggressive than in nonaggressive ACCs [2076 (from 36 to 9307) vs 133·4 (from 2·4 to 5193); P = 0·011] and was highly associated with reduced overall (P = 0·01) and disease-free survival (P = 0·01). However, mir-9 prognostic role should be further evaluated in a larger cohort. Weak LIN28 protein expression was associated with recurrence in ACCs. Additionally, overexpression of mir-9, a negative LIN28A regulator, was associated with poor outcome. © 2014 John Wiley & Sons Ltd.

  5. Deconstructing the molecular mechanisms of cell cycle control in a mouse adrenocortical cell line: roles of ACTH.

    PubMed

    Rocha, Kátia M; Forti, Fábio L; Lepique, Ana P; Armelin, Hugo A

    2003-06-15

    This is a progress report of an attempt to deconstruct the signaling network underlying cell cycle control in the mouse Y1 adrenocortical cell line, aiming to uncover ACTH growth regulatory pathways. Y1 adrenocortical tumor cells possess amplified and overexpressed c-Ki-ras proto-oncogene. Despite this oncogenic lesion, Y1 cells retain tight regulatory mechanisms of cell cycle control typified by the sequential events comprising the mitogenic response triggered by FGF2 in G0/G1-arrested Y1 cells: 1) activation of ERK1/2 and PI3K, by 5 minutes; 2) induction of c-Fos and c-Myc proteins by 2 hours; 3) induction of cyclin D1 protein by 5 hours; 4) phosphorylation of Rb protein between 6 and 8 hours; 5) onset of DNA synthesis by 8-9 hours. In this cell line, ACTH-receptor (ACTH-R) activates contradictory pathways of growth regulation. First, ACTH coordinately induces fos and jun gene families via activation of both ERK1/2 and cAMP/PKA pathways, resembling a mitogen. Second, ACTH-R triggers cAMP/PKA-mediated antimitogenic mechanisms comprised of Akt/PKB dephosphorylation/deactivation, c-Myc protein degradation, and p27(Kip1) protein induction. Induction of cyclin D1 depends on activation of both ERK1/2 and PI3K, but is not affected by ACTH action. As a consequence, ACTH antagonizes FGF2 mitogenic activity but ectopic expression of the c-Myc protein (via MycER fusion protein) is sufficient to abrogate this ACTH antagonistic effect over FGF2 mitogenic activity. Ectopic expression of both c-Myc and cyclin D1 is not sufficient to drive G0/G1-arrested Y1 cells into S phase, but when the sustained expression of these two proteins is complemented by ACTH treatment it promotes G1 phase progression and DNA synthesis initiation. In conclusion, ACTH-receptor lacks signaling potential sufficient to initiate a mitogenic response in Y1 adrenocortical cells and, therefore, cannot substitute for bona fide mitogens like FGF2. Copyright 2003 Wiley-Liss, Inc.

  6. Epigenetic and microRNA regulation during osteoarthritis development

    PubMed Central

    Chen, Di; Shen, Jie; Hui, Tianqian

    2015-01-01

    Osteoarthritis (OA) is a common degenerative joint disease, the pathological mechanism of which is currently unknown. Genetic alteration is one of the key contributing factors for OA pathology. Recent evidence suggests that epigenetic and microRNA regulation of critical genes may contribute to OA development. In this article, we review the epigenetic and microRNA regulations of genes related to OA development. Potential therapeutic strategies may be developed on the basis of novel findings. PMID:27508054

  7. Cell fate regulation in early mammalian development

    NASA Astrophysics Data System (ADS)

    Oron, Efrat; Ivanova, Natalia

    2012-08-01

    Preimplantation development in mammals encompasses a period from fertilization to implantation and results in formation of a blastocyst composed of three distinct cell lineages: epiblast, trophectoderm and primitive endoderm. The epiblast gives rise to the organism, while the trophectoderm and the primitive endoderm contribute to extraembryonic tissues that support embryo development after implantation. In many vertebrates, such as frog or fish, maternally supplied lineage determinants are partitioned within the egg. Cell cleavage that follows fertilization results in polarization of these factors between the individual blastomeres, which become restricted in their developmental fate. In contrast, the mouse oocyte and zygote lack clear polarity and, until the eight-cell stage, individual blastomeres retain the potential to form all lineages. How are cell lineages specified in the absence of a maternally supplied blueprint? This is a fundamental question in the field of developmental biology. The answer to this question lies in understanding the cell-cell interactions and gene networks involved in embryonic development prior to implantation and using this knowledge to create testable models of the developmental processes that govern cell fates. We provide an overview of classic and contemporary models of early lineage development in the mouse and discuss the emerging body of work that highlights similarities and differences between blastocyst development in the mouse and other mammalian species.

  8. [Molecular basics of aldosterone and cortisol synthesis in normal adrenals and adrenocortical adenomas].

    PubMed

    Ziaja, Jacek; Cholewa, Krzysztof; Mazurek, Urszula; Cierpka, Lech

    2008-01-01

    The aim of the study is to present genes encoding enzymatic proteins of aldosterone and cortisol synthesis pathway, methods of their transcriptional activity measurement, mRNA expression of the genes in normal adrenal cortex, in adrenocortical adenomas excised from patients with Conn and Cushing syndromes, as well as in adrenocortical adenomas excised from patients, in which hormonal activity of the tumour was not confirmed. According to presented papers mRNA expression of analyzed genes is best known in tissue obtained from tumours excised from patients with Conn syndrome. On the other hand transcriptional activity of the genes within the other adrenocortical adenomas is documented in lesser degree. It concerns particularly analyses of tissue material obtained from patients, in which hormonal activity of adrenal tumours was not confirmed with biochemical tests. It should be also considered, that the frame of reference for the majority of molecular analyses of adrenocortical tumour tissues was material obtained from little number of normal adrenals, what decreases in some degree credibility of obtained results. Mentioned above remarks may be the basis for conduction of further investigations based on larger material, obtained both from normal adrenals and adrenocortical adenomas.

  9. Reciprocal influences among adrenocortical activation, psychosocial processes, and the behavioral adjustment of clinic-referred children.

    PubMed

    Granger, D A; Weisz, J R; McCracken, J T; Ikeda, S C; Douglas, P

    1996-12-01

    The reciprocal effects among cognitive-behavioral, environmental, and biological influences on clinic-referred children's (N = 64; 34 boys; M age 12.71 years) short-term psychological and psychiatric adjustment were studied. At clinic intake and 6 months later, standardized measures of adjustment and control-related beliefs were assessed. Before and after conflict-oriented parent-child interaction tasks the children's saliva was sampled. Adrenocortical responses (i.e., increases in salivary cortisol) to the social conflict task predicted children's internalizing problem behaviors and anxiety disorders at follow-up. Consistently high adrenocortical reactivity at intake and follow-up was associated with deflated social competence over the 6-month period. Also, specific patterns of discontinuity in children's internalizing behavior problems predicted individual differences in their subsequent adrenocortical responsiveness. Specifically, rising behavior problem levels across time predicted higher and declining behavior problem levels predicted lower adrenocortical reactivity at follow-up. Findings are among the first to suggest links among internalizing behavior problems, adrenocortical responsiveness to social challenge, and clinic-referred children's short-term cognitive-behavioral and emotional adjustment.

  10. Neuromuscular Development and Regulation of Myosin Expression

    NASA Technical Reports Server (NTRS)

    Bodine, Sue

    1997-01-01

    The proposed experiments were designed to determine whether the absence of gravity during embryogenesis influences the postnatal development of the neuromuscular system. Further, we examined the effects of reduced gravity on hindlimb muscles of the pregnant rats. Microgravity may have short and long-term effects on the development of muscle fiber type differentiation and force producing capabilities. Microgravity will reduce muscle fiber size and cause a shift in myosin heavy chain expression from slow to fast in hindlimb muscles of the adult pregnant rats.

  11. Adiponectin (15-36) stimulates steroidogenic acute regulatory (StAR) protein expression and cortisol production in human adrenocortical cells: role of AMPK and MAPK kinase pathways.

    PubMed

    Ramanjaneya, Manjunath; Conner, Alex C; Brown, James E P; Chen, Jing; Digby, Janet E; Barber, Thomas M; Lehnert, Hendrik; Randeva, Harpal S

    2011-05-01

    Adiponectin is an abundantly circulating adipokine, orchestrating its effects through two 7-transmembrane receptors (AdipoR1 and AdipoR2). Steroidogenesis is regulated by a variety of neuropeptides and adipokines. Earlier studies have reported adipokine mediated steroid production. A key rate-limiting step in steroidogenesis is cholesterol transportation across the mitochondrial membrane by steroidogenic acute regulatory protein (StAR). Several signalling pathways regulate StAR expression. The actions of adiponectin and its role in human adrenocortical steroid biosynthesis are not fully understood. The aim of this study was to investigate the effects of adiponectin on StAR protein expression, steroidogenic genes, and cortisol production and to dissect the signalling cascades involved in the activation of StAR expression. Using qRT-PCR, Western blot analysis and ELISA, we have demonstrated that stimulation of human adrenocortical H295R cells with adiponectin results in increased cortisol secretion. This effect is accompanied by increased expression of key steroidogenic pathway genes including StAR protein expression via ERK1/2 and AMPK-dependent pathways. This has implications for our understanding of adiponectin receptor activation and peripheral steroidogenesis. Finally, our study aims to emphasise the key role of adipokines in the integration of metabolic activity and energy balance partly via the regulation of adrenal steroid production. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.

  12. Development of male-fertility-regulating agents.

    PubMed

    Ray, S; Verma, P; Kumar, A

    1991-09-01

    Steroidal, nonsteroidal, plant-derived, gonadotropin-related and immunological agents investigated for control of male fertility are reviewed with brief descriptions of their effects, and illustrations of their structures. The physiology of the male reproductive system is presented as an introduction: an ideal male antifertility agent would inhibit spermatogenesis at the level of the Sertoli cells, without affecting endogenous androgen production by Leydig cells, needed for libido and potency. Androgens down-regulate their own production at physiological levels, but few long-acting orally active derivatives are available. Anti-androgens with mixed androgen and progestin activity, combined with a pure androgen are potentially useful. Androgen-progestin combinations are being tested by WHO as implants. Dozens of miscellaneous nonsteroidal compounds have been discovered serendipitously to have antifertility activity in men or male animals, including alkylating agents antimetabolites, antibiotics, sulfa derivatives, fungicides, trichomonocides, amebicides, alpha blockers, antimalarials, coumarins, and carbohydrate derivatives. Various plant alkaloids have been screened. Those of Hibiscus, Vitex and Plumbago species, as well as Tripterygium wilfordii glycosides, which are being evaluated in combination with gossypol, are mentioned here. Gossypol has been thoroughly tested in China, but rejected because of its side effects, particularly hypokalemic paralysis, its low therapeutic index, and uncertain recovery of fertility. Gonadotropin-releasing hormone (GnRH) agonists and antagonists are being researched in combination with androgens with some success. The GnRH antagonists to date have low activity , or cause histamine-related side effects at higher doses; the androgens require a new route such as a long-acting implant to overcome the need for daily injections. Immunological contraception for males has not progressed beyond the research stage.

  13. Proteome Regulation during Olea europaea Fruit Development

    PubMed Central

    Bianco, Linda; Alagna, Fiammetta; Baldoni, Luciana; Finnie, Christine; Svensson, Birte; Perrotta, Gaetano

    2013-01-01

    Background Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes. Methodology/Principal Findings In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies. Conclusions/Significance This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process. PMID:23349718

  14. Development of a Metaconceptual Awareness and Regulation Scale

    ERIC Educational Resources Information Center

    Kirbulut, Zubeyde Demet; Uzuntiryaki-Kondakci, Esen; Beeth, Michael Edward

    2016-01-01

    This study aimed to develop the Metaconceptual Awareness and Regulation Scale (MARS) -- a self-report instrument for measuring the extent to which students realise, monitor, and evaluate their ideas. MARS consists of 10 items scored on a six-point Likert scale for two factors: metaconceptual awareness and metaconceptual regulation. A pilot study…

  15. Developing Self-Regulated Learners through an Intelligent Tutoring System

    ERIC Educational Resources Information Center

    Kelly, Kim; Heffernan, Neil

    2015-01-01

    Intelligent tutoring systems have been developed to help students learn independently. However, students who are poor self-regulated learners often struggle to use these systems because they lack the skills necessary to learn independently. The field of psychology has extensively studied self-regulated learning and can provide strategies to…

  16. Development of a Metaconceptual Awareness and Regulation Scale

    ERIC Educational Resources Information Center

    Kirbulut, Zubeyde Demet; Uzuntiryaki-Kondakci, Esen; Beeth, Michael Edward

    2016-01-01

    This study aimed to develop the Metaconceptual Awareness and Regulation Scale (MARS) -- a self-report instrument for measuring the extent to which students realise, monitor, and evaluate their ideas. MARS consists of 10 items scored on a six-point Likert scale for two factors: metaconceptual awareness and metaconceptual regulation. A pilot study…

  17. Self-Regulated Strategy Development for Students with Writing Difficulties

    ERIC Educational Resources Information Center

    Mason, Linda H.; Harris, Karen R.; Graham, Steve

    2011-01-01

    Students with writing difficulties often struggle with the planning, composing, and revising skills required for effective writing. Fortunately, researchers have documented that explicit, interactive, scaffolded development of powerful composing strategies and strategies for self-regulating the writing process, as in Self-Regulated Strategy…

  18. Developing Young Children's Self-Regulation through Everyday Experiences

    ERIC Educational Resources Information Center

    Florez, Ida Rose

    2011-01-01

    Every child is different. Some have difficulty expressing their ideas verbally. Some struggle to get along with peers or follow classroom routines. In each case, however, one thing is the same: improved learning and behavior requires strong self-regulation skills. Children develop foundational skills for self-regulation in the first five years of…

  19. Adolescents' Self-Regulation Development via the Sensory Room System

    ERIC Educational Resources Information Center

    Kalimullin, Aydar M.; Kuvaldina, Elana A.; Koinova-Zoellner, Julia

    2016-01-01

    The urgency of the issue stated in this article is caused by the need for mastering skills and patterns of self-regulation when being an adolescent since this time is sensitive for developing processes of personal understanding and evolution. Thus, mastering skills and patterns of self-regulation as a necessary part of the whole ability of…

  20. Coping, Regulation, and Development during Childhood and Adolescence

    ERIC Educational Resources Information Center

    Compas, Bruce E.

    2009-01-01

    This chapter identifies four challenges to the study of the development of coping and regulation and outlines specific theoretical and empirical strategies for addressing them. The challenges are (1) to integrate work on coping and processes of emotion regulation, (2) to use the integration of research on neuro-biology and context to inform the…

  1. Coping, Regulation, and Development during Childhood and Adolescence

    ERIC Educational Resources Information Center

    Compas, Bruce E.

    2009-01-01

    This chapter identifies four challenges to the study of the development of coping and regulation and outlines specific theoretical and empirical strategies for addressing them. The challenges are (1) to integrate work on coping and processes of emotion regulation, (2) to use the integration of research on neuro-biology and context to inform the…

  2. Developing Young Children's Self-Regulation through Everyday Experiences

    ERIC Educational Resources Information Center

    Florez, Ida Rose

    2011-01-01

    Every child is different. Some have difficulty expressing their ideas verbally. Some struggle to get along with peers or follow classroom routines. In each case, however, one thing is the same: improved learning and behavior requires strong self-regulation skills. Children develop foundational skills for self-regulation in the first five years of…

  3. BMP4 regulation of human trophoblast development

    PubMed Central

    Li, Yingchun; Parast, Mana M.

    2017-01-01

    Since derivation of human embryonic stem cells, and subsequent generation of induced pluripotent stem cells, there has been much excitement about the ability to model and evaluate human organ development in vitro. The finding that these cells, when treated with BMP4, are able to generate the extraembryonic cell type, trophoblast, which is the predominant functional epithelium in the placenta, has not been widely accepted. This review evaluates this model, providing comparison to early known events during placentation in both human and mouse and addressing specific challenges. Keeping in mind the ultimate goal of understanding human placental development and pregnancy disorders, our aim here is two-fold: 1) to distinguish gaps in knowledge from mis- or over-interpretation of data, and 2) to recognize the limitations of both mouse and human models, but work within those limitations towards the ultimate goal. PMID:25023690

  4. Tricornered Kinase Regulates Synapse Development by Regulating the Levels of Wiskott-Aldrich Syndrome Protein.

    PubMed

    Natarajan, Rajalaxmi; Barber, Kara; Buckley, Amanda; Cho, Phillip; Egbejimi, Anuoluwapo; Wairkar, Yogesh P

    2015-01-01

    Precise regulation of synapses during development is essential to ensure accurate neural connectivity and function of nervous system. Many signaling pathways, including the mTOR (mechanical Target of Rapamycin) pathway operate in neurons to maintain genetically determined number of synapses during development. mTOR, a kinase, is shared between two functionally distinct multi-protein complexes- mTORC1 and mTORC2, that act downstream of Tuberous Sclerosis Complex (TSC). We and others have suggested an important role for TSC in synapse development at the Drosophila neuromuscular junction (NMJ) synapses. In addition, our data suggested that the regulation of the NMJ synapse numbers in Drosophila largely depends on signaling via mTORC2. In the present study, we further this observation by identifying Tricornered (Trc) kinase, a serine/threonine kinase as a likely mediator of TSC signaling. trc genetically interacts with Tsc2 to regulate the number of synapses. In addition, Tsc2 and trc mutants exhibit a dramatic reduction in synaptic levels of WASP, an important regulator of actin polymerization. We show that Trc regulates the WASP levels largely, by regulating the transcription of WASP. Finally, we show that overexpression of WASP (Wiskott-Aldrich Syndrome Protein) in trc mutants can suppress the increase in the number of synapses observed in trc mutants, suggesting that WASP regulates synapses downstream of Trc. Thus, our data provide a novel insight into how Trc may regulate the genetic program that controls the number of synapses during development.

  5. Partial KCNQ1OT1 hypomethylation: A disguised familial Beckwith–Wiedemann syndrome as a sporadic adrenocortical tumor

    PubMed Central

    H'mida Ben-Brahim, Dorra; Hammami, Sabeur; Haddaji Mastouri, Marwa; Trabelsi, Saoussen; Chourabi, Maroua; Sassi, Sihem; Mougou, Soumaya; Gribaa, Moez; Zakhama, Abdelfattah; Guédiche, Mohamed Neji; Saad, Ali

    2014-01-01

    Beckwith–Wiedemann syndrome has a wide spectrum of complications such as embryonal tumors, namely adrenocortical tumor. Tumor predisposition is one of the most challenging manifestations of this syndrome. A 45-day old female with a family history of adrenocortical tumor presented with adrenocortical tumor. The case raised suspicion of a hereditary Beckwith–Wiedemann syndrome, therefore molecular analysis was undertaken. The results revealed partial KCNQ1OT1 hypomethylation in the infant's blood DNA which was associated with a complete loss of methylation in the infant's adrenocortical tumor tissue. It is unique for familial Beckwith–Wiedemann syndrome caused by KCNQ1OT1 partial hypomethylation to manifest solely through adrenocortical tumor. Incomplete penetrance and specific tissue mosaicism could provide explanations to this novel hereditary Beckwith–Wiedemann syndrome presentation. PMID:26937341

  6. Network analysis reveals potential markers for pediatric adrenocortical carcinoma

    PubMed Central

    Kulshrestha, Anurag; Suman, Shikha; Ranjan, Rakesh

    2016-01-01

    Pediatric adrenocortical carcinoma (ACC) is a rare malignancy with a poor outcome. Molecular mechanisms of pediatric ACC oncogenesis and advancement are not well understood. Accurate and timely diagnosis of the disease requires identification of new markers for pediatric ACC. Differentially expressed genes (DEGs) were identified from the gene expression profile of pediatric ACC and obtained from Gene Expression Omnibus. Gene Ontology functional and pathway enrichment analysis was implemented to recognize the functions of DEGs. A protein–protein interaction (PPI) and gene–gene functional interaction (GGI) network of DEGs was constructed. Hub gene detection and enrichment analysis of functional modules were performed. Furthermore, a gene regulatory network incorporating DEGs–microRNAs–transcription factors was constructed and analyzed. A total of 431 DEGs including 228 upregulated and 203 downregulated DEGs were screened. These genes were largely involved in cell cycle, steroid biosynthesis, and p53 signaling pathways. Upregulated genes, CDK1, CCNB1, CDC20, and BUB1B, were identified as the common hubs of PPI and GGI networks. All the four common hub genes were also part of modules of the PPI network. Moreover, all the four genes were also present in the largest module of GGI network. A gene regulatory network consisting of 82 microRNAs and 100 transcription factors was also constructed. CDK1, CCNB1, CDC20, and BUB1B may serve as potential biomarker of pediatric ACC and as potential targets for therapeutic approach, although experimental studies are required to authenticate our findings. PMID:27555782

  7. Temperature and adrenocortical responses in rhesus monkeys exposed to microwaves

    SciTech Connect

    Lotz, W.G.; Podgorski, R.P.

    1982-12-01

    To determine if the endocrine response to microwave exposure was similar in a primate to that reported for other animals, rectal temperature and plasma levels of cortisol, thyroxine (T4), and growth hormone (GH) were measured in rhesus monkeys exposed to 1.29-GHz microwave radiation. Exposures were carried out under far-field conditions with the monkey restrained in a chair. Incident power densities of 0, 20, 28, and 38 mW/sq cm were used, with corresponding specific absorption rates of 0, 2.1, 3.0, and 4.1 W/kg. Blood samples were taken hourly via an indwelling jugular venous catheter over a 24-h period before, during, and after an 8-h exposure. Rectal temperature increased an average of 0.5, 0.7, and 1.7 C for the three intensities used. No changes in T4 or GH were observed. Cortisol levels were increased during exposure to 38 mW/sq cm. It was concluded that the temperature and adrenocortical responses to microwave exposure of the rhesus monkey are similar to the corresponding responses of other animals.

  8. Molecular epidemiology of adrenocortical tumors in southern Brazil.

    PubMed

    Custódio, Gislaine; Komechen, Heloisa; Figueiredo, Francisco R O; Fachin, Natasha D; Pianovski, Mara A D; Figueiredo, Bonald C

    2012-03-31

    The high frequency of TP53 R337H carriers in southern Brazil is responsible for the highest known incidence of childhood adrenocortical tumor (ACT). Our aims were to examine other contributing mutations, age-related risk factors, epidemiological differences in ACT and to shed light on a method for increasing the survival rate of children. The fetal zone of the adrenal cortex is believed to be one of the tissues most susceptible to adenoma or carcinoma formation due to loss of p53 function. The founder germline R337H mutation is found in 95% of ACTs of young children, a much greater proportion than in adults. Despite intense educational campaigns about the high incidence of ACT in Paraná State, advanced cases remain common. Four advanced ACT cases (4/5) were admitted to a single institution in the first 6months of 2011 in Paraná State, none of the families knew about ACT, and 2 reported no familial cancer syndrome. Curative resection is possible when a small ACT is detected early. Copyright © 2011. Published by Elsevier Ireland Ltd.

  9. DMSO regulates osteoclast development in vitro

    PubMed Central

    Lemieux, Justin M.; Wu, Gary; Morgan, Joseph A.

    2011-01-01

    Dimethyl sulfoxide (DMSO) is routinely used in the laboratory as a solvent and vehicle for organic molecules. Although it has been used in previous studies involving myeloid cells and macrophages, we are unaware of data demonstrating the effects of DMSO alone on osteoclast development. Recently, we were using DMSO as a vehicle and included a non-vehicle control. Surprisingly, we observed a marked change in osteoclast development, and therefore designed this study to examine the effects of DMSO on osteoclast development. Osteoclasts were generated from two sources: bone marrow macrophages and an osteoclast progenitor cell line. Cells were cultured with DMSO for various durations and at differing concentrations and mature, multinucleated (>3 nuclei) TRAP+ cells were assessed in terms of cell number, cell surface area, and number of nuclei/cell. Osteoclast surface area increased in 5 μM DMSO to a mean of 156,422 pixels from a mean of 38,510 pixels in control culture, and subsequently decreased in 10 μM DMSO to a mean of 18,994 pixels. With serial addition of DMSO over 5 d, a significant increase in mean surface area, and number of nuclei/cell was also observed, while the opposite was true when DMSO was serially removed from culture. These findings show that DMSO exerts a marked effect on osteoclast differentiation. Since many investigators use DMSO to solubilize compounds for treatment of osteoclasts, caution is warranted as altering DMSO concentrations may have a profound effect on the final data, especially if osteoclast differentiation is being assessed. PMID:21359822

  10. Neurocognitive bases of emotion regulation development in adolescence.

    PubMed

    Ahmed, Saz P; Bittencourt-Hewitt, Amanda; Sebastian, Catherine L

    2015-10-01

    Emotion regulation is the ability to recruit processes to influence emotion generation. In recent years there has been mounting interest in how emotions are regulated at behavioural and neural levels, as well as in the relevance of emotional dysregulation to psychopathology. During adolescence, brain regions involved in affect generation and regulation, including the limbic system and prefrontal cortex, undergo protracted structural and functional development. Adolescence is also a time of increasing vulnerability to internalising and externalising psychopathologies associated with poor emotion regulation, including depression, anxiety and antisocial behaviour. It is therefore of particular interest to understand how emotion regulation develops over this time, and how this relates to ongoing brain development. However, to date relatively little research has addressed these questions directly. This review will discuss existing research in these areas in both typical adolescence and in adolescent psychopathology, and will highlight opportunities for future research. In particular, it is important to consider the social context in which adolescent emotion regulation develops. It is possible that while adolescence may be a time of vulnerability to emotional dysregulation, scaffolding the development of emotion regulation during this time may be a fruitful preventative target for psychopathology. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Regulation of cardiac cushion development by hyaluronan

    PubMed Central

    Camenisch, Todd D; Biesterfeldt, Jennifer; Brehm-Gibson, Tammy; Bradley, Judy; McDonald, John A

    2001-01-01

    Hyaluronan is an extracellular matrix component implicated in expansion of the extracellular space, organization of supramolecular architecture, cell motility, proliferation, tumour metastases and wound healing. Hyaluronan is highly expressed in the developing heart but it is only a minor component of the mature heart. The loss of hyaluronan synthase-2 (Has2) results in embryonic lethality with a phenotype remarkably similar to that of the versican-deficient heart defect mouse. Has2-deficient embryos lack hyaluronan-containing cardiac jelly, and at embryonic day 9.5 show arrested development, with an apparent absence of the right ventricle and underdevelopment of the conustruncus segment, and pericardial effusion consistent with heart failure. Cardiac cushions are totally absent, and endocardial cell migration over collagen gels is not detectable in Has2-deficient atrioventricular (AV) canal explants. Endothelial to mesenchymal transformation is also defective in AV explants from Has2-null embryos. The normal phenotype is restored in AV canal explants from Has2-deficient embryos by co-culture with wild type AV canal explants, with conditioned media from wild type AV explants or with exogenous hyaluronan. These results provide evidence for a direct role for hyaluronan during endocardial cushion and AV canal morphogenesis. PMID:20428437

  12. Regulation of CDPK isoforms during tuber development.

    PubMed

    Raíces, Marcela; Gargantini, Pablo Rubén; Chinchilla, Delphine; Crespi, Martín; Téllez-Iñón, María Teresa; Ulloa, Rita María

    2003-07-01

    CDPK activities present during tuber development were analysed. A high CDPK activity was detected in the soluble fraction of early stolons and a lower one was detected in soluble and particulate fractions of induced stolons. The early and late CDPK activities displayed diverse specificity for in vitro substrates and different subcellular distribution. Western blot analysis revealed two CDPKs of 55 and 60 kDa that follow a precise spatial and temporal profile of expression. The 55 kDa protein was only detected in early-elongating stolons and the 60 kDa one was induced upon stolon swelling, correlating with early and late CDPK activities. A new member of the potato CDPK family, StCDPK3, was identified from a stolon cDNA library. Gene specific RT-PCR demonstrated that this gene is only expressed in early stolons, while the previously identified StCDPK1 is expressed upon stolon swelling. This expression profile suggests that StCDPK3 could correspond to the 55 kDa isoform while StCDPK1 could encode the 60 kDa isoform present in swelling stolons. StCDPK1 has myristoylation and palmitoylation consensus possibly involved in its dual intracellular localization. Transient expression studies with wild-type and mutated forms of StCDPK1 fused to GFP were used to show that subcellular localization of this isoform is controlled by myristoylation and palmitoylation. Altogether, our data suggest that sequential activation of StCDPK3 and StCDPK1 and the subcellular localisation of StCDPK1 might be critical regulatory steps of calcium signalling during potato tuber development.

  13. The development of bioethics and the issue of euthanasia: regulating, de-regulating or re-regulating?

    PubMed

    Lewins, F

    1998-08-01

    This paper relates the development of bioethics and the issue of euthanasia to social control. It suggests that, contrary to appearances, developments in these areas indicate increasing government control of health care practice. Specifically, it argues that, although the emergence of bioethics may appear to indicate health care professionals engaging in self-regulation, the reality is more a case of re-regulation or a shift of regulatory control from health care professionals to governments or agents of governments. By contrast, the issue of euthanasia appears to be proceeding in a different direction in that it seems to be a dispute over de-regulation of health care practice. In reality, though, it is similar to the development of bioethics. The issue of euthanasia, especially in recent years, rests on the same type of re-regulation of health care practice--a shift from medical control to increasing control by government.

  14. The role of mothers’ and fathers’ adrenocortical reactivity in spillover between interparental conflict and parenting practices

    PubMed Central

    Sturge-Apple, Melissa L.; Davies, Patrick T.; Cicchetti, Dante; Cummings, E. Mark

    2010-01-01

    Guided by the affective spillover hypothesis, the present study examined the mediational role of parental adrenocortical reactivity to interparental conflict in explaining associations between interparental conflict and subsequent changes in mothers’ and fathers’ parenting practices over a 2 year period in a sample of 202 parents and their six year old children. Results of autoregressive, path models indicated that marital withdrawal was associated with increases in adrenocortical reactivity to conflict for mothers but not fathers. Furthermore, elevated adrenocortical reactivity in turn predicted greater psychologically controlling parenting practices and inconsistent discipline over time for mothers, but was not associated with changes in maternal warmth. Implications for clinicians and therapists working with maritally distressed parents and families are discussed. PMID:19364215

  15. Development of a Pressure Regulator to Conserve Energy Emitting in LP Gas Pressure Regulator

    NASA Astrophysics Data System (ADS)

    Kurihara, Yosuke; Misawa, Keigo; Watanabe, Kajiro; Kobayashi, Kazuyuki

    The development of electronics devices yields circuits which operates with low power consumption. This paper is aimed at describing a novel power supply system to such the devices. The energy levels diverged by mechanical vibration, pressure drops by regulators, thermal diverged, are low in the mechanical field but high enough to operate the electronics devices above. Here we describe a novel energy collecting method from pressure regulators in which high pressure is regulated to constant low pressure. In the regulation, energy is diverged. The method converts gas flow to rotation by a pneumatic motor and generates electric power by a generator connected with the motor. An LP gas regulator under normal use in a house, diverges about 30W energy. The devices developed here collected about 9W energy which is enough high for operating electronics devices around LP gas including intelligent gas meter.

  16. Integrative analysis of SF-1 transcription factor dosage impact on genome-wide binding and gene expression regulation

    PubMed Central

    Doghman, Mabrouka; Figueiredo, Bonald C.; Volante, Marco; Papotti, Mauro; Lalli, Enzo

    2013-01-01

    Steroidogenic Factor-1 (SF-1) is a nuclear receptor that has a pivotal role in the development of adrenal glands and gonads and in the control of steroid hormone production, being also implicated in the pathogenesis of adrenocortical tumors. We have analyzed the mechanisms how SF-1 controls gene expression in adrenocortical cells and showed that it regulates different categories of genes according to its dosage. Significant correlations exist between the localization of SF-1-binding sites in chromatin under different dosage conditions and dosage-dependent regulation of gene expression. Our study revealed unexpected functional interactions between SF-1 and Neuron-Restrictive Silencer Factor/RE1-Silencing Transcription Factor (NRSF/REST), which was first characterized as a repressor of neuronal gene expression in non-neuronal tissues, in the regulation of gene expression in steroidogenic cells. When overexpressed, SF-1 reshapes the repertoire of NRSF/REST—regulated genes, relieving repression of key steroidogenic genes. These data show that NRSF/REST has a novel function in regulating gene expression in steroidogenic cells and suggest that it may have a broad role in regulating tissue-specific gene expression programs. PMID:23907384

  17. Integrative analysis of SF-1 transcription factor dosage impact on genome-wide binding and gene expression regulation.

    PubMed

    Doghman, Mabrouka; Figueiredo, Bonald C; Volante, Marco; Papotti, Mauro; Lalli, Enzo

    2013-10-01

    Steroidogenic Factor-1 (SF-1) is a nuclear receptor that has a pivotal role in the development of adrenal glands and gonads and in the control of steroid hormone production, being also implicated in the pathogenesis of adrenocortical tumors. We have analyzed the mechanisms how SF-1 controls gene expression in adrenocortical cells and showed that it regulates different categories of genes according to its dosage. Significant correlations exist between the localization of SF-1-binding sites in chromatin under different dosage conditions and dosage-dependent regulation of gene expression. Our study revealed unexpected functional interactions between SF-1 and Neuron-Restrictive Silencer Factor/RE1-Silencing Transcription Factor (NRSF/REST), which was first characterized as a repressor of neuronal gene expression in non-neuronal tissues, in the regulation of gene expression in steroidogenic cells. When overexpressed, SF-1 reshapes the repertoire of NRSF/REST-regulated genes, relieving repression of key steroidogenic genes. These data show that NRSF/REST has a novel function in regulating gene expression in steroidogenic cells and suggest that it may have a broad role in regulating tissue-specific gene expression programs.

  18. Human Adrenocortical Remodeling Leading to Aldosterone-Producing Cell Cluster Generation

    PubMed Central

    Hayashi, Yuichiro; Al-Eyd, Ghaith; Nakagawa, Ken; Morita, Shinya; Kosaka, Takeo; Oya, Mototsugu; Mitani, Fumiko; Suematsu, Makoto; Kabe, Yasuaki

    2016-01-01

    Background. The immunohistochemical detection of aldosterone synthase (CYP11B2) and steroid 11β-hydroxylase (CYP11B1) has enabled the identification of aldosterone-producing cell clusters (APCCs) in the subcapsular portion of the human adult adrenal cortex. We hypothesized that adrenals have layered zonation in early postnatal stages and are remodeled to possess APCCs over time. Purposes. To investigate changes in human adrenocortical zonation with age. Methods. We retrospectively analyzed adrenal tissues prepared from 33 autopsied patients aged between 0 and 50 years. They were immunostained for CYP11B2 and CYP11B1. The percentage of APCC areas over the whole adrenal area (AA/WAA, %) and the number of APCCs (NOA, APCCs/mm2) were calculated by four examiners. Average values were used in statistical analyses. Results. Adrenals under 11 years old had layered zona glomerulosa (ZG) and zona fasciculata (ZF) without apparent APCCs. Some adrenals had an unstained (CYP11B2/CYP11B1-negative) layer between ZG and ZF, resembling the rat undifferentiated cell zone. Average AA/WAA and NOA correlated with age, suggesting that APCC development is associated with aging. Possible APCC-to-APA transitional lesions were incidentally identified in two adult adrenals. Conclusions. The adrenal cortex with layered zonation remodels to possess APCCs over time. APCC generation may be associated with hypertension in adults. PMID:27721827

  19. The development of self-regulation across early childhood.

    PubMed

    Montroy, Janelle J; Bowles, Ryan P; Skibbe, Lori E; McClelland, Megan M; Morrison, Frederick J

    2016-11-01

    The development of early childhood self-regulation is often considered an early life marker for later life successes. Yet little longitudinal research has evaluated whether there are different trajectories of self-regulation development across children. This study investigates the development of behavioral self-regulation between the ages of 3 and 7 years, with a direct focus on possible heterogeneity in the developmental trajectories, and a set of potential indicators that distinguish unique behavioral self-regulation trajectories. Across 3 diverse samples, 1,386 children were assessed on behavioral self-regulation from preschool through first grade. Results indicated that majority of children develop self-regulation rapidly during early childhood, and that children follow 3 distinct developmental patterns of growth. These 3 trajectories were distinguishable based on timing of rapid gains, as well as child gender, early language skills, and maternal education levels. Findings highlight early developmental differences in how self-regulation unfolds, with implications for offering individualized support across children. (PsycINFO Database Record

  20. Helsinki score-a novel model for prediction of metastases in adrenocortical carcinomas.

    PubMed

    Pennanen, Mirkka; Heiskanen, Ilkka; Sane, Timo; Remes, Satu; Mustonen, Harri; Haglund, Caj; Arola, Johanna

    2015-03-01

    Histopathologic diagnosis of adrenocortical tumors is based on adverse features that indicate malignant potential. Proliferation index has served as a supplemental tool in assessing the malignant potential of adrenocortical tumors. None of the current histologic classification systems can sufficiently accurately predict tumors' metastatic potential. We studied 177 consecutive adult patients with primary adrenocortical tumors operated on at Helsinki University Central Hospital between 1990 and 2003, all patients with a minimum follow-up of 5 years. We determined for each tumor the Weiss score and the Weiss revisited score by Aubert. Proliferation index was measured by computer-assisted image analysis. Each of the 9 Weiss criteria and the proliferation index were then used to establish a scoring system to predict the metastatic potential of adrenocortical tumors. Use of stepwise regression analysis led us to propose a calculation: 3 × mitotic rate (>5/50 high-power fields) + 5 × presence of necrosis + proliferation index in the most proliferative area of the tumor. Using a cutoff value of 8.5, the new scoring system was able to diagnose metastatic adrenocortical carcinoma with 100% sensitivity (confidence interval [CI], 76.8%-100%) and 99.4% specificity (CI, 96.6%-100%). The corresponding sensitivity of the Weiss system was 100% (CI, 76.8%-100%), and specificity, 90.2% (CI, 84.6%-94.3%), with sensitivity of the Weiss revisited system at 100% (CI, 76.8%-100%) and specificity at 96.9% (CI, 93.0%-99.0%). The new Helsinki score thus was accurate in predicting the metastatic potential of adrenocortical tumors.

  1. Ectopic adrenocortical adenoma in the renal hilum: a case report and literature review.

    PubMed

    Liu, Yang; Jiang, Yue-Feng; Wang, Ye-Lin; Cao, Hong-Yi; Wang, Liang; Xu, Hong-Tao; Li, Qing-Chang; Qiu, Xue-Shan; Wang, En-Hua

    2016-04-19

    Ectopic (accessory) adrenocortical tissue, also known as adrenal rests, is a developmental abnormality of the adrenal gland. The most common ectopic site is in close proximity to the adrenal glands and along the path of descent or migration of the gonads because of the close spatial relationship between the adrenocortical primordium and gonadal blastema during embryogenesis. Ectopic rests may undergo marked hyperplasia, and occasionally induce ectopic adrenocortical adenomas or carcinomas. A 27-year-old Chinese female patient who presented with amenorrhea of 3 months duration underwent computed tomography urography after ultrasound revealed a solitary mass in the left renal hilum. Histologically, the prominent eosinophilic tumor cells formed an alveolar- or acinar-like configuration. The immunohistochemical profile (alpha-inhibin+, Melan-A+, synaptophysin+) indicated the adrenocortical origin of the tumor, diagnosed as ectopic adrenocortical adenoma. The patient was alive with no tumor recurrence or metastasis at the 3-month follow-up examination. The unusual histological appearance of ectopic adrenocortical adenoma may result in its misdiagnosis as oncocytoma or clear cell renal cell carcinoma, especially if the specimen is limited. This case provides a reminder to pathologists to be aware of atypical cases of this benign tumor. Although uncommon, an ectopic adrenal lesion should be included in the differential diagnosis of tumors involving the renal hilum. A misdiagnosis of this benign condition as a malignant renal tumor may have severe consequences for the patient, including unnecessary radical nephrectomy. Preoperative biopsy and appropriate immunohistochemical staining will assist in determining the origin and nature of the tumor and in avoiding intraoperative uncertainty.

  2. Mitotane sensitizes adrenocortical cancer cells to ionizing radiations by involvement of the cyclin B1/CDK complex in G2 arrest and mismatch repair enzymes modulation.

    PubMed

    Cerquetti, Lidia; Sampaoli, Camilla; Amendola, Donatella; Bucci, Barbara; Misiti, Silvia; Raza, Giorgio; De Paula, Ugo; Marchese, Rodolfo; Brunetti, Ercole; Toscano, Vincenzo; Stigliano, Antonio

    2010-08-01

    Mitotane inhibits steroid synthesis by an action on steroidogenic enzymes, as 11beta-hydroxylase and cholesterol side chain cleavage. It also has a cytotoxic effect on the adrenocortical cells and represents a primary drug used in the adrenocortical carcinoma (ACC). H295R and SW13 cell lines were treated with mitotane 10(-5) M and ionizing radiations (IR) in combination therapy, inducing an irreversible inhibition of cell growth in both adrenocortical cancer cells. As shown in a previous report, mitotane/IR combination treatment induced a cell accumulation in the G2 phase. Here, we report the radiosensitizing properties of mitotane in two different ACC cell lines. The drug reveals the effectiveness to enhance the cytotoxic effects of IR by attenuating DNA repair and interfering on the activation of mitosis promoting factor (MPF), mainly regulated by the degradation of cyclin B1 in the mitotic process. These events may explain the inappropriate activation of cdc2, implicated in G2/M phase arrest and probably induced by the mitotane and IR in the combined treatment. Indeed, treatment with purvalanol, a cdc2-inhibitor prevents cell cycle arrest, triggering the G2/M transition. The observation that mitotane and IR in combination treatment amplifies the activation level of cyclin B/cdc2 complexes contributing to cell cycle arrest, suggests that the MPF could function as a master signal for controlling the temporal order of different mitotic events. Moreover, we report that mitotane interferes in modulation of mismatch repair (MMR) enzymes, revealing radiosensitizing drug ability.

  3. Rearrangements at the 11p15 locus and overexpression of insulin-like growth factor-II gene in sporadic adrenocortical tumors

    SciTech Connect

    Gicquel, C.; Schneid, H.; Le Bouc, Y.; Bertagna, X.; Francillard-Leblond, M.; Luton, J.P.; Girard, F.

    1994-06-01

    Little is known about the pathophysiology of sporadic adrenocortical tumors in adults. Because loss of heterozygosity at the 11p15 locus has been described in childhood tumors, particularly in adrenocortical tumors associated with the Beckwith-Wiedemann syndrome, and because insulin-like growth factor-II (IGF-II) is a crucial regulator of fetal adrenal growth, the authors looked for structural analysis at the 11p15 locus and IGF-II gene expression in 23 sporadic adrenocortical adult tumors: 6 carcinomas (5 with Cushing`s syndrome and 1 nonsecreting) and 17 benign adenomas (13 with Cushing`s syndrome, 1 pure androgen secreting, and 3 nonsecreting). Twenty-one patients were informative at the 11p15 locus, and six (four carcinomas and two adenomas) of them (28.5%) exhibited 11p15 structural abnormalities in tumor DNA (five, a uniparental disomy and one, a mosaicism). In a single case that could be further studied, a paternal isodisomy was observed. Very high IGF-II mRNA contents were detected in seven tumors (30%; 5 of the 6 carcinomas and 2 of the 17 adenomas). They were particularly found in tumors with uniparental disomy at the 11p15 locus. Overall, a strong correlation existed between IGF-II mRNA contents and DNA demethylation at the IGF-II locus. These data show that genetic alterations involving the 11p15 locus were highly frequent in malignant tumors, but found only in rare adenomas. These results in combination with evidence for overexpression of IGF-II from the 11p15.5 locus suggest that abnormalities in structure and/or expression of the IGF-II gene play a role as a late event of a multistep process of tumorigenesis. 58 refs., 6 figs., 4 tabs.

  4. RhoGTPase Regulators Orchestrate Distinct Stages of Synaptic Development

    PubMed Central

    Martin-Vilchez, Samuel; Whitmore, Leanna; Asmussen, Hannelore; Zareno, Jessica; Horwitz, Rick; Newell-Litwa, Karen

    2017-01-01

    Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later maturation. Specifically, an activator of actin polymerization, the Rac1 GEF β-PIX, drives spine precursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synapses. Our observations demonstrate that specific combinations of RhoGTPase regulatory proteins temporally balance RhoGTPase activity during post-synaptic spine development. PMID:28114311

  5. PEROXISOMES IN INNER ADRENOCORTICAL CELLS OF FETAL AND ADULT GUINEA PIGS

    PubMed Central

    Black, Virginia H.; Bogart, Bruce I.

    1973-01-01

    Abundant membrane-bounded granules, 0.1–0.45 µm in diameter, occur among the elements of the smooth-surfaced endoplasmic reticulum in zona fasciculata and zona reticularis adrenocortical cells of guinea pigs. Acid phosphatase cannot be cytochemically demonstrated in them, and they are therefore distinct from lysosomes. Incubation in medium containing 3,3'-diaminobenzidine results in dense staining of the granules, identifying them as peroxisomes. These small peroxisomes increase in number as fetal adrenocortical cells differentiate, and they appear to arise from dilated regions of endoplasmic reticulum. They maintain interconnections with the smooth endoplasmic reticulum and with one another. PMID:4633170

  6. Loss of sensitivity to ACTH of adrenocortical cells isolated from maturing domestic fowl.

    PubMed

    Carsia, R V; Scanes, C G; Malamed, S

    1985-07-01

    Maturation of domestic fowl corticosteroidogenesis was evaluated using purified adrenocortical cells. Basal corticosterone production decreased steadily from 2 days to 26 weeks after hatching. However, maximally stimulated corticosterone production was not changed. In contrast, the half-maximal steroidogenic concentrations (ED50 values or effective doses for 50% maximal effect) of ACTH analogs increased approximately 40 times by 26 weeks, but the ED50 values of 8-bromo-cyclic AMP and pregnenolone were not changed. This suggests that adrenocortical cell sensitivity to ACTH decreases with maturation of the domestic fowl.

  7. Ectopic Adrenocortical Tissue in the Spermatic Cord in a 44-Year-old Man☆

    PubMed Central

    Müllhaupt, Gautier; Mordasini, Livio; Gramann, Tobias; Ertel, Vera; Schmid, Hans-Peter; Abt, Dominik

    2014-01-01

    We report on a 44-year-old man who underwent microsurgical inguinal repair for symptomatic varicocele. As an incidental finding during surgery, a yellowish tumor (9 × 5 × 4 mm) was found in the spermatic cord. Histologic examination revealed ectopic adrenocortical tissue. Ectopic adrenocortical tissue in the spermatic cord is known to appear in children and adolescents but is extremely rare in adults. Surgical removal of the tissue is recommended, although malignant transformation or functional hormonal disorders are very unlikely. PMID:26958477

  8. Single Nucleotide Polymorphism Microarray Analysis in Cortisol-Secreting Adrenocortical Adenomas Identifies New Candidate Genes and Pathways1 2

    PubMed Central

    Ronchi, Cristina L; Leich, Ellen; Sbiera, Silviu; Weismann, Dirk; Rosenwald, Andreas; Allolio, Bruno; Fassnacht, Martin

    2012-01-01

    The genetic mechanisms underlying adrenocortical tumor development are still largely unknown. We used high-resolution single nucleotide polymorphism microarrays (Affymetrix SNP 6.0) to detect copy number alterations (CNAs) and copy-neutral losses of heterozygosity (cnLOH) in 15 cortisol-secreting adrenocortical adenomas with matched blood samples. We focused on microalterations aiming to discover new candidate genes involved in early tumorigenesis and/or autonomous cortisol secretion. We identified 962 CNAs with a median of 18 CNAs per sample. Half of them involved noncoding regions, 89% were less than 100 kb, and 28% were found in at least two samples. The most frequently gained regions were 5p15.33, 6q16.1, 7p22.3-22.2, 8q24.3, 9q34.2-34.3, 11p15.5, 11q11, 12q12, 16q24.3, 20p11.1-20q21.11, and Xq28 (≥20% of cases), most of them being identified in the same three adenomas. These regions contained among others genes like NOTCH1, CYP11B2, HRAS, and IGF2. Recurrent losses were less common and smaller than gains, being mostly localized at 1p, 6q, and 11q. Pathway analysis revealed that Notch signaling was the most frequently altered. We identified 46 recurrent CNAs that each affected a single gene (31 gains and 15 losses), including genes involved in steroidogenesis (CYP11B1) or tumorigenesis (CTNNB1, EPHA7, SGK1, STIL, FHIT). Finally, 20 small cnLOH in four cases affecting 15 known genes were found. Our findings provide the first high-resolution genome-wide view of chromosomal changes in cortisol-secreting adenomas and identify novel candidate genes, such as HRAS, EPHA7, and SGK1. Furthermore, they implicate that the Notch1 signaling pathway might be involved in the molecular pathogenesis of adrenocortical tumors. PMID:22496620

  9. Regulation of Plant Cellular and Organismal Development by SUMO.

    PubMed

    Elrouby, Nabil

    2017-01-01

    This chapter clearly demonstrates the breadth and spectrum of the processes that SUMO regulates during plant development. The gross phenotypes observed in mutants of the SUMO conjugation and deconjugation enzymes reflect these essential roles, and detailed analyses of these mutants under different growth conditions revealed roles in biotic and abiotic stress responses, phosphate starvation, nitrate and sulphur metabolism, freezing and drought tolerance and response to excess copper. SUMO functions also intersect with those regulated by several hormones such as salicylic acid , abscisic acid , gibberellins and auxin, and detailed studies provide mechanistic clues of how sumoylation may regulate these processes. The regulation of COP1 and PhyB functions by sumoylation provides very strong evidence that SUMO is heavily involved in the regulation of light signaling in plants. At the cellular and subcellular levels, SUMO regulates meristem architecture, the switch from the mitotic cycle into the endocycle, meiosis, centromere decondensation and exit from mitosis, transcriptional control, and release from transcriptional silencing. Most of these advances in our understanding of SUMO functions during plant development emerged over the past 6-7 years, and they may only predict a prominent rise of SUMO as a major regulator of eukaryotic cellular and organismal growth and development.

  10. Thyroid hormone regulated genes in cerebral cortex development.

    PubMed

    Bernal, Juan

    2017-02-01

    The physiological and developmental effects of thyroid hormones are mainly due to the control of gene expression after interaction of T3 with the nuclear receptors. To understand the role of thyroid hormones on cerebral cortex development, knowledge of the genes regulated by T3 during specific stages of development is required. In our laboratory, we previously identified genes regulated by T3 in primary cerebrocortical cells in culture. By comparing these data with transcriptomics of purified cell types from the developing cortex, the cellular targets of T3 can be identified. In addition, many of the genes regulated transcriptionally by T3 have defined roles in cortex development, from which the role of T3 can be derived. This review analyzes the specific roles of T3-regulated genes in the different stages of cortex development within the physiological frame of the developmental changes of thyroid hormones and receptor concentrations in the human cerebral cortex during fetal development. These data indicate an increase in the sensitivity to T3 during the second trimester of fetal development. The main cellular targets of T3 appear to be the Cajal-Retzius and the subplate neurons. On the other hand, T3 regulates transcriptionally genes encoding extracellular matrix proteins, involved in cell migration and the control of diverse signaling pathways.

  11. miR-200 Regulates Endometrial Development During Early Pregnancy.

    PubMed

    Jimenez, Patricia T; Mainigi, Monica A; Word, R Ann; Kraus, W Lee; Mendelson, Carole R

    2016-09-01

    For successful embryo implantation, endometrial stromal cells must undergo functional and morphological changes, referred to as decidualization. However, the molecular mechanisms that regulate implantation and decidualization are not well defined. Here we demonstrate that the estradiol- and progesterone-regulated microRNA (miR)-200 family was markedly down-regulated in mouse endometrial stromal cells prior to implantation, whereas zinc finger E-box binding homeobox-1 and -2 and other known and predicted targets were up-regulated. Conversely, miR-200 was up-regulated during in vitro decidualization of human endometrial stromal cells. Knockdown of miR-200 negatively affected decidualization and prevented the mesenchymal-epithelial transition-like changes that accompanied decidual differentiation. Notably, superovulation of mice and humans altered miR-200 expression. Our findings suggest that hormonal alterations that accompany superovulation may negatively impact endometrial development and decidualization by causing aberrant miR-200 expression.

  12. Signal Transduction Cascades Regulating Fungal Development and Virulence

    PubMed Central

    Lengeler, Klaus B.; Davidson, Robert C.; D'souza, Cletus; Harashima, Toshiaki; Shen, Wei-Chiang; Wang, Ping; Pan, Xuewen; Waugh, Michael; Heitman, Joseph

    2000-01-01

    Cellular differentiation, mating, and filamentous growth are regulated in many fungi by environmental and nutritional signals. For example, in response to nitrogen limitation, diploid cells of the yeast Saccharomyces cerevisiae undergo a dimorphic transition to filamentous growth referred to as pseudohyphal differentiation. Yeast filamentous growth is regulated, in part, by two conserved signal transduction cascades: a mitogen-activated protein kinase cascade and a G-protein regulated cyclic AMP signaling pathway. Related signaling cascades play an analogous role in regulating mating and virulence in the plant fungal pathogen Ustilago maydis and the human fungal pathogens Cryptococcus neoformans and Candida albicans. We review here studies on the signaling cascades that regulate development of these and other fungi. This analysis illustrates both how the model yeast S. cerevisiae can serve as a paradigm for signaling in other organisms and also how studies in other fungi provide insights into conserved signaling pathways that operate in many divergent organisms. PMID:11104818

  13. Mitotane Inhibits Sterol-O-Acyl Transferase 1 Triggering Lipid-Mediated Endoplasmic Reticulum Stress and Apoptosis in Adrenocortical Carcinoma Cells.

    PubMed

    Sbiera, Silviu; Leich, Ellen; Liebisch, Gerhard; Sbiera, Iuliu; Schirbel, Andreas; Wiemer, Laura; Matysik, Silke; Eckhardt, Carolin; Gardill, Felix; Gehl, Annemarie; Kendl, Sabine; Weigand, Isabel; Bala, Margarita; Ronchi, Cristina L; Deutschbein, Timo; Schmitz, Gerd; Rosenwald, Andreas; Allolio, Bruno; Fassnacht, Martin; Kroiss, Matthias

    2015-11-01

    Adrenocortical carcinoma (ACC) is a rare malignancy that harbors a dismal prognosis in advanced stages. Mitotane is approved as an orphan drug for treatment of ACC and counteracts tumor growth and steroid hormone production. Despite serious adverse effects, mitotane has been clinically used for decades. Elucidation of its unknown molecular mechanism of action seems essential to develop better ACC therapies. Here, we set out to identify the molecular target of mitotane and altered downstream mechanisms by combining expression genomics and mass spectrometry technology in the NCI-H295 ACC model cell line. Pathway analyses of expression genomics data demonstrated activation of endoplasmic reticulum (ER) stress and profound alteration of lipid-related genes caused by mitotane treatment. ER stress marker CHOP was strongly induced and the two upstream ER stress signalling events XBP1-mRNA splicing and eukaryotic initiation factor 2 A (eIF2α) phosphorylation were activated by mitotane in NCI-H295 cells but to a much lesser extent in four nonsteroidogenic cell lines. Lipid mass spectrometry revealed mitotane-induced increase of free cholesterol, oxysterols, and fatty acids specifically in NCI-H295 cells as cause of ER stress. We demonstrate that mitotane is an inhibitor of sterol-O-acyl-transferase 1 (SOAT1) leading to accumulation of these toxic lipids. In ACC tissue samples we show variable SOAT1 expression correlating with the response to mitotane treatment. In conclusion, mitotane confers adrenal-specific cytotoxicity and down-regulates steroidogenesis by inhibition of SOAT1 leading to lipid-induced ER stress. Targeting of cancer-specific lipid metabolism opens new avenues for treatment of ACC and potentially other types of cancer.

  14. Upregulated JAG1 Enhances Cell Proliferation in Adrenocortical Carcinoma

    PubMed Central

    Simon, Derek P.; Giordano, Thomas J.; Hammer, Gary D.

    2013-01-01

    Purpose The purpose of this study was to examine the expression and molecular significance of JAG1, a ligand for the Notch developmental signaling pathway, in adrenocortical carcinoma (ACC). Experimental Design Human microarray data were analyzed for genes expressing ligands for the Notch pathway and validated with QPCR and immunoblots of RNA and protein, respectively. ACC cells lines were assessed for Notch pathway member expression by immunoblot, QPCR, and immunofluorescence. Notch pathway activity was also determined utilizing a reporter gene (luciferase) activation. Proliferation experiments employing a Jag1 knockdown strategy (Jag1KD) and a inhibitor of Notch-dependent transcription (DNMaml), utilized a co-culture system with FACS analysis. Tumor stage and mitotic rate of human ACC samples were correlated to JAG1 expression. Results The Notch ligand JAG1 mRNA and protein are upregulated in ACC. JAG1 upregulation can be modeled in the Y1 mouse ACC cell line that expresses Jag1, Notch receptors, downstream signaling molecules, and exhibits density-dependent Notch activation. Jag1 enhances cell proliferation through activation of canonical Notch signaling as shown through Jag1 knockdown (Jag1KD) and co-culture experiments. Inhibition of Notch signaling at the level of post receptor signaling (DNMaml), results in similar inhibition of cell proliferation. Analysis of clinical data indicates Jag1 expression correlates with both Grade and Stage of ACC supporting a role of JAG1-dependent Notch activation in late-stage ACC. Conclusions JAG1 is the primary upregulated Notch ligand in ACC and enhances ACC cell proliferation and tumor aggressiveness in a non-cell-autonomous manner through activation of Notch signaling in adjacent cells. PMID:22427350

  15. Hair cortisol measurement in mitotane-treated adrenocortical cancer patients.

    PubMed

    Manenschijn, L; Quinkler, M; van Rossum, E F C

    2014-04-01

    The only approved drug for the treatment of adrenocortical cancer (ACC) is mitotane. Mitotane is adrenolytic and therefore, hydrocortisone replacement therapy is necessary. Since mitotane increases cortisol binding globulin (CBG) and induces CYP3A4 activity, high doses of hydrocortisone are thought to be required. Evaluation of hydrocortisone therapy in mitotane-treated patients has been difficult since there is no good marker to evaluate hydrocortisone therapy. Measurement of cortisol in scalp hair is a novel method that offers the opportunity to measure long-term cortisol levels. Our aim was to evaluate whether hair cortisol measurements could be useful in evaluating recent hydrocortisone treatment in mitotane-treated ACC patients. Hair cortisol levels were measured in 15 mitotane-treated ACC patients on hydrocortisone substitution and 96 healthy individuals. Cortisol levels were measured in 3 cm hair segments, corresponding to a period of 3 months. Hair cortisol levels were higher in ACC patients compared to healthy individuals (p<0.0001). Seven ACC patients (47%) had hair cortisol levels above the reference range. None of the patients had hair cortisol levels below normal. In contrast to hydrocortisone doses (β=0.03, p=0.93), hair cortisol levels were associated with BMI (β=0.53, p=0.042). There was no correlation between hair cortisol levels and hydrocortisone doses (β=0.41, p=0.13). Almost half of the ACC patients had high hair cortisol levels, suggesting long-term over-substitution of hydrocortisone in some of the patients, whereas none of the patients was under-substituted. Hair cortisol measurements might be useful in long-term monitoring hydrocortisone treatment in mitotane-treated ACC patients.

  16. Sphingosine kinase 1 is overexpressed and promotes adrenocortical carcinoma progression

    PubMed Central

    Huang, Jiwei; Kong, Wen; Xue, Wei; Zhu, Yu; Zhang, Jin; Huang, Yiran

    2016-01-01

    Adrenocortical carcinoma (ACC) is a rare endocrine tumor with a very poor prognosis. Sphingosine kinase 1 (SphK1), an oncogenic kinase, has previously been found to be upregulated in various cancers. However, the role of the SphK1 in ACC has not been investigated. In this study, SphK1 mRNA and protein expression levels as well as clinicopathological significance were evaluated in ACC samples. In vitro siRNA knockdown of SphK1 in two ACC cell lines (H295R and SW13) was used to determine its effect on cellular proliferation and invasion. In addition, we further evaluated the effect of SphK1 antagonist fingolimod (FTY720) in ACC in vitro and in vivo, as a single agent or in combination with mitotane, and attempted to explore its anticarcinogenic mechanisms. Our results show a significant over-expression of SphK1 mRNA and protein expression in the carcinomas compared with adenomas (P < 0.01 for all comparisons). Functionally, konckdown of SphK1 gene expression in ACC cell lines significantly decreased cell proliferation and invasion. FTY720 could result in a decreased cell proliferation and induction of apoptosis, and the combination of mitotane and FTY720 resulted in a greater anti-proliferative effect over single agent treatment in SW13 cells. Furthermore, FTY720 could markedly inhibit tumor growth in ACC xenografts. SphK1 expression is functionally associated to cellular proliferation, apoptosis, invasion and mitotane sensitivity of ACC. Our data suggest that SphK1 might be a potential therapeutic target for the treatment of ACC. PMID:26673009

  17. (18)F-labelled metomidate analogues as adrenocortical imaging agents.

    PubMed

    Erlandsson, Maria; Karimi, Farhad; Lindhe, Orjan; Långström, Bengt

    2009-05-01

    Two- and one-step syntheses of (18)F-labelled analogues of metomidate, such as 2-[(18)F]fluoroethyl 1-[(1R)-1-phenylethyl]-1H-imidazole-5-carboxylate (1), 2-[(18)F]fluoroethyl 1-[(1R)-1-(4-chlorophenyl)ethyl]-1H-imidazole-5-carboxylate (2), 2-[(18)F]fluoroethyl 1-[(1R)-1-(4-bromophenyl)ethyl]-1H-imidazole-5-carboxylate (3), 3-[(18)F]fluoropropyl 1-[(1R)-1-(4-bromophenyl)ethyl]-1H-imidazole-5-carboxylate (4) and 3-[(18)F]fluoropropyl 1-[(1R)-1-phenylethyl]-1H-imidazole-5-carboxylate (5) are presented. Analogues 1-5 were prepared by a two-step reaction sequence that started with the synthesis of either 2-[(18)F]fluoroethyl 4-methylbenzenesulfonate or 3-[(18)F]fluoropropyl 4-methylbenzenesulfonate. These were used as (18)F-alkylating agents in the second step, in which they reacted with the ammonium salt of a 1-[(1R)-1-phenylethyl]-1H-imidazole-5-carboxylic acid. One-step-labelling syntheses of 1, 2 and 5 were also explored. Analogues 1-4 were biologically validated by frozen-section autoradiography and organ distribution. Metabolite analysis was performed for 2 and 3. The radiochemical yield of the two-step synthesis was in the range of 10-29% and that of the one-step synthesis was 25-37%. Using microwave irradiation in the one-step synthesis of 1 and 2 increased the radiochemical yield to 46+/-3% and 79+/-30%, respectively. Both the frozen-section autoradiography and organ distribution results indicated that analogue 2 has a potential as an adrenocortical imaging agent, having the highest degree of specific adrenal binding and best ratio of adrenal to organ uptake among the compounds studied.

  18. Role of pituitary-adrenocortical system in body adaptation abilities.

    PubMed

    Filaretov, A A; Bogdanova, T S; Podvigina, T T; Bodganov, A I

    1988-12-01

    The role of the pituitary-adrenocortical system (PACS) in body adaptation abilities was studied on rats. The adaptation abilities were tested by a body working capacity (the running time in a treadmill till fatigue). The single administration of ginseng results in the increase of a working capacity up to 132%, the seven-day one up to 179%. This makes it possible to speak about two levels of adaptation, each being characterized by a specific PACS status and a degree of PACS involvement in adaptation abilities. The single administration of ginseng is accompanied by an increase in the basal level of ACTH and corticosteroids. At a 7-day administration the basal level of ACTH and corticosteroids does not change but PACS reactivity to the immobilising stress increases. The preliminary administration of 15 mg/100 g b. w. hydrocortisone, 7 days before testing of the working capacity and PACS status, causes the block in PACS function. It results in the decrease of the basal corticosteroid content in plasma and the inability of stress factor to cause the rise in the corticosteroid level. The PACS blocking results in the decrease of a working capacity in normal rats not treated with ginseng and in animals singly treated with ginseng. The PACS blocking effected the increment in a working capacity caused by a 7-day ginseng administration to a lesser extent, however, the decrease in a working capacity took place even in this case. The conclusion is made that PACS status changes with the transition of a body to a higher level of adaptation: PACS excitation occurs or the system excitability increases.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Adrenocortical adenoma and carcinoma: histopathological and molecular comparative analysis.

    PubMed

    Stojadinovic, Alexander; Brennan, Murray F; Hoos, Axel; Omeroglu, Atilla; Leung, Denis H Y; Dudas, Maria E; Nissan, Aviram; Cordon-Cardo, Carlos; Ghossein, Ronald A

    2003-08-01

    We compared histomorphological features and molecular expression profiles of adrenocortical adenomas (ACAd) and carcinomas (ACCa). A critical histopathological review (mean, 11 slides per patient) was conducted of 37 ACAd and 67 ACCa. Paraffin-embedded tissue cores of ACAd (n = 33) and ACCa (n = 38) were arrayed in triplicate on tissue microarrays. Expression profiles of p53, mdm-2, p21, Bcl-2, cyclin D1, p27, and Ki-67 were investigated by immunohistochemistry and correlated with histopathology and patient outcome using standard statistical methodology. Median follow-up period was 5 years. Tumor necrosis, atypical mitoses, and >1 mitosis per 50 high-power fields were factors that were highly specific for ACCa (P <.001). Number (0 to 4) of unfavorable markers [Ki-67 (+), p21 (+), p27 (+), mdm-2(-)] expressed was significantly associated with mitotic activity and morphologic index (i.e., number of adverse morphologic features) and highly predictive of malignancy (P <.001). Ki-67 overexpression occurred in 0 ACAd and 36% ACCa (P <.001) and was significantly associated with mitotic rate and unfavorable morphologic index (P <.001). Tumor necrosis, atypical mitoses, >5 mitoses per 50 high-power fields, sinusoidal invasion, histologic index of >5, and presence of more than two unfavorable molecular markers were associated significantly with metastasis in ACCa. Well-established histopathologic criteria and Ki-67 can specifically distinguish ACCAd from ACCa. Tumor cell proliferation (Ki-67) correlates with mitotic activity and morphologic index. Tumor morphology is a better predictor of metastatic risk in ACCa than current immunohistochemistry-detected cell cycle regulatory and proliferation-associated proteins.

  20. Plk2 regulates mitotic spindle orientation and mammary gland development.

    PubMed

    Villegas, Elizabeth; Kabotyanski, Elena B; Shore, Amy N; Creighton, Chad J; Westbrook, Thomas F; Rosen, Jeffrey M

    2014-04-01

    Disruptions in polarity and mitotic spindle orientation contribute to the progression and evolution of tumorigenesis. However, little is known about the molecular mechanisms regulating these processes in vivo. Here, we demonstrate that Polo-like kinase 2 (Plk2) regulates mitotic spindle orientation in the mammary gland and that this might account for its suggested role as a tumor suppressor. Plk2 is highly expressed in the mammary gland and is required for proper mammary gland development. Loss of Plk2 leads to increased mammary epithelial cell proliferation and ductal hyperbranching. Additionally, a novel role for Plk2 in regulating the orientation of the mitotic spindle and maintaining proper cell polarity in the ductal epithelium was discovered. In support of a tumor suppressor function for Plk2, loss of Plk2 increased the formation of lesions in multiparous glands. Collectively, these results demonstrate a novel role for Plk2 in regulating mammary gland development.

  1. c-myc Regulates Cell Proliferation during Lens Development

    PubMed Central

    Gomes, Anielle L.; Rodrigues, Paulo M. G.; Martins, Rodrigo A. P.

    2014-01-01

    Myc protooncogenes play important roles in the regulation of cell proliferation, growth, differentiation and survival during development. In various developing organs, c-myc has been shown to control the expression of cell cycle regulators and its misregulated expression is detected in many human tumors. Here, we show that c-myc gene (Myc) is highly expressed in developing mouse lens. Targeted deletion of c-myc gene from head surface ectoderm dramatically impaired ocular organogenesis, resulting in severe microphtalmia, defective anterior segment development, formation of a lens stalk and/or aphakia. In particular, lenses lacking c-myc presented thinner epithelial cell layer and growth impairment that was detectable soon after its inactivation. Defective development of c-myc-null lens was not caused by increased cell death of lens progenitor cells. Instead, c-myc loss reduced cell proliferation, what was associated with an ectopic expression of Prox1 and p27Kip1 proteins within epithelial cells. Interestingly, a sharp decrease in the expression of the forkhead box transcription factor Foxe3 was also observed following c-myc inactivation. These data represent the first description of the physiological roles played by a Myc family member in mouse lens development. Our findings support the conclusion that c-myc regulates the proliferation of lens epithelial cells in vivo and may, directly or indirectly, modulate the expression of classical cell cycle regulators in developing mouse lens. PMID:24503550

  2. The Effects of Morning Naps, Car Trips, and Maternal Separation on Adrenocortical Activity in Human Infants.

    ERIC Educational Resources Information Center

    Larson, Mary C.; And Others

    1991-01-01

    Three studies examined adrenocortical activity in infants. Morning naps were associated with decreases in salivary cortisol. Riding for 40 minutes in a car lowered salivary cortisol concentrations. Thirty minutes of maternal separation in the laboratory resulted in higher salivary cortisol concentrations than did 30 minutes of play with the mother…

  3. The Relations between Bullying Exposures in Middle Childhood, Anxiety, and Adrenocortical Activity

    ERIC Educational Resources Information Center

    Carney, JoLynn V.; Hazler, Richard J.; Oh, Insoo; Hibel, Leah C.; Granger, Douglas A.

    2010-01-01

    This exploratory study investigated how exposure to bullying at school in middle childhood is associated with student anxiety levels and adrenocortical activity at a time preceding lunch when anxiety about potential bullying would potentially be higher. Ninety-one sixth-grade students (55 female and 36 male) reported being exposed one or more…

  4. Adrenocortical responses to repeated parachute jumping and subsequent h-CRH challenge in inexperienced healthy subjects.

    PubMed

    Deinzer, R; Kirschbaum, C; Gresele, C; Hellhammer, D H

    1997-04-01

    The present study examined the adrenocortical response to 3 consecutive parachute jumps and a poststress h-CRH challenge. Fifteen participants in a parachute-jumping course took saliva samples for later cortisol analysis every 20 min throughout the day, when they accomplished their very first 3 parachute jumps and throughout a control day. The effects of an h-CRH challenge on salivary cortisol were assessed in the evening of the jumping day and on a control day. Parachute jumping induced 3 distinct highly significant adrenocortical responses. The respective cortisol increases for the first, second, and third jump were 39.4 +/- 26.5 nmol/1, 31.4 +/- 21.4 nmol/l, and 16.5 +/- 11.9 nmol/l. Cortisol responses to the first and second jump did not differ but the response to the third jump was significantly reduced [t(13) = 3.11; p = 0.008]. Two groups of subjects were identified, "decreasers," whose response decreased from one to the other jump, and "increasers," whose response remained unchanged or increased. The magnitude of the preceding cortisol response of decreasers exceeded that of increasers significantly by about 30 nmol. The mean adrenocortical effects of the poststress h-CRH challenge and the time-matched challenge on a control day did not differ although, in 4 subjects, the poststress adrenocortical response to h-CRH was completely suppressed.

  5. The Relations between Bullying Exposures in Middle Childhood, Anxiety, and Adrenocortical Activity

    ERIC Educational Resources Information Center

    Carney, JoLynn V.; Hazler, Richard J.; Oh, Insoo; Hibel, Leah C.; Granger, Douglas A.

    2010-01-01

    This exploratory study investigated how exposure to bullying at school in middle childhood is associated with student anxiety levels and adrenocortical activity at a time preceding lunch when anxiety about potential bullying would potentially be higher. Ninety-one sixth-grade students (55 female and 36 male) reported being exposed one or more…

  6. Effects of melatonin administration on the clinical course of adrenocortical disease in domestic ferrets.

    PubMed

    Ramer, Jan C; Benson, Keith G; Morrisey, James K; O'Brien, Robert T; Paul-Murphy, Joanne

    2006-12-01

    To evaluate the effect of oral administration of melatonin on clinical signs, tumor size, and serum steroid hormone concentrations in ferrets with adrenocortical disease. Noncontrolled clinical trial. 10 adult ferrets with clinical signs of adrenocortical disease (confirmed via serum steroid hormone concentration assessments). Melatonin (0.5 mg) was administered orally to ferrets once daily for 1 year. At 4-month intervals, a complete physical examination; abdominal ultrasonographic examination (including adrenal gland measurement); CBC; serum biochemical analyses; and assessment of serum estradiol, androstenedione, and 17alpha-hydroxyprogesterone concentrations were performed. Serum prolactin and dehydroepiandrosterone sulfate concentrations were evaluated at the first, second, and last examinations, and serum cortisol concentration was evaluated at the first and last examinations. Daily oral administration of melatonin greatly affected clinical signs of adrenocortical disease in ferrets; changes included hair regrowth, decreased pruritus, increased activity level and appetite, and decreased vulva or prostate size. Mean width of the abnormally large adrenal glands was significantly increased after the 12-month treatment period. Recurrence of clinical signs was detected in 6 ferrets at the 8-month evaluation. Compared with pretreatment values, serum 17alpha-hydroxyprogesterone and prolactin concentrations were significantly increased and decreased after 12 months, respectively. Results suggest that melatonin is a useful, easily administered, palliative treatment to decrease clinical signs associated with adrenocortical disease in ferrets, and positive effects of daily treatment were evident for at least an 8-month period. Oral administration of melatonin did not decrease adrenal gland tumor growth in treated ferrets.

  7. The Effects of Morning Naps, Car Trips, and Maternal Separation on Adrenocortical Activity in Human Infants.

    ERIC Educational Resources Information Center

    Larson, Mary C.; And Others

    1991-01-01

    Three studies examined adrenocortical activity in infants. Morning naps were associated with decreases in salivary cortisol. Riding for 40 minutes in a car lowered salivary cortisol concentrations. Thirty minutes of maternal separation in the laboratory resulted in higher salivary cortisol concentrations than did 30 minutes of play with the mother…

  8. Adrenocortical stress responses influence an invasive vertebrate's fitness in an extreme environment

    PubMed Central

    Jessop, Tim S.; Letnic, Mike; Webb, Jonathan K.; Dempster, Tim

    2013-01-01

    Continued range expansion into physiologically challenging environments requires invasive species to maintain adaptive phenotypic performance. The adrenocortical stress response, governed in part by glucocorticoid hormones, influences physiological and behavioural responses of vertebrates to environmental stressors. However, any adaptive role of this response in invasive populations that are expanding into extreme environments is currently unclear. We experimentally manipulated the adrenocortical stress response of invasive cane toads (Rhinella marina) to investigate its effect on phenotypic performance and fitness at the species' range front in the Tanami Desert, Australia. Here, toads are vulnerable to overheating and dehydration during the annual hot–dry season and display elevated plasma corticosterone levels indicative of severe environmental stress. By comparing unmanipulated control toads with toads whose adrenocortical stress response was manipulated to increase acute physiological stress responsiveness, we found that control toads had significantly reduced daily evaporative water loss and higher survival relative to the experimental animals. The adrenocortical stress response hence appears essential in facilitating complex phenotypic performance and setting fitness trajectories of individuals from invasive species during range expansion. PMID:23945686

  9. Adenoviral vectors can impair adrenocortical steroidogenesis: Clinical implications for natural infections and gene therapy

    PubMed Central

    Alesci, Salvatore; Ramsey, Walter J.; Bornstein, Stefan R.; Chrousos, George P.; Hornsby, Peter J.; Benvenga, Salvatore; Trimarchi, Francesco; Ehrhart-Bornstein, Monika

    2002-01-01

    Recombinant adenoviral vectors are effective in transferring foreign genes to a variety of cells and tissue types, both in vitro and in vivo. However, during the gene transfer, they may alter the principal function and local environment of transfected cells. Increasing evidence exists for a selective adrenotropism of adenovirus during infections and gene transfer. Therefore, using bovine adrenocortical cells in primary culture, we analyzed the influence of different adenoviral deletion mutants on cell morphology and physiology. Transfection of cells with an E1/E3-deleted adenoviral vector, engineered to express a modified form of the Aequorea victoria green fluorescent protein, was highly efficient, as documented by fluorescent microscopy. Ultrastructural analysis, however, demonstrated nuclear fragmentation and mitochondrial alterations in addition to intranuclear viral particles. Basal secretion of 17-OH-progesterone, 11-deoxycortisol, and cortisol was significantly increased by E1/E3-deleted vectors; yet, the corticotropin-stimulated release of these steroids was decreased. Interestingly, neither purified viral capsids nor E3/E4-deleted adenoviral mutants altered basal and stimulated steroidogenesis of adrenocortical cells. An intact adrenal response is crucial for adaptation to stress and survival. Therefore, the implications of our findings need to be considered in patients with adenoviral infections and those undergoing clinical studies using adenoviral gene transfer. At the same time, the high level of transfection in adrenocortical cells might make appropriately modified adenoviral vectors suitable for gene therapy of adrenocortical carcinomas with poor prognosis. PMID:12032309

  10. Reciprocal Influences among Adrenocortical Activation, Psychosocial Processes, and the Behavioral Adjustment of Clinic-Referred Children.

    ERIC Educational Resources Information Center

    Granger, Douglas A.; And Others

    1996-01-01

    Assessed children's adjustment at clinic intake and six months later, and sampled children's saliva before and after a conflict-oriented parent-child interaction. Increases in salivary cortisol predicted children's internalizing problem behaviors and anxiety disorders at follow-up. High adrenocortical reactivity at intake and follow-up was…

  11. Drinking-induced changes in fowl adrenocortical activity: effect of visual and non-visual stimuli.

    PubMed

    Harvey, S; Klandorf, H; Lam, S K

    1985-02-01

    The deprivation of drinking water for 30 h resulted in increased corticosterone concentrations in the plasma of 8- to 10-week-old chickens. When water-deprived birds were allowed to drink ad libitum the corticosterone concentration declined within 45 min, to the level in hydrated controls, and remained suppressed thereafter. Similar reductions in the corticosterone concentrations were also observed in water-deprived chicks which were allowed to drink for only 5 min, 1 min or 5 s. The involvement of visual stimuli in mediating this adrenocortical response was demonstrated by a comparable decline in the corticosterone concentration in water-deprived birds which were presented with water but not allowed access to it. Non-visual stimuli also appeared to be causally involved in the adrenocortical suppression after drinking, since the intraperitoneal injection of tap water (40 ml per bird) also resulted in a lowering of the corticosterone level. However, in the absence of appropriate reinforcement from metabolic stimuli, a rebound in the corticosterone concentration was observed in birds prevented from drinking, in birds unable to satiate their thirst and in birds rehydrated (orally or intraperitoneally) without feeding. These results demonstrate adrenocortical suppression in water-deprived chickens after free access to food and water and the involvement of visual and non-visual stimuli in mediating this response. The maintenance of adrenocortical suppression is dependent upon metabolic stimuli associated with food and water intake.

  12. Epigenetic Regulation of BDNF Gene during Development and Diseases

    PubMed Central

    Chen, Kuan-Wei; Chen, Linyi

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is required for the development of the nervous system, proper cognitive function and memory formation. While aberrant expression of BDNF has been implicated in neurological disorders, the transcriptional regulation of BDNF remains to be elucidated. In response to different stimuli, BDNF expression can be initiated from different promoters. Several studies have suggested that the expression of BDNF is regulated by promoter methylation. An emerging theme points to the possibility that histone modifications at the BDNF promoters may link to the neurological pathology. Thus, understanding the epigenetic regulation at the BDNF promoters will shed light on future therapies for neurological disorders. The present review summarizes the current knowledge of histone modifications of the BDNF gene in neuronal diseases, as well as the developmental regulation of the BDNF gene based on data from the Encyclopedia of DNA Elements (ENCODE). PMID:28272318

  13. Human Cytochrome P450 2W1 Is Not Expressed in Adrenal Cortex and Is Only Rarely Expressed in Adrenocortical Carcinomas

    PubMed Central

    Nolé, Paola; Duijndam, Britt; Stenman, Adam; Juhlin, C. Christofer; Kozyra, Mikael; Larsson, Catharina; Ingelman-Sundberg, Magnus

    2016-01-01

    Human cytochome P450 2W1 (CYP2W1) enzyme is expressed in fetal colon and in colon tumors. The level of expression is higher in colon metastases than in the parent tumors and the enzyme is a possible drug target for treatment of colorectal cancer, as demonstrated in mouse xenograft studies. A previous study published in this journal reported that CYP2W1 is highly expressed in normal and transformed adrenal tissue. However, adrenal expression of CYP2W1 protein was not seen in previous studies in our research group. To clarify this inconsistency, we have used qRT-PCR and Western blotting with CYP2W1-specific antibodies to probe a panel of 27 adrenocortical carcinomas and 35 normal adrenal cortex samples. CYP2W1 mRNA expression is seen in all samples. However, significant CYP2W1 protein expression was found in only one tumor sample (a testosterone-producing adrenocortical carcinoma) and not in any normal tissue. Differences in the specificity of the CYP2W1 antibodies used in the two studies may explain the apparent discrepancy. We conclude that normal adrenal tissue lacks P450 2W1 enzyme expression; also, adrenocortical carcinomas generally do not express the enzyme. This information thus underline the colon cancer specificity of CYP2W1 enzyme expression and has implications for the development of anti-colon cancer therapies based on CYP2W1 as a drug target, since 2W1-dependent bioactivation of prodrugs for CYP2W1 will not take place in normal adrenal tissue or other non-transformed tissues. PMID:27598485

  14. Roles of cofilin in development and its mechanisms of regulation.

    PubMed

    Ohashi, Kazumasa

    2015-05-01

    Reorganization of the actin cytoskeleton is essential for cellular processes during animal development. Cofilin and actin depolymerizing factor (ADF) are potent actin-binding proteins that sever and depolymerize actin filaments, acting to generate the dynamics of the actin cytoskeleton. The activity of cofilin is spatially and temporally regulated by a variety of intracellular molecular mechanisms. Cofilin is regulated by cofilin binding molecules, is phosphorylated at Ser-3 (inactivation) by LIM-kinases (LIMKs) and testicular protein kinases (TESKs), and is dephosphorylated (reactivation) by slingshot protein phosphatases (SSHs). Although studies of the molecular mechanisms of cofilin-induced reorganization of the actin cytoskeleton have been ongoing for decades, the multicellular functions of cofilin and its regulation in development are just becoming apparent. This review describes the molecular mechanisms of generating actin dynamics by cofilin and the intracellular signaling pathways for regulating cofilin activity. Furthermore, recent findings of the roles of cofilin in the development of several tissues and organs, especially neural tissues and cells, in model animals are described. Recent developmental studies have indicated that cofilin and its regulatory mechanisms are involved in cellular proliferation and migration, the establishment of cellular polarity, and the dynamic regulation of organ morphology.

  15. Properties of calcium and potassium currents of clonal adrenocortical cells

    PubMed Central

    1989-01-01

    The ionic currents of clonal Y-1 adrenocortical cells were studied using the whole-cell variant of the patch-clamp technique. These cells had two major current components: a large outward current carried by K ions, and a small inward Ca current. The Ca current depended on the activity of two populations of Ca channels, slow (SD) and fast (FD) deactivating, that could be separated by their different closing time constants (at -80 mV, SD, 3.8 ms, and FD, 0.13 ms). These two kinds of channels also differed in (a) activation threshold (SD, approximately - 50 mV; FD, approximately -20 mV), (b) half-maximal activation (SD, between -15 and -10 mV; FD between +10 and +15 mV), and (c) inactivation time course (SD, fast; FD, slow). The total amplitude of the Ca current and the proportion of SD and FD channels varied from cell to cell. The amplitude of the K current was strongly dependent on the internal [Ca2+] and was almost abolished when internal [Ca2+] was less than 0.001 microM. The K current appeared to be independent, or only slightly dependent, of Ca influx. With an internal [Ca2+] of 0.1 microM, the activation threshold was -20 mV, and at +40 mV the half- time of activation was 9 ms. With 73 mM external K the closing time constant at -70 mV was approximately 3 ms. The outward current was also modulated by internal pH and Mg. At a constant pCa gamma a decrease of pH reduced the current amplitude, whereas the activation kinetics were not much altered. Removal of internal Mg produced a drastic decrease in the amplitude of the Ca-activated K current. It was also found that with internal [Ca2+] over 0.1 microM the K current underwent a time- dependent transformation characterized by a large increase in amplitude and in activation kinetics. PMID:2539432

  16. Regulation of Tbx22 during facial and palatal development.

    PubMed

    Fuchs, Alisa; Inthal, Andrea; Herrmann, David; Cheng, Shuofei; Nakatomi, Mitsushiro; Peters, Heiko; Neubüser, Annette

    2010-11-01

    Mutations in the gene encoding the T-box transcription factor TBX22 cause X-linked cleft palate and ankyloglossia in humans. Here we show that Tbx22 expression during facial and palatal development is regulated by FGF and BMP signaling. Our results demonstrate that FGF8 induces Tbx22 in the early face while BMP4 represses and thus restricts its expression. This regulation is conserved between chicken and mouse, although the Tbx22-expression patterns differ considerably between these two species. We suggest that these species-specific differences may result at least in part from differences in the spatiotemporal patterns of BMP activity, but we exclude a direct repression of Tbx22 by the BMP-inducible transcriptional repressor MSX1. Together these findings help to integrate Tbx22 into the molecular network of factors regulating facial development. © 2010 Wiley-Liss, Inc.

  17. Targeting heterogeneity of adrenocortical carcinoma: Evaluation and extension of preclinical tumor models to improve clinical translation

    PubMed Central

    Hantel, Constanze; Shapiro, Igor; Poli, Giada; Chiapponi, Costanza; Bidlingmaier, Martin; Reincke, Martin; Luconi, Michaela; Jung, Sara; Beuschlein, Felix

    2016-01-01

    In recent years it has been recognized that clinical translation of novel therapeutic strategies for patients with adrenocortical carcinoma (ACC) often fails. These disappointing results indicate that the currently utilized tumor models only poorly reflect relevant pathophysiology and, thereby, do not predict clinical applicability of novel pharmacological approaches. However, also the development of new preclinical ACC models has remained a challenge with only one human cell line (NCI-H295R) and one recently established human pediatric xenograft model (SJ-ACC3) being available for this highly heterogeneous malignancy. Our current study furthermore reveals a poor reproducibility of therapeutic action between different clones of the most commonly used tumor model NCI-H295R. In an attempt to broaden the current preclinical armamentarium, we aimed at the development of patient-individual tumor models. During these studies, one xenograft (MUC-1) displayed marked engraftment and sustained tumor growth. MUC-1 tumor analysis revealed highly vascularized, proliferating and SF-1 positive xenografts. In a next step, we characterized all currently available human tumor models for ACC for Ki67, SF-1 and EGF-receptor status in comparison with MUC-1-xenografts. In addition, we established a primary culture, which is now viable over 31 passages with sustained nuclear SF-1 and cytoplasmic 3βHSD immuno-positivity. Subsequent investigation of therapeutic responsiveness upon treatment with the current systemic gold standard EDP-M (etoposide, doxorubicin, cisplatin and mitotane) demonstrated maintenance of the clinically observed drug resistance for MUC-1 exclusively. In summary, we provide evidence for a novel patient-derived tumor model with the potential to improve clinical prediction of novel therapeutic strategies for patients with ACC. PMID:27764813

  18. Rac1 Regulates Endometrial Secretory Function to Control Placental Development

    PubMed Central

    Davila, Juanmahel; Laws, Mary J.; Kannan, Athilakshmi; Li, Quanxi; Taylor, Robert N.; Bagchi, Milan K.; Bagchi, Indrani C.

    2015-01-01

    During placenta development, a succession of complex molecular and cellular interactions between the maternal endometrium and the developing embryo ensures reproductive success. The precise mechanisms regulating this maternal-fetal crosstalk remain unknown. Our study revealed that the expression of Rac1, a member of the Rho family of GTPases, is markedly elevated in mouse decidua on days 7 and 8 of gestation. To investigate its function in the uterus, we created mice bearing a conditional deletion of the Rac1 gene in uterine stromal cells. Ablation of Rac1 did not affect the formation of the decidua but led to fetal loss in mid gestation accompanied by extensive hemorrhage. To gain insights into the molecular pathways affected by the loss of Rac1, we performed gene expression profiling which revealed that Rac1 signaling regulates the expression of Rab27b, another GTPase that plays a key role in targeting vesicular trafficking. Consequently, the Rac1-null decidual cells failed to secrete vascular endothelial growth factor A, which is a critical regulator of decidual angiogenesis, and insulin-like growth factor binding protein 4, which regulates the bioavailability of insulin-like growth factors that promote proliferation and differentiation of trophoblast cell lineages in the ectoplacental cone. The lack of secretion of these key factors by Rac1-null decidua gave rise to impaired angiogenesis and dysregulated proliferation of trophoblast cells, which in turn results in overexpansion of the trophoblast giant cell lineage and disorganized placenta development. Further experiments revealed that RAC1, the human ortholog of Rac1, regulates the secretory activity of human endometrial stromal cells during decidualization, supporting the concept that this signaling G protein plays a central and conserved role in controlling endometrial secretory function. This study provides unique insights into the molecular mechanisms regulating endometrial secretions that mediate stromal

  19. Epigenetic regulation of cardiac myofibril gene expression during heart development.

    PubMed

    Zhao, Weian; Liu, Lingjuan; Pan, Bo; Xu, Yang; Zhu, Jing; Nan, Changlong; Huang, Xupei; Tian, Jie

    2015-07-01

    Cardiac gene expression regulation is controlled not only by genetic factors but also by environmental, i.e., epigenetic factors. Several environmental toxic effects such as oxidative stress and ischemia can result in abnormal myofibril gene expression during heart development. Troponin, one of the regulatory myofibril proteins in the heart, is a well-known model in study of cardiac gene regulation during the development. In our previous studies, we have demonstrated that fetal form troponin I (ssTnI) expression in the heart is partially regulated by hormones, such as thyroid hormone. In the present study, we have explored the epigenetic role of histone modification in the regulation of ssTnI expression. Mouse hearts were collected at different time of heart development, i.e., embryonic day 15.5, postnatal day 1, day 7, day 14 and day 21. Levels of histone H3 acetylation (acH3) and histone H3 lysine 9 trimethylation (H3K9me(3)) were detected using chromatin immunoprecipitation assays in slow upstream regulatory element (SURE) domain (TnI slow upstream regulatory element), 300-bp proximal upstream domain and the first intron of ssTnI gene, which are recognized as critical regions for ssTnI regulation. We found that the levels of acH3 on the SURE region were gradually decreased, corresponding to a similar decrease of ssTnI expression in the heart, whereas the levels of H3K9me(3) in the first intron of ssTnI gene were gradually increased. Our results indicate that both histone acetylation and methylation are involved in the epigenetic regulation of ssTnI expression in the heart during the development, which are the targets for environmental factors.

  20. Rac1 Regulates Endometrial Secretory Function to Control Placental Development.

    PubMed

    Davila, Juanmahel; Laws, Mary J; Kannan, Athilakshmi; Li, Quanxi; Taylor, Robert N; Bagchi, Milan K; Bagchi, Indrani C

    2015-08-01

    During placenta development, a succession of complex molecular and cellular interactions between the maternal endometrium and the developing embryo ensures reproductive success. The precise mechanisms regulating this maternal-fetal crosstalk remain unknown. Our study revealed that the expression of Rac1, a member of the Rho family of GTPases, is markedly elevated in mouse decidua on days 7 and 8 of gestation. To investigate its function in the uterus, we created mice bearing a conditional deletion of the Rac1 gene in uterine stromal cells. Ablation of Rac1 did not affect the formation of the decidua but led to fetal loss in mid gestation accompanied by extensive hemorrhage. To gain insights into the molecular pathways affected by the loss of Rac1, we performed gene expression profiling which revealed that Rac1 signaling regulates the expression of Rab27b, another GTPase that plays a key role in targeting vesicular trafficking. Consequently, the Rac1-null decidual cells failed to secrete vascular endothelial growth factor A, which is a critical regulator of decidual angiogenesis, and insulin-like growth factor binding protein 4, which regulates the bioavailability of insulin-like growth factors that promote proliferation and differentiation of trophoblast cell lineages in the ectoplacental cone. The lack of secretion of these key factors by Rac1-null decidua gave rise to impaired angiogenesis and dysregulated proliferation of trophoblast cells, which in turn results in overexpansion of the trophoblast giant cell lineage and disorganized placenta development. Further experiments revealed that RAC1, the human ortholog of Rac1, regulates the secretory activity of human endometrial stromal cells during decidualization, supporting the concept that this signaling G protein plays a central and conserved role in controlling endometrial secretory function. This study provides unique insights into the molecular mechanisms regulating endometrial secretions that mediate stromal

  1. Brown adipocyte differentiation is regulated by hedgehog signaling during development

    USDA-ARS?s Scientific Manuscript database

    During development, brown fat tissue arises from mesenchymal precursor cells under the control of signaling networks that are not yet well understood. The Hedgehog (Hh) signaling pathway is one of the major signaling pathways that regulate mesenchymal cell fate. However, whether the Hh pathway contr...

  2. Career Development of Foreign Trained Immigrants from Regulated Professions

    ERIC Educational Resources Information Center

    Novak, Lydia; Chen, Charles P.

    2013-01-01

    In this article, we aim to examine and understand the career development experiences of foreign-trained immigrants from regulated professions (FTIRPs) in Canada. To provide some background on immigration in a Canadian context, we focus on a myriad of factors that affect the vocational well-being of FTIRPs. We apply key concepts from several major…

  3. Development and regulation of pedicel abscission in tomato

    PubMed Central

    Ito, Yasuhiro; Nakano, Toshitsugu

    2015-01-01

    To shed unfertilized flowers or ripe fruits, many plant species develop a pedicel abscission zone (AZ), a specialized tissue that develops between the organ and the main body of the plant. Regulation of pedicel abscission is an important agricultural concern because pre-harvest abscission can reduce yields of fruit or grain crops, such as apples, rice, wheat, etc. Tomato has been studied as a model system for abscission, as tomato plants develop a distinct AZ at the midpoint of the pedicel and several tomato mutants, such as jointless, have pedicels that lack an AZ. This mini-review focuses on recent advances in research on the mechanisms regulating tomato pedicel abscission. Molecular genetic studies revealed that three MADS-box transcription factors interactively play a central role in pedicel AZ development. Transcriptome analyses identified activities involved in abscission and also found novel transcription factors that may regulate AZ activities. Another study identified transcription factors mediating abscission pathways from induction signals to activation of cell wall hydrolysis. These recent findings in tomato will enable significant advances in understanding the regulation of abscission in other key agronomic species. PMID:26124769

  4. Symbiotic regulation of plant growth, development and reproduction

    Treesearch

    Russell J. Rodriguez; D. Carl Freeman; E. Durant McArthur; Yong Ok Kim; Regina S. Redman

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at...

  5. MicroRNA-mediated regulation of flower development in grasses.

    PubMed

    Smoczynska, Aleksandra; Szweykowska-Kulinska, Zofia

    2016-01-01

    Flower structure in grasses is very unique. There are no petals or sepals like in eudicots but instead flowers develop bract-like structures - palea and lemma. Reproductive organs are enclosed by round lodicule that not only protects reproductive organs but also plays an important role during flower opening. The first genetic model for floral organ development was proposed 25 years ago and it was based on the research on model eudicots. Since then, studies have been carried out to answer the question whether this model could be applicable in the case of monocots. Genes from all classes found in eudicots have been also identified in genomes of such monocots like rice, maize or barley. What's more, it seems that miRNA-mediated regulation of floral organ genes that was observed in the case of Arabidopsis thaliana also takes place in monocots. MiRNA172, miRNA159, miRNA171 and miRNA396 regulate expression of floral organ identity genes in barley, rice and maize, affecting various features of the flower structure, ranging from formation of lemma and palea to the development of reproductive organs. A model of floral development in grasses and its genetic regulation is not yet fully characterized. Further studies on both, the model eudicots and grasses, are needed to unravel this topic. This review provides general overview of genetic model of flower organ identity specification in monocots and it's miRNA-mediated regulation.

  6. Self-Regulated Strategy Development for Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Lienemann, Torri Ortiz; Reid, Robert

    2006-01-01

    Self-Regulated Strategy Development (SRSD) is a well-established, thoroughly validated instructional model. In this article, we discuss the rationale and steps for implementing it. We also provide practical information for use in teaching and evaluating strategy instruction. This article is intended to guide teacher educators as they help future…

  7. Career Development of Foreign Trained Immigrants from Regulated Professions

    ERIC Educational Resources Information Center

    Novak, Lydia; Chen, Charles P.

    2013-01-01

    In this article, we aim to examine and understand the career development experiences of foreign-trained immigrants from regulated professions (FTIRPs) in Canada. To provide some background on immigration in a Canadian context, we focus on a myriad of factors that affect the vocational well-being of FTIRPs. We apply key concepts from several major…

  8. Wnt2 regulates progenitor proliferation in the developing ventral midbrain.

    PubMed

    Sousa, Kyle M; Villaescusa, J Carlos; Cajanek, Lukas; Ondr, Jennifer K; Castelo-Branco, Goncalo; Hofstra, Wytske; Bryja, Vitezslav; Palmberg, Carina; Bergman, Tomas; Wainwright, Brandon; Lang, Richard A; Arenas, Ernest

    2010-03-05

    Wnts are secreted, lipidated proteins that regulate multiple aspects of brain development, including dopaminergic neuron development. In this study, we perform the first purification and signaling analysis of Wnt2 and define the function of Wnt2 in ventral midbrain precursor cultures, as well as in Wnt2-null mice in vivo. We found that purified Wnt2 induces the phosphorylation of both Lrp5/6 and Dvl-2/3, and activates beta-catenin in SN4741 dopaminergic cells. Moreover, purified Wnt2 increases progenitor proliferation, and the number of dopaminergic neurons in ventral midbrain precursor cultures. In agreement with these findings, analysis of the ventral midbrain of developing Wnt2-null mice revealed a decrease in progenitor proliferation and neurogenesis that lead to a decrease in the number of postmitotic precursors and dopaminergic neurons. Collectively, our observations identify Wnt2 as a novel regulator of dopaminergic progenitors and dopaminergic neuron development.

  9. Wnt2 Regulates Progenitor Proliferation in the Developing Ventral Midbrain*

    PubMed Central

    Sousa, Kyle M.; Villaescusa, J. Carlos; Cajanek, Lukas; Ondr, Jennifer K.; Castelo-Branco, Goncalo; Hofstra, Wytske; Bryja, Vitezslav; Palmberg, Carina; Bergman, Tomas; Wainwright, Brandon; Lang, Richard A.; Arenas, Ernest

    2010-01-01

    Wnts are secreted, lipidated proteins that regulate multiple aspects of brain development, including dopaminergic neuron development. In this study, we perform the first purification and signaling analysis of Wnt2 and define the function of Wnt2 in ventral midbrain precursor cultures, as well as in Wnt2-null mice in vivo. We found that purified Wnt2 induces the phosphorylation of both Lrp5/6 and Dvl-2/3, and activates β-catenin in SN4741 dopaminergic cells. Moreover, purified Wnt2 increases progenitor proliferation, and the number of dopaminergic neurons in ventral midbrain precursor cultures. In agreement with these findings, analysis of the ventral midbrain of developing Wnt2-null mice revealed a decrease in progenitor proliferation and neurogenesis that lead to a decrease in the number of postmitotic precursors and dopaminergic neurons. Collectively, our observations identify Wnt2 as a novel regulator of dopaminergic progenitors and dopaminergic neuron development. PMID:20018874

  10. Developing regulations for occupational exposures to health hazards in Malaysia.

    PubMed

    Rampal, Krishna Gopal; Mohd Nizam, J

    2006-11-01

    In Malaysia exposures in the workplace are regulated under the Factories and Machinery Act (FMA), 1967 and also under the more comprehensive Occupational Safety and Health Act (OSHA) enacted in 1994. With OSHA 1994 the philosophy of legislating safety and health in the workplace changed from one that was very prescriptive and containing detailed technical provisions under FMA, 1967 to one that is more flexible and encourages self-regulation under OSHA 1994. OSHA 1994 is supported by regulations, codes of practices and guidelines to further clarify the provisions in the Act. Under the FMA 1967 emphasis was on safety while with OSHA 1994 there has been equal emphasis on addressing health hazards in the workplace. Regulations for occupational exposures are developed by the Department of Occupational Safety and Health with tripartite and stakeholder consultation. When developing these regulations International Labor Organization Conventions, laws of other countries and occupational exposure standards adopted internationally are reviewed. The government also conducts surveys to collect information on both exposures and health effects in workplaces to have better understanding on specific occupational health problems. Effective law enforcement is crucial in ensuring compliance to safety and health law. The challenge at the moment is to ensure all employers and employees, particularly those in the small and medium enterprises, understand and comply with the provisions stipulated in the legislation.

  11. Autocrine and Paracrine Hh Signaling Regulate Prostate Development

    DTIC Science & Technology

    2010-09-01

    development and tumorigenesis (13). The forkhead transcription factor Foxe1 was established as a downstream target of the Shh pathway in hair follicle morpho...in the epithelium of the developing prostate; activate Hh target genes expressed in the surrounding mesenchyme and influence prostate ductal growth...postanatally. We propose this temporal growth effects is mediated by the discordant regulation of a subset of target genes by Hh signaling in the prenatal and

  12. Global pharmaceutical regulation: the challenge of integration for developing states.

    PubMed

    Pezzola, Anthony; Sweet, Cassandra M

    2016-12-20

    This paper has set out to map the state of pharmaceutical regulation in the developing world through the construction of cross-national indices drawing from World Health Organization data. The last two decades have been characterized by deep changes for the pharmaceutical sector, including the complete transformation of intellectual property systems at the behest of the World Trade Organization and the consolidation of global active ingredient suppliers in China and India. Although the rules for ownership of medicine have been set and globally implemented, we know surprisingly little about how the standards for market entrance and regulation of pharmaceutical products have changed at the national level. How standardized are national pharmaceutical market systems? Do we find homogeneity or variation across the developing world? Are their patterns for understanding why some countries have moved closer to one global norm for pharmaceutical regulation and others have developed hybrid models for oversight of this sector? Access to medicine is a core tool in public health. This paper gauges the levels of standards in public and private generics markets for developing countries building on national-level pharmaceutical market surveys for 78 countries to offer three indicators of market oversight: State Regulatory Infrastructure, Monitoring the Private Market and Public Quality Control. Identifying the different variables that affect a state's institutional capacity and current standard level offers new insights to the state of pharmaceuticals in the developing world. It is notable that there are very few (none at the time of this paper) studies that map out the new global terrain for pharmaceutical regulation in the post-TRIPS context. This paper uses item response theory to develop original indicators of pharmaceutical regulation. We find remarkable resistance to the implementation of global pharmaceutical norms for quality standards in developing states and in

  13. Regulation of Development and Nitrogen Fixation in Anabaena

    SciTech Connect

    James W. Golden

    2008-10-17

    The regulation of development and cellular differentiation is important for all multicellular organisms. The nitrogen-fixing filamentous cyanobacterium Anabaena (also Nostoc) sp. PCC 7120 (hereafter Anabaena) provides a model of multicellular microbial development and pattern formation. Anabaena reduces N2 to ammonia in specialized terminally differentiated cells called heterocysts. A one-dimensional developmental pattern of single heterocysts regularly spaced along filaments of photosynthetic vegetative cells is established to form a multicellular organism composed of these two interdependent cell types. This multicellular growth pattern, the distinct phylogeny of cyanobacteria, and the suspected antiquity of heterocyst development make this an important model system. Our long-term goal is to understand the regulatory network required for heterocyst development and nitrogen fixation. This project is focused on two key aspects of heterocyst regulation: one, the mechanism by which HetR controls the initiation of differentiation, and two, the cis and trans acting factors required for expression of the nitrogen-fixation (nif) genes. HetR is thought to be a central regulator of heterocyst development but the partners and mechanisms involved in this regulation are unknown. Our recent results indicate that PatS and other signals that regulate heterocyst pattern cannot interact, directly or indirectly, with a R223W mutant of HetR. We plan to use biochemical and genetic approaches to identify proteins that interact with the HetR protein, which will help reveal the mechanisms underlying its regulation of development. Our second goal is to determine how the nif genes are expressed. It is important to understand the mechanisms controlling nif genes since they represent the culmination of the differentiation process and the essence of heterocyst function. The Anabaena genome lacks the genes required for expression of nif genes present in other organisms such as rpoN (sigma 54

  14. Bmi1 promotes erythroid development through regulating ribosome biogenesis

    PubMed Central

    Gao, Rui; Chen, Sisi; Kobayashi, Michihiro; Yu, Hao; Zhang, Yingchi; Wan, Yang; Young, Sara K.; Soltis, Anthony; Yu, Ming; Vemula, Sasidhar; Fraenkel, Ernest; Cantor, Alan; Antipin, Yevgeniy; Xu, Yang; Yoder, Mervin C.; Wek, Ronald C.; Ellis, Steven R.; Kapur, Reuben; Zhu, Xiaofan; Liu, Yan

    2015-01-01

    While Polycomb group protein Bmi1 is important for stem cell maintenance, its role in lineage commitment is largely unknown. We have identified Bmi1 as a novel regulator of erythroid development. Bmi1 is highly expressed in mouse erythroid progenitor cells and its deficiency impairs erythroid differentiation. BMI1 is also important for human erythroid development. Furthermore, we discovered that loss of Bmi1 in erythroid progenitor cells results in down-regulation of transcription of multiple ribosomal protein genes and impaired ribosome biogenesis. Bmi1 deficiency stabilizes p53 protein, leading to upregulation of p21 expression and subsequent G0/G1 cell cycle arrest. Genetic inhibition of p53 activity rescues the erythroid defects seen in the Bmi1 null mice, demonstrating that a p53-dependent mechanism underlies the pathophysiology of the anemia. Mechanistically, Bmi1 is associated with multiple ribosomal protein genes and may positively regulate their expression in erythroid progenitor cells. Thus, Bmi1 promotes erythroid development, at least in part through regulating ribosome biogenesis. Ribosomopathies are human disorders of ribosome dysfunction, including diamond blackfan anemia (DBA) and 5q- syndrome, in which genetic abnormalities cause impaired ribosome biogenesis, resulting in specific clinical phenotypes. We observed that BMI1 expression in human hematopoietic stem and progenitor cells (HSPCs) from patients with DBA is correlated with the expression of some ribosomal protein genes, suggesting that BMI1 deficiency may play a pathological role in DBA and other ribosomopathies. PMID:25385494

  15. Minireview: Hair Cortisol: A Novel Biomarker of Hypothalamic-Pituitary-Adrenocortical Activity

    PubMed Central

    Novak, Melinda A.

    2012-01-01

    Activity of the hypothalamic-pituitary-adrenocortical (HPA) axis is commonly assessed by measuring glucocorticoids such as cortisol (CORT). For many years, CORT was obtained primarily from blood plasma or urine, whereas later approaches added saliva and feces for noninvasive monitoring of HPA functioning. Despite the value of all these sample matrices for answering many research questions, they remain limited in the temporal range of assessment. Plasma and saliva are point samples that vary as a function of circadian rhythmicity and are susceptible to confounding by environmental disturbances. Even urine and feces generally assess HPA activity over a period of only 24 h or less. We and others have recently developed and validated methods for measuring the concentration of CORT in the body hair of animals (e.g. rhesus monkeys) and scalp hair of humans. CORT is constantly deposited in the growing hair shaft, as a consequence of which such deposition can serve as a biomarker of integrated HPA activity over weeks and months instead of minutes or hours. Since the advent of this methodological advance, hair CORT has already been used as an index of chronic HPA activity and stress in human clinical and nonclinical populations, in a variety of laboratory-housed and wild-living animal species, and in archival specimens that are many decades or even centuries old. Moreover, because human hair is known to grow at an average rate of about 1 cm/month, several studies suggest that CORT levels in hair segments that differ in proximity to the scalp can, under certain conditions, be used as a retrospective calendar of HPA activity during specific time periods preceding sample collection. PMID:22778226

  16. Long noncoding RNA profiles of adrenocortical cancer can be used to predict recurrence.

    PubMed

    Glover, A R; Zhao, J T; Ip, J C; Lee, J C; Robinson, B G; Gill, A J; Soon, P S H; Sidhu, S B

    2015-02-01

    Adrenocortical carcinoma (ACC) is an aggressive malignancy with high rates of recurrence following surgical resection. Long noncoding RNAs (lncRNAs) play an important role in cancer development. Pathogenesis of adrenal tumours have been characterised by mRNA, microRNA and methylation expression signatures, but it is unknown if this extends to lncRNAs. This study describes lncRNA expression signatures in ACC, adrenal cortical adenoma (ACA) and normal adrenal cortex (NAC) and presents lncRNAs associated with ACC recurrence to identify novel prognostic and therapeutic targets. RNA was extracted from freshly frozen tissue with confirmation of diagnosis by histopathology. Focused lncRNA and mRNA transcriptome analysis was performed using the ArrayStar Human LncRNA V3.0 microarray. Differentially expressed lncRNAs were validated using quantitative reverse transcriptase-PCR and correlated with clinical outcomes. Microarray of 21 samples (ten ACCs, five ACAs and six NACs) showed distinct patterns of lncRNA expression between each group. A total of 956 lncRNAs were differentially expressed between ACC and NAC, including known carcinogenesis-related lncRNAs such as H19, GAS5, MALAT1 and PRINS (P≤0.05); 85 lncRNAs were differentially expressed between ACC and ACA (P≤0.05). Hierarchical clustering and heat mapping showed ACC samples correctly grouped compared with NAC and ACA. Sixty-six differentially expressed lncRNAs were found to be associated with ACC recurrence (P≤0.05), one of which, PRINS, was validated in a group of 20 ACCs and also found to be associated with metastatic disease on presentation. The pathogenesis of adrenal tumours extends to lncRNA dysregulation and low expression of the lncRNA PRINS is associated with ACC recurrence. © 2015 Society for Endocrinology.

  17. Usefulness of adrenal scintigraphy in the follow-up of adrenocortical incidentalomas: a prospective multicenter study.

    PubMed

    Fagour, Cédric; Bardet, Stéphane; Rohmer, Vincent; Arimone, Yannick; Lecomte, Pierre; Valli, Nathalie; Tabarin, Antoine

    2009-02-01

    Prognostic factors for progression of benign adrenocortical adenomas (AI) remain poorly known. We assessed the usefulness of (131)I-6-beta-iodomethylnorcholesterol scintigraphy (IMS) to predict the occurrence of adrenal hyperfunction or mass enlargement. Fifty-one consecutive inpatients with unilateral AI and normal 24-h urinary free cortisol (UFC) were enrolled in a multicenter observational prospective study to investigate the relationship between the scintigraphic pattern and the progression of biological abnormalities of the hypothalamo-pituitary-adrenal axis or tumor size. Biochemically defined 'subclinical' Cushing's syndrome (SCS) was found at baseline in 47% of patients. Unilateral uptake (UU) was significantly associated with SCS (P<0.05). During the follow-up (4.3+/-1.6-year): 53% of patients showed unchanged hormonal evaluation, 29% displayed intermittent SCS and 18% showed definitive hormonal progression of SCS but without overt biochemical hypercortisolism. UU was associated with persistence of SCS and hormonal progression (P<0.01). In multivariate analysis, UU and impaired 1 mg dexamethasone suppression were independently associated with hormonal progression. Three patients with UU developed clinical CS despite persistently normal UFC. Tumor size increased in 10% patients and was not associated with any scintigraphic pattern. Evolution of SCS toward overt biochemical CS in patients with AI is a rare event during a 4-year follow-up. UU is predictive for the occurrence of SCS, its persistence and progression within the spectrum of SCS. Further studies aiming to establish the clinical consequences of SCS are needed to recommend IMS as a complementary evaluation in patients with AI and biochemical SCS.

  18. Functions and Regulation of Programmed Cell Death in Plant Development.

    PubMed

    Daneva, Anna; Gao, Zhen; Van Durme, Matthias; Nowack, Moritz K

    2016-10-06

    Programmed cell death (PCD) is a collective term for diverse processes causing an actively induced, tightly controlled cellular suicide. PCD has a multitude of functions in the development and health of multicellular organisms. In comparison to intensively studied forms of animal PCD such as apoptosis, our knowledge of the regulation of PCD in plants remains limited. Despite the importance of PCD in plant development and as a response to biotic and abiotic stresses, the complex molecular networks controlling different forms of plant PCD are only just beginning to emerge. With this review, we provide an update on the considerable progress that has been made over the last decade in our understanding of PCD as an inherent part of plant development. We highlight both functions of developmental PCD and central aspects of its molecular regulation.

  19. cPKC regulates interphase nuclear size during Xenopus development

    PubMed Central

    Edens, Lisa J.

    2014-01-01

    Dramatic changes in cell and nuclear size occur during development and differentiation, and aberrant nuclear size is associated with many disease states. However, the mechanisms that regulate nuclear size are largely unknown. A robust system for investigating nuclear size is early Xenopus laevis development, during which reductions in nuclear size occur without changes in DNA content. To identify cellular factors that regulate nuclear size during development, we developed a novel nuclear resizing assay wherein nuclei assembled in Xenopus egg extract become smaller in the presence of cytoplasmic interphase extract isolated from post-gastrula Xenopus embryos. We show that nuclear shrinkage depends on conventional protein kinase C (cPKC). Increased nuclear cPKC localization and activity and decreased nuclear association of lamins mediate nuclear size reductions during development, and manipulating cPKC activity in vivo during interphase alters nuclear size in the embryo. We propose a model of steady-state nuclear size regulation whereby nuclear expansion is balanced by an active cPKC-dependent mechanism that reduces nuclear size. PMID:25135933

  20. Laminin regulates PDGFRβ(+) cell stemness and muscle development.

    PubMed

    Yao, Yao; Norris, Erin H; Mason, Christopher E; Strickland, Sidney

    2016-05-03

    Muscle-resident PDGFRβ(+) cells, which include pericytes and PW1(+) interstitial cells (PICs), play a dual role in muscular dystrophy. They can either undergo myogenesis to promote muscle regeneration or differentiate into adipocytes and other cells to compromise regeneration. How the differentiation and fate determination of PDGFRβ(+) cells are regulated, however, remains unclear. Here, by utilizing a conditional knockout mouse line, we report that PDGFRβ(+) cell-derived laminin inhibits their proliferation and adipogenesis, but is indispensable for their myogenesis. In addition, we show that laminin alone is able to partially reverse the muscle dystrophic phenotype in these mice at the molecular, structural and functional levels. Further RNAseq analysis reveals that laminin regulates PDGFRβ(+) cell differentiation/fate determination via gpihbp1. These data support a critical role of laminin in the regulation of PDGFRβ(+) cell stemness, identify an innovative target for future drug development and may provide an effective treatment for muscular dystrophy.

  1. Laminin regulates PDGFRβ+ cell stemness and muscle development

    PubMed Central

    Yao, Yao; Norris, Erin H.; E. Mason, Christopher; Strickland, Sidney

    2016-01-01

    Muscle-resident PDGFRβ+ cells, which include pericytes and PW1+ interstitial cells (PICs), play a dual role in muscular dystrophy. They can either undergo myogenesis to promote muscle regeneration or differentiate into adipocytes and other cells to compromise regeneration. How the differentiation and fate determination of PDGFRβ+ cells are regulated, however, remains unclear. Here, by utilizing a conditional knockout mouse line, we report that PDGFRβ+ cell-derived laminin inhibits their proliferation and adipogenesis, but is indispensable for their myogenesis. In addition, we show that laminin alone is able to partially reverse the muscle dystrophic phenotype in these mice at the molecular, structural and functional levels. Further RNAseq analysis reveals that laminin regulates PDGFRβ+ cell differentiation/fate determination via gpihbp1. These data support a critical role of laminin in the regulation of PDGFRβ+ cell stemness, identify an innovative target for future drug development and may provide an effective treatment for muscular dystrophy. PMID:27138650

  2. Linear-Quadratic-Gaussian Regulator Developed for a Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.

    2002-01-01

    Linear-Quadratic-Gaussian (LQG) control is a modern state-space technique for designing optimal dynamic regulators. It enables us to trade off regulation performance and control effort, and to take into account process and measurement noise. The Structural Mechanics and Dynamics Branch at the NASA Glenn Research Center has developed an LQG control for a fault-tolerant magnetic bearing suspension rig to optimize system performance and to reduce the sensor and processing noise. The LQG regulator consists of an optimal state-feedback gain and a Kalman state estimator. The first design step is to seek a state-feedback law that minimizes the cost function of regulation performance, which is measured by a quadratic performance criterion with user-specified weighting matrices, and to define the tradeoff between regulation performance and control effort. The next design step is to derive a state estimator using a Kalman filter because the optimal state feedback cannot be implemented without full state measurement. Since the Kalman filter is an optimal estimator when dealing with Gaussian white noise, it minimizes the asymptotic covariance of the estimation error.

  3. Development of a framework to measure health profession regulation strengthening.

    PubMed

    McCarthy, Carey F; Kelley, Maureen A; Verani, Andre R; St Louis, Michael E; Riley, Patricia L

    2014-10-01

    This paper describes the development of a framework to evaluate the progress and impact of a multi-year US government initiative to strengthen nursing and midwifery professional regulation in sub-Saharan Africa. The framework was designed as a capability maturity model, which is a stepwise series of performance levels that describe the sophistication of processes necessary to achieve an organization's objectives. A model from the field of software design was adapted to comprise the key functions of a nursing and midwifery regulatory body and describe five stages of advancing each function. The framework was used to measure the progress of five countries that received direct assistance to strengthen regulations and to benchmark the status of regulations in the 17 countries participating in the initiative. The framework captured meaningful advancements in regulatory strengthening in the five supported countries and the level of regulatory capacity in participating countries. The project uses the framework to assess yearly progress of supported countries, track the overall impact of the project on national and regional nursing regulation, and to identify national and regional priorities for regulatory strengthening. It is the first of its kind to document and measure progress toward sustainably strengthening nursing and midwifery regulation in Africa. Published by Elsevier Ltd.

  4. Development of a framework to measure health profession regulation strengthening

    PubMed Central

    McCarthy, Carey F.; Kelley, Maureen A.; Verani, Andre R.; St. Louis, Michael E.; Riley, Patricia L.

    2016-01-01

    This paper describes the development of a framework to evaluate the progress and impact of a multi-year US government initiative to strengthen nursing and midwifery professional regulation in sub-Saharan Africa. The framework was designed as a capability maturity model, which is a stepwise series of performance levels that describe the sophistication of processes necessary to achieve an organization’s objectives. A model from the field of software design was adapted to comprise the key functions of a nursing and midwifery regulatory body and describe five stages of advancing each function. The framework was used to measure the progress of five countries that received direct assistance to strengthen regulations and to benchmark the status of regulations in the 17 countries participating in the initiative. The framework captured meaningful advancements in regulatory strengthening in the five supported countries and the level of regulatory capacity in participating countries. The project uses the framework to assess yearly progress of supported countries, track the overall impact of the project on national and regional nursing regulation, and to identify national and regional priorities for regulatory strengthening. It is the first of its kind to document and measure progress toward sustainably strengthening nursing and midwifery regulation in Africa. PMID:24863957

  5. Epigenetic regulation during fetal femur development: DNA methylation matters.

    PubMed

    de Andrés, María C; Kingham, Emmajayne; Imagawa, Kei; Gonzalez, Antonio; Roach, Helmtrud I; Wilson, David I; Oreffo, Richard O C

    2013-01-01

    Epigenetic modifications are heritable changes in gene expression without changes in DNA sequence. DNA methylation has been implicated in the control of several cellular processes including differentiation, gene regulation, development, genomic imprinting and X-chromosome inactivation. Methylated cytosine residues at CpG dinucleotides are commonly associated with gene repression; conversely, strategic loss of methylation during development could lead to activation of lineage-specific genes. Evidence is emerging that bone development and growth are programmed; although, interestingly, bone is constantly remodelled throughout life. Using human embryonic stem cells, human fetal bone cells (HFBCs), adult chondrocytes and STRO-1(+) marrow stromal cells from human bone marrow, we have examined a spectrum of developmental stages of femur development and the role of DNA methylation therein. Using pyrosequencing methodology we analysed the status of methylation of genes implicated in bone biology; furthermore, we correlated these methylation levels with gene expression levels using qRT-PCR and protein distribution during fetal development evaluated using immunohistochemistry. We found that during fetal femur development DNA methylation inversely correlates with expression of genes including iNOS (NOS2) and COL9A1, but not catabolic genes including MMP13 and IL1B. Furthermore, significant demethylation was evident in the osteocalcin promoter between the fetal and adult developmental stages. Increased TET1 expression and decreased expression of DNA (cytosine-5-)-methyltransferase 1 (DNMT1) in adult chondrocytes compared to HFBCs could contribute to the loss of methylation observed during fetal development. HFBC multipotency confirms these cells to be an ideal developmental system for investigation of DNA methylation regulation. In conclusion, these findings demonstrate the role of epigenetic regulation, specifically DNA methylation, in bone development, informing and opening

  6. Auxin: a master regulator in plant root development.

    PubMed

    Saini, Shivani; Sharma, Isha; Kaur, Navdeep; Pati, Pratap Kumar

    2013-06-01

    The demand for increased crop productivity and the predicted challenges related to plant survival under adverse environmental conditions have renewed the interest in research in root biology. Various physiological and genetic studies have provided ample evidence in support of the role of plant growth regulators in root development. The biosynthesis and transport of auxin and its signaling play a crucial role in controlling root growth and development. The univocal role of auxin in root development has established it as a master regulator. Other plant hormones, such as cytokinins, brassinosteroids, ethylene, abscisic acid, gibberellins, jasmonic acid, polyamines and strigolactones interact either synergistically or antagonistically with auxin to trigger cascades of events leading to root morphogenesis and development. In recent years, the availability of biological resources, development of modern tools and experimental approaches have led to the advancement of knowledge in root development. Research in the areas of hormone signal perception, understanding network of events involved in hormone action and the transport of plant hormones has added a new dimension to root biology. The present review highlights some of the important conceptual developments in the interplay of auxin and other plant hormones and associated downstream events affecting root development.

  7. The regulation of Dkk1 expression during embryonic development.

    PubMed

    Lieven, Oliver; Knobloch, Jürgen; Rüther, Ulrich

    2010-04-15

    During embryogenesis, the Dkk1 mediated Wnt inhibition controls the spatiotemporal dynamics of cell fate determination, cell differentiation and cell death. Furthermore, the Dkk1 dose is critical for the normal Wnt homeostasis, as alteration of the Dkk1 activity is associated with various diseases. We investigated the regulation of Dkk1 expression during embryonic development. We identified nine conserved non-coding elements (CNEs), located 3' to the Dkk1 locus. Analyses of the regulatory potential revealed that four of these CNEs in combination drive reporter expression very similar to Dkk1 expression in several organs of transgenic embryos. We extended the knowledge of Dkk1 expression during hypophysis, external genitalia and kidney development, suggesting so far to unexplored functions of Dkk1 during the development of these organs. Characterization of the regulatory potential of four individual CNEs revealed that each of these promotes Dkk1 expression in brain and kidney. In combination, two enhancers are responsible for expression in the pituitary and the genital tubercle. Furthermore, individual CNEs mediates craniofacial, optic cup and limb specific Dkk1 regulation. Our study substantially improves the knowledge of Dkk1 regulation during embryonic development and thus might be of high relevance for therapeutic approaches.

  8. Cannabinoid receptor signaling regulates liver development and metabolism

    PubMed Central

    Liu, Leah Y.; Alexa, Kristen; Cortes, Mauricio; Schatzman-Bone, Stephanie; Kim, Andrew J.; Mukhopadhyay, Bani; Cinar, Resat; Kunos, George; North, Trista E.; Goessling, Wolfram

    2016-01-01

    Endocannabinoid (EC) signaling mediates psychotropic effects and regulates appetite. By contrast, potential roles in organ development and embryonic energy consumption remain unknown. Here, we demonstrate that genetic or chemical inhibition of cannabinoid receptor (Cnr) activity disrupts liver development and metabolic function in zebrafish (Danio rerio), impacting hepatic differentiation, but not endodermal specification: loss of cannabinoid receptor 1 (cnr1) and cnr2 activity leads to smaller livers with fewer hepatocytes, reduced liver-specific gene expression and proliferation. Functional assays reveal abnormal biliary anatomy and lipid handling. Adult cnr2 mutants are susceptible to hepatic steatosis. Metabolomic analysis reveals reduced methionine content in Cnr mutants. Methionine supplementation rescues developmental and metabolic defects in Cnr mutant livers, suggesting a causal relationship between EC signaling, methionine deficiency and impaired liver development. The effect of Cnr on methionine metabolism is regulated by sterol regulatory element-binding transcription factors (Srebfs), as their overexpression rescues Cnr mutant liver phenotypes in a methionine-dependent manner. Our work describes a novel developmental role for EC signaling, whereby Cnr-mediated regulation of Srebfs and methionine metabolism impacts liver development and function. PMID:26884397

  9. Cannabinoid receptor signaling regulates liver development and metabolism.

    PubMed

    Liu, Leah Y; Alexa, Kristen; Cortes, Mauricio; Schatzman-Bone, Stephanie; Kim, Andrew J; Mukhopadhyay, Bani; Cinar, Resat; Kunos, George; North, Trista E; Goessling, Wolfram

    2016-02-15

    Endocannabinoid (EC) signaling mediates psychotropic effects and regulates appetite. By contrast, potential roles in organ development and embryonic energy consumption remain unknown. Here, we demonstrate that genetic or chemical inhibition of cannabinoid receptor (Cnr) activity disrupts liver development and metabolic function in zebrafish (Danio rerio), impacting hepatic differentiation, but not endodermal specification: loss of cannabinoid receptor 1 (cnr1) and cnr2 activity leads to smaller livers with fewer hepatocytes, reduced liver-specific gene expression and proliferation. Functional assays reveal abnormal biliary anatomy and lipid handling. Adult cnr2 mutants are susceptible to hepatic steatosis. Metabolomic analysis reveals reduced methionine content in Cnr mutants. Methionine supplementation rescues developmental and metabolic defects in Cnr mutant livers, suggesting a causal relationship between EC signaling, methionine deficiency and impaired liver development. The effect of Cnr on methionine metabolism is regulated by sterol regulatory element-binding transcription factors (Srebfs), as their overexpression rescues Cnr mutant liver phenotypes in a methionine-dependent manner. Our work describes a novel developmental role for EC signaling, whereby Cnr-mediated regulation of Srebfs and methionine metabolism impacts liver development and function.

  10. Final Report for Regulation of Embryonic Development in Higher Plants

    SciTech Connect

    Harada, John J.

    2013-10-22

    The overall goal of the project was to define the cellular processes that underlie embryo development in plants at a mechanistic level. Our studies focused on a critical transcriptional regulator, Arabidopsis LEAFY COTYLEDON (LEC1), that is necessary and sufficient to induce processes required for embryo development. Because LEC1 regulates lipid accumulation during the maturation phase of embryo development, information about LEC1 may be useful in designing approaches to enhance biofuel production in plants. During the tenure of this project, we determined the molecular mechanisms by which LEC1 acts as a transcription factor in embryos. We also identified genes directly regulated by LEC1 and showed that many of these genes are involved in maturation processes. This information has been useful in dissecting the gene regulatory networks controlling embryo development. Finally, LEC1 is a novel isoform of a transcription factor that is conserved among eukaryotes, and LEC1 is active primarily in seeds. Therefore, we determined that the LEC1-type transcription factors first appeared in lycophytes during land plant evolution. Together, this study provides basic information that has implications for biofuel production.

  11. Coordination of flower development by homeotic master regulators.

    PubMed

    Ito, Toshiro

    2011-02-01

    Floral homeotic genes encode transcription factors and act as master regulators of flower development. The homeotic protein complex is expressed in a specific whorl of the floral primordium and determines floral organ identity by the combinatorial action. Homeotic proteins continue to be expressed until late in flower development to coordinate growth and organogenesis. Recent genomic studies have shown that homeotic proteins bind thousands of target sites in the genome and regulate the expression of transcription factors, chromatin components and various proteins involved in hormone biosynthesis and signaling and other physiological activities. Further, homeotic proteins program chromatin to direct the developmental coordination of stem cell maintenance and differentiation in shaping floral organs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Developing medical device software in compliance with regulations.

    PubMed

    Zema, M; Rosati, S; Gioia, V; Knaflitz, M; Balestra, G

    2015-08-01

    In the last decade, the use of information technology (IT) in healthcare has taken a growing role. In fact, the adoption of an increasing number of computer tools has led to several benefits related to the process of patient care and allowed easier access to social and health care resources. At the same time this trend gave rise to new challenges related to the implementation of these new technologies. Software used in healthcare can be classified as medical devices depending on the way they are used and on their functional characteristics. If they are classified as medical devices they must satisfy specific regulations. The aim of this work is to present a software development framework that can allow the production of safe and high quality medical device software and to highlight the correspondence between each software development phase and the appropriate standard and/or regulation.

  13. Functional Enhancers As Master Regulators of Tissue-Specific Gene Regulation and Cancer Development

    PubMed Central

    Ko, Je Yeong; Oh, Sumin; Yoo, Kyung Hyun

    2017-01-01

    Tissue-specific transcription is critical for normal development, and abnormalities causing undesirable gene expression may lead to diseases such as cancer. Such highly organized transcription is controlled by enhancers with specific DNA sequences recognized by transcription factors. Enhancers are associated with chromatin modifications that are distinct epigenetic features in a tissue-specific manner. Recently, super-enhancers comprising enhancer clusters co-occupied by lineage-specific factors have been identified in diverse cell types such as adipocytes, hair follicle stem cells, and mammary epithelial cells. In addition, noncoding RNAs, named eRNAs, are synthesized at super-enhancer regions before their target genes are transcribed. Many functional studies revealed that super-enhancers and eRNAs are essential for the regulation of tissue-specific gene expression. In this review, we summarize recent findings concerning enhancer function in tissue-specific gene regulation and cancer development. PMID:28359147

  14. Evidence for a paracrine role of endogenous adrenomedullary galanin in the regulation of glucocorticoid secretion in the rat adrenal gland.

    PubMed

    Andreis, Paola G; Tortorella, Cinzia; Ziolkowska, Agnieska; Spinazzi, Raffaella; Malendowicz, Ludwik K; Neri, Giuliano; Nussdorfer, Gastone G

    2007-03-01

    Previous investigations have shown that rat adrenocortical cells are provided with galanin receptors, and galanin stimulates glucocorticoid secretion from dispersed cells. The present study aimed to clarify the possible role of galanin in the physiological regulation of rat adrenal secretory activity. Reverse transcription-polymerase chain reaction detected galanin mRNA expression in the adrenal medulla, but not in the cortex. Sizeable concentrations of galanin-immunoreactivity were measured by radioimmune assay only in the adrenomedullary tissue. Galanin raised norepinephrine, but not epinephrine, release from adrenomedullary tissue. Galanin immunoneutralization (obtained with concentrations of anti-galanin antibody able to block the galanin glucocorticoid secretagogue effect on dispersed adrenocortical cells) decreased basal corticosterone production from adrenal slices containing adrenomedullary tissue, without affecting that from dispersed adrenocortical cells. The beta-adrenoceptor antagonist l-alprenolol partially prevented galanin-stimulated corticosterone secretion from adrenal slices, without per se altering basal secretion. Taken together, our findings allow us to conclude that endogenous galanin, produced in adrenal medulla, is involved in the regulation of adrenocortical glucocorticoid secretion acting via a two-fold paracrine mechanism: i) direct activation of adrenocortical galanin receptors; and ii) stimulation of adrenomedullary release of catecholamines, which in turn activate beta-adrenoceptors located on adrenocortical cells.

  15. Regulation of bone morphogenetic proteins in early embryonic development

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yukiyo; Oelgeschläger, Michael

    2004-11-01

    Bone morphogenetic proteins (BMPs), a large subgroup of the TGF-β family of secreted growth factors, control fundamental events in early embryonic development, organogenesis and adult tissue homeostasis. The plethora of dose-dependent cellular processes regulated by BMP signalling demand a tight regulation of BMP activity. Over the last decade, a number of proteins have been identified that bind BMPs in the extracellular space and regulate the interaction of BMPs with their cognate receptors, including the secreted BMP antagonist Chordin. In the early vertebrate embryo, the localized secretion of BMP antagonists from the dorsal blastopore lip establishes a functional BMP signalling gradient that is required for the determination of the dorsoventral or back to belly body axis. In particular, inhibition of BMP activity is essential for the formation of neural tissue in the development of vertebrate and invertebrate embryos. Here we review recent studies that have provided new insight into the regulation of BMP signalling in the extracellular space. In particular, we discuss the recently identified Twisted gastrulation protein that modulates, in concert with metalloproteinases of the Tolloid family, the interaction of Chordin with BMP and a family of proteins that share structural similarities with Chordin in the respective BMP binding domains. In addition, genetic and functional studies in zebrafish and frog provide compelling evidence that the secreted protein Sizzled functionally interacts with the Chd BMP pathway, despite being expressed ventrally in the early gastrula-stage embryo. These intriguing discoveries may have important implications, not only for our current concept of early embryonic patterning, but also for the regulation of BMP activity at later developmental stages and tissue homeostasis in the adult.

  16. Multimodal imaging of the self-regulating developing brain

    PubMed Central

    Fjell, Anders M.; Walhovd, Kristine Beate; Brown, Timothy T.; Kuperman, Joshua M.; Chung, Yoonho; Hagler, Donald J.; Venkatraman, Vijay; Roddey, J. Cooper; Erhart, Matthew; McCabe, Connor; Akshoomoff, Natacha; Amaral, David G.; Bloss, Cinnamon S.; Libiger, Ondrej; Darst, Burcu F.; Schork, Nicholas J.; Casey, B. J.; Chang, Linda; Ernst, Thomas M.; Gruen, Jeffrey R.; Kaufmann, Walter E.; Kenet, Tal; Frazier, Jean; Murray, Sarah S.; Sowell, Elizabeth R.; van Zijl, Peter; Mostofsky, Stewart; Jernigan, Terry L.; Dale, Anders M.; Jernigan, Terry L.; McCabe, Connor; Chang, Linda; Akshoomoff, Natacha; Newman, Erik; Dale, Anders M.; Ernst, Thomas; Dale, Anders M.; Van Zijl, Peter; Kuperman, Joshua; Murray, Sarah; Bloss, Cinnamon; Schork, Nicholas J.; Appelbaum, Mark; Gamst, Anthony; Thompson, Wesley; Bartsch, Hauke; Jernigan, Terry L.; Dale, Anders M.; Akshoomoff, Natacha; Chang, Linda; Ernst, Thomas; Keating, Brian; Amaral, David; Sowell, Elizabeth; Kaufmann, Walter; Van Zijl, Peter; Mostofsky, Stewart; Casey, B.J.; Ruberry, Erika J.; Powers, Alisa; Rosen, Bruce; Kenet, Tal; Frazier, Jean; Kennedy, David; Gruen, Jeffrey

    2012-01-01

    Self-regulation refers to the ability to control behavior, cognition, and emotions, and self-regulation failure is related to a range of neuropsychiatric problems. It is poorly understood how structural maturation of the brain brings about the gradual improvement in self-regulation during childhood. In a large-scale multicenter effort, 735 children (4–21 y) underwent structural MRI for quantification of cortical thickness and surface area and diffusion tensor imaging for quantification of the quality of major fiber connections. Brain development was related to a standardized measure of cognitive control (the flanker task from the National Institutes of Health Toolbox), a critical component of self-regulation. Ability to inhibit responses and impose cognitive control increased rapidly during preteen years. Surface area of the anterior cingulate cortex accounted for a significant proportion of the variance in cognitive performance. This finding is intriguing, because characteristics of the anterior cingulum are shown to be related to impulse, attention, and executive problems in neurodevelopmental disorders, indicating a neural foundation for self-regulation abilities along a continuum from normality to pathology. The relationship was strongest in the younger children. Properties of large-fiber connections added to the picture by explaining additional variance in cognitive control. Although cognitive control was related to surface area of the anterior cingulate independently of basic processes of mental speed, the relationship between white matter quality and cognitive control could be fully accounted for by speed. The results underscore the need for integration of different aspects of brain maturation to understand the foundations of cognitive development. PMID:23150548

  17. Multimodal imaging of the self-regulating developing brain.

    PubMed

    Fjell, Anders M; Walhovd, Kristine Beate; Brown, Timothy T; Kuperman, Joshua M; Chung, Yoonho; Hagler, Donald J; Venkatraman, Vijay; Roddey, J Cooper; Erhart, Matthew; McCabe, Connor; Akshoomoff, Natacha; Amaral, David G; Bloss, Cinnamon S; Libiger, Ondrej; Darst, Burcu F; Schork, Nicholas J; Casey, B J; Chang, Linda; Ernst, Thomas M; Gruen, Jeffrey R; Kaufmann, Walter E; Kenet, Tal; Frazier, Jean; Murray, Sarah S; Sowell, Elizabeth R; van Zijl, Peter; Mostofsky, Stewart; Jernigan, Terry L; Dale, Anders M

    2012-11-27

    Self-regulation refers to the ability to control behavior, cognition, and emotions, and self-regulation failure is related to a range of neuropsychiatric problems. It is poorly understood how structural maturation of the brain brings about the gradual improvement in self-regulation during childhood. In a large-scale multicenter effort, 735 children (4-21 y) underwent structural MRI for quantification of cortical thickness and surface area and diffusion tensor imaging for quantification of the quality of major fiber connections. Brain development was related to a standardized measure of cognitive control (the flanker task from the National Institutes of Health Toolbox), a critical component of self-regulation. Ability to inhibit responses and impose cognitive control increased rapidly during preteen years. Surface area of the anterior cingulate cortex accounted for a significant proportion of the variance in cognitive performance. This finding is intriguing, because characteristics of the anterior cingulum are shown to be related to impulse, attention, and executive problems in neurodevelopmental disorders, indicating a neural foundation for self-regulation abilities along a continuum from normality to pathology. The relationship was strongest in the younger children. Properties of large-fiber connections added to the picture by explaining additional variance in cognitive control. Although cognitive control was related to surface area of the anterior cingulate independently of basic processes of mental speed, the relationship between white matter quality and cognitive control could be fully accounted for by speed. The results underscore the need for integration of different aspects of brain maturation to understand the foundations of cognitive development.

  18. Bmi1 promotes erythroid development through regulating ribosome biogenesis.

    PubMed

    Gao, Rui; Chen, Sisi; Kobayashi, Michihiro; Yu, Hao; Zhang, Yingchi; Wan, Yang; Young, Sara K; Soltis, Anthony; Yu, Ming; Vemula, Sasidhar; Fraenkel, Ernest; Cantor, Alan; Antipin, Yevgeniy; Xu, Yang; Yoder, Mervin C; Wek, Ronald C; Ellis, Steven R; Kapur, Reuben; Zhu, Xiaofan; Liu, Yan

    2015-03-01

    While Polycomb group protein Bmi1 is important for stem cell maintenance, its role in lineage commitment is largely unknown. We have identified Bmi1 as a novel regulator of erythroid development. Bmi1 is highly expressed in mouse erythroid progenitor cells and its deficiency impairs erythroid differentiation. BMI1 is also important for human erythroid development. Furthermore, we discovered that loss of Bmi1 in erythroid progenitor cells results in decreased transcription of multiple ribosomal protein genes and impaired ribosome biogenesis. Bmi1 deficiency stabilizes p53 protein, leading to upregulation of p21 expression and subsequent G0/G1 cell cycle arrest. Genetic inhibition of p53 activity rescues the erythroid defects seen in the Bmi1 null mice, demonstrating that a p53-dependent mechanism underlies the pathophysiology of the anemia. Mechanistically, Bmi1 is associated with multiple ribosomal protein genes and may positively regulate their expression in erythroid progenitor cells. Thus, Bmi1 promotes erythroid development, at least in part through regulating ribosome biogenesis. Ribosomopathies are human disorders of ribosome dysfunction, including Diamond-Blackfan anemia (DBA) and 5q- syndrome, in which genetic abnormalities cause impaired ribosome biogenesis, resulting in specific clinical phenotypes. We observed that BMI1 expression in human hematopoietic stem and progenitor cells from patients with DBA is correlated with the expression of some ribosomal protein genes, suggesting that BMI1 deficiency may play a pathological role in DBA and other ribosomopathies. © 2014 AlphaMed Press.

  19. Hippo Signaling Regulates Pancreas Development through Inactivation of Yap

    PubMed Central

    Day, Caroline E.; Boerner, Brian P.; Johnson, Randy L.; Sarvetnick, Nora E.

    2012-01-01

    The mammalian pancreas is required for normal metabolism, with defects in this vital organ commonly observed in cancer and diabetes. Development must therefore be tightly controlled in order to produce a pancreas of correct size, cell type composition, and physiologic function. Through negative regulation of Yap-dependent proliferation, the Hippo kinase cascade is a critical regulator of organ growth. To investigate the role of Hippo signaling in pancreas biology, we deleted Hippo pathway components in the developing mouse pancreas. Unexpectedly, the pancreas from Hippo-deficient offspring was reduced in size, with defects evident throughout the organ. Increases in the dephosphorylated nuclear form of Yap are apparent throughout the exocrine compartment and correlate with increases in levels of cell proliferation. However, the mutant exocrine tissue displays extensive disorganization leading to pancreatitis-like autodigestion. Interestingly, our results suggest that Hippo signaling does not directly regulate the pancreas endocrine compartment as Yap expression is lost following endocrine specification through a Hippo-independent mechanism. Altogether, our results demonstrate that Hippo signaling plays a crucial role in pancreas development and provide novel routes to a better understanding of pathological conditions that affect this organ. PMID:23071096

  20. Caenorhabditis elegans flamingo cadherin fmi-1 regulates GABAergic neuronal development.

    PubMed

    Najarro, Elvis Huarcaya; Wong, Lianna; Zhen, Mei; Carpio, Edgar Pinedo; Goncharov, Alexandr; Garriga, Gian; Lundquist, Erik A; Jin, Yishi; Ackley, Brian D

    2012-03-21

    In a genetic screen for regulators of synaptic morphology, we identified the single Caenorhabditis elegans flamingo-like cadherin fmi-1. The fmi-1 mutants exhibit defective axon pathfinding, reduced synapse number, aberrant synapse size and morphology, as well as an abnormal accumulation of synaptic vesicles at nonsynaptic regions. Although FMI-1 is primarily expressed in the nervous system, it is not expressed in the ventral D-type (VD) GABAergic motorneurons, which are defective in fmi-1 mutants. The axon and synaptic defects of VD neurons could be rescued when fmi-1 was expressed exclusively in non-VD neighboring neurons, suggesting a cell nonautonomous action of FMI-1. FMI-1 protein that lacked its intracellular domain still retained its ability to rescue the vesicle accumulation defects of GABAergic motorneurons, indicating that the extracellular domain was sufficient for this function of FMI-1 in GABAergic neuromuscular junction development. Mutations in cdh-4, a Fat-like cadherin, cause similar defects in GABAergic motorneurons. The cdh-4 is expressed by the VD neurons and seems to function in the same genetic pathway as fmi-1 to regulate GABAergic neuron development. Thus, fmi-1 and cdh-4 cadherins might act together to regulate synapse development and axon pathfinding.

  1. Shank Modulates Postsynaptic Wnt Signaling to Regulate Synaptic Development

    PubMed Central

    Akbergenova, Yulia; Cho, Richard W.; Baas-Thomas, Maximilien S.; Littleton, J. Troy

    2016-01-01

    Prosap/Shank scaffolding proteins regulate the formation, organization, and plasticity of excitatory synapses. Mutations in SHANK family genes are implicated in autism spectrum disorder and other neuropsychiatric conditions. However, the molecular mechanisms underlying Shank function are not fully understood, and no study to date has examined the consequences of complete loss of all Shank proteins in vivo. Here we characterize the single Drosophila Prosap/Shank family homolog. Shank is enriched at the postsynaptic membrane of glutamatergic neuromuscular junctions and controls multiple parameters of synapse biology in a dose-dependent manner. Both loss and overexpression of Shank result in defects in synaptic bouton number and maturation. We find that Shank regulates a noncanonical Wnt signaling pathway in the postsynaptic cell by modulating the internalization of the Wnt receptor Fz2. This study identifies Shank as a key component of synaptic Wnt signaling, defining a novel mechanism for how Shank contributes to synapse maturation during neuronal development. SIGNIFICANCE STATEMENT Haploinsufficiency for SHANK3 is one of the most prevalent monogenic causes of autism spectrum disorder, making it imperative to understand how the Shank family regulates neurodevelopment and synapse function. We created the first animal model lacking all Shank proteins and used the Drosophila neuromuscular junction, a model glutamatergic synapse, to characterize the role of Shank at synapses. We identified a novel function of Shank in synapse maturation via regulation of Wnt signaling in the postsynaptic cell. PMID:27225771

  2. BRASSINOSTEROIDS: Essential Regulators of Plant Growth and Development.

    PubMed

    Clouse, Steven D.; Sasse, Jenneth M.

    1998-06-01

    Brassinosteroids (BRs) are growth-promoting natural products found at low levels in pollen, seeds, and young vegetative tissues throughout the plant kingdom. Detailed studies of BR biosynthesis and metabolism, coupled with the recent identification of BR-insensitive and BR-deficient mutants, has greatly expanded our view of steroids as signals controlling plant growth and development. This review examines the microchemical and molecular genetic analyses that have provided convincing evidence for an essential role of BRs in diverse developmental programs, including cell expansion, vascular differentiation, etiolation, and reproductive development. Recent advances relevant to the molecular mechanisms of BR-regulated gene expression and BR signal transduction are also discussed.

  3. Visual experience regulates gene expression in the developing striate cortex.

    PubMed

    Neve, R L; Bear, M F

    1989-06-01

    We have examined the regulation of expression of the genes for the neuronal growth-associated protein GAP43, the type II calcium/calmodulin-dependent protein kinase, and glutamic acid decarboxylase in the kitten visual cortex during normal postnatal development and after a period of visual deprivation. We find that the mRNA transcripts of these genes display very different patterns of normal development but are all increased in the visual cortex of animals reared in the dark. Upon exposure to light, the transcript of the GAP43 gene drops to near-normal levels within 12 hr.

  4. Adrenocortical involvement during diverse stress in soft-shelled turtle Lissemys p. punctata Bonnoterre.

    PubMed

    Ray, Prajna Paramita; Chaudhuri-Sengupta, Santasri; Maiti, B R

    2004-06-01

    Adrenocortical responses to diverse stressful situations (dehydration, formaldehyde treatment and salt loading) were studied in the adult female soft-shelled turtle, Lissenmys p. punctata. Dehydration, formaldehyde treatment (formalin, 1%: 0.1 ml/100 g body weight daily) or salt loading (NaCl, 1%: 0.1 ml/100 g body weight daily) treatments consecutively for 7 days caused hypertrophy of the adrenocortical cells with their nuclear diameter increased, and depletions of adrenal cholesterol and ascorbic acid concentrations followed by decreased acid phosphatase and alkaline phosphatase activities in turtles. Corticosterone levels were elevated in both the adrenal gland and serum of turtles after dehydration and formalin stress, but the hormone level remained unaltered after salt loading in turtles. The results suggest active involvement of adrenal cortex in stress for homeostasis in Lissemys turtles.

  5. A morphometric analysis of adrenocortical actin localized by immunoelectron microscopy: the effect of adrenocorticotropin.

    PubMed

    Loesser, K E; Malamed, S

    1987-10-01

    The localization of actin and the effect of ACTH on its concentration was examined in freshly isolated rat adrenocortical cells. Lowicryl K4M-embedded cells were used for the immunoelectron localization of actin; gold was used as a label for immunoreactive sites. Actin was at least 4 times as concentrated at the cortical cytoplasm as in the lipid droplets and at least 5 times as concentrated in the microvilli as in the lipid droplets. ACTH stimulation approximately doubled the concentration of actin in the cortical cytoplasm and increased by 50% the concentration of actin in the microvilli. The microvillar contribution to the cell surface area was 40% higher in ACTH-stimulated cells than it was in unstimulated cells. These results provide quantitative evidence suggesting that actin and the microvilli participate in steroid secretion by the adrenocortical cell.

  6. A genetic and molecular update on adrenocortical causes of Cushing syndrome.

    PubMed

    Lodish, Maya; Stratakis, Constantine A

    2016-05-01

    Primary adrenal Cushing syndrome is the result of cortisol hypersecretion mainly by adenomas and, rarely, by bilateral micronodular or macronodular adrenocortical hyperplasia. cAMP-dependent protein kinase A (PKA) signalling is the major activator of cortisol secretion in the adrenal cortex. Many adenomas and hyperplasias associated with primary hypercortisolism carry somatic or germline mutations in genes that encode constituents of the cAMP-PKA pathway. In this Review, we discuss Cushing syndrome and its linkage to dysregulated cAMP-PKA signalling, with a focus on genetic findings in the past few years. In addition, we discuss the presence of germline inactivating mutations in ARMC5 in patients with primary bilateral macronodular adrenocortical hyperplasia. This finding has implications for genetic counselling of affected patients; hitherto, most patients with this form of adrenal hyperplasia and Cushing syndrome were thought to have a sporadic and not a familial disorder.

  7. Crim1 regulates integrin signaling in murine lens development.

    PubMed

    Zhang, Ying; Fan, Jieqing; Ho, Joshua W K; Hu, Tommy; Kneeland, Stephen C; Fan, Xueping; Xi, Qiongchao; Sellarole, Michael A; de Vries, Wilhelmine N; Lu, Weining; Lachke, Salil A; Lang, Richard A; John, Simon W M; Maas, Richard L

    2016-01-15

    The developing lens is a powerful system for investigating the molecular basis of inductive tissue interactions and for studying cataract, the leading cause of blindness. The formation of tightly controlled cell-cell adhesions and cell-matrix junctions between lens epithelial (LE) cells, between lens fiber (LF) cells, and between these two cell populations enables the vertebrate lens to adopt a highly ordered structure and acquire optical transparency. Adhesion molecules are thought to maintain this ordered structure, but little is known about their identity or interactions. Cysteine-rich motor neuron 1 (Crim1), a type I transmembrane protein, is strongly expressed in the developing lens and its mutation causes ocular disease in both mice and humans. How Crim1 regulates lens morphogenesis is not understood. We identified a novel ENU-induced hypomorphic allele of Crim1, Crim1(glcr11), which in the homozygous state causes cataract and microphthalmia. Using this and two other mutant alleles, Crim1(null) and Crim1(cko), we show that the lens defects in Crim1 mouse mutants originate from defective LE cell polarity, proliferation and cell adhesion. Crim1 adhesive function is likely to be required for interactions both between LE cells and between LE and LF cells. We show that Crim1 acts in LE cells, where it colocalizes with and regulates the levels of active β1 integrin and of phosphorylated FAK and ERK. The RGD and transmembrane motifs of Crim1 are required for regulating FAK phosphorylation. These results identify an important function for Crim1 in the regulation of integrin- and FAK-mediated LE cell adhesion during lens development.

  8. Dynamic regulation of mRNA decay during neural development.

    PubMed

    Burow, Dana A; Umeh-Garcia, Maxine C; True, Marie B; Bakhaj, Crystal D; Ardell, David H; Cleary, Michael D

    2015-04-21

    Gene expression patterns are determined by rates of mRNA transcription and decay. While transcription is known to regulate many developmental processes, the role of mRNA decay is less extensively defined. A critical step toward defining the role of mRNA decay in neural development is to measure genome-wide mRNA decay rates in neural tissue. Such information should reveal the degree to which mRNA decay contributes to differential gene expression and provide a foundation for identifying regulatory mechanisms that affect neural mRNA decay. We developed a technique that allows genome-wide mRNA decay measurements in intact Drosophila embryos, across all tissues and specifically in the nervous system. Our approach revealed neural-specific decay kinetics, including stabilization of transcripts encoding regulators of axonogenesis and destabilization of transcripts encoding ribosomal proteins and histones. We also identified correlations between mRNA stability and physiologic properties of mRNAs; mRNAs that are predicted to be translated within axon growth cones or dendrites have long half-lives while mRNAs encoding transcription factors that regulate neurogenesis have short half-lives. A search for candidate cis-regulatory elements identified enrichment of the Pumilio recognition element (PRE) in mRNAs encoding regulators of neurogenesis. We found that decreased expression of the RNA-binding protein Pumilio stabilized predicted neural mRNA targets and that a PRE is necessary to trigger reporter-transcript decay in the nervous system. We found that differential mRNA decay contributes to the relative abundance of transcripts involved in cell-fate decisions, axonogenesis, and other critical events during Drosophila neural development. Neural-specific decay kinetics and the functional specificity of mRNA decay suggest the existence of a dynamic neurodevelopmental mRNA decay network. We found that Pumilio is one component of this network, revealing a novel function for this RNA

  9. Profilin1 Regulates Sternum Development and Endochondral Bone Formation

    PubMed Central

    Miyajima, Daisuke; Hayata, Tadayoshi; Suzuki, Takafumi; Hemmi, Hiroaki; Nakamoto, Tetsuya; Notomi, Takuya; Amagasa, Teruo; Böttcher, Ralph T.; Costell, Mercedes; Fässler, Reinhard; Ezura, Yoichi; Noda, Masaki

    2012-01-01

    Bone development is a dynamic process that requires cell motility and morphological adaptation under the control of actin cytoskeleton. This actin cytoskeleton system is regulated by critical modulators including actin-binding proteins. Among them, profilin1 (Pfn1) is a key player to control actin fiber structure, and it is involved in a number of cellular activities such as migration. During the early phase of body development, skeletal stem cells and osteoblastic progenitor cells migrate to form initial rudiments for future skeletons. During this migration, these cells extend their process based on actin cytoskeletal rearrangement to locate themselves in an appropriate location within microenvironment. However, the role of Pfn1 in regulation of mesenchymal progenitor cells (MPCs) during skeletal development is incompletely understood. Here we examined the role of Pfn1 in skeletal development using a genetic ablation of Pfn1 in MPCs by using Prx1-Cre recombinase. We found that Pfn1 deficiency in MPCs caused complete cleft sternum. Notably, Pfn1-deficient mice exhibited an absence of trabecular bone in the marrow space of appendicular long bone. This phenotype is location-specific, as Pfn1 deficiency did not largely affect osteoblasts in cortical bone. Pfn1 deficiency also suppressed longitudinal growth of long bone. In vitro, Pfn1 deficiency induced retardation of osteoblastic cell migration. These observations revealed that Pfn1 is a critical molecule for the skeletal development, and this could be at least in part associated with the retardation of cell migration PMID:22773831

  10. Ihh signaling regulates mandibular symphysis development and growth.

    PubMed

    Sugito, H; Shibukawa, Y; Kinumatsu, T; Yasuda, T; Nagayama, M; Yamada, S; Minugh-Purvis, N; Pacifici, M; Koyama, E

    2011-05-01

    Symphyseal secondary cartilage is important for mandibular development, but the molecular mechanisms underlying its formation remain largely unknown. Here we asked whether Indian hedgehog (Ihh) regulates symphyseal cartilage development and growth. By embryonic days 16.5 to 18.5, Sox9-expressing chondrocytes formed within condensed Tgfβ-1/Runx2-expressing mesenchymal cells at the prospective symphyseal joint site, and established a growth-plate-like structure with distinct Ihh, collagen X, and osteopontin expression patterns. In post-natal life, mesenchymal cells expressing the Ihh receptor Patched1 were present anterior to the Ihh-expressing secondary cartilage, proliferated, differentiated into chondrocytes, and contributed to anterior growth of alveolar bone. In Ihh-null mice, however, symphyseal development was defective, mainly because of enhanced chondrocyte maturation and reduced proliferation of chondroprogenitor cells. Proliferation was partially restored in dual Ihh;Gli3 mutants, suggesting that Gli3 is normally a negative regulator of symphyseal development. Thus, Ihh signaling is essential for symphyseal cartilage development and anterior mandibular growth.

  11. Subplate Neurons: Crucial Regulators of Cortical Development and Plasticity

    PubMed Central

    Kanold, Patrick O.

    2009-01-01

    The developing cerebral cortex contains a distinct class of cells, subplate neurons, which form one of the first functional cortical circuits. Subplate neurons reside in the cortical white matter, receive thalamic inputs and project into the developing cortical plate, mostly to layer 4. Subplate neurons are present at key time points during development. Removal of subplate neurons profoundly affects cortical development. Subplate removal in visual cortex prevents the maturation of thalamocortical synapse, the maturation of inhibition in layer 4, the development of orientation selective responses in individual cortical neurons, and the formation of ocular dominance columns. In addition, monocular deprivation during development reveals that ocular dominance plasticity is paradoxical in the absence of subplate neurons. Because subplate neurons projecting to layer 4 are glutamatergic, these diverse deficits following subplate removal were hypothesized to be due to lack of feed-forward thalamic driven cortical excitation. A computational model of the developing thalamocortical pathway incorporating feed-forward excitatory subplate projections replicates both normal development and plasticity of ocular dominance as well as the effects of subplate removal. Therefore, we postulate that feed-forward excitatory projections from subplate neurons into the developing cortical plate enhance correlated activity between thalamus and layer 4 and, in concert with Hebbian learning rules in layer 4, allow maturational and plastic processes in layer 4 to commence. Thus subplate neurons are a crucial regulator of cortical development and plasticity, and damage to these neurons might play a role in the pathology of many neurodevelopmental disorders. PMID:19738926

  12. Zeb2: A multifunctional regulator of nervous system development.

    PubMed

    Hegarty, Shane V; Sullivan, Aideen M; O'Keeffe, Gerard W

    2015-09-01

    Zinc finger E-box binding homeobox (Zeb) 2 is a transcription factor, identified due its ability to bind Smad proteins, and consists of multiple functional domains which interact with a variety of transcriptional co-effectors. The complex nature of the Zeb2, both at its genetic and protein levels, underlie its multifunctional properties, with Zeb2 capable of acting individually or as part of a transcriptional complex to repress, and occasionally activate, target gene expression. This review introduces Zeb2 as an essential regulator of nervous system development. Zeb2 is expressed in the nervous system throughout its development, indicating its importance in neurogenic and gliogenic processes. Indeed, mutation of Zeb2 has dramatic neurological consequences both in animal models, and in humans with Mowat-Wilson syndrome, which results from heterozygous ZEB2 mutations. The mechanisms by which Zeb2 regulates the induction of the neuroectoderm (CNS primordium) and the neural crest (PNS primordium) are reviewed herein. We then describe how Zeb2 acts to direct the formation, delamination, migration and specification of neural crest cells. Zeb2 regulation of the development of a number of cerebral regions, including the neocortex and hippocampus, are then described. The diverse molecular mechanisms mediating Zeb2-directed development of various neuronal and glial populations are reviewed. The role of Zeb2 in spinal cord and enteric nervous system development is outlined, while its essential function in CNS myelination is also described. Finally, this review discusses how the neurodevelopmental defects of Zeb2 mutant mice delineate the developmental dysfunctions underpinning the multiple neurological defects observed in Mowat-Wilson syndrome patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Paediatric Nonfunctioning Adrenocortical Carcinoma with Extension up to Right-Side Heart: Cardiac Surgery Approach.

    PubMed

    Iezzi, Federica; Quarti, Andrea; Surace, Chiara; Pozzi, Marco

    2016-01-01

    Adrenocortical carcinoma is a rare malignancy. Due to late diagnosis and no adequate effective adjuvant treatment, prognosis remains poor. Only approximately 30% of these malignancies are confined to the adrenal gland when they are diagnosed, as these tumors tend to be found years after their genesis. Cardiac involvement of adrenal carcinoma is very rare. We report a rare case of a 7-year-old female with right adrenal cortical carcinoma, involving the right-side heart.

  14. ACTH-Independent Cushing’s Syndrome with Bilateral Micronodular Adrenal Hyperplasia and Ectopic Adrenocortical Adenoma

    PubMed Central

    Louiset, Estelle; Gobet, Françoise; Libé, Rossella; Horvath, Anelia; Renouf, Sylvie; Cariou, Juliette; Rothenbuhler, Anya; Bertherat, Jérôme; Clauser, Eric; Grise, Philippe; Stratakis, Constantine A.; Kuhn, Jean-Marc; Lefebvre, Hervé

    2010-01-01

    Context: Bilateral micronodular adrenal hyperplasia and ectopic adrenocortical adenoma are two rare causes of ACTH-independent Cushing’s syndrome. Objective: The aim of the study was to evaluate a 35-yr-old woman with ACTH-independent hypercortisolism associated with both micronodular adrenal hyperplasia and ectopic pararenal adrenocortical adenoma. Design and Setting: In vivo and in vitro studies were performed in a University Hospital Department and academic research laboratories. Intervention: Mutations of the PRKAR1A, PDE8B, and PDE11A genes were searched for in leukocytes and adrenocortical tissues. The ability of adrenal and adenoma tissues to synthesize cortisol was investigated by immunohistochemistry, quantitative PCR, and/or cell culture studies. Main Outcome Measure: Detection of 17α-hydroxylase and 21-hydroxylase immunoreactivities, quantification of CYP11B1 mRNA in adrenal and adenoma tissues, and measurement of cortisol levels in supernatants by radioimmunological assays were the main outcomes. Results: Histological examination of the adrenals revealed nonpigmented micronodular cortical hyperplasia associated with relative atrophy of internodular cortex. No genomic and/or somatic adrenal mutations of the PRKAR1A, PDE8B, and PDE11A genes were detected. 17α-Hydroxylase and 21-hydroxylase immunoreactivities as well as CYP11B1 mRNA were detected in adrenal and adenoma tissues. ACTH and dexamethasone activated cortisol secretion from adenoma cells. The stimulatory action of dexamethasone was mediated by a nongenomic effect involving the protein kinase A pathway. Conclusion: This case suggests that unknown molecular defects can favor both micronodular adrenal hyperplasia and ectopic adrenocortical adenoma associated with Cushing’s syndrome. PMID:19915020

  15. Paediatric Nonfunctioning Adrenocortical Carcinoma with Extension up to Right-Side Heart: Cardiac Surgery Approach

    PubMed Central

    Quarti, Andrea; Surace, Chiara; Pozzi, Marco

    2016-01-01

    Adrenocortical carcinoma is a rare malignancy. Due to late diagnosis and no adequate effective adjuvant treatment, prognosis remains poor. Only approximately 30% of these malignancies are confined to the adrenal gland when they are diagnosed, as these tumors tend to be found years after their genesis. Cardiac involvement of adrenal carcinoma is very rare. We report a rare case of a 7-year-old female with right adrenal cortical carcinoma, involving the right-side heart. PMID:27493811

  16. Classification and surgical treatment for 180 cases of adrenocortical hyperplastic disease

    PubMed Central

    Zhang, Yushi; Li, Hanzhong

    2015-01-01

    Objective: To review and discuss the diagnostic and surgical therapeutic methods of adrenocortical hyperplastic disease. Methods: A retrospective analysis was done to 180 adrenocortical hyperplasia patients (74 males, 109 females, aged 6~76 (average 40.1). Studies were done to the relationship between patients’ clinical characteristics, biochemical, endocrinological and imaging examination results, the therapeutic effects. Results: Among all 180 cases, there are 107 Cushing disease (CD), 19 ectopic adrenocorticotropin adrenal hyperplasia (EAAH), 28 adrenocorticotropin independent macronodular adrenal hyperplasia (AIMAH), 4 primary pigmented nodular adrenocortical hyperplasia (PPNAH), and 28 Idiopathic Hyperaldosteronism (IHA). Twenty-four-hour urinary free cortisol (24 h UFC) excretion of CD, EAAH, AIMAH and PPNAH patients were 95.2~535.7 µg (average 287.6 µg), 24.8~808.2 µg (average 307.9 µg), 102.5~3127.0 µg (average 852.5 µg), and 243.8~1124.6 µg (average 564.3 µg). Both low and high-dose dexamethasone suppression tests (DDST) were not suppressed in AIMAH, PPNAH and EAAH groups, but HDDST was suppressed in CD group. CT thin scanning results of 180 patients all showed enlargements in the affected side adrenal gland. Unilateral adrenalectomies were performed in 102 hypercortisolism cases. Local lesion excisions were done to 21 IHA patients. 57 patients had surgeries in both sides of the adrenal glands (39 bilateral total adrenalectomies, 16 total adrenalectomy in one side andsubtotal adrenalectomy in the other, 2 bilateral subtotal adrenalectomies). 106 (59%) patients were followed up for 4~158 (average 32) months. Conclusion: Unilateral adrenalectomy was the first choice for operable adrenocortical hyperplasia patients. The operation mode for the other adrenal gland should be based on the type of hyperplasia and clinical observation. PMID:26770569

  17. Low DICER1 expression is associated with poor clinical outcome in adrenocortical carcinoma.

    PubMed

    de Sousa, Gabriela Resende Vieira; Ribeiro, Tamaya C; Faria, Andre M; Mariani, Beatriz M P; Lerario, Antonio M; Zerbini, Maria Claudia N; Soares, Iberê C; Wakamatsu, Alda; Alves, Venancio A F; Mendonca, Berenice B; Fragoso, Maria Candida B V; Latronico, Ana Claudia; Almeida, Madson Q

    2015-09-08

    Low DICER1 expression was associated with poor outcome in several cancers. Recently, hot-spot DICER1 mutations were found in ovarian tumors, and TARBP2 truncating mutations in tumor cell lines with microsatellite instability. In this study, we assessed DICER1 e TRBP protein expression in 154 adult adrenocortical tumors (75 adenomas and 79 carcinomas). Expression of DICER1 and TARBP2 gene was assessed in a subgroup of 61 tumors. Additionally, we investigated mutations in metal biding sites located at the RNase IIIb domain of DICER1 and in the exon 5 of TARBP2 in 61 tumors. A strong DICER1 expression was demonstrated in 32% of adenomas and in 51% of carcinomas (p = 0.028). Similarly, DICER1 gene overexpression was more frequent in carcinomas (60%) than in adenomas (23%, p = 0.006). But, among adrenocortical carcinomas, a weak DICER1 expression was significantly more frequent in metastatic than in non-metastatic adrenocortical carcinomas (66% vs. 31%; p = 0.002). Additionally, a weak DICER1 expression was significantly correlated with a reduced overall (p = 0.004) and disease-free (p = 0.005) survival. In the multivariate analysis, a weak DICER1 expression (p = 0.048) remained as independent predictor of recurrence. Regarding TARBP2 gene, its protein and gene expression did not correlate with histopathological and clinical parameters. No variant was identified in hot spot areas of DICER1 and TARBP2. In conclusion, a weak DICER1 protein expression was associated with reduced disease-free and overall survival and was a predictor of recurrence in adrenocortical carcinomas.

  18. [Effect of adaptogens on the activity of the pituitary-adrenocortical system in rats].

    PubMed

    Filaretov, A A; Bogdanova, T S; Mitiushov, M I; Podvigina, T T; Srailova, G T

    1986-05-01

    Intraperitoneal injection of Panax ginseng C. A. Mey tincture, Polyscias filicifolia Bailey tincture, Panax ginseng tincture or Eleutherococcus Maxim extract to rats produced a rise in plasma corticosterone 1 hour after the treatment. Immobilization-induced rise in plasma corticosterone was increased by 7-day pretreatment with any agent. Thus, the adaptation effect of Panax ginseng C. A. Mey and Polyscias filicifolia Bailey is probably realized through the pituitary-adrenocortical system.

  19. Acanthosis Nigricans Associated with an Adrenocortical Tumor in a Pediatric Patient

    PubMed Central

    Dimitriadi, Filippina Filia; Barrows, Frank; Mostoufi-Moab, Sogol

    2013-01-01

    Malignant acanthosis nigricans (AN) is a rare paraneoplastic syndrome seen primarily in adults with an underlying diagnosis of gastrointestinal adenocarcinoma. Malignant AN is characterized by hyperpigmentation and velvety hyperplasia of the epidermis. This condition is generally not associated with tumors in pediatric populations or in the adrenal gland. We present a case of malignant AN in a pediatric patient with a nonmalignant, functional adrenocortical tumor. PMID:23819073

  20. Acanthosis nigricans associated with an adrenocortical tumor in a pediatric patient.

    PubMed

    Isaacoff, Elizabeth; Dimitriadi, Filippina Filia; Barrows, Frank; Pawel, Bruce; Mattei, Peter; Mostoufi-Moab, Sogol

    2013-01-01

    Malignant acanthosis nigricans (AN) is a rare paraneoplastic syndrome seen primarily in adults with an underlying diagnosis of gastrointestinal adenocarcinoma. Malignant AN is characterized by hyperpigmentation and velvety hyperplasia of the epidermis. This condition is generally not associated with tumors in pediatric populations or in the adrenal gland. We present a case of malignant AN in a pediatric patient with a nonmalignant, functional adrenocortical tumor.

  1. [Adrenocortical tumors: mitotic index and nuclear size as criteria for differential diagnosis and prognosis].

    PubMed

    Poliakova, G A; Kazantseva, I A; Kalinin, A P; Perov, A I; Bokova, E V

    1999-01-01

    A comparative study of the mitotic index (MI) and karyometric indices in 15 adrenocortical tumors with clinical syndrome of hypercorticism allowed to distinguish between adenomas and carcinomas. Carcinomas with hypercorticoidism symptoms have common features with inactive carcinomas but are different by lower expression of malignancy criteria (polymorphism, atypia, necrotic foci, capsule and vessel invasion), higher MI, increasing deficiency of cell division and larger nuclear size of tumor cells. Such tumors may be included into the prognostic group of risk.

  2. GLK gene pairs regulate chloroplast development in diverse plant species.

    PubMed

    Fitter, David W; Martin, David J; Copley, Martin J; Scotland, Robert W; Langdale, Jane A

    2002-09-01

    Chloroplast biogenesis is a complex process that requires close co-ordination between two genomes. Many of the proteins that accumulate in the chloroplast are encoded by the nuclear genome, and the developmental transition from proplastid to chloroplast is regulated by nuclear genes. Here we show that a pair of Golden 2-like (GLK) genes regulates chloroplast development in Arabidopsis. The GLK proteins are members of the GARP superfamily of transcription factors, and phylogenetic analysis demonstrates that the maize, rice and Arabidopsis GLK gene pairs comprise a distinct group within the GARP superfamily. Further phylogenetic analysis suggests that the gene pairs arose through separate duplication events in the monocot and dicot lineages. As in rice, AtGLK1 and AtGLK2 are expressed in partially overlapping domains in photosynthetic tissue. Insertion mutants demonstrate that this expression pattern reflects a degree of functional redundancy as single mutants display normal phenotypes in most photosynthetic tissues. However, double mutants are pale green in all photosynthetic tissues and chloroplasts exhibit a reduction in granal thylakoids. Products of several genes involved in light harvesting also accumulate at reduced levels in double mutant chloroplasts. GLK genes therefore regulate chloroplast development in diverse plant species.

  3. Hormonal regulation of early follicle development in the rat ovary.

    PubMed

    Hsueh, A J; McGee, E A; Hayashi, M; Hsu, S Y

    2000-05-25

    Although earlier studies focused on the hormonal regulation of antral and preovulatory follicles, recent studies indicate the importance of the hormonal control mechanism for preantral follicles. The endocrine hormone FSH is not only a survival factor for early antral follicles but also a potent growth and differentiation factor for preantral follicles. In addition, KGF secreted by theca cells and c-kit ligand secreted by granulosa cells play paracrine roles in the regulation of preantral follicle growth and development. Furthermore oocyte-derived GDF-9 promotes the growth and differentiation of early follicles by acting on somatic cells in the follicle. It is likely that the genetic makeup of an oocyte could determine the secretion of oocyte hormones which would, in turn, regulate the growth and differentiation of the surrounding somatic cells of that follicle. A better understanding of the hormonal mechanisms underlying early follicle development could provide a refined culture system for the in vitro maturation of fertilizable oocytes and future design of fertility and contraceptive agents.

  4. Glutamate dehydrogenase 1 and SIRT4 regulate glial development.

    PubMed

    Komlos, Daniel; Mann, Kara D; Zhuo, Yue; Ricupero, Christopher L; Hart, Ronald P; Liu, Alice Y-C; Firestein, Bonnie L

    2013-03-01

    Congenital hyperinsulinism/hyperammonemia (HI/HA) syndrome is caused by an activation mutation of glutamate dehydrogenase 1 (GDH1), a mitochondrial enzyme responsible for the reversible interconversion between glutamate and α-ketoglutarate. The syndrome presents clinically with hyperammonemia, significant episodic hypoglycemia, seizures, and frequent incidences of developmental and learning defects. Clinical research has implicated that although some of the developmental and neurological defects may be attributed to hypoglycemia, some characteristics cannot be ascribed to low glucose and as hyperammonemia is generally mild and asymptomatic, there exists the possibility that altered GDH1 activity within the brain leads to some clinical changes. GDH1 is allosterically regulated by many factors, and has been shown to be inhibited by the ADP-ribosyltransferase sirtuin 4 (SIRT4), a mitochondrially localized sirtuin. Here we show that SIRT4 is localized to mitochondria within the brain. SIRT4 is highly expressed in glial cells, specifically astrocytes, in the postnatal brain and in radial glia during embryogenesis. Furthermore, SIRT4 protein decreases in expression during development. We show that factors known to allosterically regulate GDH1 alter gliogenesis in CTX8 cells, a novel radial glial cell line. We find that SIRT4 and GDH1 overexpression play antagonistic roles in regulating gliogenesis and that a mutant variant of GDH1 found in HI/HA patients accelerates the development of glia from cultured radial glia cells.

  5. Amine oxidase activity regulates the development of pulmonary fibrosis.

    PubMed

    Marttila-Ichihara, Fumiko; Elima, Kati; Auvinen, Kaisa; Veres, Tibor Z; Rantakari, Pia; Weston, Christopher; Miyasaka, Masayuki; Adams, David; Jalkanen, Sirpa; Salmi, Marko

    2017-03-01

    In pulmonary fibrosis, an inflammatory reaction and differentiation of myofibroblasts culminate in pathologic deposition of collagen. Amine oxidase copper containing-3 (AOC3) is a cell-surface expressed oxidase that regulates leukocyte extravasation. Here we analyzed the potential role of AOC3 using gene-modified and inhibitor-treated mice in a bleomycin-induced pulmonary fibrosis model. Inflammation and fibrosis of lungs were assessed by histologic, flow cytometric, and quantitative PCR analysis. AOC3-deficient mice showed a 30-50% reduction in fibrosis, collagen synthesis, numbers of myofibroblasts, and accumulation of CD4(+) lymphocytes, NK T cells, macrophages, and type 2 innate lymphoid cells compared with wild-type control mice. AOC3 knock-in mice, which express a catalytically inactive form of AOC3, were also protected from lung fibrosis. In wild-type mice, a small-molecule AOC3 inhibitor treatment reduced leukocyte infiltration, myofibroblast differentiation, and fibrotic injury both in prophylactic and early therapeutic settings by about 50% but was unable to reverse the established fibrosis. AOC3 was also induced in myofibroblasts in human idiopathic pulmonary fibrosis. Thus, the oxidase activity of AOC3 contributes to the development of lung fibrosis mainly by regulating the accumulation of pathogenic leukocyte subtypes, which drive the fibrotic response.-Marttila-Ichihara, F., Elima, K., Auvinen, K., Veres, T. Z., Rantakari, P., Weston, C., Miyasaka, M., Adams, D., Jalkanen, S., Salmi, M. Amine oxidase activity regulates the development of pulmonary fibrosis.

  6. Genetic regulation of maize flower development and sex determination.

    PubMed

    Li, Qinglin; Liu, Baoshen

    2017-01-01

    The determining process of pistil fate are central to maize sex determination, mainly regulated by a genetic network in which the sex-determining genes SILKLESS 1 , TASSEL SEED 1 , TASSEL SEED 2 and the paramutagenic locus Required to maintain repression 6 play pivotal roles. Maize silks, which emerge from the ear shoot and derived from the pistil, are the functional stigmas of female flowers and play a pivotal role in pollination. Previous studies on sex-related mutants have revealed that sex-determining genes and phytohormones play an important role in the regulation of flower organogenesis. The processes determining pistil fate are central to flower development, where a silk identified gene SILKLESS 1 (SK1) is required to protect pistil primordia from a cell death signal produced by two commonly known genes, TASSEL SEED 1 (TS1) and TASSEL SEED 2 (TS2). In this review, maize flower developmental process is presented together with a focus on important sex-determining mutants and hormonal signaling affecting pistil development. The role of sex-determining genes, microRNAs, phytohormones, and the paramutagenic locus Required to maintain repression 6 (Rmr6), in forming a regulatory network that determines pistil fate, is discussed. Cloning SK1 and clarifying its function were crucial in understanding the regulation network of sex determination. The signaling mechanisms of phytohormones in sex determination are also an important research focus.

  7. Identification of a Novel TP53 Germline Mutation E285V in a Rare Case of Pediatric Adrenocortical Carcinoma and Choroid Plexus Carcinoma

    PubMed Central

    Russell-Swetek, Aubrey; West, Alina N.; Mintern, Jane E.; Jenkins, Jesse; Rodriguez-Galindo, Carlos; Ribeiro, Raul; Zambetti, Gerard P.

    2012-01-01

    Pediatric choroid plexus carcinomas (CPC) and adrenocortical carcinomas (ACC) are exceedingly rare tumors, each occurring at an annual rate of 0.3 cases per million children or less. Although both tumor types are associated with Li-Fraumeni Syndrome (LFS), the penetrance of germline TP53 mutations in CPC remains to be established. We report here a young boy without a family history of cancer who presented with CPC and subsequently ACC. Genetic testing revealed a novel de novo germline TP53 mutation (E285V). Neither tumor underwent loss of heterozygosity. Consistent with this observation, functional analyses demonstrated that E285V acts as a dominant-negative mutant that is defective in regulating target gene expression, growth suppression and apoptosis. These results further strengthen the association between germline TP53 mutations and childhood CPC, even when occurring in the absence of familial tumor susceptibility. PMID:18762572

  8. Morphological changes in the pituitary-adrenocortical axis in natives of La Paz

    NASA Astrophysics Data System (ADS)

    Gosney, John; Heath, Donald; Williams, David; Rios-Dalenz, Jaime

    1991-03-01

    Increased activity of the hypothalamic-pituitary-adrenocortical axis is part of the response to the stress of initial exposure to hypoxia, but there is evidence to suggest that it persists after homeostatic stability has been regained and acclimatization achieved. The adrenal glands of five lifelong residents of La Paz, Bolivia, who had lived at altitudes in the range 3600 3800 m, were significantly larger than those in age-matched controls from sea level (15.3g vs 10.4g; P<0.001) and appeared hyperplastic. The pituitary glands of the highlanders were not significantly different in size from those of the controls (0.67 g vs 0.51 g), but contained larger populations of corticotrophs expressed in terms of the total cell population of their anterior lobes (25.6% vs 19.4%; P<0.001). In conjunction with other studies of this endocrine axis in man and animals exposed to a hypoxic environment, these data suggest that greater amounts of adrenocorticotrophic hormone (ACTH) are required to maintain normal adrenocortical function under such circumstances, probably as a result of hypoxic inhibition of adrenocortical sensitivity to stimulation. Physiological hyperplasia of the adrenal cortex may be common in people living at high altitude.

  9. Usefulness of Wieneke criteria in assessing morphologic characteristics of adrenocortical tumors in children.

    PubMed

    Chatterjee, Gaurav; DasGupta, Shatavisha; Mukherjee, Gautam; Sengupta, Moumita; Roy, Paromita; Arun, Indu; Datta, Chhanda; Mishra, Prafulla Kumar; Banerjee, Sugato; Chatterjee, Uttara

    2015-06-01

    Adrenocortical tumors (ACT) occur rarely in pediatric age group. Pediatric ACTs behave differently from their histologically similar adult counterparts and standard adult criteria often cannot accurately predict their clinical behavior. The aim of the present study was to document the clinicopathologic spectrum of pediatric ACTs and to assess the utility of Wieneke scoring system in predicting clinical behavior of these tumors. This multi-institutional study comprised of 13 cases of pediatric ACTs from January 2005 to May 2014. Clinical features and gross pathologic characteristics were obtained from records. Comprehensive analyses of microscopic features were performed. Each tumor was assessed according to criteria proposed by Wieneke et al. and was assigned to benign, intermediate for malignancy or malignant group. The standard adult Weiss criteria were also applied for comparison. There were total 6 cases of adrenocortical adenomas and 7 cases of adrenocortical carcinomas. Most of the children (76.9%) presented with endocrine dysfunction. Lower age of presentation was significantly associated with better prognosis. Applying Wieneke criteria, there were 6 benign and 6 malignant cases and one case was assigned to intermediate for malignancy group. The clinical behavior of all the cases was consistent with Wieneke criteria categorization. Applying Weiss criteria, 3 cases with benign clinical behavior were assigned to malignant group. Our study validates the reliability of Wieneke scoring system in predicting malignancy in pediatric ACTs. It is simple and easy to use and therefore useful in day-to-day practice.

  10. Autocrine/paracrine regulatory mechanisms in adrenocortical neoplasms responsible for primary adrenal hypercorticism.

    PubMed

    Lefebvre, H; Prévost, G; Louiset, E

    2013-11-01

    A wide variety of autocrine/paracrine bioactive signals are able to modulate corticosteroid secretion in the human adrenal gland. These regulatory factors, released in the vicinity of adrenocortical cells by diverse cell types comprising chromaffin cells, nerve terminals, cells of the immune system, endothelial cells, and adipocytes, include neuropeptides, biogenic amines, and cytokines. A growing body of evidence now suggests that paracrine mechanisms may also play an important role in the physiopathology of adrenocortical hyperplasias and tumors responsible for primary adrenal steroid excess. These intra-adrenal regulatory systems, although globally involving the same actors as those observed in the normal gland, display alterations at different levels, which reinforce the capacity of paracrine factors to stimulate the activity of adrenocortical cells. The main modifications in the adrenal local control systems reported by now include hyperplasia of cells producing the paracrine factors and abnormal expression of the latter and their receptors. Because steroid-secreting adrenal neoplasms are independent of the classical endocrine regulatory factors angiotensin II and ACTH, which are respectively suppressed by hyperaldosteronism and hypercortisolism, these lesions have long been considered as autonomous tissues. However, the presence of stimulatory substances within the neoplastic tissues suggests that steroid hypersecretion is driven by autocrine/paracrine loops that should be regarded as promising targets for pharmacological treatments of primary adrenal disorders. This new potential therapeutic approach may constitute an alternative to surgical removal of the lesions that is classically recommended in order to cure steroid excess.

  11. Visual and metabolic stimuli cause adrenocortical suppression in fasted chickens during refeeding.

    PubMed

    Harvey, S; Klandorf, H; Pinchasov, Y

    1983-07-01

    Concentrations of corticosterone were determined in the plasma of fasted domestic fowl before and at intervals after refeeding. The deprivation of food markedly increased (p less than 0.001) the level of plasma corticosterone. When refed ad libitum the corticosterone concentration declined (by 70%) within 45 min to the level in fed birds and remained at this concentration thereafter. A similar depression in the corticosterone concentration was observed when fasted birds were merely given the sight of the same diet, although the concentration returned to the fasting level within 60 min of food presentation. Refeeding diets with different metabolic energy contents demonstrated that the duration of the feeding-induced adrenocortical suppression was energy related. In fasted birds the presentation of an inert cellulose diet caused a temporary decline in the corticosterone level. In the absence of visual stimuli the administration (by force feeding) of the inert diet had no effect on the corticosterone concentration, whereas force feeding of metabolizable diets still induced adrenocortical suppression. These results demonstrate that adrenocortical suppression occurs in fasted refed birds and both visual and metabolic stimuli are involved in this response.

  12. Interactions among Genes Regulating Ovule Development in Arabidopsis Thaliana

    PubMed Central

    Baker, S. C.; Robinson-Beers, K.; Villanueva, J. M.; Gaiser, J. C.; Gasser, C. S.

    1997-01-01

    The INNER NO OUTER (INO) and AINTEGUMENTA (ANT) genes are essential for ovule integument development in Arabidopsis thaliana. Ovules of ino mutants initiate two integument primordia, but the outer integument primordium forms on the opposite side of the ovule from the normal location and undergoes no further development. The inner integument appears to develop normally, resulting in erect, unitegmic ovules that resemble those of gymnosperms. ino plants are partially fertile and produce seeds with altered surface topography, demonstrating a lineage dependence in development of the testa. ant mutations affect initiation of both integuments. The strongest of five new ant alleles we have isolated produces ovules that lack integuments and fail to complete megasporogenesis. ant mutations also affect flower development, resulting in narrow petals and the absence of one or both lateral stamens. Characterization of double mutants between ant, ino and other mutations affecting ovule development has enabled the construction of a model for genetic control of ovule development. This model proposes parallel independent regulatory pathways for a number of aspects of this process, a dependence on the presence of an inner integument for development of the embryo sac, and the existence of additional genes regulating ovule development. PMID:9093862

  13. X chromosome regulation: diverse patterns in development, tissues and disease

    PubMed Central

    Deng, Xinxian; Berletch, Joel B.; Nguyen, Di K.; Disteche, Christine M.

    2014-01-01

    Genes on the mammalian X chromosome are present in one copy in males and two copies in females. The complex mechanisms that regulate the X chromosome lead to evolutionary and physiological variability in gene expression between species, the sexes, individuals, developmental stages, tissues and cell types. In early development, delayed and incomplete X chromosome inactivation (XCI) in some species causes variability in gene expression. Additional diversity stems from escape from XCI and from mosaicism or XCI skewing in females. This causes sex-specific differences that manifest as differential gene expression and associated phenotypes. Furthermore, the complexity and diversity of X dosage regulation affect the severity of diseases caused by X-linked mutations. PMID:24733023

  14. Light-Mediated Hormonal Regulation of Plant Growth and Development.

    PubMed

    de Wit, Mieke; Galvão, Vinicius Costa; Fankhauser, Christian

    2016-04-29

    Light is crucial for plant life, and perception of the light environment dictates plant growth, morphology, and developmental changes. Such adjustments in growth and development in response to light conditions are often established through changes in hormone levels and signaling. This review discusses examples of light-regulated processes throughout a plant's life cycle for which it is known how light signals lead to hormonal regulation. Light acts as an important developmental switch in germination, photomorphogenesis, and transition to flowering, and light cues are essential to ensure light capture through architectural changes during phototropism and the shade avoidance response. In describing well-established links between light perception and hormonal changes, we aim to give insight into the mechanisms that enable plants to thrive in variable light environments.

  15. CCN1 Regulates Chondrocyte Maturation and Cartilage Development

    PubMed Central

    Zhang, Yongchun; Sheu, Tzong-jen; Hoak, Donna; Shen, Jie; Hilton, Matthew J; Zuscik, Michael J; Jonason, Jennifer H; O’Keefe, Regis J

    2016-01-01

    WNT/β-CATENIN signaling is involved in multiple aspects of skeletal development, including chondrocyte differentiation and maturation. Although the functions of β-CATENIN in chondrocytes have been extensively investigated through gain-of-function and loss-of-function mouse models, the precise downstream effectors through which β-CATENIN regulates these processes are not well defined. Here, we report that the matricellular protein, CCN1, is induced by WNT/β-CATENIN signaling in chondrocytes. Specifically, we found that β-CATENIN signaling promotes CCN1 expression in isolated primary sternal chondrocytes and both embryonic and postnatal cartilage. Additionally, we show that, in vitro, CCN1 overexpression promotes chondrocyte maturation, whereas inhibition of endogenous CCN1 function inhibits maturation. To explore the role of CCN1 on cartilage development and homeostasis in vivo, we generated a novel transgenic mouse model for conditional Ccn1 overexpression and show that cartilage-specific CCN1 overexpression leads to chondrodysplasia during development and cartilage degeneration in adult mice. Finally, we demonstrate that CCN1 expression increases in mouse knee joint tissues after meniscal/ligamentous injury (MLI) and in human cartilage after meniscal tear. Collectively, our data suggest that CCN1 is an important regulator of chondrocyte maturation during cartilage development and homeostasis. PMID:26363286

  16. CCN1 Regulates Chondrocyte Maturation and Cartilage Development.

    PubMed

    Zhang, Yongchun; Sheu, Tzong-jen; Hoak, Donna; Shen, Jie; Hilton, Matthew J; Zuscik, Michael J; Jonason, Jennifer H; O'Keefe, Regis J

    2016-03-01

    WNT/β-CATENIN signaling is involved in multiple aspects of skeletal development, including chondrocyte differentiation and maturation. Although the functions of β-CATENIN in chondrocytes have been extensively investigated through gain-of-function and loss-of-function mouse models, the precise downstream effectors through which β-CATENIN regulates these processes are not well defined. Here, we report that the matricellular protein, CCN1, is induced by WNT/β-CATENIN signaling in chondrocytes. Specifically, we found that β-CATENIN signaling promotes CCN1 expression in isolated primary sternal chondrocytes and both embryonic and postnatal cartilage. Additionally, we show that, in vitro, CCN1 overexpression promotes chondrocyte maturation, whereas inhibition of endogenous CCN1 function inhibits maturation. To explore the role of CCN1 on cartilage development and homeostasis in vivo, we generated a novel transgenic mouse model for conditional Ccn1 overexpression and show that cartilage-specific CCN1 overexpression leads to chondrodysplasia during development and cartilage degeneration in adult mice. Finally, we demonstrate that CCN1 expression increases in mouse knee joint tissues after meniscal/ligamentous injury (MLI) and in human cartilage after meniscal tear. Collectively, our data suggest that CCN1 is an important regulator of chondrocyte maturation during cartilage development and homeostasis.

  17. Pharmaceuticals in Australia: developments in regulation and governance.

    PubMed

    Lofgren, Hans; Boer, Rebecca de

    2004-06-01

    The pharmaceutical domain represents a type of internationalised policy network theorised in recent writings on neo-liberalism, neo-corporatism and governance. This article presents an analysis of developments in prescription drug regulation in Australia. A relatively stable, state-managed pattern of interaction has been superseded by less closed exchange, and the government itself has fragmented into agencies pursuing different objectives. Developments in the three core regulatory areas are described: safety and efficacy controls, social policy (access and equity), and state support for industry (economic) development. Consensus-building occurs within the context of the National Medicines Policy. The pharmaceutical industry, represented by Medicines Australia, has a stake in all aspects of pharmaceutical policy and regulation, and draws upon unique resources (expertise and lobbying capacity). The context for the developments described is Australia's abandonment of a protectionist version of the Keynesian welfare national state in favour of the model of the competition state, which is oriented towards support for the growth of high technology industries such as pharmaceuticals, premised on partnerships with business.

  18. Regulation of flower development in Arabidopsis by SCF complexes.

    PubMed

    Ni, Weimin; Xie, Daoxin; Hobbie, Lawrence; Feng, Baomin; Zhao, Dazhong; Akkara, Joseph; Ma, Hong

    2004-04-01

    SCF complexes are the largest and best studied family of E3 ubiquitin protein ligases that facilitate the ubiquitylation of proteins targeted for degradation. The SCF core components Skp1, Cul1, and Rbx1 serve in multiple SCF complexes involving different substrate-specific F-box proteins that are involved in diverse processes including cell cycle and development. In Arabidopsis, mutations in the F-box gene UNUSUAL FLORAL ORGANS (UFO) result in a number of defects in flower development. However, functions of the core components Cul1 and Rbx1 in flower development are poorly understood. In this study we analyzed floral phenotypes caused by altering function of Cul1 or Rbx1, as well as the effects of mutations in ASK1 and ASK2. Plants homozygous for a point mutation in the AtCUL1 gene showed reduced floral organ number and several defects in each of the four whorls. Similarly, plants with reduced AtRbx1 expression due to RNA interference also exhibited floral morphological defects. In addition, compared to the ask1 mutant, plants homozygous for ask1 and heterozygous for ask2 displayed enhanced reduction of B function, as well as other novel defects of flower development, including carpelloid sepals and an inhibition of petal development. Genetic analyses demonstrate that AGAMOUS (AG) is required for the novel phenotypes observed in the first and second whorls. Furthermore, the genetic interaction between UFO and AtCUL1 supports the idea that UFO regulates multiple aspects of flower development as a part of SCF complexes. These results suggest that SCF complexes regulate several aspects of floral development in Arabidopsis.

  19. Thrombospondins selectively activate one of the two latent forms of transforming growth factor-beta present in adrenocortical cell-conditioned medium.

    PubMed

    Souchelnitskiy, S; Chambaz, E M; Feige, J J

    1995-11-01

    Transforming growth factor-beta (TGF beta) has been shown previously to be a potent inhibitor of bovine adrenocortical cell steroidogenic functions. However, it is present in the culture medium of these cells in a latent form. In this study, we analyzed in detail the biochemical composition of this latent TGF beta. Two distinct complexes could be separated chromatographically by gel filtration on Sephacryl S-300, and their composition was studied using immunochemical methods. The results indicate that one form (peak I) is a complex between alpha 2-macroglobulin (alpha 2M) and either the unprocessed TGF beta precursor or the mature form of TGF beta. In a major fraction of this complex, TGF beta is covalently linked to alpha 2 M, whereas in a minor fraction, it is noncovalently bound and, therefore, activatable. The second form of latent TGF beta (peak II) is a complex among latent TGF beta-binding protein (LTBP), latency-associated protein, and mature TGF beta and a complex between LTBP and unprocessed TGF beta. We investigated the ability of thrombospondins (TSP1 and TSP2) to activate these latent forms of TGF beta. TSP1 and TSP2 were equally potent at activating the LTBP-latency-associated protein-TGF beta complex in the absence of cell contact, but were ineffective on the alpha 2M-TGF beta complex. Therefore, TGF beta may act as an autocrine regulator of adrenocortical steroidogenic functions. Its activity appears to be controlled by TSPs, the local production of which is regulated by systemic ACTH.

  20. Individual development and evolution: experiential canalization of self-regulation.

    PubMed

    Blair, Clancy; Raver, C Cybele

    2012-05-01

    In this article, we contrast evolutionary and psychobiological models of individual development to address the idea that individual development occurring in prototypically risky and unsupportive environments can be understood as adaptation. We question traditional evolutionary explanations of individual development, calling on the principle of probabilistic epigenesis to suggest that individual development resulting from the combined activity of genes and environments is best understood to precede rather than follow from evolutionary change. Specifically, we focus on the ways in which experience shapes the development of stress response physiology, with implications for individual development and intergenerational transmission of reactive, as opposed to reflective, phenotypes. In doing so, we describe results from several analyses conducted with a longitudinal data set of 1,292 children and their primary caregivers followed from birth. Our results indicate that the effects of poverty on stress response physiology and on the development of the self-regulation of behavior represent instances of the experiential canalization of development with implications for understanding the genesis and "adaptiveness" of risk behavior.

  1. An unusual presentation of Carney complex with diffuse primary pigmented nodular adrenocortical disease on one adrenal gland and a nonpigmented adrenocortical adenoma and focal primary pigmented nodular adrenocortical disease on the other.

    PubMed

    Tung, Shih-Chen; Hwang, Daw-Yang; Yang, Joseph W; Chen, Wei-Jen; Lee, Chien-Te

    2012-01-01

    A 24-year-old female patient with cushingoid appearance was admitted in May 2000. The endocrine studies showed ACTH-independent Cushing's syndrome. A 2-day high-dose dexamethasone suppression test (HDDST) revealed paradoxical increase of 24 h urinary free cortisol (UFC). Abdominal computed tomography demonstrated a left adrenal nodule (3 x 2 cm in diameter). An adrenal scintigram with ¹³¹I-6β-iodomethyl-19-norcholesterol showed uptake of the isotope in the left adrenal gland and non-visualization in the right adrenal gland throughout the examination course. A retroperitoneoscopic left total adrenalectomy was performed in July 2000. The cut surface of the left adrenal was yellow-tan grossly. Microscopically, the left adrenal nodule contained a nonpigmented adrenocortical adenoma (NP) and another focal primary pigmented nodular adrenocortical disease (PPNAD, FP) mixed lesion. The immunohistochemical studies of CYP17 demonstrate positive in NP and FP of the left adrenal gland. Very low baseline morning plasma cortisol (0.97 μg/dL) and subnormal ACTH (8.16 pg/mL) levels were measured 1.5 months after left adrenalectomy. Right adrenal gland recovered its function 6 months after left adrenalectomy. Plasma cortisol could be suppressed to 3.47 μg/dL by overnight low-dose dexamethasone suppression test 65 months after left adrenalectomy. Cushingoid features still did not appear 122 months after left adrenalectomy. In May 2011, this patient was readmitted due to cushingoid characteristics. Paradoxical rise of 24-h UFC to 2-day HDDST was demonstrated. Ultrasonography of thyroid showed bilateral thyroid cysts. Subtotal right adrenalectomy about 80% of right adrenal was performed. Diffuse PPNAD of the right adrenal was proved pathologically. Immunohischemical stain for CYP17 is positive in the right adrenal gland but weaker positive than that in the left adrenal gland. The genetic study of the peripheral blood, left adrenocortical nodule, and right PPNAD all showed p.R16X

  2. Regulated Noise in the Epigenetic Landscape of Development and Disease

    PubMed Central

    Pujadas, Elisabet; Feinberg, Andrew

    2012-01-01

    In this Perspective, we synthesize past and present observations in the field of epigenetics to propose a model in which the epigenome can modulate cellular plasticity in development and disease by regulating the effects of noise. In this model, the epigenome facilitates phase transitions in development and mediates robustness during cell fate commitment. After grounding our argument in a discussion of stochastic noise and non-genetic heterogeneity, we explore the hypothesis that distinct chromatin domains, which are known to be dysregulated in disease and remodeled during development, might underlie cellular plasticity more generally. We then present a modern portrayal of Waddington's epigenetic landscape through a mathematical formalism. We speculate that this new framework might impact how we approach the unraveling of disease mechanisms. In particular, it may help to explain the observation that the variability of DNA methylation and gene expression are increased in cancer, which leads to tumor cell heterogeneity. PMID:22424224

  3. Retinoic Acid Regulates Embryonic Development of Mammalian Submandibular Salivary Glands

    PubMed Central

    Wright, Diana M.; Buenger, Deanna E.; Abashev, Timur M.; Lindeman, Robert P.; Ding, Jixiang; Sandell, Lisa L.

    2015-01-01

    Organogenesis is orchestrated by cell and tissue interactions mediated by molecular signals. Identification of relevant signals, and the tissues that generate and receive them, are important goals of developmental research. Here, we demonstrate that Retinoic Acid (RA) is a critical signaling molecule important for morphogenesis of mammalian submandibular salivary glands (SMG). By examining late stage RA deficient embryos of Rdh10 mutant mice we show that SMG development requires RA in a dose-dependent manner. Additionally, we find that active RA signaling occurs in SMG tissues, arising earlier than any other known marker of SMG development and persisting throughout gland morphogenesis. At the initial bud stage of development, we find RA production occurs in SMG mesenchyme, while RA signaling occurs in epithelium. We also demonstrate active RA signaling occurs in glands cultured ex vivo, and treatment with an inhibitor of RA signaling blocks growth and branching. Together these data identify RA signaling as a direct regulator of SMG organogenesis. PMID:26278034

  4. IGF Ligand and Receptor Regulation of Mammary Development

    PubMed Central

    Rowzee, Anne M.; Lazzarino, Deborah A.; Rota, Lauren; Sun, Zhaoyu; Wood, Teresa L.

    2009-01-01

    The insulin-like growth factors, IGF-I and IGF-II, have endocrine as well as autocrine-paracrine actions on tissue growth. Both IGF ligands are expressed within developing mammary tissue throughout postnatal stages with specific sites of expression in the epithelial and stromal compartments. The elucidation of circulating versus local actions and of epithelial versus stromal actions of IGFs in stimulating mammary epithelial development has been the focus of several laboratories. The recent studies addressing IGF ligand function provide support for the hypotheses that 1) the diverse sites of IGF expression may mediate different cellular outcomes, and 2) IGF-I and IGF-II are distinctly regulated and have diverse functions in mammary development. The mechanisms for IGF function likely are mediated, in part, through diverse IGF signaling receptors. The local actions of the IGF ligands and receptors as revealed through recent publications are the focus of this review. PMID:19020961

  5. Effects of Neonicotinoids on Promoter-Specific Expression and Activity of Aromatase (CYP19) in Human Adrenocortical Carcinoma (H295R) and Primary Umbilical Vein Endothelial (HUVEC) Cells.

    PubMed

    Caron-Beaudoin, Élyse; Denison, Michael S; Sanderson, J Thomas

    2016-01-01

    The enzyme aromatase (CYP19; cytochrome P450 19) in humans undergoes highly tissue- and promoter-specific regulation. In hormone-dependent breast cancer, aromatase is over-expressed via several normally inactive promoters (PII, I.3, I.7). Aromatase biosynthesizes estrogens, which stimulate breast cancer cell proliferation. The placenta produces estrogens required for healthy pregnancy and the major placental CYP19 promoter is I.1. Exposure to certain pesticides, such as atrazine, is associated with increased CYP19 expression, but little is known about the effects of neonicotinoid insecticides on CYP19. We developed sensitive and robust RT-qPCR methods to detect the promoter-specific expression of CYP19 in human adrenocortical carcinoma (H295R) and primary umbilical vein endothelial (HUVEC) cells, and determined the potential promoter-specific disruption of CYP19 expression by atrazine and the commonly used neonicotinoids imidacloprid, thiacloprid, and thiamethoxam. In H295R cells, atrazine concentration-dependently increased PII- and I.3-mediated CYP19 expression and aromatase catalytic activity. Thiacloprid and thiamethoxam induced PII- and I.3-mediated CYP19 expression and aromatase activity at relatively low concentrations (0.1-1.0 µM), exhibiting non-monotonic concentration-response curves with a decline in gene induction and catalytic activity at higher concentrations. In HUVEC cells, atrazine slightly induced overall (promoter-indistinct) CYP19 expression (30 µM) and aromatase activity (≥ 3 µM), without increasing I.1 promoter activity. None of the neonicotinoids increased CYP19 expression or aromatase activity in HUVEC cells. Considering the importance of promoter-specific (over)expression of CYP19 in disease (breast cancer) or during sensitive developmental periods (pregnancy), our newly developed RT-qPCR methods will be helpful tools in assessing the risk that neonicotinoids and other chemicals may pose to exposed women. © The Author 2015

  6. scaRNAs regulate splicing and vertebrate heart development.

    PubMed

    Patil, Prakash; Kibiryeva, Nataliya; Uechi, Tamayo; Marshall, Jennifer; O'Brien, James E; Artman, Michael; Kenmochi, Naoya; Bittel, Douglas C

    2015-08-01

    Alternative splicing (AS) plays an important role in regulating mammalian heart development, but a link between misregulated splicing and congenital heart defects (CHDs) has not been shown. We reported that more than 50% of genes associated with heart development were alternatively spliced in the right ventricle (RV) of infants with tetralogy of Fallot (TOF). Moreover, there was a significant decrease in the level of 12 small cajal body-specific RNAs (scaRNAs) that direct the biochemical modification of specific nucleotides in spliceosomal RNAs. We sought to determine if scaRNA levels influence patterns of AS and heart development. We used primary cells derived from the RV of infants with TOF to show a direct link between scaRNA levels and splice isoforms of several genes that regulate heart development (e.g., GATA4, NOTCH2, DAAM1, DICER1, MBNL1 and MBNL2). In addition, we used antisense morpholinos to knock down the expression of two scaRNAs (scarna1 and snord94) in zebrafish and saw a corresponding disruption of heart development with an accompanying alteration in splice isoforms of cardiac regulatory genes. Based on these combined results, we hypothesize that scaRNA modification of spliceosomal RNAs assists in fine tuning the spliceosome for dynamic selection of mRNA splice isoforms. Our results are consistent with disruption of splicing patterns during early embryonic development leading to insufficient communication between the first and second heart fields, resulting in conotruncal misalignment and TOF. Our findings represent a new paradigm for determining the mechanisms underlying congenital cardiac malformations. Copyright © 2015. Published by Elsevier B.V.

  7. Roles and regulation of cytokinins in tomato fruit development.

    PubMed

    Matsuo, Satoshi; Kikuchi, Kaori; Fukuda, Machiko; Honda, Ichiro; Imanishi, Shunsuke

    2012-09-01

    Cytokinins (CKs) are thought to play important roles in fruit development, especially cell division. However, the mechanisms and regulation of CK activity have not been well investigated. This study analysed CK concentrations and expression of genes involved in CK metabolism in developing tomato (Solanum lycopersicum) ovaries. The concentrations of CK ribosides and isopentenyladenine and the transcript levels of the CK biosynthetic genes SlIPT3, SlIPT4, SlLOG6, and SlLOG8 were high at anthesis and decreased immediately afterward. In contrast, trans-zeatin concentration and the transcript levels of the CK biosynthetic genes SlIPT1, SlIPT2, SlCYP735A1, SlCYP735A2, and SlLOG2 increased after anthesis. The expression of type-A response regulator genes was high in tomato ovaries from pre-anthesis to early post-anthesis stages. These results suggest that the CK signal transduction pathway is active in the cell division phase of fruit development. This study also investigated the effect of CK application on fruit set and development. Application of a synthetic CK, N-(2-chloro-pyridin-4-yl)-N'-phenylurea (CPPU), to unpollinated tomato ovaries induced parthenocarpic fruit development. The CPPU-induced parthenocarpic fruits were smaller than pollinated fruits, because of reduction of pericarp cell size rather than reduced cell number. Thus, CPPU-induced parthenocarpy was attributable to the promotion of cell division, not cell expansion. Overall, the results provide evidence that CKs are involved in cell division during development of tomato fruit.

  8. Roles and regulation of cytokinins in tomato fruit development

    PubMed Central

    Matsuo, Satoshi; Honda, Ichiro

    2012-01-01

    Cytokinins (CKs) are thought to play important roles in fruit development, especially cell division. However, the mechanisms and regulation of CK activity have not been well investigated. This study analysed CK concentrations and expression of genes involved in CK metabolism in developing tomato (Solanum lycopersicum) ovaries. The concentrations of CK ribosides and isopentenyladenine and the transcript levels of the CK biosynthetic genes SlIPT3, SlIPT4, SlLOG6, and SlLOG8 were high at anthesis and decreased immediately afterward. In contrast, trans-zeatin concentration and the transcript levels of the CK biosynthetic genes SlIPT1, SlIPT2, SlCYP735A1, SlCYP735A2, and SlLOG2 increased after anthesis. The expression of type-A response regulator genes was high in tomato ovaries from pre-anthesis to early post-anthesis stages. These results suggest that the CK signal transduction pathway is active in the cell division phase of fruit development. This study also investigated the effect of CK application on fruit set and development. Application of a synthetic CK, N-(2-chloro-pyridin-4-yl)-N’-phenylurea (CPPU), to unpollinated tomato ovaries induced parthenocarpic fruit development. The CPPU-induced parthenocarpic fruits were smaller than pollinated fruits, because of reduction of pericarp cell size rather than reduced cell number. Thus, CPPU-induced parthenocarpy was attributable to the promotion of cell division, not cell expansion. Overall, the results provide evidence that CKs are involved in cell division during development of tomato fruit. PMID:22865911

  9. Sterols Regulate Development and Gene Expression in Arabidopsis1

    PubMed Central

    He, Jun-Xian; Fujioka, Shozo; Li, Tsai-Chi; Kang, Shin Gene; Seto, Hideharu; Takatsuto, Suguru; Yoshida, Shigeo; Jang, Jyan-Chyun

    2003-01-01

    Sterols are important not only for structural components of eukaryotic cell membranes but also for biosynthetic precursors of steroid hormones. In plants, the diverse functions of sterol-derived brassinosteroids (BRs) in growth and development have been investigated rigorously, yet little is known about the regulatory roles of other phytosterols. Recent analysis of Arabidopsis fackel (fk) mutants and cloning of the FK gene that encodes a sterol C-14 reductase have indicated that sterols play a crucial role in plant cell division, embryogenesis, and development. Nevertheless, the molecular mechanism underlying the regulatory role of sterols in plant development has not been revealed. In this report, we demonstrate that both sterols and BR are active regulators of plant development and gene expression. Similar to BR, both typical (sitosterol and stigmasterol) and atypical (8, 14-diene sterols accumulated in fk mutants) sterols affect the expression of genes involved in cell expansion and cell division. The regulatory function of sterols in plant development is further supported by a phenocopy of the fk mutant using a sterol C-14 reductase inhibitor, fenpropimorph. Although fenpropimorph impairs cell expansion and affects gene expression in a dose-dependent manner, neither effect can be corrected by applying exogenous BR. These results provide strong evidence that sterols are essential for normal plant growth and development and that there is likely a BR-independent sterol response pathway in plants. On the basis of the expression of endogenous FK and a reporter gene FK::β-glucuronidase, we have found that FK is up-regulated by several growth-promoting hormones including brassinolide and auxin, implicating a possible hormone crosstalk between sterol and other hormone-signaling pathways. PMID:12644676

  10. Sterols regulate development and gene expression in Arabidopsis.

    PubMed

    He, Jun-Xian; Fujioka, Shozo; Li, Tsai-Chi; Kang, Shin Gene; Seto, Hideharu; Takatsuto, Suguru; Yoshida, Shigeo; Jang, Jyan-Chyun

    2003-03-01

    Sterols are important not only for structural components of eukaryotic cell membranes but also for biosynthetic precursors of steroid hormones. In plants, the diverse functions of sterol-derived brassinosteroids (BRs) in growth and development have been investigated rigorously, yet little is known about the regulatory roles of other phytosterols. Recent analysis of Arabidopsis fackel (fk) mutants and cloning of the FK gene that encodes a sterol C-14 reductase have indicated that sterols play a crucial role in plant cell division, embryogenesis, and development. Nevertheless, the molecular mechanism underlying the regulatory role of sterols in plant development has not been revealed. In this report, we demonstrate that both sterols and BR are active regulators of plant development and gene expression. Similar to BR, both typical (sitosterol and stigmasterol) and atypical (8, 14-diene sterols accumulated in fk mutants) sterols affect the expression of genes involved in cell expansion and cell division. The regulatory function of sterols in plant development is further supported by a phenocopy of the fk mutant using a sterol C-14 reductase inhibitor, fenpropimorph. Although fenpropimorph impairs cell expansion and affects gene expression in a dose-dependent manner, neither effect can be corrected by applying exogenous BR. These results provide strong evidence that sterols are essential for normal plant growth and development and that there is likely a BR-independent sterol response pathway in plants. On the basis of the expression of endogenous FK and a reporter gene FK::beta-glucuronidase, we have found that FK is up-regulated by several growth-promoting hormones including brassinolide and auxin, implicating a possible hormone crosstalk between sterol and other hormone-signaling pathways.

  11. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development

    PubMed Central

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H.; Nagao, Masashi; Warman, Matthew L.; Olsen, Bjorn R.

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  12. Steroids as Central Regulators of Organismal Development and Lifespan

    PubMed Central

    Lee, Siu Sylvia; Schroeder, Frank C.

    2012-01-01

    Larvae of the nematode Caenorhabditis elegans must choose between reproductive development and dauer diapause. This decision is based on sensing of environmental inputs and dauer pheromone, a small molecule signal that serves to monitor population density. These signals are integrated via conserved neuroendocrine pathways that converge on steroidal ligands of the nuclear receptor DAF-12, a homolog of the mammalian vitamin D receptor and liver X receptor. DAF-12 acts as the main switch between gene expression programs that drive either reproductive development or dauer entry. Extensive studies in the past two decades demonstrated that biosynthesis of two bile acid-like DAF-12 ligands, named dafachronic acids (DA), controls developmental fate. In this issue of PLoS Biology, Wollam et al. showed that a conserved steroid-modifying enzyme, DHS-16, introduces a key feature in the structures of the DAF-12 ligands, closing a major gap in the DA biosynthesis pathway. The emerging picture of DA biosynthesis in C. elegans enables us to address a key question in the field: how are complex environmental signals integrated to enforce binary, organism-wide decisions on developmental fate? Schaedel et al. demonstrated that pheromone and DA serve as competing signals, and that a positive feedback loop based on regulation of DA biosynthesis ensures organism-wide commitment to reproductive development. Considering that many components of DA signaling are highly conserved, ongoing studies in C. elegans may reveal new aspects of bile acid function and lifespan regulation in mammals. PMID:22505849

  13. Epigenetic regulation of development and pathogenesis in fungal plant pathogens.

    PubMed

    Dubey, Akanksha; Jeon, Junhyun

    2016-10-17

    Evidently, epigenetics is at forefront in explaining the mechanisms underlying the success of human pathogens and in the identification of pathogen-induced modifications within host plants. However, there is a lack of studies highlighting the role of epigenetics in the modulation of the growth and pathogenicity of fungal plant pathogens. In this review, we attempt to highlight and discuss the role of epigenetics in the regulation of the growth and pathogenicity of fungal phytopathogens using Magnaporthe oryzae, a devastating fungal plant pathogen, as a model system. With the perspective of wide application in the understanding of the development, pathogenesis and control of other fungal pathogens, we attempt to provide a synthesized view of the epigenetic studies conducted on M. oryzae to date. First, we discuss the mechanisms of epigenetic modifications in M. oryzae and their impact on fungal development and pathogenicity. Second, we highlight the unexplored epigenetic mechanisms and areas of research that should be considered in the near future to construct a holistic view of epigenetic functioning in M. oryzae and other fungal plant pathogens. Importantly, the development of a complete understanding of the modulation of epigenetic regulation in fungal pathogens can help in the identification of target points to combat fungal pathogenesis.

  14. Strigolactone regulates shoot development through a core signalling pathway

    PubMed Central

    Müller, Dörte

    2016-01-01

    ABSTRACT Strigolactones are a recently identified class of hormone that regulate multiple aspects of plant development. The DWARF14 (D14) α/β fold protein has been identified as a strigolactone receptor, which can act through the SCFMAX2 ubiquitin ligase, but the universality of this mechanism is not clear. Multiple proteins have been suggested as targets for strigolactone signalling, including both direct proteolytic targets of SCFMAX2, and downstream targets. However, the relevance and importance of these proteins to strigolactone signalling in many cases has not been fully established. Here we assess the contribution of these targets to strigolactone signalling in adult shoot developmental responses. We find that all examined strigolactone responses are regulated by SCFMAX2 and D14, and not by other D14-like proteins. We further show that all examined strigolactone responses likely depend on degradation of SMXL proteins in the SMXL6 clade, and not on the other proposed proteolytic targets BES1 or DELLAs. Taken together, our results suggest that in the adult shoot, the dominant mode of strigolactone signalling is D14-initiated, MAX2-mediated degradation of SMXL6-related proteins. We confirm that the BRANCHED1 transcription factor and the PIN-FORMED1 auxin efflux carrier are plausible downstream targets of this pathway in the regulation of shoot branching, and show that BRC1 likely acts in parallel to PIN1. PMID:27793831

  15. The role of abscisic acid in regulating cucumber fruit development and ripening and its transcriptional regulation.

    PubMed

    Wang, Yanping; Wang, Ya; Ji, Kai; Dai, Shengjie; Hu, Ying; Sun, Liang; Li, Qian; Chen, Pei; Sun, Yufei; Duan, Chaorui; Wu, Yan; Luo, Hao; Zhang, Dian; Guo, Yangdong; Leng, Ping

    2013-03-01

    Cucumber (Cucumis sativus L.), a kind of fruit usually harvested at the immature green stage, belongs to non-climacteric fruit. To investigate the contribution of abscisic acid (ABA) to cucumber fruit development and ripening, variation in ABA level was investigated and a peak in ABA level was found in pulp before fruit get fully ripe. To clarify this point further, exogenous ABA was applied to cucumber fruits at two different development stages. Results showed that ABA application at the turning stage promotes cucumber fruit ripening, while application at the immature green stage had inconspicuous effects. In addition, with the purpose of understanding the transcriptional regulation of ABA, two partial cDNAs of CsNCED1 and CsNCED2 encoding 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthetic pathway; one partial cDNA of CsCYP707A1 for 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA and two partial cDNAs of CsBG1 and CsBG2 for β-glucosidase (BG) that hydrolyzes ABA glucose ester (ABA-GE) to release active ABA were cloned from cucumber. The DNA and deduced amino acid sequences of these obtained genes respectively showed high similarities to their homologous genes in other plants. Real-time PCR analysis revealed that ABA content may be regulated by its biosynthesis (CsNCEDs), catabolism (CsCYP707A1) and reactivation genes (CsBGs) at the transcriptional level during cucumber fruit development and ripening, in response to ABA application, dehydration and pollination, among which CsNCED1, CsCYP707A1 and CsBG1 were highly expressed in pulp and may play more important roles in regulating ABA metabolism. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Mechanical stress regulation of plant growth and development

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.; Myers, P. N.

    1995-01-01

    The authors introduce the chapter with a discussion of lessons from nature, agriculture, and landscapes; terms and definitions; and an historical perspective of mechanical stress regulation of plant growth and development. Topics include developmental responses to mechanical stress; mechanical stress-environment interactions; metabolic, productivity, and compositional changes; hormonal involvement; mechanoperception and early transduction mechanisms; applications in agriculture; and research implications. The discussion of hormonal involvement in mechanical stress physiology includes ethylene, auxin, gibberellins, and other phytohormones. The discussion of applications in agriculture examines windbreaks, nursery practices, height control and conditioning, and enhancement of growth and productivity. Implications for research are related to handling plant materials, space biology, and future research needs.

  17. Adolescents' conscious processes of developing regulation: learning to appraise challenges.

    PubMed

    Larson, Reed W

    2011-01-01

    To understand regulation and agency, it important to consider the nature of the regulatory challenges that adolescents must deal with. These include emotional, motivation, interpersonal, and other obstacles and problems. In this chapter, the author discusses the challenges reported by youth working on arts, technology, and social justice projects in organized programs and how they learn to address them. Adolescents' new higher-order cognitive capacities allow them to better understand the irregularities and complexity of real-world challenges. They also use these capacities to consciously develop skills to navigate these challenges. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  18. Reactive oxygen species in regulation of fungal development.

    PubMed

    Gessler, N N; Aver'yanov, A A; Belozerskaya, T A

    2007-10-01

    Reactive oxygen species (ROS) are formed by fungi in the course of metabolic activity. ROS production increases in fungi due to various stress agents such as starvation, light, mechanical damage, and interactions with some other living organisms. Regulation of ROS level appears to be very important during development of the fungal organism. ROS sources in fungal cells, their sensors, and ROS signal transduction pathways are discussed in this review. Antioxidant defense systems in different classes of fungi are characterized in detail. Particular emphasis is placed on ROS functions in interactions of phytopathogenic fungi with plant cells.

  19. Mechanical stress regulation of plant growth and development

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.; Myers, P. N.

    1995-01-01

    The authors introduce the chapter with a discussion of lessons from nature, agriculture, and landscapes; terms and definitions; and an historical perspective of mechanical stress regulation of plant growth and development. Topics include developmental responses to mechanical stress; mechanical stress-environment interactions; metabolic, productivity, and compositional changes; hormonal involvement; mechanoperception and early transduction mechanisms; applications in agriculture; and research implications. The discussion of hormonal involvement in mechanical stress physiology includes ethylene, auxin, gibberellins, and other phytohormones. The discussion of applications in agriculture examines windbreaks, nursery practices, height control and conditioning, and enhancement of growth and productivity. Implications for research are related to handling plant materials, space biology, and future research needs.

  20. The Chromatin Regulator Brpf1 Regulates Embryo Development and Cell Proliferation*

    PubMed Central

    You, Linya; Yan, Kezhi; Zou, Jinfeng; Zhao, Hong; Bertos, Nicholas R.; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-01-01

    With hundreds of chromatin regulators identified in mammals, an emerging issue is how they modulate biological and pathological processes. BRPF1 (bromodomain- and PHD finger-containing protein 1) is a unique chromatin regulator possessing two PHD fingers, one bromodomain and a PWWP domain for recognizing multiple histone modifications. In addition, it binds to the acetyltransferases MOZ, MORF, and HBO1 (also known as KAT6A, KAT6B, and KAT7, respectively) to promote complex formation, restrict substrate specificity, and enhance enzymatic activity. We have recently showed that ablation of the mouse Brpf1 gene causes embryonic lethality at E9.5. Here we present systematic analyses of the mutant animals and demonstrate that the ablation leads to vascular defects in the placenta, yolk sac, and embryo proper, as well as abnormal neural tube closure. At the cellular level, Brpf1 loss inhibits proliferation of embryonic fibroblasts and hematopoietic progenitors. Molecularly, the loss reduces transcription of a ribosomal protein L10 (Rpl10)-like gene and the cell cycle inhibitor p27, and increases expression of the cell-cycle inhibitor p16 and a novel protein homologous to Scp3, a synaptonemal complex protein critical for chromosome association and embryo survival. These results uncover a crucial role of Brpf1 in controlling mouse embryo development and regulating cellular and gene expression programs. PMID:25773539

  1. ROLE OF CENTRAL GLUCAGON-LIKE PEPTIDE-1 IN HYPOTHALAMO-PITUITARY-ADRENOCORTICAL FACILITATION FOLLOWING CHRONIC STRESS

    PubMed Central

    Tauchi, Miyuki; Zhang, Rong; D’Alessio, David A.; Seeley, Randy J; Herman, James P

    2008-01-01

    Central glucagon-like peptide-1 (GLP-1) regulates food intake, glucose homeostasis, and behavioral and neuroendocrine responses to acute stress. Given its pronounced role in acute stress regulation, the GLP-1 system is a prime candidate for mediating the prolonged drive of the hypothalamo-pituitary-adrenocortical axis by chronic stress. To test this hypothesis, we evaluated the necessity and sufficiency of GLP-1 for production of chronic stress-induced changes in HPA axis function. Exogenous GLP-1 or the GLP-1 receptor antagonist, dHG-exendin, were delivered into the 3rd ventricle of control animals or animals exposed to chronic variable stress (CVS) for 7 days. Animals in the CVS groups received GLP-1 or dHG-exendin immediately prior to each stress exposure. Prior to and at the end of the 7-day trial, chronically stressed animals were subjected to a novel stressor to test for HPA axis facilitation. Neither GLP-1 nor dHG-exendin affected CVS-associated increases in adrenal weight or decreases in basal plasma glucose levels. In addition, neither exogenous GLP-1 nor dHG-exendin altered any index of HPA axis activity in unstressed rats. However, GLP-1 enhanced CVS-induced facilitation of corticosterone (but not ACTH) response to an acute stress, whereas dHG-exendin inhibited facilitation. In addition, GLP-1 decreased body weight in chronically-stressed animals. dHG-exendin increased food intake and body weight in unstressed animals, consistent with a tonic role for GLP-1 in body weight regulation. Overall, our data suggest that brain GLP-1 modulates HPA axis activity within the context of chronic stress, perhaps at the level of the adrenal gland. PMID:18177641

  2. Developing recreational harvest regulations for an unexploited lake trout population

    USGS Publications Warehouse

    Lenker, Melissa A; Weidel, Brian C.; Jensen, Olaf P.; Solomon, Christopher T.

    2016-01-01

    Developing fishing regulations for previously unexploited populations presents numerous challenges, many of which stem from a scarcity of baseline information about abundance, population productivity, and expected angling pressure. We used simulation models to test the effect of six management strategies (catch and release; trophy, minimum, and maximum length limits; and protected and exploited slot length limits) on an unexploited population of Lake Trout Salvelinus namaycush in Follensby Pond, a 393-ha lake located in New York State’s Adirondack Park. We combined field and literature data and mark–recapture abundance estimates to parameterize an age-structured population model and used the model to assess the effects of each management strategy on abundance, catch per unit effort (CPUE), and harvest over a range of angler effort (0–2,000 angler-days/year). Lake Trout density (3.5 fish/ha for fish ≥ age 13, the estimated age at maturity) was similar to densities observed in other unexploited systems, but growth rate was relatively slow. Maximum harvest occurred at levels of effort ≤ 1,000 angler-days/year in all the scenarios considered. Regulations that permitted harvest of large postmaturation fish, such as New York’s standard Lake Trout minimum size limit or a trophy size limit, resulted in low harvest and high angler CPUE. Regulations that permitted harvest of small and sometimes immature fish, such as a protected slot or maximum size limit, allowed high harvest but resulted in low angler CPUE and produced rapid declines in harvest with increases in effort beyond the effort consistent with maximum yield. Management agencies can use these results to match regulations to management goals and to assess the risks of different management options for unexploited Lake Trout populations and other fish species with similar life history traits.

  3. Mitochondrial Atpif1 regulates heme synthesis in developing erythroblasts

    PubMed Central

    Shah, Dhvanit I.; Takahashi-Makise, Naoko; Cooney, Jeffrey D.; Li, Liangtao; Schultz, Iman J.; Pierce, Eric L.; Narla, Anupama; Seguin, Alexandra; Hattangadi, Shilpa M.; Medlock, Amy E.; Langer, Nathaniel B.; Dailey, Tamara A.; Hurst, Slater N.; Faccenda, Danilo; Wiwczar, Jessica M.; Heggers, Spencer K.; Vogin, Guillaume; Chen, Wen; Chen, Caiyong; Campagna, Dean R.; Brugnara, Carlo; Zhou, Yi; Ebert, Benjamin L.; Danial, Nika N.; Fleming, Mark D.; Ward, Diane M.; Campanella, Michelangelo; Dailey, Harry A.; Kaplan, Jerry; Paw, Barry H.

    2012-01-01

    SUMMARY Defects in the availability of heme substrates or the catalytic activity of the terminal enzyme in heme biosynthesis, ferrochelatase (Fech), impair heme synthesis, and thus cause human congenital anemias1,2. The inter-dependent functions of regulators of mitochondrial homeostasis and enzymes responsible for heme synthesis are largely unknown. To uncover this unmet need, we utilized zebrafish genetic screens and cloned mitochondrial ATPase inhibitory factor 1 (atpif1) from a zebrafish mutant with profound anemia, pinotage (pnt tq209). We now report a direct mechanism establishing that Atpif1 regulates the catalytic efficiency of vertebrate Fech to synthesize heme. The loss of Atpif1 impairs hemoglobin synthesis in zebrafish, mouse, and human hematopoietic models as a consequence of diminished Fech activity, and elevated mitochondrial pH. To understand the relationship among mitochondrial pH, redox potential, [2Fe-2S] clusters, and Fech activity, we used (1) genetic complementation studies of Fech constructs with or without [2Fe-2S] clusters in pnt, and (2) pharmacological agents modulating mitochondrial pH and redox potential. The presence of [2Fe-2S] cluster renders vertebrate Fech vulnerable to Atpif1-regulated mitochondrial pH and redox potential perturbations. Therefore, Atpif1 deficiency reduces the efficiency of vertebrate Fech to synthesize heme, resulting in anemia. The novel mechanism of Atpif1 as a regulator of heme synthesis advances the understanding of mitochondrial heme homeostasis and red blood cell development. A deficiency of Atpif1 may contribute to important human diseases, such as congenital sideroblastic anemias and mitochondriopathies. PMID:23135403

  4. Noninvasive monitoring of adrenocortical activity in carnivores by fecal glucocorticoid analyses.

    PubMed

    Young, K M; Walker, S L; Lanthier, C; Waddell, W T; Monfort, S L; Brown, J L

    2004-06-01

    Measurement of glucocorticoid metabolites in feces has become an accepted method for the noninvasive evaluation of adrenocortical activity. The objective of this study was to determine if a simple cortisol enzyme immunoassay (EIA) was suitable for monitoring adrenocortical activity in a variety of carnivore species. Performance of the cortisol EIA was gauged by comparison to a corticosterone radioimmunoassay (RIA) that has been used for measuring glucocorticoid metabolites in feces of numerous species. Tests for parallelism and extraction efficiency were used to compare the cortisol EIA and corticosterone RIA across eight species of carnivores (Himalayan black bear, sloth bear, domestic cat, cheetah, clouded leopard, black-footed ferret, slender-tailed meerkat, and red wolf). The biological relevance of immunoreactive glucocorticoid metabolites in feces was established for at least one species of each Carnivora family studied with an adrenocorticotropic hormone (ACTH) challenge. High performance liquid chromatography (HPLC) analysis of fecal extracts for each species revealed (1) the presence of multiple immunoreactive glucocorticoid metabolites in feces, but (2) the two immunoassays measured different metabolites, and (3) there were differences across species in the number and polarities of metabolites identified between assay systems. ACTH challenge studies revealed increases in fecal metabolite concentrations measured by the cortisol EIA and corticosterone RIA of approximately 228-1145% and approximately 231-4150% above pre-treatment baseline, respectively, within 1-2 days of injection. Concentrations of fecal glucocorticoid metabolites measured by the cortisol EIA and corticosterone RIA during longitudinal evaluation (i.e., >50 days) of several species were significantly correlated (P<0.0025, correlation coefficient range 0.383-0.975). Adrenocortical responses to physical and psychological stressors during longitudinal evaluations varied with the type of

  5. An Nfic-hedgehog signaling cascade regulates tooth root development

    PubMed Central

    Liu, Yang; Feng, Jifan; Li, Jingyuan; Zhao, Hu; Ho, Thach-Vu; Chai, Yang

    2015-01-01

    Coordination between the Hertwig's epithelial root sheath (HERS) and apical papilla (AP) is crucial for proper tooth root development. The hedgehog (Hh) signaling pathway and Nfic are both involved in tooth root development; however, their relationship has yet to be elucidated. Here, we establish a timecourse of mouse molar root development by histological staining of sections, and we demonstrate that Hh signaling is active before and during root development in the AP and HERS using Gli1 reporter mice. The proper pattern of Hh signaling activity in the AP is crucial for the proliferation of dental mesenchymal cells, because either inhibition with Hh inhibitors or constitutive activation of Hh signaling activity in transgenic mice leads to decreased proliferation in the AP and shorter roots. Moreover, Hh activity is elevated in Nfic−/− mice, a root defect model, whereas RNA sequencing and in situ hybridization show that the Hh attenuator Hhip is downregulated. ChIP and RNAscope analyses suggest that Nfic binds to the promoter region of Hhip. Treatment of Nfic−/− mice with Hh inhibitor partially restores cell proliferation, AP growth and root development. Taken together, our results demonstrate that an Nfic-Hhip-Hh signaling pathway is crucial for apical papilla growth and proper root formation. This discovery provides insight into the molecular mechanisms regulating tooth root development. PMID:26293299

  6. Regulation of lung development and regeneration by the vascular system.

    PubMed

    Woik, Nicole; Kroll, Jens

    2015-07-01

    Blood vessels have been described a long time ago as passive circuits providing sufficient blood supply to ensure proper distribution of oxygen and nutrition. Blood vessels are mainly formed during embryonic development and in the early postnatal period. In the adult, blood vessels are quiescent, but can be activated and subsequently induced under pathophysiological conditions, such as ischemia and tumor growth. Surprisingly, recent data have suggested an active function for blood vessels, named angiocrine signaling, releasing trophogens which regulate organ development and organ regeneration including in the pancreas, lung, tumor cells, liver and bone. Lung development is driven by hypoxia as well as an intense endothelial-epithelial interaction, and important mechanisms contributing to these processes have recently been identified. This review aims to summarize recent developments and concepts about embryonic pulmonary vascular development and lung regeneration. We discuss hypoxia-inducible factor HIF-2α and vascular endothelial growth factor VEGF as important mediators in lung development and focus on endothelial-epithelial interactions and angiocrine signaling mechanisms.

  7. Sphingolipid metabolism regulates development and lifespan in Caenorhabditis elegans

    PubMed Central

    Cutler, Roy G.; Thompson, Kenneth W.; Camandola, Simonetta; Mack, Kendra T.; Mattson, Mark P.

    2015-01-01

    Sphingolipids are a highly conserved lipid component of cell membranes involved in the formation of lipid raft domains that house many of the receptors and cell-to-cell signaling factors involved in regulating cell division, maturation, and terminal differentiation. By measuring and manipulating sphingolipid metabolism using pharmacological and genetic tools in Caenorhabditis elegans, we provide evidence that the synthesis and remodeling of specific ceramides (e.g., dC18:1–C24:1), gangliosides (e.g., GM1–C24:1), and sphingomyelins (e.g., dC18:1–C18:1) influence development rate and lifespan. We found that the levels of fatty acid chain desaturation and elongation in many sphingolipid species increased during development and aging, with no such changes in developmentally-arrested dauer larvae or normal adults after food withdrawal (an anti-aging intervention). Pharmacological inhibitors and small interfering RNAs directed against serine palmitoyl transferase and glucosylceramide synthase acted to slow development rate, extend the reproductive period, and increase lifespan. In contrast, worms fed an egg yolk diet rich in sphingolipids exhibited accelerated development and reduced lifespan. Our findings demonstrate that sphingolipid accumulation and remodeling are critical events that determine development rate and lifespan in the nematode model, with both development rate and aging being accelerated by the synthesis of sphingomyelin, and its metabolism to ceramides and gangliosides. PMID:25437839

  8. Development and regulation of biosimilars: current status and future challenges.

    PubMed

    Tsiftsoglou, Asterios S; Ruiz, Sol; Schneider, Christian K

    2013-06-01

    Biologic medicinal products developed via rDNA technology as recombinant protein-based medicines that have been in clinical use since the early 1980s as original biopharmaceuticals have greatly contributed to the therapy of severe metabolic and degenerative diseases. The recent expiration of the data protection or patents for most of them created opportunities for the development of copy versions of original biopharmaceuticals with similar biologic activity (termed biosimilars). Production of these new products is expected to meet worldwide demand, promote market competition, maintain the incentives for innovation, and sustain the healthcare systems. The licencing of these products, however, relies on the experience gained with the original biopharmaceuticals. Critical issues related to this class of medicinal products include their terminology (to avoid confusion with generics and non-innovator copy versions that have not been tested according to the biosimilar guidelines), manufacturing, and regulation. The European Union (EU) has been the first to establish a regulatory framework for marketing authorization application (MAA) and has named these products biosimilars, a term also recently adopted by the US FDA. Unlike the conventional, more common small molecular weight human medicines and chemical generics, protein-based medicines exhibit higher molecular weight, complexity in structure and function that can be affected by changes in the manufacturing process. Therefore, biosimilars represent a relatively heterogeneous class of medicinal products that make their regulation quite challenging. According to the current understanding in the EU, a biosimilar is a copy version of an already authorized biopharmaceutical (or reference product) with similar biologic activity, physicochemical characteristics, efficacy, and safety, based on a full comparability exercise at quality, preclinical and clinical level to ensure similar efficacy and safety. Guidance has been

  9. Activins and inhibins: Novel regulators of thymocyte development

    SciTech Connect

    Licona-Limon, Paula; Aleman-Muench, German; Macias-Silva, Marina; Garcia-Zepeda, Eduardo A.; Fortoul, Teresa I.; Soldevila, Gloria

    2009-04-03

    Activins and inhibins are members of the transforming growth factor-{beta} superfamily that act on different cell types and regulate a broad range of cellular processes including proliferation, differentiation, and apoptosis. Here, we provide the first evidence that activins and inhibins regulate specific checkpoints during thymocyte development. We demonstrate that both activin A and inhibin A promote the DN3-DN4 transition in vitro, although they differentially control the transition to the DP stage. Whereas activin A induces the accumulation of a CD8{sup +}CD24{sup hi}TCR{beta}{sup lo} intermediate subpopulation, inhibin A promotes the differentiation of DN4 to DP. In addition, both activin A and inhibin A appear to promote CD8{sup +}SP differentiation. Moreover, inhibin {alpha} null mice have delayed in vitro T cell development, showing both a decrease in the DN-DP transition and reduced thymocyte numbers, further supporting a role for inhibins in the control of developmental signals taking place during T cell differentiation in vivo.

  10. Extracellular adenosine regulates naive T cell development and peripheral maintenance

    PubMed Central

    Cekic, Caglar; Sag, Duygu; Day, Yuan-Ji

    2013-01-01

    Adenosine produced as a byproduct of metabolic activity is present in all tissues and produces dose-dependent suppression of TCR signaling. Naive T cell maintenance depends on inhibition of TCR signals by environmental sensors, which are yet to be fully defined. We produced mice with a floxed adenosine A2A receptor (A2AR) gene, Adora2a, and show that either global A2AR deletion or cre-mediated T cell deletion elicits a decline in the number of naive but not memory T cells. A2AR signaling maintains naive T cells in a quiescent state by inhibiting TCR-induced activation of the phosphatidylinositide 3-kinase (PI3K)–AKT pathway, thereby reducing IL-7Rα down-regulation and naive T cell apoptosis. Patterns of IL-7Rα expression on T cells in chimeric mice reconstituted with Adora2a+/+ and Adora2a−/− bone marrow cells suggest that decreased IL-7Rα in naive T cells is a cell-intrinsic consequence of Adora2a deletion. In addition, A2AR expression increases in early thymic T cell development and contributes to progression of double-negative thymic precursors to single-positive thymocytes with increased IL-7Rα expression. Therefore, A2AR signaling regulates T cell development and maintenance to sustain normal numbers of naive T cells in the periphery. PMID:24145516

  11. Lim kinase regulates the development of olfactory and neuromuscular synapses.

    PubMed

    Ang, Lay-Hong; Chen, Weitao; Yao, Ying; Ozawa, Rie; Tao, Enxiang; Yonekura, Junichiro; Uemura, Tadashi; Keshishian, Haig; Hing, Huey

    2006-05-01

    Lim Kinase (Limk) belongs to a phylogenetically conserved family of serine/threonine kinases, which have been shown to be potent regulators of the actin cytoskeleton. Despite accumulating evidence of its biochemical actions, its in vivo function has remained poorly understood. The association of the Limk1 gene with Williams Syndrome indicates that proteins of this family play a role in the nervous system. To unravel the cellular and molecular functions of Limk, we have either knocked out or activated the Limk gene in Drosophila. At the neuromuscular junction, loss of Limk leads to enlarged terminals, while increasing the activity of Limk leads to stunted terminals with fewer synaptic boutons. In the antennal lobe, loss of Limk abolishes the ability of p21-activated kinase (Pak) to alter glomerular development. In contrast, increase in Limk function leads to ectopic glomeruli, a phenotype suppressible by the coexpression of a hyperactive Cofilin gene. These results establish Limk as a critical regulator of Cofilin function and synapse development, and a downstream effector of Pak in vivo.

  12. Linking metabolism and epigenetic regulation in development of hepatocellular carcinoma.

    PubMed

    Puszyk, William Matthew; Trinh, Thu Le; Chapple, Sarah J; Liu, Chen

    2013-09-01

    Hepatocellular carcinoma (HCC) is the fifth most common form of cancer globally and is rarely curable once detected. The 5-year survival rate of patients diagnosed with late-stage HCC may be as low as 27%. HCC is a cancer largely driven by epigenetic changes that arise from exposure to exogenous environmental factors rather than coding sequence mutations. The liver is susceptible to effects from Hepatitis C and Hepatitis B viruses, exposure to aflatoxin and continuous excessive consumption of alcohol. The liver is a highly metabolic organ balancing many vital biochemical processes; exposure to any of the above environmental factors is associated with loss of liver function and is a major risk factor for the development of HCC. Emerging studies aim to examine the underlying metabolic processes that are abrogated in cancer and lead to the altered flux and availability of key metabolites important for epigenetic processes. Metabolites have been shown to act as substrates for many canonical epigenetic regulators. These enzymes are responsible for regulating histone modification, DNA methylation and micro RNA expression. By studying the impact of altered liver metabolism, we may better understand the long-term epigenetic processes, which lead to the development and progression of HCC.

  13. Radial glia regulate vascular patterning around the developing spinal cord

    PubMed Central

    Matsuoka, Ryota L; Marass, Michele; Avdesh, Avdesh; Helker, Christian SM; Maischein, Hans-Martin; Grosse, Ann S; Kaur, Harmandeep; Lawson, Nathan D; Herzog, Wiebke; Stainier, Didier YR

    2016-01-01

    Vascular networks surrounding individual organs are important for their development, maintenance, and function; however, how these networks are assembled remains poorly understood. Here we show that CNS progenitors, referred to as radial glia, modulate vascular patterning around the spinal cord by acting as negative regulators. We found that radial glia ablation in zebrafish embryos leads to excessive sprouting of the trunk vessels around the spinal cord, and exclusively those of venous identity. Mechanistically, we determined that radial glia control this process via the Vegf decoy receptor sFlt1: sflt1 mutants exhibit the venous over-sprouting observed in radial glia-ablated larvae, and sFlt1 overexpression rescues it. Genetic mosaic analyses show that sFlt1 function in trunk endothelial cells can limit their over-sprouting. Together, our findings identify CNS-resident progenitors as critical angiogenic regulators that determine the precise patterning of the vasculature around the spinal cord, providing novel insights into vascular network formation around developing organs. DOI: http://dx.doi.org/10.7554/eLife.20253.001 PMID:27852438

  14. Mechanosensitive β-catenin signaling regulates lymphatic vascular development

    PubMed Central

    Cha, Boksik; Srinivasan, R. Sathish

    2016-01-01

    The Wnt/β-catenin signaling is an evolutionarily conserved pathway that plays a pivotal role in embryonic development and adult homeostasis. However, we have limited information about the involvement of Wnt/β-catenin signaling in the lymphatic vascular system that regulates fluid homeostasis by absorbing interstitial fluid and returning it to blood circulation. In this recent publication we report that canonical Wnt/β-catenin signaling is highly active and critical for the formation of lymphovenus valves (LVVs) and lymphatic valves (LVs). β-catenin directly associates with the regulatory elements of the lymphedema-associated transcription factor, FOXC2 and activates its expression in an oscillatory shear stress (OSS)-dependent manner. The phenotype of β-catenin null embryos was rescued by FOXC2 overexpression. These results suggest that Wnt/β-catenin signaling is a mechanotransducer that links fluid force with lymphatic vascular development. [BMB Reports 2016; 49(8): 403-404] PMID:27418286

  15. Mechanotransduction: a major regulator of homeostasis and development.

    PubMed

    Kolahi, Kevin S; Mofrad, Mohammad R K

    2010-01-01

    In nearly all aspects of biology, forces are a relevant regulator of life's form and function. More recently, science has established that cells are exquisitely sensitive to forces of varying magnitudes and time scales, and they convert mechanical stimuli into a chemical response. This phenomenon, termed mechanotransduction, is an integral part of cellular physiology and has a profound impact on the development of the organism. Furthermore, malfunctioning mechanical properties or mechanotransduction often leads to pathology of the organism. In this review, we describe mechanotransduction and the theories underlying how forces may be sensed, from the molecular to organism scale. The influence of mechanotransduction on normal and abnormal development, such as stem cell differentiation and cancer, is also reviewed. Studies illustrate the diversity of mechanotransduction, and the major role it has on organism homeostasis. Cells employ a variety of mechanisms, which differ depending upon cell type and environment, to sense and respond to forces. © 2010 John Wiley & Sons, Inc.

  16. Regulation of basophil and mast cell development by transcription factors.

    PubMed

    Sasaki, Haruka; Kurotaki, Daisuke; Tamura, Tomohiko

    2016-04-01

    Basophils and mast cells play important roles in host defense against parasitic infections and allergic responses. Several progenitor populations, either shared or specific, for basophils and/or mast cells have been identified, thus elucidating the developmental pathways of these cells. Multiple transcription factors essential for their development and the relationships between them have been also revealed. For example, IRF8 induces GATA2 expression to promote the generation of both basophils and mast cells. The STAT5-GATA2 axis induces C/EBPα and MITF expression, facilitating the differentiation into basophils and mast cells, respectively. In addition, C/EBPα and MITF mutually suppress each other's expression. This review provides an overview of recent advances in our understanding of how transcription factors regulate the development of basophils and mast cells.

  17. MicroRNA networks regulate development of brown adipocytes.

    PubMed

    Trajkovski, Mirko; Lodish, Harvey

    2013-09-01

    Brown adipose tissue (BAT) is specialized for heat generation and energy expenditure as a defense against cold and obesity; in both humans and mice increased amounts of BAT are associated with a lean phenotype and resistance to development of the metabolic syndrome and its complications. Here we summarize recent research showing that several BAT-expressed microRNAs (miRNAs) play important roles in regulating differentiation and metabolism of brown and beige adipocytes; we discuss the key mRNA targets downregulated by these miRNAs and show how these miRNAs affect directly or indirectly transcription factors important for BAT development. We suggest that these miRNAs could be part of novel therapeutics to increase BAT in humans.

  18. Insm1a Regulates Motor Neuron Development in Zebrafish.

    PubMed

    Gong, Jie; Wang, Xin; Zhu, Chenwen; Dong, Xiaohua; Zhang, Qinxin; Wang, Xiaoning; Duan, Xuchu; Qian, Fuping; Shi, Yunwei; Gao, Yu; Zhao, Qingshun; Chai, Renjie; Liu, Dong

    2017-01-01

    Insulinoma-associated1a (insm1a) is a zinc-finger transcription factor playing a series of functions in cell formation and differentiation of vertebrate central and peripheral nervous systems and neuroendocrine system. However, its roles on the development of motor neuron have still remained uncovered. Here, we provided evidences that insm1a was a vital regulator of motor neuron development, and provided a mechanistic understanding of how it contributes to this process. Firstly, we showed the localization of insm1a in spinal cord, and primary motor neurons (PMNs) of zebrafish embryos by in situ hybridization, and imaging analysis of transgenic reporter line Tg(insm1a: mCherry)(ntu805) . Then we demonstrated that the deficiency of insm1a in zebrafish larvae lead to the defects of PMNs development, including the reduction of caudal primary motor neurons (CaP), and middle primary motor neurons (MiP), the excessive branching of motor axons, and the disorganized distance between adjacent CaPs. Additionally, knockout of insm1 impaired motor neuron differentiation in the spinal cord. Locomotion analysis showed that swimming activity was significantly reduced in the insm1a-null zebrafish. Furthermore, we showed that the insm1a loss of function significantly decreased the transcript levels of both olig2 and nkx6.1. Microinjection of olig2 and nkx6.1 mRNA rescued the motor neuron defects in insm1a deficient embryos. Taken together, these data indicated that insm1a regulated the motor neuron development, at least in part, through modulation of the expressions of olig2 and nkx6.1.

  19. A Case of Oncocytic Adrenocortical Neoplasm of Borderline (Uncertain) Malignant Potential

    PubMed Central

    Brown, Linda G; Denning, Krista L; Pacioles, Toni

    2016-01-01

    Oncocytic neoplasms are tumors composed predominantly or exclusively of oncocytes (large polygonal cells with granular eosinophilic cytoplasm due to abnormal mitochondrial accumulation). These tumors are frequently reported in the thyroid, kidneys, and salivary glands. However, they are distinctly rare in the adrenal cortex. Oncocytic adrenocortical neoplasms (OAN) are classified regarding their biological behavior by their histological features according to the Lin-Weiss-Bisceglia system (LWB). Here, we report a case of OAN of borderline or uncertain malignant potential (BMP) with subsequently identified papillary thyroid carcinoma (PTC). A 34-year-old female with a nine-month history of fatigue presented with chest pain. A right adrenal mass was incidentally found while ruling out pulmonary embolism. A CT-guided adrenal biopsy, although not routinely indicated, was performed and interpreted as malignant with no definitive origin. Hormonal workup was unremarkable. PET-scan showed hypermetabolic adrenal mass with peak standardized uptake value of 15, suspicious of malignancy. A hypermetabolic thyroid nodule was also identified, but there was no evidence of metastatic disease. The patient underwent adrenalectomy, and the initial pathology report was interpreted as atypical pink cell tumor. A second pathology report from another laboratory favored OAN based on the morphology and immunohistochemical staining. While the histologic criteria of malignancy were not met, the large tumor size makes it compatible with BMP according to LWB criteria. A follow-up thyroid ultrasound revealed a complex thyroid nodule. A total thyroidectomy was performed, and pathology was consistent with PTC. Of interest, PTC frequently shows an increase in mitochondrial content, which is characteristic of oncocytic tumors. This case illustrates that OAN, although rare, should be considered in the differential diagnosis of adrenal masses. When OAN is identified, it should be classified

  20. A Case of Oncocytic Adrenocortical Neoplasm of Borderline (Uncertain) Malignant Potential.

    PubMed

    Shenouda, Mina; Brown, Linda G; Denning, Krista L; Pacioles, Toni

    2016-06-13

    Oncocytic neoplasms are tumors composed predominantly or exclusively of oncocytes (large polygonal cells with granular eosinophilic cytoplasm due to abnormal mitochondrial accumulation). These tumors are frequently reported in the thyroid, kidneys, and salivary glands. However, they are distinctly rare in the adrenal cortex. Oncocytic adrenocortical neoplasms (OAN) are classified regarding their biological behavior by their histological features according to the Lin-Weiss-Bisceglia system (LWB). Here, we report a case of OAN of borderline or uncertain malignant potential (BMP) with subsequently identified papillary thyroid carcinoma (PTC). A 34-year-old female with a nine-month history of fatigue presented with chest pain. A right adrenal mass was incidentally found while ruling out pulmonary embolism. A CT-guided adrenal biopsy, although not routinely indicated, was performed and interpreted as malignant with no definitive origin. Hormonal workup was unremarkable. PET-scan showed hypermetabolic adrenal mass with peak standardized uptake value of 15, suspicious of malignancy. A hypermetabolic thyroid nodule was also identified, but there was no evidence of metastatic disease. The patient underwent adrenalectomy, and the initial pathology report was interpreted as atypical pink cell tumor. A second pathology report from another laboratory favored OAN based on the morphology and immunohistochemical staining. While the histologic criteria of malignancy were not met, the large tumor size makes it compatible with BMP according to LWB criteria. A follow-up thyroid ultrasound revealed a complex thyroid nodule. A total thyroidectomy was performed, and pathology was consistent with PTC. Of interest, PTC frequently shows an increase in mitochondrial content, which is characteristic of oncocytic tumors. This case illustrates that OAN, although rare, should be considered in the differential diagnosis of adrenal masses. When OAN is identified, it should be classified

  1. Regulation of Development and Nitrogen Fixation in Anabaena

    SciTech Connect

    James W Golden

    2004-08-05

    The nitrogen-fixing filamentous cyanobacterium Anabaena sp. strain PCC 7120 is being used as a simple model of microbial development and pattern formation in a multicellular prokaryotic organism. Anabaena reduces atmospheric nitrogen to ammonia in highly specialized, terminally differentiated cells called heterocysts. Anabaena is an important model system because of the multicellular growth pattern, the suspected antiquity of heterocyst development, and the contribution of fixed nitrogen to the environment. We are especially interested in understanding the molecular signaling pathways and genetic regulation that control heterocyst development. In the presence of an external source of reduced nitrogen, the differentiation of heterocysts is inhibited. When Anabaena is grown on dinitrogen, a one-dimensional developmental pattern of single heterocysts separated by approximately ten vegetative cells is established to form a multicellular organism composed of two interdependent cell types. The goal of this project is to understand the signaling and regulatory pathways that commit a vegetative cell to terminally differentiate into a nitrogen-fixing heterocyst. Several genes identified by us and by others were chosen as entry points into the regulatory network. Our research, which was initially focused on transcriptional regulation by group 2 sigma factors, was expanded to include group 3 sigma factors and their regulators after the complete Anabaena genome sequence became available. Surprisingly, no individual sigma factor is essential for heterocyst development. We have used the isolation of extragenic suppressors to study genetic interactions between key regulatory genes such as patS, hetR, and hetC in signaling and developmental pathways. We identified a hetR R223W mutation as a bypass suppressor of patS overexpression. Strains containing the hetR R223W allele fail to respond to pattern formation signals and overexpression of this allele results in a lethal phenotype

  2. Regulation of miR-34 Family in Neuronal Development.

    PubMed

    Jauhari, Abhishek; Singh, Tanisha; Singh, Parul; Parmar, Devendra; Yadav, Sanjay

    2017-01-13

    Differentiation of neural stem cells (NSC's) to mature and functional neurons requires coordinated expression of mRNA, microRNAs (miRNAs) and regulatory proteins. Our earlier unbiased miRNA profiling studies have identified miR-200, miR-34 and miR-221/222 as maximally up-regulated miRNA families in differentiating PC12 cells and demonstrated the capability of miR-200 family in inducing neuronal differentiation (J. Neurochem, 2015, 133, 640-652). In present study, we have investigated role of miR-34 family in neuronal differentiation and identified P53 as mediator of nerve growth factor (NGF) induced miR-34a expression in differentiating PC12 cells. Our studies have shown that NGF induced miR-34a, arrests proliferating PC12 cells to G1 phase, which is pre-requisite for neuronal differentiation. Our studies have also shown that increased expression of miR-34a controls the P53 level in differentiated PC12 cells in feedback inhibition manner, which probably prevents differentiated cells from P53 induced apoptosis. Expression profiling of miR-34 family in different neuronal, non-neuronal and developing cells have identified differentiated and aged brain cells as richest source of miR-34, which also indicates that higher expression of miR-34 family helps in maintaining the mature neurons in non-proliferative stage. In conclusion, our studies have shown that miR-34 is brain enriched miRNA family, which up-regulates with neuronal maturation and brain ageing and co-operative regulation of P53 and miR-34a helps in neuronal differentiation by arresting cells in G1 phase.

  3. Development of polymer concrete vaults for natural gas regulator stations

    SciTech Connect

    Fontana, J.J.; Miller, C.A.; Reams, W.; Elling, D.

    1990-08-01

    Vaults for natural gas regulator stations have traditionally been fabricated with steel-reinforced portland cement concrete. Since these vaults are installed below ground level, they are usually coated with a water-proofing material to prevent the ingress of moisture into the vault. In some cases, penetrations for piping that are normally cast into the vault do not line up with the gas lines in the streets. This necessitates off-setting the lines to line up with the penetrations in the vault or breaking out new penetrations which could weaken the structure and/or allow water ingress. By casting the vaults using a new material of construction such as polymer concrete, a longer maintenance free service life is possible because the physical and durability properties of polymer concrete composites are much superior to those of portland cement concrete. The higher strengths of polymer concrete allow the design engineer to reduce the wall, floor, and ceiling thicknesses making the vaults lighter for easier transportation and installation. Penetrations can be cut after casting to match existing street lines, thus making the vault more universal and reducing the number of vaults that are normally in stock. The authors developed a steel-fiber reinforced polymer concrete composite that could be used for regulator vaults. Based on the physical properties of his new composite, vaults were designed to replace the BUG PV-008 and Con Ed GR-6 regulator vaults made of reinforced portland cement concrete. Quarter-scale models of the polymer concrete vaults were tested and the results reaffirmed the reduced wall thickness design. Two sets of vaults, cast by Hardinge Bros., were inspected by representatives of the utilities and BNL (Brookhaven National Laboratory), and were accepted for delivery. 6 refs., 5 figs., 12 tabs.

  4. Involvement of PI3K/Akt and p38 MAPK in the induction of COX-2 expression by bacterial lipopolysaccharide in murine adrenocortical cells.

    PubMed

    Mercau, M E; Astort, F; Giordanino, E F; Martinez Calejman, C; Sanchez, R; Caldareri, L; Repetto, E M; Coso, O A; Cymeryng, C B

    2014-03-25

    Previous studies from our laboratory demonstrated the involvement of COX-2 in the stimulation of steroid production by LPS in murine adrenocortical Y1 cells, as well as in the adrenal cortex of male Wistar rats. In this paper we analyzed signaling pathways involved in the induction of this key regulatory enzyme in adrenocortical cells and demonstrated that LPS triggers an increase in COX-2 mRNA levels by mechanisms involving the stimulation of reactive oxygen species (ROS) generation and the activation of p38 MAPK and Akt, in addition to the previously demonstrated increase in NFκB activity. In this sense we showed that: (1) inhibition of p38 MAPK or PI3K/Akt (pharmacological or molecular) prevented the increase in COX-2 protein levels by LPS, (2) LPS induced p38 MAPK and Akt phosphorylation, (3) antioxidant treatment blocked the effect of LPS on p38 MAPK phosphorylation and in COX-2 protein levels, (4) PI3K inhibition with LY294002 prevented p38 MAPK phosphorylation and, (5) the activity of an NFκB reporter was decreased by p38 MAPK or PI3K inhibition. These results suggest that activation of both p38 MAPK and PI3K/Akt pathways promote the stimulation of NFκB activity and that PI3K/Akt activity might regulate both p38 MAPK and NFκB signaling pathways. In summary, in this study we showed that in adrenal cells, LPS induces COX-2 expression by activating p38 MAPK and PI3K/Akt signaling pathways and that both pathways converge in the modulation of NFκB transcriptional activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Localization in Oogenesis of Maternal Regulators of Embryonic Development.

    PubMed

    Escobar-Aguirre, Matias; Elkouby, Yaniv M; Mullins, Mary C

    2017-01-01

    Cell polarity generates intracellular asymmetries and functional regionalization in tissues and morphogenetic processes. Cell polarity in development often relies on mechanisms of RNA localization to specific subcellular domains to define the identity of future developing tissues. The totipotent egg of most animals illustrates in a grand way the importance of cell polarity and RNA localization in regulating multiple crucial developmental events. The polarization of the egg arises during its development in oogenesis. RNAs localize asymmetrically in the early oocyte defining its animal-vegetal (AV) axis, which upon further elaboration in mid- and late-oogenesis stages produces a mature egg with specific localized factors along its AV axis. These localized factors will define the future anterior-posterior (AP) and dorsal-ventral (DV) axes of the embryo. Furthermore, AV polarity confines germ cell determinants to the vegetal pole, from where they redistribute to the cleavage furrows of the 2- and 4-cell stage embryo, ultimately specifying the primordial germ cells (PGCs). The sperm entry region during fertilization is also defined by the AV axis. In frogs and fish, sperm enters through the animal pole, similar to the mouse where it enters predominantly in the animal half. Thus, AV polarity establishment and RNA localization are involved in all the major events of early embryonic development. In this chapter, we will review the RNA localization mechanisms in vertebrate oocytes that are key to embryonic patterning, referring to some of the groundbreaking studies in frog oocytes and incorporating the current genetic evidence from the zebrafish.

  6. Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes

    PubMed Central

    2009-01-01

    Background The hemibiotrophic fungus Moniliophthora perniciosa is the causal agent of Witches' broom, a disease of Theobroma cacao. The pathogen life cycle ends with the production of basidiocarps in dead tissues of the infected host. This structure generates millions of basidiospores that reinfect young tissues of the same or other plants. A deeper understanding of the mechanisms underlying the sexual phase of this fungus may help develop chemical, biological or genetic strategies to control the disease. Results Mycelium was morphologically analyzed prior to emergence of basidiomata by stereomicroscopy, light microscopy and scanning electron microscopy. The morphological changes in the mycelium before fructification show a pattern similar to other members of the order Agaricales. Changes and appearance of hyphae forming a surface layer by fusion were correlated with primordia emergence. The stages of hyphal nodules, aggregation, initial primordium and differentiated primordium were detected. The morphological analysis also allowed conclusions on morphogenetic aspects. To analyze the genes involved in basidiomata development, the expression of some selected EST genes from a non-normalized cDNA library, representative of the fruiting stage of M. perniciosa, was evaluated. A macroarray analysis was performed with 192 selected clones and hybridized with two distinct RNA pools extracted from mycelium in different phases of basidiomata formation. This analysis showed two groups of up and down-regulated genes in primordial phases of mycelia. Hydrophobin coding, glucose transporter, Rho-GEF, Rheb, extensin precursor and cytochrome p450 monooxygenase genes were grouped among the up-regulated. In the down-regulated group relevant genes clustered coding calmodulin, lanosterol 14 alpha demethylase and PIM1. In addition, 12 genes with more detailed expression profiles were analyzed by RT-qPCR. One aegerolysin gene had a peak of expression in mycelium with primordia and a

  7. FoxP2 regulates neurogenesis during embryonic cortical development.

    PubMed

    Tsui, David; Vessey, John P; Tomita, Hideaki; Kaplan, David R; Miller, Freda D

    2013-01-02

    The transcription factor FoxP2 has been associated with the development of human speech but the underlying cellular function of FoxP2 is still unclear. Here we provide evidence that FoxP2 regulates genesis of some intermediate progenitors and neurons in the mammalian cortex, one of the key centers for human speech. Specifically, knockdown of FoxP2 in embryonic cortical precursors inhibits neurogenesis, at least in part by inhibiting the transition from radial glial precursors to neurogenic intermediate progenitors. Moreover, overexpression of human, but not mouse, FoxP2 enhances the genesis of intermediate progenitors and neurons. In contrast, expression of a human FoxP2 mutant that causes vocalization deficits decreases neurogenesis, suggesting that in the murine system human FoxP2 acts as a gain-of-function protein, while a human FoxP2 mutant acts as a dominant-inhibitory protein. These results support the idea that FoxP2 regulates the transition from neural precursors to transit-amplifying progenitors and ultimately neurons, and shed light upon the molecular changes that might contribute to evolution of the mammalian cortex.

  8. Diversin regulates heart formation and gastrulation movements in development

    PubMed Central

    Moeller, Heinz; Jenny, Andreas; Schaeffer, Hans-Joerg; Schwarz-Romond, Thomas; Mlodzik, Marek; Hammerschmidt, Matthias; Birchmeier, Walter

    2006-01-01

    Canonical and noncanonical Wnt signaling regulate crucial events in the development of vertebrates and invertebrates. In this work we show that vertebrate Diversin, a potential orthologue of Drosophila Diego, controls fusion of heart precursors and gastrulation movements in zebrafish embryogenesis. These events are regulated by noncanonical Wnt signaling, which is independent of β-catenin. We found that Diversin directly interacts with Dishevelled and that this interaction is necessary and sufficient to mediate signals of the noncanonical Wnt pathway to downstream effectors like Rho family GTPases and Jun N-terminal kinase. The ankyrin repeats of Diversin are required for the interaction with Dishevelled, for the activation of noncanonical Wnt signaling, and for the biological responses. The mutation K446M in the DEP domain of vertebrate Dishevelled, which mimics a classical Drosophila loss of function mutation, prevents functional interaction with Diversin's ankyrin repeats. Diversin also affects planar cell polarity in Drosophila, which is controlled by the noncanonical Wnt signaling pathway. Our data thus demonstrate that Diversin and Dishevelled function together in a mutually dependent fashion in zebrafish gastrulation and organ formation. PMID:17032765

  9. A simple HPLC method for plasma level monitoring of mitotane and its two main metabolites in adrenocortical cancer patients.

    PubMed

    Garg, Madhu B; Sakoff, Jennette A; Ackland, Stephen P

    2011-08-01

    Mitotane (o,p'-DDD or (1,1-dichloro-2-[o-chlorophenyl]-2-[p-chlorophenyl]ethane, DDD) is the drug of choice for non-resectable and metastatic adrenocortical carcinomas (ACC). Measurement of mitotane and metabolites, o,p'-DDE (1,1-dichloro-2-[p-chlorophenyl]-2-[o-chlorophenyl]ethene, DDE) and o,p'-DDA (1,1-[o,p'-dichlorodiphenyl] acetic acid, DDA) provides a better understanding of mitotane pharmacokinetics and pharmacodynamics. We have developed a simple, robust and efficient high performance liquid chromatography (HPLC) method to measure mitotane and its two main metabolites, DDE and DDA. The method involves a single ethanol extraction of mitotane, DDE, DDA, and an internal standard (int std) p,p'-DDD (1,1-dichloro-2,2-bis(p-chlorophenyl)ethane) with an extraction efficiency of 77-88%. All compounds are measured simultaneously using a reversed-phase phenyl HPLC column with an isocratic elution of mobile phase at a flow rate of 0.6 ml/min followed by UV detection at λ 226 nm. Inter and intra-day validation demonstrates good reproducibility and accuracy. Limits of quantitation are 0.2 μg/ml for mitotane and DDE, and 0.5 μg/ml for DDA. The method has been evaluated in plasma from 23 patients on mitotane therapy, revealing DDA concentrations 1-18 times higher than the parent compound.

  10. Adolescent chronic stress causes hypothalamo-pituitary-adrenocortical hypo-responsiveness and depression-like behavior in adult female rats.

    PubMed

    Wulsin, Aynara C; Wick-Carlson, Dayna; Packard, Benjamin A; Morano, Rachel; Herman, James P

    2016-03-01

    Adolescence is a period of substantial neuroplasticity in stress regulatory neurocircuits. Chronic stress exposure during this period leads to long-lasting changes in neuroendocrine function and emotional behaviors, suggesting adolescence may be a critical period for development of stress vulnerability. This study investigated the effects of exposure to 14 days of chronic variable stress (CVS) in late-adolescent (pnd 45-58) female rats on neuroendocrine function, neuropeptide mRNA expression and depressive-like behavior in adolescence (pnd 59) and in adulthood (pnd 101). Adult females exposed to CVS in adolescence have a blunted hypothalamo-pituitary-adrenocortical (HPA) axis in response to a novel stressor and increased immobility in the forced swim test. Blunted HPA axis responses were accompanied by reduced vasopressin mRNA expression in the paraventricular nucleus of the hypothalamus (PVN), suggesting decreased central drive. Adolescent females tested immediately after CVS did not exhibit differences in stress reactivity or immobility in the forced swim test, despite evidence for enhanced central HPA axis drive (increased CRH mRNA expression in PVN). Overall, our study demonstrates that exposure to chronic stress in adolescence is sufficient to induce lasting changes in neuroendocrine drive and behavior, potentially altering the developmental trajectory of stress circuits as female rats age into adulthood.

  11. Adolescent chronic stress causes hypothalamo-pituitary-adrenocortical hypo-responsiveness and depression-like behavior in adult female rats

    PubMed Central

    Wulsin, Aynara C.; Wick-Carlson, Dayna; Packard, Benjamin A.; Morano, Rachel; Herman, James P.

    2016-01-01

    Adolescence is a period of substantial neuroplasticity in stress regulatory neurocircuits. Chronic stress exposure during this period leads to long-lasting changes in neuroendocrine function and emotional behaviors, suggesting adolescence may be a critical period for development of stress vulnerability. This study investigated the effects of exposure to 14 days of chronic variable stress (CVS) in late-adolescent (pnd 45–58) female rats on neuroendocrine function, neuropeptide mRNA expression and depressive-like behavior in adolescence (pnd 59) and in adulthood (pnd 101). Adult females exposed to CVS in adolescence have a blunted hypothalamo-pituitary-adrenocortical (HPA) axis in response to a novel stressor and increased immobility in the forced swim test. Blunted HPA axis responses were accompanied by reduced vasopressin mRNA expression in the paraventricular nucleus of the hypothalamus (PVN), suggesting decreased central drive. Adolescent females tested immediately after CVS did not exhibit differences in stress reactivity or immobility in the forced swim test, despite evidence for enhanced central HPA axis drive (increased CRH mRNA expression in PVN). Overall, our study demonstrates that exposure to chronic stress in adolescence is sufficient to induce lasting changes in neuroendocrine drive and behavior, potentially altering the developmental trajectory of stress circuits as female rats age into adulthood. PMID:26751968

  12. SIRT3 regulates progression and development of diseases of aging

    PubMed Central

    Bomze, Howard M.; Hirschey, Matthew D.

    2015-01-01

    The mitochondrial sirtuin SIRT3 is a protein deacylase that regulates almost every major aspect of mitochondrial biology, including nutrient oxidation, ATP generation, reactive oxygen species detoxification, mitochondrial dynamics, and the mitochondrial unfolded protein response. Interestingly, mice lacking SIRT3 (SIRT3KO), either spontaneously or when crossed with mouse models of disease, develop several diseases of aging at an accelerated pace, such as cancer, metabolic syndrome, cardiovascular disease, and neurodegenerative diseases, and thus might be a valuable model of accelerated aging. In this review we discuss SIRT3 functions in pathways involved in diseases of aging, how lack of SIRT3 might accelerate the aging process, and suggest that further studies on SIRT3 might help uncover important new pathways driving the aging process. PMID:26138757

  13. PHANTASTICA regulates development of the adaxial mesophyll in Nicotiana leaves.

    PubMed

    McHale, Neil A; Koning, Ross E

    2004-05-01

    Initiation and growth of leaf blades is oriented by an adaxial/abaxial axis aligned with the original axis of polarity in the leaf primordium. To investigate mechanisms regulating this process, we cloned the Nicotiana tabacum ortholog of PHANTASTICA (NTPHAN) and generated a series of antisense transgenics in N. sylvestris. We show that NSPHAN is expressed throughout emerging blade primordia in the wild type and becomes localized to the middle mesophyll in the expanding lamina. Antisense NSPHAN leaves show ectopic expression of NTH20, a class I KNOX gene. Juvenile transgenic leaves have normal adaxial/abaxial polarity and generate leaf blades in the normal position, but the adaxial mesophyll shows disorganized patterns of cell division, delayed maturation of palisade, and ectopic reinitiation of blade primordia along the midrib. Reversal of the phenotype with exogenous gibberellic acid suggests that NSPHAN, acting via KNOX repression, maintains determinacy in the expanding lamina and sustains the patterns of cell proliferation critical to palisade development.

  14. PHANTASTICA Regulates Development of the Adaxial Mesophyll in Nicotiana Leaves

    PubMed Central

    McHale, Neil A.; Koning, Ross E.

    2004-01-01

    Initiation and growth of leaf blades is oriented by an adaxial/abaxial axis aligned with the original axis of polarity in the leaf primordium. To investigate mechanisms regulating this process, we cloned the Nicotiana tabacum ortholog of PHANTASTICA (NTPHAN) and generated a series of antisense transgenics in N. sylvestris. We show that NSPHAN is expressed throughout emerging blade primordia in the wild type and becomes localized to the middle mesophyll in the expanding lamina. Antisense NSPHAN leaves show ectopic expression of NTH20, a class I KNOX gene. Juvenile transgenic leaves have normal adaxial/abaxial polarity and generate leaf blades in the normal position, but the adaxial mesophyll shows disorganized patterns of cell division, delayed maturation of palisade, and ectopic reinitiation of blade primordia along the midrib. Reversal of the phenotype with exogenous gibberellic acid suggests that NSPHAN, acting via KNOX repression, maintains determinacy in the expanding lamina and sustains the patterns of cell proliferation critical to palisade development. PMID:15084717

  15. Globalisation reaches gene regulation: the case for vertebrate limb development.

    PubMed

    Zuniga, Aimée

    2005-08-01

    Analysis of key regulators of vertebrate limb development has revealed that the cis-regulatory regions controlling their expression are often located several hundred kilobases upstream of the transcription units. These far up- or down-stream cis-regulatory regions tend to reside within rather large, functionally and structurally unrelated genes. Molecular analysis is beginning to reveal the complexity of these large genomic landscapes, which control the co-expression of clusters of diverse genes by this novel type of long-range and globally acting cis-regulatory region. An increasing number of spontaneous mutations in vertebrates, including humans, are being discovered inactivating or altering such global control regions. Thereby, the functions of a seemingly distant but essential gene are disrupted rather than the closest.

  16. Vegfa regulates perichondrial vascularity and osteoblast differentiation in bone development.

    PubMed

    Duan, Xuchen; Murata, Yurie; Liu, Yanqiu; Nicolae, Claudia; Olsen, Bjorn R; Berendsen, Agnes D

    2015-06-01

    Vascular endothelial growth factor A (Vegfa) has important roles in endochondral bone formation. Osteoblast precursors, endothelial cells and osteoclasts migrate from perichondrium into primary ossification centers of cartilage templates of future bones in response to Vegfa secreted by (pre)hypertrophic chondrocytes. Perichondrial osteolineage cells also produce Vegfa, but its function is not well understood. By deleting Vegfa in osteolineage cells in vivo, we demonstrate that progenitor-derived Vegfa is required for blood vessel recruitment in perichondrium and the differentiation of osteoblast precursors in mice. Conditional deletion of Vegfa receptors indicates that Vegfa-dependent effects on osteoblast differentiation are mediated by Vegf receptor 2 (Vegfr2). In addition, Vegfa/Vegfr2 signaling stimulates the expression and activity of Indian hedgehog, increases the expression of β-catenin and inhibits Notch2. Our findings identify Vegfa as a regulator of perichondrial vascularity and osteoblast differentiation at early stages of bone development. © 2015. Published by The Company of Biologists Ltd.

  17. Matrix Metalloproteinase-9 Regulates Neuronal Circuit Development and Excitability.

    PubMed

    Murase, Sachiko; Lantz, Crystal L; Kim, Eunyoung; Gupta, Nitin; Higgins, Richard; Stopfer, Mark; Hoffman, Dax A; Quinlan, Elizabeth M

    2016-07-01

    In early postnatal development, naturally occurring cell death, dendritic outgrowth, and synaptogenesis sculpt neuronal ensembles into functional neuronal circuits. Here, we demonstrate that deletion of the extracellular proteinase matrix metalloproteinase-9 (MMP-9) affects each of these processes, resulting in maladapted neuronal circuitry. MMP-9 deletion increases the number of CA1 pyramidal neurons but decreases dendritic length and complexity. Parallel changes in neuronal morphology are observed in primary visual cortex and persist into adulthood. Individual CA1 neurons in MMP-9(-/-) mice have enhanced input resistance and a significant increase in the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSCs). Additionally, deletion of MMP-9 significantly increases spontaneous neuronal activity in awake MMP-9(-/-) mice and enhances response to acute challenge by the excitotoxin kainate. Our data document a novel role for MMP-9-dependent proteolysis: the regulation of several aspects of circuit maturation to constrain excitability throughout life.

  18. Diminished expression of ACTH signaling proteins and steroidogenic limiting factors in adrenocortical cells isolated from halothane nn pigs.

    PubMed

    Li, Liu-An; Xia, Dong; Wei, Shi; Li, Xiao; Parvizi, Nahid; Zhao, Ru-Qian

    2008-07-01

    Previous studies demonstrated significantly lower plasma cortisol level in homozygous halothane-positive (Hal nn) pigs, as compared with homozygous halothane-negative (Hal NN) pigs. To determine whether such difference is attributed to the fundamental alterations in adrenocortical function, F1 offsprings from Pietrain (Hal nn)xErhualian (Hal NN) were intercrossed to produce F2 sibling pigs with segregated genotypes. Adrenocortical cells were isolated from the Hal nn and Hal NN F2 pigs, respectively, and cultured with or without ACTH challenge. Cortisol levels in culture medium, as well as the content of MC2R, cAMP, CREB, phosphorylated CREB (pCREB), StAR and P450scc in adrenocortical cell lysates, were determined. Cortisol, cAMP, StAR and P450scc levels were significantly lower in Hal nn adrenocortical cells under basal condition without ACTH challenge. ACTH significantly increased cortisol level in the medium and the protein content of MC2R, StAR, P450scc in adrenocortical cell lysates, regardless of genotypes. Total CREB protein content was not different between genotypes and treatments, whereas pCREB content exhibited significant effects of genotype and treatment, being higher in Hal NN than in Hal nn under basal condition and in response to ACTH challenge. These results indicate that the compromised cAMP/PKA/pCREB signaling pathway of ACTH and diminished expression of limiting factors in adrenocortical steroidogenesis (StAR and P450scc) may contribute to the significantly lower plasma cortisol levels in Hal nn pigs.

  19. Low SGK1 Expression in Human Adrenocortical Tumors Is Associated with ACTH-Independent Glucocorticoid Secretion and Poor Prognosis

    PubMed Central

    Sbiera, Silviu; Leich, Ellen; Tissier, Frédérique; Steinhauer, Sonja; Deutschbein, Timo; Fassnacht, Martin; Allolio, Bruno

    2012-01-01

    Context: Using single-nucleotide polymorphism analysis, we observed allelic loss of the gene for serum glucocorticoid (GC) kinase 1 (SGK1), a GC-responsive kinase involved in multiple cellular functions, in a subset of cortisol-secreting adenomas. Objective: Our objective was to analyze SGK1 expression in adrenocortical tumors and to further characterize its role in ACTH-independent cortisol secretion, tumor progression, and prognosis. Design and Setting: Gene expression levels of SGK1, SGK3, and CTNNB1 (coding for β-catenin) and protein expression levels of SGK1, nuclear β-catenin, and phosphorylated AKT were determined in adrenocortical tumors and normal adrenal glands. Patients: A total of 227 adrenocortical tumors (40 adenomas and 187 carcinomas) and 25 normal adrenal tissues were included. Among them, 62 frozen tumor samples were used for mRNA analysis and 203 tumors were investigated on tissue microarrays or full standard slides by immunohistochemistry. Main Outcome Measures: We evaluated the relationship between SGK1 mRNA and/or protein levels and clinical parameters. Results: SGK1 mRNA levels were lower in cortisol-secreting than in nonsecreting tumors (P < 0.005). Nonsecreting neoplasias showed a significant correlation between SGK1 and CTNNB1 mRNA levels (P < 0.001; r = 0.57). Low SGK1 protein levels, but not nuclear β-catenin and phosphorylated AKT, were associated with poor overall survival in patients with adrenocortical carcinoma (P < 0.005; hazard ratio = 2.0; 95% confidence interval = 1.24–3.24), independent of tumor stage and GC secretion. Conclusion: Low SGK1 expression is related to ACTH-independent cortisol secretion in adrenocortical tumors and is a new prognostic factor in adrenocortical carcinoma. PMID:23055545

  20. Mutational signature analysis identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas [Mutational signature analysis identifies deficiency in colorectal cancers and adrenocortical carcinomas

    DOE PAGES

    Pilati, Camilla; Shinde, Jayendra; Alexandrov, Ludmil B.; ...

    2017-01-27

    Germline alterations in DNA repair genes are implicated in cancer predisposition and can result in characteristic mutational signatures. H