Science.gov

Sample records for regulates lps-induced inflammatory

  1. Leonurine exerts anti-inflammatory effect by regulating inflammatory signaling pathways and cytokines in LPS-induced mouse mastitis.

    PubMed

    Song, Xiaojing; Wang, Tiancheng; Zhang, Zecai; Jiang, Haichao; Wang, Wei; Cao, Yongguo; Zhang, Naisheng

    2015-02-01

    Bovine mastitis is defined as the inflammation of mammary gland and is the most multiple diseases in dairy cattle. There is still no effective treatment now. Leonurine, extracted from Leonurus cardiaca, has been proved to have anti-inflammatory effect. In the present study, we utilized a mouse mastitis model to study the effect of leonurine on LPS-induced mastitis. Leonurine was administered three times during the 24 h after inducing infection in the mammary gland. The results showed that leonurine significantly alleviated LPS-induced histopathological changes, downregulated the levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), upregulated the level of anti-inflammatory cytokine interleukin-10 (IL-10), and inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Further study revealed that leonurine inhibited the expression of Toll-like receptor 4 (TLR4) and the activation of nuclear factor-kappaB (NF-κB) and the phosphorylation of p38, extracellular signal-regulated kinase (ERK), and Jun N-terminal kinase (JNK). Therefore, the results demonstrated that leonurine could downregulate the expression of TNF-α, IL-6, iNOS, and COX-2 and upregulate the expression of IL-10 mainly by inhibiting the expression of TLR4 and the activation of NF-κB and the phosphorylation of p38, ERK, and JNK. Leonurine may be a potential agent for mastitis therapy.

  2. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways.

    PubMed

    Park, Junghyung; Min, Ju-Sik; Kim, Bokyung; Chae, Un-Bin; Yun, Jong Won; Choi, Myung-Sook; Kong, Il-Keun; Chang, Kyu-Tae; Lee, Dong-Seok

    2015-01-01

    Activation of microglia cells in the brain contributes to neurodegenerative processes promoted by many neurotoxic factors such as pro-inflammatory cytokines and nitric oxide (NO). Reactive oxygen species (ROS) actively affect microglia-associated neurodegenerative diseases through their role as pro-inflammatory molecules and modulators of pro-inflammatory processes. Although the ROS which involved in microglia activation are thought to be generated primarily by NADPH oxidase (NOX) and involved in the immune response, mitochondrial ROS have also been proposed as important regulators of the inflammatory response in the innate immune system. However, the role of mitochondrial ROS in microglial activation has yet to be fully elucidated. In this study, we demonstrate that inhibition of mitochondrial ROS by treatment with Mito-TEMPO effectively suppressed the level of mitochondrial and intracellular ROS. Mito-TEMPO treatment also significantly prevented LPS-induced increase in the TNF-α, IL-1β, IL-6, iNOS and Cox-2 in BV-2 and primary microglia cells. Furthermore, LPS-induced suppression of mitochondrial ROS generation not only affected LPS-stimulated activation of MAPKs, including ERK, JNK, and p38, but also regulated IκB activation and NF-κB nuclear localization. These results indicate that mitochondria constitute a major source of ROS generation in LPS-mediated activated microglia cells. Additionally, suppression of LPS-induced mitochondrial ROS plays a role in modulating the production of pro-inflammatory mediators by preventing MAPK and NF-κB activation in microglia cells. Our findings suggest that a potential strategy in the development of therapy for inflammation-associated degenerative neurological diseases involves targeting the regulation of mitochondrial ROS in microglial cells.

  3. Monoacylglycerol lipase promotes Fcγ receptor-mediated phagocytosis in microglia but does not regulate LPS-induced upregulation of inflammatory cytokines.

    PubMed

    Kouchi, Zen

    2015-08-21

    Monoacylglycerol lipase (MAGL) is important for neuroinflammation. However, the regulatory mechanisms underlying its expression and function remain unknown. Lipopolysaccharide (LPS) treatment post-translationally upregulated MAGL expression, whereas it downregulated MAGL transcription through a Stat6-mediated mechanism in microglia. Neither MAGL knockdown nor JZL-184, a selective MAGL inhibitor, suppressed LPS-induced upregulation of inflammatory cytokines in microglia. Moreover, exogenous expression of MAGL in BV-2 microglial cell line, which lacks endogenous MAGL, did not promote the induction of inflammatory cytokines by LPS treatment. Interestingly, MAGL knockdown reduced Fcγ receptor-mediated phagocytosis in primary microglia, and introduction of MAGL into the BV-2 cells increased Fcγ receptor-mediated phagocytosis. Collectively, these results suggest that MAGL regulates phagocytosis, but not LPS-mediated cytokine induction in microglia.

  4. CXC195 suppresses proliferation and inflammatory response in LPS-induced human hepatocellular carcinoma cells via regulating TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway

    SciTech Connect

    Wang, Yiting; Tu, Qunfei; Yan, Wei; Xiao, Dan; Zeng, Zhimin; Ouyang, Yuming; Huang, Long; Cai, Jing; Zeng, Xiaoli; Chen, Ya-Jie; Liu, Anwen

    2015-01-02

    Highlights: • CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. • CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells. • CXC195 regulated TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway in LPS-induced HepG2 cells. - Abstract: CXC195 showed strong protective effects in neuronal apoptosis by exerting its antioxidant activity. However, the anti-cancer effects of CXC195 is still with limited acquaintance. Here, we investigated the role of CXC195 in lipopolysaccharide (LPS)-induced human hepatocellular carcinoma (HCC) cells lines (HepG2) and the possible signaling pathways. CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. In addition, CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells, including TNF-α, iNOS, IL-1β, IL-6, CC chemokine ligand (CCL)-2, CCL-22 and epidermal growth factor receptor (EGFR). Moreover, CXC195 inhibited the expressions and interactions of TLR4, MyD88 and TAK1, NF-κB translocation to nucleus and its DNA binding activity, phosphorylation of ERK1/2, p38 and JNK. Our results suggested that treatment with CXC195 could attenuate the TLR4-mediated proliferation and inflammatory response in LPS-induced HepG2 cells, thus might be beneficial for the treatment of HCC.

  5. Molecular Mechanisms Regulating LPS-Induced Inflammation in the Brain

    PubMed Central

    Lykhmus, Olena; Mishra, Nibha; Koval, Lyudmyla; Kalashnyk, Olena; Gergalova, Galyna; Uspenska, Kateryna; Komisarenko, Serghiy; Soreq, Hermona; Skok, Maryna

    2016-01-01

    Neuro-inflammation, one of the pathogenic causes of neurodegenerative diseases, is regulated through the cholinergic anti-inflammatory pathway via the α7 nicotinic acetylcholine receptor (α7 nAChR). We previously showed that either bacterial lipopolysaccharide (LPS) or immunization with the α7(1–208) nAChR fragment decrease α7 nAChRs density in the mouse brain, exacerbating chronic inflammation, beta-amyloid accumulation and episodic memory decline, which mimic the early stages of Alzheimer’s disease (AD). To study the molecular mechanisms underlying the LPS and antibody effects in the brain, we employed an in vivo model of acute LPS-induced inflammation and an in vitro model of cultured glioblastoma U373 cells. Here, we report that LPS challenge decreased the levels of α7 nAChR RNA and protein and of acetylcholinesterase (AChE) RNA and activity in distinct mouse brain regions, sensitized brain mitochondria to the apoptogenic effect of Ca2+ and modified brain microRNA profiles, including the cholinergic-regulatory CholinomiRs-132/212, in favor of anti-inflammatory and pro-apoptotic ones. Adding α7(1–208)-specific antibodies to the LPS challenge prevented elevation of both the anti-inflammatory and pro-apoptotic miRNAs while supporting the resistance of brain mitochondria to Ca2+ and maintaining α7 nAChR/AChE decreases. In U373 cells, α7-specific antibodies and LPS both stimulated interleukin-6 production through the p38/Src-dependent pathway. Our findings demonstrate that acute LPS-induced inflammation induces the cholinergic anti-inflammatory pathway in the brain, that α7 nAChR down-regulation limits this pathway, and that α7-specific antibodies aggravate neuroinflammation by inducing the pro-inflammatory interleukin-6 and dampening anti-inflammatory miRNAs; however, these antibodies may protect brain mitochondria and decrease the levels of pro-apoptotic miRNAs, preventing LPS-induced neurodegeneration. PMID:27013966

  6. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish.

    PubMed

    Hwang, Ji-Hyun; Kim, Kui-Jin; Ryu, Su-Jung; Lee, Boo-Yong

    2016-03-25

    Caffeine is a white crystalline xanthine alkaloid found in the seeds of coffee plants and leaves of the tea bush. In this study, we evaluated whether caffeine exerts anti-inflammatory effects on lipopolysaccharide (LPS)-induced inflammation both in vitro and in vivo. RAW264.7 cells were treated with various concentrations of caffeine in the presence or absence of LPS. Caffeine decreased the LPS-induced inflammatory mediator, nitric oxide (NO). Caffeine treatment also reduced the expression of pro-inflammatory genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-3, IL-6 and IL-12, and decreased both IL-6 secretion and phosphorylated p38MAPK expression in LPS-treated RAW264.7 cells. Caffeine inhibited nuclear translocation of nuclear factor κB (NF-κB) via IκBα phosphorylation. In addition, caffeine inhibited LPS-induced NO production in zebrafish. These results suggest that caffeine may suppress LPS-induced inflammatory responses in RAW264.7 cells by regulating NF-κB activation and MAPK phosphorylation.

  7. Eriodictyol, a plant flavonoid, attenuates LPS-induced acute lung injury through its antioxidative and anti-inflammatory activity

    PubMed Central

    ZHU, GUANG-FA; GUO, HONG-JUAN; HUANG, YAN; WU, CHUN-TING; ZHANG, XIANG-FENG

    2015-01-01

    Acute lung injury (ALI) is characterized by excessive inflammatory responses and oxidative injury in the lung tissue. It has been suggested that anti-inflammatory or antioxidative agents could have therapeutic effects in ALI, and eriodictyol has been reported to exhibit antioxidative and anti-inflammatory activity in vitro. The aim of the present study was to investigate the effect of eriodictyol on lipopolysaccharide (LPS)-induced ALI in a mouse model. The mice were divided into four groups: Phosphate-buffered saline-treated healthy control, LPS-induced ALI, vehicle-treated ALI (LPS + vehicle) and eriodictyol-treated ALI (LPS + eriodictyol). Eriodictyol (30 mg/kg) was administered orally once, 2 days before the induction of ALI. The data showed that eriodictyol pretreatment attenuated LPS-induced ALI through its antioxidative and anti-inflammatory activity. Furthermore, the eriodictyol pretreatment activated the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway in the ALI mouse model, which attenuated the oxidative injury and inhibited the inflammatory cytokine expression in macrophages. In combination, the results of the present study demonstrated that eriodictyol could alleviate the LPS-induced lung injury in mice by regulating the Nrf2 pathway and inhibiting the expression of inflammatory cytokines in macrophages, suggesting that eriodictyol could be used as a potential drug for the treatment of LPS-induced lung injury. PMID:26668626

  8. Adenosine A2A receptor signaling attenuates LPS-induced pro-inflammatory cytokine formation of mouse macrophages by inducing the expression of DUSP1.

    PubMed

    Köröskényi, Krisztina; Kiss, Beáta; Szondy, Zsuzsa

    2016-07-01

    Adenosine is known to reduce inflammation by suppressing the activity of most immune cells. Previous studies have shown that lipopolysaccharide (LPS) stimulated mouse macrophages produce adenosine, and the adenosine A2A receptor (A2AR) signaling activated in an autocrine manner attenuates LPS-induced pro-inflammatory cytokine formation. It has been suggested that A2AR signaling inhibits LPS-induced pro-inflammatory cytokine production through a unique cAMP-dependent, but PKA- and Epac-independent signaling pathway. However, the mechanism of inhibition was not identified so far. Here we report that LPS stimulation enhances A2AR expression in mouse bone marrow derived macrophages, and loss of A2ARs results in enhanced LPS-induced pro-inflammatory response. Loss of A2ARs in A2AR null macrophages did not alter the LPS-induced NF-κB activation, but an enhanced basal and LPS-induced phosphorylation of MAP kinases (especially that of JNKs) was detected in A2AR null cells. A2AR signaling did not alter the LPS-induced phosphorylation of their upstream kinases, but by regulating adenylate cyclase activity it enhanced the expression of dual specific phosphatase (DUSP)1, a negative regulator of MAP kinases. As a result, lower basal and LPS-induced DUSP1 mRNA and protein levels can be detected in A2AR null macrophages. Silencing of DUSP1 mRNA expression resulted in higher basal and LPS-induced JNK phosphorylation and LPS-induced pro-inflammatory cytokine formation in wild type macrophages, but had no effect on that in A2AR null cells. Our data indicate that A2AR signaling regulates both basal and LPS-induced DUSP1 levels in macrophages via activating the adenylate cyclase pathway.

  9. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    PubMed

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages.

  10. The dopamine D3 receptor regulates the effects of methamphetamine on LPS-induced cytokine production in murine mast cells.

    PubMed

    Xue, Li; Li, Xia; Ren, Hui-Xun; Wu, Feng; Li, Ming; Wang, Biao; Chen, Fang-Yuan; Cheng, Wei-Ying; Li, Ju-Ping; Chen, Yan-Jiong; Chen, Teng

    2015-06-01

    Previous studies have demonstrated that methamphetamine (METH) alter inflammatory and anti-inflammatory cytokine production in the periphery. However, the effect of METH on lipopolysaccharide (LPS)-induced immune responses and its underlying mechanism of action remains unclear. The dopamine D3 receptor (D3R) plays an important role in METH addiction, indicating that the D3R may regulate METH-mediated immune responses. In this study, we examined the effect of METH on mast cell released cytokines in the lungs and thymi of mice stimulated by LPS, and on LPS-induced murine bone marrow-derived mast cells (BMMCs). Moreover, we used D3R-deficient mice to investigate the effect of this receptor on LPS-stimulated mast cell released cytokine production after METH treatment in the lungs and thymi. The effects of a D3R agonist and antagonist on LPS-induced cytokine production after METH treatment in murine BMMCs were also evaluated. METH suppressed LPS-induced cytokine production in the lungs and thymi of wild-type (WT) mice and BMMCs. However, METH did not alter LPS-induced cytokine production in the lungs and thymi of D3R-deficient mice. When BMMCs were treated with the D3R receptor antagonist, NGB2904 hydrochloride (NGB-2904), METH did not alter LPS-induced cytokine production. However, treatment with the D3R agonist, 7-hydroxy-(di-n-propylamino) tetralin (7-OH-DPAT), significantly enhanced the effects of METH on LPS-induced cytokine production. Our results suggest that METH regulates mast cell released cytokines production in an LPS-induced mouse model via the D3R. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. MCPIP1 Negatively Regulates Toll-like Receptor 4 Signaling and Protects Mice from LPS-induced Septic Shock

    PubMed Central

    Huang, Shengping; Miao, Ruidong; Zhou, Zhou; Wang, Tianyi; Liu, Jianguo; Liu, Gang; Chen, Y. Eugene; Xin, Hong-Bo; Zhang, Jifeng; Fu, Mingui

    2013-01-01

    Septic shock is one of leading causes of morbidity and mortality in hospital patients. However, genetic factors predisposing to septic shock are not fully understood. Our previous work showed that MCP-induced protein 1 (MCPIP1) was induced by lipopolysaccharides (LPS), which then negatively regulates LPS-induced inflammatory signaling in vitro. Here we report that although MCPIP1 was induced by various toll-like receptor (TLR) ligands in macrophages, MCPIP1-deficient mice are extremely susceptible to TLR4 ligand (LPS)-induced septic shock and death, but not to the TLR2, 3, 5 and 9 ligands-induced septic shock. Consistently, LPS induced tumor necrosis factor α (TNFα) production in MCPIP1-deficient mice was 20-fold greater than that in their wild-type littermates. Further analysis revealed that MCPIP1-deficient mice developed severe acute lung injury after LPS injection and JNK signaling was highly activated in MCPIP1-deificient lungs after LPS stimulation. Finally, macrophage-specific MCPIP1 transgenic mice were partially protected from LPS-induced septic shock, suggesting that inflammatory cytokines from sources other than macrophages may significantly contribute to the pathogenesis of LPS-induced septic shock. Taken together, these results suggest that MCPIP1 selectively suppresses TLR4 signaling pathway and protects mice from LPS-induced septic shock. PMID:23422584

  12. Capsaicin attenuates LPS-induced inflammatory cytokine production by upregulation of LXRα.

    PubMed

    Tang, Jing; Luo, Kang; Li, Yan; Chen, Quan; Tang, Dan; Wang, Deming; Xiao, Ji

    2015-09-01

    Here, we investigated the role of LXRα in capsaicin mediated anti-inflammatory effects. Results revealed that capsaicin inhibits LPS-induced IL-1β, IL-6 and TNF-α production in a time- and dose-dependent manner. Moreover, capsaicin increases LXRα expression through PPARγ pathway. Inhibition of LXRα activation by siRNA diminished the inhibitory action of capsaicin on LPS-induced IL-1β, IL-6 and TNF-α production. Additionally, LXRα siRNA abrogated the inhibitory action of capsaicin on p65 NF-κB protein expression. Thus, we propose that the anti-inflammatory effects of capsaicin are LXRα dependent, and LXRα may potentially link the capsaicin mediated PPARγ activation and NF-κB inhibition in LPS-induced inflammatory response.

  13. The anti-inflammatory effect of TR6 on LPS-induced mastitis in mice.

    PubMed

    Hu, Xiaoyu; Fu, Yunhe; Tian, Yuan; Zhang, Zecai; Zhang, Wenlong; Gao, Xuejiao; Lu, Xiaojie; Cao, Yongguo; Zhang, Naisheng

    2016-01-01

    [TRIAP]-derived decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRIAP-derived decoy peptide (TR6) containing, the N-terminal portion of the third helical region of the [TIRAP] TIR domain (sequence "N"-RQIKIWFQNRRMKWK and -KPGFLRDPWCKYQML-"C"). We evaluated the effects of TR6 on lipopolysaccharide-induced mastitis in mice. In vivo, the mastitis model was induced by LPS administration for 24h, and TR6 treatment was initiated 1h before or after induction of LPS. In vitro, primary mouse mammary epithelial cells and neutrophils were used to investigate the effects of TR6 on LPS-induced inflammatory responses. The results showed that TR6 significantly inhibited mammary gland hisopathologic changes, MPO activity, and LPS-induced production of TNF-α, IL-1β and IL-6. In vitro, TR6 significantly inhibited LPS-induced TNF-α and IL-6 production and phosphorylation of NF-κB and MAPKs. In conclusion, this study demonstrated that the anti-inflammatory effect of TR6 against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB and MAPK signaling pathways. TR6 may be a promising therapeutic reagent for mastitis treatment.

  14. Demethoxycurcumin, a natural derivative of curcumin attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-kappaB signaling pathways in N9 microglia induced by lipopolysaccharide.

    PubMed

    Zhang, Lijia; Wu, Chunfu; Zhao, Siqi; Yuan, Dan; Lian, Guoning; Wang, Xiaoxiao; Wang, Lihui; Yang, Jingyu

    2010-03-01

    Our previous report has showed that demethoxycurcumin (DMC), a natural derivative of curcumin (Cur), exhibited stronger inhibitory activity on nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) production compared with Cur in lipopolysaccharide (LPS) activated rat primary microglia. In the present study, the effect and possible mechanism of DMC on the production of pro-inflammatory mediators in LPS-activated N9 microglial cells were further investigated. The results showed that DMC significantly suppressed the NO production induced by LPS in N9 microglial cells through inhibiting the protein and mRNA expression of inducible NO synthase (iNOS). DMC also decreased LPS-induced TNF-alpha and IL-1beta expression at both transcriptional and protein level in a concentration-dependent manner. Further studies revealed that DMC blocked IkappaBalpha phosphorylation and degradation, inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs). Moreover, the level of intracellular reactive oxygen species (iROS) was significantly increased by LPS, which is mainly mediated by the up-regulated expression of gp91phox, the catalytic subunit of nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase. Both DMC and Cur could markedly decrease iROS production and the expression of NADPH oxidase induced by LPS, with more potent inhibitory activity of DMC. In summary, these data suggest that DMC exerts its in vitro anti-inflammatory effect in LPS-activated N9 microglial cells by blocking nuclear factor-kappaB (NF-kappaB) and MAPKs activation, which may be partly due to its potent down-regulation of the NADPH-derived iROS production.

  15. Hydrogen Sulfide Delays LPS-Induced Preterm Birth in Mice via Anti-Inflammatory Pathways

    PubMed Central

    Liu, Weina; Xu, Chen; You, Xingji; Olson, David M.; Chemtob, Sylvain; Gao, Lu; Ni, Xin

    2016-01-01

    A major cause of preterm labor in pregnant women is intra-amniotic infection, which is mediated by an inflammatory process. Hydrogen sulfide (H2S), a gaseous transmitter, has been implicated to be involved in inflammatory responses. We sought to investigate whether H2S affects infectious preterm birth using the mouse model of lipopolysaccharides (LPS)-induced preterm birth. Administration of LPS at 0.4 mg/kg with two injections intraperitoneally (i.p.) on gestational day 14.5 induced preterm labor. LPS significantly increased leukocyte infiltration in uterus, stimulated the expression of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), CCL2 and CXCL15 in myometrium. Administration of NaHS (i.p.) delayed the onset of labor induced by LPS in a dose-dependent manner. NaHS prevented leukocyte infiltration into intrauterine tissues and inhibited the production of pro-inflammatory cytokines in myometrium and decreased the levels of these cytokines in maternal circulation. H2S also decreased LPS-activated extracellular signal-regulated kinase (ERK) 1/2/ nuclear factor (NF)-κB signaling pathways in myometrium. This study provides new in vivo evidence for the roles of H2S in attenuating inflammation, and a potential novel therapeutic strategy for infection-related preterm labor. PMID:27035826

  16. Hydrogen Sulfide Delays LPS-Induced Preterm Birth in Mice via Anti-Inflammatory Pathways.

    PubMed

    Liu, Weina; Xu, Chen; You, Xingji; Olson, David M; Chemtob, Sylvain; Gao, Lu; Ni, Xin

    2016-01-01

    A major cause of preterm labor in pregnant women is intra-amniotic infection, which is mediated by an inflammatory process. Hydrogen sulfide (H2S), a gaseous transmitter, has been implicated to be involved in inflammatory responses. We sought to investigate whether H2S affects infectious preterm birth using the mouse model of lipopolysaccharides (LPS)-induced preterm birth. Administration of LPS at 0.4 mg/kg with two injections intraperitoneally (i.p.) on gestational day 14.5 induced preterm labor. LPS significantly increased leukocyte infiltration in uterus, stimulated the expression of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), CCL2 and CXCL15 in myometrium. Administration of NaHS (i.p.) delayed the onset of labor induced by LPS in a dose-dependent manner. NaHS prevented leukocyte infiltration into intrauterine tissues and inhibited the production of pro-inflammatory cytokines in myometrium and decreased the levels of these cytokines in maternal circulation. H2S also decreased LPS-activated extracellular signal-regulated kinase (ERK) 1/2/ nuclear factor (NF)-κB signaling pathways in myometrium. This study provides new in vivo evidence for the roles of H2S in attenuating inflammation, and a potential novel therapeutic strategy for infection-related preterm labor.

  17. LPS-induced inflammatory response is suppressed by Wnt inhibitors, Dickkopf-1 and LGK974

    PubMed Central

    Jang, Jaewoong; Jung, Yoonju; Kim, Youngeun; Jho, Eek-hoon; Yoon, Yoosik

    2017-01-01

    In this study, LPS-induced inflammatory responses in BEAS-2B human bronchial epithelial cells and human umbilical vein endothelial cell (HUVEC)s were found to be prevented by Dickkopf-1 (DKK-1), a secreted Wnt antagonist, and LGK974, a small molecular inhibitor of the Wnt secretion. LPS-induced IκB degradation and NF-κB nuclear translocation as well as the expressions of pro-inflammatory genes including IL-6, IL-8, TNF- α, IL-1β, MCP-1, MMP-9, COX-2 and iNOS, were all suppressed by DKK-1 and LGK974 in a dose-dependent manner. The suppressive effects of LGK974 on NF-κB, IκB, and pro-inflammatory gene expression were rescued by ectopic expression of β-catenin, suggesting that the anti-inflammatory activity of LGK974 is mediated by modulation of the Wnt/β-catenin pathway and not by unrelated side effects. When Wnt recombinant proteins were treated to cells, Wnt3a and Wnt5a significantly induced pro-inflammatory gene expressions, while Wnt7a and Wnt10b showed little effects. It was also found that Wnt3a and Wnt5a expressions were significantly induced by LPS treatment. Consistently, knockdown of Wnt3a and Wnt5a blocked LPS-induced inflammatory responses, while treatment of recombinant Wnt3a and Wnt5a proteins rescued the inhibition of inflammatory responses by LGK974. Findings of this study showed that DKK-1 and LGK974 suppress LPS-induced inflammatory response by modulating Wnt/β-catenin pathway. PMID:28128299

  18. Synthetic PreImplantation Factor (PIF) prevents fetal loss by modulating LPS induced inflammatory response

    PubMed Central

    Marana, Riccardo; Castellani, Roberta; Ria, Francesco; Veglia, Manuela; Scambia, Giovanni; Surbek, Daniel; Barnea, Eytan

    2017-01-01

    Maternal control of inflammation is essential during pregnancy and an exaggerated response is one of the underlying causes of fetal loss. Inflammatory response is mediated by multiple factors and Toll-like receptors (TLRs) are central. Activation of TLRs results in NALP-3 mediated assembly of apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1 into the inflammasome and production of pro-inflammatory cytokines IL-1β and IL-18. Given that preventing measures are lacking, we investigated PreImplantation Factor (PIF) as therapeutic option as PIF modulates Inflammation in pregnancy. Additionally, synthetic PIF (PIF analog) protects against multiple immune disorders. We used a LPS induced murine model of fetal loss and synthetic PIF reduced this fetal loss and increased the embryo weight significantly. We detected increased PIF expression in the placentae after LPS insult. The LPS induced serum and placenta cytokines were abolished by synthetic PIF treatment and importantly synthetic PIF modulated key members of inflammasome complex NALP-3, ASC, and caspase-1 as well. In conclusion our results indicate that synthetic PIF protects against LPS induced fetal loss, likely through modulation of inflammatory response especially the inflammasome complex. Given that synthetic PIF is currently tested in autoimmune diseases of non-pregnant subjects (clinicaltrials.gov, NCT02239562), therapeutic approach during pregnancy can be envisioned. PMID:28704412

  19. Synthetic PreImplantation Factor (PIF) prevents fetal loss by modulating LPS induced inflammatory response.

    PubMed

    Di Simone, Nicoletta; Di Nicuolo, Fiorella; Marana, Riccardo; Castellani, Roberta; Ria, Francesco; Veglia, Manuela; Scambia, Giovanni; Surbek, Daniel; Barnea, Eytan; Mueller, Martin

    2017-01-01

    Maternal control of inflammation is essential during pregnancy and an exaggerated response is one of the underlying causes of fetal loss. Inflammatory response is mediated by multiple factors and Toll-like receptors (TLRs) are central. Activation of TLRs results in NALP-3 mediated assembly of apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1 into the inflammasome and production of pro-inflammatory cytokines IL-1β and IL-18. Given that preventing measures are lacking, we investigated PreImplantation Factor (PIF) as therapeutic option as PIF modulates Inflammation in pregnancy. Additionally, synthetic PIF (PIF analog) protects against multiple immune disorders. We used a LPS induced murine model of fetal loss and synthetic PIF reduced this fetal loss and increased the embryo weight significantly. We detected increased PIF expression in the placentae after LPS insult. The LPS induced serum and placenta cytokines were abolished by synthetic PIF treatment and importantly synthetic PIF modulated key members of inflammasome complex NALP-3, ASC, and caspase-1 as well. In conclusion our results indicate that synthetic PIF protects against LPS induced fetal loss, likely through modulation of inflammatory response especially the inflammasome complex. Given that synthetic PIF is currently tested in autoimmune diseases of non-pregnant subjects (clinicaltrials.gov, NCT02239562), therapeutic approach during pregnancy can be envisioned.

  20. Fenoterol inhibits LPS-induced AMPK activation and inflammatory cytokine production through β-arrestin-2 in THP-1 cell line

    SciTech Connect

    Wang, Wei; Zhang, Yuan; Xu, Ming; Zhang, You-Yi; He, Bei

    2015-06-26

    The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β{sub 2}-adrenergic receptor (β{sub 2}-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β{sub 2}-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β{sub 2}-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β{sub 2}-AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production.

  1. Licocoumarone isolated from Glycyrrhiza uralensis selectively alters LPS-induced inflammatory responses in RAW 264.7 macrophages.

    PubMed

    Wu, Lehao; Fan, Yunpeng; Fan, Chao; Yu, Yang; Sun, Lei; Jin, Yu; Zhang, Yan; Ye, Richard D

    2017-04-15

    The effects of licocoumarone (LC) isolated from Glycyrrhiza uralensis were studied in LPS-stimulated RAW 264.7 macrophages. Our study demonstrated that LC dose-dependently attenuated LPS-induced NO production by down-regulating iNOS expression. Additionally, the treatment with LC inhibited LPS-induced expression of cytokines including IL-1β, IL-6 and IL-10, but not TNF-α, at both mRNA and protein levels. Similar suppressive effects of LC were observed on LPS-stimulated murine peritoneal macrophages as well. Furthermore, LC significantly reduced LPS-stimulated NF-κB activation by inhibition of IκBα degradation and p65 phosphorylation. The results from NF-κB-luc reporter gene assay further support the inhibitory effect of LC on NF-κB activation. Further studies showed that LC also interfered with the MAPKs and STAT3 signaling pathways, which are typical inflammatory signaling pathways triggered by LPS. Taken together, these results show that LC attenuates LPS-induced cytokine gene expression in RAW 264.7 macrophages through mechanisms that involve NF-κB, MAPKs and STAT3 signaling pathways, but the pattern of inhibition differs from that of a global immunosuppresant. Our study indicates that LC is a functional constituent of Glycyrrhiza uralensis with potential implications in infectious and immune-related diseases.

  2. Cordycepin inhibits LPS-induced inflammatory and matrix degradation in the intervertebral disc

    PubMed Central

    Mao, Lu; Han, Xiuguo; Zhang, Kai; Zhao, Changqing

    2016-01-01

    Cordycepin is a component of the extract obtained from Cordyceps militaris and has many biological activities, including anti-cancer, anti-metastatic and anti-inflammatory effects. Intervertebral disc degeneration (IDD) is a degenerative disease that is closely related to the inflammation of nucleus pulposus (NP) cells. The effect of cordycepin on NP cells in relation to inflammation and degeneration has not yet been studied. In our study, we used a rat NP cell culture and an intervertebral disc (IVD) organ culture model to examine the inhibitory effects of cordycepin on lipopolysaccharide (LPS)-induced gene expression and the production of matrix degradation enzymes (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5) and oxidative stress-associated factors (nitric oxide and PGE2). We found a protective effect of cordycepin on NP cells and IVDs against LPS-induced matrix degradation and macrophage infiltration. In addition, western blot and luciferase assay results demonstrated that pretreatment with cordycepin significantly suppressed the LPS-induced activation of the NF-κB pathway. Taken together, the results of our research suggest that cordycepin could exert anti-inflammatory and anti-degenerative effects on NP cells and IVDs by inhibiting the activation of the NF-κB pathway. Therefore, cordycepin may be a potential treatment for IDD in the future. PMID:27190710

  3. Autotaxin downregulates LPS-induced microglia activation and pro-inflammatory cytokines production.

    PubMed

    Awada, Rana; Saulnier-Blache, Jean Sébastien; Grès, Sandra; Bourdon, Emmanuel; Rondeau, Philippe; Parimisetty, Avinash; Orihuela, Ruben; Harry, G Jean; d'Hellencourt, Christian Lefebvre

    2014-12-01

    Inflammation is essential in defense against infection or injury. It is tightly regulated, as over-response can be detrimental, especially in immune-privileged organs such as the central nervous system (CNS). Microglia constitutes the major source of inflammatory factors, but are also involved in the regulation of the inflammation and in the reparation. Autotaxin (ATX), a phospholipase D, converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA) and is upregulated in several CNS injuries. LPA, a pleiotropic immunomodulatory factor, can induce multiple cellular processes including morphological changes, proliferation, death, and survival. We investigated ATX effects on microglia inflammatory response to lipopolysaccharide (LPS), mimicking gram-negative infection. Murine BV-2 microglia and stable transfected, overexpressing ATX-BV-2 (A +) microglia were treated with LPS. Tumor necrosis factor α (TNFα), interleukin (IL)-6, and IL-10 mRNA and proteins levels were examined by qRT-PCR and ELISA, respectively. Secreted LPA was quantified by a radioenzymatic assay and microglial activation markers (CD11b, CD14, B7.1, and B7.2) were determined by flow cytometry. ATX expression and LPA production were significantly enhanced in LPS treated BV-2 cells. LPS induction of mRNA and protein level for TNFα and IL-6 were inhibited in A+ cells, while IL-10 was increased. CD11b, CD14, and B7.1, and B7.2 expressions were reduced in A+ cells. Our results strongly suggest deactivation of microglia and an IL-10 inhibitory of ATX with LPS induced microglia activation. © 2014 Wiley Periodicals, Inc.

  4. Exploring New Inflammatory Biomarkers and Pathways during LPS-Induced M1 Polarization

    PubMed Central

    2016-01-01

    Identification of mediators triggering microglia activation and transference of noncoding microRNA (miRNA) into exosomes are critical to dissect the mechanisms underlying neurodegeneration. We used lipopolysaccharide- (LPS-) induced N9 microglia activation to explore new biomarkers/signaling pathways and to identify inflammatory miRNA (inflamma-miR) in cells and their derived exosomes. Upregulation of iNOS and MHC-II (M1-markers) and downregulation of arginase 1, FIZZ1 (M2-markers), and CX3CR1 (M0/M2 polarization) confirmed the switch of N9 LPS-treated cells into the M1 phenotype, as described for macrophages/microglia. Cells showed increased proliferation, activated TLR4/TLR2/NF-κB pathway, and enhanced phagocytosis, further corroborated by upregulated MFG-E8. We found NLRP3-inflammasome activation in these cells, probably accounting for the increased extracellular content of the cytokine HMGB1 and of the MMP-9 we have observed. We demonstrate for the first time that the inflamma-miR profiling (upregulated miR-155 and miR-146a plus downregulated miR-124) in M1 polarized N9 cells, noticed by others in activated macrophages/microglia, was replicated in their derived exosomes, likely regulating the inflammatory response of recipient cells and dissemination processes. Data show that LPS-treated N9 cells behave like M1 polarized microglia/macrophages, while providing new targets for drug discovery. In particular, the study yields novel insights into the exosomal circulating miRNA during neuroinflammation important for emerging therapeutic approaches targeting microglia activation. PMID:28096568

  5. Exploring New Inflammatory Biomarkers and Pathways during LPS-Induced M1 Polarization.

    PubMed

    Cunha, Carolina; Gomes, Cátia; Vaz, Ana Rita; Brites, Dora

    2016-01-01

    Identification of mediators triggering microglia activation and transference of noncoding microRNA (miRNA) into exosomes are critical to dissect the mechanisms underlying neurodegeneration. We used lipopolysaccharide- (LPS-) induced N9 microglia activation to explore new biomarkers/signaling pathways and to identify inflammatory miRNA (inflamma-miR) in cells and their derived exosomes. Upregulation of iNOS and MHC-II (M1-markers) and downregulation of arginase 1, FIZZ1 (M2-markers), and CX3CR1 (M0/M2 polarization) confirmed the switch of N9 LPS-treated cells into the M1 phenotype, as described for macrophages/microglia. Cells showed increased proliferation, activated TLR4/TLR2/NF-κB pathway, and enhanced phagocytosis, further corroborated by upregulated MFG-E8. We found NLRP3-inflammasome activation in these cells, probably accounting for the increased extracellular content of the cytokine HMGB1 and of the MMP-9 we have observed. We demonstrate for the first time that the inflamma-miR profiling (upregulated miR-155 and miR-146a plus downregulated miR-124) in M1 polarized N9 cells, noticed by others in activated macrophages/microglia, was replicated in their derived exosomes, likely regulating the inflammatory response of recipient cells and dissemination processes. Data show that LPS-treated N9 cells behave like M1 polarized microglia/macrophages, while providing new targets for drug discovery. In particular, the study yields novel insights into the exosomal circulating miRNA during neuroinflammation important for emerging therapeutic approaches targeting microglia activation.

  6. Shizukaol B, an active sesquiterpene from Chloranthus henryi, attenuates LPS-induced inflammatory responses in BV2 microglial cells.

    PubMed

    Pan, Li-Long; Xu, Peng; Luo, Xiao-Ling; Wang, Li-Jun; Liu, Si-Yu; Zhu, Yi-Zhun; Hu, Jin-Feng; Liu, Xin-Hua

    2017-04-01

    The objective of the current study was to evaluate the anti-inflammatory effects of shizukaol B, a lindenane-type dimeric sesquiterpene isolated from the whole plant of Chloranthus henryi, on lipopolysaccharide (LPS)-induced activation of BV2 microglial cells in vitro. Our data showed that shizukaol B concentration-dependently suppressed expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), production of nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in LPS-stimulated BV2 microglia. Meanwhile, shizukaol B concentration- and time-dependently inhibited LPS-mediated c-Jun N-terminal kinase 1/2 (JNK) activation, but had little effect on extracellular signal-regulated kinase 1/2 or p38 phosphorylation. Furthermore, shizukaol B significantly blocked LPS-induced activator protein-1 (AP-1) activation, evidenced by reduced phosphorylation and nuclear translocation of c-Jun and DNA binding activity of AP-1. Taken together, our findings suggest that shizukaol B exerts anti-inflammatory effects in LPS-activated microglia partly by modulating JNK-AP-1 signaling pathway.

  7. Suppression of LPS-induced inflammatory activities by Rosmarinus officinalis L.

    PubMed

    Yu, Mi-Hee; Choi, Jun-Hyeok; Chae, In-Gyeong; Im, Hyo-Gwon; Yang, Seun-Ah; More, Kunal; Lee, In-Seon; Lee, Jinho

    2013-01-15

    Rosemary (Rosmarinus officinalis L.) has been used in folk medicine to treat headaches, epilepsy, poor circulation, and many other ailments. It was found that rosemary could act as a stimulant and mild analgesic and could reduce inflammation. However, the mechanisms underlying the anti-inflammatory effects of rosemary need more study to be established. Therefore, in this study, the effects of rosemary on the activation of nuclear factor kappa beta (NF-kB) and mitogen-activated protein kinases (MAPKs), the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and the production of nitric oxide (NO), prostaglandin E(2) (PGE(2)), and cytokine in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were investigated. A methanol extract of rosemary and its hexane fraction reduced NO generation with an IC(50) of 2.75 and 2.83 μg/ml, respectively. Also, the methanol extract and the hexane fraction inhibited LPS-induced MAPKs and NF-kB activation associated with the inhibition of iNOS or COX-2 expression. LPS-induced production of PGE(2) and tumour necrosis factor-alpha (TNF-α) were blocked by rosemary. Rosemary extract and its hexane fraction are important for the prevention of phosphorylation of MAPKs, thereby blocking NF-kB activation, which in turn leads to decreased expression of iNOS and COX-2, thus preventing inflammation.

  8. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages.

    PubMed

    Budai, Marietta M; Varga, Aliz; Milesz, Sándor; Tőzsér, József; Benkő, Szilvia

    2013-12-01

    Aloe vera has been used in traditional herbal medicine as an immunomodulatory agent inducing anti-inflammatory effects. However, its role on the IL-1β inflammatory cytokine production has not been studied. IL-1β production is strictly regulated both at transcriptional and posttranslational levels through the activity of Nlrp3 inflammasome. In this study we aimed to determine the effect of Aloe vera on the molecular mechanisms of Nlrp3 inflammasome-mediated IL-1β production in LPS-activated human THP-1 cells and monocyte-derived macrophages. Our results show that Aloe vera significantly reduced IL-8, TNFα, IL-6 and IL-1β cytokine production in a dose dependent manner. The inhibitory effect was substantially more pronounced in the primary cells. We found that Aloe vera inhibited the expression of pro-IL-1β, Nlrp3, caspase-1 as well as that of the P2X7 receptor in the LPS-induced primary macrophages. Furthermore, LPS-induced activation of signaling pathways like NF-κB, p38, JNK and ERK were inhibited by Aloe vera in these cells. Altogether, we show for the first time that Aloe vera-mediated strong reduction of IL-1β appears to be the consequence of the reduced expression of both pro-IL-1β as well as Nlrp3 inflammasome components via suppressing specific signal transduction pathways. Furthermore, we show that the expression of the ATP sensor P2X7 receptor is also downregulated by Aloe vera that could also contribute to the attenuated IL-1β cytokine secretion. These results may provide a new therapeutic approach to regulate inflammasome-mediated responses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Protective effect of rutin on LPS-induced acute lung injury via down-regulation of MIP-2 expression and MMP-9 activation through inhibition of Akt phosphorylation.

    PubMed

    Chen, Wen-Ying; Huang, Yi-Chun; Yang, Ming-Ling; Lee, Chien-Ying; Chen, Chun-Jung; Yeh, Chung-Hsin; Pan, Pin-Ho; Horng, Chi-Ting; Kuo, Wu-Hsien; Kuan, Yu-Hsiang

    2014-10-01

    Lipopolysaccharide (LPS), also called endotoxin, is the important pathogen of acute lung injury (ALI), which is a clinical syndrome that still lacks effective therapeutic medicine. Rutin belongs to vitamin P and possesses various beneficial effects. In this study, we investigate the potential protective effects and the mechanisms of rutin on LPS-induced ALI. Pre-administration with rutin inhibited LPS-induced arterial blood gas exchange and neutrophils infiltration in the lungs. LPS-induced expression of macrophage inflammatory protein (MIP)-2 and activation of matrix metalloproteinase (MMP)-9 were suppressed by rutin. In addition, the inhibitory concentration of rutin on phosphorylation of Akt was similar as MIP-2 expression and MMP-9 activation. In conclusion, rutin is a potential protective agent for ALI via suppressing the blood gas exchange and neutrophil infiltration. The mechanism of rutin is down-regulation of MIP-2 expression and MMP-9 activation through inhibition of Akt phosphorylation.

  10. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  11. Ferulic acid prevents LPS-induced up-regulation of PDE4B and stimulates the cAMP/CREB signaling pathway in PC12 cells

    PubMed Central

    Huang, Hao; Hong, Qian; Tan, Hong-ling; Xiao, Cheng-rong; Gao, Yue

    2016-01-01

    Aim: Phosphodiesterase 4 (PDE4) isozymes are involved in different functions, depending on their patterns of distribution in the brain. The PDE4 subtypes are distributed in different inflammatory cells, and appear to be important regulators of inflammatory processes. In this study we examined the effects of ferulic acid (FA), a plant component with strong anti-oxidant and anti-inflammatory activities, on lipopolysaccharide (LPS)-induced up-regulation of phosphodiesterase 4B (PDE4B) in PC12 cells, which in turn regulated cellular cAMP levels and the cAMP/cAMP response element binding protein (CREB) pathway in the cells. Methods: PC12 cells were treated with LPS (1 μg/mL) for 8 h, and the changes of F-actin were detected using laser scanning confocal microscopy. The levels of pro-inflammatory cytokines were measured suing ELISA kits, and PDE4B-specific enzymatic activity was assessed with a PDE4B assay kit. The mRNA levels of PDE4B were analyzed with Q-PCR, and the protein levels of CREB and phosphorylated CREB (pCREB) were determined using immunoblotting. Furthermore, molecular docking was used to identify the interaction between PDE4B2 and FA. Results: Treatment of PC12 cells with LPS induced thick bundles of actin filaments appearing in the F-actin cytoskeleton, which were ameliorated by pretreatment with FA (10–40 μmol/L) or with a PDE4B inhibitor rolipram (30 μmol/L). Pretreatment with FA dose-dependently inhibited the LPS-induced production of TNF-α and IL-1β in PC12 cells. Furthermore, pretreatment with FA dose-dependently attenuated the LPS-induced up-regulation of PDE4 activity in PC12 cells. Moreover, pretreatment with FA decreased LPS-induced up-regulation of the PDE4B mRNA, and reversed LPS-induced down-regulation of CREB and pCREB in PC12 cells. The molecular docking results revealed electrostatic and hydrophobic interactions between FA and PDE4B2. Conclusion: The beneficial effects of FA in PC12 cells might be conferred through inhibition of LPS-induced

  12. Tissue heme oxygenase-1 exerts anti-inflammatory effects on LPS-induced pulmonary inflammation.

    PubMed

    Konrad, F M; Knausberg, U; Höne, R; Ngamsri, K-C; Reutershan, J

    2016-01-01

    Heme oxygenase-1 (HO-1) has been shown to display anti-inflammatory properties in models of acute pulmonary inflammation. For the first time, we investigated the role of leukocytic HO-1 using a model of HO-1(flox/flox) mice lacking leukocytic HO-1 that were subjected to lipopolysaccharide (LPS)-induced acute pulmonary inflammation. Immunohistology and flow cytometry demonstrated that activation of HO-1 using hemin decreased migration of polymorphonuclear leukocytes (PMNs) to the lung interstitium and bronchoalveolar lavage (BAL) in the wild-type and, surprisingly, also in HO-1(flox/flox) mice, emphasizing the anti-inflammatory potential of nonmyeloid HO-1. Nevertheless, hemin reduced the CXCL1, CXCL2/3, tumor necrosis factor-α (TNFα), and interleukin 6 (IL6) levels in both animal strains. Microvascular permeability was attenuated by hemin in wild-type and HO-1(flox/flox) mice, indicating a crucial role of non-myeloid HO-1 in endothelial integrity. The determination of the activity of HO-1 in mouse lungs revealed no compensatory increase in the HO-1(flox/flox) mice. Topical administration of hemin via inhalation reduced the dose required to attenuate PMN migration and microvascular permeability by a factor of 40, emphasizing its clinical potential. In addition, HO-1 stimulation was protective against pulmonary inflammation when initiated after the inflammatory stimulus. In conclusion, nonmyeloid HO-1 is crucial for the anti-inflammatory effect of this enzyme on PMN migration to different compartments of the lung and on microvascular permeability.

  13. Salidroside attenuates LPS-induced pro-inflammatory cytokine responses and improves survival in murine endotoxemia.

    PubMed

    Guan, Shuang; Feng, Haihua; Song, Bocui; Guo, Weixiao; Xiong, Ying; Huang, Guoren; Zhong, Weiting; Huo, Meixia; Chen, Na; Lu, Jing; Deng, Xuming

    2011-12-01

    Salidroside is a major component isolated from the Rhodiola rosea. In the present study, we investigated the anti-inflammatory effects of salidroside on cytokine production by lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in vitro, and the results showed that salidroside reduced tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) secretions. This inspired us to further study the effects of salidroside in vivo. Salidroside significantly attenuated TNF-α, IL-1β and IL-6 productions in serum from mice challenged with LPS, and consistent with the results in vitro. In the murine model of endotoxemia, mice were treated with salidroside prior to or after LPS challenge. The results showed that salidroside significantly increased mouse survival. Further studies revealed that salidroside could downregulate LPS-induced nuclear transcription factor-қB (NF-қB) DNA-binding activation and ERK/MAPKs signal transduction pathways production in RAW 264.7 macrophages. These observations indicated that salidroside modulated early cytokine responses by blocking NF-қB and ERK/MAPKs activation, and thus, increased mouse survival. These effects of salidroside may be of potential usefulness in the treatment of inflammation-mediated endotoxemia. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Benznidazole, a drug used in Chagas' disease, ameliorates LPS-induced inflammatory response in mice.

    PubMed

    Pascutti, María Fernanda; Pitashny, Milena; Nocito, Ana Lía; Guermonprez, Pierre; Amigorena, Sebastian; Wietzerbin, Juana; Serra, Esteban; Bottasso, Oscar; Revelli, Silvia

    2004-12-24

    Benznidazole (BZL) is a drug currently used for treating Chagas' disease. Given our earlier demonstration in which BZL downregulated cytokine and nitric oxide (NO) synthesis by LPS and/or IFN-gamma-stimulated murine macrophages, we have now analysed whether this compound could exert beneficial effects in a model of LPS-induced inflammation in C57BL/6 mice. The lethal model consisted of two LPS intraperitoneal injections, 200 microg each separated by 2 h, with BZL given orally at a dose of 200 mg/kg, 18 and 2 h before the first challenge and 20 and 44 hr following the second one. In this model, BZL treatment led to a significantly decreased mortality in comparison with untreated counterparts. Remaining experiments were carried out in mice given a unique LPS dose, pretreated with BZL or not, since those subjected to the lethal protocol were unsuitable for laboratory handling. Analysis of IL-1beta, IL-6, TNF-alpha, IL-12 and iNOS mRNA expression in liver samples taken at 90 min post-LPS showed a marked reduction of the two latter mRNAs in BZL-treated mice. These animals also displayed significantly decreased peaks levels of serum TNF-alpha and IL-6, accompanied by a diminished number of IL-6-producing peritoneal macrophages. Present effects may broaden the potential usefulness of BZL in situations accompanied by an excessive inflammatory response.

  15. Diethylcarbamazine attenuates LPS-induced acute lung injury in mice by apoptosis of inflammatory cells.

    PubMed

    Fragoso, Ingrid Tavares; Ribeiro, Edlene Lima; Gomes, Fabiana Oliveira Dos Santos; Donato, Mariana Aragão Matos; Silva, Amanda Karolina Soares; Oliveira, Amanda Costa O de; Araújo, Shyrlene Meiry da Rocha; Barbosa, Karla Patrícia Sousa; Santos, Laise Aline Martins; Peixoto, Christina Alves

    2017-02-01

    Acute lung injury (ALI) is characterized by extensive neutrophil infiltration, and apoptosis delay considered part of the pathogenesis of the condition. Despite great advances in treatment strategies, few effective therapies are known for ALI. Diethylcarbamazine (DEC) is used against lymphatic filariasis, a number of studies have described its anti-inflammatory activities and pro-apoptotic effect. These properties have been associated with nuclear factor kappa-B inactivation. The aim of the present study was to investigate the effect of DEC on ALI induced by lipopolysaccharide (LPS) in mice. DEC effect was evaluated by histological and ultrastructural analysis, immunohistochemistry and western blot (WB). Also TUNEL assays were performed and as well as myeloperoxidase (MPO) levels and nitric oxide (NO) were measured. The results demonstrate that LPS induced histological and ultrastructural changes with tissue damage, intense cell infiltration and pulmonary edema, and also increased levels of MPO and NO. DEC reversed these effects, confirming its anti-inflammatory action. DEC pro-apoptotic activity was also evaluated. The expression of TUNEL-positive cells and caspase-3 was increased in DEC treated group. Furthermore, immunohistochemical and WB analysis showed that DEC increased the expression of pro-apoptotic proteins in both the intrinsic (Bax, cytochrome c and caspase-9) and the extrinsic pathways of apoptosis (Fas, FADD and caspase-8). Additionally, DEC reduced the expression of the anti-apoptotic protein Bcl-2. Our results suggest that DEC attenuates ALI through the prevention of inflammatory cells accumulation by stimulating apoptosis. DEC accelerates the resolution of inflammation and may be a potential pharmacological treatment for ALI. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  16. 6-7-Dimethoxy-4-methylcoumarin suppresses pro-inflammatory mediator expression through inactivation of the NF-κB and MAPK pathways in LPS-induced RAW 264.7 cells

    PubMed Central

    Kim, Kil-Nam; Yang, Hye-Won; Ko, Seok-Chun; Ko, Yeong-Jong; Kim, Eun-A; Roh, Seong Woon; Ko, Eun-Yi; Ahn, Ginnae; Heo, Soo-Jin; Jeon, You-Jin; Yoon, Weon-Jong; Hyun, Chang-Gu; Kim, Daekyung

    2014-01-01

    In this study, we investigated the ability of 6,7-dimethoxy-4-methylcoumarin (DMC) to inhibit lipopolysaccharide (LPS)-induced expression of pro-inflammatory mediators in mouse macrophage (RAW 264.7) cells, and the molecular mechanism through which this inhibition occurred. Our results indicated that DMC downregulated LPS-induced nitric oxide (NO) synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, thereby reducing the production of NO and prostaglandin E2 (PGE2) in LPS-activated RAW 264.7 cells. Furthermore, DMC suppressed LPS-induced production of pro-inflammatory cytokines such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α. To elucidate the mechanism underlying the anti-inflammatory activity of DMC, we assessed its effects on the mitogen-activated protein kinase (MAPK) pathway and the activity and expression of nuclear transcription factor kappa-B (NF-κB). The experiments demonstrated that DMC inhibited LPS-induced phosphorylation of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), and p38. In addition, it attenuated LPS-induced NF-κB activation via the inhibition of IκB-α phosphorylation. Taken together, these data suggest that DMC exerts its anti-inflammatory effects in RAW 264.7 cells through the inhibition of LPS-stimulated NF-κB and MAPK signaling, thereby downregulating the expression of pro-inflammatory mediators. PMID:26417302

  17. Corticosteroids effects on LPS-induced rat inflammatory keratocyte cell model

    PubMed Central

    Shen, Shuhao; Wu, Zheng; Wan, Pengxia

    2017-01-01

    Purpose Corticosteroids are efficient anti-inflammation treatments. However, there are still arguments on whether it should be used in keratitis. This study was to observe the effect of corticosteroids on keratocytes both in normal condition and inflammation status in vitro. Methods Rat keratocytes were cultured and used for examination. 10 μg/ml lipopolysaccharide (LPS) was used to establish the inflammatory keratocyte cell model, and prednisolone acetate (PA), dexamethasone (Dex) and fluorometholone (Flu) were used as corticosteroids treatments. 5 d-growth curve and cell viabilities were assayed by CCK8, and cell morphologies and migration rate were studied. TNF-α, IL-6 and IL-1β levels were examined by ELISA. Western blotting was used to quantified type VI collagen (Col VI) and matrix metalloproteinase 9 (MMP9) expressions, and immunofluorescence staining assays of Col I and Col VI were carried out. Results In normal condition, proliferation and migration of keratocytes were slightly influenced in PA, Dex and Flu groups. The secretion of Col I and Col VI was suppressed and MMP9 expression increased in corticosteroids groups. But no significant difference was seen in TNF-α, IL-6 and IL-1β expression levels. In inflammatory status, TNF-α, IL-6 and MMP9 levels increased in LPS group, while they significantly decreased in corticosteroids groups. Although keratocytes viabilities and migration were slightly affected in 24 h, no significant differences were seen between LPS group and corticosteroids groups in 5-d proliferation. Col I and Col VI secretion in LPS-keratocytes was maintained with corticosteroids treatments. Conclusions Corticosteroids showed lightly effects on keratocytes proliferation and migration, but it successfully decreased TNF-α, IL-6 level and maintained the secretion of and Col I and Col VI, while suppressed the expression of MMP9 in LPS-induced keratocytes. PA was suggested to use in early stage of keratitis clinical treatment. PMID

  18. Corticosteroids effects on LPS-induced rat inflammatory keratocyte cell model.

    PubMed

    Yan, Huize; Wang, Yingwei; Shen, Shuhao; Wu, Zheng; Wan, Pengxia

    2017-01-01

    Corticosteroids are efficient anti-inflammation treatments. However, there are still arguments on whether it should be used in keratitis. This study was to observe the effect of corticosteroids on keratocytes both in normal condition and inflammation status in vitro. Rat keratocytes were cultured and used for examination. 10 μg/ml lipopolysaccharide (LPS) was used to establish the inflammatory keratocyte cell model, and prednisolone acetate (PA), dexamethasone (Dex) and fluorometholone (Flu) were used as corticosteroids treatments. 5 d-growth curve and cell viabilities were assayed by CCK8, and cell morphologies and migration rate were studied. TNF-α, IL-6 and IL-1β levels were examined by ELISA. Western blotting was used to quantified type VI collagen (Col VI) and matrix metalloproteinase 9 (MMP9) expressions, and immunofluorescence staining assays of Col I and Col VI were carried out. In normal condition, proliferation and migration of keratocytes were slightly influenced in PA, Dex and Flu groups. The secretion of Col I and Col VI was suppressed and MMP9 expression increased in corticosteroids groups. But no significant difference was seen in TNF-α, IL-6 and IL-1β expression levels. In inflammatory status, TNF-α, IL-6 and MMP9 levels increased in LPS group, while they significantly decreased in corticosteroids groups. Although keratocytes viabilities and migration were slightly affected in 24 h, no significant differences were seen between LPS group and corticosteroids groups in 5-d proliferation. Col I and Col VI secretion in LPS-keratocytes was maintained with corticosteroids treatments. Corticosteroids showed lightly effects on keratocytes proliferation and migration, but it successfully decreased TNF-α, IL-6 level and maintained the secretion of and Col I and Col VI, while suppressed the expression of MMP9 in LPS-induced keratocytes. PA was suggested to use in early stage of keratitis clinical treatment.

  19. Manganese Potentiates LPS-Induced Heme-Oxygenase 1 in Microglia but not Dopaminergic Cells: Role in Controlling Microglial Hydrogen Peroxide and Inflammatory Cytokine Output

    PubMed Central

    Dodd, Celia A.; Filipov, Nikolay M.

    2012-01-01

    Excessive manganese (Mn) exposure increases output of glial-derived inflammatory products, which may indirectly contribute to the neurotoxic effects of this essential metal. In microglia, Mn increases hydrogen peroxide (H2O2) release and potentiates lipopolysaccharide (LPS)-induced cytokines (TNF-α, IL-6) and nitric oxide (NO). Inducible heme-oxygenase (HO-1) plays a role in the regulation of inflammation and its expression is upregulated in response to oxidative stressors, including metals and LPS. Because Mn can oxidatively affect neurons both directly and indirectly, we investigated the effect of Mn exposure on the induction of HO-1 in resting and LPS-activated microglia (N9) and dopaminergic neurons (N27). In microglia, 24 h exposure to Mn (up to 250 μM) had minimal effects on its own, but it markedly potentiated LPS (100 ng/ml)-induced HO-1protein and mRNA. Inhibition of microglial HO-1 activity with two different inhibitors indicated that HO-1 is a positive regulator of the Mn-potentiated cytokine output and a negative regulator of the Mn-induced H2O2 output. Mn enhancement of LPS-induced HO-1 does not appear to be dependent on H2O2 or NO, as Mn+LPS-induced H2O2 release was not greater than the increase induced by Mn alone and inhibition of iNOS did not change Mn potentiation of HO-1. However, because Mn exposure potentiated the LPS-induced nuclear expression of small Maf proteins, this may be one mechanism Mn uses to affect the expression of HO-1 in activated microglia. Finally, the potentiating effects of Mn on HO-1 appear to be glia-specific for Mn, LPS, or Mn+LPS did not induce HO-1 in N27 neuronal cells. PMID:21963524

  20. Saikosaponin a inhibits LPS-induced inflammatory response by inducing liver X receptor alpha activation in primary mouse macrophages

    PubMed Central

    Wei, Zhengkai; Wang, Jingjing; Shi, Mingyu; Liu, Weijian; Yang, Zhengtao; Fu, Yunhe

    2016-01-01

    The aim of this study was to investigate the effects of SSa on LPS-induced endotoxemia in mice and clarify the possible mechanism. An LPS-induced endotoxemia mouse model was used to confirm the anti-inflammatory activity of SSa in vivo. The primary mouse macrophages were used to investigate the molecular mechanism and targets of SSa in vitro. In vivo, the results showed that SSa improved survival during lethal endotoxemia. In vitro, our results showed that SSa dose-dependently inhibited the expression of TNF-α, IL-6, IL-1β, IFN-β-and RANTES in LPS-stimulated primary mouse macrophages. Western blot analysis showed that SSa suppressed LPS-induced NF-κB and IRF3 activation. Furthermore, SSa disrupted the formation of lipid rafts by depleting cholesterol and inhibited TLR4 translocation into lipid rafts. Moreover, SSa activated LXRα, ABCA1 and ABCG1. Silencing LXRα abrogated the effect of SSa. In conclusion, the anti-inflammatory effects of SSa is associated with activating LXRα dependent cholesterol efflux pathway which result in disrupting lipid rafts by depleting cholesterol and reducing translocation of TLR4 to lipid rafts, thereby attenuating LPS mediated inflammatory response. PMID:27285988

  1. Metformin Suppresses Lipopolysaccharide (LPS)-induced Inflammatory Response in Murine Macrophages via Activating Transcription Factor-3 (ATF-3) Induction*

    PubMed Central

    Kim, Juyoung; Kwak, Hyun Jeong; Cha, Ji-Young; Jeong, Yun-Seung; Rhee, Sang Dahl; Kim, Kwang Rok; Cheon, Hyae Gyeong

    2014-01-01

    Metformin, a well known antidiabetic agent that improves peripheral insulin sensitivity, also elicits anti-inflammatory actions, but its mechanism is unclear. Here, we investigated the mechanism responsible for the anti-inflammatory effect of metformin action in lipopolysaccharide (LPS)-stimulated murine macrophages. Metformin inhibited LPS-induced production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in a concentration-dependent manner and in parallel induction of activating transcription factor-3 (ATF-3), a transcription factor and member of the cAMP-responsive element-binding protein family. ATF-3 knockdown abolished the inhibitory effects of metformin on LPS-induced proinflammatory cytokine production accompanied with reversal of metformin-induced suppression of mitogen-activated protein kinase (MAPK) phosphorylation. Conversely, AMP-activated protein kinase (AMPK) phosphorylation and NF-κB suppression by metformin were unaffected by ATF-3 knockdown. ChIP-PCR analysis revealed that LPS-induced NF-κB enrichments on the promoters of IL-6 and TNF-α were replaced by ATF-3 upon metformin treatment. AMPK knockdown blunted all the effects of metformin (ATF-3 induction, proinflammatory cytokine inhibition, and MAPK inactivation), suggesting that AMPK activation by metformin is required for and precedes ATF-3 induction. Oral administration of metformin to either mice with LPS-induced endotoxemia or ob/ob mice lowered the plasma and tissue levels of TNF-α and IL-6 and increased ATF-3 expression in spleen and lungs. These results suggest that metformin exhibits anti-inflammatory action in macrophages at least in part via pathways involving AMPK activation and ATF-3 induction. PMID:24973221

  2. Metformin suppresses lipopolysaccharide (LPS)-induced inflammatory response in murine macrophages via activating transcription factor-3 (ATF-3) induction.

    PubMed

    Kim, Juyoung; Kwak, Hyun Jeong; Cha, Ji-Young; Jeong, Yun-Seung; Rhee, Sang Dahl; Kim, Kwang Rok; Cheon, Hyae Gyeong

    2014-08-15

    Metformin, a well known antidiabetic agent that improves peripheral insulin sensitivity, also elicits anti-inflammatory actions, but its mechanism is unclear. Here, we investigated the mechanism responsible for the anti-inflammatory effect of metformin action in lipopolysaccharide (LPS)-stimulated murine macrophages. Metformin inhibited LPS-induced production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in a concentration-dependent manner and in parallel induction of activating transcription factor-3 (ATF-3), a transcription factor and member of the cAMP-responsive element-binding protein family. ATF-3 knockdown abolished the inhibitory effects of metformin on LPS-induced proinflammatory cytokine production accompanied with reversal of metformin-induced suppression of mitogen-activated protein kinase (MAPK) phosphorylation. Conversely, AMP-activated protein kinase (AMPK) phosphorylation and NF-κB suppression by metformin were unaffected by ATF-3 knockdown. ChIP-PCR analysis revealed that LPS-induced NF-κB enrichments on the promoters of IL-6 and TNF-α were replaced by ATF-3 upon metformin treatment. AMPK knockdown blunted all the effects of metformin (ATF-3 induction, proinflammatory cytokine inhibition, and MAPK inactivation), suggesting that AMPK activation by metformin is required for and precedes ATF-3 induction. Oral administration of metformin to either mice with LPS-induced endotoxemia or ob/ob mice lowered the plasma and tissue levels of TNF-α and IL-6 and increased ATF-3 expression in spleen and lungs. These results suggest that metformin exhibits anti-inflammatory action in macrophages at least in part via pathways involving AMPK activation and ATF-3 induction. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Decitabine and 5-azacitidine both alleviate LPS induced ARDS through anti-inflammatory/antioxidant activity and protection of glycocalyx and inhibition of MAPK pathways in mice.

    PubMed

    Huang, Xiao; Kong, Guiqing; Li, Yan; Zhu, Weiwei; Xu, Haixiao; Zhang, Xiaohua; Li, Jiankui; Wang, Lipeng; Zhang, Zhongwen; Wu, Yaru; Liu, Xiangyong; Wang, Xiaozhi

    2016-12-01

    Decitabine (5-aza-2'-deoxycytidine, DAC) and 5-azacitidine (Aza), an inhibitor of DNA methyltransferases, possess a wide range of anti-metabolic and anti-cancer activities. This study examined the effects of DAC and Aza on inflammatory and oxidative injuries, as well as on glycocalyx and MAPK signaling pathways, in a LPS-stimulated ARDS mouse model. Results of ELISA revealed that DAC and Aza significantly inhibited the production of TNF-α and IL-1β and prevented LPS-induced elevation of myeloperoxidase and malondialdehyde levels in serum. The W/D ratio of lung and histopathologic examination with hematoxylin and eosin staining showed that DAC and Aza pretreatment substantially improved lung tissue injury. DAC and Aza reduced the level of glycocalyx degradation products (e.g., heparan sulfate and haluronic acid) and protected glycocalyx integrity. Western blot assay demonstrated that DAC and Aza both significantly suppressed LPS-induced activation of the MAPK signaling pathways by blocking the phosphorylation of JNK, ERK and P38 in lung tissues. Bisulfite sequencing PCR and real time-PCR showed that DAC reversed the RASSF1A promoter hypermethylation and furthermore elevated the expression of RASSF1A, which is a tumor suppressor that regulates MAPK signaling pathway. These results suggested that DAC inhibited the MAPK signaling pathway in LPS-induced ARDS mice might via demethylation in RASSF1A promoter region and by restoring its expression. This study highlighted the close relationship between DNA methylation and the development and progression of ARDS.

  4. Increased resistance to LPS-induced myocardial dysfunction in the Brown Norway rats versus Dahl S rats: roles of inflammatory cytokines and nuclear factor kappaB pathway.

    PubMed

    Du, Jianhai; An, Jianzhong; Wei, Na; Guan, Tongju; Pritchard, Kirkwood A; Shi, Yang

    2010-03-01

    We previously demonstrated that hearts from Brown Norway (BN) rats were more resistant to ischemic injury than hearts from Dahl S (SS) rats. Here we determined the susceptibility to LPS-induced cardiomyopathy in these rats and examined the involvement of inflammatory signaling. Both strains were treated with LPS (20 mg/kg) via i.p. injection for 6 h. Myocardial function was assessed by the Langendorff system, and proinflammatory cytokines were measured by the enzyme-linked immunosorbent assay. LPS significantly reduced left ventricular developed pressure in both strains. Interestingly, the decrease of left ventricular developed pressure in BN rat hearts was approximately 25% less than that in SS rat hearts. Furthermore, LPS significantly reduced the peak rate of contraction and the peak rate of relaxation in SS hearts but not in BN hearts. No differences in LPS-induced decreases in coronary flow rate were observed between BN and SS rats. In addition, LPS-induced increases in proinflammatory cytokines, TNF-alpha, IL-1beta, and IL-6, were significantly lower in both plasma and hearts of BN rats compared with production in SS rats. LPS notably up-regulated the expression of proinflammatory enzymes, iNOS and cyclooxygenase 2, in SS hearts but not in BN hearts. Interestingly, LPS did not stimulate Toll-like receptor 4 or its adaptor myeloid differentiation factor 88 expression in the hearts of either strain but did increase IkappaB and P65 phosphorylation, less prominently in BN hearts than in SS hearts. These data indicate that reduced production of proinflammatory cytokines and diminished nuclear factor kappaB activation are major mechanisms by which BN hearts are more resistant to LPS-induced myocardial dysfunction than SS hearts.

  5. (+)-Catechin Attenuates NF-κB Activation Through Regulation of Akt, MAPK, and AMPK Signaling Pathways in LPS-Induced BV-2 Microglial Cells.

    PubMed

    Syed Hussein, Sharifah Salwa; Kamarudin, Muhamad Noor Alfarizal; Kadir, Habsah Abdul

    2015-01-01

    (+)-Catechin is a flavanol that possesses various health and medicinal values, which include neuroprotection, anti-oxidation, antitumor and antihepatitis activities. This study investigated the modulatory effects of (+)-catechin on the lipopolysaccharides (LPS)-stimulated BV-2 cells. (+)-catechin attenuated LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and inhibited microglial NO and ROS production. Additionally, (+)-catechin suppressed the production of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, while augmenting IL-4. (+)-catechin attenuated LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation via the inhibition of IκB-α phosphorylation. Moreover, (+)-catechin blocked the activation of Akt and its inhibition was shown to play a crucial role in LPS-induced inflammation in BV-2 microglial cells. (+)-catechin also attenuated the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK1/2), and p-38 mitogen activated protein kinases (p38 MAPK) and specific inhibitors of ERK1/2 (UO126) and p38 MAPK (SB202190) subsequently down-regulated the expression of the proinflammatory mediators iNOS and COX-2. Further mechanistic study revealed that (+)-catechin acted through the amelioration of the LPS-induced suppression of adenosine monophosphate-activated protein kinase (AMPK) activity. Taken together, our data indicate that (+)-catechin exhibits anti-inflammatory effects in BV-2 cells by suppressing the production of proinflammatory mediators and mitigation of NF-κB through Akt, ERK, p38 MAPK, and AMPK pathways.

  6. The regulation of cytochrome P450 2E1 during LPS-induced inflammation in the rat

    SciTech Connect

    Abdulla, Dalya; Goralski, Kerry B.; Renton, Kenneth W. . E-mail: Ken.Renton@dal.ca

    2006-10-01

    It is well known that inflammatory and infectious conditions differentially regulate cytochrome P450 (P450)-mediated drug metabolism in the liver. We have previously outlined a potential pathway for the downregulation in hepatic cytochrome P450 following LPS-mediated inflammation in the CNS (Abdulla, D., Goralski, K.B., Garcia Del Busto Cano, E., Renton, K.W., 2005. The signal transduction pathways involved in hepatic cytochrome P450 regulation in the rat during an LPS-induced model of CNS inflammation. Drug Metab. Dispos). The purpose of this study was to outline the effects of LPS-induced peripheral and central nervous system inflammation on hepatic cytochrome P450 2E1 (CYP2E1) in vivo, an enzyme that plays an important role in various physiological and pathological states. We report an increase in hepatic mRNA expression of CYP2E1 that occurred as early as 2-3 h following either the intraperitoneal (i.p.) injection of 5 mg/kg LPS or i.c.v. administration of 25 {mu}g of LPS. This increase in CYP2E1 mRNA expression was sustained for 24 h. In sharp contrast to the increase in hepatic CYP2E1 mRNA, we observed a significant reduction in the catalytic activity of this enzyme 24 h following either the i.c.v. or i.p. administration of LPS. Cycloheximide or actinomycin-D did not change the LPS-mediated downregulation in hepatic CYP2E1 catalytic activity. Our results support the idea that LPS acts at two different levels to regulate hepatic CYP2E1: a transcriptional level to increase CYP2E1 mRNA expression and a post-transcriptional level to regulate CYP2E1 protein and activity.

  7. The effects of paeoniflorin on LPS-induced liver inflammatory reactions.

    PubMed

    Kim, In Deok; Ha, Bae Jin

    2010-06-01

    Paeoniflorin (PF), a monoterpene glucoside, is a primary bioactive component of paeony, the root extract of Paeonia lactiflora. We tested the antioxidant effects of PF and its ability to prevent lipopolysaccharide (LPS)-induced oxidative stress. We intraperitoneally administered PF (2.5, 5, or 10 mg/kg) to rats for 20 days. On day 21, we injected the rats with LPS 4 h before sacrifice and measured serum levels of glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, lactate dehydrogenase as well as the levels of malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase in liver whole-cell homogenates and mitochondrial fractions. LPS treatment increased levels of glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, lactate dehydrogenase, and malondialdehyde, but PF treatment blocked these increases. LPS treatment also decreased antioxidant levels of superoxide dismutase, catalase, and glutathione peroxidase, but PF blocked these decreases. PF also protected liver tissue, as shown by histopathology. These results suggest that PF can protect against LPS-induced liver inflammation.

  8. Polymethoxyflavone Apigenin-Trimethylether Suppresses LPS-Induced Inflammatory Response in Nontransformed Porcine Intestinal Cell Line IPEC-J2.

    PubMed

    Farkas, Orsolya; Palócz, Orsolya; Pászti-Gere, Erzsébet; Gálfi, Péter

    2015-01-01

    The in vitro anti-inflammatory effect of apigenin and its trimethylated analogue (apigenin-trimethylether) has been investigated in order to evaluate whether these flavonoids could attenuate LPS-induced inflammation in IPEC-J2 non-transformed intestinal epithelial cells. Levels of IL-6, IL-8, TNF-α, and COX-2 mRNA were measured as a marker of inflammatory response. The extracellular H2O2 level in IPEC-J2 cells was also monitored by Amplex Red assay. Our data revealed that both compounds had significant lowering effect on the inflammatory response. Apigenin (at 25 μM) significantly decreased gene expression of IL-6 in LPS-treated cells, while apigenin-trimethylether in the same concentration did not influence IL-6 mRNA level. Both apigenin and apigenin-trimethylether reduced IL-8 gene expression significantly. TNF-α mRNA level was decreased by apigenin-trimethylether, which was not influenced by apigenin. Treatment with both flavonoids caused significant reduction in the mRNA level of COX-2, but the anti-inflammatory effect of the methylated analogue was more effective than the unmethylated one. Furthermore, both flavonoids reduced significantly the level of extracellular H2O2 compared to the control cells. In conclusion, the methylated apigenin analogue could avoid LPS-induced intestinal inflammation and it could be applied in the future as an effective anti-inflammatory compound.

  9. Polymethoxyflavone Apigenin-Trimethylether Suppresses LPS-Induced Inflammatory Response in Nontransformed Porcine Intestinal Cell Line IPEC-J2

    PubMed Central

    Farkas, Orsolya; Palócz, Orsolya; Pászti-Gere, Erzsébet; Gálfi, Péter

    2015-01-01

    The in vitro anti-inflammatory effect of apigenin and its trimethylated analogue (apigenin-trimethylether) has been investigated in order to evaluate whether these flavonoids could attenuate LPS-induced inflammation in IPEC-J2 non-transformed intestinal epithelial cells. Levels of IL-6, IL-8, TNF-α, and COX-2 mRNA were measured as a marker of inflammatory response. The extracellular H2O2 level in IPEC-J2 cells was also monitored by Amplex Red assay. Our data revealed that both compounds had significant lowering effect on the inflammatory response. Apigenin (at 25 μM) significantly decreased gene expression of IL-6 in LPS-treated cells, while apigenin-trimethylether in the same concentration did not influence IL-6 mRNA level. Both apigenin and apigenin-trimethylether reduced IL-8 gene expression significantly. TNF-α mRNA level was decreased by apigenin-trimethylether, which was not influenced by apigenin. Treatment with both flavonoids caused significant reduction in the mRNA level of COX-2, but the anti-inflammatory effect of the methylated analogue was more effective than the unmethylated one. Furthermore, both flavonoids reduced significantly the level of extracellular H2O2 compared to the control cells. In conclusion, the methylated apigenin analogue could avoid LPS-induced intestinal inflammation and it could be applied in the future as an effective anti-inflammatory compound. PMID:26180592

  10. Sildenafil attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-κB signaling pathways in N9 microglia.

    PubMed

    Zhao, Siqi; Zhang, Lijia; Lian, Guoning; Wang, Xiaoxiao; Zhang, Haotian; Yao, Xuechun; Yang, Jingyu; Wu, Chunfu

    2011-04-01

    Excessive activation of microglial cells has been implicated in various neuroinflammation. The present study showed that sildenafil, a PDE5 inhibitor, significantly suppressed NO, interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) production induced by LPS in microglial cells through decreasing the protein and/or mRNA expressions of inducible NO synthase (iNOS), IL-1β and TNF-α in a concentration-dependent manner. Sildenafil also blocked IκBα phosphorylation and degradation, inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38 MAPK, and c-Jun N-terminal kinase (JNK). Moreover, the increase of the expression of gp91phox, a critical and catalytic subunit of NADPH oxidase, and the levels of intracellular reactive oxygen species (iROS) induced by LPS were markedly inhibited by sildenafil. In summary, these data suggest that sildenafil exerts its in vitro anti-inflammatory effect in LPS-activated N9 microglial cells by blocking nuclear factor-κB (NF-κB) and MAPKs activation, which may be partly due to its potent down-regulation of the NADPH-derived iROS production.

  11. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda

    2016-02-01

    Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases.

  12. LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease.

    PubMed

    Ceccarelli, Sara; Panera, Nadia; Mina, Marco; Gnani, Daniela; De Stefanis, Cristiano; Crudele, Annalisa; Rychlicki, Chiara; Petrini, Stefania; Bruscalupi, Giovannella; Agostinelli, Laura; Stronati, Laura; Cucchiara, Salvatore; Musso, Giovanni; Furlanello, Cesare; Svegliati-Baroni, Gianluca; Nobili, Valerio; Alisi, Anna

    2015-12-08

    Lipopolysaccharide (LPS) is currently considered one of the major players in non-alcoholic fatty liver disease (NAFLD) pathogenesis and progression. Here, we aim to investigate the possible role of LPS-induced TNF-α factor (LITAF) in inducing a pro-inflammatory and pro-fibrogenic phenotype of non-alcoholic steatohepatitis (NASH).We found that children with NAFLD displayed, in different liver-resident cells, an increased expression of LITAF which correlated with histological traits of hepatic inflammation and fibrosis. Total and nuclear LITAF expression increased in mouse and human hepatic stellate cells (HSCs). Moreover, LPS induced LITAF-dependent transcription of IL-1β, IL-6 and TNF-α in the clonal myofibroblastic HSC LX-2 cell line, and this effect was hampered by LITAF silencing. We showed, for the first time in HSCs, that LITAF recruitment to these cytokine promoters is LPS dependent. However, preventing LITAF nuclear translocation by p38MAPK inhibitor, the expression of IL-6 and TNF-α was significantly reduced with the aid of p65NF-ĸB, while IL-1β transcription exclusively required LITAF expression/activity. Finally, IL-1β levels in plasma mirrored those in the liver and correlated with LPS levels and LITAF-positive HSCs in children with NASH.In conclusion, a more severe histological profile in paediatric NAFLD is associated with LITAF over-expression in HSCs, which in turn correlates with hepatic and circulating IL-1β levels outlining a panel of potential biomarkers of NASH-related liver damage. The in vitro study highlights the role of LITAF as a key regulator of the LPS-induced pro-inflammatory pattern in HSCs and suggests p38MAPK inhibitors as a possible therapeutic approach against hepatic inflammation in NASH.

  13. Ambroxol inhalation ameliorates LPS-induced airway inflammation and mucus secretion through the extracellular signal-regulated kinase 1/2 signaling pathway.

    PubMed

    Zhang, Shui-juan; Jiang, Juan-xia; Ren, Qian-qian; Jia, Yong-liang; Shen, Jian; Shen, Hui-juan; Lin, Xi-xi; Lu, Hong; Xie, Qiang-min

    2016-03-15

    Ambroxol, a metabolite of bromhexine, is shown to exert several pharmacological activities, including secretolytic, anti-inflammatory and antioxidant actions. Oral and intravenous administration of ambroxol is useful for the airway inflammatory diseases. However, little is known about its potential in inhalation therapy for lipopolysaccharide (LPS)-induced mucous hypersecretion and inflammatory response. In the present study, we compared the pharmacological effects of ambroxol by inhalation with intravenous administration and preliminarily explored its mechanism of action. Our results demonstrated that ambroxol administered by inhalation inhibited MUC5AC expression, reduced glycosaminoglycan levels, enhanced the function of mucociliary clearance and promoted sputum excretion, suggesting that ambroxol increases expectoration of sputum by reducing its viscosity. Moreover, ambroxol significantly alleviated LPS-induced the influx of inflammatory cells and the extracellular signal-regulated kinase 1/2 (Erk 1/2) expression in lung tissues, and inhibited increases in the mRNA expression of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α, CCL-2 (monocyte chemotactic protein-1), KC (keratinocyte cell protein) and interleukin (IL)-1β in lung tissues. The secretolytic and anti-inflammatory effects of inhaled ambroxol at a dose of 7.5 mg/ml was comparable to that of ambroxol at 20 mg/ml i.v. and dexamethasone at 0.5 mg/kg i.p. In addition, we found that ambroxol dose-dependently inhibited LPS-induced increases in the mRNA expression of MUC5AC, TNF-α, and IL-1β in human bronchial epithelial cell (NCI-H292) by inhibiting the Erk signaling pathway. These results demonstrate the beneficial effects of ambroxol in inhalation therapy for the airway inflammatory diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Peroxiredoxin 5 (Prx5) decreases LPS-induced microglial activation through regulation of Ca(2+)/calcineurin-Drp1-dependent mitochondrial fission.

    PubMed

    Park, Junghyung; Choi, Hoonsung; Kim, Bokyung; Chae, Unbin; Lee, Dong Gil; Lee, Sang-Rae; Lee, Seunghoon; Lee, Hyun-Shik; Lee, Dong-Seok

    2016-10-01

    Microglial activation is a hallmark of neurodegenerative diseases. ROS activates microglia by regulating transcription factors to express pro-inflammatory genes and is associated with disruption of Ca(2+) homeostasis through thiol redox modulation. Recently, we reported that Prx5 can regulate activation of microglia cells by governing ROS. In addition, LPS leads to excessive mitochondrial fission, and regulation of mitochondrial dynamics involved in a pro-inflammatory response is important for the maintenance of microglial activation. However, the precise relationship among these signals and the role of Prx5 in mitochondrial dynamics and microglial activation is still unknown. In this study, we demonstrated that Ca(2+)/calcineurin-dependent de-phosphorylation of Drp1 induces mitochondrial fission and regulates mitochondrial ROS production, which influences the expression of pro-inflammatory mediators in LPS-induced microglia cells. Moreover, it is likely that cytosolic and Nox-derived ROS were upstream of mitochondrial fission and mitochondrial ROS generation in activated microglia cells. Prx5 regulates LPS-induced mitochondrial fission through modulation of Ca(2+)/calcineurin-dependent Drp1 de-phosphorylation by eliminating Nox-derived and cytosolic ROS. Therefore, we suggest that mitochondrial dynamics may be essential for understanding pro-inflammatory responses and that Prx5 may be used as a new therapeutic target to prevent neuroinflammation and neurodegenerative diseases.

  15. RETRACTED: Sophocarpine displays anti-inflammatory effect via inhibiting TLR4 and TLR4 downstream pathways on LPS-induced mastitis in the mammary gland of mice.

    PubMed

    Wang, Dehai; Xu, Niannian; Zhang, Zhenbiao; Yang, Shijin; Qiu, Changwei; Li, Chengye; Deng, Ganzhen; Guo, Mengyao

    2016-06-01

    Mastitis is defined as the inflammation of the mammary gland. LPS, which is widely used to induce mastitis models for the study of this disease, triggers similar inflammation as Escherichia coli. Sophocarpine, isolated from Sophora alopecuroides L., exhibits multiple biological properties. The aim of the present study was to determine the anti-inflammatory effect and mechanism of action of sophocarpine on mastitis within an LPS-induced mouse model. ELISA and western blotting were performed to detect protein levels. The qPCR was performed to detect mRNA levels. The ELISA and qRT-PCR results showed that sophocarpine inhibited the expression of TNF-α, IL-1β and IL-6 in a dose-dependent manner. However, sophocarpine suppressed TLR4 expression. Further study showed that sophocarpine could suppress the phosphorylation of IκBα, p65 and p38. These results confirm that sophocarpine played an anti-inflammatory role in LPS-induced mastitis by regulating TLR4 and the NF-κB and MAPK signaling pathways in mammary gland tissues. Therefore, sophocarpine may be a potential therapeutic drug for the treatment of mastitis. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effects of Cellular 11β-hydroxysteroid Dehydrogenase 1 on LPS-induced Inflammatory Responses in Synovial Cell Line, SW982

    PubMed Central

    Kim, Ki Nam; Shim, Jung Hyun

    2017-01-01

    11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) catalyzes the conversion of inactive cortisone into active cortisol, which has pleiotropic roles in various biological conditions, such as immunological and metabolic homeostasis. Cortisol is mainly produced in the adrenal gland, but can be locally regenerated in the liver, fat, and muscle. Its diverse actions are primarily mediated by binding to the glucocorticoid receptor. SW982, a human synovial cell line, expresses 11β-HSD type 1, but not type 2, that catalyzes the conversion of cortisone to cortisol. In this study, therefore, we investigated the control of lipopolysaccharide (LPS)-induced inflammatory responses by prereceptor regulation-mediated maintenance of cortisol levels. Preliminarily, cell seeding density and incubation period were optimized for analyzing the catalytic activity of SW982. Additionally, cellular 11β-HSD1 still remained active irrespective of monolayer or spheroid culture conditions. Inflammatory stimulants, such as interleukin (IL)-1β, tumor necrosis factor (TNF)α, and LPS, did not affect the catalytic activity of 11β-HSD1, although a high dose of LPS significantly decreased its activity. Additionally, autocrine effects of cortisol on inflammatory responses were investigated in LPS-stimulated SW982 cells. LPS upregulated pro-inflammatory cytokines, including IL-6 and IL-1β, in SW982 cells, while cortisol production, catalyzed by cellular 11β-HSD1, downregulated LPS-stimulated cytokines. Furthermore, suppression of NFκB activation-mediated pro-inflammatory responses by cortisol was revealed. In conclusion, the activity of cellular 11β-HSD1 was closely correlated with suppression of LPS-induced inflammation. Therefore, these results partly support the notion that prereceptor regulation of locally regenerated cortisol could be taken into consideration for treatment of inflammation-associated diseases, including arthritis. PMID:28680378

  17. Isofraxidin exhibited anti-inflammatory effects in vivo and inhibited TNF-α production in LPS-induced mouse peritoneal macrophages in vitro via the MAPK pathway.

    PubMed

    Niu, Xiaofeng; Xing, Wei; Li, Weifeng; Fan, Ting; Hu, Hua; Li, Yongmei

    2012-10-01

    Isofraxidin (IF) is a Coumarin compound that can be isolated from medicinal plants, such as Sarcandra glabra (Thunb.). Nakai is widely used in Asian countries for the treatment of anti-bacterial, anti-inflammatory and anti-tumour action. The present investigation was designed to evaluate the effect of IF on inflammation and nociception. In addition, we investigated a potential novel mechanism to explain the anti-inflammatory properties of IF. In vivo, xylene-induced mouse ear edema, carrageenan-induced rat paw edema, LPS-induced mouse endotoxic shock, acetic acid-induced mice writhing and formalin-induced mouse pain models were used to evaluate the anti-inflammatory activity of IF. In vitro, we examined the effects of IF inhibition on TNF-α production and the regulation of ERK1/2 and p38 phosphorylation activity in LPS-induced mouse peritoneal macrophages. Our results demonstrated that IF can significantly decrease xylene-induced ear edema, carrageenan-induced paw edema, acetic acid-induced writhing and formalin-induced pain. Moreover, IF greatly inhibited the production of TNF-α in the serum of LPS-stimulated mice and peritoneal macrophages, and it decreased phospho-p38 and ERK1/2 protein expression in LPS-stimulated mouse peritoneal macrophages. Overall, our data suggest that IF possesses significant analgesic and anti-inflammatory activities that may be mediated through the regulation of pro-inflammatory cytokines, TNF-α and the phosphorylation of p38 and ERK1/2.

  18. A TLR4/MD2 fusion protein inhibits LPS-induced pro-inflammatory signaling in hepatic stellate cells

    SciTech Connect

    Schnabl, Bernd Brandl, Katharina; Fink, Marina; Gross, Philipp; Taura, Kojiro; Gaebele, Erwin; Hellerbrand, Claus; Falk, Werner

    2008-10-17

    Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrogenesis. In injured liver they are the main extracellular matrix protein producing cell type and further perpetuate hepatic injury by secretion of pro-inflammatory mediators. Since LPS-mediated signaling through toll-like receptor 4 (TLR4) has been identified as key fibrogenic signal in HSCs we aimed to test TLR4 as potential target of therapy via ligand-binding soluble receptors. Incubation of human HSCs with a fusion protein between the extracellular domain of TLR4 and MD2 which binds LPS inhibited LPS-induced NF{kappa}B and JNK activation. TLR4/MD2 abolished LPS-induced secretion of IL-6, IL-8, MCP1, and RANTES in HSCs. In addition, TLR4/MD2 fused to human IgG-Fc neutralized LPS activity. Since TLR4 mutant mice are resistant to liver fibrosis, the TLR4/MD2 soluble receptor might represent a new therapeutic molecule for liver fibrogenesis in vivo.

  19. Anti-inflammatory effects of hydrophilic and lipophilic statins with hyaluronic acid against LPS-induced inflammation in porcine articular chondrocytes.

    PubMed

    Chang, Chih-Hung; Hsu, Yuan-Ming; Chen, Yu-Chun; Lin, Feng-Huei; Sadhasivam, Subramaniam; Loo, Siow-Tung; Savitha, Sivasubramanian

    2014-04-01

    The objective of the study is to understand the therapeutic effects of lipophilic (simvastatin) and hydrophilic statins (pravastatin) combined with/without hyaluronic acid for osteoarthritis by an in vitro LPS-induced inflammatory model of articular chondrocytes. HA in combination with different doses of simvastatin or pravastatin were used. Beside cytotoxicity, the influence of statins on NO production, pro-inflammatory cytokine, inflammatory mediators, and NF-κB p50 protein were analyzed. Finally, TUNEL assay was performed to detect DNA strand breakage. Two statins were less able to lower NF-κB activity when they were administrated along without HA. The gene expression demonstrates that simvastatin and pravastatin had the ability to decrease pro-inflammatory and inflammatory mediator levels. High dose simvastatin with or without HA down regulated inflammatory cytokines, but resulted in higher cytotoxicity. TUNEL assay confirms the regulatory effect of statins with or without HA over the apoptosis of chondrocytes, especially in hydrophilic statins. The significant down-regulation of inflammatory mediators suggests that intra-articular injection of HA in combination with statins might feasibly slow the progress of osteoarthritis. Administration of simvastatin or pravastatin with hyaluronic acid may produce beneficial effects for OA treatment, but with better results when hydrophilic statin was used. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice.

    PubMed

    He, Xuexiu; Wei, Zhengkai; Zhou, Ershun; Chen, Libin; Kou, Jinhua; Wang, Jingjing; Yang, Zhengtao

    2015-09-01

    Baicalein is a phenolic flavonoid presented in the dry roots of Scutellaria baicalensis Georgi. It has been reported that baicalein possesses a number of biological properties, such as antiviral, antioxidative, anti-inflammatory, antithrombotic, and anticancer properties. However, the effect of baicalein on mastitis has not yet been reported. This research aims to detect the effect of baicalein on lipopolysaccharide (LPS)-induced mastitis in mice and to investigate the molecular mechanisms. Baicalein was administered intraperitoneally 1h before and 12h after LPS treatment. The results indicated that baicalein treatment markedly attenuated the damage of the mammary gland induced by LPS, suppressed the activity of myeloperoxidase (MPO) and the levels of tumor necrosis factor (TNF-α) and interleukin (IL-1β) in mice with LPS-induced mastitis. Besides, baicalein blocked the expression of Toll-like receptor 4 (TLR4) and then suppressed the phosphorylation of nuclear transcription factor-kappaB (NF-κB) p65 and degradation inhibitor of NF-κBα (IκBα) and, and inhibited the phosphorylation of p38, extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK) in mitogen-activated protein kinase (MAPK) signal pathway. These findings suggested that baicalein may have a potential prospect against mastitis.

  1. MRTF-A mediates LPS-induced pro-inflammatory transcription by interacting with the COMPASS complex.

    PubMed

    Yu, Liming; Weng, Xinyu; Liang, Peng; Dai, Xin; Wu, Xiaoyan; Xu, Huihui; Fang, Mingming; Fang, Fei; Xu, Yong

    2014-11-01

    Chronic inflammation underscores the pathogenesis of a range of human diseases. Lipopolysaccharide (LPS) elicits strong pro-inflammatory responses in macrophages through the transcription factor NF-κB. The epigenetic mechanism underlying LPS-induced pro-inflammatory transcription is not fully understood. Herein, we describe a role for myocardin-related transcription factor A (MRTF-A, also known as MKL1) in this process. MRTF-A overexpression enhanced NF-κB-dependent pro-inflammatory transcription, whereas MRTF-A silencing inhibited this process. MRTF-A deficiency also reduced the synthesis of pro-inflammatory mediators in a mouse model of colitis. LPS promoted the recruitment of MRTF-A to the promoters of pro-inflammatory genes in an NF-κB-dependent manner. Reciprocally, MRTF-A influenced the nuclear enrichment and target binding of NF-κB. Mechanistically, MRTF-A was necessary for the accumulation of active histone modifications on NF-κB target promoters by communicating with the histone H3K4 methyltransferase complex (COMPASS). Silencing of individual members of COMPASS, including ASH2, WDR5 and SET1 (also known as SETD1A), downregulated the production of pro-inflammatory mediators and impaired the NF-κB kinetics. In summary, our work has uncovered a previously unknown function for MRTF-A and provided insights into the rationalized development of anti-inflammatory therapeutic strategies. © 2014. Published by The Company of Biologists Ltd.

  2. Polyphenols from Lonicera caerulea L. Berry Inhibit LPS-Induced Inflammation through Dual Modulation of Inflammatory and Antioxidant Mediators.

    PubMed

    Wu, Shusong; Yano, Satoshi; Chen, Jihua; Hisanaga, Ayami; Sakao, Kozue; He, Xi; He, Jianhua; Hou, De-Xing

    2017-06-28

    Lonicera caerulea L. berry polyphenols (LCBP) are considered as major components for bioactivity. This study aimed to clarify the molecular mechanisms by monitoring inflammatory and antioxidant mediator actions in lipopolysaccharide (LPS)-induced mouse paw edema and macrophage cell model. LCBP significantly attenuated LPS-induced paw edema (3.0 ± 0.1 to 2.8 ± 0.1 mm, P < 0.05) and reduced (P < 0.05) serum levels of monocyte chemotactic protein-1 (MCP-1, 100.9 ± 2.3 to 58.3 ± 14.5 ng/mL), interleukin (IL)-10 (1596.1 ± 424.3 to 709.7 ± 65.7 pg/mL), macrophage inflammatory protein (MIP)-1α (1761.9 ± 208.3 to 1369.1 ± 56.4 pg/mL), IL-6 (1262.8 ± 71.7 to 499.0 ± 67.1 pg/mL), IL-4 (93.3 ± 25.7 to 50.7 ± 12.5 pg/mL), IL-12(p-70) (580.4 ± 132.0 to 315.2 ± 35.1 pg/mL), and tumor necrosis factor-α (TNF-α, 2045.5 ± 264.9 to 1270.7 ± 158.6 pg/mL). Cell signaling analysis revealed that LCBP inhibited transforming growth factor β activated kinase-1 (TAK1)-mediated mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways, and enhanced the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and manganese-dependent superoxide dismutase (MnSOD) in earlier response. Moreover, cyanidin 3-glucoside (C3G) and (-)-epicatechin (EC), two major components of LCBP, directly bound to TAK1. These data demonstrated that LCBP might inhibit LPS-induced inflammation by modulating both inflammatory and antioxidant mediators.

  3. A critical role for suppressors of cytokine signaling 3 in regulating LPS-induced transcriptional activation of matrix metalloproteinase-13 in osteoblasts

    PubMed Central

    Gao, Anqi; Kantarci, Alpdogan; Herrera, Bruno Schneider; Gao, Hongwei

    2013-01-01

    Suppressor of cytokine signaling 3 (SOCS3) is a key regulator of cytokine signaling in macrophages and T cells. Although SOCS3 seems to contribute to the balance between the pro-inflammatory actions of IL-6 family of cytokines and anti-inflammatory signaling of IL-10 by negatively regulating gp130/Jak/Stat3 signal transduction, how and the molecular mechanisms whereby SOCS3 controls the downstream impact of TLR4 are largely unknown and current data are controversial. Furthermore, very little is known regarding SOCS3 function in cells other than myeloid cells and T cells. Our previous study demonstrates that SOCS3 is expressed in osteoblasts and functions as a critical inhibitor of LPS-induced IL-6 expression. However, the function of SOCS3 in osteoblasts remains largely unknown. In the current study, we report for the first time that LPS stimulation of osteoblasts induces the transcriptional activation of matrix metalloproteinase (MMP)-13, a central regulator of bone resorption. Importantly, we demonstrate that SOCS3 overexpression leads to a significant decrease of LPS-induced MMP-13 expression in both primary murine calvariae osteoblasts and a mouse osteoblast-like cell line, MC3T3-E1. Our findings implicate SOCS3 as an important regulatory mediator in bone inflammatory diseases by targeting MMP-13. PMID:23638389

  4. Progesterone Is Essential for Protecting against LPS-Induced Pregnancy Loss. LIF as a Potential Mediator of the Anti-inflammatory Effect of Progesterone

    PubMed Central

    Aisemberg, Julieta; Vercelli, Claudia A.; Bariani, María V.; Billi, Silvia C.; Wolfson, Manuel L.; Franchi, Ana M.

    2013-01-01

    Lipopolysaccharide (LPS) administration to mice on day 7 of gestation led to 100% embryonic resorption after 24 h. In this model, nitric oxide is fundamental for the resorption process. Progesterone may be responsible, at least in part, for a Th2 switch in the feto-maternal interface, inducing active immune tolerance against fetal antigens. Th2 cells promote the development of T cells, producing leukemia inhibitory factor (LIF), which seems to be important due to its immunomodulatory action during early pregnancy. Our aim was to evaluate the involvement of progesterone in the mechanism of LPS-induced embryonic resorption, and whether LIF can mediate hormonal action. Using in vivo and in vitro models, we provide evidence that circulating progesterone is an important component of the process by which infection causes embryonic resorption in mice. Also, LIF seems to be a mediator of the progesterone effect under inflammatory conditions. We found that serum progesterone fell to very low levels after 24 h of LPS exposure. Moreover, progesterone supplementation prevented embryonic resorption and LPS-induced increase of uterine nitric oxide levels in vivo. Results show that LPS diminished the expression of the nuclear progesterone receptor in the uterus after 6 and 12 h of treatment. We investigated the expression of LIF in uterine tissue from pregnant mice and found that progesterone up-regulates LIF mRNA expression in vitro. We observed that LIF was able to modulate the levels of nitric oxide induced by LPS in vitro, suggesting that it could be a potential mediator of the inflammatory action of progesterone. Our observations support the view that progesterone plays a critical role in a successful pregnancy as an anti-inflammatory agent, and that it could have possible therapeutic applications in the prevention of early reproductive failure associated with inflammatory disorders. PMID:23409146

  5. Progesterone is essential for protecting against LPS-induced pregnancy loss. LIF as a potential mediator of the anti-inflammatory effect of progesterone.

    PubMed

    Aisemberg, Julieta; Vercelli, Claudia A; Bariani, María V; Billi, Silvia C; Wolfson, Manuel L; Franchi, Ana M

    2013-01-01

    Lipopolysaccharide (LPS) administration to mice on day 7 of gestation led to 100% embryonic resorption after 24 h. In this model, nitric oxide is fundamental for the resorption process. Progesterone may be responsible, at least in part, for a Th2 switch in the feto-maternal interface, inducing active immune tolerance against fetal antigens. Th2 cells promote the development of T cells, producing leukemia inhibitory factor (LIF), which seems to be important due to its immunomodulatory action during early pregnancy. Our aim was to evaluate the involvement of progesterone in the mechanism of LPS-induced embryonic resorption, and whether LIF can mediate hormonal action. Using in vivo and in vitro models, we provide evidence that circulating progesterone is an important component of the process by which infection causes embryonic resorption in mice. Also, LIF seems to be a mediator of the progesterone effect under inflammatory conditions. We found that serum progesterone fell to very low levels after 24 h of LPS exposure. Moreover, progesterone supplementation prevented embryonic resorption and LPS-induced increase of uterine nitric oxide levels in vivo. Results show that LPS diminished the expression of the nuclear progesterone receptor in the uterus after 6 and 12 h of treatment. We investigated the expression of LIF in uterine tissue from pregnant mice and found that progesterone up-regulates LIF mRNA expression in vitro. We observed that LIF was able to modulate the levels of nitric oxide induced by LPS in vitro, suggesting that it could be a potential mediator of the inflammatory action of progesterone. Our observations support the view that progesterone plays a critical role in a successful pregnancy as an anti-inflammatory agent, and that it could have possible therapeutic applications in the prevention of early reproductive failure associated with inflammatory disorders.

  6. GYF-17, a chloride substituted 2-(2-phenethyl)-chromone, suppresses LPS-induced inflammatory mediator production in RAW264.7 cells by inhibiting STAT1/3 and ERK1/2 signaling pathways.

    PubMed

    Zhu, Zhixiang; Gu, Yufan; Zhao, Yunfang; Song, Yuelin; Li, Jun; Tu, Pengfei

    2016-06-01

    GYF-17, a 2-(2-phenethyl)-chromone derivative, was isolated from agarwood and showed superior activity of inhibiting NO production of RAW264.7 cells induced by LPS in our preliminary pharmacodynamic screening. In order to develop novel therapeutic drug for acute and chronic inflammatory disorders, the anti-inflammatory activity and underlying mechanism of GYF-17 were investigated in LPS-induced RAW264.7 cells. The results showed that GYF-17 could reduce LPS-induced expression of iNOS and then result in the decrement of NO production. More meaningful, the expression and secretion of key pro-inflammatory factors, including TNF-α, IL-6 and IL-1β, were intensively inhibited by GYF-17. Furthermore, GYF-17 also down regulated the expression of COX2 and the production of PGE2 which plays important role in causing algesthesia during inflammatory response. In mechanism study, GYF-17 selectively suppressed phosphorylation of STAT1/3 and ERK1/2 during the activation of NF-κB, MAPK and STAT signaling pathways induced by LPS. Collectively, GYF-17 can intensively suppress the production of LPS-induced inflammatory mediators in RAW264.7 cells by inhibiting STAT1/3 and ERK1/2 signaling pathways and thereby shows great potential to be developed into therapeutic drug for inflammatory diseases.

  7. Isorhamnetin ameliorates LPS-induced inflammatory response through downregulation of NF-κB signaling.

    PubMed

    Li, Yang; Chi, Gefu; Shen, Bingyu; Tian, Ye; Feng, Haihua

    2016-08-01

    Isorhamnetin, a flavonoid mainly found in Hippophae fhamnoides L. fruit, has been known for its antioxidant activity and its ability to regulate immune response. In this study, we investigated whether isorhamnetin exerts potent antiinflammatory effects in RAW264.7 cell and mouse model stimulated by LPS. The cytokine (TNF-α, IL-1β, and IL-6) levels were determined. In the mouse model of acute lung injury, the phosphorylation of NF-κB proteins was analyzed and inhibitor of NF-κB signaling (PDTC) was used on mice. Our results showed that isorhamnetin markedly decreased TNF-α, IL-1β, and IL-6 concentrations and suppressed the activation of NF-κB signaling. Meanwhile, isorhamnetin reduced the amount of inflammatory cells, the lung wet-to-dry weight ratio, protein leakage, and myeloperoxidase activity. Interference with specific inhibitor revealed that isorhamnetin-mediated suppression of cytokines and protein was via NF-κB signaling. So, it suggests that isorhamnetin might be a potential therapeutic agent for preventing inflammatory diseases.

  8. Mechanism of anti-inflammatory effect of tricin, a flavonoid isolated from Njavara rice bran in LPS induced hPBMCs and carrageenan induced rats.

    PubMed

    Shalini, V; Jayalekshmi, Ananthasankaran; Helen, A

    2015-08-01

    Njavara is an indigenous medicinal rice variety traditionally used in Ayurvedic system of medicine practiced in Kerala, India. Tricin is a bioflavonoid present in significantly higher levels in rice bran of Njavara. Present study attempted to identify the molecular target of tricin in TLR mediated signaling pathways by using lipopolysaccharide (LPS) induced human peripheral blood mononuclear cells (hPBMCs) and carrageenan induced paw edema in rats as experimental models. Tricin acted upstream in the activation of inflammation cascade by interfering with TLR4 activation, preferably by blocking the LPS induced activation of TLR4, MYD88 and TRIF proteins in hPBMCs. Subsequently, tricin significantly blocked the activation of downstream kinases like p38MAPK, JNK1/2 and IRF3. Thus the inhibitory effect of tricin on NF-κB and IRF3 together confirms the specific inhibition of both MYD88 dependent and TRIF dependent pathways. Tricin treatment also inhibited the pro-inflammatory effect of LPS by blocking the TLR4 signaling mediated activation of cytosolic phospholipase A2 (cPLA2), which is confirmed by specific inhibition of COX-2. Results demonstrated that in addition to NF-κB, tricin can prevent the activation of STAT proteins by significantly inhibiting the activation of both STAT1 and STAT3 via the down regulation of upstream phosphorylating enzymes like JAK1 and JAK2. The protective anti-inflammatory effect of tricin was also confirmed by in vivo experiments. Thus, this study provides strong evidence that tricin exerts its anti-inflammatory effect via a mechanism involving the TLR4/NF-κB/STAT signaling cascade.

  9. The ethyl acetate fraction from Physalis alkekengi inhibits LPS-induced pro-inflammatory mediators in BV2 cells and inflammatory pain in mice.

    PubMed

    Moniruzzaman, Md; Bose, Shambhunath; Kim, Young-Mi; Chin, Young-Won; Cho, Jungsook

    2016-04-02

    Physalis alkekengi is an edible herb whose fruit and calyx are traditionally used to treat a wide range of diseases including inflammation, toothache, and rheumatism. However, the effects of Physalis alkekengi fruit along with its calyx (PAF) on neuroinflammation and inflammatory pain behavior have not been reported yet. This study evaluated the anti-inflammatory effect of PAF on lipopolysaccharide (LPS)-induced neuroinflammation and several in vivo model of inflammatory pain in mice. Here, first we studied the effects of PAF fractions on the production of pro-inflammatory mediators in LPS-treated BV2 microglial cells using enzyme-linked immunosorbent assay. The translocation of nuclear factor-kappa B (NF-κB) and the involvements of Akt and mitogen-activated protein (MAP) kinases in ethyl acetate fraction of PAF (PAF-EA)-mediated anti-inflammatory effect were measured using Western blotting. In in vivo experiments, the efficacy of PAF-EA was evaluated at the doses of 100 and 200mg/kg using several chemical-induced models of inflammatory pain such as acetic acid-induced writhing, formalin-induced paw licking and edema. We found that compared to other fractions, the PAF-EA more potently inhibited the LPS-induced generation of nitric oxide, tumor necrosis factor-α, interleukin-6 and reactive oxygen species. It also inhibited LPS-induced nuclear translocation of NF-κB. These actions of EA fraction were found to be associated with a disruption of Akt and MAP kinases signaling pathways. The EA fraction also significantly inhibited acetic acid-induced writhing, formalin-induced licking time and edema in mice. Our findings support the ethnopharmacological use of P. alkekengi fruit along with its calyx as an anti-inflammatory agent and suggest that the EA fraction of PAF may serve as a potential candidate to treat different neurological disorders and pain associated with inflammation. Copyright © 2016. Published by Elsevier Ireland Ltd.

  10. Anti-inflammatory effect of strawberry extract against LPS-induced stress in RAW 264.7 macrophages.

    PubMed

    Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Giampieri, Francesca; Afrin, Sadia; Alvarez-Suarez, Josè M; Mazzoni, Luca; Mezzetti, Bruno; Quiles, Josè L; Battino, Maurizio

    2017-04-01

    A common denominator in the pathogenesis of most chronic inflammatory diseases is the involvement of oxidative stress, related to ROS production by all aerobic organisms. Dietary antioxidants from plant foods represent an efficient strategy to counteract this condition. The aim of the present study was to evaluate the protective effects of strawberry extracts on inflammatory status induced by E. Coli LPS on RAW 264.7 macrophages by measuring the main oxidative and inflammatory biomarkers and investigating the molecular pathways involved. Strawberry pre-treatment efficiently counteracted LPS-induced oxidative stress reducing the amount of ROS and nitrite production, stimulating endogenous antioxidant enzyme activities and enhancing protection against lipid, protein and DNA damage (P < 0.05). Strawberry pre-treatment exerted these protective effects primarily through the activation of the Nrf2 pathway, which is markedly AMPK-dependent and also by the modulation of the NF-kB signalling pathway. Finally, an improvement in mitochondria functionality was also detected. The results obtained in this work highlight the health benefit of strawberries against inflammatory and oxidative stress in LPS-stimulated RAW 264.7 macrophages, investigating for the first time the possible involved molecular mechanisms.

  11. PF-04886847 (an inhibitor of plasma kallikrein) attenuates inflammatory mediators and activation of blood coagulation in rat model of lipopolysaccharide (LPS)-induced sepsis.

    PubMed

    Kolte, D; Bryant, J W; Gibson, G W; Wang, J; Shariat-Madar, Z

    2012-06-01

    The plasma kallikrein-mediated proteolysis regulates both thrombosis and inflammation. Previous study has shown that PF-04886847 is a potent and competitive inhibitor of kallikrein, suggesting that it might be useful for the treatment of kallikrein-kinin mediated inflammatory and thrombotic disorders. In the rat model of lipopolysaccharide (LPS) -induced sepsis used in this study, pretreatment of rats with PF-04886847 (1 mg/kg) prior to LPS (10 mg/kg) prevented endotoxin-induced increase in granulocyte count in the systemic circulation. PF-04886847 significantly reduced the elevated plasma 6-keto PGF1α levels in LPS treated rats, suggesting that PF-04886847 could be useful in preventing hypotensive shock during sepsis. PF-04886847 did not inhibit LPS-induced increase in plasma TNF-α level. Pretreatment of rats with PF-04886847 prior to LPS did not attenuate endotoxin-induced decrease in platelet count and plasma fibrinogen levels as well as increase in plasma D-dimer levels. PF-04886847 did not protect the animals against LPS-mediated acute hepatic and renal injury and disseminated intravascular coagulation (DIC). Since prekallikrein (the zymogen form of plasma kallikrein) deficient patients have prolonged activated partial thromboplastin time (aPTT) without having any bleeding disorder, the anti-thrombotic property and mechanism of action of PF-04886847 was assessed. In a rabbit balloon injury model designed to mimic clinical conditions of acute thrombotic events, PF-04886847 reduced thrombus mass dose-dependently. PF-04886847 (1 mg/kg) prolonged both aPTT and prothrombin time (PT) in a dose-dependent manner. Although the findings of this study indicate that PF-04886847 possesses limited anti-thrombotic and anti-inflammatory effects, PF-04886847 may have therapeutic potential in other kallikrein-kinin mediated diseases.

  12. Phosphocreatine protects against LPS-induced human umbilical vein endothelial cell apoptosis by regulating mitochondrial oxidative phosphorylation.

    PubMed

    Sun, Zhengwu; Lan, Xiaoyan; Ahsan, Anil; Xi, Yalin; Liu, Shumin; Zhang, Zonghui; Chu, Peng; Song, Yushu; Piao, Fengyuan; Peng, Jinyong; Lin, Yuan; Han, Guozhu; Tang, Zeyao

    2016-03-01

    Phosphocreatine (PCr) is an exogenous energy substance, which provides phosphate groups for adenosine triphosphate (ATP) cycle and promotes energy metabolism in cells. However, it is still unclear whether PCr has influenced on mitochondrial energy metabolism as well as oxidative phosphorylation (OXPHO) in previous studies. Therefore, the aim of the present study was to investigate the regulation of PCr on lipopolsaccharide (LPS)-induced human umbilical vein endothelial cells (HUVECs) and mitochondrial OXPHO pathway. PCr protected HUVECs against LPS-induced apoptosis by suppressing the mitochondrial permeability transition, cytosolic release of cytochrome c (Cyt C), Ca(2+), reactive oxygen species and subsequent activation of caspases, and increasing Bcl2 expression, while suppressing Bax expression. More importantly, PCr significantly improved mitochondrial swelling and membrane potential, enhanced the activities of ATP synthase and mitochondrial creatine kinase (CKmt) in creatine shuttle, influenced on respiratory chain enzymes, respiratory control ratio, phosphorus/oxygen ratio and ATP production of OXPHO. Above PCr-mediated mitochondrial events were effectively more favorable to reduced form of flavin adenine dinucleotide (FADH2) pathway than reduced form of nicotinamide-adenine dinucleotid pathway in the mitochondrial respiratory chain. Our results revealed that PCr protects against LPS-induced HUVECs apoptosis, which probably related to stabilization of intracellular energy metabolism, especially for FADH2 pathway in mitochondrial respiratory chain, ATP synthase and CKmt. Our findings suggest that PCr may play a certain role in the treatment of atherosclerosis via protecting endothelial cell function.

  13. A heteroglycan from the cyanobacterium Nostoc commune modulates LPS-induced inflammatory cytokine secretion by THP-1 monocytes through phosphorylation of ERK1/2 and Akt.

    PubMed

    Olafsdottir, Astridur; Thorlacius, Gudny Ella; Omarsdottir, Sesselja; Olafsdottir, Elin Soffia; Vikingsson, Arnor; Freysdottir, Jona; Hardardottir, Ingibjorg

    2014-09-25

    Cyanobacteria (blue-green algae) have been consumed as food and used in folk medicine since ancient times to alleviate a variety of diseases. Cyanobacteria of the genus Nostoc have been shown to produce complex exopolysaccharides with antioxidant and antiviral activity. Furthermore, Nostoc sp. are common in cyanolichen symbiosis and lichen polysaccharides are known to have immunomodulating effects. Nc-5-s is a heteroglycan isolated from free-living colonies of Nostoc commune and its structure has been characterized in detail. The aim of this study was to determine the effects of Nc-5-s on the inflammatory response of lipopolysaccharide (LPS)-stimulated human THP-1 monocytes and how the effects are mediated. THP-1 monocytes primed with interferon-γ and stimulated with LPS in the presence of Nc-5-s secreted less of the pro-inflammatory cytokine interleukin (IL)-6 and more of the anti-inflammatory cytokine IL-10 than THP-1 monocytes stimulated without Nc-5-s. In contrast, Nc-5-s increased LPS-induced secretion of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α and IL-8. Nc-5-s decreased LPS-induced phosphorylation of the extracellular regulated kinase (ERK)1/2 and Akt kinase, but did not affect phosphorylation of the p38 kinase, activation of the nuclear factor kappa B pathway, nor DNA binding of c-fos. These results show that Nc-5-s has anti-inflammatory effects on IL-6 and IL-10 secretion by THP-1 monocytes, but its effects are pro-inflammatory when it comes to TNF-α and IL-8. Furthermore, they show that the effects of Nc-5-s may be mediated through the ERK1/2 pathway and/or the Akt/phosphoinositide 3-kinase pathway and their downstream effectors. The ability of Nc-5-s to decrease IL-6 secretion, increase IL-10 secretion and moderate ERK1/2 activation indicates a potential for its development as an anti-inflammatory agent. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Suppressive effects of extracts from the aerial part of Coriandrum sativum L. on LPS-induced inflammatory responses in murine RAW 264.7 macrophages.

    PubMed

    Wu, Trang-Tiau; Tsai, Chia-Wen; Yao, Hsien-Tsung; Lii, Chong-Kuei; Chen, Haw-Wen; Wu, Yu-Ling; Chen, Pei-Yin; Liu, Kai-Li

    2010-08-30

    Coriandrum sativum is used not only as a spice to aid flavour and taste values in food, but also as a folk medicine in many countries. Since little is known about the anti-inflammatory ability of the aerial parts (stem and leaf) of C. sativum, the present study investigated the effect of aerial parts of C. sativum on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We further explored the molecular mechanism underlying these pharmacological properties of C. sativum. Ethanolic extracts from both stem and leaf of C. sativum (CSEE) significantly decreased LPS-induced nitric oxide and prostaglandin E(2) production as well as inducible nitric oxide synthase, cyclooxygenase-2, and pro-interleukin-1beta expression. Moreover, LPS-induced IkappaB-alpha phosphorylation and nuclear p65 protein expression as well as nuclear factor-kappaB (NF-kappaB) nuclear protein-DNA binding affinity and reporter gene activity were dramatically inhibited by aerial parts of CSEE. Exogenous addition of CSEE stem and leaf significantly reduced LPS-induced expression of phosphorylated mitogen-activated protein kinases (MAPKs). Our data demonstrated that aerial parts of CSEE have a strong anti-inflammatory property which inhibits pro-inflammatory mediator expression by suppressing NF-kappaB activation and MAPK signal transduction pathway in LPS-induced macrophages. Copyright (c) 2010 Society of Chemical Industry.

  15. Anti-inflammatory effect of Capuli cherry against LPS-induced cytotoxic damage in RAW 264.7 macrophages.

    PubMed

    Alvarez-Suarez, José M; Carrillo-Perdomo, Estefanía; Aller, Angel; Giampieri, Francesca; Gasparrini, Massimiliano; González-Pérez, Lien; Beltrán-Ayala, Pablo; Battino, Maurizio

    2017-04-01

    Capuli cherry (Prunus serotina Ehr. subsp. capuli (Cav.) McVaugh) fruits from the inter-Andean region of Ecuador were analysed to determine their bioactive compounds content, total antioxidant capacity, radical scavenging activity and their anti-inflammatory and protective effects against the cytotoxic damage mediated by lipopolysaccharide (LPS) in RAW 264.7 macrophages. Capuli fruits proved to be a natural source of bioactive compounds such as anthocyanins, vitamin C and β-carotene as well as to present an important total antioxidant capacity and radical scavenging activities. RAW 264.7 macrophages were incubated with different concentration of Capuli crude extract and subsequently activated by LPS to determine the markers related to oxidative damage and the proinflammatory cytokine production. The markers of oxidative damage, nitrite levels, the interleukin 1β messenger RNA levels and the tumor necrosis factor α mRNA levels and secretion were significantly decreased after the pre-incubated with Capuli extract and subsequently stimulated with LPS. In summary, Capuli extract attenuated the LPS-induced damage in RAW 264.7 macrophages due to its antioxidant and anti-inflammatory properties, showing that Capuli fruits may represent a relevant source of bioactive compounds with promising benefits for human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Anti-Inflammatory Effects of a Pomegranate Leaf Extract in LPS-Induced Peritonitis.

    PubMed

    Marques, Lucia C F; Pinheiro, Aruanã J M C R; Araújo, João G G; de Oliveira, Raimundo A G; Silva, Selma N; Abreu, Iracelle C; de Sousa, Eduardo M; Fernandes, Elizabeth S; Luchessi, André D; Silbiger, Vivian N; Nicolete, Roberto; Lima-Neto, Lidio G

    2016-11-01

    Folk medicine suggests that pomegranate (peels, seeds and leaves) has anti-inflammatory properties; however, the precise mechanisms by which this plant affects the inflammatory process remain unclear. Herein, we analyzed the anti-inflammatory properties of a hydroalcoholic extract prepared from pomegranate leaves using a rat model of lipopolysaccharide-induced acute peritonitis. Male Wistar rats were treated with either the hydroalcoholic extract, sodium diclofenac, or saline, and 1 h later received an intraperitoneal injection of lipopolysaccharides. Saline-injected animals (i. p.) were used as controls. Animals were culled 4 h after peritonitis induction, and peritoneal lavage and peripheral blood samples were collected. Serum and peritoneal lavage levels of TNF-α as well as TNF-α mRNA expression in peritoneal lavage leukocytes were quantified. Total and differential leukocyte populations were analyzed in peritoneal lavage samples. Lipopolysaccharide-induced increases of both TNF-α mRNA and protein levels were diminished by treatment with either pomegranate leaf hydroalcoholic extract (57 % and 48 % mean reduction, respectively) or sodium diclofenac (41 % and 33 % reduction, respectively). Additionally, the numbers of peritoneal leukocytes, especially neutrophils, were markedly reduced in hydroalcoholic extract-treated rats with acute peritonitis. These results demonstrate that pomegranate leaf extract may be used as an anti-inflammatory drug which suppresses the levels of TNF-α in acute inflammation.

  17. Anti-inflammatory effect of tricin isolated from Alopecurus aequalis Sobol. on the LPS-induced inflammatory response in RAW 264.7 cells.

    PubMed

    Kang, Byoung-Man; An, Byoung-Kwan; Jung, Won-Seok; Jung, Ho-Kyung; Cho, Jung-Hee; Cho, Hyun-Woo; Jang, Se Ji; Yun, Young Beom; Kuk, Yong In

    2016-11-01

    The aim of this study was to identify major anti-inflammatory compounds in Alopecurus aequalis Sobol. (A. aequalis). The ethanol extract and the hexane-, dichloromethane-, ethyl acetate- and n-butanol-soluble fractions derived from A. aequalis were evaluated in order to determine their inhibitory effects on nitric oxide (NO) production in RAW 264.7 cells stimulated with lipopolysaccharide (LPS). The ethanol extract decreased NO production in a dose-dependent manner without any evidence of cytotoxicity at a concentration range of 0-200 µg/ml. The ethyl acetate soluble fraction was the most potent among the four soluble fractions. A compound was isolated by reversed-phase high-performance liquid chromatography from the ethyl acetate soluble fraction and this was identified to be tricin. Tricin inhibited the LPS-induced NO production in a dose-dependent manner without any evidence of cytotoxity at a concentration range of 1-100 µg/ml. Tricin also inhibited the LPS-induced production of prostaglandin E2. Western blot analysis indicated that tricin decreased the LPS-induced increase in the protein levels of inducible NO synthase and cyclooxygenase. In addition, tricin suppressed the production of intracellular reactive oxygen species in the LPS-stimulated RAW 264.7 cells, as measured by flow cytometry. Taken together, our results clearly indicate that tricin is a major functional anti-inflammatory compound which can be isolated from A. aequalis extracts.

  18. Differences in anti-inflammatory effects between two specifications of Scutellariae Radix in LPS-induced macrophages in vitro.

    PubMed

    Chen, Qian-Yu; Wang, Chao-Qun; Yang, Zhi-Wei; Tang, Qi; Tan, Huan-Ran; Wang, Xuan; Cai, Shao-Qing

    2017-07-01

    Scutellariae Radix (SR), the root of Scutellaria baicalensis Georgi, is used as an antipyretic drug and has been demonstrated to have anti-inflammatory activity. SR is divided into two specifications, "Ku Qin" (KQ) and "Zi Qin" (ZQ), for use against different symptoms (upper energizer heat or lower portion of the triple energizer), according to the theory of traditional Chinese medicine (TCM). However, differences in the efficacies of these two specifications have not been determined. In the present study, we aimed to characterize the differences in the anti-inflammatory activities between KQ and ZQ and to explore how their differences are manifested in lipopolysaccharide (LPS)-induced macrophages. Our results showed that, in RAW264.7 cells (a mouse macrophage cell line derived from ascites), KQ and ZQ displayed anti-inflammatory effects by inhibiting the release of nitric oxide (NO), inducible NOS (iNOS), and nuclear factor-κB (NF-κB) in a dose-dependent manner without distinction. In NR8383 cells (a rat alveolar macrophage cell line), KQ and ZQ displayed similar effects on NO, iNOS, and NF-κB as seen in RAW264.7 cells, but KQ showed a higher inhibition rate for NO and iNOS than that shown by ZQ at the same concentration. These results indicated that there were differences in efficacy between KQ and ZQ in treating lung inflammation. Our findings provided an experimental evidence supporting the different uses of KQ and ZQ in clinic, as noted in ancient herbal records. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  19. Anti-inflammatory activity of the oriental herb medicine, Arisaema cum Bile, in LPS-induced PMA-differentiated THP-1 cells.

    PubMed

    Ahn, Chang-Bum; Je, Jae-Young

    2012-06-01

    Arisaema cum Bile is widely used as a folk medicine in Korea. However, the systematic biological properties of Arisaema cum Bile have seldom been addressed. In this study, we evaluated the anti-inflammatory activity of Arisaema cum Bile extract on lipopolysaccharide (LPS)-induced inflammation in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages. The Arisaema cum Bile extract markedly inhibited the production of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, and also suppressed the mRNA and protein expressions of these cytokines. Furthermore, the Arisaema cum Bile extract also inhibited LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and gene expressions in PMA-differentiaed THP-1 macrophages. These results suggest that Arisaema cum Bile extract may have potential for development into an effective anti-inflammatory agent, and/or as an ingredient of functional foods.

  20. Cinnamaldehyde modulates LPS-induced systemic inflammatory response syndrome through TRPA1-dependent and independent mechanisms.

    PubMed

    Mendes, Saulo J F; Sousa, Fernanda I A B; Pereira, Domingos M S; Ferro, Thiago A F; Pereira, Ione C P; Silva, Bruna L R; Pinheiro, Aruanã J M C R; Mouchrek, Adriana Q S; Monteiro-Neto, Valério; Costa, Soraia K P; Nascimento, José L M; Grisotto, Marcos A G; da Costa, Robson; Fernandes, Elizabeth S

    2016-05-01

    Cinnamaldehyde is a natural essential oil suggested to possess anti-bacterial and anti-inflammatory properties; and to activate transient receptor potential ankyrin 1 (TRPA1) channels expressed on neuronal and non-neuronal cells. Here, we investigated the immunomodulatory effects of cinnamaldehyde in an in vivo model of systemic inflammatory response syndrome (SIRS) induced by lipopolysaccharide. Swiss mice received a single oral treatment with cinnamaldehyde 1 h before LPS injection. To investigate whether cinnamaldehyde effects are dependent on TRPA1 activation, animals were treated subcutaneously with the selective TRPA1 antagonist HC-030031 5 min prior to cinnamaldehyde administration. Vehicle-treated mice were used as controls. Cinnamaldehyde ameliorated SIRS severity in LPS-injected animals. Diminished numbers of circulating mononuclear cells and increased numbers of peritoneal mononuclear and polymorphonuclear cell numbers were also observed. Cinnamaldehyde augmented the number of peritoneal Ly6C(high) and Ly6C(low) monocyte/macrophage cells in LPS-injected mice. Reduced levels of nitric oxide, plasma TNFα and plasma and peritoneal IL-10 were also detected. Additionally, IL-1β levels were increased in the same animals. TRPA1 antagonism by HC-030031 reversed the changes in the number of circulating and peritoneal leukocytes in cinnamaldehyde-treated animals, whilst increasing the levels of peritoneal IL-10 and reducing peritoneal IL-1β. Overall, cinnamaldehyde modulates SIRS through TRPA1-dependent and independent mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Stylopine from Chelidonium majus inhibits LPS-induced inflammatory mediators in RAW 264.7 cells.

    PubMed

    Jang, Seon Il; Kim, Byung Hee; Lee, Woo-Yiel; An, Sang Jin; Choi, Han Gil; Jeon, Byung Hun; Chung, Hun-Taeg; Rho, Jung-Rae; Kim, Young-Jun; Chai, Kyu-Yun

    2004-09-01

    Stylopine is a major component of the leaf of Chelidonium majus L. (Papaveraceae), which has been used for the removal of warts, papillomas and condylomas, as well as the treatment of liver disease, in oriental countries. Stylopine per se had no cytotoxic effect in unstimulated RAW 264.7 cells, but concentration-dependently reduced nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta), and the IL-6 production and cyclooxygenase-2 (COX-2) activity caused by the LPS stimulation. The levels of inducible nitric oxide synthase (iNOS) and COX-2 protein expressions were markedly suppressed by stylopine in a concentration dependent manner. These results suggest that stylopine suppress the NO and PGE2 production in macrophages by inhibiting the iNOS and COX-2 expressions. These biological activities of stylopine may contribute to the anti-inflammatory activity of Chelidonium majus.

  2. Niacin attenuates the production of pro-inflammatory cytokines in LPS-induced mouse alveolar macrophages by HCA2 dependent mechanisms.

    PubMed

    Zhou, Ershun; Li, Yimeng; Yao, Minjun; Wei, Zhengkai; Fu, Yunhe; Yang, Zhengtao

    2014-11-01

    Niacin has been reported to have potent anti-inflammatory effects in LPS-induced acute lung injury. However, the molecular mechanism of niacin has not been fully understood. The aim of the present study was to investigate the effects of niacin on the production of pro-inflammatory cytokines TNF-α, IL-6 and IL-1β in LPS-induced mouse alveolar macrophages and explore its underlying mechanism. Mouse alveolar macrophages were incubated in the presence or absence of various concentrations of niacin (1, 10, 100 μmol/l) 1h before LPS (1 μg/ml) challenge. The results showed that niacin reduced the levels of TNF-α, IL-6 and IL-1β in LPS-challenged alveolar macrophages. Furthermore, NF-κB activation was inhibited by niacin through blocking the phosphorylation of NF-κB p65 and IκBα. In addition, silencing HCA2 abrogated the effect of niacin on the production of pro-inflammatory cytokines. These findings suggested that niacin attenuated the LPS-induced pro-inflammatory cytokines possibly mediated by HCA2 in LPS-challenged alveolar macrophages.

  3. Genistein Suppresses LPS-Induced Inflammatory Response through Inhibiting NF-κB following AMP Kinase Activation in RAW 264.7 Macrophages

    PubMed Central

    Ji, Guiyuan; Zhang, Yupei; Yang, Qinhe; Cheng, Shaobin; Hao, Jing; Zhao, Xihong; Jiang, Zhuoqin

    2012-01-01

    Genistein, the major isoflavone in soybean, was recently reported to exert beneficial effects in metabolic disorders and inflammatory diseases. In the present study, we investigated the effects and mechanisms of a dietary concentration of genistein on the inflammatory response in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Our results demonstrated that genistein effectively inhibited the LPS-induced overproduction of tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6), as well as LPS-induced nuclear factor kappa B (NF-κB) activation. In addition, the data also showed that genistein prevented LPS-induced decrease in adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. These effects were obviously attenuated by an AMPK inhibitor. Taken together, our results suggest that the dietary concentration of genistein is able to attenuate inflammatory responses via inhibition of NF-κB activation following AMPK stimulation. The data provide direct evidence for the potential application of low concentrations of genistein in the prevention and treatment of inflammatory diseases. PMID:23300870

  4. Anti-inflammatory effect of a standardized triterpenoid-rich fraction isolated from Rubus coreanus on dextran sodium sulfate-induced acute colitis in mice and LPS-induced macrophages.

    PubMed

    Shin, Ji-Sun; Cho, Eu-Jin; Choi, Hye-Eun; Seo, Ji-Hyung; An, Hyo-Jin; Park, Hee-Juhn; Cho, Young-Wuk; Lee, Kyung-Tae

    2014-12-02

    Rubus coreanus Miquel (Rosaceae), the Korean black raspberry, has traditionally been used to treat inflammatory diseases including diarrhea, asthma, stomach ailment, and cancer. Although previous studies showed that the 19α-hydroxyursane-type triterpenoids isolated from Rubus coreanus exerted anti-inflammatory activities, their effects on ulcerative colitis and mode of action have not been explored. This study was designed to assess the anti-inflammatory effects and the molecular mechanisms involving19α-hydroxyursane-type triterpenoid-rich fraction from Rubus coreanus (TFRC) on a mice model of colitis and lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Experimental colitis was induced by DSS for 7 days in ICR mice. Disease activity indices (DAI) took into account body weight, stool consistency, and gross bleeding. Histological changes and macrophage accumulation were observed by immunohistochemical analysis. Pro-inflammatory markers were determined using immunoassays, RT-PCR, and real time PCR. Signaling pathway involving nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) activation was determined by luciferase assay and Western blotting. In DSS-induced colitis mice, TFRC improved DAIs and pathological characteristics including colon shortening and colonic epithelium injury. TFRC suppressed tissue levels of pro-inflammatory cytokines and reduced macrophage infiltration into colonic tissues. In LPS-induced RAW 264.7 macrophages, TFRC inhibited the production of NO, PGE2, and pro-inflammatory cytokines by down-regulating the activation of NF-κB and p38 MAPK signaling. The study demonstrates that TFRC has potent anti-inflammatory effects on DSS-induced colonic injury and LPS-induced macrophage activation, and supports its possible therapeutic and preventive roles in colitis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Anti-inflammatory effect of procyanidins from wild grape (Vitis amurensis) seeds in LPS-induced RAW 264.7 cells.

    PubMed

    Bak, Min-Ji; Truong, Van Long; Kang, Hey-Sook; Jun, Mira; Jeong, Woo-Sik

    2013-01-01

    In the present study, the anti-inflammatory effect and underlying mechanisms of wild grape seeds procyanidins (WGP) were examined using lipopolysaccharide- (LPS-) stimulated RAW 264.7 cells. We used nitric oxide (NO) and prostaglandin E2 (PGE2) and reactive oxygen species (ROS) assays to examine inhibitory effect of WGP and further investigated the mechanisms of WGP suppressed LPS-mediated genes and upstream expression by Western blot and confocal microscopy analysis. Our data indicate that WGP significantly reduced NO, PGE2, and ROS production and also inhibited the expression of proinflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions. Consistently, WGP significantly reduced LPS-stimulated expression of proinflammatory cytokines such as tumor necrosis factor α (TNF-α) and interleukin- (IL-) 1 β . Moreover, WGP prevented nuclear translocation of nuclear factor- κ B (NF κ B) p65 subunit by reducing inhibitory κ B- α (I κ B α) and NF κ B phosphorylation. Furthermore, we found that WGP inhibited LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK). Taken together, our results demonstrated that WGP exerts potent anti-inflammatory activity through the inhibition of iNOS and COX-2 by regulating NF κ B and p38 MAPK pathway.

  6. Polysaccharides from Smilax glabra inhibit the pro-inflammatory mediators via ERK1/2 and JNK pathways in LPS-induced RAW264.7 cells.

    PubMed

    Lu, Chuan-li; Wei, Zhu; Min, Wang; Hu, Meng-mei; Chen, Wen-long; Xu, Xiao-jie; Lu, Chuan-jian

    2015-05-20

    The rhizomes of Smilax glabra have been used as both food and folk medicine in many countries for a long time. However, little research has been reported on polysaccharides of S. glabra. In the present study, two polysaccharide fractions, SGP-1 and SGP-2, were isolated from the rhizomes of S. glabra with the number average molecular weights of 1.72 × 10(2)kDa and 1.31 × 10(2)kDa, and the weight average molecular weights of 1.31 × 10(5)kDa and 1.18 × 10(5)kDa, respectively, and their mainly monosaccharide compositions were both galactose and rhamnose (2.5:1). Both SGP-1 and SGP-2 significantly suppressed the release of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) from LPS-induced RAW 264.7 cells, as well as the mRNA expression of inducible nitric oxide synthase (iNOS), TNF-α and IL-6. Additionally, SGP-1 and SGP-2 repressed the extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK). These findings strongly suggested polysaccharides were also the anti-inflammatory active ingredient for S. glabra, and the potential of SGP-1 and SGP-2 as the anti-inflammatory agents.

  7. Anti-Inflammatory Effect of Procyanidins from Wild Grape (Vitis amurensis) Seeds in LPS-Induced RAW 264.7 Cells

    PubMed Central

    Bak, Min-Ji; Truong, Van Long; Kang, Hey-Sook; Jun, Mira; Jeong, Woo-Sik

    2013-01-01

    In the present study, the anti-inflammatory effect and underlying mechanisms of wild grape seeds procyanidins (WGP) were examined using lipopolysaccharide- (LPS-) stimulated RAW 264.7 cells. We used nitric oxide (NO) and prostaglandin E2 (PGE2) and reactive oxygen species (ROS) assays to examine inhibitory effect of WGP and further investigated the mechanisms of WGP suppressed LPS-mediated genes and upstream expression by Western blot and confocal microscopy analysis. Our data indicate that WGP significantly reduced NO, PGE2, and ROS production and also inhibited the expression of proinflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions. Consistently, WGP significantly reduced LPS-stimulated expression of proinflammatory cytokines such as tumor necrosis factor α (TNF-α) and interleukin- (IL-) 1β. Moreover, WGP prevented nuclear translocation of nuclear factor-κB (NFκB) p65 subunit by reducing inhibitory κB-α (IκBα) and NFκB phosphorylation. Furthermore, we found that WGP inhibited LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK). Taken together, our results demonstrated that WGP exerts potent anti-inflammatory activity through the inhibition of iNOS and COX-2 by regulating NFκB and p38 MAPK pathway. PMID:24260615

  8. uPA Attenuated LPS-induced Inflammatory Osteoclastogenesis through the Plasmin/PAR-1/Ca2+/CaMKK/AMPK Axis

    PubMed Central

    Kanno, Yosuke; Ishisaki, Akira; Kawashita, Eri; Kuretake, Hiromi; Ikeda, Kanako; Matsuo, Osamu

    2016-01-01

    Chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis-caused bone destruction, results from an increase of bone-resorbing osteoclasts (OCs) induced by inflammation. However, the detailed mechanisms underlying this disorder remain unclear. We herein investigated that the effect of urokinase-type plasminogen activator (uPA) on inflammatory osteoclastogenesis induced by lipopolysaccharide (LPS), which is a potent stimulator of bone resorption in inflammatory diseases. We found that the uPA deficiency promoted inflammatory osteoclastogenesis and bone loss induced by LPS. We also showed that LPS induced the expression of uPA, and the uPA treatment attenuated the LPS-induced inflammatory osteoclastogenesis of RAW264.7 mouse monocyte/macrophage lineage cells. Additionally, we showed that the uPA-attenuated inflammatory osteoclastgenesis is associated with the activation of plasmin/protease-activated receptor (PAR)-1 axis by uPA. Moreover, we examined the mechanism underlying the effect of uPA on inflammatory osteoclastogenesis, and found that uPA/plasmin/PAR-1 activated the adenosine monophosphate-activated protein kinase (AMPK) pathway through Ca2+/calmodulin dependent protein kinase kinase (CaMKK) activation, and attenuated inflammatory osteoclastogenesis by inactivation of NF-κB in RAW264.7 cells. These data suggest that uPA attenuated inflammatory osteoclastogenesis through the plasmin/PAR-1/Ca2+/CaMKK/AMPK axis. Our findings may provide a novel therapeutic approach to bone loss caused by inflammatory diseases. PMID:26722218

  9. Suppressive effects of Mimosa pudica (L.) constituents on the production of LPS-induced pro-inflammatory mediators.

    PubMed

    Patel, Neeraj K; Bhutani, Kamlesh K

    2014-01-01

    The present study deals with the isolation of fourteen compounds from the active ethyl acetate (MPE) extract of M. pudica (L.) whole plant and their subsequent evaluation for the nitric oxide (NO), tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß) inhibitory activities in lipopolysaccharide (LPS) stimulated RAW 264.7 and J774A.1 cells. Among the tested compounds, L-mimosine (12; IC50 = 19.23 to 21.15 µM), crocetin (4; IC50 = 23.45 to 25.57 µM), crocin (14; IC50 = 27.16 to 31.53 µM) and jasmonic acid (11; IC50 = 21.32 to 29.42 µM) were identified as potent NO inhibitor when tested on the macrophages. Similarly, towards TNF-α and IL-1ß inhibition, including these four compounds, and ethyl gallate (3), gallic acid (10) and caffeic acid (7) were found to be more active with half maximal concentration, 17.32 to 62.32 µM whereas the other compounds depicted moderate and mild effects (IC50 = 59.32 to 95.01 µM). Also, at a dose of 40 mg/Kg, L-mimosine (12), jasmonic acid (11), crocin (14) and its de-esterified form, crocetin (4) were found to significantly (p < 0.05 and 0.001) reduce 60.7 %, 48.9 %, 48.4 % and 43.6 % respectively of TNF-de-esterified production in female Sprague Dawley rats. However, in case of IL-1ß, with the same dose (40 mg/Kg), jasmonic acid (11) exhibited significant reduction with 54.2 % followed by crocin (14) (50.2 %) and crocetin (4) (39.8 %) while L-mimosine (12) was found to reduce only 16.3 %. Based on the results, it can be estimated that these compounds imparting greatly to anti-inflammatory effects of M. pudica in vitro as well as in vivo through reduction of LPS-induced pro-inflammatory mediators which affirm the ethno-pharmacological use of this plant for prevention of inflammatory-related disorders.

  10. Suppressive effects of Mimosa pudica (L.) constituents on the production of LPS-induced pro-inflammatory mediators

    PubMed Central

    Patel, Neeraj K.; Bhutani, Kamlesh K.

    2014-01-01

    The present study deals with the isolation of fourteen compounds from the active ethyl acetate (MPE) extract of M. pudica (L.) whole plant and their subsequent evaluation for the nitric oxide (NO), tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß) inhibitory activities in lipopolysaccharide (LPS) stimulated RAW 264.7 and J774A.1 cells. Among the tested compounds, L-mimosine (12; IC50 = 19.23 to 21.15 µM), crocetin (4; IC50 = 23.45 to 25.57 µM), crocin (14; IC50 = 27.16 to 31.53 µM) and jasmonic acid (11; IC50 = 21.32 to 29.42 µM) were identified as potent NO inhibitor when tested on the macrophages. Similarly, towards TNF-α and IL-1ß inhibition, including these four compounds, and ethyl gallate (3), gallic acid (10) and caffeic acid (7) were found to be more active with half maximal concentration, 17.32 to 62.32 µM whereas the other compounds depicted moderate and mild effects (IC50 = 59.32 to 95.01 µM). Also, at a dose of 40 mg/Kg, L-mimosine (12), jasmonic acid (11), crocin (14) and its de-esterified form, crocetin (4) were found to significantly (p < 0.05 and 0.001) reduce 60.7 %, 48.9 %, 48.4 % and 43.6 % respectively of TNF-de-esterified production in female Sprague Dawley rats. However, in case of IL-1ß, with the same dose (40 mg/Kg), jasmonic acid (11) exhibited significant reduction with 54.2 % followed by crocin (14) (50.2 %) and crocetin (4) (39.8 %) while L-mimosine (12) was found to reduce only 16.3 %. Based on the results, it can be estimated that these compounds imparting greatly to anti-inflammatory effects of M. pudica in vitro as well as in vivo through reduction of LPS-induced pro-inflammatory mediators which affirm the ethno-pharmacological use of this plant for prevention of inflammatory-related disorders. PMID:26417317

  11. Protective effects of organic acid component from Taraxacum mongolicum Hand.-Mazz. against LPS-induced inflammation: Regulating the TLR4/IKK/NF-κB signal pathway.

    PubMed

    Yang, Nan; Dong, Zibo; Tian, Gang; Zhu, Maomao; Li, Chao; Bu, Weiquan; Chen, Juan; Hou, Xuefeng; Liu, Ying; Wang, Gang; Jia, Xiaobin; Di, Liuqing; Feng, Liang

    2016-12-24

    TMHM is a type of Chinese medicine commonly used in medical practice and has multiple functions, including clearing heat, detoxification, reducing swelling, and tumor therapy. Previous research has demonstrated that the OAC of TMHM (TMHM-OAC) displays advantageous therapeutic action against respiratory inflammation. However, the effect of TMHM-OAC on inflammatory injury and its anti-inflammatory role requires further clarification. An in vitro inflammation damage model was employed using NHBE cells and 100ng/ml of (LPS). HPLC-DAD was conducted to analyze the components of TMHM-OAC. An ELISA was conducted to determine IL-1β, IL-6, TNF-α, and NO expression. An MTT assay was conducted to determine the cytotoxicity of TMHM-OAC. The levels of IL-1β, IL-6, TNF-α, caspase-3, caspase-8, iNOS, TLR4p-nuclear factor kappa-B kinase (p-IκκB), and p-NF-κB p65 in cellular protein, as well as the mRNA levels, were determined using WB, IF testing, and Q-PCR. TMHM-OAC significantly reduced LPS-induced NHBE cell inflammation, which was reflected in the reduced expression of relevant cytokines such as TNF-α, IL-1β, IL-6 and NO, caspase-3, and caspase-8. In addition, this component suppressed TLR4, p-IKKβ, and p-NF-κB p65 levels in both mRNA and cellular protein. TMHM-OAC can reduce LPS-induced inflammation in NHBE cells and this function could be linked to the regulation of the TLR4/IKK/NF-kB pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Mogroside IIIE Attenuates LPS-Induced Acute Lung Injury in Mice Partly Through Regulation of the TLR4/MAPK/NF-κB Axis via AMPK Activation.

    PubMed

    Tao, Lijun; Cao, Fengyan; Xu, Gonghao; Xie, Haifeng; Zhang, Mian; Zhang, Chaofeng

    2017-07-01

    Acute lung injury (ALI) often leads to high mortality, and there is as yet no effective drug treatment. The present study aimed to investigate protective effects of mogroside IIIE (MGIIIE, a cucurbitane-type triterpenoid from Siraitia grosvenorii Fruits) in experimental ALI and its underlying mechanism. MGIIIE (1, 10 0r 20 mg/kg) was orally administered for 1 h before a single intratracheal administration of lipopolysaccharide (LPS, 5 mg/kg). MGIIIE treatment dose-dependently suppressed pulmonary oedema, pro-inflammatory mediators (IL-1β, IL-6, TNF-α and HMGB1) release and higher MPO activity in lung tissues induced by LPS challenge. Molecular researches showed that mogroside IIIE (20 mg/kg) not only increased the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) but suppressed the over-expression of toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). In addition, MGIIIE also inhibited the activation of MAPKs and nuclear factor κB (NF-κB) signalling in lung tissues from LPS-challenged mice. Similar antiinflammatory effects of MGIIIE were obtained in LPS-treated macrophages. Compound C (a pharmacological AMPK inhibitor) obviously reversed the antiinflammatory effect of MGIIIE in LPS-induced ALI mice. Taken together, AMPK activation plays a crucial role in the antiinflammatory effects of MGIIIE in LPS-induced ALI by down-regulating TLR4/MAPK/NF-κB signalling pathways. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Oxymatrine lightened the inflammatory response of LPS-induced mastitis in mice through affecting NF-κB and MAPKs signaling pathways.

    PubMed

    Yang, Zhengtao; Yin, Ronglan; Cong, Yunfeng; Yang, Zhanqing; Zhou, Ershun; Wei, Zhengkai; Liu, Zhicheng; Cao, Yongguo; Zhang, Naisheng

    2014-12-01

    Mastitis, an inflammatory reaction of the mammary gland, is recognized as one of the most costly diseases in dairy cattle. Oxymatrine, one of the alkaloids extracted from Chinese herb Sophora flavescens Ait, has been reported to have many biological activities, such as anti-inflammatory, anti-virus, and anti-hepatic fibrosis properties. The aim of this study was to investigate the protective effect and the anti-inflammatory mechanism of oxymatrine on lipopolysaccharide (LPS)-induced mastitis in mice. The mouse mastitis was induced by 10 μg of LPS for 24 h. Oxymatrine was intraperitoneally administered with the dose of 30, 60, and 120 mg/kg 1 h before and 12 h after LPS induction. The results showed that oxymatrine significantly attenuated the damage of the mammary gland induced by LPS. Oxymatrine inhibited the phosphorylation of NF-κB p65 and IκB in NF-κB signal pathway and reduced the phosphorylation of p38, ERK, and JNK in mitogen-activated protein kinase (MAPKs) signal pathway. The results showed that oxymatrine had a protective effect on LPS-induced mastitis, and the anti-inflammatory mechanism of oxymatrine was related to the inhibition of NF-κB and MAPKs signal pathways.

  15. LPS induces pro-inflammatory response in mastitis mice and mammary epithelial cells: Possible involvement of NF-κB signaling and OPN.

    PubMed

    Xiao, H-B; Wang, C-R; Liu, Z-K; Wang, J-Y

    2015-02-01

    Lipopolysaccharide (LPS) has pro-inflammatory properties. This study was conducted to determine whether the LPS induced pro-inflammatory response in a model of mastitis and in mouse mammary epithelial cells (MEC). To investigate the effects of LPS in vivo, 50 μL of a solution of LPS (20 ng/μL) were infused into the mammary glands of mice. To study the effects of LPS in vitro, MEC were exposed to LPS (20 μg/mL) for 24h. Activation of nuclear factor kB (NF-κB) and myeloperoxidase (MPO) were studied. Production of pro-inflammatory cytokines (interleukin-6 [IL-6], tumor necrosis factor-alpha [TNF-alpha], interleukin-1 beta [IL-1 beta]) and expression of osteopontin (OPN) were also evaluated. After LPS administration, route of NF-κB signaling is activated and the activity of MPO is increased. Furthermore, LPS increases the expression of OPN and production of TNF-alpha, IL-6 and IL-1 beta. Present results demonstrate that LPS induces a pro-inflammatory response in a murine model of mastitis and suggest the involvement of the NF-κB pathway and OPN. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. The Anti-inflammatory Effect of the CXCR4 Antagonist-N15P Peptide and Its Modulation on Inflammation-Associated Mediators in LPS-Induced PBMC.

    PubMed

    Mo, Xue-mei; Sun, Han-xiao

    2015-01-01

    Inflammation was the important pathological process of many disease developments, but current therapeutic means for inflammatory diseases are not satisfactory. Chemokines and their receptors represent valuable targets for anti-inflammatory drug discovery. The N15P polypeptide (sequence: LGASWHRPDKCCLGY) is independently developed by our research group, it is a new CXCR4 antagonist drug derived from viral macrophage inflammatory protein-II (vMIP-II). This study aims to clarify the anti-inflammatory potency of N15P polypeptide on the lipopolysaccharide (LPS)-induced inflammation in vitro. In this study, we evaluated the anti-inflammatory effects of N15P polypeptide by the LPS-induced peripheral blood mononuclear cell (PBMC) model and measured the level of inflammatory factors (tumor necrosis factor alpha (TNF-α), IL-6, IL-8, nuclear factor kappaB (NF-κB), cyclooxygenase-2 (COX-2), Toll-like receptor 4 (TLR4), MyD88, phosphoinositide 3-kinase (PI3K), and Akt). The messenger RNA (mRNA) expressions of inflammatory factors were analyzed by real-time PCR (RT-PCR) microarray analysis, and the production of inflammatory factors was measured further by enzyme-linked immunosorbent assay (ELISA) and Western blot. The results showed that the expression of inflammatory factors (TNF-α, IL-6, IL-8, NF-κB, COX-2, TLR4, MyD88, PI3K, and Akt) was downregulated by N15P peptide, suggesting that N15P peptide has a strong inhibitory effect on the inflammatory responses induced by LPS.

  17. Biflorin, Isolated from the Flower Buds of Syzygium aromaticum L., Suppresses LPS-Induced Inflammatory Mediators via STAT1 Inactivation in Macrophages and Protects Mice from Endotoxin Shock.

    PubMed

    Lee, Hwi-Ho; Shin, Ji-Sun; Lee, Woo-Seok; Ryu, Byeol; Jang, Dae Sik; Lee, Kyung-Tae

    2016-04-22

    Two chromone C-glucosides, biflorin (1) and isobiflorin (2), were isolated from the flower buds of Syzygium aromaticum L. (Myrtaceae). Here, inhibitory effects of 1 and 2 on lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 macrophages were evaluated, and 1 (IC50 = 51.7 and 37.1 μM, respectively) was more potent than 2 (IC50 > 60 and 46.0 μM). The suppression of NO and PGE2 production by 1 correlated with inhibition of iNOS and COX-2 protein expression. Compound 1 reduced inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expression via inhibition of their promoter activities. Compound 1 inhibited the LPS-induced production and mRNA expression of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6. Furthermore, 1 reduced p-STAT1 and p-p38 expression but did not affect the activity of nuclear factor κ light-chain enhancer of activated B cells (NF-κB) or activator protein 1 (AP-1). In a mouse model of LPS-induced endotoxemia, 1 reduced the mRNA levels of iNOS, COX-2, and TNF-α, and the phosphorylation-mediated activation of the signal transducer and activator of transcription 1 (STAT1), consequently improving the survival rates of mice. Compound 1 showed a significant anti-inflammatory effect on carrageenan-induced paw edema and croton-oil-induced ear edema in rats. The collective data indicate that the suppression of pro-inflammatory gene expression via p38 mitogen-activated protein kinase and STAT1 inactivation may be a mechanism for the anti-inflammatory activity of 1.

  18. Santamarin, a sesquiterpene lactone isolated from Saussurea lappa, represses LPS-induced inflammatory responses via expression of heme oxygenase-1 in murine macrophage cells.

    PubMed

    Choi, Hyun-Gyu; Lee, Dong-Sung; Li, Bin; Choi, Yeon Ho; Lee, Seung-Ho; Kim, Youn-Chul

    2012-07-01

    Saussurea lappa C.B. Clarke (Compositae) is indigenous to India and Pakistan. The dried root of S. lappa has been traditionally used for alleviating pain in abdominal distention and tenesmus, indigestion with anorexia, dysentery, nausea, and vomiting. Santamarin is a sesquiterpene lactone isolated from S. lappa. In the present study, santamarin inhibited inducible nitric oxide synthase (iNOS) protein, reduced iNOS-derived nitric oxide (NO), suppressed COX-2 protein and reduced COX-derived PGE(2) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and murine peritoneal macrophages. Similarly, santamarin reduced tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) production. In addition, santamarin suppressed the phosphorylation and degradation of IκB-α as well as the nuclear translocation of p65 in response to LPS in RAW264.7 cells. Furthermore, santamarin induced heme oxygenase (HO)-1 expression mRNA and protein level that plays a cytoprotective role against inflammation. The induction of HO-1 is primarily regulated at the transcriptional level, and its induction by various agents is mediated by the nuclear transcription factor E2-related factor 2 (Nrf2), master regulator of antioxidant responses. Unbound Nrf2 translocates into the nucleus and binds to the antioxidant response element (ARE) in the upstream promoter region of many antioxidative genes, where it initiates their transcription. The effects of santamarin on LPS-induced NO, PGE(2), TNF-α, and IL-1β production were partially reversed by the HO-1 inhibitor, tin protoporphyrin (SnPP). Therefore, our data suggest that the anti-inflammatory effect of santamarin in macrophages may be exerted through a novel mechanism that involves HO-1 expression.

  19. Investigations on Leucas cephalotes (Roth.) Spreng. for inhibition of LPS-induced pro-inflammatory mediators in murine macrophages and in rat model

    PubMed Central

    Patel, Neeraj K.; Khan, Mohd. Shahid; Bhutani, Kamlesh K.

    2015-01-01

    Silica gel column chromatography fractionation of the dichloromethane extract (LCD) of Leucas cephalotes (Roth.) Spreng. led to the isolation of five compounds namely β-sitosterol (1) + stigmasterol (2), lupeol (3), oleanolic acid (4) and laballenic acid (5). Also, gas chromatography-mass spectrometry (GC-MS) analysis of sub-fraction (LCD-F1) of this extract showed the presence of eleven (6-16) compounds. In addition to this, 3-5 and LCD-F1 were evaluated for lipopolysachharide (LPS)-induced nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in RAW 264.7 and J774A.1 cells. Results directed that 4 and 5 were found to inhibit these mediators at half maximal inhibitory concentration of 17.12 to 57.20 μM while IC50 for LCD-F1 was found to be 15.56 to 31.71 μg/mL. Furthermore, LCD at a dose of 50, 100 and 400 mg/Kg was found to reduce significantly LPS induced tumor necrosis factor (TNF)-α and interleukin (IL)-1β production in female Sprague Dawley (SD) rats. All the results findings evoked that the anti-inflammatory effects of Leucas cephalotes is partially mediated through the suppression of pro-inflammatory mediators and hence can be utilized for the development of anti-inflammatory candidates. PMID:26535039

  20. Bergenin Plays an Anti-Inflammatory Role via the Modulation of MAPK and NF-κB Signaling Pathways in a Mouse Model of LPS-Induced Mastitis.

    PubMed

    Gao, Xue-jiao; Guo, Meng-yao; Zhang, Ze-cai; Wang, Tian-cheng; Cao, Yong-guo; Zhang, Nai-sheng

    2015-01-01

    Mastitis is a major disease in humans and other animals and is characterized by mammary gland inflammation. It is a major disease of the dairy industry. Bergenin is an active constituent of the plants of genus Bergenia. Research indicates that bergenin has multiple biological activities, including anti-inflammatory and immunomodulatory properties. The objective of this study was to evaluate the protective effects and mechanism of bergenin on the mammary glands during lipopolysaccharide (LPS)-induced mastitis. In this study, mice were treated with LPS to induce mammary gland mastitis as a model for the disease. Bergenin treatment was initiated after LPS stimulation for 24 h. The results indicated that bergenin attenuated inflammatory cell infiltration and decreased the concentration of NO, TNF-α, IL-1β, and IL-6, which were increased in LPS-induced mouse mastitis. Furthermore, bergenin downregulated the phosphorylation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPK) signaling pathway proteins in mammary glands with mastitis. In conclusion, bergenin reduced the expression of NO, TNF-α, IL-1β, and IL-6 proinflammatory cytokines by inhibiting the activation of the NF-κB and MAPKs signaling pathways, and it may represent a novel treatment strategy for mastitis.

  1. Orientin Ameliorates LPS-Induced Inflammatory Responses through the Inhibitory of the NF-κB Pathway and NLRP3 Inflammasome

    PubMed Central

    Xiao, Qingfei; Zhao, Ying; Yang, Liming

    2017-01-01

    Inflammation is a complex response to diverse pathological conditions, resulting in negative rather than protective effects when uncontrolled. Orientin (Ori), a flavonoid component isolated from natural plants, possesses abundant properties. Thus, we aimed to discover the potential therapeutic effects of orientin on lipopolysaccharide- (LPS-) induced inflammation in RAW 264.7 cells and the underlying mechanisms. In our studies, we evaluated the effects of Ori on proinflammatory mediator production stimulated by LPS, including tumor necrosis factor- (TNF-) α, interleukin- (IL-) 6, IL-18, and IL-1β, along with prostaglandin E2 (PGE2) and NO. Our data indicated that orientin dramatically inhibited the levels of these mediators. Consistent with these results, the expression levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were also reduced. Further study demonstrated that such inhibitory effects of Ori were due to suppression of the nuclear factor-kappa B (NF-κB) pathway and nucleotide-binding domain- (NOD-) like receptor protein 3 (NLRP3) inflammasome activation, which may contribute to its anti-inflammatory effects. Together, these findings show that Ori may be an effective candidate for ameliorating LPS-induced inflammatory responses. PMID:28197210

  2. 2-phenylethynesulfonamide Prevents Induction of Pro-inflammatory Factors and Attenuates LPS-induced Liver Injury by Targeting NHE1-Hsp70 Complex in Mice

    PubMed Central

    Huang, Chao; Wang, Jia; Chen, Zhuo; Wang, Yuzhe; Zhang, Wei

    2013-01-01

    The endotoxin-mediated production of pro-inflammatory cytokines plays an important role in the pathogenesis of liver disorders. Heat shock protein (Hsp70) overexpression has established functions in lipopolysaccharide (LPS)-mediated inflammatory response. However, little is known about the role of Hsp70 activity in LPS signaling. We hypothesized that inhibition of Hsp70 substrate binding activity can ameliorate LPS-induced liver injury by decreasing induction of pro-inflammatory factors. In this study, C57/BL6 mice were injected intraperitoneally with LPS and 2-phenylethynesulfonamide (PES), an inhibitor of Hsp70 substrate binding activity. We found that i. PES prevented LPS-induced increase in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, infiltration of inflammatory cells, and liver cell apoptosis; ii. PES reduced inducible nitric oxide synthase (iNOS) protein expression as well as serum nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) content in LPS-stimulated mice; iii. PES reduced the mRNA level of iNOS, TNF-α, and IL-6 in LPS-stimulated liver. iiii. PES attenuated the degradation of inhibitor of κB-α (IκB-α) as well as the phosphorylation and nuclear translocation of nuclear factor-κB (NF-κB) in LPS-stimulated liver. Similar changes in the protein expression of inflammatory markers, IκB-α degradation, and NF-κB phosphorylation and nuclear translocation were observed in RAW 264.7 cells. Further mechanistic studies revealed that PES remarkably reduced the elevation of [Ca2+]i and intracellular pH value (pHi) in LPS-stimulated RAW 264.7 cells. Furthermore, PES significantly reduced the increase in Na+/H+ exchanger 1 (NHE1) association to Hsp70 in LPS-stimulated macrophages and liver, suggesting that NHE1-Hsp70 interaction is required for the involvement of NHE1 in the inflammation response. In conclusion, inhibition of Hsp70 substrate binding activity in vivo reduces the induction of

  3. 2-phenylethynesulfonamide Prevents Induction of Pro-inflammatory Factors and Attenuates LPS-induced Liver Injury by Targeting NHE1-Hsp70 Complex in Mice.

    PubMed

    Huang, Chao; Wang, Jia; Chen, Zhuo; Wang, Yuzhe; Zhang, Wei

    2013-01-01

    The endotoxin-mediated production of pro-inflammatory cytokines plays an important role in the pathogenesis of liver disorders. Heat shock protein (Hsp70) overexpression has established functions in lipopolysaccharide (LPS)-mediated inflammatory response. However, little is known about the role of Hsp70 activity in LPS signaling. We hypothesized that inhibition of Hsp70 substrate binding activity can ameliorate LPS-induced liver injury by decreasing induction of pro-inflammatory factors. In this study, C57/BL6 mice were injected intraperitoneally with LPS and 2-phenylethynesulfonamide (PES), an inhibitor of Hsp70 substrate binding activity. We found that i. PES prevented LPS-induced increase in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, infiltration of inflammatory cells, and liver cell apoptosis; ii. PES reduced inducible nitric oxide synthase (iNOS) protein expression as well as serum nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) content in LPS-stimulated mice; iii. PES reduced the mRNA level of iNOS, TNF-α, and IL-6 in LPS-stimulated liver. iiii. PES attenuated the degradation of inhibitor of κB-α (IκB-α) as well as the phosphorylation and nuclear translocation of nuclear factor-κB (NF-κB) in LPS-stimulated liver. Similar changes in the protein expression of inflammatory markers, IκB-α degradation, and NF-κB phosphorylation and nuclear translocation were observed in RAW 264.7 cells. Further mechanistic studies revealed that PES remarkably reduced the elevation of [Ca(2+)]i and intracellular pH value (pHi) in LPS-stimulated RAW 264.7 cells. Furthermore, PES significantly reduced the increase in Na(+)/H(+) exchanger 1 (NHE1) association to Hsp70 in LPS-stimulated macrophages and liver, suggesting that NHE1-Hsp70 interaction is required for the involvement of NHE1 in the inflammation response. In conclusion, inhibition of Hsp70 substrate binding activity in vivo reduces the

  4. Protective effects of pogostone against LPS-induced acute lung injury in mice via regulation of Keap1-Nrf2/NF-κB signaling pathways.

    PubMed

    Sun, Chao-Yue; Xu, Lie-Qiang; Zhang, Zhen-Biao; Chen, Chao-Hui; Huang, Yong-Zhong; Su, Zu-Qing; Guo, Hui-Zhen; Chen, Xiao-Ying; Zhang, Xie; Liu, Yu-Hong; Chen, Jian-Nan; Lai, Xiao-Ping; Li, Yu-Cui; Su, Zi-Ren

    2016-03-01

    Pogostone, a major component of Pogostemon cablin, has been demonstrated to possess antibacterial, anti-fungal, immunosuppressive and anti-inflammatory properties. To investigate the potential therapeutic effect of pogostone on lipopolysaccharide (LPS)-induced acute lung injury (ALI), mice were pretreated with pogostone prior to LPS exposure. After LPS challenge, the lungs were excised and the histological changes, wet to dry weight ratios, MPO activity reflecting neutrophil infiltration, and MDA activity reflecting oxidative stress were examined. The inflammatory cytokines in the BALF were determined by ELISA assay. Moreover, the expressions of p65 and phosphorylated p65 subunit of NF-κB, and Nrf2 in the nucleus in lung tissues were measured by Western blot analysis, and meanwhile the dependent genes of NF-κB and Nrf2 were assessed by RT-qPCR. The results showed that pretreatment with pogostone markedly improved survival rate, attenuated the histological alterations in the lung, reduced the MPO and MDA levels, decreased the wet/dry weight ratio of lungs, down-regulated the level of pro-inflammatory mediators including TNF-a, IL-1β and IL-6. Furthermore, pretreatment with pogostone enhanced the Nrf2 dependent genes including NQO-1, GCLC and HO-1 but suppressed NF-κB regulated genes including TNF-α, IL-1β and IL-6. The mechanism behind the protective effect was correlated with its regulation on the balance between Keap1-Nrf2 and NF-κB signaling pathways. Therefore, pogostone may be considered as a potential therapeutic agent for preventing and treating ALI.

  5. Monocyte B7 and Sialyl Lewis X modulates the efficacy of IL-10 down-regulation of LPS-induced monocyte tissue factor in whole blood.

    PubMed

    Warnes, G; Biggerstaff, J P; Francis, J L

    1998-07-01

    Recent studies have investigated the use of anti-inflammatory cytokine, interleukin 10 (IL-10) to control the development of disseminated intravascular coagulation (DIC) in sepsis by down-regulation of monocyte tissue factor (MTF) induced by lipopolysaccharide (LPS) in the initial phase of the disease. In vitro and in vivo human studies have shown that a minimal (<1 h) delay in IL-10 treatment significantly reduces the cytokines ability to inhibit LPS-induced MTF expression and the end products of coagulation. In this whole blood in vitro study we investigated the role of lymphocyte and platelet interactions with monocytes to up-regulate MTF expression in the presence of IL-10 in the initial phase of exposure to LPS. Individual blockade of monocyte B7 or platelet P-selectin significantly (35%) reduced MTF expression (P<0.05). IL-10 showed a dose-dependent inhibition of LPS (0.1 microg/ml) induced MTF expression, with 56% inhibition at 1 ng/ml, maximizing at 5 ng/ml IL-10 (75%; P<0.05). Simultaneous exposure to LPS and IL-10 (1 ng/ml) or addition of IL-10 1 h after LPS, with individual B7 and P-selectin blockade significantly enhanced the inhibition of MTF expression by IL-10 (P<0.05). We conclude that the efficacy of IL-10 to control DIC could be enhanced by a simultaneous B7 and P-selectin blockade.

  6. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages.

    PubMed

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-13

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD(+) has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD(+) homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD(+) levels and expression levels of NAD(+) homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD(+) levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD(+) synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD(+) homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD(+) levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD(+). The agonist-induced rise in NAD(+) shows striking parallels to well-known second messengers and raises the possibility that NAD(+) is acting in a similar manner in this model.

  7. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages

    PubMed Central

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-01

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD+ has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD+ homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD+ levels and expression levels of NAD+ homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD+ levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD+ synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD+ homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD+ levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD+. The agonist-induced rise in NAD+ shows striking parallels to well-known second messengers and raises the possibility that NAD+ is acting in a similar manner in this model. PMID:26764408

  8. Ethylacetate extract from Draconis Resina inhibits LPS-induced inflammatory responses in vascular smooth muscle cells and macrophages via suppression of ROS production.

    PubMed

    Heo, Sook-Kyoung; Yi, Hyo-Seung; Yun, Hyun-Jeong; Ko, Chang-Hyun; Choi, Jae-Woo; Park, Sun-Dong

    2010-05-01

    Draconis Resina (DR) is a type of dragon's blood resin obtained from Daemomorops draco BL. (Palmae). DR has long been used as a traditional Korean herbal medicine, and is currently used in traditional clinics to treat wounds, tumors, diarrhea, and rheumatism, insect bites and other conditions. In this study, we evaluated fractionated extracts of DR to determine if they inhibited the production of interleukin-1beta (IL-1beta) and the expression of cyclooxygenase (COX)-2. The results of this analysis revealed that the ethylacetate extract of Draconis Resina (DREA) was more potent than that of other extracts. Moreover, DREA inhibited the production of nitric oxide (NO), reactive oxygen species (ROS), prostaglandin E(2) (PGE(2)), tumor necrosis factor-alpha (TNF-alpha), IL-8 and IL-6 in lipopolysaccharide (LPS)-treated human aortic smooth muscle cells (HASMC) and RAW 264.7 macrophages. Furthermore, treatment with an NADPH oxidase assembly inhibitor, AEBSF, efficiently blocked LPS-induced mitogen-activated protein kinases (MAPKs) activation, as did DREA. These findings indicate that DREA inhibits the production of NO, PGE(2), TNF-alpha, IL-8, and IL-6 by LPS via the inhibition of ROS production, which demonstrates that DREA inhibits LPS-induced inflammatory responses via the suppression of ROS production. Taken together, these results indicate that DREA has the potential for use as an anti-atherosclerosis agent. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  9. MD-2 as the target of a novel small molecule, L6H21, in the attenuation of LPS-induced inflammatory response and sepsis

    PubMed Central

    Wang, Yi; Shan, Xiaoou; Chen, Gaozhi; Jiang, Lili; Wang, Zhe; Fang, Qilu; Liu, Xing; Wang, Jingying; Zhang, Yali; Wu, Wencan; Liang, Guang

    2015-01-01

    Background and Purpose Myeloid differentiation 2 (MD-2) recognizes LPS, which is required for TLR4 activation, and represents an attractive therapeutic target for severe inflammatory disorders. We previously found that a chalcone derivative, L6H21, could inhibit LPS-induced overexpression of TNF-α and IL-6 in macrophages. Here, we performed a series of biochemical experiments to investigate whether L6H21 specifically targets MD-2 and inhibits the interaction and signalling transduction of LPS-TLR4/MD-2. Experimental Approach The binding affinity of L6H21 to MD-2 protein was analysed using computer docking, surface plasmon resonance analysis, elisa, fluorescence measurements and flow cytometric analysis. The effects of L6H21 on MAPK and NF-κB signalling were determined using EMSA, fluorescence staining, Western blotting and immunoprecipitation. The anti-inflammatory effects of L6H21 were confirmed using elisa and RT-qPCR in vitro. The anti-inflammatory effects of L6H21 were also evaluated in septic C57BL/6 mice. Key Results Compound L6H21 inserted into the hydrophobic region of the MD-2 pocket, forming hydrogen bonds with Arg90 and Tyr102 in the MD-2 pocket. In vitro, L6H21 subsequently suppressed MAPK phosphorylation, NF-κB activation and cytokine expression in macrophages stimulated by LPS. In vivo, L6H21 pretreatment improved survival, prevented lung injury, decreased serum and hepatic cytokine levels in mice subjected to LPS. In addition, mice with MD-2 gene knockout were universally protected from the effects of LPS-induced septic shock. Conclusions and Implications Overall, this work demonstrated that the new chalcone derivative, L6H21, is a potential candidate for the treatment of sepsis. More importantly, the data confirmed that MD-2 is an important therapeutic target for inflammatory disorders. PMID:26076332

  10. Cloning and analysis of gene regulation of a novel LPS-inducible cDNA.

    PubMed

    Lee, C G; Jenkins, N A; Gilbert, D J; Copeland, N G; O'Brien, W E

    1995-01-01

    The expression of many genes is altered upon the activation of macrophages by bacterial LPS. These genes play a crucial role in the orchestration of various responses to protect the host against infection. A novel 2.3 kilobase (kb) cDNA, designated IRG1, was obtained from a cDNA library prepared with RNA isolated from RAW 264.7 following lipopolysaccharide stimulation. Sequence analysis of the clone revealed no identity to any known genes but showed the presence of many potential phosphorylation sites suggesting that IRG1 protein product may be regulated at this level. Furthermore, IRG1 contains the motif for glycosaminoglycan attachment site, implying that IRG1 may be a proteoglycan. By interspecific back-cross analysis, Irg1 was mapped to mouse chromosome 14 linked to Tyrp2 and Rap2a. The IRG1 message appears 1.5 h following LPS exposure and its induction was not dependent on new protein synthesis. In fact, cycloheximide induced the expression of IRG1, suggesting that a protein repressor prevents the expression of IRG1 when uninduced. The role of the protein kinase A pathway in regulating the induction of IRG1 by LPS is questionable, because although forskolin inhibited its induction, neither dibutyrl-cAMP nor 8-(4-chlorophenylthio)-cAMP had much effect on its expression. In contrast, activation of protein kinase C potentiated the LPS response. Chelation of extracellular calcium inhibited IRG1 4 h after LPS induction, while increasing intracellular calcium had little effect on the levels of the IRG1 transcript. Inhibiting tyrosine phosphorylation abrogated the induction of IRG1 by LPS. Hence, the induction of IRG1 by LPS is mediated by tyrosine kinase and protein kinase C pathway.

  11. Cloning and analysis of gene regulation of a novel LPS-inducible cDNA

    SciTech Connect

    Lee, C.G.L.; O`Brien, W.E.; Jenkins, N.A.; Gilbert, D.J.; Copeland, N.G.

    1995-03-01

    The expression of many genes is altered upon the activation of macrophages by bacterial LPS. These genes play a crucial role in the orchestration of various responses to protect the host against infection. A novel 2.3 kilobase (kb) cDNA, designated IRG1, was obtained from a cDNA library prepared with RNA isolated from RAW 264.7 following lipopolysaccharide stimulation. Sequence analysis of the clone revealed no identity to any known genes but showed the presence of many potential phosphorylation sites suggesting that IRG1 protein product may be regulated at this level. Furthermore, IRG1 contains the motif for glycosaminoglycan attachment site, implying that IRG1 may be a proteoglycan. By interspecific backcross analysis, IRG1 was mapped to mouse chromosome 14 linked to Tyrp2 and Rap2a. The IRG1 message appears 1.5 h following LPS exposure and its induction was not dependent on new protein synthesis. In fact, cycloheximide induced the expression of IRG1, suggesting that a protein repressor prevents the expression of IRG1 when uninduced. The role of the protein kinase A pathway in regulating the induction of IRG1 by LPS is questionable, because although forskolin inhibited its induction, neither dibutyrl-cAMP nor 8-(4-chlorophenylthio)-cAMP had much effect on its expression. In contrast, activation of protein kinase C potentiated the LPS response. Chelation of extracellular calcium inhibited IRG1 4 h after LPS induction, while increasing intracellular calcium had little effect on the levels of the IRG1 transcript. Inhibiting tyrosine phosphorylation abrogated the induction of IRG1 by LPS. Hence, the induction of IRG1 by LPS is mediated by tyrosine kinase and protein kinase C pathway. 80 refs., 5 figs.

  12. The Fab Fragment of a Human Anti-Siglec-9 Monoclonal Antibody Suppresses LPS-Induced Inflammatory Responses in Human Macrophages

    PubMed Central

    Chu, Sasa; Zhu, Xuhui; You, Na; Zhang, Wei; Zheng, Feng; Cai, Binggang; Zhou, Tingting; Wang, Yiwen; Sun, Qiannan; Yang, Zhiguo; Zhang, Xin; Wang, Changjun; Nie, Shinan; Zhu, Jin; Wang, Maorong

    2016-01-01

    Sepsis is a major cause of death for hospitalized patients and is characterized by massive overreaction of immune responses to invading pathogens which is mediated by cytokines. For decades, there has been no effective treatment for sepsis. Sialic acid-binding, Ig-like lectin-9 (Siglec-9), is an immunomodulatory receptor expressed primarily on hematopoietic cells which is involved in various aspects of inflammatory responses and is a potential target for treatment of sepsis. The aim of the present study was to develop a human anti-Siglec-9 Fab fragment, which was named hS9-Fab03 and investigate its immune activity in human macrophages. We began by constructing the hS9-Fab03 prokaryotic expression vector from human antibody library and phage display. Then, we utilized a multitude of assays, including SDS-PAGE, Western blotting, ELISA, affinity, and kinetics assay to evaluate the binding affinity and specificity of hS9-Fab03. Results demonstrated that hS9-Fab03 specifically bind to Siglec-9 antigen with high affinity, and pretreatment with hS9-Fab03 could attenuate lipopolysaccharide (LPS)-induced TNF-α, IL-6, IL-1β, IL-8, and IFN-β production in human PBMC-derived macrophages, but slightly increased IL-10 production in an early time point. We also observed similar results in human THP-1-differentiated macrophages. Collectively, we prepared the hS9-Fab03 with efficient activity for blocking LPS-induced pro-inflammatory cytokines production in human macrophages. These results indicated that ligation of Siglec-9 with hS9-Fab03 might be a novel anti-inflammatory therapeutic strategy for sepsis. PMID:28082984

  13. Flavonoid fraction of Bergamot juice reduces LPS-induced inflammatory response through SIRT1-mediated NF-κB inhibition in THP-1 monocytes.

    PubMed

    Risitano, Roberto; Currò, Monica; Cirmi, Santa; Ferlazzo, Nadia; Campiglia, Pietro; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2014-01-01

    Plant polyphenols exert anti-inflammatory activity through both anti-oxidant effects and modulation of pivotal pro-inflammatory genes. Recently, Citrus bergamia has been studied as a natural source of bioactive molecules with antioxidant activity, but few studies have focused on molecular mechanisms underlying their potential beneficial effects. Several findings have suggested that polyphenols could influence cellular function by acting as activators of SIRT1, a nuclear histone deacetylase, involved in the inhibition of NF-κB signaling. On the basis of these observations we studied the anti-inflammatory effects produced by the flavonoid fraction of the bergamot juice (BJe) in a model of LPS-stimulated THP-1 cell line, focusing on SIRT1-mediated NF-κB inhibition. We demonstrated that BJe inhibited both gene expression and secretion of LPS-induced pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) by a mechanism involving the inhibition of NF-κB activation. In addition, we showed that BJe treatment reversed the LPS-enhanced acetylation of p65 in THP-1 cells. Interestingly, increasing concentrations of Sirtinol were able to suppress the inhibitory effect of BJe via p65 acetylation, underscoring that NF-κB-mediated inflammatory cytokine production may be directly linked to SIRT1 activity. These results suggest that BJe may be useful for the development of alternative pharmacological strategies aimed at reducing the inflammatory process.

  14. LPS-induced inflammatory response triggers cell cycle reactivation in murine neuronal cells through retinoblastoma proteins induction.

    PubMed

    D'Angelo, Barbara; Astarita, Carlo; Boffo, Silvia; Massaro-Giordano, Mina; Iannuzzi, Carmelina; Caporaso, Antonella; Macaluso, Marcella; Giordano, Antonio

    2017-08-18

    Cell cycle reactivation in adult neurons is an early hallmark of neurodegeneration. The lipopolysaccharide (LPS) is a well-known pro-inflammatory factor that provokes neuronal cell death via glial cells activation. The retinoblastoma (RB) family includes RB1/p105, retinoblastoma-like 1 (RBL1/p107), and retinoblastoma-like 2 (Rb2/p130). Several studies have indicated that RB proteins exhibit tumor suppressor activities, and play a central role in cell cycle regulation. In this study, we assessed LPS-mediated inflammatory effect on cell cycle reactivation and apoptosis of neuronally differentiated cells. Also, we investigated whether the LPS-mediated inflammatory response can influence the function and expression of RB proteins. Our results showed that LPS challenges triggered cell cycle reactivation of differentiated neuronal cells, indicated by an accumulation of cells in S and G2/M phase. Furthermore, we found that LPS treatment also induced apoptotic death of neurons. Interestingly, we observed that LPS-mediated inflammatory effect on cell cycle re-entry and apoptosis was concomitant with the aberrant expression of RBL1/p107 and RB1/p105. To the best of our knowledge, our study is the first to indicate a role of LPS in inducing cell cycle re-entry and/or apoptosis of differentiated neuronal cells, perhaps through mechanisms altering the expression of specific members of RB family proteins. This study provides novel information on the biology of post-mitotic neurons and could help in identifying novel therapeutic targets to prevent de novo cell cycle reactivation and/or apoptosis of neurons undergoing neurodegenerative processes.

  15. Discovery of new MD2 inhibitor from chalcone derivatives with anti-inflammatory effects in LPS-induced acute lung injury

    PubMed Central

    Zhang, Yali; Wu, Jianzhang; Ying, Shilong; Chen, Gaozhi; Wu, Beibei; Xu, Tingting; Liu, Zhiguo; Liu, Xing; Huang, Lehao; Shan, Xiaoou; Dai, Yuanrong; Liang, Guang

    2016-01-01

    Acute lung injury (ALI) is a life-threatening acute inflammatory disease with limited options available for therapy. Myeloid differentiation protein 2, a co-receptor of TLR4, is absolutely required for TLR4 sense LPS, and represents an attractive target for treating severe inflammatory diseases. In this study, we designed and synthesized 31 chalcone derivatives that contain the moiety of (E)-4-phenylbut-3-en-2-one, which we consider the core structure of current MD2 inhibitors. We first evaluated the anti-inflammatory activities of these compounds in MPMs. For the most active compound 20, we confirmed that it is a specific MD2 inhibitor through a series of biochemical experiments and elucidated that it binds to the hydrophobic pocket of MD2 via hydrogen bonds with Arg90 and Tyr102 residues. Compound 20 also blocked the LPS-induced activation of TLR4/MD2 -downstream pro-inflammatory MAPKs/NF-κB signaling pathways. In a rat model with ALI induced by intracheal LPS instillation, administration with compound 20 exhibited significant protective effect against ALI, accompanied by the inhibition of TLR4/MD2 complex formation in lung tissues. Taken together, the results of this study suggest the specific MD2 inhibitor from chalcone derivatives we identified is a potential candidate for treating acute inflammatory diseases. PMID:27118147

  16. Intervention of Dietary Dipeptide Gamma-l-Glutamyl-l-Valine (γ-EV) Ameliorates Inflammatory Response in a Mouse Model of LPS-Induced Sepsis.

    PubMed

    Chee, MacKenzie E; Majumder, Kaustav; Mine, Yoshinori

    2017-07-26

    Sepsis, the systemic inflammatory response syndrome (SIRS) with infection is one of the leading causes of death in critically ill patients in the developed world due to the lack of effective antisepsis treatments. This study examined the efficacy of dietary dipeptide gamma-l-glutamyl-l-valine (γ-EV), which was characterized previously as an anti-inflammatory peptide, in an LPS-induced mouse model of sepsis. BALB/c mice were administered γ-EV via oral gavage followed by an intraperitoneal injection of LPS to induce sepsis. The γ-EV exhibited antisepsis activity by reducing the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β in plasma and small intestine. γ-EV also reduced the phosphorylation of the signaling proteins JNK and IκBα. We concluded that γ-EV could possess an antisepsis effect against bacterial infection in intestine. This study proposes a signaling mechanism whereby the calcium-sensing receptor (CaSR) allosterically activated by γ-EV stimulates the interaction of β-arrestin2 with the TIR(TLR/IL-1R) signaling proteins TRAF6, TAB1, and IκBα to suppress inflammatory signaling.

  17. α-Solanine Isolated From Solanum Tuberosum L. cv Jayoung Abrogates LPS-Induced Inflammatory Responses Via NF-κB Inactivation in RAW 264.7 Macrophages and Endotoxin-Induced Shock Model in Mice.

    PubMed

    Shin, Ji-Sun; Lee, Kyoung-Goo; Lee, Hwi-Ho; Lee, Hae Jun; An, Hyo-Jin; Nam, Jung-Hwan; Jang, Dae Sik; Lee, Kyung-Tae

    2016-10-01

    α-Solanine, a trisaccharide glycoalkaloid, has been reported to possess anti-cancer effects. In this study, we investigated the anti-inflammatory effects of α-solanine isolated from "Jayoung" a dark purple-fleshed potato by examining its in vitro inhibitory effects on inducible nitric-oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines in LPS-induced RAW 264.7 macrophages and its in vivo effects on LPS-induced septic shock in a mouse model. α-Solanine suppressed the expression of iNOS and COX-2 both at protein and mRNA levels and consequently inhibited nitric oxide (NO) and prostaglandin E2 (PGE2 ) production in LPS-induced RAW 264.7 macrophages. α-Solanine also reduced the production and mRNA expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) induced by LPS. Furthermore, molecular mechanism studies indicated that α-solanine inhibited LPS-induced activation of nuclear factor-κB (NF-κB) by reducing nuclear translocation of p65, degradation of inhibitory κBα (IκBα), and phosphorylation of IκB kinaseα/β (IKKα/β). In an in vivo experiment of LPS-induced endotoxemia, treatment with α-solanine suppressed mRNA expressions of iNOS, COX-2, IL-6, TNF-α, and IL-1β, and the activation of NF-κB in liver. Importantly, α-solanine increased the survival rate of mice in LPS-induced endotoxemia and polymicrobial sepsis models. Taken together, our data suggest that the α-solanine may be a promising therapeutic against inflammatory diseases by inhibiting the NF-κB signaling pathway. J. Cell. Biochem. 117: 2327-2339, 2016. © 2016 Wiley Periodicals, Inc.

  18. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages.

    PubMed

    Shin, Jung-Hye; Ryu, Ji Hyeon; Kang, Min Jung; Hwang, Cho Rong; Han, Jaehee; Kang, Dawon

    2013-08-01

    Garlic has a variety of biologic activities, including anti-inflammatory properties. Although garlic has several biologic activities, some people dislike eating fresh raw garlic because of its strong taste and smell. Therefore, garlic formulations involving heating procedures have been developed. In this study, we investigated whether short-term heating affects the anti-inflammatory properties of garlic. Fresh and heated raw garlic extracts (FRGE and HRGE) were prepared with incubation at 25 °C and 95 °C, respectively, for 2 h. Treatment with FRGE and HRGE significantly reduced the LPS-induced increase in the pro-inflammatory cytokine concentration (TNF-α, IL-1β, and IL-6) and NO through HO-1 upregulation in RAW 264.7 macrophages. The anti-inflammatory effect was greater in FRGE than in HRGE. The allicin concentration was higher in FRGE than in HRGE. Allicin treatment showed reduced production of pro-inflammatory cytokines and NO and increased HO-1 activity. The results show that the decrease in LPS-induced NO and pro-inflammatory cytokines in RAW 264.7 macrophages through HO-1 induction was greater for FRGE compared with HRGE. Additionally, the results indicate that allicin is responsible for the anti-inflammatory effect of FRGE. Our results suggest a potential therapeutic use of allicin in the treatment of chronic inflammatory disease.

  19. Anethole, a Medicinal Plant Compound, Decreases the Production of Pro-Inflammatory TNF-α and IL-1β in a Rat Model of LPS-Induced Periodontitis

    PubMed Central

    Moradi, Janet; Abbasipour, Fatemeh; Zaringhalam, Jalal; Maleki, Bita; Ziaee, Narges; Khodadoustan, Amin; Janahmadi, Mahyar

    2014-01-01

    Periodontitis (PD) is known to be one of most prevalent worldwide chronic inflammatory diseases. There are several treatments including antibiotics for PD; however, since drug resistance is an increasing problem, new drugs particularly derived from plants with fewer side effects are required. The effects of trans-anethole on IL-1 β and TNF-α level in a rat model of PD were investigated and compared to ketoprofen. Eschericia coli lipopolysaccharide (LPS, 30 µg) was injected bilaterally into the palatal gingiva (3 µL/site) between the upper first and second molars every two days for 10 days in anesthetized rats. Administration of either trans-anethole (10 or 50 mg/Kg, i.p.) or ketoprofen (10 mg/Kg, i.p.) was started 20 minute before LPS injection and continued for 10 days. Then, IL-1β and TNF-α levels were measured in blood samples by ELISA at day 0 (control) and at day 10. Anethole at both concentrations significantly suppressed IL-1β and TNF-α production when compared to LPS-treated rats. The suppressive effects of anethole on LPS-induced pro-inflammatory cytokines were almost similar as seen with ketoprofen. In conclusion, the present results suggest that anethole may have a potent inhibitory effect on PD through suppression of pro-inflammatory molecules; therefore it could be a novel therapeutic strategy for PD. PMID:25587321

  20. Low-intensity pulsed ultrasound (LIPUS) inhibits LPS-induced inflammatory responses of osteoblasts through TLR4-MyD88 dissociation.

    PubMed

    Nakao, Juna; Fujii, Yasuyuki; Kusuyama, Joji; Bandow, Kenjiro; Kakimoto, Kyoko; Ohnishi, Tomokazu; Matsuguchi, Tetsuya

    2014-01-01

    Previous reports have shown that osteoblasts are mechano-sensitive. Low-intensity pulsed ultrasound (LIPUS) induces osteoblast differentiation and is an established therapy for bone fracture. Here we have examined how LIPUS affects inflammatory responses of osteoblasts to LPS. LPS rapidly induced mRNA expression of several chemokines including CCL2, CXCL1, and CXCL10 in both mouse osteoblast cell line and calvaria-derived osteoblasts. Simultaneous treatment by LIPUS significantly inhibited mRNA induction of CXCL1 and CXCL10 by LPS. LPS-induced phosphorylation of ERKs, p38 kinases, MEK1/2, MKK3/6, IKKs, TBK1, and Akt was decreased in LIPUS-treated osteoblasts. Furthermore, LIPUS inhibited the transcriptional activation of NF-κB responsive element and Interferon-sensitive response element (ISRE) by LPS. In a transient transfection experiment, LIPUS significantly inhibited TLR4-MyD88 complex formation. Thus LIPUS exerts anti-inflammatory effects on LPS-stimulated osteoblasts by inhibiting TLR4 signal transduction.

  1. Chloroform fraction of Solanum tuberosum L. cv Jayoung epidermis suppresses LPS-induced inflammatory responses in macrophages and DSS-induced colitis in mice.

    PubMed

    Lee, Seung-Jun; Shin, Ji-Sun; Choi, Hye-Eun; Lee, Kyoung-Goo; Cho, Young-Wuk; An, Hyo-Jin; Jang, Dae Sik; Jeong, Jin-Cheol; Kwon, Oh-Keun; Nam, Jung-Hwan; Lee, Kyung-Tae

    2014-01-01

    In this study, the authors investigated the molecular mechanism underlying the antiinflammatory effects of the chloroform fraction of the peel of 'Jayoung' (CFPJ), a color-fleshed potato, on lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and in mice with dextran sulfate sodium (DSS)-induced colitis. CFPJ inhibited the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the transcription level, and attenuated the transcriptional activity of nuclear factor-κB (NF-κB) by reducing the translocation of NF-κB depending on degradation of inhibitory κB-α (IκB-α). Furthermore, CFPJ attenuated the phosphorylations of mitogen-activated protein kinase kinases3/6 (MKK3/6) and of p38. In colitis model, CFPJ significantly reduced the severity of colitis and the productions and protein levels of pro-inflammatory mediators in colonic tissue. These results suggest that the anti-inflammatory effects of CFPJ are associated with the suppression of NF-κB and p38 activation in macrophages, and support its possible therapeutic role for the treatment of colitis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Up-regulation of TDAG51 is a dependent factor of LPS-induced RAW264.7 macrophages proliferation and cell cycle progression.

    PubMed

    Jiao, Han-Wei; Jia, Xiao-Xiao; Zhao, Tian-Jing; Rong, Hui; Zhang, Jia-Ning; Cheng, Ying; Zhu, Hua-Pei; Xu, Kai-Lian; Guo, Shi-Yu; Shi, Qiao-Yun; Zhang, Hui; Wang, Feng-Yang; Chen, Chuang-Fu; Du, Li

    2016-01-01

    As a component of the outer membrane in Gram-negative bacteria, lipopolysaccharide (LPS)-induced proliferation and cell cycle progression of monocytes/macrophages. It has been suggested that the proapoptotic T-cell death-associated gene 51 (TDAG51) might be associated with cell proliferation and cell cycle progression; however, its role in the interaction between LPS and macrophages remains unclear. We attempted to elucidate the role(s) of TDAG51 played in the interaction between LPS and macrophages. We investigated TDAG51 expression in RAW264.7 cells stimulated with LPS and examined the effects of RNA interference-mediated TDAG51 down-regulation. We used CCK-8 assay and flow cytometry analysis to evaluate the interaction between TDAG51 and LPS-induced proliferation and cell cycle progression in RAW264.7 cells. Our findings indicate that TDAG51 is up-regulated in LPS-stimulated RAW264.7 cells, the TDAG51 siRNA effectively reduced TDAG51 protein up-regulation following LPS stimulation in RAW264.7 cells, the significant changes of the proliferation and cell cycle progression of RAW264.7 cells in TDAG51 Knockdown RAW264.7 cells treated with LPS were observed. These findings suggested that TDAG51 up-regulation is a dependent event during LPS-mediated proliferation and cell cycle progression, and which increase our understanding of the interaction mechanism between LPS and macrophages.

  3. Euscaphic acid isolated from roots of Rosa rugosa inhibits LPS-induced inflammatory responses via TLR4-mediated NF-κB inactivation in RAW 264.7 macrophages.

    PubMed

    Kim, In-Tae; Ryu, Suran; Shin, Ji-Sun; Choi, Jung-Hye; Park, Hee-Juhn; Lee, Kyung-Tae

    2012-06-01

    As an attempt to search for bioactive natural products exerting anti-inflammatory activity, we have evaluated the anti-inflammatory effects of euscaphic acid (19α-hydroxyursane-type triterpenoids, EA) isolated from roots of Rosa rugosa and its underlying molecular mechanisms in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. EA concentration-dependently reduced the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) induced by LPS in RAW 264.7 macgophages. Consistent with these data, expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and iNOS, COX-2, TNF-α, and IL-1β mRNA were inhibited by EA in a concentration-dependent manner. In addition, EA attenuated LPS-induced DNA binding and transcriptional activity of nuclear factor-kappa B (NF-κB), which was accompanied by a parallel reduction of degradation and phosphorylation of inhibitory kappa Bα (IκBα) and consequently by decreased nuclear translocation of p65 subunit of NF-κB. Pretreatment with EA significantly inhibited the LPS-induced phosphorylation of IκB kinase β (IKKβ), p38, and JNK, whereas the phosphorylation of ERK1/2 was unaffected. Furthermore, EA interfered with the LPS-induced clustering of TNF receptor-associated factor 6 (TRAF6) with interleukin receptor associated kinase 1 (IRAK1) and transforming growth factor-β-activated kinase 1 (TAK1). Taken together, these results suggest that EA inhibits LPS-induced inflammatory responses by interference with the clustering of TRAF6 with IRAK1 and TAK1, resulting in blocking the activation of IKK and MAPKs signal transduction to downregulate NF-κB activations.

  4. Glycyrrhizic acid nanoparticles inhibit LPS-induced inflammatory mediators in 264.7 mouse macrophages compared with unprocessed glycyrrhizic acid.

    PubMed

    Wang, Wei; Luo, Meng; Fu, Yujie; Wang, Song; Efferth, Thomas; Zu, Yuangang

    2013-01-01

    Glycyrrhizic acid (GA), the main component of radix glycyrrhizae, has a variety of pharmacological activities. In the present study, suspensions of GA nanoparticles with the average particle size about 200 nm were prepared by a supercritical antisolvent (SAS) process. Comparative studies were undertaken using lipopolysaccardide (LPS)-stimulated mouse macrophages RAW 264.7 as in vitro inflammatory model. Several important inflammation mediators such as NO, PGE2, TNF-α and IL-6 were examined. These markers were highly stimulated by LPS and were inhibited both by nano-GA and unprocessed GA in a dose-dependent manner, especially PGE2 and TNF-α. However nano-GA and unprocessed GA inhibited NO only at a high concentration. In general, we found that GA nanoparticle suspensions exhibited much better anti-inflammatory activities compared to unprocessed GA.

  5. Glycyrrhizic acid nanoparticles inhibit LPS-induced inflammatory mediators in 264.7 mouse macrophages compared with unprocessed glycyrrhizic acid

    PubMed Central

    Wang, Wei; Luo, Meng; Fu, Yujie; Wang, Song; Efferth, Thomas; Zu, Yuangang

    2013-01-01

    Glycyrrhizic acid (GA), the main component of radix glycyrrhizae, has a variety of pharmacological activities. In the present study, suspensions of GA nanoparticles with the average particle size about 200nm were prepared by a supercritical antisolvent (SAS) process. Comparative studies were undertaken using lipopolysaccardide(LPS)-stimulated mouse macrophages RAW 264.7 as in vitro inflammatory model. Several important inflammation mediators such as NO, PGE2, TNF-α and IL-6 were examined. These markers were highly stimulated by LPS and were inhibited both by nano-GA and unprocessed GA in a dose-dependent manner, especially PGE2 and TNF-α. However nano-GA and unprocessed GA inhibited NO only at a high concentration. In general, we found that GA nanoparticle suspensions exhibited much better anti-inflammatory activities compared to unprocessed GA. PMID:23610519

  6. Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARα signaling and inhibiting the NF-κB and ERK1/2/AP-1/STAT3 pathways.

    PubMed

    Yang, Lichao; Guo, Han; Li, Ying; Meng, Xianglan; Yan, Lu; Dan Zhang; Wu, Sangang; Zhou, Hao; Peng, Lu; Xie, Qiang; Jin, Xin

    2016-10-10

    The present study aimed to examine the anti-inflammatory actions of oleoylethanolamide (OEA) in lipopolysaccharide (LPS)-induced THP-1 cells. The cells were stimulated with LPS (1 μg/ml) in the presence or absence of OEA (10, 20 and 40 μM). The pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. The THP-1 cells were transiently transfected with PPARα small-interfering RNA, and TLR4 activity was determined with a blocking test using anti-TLR4 antibody. Additionally, a special inhibitor was used to analyse the intracellular signaling pathway. OEA exerted a potent anti-inflammatory effect by reducing the production of pro-inflammatory cytokines and TLR4 expression, and by enhancing PPARα expression. The modulatory effects of OEA on LPS-induced inflammation depended on PPARα and TLR4. Importantly, OEA inhibited LPS-induced NF-κB activation, IκBα degradation, expression of AP-1, and the phosphorylation of ERK1/2 and STAT3. In summary, our results demonstrated that OEA exerts anti-inflammatory effects by enhancing PPARα signaling, inhibiting the TLR4-mediated NF-κB signaling pathway, and interfering with the ERK1/2-dependent signaling cascade (TLR4/ERK1/2/AP-1/STAT3), which suggests that OEA may be a therapeutic agent for inflammatory diseases.

  7. Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARα signaling and inhibiting the NF-κB and ERK1/2/AP-1/STAT3 pathways

    PubMed Central

    Yang, Lichao; Guo, Han; Li, Ying; Meng, Xianglan; Yan, Lu; Dan Zhang; Wu, Sangang; Zhou, Hao; Peng, Lu; Xie, Qiang; Jin, Xin

    2016-01-01

    The present study aimed to examine the anti-inflammatory actions of oleoylethanolamide (OEA) in lipopolysaccharide (LPS)-induced THP-1 cells. The cells were stimulated with LPS (1 μg/ml) in the presence or absence of OEA (10, 20 and 40 μM). The pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. The THP-1 cells were transiently transfected with PPARα small-interfering RNA, and TLR4 activity was determined with a blocking test using anti-TLR4 antibody. Additionally, a special inhibitor was used to analyse the intracellular signaling pathway. OEA exerted a potent anti-inflammatory effect by reducing the production of pro-inflammatory cytokines and TLR4 expression, and by enhancing PPARα expression. The modulatory effects of OEA on LPS-induced inflammation depended on PPARα and TLR4. Importantly, OEA inhibited LPS-induced NF-κB activation, IκBα degradation, expression of AP-1, and the phosphorylation of ERK1/2 and STAT3. In summary, our results demonstrated that OEA exerts anti-inflammatory effects by enhancing PPARα signaling, inhibiting the TLR4-mediated NF-κB signaling pathway, and interfering with the ERK1/2-dependent signaling cascade (TLR4/ERK1/2/AP-1/STAT3), which suggests that OEA may be a therapeutic agent for inflammatory diseases. PMID:27721381

  8. GSK-3β inhibition attenuates LPS-induced death but aggravates radiation-induced death via down-regulation of IL-6.

    PubMed

    Li, Bailong; Zhang, Chaoxiong; He, Feng; Liu, Wen; Yang, Yanyong; Liu, Hu; Liu, Xin; Wang, Jie; Zhang, Lin; Deng, Bo; Gao, Fu; Cui, Jianguo; Liu, Cong; Cai, Jianming

    2013-01-01

    Exposure of high dose ionizing radiation is lethal. Signal pathways involved in radiation biology reaction still remain illdefined. Lipopolysaccharides (LPS), the ligands of Toll-like receptor 4(TLR4), could elicit strong immune responses. Glycogen synthase kinase-3β(GSK-3β) promotes the production of inflammatory molecules and cell migration. Inhibition of GSK-3β provides protection against inflammation in animal models. The aim of the study was to investigate role of GSK-3β in LPS shock and ionizing radiation. WT or IL-6(-/-)mice or cells were pretreated with SB216763, a GSK-3β inhibitor, and survival of the mice was determined. Cell viability was assayed by Cell Counting Kit. Apoptosis was assayed by Annexin V-PI double staining. Serum concentrations of IL-6 and TNF-α were determined by ELISA. SB216763 attenuated LPS induced mice or cell death but aggravated radiation induced mice or cell death. SB216763 reduced IL-6, but not TNF-α levels in vivo. IL-6(-/-) mice were more resistant to LPS-induced death but less resistant to radiation-induced death than wild type mice. Inhibition of GSK-3β conferred resistance to LPS shock but fostered death induced by ionizing radiation. Inhibition of GSK-3β was effective by reducing IL-6.

  9. Antioxidant and Anti-inflammatory Activities of N-((3,4-Dihydro-2H-benzo[h]chromene-2-yl)methyl)-4-methoxyaniline in LPS-Induced BV2 Microglial Cells.

    PubMed

    Moniruzzaman, Md; Lee, Gyeongjun; Bose, Shambhunath; Choi, Minho; Jung, Jae-Kyung; Lee, Heesoon; Cho, Jungsook

    2015-01-01

    Microglial activation is known to cause inflammation resulting in neurotoxicity in several neurological diseases. N-((3,4-Dihydro-2H-benzo[h]chromene-2-yl)methyl)-4-methoxyaniline (BL-M), a chromene derivative, was originally synthesized with the perspective of inhibiting nuclear factor-kappa B (NF-κB), a key regulator of inflammation. The present study evaluated the antioxidant and anti-inflammatory potential of BL-M in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Our results demonstrated that BL-M significantly inhibited the formation of 1,1-diphenyl-2-picrylhydrazyl radicals, as well as lipid peroxidation in rat brain homogenate in a concentration-dependent manner. In addition, it suppressed the generation of intracellular reactive oxygen species, and the levels of pro-inflammatory mediators including nitric oxide, tumor necrosis factor-α, and interleukin-6 in LPS-induced BV2 cells. Western blotting analyses revealed the inhibition of inhibitor of kappa B alpha (IκBα) phosphorylation and NF-κB translocation by BL-M in LPS-activated cells. Therefore, our study highlights marked antioxidant and anti-inflammatory activities of BL-M, and suggests that this compound may have a beneficial impact on various neurodegenerative diseases associated with inflammation.

  10. A comparative study on hulled adlay and unhulled adlay through evaluation of their LPS-induced anti-inflammatory effects, and isolation of pure compounds.

    PubMed

    Choi, Goeun; Han, Ah-Reum; Lee, Joo Hee; Park, Ji-Youn; Kang, Unwoo; Hong, Jongki; Kim, Yeong Shik; Seo, Eun-Kyoung

    2015-03-01

    Coicis semen (=the hulled seed of Coix lacryma-jobi L. var. ma-yuen (Rom.Caill.) Stapf; Gramineae), commonly known as adlay and Job's tears, is widely used in traditional medicine and as a nutritious food. Bioassay-guided fractionation of the AcOEt fraction of unhulled adlays, using measurement of nitric oxide (NO) production on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells, led to the isolation and identification of two new stereoisomers, (+)-(7'S,8'R,7″S,8″R)-guaiacylglycerol β-O-4'-dihydrodisinapyl ether (1) and (+)-(7'S,8'R,7″R,8″R)-guaiacylglycerol β-O-4'-dihydrodisinapyl ether (2), together with six known compounds, 3-8. Compounds 3 and 4 exhibited inhibitory activities on LPS-induced NO production with IC50 values of 1.4 and 3.7 μM, respectively, and suppressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions in RAW 264.7 macrophage cells. Simple high-performance liquid chromatography with ultraviolet detection (HPLC/UV) was used to compare the AcOEt fraction of unhulled adlays responsible for the anti-inflammatory activity in RAW 264.7 cells and the inactive AcOEt fraction of hulled adlays.

  11. Chilean Strawberry Consumption Protects against LPS-Induced Liver Injury by Anti-Inflammatory and Antioxidant Capability in Sprague-Dawley Rats

    PubMed Central

    Molinett, Sebastian; Nuñez, Francisca; Moya-León, María Alejandra; Zúñiga-Hernández, Jessica

    2015-01-01

    The Chilean strawberry fruit has high content of antioxidants and polyphenols. Previous studies evidenced antioxidant properties by in vitro methods. However, the antioxidant effect and its impact as functional food on animal health have not been evaluated. In this study, rats were fed with a Chilean strawberry aqueous extract (4 g/kg of animal per day) and then subjected to LPS-induced liver injury (5 mg/kg). Transaminases and histological studies revealed a reduction in liver injury in rats fed with strawberry aqueous extract compared with the control group. Additionally, white strawberry supplementation significantly reduced the serum levels and gene expression of TNF-α, IL-6, and IL-1β cytokines compared with nonsupplemented rats. The level of F2-isoprostanes and GSH/GSSG indicated a reduction in liver oxidative stress by the consumption of strawberry aqueous extract. Altogether, the evidence suggests that dietary supplementation of rats with a Chilean white strawberry aqueous extract favours the normalization of oxidative and inflammatory responses after a liver injury induced by LPS. PMID:26457108

  12. Calorie restriction attenuates LPS-induced sickness behavior and shifts hypothalamic signaling pathways to an anti-inflammatory bias.

    PubMed

    MacDonald, Leah; Radler, Morgan; Paolini, Antonio G; Kent, Stephen

    2011-07-01

    Calorie restriction (CR) has been demonstrated to alter cytokine levels; however, its potential to modify sickness behavior (fever, anorexia, cachexia) has not. The effect of CR on sickness behavior was examined in male C57BL/6J mice fed ad libitum or restricted 25% (CR25%) or restricted 50% (CR50%) in food intake for 28 days and injected with 50 μg/kg of LPS on day 29. Changes in body temperature, locomotor activity, body weight, and food intake were determined. A separate cohort of mice were fed ad libitum or CR50% for 28 days, and hypothalamic mRNA expression of inhibitory factor κB-α (IκB-α), cyclooxygenase-2 (COX-2), prostaglandin E(2) (PGE(2)), suppressor of cytokine signaling 3 (SOCS3), IL-10, neuropeptide Y (NPY), leptin, proopiomelanocortin (POMC), and corticotrophin-releasing hormone (CRH) were determined at 0, 2, and 4 h post-LPS. CR50% mice did not develop fevers, whereas the CR25% mice displayed a fever shorter in duration but with the same peak as the controls. Both CR25% and CR50% mice showed no sign of anorexia and reduced cachexia after LPS administration. Hypothalamic mRNA expression of NPY and CRH were both increased by severalfold in CR50% animals preinjection compared with controls. The CR50% mice did not demonstrate the expected rise in hypothalamic mRNA expression of COX-2, microsomal prostaglandin E synthase-1, POMC, or CRH 2 h post-LPS, and leptin expression was decreased at this time point. Increases in SOCS3, IL-10, and IκB-α expression in CR50% animals were enhanced compared with ad libitum-fed controls at 4 h post-LPS. CR results in a suppression of sickness behavior in a dose-dependent manner, which may be due to CR attenuating proinflammatory pathways and enhancing anti-inflammatory pathways.

  13. Kavain Involvement in LPS-Induced Signaling Pathways.

    PubMed

    Tang, Xiaoren; Amar, Salomon

    2016-10-01

    Kavain, a compound extracted from the Kava plant, Piper methysticum, is found to be involved in TNF-α expression in human and mouse cells via regulation of transcriptional factors such as NF-kB and LITAF. LITAF is known to activate the transcription of more than 20 cytokines that are involved in a variety of cellular processes and is associated with many inflammatory diseases, including angiogenesis, cancer, arthritis, and more. The modulation of LITAF is expected to positively affect cytokine-mediated diseases. Thus, intensive efforts have been deployed in search of LITAF inhibitors. In this work, we found that, in vitro, Kavain reduced LPS- induced TNF-α secretion in mouse macrophages, mouse bone marrow macrophages (BMM), and human peripheral blood mononuclear cells (HPBMC). We also found that Kavain treatment in RAW264.7 cells deactivated MyD88 and Akt, inhibited LITAF, and reduced the production of TNF-α, IL-27, and MIG in response to LPS. Similarly, it had a significant in vivo anti-inflammatory effect on wild-type (WT) mice that developed Collagen Antibody Induced Arthritis (CAIA). Overall, MyD88 was found to be an important mediator of the LPS-induced inflammatory response that can be distinguished from the NF-κB pathway. We also found that MyD88 is involved in the pathway linking LPS/LITAF to TNF-α. Therefore, given that Kavain modulates LPS-induced signaling pathways leading to cytokine expression, therapeutic interventions involving Kavain in inflammatory diseases are warranted. J. Cell. Biochem. 117: 2272-2280, 2016. © 2016 Wiley Periodicals, Inc.

  14. TLR4-MyD88-TRAF6-TAK1 Complex-Mediated NF-κB Activation Contribute to the Anti-Inflammatory Effect of V8 in LPS-Induced Human Cervical Cancer SiHa Cells.

    PubMed

    He, Aiqin; Ji, Rui; Shao, Jia; He, Chenyun; Jin, Ming; Xu, Yunzhao

    2016-02-01

    The synthetic compound 7-4-[Bis-(2-hydroxyethyl)-amino]-butoxy-5-hydroxy-8-methoxy-2-phenylchromen-4-one (V8) is a novel flavonoid-derived compound. In this study, we investigated the effects of V8 on Toll-like receptor 4 (TLR4)-mediated inflammatory reaction in human cervical cancer SiHa cells and lipopolysaccharide (LPS)-induced TLR4 activity in cervical cancer SiHa (HPV16+) cells, but not in HeLa (HPV18+) and C33A (HPV-) cells. In addition, V8 inhibited LPS-induced expression of TLR4, MyD88, TRAF6 and phosphorylation of TAK1, and their interaction with TLR4 in SiHa cells, resulting in an inhibition of TLR4-MyD88-TRAF6-TAK1 complex. Moreover, V8 blocked LPS-induced phosphorylation of IκB and IKK, resulting in inhibition of the nuclear translocation of P65-NF-κB in SiHa cells. We also found that V8 reduced the expression of NF-κB target genes, such as those for COX-2, iNOS, IL-6, IL-8, CCL-2, and TNF-α in LPS-stimulated SiHa cells. These results suggested that V8 exerted an anti-inflammatory effect on SiHa cells by inhibiting the TLR4-MyD88-TRAF6-TAK1 complex-mediated NF-κB activation.

  15. Ganglioside GD1a suppresses LPS-induced pro-inflammatory cytokines in RAW264.7 macrophages by reducing MAPKs and NF-κB signaling pathways through TLR4.

    PubMed

    Wang, Yiren; Cui, Yuting; Cao, Fayang; Qin, Yiyang; Li, Wenjing; Zhang, Jinghai

    2015-09-01

    Gangliosides, sialic acid-containing glycosphingolipids, have been considered to be involved in the development, differentiation, and function of nervous systems in vertebrates. However, the mechanisms for anti-inflammation caused by gangliosides are not clear. In this paper, we investigated the anti-inflammation effects of ganglioside GD1a by using RAW264.7 macrophages. Our data demonstrated that treatment of macrophages with lipopolysaccharide significantly increased the production of NO and pro-inflammatory cytokines. GD1a suppressed the induction of iNOS and COX-2 mRNA and protein expression and secretory pro-inflammatory cytokines in culture medium, such as TNFα, IL-1α and IL-1β. In addition, LPS-induced phosphorylation of mitogen-activating protein kinases and IκBα degradation followed by translocation of the NF-κB from the cytoplasm to the nucleus were attenuated after GD1a treatment. Furthermore, GD1a probably inhibited LPS binding to macrophages and LPS-induced accumulation between TLR4 and MyD88. Taken together, the results demonstrated that ganglioside GD1a inhibited LPS-induced inflammation in RAW 264.7 macrophages by suppressing phosphorylation of mitogen-activating protein kinases and activation of NF-κB through repressing the Toll-like receptor 4 signaling pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination.

    PubMed

    Zhao, Xibao; Pu, Debing; Zhao, Zizhao; Zhu, Huihui; Li, Hongrui; Shen, Yaping; Zhang, Xingjie; Zhang, Ruihan; Shen, Jianzhong; Xiao, Weilie; Chen, Weilin

    2017-01-01

    Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)-induced pro-inflammatory cytokines production and NLRP3 inflammasome activation. Our results showed that Teuvincenone F attenuated K63-linked ubiquitination of NF-κB-essential modulator (NEMO, also known as IKKγ) to suppress LPS-induced phosphorylation of NF-κB, and inhibited mRNA expression of IL-1β, IL-6, TNF-α, and NLRP3. In addition, we found that decreased NLRP3 expression by Teuvincenone F suppressed NLRP3 inflammasome activation and IL-1β/IL-18 maturation. In vivo, we revealed that Teuvincenone F treatment relieved LPS-induced inflammation. In conclusion, Teuvincenone F is a highly effective natural compound to suppress LPS-induced inflammation by attenuating K63-linked ubiquitination of NEMO, highlighting that Teuvincenone F may be a potential new anti-inflammatory drug for the treatment of inflammatory and NLRP3 inflammasome-driven diseases.

  17. Potent anti-inflammatory effect of a novel furan-2,5-dione derivative, BPD, mediated by dual suppression of COX-2 activity and LPS-induced inflammatory gene expression via NF-κB inactivation

    PubMed Central

    Shin, Ji-Sun; Park, Seung-Jae; Ryu, Suran; Kang, Han Byul; Kim, Tae Woo; Choi, Jung-Hye; Lee, Jae-Yeol; Cho, Young-Wuk; Lee, Kyung-Tae

    2012-01-01

    BACKGROUND AND PURPOSE We previously reported that 3-(benzo[d]-1,3-dioxol-5-yl)-4-phenylfuran-2,5-dione (BPD) showed strong inhibitory effects on PGE2 production. However, the exact mechanism for the anti-inflammatory effect of BPD is not completely understood. In this study, we investigated the molecular mechanism involved in the effects of BPD on inflammatory mediators in LPS-stimulated macrophages and animal models of inflammation. EXPERIMENTAL APPROACH The expressions of COX-2, inducible NOS (iNOS), TNF-α, IL-6 and IL-1β, in LPS-stimulated RAW 264.7 cells and murine peritoneal macrophages, were determined by Western blot and/or qRT-PCR, respectively. NF-κB activation was investigated by EMSA, reporter gene assay and Western blotting. Anti-inflammatory effects of BPD were evaluated in vivo in carrageenan-induced paw oedema in rats and LPS-induced septic shock in mice. KEY RESULTS BPD not only inhibited COX-2 activity but also reduced the expression of COX-2. In addition, BPD inhibited the expression of iNOS, TNF-α, IL-6 and IL-1β at the transcriptional level. BPD attenuated LPS-induced DNA-binding activity and the transcription activity of NF-κB; this was associated with a decrease in the phosphorylation level of inhibitory κB-α (IκB-α) and reduced nuclear translocation of NF-κB. Furthermore, BPD suppressed the formation of TGF-β-activated kinase-1 (TAK1)/TAK-binding protein1 (TAB1), which was accompanied by a parallel reduction of phosphorylation of TAK1 and IκB kinase (IKK). Pretreatment with BPD inhibited carrageenan-induced paw oedema and LPS-induced septic death. CONCLUSION AND IMPLICATIONS Taken together, our data indicate that BPD is involved in the dual inhibition of COX-2 activity and TAK1-NF-κB pathway, providing a molecular basis for the anti-inflammatory properties of BPD. PMID:21913901

  18. Potent anti-inflammatory effect of a novel furan-2,5-dione derivative, BPD, mediated by dual suppression of COX-2 activity and LPS-induced inflammatory gene expression via NF-κB inactivation.

    PubMed

    Shin, Ji-Sun; Park, Seung-Jae; Ryu, Suran; Kang, Han Byul; Kim, Tae Woo; Choi, Jung-Hye; Lee, Jae-Yeol; Cho, Young-Wuk; Lee, Kyung-Tae

    2012-03-01

    We previously reported that 3-(benzo[d]-1,3-dioxol-5-yl)-4-phenylfuran-2,5-dione (BPD) showed strong inhibitory effects on PGE(2) production. However, the exact mechanism for the anti-inflammatory effect of BPD is not completely understood. In this study, we investigated the molecular mechanism involved in the effects of BPD on inflammatory mediators in LPS-stimulated macrophages and animal models of inflammation. The expressions of COX-2, inducible NOS (iNOS), TNF-α, IL-6 and IL-1β, in LPS-stimulated RAW 264.7 cells and murine peritoneal macrophages, were determined by Western blot and/or qRT-PCR, respectively. NF-κB activation was investigated by EMSA, reporter gene assay and Western blotting. Anti-inflammatory effects of BPD were evaluated in vivo in carrageenan-induced paw oedema in rats and LPS-induced septic shock in mice. BPD not only inhibited COX-2 activity but also reduced the expression of COX-2. In addition, BPD inhibited the expression of iNOS, TNF-α, IL-6 and IL-1β at the transcriptional level. BPD attenuated LPS-induced DNA-binding activity and the transcription activity of NF-κB; this was associated with a decrease in the phosphorylation level of inhibitory κB-α (IκB-α) and reduced nuclear translocation of NF-κB. Furthermore, BPD suppressed the formation of TGF-β-activated kinase-1 (TAK1)/TAK-binding protein1 (TAB1), which was accompanied by a parallel reduction of phosphorylation of TAK1 and IκB kinase (IKK). Pretreatment with BPD inhibited carrageenan-induced paw oedema and LPS-induced septic death. Taken together, our data indicate that BPD is involved in the dual inhibition of COX-2 activity and TAK1-NF-κB pathway, providing a molecular basis for the anti-inflammatory properties of BPD. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  19. Inhibition of IRAK-4 activity for rescuing endotoxin LPS-induced septic mortality in mice by lonicerae flos extract

    SciTech Connect

    Park, Sun Hong; Roh, Eunmiri; Kim, Hyun Soo; Baek, Seung-Il; Choi, Nam Song; Kim, Narae; Hwang, Bang Yeon; Han, Sang-Bae; Kim, Youngsoo

    2013-12-13

    Highlights: •Lonicerae flos extract (HS-23) is a clinical candidate, Phase I for sepsis treatment. •Here, HS-23 or its major constituents rescued LPS-induced septic mortality in mice. •As a mechanism, they directly inhibited IRAK-4-catalyzed kinase activity. •Thus, they suppressed LPS-induced expression of NF-κB/AP-1-target inflammatory genes. -- Abstract: Lonicerae flos extract (HS-23) is a clinical candidate currently undergoing Phase I trial in lipopolysaccharide (LPS)-injected healthy human volunteers, but its molecular basis remains to be defined. Here, we investigated protective effects of HS-23 or its major constituents on Escherichia coli LPS-induced septic mortality in mice. Intravenous treatment with HS-23 rescued LPS-intoxicated C57BL/6J mice under septic conditions, and decreased the levels of cytokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β and high-mobility group box-1 (HMGB-1) in the blood. Chlorogenic acid (CGA) and its isomers were assigned as major constituents of HS-23 in the protection against endotoxemia. As a molecular mechanism, HS-23 or CGA isomers inhibited endotoxin LPS-induced autophosphorylation of the IL-1 receptor-associated kinase 4 (IRAK-4) in mouse peritoneal macrophages as well as the kinase activity of IRAK-4 in cell-free reactions. HS-23 consequently suppressed downstream pathways critical for LPS-induced activation of nuclear factor (NF)-κB or activating protein 1 (AP-1) in the peritoneal macrophages. HS-23 also inhibited various toll-like receptor agonists-induced nitric oxide (NO) production, and down-regulated LPS-induced expression of NF-κB/AP-1-target inflammatory genes in the cells. Taken together, HS-23 or CGA isomers exhibited anti-inflammatory therapy against LPS-induced septic mortality in mice, at least in part, mediated through the inhibition of IRAK-4.

  20. Trapa japonica Pericarp Extract Reduces LPS-Induced Inflammation in Macrophages and Acute Lung Injury in Mice.

    PubMed

    Kim, Yon-Suk; Hwang, Jin-Woo; Jang, Jae-Hyuk; Son, Sangkeun; Seo, Il-Bok; Jeong, Jae-Hyun; Kim, Ee-Hwa; Moon, Sang-Ho; Jeon, Byong-Tae; Park, Pyo-Jam

    2016-03-21

    In this study, we found that chloroform fraction (CF) from TJP ethanolic extract inhibited lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and intracellular ROS in RAW264.7 cells. In addition, expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) genes was reduced, as evidenced by western blot. Our results indicate that CF exerts anti-inflammatory effects by down-regulating expression of iNOS and COX-2 genes through inhibition of MAPK (ERK, JNK and p38) and NF-κB signaling. Similarly we also evaluated the effects of CF on LPS-induced acute lung injury. Male Balb/c mice were pretreated with dexamethasone or CF 1 h before intranasal instillation of LPS. Eight hours after LPS administration, the inflammatory cells in the bronchoalveolar lavage fluid (BALF) were determined. The results indicated that CF inhibited LPS-induced TNF-α and IL-6 production in a dose dependent manner. It was also observed that CF attenuated LPS-induced lung histopathologic changes. In conclusion, these data demonstrate that the protective effect of CF on LPS-induced acute lung injury (ALI) in mice might relate to the suppression of excessive inflammatory responses in lung tissue. Thus, it can be suggested that CF might be a potential therapeutic agent for ALI.

  1. Signals of vagal circuits engaging with AKT1 in α7 nAChR(+)CD11b(+) cells lessen E. coli and LPS-induced acute inflammatory injury.

    PubMed

    Zhao, Caiqi; Yang, Xi; Su, Emily M; Huang, Yuanyuan; Li, Ling; Matthay, Michael A; Su, Xiao

    2017-01-01

    Vagal circuits-α7 nAChR (α7 nicotinic acetylcholine receptor, coded by Chrna7) signaling utilizes spleen as a hub to dampen systemic inflammatory responses. Vagal innervations also extend to the distal airways and alveoli. Vagotomy and deficiency of α7 nAChR deteriorate E. coli and lipopolysaccharide (LPS)-induced acute lung inflammatory responses; however, the underlying mechanisms remain elusive. Here, we hypothesized that vagal circuits would limit splenic release and lung recruitment of α7 nAChR(+)CD11b(+) cells (CD11b is coded by Itgam, a surface marker of monocytes and neutrophils) via phosphorylation of AKT1 and that this process would define the severity of lung injury. Using both E. coli and LPS-induced lung injury mouse models, we found that vagotomy augmented splenic egress and lung recruitment of α7 nAChR(+)CD11b(+) cells, and consequently worsened lung inflammatory responses. Rescue of vagotomy with an α7 nAChR agonist preserved α7 nAChR(+)CD11b(+) cells in the spleen, suppressed recruitment of these cells to the lung and attenuated lung inflammatory responses. Vagal signals via α7 nAChR promoted serine473 phosphorylation of AKT1 in α7 nAChR(+)CD11b(+) cells and stabilized these cells in the spleen. Deletion of Akt1 enhanced splenic egress and lung recruitment of α7 nAChR(+)CD11b(+) cells, which elicited neutrophil-infiltrated lung inflammation and injury. Vagotomy and double deletion of Chrna7 and Itgam reduced serine473 phosphorylation of AKT1 in the spleen and BAL (bronchoalveolar lavage) Ly6C(int)Gr1(hi) neutrophils and Ly6C(hi) monocytes, and they facilitated the recruitment of neutrophils and monocytes to the airspaces of E. coli-injured lungs. Double deletion of Chrna7 and Itgam increased lung recruitment of monocytes and/or neutrophils and deteriorated E. coli and LPS-induced lung injury. Thus, signals of vagal circuits engaging with AKT1 in α7 nAChR(+)CD11b(+) cells attenuate E. coli and LPS-induced acute lung inflammatory responses

  2. Signals of vagal circuits engaging with AKT1 in α7 nAChR+CD11b+ cells lessen E. coli and LPS-induced acute inflammatory injury

    PubMed Central

    Zhao, Caiqi; Yang, Xi; Su, Emily M; Huang, Yuanyuan; Li, Ling; Matthay, Michael A; Su, Xiao

    2017-01-01

    Vagal circuits-α7 nAChR (α7 nicotinic acetylcholine receptor, coded by Chrna7) signaling utilizes spleen as a hub to dampen systemic inflammatory responses. Vagal innervations also extend to the distal airways and alveoli. Vagotomy and deficiency of α7 nAChR deteriorate E. coli and lipopolysaccharide (LPS)-induced acute lung inflammatory responses; however, the underlying mechanisms remain elusive. Here, we hypothesized that vagal circuits would limit splenic release and lung recruitment of α7 nAChR+CD11b+ cells (CD11b is coded by Itgam, a surface marker of monocytes and neutrophils) via phosphorylation of AKT1 and that this process would define the severity of lung injury. Using both E. coli and LPS-induced lung injury mouse models, we found that vagotomy augmented splenic egress and lung recruitment of α7 nAChR+CD11b+ cells, and consequently worsened lung inflammatory responses. Rescue of vagotomy with an α7 nAChR agonist preserved α7 nAChR+CD11b+ cells in the spleen, suppressed recruitment of these cells to the lung and attenuated lung inflammatory responses. Vagal signals via α7 nAChR promoted serine473 phosphorylation of AKT1 in α7 nAChR+CD11b+ cells and stabilized these cells in the spleen. Deletion of Akt1 enhanced splenic egress and lung recruitment of α7 nAChR+CD11b+ cells, which elicited neutrophil-infiltrated lung inflammation and injury. Vagotomy and double deletion of Chrna7 and Itgam reduced serine473 phosphorylation of AKT1 in the spleen and BAL (bronchoalveolar lavage) Ly6CintGr1hi neutrophils and Ly6Chi monocytes, and they facilitated the recruitment of neutrophils and monocytes to the airspaces of E. coli-injured lungs. Double deletion of Chrna7 and Itgam increased lung recruitment of monocytes and/or neutrophils and deteriorated E. coli and LPS-induced lung injury. Thus, signals of vagal circuits engaging with AKT1 in α7 nAChR+CD11b+ cells attenuate E. coli and LPS-induced acute lung inflammatory responses. Targeting this signaling

  3. Surfactant lipids regulate LPS-induced interleukin-8 production in A549 lung epithelial cells by inhibiting translocation of TLR4 into lipid raft domains

    PubMed Central

    Abate, Wondwossen; Alghaithy, Abdulaziz A.; Parton, Joan; Jones, Kenneth P.; Jackson, Simon K.

    2010-01-01

    In addition to providing mechanical stability, growing evidence suggests that surfactant lipid components can modulate inflammatory responses in the lung. However, little is known of the molecular mechanisms involved in the immunomodulatory action of surfactant lipids. This study investigates the effect of the lipid-rich surfactant preparations Survanta®, Curosurf®, and the major surfactant phospholipid dipalmitoylphosphatidylcholine (DPPC) on interleukin-8 (IL-8) gene and protein expression in human A549 lung epithelial cells using immunoassay and PCR techniques. To examine potential mechanisms of the surfactant lipid effects, Toll-like receptor 4 (TLR4) expression was analyzed by flow cytometry, and membrane lipid raft domains were separated by density gradient ultracentrifugation and analyzed by immunoblotting with anti-TLR4 antibody. The lipid-rich surfactant preparations Survanta®, Curosurf®, and DPPC, at physiological concentrations, significantly downregulated lipopolysaccharide (LPS)-induced IL-8 expression in A549 cells both at the mRNA and protein levels. The surfactant preparations did not affect the cell surface expression of TLR4 or the binding of LPS to the cells. However, LPS treatment induced translocation of TLR4 into membrane lipid raft microdomains, and this translocation was inhibited by incubation of the cells with the surfactant lipid. This study provides important mechanistic details of the immune-modulating action of pulmonary surfactant lipids. PMID:19648651

  4. Identification of a novel human MD-2 splice variant that negatively regulates LPS-induced Toll-like receptor 4 signaling

    PubMed Central

    Gray, Pearl; Michelsen, Kathrin S.; Sirois, Cherilyn M.; Lowe, Emily; Shimada, Kenichi; Crother, Timothy R.; Chen, Shuang; Brikos, Constantinos; Bulut, Yonca; Latz, Eicke; Underhill, David; Arditi, Moshe

    2011-01-01

    Myeloid differentiation factor 2 (MD-2) is a secreted glycoprotein that assembles with Toll-like receptor 4 (TLR4) to form a functional signaling receptor for bacterial lipopolysaccharide (LPS). In this study we have identified a novel alternatively spliced isoform of human MD-2, termed MD-2 short (MD-2s), which lacks the region encoded by exon 2 of the MD-2 gene. Similar to MD-2, MD-2s is glycosylated and secreted. MD-2s also interacted with LPS and TLR4, but failed to mediate LPS-induced NF-κB activation and interleukin-8 production. We show that MD-2s is upregulated upon IFN-γ, IL-6 and TLR stimulation and negatively regulates LPS-mediated TLR4 signaling. Furthermore, MD-2s competitively inhibited binding of MD-2 to TLR4. Our study therefore pinpoints a mechanism that may be employed to regulate TLR4 activation at the onset of signaling and identifies MD-2s as a potential therapeutic candidate to treat human diseases characterized by an overly exuberant or chronic immune response to LPS. PMID:20435923

  5. Anti-Inflammatory Activity of Heterocarpin from the Salt Marsh Plant Corydalis heterocarpa in LPS-Induced RAW 264.7 Macrophage Cells.

    PubMed

    Kim, You Ah; Kong, Chang-Suk; Park, Hyo Hyun; Lee, Eunkyung; Jang, Mi-Soon; Nam, Ki-Ho; Seo, Youngwan

    2015-08-10

    The inhibitory effect of three chromones 1-3 and two coumarins 4-5 on the production of nitric oxide (NO) was evaluated in LPS-induced RAW 264.7 macrophage cells. Among the compounds tested heterocarpin (1), a furochromone, significantly inhibited its production in a dose-dependent manner. In addition, heterocarpin suppressed prostaglandin E2 (PGE2) production and expression of cytokines such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6).

  6. aged black garlic exerts anti-inflammatory effects by decreasing no and proinflammatory cytokine production with less cytoxicity in LPS-stimulated raw 264.7 macrophages and LPS-induced septicemia mice.

    PubMed

    Kim, Min Jee; Yoo, Yung Choon; Kim, Hyun Jung; Shin, Suk Kyung; Sohn, Eun Jeong; Min, A Young; Sung, Nak Yun; Kim, Mee Ree

    2014-10-01

    In this study, the anti-inflammatory and antisepticemic activities of a water extract of aged black garlic (AGE), which is not pungent, were compared with those of raw garlic extract (RGE). The methyl thiazolyl tetrazolium (MTT) assay showed that AGE was not toxic up to 1000 μg/mL and was at least four times less cytotoxic than RGE. AGE significantly suppressed the production of nitric oxide (NO), tumor-necrosis factor-α (TNF-α), and prostaglandin (PG)-E2 in a dose-dependent manner in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Furthermore, the inhibitory effect of AGE on LPS-induced inflammation was confirmed by downregulation of inducible NO synthase and TNF-α mRNA expression, as well as cyclooxygenase-2 protein expression. The anti-inflammatory activities of AGE were similar to those of RGE at nontoxic concentrations up to 250 μg/mL. Signal transduction pathway studies further indicated that both garlic extracts inhibited activation of mitogen-activated protein kinase and nuclear factor-κB induced by LPS stimulation. Treatment with both AGE and RGE in an in vivo experiment of LPS-induced endotoxemia significantly reduced the level of TNF-α and interleukin-6 in serum and completely protected against LPS-induced lethal shock in C57BL/6 mice. The results suggest that AGE is a more promising nutraceutical or medicinal agent to prevent or cure inflammation-related diseases for safety aspects compared with RGE.

  7. Kavain Inhibition of LPS-Induced TNF-α via ERK/LITAF

    PubMed Central

    Tang, Xiaoren; Amar, Salomon

    2015-01-01

    Kavain, an extract from the shrub Piper Methysticum, was recently reported to modulate TNF-α expression in both human and mouse cells via regulation of LPS-Induced TNF-Alpha Factor (LITAF). The purpose of the present study was to define the molecular pathway(s) associated with Kavain effects on TNF modulation. In vitro studies using WT mouse primary macrophages showed that Kavain significantly reduced E.coli LPS-induced TNF-α production but this effect was almost abrogated in LITAF−/− and ERK2−/− cells. Therefore we reintroduced the ERK2 gene in ERK2−/− cells and partially restored E.coli LPS-induced LITAF-mediated TNF-α production. The translocation of LITAF into to nucleus was found to be dependent on ERK2 S206 residue. Kavain inhibits LITAF/TNF-α expression via dephosphorylation of ERK2 in response to E.coli LPS. Finally, in vivo, Kavain had a significant anti-inflammatory effect on wild type mice that developed Collagen Antibody Induced Arthritis (CAIA), but only a minor effect in ERK2−/− mice also affected by CAIA. Based on these findings, we concluded that ERK2 may be the kinase upstream of LITAF with its Serine residue 206 being crucial for the regulation of LPS-induced TNF-α. PMID:26918116

  8. Kavain Inhibition of LPS-Induced TNF-α via ERK/LITAF.

    PubMed

    Tang, Xiaoren; Amar, Salomon

    2016-01-01

    Kavain, an extract from the shrub Piper Methysticum, was recently reported to modulate TNF-α expression in both human and mouse cells via regulation of LPS-Induced TNF-Alpha Factor (LITAF). The purpose of the present study was to define the molecular pathway(s) associated with Kavain effects on TNF modulation. In vitro studies using WT mouse primary macrophages showed that Kavain significantly reduced E.coli LPS-induced TNF-α production but this effect was almost abrogated in LITAF(-/-) and ERK2(-/-) cells. Therefore we reintroduced the ERK2 gene in ERK2(-/-) cells and partially restored E.coli LPS-induced LITAF-mediated TNF-α production. The translocation of LITAF into to nucleus was found to be dependent on ERK2 S206 residue. Kavain inhibits LITAF/TNF-α expression via dephosphorylation of ERK2 in response to E.coli LPS. Finally, in vivo, Kavain had a significant anti-inflammatory effect on wild type mice that developed Collagen Antibody Induced Arthritis (CAIA), but only a minor effect in ERK2(-/-) mice also affected by CAIA. Based on these findings, we concluded that ERK2 may be the kinase upstream of LITAF with its Serine residue 206 being crucial for the regulation of LPS-induced TNF-α.

  9. Zinc Oxide Nanoparticles Suppress LPS-Induced NF-κB Activation by Inducing A20, a Negative Regulator of NF-κB, in RAW 264.7 Macrophages.

    PubMed

    Kim, Min-Ho; Jeong, Hyun-Ja

    2015-09-01

    Zinc contained in solar salt and bamboo salt plays a critical role in various immune responses. Zinc oxide is a source of zinc, and recently it has been reported that zinc oxide nanoparticles (ZO-NP) more effectively decrease allergic inflammatory reactions than zinc oxide bulk material. The aim of this work was to investigate the regulatory effect of ZO-NP on interferon (IFN)-γ plus lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. ZO-NP (0.1-10 μg/mL) did not affect cell viability but toxicity was evident at a ZO-NP concentration of 100 μg/mL. ZO-NP (10 μg/mL) inhibited the IFN-γ plus LPS-induced production of nitric oxide and the protein expressions of inducible nitric oxide synthase and cyclooxygenase-2. The productions of inflammatory cytokines, such as, interleukin (IL)-1β and tumor necrosis factor (TNF)-α were increased by IFN-γ plus LPS but down-regulated by ZO-NP treatment. Furthermore, the up-regulations of IL-1β and TNF-α mRNAs by IFN-γ plus LPS were reduced by ZO-NP at low (0.1 μg/mL) and high (10 μg/mL) concentrations. ZO-NP (0.1, 1, and 10 μg/mL) inhibited the nuclear translocation of nuclear factor-κB by blocking IκBα phosphorylation and degradation. In addition, ZO-NP induced the expression of A20, a zinc finger protein and negative regulator of NF-κB. In conclusion, the present study demonstrated that ZO-NP offer a potential means of treating inflammatory diseases.

  10. Liver X receptor agonist prevents LPS-induced mastitis in mice.

    PubMed

    Fu, Yunhe; Tian, Yuan; Wei, Zhengkai; Liu, Hui; Song, Xiaojing; Liu, Wenbo; Zhang, Wenlong; Wang, Wei; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Liver X receptor-α (LXR-α) which belongs to the nuclear receptor superfamily, is a ligand-activated transcription factor. Best known for its ability to regulate lipid metabolism and transport, LXRs have recently also been implicated in regulation of inflammatory response. The aim of this study was to investigate the preventive effects of synthetic LXR-α agonist T0901317 on LPS-induced mastitis in mice. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. T0901317 was injected 1h before and 12h after induction of LPS intraperitoneally. The results showed that T0901317 significantly attenuated the infiltration of neutrophilic granulocytes, and the activation of myeloperoxidase (MPO); down-regulated the level of pro-inflammatory mediators including TNF-α, IL-1β, IL-6, COX-2 and PEG2; inhibited the phosphorylation of IκB-α and NF-κB p65, caused by LPS. Moreover, we report for the first time that LXR-α activation impaired LPS-induced mastitis. Taken together, these data indicated that T0901317 had protective effect on mastitis and the anti-inflammatory mechanism of T0901317 on LPS induced mastitis in mice may be due to its ability to inhibit NF-κB signaling pathway. LXR-α activation can be used as a therapeutic approach to treat mastitis.

  11. Teuvincenone F Suppresses LPS-Induced Inflammation and NLRP3 Inflammasome Activation by Attenuating NEMO Ubiquitination

    PubMed Central

    Zhao, Xibao; Pu, Debing; Zhao, Zizhao; Zhu, Huihui; Li, Hongrui; Shen, Yaping; Zhang, Xingjie; Zhang, Ruihan; Shen, Jianzhong; Xiao, Weilie; Chen, Weilin

    2017-01-01

    Inflammation causes many diseases that are serious threats to human health. However, the molecular mechanisms underlying regulation of inflammation and inflammasome activation are not fully understood which has delayed the discovery of new anti-inflammatory drugs of urgent clinic need. Here, we found that the natural compound Teuvincenone F, which was isolated and purified from the stems and leaves of Premna szemaoensis, could significantly inhibit lipopolysaccharide (LPS)–induced pro-inflammatory cytokines production and NLRP3 inflammasome activation. Our results showed that Teuvincenone F attenuated K63-linked ubiquitination of NF-κB-essential modulator (NEMO, also known as IKKγ) to suppress LPS-induced phosphorylation of NF-κB, and inhibited mRNA expression of IL-1β, IL-6, TNF-α, and NLRP3. In addition, we found that decreased NLRP3 expression by Teuvincenone F suppressed NLRP3 inflammasome activation and IL-1β/IL-18 maturation. In vivo, we revealed that Teuvincenone F treatment relieved LPS-induced inflammation. In conclusion, Teuvincenone F is a highly effective natural compound to suppress LPS-induced inflammation by attenuating K63-linked ubiquitination of NEMO, highlighting that Teuvincenone F may be a potential new anti-inflammatory drug for the treatment of inflammatory and NLRP3 inflammasome-driven diseases. PMID:28878677

  12. Anti-inflammatory effect of oleuropein on microglia through regulation of Drp1-dependent mitochondrial fission.

    PubMed

    Park, Junghyung; Min, Ju-Sik; Chae, Unbin; Lee, Joon Yeop; Song, Kyung-Sik; Lee, Hyun-Shik; Lee, Hong Jun; Lee, Sang-Rae; Lee, Dong-Seok

    2017-05-15

    Oleuropein is a primary phenolic compound found in olive leaf and Fraxinus rhynchophylla. Here, we investigated the impact of oleuropein on LPS-induced BV-2 microglial cells. Oleuropein suppressed the LPS-induced increase in pro-inflammatory mediators, such as nitric oxide, and pro-inflammatory cytokines, via inhibition of ERK/p38/NF-κB activation and reactive oxygen species (ROS) generation. Furthermore, it suppressed LPS-induced excessive mitochondrial fission, which regulates mitochondrial ROS generation and pro-inflammatory response by diminishing Drp1 dephosphorylation. Collectively, we demonstrated that oleuropein suppresses pro-inflammatory response of microglia by inhibiting Drp1-dependent mitochondrial fission. Our findings suggest a potential role of oleuropein in microglial inflammation-mediated neurodegenerative disorders.

  13. Ethanol extract of Synurus deltoides (Aiton) Nakai suppresses in vitro LPS-induced cytokine production in RAW 264.7 macrophages and in vivo acute inflammatory symptoms

    PubMed Central

    Jiang, Yunyao

    2014-01-01

    Synurus deltoides (Aiton) Nakai, belonging to the Compositae family, is an edible plant widely distributed in Northeast Asia. In this study, we examined the mechanisms underlying the immunomodulative effects of the ethanol extract of S. deltoides (SDE). The SDE extract strongly down-regulated the mRNA expression of the inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumour necrosis factor (TNF)-α, thereby inhibiting the production of nitric oxide (NO), prostaglandin E2 (PGE2), and TNF-α in the lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Furthermore, SDE also suppressed the nuclear translocation of the activation protein (AP)-1 and the nuclear factor-κB (NF-κB), and simultaneously decreased the phosphorylation of extracellular signal-regulated protein kinases (ERK), p38, and Akt. In agreement with the in vitro observations, the orally administered SDE ameliorated the acute inflammatory symptoms in the arachidonic acid-induced ear edema and the EtOH/HCl-induced gastritis in mice. Therefore, S. deltoides have a potential anti-inflammatory capacity in vitro and in vivo, suggesting the potential therapeutic use in the inflammation-associated disorders. PMID:24611100

  14. Mmu-miR-27a-5p-Dependent Upregulation of MCPIP1 Inhibits the Inflammatory Response in LPS-Induced RAW264.7 Macrophage Cells

    PubMed Central

    Cheng, Ying; Du, Li; Jiao, Hanwei; Zhu, Huapei; Xu, Kailian; Guo, Shiyu; Shi, Qiaoyun; Zhao, Tianjing; Pang, Feng; Jia, Xiaoxiao; Wang, Fengyang

    2015-01-01

    Lipopolysaccharide (LPS) stimulates macrophages to release proinflammatory cytokines. MicroRNAs (miRNAs) are short noncoding RNAs that are involved in inflammatory reaction. Our previously study identified the downregulated expression of mmu-miR-27a-5p in RAW267.4 cells treated with LPS. To dissect the mechanism that mmu-miR-27a-5p regulates target genes and affects proinflammatory cytokine secretion more clearly, based on previous bioinformatics prediction data, one of the potential target genes, MCPIP1 was observed to be upregulated with qRT-PCR and western blot. Luciferase reporter assays were performed to further confirm in silico prediction and determine that MCPIP1 is the target of mmu-miR-27-5p. The results suggested that mmu-miR-27a-5p directly targeted the 3′-UTR of MCPIP1 and the interaction between mmu-miR-27-5p and the 3′-UTR of MCPIP1 is sequence-specific. MCPIP1 overexpression decreased the secretion of IL-6, IL-1β, and IL-10 in macrophage cells stimulated with LPS. Our findings may provide the important information for the precise roles of mmu-miR-27a-5p in the macrophage inflammatory response to LPS stimulation in the future. PMID:26295043

  15. Anti-inflammatory Potential of Quercetin-3-O-β-D-("2"-galloyl)-glucopyranoside and Quercetin Isolated from Diospyros kaki calyx via Suppression of MAP Signaling Molecules in LPS-induced RAW 264.7 Macrophages.

    PubMed

    Cho, Yong-Hun; Kim, Na-Hyung; Khan, Imran; Yu, Jae Myo; Jung, Hyun Gug; Kim, Han Hyuk; Jang, Jae Yoon; Kim, Hyeon Jeong; Kim, Dong-In; Kwak, Jae-Hoon; Kang, Sun Chul; An, Bong Jeun

    2016-10-01

    Diospyros kaki (DK) contains an abundance of flavonoids and has been used in folk medicine in Korea for centuries. Here, we report for the first time the anti-inflammatory activities of Quercetin (QCT) and Quercetin 3-O-β-("2"-galloyl)-glucopyranoside (Q32G) isolated from DK. We have determine the no cytotoxicity of Q32G and QCT against RAW 264.7 cells up to concentration of 50 μM. QCT and Q32G demonstrated potent anti-inflammatory activities by reducing expression of nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 inducible NO synthase (iNOS), cyclooxygenase (COX)-2, and mitogen-activated protein kinase (MAPKs) in mouse RAW 264.7 macrophages activated with lipopolysaccharide (LPS). Both QCT or Q32G could decrease cellular protein levels of COX-2 and iNOS as well as secreted protein levels of NO, PGE2 , and cytokines (TNF-α, IL-1β, and IL-6) in culture medium of LPS-stimulated RAW 264.7 macrophages. Immunoblot analysis showed that QCT and Q32G suppressed LPS-induced MAP kinase pathway proteins p-p38, ERK, and JNK. This study revealed that QCT and Q32G have anti-inflammatory potential, however Q32G possess comparable activity as that of QCT and could be use as adjuvant to treat inflammatory diseases. © 2016 Institute of Food Technologists®.

  16. The Receptor CMRF35-Like Molecule-1 (CLM-1) Enhances the Production of LPS-Induced Pro-Inflammatory Mediators during Microglial Activation.

    PubMed

    Ejarque-Ortiz, Aroa; Solà, Carme; Martínez-Barriocanal, Águeda; Schwartz, Simó; Martín, Margarita; Peluffo, Hugo; Sayós, Joan

    2015-01-01

    CMRF35-like molecule-1 (CLM-1) belongs to a receptor family mainly expressed in myeloid cells that include activating and inhibitory receptors. CLM-1 contains two ITIMs and a single immunoreceptor tyrosine-based switch motif (ITSM), although also displays a binding site for p85α regulatory subunit of PI3K. By using murine primary microglial cultures, we show the presence of all CLM members in microglial cells and characterize the expression of CLM-1 both in basal conditions and during microglial activation. The TLR4 agonist lipopolysaccharide (LPS) and the TLR3 agonist polyinosinic-polycytidylic acid (Poly I:C) induce an increase in microglial CLM-1 mRNA levels in vitro, whereas the TLR2/6 heterodimer agonist peptidoglycan (PGN) produces a marked decrease. In this study we also describe a new soluble isoform of CLM-1 that is detected at mRNA and protein levels in basal conditions in primary microglial cultures. Interestingly, CLM-1 engagement enhances the transcription of the pro-inflammatory mediators TNFα, COX-2 and NOS-2 in microglial cells challenged with LPS. These results reveal that CLM-1 can acts as a co-activating receptor and suggest that this receptor could play a key role in the regulation of microglial activation.

  17. The Receptor CMRF35-Like Molecule-1 (CLM-1) Enhances the Production of LPS-Induced Pro-Inflammatory Mediators during Microglial Activation

    PubMed Central

    Ejarque-Ortiz, Aroa; Solà, Carme; Martínez-Barriocanal, Águeda; Schwartz, Simó; Martín, Margarita; Peluffo, Hugo; Sayós, Joan

    2015-01-01

    CMRF35-like molecule-1 (CLM-1) belongs to a receptor family mainly expressed in myeloid cells that include activating and inhibitory receptors. CLM-1 contains two ITIMs and a single immunoreceptor tyrosine-based switch motif (ITSM), although also displays a binding site for p85α regulatory subunit of PI3K. By using murine primary microglial cultures, we show the presence of all CLM members in microglial cells and characterize the expression of CLM-1 both in basal conditions and during microglial activation. The TLR4 agonist lipopolysaccharide (LPS) and the TLR3 agonist polyinosinic–polycytidylic acid (Poly I:C) induce an increase in microglial CLM-1 mRNA levels in vitro, whereas the TLR2/6 heterodimer agonist peptidoglycan (PGN) produces a marked decrease. In this study we also describe a new soluble isoform of CLM-1 that is detected at mRNA and protein levels in basal conditions in primary microglial cultures. Interestingly, CLM-1 engagement enhances the transcription of the pro-inflammatory mediators TNFα, COX-2 and NOS-2 in microglial cells challenged with LPS. These results reveal that CLM-1 can acts as a co-activating receptor and suggest that this receptor could play a key role in the regulation of microglial activation. PMID:25927603

  18. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways.

    PubMed

    Kim, Young-Sang; Ahn, Chang-Bum; Je, Jae-Young

    2016-07-01

    Anti-inflammatory Mytilus edulis hydrolysates (MEHs) were prepared by peptic hydrolysis and MEH was further fractionated into three fractions based on molecular weight, namely >5kDa, 1-5kDa, and <1kDa. The >5kDa peptide fraction exerted the highest nitric oxide (NO) inhibitory activity and inhibited prostaglandin E2 (PGE2) secretion in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Pretreatment with the >5kDa peptide fraction markedly inhibited LPS-stimulated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and gene expressions. Stimulation by LPS induced the production of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and -1β (IL-1β), whereas co-treatment with the >5kDa peptide fraction suppressed pro-inflammatory cytokine production. The >5kDa peptide fraction inhibited the translocation of NF-κB (nuclear factor-kappa B) through the prevention of IκBα (inhibitory factor kappa B alpha) phosphorylation and degradation and also inhibited the MAPK signaling pathway in LPS-stimulated RAW264.7 macrophages.

  19. Extracts of Actinidia arguta stems inhibited LPS-induced inflammatory responses through nuclear factor-κB pathway in Raw 264.7 cells.

    PubMed

    Kim, Hae-Young; Hwang, Kwang Woo; Park, So-Young

    2014-11-01

    The inflammatory response protects our body from bacteria and tumors, but chronic inflammation driven by the persistent activation of macrophages can lead to serious adverse effects including gastrointestinal problems, cardiac disorders, and a sore throat. Part of the ongoing research is focused on searching for antiinflammatory compounds from natural sources, so we investigated the effects of hardy kiwis (Actinidia arguta, Lauraceae) stems on inflammation induced by lipopolysaccharide (LPS) in Raw 264.7 cells to test the hypothesis that antiinflammatory effects of A. arguta stems were exerted through the inhibition of the nuclear factor (NF)-κB pathway. The methanol extract of A. arguta (20 μg/mL) stems lowered nitric oxide production in LPS-stimulated Raw 264.7 cells by 40%. It was then partitioned with hexane, chloroform, ethyl acetate, butanol, and water based on the polarity of each compound. Among the 5 layers, the chloroform layer had the greatest inhibitory effect on LPS-stimulated nitric oxide production and inducible nitric oxide synthase mRNA expression in Raw 264.7 cells. However, the levels of prostaglandin E2 and cyclooxygease 2 were not altered. On the other hand, treatment of cells with the chloroform layer of A. arguta before LPS stimulation also reduced them RNA expression of proinflammatory cytokines including tumor necrosis factor α and interleukin 1β. Nuclear translocation of NF-κB p50 and p65 subunits induced by LPS was also inhibited by treatment with the chloroform layer of A. arguta. This was accompanied with the reduced phosphorylation of mitogen-activated protein kinases including extracellular signal-regulated protein kinase 1/2, c-Jun N-terminal protein kinase, and p38. Taken together, these results suggest that chloroform layer of A. arguta exerted antiinflammatory effects by the inhibition of mitogen-activated protein kinase phosphorylation and nuclear translocation of NF-κB.

  20. Indirubin Inhibits LPS-Induced Inflammation via TLR4 Abrogation Mediated by the NF-kB and MAPK Signaling Pathways.

    PubMed

    Lai, Jin-Lun; Liu, Yu-Hui; Liu, Chang; Qi, Ming-Pu; Liu, Rui-Ning; Zhu, Xi-Fang; Zhou, Qiu-Ge; Chen, Ying-Yu; Guo, Ai-Zhen; Hu, Chang-Min

    2017-02-01

    Indirubin plays an important role in the treatment of many chronic diseases and exhibits strong anti-inflammatory activity. However, the molecular mode of action during mastitis prophylaxis remains poorly understood. In this study, a lipopolysaccharide (LPS)-induced mastitis mouse model showed that indirubin attenuated histopathological changes in the mammary gland, local tissue necrosis, and neutrophil infiltration. Moreover, indirubin significantly downregulated the production of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). We explored the mechanism whereby indirubin exerts protective effects against LPS-induced inflammation of mouse mammary epithelial cells (MMECs). The addition of different concentrations of indirubin before exposure of cells to LPS for 1 h significantly attenuated inflammation and reduced the concentrations of the three inflammatory cytokines in a dose-dependent manner. Indirubin downregulated LPS-induced cyclooxygenase-2 (COX-2) and Toll-like receptor 4 (TLR4) expression, inhibited phosphorylation of the LPS-induced nuclear transcription factor-kappa B (NF-kB) P65 protein and its inhibitor IkBα of the NF-kB signaling pathway. Furthermore, indirubin suppressed phosphorylation of P38, extracellular signal-regulated kinase (ERK), and c-Jun NH2-terminal kinase (JNK) of the mitogen-activated protein kinase (MAPK) signal pathways. Thus, indirubin effectively suppressed LPS-induced inflammation via TLR4 abrogation mediated by the NF-kB and MAPK signaling pathways and may be useful for mastitis prophylaxis.

  1. Signaling pathways and mediators in LPS-induced lung inflammation in diabetic rats: role of insulin.

    PubMed

    Martins, Joilson O; Ferracini, Matheus; Anger, Denise B C; Martins, Daniel O; Ribeiro, Luciano F; Sannomiya, Paulina; Jancar, Sonia

    2010-01-01

    Diabetic patients are more susceptible to infections, and their inflammatory response is impaired. This is restored by insulin treatment. In the present study, we investigated the effect of insulin on LPS-induced signaling pathways and mediators in the lung of diabetic rats. Diabetic male Wistar rats (alloxan, 42 mg/kg i.v., 10 days) and control rats received intratracheal instillation of LPS (750 microg/0.4 mL) or saline. Some diabetic rats were given neutral protamine Hagedorn insulin (4 IU s.c.) 2 h before LPS. After 6 h, bronchoalveolar lavage was performed for the release of mediators, and lung tissue was homogenized for analysis of LPS-induced signaling pathways. Relative to control rats, diabetic rats exhibited a significant reduction in the LPS-induced phosphorylation of extracellular signal-regulated kinase (64%), p38 (70%), protein kinase B (67%), and protein kinase C alpha (57%) and delta (65%) and in the expression of iNOS (32%) and cyclooxygenase 2 (67%) in the lung homogenates. The bronchoalveolar lavage fluid concentrations of NO (47%) and IL-6 (49%) were also reduced in diabetic rats, whereas the cytokine-induced neutrophil chemoattractant 2 (CINC-2) levels were increased 23%, and CINC-1 was not different from control animals. Treatment of diabetic rats with insulin completely or partially restored all these parameters. In conclusion, data presented show that insulin regulates mitogen-activated protein kinase, phosphatidylinositol 3'-kinase, protein kinase C pathways, expression of the inducible enzymes, cyclooxygenase 2 and iNOS, and levels of IL-6 and CINC-2 in LPS-induced lung inflammation in diabetic rats. These results suggest that the protective effect of insulin in sepsis could be due to modulation of cellular signal transduction factors.

  2. Daphnetin reduces endotoxin lethality in mice and decreases LPS-induced inflammation in Raw264.7 cells via suppressing JAK/STATs activation and ROS production.

    PubMed

    Shen, Lei; Zhou, Ting; Wang, Jing; Sang, Xiumei; Lan, Lei; Luo, Lan; Yin, Zhimin

    2017-07-01

    Here, we used various approaches to investigate the suppressive role of daphnetin in LPS-induced inflammatory response, with the goal to understand the underlining molecular mechanism by which daphnetin regulated these processes. We examined the survival rate and the lung injury in the mice model of LPS-induced endotoxemia. The production of pro-inflammatory factors including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), IL-6, nitric oxide (NO), and prostaglandin E2 (PGE2) was measured by ELISA and nitrite analysis, respectively. The expression of inducible NO synthase (iNOS), cyclooxygenase 2 (COX-2), and the activation of signaling molecules was determined by immunoblotting. The production of reactive oxygen species (ROS) was measured by the ROS assay. In vivo study showed that daphnetin enhanced the survival rate and reduced the lung injury in mice with LPS-induced endotoxemia. Both in vivo and in vitro study showed that daphnetin prevented the production of pro-inflammatory factors including TNF-α, IL-1β, IL-6, NO, and PGE2 after LPS challenge. In Raw264.7 cells, we found that daphnetin reduced LPS-induced expression of iNOS and COX-2, and suppressed LPS-induced ROS production. In addition, we found that daphnetin suppressed the activation of JAK/STATs pathway and inhibited the nucleus import of STAT1 and STAT3. Here, our results indicate that daphnetin shows anti-inflammatory properties, at least in part, through suppressing LPS-induced activation of JAK/STATs cascades and ROS production.

  3. Ivy leaves dry extract EA 575® decreases LPS-induced IL-6 release from murine macrophages.

    PubMed

    Schulte-Michels, J; Runkel, F; Gokorsch, S; Häberlein, H

    2016-03-01

    IL-6 plays a key role in the course of inflammatory processes as well as in the regulation of immune responses by the release of different cytokines. IL-6 is produced e.g. by macrophages recruited to the airways in response to a variety of inflammatory stimuli like allergens and respiratory viruses. Patients with inflammatory airway diseases therefore may benefit from therapies targeting the IL-6 pathway, e.g. reduction of the IL-6 release. Within this context, we tested the influence of the ivy leaves dry extract EA 575® on the LPS-induced release of IL-6 from murine macrophages (J774.2). One point seven µg/ml (5 µM) corticosterone served as positive control and was able to reduce LPS-induced IL-6 release by 46 ± 4%. EA 575® was tested in concentrations between 40 and 400 µg/ml. EA 575® decreased the LPS-induced IL-6 release in a dose-dependent manner and statistically significant by 25 ± 4%, 32 ± 4%, and 40 ± 7% in concentrations of 80, 160, and 400 µg/ml, respectively. The present data suggest an anti-inflammatory effect of EA 575® used in therapy of chronic- and acute inflammatory airway diseases accompanied with cough.

  4. A central role for the mammalian target of rapamycin in LPS-induced anorexia in mice.

    PubMed

    Yue, Yunshuang; Wang, Yi; Li, Dan; Song, Zhigang; Jiao, Hongchao; Lin, Hai

    2015-01-01

    Bacterial lipopolysaccharide (LPS), also known as endotoxin, induces profound anorexia. However, the LPS-provoked pro-inflammatory signaling cascades and the neural mechanisms underlying the development of anorexia are not clear. Mammalian target of rapamycin (mTOR) is a key regulator of metabolism, cell growth, and protein synthesis. This study aimed to determine whether the mTOR pathway is involved in LPS-induced anorexia. Effects of LPS on hypothalamic gene/protein expression in mice were measured by RT-PCR or western blotting analysis. To determine whether inhibition of mTOR signaling could attenuate LPS-induced anorexia, we administered an i.c.v. injection of rapamycin, an mTOR inhibitor, on LPS-treated male mice. In this study, we showed that LPS stimulates the mTOR signaling pathway through the enhanced phosphorylation of mTOR(Ser2448) and p70S6K(Thr389). We also showed that LPS administration increased the phosphorylation of FOXO1(Ser256), the p65 subunit of nuclear factor kappa B (P<0.05), and FOXO1/3a(Thr) (24) (/) (32) (P<0.01). Blocking the mTOR pathway significantly attenuated the LPS-induced anorexia by decreasing the phosphorylation of p70S6K(Thr389), FOXO1(Ser256), and FOXO1/3a(Thr) (24) (/) (32). These results suggest promising approaches for the prevention and treatment of LPS-induced anorexia. © 2015 Society for Endocrinology.

  5. Sonchus asper extract inhibits LPS-induced oxidative stress and pro-inflammatory cytokine production in RAW264.7 macrophages

    PubMed Central

    Wang, Lan; Xu, Ming Lu; Liu, Jie; Wang, You; Hu, Jian He

    2015-01-01

    BACKGROUND/OBJECTIVES Sonchus asper is used extensively as an herbal anti-inflammatory for treatment of bronchitis, asthma, wounds, burns, and cough; however, further investigation is needed in order to understand the underlying mechanism. To determine its mechanism of action, we examined the effects of an ethyl acetate fraction (EAF) of S. asper on nitric oxide (NO) production and prostaglandin-E2 levels in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MATERIALS/METHODS An in vitro culture of RAW264.7 macrophages was treated with LPS to induce inflammation. RESULTS Treatment with EAF resulted in significant suppression of oxidative stress in RAW264.7 macrophages as demonstrated by increased endogenous superoxide dismutase (SOD) activity and intracellular glutathione levels, decreased generation of reactive oxygen species and lipid peroxidation, and restoration of the mitochondrial membrane potential. To confirm its anti-inflammatory effects, analysis of expression of inducible NO synthase, cyclooxygenase-2, tumor necrosis factor-α, and the anti-inflammatory cytokines IL-1β and IL-6 was performed using semi-quantitative RT-PCR. EAF treatment resulted in significantly reduced dose-dependent expression of all of these factors, and enhanced expression of the antioxidants MnSOD and heme oxygenase-1. In addition, HPLC fingerprint results suggest that rutin, caffeic acid, and quercetin may be the active ingredients in EAF. CONCLUSIONS Taken together, findings of this study imply that the anti-inflammatory effect of EAF on LPS-stimulated RAW264.7 cells is mediated by suppression of oxidative stress. PMID:26634045

  6. Activin A Inhibits MPTP and LPS-Induced Increases in Inflammatory Cell Populations and Loss of Dopamine Neurons in the Mouse Midbrain In Vivo

    PubMed Central

    Stayte, Sandy; Rentsch, Peggy; Tröscher, Anna R.; Bamberger, Maximilian; Li, Kong M.; Vissel, Bryce

    2017-01-01

    Parkinson’s disease is a chronic neurodegenerative disease characterized by a significant loss of dopaminergic neurons within the substantia nigra pars compacta region and a subsequent loss of dopamine within the striatum. A promising avenue of research has been the administration of growth factors to promote the survival of remaining midbrain neurons, although the mechanism by which they provide neuroprotection is not understood. Activin A, a member of the transforming growth factor β superfamily, has been shown to be a potent anti-inflammatory following acute brain injury and has been demonstrated to play a role in the neuroprotection of midbrain neurons against MPP+-induced degeneration in vitro. We hypothesized that activin A may offer similar anti-inflammatory and neuroprotective effects in in vivo mouse models of Parkinson’s disease. We found that activin A significantly attenuated the inflammatory response induced by both MPTP and intranigral administration of lipopolysaccharide in C57BL/6 mice. We found that administration of activin A promoted survival of dopaminergic and total neuron populations in the pars compacta region both 8 days and 8 weeks after MPTP-induced degeneration. Surprisingly, no corresponding protection of striatal dopamine levels was found. Furthermore, activin A failed to protect against loss of striatal dopamine transporter expression in the striatum, suggesting the neuroprotective action of activin A may be localized to the substantia nigra. Together, these results provide the first evidence that activin A exerts potent neuroprotection and anti-inflammatory effects in the MPTP and lipopolysaccharide mouse models of Parkinson’s disease. PMID:28121982

  7. On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death.

    PubMed

    Kell, Douglas B; Pretorius, Etheresia

    2015-11-01

    We have recently highlighted (and added to) the considerable evidence that blood can contain dormant bacteria. By definition, such bacteria may be resuscitated (and thus proliferate). This may occur under conditions that lead to or exacerbate chronic, inflammatory diseases that are normally considered to lack a microbial component. Bacterial cell wall components, such as the endotoxin lipopolysaccharide (LPS) of Gram-negative strains, are well known as potent inflammatory agents, but should normally be cleared. Thus, their continuing production and replenishment from dormant bacterial reservoirs provides an easy explanation for the continuing, low-grade inflammation (and inflammatory cytokine production) that is characteristic of many such diseases. Although experimental conditions and determinants have varied considerably between investigators, we summarise the evidence that in a great many circumstances LPS can play a central role in all of these processes, including in particular cell death processes that permit translocation between the gut, blood and other tissues. Such localised cell death processes might also contribute strongly to the specific diseases of interest. The bacterial requirement for free iron explains the strong co-existence in these diseases of iron dysregulation, LPS production, and inflammation. Overall this analysis provides an integrative picture, with significant predictive power, that is able to link these processes via the centrality of a dormant blood microbiome that can resuscitate and shed cell wall components.

  8. Inhibition of LPS-induced TNF-α and NO production in mouse macrophage and inflammatory response in rat animal models by a novel Ayurvedic formulation, BV-9238.

    PubMed

    Dey, Debendranath; Chaskar, Sunetra; Athavale, Nitin; Chitre, Deepa

    2014-10-01

    Rheumatoid arthritis is a chronic crippling disease, where protein-based tumor necrosis factor-alpha (TNF-α) inhibitors show significant relief, but with potentially fatal side effects. A need for a safe, oral, cost-effective small molecule or phyto-pharmaceutical is warranted. BV-9238 is an Ayurvedic poly-herbal formulation containing specialized standardized extracts of Withania somnifera, Boswellia serrata, Zingiber officinale and Curcuma longa. The anti-inflammatory and anti-arthritic effects of BV-9238 were evaluated for inhibition of TNF-α and nitric oxide (NO) production, in lipopolysaccharide-stimulated, RAW 264.7, mouse macrophage cell line. BV-9238 reduced TNF-α and NO production, without any cytotoxic effects. Subsequently, the formulation was tested in adjuvant-induced arthritis (AIA) and carrageenan-induced paw edema (CPE) rat animal models. AIA was induced in rats by injecting Freund's complete adjuvant intra-dermally in the paw, and BV-9238 and controls were administered orally for 21 days. Arthritic scores in AIA study and inflamed paw volume in CPE study were significantly reduced upon treatment with BV-9238. These results suggest that the anti-inflammatory and anti-arthritic effects of BV-9238 are due to its inhibition of TNF-α, and NO, and this formulation shows promise as an alternate therapy for inflammatory disorders where TNF-α and NO play important roles.

  9. Emodin suppresses LPS-induced inflammation in RAW264.7 cells through a PPARγ-dependent pathway.

    PubMed

    Zhu, Tao; Zhang, Wei; Feng, She-jun; Yu, Hua-peng

    2016-05-01

    Inflammation is a defense and protective response to multiple harmful stimuli. Over and uncontrolled inflammation can lead to local tissues or even systemic damages and injuries. Actually, uncontrolled and self-amplified inflammation is the fundament of the pathogenesis of a variety of inflammatory diseases, including sepsis shock, acute lung injury and acute respiratory distress syndrome (ALI/ARDS). Our recent study showed that emodin, the main active component of Radix rhizoma Rhei, could significantly ameliorate LPS-induced ALI/ARDS in mice. However, its underlying signal pathway was not still very clear. Then, the aim of current study was to explore whether emodin could attenuate LPS-induced inflammation in RAW264.7 cells, and its involved potential mechanism. The mRNA and protein expression of ICAM-1, MCP-1 and PPARγ were measured by qRCR and western blotting, the production of TNF-α was evaluated by ELISA. Then, the phosphorylation of NF-κB p65 was also detected by western blotting. And NF-κB p65 DNA binding activity was analyzed by ELISA as well. Meanwhile, siRNA-PPARγ transfection was performed to knockdown PPARγ expression in cells. Our data revealed that LPS-induced the up-regulation of ICAM-1, MCP-1 and TNF-α, LPS-induced the down-regulation of PPARγ, and LPS-enhanced NF-κB p65 activation and DNA binding activity were substantially suppressed by emdoin in RAW264.7 cells. Furthermore, our data also figured out that these effects of emdoin were largely abrogated by siRNA-PPARγ transfection. Taken together, our results indicated that LPS-induced inflammation were potently compromised by emodin very likely through the PPARγ-dependent inactivation of NF-κB in RAW264.7 cells.

  10. Inhibition of soluble epoxide hydrolase reduces LPS-induced thermal hyperalgesia and mechanical allodynia in a rat model of inflammatory pain

    PubMed Central

    Inceoglu, Bora; Jinks, Steven L.; Schmelzer, Kara R.; Waite, Troy; Kim, In Hae; Hammock, Bruce D.

    2007-01-01

    Soluble epoxide hydrolases catalyze the hydrolysis of epoxides in acyclic systems. In man this enzyme is the product of a single copy gene (EPXH-2) present on chromosome 8. The human sEH is of interest due to emerging roles of its endogenous substrates, epoxygenated fatty acids, in inflammation and hypertension. One of the consequences of inhibiting sEH in rodent inflammation models is a profound decrease in the production of pro-inflammatory and proalgesic lipid metabolites including prostaglandins. This prompted us to hypothesize that sEH inhibitors may have antinociceptive properties. Here we tested if sEH inhibitors can reduce inflammatory pain. Hyperalgesia was induced by intraplantar LPS injection and sEH inhibitors were delivered topically. We found that two structurally dissimilar but equally potent sEH inhibitors can be delivered through the transdermal route and that sEH inhibitors effectively attenuate thermal hyperalgesia and mechanical allodynia in rats treated with LPS. In addition we show that epoxydized arachidonic acid metabolites, EETs, are also effective in attenuating thermal hyperalgesia in this model. In parallel with the observed biological activity metabolic analysis of oxylipids showed that inhibition of sEH resulted with a decrease in PGD2 levels and sEH generated degradation products of linoleic and arachidonic acid metabolites with a concomitant increase in epoxides of linoleic acid. These data show that inhibition of sEH may become a viable therapeutic strategy to attain analgesia. PMID:16962614

  11. Eriobotryae folium extract suppresses LPS-induced iNOS and COX-2 expression by inhibition of NF-kappaB and MAPK activation in murine macrophages.

    PubMed

    Uto, Takuhiro; Suangkaew, Natnaprach; Morinaga, Osamu; Kariyazono, Hiroko; Oiso, Shigeru; Shoyama, Yukihiro

    2010-01-01

    Eriobotryae folium (EF), the dried leaves of Eriobotrya japonica (Thunb.) Lindl. has been traditionally used to treat various diseases such as chronic bronchitis, cough, inflammation, skin diseases, and diabetes. In this study, we examined the effects of Eriobotryae folium extract (EFE) on lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and prostaglandin E2(PGE2) in RAW264 murine macrophage cells. EFE suppressed LPS-induced NO and PGE2 production in a dose-dependent manner. Consistent with these observations, EFE reduced the LPS-induced expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at both protein and mRNA levels. Furthermore, EFE significantly inhibited LPS-induced NF-kappaB binding activity, which was associated with the inhibition of IkappaB-alpha degradation. EFE also attenuated LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK). These results suggest that the anti-inflammatory properties of EF might result from inhibition of iNOS and COX-2 expression through the downregulation of NF-kappaB activation and MAPK phosphorylation in LPS-stimulated RAW264 cells.

  12. Vitamin D3 pretreatment regulates renal inflammatory responses during lipopolysaccharide-induced acute kidney injury.

    PubMed

    Xu, Shen; Chen, Yuan-Hua; Tan, Zhu-Xia; Xie, Dong-Dong; Zhang, Cheng; Zhang, Zhi-Hui; Wang, Hua; Zhao, Hui; Yu, De-Xin; Xu, De-Xiang

    2015-12-22

    Vitamin D receptor (VDR) is highly expressed in human and mouse kidneys. Nevertheless, its functions remain obscure. This study investigated the effects of vitamin D3 (VitD3) pretreatment on renal inflammation during lipopolysaccharide (LPS)-induced acute kidney injury. Mice were intraperitoneally injected with LPS. In VitD3 + LPS group, mice were pretreated with VitD3 (25 μg/kg) at 48, 24 and 1 h before LPS injection. As expected, an obvious reduction of renal function and pathological damage was observed in LPS-treated mice. VitD3 pretreatment significantly alleviated LPS-induced reduction of renal function and pathological damage. Moreover, VitD3 pretreatment attenuated LPS-induced renal inflammatory cytokines, chemokines and adhesion molecules. In addition, pretreatment with 1,25(OH)2D3, the active form of VitD3, alleviated LPS-induced up-regulation of inflammatory cytokines and chemokines in human HK-2 cells, a renal tubular epithelial cell line, in a VDR-dependent manner. Further analysis showed that VitD3, which activated renal VDR, specifically repressed LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 subunit in the renal tubules. LPS, which activated renal NF-κB, reciprocally suppressed renal VDR and its target gene. Moreover, VitD3 reinforced the physical interaction between renal VDR and NF-κB p65 subunit. These results provide a mechanistic explanation for VitD3-mediated anti-inflammatory activity during LPS-induced acute kidney injury.

  13. Central serotonin attenuates LPS-induced systemic inflammation.

    PubMed

    Mota, Clarissa M D; Rodrigues-Santos, Caroline; Fernández, Rodrigo A R; Carolino, Ruither O G; Antunes-Rodrigues, José; Anselmo-Franci, Janete A; Branco, Luiz G S

    2017-07-16

    a U-shaped dose-response curve in LPS fever, in which the intermediate dose reduced the febrile response. Icv 5-HT (10μg/μL) microinjection prevented the LPS-induced increases in AVPO PGE2 (whereas not altering PGD2), plasma CORT and IL-6 levels, as well as preventing reduced HLI. Our data are consistent with the notion that AVPO 5-HT synthesis is down-regulated during SI, favoring AVPO PGE2 synthesis and consequently potentiating the immune response. These results reveal a novel effect of central 5-HT as an anti-inflammatory neuromodulator that may take place during psychiatric disorder treatment with 5-HT reuptake inhibitors as well as suggesting that 5-HT modulation per se is a potential therapeutic approach for inflammatory diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Short-term changes of mRNA expression of various inflammatory factors and milk proteins in mammary tissue during LPS-induced mastitis.

    PubMed

    Schmitz, S; Pfaffl, M W; Meyer, H H D; Bruckmaier, R M

    2004-03-01

    quarters (P < 0.05). In conclusion, mRNA expression of most inflammatory factors increased within hours, whereas that of most milk proteins remained unchanged.

  15. The activation of μ-opioid receptor potentiates LPS-induced NF-kB promoting an inflammatory phenotype in microglia.

    PubMed

    Gessi, Stefania; Borea, Pier Andrea; Bencivenni, Serena; Fazzi, Debora; Varani, Katia; Merighi, Stefania

    2016-09-01

    Increased production of proinflammatory cytokines has a prominent role in tolerance to opioids. The objectives of this study were to examine whether μ-opioid receptor affects proinflammatory signalling through the activation of NF-kB in microglia. The novelty of the described research is that a low dose of morphine, exerting its effects via the μ-opioid receptor, increases the DNA-binding activity of NF-kB via PKCε, while a high dose of morphine triggers a nonopiate receptor response mediated by TLR4 and, interestingly, PKCε signalling. The identification of morphine as a crucial upstream regulator of PKCε-NF-κB signalling in microglia argues for a central role of these pathways in neuroinflammation development and progression. Therefore, the morphine-PKCε-NF-κB pathway may provide novel targets to induce neuroprotective mechanisms, thereby reducing tolerance to opioids.

  16. ILK mediates LPS-induced vascular adhesion receptor expression and subsequent leucocyte trans-endothelial migration.

    PubMed

    Hortelano, Sonsoles; López-Fontal, Raquel; Través, Paqui G; Villa, Natividad; Grashoff, Carsten; Boscá, Lisardo; Luque, Alfonso

    2010-05-01

    The inflammatory response to injurious agents is tightly regulated to avoid adverse consequences of inappropriate leucocyte accumulation or failed resolution. Lipopolysaccharide (LPS)-activated endothelium recruits leucocytes to the inflamed tissue through controlled expression of membrane-associated adhesion molecules. LPS responses in macrophages are known to be regulated by integrin-linked kinase (ILK); in this study, we investigated the role of ILK in the regulation of the LPS-elicited inflammatory response in endothelium. This study was performed on immortalized mouse endothelial cells (EC) isolated from lung and coronary vasculature. Cells were thoroughly characterized and the role of ILK in the regulation of the LPS response was investigated by suppressing ILK expression using siRNA and shRNA technologies. Phenotypic and functional analyses confirmed that the immortalized cells behaved as true EC. LPS induced the expression of the inflammatory genes E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). ILK knockdown impaired LPS-mediated endothelial activation by preventing the induction of ICAM-1 and VCAM-1. Blockade of the LPS-induced response inhibited the inflammatory-related processes of firm adhesion and trans-endothelial migration of leucocytes. ILK is involved in the expression of cell adhesion molecules by EC activated with the inflammatory stimulus LPS. This reduced expression modulates leucocyte adhesion to the endothelium and the extravasation process. This finding suggests ILK as a potential anti-inflammatory target for the development of vascular-specific treatments for inflammation-related diseases.

  17. Genome-wide siRNA screen of genes regulating the LPS-induced TNF-α response in human macrophages

    PubMed Central

    Sun, Jing; Katz, Samuel; Dutta, Bhaskar; Wang, Ze; Fraser, Iain D.C.

    2017-01-01

    The mammalian innate immune system senses many bacterial stimuli through the toll-like receptor (TLR) family. Activation of the TLR4 receptor by bacterial lipopolysaccharide (LPS) is the most widely studied TLR pathway due to its central role in host responses to gram-negative bacterial infection and its contribution to endotoxemia and sepsis. Here we describe a genome-wide siRNA screen to identify genes regulating the human macrophage TNF-α response to LPS. We include a secondary validation screen conducted with six independent siRNAs per gene to facilitate removal of off-target screen hits. We also provide microarray data from the same LPS-treated macrophage cells to facilitate downstream data analysis. Tertiary screening with multiple TLR ligands and a microbial extract demonstrate that novel screen hits have broad effects on the innate inflammatory response to microbial stimuli. These data provide a resource for analyzing gene function in the predominant pathway driving inflammatory cytokine expression in human macrophages. PMID:28248930

  18. Genome-wide siRNA screen of genes regulating the LPS-induced NF-κB and TNF-α responses in mouse macrophages

    PubMed Central

    Li, Ning; Katz, Samuel; Dutta, Bhaskar; Benet, Zachary L.; Sun, Jing; Fraser, Iain D.C.

    2017-01-01

    The mammalian innate immune system senses many bacterial stimuli through the toll-like receptor (TLR) family. Activation of the TLR4 receptor by bacterial lipopolysaccharide (LPS) is the most widely studied TLR pathway due to its central role in host responses to gram-negative bacterial infection and its contribution to endotoxemia and sepsis. Here we describe a genome-wide siRNA screen to identify genes regulating the mouse macrophage TNF-α and NF-κB responses to LPS. We include a secondary validation screen conducted with six independent siRNAs per gene to facilitate removal of off-target screen hits. We also provide microarray data from the same LPS-treated macrophage cells to facilitate downstream data analysis. These data provide a resource for analyzing gene function in the predominant pathway driving inflammatory signaling and cytokine expression in mouse macrophages. PMID:28248925

  19. GSK-3Beta-Dependent Activation of GEF-H1/ROCK Signaling Promotes LPS-Induced Lung Vascular Endothelial Barrier Dysfunction and Acute Lung Injury.

    PubMed

    Yi, Lei; Huang, Xiaoqin; Guo, Feng; Zhou, Zengding; Chang, Mengling; Huan, Jingning

    2017-01-01

    The bacterial endotoxin or lipopolysaccharide (LPS) leads to the extensive vascular endothelial cells (EC) injury under septic conditions. Guanine nucleotide exchange factor-H1 (GEF-H1)/ROCK signaling not only involved in LPS-induced overexpression of pro-inflammatory mediator in ECs but also implicated in LPS-induced endothelial hyper-permeability. However, the mechanisms behind LPS-induced GEF-H1/ROCK signaling activation in the progress of EC injury remain incompletely understood. GEF-H1 localized on microtubules (MT) and is suppressed in its MT-bound state. MT disassembly promotes GEF-H1 release from MT and stimulates downstream ROCK-specific GEF activity. Since glycogen synthase kinase (GSK-3beta) participates in regulating MT dynamics under pathologic conditions, we examined the pivotal roles for GSK-3beta in modulating LPS-induced activation of GEF-H1/ROCK, increase of vascular endothelial permeability and severity of acute lung injury (ALI). In this study, we found that LPS induced human pulmonary endothelial cell (HPMEC) monolayers disruption accompanied by increase in GSK-3beta activity, activation of GEF-H1/ROCK signaling and decrease in beta-catenin and ZO-1 expression. Inhibition of GSK-3beta reduced HPMEC monolayers hyper-permeability and GEF-H1/ROCK activity in response to LPS. GSK-3beta/GEF-H1/ROCK signaling is implicated in regulating the expression of beta-catenin and ZO-1. In vivo, GSK-3beta inhibition attenuated LPS-induced activation of GEF-H1/ROCK pathway, lung edema and subsequent ALI. These findings present a new mechanism of GSK-3beta-dependent exacerbation of lung micro-vascular hyper-permeability and escalation of ALI via activation of GEF-H1/ROCK signaling and disruption of intracellular junctional proteins under septic condition.

  20. Myeloid depletion of SOCS3 enhances LPS-induced acute lung injury through CCAAT/enhancer binding protein δ pathway

    PubMed Central

    Yan, Chunguang; Ward, Peter A.; Wang, Ximo; Gao, Hongwei

    2013-01-01

    Although uncontrolled inflammatory response plays a central role in the pathogenesis of acute lung injury (ALI), the precise molecular mechanisms underlying the development of this disorder remain poorly understood. SOCS3 is an important negative regulator of IL-6-type cytokine signaling. SOCS3 is induced in lung during LPS-induced lung injury, suggesting that generation of SOCS3 may represent a regulatory product during ALI. In the current study, we created mice lacking SOCS3 expression in macrophages and neutrophils (LysM-cre SOCS3fl/fl). We evaluated the lung inflammatory response to LPS in both LysM-cre SOCS3fl/fl mice and the wild-type (WT) mice (SOCS3fl/fl). LysM-cre SOCS3fl/fl mice displayed significant increase of the lung permeability index (lung vascular leak of albumin), neutrophils, lung neutrophil accumulation (myeloperoxidase activity), and proinflammatory cytokines/chemokines in bronchial alveolar lavage fluids compared to WT mice. These phenotypes were consistent with morphological evaluation of lung, which showed enhanced inflammatory cell influx and intra-alveolar hemorrhage. We further identify the transcription factor, CCAAT/enhancer-binding protein (C/EBP) δ as a critical downstream target of SOCS3 in LPS-induced ALI. These results indicate that SOCS3 has a protective role in LPS-induced ALI by suppressing C/EBPδ activity in the lung. Elucidating the function of SOCS3 would represent prospective targets for a new generation of drugs needed to treat ALI.—Yan, C., Ward, P. A., Wang, X., Gao, H. Myeloid depletion of SOCS3 enhances LPS-induced acute lung injury through CCAAT/enhancer binding protein δ pathway. PMID:23585399

  1. Chebulagic acid inhibits the LPS-induced expression of TNF-α and IL-1β in endothelial cells by suppressing MAPK activation.

    PubMed

    Liu, Yueying; Bao, Luer; Xuan, Liying; Song, Baohua; Lin, Lin; Han, Hao

    2015-07-01

    Inflammatory response in the vasculature, including the overexpression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β, has been demonstrated to increase the risk of thrombosis development. Chebulagic acid (CA) is a key chemical component in the traditional Mongolian anti-thrombotic drug Garidi-13, and has been suggested to exert anti-inflammatory and anti-infective effects. The present study aimed to evaluate the regulatory impact of CA on a number of biological processes, including lipopolysaccharide (LPS)-induced inflammation, LPS-promoted mitogen-activated protein kinase (MAPK) activation and the expression of toll-like receptor (TLR)4 in EA.hy926 human endothelial cells. The results indicated that CA significantly inhibited the LPS-induced upregulation of TNF-α and IL-1β in a dose- and time-dependent manner. Furthermore, LPS-activated MAPK signaling was inhibited by CA treatment in the EA.hy926 cells. However, TLR4, which serves a key function in LPS-induced inflammation as the receptor of LPS, was not regulated by the CA treatment. In summary, the results of the present study indicate that CA inhibits the LPS-induced promotion of TNF-α and IL-1β in endothelial cells by suppressing MAPK activation, which may contribute to the anti-thrombotic effect of Garidi-13.

  2. Stevioside protects LPS-induced acute lung injury in mice.

    PubMed

    Yingkun, Nie; Zhenyu, Wang; Jing, Lin; Xiuyun, Lu; Huimin, Yu

    2013-02-01

    Stevioside, a diterpene glycoside component of Stevia rebaudiana, has been known to exhibit anti-inflammatory properties. To evaluate the effect and the possible mechanism of stevioside in lipopolysaccharide (LPS)-induced acute lung injury, male BALB/c mice were pretreated with stevioside or dexamethasone 1 h before intranasal instillation of LPS. Seven hours later, tumor necrosis factor-α, interleukin-1β, and interleukin-6 in bronchoalveolar lavage fluid (BALF) were measured by using enzyme-linked immunosorbent assay. The number of total cells, neutrophils, and macrophages in the BALF were also determined. The right lung was excised for histological examination and analysis of myeloperoxidase activity and nitrate/nitrite content. Cyclooxygenase 2 (COX-2), inducible NO synthase (iNOS), nuclear factor-kappa B (NF-κB), inhibitory kappa B protein were detected by western blot. The results showed that stevioside markedly attenuated the LPS-induced histological alterations in the lung. Stevioside inhibited the production of pro-inflammatory cytokines and the expression of COX-2 and iNOS induced by LPS. In addition, not only was the wet-to-dry weight ratio of lung tissue significantly decreased, the number of total cells, neutrophils, and macrophages in the BALF were also significantly reduced after treatment with stevioside. Moreover, western blotting showed that stevioside inhibited the phosphorylation of IκB-α and NF-κB caused by LPS. Taken together, our results suggest that anti-inflammatory effect of stevioside against the LPS-induced acute lung injury may be due to its ability of inhibition of the NF-κB signaling pathway. Stevioside may be a promising potential therapeutic reagent for acute lung injury treatment.

  3. Blockade of nociceptin/orphanin FQ receptor signaling reverses LPS-induced depressive-like behavior in mice.

    PubMed

    Medeiros, Iris U; Ruzza, Chiara; Asth, Laila; Guerrini, Remo; Romão, Pedro R T; Gavioli, Elaine C; Calo, Girolamo

    2015-10-01

    Nociceptin/orphanin FQ is the natural ligand of a Gi-protein coupled receptor named NOP. This peptidergic system is involved in the regulation of mood states and inflammatory responses. The present study aimed to investigate the consequences of blocking NOP signaling in lipopolysaccharide (LPS)-induced sickness and depressive-like behaviors in mice. LPS 0.8mg/kg, ip, significantly induced sickness signs such as weight loss, decrease of water and food intake and depressive-like behavior in the tail suspension test. Nortriptyline (ip, 60min prior the test) reversed the LPS-induced depressive states. The NOP receptor antagonist SB-612111, 30min prior LPS, did not modify LPS-induced sickness signs and depressive-like behavior. However, when injected 24h after LPS, NOP antagonists (UFP-101, icv, and SB-612111, ip) significantly reversed the mood effects of LPS. LPS evoked similar sickness signs and significantly increased tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) plasma levels 6h post-injection in wild-type ((NOP(+/+)) and NOP knockout ((NOP(-/-)) mice. However, LPS treatment elicited depressive-like effects in NOP(+/+) but not in NOP(-/-) mice. In conclusion, the pharmacological and genetic blockade of NOP signaling does not affect LPS evoked sickness signs while reversing depressive-like behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Role of actin cytoskeleton in LPS-induced NF-kappaB activation and nitric oxide production in murine macrophages.

    PubMed

    Eswarappa, Sandeepa M; Pareek, Vidhi; Chakravortty, Dipshikha

    2008-10-01

    Lipopolysaccharide (LPS) is a major cell wall component of Gram-negative bacteria and is known to cause actin cytoskeleton reorganization in a variety of cells including macrophages. Actin cytoskeleton dynamics influence many cell signaling pathways including the NF-kappaB pathway. LPS is also known to induce the expression of many pro-inflammatory genes via the NF-kappaB pathway. Here, we have investigated the role of actin cytoskeleton in LPS-induced NF-kappaB activation and signaling leading to the expression of iNOS and nitric oxide production. Using murine macrophages, we show that disruption of actin cytoskeleton by either cytochalasin D (CytD) or latrunculin B (LanB) does not affect LPS-induced NF-kappaB activation and the expression of iNOS, a NF-kappaB target gene. However, disruption of actin cytoskeleton caused significant reduction in LPS-induced nitric oxide production indicating a role of actin cytoskeleton in the post-translational regulation of iNOS.

  5. Proteomic dissection of LPS-inducible, PHF8-dependent secretome reveals novel roles of PHF8 in TLR4-induced acute inflammation and T cell proliferation

    PubMed Central

    Erdoğan, Özgün; Xie, Ling; Wang, Li; Wu, Bing; Kong, Qing; Wan, Yisong; Chen, Xian

    2016-01-01

    Endotoxin (LPS)-induced changes in histone lysine methylation contribute to the gene-specific transcription for control of inflammation. Still unidentified are the chromatin regulators that drive the transition from a transcriptional-repressive to a transcriptional-active chromatin state of pro-inflammatory genes. Here, using combined approaches to analyze LPS-induced changes in both gene-specific transcription and protein secretion to the extracellular compartment, we characterize novel functions of the lysine demethylase PHF8 as a pro-inflammatory, gene-specific chromatin regulator. First, in the LPS-induced, acute-inflamed macrophages, PHF8 knockdown led to both a reduction of pro-inflammatory factors and an increase in a transcriptional-repressive code (H3K9me2) written by the methyltransferase G9a. Through unbiased quantitative secretome screening we discovered that LPS induces the secretion of a cluster of PHF8-dependent, ‘tolerizable’ proteins that are related to diverse extracellular pathways/processes including those for the activation of adaptive immunity. Specifically, we determined that PHF8 promotes T-cell activation and proliferation, thus providing the first link between the epigenetic regulation of inflammation and adaptive immunity. Further, we found that, in the acute-inflamed macrophages, the acute-active PHF8 opposes the H3K9me1/2-writing activity of G9a to activate specific protein secretions that are suppressed by G9a in the endotoxin-tolerant cells, revealing the inflammatory-phenotypic chromatin drivers that regulate the gene-specific chromatin plasticity. PMID:27112199

  6. Early LPS-induced ERK activation in retinal pigment epithelium cells is dependent on PIP2-PLC☆

    PubMed Central

    Mateos, Melina V.; Kamerbeek, Constanza B.; Giusto, Norma M.; Salvador, Gabriela A.

    2016-01-01

    This article presents additional data regarding the study “The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium” [1]. The new data presented here show that short exposure of RPE cells to lipopolysaccharide (LPS) induces an early and transient activation of the extracellular signal-regulated kinase (ERK1/2). This early ERK1/2 activation is dependent on phosphatidylinositol bisphosphate-phospholipase C (PIP2-PLC). On the contrary, neither the phospholipase D 1 (PLD1) nor the PLD2 inhibition is able to modulate the early ERK1/2 activation induced by LPS in RPE cells. PMID:27006973

  7. Early LPS-induced ERK activation in retinal pigment epithelium cells is dependent on PIP 2 -PLC.

    PubMed

    Mateos, Melina V; Kamerbeek, Constanza B; Giusto, Norma M; Salvador, Gabriela A

    2016-06-01

    This article presents additional data regarding the study "The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium" [1]. The new data presented here show that short exposure of RPE cells to lipopolysaccharide (LPS) induces an early and transient activation of the extracellular signal-regulated kinase (ERK1/2). This early ERK1/2 activation is dependent on phosphatidylinositol bisphosphate-phospholipase C (PIP2-PLC). On the contrary, neither the phospholipase D 1 (PLD1) nor the PLD2 inhibition is able to modulate the early ERK1/2 activation induced by LPS in RPE cells.

  8. Evaluation of 5-HT7 Receptor Trafficking on In Vivo and In Vitro Model of Lipopolysaccharide (LPS)-Induced Inflammatory Cell Injury in Rats and LPS-Treated A549 Cells.

    PubMed

    Ayaz, Gulsen; Halici, Zekai; Albayrak, Abdulmecit; Karakus, Emre; Cadirci, Elif

    2017-02-01

    This study aimed to investigate the effects of the 5-HT7 receptor agonist (LP44) and antagonist (SB269970) on LPS-induced in vivo tissue damage and cell culture by molecular methods. This study was conducted in two steps. For in vivo studies, 24 female rats were divided into four groups. Group I: healthy; II (2nd h): LPS 5 mg/kg administered intraperitoneally (i.p.); III (4th h): LPS 5 mg/kg administered i.p.; IV (8th h): LPS 5 mg/kg administered i.p. For in vitro studies, we used the A549 cell line. Groups: I control (healthy) (2-4 h); II LPS: 1 µg/ml E. Coli O55:B5 strain (2-4 h); III agonist (LP44) 10(-9) M (2-4 h); IV antagonist (SB269970) 10(-9) M (2-4 h); V LPS+agonist 10(-9) M (LP44 1 µg/ml) (2-4 h); VI LPS+antagonist 10(-9) M (2-4 h). In molecular analyses, we determined increased TNF-α, IL-1β, NF-κB, and 5-HT7 mRNA expressions in rat lung tissues and increased TNF-α, iNOS, and 5-HT7 mRNA expressions in the A549 cell line. In in vitro parameters, LP44 agonist administration-related decrease was observed. Our study showed that lung 5-HT7 receptor expression is increased in LPS-induced endotoxemia. All this data suggest that 5-HT7 receptor overexpression is an important protective mechanism during LPS-induced sepsis-related cell damage.

  9. Prostaglandin EP2 and EP4 receptors modulate expression of the chemokine CCL2 (MCP-1) in response to LPS-induced renal glomerular inflammation.

    PubMed

    Zahner, Gunther; Schaper, Melanie; Panzer, Ulf; Kluger, Malte; Stahl, Rolf A K; Thaiss, Friedrich; Schneider, André

    2009-08-27

    The pro-inflammatory chemokine CCL2 [chemokine (Cys-Cys motif) ligand 2; also known as MCP-1 (monocyte chemotactic protein-1)] is up-regulated in the glomerular compartment during the early phase of LPS (lipopolysaccharide)-induced nephritis. This up-regulation also occurs in cultured MCs (mesangial cells) and is more pronounced in MCs lacking the PGE2 (prostaglandin E2) receptor EP2 or in MCs treated with a prostaglandin EP4 receptor antagonist. To examine a possible feedback mechanism of EP receptor stimulation on CCL2 expression, we used an in vitro model of MCs with down-regulated EP receptor expression. Selectively overexpressing the various EP receptors in these cells then allows the effects on the LPS-induced CCL2 expression to be examined. Cells were stimulated with LPS and CCL2 gene expression was examined and compared with LPS-stimulated, mock-transfected PTGS2 [prostaglandin-endoperoxide synthase 2, also known as COX-2 (cyclo-oxygenase-2)]-positive cells. Overexpression of EP1, as well as EP3, had no effect on LPS-induced Ccl2 mRNA expression. In contrast, overexpression of EP2, as well as EP4, significantly decreased LPS-induced CCL2 expression. These results support the hypothesis that PTGS2-derived prostaglandins, when strongly induced, counter-balance inflammatory processes through the EP2 and EP4 receptors in MCs.

  10. The role of microglial mtDNA damage in age-dependent prolonged LPS-induced sickness behavior.

    PubMed

    Nakanishi, Hiroshi; Hayashi, Yoshinori; Wu, Zhou

    2011-02-01

    Microglia are the main cellular source of oxidation products and inflammatory molecules in the brain during aging. The accumulation of mitochondrial DNA (mtDNA) oxidative damage in microglia during aging results in the increased production of reactive oxygen species (ROS). The increased intracellular ROS, in turn, activates a redox-sensitive nuclear factor-κB (NF-κB) to provoke excessive neuroinflammation, resulting in memory deficits and the prolonged behavioral consequence of infection. Besides its role in regulating the gene copy number, mitochondrial transcription factor A (TFAM) is closely associated with the stabilization of mtDNA structures. Lipopolysaccharide (LPS) induces the generation of ROS from the actively respirating mitochondria as well as NADPH oxidase, and leads to the subsequent activation of the NF-κB-dependent inflammatory pathway in aging microglia. The overexpression of human TFAM improves the age-dependent prolonged LPS-induced sickness behaviors by ameliorating the mtDNA damage and reducing the resultant redox-regulated inflammatory responses. Therefore, 'microglia-aging' plays important roles in the age-dependent enhanced behavioral consequences of infection.

  11. Inhibitory effect of carnosine and N-acetyl carnosine on LPS-induced microglial oxidative stress and inflammation.

    PubMed

    Fleisher-Berkovich, Sigal; Abramovitch-Dahan, Chen; Ben-Shabat, Shimon; Apte, Ron; Beit-Yannai, Elie

    2009-07-01

    Chronic inflammation and oxidative stress have been implicated in the pathogenesis of neurodegenerative diseases. A growing body of research focuses on the role of microglia, the primary immune cells in the brain, in modulating brain inflammation and oxidative stress. One of the most abundant antioxidants in the brain, particularly in glia, is the dipeptide carnosine, beta-alanyl-L-histidine. Carnosine is believed to be involved in cellular defense such as free radical detoxification and inhibition of protein cross-linking. The more stable N-acetyl derivative of carnosine has also been identified in the brain. The aim of the present study was to examine the role of carnosine and N-acetyl carnosine in the regulation of lipopolysaccharide (LPS)-induced microglial inflammation and oxidative damage. In this study, BV2 microglial cells were stimulated with bacterial LPS, a potent inflammatory stimulus. The data shows that both carnosine and N-acetyl carnosine significantly attenuated the LPS-induced nitric oxide synthesis and the expression of inducible nitric oxide synthase by 60% and 70%, respectively. By competitive spectrophotometric measurement and electrospray mass spectrometry analysis, we demonstrated a direct interaction of N-acetyl carnosine with nitric oxide. LPS-induced TNFalpha secretion and carbonyl formation were also significantly attenuated by both compounds. N-acetyl carnosine was more potent than carnosine in inhibiting the release of the inflammatory and oxidative stress mediators. These observations suggest the presence of a novel regulatory pathway through which carnosine and N-acetyl carnosine inhibit the synthesis of microglial inflammatory and oxidative stress mediators, and thus may prove to play a role in brain inflammation.

  12. Fluoxetine up-regulates expression of cellular FLICE-inhibitory protein and inhibits LPS-induced apoptosis in hippocampus-derived neural stem cell

    SciTech Connect

    Chiou, S.-H. . E-mail: shchiou@vghtpe.gov.tw; Chen, S.-J. . E-mail: sjchen@vghtpe.gov.tw; Peng, C-H.; Chang, Y.-L.; Ku, H.-H.; Hsu, W.-M.; Ho, Larry L.-T.; Lee, C.-H.

    2006-05-05

    Fluoxetine is a widely used antidepressant compound which inhibits the reuptake of serotonin in the central nervous system. Recent studies have shown that fluoxetine can promote neurogenesis and improve the survival rate of neurons. However, whether fluoxetine modulates the proliferation or neuroprotection effects of neural stem cells (NSCs) needs to be elucidated. In this study, we demonstrated that 20 {mu}M fluoxetine can increase the cell proliferation of NSCs derived from the hippocampus of adult rats by MTT test. The up-regulated expression of Bcl-2, Bcl-xL and the cellular FLICE-inhibitory protein (c-FLIP) in fluoxetine-treated NSCs was detected by real-time RT-PCR. Our results further showed that fluoxetine protects the lipopolysaccharide-induced apoptosis in NSCs, in part, by activating the expression of c-FLIP. Moreover, c-FLIP induction by fluoxetine requires the activation of the c-FLIP promoter region spanning nucleotides -414 to -133, including CREB and SP1 sites. This effect appeared to involve the phosphatidylinositol-3-kinase-dependent pathway. Furthermore, fluoxetine treatment significantly inhibited the induction of proinflammatory factor IL-1{beta}, IL-6, and TNF-{alpha} in the culture medium of LPS-treated NSCs (p < 0.01). The results of high performance liquid chromatography coupled to electrochemical detection further confirmed that fluoxentine increased the functional production of serotonin in NSCs. Together, these data demonstrate the specific activation of c-FLIP by fluoxetine and indicate the novel role of fluoxetine for neuroprotection in the treatment of depression.

  13. Propofol inhibits LPS-induced apoptosis in lung epithelial cell line, BEAS-2B.

    PubMed

    Lv, Xiang; Zhou, Xuhui; Yan, Jia; Jiang, Jue; Jiang, Hong

    2017-03-01

    Lipopolysaccharide (LPS) plays an important role in lung endothelial apoptosis which is crucial for lung fibrogenesis in ARDS progression. Reactive oxygen species (ROS) has been reported to be involved in LPS-induced lung epithelial cell apoptosis. Propofol is a commonly used intravenous anesthetic agent in clinic and it could attenuate LPS-induced epithelial cells oxidation and apoptosis. However, the mechanisms are still obscure. In this study, we examined whether and how propofol attenuates LPS-induced oxidation and apoptosis in BEAS-2B cells. Compared with control group, LPS up-regulated Pin-1, phosphatase A2 (PP2A) expression, induced p66(Shc)-Ser(36) phosphorylation, and facilitated p66(Shc) mitochondrial translocation, thus leading to superoxide anion (O2(-)) generation, mitochondrial cytochrome c release, active caspase 3 over-expression and cell viability inhibition. Importantly, propofol was shown to down-regulate LPS-induced PP2A expression, limit p66(Shc) mitochondrial translocation, decrease O2(-) generation, inhibit mitochondrial cytochrome c release, reduce active caspase 3 expression, and recover cells viability, while propofol had no effects on LPS-induced Pin-1 expression and p66(Shc)-Ser(36) phosphorylation. Moreover, the protective effects of propofol on LPS-induced BEAS-2B cells apoptosis were similar to that of calyculin A, which is an inhibitor of PP2A. We also found that FTY720, which is an activator of PP2A, can effectively reverse the protective function of propofol. Our data illustrated that propofol could alleviate LPS-induced BEAS-2B cells oxidation and apoptosis through down-regulating PP2A expression, limiting p66(Shc)-Ser(36) dephosphorylation and p66(Shc) mitochondrial translocation, decreasing O2(-) generation, mitochondrial cytochrome c release, activating caspase 3 expression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production.

    PubMed

    Kearney, C J; Cullen, S P; Tynan, G A; Henry, C M; Clancy, D; Lavelle, E C; Martin, S J

    2015-08-01

    TNF promotes a regulated form of necrosis, called necroptosis, upon inhibition of caspase activity in cells expressing RIPK3. Because necrosis is generally more pro-inflammatory than apoptosis, it is widely presumed that TNF-induced necroptosis may be detrimental in vivo due to excessive inflammation. However, because TNF is intrinsically highly pro-inflammatory, due to its ability to trigger the production of multiple cytokines and chemokines, rapid cell death via necroptosis may blunt rather than enhance TNF-induced inflammation. Here we show that TNF-induced necroptosis potently suppressed the production of multiple TNF-induced pro-inflammatory factors due to RIPK3-dependent cell death. Similarly, necroptosis also suppressed LPS-induced pro-inflammatory cytokine production. Consistent with these observations, supernatants from TNF-stimulated cells were more pro-inflammatory than those from TNF-induced necroptotic cells in vivo. Thus necroptosis attenuates TNF- and LPS-driven inflammation, which may benefit intracellular pathogens that evoke this mode of cell death by suppressing host immune responses.

  15. Exogenous rhTRX reduces lipid accumulation under LPS-induced inflammation

    PubMed Central

    Han, Gi-Yeon; Lee, Eun-Kyung; Park, Hey-won; Kim, Hyun-Jung; Kim, Chan-Wha

    2014-01-01

    Redox-regulating molecule, recombinant human thioredoxin (rhTRX) which shows anti-inflammatory, and anti-oxidative effects against lipopolysaccharide (LPS)-stimulated inflammation and regulate protein expression levels. LPS-induced reactive oxygen intermediates (ROI) and NO production were inhibited by exogenous rhTRX. We identified up/downregulated intracellular proteins under the LPS-treated condition in exogenous rhTRX-treated A375 cells compared with non-LPS-treated cells via 2-DE proteomic analysis. Also, we quantitatively measured cytokines of in vivo mouse inflammation models using cytometry bead array. Exogenous rhTRX inhibited LPS-stimulated production of ROI and NO levels. TIP47 and ATP synthase may influence the inflammation-related lipid accumulation by affecting lipid metabolism. The modulation of skin redox environments during inflammation is most likely to prevent alterations in lipid metabolism through upregulation of TIP47 and ATP synthase and downregulation of inflammatory cytokines. Our results demonstrate that exogenous rhTRX has anti-inflammatory properties and intracellular regulatory activity in vivo and in vitro. Monitoring of LPS-stimulated pro-inflammatory conditions treated with rhTRX in A375 cells could be useful for diagnosis and follow-up of inflammation reduction related with candidate proteins. These results have a therapeutic role in skin inflammation therapy. PMID:24406320

  16. The effect of low or high molecular weight oat beta-glucans on the inflammatory and oxidative stress status in the colon of rats with LPS-induced enteritis.

    PubMed

    Wilczak, Jacek; Błaszczyk, Katarzyna; Kamola, Dariusz; Gajewska, Małgorzata; Harasym, Joanna Paulina; Jałosińska, Małgorzata; Gudej, Sylwia; Suchecka, Dominika; Oczkowski, Michał; Gromadzka-Ostrowska, Joanna

    2015-02-01

    The aim of the study was to investigate the protective effect of low and high molecular weight beta-glucans on the chosen immunological parameters, markers of antioxidative potential in rats' colon tissue, the number of lactic acid bacteria (LAB) and the concentration of short-chain fatty acids (SCFA) in rats' faeces. The experiment was carried out on 72 8-week old male Sprague-Dawley rats: control (n = 36) and experimental (n = 36). In half of the animals from each group enteritis was induced by LPS (10 mg kg(-1)). Rats from the experimental group were divided into two groups receiving high (GI) or low (GII) molecular weight beta-glucans for 6 consecutive weeks. LPS evoked enteritis in all the treated animals, manifested by changes in the levels of IL-10, IL-12 and TNF-alpha, as well as in the number of intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs) in the colon tissue. Dietary supplementation with beta-glucans following LPS treatment partially reversed this effect. The changes in SCFA concentration were noted, indicating an improvement of the fermentation process in the colon. This effect coincided with an increased number of LAB, pointing at the prebiotic properties of beta-glucans. The positive influence of beta-glucans was also manifested by the improved values of antioxidative potential markers (TAS, SOD, GR and GPx activity, TBARS concentration), noted especially in rats with LPS-induced enteritis. This influence was more pronounced in the case of low molecular weight oat beta-glucan (GII). The present study showed a positive effect of beta-glucans, especially the low molecular weight form, on the colon tissue of healthy rats, as well as animals with LPS-induced enteritis.

  17. Protective effects of baicalin on LPS-induced injury in intestinal epithelial cells and intercellular tight junctions.

    PubMed

    Chen, Jian; Zhang, Ren; Wang, Jian; Yu, Peng; Liu, Quan; Zeng, Dan; Song, Houpan; Kuang, Zaoyuan

    2015-04-01

    To investigate the protective effects and mechanisms of baicalin on lipopolysaccharide (LPS)-induced injury in intestinal epithelial cells and intercellular tight junctions. IEC-6 cells were stimulated with LPS (1.0 μg/mL), with or without baicalin, for 24 h. The levels of the inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α were determined using ELISA. Quantitative real-time PCR was used for determining the mRNA expression level of claudin-3, occludin, and ZO-1; Western blot and immunofluorescence analysis were used for analyzing the expression level and the distribution patterns of ZO-1 protein. Pretreatment with baicalin (10.0 μg/mL) improved LPS-stimulated cell viability and repressed IL-6 and TNF-α levels. In addition, pretreatment with baicalin up-regulated mRNA and protein expression levels of ZO-1 and kept the protein intact in IEC-6 cells injured with LPS. Baicalin has the capacity to protect IEC-6 cells and the intercellular tight junctions from LPS-induced injury. The mechanisms may be associated with inhibiting the production of inflammatory cytokines, and up-regulating the mRNA and protein expression of ZO-1.

  18. 15-hydroxyprostaglandin dehydrogenase (15-PGDH) prevents lipopolysaccharide (LPS)-induced acute liver injury

    PubMed Central

    Yao, Lu; Chen, Weina; Song, Kyoungsub; Han, Chang; Gandhi, Chandrashekhar R.; Lim, Kyu; Wu, Tong

    2017-01-01

    The NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes the oxidation of the 15(S)-hydroxyl group of prostaglandin E2 (PGE2), converting the pro-inflammatory PGE2 to the anti-inflammatory 15-keto-PGE2 (an endogenous ligand for peroxisome proliferator-activated receptor-gamma [PPAR-γ]). To evaluate the significance of 15-PGDH/15-keto-PGE2 cascade in liver inflammation and tissue injury, we generated transgenic mice with targeted expression of 15-PGDH in the liver (15-PGDH Tg) and the animals were subjected to lipopolysaccharide (LPS)/Galactosamine (GalN)-induced acute liver inflammation and injury. Compared to the wild type mice, the 15-PGDH Tg mice showed lower levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), less liver tissue damage, less hepatic apoptosis/necrosis, less macrophage activation, and lower inflammatory cytokine production. In cultured Kupffer cells, treatment with 15-keto-PGE2 or the conditioned medium (CM) from 15-PGDH Tg hepatocyes inhibited LPS-induced cytokine production, in vitro. Both 15-keto-PGE2 and the CM from15-PGDH Tg hepatocyes also up-regulated the expression of PPAR-γ downstream genes in Kupffer cells. In cultured hepatocytes, 15-keto-PGE2 treatment or 15-PGDH overexpression did not influence TNF-α-induced hepatocyte apoptosis. These findings suggest that 15-PGDH protects against LPS/GalN-induced liver injury and the effect is mediated via 15-keto-PGE2, which activates PPAR-γ in Kupffer cells and thus inhibits their ability to produce inflammatory cytokines. Accordingly, we observed that the PPAR-γ antagonist, GW9662, reversed the effect of 15-keto-PGE2 in Kupffer cell in vitro and restored the susceptibility of 15-PGDH Tg mice to LPS/GalN-induced acute liver injury in vivo. Collectively, our findings suggest that 15-PGDH-derived 15-keto-PGE2 from hepatocytes is able to activate PPAR-γ and inhibit inflammatory cytokine production in Kupffer cells and that this paracrine mechanism

  19. LPS-induced inflammation in the chicken is associated with CCAAT/enhancer binding protein beta-mediated fat mass and obesity associated gene down-regulation in the liver but not hypothalamus.

    PubMed

    Zhang, Yanhong; Guo, Feng; Ni, Yingdong; Zhao, Ruqian

    2013-12-17

    The fat mass and obesity associated gene (FTO) is widely investigated in humans regarding its important roles in obesity and type 2 diabetes. Studies in mammals demonstrate that FTO is also associated with inflammation markers. However, the association of FTO with inflammation in chickens remains unclear. In this study, male chickens on day 28 posthatching were injected intraperitoneally with lipopolysaccharide (LPS) or saline to investigate whether the FTO gene is involved in LPS-induced inflammation. We detected significant down-regulation of FTO mRNA in the liver (P < 0.01), but not in the hypothalamus, 2 and 24 h after LPS challenge. Toll-like receptor (TLR) 2 (P < 0.01) and TLR4 (P < 0.01) followed the same pattern as FTO, being suppressed significantly in liver but not in hypothalamus. IL-1β was dramatically up-regulated (P < 0.01) in both liver and hypothalamus 2 h after LPS challenge, while activation of IL-6 was observed in the liver (P < 0.01), but not in hypothalamus. The 5'-flanking sequence of the chicken FTO gene contains nine predicted binding sites for CCAAT/enhancer binding protein beta (C/EBP beta) and one for signal transducer and activator of transcription 3 (STAT3). Significant elevation of C/EBP beta was detected in the liver (P < 0.01), but not in the hypothalamus, 2 h after LPS challenge. Lipopolysaccharide challenge increased the C/EBP beta binding to FTO promoter in the liver (P < 0.01 for fragment 1, P < 0.05 for fragment 2), although the protein content of C/EBP beta was not altered. Moreover, injection of LPS resulted in enhanced phosphorylation of liver STAT3, a downstream transcription factor in IL-6 signaling. Although phosphorylated STAT3 was not detected to directly bind to FTO promoter, it was found to interact with C/EBP beta. Our results reveal that FTO expression in liver, but not in hypothalamus, is affected by the i.p. injection of LPS, which may be mediated through tissue-specific FTO

  20. LPS-induced inflammation in the chicken is associated with CCAAT/enhancer binding protein beta-mediated fat mass and obesity associated gene down-regulation in the liver but not hypothalamus

    PubMed Central

    2013-01-01

    Background The fat mass and obesity associated gene (FTO) is widely investigated in humans regarding its important roles in obesity and type 2 diabetes. Studies in mammals demonstrate that FTO is also associated with inflammation markers. However, the association of FTO with inflammation in chickens remains unclear. In this study, male chickens on day 28 posthatching were injected intraperitoneally with lipopolysaccharide (LPS) or saline to investigate whether the FTO gene is involved in LPS-induced inflammation. Results We detected significant down-regulation of FTO mRNA in the liver (P < 0.01), but not in the hypothalamus, 2 and 24 h after LPS challenge. Toll-like receptor (TLR) 2 (P < 0.01) and TLR4 (P < 0.01) followed the same pattern as FTO, being suppressed significantly in liver but not in hypothalamus. IL-1β was dramatically up-regulated (P < 0.01) in both liver and hypothalamus 2 h after LPS challenge, while activation of IL-6 was observed in the liver (P < 0.01), but not in hypothalamus. The 5′-flanking sequence of the chicken FTO gene contains nine predicted binding sites for CCAAT/enhancer binding protein beta (C/EBP beta) and one for signal transducer and activator of transcription 3 (STAT3). Significant elevation of C/EBP beta was detected in the liver (P < 0.01), but not in the hypothalamus, 2 h after LPS challenge. Lipopolysaccharide challenge increased the C/EBP beta binding to FTO promoter in the liver (P < 0.01 for fragment 1, P < 0.05 for fragment 2), although the protein content of C/EBP beta was not altered. Moreover, injection of LPS resulted in enhanced phosphorylation of liver STAT3, a downstream transcription factor in IL-6 signaling. Although phosphorylated STAT3 was not detected to directly bind to FTO promoter, it was found to interact with C/EBP beta. Conclusion Our results reveal that FTO expression in liver, but not in hypothalamus, is affected by the i.p. injection of LPS, which may be mediated

  1. Protective effect of Jolkinolide B on LPS-induced mouse acute lung injury.

    PubMed

    Yang, Hailing; Li, Yan; Huo, Pengfei; Li, Xiao-Ou; Kong, Daliang; Mu, Wei; Fang, Wei; Li, Lingxia; Liu, Ning; Fang, Ling; Li, Hongjun; He, Chengyan

    2015-05-01

    Jolkinolide B (JB), an ent-abietane diterpenoid, isolated from the dried root of Euphorbia fischeriana, has been reported to have potent anti-tumor and anti-inflammatory activities. However, the effects of JB on acute lung injury (ALI) and underlying molecular mechanisms have not been investigated. The present study aimed to investigate the effect of JB on lipopolysaccharide (LPS)-induced ALI. Male C57BL/6 mice were pretreated with dexamethasone or JB 1h before intranasal instillation of LPS. The results showed that JB markedly attenuated LPS-induced histological alterations, lung edema, inflammatory cell infiltration, myeloperoxidase (MPO) activity as well as the production of TNF-α, IL-6 and IL-1β. Furthermore, JB also significantly inhibited LPS-induced the degradation of IκBα and phosphorylation of NF-κB p65 and MAPK. Therefore, our study provides the first line of evidence that pretreatment of JB has a protective effect on LPS-induced ALI in mice. The anti-inflammatory mechanism of JB may be attributed to its suppression of NF-κB and MAPK activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. LPS-induced systemic inflammation is more severe in P2Y12 null mice

    PubMed Central

    Liverani, Elisabetta; Rico, Mario C.; Yaratha, Laxmikausthubha; Tsygankov, Alexander Y.; Kilpatrick, Laurie E.; Kunapuli, Satya P.

    2014-01-01

    Thienopyridines are a class of antiplatelet drugs that are metabolized in the liver to several metabolites, of which only one active metabolite can irreversibly antagonize the platelet P2Y12 receptor. Possible effects of these drugs and the role of activated platelets in inflammatory responses have also been investigated in a variety of animal models, demonstrating that thienopyridines could alter inflammation. However, it is not clear whether it is caused only by the P2Y12 antagonism or whether off-target effects of other metabolites also intervene. To address this question, we investigated P2Y12 KO mice during a LPS-induced model of systemic inflammation, and we treated these KO mice with a thienopyridine drug (clopidogrel). Contrary to the reported effects of clopidogrel, numbers of circulating WBCs and plasma levels of cytokines were increased in LPS-exposed KO mice compared with WT in this inflammation model. Moreover, both spleen and bone marrow show an increase in cell content, suggesting a role for P2Y12 in regulation of bone marrow and spleen cellular composition. Finally, the injury was more severe in the lungs of KO mice compared with WT. Interestingly, clopidogrel treatments also exerted protective effects in KO mice, suggesting off-target effects for this drug. In conclusion, the P2Y12 receptor plays an important role during LPS-induced inflammation, and this signaling pathway may be involved in regulating cell content in spleen and bone marrow during LPS systemic inflammation. Furthermore, clopidogrel may have effects that are independent of P2Y12 receptor blockade. PMID:24142066

  3. Licochalcone A Prevents the Loss of Dopaminergic Neurons by Inhibiting Microglial Activation in Lipopolysaccharide (LPS)-Induced Parkinson's Disease Models.

    PubMed

    Huang, Bingxu; Liu, Juxiong; Ju, Chen; Yang, Dongxue; Chen, Guangxin; Xu, Shiyao; Zeng, Yalong; Yan, Xuan; Wang, Wei; Liu, Dianfeng; Fu, Shoupeng

    2017-09-22

    The neuroprotective effects of Licochalcone A (Lico.A), a flavonoid isolated from the herb licorice, in Parkinson's disease (PD) have not been elucidated. The prominent pathological feature of PD is the loss of dopaminergic neurons. The crucial role of neuroinflammation induced by activated microglia in dopaminergic neurodegeneration has been validated. In this study, we explore the therapeutic effects of Lico.A in lipopolysaccharide (LPS)-induced PD models in vivo and in vitro. We find that Lico.A significantly inhibits LPS-stimulated production of pro-inflammatory mediators and microglial activation by blocking the phosphorylation of extracellular signal-regulated kinase (ERK1/2) and nuclear factor κB (NF-κB) p65 in BV-2 cells. In addition, through cultured primary mesencephalic neuron-glia cell experiments, we illustrate that Lico.A attenuates the decrease in [³H] dopamine (DA) uptake and the loss of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in LPS-induced PD models in vitro. Furthermore, LPS intoxication in rats results in microglial activation, dopaminergic neurodegeneration and significant behavioral deficits in vivo. Lico.A treatment prevents microglial activation and reduction of dopaminergic neuron and ameliorates PD-like behavioral impairments. Thus, these results demonstrate for the first time that the neuroprotective effects of Lico.A are associated with microglia and anti-inflammatory effects in PD models.

  4. AS-703026 Inhibits LPS-Induced TNFα Production through MEK/ERK Dependent and Independent Mechanisms

    PubMed Central

    Li, Ping; Wu, Yonghong; Li, Manxiang; Qiu, Xiaojuan; Bai, Xiaoyan; Zhao, Xiaojing

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by intense lung infiltrations of immune cells (macrophages and monocytes). Lipopolysaccharide (LPS) activates macrophages/monocytes, leading to production of tumor necrosis factor α (TNFα) and other cytokines, which cause subsequent lung damages. In the current study, our results demonstrated that AS-703026, a novel MEK/ERK inhibitor, suppressed LPS-induced TNFα mRNA expression and protein secretion in RAW 264.7 murine macrophages, and in murine bone marrow-derived macrophages (BMDMs). Meanwhile, TNFα production in LPS-stimulated COPD patents’ peripheral blood mononuclear cells (PBMCs) was also repressed by AS-703026. At the molecular level, we showed that AS-703026 blocked LPS-induced MEK/ERK activation in above macrophages/monocytes. However, restoring ERK activation in AS-703026-treated RAW 264.7 cells by introducing a constitutive-actively (CA)-ERK1 only partially reinstated LPS-mediated TNFα production. Meanwhile, AS-703026 could still inhibit TNFα response in ERK1/2-depleted (by shRNA) RAW 264.7 cells. Significantly, we found that AS-703026 inhibited LPS-induced nuclear factor κB (NFκB) activation in above macrophages and COPD patients’ PBMCs. In vivo, oral administration of AS-703026 inhibited LPS-induced TNFα production and endotoxin shock in BALB/c mice. Together, we show that AS-703026 in vitro inhibits LPS-induced TNFα production in macrophages/monocytes, and in vivo protects mice from LPS-induced endotoxin shock. Thus, it could be further studied as a useful anti-inflammatory therapy for COPD patients. PMID:26381508

  5. Propofol pretreatment attenuates LPS-induced granulocyte-macrophage colony-stimulating factor production in cultured hepatocytes by suppressing MAPK/ERK activity and NF-{kappa}B translocation

    SciTech Connect

    Jawan, Bruno; Kao, Y.-H.; Goto, Shigeru; Pan, M.-C.; Lin, Y.-C.; Hsu, L.-W.; Nakano, Toshiaki; Lai, C.-Y.; Sun, C.-K.; Cheng, Y.-F.; Tai, M.-H.

    2008-06-15

    Propofol (PPF), a widely used intravenous anesthetic for induction and maintenance of anesthesia during surgeries, was found to possess suppressive effect on host immunity. This study aimed at investigating whether PPF plays a modulatory role in the lipopolysaccharide (LPS)-induced inflammatory cytokine expression in a cell line of rat hepatocytes. Morphological observation and viability assay showed that PPF exhibits no cytotoxicity at concentrations up to 300 {mu}M after 48 h incubation. Pretreatment with 100 {mu}M PPF for 24 h prior to LPS stimulation was performed to investigate the modulatory effect on LPS-induced inflammatory gene production. The results of semi-quantitative RT-PCR demonstrated that PPF pretreatment significantly suppressed the LPS-induced toll-like receptor (TLR)-4, CD14, tumor necrosis factor (TNF)-{alpha}, and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression. Western blotting analysis showed that PPF pretreatment potentiated the LPS-induced TLR-4 downregulation. Flow cytometrical analysis revealed that PPF pretreatment showed no modulatory effect on the LPS-upregulated CD14 expression on hepatocytes. In addition, PPF pretreatment attenuated the phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and I{kappa}B{alpha}, as well as the nuclear translocation of NF-{kappa}B primed by LPS. Moreover, addition of PD98059, a MAPK kinase inhibitor, significantly suppressed the LPS-induced NF-{kappa}B nuclear translocation and GM-CSF production, suggesting that the PPF-attenuated GM-CSF production in hepatocytes may be attributed to its suppressive effect on MAPK/ERK signaling pathway. In conclusion, PPF as an anesthetic may clinically benefit those patients who are vulnerable to sepsis by alleviating sepsis-related inflammatory response in livers.

  6. Nicotine inhibits LPS-induced cytokine production and leukocyte infiltration in rat placenta.

    PubMed

    Bao, Junjie; Liu, Yuanyuan; Yang, Jinying; Gao, Qiu; Shi, Shao-Qing; Garfield, Robert E; Liu, Huishu

    2016-03-01

    Previous work conducted by our group has shown that nicotine reduces lipopolysaccharide (LPS)-induced systemic inflammatory responses and protects fetuses in pregnant Sprague-Dawley (SD) rats. In the present study, we aim to evaluate the influence of nicotine on rat placenta, including cytokine release, leukocyte infiltration, and α7 nicotinic acetylcholine receptor (α7-nAChR) expression. Placental tissues of SD rats on gestation day 14 (GD14) were obtained and cultured in the presence or absence of LPS and/or nicotine. Culture media after 24 h were analyzed for cytokines release using Luminex. Other pregnant SD rats were first pretreated with nicotine on GD14 and GD15, followed by LPS injection on GD16. Placentas were collected on GD18 for H&E staining to evaluate leukocyte density and for real-time PCR and western blotting to identify the α7-nAChR expression in different groups. Nicotine suppresses LPS-stimulated placental proinflammatory cytokines (IL-1, IL-2, IL-6, TNF-α, IFN-γ) production except IL-17 in vitro, and reduces leucocytes infiltration in the placental chorionic plate caused by LPS in vivo. Moreover, LPS increases the α7-nAChR protein expression in placentas while pretreatment of nicotine inhibits it. These data show that nicotine suppresses LPS-induced placental inflammation by inhibition of cytokine release and infiltration of leukocytes into the placenta, and regulates the increased expression of α7-nAChR in placenta after LPS treatment. Nicotine and other nicotinic agonists may be an alternative therapeutic strategy for placental inflammation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Inhibitory effects of cyclic AMP elevating agents on lipopolysaccharide (LPS)-induced microvascular permeability change in mouse skin.

    PubMed

    Irie, K; Fujii, E; Ishida, H; Wada, K; Suganuma, T; Nishikori, T; Yoshioka, T; Muraki, T

    2001-05-01

    Anti-inflammatory effects of cyclic AMP elevating agents were examined in a mouse model of lipopolysaccharide (LPS)-induced microvascular permeability change. Vascular permeability on the back skin was measured by the local accumulation of Pontamine sky blue (PSB) after subcutaneous injection of LPS (400 microg site-1) from Salmonella typhimurium. Dye leakage in the skin was significantly increased 2 h after injection of LPS. This LPS-induced dye leakage was suppressed by phosphodiesterase inhibitors, including pentoxifylline (160 mg kg-1), milrinone (5 - 10 mg kg-1), rolipram (0.5 - 10 mg kg-1) and zaprinast (5 - 10 mg kg-1). The dye leakage was also inhibited by beta-adrenoceptor agonists, including isoproterenol (0.5 - 5 mg kg-1) and salbutamol (0.05 - 5 mg kg-1), an adenylate cyclase activator, forskolin (5 mg kg-1), and a cell permeable cyclic AMP analogue, 8-bromo-cyclic AMP (8-Br-cAMP, 10 mg kg-1). LPS caused a transient increase in serum TNF-alpha level peaking at 1 h after the injection. This increase in serum TNF-alpha was completely blocked by a pretreatment with pentoxifylline (160 mg kg-1), milrinone (5 mg kg-1), rolipram (1 mg kg-1), zaprinast (10 mg kg-1), salbutamol (0.5 mg kg-1), forskolin (1 mg kg-1) and 8-Br-cAMP (10 mg kg-1). LPS caused an increase in serum IL-1alpha level peaking at 3 h after injection. This increase in serum IL-1alpha was not significantly suppressed by the cyclic AMP elevating agents. Our study suggests that cyclic AMP elevating agents attenuate LPS-induced microvascular permeability change by suppressing TNF-alpha up regulation.

  8. Bovine dialyzable leukocyte extract protects against LPS-induced, murine endotoxic shock.

    PubMed

    Franco-Molina, Moisés A; Mendoza-Gamboa, Edgar; Castillo-León, Leonardo; Tamez-Guerra, Reyes S; Rodríguez-Padilla, Cristina

    2004-12-15

    The pathophysiology of endotoxic shock is characterized by the activation of multiple pro-inflammatory genes and their products which initiate the inflammatory process. Endotoxic shock is a serious condition with high mortality. Bovine dialyzable leukocyte extract (bDLE) is a dialyzate of a heterogeneous mixture of low molecular weight substances released from disintegrated leukocytes of the blood or lymphoid tissue obtained from homogenized bovine spleen. bDLE is clinically effective for a broad spectrum of diseases. To determine whether bDLE improves survival and modulates the expression of pro-inflammatory cytokine genes in LPS-induced, murine endotoxic shock, Balb/C mice were treated with bDLE (1 U) after pretreatment with LPS (17 mg/kg). The bDLE improved survival (90%), suppressed IL-10 and IL-6, and decreased IL-1beta, TNF-alpha, and IL-12p40 mRNA expression; and decreased the production of IL-10 (P<0.01), TNF-alpha (P<0.01), and IL-6 (P<0.01) in LPS-induced, murine endotoxic shock. Our results demonstrate that bDLE leads to improved survival in LPS-induced endotoxic shock in mice, modulating the pro-inflammatory cytokine gene expression, suggesting that bDLE is an effective therapeutic agent for inflammatory illnesses associated with an unbalanced expression of pro-inflammatory cytokine genes such as in endotoxic shock, rheumatic arthritis and other diseases.

  9. Punicalagin inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPKs and NF-κB activation.

    PubMed

    Xu, Xiaolong; Yin, Peng; Wan, Changrong; Chong, Xinlu; Liu, Mingjiang; Cheng, Peng; Chen, Jiajia; Liu, Fenghua; Xu, Jianqin

    2014-06-01

    Punicalagin (2,3,hexahydroxydiphenoyl-gallagyl-D-glucose and referred to as PUN) is a bioactive ellagitannin isolated from pomegranate, which is widely used for the treatment of inflammatory bowel disease (IBD), diarrhea, and ulcers in Chinese traditional medicine. In this study, we detected the anti-inflammation potentials of PUN in lipopolysaccharide (LPS)-induced macrophages and tried to uncover the underlying mechanism. Results demonstrated that PUN (25, 50, or 100 μM) treatment could significantly decrease the LPS-induced production of nitric oxide), prostaglandin E2 (PGE2), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in RAW264.7 cells. Molecular research showed that PUN inhibited the activation of upstream mediator nuclear factor-κB by suppressing the phosphorylation of IκBα and p65. Results also indicated that PUN could suppress the phosphorylation of mitogen-activated protein kinase including p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase. In conclusion, we observed that PUN could inhibit LPS-induced inflammation, and it may be a potential choice for the treatment of inflammation diseases.

  10. PPARγ ameliorated LPS induced inflammation of HEK cell line expressing both human Toll-like receptor 4 (TLR4) and MD2.

    PubMed

    Darehgazani, Reyhaneh; Peymani, Maryam; Hashemi, Motahare-Sadat; Omrani, Mir Davood; Movafagh, Abolfazl; Ghaedi, Kamran; Nasr-Esfahani, Mohammad Hossein

    2016-08-01

    TLR4 is transmembrane pattern-recognition receptor that initiates signals in response to diverse pathogen-associated molecular patterns especially LPS. Recently, there have been an increasing number of studies about the role of TLRs in the pathogenesis of several disorders as well as the therapeutic potential of TLR intervention in such diseases. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a ligand-activated transcription factor with numerous biological effects. PPARγ has been shown to exert a potential anti-inflammatory effect through suppression of TLR4-mediated inflammation. Therefore, PPARγ agonists may have a potential to combat inflammatory conditions in pathologic states. The current study aims to show the decrease of inflammation by overexpression of PPARγ in a cell reporter model. To reach this goal, recombinant pBudCE4.1 (+) containing encoding sequences of human TLR4 and MD2 was constructed and used to transfect HEK cells. Subsequently, inflammation was induced by LPS treatment as control group. In the treatment group, overexpression of PPARγ prior to inflammation was performed and the expression of inflammatory markers was assessed in this condition. The expression of inflammatory markers (TNFα and iNOS) was defined by quantitative real time PCR and the amount of phosphorylated NF-κB was measured by western blot. Data indicated expression of TNFα and iNOS increased in LPS induced inflammation of stably transformed HEK cells with MD2 and TLR4. In this cell reporter model overexpression of PPARγ dramatically prevented LPS-induced inflammation through the blocking of TLR4/NF-κB signaling. PPARγ was shown to negatively regulate TLR4 activity and therefore exerts its anti-inflammatory action against LPS induced inflammation.

  11. Activin suppresses LPS-induced Toll-like receptor, cytokine and inducible nitric oxide synthase expression in normal human melanocytes by inhibiting NF-κB and MAPK pathway activation.

    PubMed

    Kim, Young Il; Park, Seung-Won; Kang, In Jung; Shin, Min Kyung; Lee, Mu-Hyoung

    2015-10-01

    Activins are dimeric growth and differentiation factors that belong to the transforming growth factor (TGF)-β superfamily of structurally related signaling proteins. In the present study, we examined the mechanisms through which activin regulates the lipopolysaccharide (LPS)-induced transcription of Toll-like receptors (TLRs), cytokines and inducible nitric oxide synthase (iNOS) in human melanocytes, as well as the involvement of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling. Cell proliferation was analyzed by cell viability assay, mRNA expression was detected by RT-qPCR, and protein expression was measured by western blot analysis. LPS increased the mRNA expression of TLRs (TLR1-10) and cytokines [interleukin (IL)-1β, IL-6, IL-8 and TNF-α], as well as the mRNA and protein expression of iNOS. Activin decreased the LPS-induced TLR and cytokine mRNA expression, as well as the LPS-induced iNOS mRNA and protein expression. In addition, activin suppressed NF-κB p65 activation and blocked inhibitor of NF-κB (IκBα) degradation in LPS-stimulated melanocytes, and reduced LPS-induced p38 MAPK and MEK/ERK activation. On the whole, our results demonstrated that activin inhibited TLR and cytokine expression in LPS-activated normal human melanocytes and suppressed LPS-induced iNOS gene expression. Moreover, the anti-inflammatory effects of activin were shown to be mediated through the suppression of NF-κB and MAPK signaling, resulting in reduced TLR and iNOS expression, and in the inhibition of inflammatory cytokine expression.

  12. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation.

    PubMed

    McKallip, Robert J; Ban, Hao; Uchakina, Olga N

    2015-01-01

    Exposure to bacterial endotoxins, such as lipopolysaccharide (LPS), can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To date, there are no known effective treatments for LPS-induced inflammation. In the current study, we investigated the potential use of the hyaluronic acid (HA) synthesis inhibitor 4-methylumbelliferone (4-MU) on LPS-induced acute lung inflammation. Culturing LPS-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production, and an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from LPS-induced lung injury. Specifically, 4-MU treatment led to a reduction in LPS-induced hyaluronic acid synthase (HAS) messenger RNA (mRNA) levels, reduction in lung permeability, and reduction in proinflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target HA production may be an effective treatment for the inflammatory response following exposure to LPS.

  13. Prion protein participates in the protection of mice from lipopolysaccharide infection by regulating the inflammatory process.

    PubMed

    Liu, Jin; Zhao, Deming; Liu, Chunfa; Ding, Tianjian; Yang, Lifeng; Yin, Xiaomin; Zhou, Xiangmei

    2015-01-01

    Despite the overwhelming evidence of the involvement of prion protein (PrP) in prion disease pathogenesis, the normal functions of this cell surface glycoprotein remain unclear. Previously, we showed that PrP may have a dual regulatory role by regulating the opposite poles of pro-inflammation and anti-inflammation as well as tissue repair in activated microglia. In the present work, we compared the mRNA expression of inflammation-related cytokines (TNF-α, IL-1β, IL-6, NOS2, and IL-10) and IL-4-related alternative activation markers (Arg1 and Mrc1) after lipopolysaccharide (LPS) challenge in the brain and spleen and examined peripheral leukocyte recovery and LPS-induced mortality in PrP knockout mice (PrP(-/-)) and wild-type (WT) mice. During the acute phase, WT mice exhibited higher levels of pro-inflammatory cytokines in the brain and spleen than in PrP(-/-) mice, while PrP(-/-) mice sustained higher levels of pro-inflammatory cytokines and lower levels of anti-inflammatory cytokines, Arg1, and Mrc1 during the later phase. PrP(-/-) mice also exhibited a slower peripheral leukocyte recovery process and higher mortality in response to LPS-induced septic shock. These results suggest that the PrP may participate in the protection of mice from LPS infection by regulating the process of inflammatory response.

  14. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury.

    PubMed

    Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J

    2015-02-01

    We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.

  15. Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism.

    PubMed

    Wolfson, Manuel Luis; Schander, Julieta Aylen; Bariani, María Victoria; Correa, Fernando; Franchi, Ana María

    2015-12-15

    Genital tract infections caused by Gram-negative bacteria induce miscarriage and are one of the most common complications of human pregnancy. LPS administration to 7-day pregnant mice induces embryo resorption after 24h, with nitric oxide playing a fundamental role in this process. We have previously shown that progesterone exerts protective effects on the embryo by modulating the inflammatory reaction triggered by LPS. Here we sought to investigate whether the in vivo administration of progesterone modulated the LPS-induced nitric oxide production from peripheral blood mononuclear cells from pregnant and non-pregnant mice. We found that progesterone downregulated LPS-induced nitric oxide production by a progesterone receptor-independent mechanism. Moreover, our results suggest a possible participation of glucocorticoid receptors in at least some of the anti-inflammatory effects of progesterone.

  16. Protective effects of sinomenine against LPS-induced inflammation in piglets.

    PubMed

    Yang, Haifeng; Jiang, Chunmao; Chen, Xiaolan; He, Kongwang; Hu, Yiyi

    2017-09-01

    The aim of this study was to investigate in piglets, the anti-endotoxin and anti-inflammatory effects of sinomenine, an agent commonly found in Chinese herbal medicines. In high-, middle- and low-dose sinomenine groups, piglets were initially challenged with endotoxin (i.e., 1 mg lipopolysaccharide (LPS)/kg) by intraperitoneal (IP) injection and, 3 h later, intramuscularly (IM) with sinomenine at 1, 5, or 10 mg/kg. In a drug control group, piglets were dosed IP with vehicle and 3 h late IM with 10 mg/kg sinomenine while those in an LPS control group were challenged with 1 mg LPS/kg (IP) and then vehicle 3 h later; naïve control piglets were administered normal saline IP and then IM only. At 12, 24, and 48 h post-LPS/vehicle injection, blood samples were collected from the precaval vein of piglets. Clinical signs were recorded during the trial and index levels were analyzed by ELISA kits. The results revealed sinomenine could reduce the incidence/severity of certain LPS-induced toxicities, e.g., cell adhesion, systemic inflammation, and multiple organ dysfunction. Taken together, the data suggested to us that sinomenine might effectively be useful to regulate inflammatory responses as part of future anti-endotoxin therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Lugrandoside attenuates LPS-induced acute respiratory distress syndrome by anti-inflammation and anti-apoptosis in mice

    PubMed Central

    Li, Chengbao; Huang, Ying; Yao, Xueya; Hu, Baoji; Wu, Suzhen; Chen, Guannan; Lv, Xin; Tian, Fubo

    2016-01-01

    This study aimed to investigate the protective effects and specific mechanisms of lugrandoside (LG) on lipopolysaccharides (LPS)-induced acute respiratory distress syndrome (ARDS). LG is a novel phenylpropanoid glycoside with many biological properties, isolated from the culinary leaves of Digitalis lutea L. and Digitalis grandiflora Miller. The primary indicators to assess the lung injury were infiltration of inflammatory cells; pulmonary edema; expression of proinflammatory cytokines, cyclo-oxygenase 2, and intracellular adhesion molecule 1; activation of nuclear factor-κB pathways; and cellular apoptosis. The results showed that LG evidently alleviated the inflammatory response, decreased the apoptosis of alveolar macrophages, and improved the lung injury in mice with LPS-induced ARDS. In conclusion, LG improved LPS-induced ARDS by anti-inflammation and anti-apoptosis and might be a promising pharmacological therapy for ARDS. PMID:28078026

  18. Combined treatment with MSC transplantation and neutrophil depletion ameliorates D-GalN/LPS-induced acute liver failure in rats.

    PubMed

    Zhao, Xin; Shi, Xiaolei; Zhang, Zhiheng; Ma, Hucheng; Yuan, Xianwen; Ding, Yitao

    2016-12-01

    The imbalance of immunity is an important pathogenesis of acute liver failure (ALF). Neutrophils are the hallmark of acute inflammation, which have an essential role in immune regulation. Mesenchymal stem cell (MSC) transplantation is a promising therapy in ALF treatment. Recent studies indicated a considerable connection between MSCs and neutrophils in immune regulation. To investigate changes in neutrophils in ALF rats after MSC transplantation, and to explore the therapeutic effect and mechanism of the combined treatment with MSC transplantation and neutrophil depletion in ALF. We employed monotherapy and the combination therapy with MSCs and anti-PMN serum in D-galactosamine (D-GalN)/lipopolysaccharides (LPS)-induced ALF rats. Rats were sacrificed at 6, 12 and 24h, respectively. Blood samples and liver tissues were collected. Hepatic injury, inflammatory cytokines (TNF-α, IL-1β and IL-10), chemokines (CXCL1 and CXCL2), the number and activity of neutrophils and animal survival were assessed at fixed times. MSC transplantation can effectively improve the liver function of ALF rats and reduce the number and activity of neutrophils in both peripheral blood and liver. Compared with MSC transplantation alone, anti-PMN treatment and co-treatment had a better result in diminishing neutrophils. The co-treatment also exhibited a better therapeutical effect in ALF rats compared with monotherapy. In this process, the expressions of inflammatory cytokines in the liver were consistent with liver function. The regulation of the neutrophil-related microenvironment is affected in D-GalN/LPS-induced ALF rats after MSC transplantation. The combined treatment with MSC transplantation and neutrophil depletion may have a better therapeutic effect in ALF rats. Copyright © 2016. Published by Elsevier Masson SAS.

  19. TIIA attenuates LPS-induced mouse endometritis by suppressing the NF-κB signaling pathway.

    PubMed

    Lv, Xiaopei; Fu, Kaiqiang; Li, Weishi; Wang, Yu; Wang, Jifang; Li, Huatao; Tian, Wenru; Cao, Rongfeng

    2015-11-01

    Endometritis is one of the main diseases that harms the dairy cow industry. Tanshinone IIA (TIIA), a fat-soluble alkaloid isolated from Salviae miltiorrhizae, has been reported to have potent anti-inflammatory properties. However, the anti-inflammatory effects of TIIA on a mouse model of lipopolysaccharide (LPS)-induced endometritis remain to be elucidated. The purpose of the present study was to investigate the effects of TIIA on LPS-induced mouse endometritis. TIIA was intraperitoneally injected 1 h before and 12 h after perfusion of LPS into the uterus. A histological examination was then performed, and the concentrations of myeloperoxidase (MPO) and nitric oxide (NO) in the uterine tissue were determined. The levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in a homogenate of the uterus were detected by enzyme-linked immunosorbent assay. The extent of phosphorylation of IκBα and p65 was detected by Western blotting. TIIA markedly reduced the infiltration of neutrophils, suppressed MPO activity and the concentration of NO, and attenuated the expression of TNF-α and IL-1β. Furthermore, TIIA inhibited the phosphorylation of the nuclear factor-kappa B (NF-κB) p65 subunit and the degradation of its inhibitor IκBα. All the results suggest that TIIA has strong anti-inflammatory effects on LPS-induced mouse endometritis.

  20. Wedelolactone inhibits LPS-induced pro-inflammation via NF-kappaB Pathway in RAW 264.7 cells

    PubMed Central

    2013-01-01

    Background Wedelolactone (WEL), a major coumestan ingredient in Wedelia chinensis, has been used to treat septic shock, hepatitis and venom poisoning in traditional Chinese medicines. The objective of the study was to elucidate the anti-inflammatory effects and mechanism of WEL with a cellular model of lipopolysaccharide (LPS)-induced RAW 264.7 cells. Results To study the role of WEL in pro-inflammation, we measured key inflammation mediators and end products including nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) by using the Griess method, enzyme linked immunosorbent assay (ELISA) and Western blotting. Nuclear factor-kappaB (NF-κB) transcription activity was detected by luciferase reporter assay. The important pro-inflammatory transcription factors, NF-κB p65 and inhibitory kappaB alpha (IκB-α); and mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK (p38) were analyzed by Western blotting. Our study showed that WEL (0.1, 1, 10 μM) significantly inhibited the protein expression levels of iNOS and COX-2 in LPS-stimulated cells, as well as the downstream products, including NO, PGE2 and TNF-α. Moreover, WEL also inhibited LPS-induced NF-κB p65 activation via the degradation and phosphorylation of IκB-α and subsequent translocation of the NF-κB p65 subunit to the nucleus. Conclusions Our results revealed that WEL has a potential to be a novel anti-inflammatory agent targeting on the NF-κB signaling pathway. PMID:24176090

  1. The effects of ovariectomy and LPS-induced endotoxemia on resistin levels in female rats.

    PubMed

    Iwasa, Takeshi; Matsuzaki, Toshiya; Matsui, Sumika; Tungalagsuvd, Altankhuu; Munkhzaya, Munkhsaikhan; Kawami, Takako; Yamasaki, Mikio; Murakami, Masahiro; Kato, Takeshi; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2015-12-01

    Resistin is involved in the inflammatory response, as well as in insulin resistance. In rodents, resistin levels are partially regulated by ovarian hormones. Thus, ovariectomy-induced changes in resistin levels and their response to lipopolysaccharide (LPS)-induced septic stress were evaluated. Ovariectomized (OVX) rats exhibited higher serum resistin concentrations and visceral and subcutaneous white adipose tissue (WAT) resistin mRNA levels than sham-operated (sham) rats under the saline-injected (basal) conditions. The serum resistin levels of the gonadal intact male rats were higher than those of the sham rats, whereas the serum resistin levels of the male and OVX rats did not differ. In both the sham and OVX rats, the serum resistin concentration and the resistin mRNA levels of WAT were increased by LPS injection. At 24h after the LPS injection, no difference was detected in the serum resistin concentrations or WAT mRNA resistin levels between the sham and OVX rats. These results suggest that ovarian hormones partially regulate the basal resistin levels of female rats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Apigenin-7-O-β-D-glucuronide inhibits LPS-induced inflammation through the inactivation of AP-1 and MAPK signaling pathways in RAW 264.7 macrophages and protects mice against endotoxin shock.

    PubMed

    Hu, Weicheng; Wang, Xinfeng; Wu, Lei; Shen, Ting; Ji, Lilian; Zhao, Xihong; Si, Chuan-Ling; Jiang, Yunyao; Wang, Gongcheng

    2016-02-01

    Apigenin-7-O-β-D-glucuronide (AG), an active flavonoid derivative isolated from the agricultural residue of Juglans sigillata fruit husks, possesses multiple pharmacological activities, including anti-oxidant, anti-complement, and aldose reductase inhibitory activities. To date, no report has identified the anti-inflammatory mechanisms of AG. This study was therefore designed to characterize the molecular mechanisms of AG on lipopolysaccharide (LPS)-induced inflammatory cytokines in RAW 264.7 cells and on endotoxin-induced shock in mice. AG suppressed the release of nitric oxide (NO), prostaglandin E2 (PGE2), and tumour necrosis factor-α (TNF-α) in LPS-stimulated RAW 264.7 macrophages in a dose-dependent manner without affecting cell viability. Additionally, AG suppressed LPS-induced mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α. AG treatment decreased the translocation of c-Jun into the nucleus, and decreased activator protein-1 (AP-1)-mediated luciferase activity through the inhibition of both p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) phosphorylation. Consistent with the in vitro observations, AG protected mice from LPS-induced endotoxin shock by inhibiting proinflammatory cytokine production. Taken together, these results suggest that AG may be used as a source of anti-inflammatory agents as well as a dietary complement for health promotion.

  3. Ilexgenin A, a novel pentacyclic triterpenoid extracted from Aquifoliaceae shows reduction of LPS-induced peritonitis in mice.

    PubMed

    Sun, Weidong; Liu, Chang; Zhang, Yaqi; Qiu, Xia; Zhang, Li; Zhao, Hongxia; Rong, Yi; Sun, Yun

    2017-02-15

    Ilexgenin A (IA) is a novel pentacyclic triterpenoid, which extracted from leaves of Ilex hainanensis Merr. In the present study, we aim to explore anti-inflammatory activity of IA on LPS-induced peritonitis and its underlying molecular mechanism. The results determined that IA was capable of suppressing peritonitis in mice induced by intraperitoneal (i.p.) injection of lipopolysaccaride (LPS). Furthermore, the results showed that IA dramatically inhibited levels of inflammatory cells infiltration in peritoneal cavity and serum in LPS-induced mice peritonitis model. Besides, IA could dramatically inhibit levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α) in peritoneal cavity in LPS-induced mice peritonitis model. In vitro study, the results showed that IA inhibited production of IL-1β, IL-6 and TNF-α at transcriptional and translational levels in RAW 264.7 cells induced by LPS. Furthermore, IA could suppress the LPS-induced activation of Akt and downstream degradation and phosphorylation of kappa B-α (IκB-α). Moreover, IA could significantly inhibit ERK 1/2 phosphorylation in RAW 264.7 cells induced by LPS. These results were concurrent with molecular docking which revealed ERK1/2 inhibition. These results demonstrated that IA might as an anti-inflammatory agent candidate for inflammatory disease therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Coniferaldehyde inhibits LPS-induced apoptosis through the PKC α/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells.

    PubMed

    Kim, Ki Mo; Heo, Deok Rim; Kim, Young-A; Lee, Jun; Kim, No Soo; Bang, Ok-Sun

    2016-12-01

    Coniferaldehyde (CA) exerts anti-inflammatory properties by inducing heme oxygenase-1 (HO-1). To define the regulation mechanism by which CA induces a cytoprotective function and HO-1 expression, the up-stream regulations involved in the activation of nuclear transcription factor-erythroid 2-related factor (Nrf)-2/HO-1 pathway were investigated. CA dramatically increased the Nrf-2 nuclear translocation and HO-1 expression. Lipopolysaccharide (LPS)-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and cell death were down-regulated by CA, which were reversed by inhibition of HO-1 activity. Furthermore, CA specifically enhanced the phosphorylation of protein kinase C (PKC) α/β II. Selective inhibition of PKC α/β II using Go6976 or siRNA abolished the CA-induced Nrf-2/HO-1 signaling, and consequently suppressed the cytoprotective activity of CA on the LPS-induced cell death. Together, our results elucidate the regulatory mechanism of PKC α/β II as the upstream molecule of Nrf-2 required for HO-1 expression during CA-induced anti-inflammatory cytoprotective function in LPS stimulated macrophages. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Glycyrrhiza glabra L. Extract Inhibits LPS-Induced Inflammation in RAW Macrophages.

    PubMed

    Li, Chunmei; Eom, Taekil; Jeong, Yoonhwa

    2015-01-01

    Glycyrrhiza glabra has been used in medicine for thousands of years. Our previous study revealed that the methanolic extract of Glycyrrhiza glabra L. (EGGR) exhibits significant nitric oxide (NO) inhibitory effect on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages among 100 other extracts. Accordingly, the aim of the present study was to investigate the potential anti-inflammatory effect of EGGR. The anti-inflammatory effect of EGGR on LPS-stimulated RAW 264.7 macrophages was measured by MTT assay, NO content analysis, reactive oxygen species (ROS) level analysis, RT-PCR, Western blot analysis, and ELISA assay. Low doses of EGGR were non-toxic to macrophages and imparted protective effect against LPS induced cell death. Incubation of LPS-treated macrophages with 100 μg/mL EGGR led to an increase in cell viability from 66.6 to 99%. Moreover, EGGR led to down regulation of NO (NO2+NO3) and ROS productions in a dose-dependent manner. In particular, 100 μg/mL EGGR led to a reduction in NO2+NO3 level from 336.2 to 24.1 pM/mL, and ROS level from 483.5 to 128.4%. Consistent with the result related to NO production, EGGR suppressed the ability of LPS to induce mRNA and protein expressions of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) cytokines, tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and IL-6 productions which were analyzed by an ELISA assay. These results provide a comprehensive approach into the anti-inflammatory effect of EGGR on LPS-stimulated macrophages; however, efforts are underway on gaining detailed insight into anti-inflammatory signaling pathways.

  6. Transcriptional profiling of the LPS induced NF-κB response in macrophages

    PubMed Central

    Sharif, Omar; Bolshakov, Viacheslav N; Raines, Stephanie; Newham, Peter; Perkins, Neil D

    2007-01-01

    Background Exposure of macrophages to bacterial products such as lipopolysaccharide (LPS) results in activation of the NF-κB transcription factor, which orchestrates a gene expression programme that underpins the macrophage-dependent immune response. These changes include the induction or repression of a wide range of genes that regulate inflammation, cell proliferation, migration and cell survival. This process is tightly regulated and loss of control is associated with conditions such as septic shock, inflammatory diseases and cancer. To study this response, it is important to have in vitro model systems that reflect the behaviour of cells in vivo. In addition, it is necessary to understand the natural differences that can occur between individuals. In this report, we have investigated and compared the LPS response in macrophage derived cell lines and peripheral blood mononuclear cell (PBMC) derived macrophages. Results Gene expression profiles were determined following LPS treatment of THP-1 cells for 1 and 4 hours. LPS significantly induced or repressed 72 out of 465 genes selected as being known or putative NF-κB target genes, which exhibited 4 temporal patterns of expression. Results for 34 of these genes, including several genes not previously identified as LPS target genes, were validated using real time PCR. A high correlation between microarray and real time PCR data was found. Significantly, the LPS induced expression profile of THP-1 cells, as determined using real time PCR, was found to be very similar to that of human PBMC derived macrophages. Interestingly, some differences were observed in the LPS response between the two donor PBMC macrophage populations. Surprisingly, we found that the LPS response in U937 cells was dramatically different to both THP-1 and PBMC derived macrophages. Conclusion This study revealed a dynamic and diverse transcriptional response to LPS in macrophages, involving both the induction and repression of gene expression in

  7. Resveratrol ameliorates LPS-induced acute lung injury via NLRP3 inflammasome modulation.

    PubMed

    Jiang, Lei; Zhang, Lei; Kang, Kai; Fei, Dongsheng; Gong, Rui; Cao, Yanhui; Pan, Shangha; Zhao, Mingran; Zhao, Mingyan

    2016-12-01

    NLRP3 inflammasome plays a pivotal role in the development of acute lung injury (ALI), accelerating IL-1β and IL-18 release and inducing lung inflammation. Resveratrol, a natural phytoalexin, has anti-inflammatory properties via inhibition of oxidation, leukocyte priming, and production of inflammatory mediators. In this study, we aimed to investigate the effect of resveratrol on NLRP3 inflammasome in lipopolysaccharide-induced ALI. Mice were intratracheally instilled with 3mg/kg lipopolysaccharide (LPS) to induce ALI. Resveratrol treatment alleviated the LPS-induced lung pathological damage, lung edema and neutrophil infiltration. In addition, resveratrol reversed the LPS-mediated elevation of IL-1β and IL-18 level in the BAL fluids. In lung tissue, resveratrol also inhibited the LPS-induced NLRP3, ASC, caspase-1 mRNA and protein expression, and NLRP3 inflammasome activation. Moreover, resveratrol administration not only suppressed the NF-κB p65 nuclear translocation, NF-κB activity and ROS production in the LPS-treated mice, but also inhibited the LPS-induced thioredoxin-interacting protein (TXNIP) protein expression and interaction of TXNIP-NLRP3 in lung tissue. Meanwhile, resveratrol obviously induced SIRT1 mRNA and protein expression in the LPS-challenged mice. Taken together, our study suggests that resveratrol protects against LPS-induced lung injury by NLRP3 inflammasome inhibition. These findings further suggest that resveratrol may be of great value in the treatment of ALI and a potential and an effective pharmacological agent for inflammasome-relevant diseases.

  8. HSF-1 is involved in attenuating the release of inflammatory cytokines induced by LPS through regulating autophagy.

    PubMed

    Tong, Zhongyi; Jiang, Bimei; Zhang, Lingli; Liu, Yanjuan; Gao, Min; Jiang, Yu; Li, Yuanbin; Lu, Qinglan; Yao, Yongming; Xiao, Xianzhong

    2014-05-01

    Autophagy plays a protective role in endotoxemic mice. Heat shock factor 1 (HSF-1) also plays a crucial protective role in endotoxemic mice by decreasing inflammatory cytokines. The purpose of this study was to determine whether HSF-1 is involved in attenuating the release of inflammatory cytokines in lipopolysaccharide (LPS)-stimulated mice and peritoneal macrophages (PMs) through regulating autophagy activity. Autophagosome formation in HSF-1(+/+) and HSF-1(-/-) mice and PMs stimulated by LPS was examined by Western blotting and immunofluorescence. Lipopolysaccharide-induced autophagy and inflammatory cytokines were examined in HSF-1(+/+) and HSF-1(-/-) PMs treated with 3-methyladenine (3-MA) or rapamycin. Results showed that LPS-induced autophagy was elevated transiently at 12 h but declined at 24 h in the livers and lungs of mice. Higher levels of inflammatory cytokines and lower autophagy activity were detected in HSF-1(-/-) mice and PMs compared with HSF-1(+/+) mice and PMs. Interestingly, LPS-induced release of inflammatory cytokines did not further increase in HSF-1(-/-) PMs treated with 3-MA but aggravated in HSF-1(+/+) PMs. Lipopolysaccharide-induced autophagy did not decrease in HSF-1(-/-) PMs treated with 3-MA but decreased in HSF-1 PMs(+/+). Taken together, our results suggested that HSF-1 attenuated the release of inflammatory cytokines induced by LPS by regulating autophagy activity.

  9. Preventive Effects of a Kampo Medicine, Kakkonto, on Inflammatory Responses via the Suppression of Extracellular Signal-Regulated Kinase Phosphorylation in Lipopolysaccharide-Treated Human Gingival Fibroblasts

    PubMed Central

    Kitamura, Hiroyuki; Urano, Hiroko

    2014-01-01

    Periodontal disease is accompanied by inflammation of the gingiva and destruction of periodontal tissues, leading to alveolar bone loss in severe clinical cases. The chemical mediator prostaglandin E2 (PGE2) and cytokines such as interleukin- (IL-)6 and IL-8 have been known to play important roles in inflammatory responses and tissue degradation. In the present study, we investigated the effects of a kampo medicine, kakkonto (TJ-1), on the production of prostaglandin E2 (PGE2), IL-6, and IL-8 by human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) from Porphyromonas gingivalis. Kakkonto concentration dependently suppressed LPS-induced PGE2 production but did not alter basal PGE2 levels. In contrast, kakkonto significantly increased LPS-induced IL-6 and IL-8 production. Kakkonto decreased cyclooxygenase- (COX-)1 activity to approximately 70% at 1 mg/mL but did not affect COX-2 activity. Kakkonto did not affect cytoplasmic phospholipase A2 (cPLA2), annexin1, or LPS-induced COX-2 expression. Kakkonto suppressed LPS-induced extracellular signal-regulated kinase (ERK) phosphorylation, which is known to lead to ERK activation and cPLA2 phosphorylation. These results suggest that kakkonto decreased PGE2 production by inhibition of ERK phosphorylation which leads to inhibition of cPLA2 phosphorylation and its activation. Therefore, kakkonto may be useful to improve gingival inflammation in periodontal disease. PMID:24693448

  10. Tilmicosin and tylosin have anti-inflammatory properties via modulation of COX-2 and iNOS gene expression and production of cytokines in LPS-induced macrophages and monocytes.

    PubMed

    Cao, Xing-Yuan; Dong, Mei; Shen, Jian-Zhong; Wu, Bei-Bei; Wu, Cong-Ming; Du, Xiang-Dang; Wang, Zhuo; Qi, Yi-Tao; Li, Bing-Yu

    2006-05-01

    Macrolides have been reported to modify the host immune and inflammatory responses both in vivo and in vitro. We examined the in vitro effect of the macrolides tilmicosin and tylosin, which are only used in the veterinary clinic, on the production of nitric oxide (NO), prostaglandin E(2) (PGE(2)) and cytokines by lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and mouse peripheral blood mononuclear cells (PBMCs). Compared with 5 microg/mL, tilmicosin and tylosin concentrations of 10 microg/mL and 20 microg/mL significantly decreased the production of 6-keto-prostaglandin F(1alpha) (6-keto-PGF(1alpha)), PGE(2), NO, tumour necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta and IL-6, and increased IL-10 production. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression were also significantly reduced. These results support the opinion that macrolides may exert an anti-inflammatory effect through modulating the synthesis of several mediators and cytokines involved in the inflammatory process.

  11. 5-Bromo-2-hydroxy-4-methyl-benzaldehyde inhibited LPS-induced production of pro-inflammatory mediators through the inactivation of ERK, p38, and NF-κB pathways in RAW 264.7 macrophages.

    PubMed

    Kim, Kil-Nam; Ko, Seok-Chun; Ye, Bo-Ram; Kim, Min-Sun; Kim, Junseong; Ko, Eun-Yi; Cho, Su-Hyeon; Kim, Daekyung; Heo, Soo-Jin; Jung, Won-Kyo

    2016-10-25

    The aim of the present study was to investigate the effects of 5-bromo-2-hydroxy-4-methyl-benzaldehyde (BHMB) on inflammatory responses to lipopolysaccharide (LPS) in RAW 264.7 cells and the associated mechanism of action. BHMB concentration-dependently suppressed protein and mRNA expressions of iNOS and COX-2, thereby inhibiting the production of NO and PGE2 in LPS-stimulated RAW 264.7 cells. BHMB also reduced the mRNA expression of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW 264.7 cells. To elucidate the mechanism underlying the anti-inflammatory activity of BHMB, we investigated the effects of BHMB on the mitogen-activated protein kinase and nuclear factor-kappa B (NF-κB) pathways. BHMB suppressed the phosphorylation and degradation of IκB-α and markedly inhibited the nuclear translocation of p65 and p50 in LPS-stimulated RAW 264.7 cells. The compound also inhibited the LPS-stimulated phosphorylation of ERK and p38. Taken together, these results illustrated that BHMB suppresses pro-inflammatory mediator and cytokine expression in LPS-stimulated RAW 264.7 cells by inhibiting the phosphorylation of ERK and p38 and the activation of NF-κB. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. A Chemically Modified Curcumin (CMC 2.24) Inhibits Nuclear Factor κB Activation and Inflammatory Bone Loss in Murine Models of LPS-Induced Experimental Periodontitis and Diabetes-Associated Natural Periodontitis.

    PubMed

    Elburki, Muna S; Rossa, Carlos; Guimarães-Stabili, Morgana R; Lee, Hsi-Ming; Curylofo-Zotti, Fabiana A; Johnson, Francis; Golub, Lorne M

    2017-08-01

    The purpose of this study was to assess the effect of a novel chemically modified curcumin (CMC 2.24) on NF-κB and MAPK signaling and inflammatory cytokine production in two experimental models of periodontal disease in rats. Experimental model I: Periodontitis was induced by repeated injections of LPS into the gingiva (3×/week, 3 weeks); control rats received vehicle injections. CMC 2.24, or the vehicle, was administered by daily oral gavage for 4 weeks. Experimental model II: Diabetes was induced in adult male rats by streptozotocin injection; periodontal breakdown then results as a complication of uncontrolled hyperglycemia. Non-diabetic rats served as controls. CMC 2.24, or the vehicle, was administered by oral gavage daily for 3 weeks to the diabetics. Hemimaxillae and gingival tissues were harvested, and bone loss was assessed radiographically. Gingival tissues were pooled according to the experimental conditions and processed for the analysis of matrix metalloproteinases (MMPs) and bone-resorptive cytokines. Activation of p38 MAPK and NF-κB signaling pathways was assessed by western blot. Both LPS and diabetes induced an inflammatory process in the gingival tissues associated with excessive alveolar bone resorption and increased activation of p65 (NF-κB) and p38 MAPK. In both models, the administration of CMC 2.24 produced a marked reduction of inflammatory cytokines and MMPs in the gingival tissues, decreased bone loss, and decreased activation of p65 (NF-κB) and p38 MAPK. Inhibition of these cell signaling pathways by this novel tri-ketonic curcuminoid (natural curcumin is di-ketonic) may play a role in its therapeutic efficacy in locally and systemically associated periodontitis.

  13. α-Dihydroxychalcone-glycoside (α-DHC) isolated from the heartwood of Pterocarpus marsupium inhibits LPS induced MAPK activation and up regulates HO-1 expression in murine RAW 264.7 macrophage

    SciTech Connect

    Chakraborty, Prarthana; Saraswat, Ghungroo; Kabir, Syed N.

    2014-05-15

    Three phenolic glycosides isolated from the heartwood of Pterocarpus marsupium showed significant free radical and superoxide ion scavenging activity and antioxidant potential that were comparable to, or several folds higher than those of standard antioxidants, trolox and ascorbic acid. The effective concentrations of these compounds were far below their cytotoxic levels. Compound 3, which was characterized to be α-dihydroxychalcone-glycoside (α-DHC), was the most potent one. Subsequent studies demonstrated that α-DHC effectively reduced nitric oxide and cytokine production by the LPS stimulated RAW 264.7 mouse macrophage cell line. The compound effectively attenuated the expression of inflammation-mediating enzymes COX-2 and iNOS at the mRNA as well as protein levels in a concentration dependent manner. It prevented phosphorylation of all the three MAPKs (JNK, ERK, p38) and eventually blocked the activation of downstream elements contributing to inflammation. Phosphorylation of IκB-α and subsequent translocation of NF-κB into the nucleus were restricted, while the expression of stress responsive gene HO-1 was up-regulated. α-DHC targeted Keap-1 by modifying its cysteine thiols, dissociating it from Nrf-2 and facilitating nuclear entry of the latter; and this in turn induced HO-1 expression. Thus α-DHC exerts its anti-inflammatory activity in a dual manner: by down regulating MAPKs and restricting nuclear stabilization of NF-κB at one end, and by disrupting Nrf-2–Keap-1 complex on the other. In conclusion, the anti-inflammatory potential together with its high therapeutic index envisages α-DHC as a prospective candidate molecule for the development of therapeutic strategy against inflammatory disorders. - Highlights: • α-DHC isolated from Pterocarpus marsupium has significant antioxidant potential. • α-DHC inhibits NO, IL-6, IL-1β, TNF-α production in LPS-stimulated RAW 264.7 cells. • α-DHC down-regulates of COX-2, iNOS expression in LPS

  14. TLR4 mediates LPS-induced VEGF expression in odontoblasts.

    PubMed

    Botero, Tatiana M; Shelburne, Charles E; Holland, G Rex; Hanks, Carl T; Nör, Jacques E

    2006-10-01

    Lipopolysaccharide (LPS) from gram-negative bacteria cell walls such as Prevotella intermedia and Escherichia coli induce vascular endothelial growth factor (VEGF) expression in odontoblasts, but not in undifferentiated dental pulp cells. CD14 and TLR4 are responsible for LPS signaling in macrophages, but their expression levels and function in dental pulp cells are unknown. We showed here that murine odontoblast-like cells (MDPC-23) express CD14 and TLR4 by immunohistochemistry and flow cytometry. In contrast, undifferentiated dental pulp cells (OD-21) presented low or no expression of these two receptors. MDPC-23 cells showed CD14 and TLR4 up-regulation upon exposure to LPS, as determined by real time PCR. Dominant negative murine TLR4 (DN-mTLR4) transfected MDPC-23 cells did not show upregulated VEGF expression in response to LPS stimulation. These results demonstrate that odontoblast-like cells express CD14 and TLR4, and that LPS-induced VEGF expression is mediated, at least in part, by TLR4 signaling.

  15. α-Dihydroxychalcone-glycoside (α-DHC) isolated from the heartwood of Pterocarpus marsupium inhibits LPS induced MAPK activation and up regulates HO-1 expression in murine RAW 264.7 macrophage.

    PubMed

    Chakraborty, Prarthana; Saraswat, Ghungroo; Kabir, Syed N

    2014-05-15

    Three phenolic glycosides isolated from the heartwood of Pterocarpus marsupium showed significant free radical and superoxide ion scavenging activity and antioxidant potential that were comparable to, or several folds higher than those of standard antioxidants, trolox and ascorbic acid. The effective concentrations of these compounds were far below their cytotoxic levels. Compound 3, which was characterized to be α-dihydroxychalcone-glycoside (α-DHC), was the most potent one. Subsequent studies demonstrated that α-DHC effectively reduced nitric oxide and cytokine production by the LPS stimulated RAW 264.7 mouse macrophage cell line. The compound effectively attenuated the expression of inflammation-mediating enzymes COX-2 and iNOS at the mRNA as well as protein levels in a concentration dependent manner. It prevented phosphorylation of all the three MAPKs (JNK, ERK, p38) and eventually blocked the activation of downstream elements contributing to inflammation. Phosphorylation of IκB-α and subsequent translocation of NF-κB into the nucleus were restricted, while the expression of stress responsive gene HO-1 was up-regulated. α-DHC targeted Keap-1 by modifying its cysteine thiols, dissociating it from Nrf-2 and facilitating nuclear entry of the latter; and this in turn induced HO-1 expression. Thus α-DHC exerts its anti-inflammatory activity in a dual manner: by down regulating MAPKs and restricting nuclear stabilization of NF-κB at one end, and by disrupting Nrf-2-Keap-1 complex on the other. In conclusion, the anti-inflammatory potential together with its high therapeutic index envisages α-DHC as a prospective candidate molecule for the development of therapeutic strategy against inflammatory disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Involvement of mitogen-activated protein kinases and NF{kappa}B in LPS-induced CD40 expression on human monocytic cells

    SciTech Connect

    Wu Weidong | Alexis, Neil E. |; Chen Xian |; Bromberg, Philip A. |; Peden, David B. ||

    2008-04-15

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NF{kappa}B were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NF{kappa}B activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NF{kappa}B activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NF{kappa}B activation, and CD40 expression. Moreover, blockage of MAPK and NF{kappa}B activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NF{kappa}B.

  17. Lithium Ameliorates LPS-Induced Astrocytes Activation Partly via Inhibition of Toll-Like Receptor 4 Expression.

    PubMed

    Li, Nana; Zhang, Xiang; Dong, Hongquan; Zhang, Susu; Sun, Jie; Qian, Yanning

    2016-01-01

    Astrocytes are critical for the development of postoperative cognitive dysfunction (POCD). In addition, astrocytes express toll-like receptors 4 (TLR4) and build up responses to innate immune triggers by releasing pro-inflammatory molecules. The pathogenesis of neurological disorders often involves the activation of astrocytes and associated inflammatory processes. Lithium, a primary drug for the treatment of bipolar disorder, has recently been suggested to have a role in neuroprotection during neurodegenerative diseases. In this study, we aimed to investigate whether lithium can ameliorate LPS-induced astrocytes activation via inhibition of TLR4 expression. Primary astrocytes cells were pretreated with lithium and stimulated with lipopolysaccharide (LPS). Cellular activation, cytokine production, and TLR4 expression, were assessed. Lithium significantly inhibited LPS-induced astrocytes activation and pro-inflammatory cytokine production, as well as LPS-induced TLR4 expression. Lithium can inhibit LPS-induced TLR4 expression and astrocytes activation. These results indicate that lithium plays an important role in astrocytes activation and neuroinflammation-related diseases, which may open new avenues for neuroscience and biomedical research, and also offers new insight into the treatment of POCD. © 2016 The Author(s) Published by S. Karger AG, Basel.

  18. Asef mediates HGF protective effects against LPS-induced lung injury and endothelial barrier dysfunction.

    PubMed

    Meng, Fanyong; Meliton, Angelo; Moldobaeva, Nurgul; Mutlu, Gokhan; Kawasaki, Yoshihiro; Akiyama, Tetsu; Birukova, Anna A

    2015-03-01

    Increased vascular endothelial permeability and inflammation are major pathological mechanisms of pulmonary edema and its life-threatening complication, the acute respiratory distress syndrome (ARDS). We have previously described potent protective effects of hepatocyte growth factor (HGF) against thrombin-induced hyperpermeability and identified the Rac pathway as a key mechanism of HGF-mediated endothelial barrier protection. However, anti-inflammatory effects of HGF are less understood. This study examined effects of HGF on the pulmonary endothelial cell (EC) inflammatory activation and barrier dysfunction caused by the gram-negative bacterial pathogen lipopolysaccharide (LPS). We tested involvement of the novel Rac-specific guanine nucleotide exchange factor Asef in the HGF anti-inflammatory effects. HGF protected the pulmonary EC monolayer against LPS-induced hyperpermeability, disruption of monolayer integrity, activation of NF-kB signaling, expression of adhesion molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, and production of IL-8. These effects were critically dependent on Asef. Small-interfering RNA-induced downregulation of Asef attenuated HGF protective effects against LPS-induced EC barrier failure. Protective effects of HGF against LPS-induced lung inflammation and vascular leak were also diminished in Asef knockout mice. Taken together, these results demonstrate potent anti-inflammatory effects by HGF and delineate a key role of Asef in the mediation of the HGF barrier protective and anti-inflammatory effects. Modulation of Asef activity may have important implications in therapeutic strategies aimed at the treatment of sepsis and acute lung injury/ARDS-induced gram-negative bacterial pathogens.

  19. Novel transcriptional regulation of VEGF in inflammatory processes.

    PubMed

    Tang, Xiaoren; Yang, Yu; Yuan, Huaiping; You, Jian; Burkatovskaya, Marina; Amar, Salomon

    2013-03-01

    Vascular endothelial growth factor (VEGF) is a critical angiogenic factor affecting endothelial cells, inflammatory cells and neuronal cells. In addition to its well-defined positive role in wound healing, pathological roles for VEGF have been described in cancer and inflammatory diseases (i.e. atherosclerosis, rheumatoid arthritis, inflammatory bowel disease and osteoarthritis). Recently, we showed that transcription factors LITAF and STAT6B affected the inflammatory response. This study builds upon our previous results in testing the role of mouse LITAF and STAT6B in the regulation of VEGF-mediated processes. Cells cotransfected with a series of VEGF promoter deletions along with truncated forms of mLITAF and/or mSTAT6B identified a DNA binding site (between -338 and -305 upstream of the transcription site) important in LITAF and/or STAT6B-mediated transcriptional regulation of VEGF. LITAF and STAT6B corresponding protein sites were identified. In addition, siRNA-mediated knockdown of mLITAF and/or mSTAT6B leads to significant reduction in VEGF mRNA levels and inhibits LPS-induced VEGF secretion in mouse RAW 264.7 cells. Furthermore, VEGF treatment of mouse macrophage or endothelial cells induces LITAF/STAT6B nuclear translocation and cell migration. To translate these observations in vivo, VEGF164-soaked matrigel were implanted in whole-body LITAF-deficient animals (TamLITAF(-/-) ), wild-type mice silenced for STAT6B, and in respective control animals. Vessel formation was found significantly reduced in TamLITAF(-/-) as well as in STAT6B-silenced wild-type animals compared with control animals. The present data demonstrate that VEGF regulation by LITAF and/or STAT6B is important in angiogenesis signalling pathways and may be a useful target in the treatment of VEGF diseases. © 2013 The Authors. Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  20. Modulation of hepatic PPAR expression during Ft LVS LPS-induced protection from Francisella tularensis LVS infection

    PubMed Central

    2010-01-01

    Background It has been shown previously that administration of Francisella tularensis (Ft) Live Vaccine Strain (LVS) lipopolysaccharide (LPS) protects mice against subsequent challenge with Ft LVS and blunts the pro-inflammatory cytokine response. Methods To further investigate the molecular mechanisms that underlie Ft LVS LPS-mediated protection, we profiled global hepatic gene expression following Ft LVS LPS or saline pre-treatment and subsequent Ft LVS challenge using Affymetrix arrays. Results A large number of genes (> 3,000) were differentially expressed at 48 hours post-infection. The degree of modulation of inflammatory genes by infection was clearly attenuated by pre-treatment with Ft LVS LPS in the surviving mice. However, Ft LVS LPS alone had a subtle effect on the gene expression profile of the uninfected mice. By employing gene set enrichment analysis, we discovered significant up-regulation of the fatty acid metabolism pathway, which is regulated by peroxisome proliferator activated receptors (PPARs). Conclusions We hypothesize that the LPS-induced blunting of pro-inflammatory response in mouse is, in part, mediated by PPARs (α and γ). PMID:20082697

  1. Effects of Lutein and Zeaxanthin on LPS-Induced Secretion of IL-8 by Uveal Melanocytes and Relevant Signal Pathways.

    PubMed

    Chao, Shih-Chun; Vagaggini, Tommaso; Nien, Chan-Wei; Huang, Sheng-Chieh; Lin, Hung-Yu

    2015-01-01

    The effects of lutein and zeaxanthin on lipopolysaccharide- (LPS-) induced secretion of IL-8 by uveal melanocytes (UM) were tested in cultured human UM. MTT assay revealed that LPS (0.01-1 μg/mL) and lutein and zeaxanthin (1-10 μM) did not influence the cell viability of cultured UM. LPS caused a dose-dependent increase of secretion of IL-8 by cultured UM. Lutein and zeaxanthin did not affect the constitutive secretion of IL-8. However, lutein and zeaxanthin decreased LPS-induced secretion of IL-8 in cultured UM in a dose-dependent manner. LPS significantly increased NF-κB levels in cell nuclear extracts and p-JNK levels in the cell lysates from UM, but not p-p38 MAPK and p-ERG. Lutein or zeaxanthin significantly reduced LPS-induced increase of NF-κB and p-JNK levels, but not p38 MAPK and ERG levels. The present study demonstrated that lutein and zeaxanthin inhibited LPS-induced secretion of IL-8 in cultured UM via JNK and NF-κB signal pathways. The anti-inflammatory effects of lutein and zeaxanthin might be explored as a therapeutic approach in the management of uveitis and other inflammatory diseases of the eye.

  2. Effects of Lutein and Zeaxanthin on LPS-Induced Secretion of IL-8 by Uveal Melanocytes and Relevant Signal Pathways

    PubMed Central

    Chao, Shih-Chun; Vagaggini, Tommaso; Nien, Chan-Wei; Huang, Sheng-Chieh; Lin, Hung-Yu

    2015-01-01

    The effects of lutein and zeaxanthin on lipopolysaccharide- (LPS-) induced secretion of IL-8 by uveal melanocytes (UM) were tested in cultured human UM. MTT assay revealed that LPS (0.01–1 μg/mL) and lutein and zeaxanthin (1–10 μM) did not influence the cell viability of cultured UM. LPS caused a dose-dependent increase of secretion of IL-8 by cultured UM. Lutein and zeaxanthin did not affect the constitutive secretion of IL-8. However, lutein and zeaxanthin decreased LPS-induced secretion of IL-8 in cultured UM in a dose-dependent manner. LPS significantly increased NF-κB levels in cell nuclear extracts and p-JNK levels in the cell lysates from UM, but not p-p38 MAPK and p-ERG. Lutein or zeaxanthin significantly reduced LPS-induced increase of NF-κB and p-JNK levels, but not p38 MAPK and ERG levels. The present study demonstrated that lutein and zeaxanthin inhibited LPS-induced secretion of IL-8 in cultured UM via JNK and NF-κB signal pathways. The anti-inflammatory effects of lutein and zeaxanthin might be explored as a therapeutic approach in the management of uveitis and other inflammatory diseases of the eye. PMID:26609426

  3. Cannabidiol (CBD) Enhances Lipopolysaccharide (LPS)-Induced Pulmonary Inflammation in C57BL/6 Mice

    PubMed Central

    Karmaus, Peer W. F.; Wagner, James G.; Harkema, Jack R.; Kaminski, Norbert E.; Kaplan, Barbara L.F.

    2012-01-01

    Cannabidiol (CBD) is a plant-derived cannabinoid that has been predominantly characterized as anti-inflammatory. However, it is clear that immune effects of cannabinoids can vary with cannabinoid concentration, or type or magnitude of immune stimulus. The present studies demonstrate that oral administration of CBD enhanced lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. The enhanced inflammatory cell infiltrate as observed in bronchoalveolar lavage fluid (BALF) was comprised mainly of neutrophils, with some monocytes. Concomitantly, CBD enhanced pro-inflammatory cytokine mRNA production, including tumor necrosis factor-α (Tnfa), interleukins (IL) 6 and 23 (Il6, Il23), and granulocyte colony stimulating factor (Gcsf). These results demonstrate that the CBD-mediated enhancement of LPS-induced pulmonary inflammation is mediated at the level of transcription of a variety of pro-inflammatory genes. The significance of these studies is that CBD is part of a therapeutic currently in use for spasticity and pain in multiple sclerosis patients, and therefore it is important to further understand mechanisms by which CBD alters immune function. PMID:23173851

  4. Cannabidiol (CBD) enhances lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice.

    PubMed

    Karmaus, Peer W F; Wagner, James G; Harkema, Jack R; Kaminski, Norbert E; Kaplan, Barbara L F

    2013-01-01

    Cannabidiol (CBD) is a plant-derived cannabinoid that has been predominantly characterized as anti-inflammatory. However, it is clear that immune effects of cannabinoids can vary with cannabinoid concentration, or type or magnitude of immune stimulus. The present studies demonstrate that oral administration of CBD enhanced lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice. The enhanced inflammatory cell infiltrate as observed in bronchoalveolar lavage fluid (BALF) was comprised mainly of neutrophils, with some monocytes. Concomitantly, CBD enhanced pro-inflammatory cytokine mRNA production, including tumor necrosis factor-α (Tnfa), interleukins (IL)-5 and -23 (Il6, Il23), and granulocyte colony stimulating factor (Gcsf). These results demonstrate that the CBD-mediated enhancement of LPS-induced pulmonary inflammation is mediated at the level of transcription of a variety of pro-inflammatory genes. The significance of these studies is that CBD is part of a therapeutic currently in use for spasticity and pain in multiple sclerosis patients, and therefore it is important to further understand mechanisms by which CBD alters immune function.

  5. Pulmonary epithelial CCR3 promotes LPS-induced lung inflammation by mediating release of IL-8.

    PubMed

    Li, Bo; Dong, Chunling; Wang, Guifang; Zheng, Huiru; Wang, Xiangdong; Bai, Chunxue

    2011-09-01

    Interleukin (IL)-8 from pulmonary epithelial cells has been suggested to play an important role in the airway inflammation, although the mechanism remains unclear. We envisioned a possibility that pulmonary epithelial CCR3 could be involved in secretion and regulation of IL-8 and promote lipopolysaccharide (LPS)-induced lung inflammation. Human bronchial epithelial cell line NCI-H292 and alveolar type II epithelial cell line A549 were used to test role of CCR3 in production of IL-8 at cellular level. In vivo studies were performed on C57/BL6 mice instilled intratracheally with LPS in a model of acute lung injury (ALI). The activity of a CCR3-specific inhibitor (SB-328437) was measured in both in vitro and in vivo systems. We found that expression of CCR3 in NCI-H292 and A549 cells were increased by 23% and 16%, respectively, 24 h after the challenge with LPS. LPS increased the expression of CCR3 in NCI-H292 and A549 cells in a time-dependent manner, which was inhibited significantly by SB-328437. SB-328437 also diminished neutrophil recruitment in alveolar airspaces and improved LPS-induced ALI and production of IL-8 in bronchoalveolar lavage fluid. These results suggest that pulmonary epithelial CCR3 be involved in progression of LPS-induced lung inflammation by mediating release of IL-8. CCR3 in pulmonary epithelia may be an attractive target for development of therapies for ALI.

  6. The Protective Effects of HJB-1, a Derivative of 17-Hydroxy-Jolkinolide B, on LPS-Induced Acute Distress Respiratory Syndrome Mice.

    PubMed

    Xu, Xiaohan; Liu, Ning; Zhang, Yu-Xin; Cao, Jinjin; Wu, Donglin; Peng, Qisheng; Wang, Hong-Bing; Sun, Wan-Chun

    2016-01-11

    Acute respiratory distress syndrome (ARDS),which is inflammatory disorder of the lung, which is caused by pneumonia, aspiration of gastric contents, trauma and sepsis, results in widespread lung inflammation and increased pulmonary vascular permeability. Its pathogenesis is complicated and the mortality is high. Thus, there is a tremendous need for new therapies. We have reported that HJB-1, a 17-hydroxy-jolkinolide B derivative, exhibited strong anti-inflammatory effects in vitro. In this study, we investigated its impacts on LPS-induced ARDS mice. We found that HJB-1 significantly alleviated LPS-induced pulmonary histological alterations, inflammatory cells infiltration, lung edema, as well as the generation of inflammatory cytokines TNF-α, IL-1β and IL-6 in BALF. In addition, HJB-1 markedly suppressed LPS-induced IκB-α degradation, nuclear accumulation of NF-κB p65 subunit and MAPK phosphorylation. These results suggested that HJB-1 improved LPS-induced ARDS by suppressing LPS-induced NF-κB and MAPK activation.

  7. LYRM03, an ubenimex derivative, attenuates LPS-induced acute lung injury in mice by suppressing the TLR4 signaling pathway

    PubMed Central

    He, Hui-qiong; Wu, Ya-xian; Nie, Yun-juan; Wang, Jun; Ge, Mei; Qian, Feng

    2017-01-01

    Toll-like receptor 4 (TLR4)-mediated signaling plays a critical role in sepsis-induced acute lung injury (ALI). LYRM03 (3-amino-2-hydroxy-4-phenyl-valyl-isoleucine) is a novel derivative of ubenimex, a widely used antineoplastic medicine. We previously found that LYRM03 has anti-inflammatory effects in cecal ligation puncture mouse model. In this study we determined whether LYRM03 attenuated LPS-induced ALI in mice. LPS-induced ALI mouse model was established by challenging the mice with intratracheal injection of LPS (5 mg/kg), which was subsequently treated with LYRM03 (10 mg/kg, ip). LYRM03 administration significantly alleviated LPS-induced lung edema, inflammatory cell (neutrophils and macrophages) infiltration and myeloperoxidase (MPO) activity, decreased pro-inflammatory and chemotactic cytokine (TNF-α, IL-6, IL-1β, MIP-2) generation and reduced iNOS and COX-2 expression in the lung tissues. In cultured mouse alveolar macrophages in vitro, pretreatment with LYRM03 (100 μmol/L) suppressed LPS-induced macrophage activation by reducing Myd88 expression, increasing IκB stability and inhibiting p38 phosphorylation. These results suggest that LYRM03 effectively attenuates LPS-induced ALI by inhibiting the expression of pro-inflammatory mediators and Myd88-dependent TLR4 signaling pathways in alveolar macrophages. LYRM03 may serve as a potential treatment for sepsis-mediated lung injuries. PMID:28112185

  8. Stabilization of Nrf2 by tBHQ prevents LPS-induced apoptosis in differentiated PC12 cells.

    PubMed

    Khodagholi, Fariba; Tusi, Solaleh Khoramian

    2011-08-01

    The inflammatory reaction plays an important role in the pathogenesis of the neurodegenerative disorders. tert-butylhydroquinone (tBHQ) exhibits a wide range of pharmacological activities including anti-oxidative and anti-inflammatory action. In this study, we tried to elucidate possible effects of tBHQ on lipopolysaccharide (LPS)-induced inflammatory reaction and its underlying mechanism in neuron-like PC12 cells. tBHQ inhibited LPS-induced generation of reactive oxygen species (ROS) and elevation of intracellular calcium level. It also inhibited LPS-induced cyclooxygenase 2 (COX-2), TNF-α, nuclear factor KappaB (NF-kB), and caspase-3 expression in a dose-dependent manner while stabilizing nuclear factor-erythroid 2 p45-related factor 2. Moreover, the phosphorylations of p38, ERK1/2, and JNK were suppressed by tBHQ. These results suggest that the anti-inflammatory properties of tBHQ might result from inhibition of COX-2 and TNF-α expression, inhibition of NF-kB nuclear translocation along with suppression of MAP kinases (p38, ERK1/2, and JNK) phosphorylation in PC12 cells, so may be a useful agent for prevention of inflammatory diseases.

  9. Iloprost improves endothelial barrier function in LPS-induced lung injury

    PubMed Central

    Birukova, Anna A.; Wu, Tinghuai; Tian, Yufeng; Meliton, Angelo; Sarich, Nicolene; Tian, Xinyong; Leff, Alan; Birukov, Konstantin G.

    2013-01-01

    RATIONALE Protective effects of prostacyclin and its stable analog Iloprost are mediated by elevation of intracellular cAMP leading to enhancement of peripheral actin cytoskeleton and cell-cell adhesive structures. This study tested hypothesis that iloprost may exhibit protective effects against lung injury and endothelial barrier dysfunction induced by bacterial wall lypopolysacharide (LPS). METHODS Endothelial barrier dysfunction was assessed by measurements of transendothelial permeability, morphologically, and analysis of LPS-activated inflammatory signaling. In vivo, C57BL/6J mice were challenged with LPS with or without iloprost or 8-bromoadenosine-3′,5′-cyclic monophosphate (Br-cAMP) treatment. Lung injury was monitored by measurements of bronchoalveolar lavage protein content, cell count, and Evans blue extravasation. RESULTS Iloprost and Br-cAMP attenuated disruption of endothelial monolayer and suppressed activation of p38 mitogen activated protein (MAP) kinase, NFκB pathway, Rho signaling, ICAM1 expression, and neutrophil migration after LPS challenge. In vivo, iloprost was effective against LPS-induced protein and neutrophil accumulation in bronchoalveolar lavage fluid and reduced myeloperoxidase activation, ICAM-1 expression, and Evans blue extravasation in the lungs. Inhibition of Rac activity abolished barrier protective and anti-inflammatory effects of iloprost and Br-cAMP. CONCLUSION Iloprost-induced elevation of intracellular cAMP triggers Rac signaling, which attenuates LPS-induced NFκB and p38 MAPK inflammatory pathways and Rho-dependent mechanism of endothelial permeability. PMID:22790920

  10. Dissociation of LPS-induced monocytic ex vivo production of granulocyte colony-stimulating factor (G-CSF) and TNF-alpha in patients with septic shock.

    PubMed

    Weiss, M; Fischer, G; Barth, E; Boneberg, E; Schneider, E M; Georgieff, M; Hartung, T

    2001-01-07

    Over a 6 month period, in 192 patients admitted to the intensive care unit (ICU), a longitudinal analysis of whole blood lipopolysaccharide (LPS)-induced ex vivo cytokine production was performed on a daily basis until discharge from the ICU or death. Twenty-one patients with proven infections were in septic shock for the first time and for at least 3 days' duration. Ex vivo LPS-inducible release of granulocyte colony-stimulating factor (G-CSF) was upregulated and that of TNF-alpha was downregulated in patients with septic shock, regardless whether they survived or died. In conclusion, LPS-induced ex vivo TNF-alpha and G-CSF cytokine release by monocytes is regulated differentially in patients with septic shock. Since upregulation of LPS-induced production of G-CSF occurred earlier in survivors than in non-survivors, rapidly elevated and sustained G-CSF responsiveness may contribute to survival in septic shock.

  11. Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway

    PubMed Central

    Badshah, Haroon; Ali, Tahir; Kim, Myeong Ok

    2016-01-01

    Toll-like receptor 4 (TLR4) signaling in the brain mediates autoimmune responses and induces neuroinflammation that results in neurodegenerative diseases, such as Alzheimer’s disease (AD). The plant hormone osmotin inhibited lipopolysaccharide (LPS)-induced TLR4 downstream signaling, including activation of TLR4, CD14, IKKα/β, and NFκB, and the release of inflammatory mediators, such as COX-2, TNF-α, iNOS, and IL-1β. Immunoprecipitation demonstrated colocalization of TLR4 and AdipoR1 receptors in BV2 microglial cells, which suggests that osmotin binds to AdipoR1 and inhibits downstream TLR4 signaling. Furthermore, osmotin treatment reversed LPS-induced behavioral and memory disturbances and attenuated LPS-induced increases in the expression of AD markers, such as Aβ, APP, BACE-1, and p-Tau. Osmotin improved synaptic functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95, SNAP-25, and syntaxin-1. Osmotin also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1 and caspase-3. Overall, our studies demonstrated that osmotin prevented neuroinflammation-associated memory impairment and neurodegeneration and suggest AdipoR1 as a therapeutic target for the treatment of neuroinflammation and neurological disorders, such as AD. PMID:27093924

  12. Identification and characterization of a novel NOD-like receptor family CARD domain containing 3 gene in response to extracellular ATP stimulation and its role in regulating LPS-induced innate immune response in Japanese flounder (Paralichthys olivaceus) head kidney macrophages.

    PubMed

    Li, Shuo; Chen, Xiaoli; Hao, Gaixiang; Geng, Xuyun; Zhan, Wenbin; Sun, Jinsheng

    2016-03-01

    Nucleotide oligomerization domain (NOD)-like receptor (NLR) family with a caspase activation and recruitment domain (CARD) containing 3 (NLRC3) protein is an important cytosolic pattern recognition receptor that negatively regulates innate immune response in mammals. Hitherto, the immunological significance of NLRC3 protein in fish remains largely uncharacterized. Here we identified and characterized a novel NLRC3 gene (named poNLRC3) implicated in regulation of fish innate immunity from Japanese flounder Paralichthys olivaceus. The poNLRC3 protein is a cytoplasmic protein with an undefined N-terminal domain, a NACHT domain, a fish-specific NACHT associated domain, six LRR motifs, and a C-terminal fish-specific PYR/SPYR (B30.2) domain but only shares less than 40% sequence identities with the known Japanese flounder NLRC proteins. poNLRC3 gene is ubiquitously expressed in all tested tissues and is dominantly expressed in the Japanese flounder head kidney macrophages (HKMs). We for the first time showed that poNLRC3 expression was significantly modulated by the stimulation of extracellular ATP, an important danger/damage-associated molecular pattern in activating innate immunity in P. olivaceus. Importantly, we revealed that poNLRC3 plays an important role in positively regulating ATP-induced IL-1beta and IL-6 gene expression, suggesting the involvement of poNLRC3 in extracellular ATP-mediated immune signaling. In addition, we showed that poNLRC3 mRNA expression was up-regulated in response to LPS and Edwardsiella tarda immune challenges. Finally, we showed that down-regulating the endogenous poNLRC3 expression with small interfering RNA significantly reduced LPS-induced proinflammatory cytokine gene expression in the Japanese flounder HKM cells. Altogether, we have identified a novel inducible fish NLR member, poNLRC3, which is involved in extracellular ATP-mediated immune signaling and may positively regulate the LPS-induced innate immune response in the Japanese

  13. Butyrate protects against disruption of the blood-milk barrier and moderates inflammatory responses in a model of mastitis induced by lipopolysaccharide.

    PubMed

    Wang, Jing-Jing; Wei, Zheng-Kai; Zhang, Xu; Wang, Ya-Nan; Fu, Yun-He; Yang, Zheng-Tao

    2017-08-11

    Short-chain fatty acids are fermentation end products produced by gut bacteria, which have been shown to ameliorate inflammatory bowel diseases and allergic asthma. However, the mechanism involved remains largely unknown. Here, we investigate the protective effects and mechanisms of sodium butyrate (SB) on LPS-induced mastitis model. Effects of increasing doses of SB on blood-milk barrier function and inflammation are studied in BALB/c mice with LPS-induced mastitis. The underlying mechanisms of anti-inflammatory effects of SB were further investigated in LPS-stimulated mouse mammary epithelial cells (mMECs). The results show that SB decreased LPS-induced disruption in mammary tissues, infiltration of inflammatory cells and the levels of TNF-α, IL-6 and IL-1β. SB up-regulated the tight junction proteins occludin and claudin-3 and reduced blood-milk barrier permeability in LPS-induced mastitis. Studies in vitro revealed that SB inhibited LPS-induced inflammatory response by inhibition of the NF-κB signalling pathway and histone deacetylases in LPS-stimulated mMECs. In our model, SB protected against LPS-induced mastitis by preserving blood-milk barrier function and depressing pro-inflammatory responses, suggesting the potential use of SB as a prophylactic agent to protect blood-milk barrier function in mastitis. © 2017 The British Pharmacological Society.

  14. Intranuclear interactomic inhibition of NF-κB suppresses LPS-induced severe sepsis

    SciTech Connect

    Park, Sung-Dong; Cheon, So Yeong; Park, Tae-Yoon; Shin, Bo-Young; Oh, Hyunju; Ghosh, Sankar; Koo, Bon-Nyeo; Lee, Sang-Kyou

    2015-08-28

    Suppression of nuclear factor-κB (NF-κB) activation, which is best known as a major regulator of innate and adaptive immune responses, is a potent strategy for the treatment of endotoxic sepsis. To inhibit NF-κB functions, we designed the intra-nuclear transducible form of transcription modulation domain (TMD) of RelA (p65), called nt-p65-TMD, which can be delivered effectively into the nucleus without influencing the cell viability, and work as interactomic inhibitors via disruption of the endogenous p65-mediated transcription complex. nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines, including TNF-α, IL-1β, or IL-6 from BV2 microglia cells stimulated by lipopolysaccharide (LPS). nt-p65-TMD did not inhibit tyrosine phosphorylation of signaling mediators such as ZAP-70, p38, JNK, or ERK involved in T cell activation, but was capable of suppressing the transcriptional activity of NF-κB without the functional effect on that of NFAT upon T-cell receptor (TCR) stimulation. The transduced nt-p65-TMD in T cell did not affect the expression of CD69, however significantly inhibited the secretion of T cell-specific cytokines such as IL-2, IFN-γ, IL-4, IL-17A, or IL-10. Systemic administration of nt-p65-TMD showed a significant therapeutic effect on LPS-induced sepsis model by inhibiting pro-inflammatory cytokines secretion. Therefore, nt-p65-TMD can be a novel therapeutics for the treatment of various inflammatory diseases, including sepsis, where a transcription factor has a key role in pathogenesis, and further allows us to discover new functions of p65 under normal physiological condition without genetic alteration. - Highlights: • The nt-p65-TMD is intra-nuclear interactomic inhibitor of endogenous p65. • The nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines. • The excellent therapeutic potential of nt-p65-TMD was confirmed in sepsis model.

  15. Effect of azithromycin on the LPS-induced production and secretion of phospholipase A2 in lung cells.

    PubMed

    Kitsiouli, Eirini; Antoniou, Georgia; Gotzou, Helen; Karagiannopoulos, Michalis; Basagiannis, Dimitris; Christoforidis, Savvas; Nakos, George; Lekka, Marilena E

    2015-07-01

    Azithromycin is a member of macrolides, utilized in the treatment of infections. Independently, these antibiotics also possess anti-inflammatory and immunomodulatory properties. Phospholipase A2 isotypes, which are implicated in the pathophysiology of inflammatory lung disorders, are produced by alveolar macrophages and other lung cells during inflammatory response and can promote lung injury by destructing lung surfactant. The aim of the study was to investigate whether in lung cells azithromycin can inhibit secretory and cytosolic phospholipases A2, (sPLA2) and (cPLA2), respectively, which are induced by an inflammatory trigger. In this respect, we studied the lipopolysaccharide (LPS)-mediated production or secretion of sPLA2 and cPLA2 from A549 cells, a cancer bronchial epithelial cell line, and alveolar macrophages, isolated from bronchoalveolar lavage fluid of ARDS and control patients without cardiopulmonary disease or sepsis. Pre-treatment of cells with azithromycin caused a dose-dependent decrease in the LPS-induced sPLA2-IIA levels in A549 cells. This inhibition was rather due to reduced PLA2G2A mRNA expression and secretion of sPLA2-IIA protein levels, as observed by western blotting and indirect immunofluorescence by confocal microscopy, respectively, than to the inhibition of the enzymic activity per se. On the contrary, azithromycin had no effect on the LPS-induced production or secretion of sPLA2-IIA from alveolar macrophages. The levels of LPS-induced c-PLA2 were not significantly affected by azithromycin in either cell type. We conclude that azithromycin exerts anti-inflammatory properties on lung epithelial cells through the inhibition of both the expression and secretion of LPS-induced sPLA2-IIA, while it does not affect alveolar macrophages. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Withania somnifera and Its Withanolides Attenuate Oxidative and Inflammatory Responses and Up-Regulate Antioxidant Responses in BV-2 Microglial Cells.

    PubMed

    Sun, Grace Y; Li, Runting; Cui, Jiankun; Hannink, Mark; Gu, Zezong; Fritsche, Kevin L; Lubahn, Dennis B; Simonyi, Agnes

    2016-09-01

    Withania somnifera (L.) Dunal, commonly known as Ashwagandha, has been used in Ayurvedic medicine for promoting health and quality of life. Recent clinical trials together with experimental studies indicated significant neuroprotective effects of Ashwagandha and its constituents. This study is aimed to investigate anti-inflammatory and anti-oxidative properties of this botanical and its two withanolide constituents, namely, Withaferin A and Withanolide A, using the murine immortalized BV-2 microglial cells. Ashwagandha extracts not only effectively inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and reactive oxygen species (ROS) production in BV-2 cells, but also stimulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway, leading to induction of heme oxygenase-1 (HO-1), both in the presence and absence of LPS. Although the withanolides were also capable of inhibiting LPS-induced NO production and stimulating Nrf2/HO-1 pathway, Withaferin A was tenfold more effective than Withanolide A. In serum-free culture, LPS can also induce production of long thin processes (filopodia) between 4 and 8 h in BV-2 cells. This morphological change was significantly suppressed by Ashwagandha and both withanolides at concentrations for suppressing LPS-induced NO production. Taken together, these results suggest an immunomodulatory role for Ashwagandha and its withanolides, and their ability to suppress oxidative and inflammatory responses in microglial cells by simultaneously down-regulating the NF-kB and upregulating the Nrf2 pathways.

  17. Protective effect of naringin against the LPS-induced apoptosis of PC12 cells: Implications for the treatment of neurodegenerative disorders

    PubMed Central

    Wang, Hui; Xu, You Song; Wang, Miao Lin; Cheng, Chao; Bian, Rui; Yuan, Hao; Wang, Yi; Guo, Ting; Zhu, Lin Lin; Zhou, Hang

    2017-01-01

    Several studies have demonstrated that increased apoptosis plays an essential role in neurodegenerative disorders. It has been demonstrated that lipopolysaccharide (LPS) induces apoptosis largely through the production of intracellular reactive oxygen species (ROS) and inflammatory mediators. In this study, we investigated the potential protective mechanisms of naringin (Nar), a pummelo peel extract, on LPS-induced PC12 cell apoptosis. Nar pre-conditioning prior to stimulation with LPS for 18 h was a prerequisite for evaluating PC12 cell viability and the protective mechanisms of Nar. Nar significantly improved cell survival in a time- and concentration-dependent manner. On the one hand, Nar downregulated cytochrome P450 2E1 (CYP2E1), inhibited the release of ROS, mitigated the stimulation of oxidative stress, and rectified the antioxidant protein contents of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), superoxide dismutase (SOD)2 and glutathione synthetase (GSS). On the other hand, Nar down-regulated inflammatory gene and protein expression, including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, HMGB1, high mobility group box 1 protein (HMGB1), cyclo-oxygenase-2 (COX-2), the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-TNF receptor-associated factor 6 (TRAF6) path way and downstream mitogen activated protein kinase (MAPK) phosphorylation, activator protein transcription factor-1 (AP-1) and nuclear factor (NF)-κB. Moroever, Nar markedly attenuated the cytochrome c shift from the mitochondria to the cytosol and regulated caspase-3-related protein expression. To the best of our knowledge, this is the first study to report the antioxidant, anti-inflammatory and anti-apoptotic effects of Nar in neuronal-like PC12 cells. These results suggest that Nar can be utilized as a potential drug for the treatment of neurodegenerative disorders. PMID:28260042

  18. Qing Hua Chang Yin inhibits the LPS-induced activation of the IL-6/STAT3 signaling pathway in human intestinal Caco-2 cells.

    PubMed

    Ke, Xiao; Hu, Guanghong; Fang, Wenyi; Chen, Jintuan; Zhang, Xin; Yang, Chunbo; Peng, Jun; Chen, Youqin; Sferra, Thomas J

    2015-04-01

    Increasing evidence indicates that the pathogenesis of ulcerative colitis (UC) is highly regulated by the interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) pathway and its negative feedback regulator, suppressor of cytokine signaling 3 (SOCS3). Therefore, modulating the signaling feedback loop of IL-6/STAT3/SOCS3 may prove to be a novel therapeutic approach for the treatment of UC. Qing Hua Chang Yin (QHCY) is a traditional Chinese formulation that has long been used in clinic for the treatment of UC. We have previously reported that QHCY ameliorates acute intestinal inflammation in vivo and in vitro through the suppression of the nuclear factor-κB (NF-κB) pathway. In the present study, in order to further elucidate the mechanisms responsible for the anti-inflammatory activities of QHCY, we stimulated human intestinal Caco-2 cells with lipopolysaccharide (LPS) to create an in vitro model of an inflamed human intestinal epithelium, and evaluated the effects of QHCY on the IL-6/STAT3/SOCS3 signaling network in inflamed Caco-2 cells. The levels of IL-6 were measured by ELISA and the levels of STAT3 and SOCS3 were measured by western blot analysis. We found that QHCY significantly inhibited the LPS-induced secretion of pro-inflammatory IL-6 in the Caco-2 cells in a dose-dependent manner. Moreover, QHCY profoundly suppressed the LPS-induced phosphorylation of Janus-activated kinase 1 (JAK1), JAK2 and STAT3. Furthermore, treatment with QHCY markedly augmented the expression of SOCS3. Taken together, the findings of the present study suggest that the modulation of the IL-6/STAT3/SOCS3 signaling network may be one of the mechanisms through which QHCY exerts its anti-inflammatory effects.

  19. Sulforaphane suppresses LPS-induced or TPA-induced downregulation of PDCD4 in RAW 264.7 cells.

    PubMed

    Cho, Jong-Ho; Kim, Young-Woo; Keum, Young-Sam

    2014-11-01

    Sulforaphane is a natural chemopreventive isothiocyanate and abundantly found in various cruciferous vegetables. Although chemopreventive activity of sulforaphane is well documented, the detailed biochemical mechanism(s), underlying how it regulates the protein translation process to antagonize pro-inflammatory responses are largely unclear. In the present study, we show that lipopolysaccharide (LPS) or 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment reduces cellular levels of PDCD4, and this event is mediated by affecting both transcription and proteolysis in RAW 264.7 cells. We show that LPS-mediated or TPA-mediated PDCD4 downregulation is catalyzed by the activation of intracellular Akt1 or S6K1 kinases and that sulforaphane suppresses LPS-induced or TPA-induced Akt1 or S6K1 activation, thereby resulting in the attenuation of PDCD4 downregulation in RAW 264.7 cells. We propose that sulforaphane suppression of PDCD4 downregulation serves as a novel molecular mechanism to control proliferation in response to pro-inflammatory signals. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Effects of PPAR-γ agonist treatment on LPS-induced mastitis in rats.

    PubMed

    Mingfeng, Ding; Xiaodong, Ming; Yue, Liu; Taikui, Piao; Lei, Xiao; Ming, Liu

    2014-12-01

    PPAR-γ, a member of the nuclear receptor superfamily, plays an important role in lipid metabolism and inflammation. The aim of this study was to investigate the preventive effects of synthetic PPAR-γ agonist rosiglitazone on lipopolysaccharide (LPS)-induced mastitis in rats. The mouse model of mastitis was induced by the injection of LPS through the duct of the mammary gland. Rosiglitazone was injected 1 h before the induction of LPS intraperitoneally. The results showed that rosiglitazone attenuated the infiltration of inflammatory cells, the activity of myeloperoxidase (MPO), and the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner. Additionally, Western blotting showed that rosiglitazone inhibited the phosphorylation of IκB-α and NF-κB p65. These results indicated that rosiglitazone has a protective effect on mastitis, and the anti-inflammatory mechanism of rosiglitazone on LPS-induced mastitis in rats may be due to its ability to inhibit NF-κB signaling pathways. PPAR-γ may be a potential therapeutic target against mastitis.

  1. Mesenchymal Stem Cell-Educated Macrophages Ameliorate LPS-Induced Systemic Response

    PubMed Central

    Hu, Yaoqin; Qin, Chaojin; Zheng, Guoping; Tao, Huikang; Zhang, Yan; Qiu, Guanguan; Ge, Menghua; Huang, Lanfang; Chen, Lina; Cheng, Baoli

    2016-01-01

    Both bone marrow and adipose-derived mesenchymal stem cells (ASCs) have immunomodulatory effects. The goal of this study was to determine whether ASCs-educated macrophages could directly ameliorate LPS-induced systemic response in a mouse model. Mouse peritoneal macrophages were cocultured with ASCs in a Transwell system for 2 days to educate macrophages. Mice were divided into 5 groups: control, LPS, LPS + ASCs, LPS + untreated macrophages, and LPS + educated macrophages. Educated macrophages decreased lung inflammation, weight loss, pulmonary edema, and inflammatory cytokine response. In vitro, ASCs increased expression of M2 macrophages independent of direct cell-to-cell contact when macrophages were treated with LPS or serum from patients with acute respiratory distress syndrome (ARDS). When macrophages were cultured with serum from ARDS patients who were treated with ASCs or placebo in our previous clinical trial, there was no difference in M2 macrophage levels before and after ASCs treatment indicating a suboptimal response to the treatment protocol. ASCs also reduced the levels of LPS-induced proinflammatory cytokines in vitro which were mimicked by IL-10 and blocked by antibodies for IL-10 and IL-10 receptor supporting the notion that educated macrophages exert their anti-inflammatory effects via IL-10-dependent mechanisms. PMID:27546994

  2. TNFα Mediates LPS-Induced Microglial Toxicity to Developing Oligodendrocytes When Astrocytes Are Present

    PubMed Central

    Li, Jianrong; Radhika Ramenaden, E.; Peng, Jie; Koito, Hisami; Volpe, Joseph J.; Rosenberg, Paul A.

    2009-01-01

    Reactive microglia and astrocytes are present in lesions of white matter disorders, such as periventricular leukomalacia and multiple sclerosis. However, it is not clear whether they are actively involved in the pathogenesis of these disorders. Previous studies demonstrated that microglia, but not astrocytes, are required for lipopolysaccharide (LPS)-induced selective killing of developing oligodendrocytes (preOLs), and that the toxicity is mediated by microglia-derived peroxynitrite. Here we report that when astrocytes are present, the LPS-induced, microglia-dependent toxicity to preOLs is no longer mediated by peroxynitrite but instead by a mechanism dependent on TNFα signaling. Blocking peroxynitrite formation with nitric oxide synthase (NOS) inhibitors or a decomposition catalyst did not prevent LPS-induced loss of preOLs in mixed glial cultures. PreOLs were highly vulnerable to peroxynitrite; however, the presence of astrocytes prevented the toxicity. While LPS failed to kill preOLs in cocultures of microglia and preOLs deficient in inducible NOS (iNOS) or gp91phox, the catalytic subunit of the superoxide-generating NADPH oxidase, LPS caused a similar degree of preOL death in mixed glial cultures of wildtype, iNOS-/- and gp91phox-/- mice. TNFα neutralizing antibody inhibited LPS toxicity, and addition of TNFα induced selective preOL injury in mixed glial cultures. Furthermore, disrupting the genes encoding TNFα or its receptors TNFR1/2 completely abolished the deleterious effect of LPS. Our results reveal that TNFα signaling, rather than peroxynitrite, is essential in LPS-triggered preOL death in an environment containing all major glial cell types, and underscore the importance of intercellular communication in determining the mechanism underlying inflammatory preOL death. PMID:18480288

  3. Extract from Acanthopanax senticosus prevents LPS-induced monocytic cell adhesion via suppression of LFA-1 and Mac-1.

    PubMed

    Kim, Hyun Jeong; McLean, Danielle; Pyee, Jaeho; Kim, Jongmin; Park, Heonyong

    2014-04-01

    A crude extract from Acanthopanax senticosus (AS) has drawn increased attention because of its potentially beneficial activities, including anti-fatigue, anti-stress, anti-gastric-ulcer, and immunoenhancing effects. We previously reported that AS crude extract exerts anti-inflammatory activity through blockade of monocytic adhesion to endothelial cells. However, the underlying mechanisms remained unknown, and so this study was designed to investigate the pathways involved. It was confirmed that AS extract inhibited lipopolysaccharide (LPS)-induced adhesion of monocytes to endothelial cells, and we found that whole extract was superior to eleutheroside E, a principal functional component of AS. A series of PCR experiments revealed that AS extract inhibited LPS-induced expression of genes encoding lymphocyte function-associated antigen-1 (LFA-1) and macrophage-1 antigen (Mac-1) in THP-1 cells. Consistently, protein levels and cell surface expression of LFA-1 and Mac-1 were noticeably reduced upon treatment with AS extract. This inhibitory effect was mediated by the suppression of LPS-induced degradation of IκB-α, a known inhibitor of nuclear factor-κB (NF-κB). In conclusion, AS extract exerts anti-inflammatory activity via the suppression of LFA-1 and Mac-1, lending itself as a potential therapeutic galenical for the prevention and treatment of various inflammatory diseases.

  4. The binding capability of plasma phospholipid transfer protein, but not HDL pool size, is critical to repress LPS induced inflammation

    PubMed Central

    Yu, Yang; Cui, Yingjie; Zhao, Yanan; Liu, Shuai; Song, Guohua; Jiao, Peng; Li, Bin; Luo, Tian; Guo, Shoudong; Zhang, Xiangjian; Wang, Hao; Jiang, Xian-Cheng; Qin, Shucun

    2016-01-01

    Phospholipid transfer protein (PLTP) participates in high density lipoprotein (HDL) metabolism. Increased plasma PLTP activity was observed in lipopolysaccharide (LPS) triggered acute inflammatory diseases. This study aimed to determine the exact role of PLTP in LPS induced inflammation. HDL pool size was shrunk both in PLTP deficient mice (PLTP−/−) and PLTP transgenic mice (PLTP-Tg). PLTP displayed a strong protective effect on lethal endotoxemia in mice survival study. Furthermore, after LPS stimulation, the expression of pro-inflammatory cytokines were increased in bone marrow derived macrophage (BMDM) from PLTP−/−, while decreased in BMDM from PLTP-Tg compared with BMDM from wild-type mice (WT). Moreover, LPS induced nuclear factor kappa-B (NFκB) activation was enhanced in PLTP−/− BMDM or PLTP knockdown RAW264.7. Conversely, PLTP overexpression countered the NFκB activation in LPS challenged BMDM. Additionally, the activation of toll like receptor 4 (TLR4) induced by LPS showed no alteration in PLTP−/− BMDM. Finally, PLTP could bind to LPS, attenuate the pro-inflammatory effects of LPS, and improve the cell viability in vitro. To sum up, these findings elucidated that PLTP repressed LPS induced inflammation due to extracellular LPS binding capability, and the protective effects were not related to HDL pool size in mice. PMID:26857615

  5. Minocycline ameliorates LPS-induced inflammation in human monocytes by novel mechanisms including LOX-1, Nur77 and LITAF inhibition

    PubMed Central

    Pang, Tao; Wang, Juan; Benicky, Julius; Saavedra, Juan M.

    2012-01-01

    Background Minocycline exhibits anti-inflammatory properties independent of its antibiotic activity, ameliorating inflammatory responses in monocytes and macrophages. However, the mechanisms of minocycline anti-inflammatory effects are only partially understood. Methods Human circulating monocytes were cultured in the presence of lipopolysaccharide (LPS), 50 ng/ml, and minocycline (10–40 µM). Gene expression was determined by RT-PCR, cytokine and prostaglandin E2 (PGE2) release by ELISA, protein expression, phosphorylation and nuclear translocation by Western blotting. Results Minocycline significantly reduced the inflammatory response in LPS-challenged monocytes, decreasing LPS-induced transcription of pro-inflammatory tumor-necrosis factor alpha (TNF-α), interleukin-1 beta, interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2), and the LPS-stimulated TNF-α, IL-6 and PGE2 release. Minocycline inhibited LPS-induced activation of the lectin-like oxidized low density lipoprotein receptor-1 (LOX-1), NF-κB, LPS-induced TNF-α factor (LITAF) and the Nur77 nuclear receptor. Mechanisms involved in the anti-inflammatory effects of minocycline include a reduction of LPS-stimulated p38 mitogen-activated protein kinase (p38 MAPK) activation and stimulation of the phosphoinositide 3-kinase (PI3K)/Akt pathway. Conclusions We provide novel evidence demonstrating that the anti-inflammatory effects of minocycline in human monocytes include, in addition to decreased NF-κB activation, abrogation of the LPS-stimulated LOX-1, LITAF, Nur77 pathways, p38 MAPK inhibition and PI3K/Akt activation. Our results reveal that minocycline inhibits points of convergence of distinct and interacting signaling pathways mediating multiple inflammatory signals which may influence monocyte activation, traffic and recruitment into the brain. General significance Our results in primary human monocytes contribute to explain the profound anti-inflammatory and protective effects of minocycline in

  6. Anti-inflammatory effects of eugenol on lipopolysaccharide-induced inflammatory reaction in acute lung injury via regulating inflammation and redox status.

    PubMed

    Huang, Xianfeng; Liu, Yuanyuan; Lu, Yingxun; Ma, Chunhua

    2015-05-01

    Acute lung injury (ALI) represents a clinical syndrome that results from complex responses of the lung to a multitude of direct and indirect insults. This study aims to evaluate the possible mechanisms responsible for the anti-inflammatory effects of eugenol (EUL) on lipopolysaccharide (LPS)-induced inflammatory reaction in ALI. ALI was induced in mice by intratracheal instillation of LPS (0.5 mg/kg), and EUL (5, and 10 mg/kg) was injected intraperitoneally 1h prior to LPS administration. After 6h, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. The findings suggest that the protective mechanism of EUL may be attributed partly to decreased production of proinflammatory cytokines through the regulating inflammation and redox status. The results support that use of EUL is beneficial in the treatment of ALI.

  7. Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs.

    PubMed

    Zhu, Jun; Tang, Haoyu; Zhang, Zhenhua; Zhang, Yong; Qiu, Chengfeng; Zhang, Ling; Huang, Pinge; Li, Feng

    2017-02-01

    Intervertebral disc (IVD) degeneration is a common disease that represents a significant cause of socio-economic problems. Bone marrow-derived mesenchymal stem cells (BMSCs) are a potential autologous stem cell source for the nucleus pulposus regeneration. Kaempferol has been reported to exert protective effects against both osteoporosis and obesity. This study explored the effect of kaempferol on BMSCs differentiation and inflammation. The results demonstrated that kaempferol did not show any cytotoxicity at concentrations of 20, 60 and 100μM. Kaempferol enhanced cell viability by counteracting the lipopolysaccharide (LPS)-induced cell apoptosis and increasing cell proliferation. Western blot analysis of mitosis-associated nuclear antigen (Ki67) and proliferation cell nuclear antigen (PCNA) further confirmed the increased effect of kaempferol on LPS-induced decreased viability of BMSCs. Besides, kaempferol elevated LPS-induced reduced level of chondrogenic markers (SOX-9, Collagen II and Aggrecan), decreased the level of matrix-degrading enzymes, i.e., matrix metalloprotease (MMP)-3 and MMP-13, suggesting the osteogenesis of BMSC under kaempferol treatment. On the other hand, kaempferol enhanced LPS-induced decreased expression of lipid catabolism-related genes, i.e., carnitine palmitoyl transferase-1 (CPT-1). Kaempferol also suppressed the expression of lipid anabolism-related genes, i.e., peroxisome proliferators-activated receptor-γ (PPAR-γ). The Oil red O staining further convinced the inhibition effect of kaempferol on BMSCs adipogenesis. In addition, kaempferol alleviated inflammatory by reducing the level of pro-inflammatory cytokines (i.e., interleukin (IL)-6) and increasing anti-inflammatory cytokine (IL-10) via inhibiting the nucleus translocation of nuclear transcription factor (NF)-κB p65. Taken together, our research indicated that kaempferol may serve as a novel target for treatment of IVD degeneration.

  8. Aspirin inhibits LPS-induced macrophage activation via the NF-κB pathway.

    PubMed

    Liu, Yitong; Fang, Silian; Li, Xiaoyan; Feng, Jie; Du, Juan; Guo, Lijia; Su, Yingying; Zhou, Jian; Ding, Gang; Bai, Yuxing; Wang, Songling; Wang, Hao; Liu, Yi

    2017-09-14

    Aspirin (acetylsalicylic acid, ASA) has been shown to improve bone marrow mesenchymal stem cell-based calvarial bone regeneration by promoting osteogenesis and inhibiting osteoclastogenesis. However, it remains unknown whether aspirin influences other immune cells during bone formation. In the present study, we investigated whether ASA treatment influenced macrophage activation during the LPS inducement. We found that ASA could downregulate the expressions of iNOS and TNF-α both in mouse peritoneum macrophages and RAW264.7 cells induced by LPS via the IκK/IκB/NF-κB pathway and a COX2/PGE2/EP2/NF-κB feedback loop, without affecting the expressions of FIZZ/YM-1/ARG1 induced by IL-4. Furthermore, we created a rat mandibular bone defect model and showed that ASA treatment improved bone regeneration by inhibiting LPS-induced macrophage activation in the early stages of inflammation. Taken together, our results indicated that ASA treatment was a feasible strategy for improving bone regeneration, particularly in inflammatory conditions.

  9. Anesthetic Propofol Reduces Endotoxic Inflammation by Inhibiting Reactive Oxygen Species-regulated Akt/IKKβ/NF-κB Signaling

    PubMed Central

    Hsing, Chung-Hsi; Lin, Ming-Chung; Choi, Pui-Ching; Huang, Wei-Ching; Kai, Jui-In; Tsai, Cheng-Chieh; Cheng, Yi-Lin; Hsieh, Chia-Yuan; Wang, Chi-Yun; Chang, Yu-Ping; Chen, Yu-Hong; Chen, Chia-Ling; Lin, Chiou-Feng

    2011-01-01

    Background Anesthetic propofol has immunomodulatory effects, particularly in the area of anti-inflammation. Bacterial endotoxin lipopolysaccharide (LPS) induces inflammation through toll-like receptor (TLR) 4 signaling. We investigated the molecular actions of propofol against LPS/TLR4-induced inflammatory activation in murine RAW264.7 macrophages. Methodology/Principal Findings Non-cytotoxic levels of propofol reduced LPS-induced inducible nitric oxide synthase (iNOS) and NO as determined by western blotting and the Griess reaction, respectively. Propofol also reduced the production of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-10 as detected by enzyme-linked immunosorbent assays. Western blot analysis showed propofol inhibited LPS-induced activation and phosphorylation of IKKβ (Ser180) and nuclear factor (NF)-κB (Ser536); the subsequent nuclear translocation of NF-κB p65 was also reduced. Additionally, propofol inhibited LPS-induced Akt activation and phosphorylation (Ser473) partly by reducing reactive oxygen species (ROS) generation; inter-regulation that ROS regulated Akt followed by NF-κB activation was found to be crucial for LPS-induced inflammatory responses in macrophages. An in vivo study using C57BL/6 mice also demonstrated the anti-inflammatory properties against LPS in peritoneal macrophages. Conclusions/Significance These results suggest that propofol reduces LPS-induced inflammatory responses in macrophages by inhibiting the interconnected ROS/Akt/IKKβ/NF-κB signaling pathways. PMID:21408125

  10. Escin Increases the Survival Rate of LPS-Induced Septic Mice Through Inhibition of HMGB1 Release from Macrophages.

    PubMed

    Cheng, Yajun; Wang, Hongrui; Mao, Min; Liang, Chao; Zhang, Yu; Yang, Deijun; Wei, Ziran; Gao, Shunxiang; Hu, Bo; Wang, Lianghua; Cai, Qingping

    2015-01-01

    Previous studies have described the effects of Escin on improving the survival rate of endotoxemic animals. The purpose of this study was to explore the molecular mechanisms of this potentially beneficial treatment. First, the survival rate of endotoxemic mice was monitored for up to 2 weeks after Escin pretreatment, Escin post-treatment, or Escin post-treatment + rHMGB1. The effects of Escin on the release of pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6 and HMGB1 in the serum of endotoxemic mice and LPS-induced macrophages were evaluated by ELISA. Furthermore, the mRNA and protein levels of HMGB1 in LPS-induced macrophages were measured by qRT-PCR and Western blot, respectively. Additionally, the release of pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6 was evaluated by ELISA in rHMGB1-induced macrophages. Finally, the protein levels and the activity of NF-κB in macrophages were checked by Western blot and ELISA, respectively. Both pretreatment and post-treatment with Escin could improve the survival rate of endotoxemic mice, while exogenous rHMGB1 reversed this effect. In addition, Escin decreased the level of the pro-inflammatory cytokinesTNF-α,IL-1β, IL-6 and HMGB1 in endotoxemic mice and in LPS-induced macrophages. Escin could also inhibit the mRNA levels and activity of HMGB1. The release of the pro-inflammatory cytokinesTNF-α,IL-1β, IL-6 could be suppressed in rHMGB1-induced macrophages by Escin. Finally, Escin could suppress the activation of NF- κB in LPS-induced macrophages. Escin could improve the survival of mice with LPS-induced endotoxemia. This effect maybe meditated by reducing the release of HMGB1, resulting in the suppression of the release of pro-inflammatory cytokines. © 2015 S. Karger AG, Basel.

  11. Tenuigenin exhibits protective effects against LPS-induced acute kidney injury via inhibiting TLR4/NF-κB signaling pathway.

    PubMed

    Fu, Haiyan; Hu, Zhansheng; Di, Xingwei; Zhang, Qiuhong; Zhou, Rongbin; Du, Hongyang

    2016-11-15

    Tenuigenin (TNG) has been reported to have various pharmacological activities, such as anti-oxidative and anti-inflammatory activities. However, the protective effects of TNG on lipopolysaccharides (LPS)-induced acute kidney injury (AKI) are still not clear. The aim of this study was to investigate the protective effects and mechanism of TGN on LPS-induced AKI in mice. The kidney histological change, levels of blood urea nitrogen (BUN), and creatinine were measured to assess the protective effects of TNG on LPS-induced AKI. The levels of TNF-α, IL-1β, and IL-6 in serum and kidney tissues were detected by ELISA. The extent of nuclear factor kappa-B (NF-κB) p65 and the expression of Toll-like receptor-4 (TLR4) were detected by western blot analysis. The results showed that TNG markedly attenuated the histological alterations, BUN and creatinine levels in kidney. TNG also suppressed LPS-induced TNF-α, IL-1β, and IL-6 production. Furthermore, the expression of TLR4 and NF-κB activation induced by LPS were markedly inhibited by TNG. In conclusion, this study demonstrated that TNG protected against LPS-induced AKI by inhibiting TLR4/NF-κB signaling pathway.

  12. Salvia miltiorrhiza water-soluble extract, but not its constituent salvianolic acid B, abrogates LPS-induced NF-κB signalling in intestinal epithelial cells

    PubMed Central

    Kim, J S; Narula, A S; Jobin, C

    2005-01-01

    Herbal medicine has become an increasing popular therapeutic alternative among patients suffering from various inflammatory disorders. The Salvia miltiorrhizae water-soluble extract (SME) have been shown to possess antioxidant and anti-inflammatory properties in vitro. However, the mechanism of action and impact of SME on LPS-induced gene expression is still unknown. We report that SME significantly abrogated LPS-induced IκB phosphorylation/degradation, NF-κB transcriptional activity and ICAM-1 gene expression in rat IEC-18 cells. Chromatin immunoprecipitation assay demonstrated that LPS-induced RelA recruitment to the ICAM-1 gene promoter was inhibited by SME. Moreover, in vitro kinase assay showed that SME directly inhibits LPS induced IκB kinase (IKK) activity in IEC-18 cells. To investigate the physiological relevance of SME inhibitory activity on NF-κB signalling, we used small intestinal explants and primary intestinal epithelial cells derived from a transgenic mouse expressing the enhanced green fluorescent protein (EGFP) under the transcriptional control of NF-κB cis-elements (cis-NF-κBEGFP). SME significantly blocked LPS-induced EGFP expression and IκBα phosphorylation in intestinal explants and primary IECs, respectively. However, salvianolic acid B, an activate component of SME did not inhibit NF-κB transcriptional activity and IκB phosphorylation/degradation in IEC-18 cells. These results indicate that SME blocks LPS-induced NF-κB signalling pathway by targeting the IKK complex in intestinal epithelial cells. Modulation of bacterial product-mediated NF-κB signalling by natural plant extracts may represent an attractive strategy towards the prevention and treatment of intestinal inflammation. PMID:15996193

  13. Salvia miltiorrhiza water-soluble extract, but not its constituent salvianolic acid B, abrogates LPS-induced NF-kappaB signalling in intestinal epithelial cells.

    PubMed

    Kim, J S; Narula, A S; Jobin, C

    2005-08-01

    Herbal medicine has become an increasing popular therapeutic alternative among patients suffering from various inflammatory disorders. The Salvia miltiorrhizae water-soluble extract (SME) have been shown to possess antioxidant and anti-inflammatory properties in vitro. However, the mechanism of action and impact of SME on LPS-induced gene expression is still unknown. We report that SME significantly abrogated LPS-induced IkappaB phosphorylation/degradation, NF-kappaB transcriptional activity and ICAM-1 gene expression in rat IEC-18 cells. Chromatin immunoprecipitation assay demonstrated that LPS-induced RelA recruitment to the ICAM-1 gene promoter was inhibited by SME. Moreover, in vitro kinase assay showed that SME directly inhibits LPS induced IkappaB kinase (IKK) activity in IEC-18 cells. To investigate the physiological relevance of SME inhibitory activity on NF-kappaB signalling, we used small intestinal explants and primary intestinal epithelial cells derived from a transgenic mouse expressing the enhanced green fluorescent protein (EGFP) under the transcriptional control of NF-kappaB cis-elements (cis-NF-kappaB(EGFP)). SME significantly blocked LPS-induced EGFP expression and IkappaBalpha phosphorylation in intestinal explants and primary IECs, respectively. However, salvianolic acid B, an activate component of SME did not inhibit NF-kappaB transcriptional activity and IkappaB phosphorylation/degradation in IEC-18 cells. These results indicate that SME blocks LPS-induced NF-kappaB signalling pathway by targeting the IKK complex in intestinal epithelial cells. Modulation of bacterial product-mediated NF-kappaB signalling by natural plant extracts may represent an attractive strategy towards the prevention and treatment of intestinal inflammation.

  14. Mulberry fruit prevents LPS-induced NF-κB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice

    PubMed Central

    Qian, Zhengjiang; Wu, Zhiqin; Huang, Lian; Qiu, Huiling; Wang, Liyan; Li, Li; Yao, Lijun; Kang, Kang; Qu, Junle; Wu, Yonghou; Luo, Jun; Liu, Johnson J.; Yang, Yi; Yang, Wancai; Gou, Deming

    2015-01-01

    Here, we investigated the impact of mulberry fruit (MBF) extracts on lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 macrophages, and the therapeutic efficacy of MBF diet in mice with dextran sulfate sodium (DSS)-induced acute colitis and MUC2−/− mice with colorectal cancer. In vitro, LPS-induced nitric oxide (NO) production was significantly inhibited by MBF extracts via suppressing the expression of proinflammatory molecules, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-β) and IL-6. Particularly, a dose-dependent inhibition on LPS-induced inflammatory responses was observed following treatment with MBF dichloromethane extract (MBF-DE), in which linoleic acid and ethyl linolenate were identified as two active compounds. Moreover, we elucidated that MBF-DE attenuated LPS-induced inflammatory responses by blocking activation of both NF-κB/p65 and pERK/MAPK pathways. In vivo, DSS-induced acute colitis was significantly ameliorated in MBF-fed mice as gauged by weight loss, colon morphology and histological damage. In addition, MBF-fed MUC2−/− mice displayed significant decrease in intestinal tumor and inflammation incidence compared to control diet-fed group. Overall, our results demonstrated that MBF suppressed the development of intestinal inflammation and tumorgenesis both in vitro and in vivo, and supports the potential of MBF as a therapeutic functional food for testing in human clinical trials. PMID:26615818

  15. Protective Effect of Amygdalin on LPS-Induced Acute Lung Injury by Inhibiting NF-κB and NLRP3 Signaling Pathways.

    PubMed

    Zhang, Ao; Pan, Weiyun; Lv, Juan; Wu, Hui

    2017-03-16

    The acute lung injury (ALI) is a leading cause of morbidity and mortality in critically ill patients. Amygdalin is derived from the bitter apricot kernel, an efficacious Chinese herbal medicine. Although amygdalin is used by many cancer patients as an antitumor agent, there is no report about the effect of amygdalin on acute lung injury. Here we explored the protective effect of amygdalin on ALI using lipopolysaccharide (LPS)-induced murine model by detecting the lung wet/dry ratio, the myeloperoxidase (MPO) in lung tissues, inflammatory cells in the bronchoalveolar lavage fluid (BALF), inflammatory cytokines production, as well as NLRP3 and NF-κB signaling pathways. The results showed that amygdalin significantly reduced LPS-induced infiltration of inflammatory cells and the production of TNF-α, IL-1β, and IL-6 in the BALF. The activity of MPO and lung wet/dry ratio were also attenuated by amygdalin. Furthermore, the western blotting analysis showed that amygdalin remarkably inhibited LPS-induced NF-κB and NLRP3 activation. These findings indicate that amygdalin has a protective effect on LPS-induced ALI in mice. The mechanism may be related to the inhibition of NF-κB and NLRP3 signaling pathways.

  16. Curcumin abrogates LPS-induced proinflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK

    PubMed Central

    Guimarães, Morgana Rodrigues; Leite, Fábio Renato Manzoli; Spolidorio, Luís Carlos; Kirkwood, Keith Lough; Rossa, Carlos

    2013-01-01

    Curcumin is the active compound in the extract of Curcuma longa rhizomes with anti-inflammatory properties mediated by inhibition of intracellular signalling. SOCS and MAPKinases are involved in the signalling events controlling the expression of IL-6, TNF-α and PGE2, which have important roles on chronic inflammatory diseases. The aim was to assess if these pathways are involved in curcumin-mediated effects on LPS-induced expression of these cytokines in macrophages. RAW 264.7 murine macrophages were stimulated with Escherichia coli LPS in the presence and absence of non-cytotoxic concentrations of curcumin. Curcumin potently inhibited LPS-induced expression of IL-6, TNF-α and COX-2 mRNA and prevented LPS-induced inhibition of SOCS-1 and -3 expression and the inhibition of the activation of p38 MAPKinase by modulation of its nuclear translocation. In conclusion, curcumin potently inhibits expression of LPS-induced inflammatory cytokines in macrophages via mechanisms that involve modulation of expression and activity of SOCS-1 and SOCS-3 and of p38 MAPK. PMID:24011306

  17. Lentiviral-Mediated Overexpression of the 18 kDa Translocator Protein (TSPO) in the Hippocampal Dentate Gyrus Ameliorates LPS-Induced Cognitive Impairment in Mice

    PubMed Central

    Wang, Wei; Zhang, Liming; Zhang, Xiaoying; Xue, Rui; Li, Lei; Zhao, Weixing; Fu, Qiang; Mi, Weidong; Li, Yunfeng

    2016-01-01

    The 18 kDa translocator protein (TSPO) is involved in the immune/inflammatory response. However, the exact role that TSPO plays in neuroinflammation-induced cognitive impairment is still elusive. The purpose of our present study was to investigate the effects of lentiviral-mediated hippocampal overexpression of the TSPO in a mouse model of LPS-induced cognitive impairment. We established a mouse cognitive impairment model using systematic daily administration of lipopolysaccharide (LPS) (0.5 mg/kg). Microinjection of the dentate gyrus of the mouse with lentiviral vectors, which contained a cDNA targeting TSPO (Lv-TSPO), resulted in a significant increase in TSPO expression and allopregnanolone production. Mice treated with LPS showed cognitive deficits in the novel object recognition test and the Morris water maze test that could be ameliorated by TSPO overexpression. In addition, TSPO overexpression reversed LPS-induced microglial activation and accumulation of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Moreover, TSPO overexpression attenuated the LPS-induced impairment of hippocampal neurogenesis. Our results suggest that local overexpression of TSPO in the hippocampal dentate gyrus alleviated LPS-induced cognitive deficits, and its effects might be mediated by the attenuation of inflammatory cytokines, inhibition of microglial activation, and promotion of neurogenesis. PMID:27803668

  18. Disparate roles of marrow- and parenchymal cell-derived TLR4 signaling in murine LPS-induced systemic inflammation

    PubMed Central

    Juskewitch, Justin E.; Platt, Jeffrey L.; Knudsen, Bruce E.; Knutson, Keith L.; Brunn, Gregory J.; Grande, Joseph P.

    2012-01-01

    Systemic inflammatory response syndrome (SIRS) occurs in a range of infectious and non-infectious disease processes. Toll-like receptors (TLRs) initiate such responses. We have shown that parenchymal cell TLR4 activation drives LPS-induced systemic inflammation; SIRS does not develop in mice lacking TLR4 expression on parenchymal cells. The parenchymal cell types whose TLR4 activation directs this process have not been identified. Employing a bone marrow transplant model to compartmentalize TLR4 signaling, we characterized blood neutrophil and cytokine responses, NF-κB1 activation, and Tnf-α, Il6, and Ccl2 induction in several organs (spleen, aorta, liver, lung) near the time of LPS-induced symptom onset. Aorta, liver, and lung gene responses corresponded with both LPS-induced symptom onset patterns and plasma cytokine/chemokine levels. Parenchymal cells in aorta, liver, and lung bearing TLR4 responded to LPS with chemokine generation and were associated with increased plasma chemokine levels. We propose that parenchymal cells direct SIRS in response to LPS. PMID:23213355

  19. Resolvin D1 reduces deterioration of tight junction proteins by upregulating HO-1 in LPS-induced mice.

    PubMed

    Xie, Wanli; Wang, Huiqing; Wang, Lei; Yao, Chengye; Yuan, Ruixia; Wu, Qingping

    2013-09-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary permeability with high mortality. Resolvin D1 (RvD1), which has potent anti-inflammatory and pro-resolving activity, can attenuate pulmonary edema in the animal model of ALI. However, the mechanism underlying the protection of RvD1 on pulmonary edema is still unknown. Here we explore the effects and mechanism of RvD1 on the disruption of tight junction protein that results in the permeability edema in a model of lipopolysaccharide (LPS)-induced ALI. The severity of pulmonary edema was assessed by wet-to-dry rate and Evans blue infiltration; expressions of tight junction (TJ) proteins occludin and zona occludin-1 (ZO-1) were examined by immunofluorescence staining and western blot; mRNA in lung tissue was studied by real time-PCR; the TUNEL kit was performed for the detection of apoptosis of pulmonary barrier. Twenty-four hours after LPS inhalation by mice, wet-to-dry rate and Evans blue infiltration indicated that pretreatment with RvD1 relieved the pulmonary edema and pulmonary capillary permeability. Moreover, RvD1 attenuated the LPS-induced deterioration of TJ protein ZO-1 and occludin significantly. And we found that RvD1 increased heme oxygenase-1 (HO-1) expression contributed to the protection on the deterioration of TJs. In addition, we found that RvD1 could reduce pulmonary cellular apoptosis in LPS-induced mice. In conclusion, RvD1 possesses the ability that relieves the pulmonary edema and restores pulmonary capillary permeability and reduces disruption of TJs in LPS-induced ALI of mice, at least in part, by upregulating HO-1 expression.

  20. Spirulina Promotes Stem Cell Genesis and Protects against LPS Induced Declines in Neural Stem Cell Proliferation

    PubMed Central

    Bachstetter, Adam D.; Jernberg, Jennifer; Schlunk, Andrea; Vila, Jennifer L.; Hudson, Charles; Cole, Michael J.; Shytle, R. Douglas; Tan, Jun; Sanberg, Paul R.; Sanberg, Cyndy D.; Borlongan, Cesario; Kaneko, Yuji; Tajiri, Naoki; Gemma, Carmelina; Bickford, Paula C.

    2010-01-01

    Adult stem cells are present in many tissues including, skin, muscle, adipose, bone marrow, and in the brain. Neuroinflammation has been shown to be a potent negative regulator of stem cell and progenitor cell proliferation in the neurogenic regions of the brain. Recently we demonstrated that decreasing a key neuroinflammatory cytokine IL-1β in the hippocampus of aged rats reversed the age-related cognitive decline and increased neurogenesis in the age rats. We also have found that nutraceuticals have the potential to reduce neuroinflammation, and decrease oxidative stress. The objectives of this study were to determine if spirulina could protect the proliferative potential of hippocampal neural progenitor cells from an acute systemic inflammatory insult of lipopolysaccharide (LPS). To this end, young rats were fed for 30 days a control diet or a diet supplemented with 0.1% spirulina. On day 28 the rats were given a single i.p. injection of LPS (1 mg/kg). The following day the rats were injected with BrdU (50 mg/kg b.i.d. i.p.) and were sacrificed 24 hours after the first injection of BrdU. Quantification of the BrdU positive cells in the subgranular zone of the dentate gyrus demonstrated a decrease in proliferation of the stem/progenitor cells in the hippocampus as a result of the LPS insult. Furthermore, the diet supplemented with spirulina was able to negate the LPS induced decrease in stem/progenitor cell proliferation. In a second set of studies we examined the effects of spirulina either alone or in combination with a proprietary formulation (NT-020) of blueberry, green tea, vitamin D3 and carnosine on the function of bone marrow and CD34+ cells in vitro. Spirulina had small effects on its own and more than additive effects in combination with NT-020 to promote mitochondrial respiration and/or proliferation of these cells in culture. When examined on neural stem cells in culture spirulina increased proliferation at baseline and protected against the negative

  1. A TLR4-interacting SPA4 peptide inhibits LPS-induced lung inflammation.

    PubMed

    Ramani, Vijay; Madhusoodhanan, Rakhesh; Kosanke, Stanley; Awasthi, Shanjana

    2013-12-01

    The interaction between surfactant protein-A (SP-A) and TLR4 is important for host defense. We have recently identified an SPA4 peptide region from the interface of SP-A-TLR4 complex. Here, we studied the involvement of the SPA4 peptide region in SP-A-TLR4 interaction using a two-hybrid system, and biological effects of SPA4 peptide in cell systems and a mouse model. HEK293 cells were transfected with plasmid DNAs encoding SP-A or a SP-A-mutant lacking SPA4 peptide region and TLR4. Luciferase activity was measured as the end-point of SP-A-TLR4 interaction. NF-κB activity was also assessed simultaneously. Next, the dendritic cells or mice were challenged with Escherichia coli-derived LPS and treated with SPA4 peptide. Endotoxic shock-like symptoms and inflammatory parameters (TNF-α, NF-κB, leukocyte influx) were assessed. Our results reveal that the SPA4 peptide region contributes to the SP-A-TLR4 interaction and inhibits the LPS-induced NF-κB activity and TNF-α. We also observed that the SPA4 peptide inhibits LPS-induced expression of TNF-α, nuclear localization of NF-κB-p65 and cell influx, and alleviates the endotoxic shock-like symptoms in a mouse model. Our results suggest that the anti-inflammatory activity of the SPA4 peptide through its binding to TLR4 can be of therapeutic benefit.

  2. Fermented guava leaf extract inhibits LPS-induced COX-2 and iNOS expression in Mouse macrophage cells by inhibition of transcription factor NF-kappaB.

    PubMed

    Choi, Soo-Youn; Hwang, Joon-Ho; Park, Soo-Young; Jin, Yeong-Jun; Ko, Hee-Chul; Moon, Sang-Wook; Kim, Se-Jae

    2008-08-01

    The goal of this study was to elucidate the antiinflammatory activities of Psidium guajava L. (guava) leaf. To improve the functionality of guava leaf, it was fermented with Phellinus linteus mycelia, Lactobacillus plantarum and Saccharomyces cerevisiae. The ethanol extract from fermented guava leaf inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production. Western blot analysis showed that fermented guava leaf extract decreased LPS-induced inducible nitric oxide synthase (iNOS) and the cyclooxygenase-2 (COX-2) protein level in RAW 264.7 cells. To investigate the mechanism involved, the study examined the effect of fermented guava leaf extract on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. Fermented guava leaf extract significantly inhibited LPS-induced NF-kappaB transcriptional activity. Immunochemical analysis revealed that fermented guava leaf extract suppressed LPS-induced degradation of I-kappaBalpha. Taken together, the data indicate that fermented guava leaf extract is involved in the inhibition of iNOS and COX-2 via the down-regulation of NF-kappaB pathway, revealing a partial molecular basis for the antiinflammatory properties of fermented guava leaf extract.

  3. Inhibition of CDKS by roscovitine suppressed LPS-induced *NO production through inhibiting NFkappaB activation and BH4 biosynthesis in macrophages.

    PubMed

    Du, Jianhai; Wei, Na; Guan, Tongju; Xu, Hao; An, Jianzhong; Pritchard, Kirkwood A; Shi, Yang

    2009-09-01

    In inflammatory diseases, tissue damage is critically associated with nitric oxide ((*)NO) and cytokines, which are overproduced in response to cellular release of endotoxins. Here we investigated the inhibitory effect of roscovitine, a selective inhibitor of cyclin-dependent kinases (CDKs) on (*)NO production in mouse macrophages. In RAW264.7 cells, we found that roscovitine abolished the production of (*)NO induced by lipopolysaccharide (LPS). Moreover, roscovitine significantly inhibited LPS-induced inducible nitric oxide synthase (iNOS) mRNA and protein expression. Our data also showed that roscovitine attenuated LPS-induced phosphorylation of IkappaB kinase beta (IKKbeta), IkappaB, and p65 but enhanced the phosphorylation of ERK, p38, and c-Jun NH(2)-terminal kinase (JNK). In addition, roscovitine dose dependently inhibited LPS-induced expression of cyclooxygenase-2 (COX)-2, IL-1beta, and IL-6 but not tumor necrosis factor (TNF)-alpha. Tetrahydrobiopterin (BH(4)), an essential cofactor for iNOS, is easily oxidized to 7,8-dihydrobiopterin (BH(2)). Roscovitine significantly inhibited LPS-induced BH(4) biosynthesis and decreased BH(4)-to-BH(2) ratio. Furthermore, roscovitine greatly reduced the upregulation of GTP cyclohydrolase-1 (GCH-1), the rate-limiting enzyme for BH(4) biosynthesis. Using other CDK inhibitors, we found that CDK1, CDK5, and CDK7, but not CDK2, significantly inhibited LPS-induced (*)NO production in macrophages. Similarly, in isolated peritoneal macrophages, roscovitine strongly inhibited (*)NO production, iNOS, and COX-2 upregulation, activation of NFkappaB, and induction of GCH-1 by LPS. Together, our data indicate that roscovitine abolishes LPS-induced (*)NO production in macrophages by suppressing nuclear factor-kappaB activation and BH(4) biosynthesis, which might be mediated by CDK1, CDK5, and CDK7. Our results also suggest that roscovitine may inhibit inflammation and that CDKs may play important roles in the mechanisms by which

  4. Aryl hydrocarbon receptor mediates both proinflammatory and anti-inflammatory effects in lipopolysaccharide-activated microglia.

    PubMed

    Lee, Yi-Hsuan; Lin, Chun-Hua; Hsu, Pei-Chien; Sun, Yu-Yo; Huang, Yu-Jie; Zhuo, Jiun-Horng; Wang, Chen-Yu; Gan, Yu-Ling; Hung, Chia-Chi; Kuan, Chia-Yi; Shie, Feng-Shiun

    2015-07-01

    The aryl hydrocarbon receptor (AhR) regulates peripheral immunity; but its role in microglia-mediated neuroinflammation in the brain remains unknown. Here, we demonstrate that AhR mediates both anti-inflammatory and proinflammatory effects in lipopolysaccharide (LPS)-activated microglia. Activation of AhR by its ligands, formylindolo[3,2-b]carbazole (FICZ) or 3-methylcholanthrene (3MC), attenuated LPS-induced microglial immune responses. AhR also showed proinflammatory effects, as evidenced by the findings that genetic silence of AhR ameliorated the LPS-induced microglial immune responses and LPS-activated microglia-mediated neurotoxicity. Similarly, LPS-induced expressions of tumor necrosis factor α (TNFα) and inducible nitric oxide synthase (iNOS) were reduced in the cerebral cortex of AhR-deficient mice. Intriguingly, LPS upregulated and activated AhR in the absence of AhR ligands via the MEK1/2 signaling pathway, which effects were associated with a transient inhibition of cytochrome P450 1A1 (CYP1A1). Although AhR ligands synergistically enhance LPS-induced AhR activation, leading to suppression of LPS-induced microglial immune responses, they cannot do so on their own in microglia. Chromatin immunoprecipitation results further revealed that LPS-FICZ co-treatment, but not LPS alone, not only resulted in co-recruitment of both AhR and NFκB onto the κB site of TNFα gene promoter but also reduced LPS-induced AhR binding to the DRE site of iNOS gene promoter. Together, we provide evidence showing that microglial AhR, which can be activated by LPS, exerts bi-directional effects on the regulation of LPS-induced neuroinflammation, depending on the availability of external AhR ligands. These findings confer further insights into the potential link between environmental factors and the inflammatory brain disorders.

  5. Lung cell-specific modulation of LPS-induced TLR4 receptor and adaptor localization

    PubMed Central

    Sender, Vicky; Stamme, Cordula

    2014-01-01

    Lung infection by Gram-negative bacteria is a major cause of morbidity and mortality in humans. Lipopolysaccharide (LPS), located in the outer membrane of the Gram-negative bacterial cell wall, is a highly potent stimulus of immune and structural cells via the TLR4/MD2 complex whose function is sequentially regulated by defined subsets of adaptor proteins. Regulatory mechanisms of lung-specific defense pathways point at the crucial role of resident alveolar macrophages, alveolar epithelial cells, the TLR4 receptor pathway, and lung surfactant in shaping the innate immune response to Gram-negative bacteria and LPS. During the past decade intracellular spatiotemporal localization of TLR4 emerged as a key feature of TLR4 function. Here, we briefly review lung cell type- and compartment-specific mechanisms of LPS-induced TLR4 regulation with a focus on primary resident hematopoietic and structural cells as well as modifying microenvironmental factors involved. PMID:25136402

  6. Protective effect of suberoylanilide hydroxamic acid against LPS-induced septic shock in rodents.

    PubMed

    Li, Yongqing; Liu, Baoling; Zhao, Hang; Sailhamer, Elizabeth A; Fukudome, Eugene Y; Zhang, Xiaobo; Kheirbek, Tareq; Finkelstein, Robert A; Velmahos, George C; deMoya, Marc; Hales, Charles A; Alam, Hasan B

    2009-11-01

    We have recently found that suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, improves survival in a lethal model of hemorrhagic shock in rats. The purpose of the present study was to determine whether SAHA treatment would prevent LPS-induced septic shock and improve the survival in a murine model. C57BL/6J mice were randomly divided into two groups. Experimental mice were given intraperitoneal SAHA (50 mg/kg) in vehicle dimethyl sulfoxide fluid (n = 10). The control mice (n = 10) received vehicle dimethyl sulfoxide only. They were injected with LPS (20 mg/kg, i.p.) 2 h later, and the animals from the treatment group were given a second dose of SAHA. Survival was monitored during the next 7 days. In a parallel study, mice treated with or without SAHA were subjected to LPS insult while normal (sham) mice serviced as controls. 1) Lungs were harvested at 3 and 48 h for analysis of gene expression and pathologic changes, respectively; 2) spleens were isolated for analysis of neutrophilic cell population. In addition, RAW264.7 mouse macrophages were cultured to assess the effects of SAHA on LPS-induced inflammation in vitro. All mice in the control group that were subjected to LPS challenge died in less than 48 h. However, SAHA-treated animals displayed a significantly higher 1-week survival rate (87.5%) compared with the control group (0%). Moreover, LPS insult decreased the acetylation of histone proteins (H2A, H2B, and H3), elevated the levels of TNF-alpha in vivo (circulation) and in vitro (culture medium), increased the neutrophilic cell population in the spleen, enhanced the expression of TNF-alpha and IL-1beta genes in lung tissue, and augmented the pulmonary neutrophil infiltration. In contrast, SAHA treatment markedly attenuated all of these LPS-induced alterations. We report for the first time that administration of SAHA (50 mg/kg) significantly attenuates a variety of inflammatory markers and improves long-term survival after a lethal

  7. Pretreatment of lipopolysaccharide (LPS) ameliorates D-GalN/LPS induced acute liver failure through TLR4 signaling pathway.

    PubMed

    Zhang, Sainan; Yang, Naibin; Ni, Shunlan; Li, Wenyuan; Xu, Lanman; Dong, Peihong; Lu, Mingqin

    2014-01-01

    Endotoxin tolerance (ET) is an important phenomenon, which affects inflammation and phagocytosis. Pretreatment with low dose of lipopolysaccharide (LPS) can protect liver injury from various hepatotoxicants such as acetaminophen and pseudomonas aeruginosa exotoxin A. The current study aimed to investigate the protecting mechanisms of endotoxin tolerance in acute liver failure induced by D-galactosamine (D-GalN)/LPS and possible role of toll-like receptors 4 (TLR4) signaling pathway in this phenomenon. Acute liver failure was induced by Injection of D-GalN/LPS. To mimic endotoxin tolerance, male Sprague-Dawley rats were treated with low dose of LPS (0.1 mg/kg once a day intraperitoneally for consecutive five days) before subsequent injection of D-GalN/LPS. Rat survival was determined by survival rate. Liver injury was confirmed by serum biochemical and liver histopathological examination. Inflammatory cytokines were determined by ELISA and nuclear factor-kappa B (NF-κB) (P65), toll-like receptors 4 (TLR4) and Interleukin-1 receptor-associated kinase-1 (IRAK-1) were measured by reverse transcriptase polymerase chain reaction and western blot respectively. Pretreatment of LPS significantly improved rat survival. Moreover, rats pretreated with LPS exhibited lower serum enzyme (ALT, AST and TBiL) level, lower production of inflammatory cytokines and more minor liver histopathological damage than rats without pretreatment of LPS. LPS pretreatment suppressed production of TLR4 and IRAK-1. LPS pretreatment also inhibited activation of hepatic NF-κB. These results indicated that endotoxin tolerance contributed to liver protection against D-GalN/LPS induced acute liver failure through down-regulation of TLR4 and NF-κB pathway.

  8. Pretreatment of lipopolysaccharide (LPS) ameliorates D-GalN/LPS induced acute liver failure through TLR4 signaling pathway

    PubMed Central

    Zhang, Sainan; Yang, Naibin; Ni, Shunlan; Li, Wenyuan; Xu, Lanman; Dong, Peihong; Lu, Mingqin

    2014-01-01

    Endotoxin tolerance (ET) is an important phenomenon, which affects inflammation and phagocytosis. Pretreatment with low dose of lipopolysaccharide (LPS) can protect liver injury from various hepatotoxicants such as acetaminophen and pseudomonas aeruginosa exotoxin A. The current study aimed to investigate the protecting mechanisms of endotoxin tolerance in acute liver failure induced by D-galactosamine (D-GalN)/LPS and possible role of toll-like receptors 4 (TLR4) signaling pathway in this phenomenon. Acute liver failure was induced by Injection of D-GalN/LPS. To mimic endotoxin tolerance, male Sprague-Dawley rats were treated with low dose of LPS (0.1 mg/kg once a day intraperitoneally for consecutive five days) before subsequent injection of D-GalN/LPS. Rat survival was determined by survival rate. Liver injury was confirmed by serum biochemical and liver histopathological examination. Inflammatory cytokines were determined by ELISA and nuclear factor-kappa B (NF-κB) (P65), toll-like receptors 4 (TLR4) and Interleukin-1 receptor-associated kinase-1 (IRAK-1) were measured by reverse transcriptase polymerase chain reaction and western blot respectively. Pretreatment of LPS significantly improved rat survival. Moreover, rats pretreated with LPS exhibited lower serum enzyme (ALT, AST and TBiL) level, lower production of inflammatory cytokines and more minor liver histopathological damage than rats without pretreatment of LPS. LPS pretreatment suppressed production of TLR4 and IRAK-1. LPS pretreatment also inhibited activation of hepatic NF-κB. These results indicated that endotoxin tolerance contributed to liver protection against D-GalN/LPS induced acute liver failure through down-regulation of TLR4 and NF-κB pathway. PMID:25400741

  9. Retinoic acid dampens LPS-induced NF-kappaB activity: results from human monoblasts and in vivo imaging of NF-kappaB reporter mice.

    PubMed

    Austenaa, Liv M; Carlsen, Harald; Hollung, Kristin; Blomhoff, Heidi K; Blomhoff, Rune

    2009-09-01

    Bacterial lipopolysaccharide (LPS) is a major inducer of systemic inflammatory reactions and oxidative stress in response to microbial infections and may cause sepsis. In the present study, we demonstrate that retinoic acid inhibits LPS-induced activation in transgenic reporter mice and human monoblasts through inhibition of nuclear factor kappaB (NF-kappaB). By using noninvasive molecular imaging of NF-kappaB luciferase reporter mice, we showed that administration of retinoic acid repressed LPS-induced whole-body luminescence, demonstrating in vivo the dynamics of retinoic acid's ability to repress physiologic response to LPS. Retinoic acid also inhibited LPS-induced NF-kappaB activity in the human myeloblastic cell line U937. Retinoic-acid-receptor-selective agonists mimicked - while specific antagonists inhibited - the effects of retinoic acid, suggesting the involvement of nuclear retinoic acid receptors. Retinoic acid also repressed LPS-induced transcription of NF-kappaB target genes such as IL-6, MCP-1 and COX-2. The effect of retinoic acid was dependent on new protein synthesis, was obstructed by a deacetylase inhibitor and was partly eliminated by a signal transducer and activator of transcription-1 (STAT1)/methyltransferase inhibitor, indicating that retinoic acid induces a new protein, possibly STAT1, that is involved in inhibiting NF-kappaB. This provides more evidence for retinoic acid's anti-inflammatory potential, which may have clinical implications in terms of fighting microbial infections.

  10. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis.

    PubMed

    Lv, Hongming; Liu, Qinmei; Wen, Zhongmei; Feng, Haihua; Deng, Xuming; Ci, Xinxin

    2017-03-02

    Abundant natural flavonoids can induce nuclear factor-erythroid 2 related factor 2 (Nrf2) and/or AMP-activated protein kinase (AMPK) activation, which play crucial roles in the amelioration of various inflammation- and oxidative stress-induced diseases, including acute lung injury (ALI). Xanthohumol (Xn), a principal prenylflavonoid, possesses anti-inflammation and anti-oxidant activities. However, whether Xn could protect from LPS-induced ALI through inducing AMPK/Nrf2 activation and its downstream signals, are still poorly elucidated. Accordingly, we focused on exploring the protective effect of Xn in the context of ALI and the involvement of underlying molecular mechanisms. Our findings indicated that Xn effectively alleviated lung injury by reduction of lung W/D ratio and protein levels, neutrophil infiltration, MDA and MPO formation, and SOD and GSH depletion. Meanwhile, Xn significantly lessened histopathological changes, reactive oxygen species (ROS) generation, several cytokines secretion, and iNOS and HMGB1 expression, and inhibited Txnip/NLRP3 inflammasome and NF-κB signaling pathway activation. Additionally, Xn evidently decreased t-BHP-stimulated cell apoptosis, ROS generation and GSH depletion but increased various anti-oxidative enzymes expression regulated by Keap1-Nrf2/ARE activation, which may be associated with AMPK and GSK3β phosphorylation. However, Xn-mediated inflammatory cytokines and ROS production, histopathological changes, Txnip/NLRP3 inflammasome and NF-κB signaling pathway in WT mice were remarkably abrogated in Nrf2(-/-) mice. Our experimental results firstly provided a support that Xn effectively protected LPS-induced ALI against oxidative stress and inflammation damage which are largely dependent upon upregulation of the Nrf2 pathway via activation of AMPK/GSK3β, thereby suppressing LPS-activated Txnip/NLRP3 inflammasome and NF-κB signaling pathway.

  11. Loss of Jak2 selectively suppresses DC-mediated innate immune response and protects mice from lethal dose of LPS-induced septic shock.

    PubMed

    Zhong, Jixin; Yang, Ping; Muta, Kenjiro; Dong, Robert; Marrero, Mario; Gong, Feili; Wang, Cong-Yi

    2010-03-09

    Given the importance of Jak2 in cell signaling, a critical role for Jak2 in immune cells especially dendritic cells (DCs) has long been proposed. The exact function for Jak2 in DCs, however, remained poorly understood as Jak2 deficiency leads to embryonic lethality. Here we established Jak2 deficiency in adult Cre(+/+)Jak2(fl/fl) mice by tamoxifen induction. Loss of Jak2 significantly impaired DC development as manifested by reduced BMDC yield, smaller spleen size and reduced percentage of DCs in total splenocytes. Jak2 was also crucial for the capacity of DCs to mediate innate immune response. Jak2(-/-) DCs were less potent in response to inflammatory stimuli and showed reduced capacity to secrete proinflammatory cytokines such as TNFalpha and IL-12. As a result, Jak2(-/-) mice were defective for the early clearance of Listeria after infection. However, their potency to mediate adaptive immune response was not affected. Unlike DCs, Jak2(-/-) macrophages showed similar capacity secretion of proinflammatory cytokines, suggesting that Jak2 selectively modulates innate immune response in a DC-dependent manner. Consistent with these results, Jak2(-/-) mice were remarkably resistant to lethal dose of LPS-induced septic shock, a deadly sepsis characterized by the excessive innate immune response, and adoptive transfer of normal DCs restored their susceptibility to LPS-induced septic shock. Mechanistic studies revealed that Jak2/SATA5 signaling is pivotal for DC development and maturation, while the capacity for DCs secretion of proinflammatory cytokines is regulated by both Jak2/STAT5 and Jak2/STAT6 signaling.

  12. Protection against LPS-induced cartilage inflammation and degradation provided by a biological extract of Mentha spicata

    PubMed Central

    2010-01-01

    Background A variety of mint [Mentha spicata] has been bred which over-expresses Rosmarinic acid (RA) by approximately 20-fold. RA has demonstrated significant anti-inflammatory activity in vitro and in small rodents; thus it was hypothesized that this plant would demonstrate significant anti-inflammatory activity in vitro. The objectives of this study were: a) to develop an in vitro extraction procedure which mimics digestion and hepatic metabolism, b) to compare anti-inflammatory properties of High-Rosmarinic-Acid Mentha spicata (HRAM) with wild-type control M. spicata (CM), and c) to quantify the relative contributions of RA and three of its hepatic metabolites [ferulic acid (FA), caffeic acid (CA), coumaric acid (CO)] to anti-inflammatory activity of HRAM. Methods HRAM and CM were incubated in simulated gastric and intestinal fluid, liver microsomes (from male rat) and NADPH. Concentrations of RA, CA, CO, and FA in simulated digest of HRAM (HRAMsim) and CM (CMsim) were determined (HPLC) and compared with concentrations in aqueous extracts of HRAM and CM. Cartilage explants (porcine) were cultured with LPS (0 or 3 μg/mL) and test article [HRAMsim (0, 8, 40, 80, 240, or 400 μg/mL), or CMsim (0, 1, 5 or 10 mg/mL), or RA (0.640 μg/mL), or CA (0.384 μg/mL), or CO (0.057 μg/mL) or FA (0.038 μg/mL)] for 96 h. Media samples were analyzed for prostaglandin E2 (PGE2), interleukin 1β (IL-1), glycosaminoglycan (GAG), nitric oxide (NO) and cell viability (differential live-dead cell staining). Results RA concentration of HRAMsim and CMsim was 49.3 and 0.4 μg/mL, respectively. CA, FA and CO were identified in HRAMsim but not in aqueous extract of HRAM. HRAMsim (≥ 8 μg/mL) inhibited LPS-induced PGE2 and NO; HRAMsim (≥ 80 μg/mL) inhibited LPS-induced GAG release. RA inhibited LPS-induced GAG release. No anti-inflammatory or chondroprotective effects of RA metabolites on cartilage explants were identified. Conclusions Our biological extraction procedure produces a

  13. Protection against LPS-induced cartilage inflammation and degradation provided by a biological extract of Mentha spicata.

    PubMed

    Pearson, Wendy; Fletcher, Ronald S; Kott, Laima S; Hurtig, Mark B

    2010-05-11

    A variety of mint [Mentha spicata] has been bred which over-expresses Rosmarinic acid (RA) by approximately 20-fold. RA has demonstrated significant anti-inflammatory activity in vitro and in small rodents; thus it was hypothesized that this plant would demonstrate significant anti-inflammatory activity in vitro. The objectives of this study were: a) to develop an in vitro extraction procedure which mimics digestion and hepatic metabolism, b) to compare anti-inflammatory properties of High-Rosmarinic-Acid Mentha spicata (HRAM) with wild-type control M. spicata (CM), and c) to quantify the relative contributions of RA and three of its hepatic metabolites [ferulic acid (FA), caffeic acid (CA), coumaric acid (CO)] to anti-inflammatory activity of HRAM. HRAM and CM were incubated in simulated gastric and intestinal fluid, liver microsomes (from male rat) and NADPH. Concentrations of RA, CA, CO, and FA in simulated digest of HRAM (HRAMsim) and CM (CMsim) were determined (HPLC) and compared with concentrations in aqueous extracts of HRAM and CM. Cartilage explants (porcine) were cultured with LPS (0 or 3 microg/mL) and test article [HRAMsim (0, 8, 40, 80, 240, or 400 microg/mL), or CMsim (0, 1, 5 or 10 mg/mL), or RA (0.640 microg/mL), or CA (0.384 microg/mL), or CO (0.057 microg/mL) or FA (0.038 microg/mL)] for 96 h. Media samples were analyzed for prostaglandin E2 (PGE2), interleukin 1beta (IL-1), glycosaminoglycan (GAG), nitric oxide (NO) and cell viability (differential live-dead cell staining). RA concentration of HRAMsim and CMsim was 49.3 and 0.4 microg/mL, respectively. CA, FA and CO were identified in HRAMsim but not in aqueous extract of HRAM. HRAMsim (> or = 8 microg/mL) inhibited LPS-induced PGE2 and NO; HRAMsim (> or = 80 microg/mL) inhibited LPS-induced GAG release. RA inhibited LPS-induced GAG release. No anti-inflammatory or chondroprotective effects of RA metabolites on cartilage explants were identified. Our biological extraction procedure produces a

  14. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    SciTech Connect

    Xi, Feng; Liu, Yuan; Wang, Xiujuan; Kong, Wei; Zhao, Feng

    2016-01-29

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  15. Saponarin from barley sprouts inhibits NF-κB and MAPK on LPS-induced RAW 264.7 cells.

    PubMed

    Seo, Kyung Hye; Park, Mi Jin; Ra, Ji-Eun; Han, Sang-Ik; Nam, Min-Hee; Kim, Jin Hyo; Lee, Jin Hwan; Seo, Woo Duck

    2014-11-01

    Saponarin (SA), a natural flavonoid, is known for its antioxidant and hepatoprotective activities. SA is the predominant compound (1142.7 ± 0.9 mg per 100 g) in barley sprouts, constituting 72% of the total polyphenol content. We investigated, for the first time, the effects of SA from barley sprouts on cellular anti-inflammatory responses. In lipopolysaccharide (LPS)-induced RAW 264.7 macrophages, SA suppressed the activation of NF-κB, as evidenced by the inhibition of NF-κB DNA binding, nuclear translocation, IκBα phosphorylation, and reporter gene expression, and it downregulated the expression of the pro-inflammatory mediator IL-6. Furthermore, SA reduced the transcription of NF-κB target molecules COX2 and FLIP inhibited the phosphorylation of mitogen-activated protein kinases ERK and p38. These results suggest that SA isolated from barley sprouts exerts anti-inflammatory effects in LPS-induced RAW 264.7 macrophages via inhibition of NF-κB, ERK and p38 signaling. Thus, SA may be a promising natural anti-inflammatory agent.

  16. [Effects of combination of glycyrrhizin acid, ligustrazine and puerarin on LPS-induced cytokines expression in macrophage].

    PubMed

    Liu, Zhao; Zhong, Ju-ying; Gao, Er-ning; Yang, Hong

    2015-10-01

    To study the anti-inflammatory activity of glycyrrhizin acid, ligustrazine and puerarin. In the study, the liquichip-based high-throughput synchronous detection technique for 23 inflammatory factors, uniform design, comprehensive weight method were adopted to study the effect of different combined administration of glycyrrhizin acid, ligustrazine and puerarin in inhibiting the expression of lipopolysaccharide (LPS)-induced RAW264. 7 cells and multiple inflammatory cytokines. In the study, the uniform design table U₉ (9³) was adopted to design doses of glycyrrhizin acid, ligustrazine and puerarin. The liquichip technique was used to detect the effect of different combined administration of glycyrrhizin acid, ligustrazine and puerarin on the 23 cytokines expressed in LPS-induced mouse macrophage RAW264. 7 inflammation model. The traditional Chinese medicine component optimization software and the improved least angle regression algorithm were used to analyze the dose-effect relationship among the three components and the cytokine inhibition rate and produce the regression equation. The comprehensive weight method was applied to get the optimal dose ratio of glycyrrhizic acid, ligustrazine and puerarin with highest efficacy of 25:2:13 and verify the optimal dose ratio. The verification results were consistent with the prediction trend, indicating the accuracy of the mathematical model for predicting the experiment. The experimental results showed the multi-target and multi-level efficacies of glycyrrhizic acid, ligustrazine and puerarin and the high anti-inflammatory activity of their combined administration, which provides powerful basis for subsequent drug development.

  17. Identification of LPS-inducible genes downregulated by ubiquinone in human THP-1 monocytes.

    PubMed

    Schmelzer, Constance; Döring, Frank

    2010-01-01

    Coenzyme Q(10) (CoQ(10)) is an obligatory element in the respiratory chain and functions as a potent antioxidant of lipid membranes. More recently, anti-inflammatory effects as well as an impact of CoQ(10) on gene expression have been observed. To reveal putative effects of Q(10) on LPS-induced gene expression, whole genome expression analysis was performed in the monocytic cell line THP-1. Thousand one hundred twenty-nine and 710 probe sets have been identified to be significantly (P LPS-inducible genes in the monocytic cell line THP-1. Thus, the previously described effects of Q(10) on the reduction of proinflammatory mediators might be due to its antioxidant impact on gene expression.

  18. LPS induces HUVEC angiogenesis in vitro through miR-146a-mediated TGF-β1 inhibition

    PubMed Central

    Li, Yize; Zhu, Huayu; Wei, Xu; Li, Heng; Yu, Zhicao; Zhang, Hongmei; Liu, Wenchao

    2017-01-01

    Angiogenesis is an essential process for tissue growth and embryo development. However, inflammation, abnormal wound healing, vascular diseases, and tumor development and progression can result from inappropriate angiogenesis. Lipopolysaccharide (LPS) can activate various cells and alter endothelium function and angiogenesis. This study investigated the underlying molecular events involved in LPS-induced angiogenesis and revealed a novel strategy for controlling abnormal angiogenesis. LPS treatment promoted wound healing and tube formation in human umbilical vein endothelial cell (HUVEC) cultures and induced their expression of miR-146a. miR-146a was previously shown to regulate angiogenesis in HUVECs. Knockdown of miR-146a expression antagonized LPS-induced angiogenesis in vitro. Moreover, bioinformatic analyses predicted TGF-β1 as a target gene for miR-146a, which was confirmed by aluciferase reporter assay. Expression of miR-146a in HUVECs resulted in downregulation of TGF-β1 in HUVECs, whereas a miR-146a inhibitor upregulated the expression of TGF-β1 and TGF-β1 downstream proteins, such as phosphoraylation-Smad2 and plasminogen activator inhibitor type 1 (PAI-1). Furthermore, the TGF-β1 signaling inhibitor SB431542 impaired the ability of miR-146a knockdown to suppress LPS-induced angiogenesis. Thus, LPS-induced angiogenesis of HUVECs functions through miR-146a upregulation and TGF-β1 inhibition. This study suggests that knockdown of miR-146a could activate TGF-β1 signaling to inhibit angiogenesis as a potential therapy for angiogenesis-related diseases. PMID:28337286

  19. Acute and chronic effects of treatment with mesenchymal stromal cells on LPS-induced pulmonary inflammation, emphysema and atherosclerosis development

    PubMed Central

    Khedoe, P. Padmini S. J.; de Kleijn, Stan; van Oeveren-Rietdijk, Annemarie M.; Plomp, Jaap J.; de Boer, Hetty C.; van Pel, Melissa; Rensen, Patrick C. N.

    2017-01-01

    Background COPD is a pulmonary disorder often accompanied by cardiovascular disease (CVD), and current treatment of this comorbidity is suboptimal. Systemic inflammation in COPD triggered by smoke and microbial exposure is suggested to link COPD and CVD. Mesenchymal stromal cells (MSC) possess anti-inflammatory capacities and MSC treatment is considered an attractive treatment option for various chronic inflammatory diseases. Therefore, we investigated the immunomodulatory properties of MSC in an acute and chronic model of lipopolysaccharide (LPS)-induced inflammation, emphysema and atherosclerosis development in APOE*3-Leiden (E3L) mice. Methods Hyperlipidemic E3L mice were intranasally instilled with 10 μg LPS or vehicle twice in an acute 4-day study, or twice weekly during 20 weeks Western-type diet feeding in a chronic study. Mice received 0.5x106 MSC or vehicle intravenously twice after the first LPS instillation (acute study) or in week 14, 16, 18 and 20 (chronic study). Inflammatory parameters were measured in bronchoalveolar lavage (BAL) and lung tissue. Emphysema, pulmonary inflammation and atherosclerosis were assessed in the chronic study. Results In the acute study, intranasal LPS administration induced a marked systemic IL-6 response on day 3, which was inhibited after MSC treatment. Furthermore, MSC treatment reduced LPS-induced total cell count in BAL due to reduced neutrophil numbers. In the chronic study, LPS increased emphysema but did not aggravate atherosclerosis. Emphysema and atherosclerosis development were unaffected after MSC treatment. Conclusion These data show that MSC inhibit LPS-induced pulmonary and systemic inflammation in the acute study, whereas MSC treatment had no effect on inflammation, emphysema and atherosclerosis development in the chronic study. PMID:28910300

  20. BQ-123 prevents LPS-induced preterm birth in mice via the induction of uterine and placental IL-10

    SciTech Connect

    Olgun, Nicole S.; Hanna, Nazeeh; Reznik, Sandra E.

    2015-02-01

    Preterm birth (PTB), defined as any delivery occurring prior to the completion of 37 weeks' gestation, currently accounts for 11–12% of all births in the United States. Maternal genito-urinary infections account for up to 40% of all PTBS and induce a pro-inflammatory state in the host. The potent vasoconstrictor Endothelin-1 (ET-1) is known to be upregulated in the setting of infection, and elicits its effect by binding to the ET{sub A} receptor. We have previously shown that antagonism of the ET{sub A} receptor with BQ-123 is capable of preventing LPS-induced PTB in mice. We hypothesize that the administration of BQ-123 post LPS exposure will dismantle a positive feedback loop observed with pro-inflammatory cytokines upstream of ET-1. On GD 15.5, pregnant C57BL/6 mice were injected with PBS, LPS, BQ-123, or LPS + BQ-123. Changes at both the level of transcription and translation were observed in uterus and placenta in the ET-1 axis and in pro- and anti-inflammatory cytokines over the course of 12 h. We discovered that BQ-123, when administered 10 h post LPS, is capable of increasing production of uterine and placental Interleukin-10, causing a shift away from the pro-inflammatory state. We also observed that antagonism of the ET{sub A} receptor decreased IL-1β and TNFα in the placenta while also decreasing transcription of ET-1 in the uterus. Our results reinforce the role of ET-1 at the maternal fetal interface and highlight the potential benefit of ET{sub A} receptor blockade via the suppression of ET-1, and induction of a Th2 cytokine dominant state. - Highlights: • The pro-inflammatory response to LPS in the uterus and placenta is ET-1 dependent. • ET{sub A} blockade triggers up-regulation of IL-10 in uterus and placenta. • A positive feedback loop drives ET-1 expression in gestational tissue.

  1. Apigenin Protects Endothelial Cells from Lipopolysaccharide (LPS)-Induced Inflammation by Decreasing Caspase-3 Activation and Modulating Mitochondrial Function

    PubMed Central

    Duarte, Silvia; Arango, Daniel; Parihar, Arti; Hamel, Patrice; Yasmeen, Rumana; Doseff, Andrea I.

    2013-01-01

    Acute and chronic inflammation is characterized by increased reactive oxygen species (ROS) production, dysregulation of mitochondrial metabolism and abnormal immune function contributing to cardiovascular diseases and sepsis. Clinical and epidemiological studies suggest potential beneficial effects of dietary interventions in inflammatory diseases but understanding of how nutrients work remains insufficient. In the present study, we evaluated the effects of apigenin, an anti-inflammatory flavonoid abundantly found in our diet, in endothelial cells during inflammation. Here, we show that apigenin reduced lipopolysaccharide (LPS)-induced apoptosis by decreasing ROS production and the activity of caspase-3 in endothelial cells. Apigenin conferred protection against LPS-induced mitochondrial dysfunction and reestablished normal mitochondrial complex I activity, a major site of electron leakage and superoxide production, suggesting its ability to modulate endothelial cell metabolic function during inflammation. Collectively, these findings indicate that the dietary compound apigenin stabilizes mitochondrial function during inflammation preventing endothelial cell damage and thus provide new translational opportunities for the use of dietary components in the prevention and treatment of inflammatory diseases. PMID:23989609

  2. Isoalantolactone inhibits LPS-induced inflammation via NF-κB inactivation in peritoneal macrophages and improves survival in sepsis.

    PubMed

    He, Guodong; Zhang, Xu; Chen, Yanhua; Chen, Jing; Li, Li; Xie, Yubo

    2017-04-10

    Sepsis, a clinical syndrome occurring in patients following infection or injury, is a leading cause of mortality worldwide. It involves uncontrolled inflammatory response resulting in multi-organ failure and even death. Isoalantolactone (IAL), a sesquiterpene lactone, is known for its anti-cancer effects. Nevertheless, little is known about the anti-inflammatory effects of IAL, and the role of IAL in sepsis is unclear. In this study, we demonstrated that IAL decreased lipopolysaccharide (LPS)-mediated production of nitric oxide, PEG2 and cytokines (IL-6, TNF-α) in peritoneal macrophages and RAW 264.7 macrophages. Moreover, molecular mechanism studies indicated that IAL plays an anti-inflammatory role by inhibiting LPS-induced activation of NF-κB pathway in peritoneal macrophages. In vivo, IAL reduced the secretion of IL-6 and TNF-α in serum, and increased the survival rate of mice with LPS-induced sepsis. In addition, IAL attenuated the activation of NF-κB pathway in liver. Taken together, our data suggest that IAL may represent a potentially new drug candidate for the treatment of sepsis.

  3. Dissociation of lipopolysaccharide (LPS)-inducible gene expression in murine macrophages pretreated with smooth LPS versus monophosphoryl lipid A.

    PubMed Central

    Henricson, B E; Manthey, C L; Perera, P Y; Hamilton, T A; Vogel, S N

    1993-01-01

    Lipopolysaccharide (LPS) and the nontoxic derivative of lipid A, monophosphoryl lipid A (MPL), were employed to assess the relationship between expression of LPS-inducible inflammatory genes and the induction of tolerance to LPS in murine macrophages. Both LPS and MPL induced expression (as assessed by increased steady-state mRNA levels) of a panel of seven "early" inflammatory genes including the tumor necrosis factor alpha (TNF-alpha), interleukin-1 beta, type 2 TNF receptor (TNFR-2), IP-10, D3, D8, and D2 genes (the last four represent LPS-inducible early genes whose functions remain unknown). In addition, LPS and MPL were both capable of inducing tolerance to LPS. The two stimuli differed in the relative concentration required to induce various outcome measures, with LPS being 100- to 1,000-fold more potent on a mass concentration basis. Characterization of the tolerant state identified three distinct categories of responsiveness. Two genes (IP-10 and D8) exhibited strong desensitization in macrophages pretreated with tolerance-inducing concentrations of either LPS or MPL. In macrophages rendered tolerant by pretreatment with LPS or MPL, a second group of inducible mRNAs (TNF-alpha, interleukin-1 beta, and D3) showed moderate suppression of response to secondary stimulation by LPS. The third category of inducible genes (TNFR-2 and D2) showed increased expression in macrophages pretreated with tolerance-inducing concentrations of either LPS or MPL. All of the LPS-inducible genes examined exhibited modest superinduction with less than tolerance-inducing concentrations of either stimulus, suggesting a priming effect of these adjuvants at low concentration. The differential behavior of the members of this panel of endotoxin-responsive genes thus offers insight into molecular events associated with acquisition of transient tolerance to LPS. PMID:8388859

  4. Intermedin attenuates LPS-induced inflammation in the rat testis.

    PubMed

    Li, Lei; Ma, Ping; Liu, Yongjun; Huang, Chen; O, Wai-sum; Tang, Fai; Zhang, Jian V

    2013-01-01

    First reported as a vasoactive peptide in the cardiovascular system, intermedin (IMD), also known as adrenomedullin 2 (ADM2), is a hormone with multiple potent roles, including its antioxidant action on the pulmonary, central nervous, cardiovascular and renal systems. Though IMD may play certain roles in trophoblast cell invasion, early embryonic development and cumulus cell-oocyte interaction, the role of IMD in the male reproductive system has yet to be investigated. This paper reports our findings on the gene expression of IMD, its receptor components and its protein localization in the testes. In a rat model, bacterial lippolysaccharide (LPS) induced atypical orchitis, and LPS treatment upregulated the expression of IMD and one of its receptor component proteins, i.e. receptor activity modifying protein 2 (RAMP2). IMD decreased both plasma and testicular levels of reactive oxygen species (ROS) production, attenuated the increase in the gene expression of the proinflammatory cytokines tumor necrosis factor alpha (TNFα), interleukin 6 (IL6) and interleukin 1 beta (IL1β), rescued spermatogenesis, and prevented the decrease in plasma testosterone levels caused by LPS. The restorative effect of IMD on steroidogenesis was also observed in hydrogen peroxide-treated rat primary Leydig cells culture. Our results indicate IMD plays an important protective role in spermatogenesis and steroidogenesis, suggesting therapeutic potential for IMD in pathological conditions such as orchitis.

  5. Yuwen02f1 suppresses LPS-induced endotoxemia and adjuvant-induced arthritis primarily through blockade of ROS formation, NFkB and MAPK activation.

    PubMed

    Hsu, Chun-Chieh; Lien, Jin-Cherng; Chang, Chia-Wen; Chang, Chien-Hsin; Kuo, Sheng-Chu; Huang, Tur-Fu

    2013-02-01

    Phagocytes release inflammatory mediators to defense harmful stimuli upon bacterial invasion, however, excessive inflammatory reaction leads to tissue damage and manifestation of pathological states. Therefore, targeting on uncontrolled inflammation seems feasible to control numerous inflammation-associated diseases. Under the drug screening process of synthetic diphenylpyrazole derivatives, we discovered compound yuwen02f1 possesses anti-inflammatory effects in decreasing the release of pro-inflammatory cytokines including TNFα and IL-6, nitric oxide, reactive oxygen species (ROS) as well as inhibiting migration of LPS-stimulated phagocytes. In addition, we observed that the molecular mechanism of yuwen02f1-mediated anti-inflammation is associated with decreasing phosphorylation of MAPK molecules including ERK1/2, JNK and p38, and attenuating translocation of p47(phox) and p67(phox) to the cell membrane. Yuwen02f1 also reverses IκBα degradation and attenuates the expression of NFκB-related downstream inducible enzymes like iNOS and COX-2. Furthermore, we found that yuwen02f1 attenuates some pathological syndromes of LPS-induced sepsis and adjuvant-induced arthritis in mice, as evidenced by decreasing the cytokine production, reversing thrombocytopenic syndrome, protecting the mice from tissue injury in septic mice, and attenuating paw edema in arthritic mice as well. These results suggest that yuwen02f1 is a potential anti-inflammatory agent for alleviating syndromes of acute and chronic inflammatory diseases as evidenced by attenuating the generation of cytokines and down-regulating the expression of iNOS and COX-2 through the blockade of ROS generation and NADPH oxidase, NFκB and MAPK activation pathways in LPS-stimulated phagocytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Enhanced expression of single immunoglobulin IL-1 receptor-related molecule ameliorates LPS-induced acute lung injury in mice.

    PubMed

    Chen, XuXin; Zhao, YunFeng; Wu, XueLing; Qian, GuiSheng

    2011-02-01

    Single Ig IL-1 receptor-related molecule (SIGIRR) is one of the members of the Toll-like receptor (TLR)-IL-1 receptor superfamily. Previous studies demonstrated that SIGIRR can function as a negative regulator of IL-1 and LPS signaling. The purpose of this study was to evaluate the effect of enhanced expression of SIGIRR on LPS-induced acute lung injury. We constructed a recombinant adenoviral vector expressing murine SIGIRR (Ad.mSIGIRR) and a control adenoviral vector containing no transgene (Ad.V). A total of 4 × 10⁷ plaque-forming units of Ad.mSIGIRR or Ad.V adenoviral vector were administered intranasally to BALB/c mice. Forty-eight hours later, all the mice were administered a single dose of LPS via i.p. injection to induce lung injury. Lungs and blood were harvested at several time points. The expression of SIGIRR in lung, the histological changes in the lung, the levels of TNF-α in serum and lung, the concentration of nitric monoxide (NO) in lung, and the activity of myeloperoxidase and nuclear transcription factor κB in the lung were examined. A second cohort of mice was followed for survival for 7 days. Administration of Ad.mSIGIRR increased the expression of SIGIRR in lung tissue, as determined by reverse transcription-polymerase chain reaction, Western blot, and immunohistochemistry. Administration of Ad.mSIGIRR significantly suppressed the inflammatory reaction to LPS, attenuated the lung pathological changes, and improved the survival of mice, relative to a control adenovirus. These findings suggest that modulating the expression level of SIGIRR may be a promising potential treatment for acute lung injury.

  7. Polyphenols from blueberries modulate inflammation cytokines in LPS-induced RAW264.7 macrophages.

    PubMed

    Cheng, Anwei; Yan, Haiqing; Han, Caijing; Wang, Wenliang; Tian, Yaoqi; Chen, Xiangyan

    2014-08-01

    Polyphenols including 3-glucoside/arabinoside/galactoside-based polymers of delphinidins, petunidins, peonidins, malvidins and cyanidins are one type of biological macromolecules, which are extraordinarily rich in blueberries. Anti-inflammatory activity of blueberry polyphenols (BPPs) was investigated by using lipopolysaccharide (LPS) induced RAW264.7 macrophages. The results showed that BPPs suppressed the gene expression of IL-1β (interleukin-1β), IL-6 and IL-12p35. The inhibition effect on IL-1β and IL-6 mRNA was most obvious at the concentration of 10-200μg/mL BPPs. But the inhibition effect on IL-12p35 mRNA was increased with the increasing concentration of BPPs. When fixed at 100μg/mL BPPs, the most significant inhibition on IL-1β, IL-6 and IL-12p35 mRNA expression was detected at 12-48h. In conclusion, BPPs exhibit anti-inflammation activity by mediating and modulating the balances in pro-inflammatory cytokines of IL-1β, IL-6, and IL-12.

  8. Lycopene inhibits LPS-induced proinflammatory mediator inducible nitric oxide synthase in mouse macrophage cells.

    PubMed

    Rafi, Mohamed M; Yadav, Prem Narayan; Reyes, Marynell

    2007-01-01

    Lycopene is a fat-soluble red-orange carotenoid found primarily in tomatoes and tomato-derived products, including tomato sauce, tomato paste, and ketchup, and other dietary sources, including dried apricots, guava, watermelon, papaya, and pink grapefruit. In this study, we have demonstrated the molecular mechanism underlying the anti-inflammatory properties of lycopene using a mouse macrophage cell line (RAW 264.7). Treatment with lycopene (10 microM) inhibited lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production (40% compared with the control). Western blotting and reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that lycopene treatment decreased LPS-induced inducible nitric oxide synthase (iNOS) protein and mRNA expression in RAW 264.7 cells, respectively. These results suggest that lycopene has anti-inflammatory activity by inhibiting iNOS proteins and mRNA expressions in mouse macrophage cell lines. Furthermore, cyclooxygenase-2 (COX-2) protein and mRNA expression were not affected by treatment with lycopene.

  9. Herbal medicine IMOD suppresses LPS-induced production of proinflammatory cytokines in human dendritic cells

    PubMed Central

    Mirzaee, Saeedeh; Drewniak, Agata; Sarrami-Forooshani, Ramin; Kaptein, Tanja M.; Gharibdoost, Farhad; Geijtenbeek, Teunis B. H.

    2015-01-01

    Traditional medicines that stimulate or modulate the immune system can be used as innovative approaches to treat immunological diseases. The herbal medicine IMOD has been shown to strongly modulate immune responses in several animal studies as well as in clinical trials. However, little is known about the mechanisms of IMOD to modulate immunity. Here we have investigated whether IMOD modulates the immunological function of human dendritic cells (DCs). IMOD alone did not induce DC maturation nor production of cytokines. Notably, IMOD decreased the production of pro-inflammatory cytokines IL-6, IL-12 p70, and TNFα by LPS-activated DCs at both mRNA and protein levels in a dose dependent manner. In contrast, treatment with IMOD did not affect LPS induced-production of the anti-inflammatory cytokine IL-10. Furthermore, IMOD inhibited T cell activation/proliferation by LPS-treated DCs and skewed T-cells responses toward the T helper type 2 polarization. These data strongly indicate that IMOD has a potent immunomodulatory ability that affects TLR signaling and thereby modulates DC function. Insight into the immunomodulatory effect of herbal medicine IMOD may provide innovative strategies to affect the immune system and to help combat various diseases. PMID:25870561

  10. Quercetin Inhibits LPS-Induced Inflammation and ox-LDL-Induced Lipid Deposition.

    PubMed

    Xue, Feng; Nie, Xiaobo; Shi, Jianping; Liu, Qingxue; Wang, Ziwei; Li, Xiting; Zhou, Jinqiu; Su, Jia; Xue, Mingming; Chen, Wei-Dong; Wang, Yan-Dong

    2017-01-01

    Aberrant activation of inflammation and excess accumulation of lipids play crucial role in the occurrence and progression of atherosclerosis (AS). Quercetin (QCT) has been tested effectively to cure AS. It is widely distributed in plant foods and has been proved to have potential antioxidative and anticancer activities. However, the underlying molecular mechanisms of OCT in AS are not completely understood. In the present study, we stimulated murine RAW264.7 cells with lipopolysaccharide (LPS) or oxidized low-density lipoproteins (ox-LDL) to mimic the development of AS. The data show that QCT treatment leads to an obvious decrease of multiple inflammatory cytokines in transcript level, including interleukin (IL)-1α, IL-1β, IL-2, IL-10, macrophage chemoattractant protein-1 (MCP-1), and cyclooxygenase-2 (COX-2) induced by LPS. Moreover, expressions of other factors that contribute to the AS development, such as matrix metalloproteinase-1 (MMP-1) and suppressor of cytokine signaling 3 (SOCS3) induced by LPS are also downregulated by QCT. Furthermore, we found that QCT suppressed LPS-induced the phosphorylation of STAT3. Meanwhile, QCT could ameliorate lipid deposition and overproduction of reactive oxygen species induced by ox-LDL, and block the expression of lectin-like oxidized LDL receptor-1 (LOX-1) in cultured macrophages. Taken together, our data reveal that QCT has obvious anti-inflammatory and antioxidant virtues and could be a therapeutic agent for the prevention and treatment of AS.

  11. Quercetin Inhibits LPS-Induced Inflammation and ox-LDL-Induced Lipid Deposition

    PubMed Central

    Xue, Feng; Nie, Xiaobo; Shi, Jianping; Liu, Qingxue; Wang, Ziwei; Li, Xiting; Zhou, Jinqiu; Su, Jia; Xue, Mingming; Chen, Wei-Dong; Wang, Yan-Dong

    2017-01-01

    Aberrant activation of inflammation and excess accumulation of lipids play crucial role in the occurrence and progression of atherosclerosis (AS). Quercetin (QCT) has been tested effectively to cure AS. It is widely distributed in plant foods and has been proved to have potential antioxidative and anticancer activities. However, the underlying molecular mechanisms of OCT in AS are not completely understood. In the present study, we stimulated murine RAW264.7 cells with lipopolysaccharide (LPS) or oxidized low-density lipoproteins (ox-LDL) to mimic the development of AS. The data show that QCT treatment leads to an obvious decrease of multiple inflammatory cytokines in transcript level, including interleukin (IL)-1α, IL-1β, IL-2, IL-10, macrophage chemoattractant protein-1 (MCP-1), and cyclooxygenase-2 (COX-2) induced by LPS. Moreover, expressions of other factors that contribute to the AS development, such as matrix metalloproteinase-1 (MMP-1) and suppressor of cytokine signaling 3 (SOCS3) induced by LPS are also downregulated by QCT. Furthermore, we found that QCT suppressed LPS-induced the phosphorylation of STAT3. Meanwhile, QCT could ameliorate lipid deposition and overproduction of reactive oxygen species induced by ox-LDL, and block the expression of lectin-like oxidized LDL receptor-1 (LOX-1) in cultured macrophages. Taken together, our data reveal that QCT has obvious anti-inflammatory and antioxidant virtues and could be a therapeutic agent for the prevention and treatment of AS. PMID:28217098

  12. Berberine suppresses LPS-induced inflammation through modulating Sirt1/NF-κB signaling pathway in RAW264.7 cells.

    PubMed

    Zhang, Hao; Shan, Yun; Wu, Yun; Xu, Chuanchong; Yu, Xizhong; Zhao, Juan; Yan, Jing; Shang, Wenbin

    2017-09-07

    Chronic inflammation is a major contributing factor in the pathogenesis of many diseases. Natural product berberine (BBR) exhibits potent anti-inflammatory effect in vitro and in vivo, while the underlying mechanisms remain elusive. Sirt1, a NAD(+)-dependent protein deacetylase, was recently found to play an important role in modulating the development and progression of inflammation. Thus, we speculate that Sirt1 might mediate the inhibitory effect of BBR on inflammation. In LPS-stimulated RAW264.7 macrophages, BBR treatment significantly downregulated the expression of proinflammatory cytokines such as MCP-1, IL-6 and TNF-α. Importantly, BBR potently reversed LPS-induced down-regulation of Sirt1. Consistently, the inhibitory effects of BBR on proinflammatory cytokines expression was largely abrogated by Sirt1 inhibition either by EX527, a Sirt1 inhibitor or Sirt1 siRNA. Further mechanistic studies revealed that BBR-induced inhibition of NF-κB is Sirt1-dependent, as either pharmacologically or genetically inactivating Sirt1 enhanced the IκΒα degradation, IKK phosphorylation, NF-κB p65 acetylation and DNA-binding activity. Taken together, our results provide the first evidence that BBR potently suppressed inflammatory responses in macrophages through inhibition of NF-κB signaling via Sirt1-dependent mechanisms. Copyright © 2017. Published by Elsevier B.V.

  13. Chebulagic acid (CA) attenuates LPS-induced inflammation by suppressing NF-{kappa}B and MAPK activation in RAW 264.7 macrophages

    SciTech Connect

    Reddy, D. Bharat; Reddanna, Pallu

    2009-03-27

    Chebulagic acid (CA), a natural anti-oxidant, showed potent anti-inflammatory effects in LPS-stimulated RAW 264.7, a mouse macrophage cell line. These effects were exerted via inhibition of NO and PGE{sub 2} production and down-regulation of iNOS, COX-2, 5-LOX, TNF-{alpha} and IL-6. CA inhibited NF-{kappa}B activation by LPS, and this was associated with the abrogation of I{kappa}B-{alpha} phosphorylation and subsequent decreases in nuclear p50 and p65 protein levels. Further, the phosphorylation of p38, ERK 1/2 and JNK in LPS-stimulated RAW 264.7 cells was suppressed by CA in a concentration-dependent manner. LPS-induced generation of reactive oxygen species (ROS) was also effectively inhibited by CA. These results suggest that CA exerts anti-inflammatory effects in LPS-stimulated RAW 264.7 macrophages by inhibition of NF-{kappa}B activation and MAP kinase phosphorylation.

  14. Globular Adiponectin Causes Tolerance to LPS-Induced TNF-α Expression via Autophagy Induction in RAW 264.7 Macrophages: Involvement of SIRT1/FoxO3A Axis.

    PubMed

    Pun, Nirmala Tilija; Subedi, Amit; Kim, Mi Jin; Park, Pil-Hoon

    2015-01-01

    Adiponectin, an adipokine predominantly produced from adipose tissue, exhibited potent anti-inflammatory properties. In particular, it inhibits production of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In the present study, we investigated the role of autophagy induction in the suppression of Lipopolysaccharide (LPS) -induced TNF-α expression by globular adiponectin (gAcrp) and its potential mechanisms. Herein, we found that gAcrp treatment increased expression of genes related with autophagy, including Atg5 and microtubule-associated protein light chain (LC3B), induced autophagosome formation and autophagy flux in RAW 264.7 macrophages. Similar results were observed in primary macrophages isolated peritoneum of mice. Interestingly, inhibition of autophagy by pretreatment with Bafilomycin A1 or knocking down of LC3B gene restored suppression of TNF-α expression, tumor necrosis factor receptor- associated factor 6 (TRAF6) expression and p38MAPK phosphorylation by gAcrp, implying a critical role of autophagy induction in the development of tolerance to LPS-induced TNF-α expression by gAcrp. We also found that knocking-down of FoxO3A, a forkhead box O member of transcription factor, blocked gAcrp-induced expression of LC3II and Atg5. Moreover, gene silencing of Silent information regulator 1 (SIRT1) blocked both gAcrp-induced nuclear translocation of FoxO3A and LC3II expression. Finally, pretreatment with ROS inhibitors, prevented gAcrp-induced SIRT1 expression and further generated inhibitory effects on gAcrp-induced autophagy, indicating a role of ROS production in gAcrp-induced SIRT1 expression and subsequent autophagy induction. Taken together, these findings indicate that globular adiponectin suppresses LPS-induced TNF-α expression, at least in part, via autophagy activation. Furthermore, SIRT1-FoxO3A

  15. SIGNR1-mediated phagocytosis, but not SIGNR1-mediated endocytosis or cell adhesion, suppresses LPS-induced secretion of IL-6 from murine macrophages.

    PubMed

    Kawauchi, Yoko; Takagi, Hideaki; Hanafusa, Kei; Kono, Mirei; Yamatani, Minami; Kojima, Naoya

    2015-01-01

    C-type lectin receptors (CLRs) serve as phagocytosis receptors for pathogens and also function as adhesion molecules and in the recognition and endocytosis of glycosylated self-antigens. In the present study, we demonstrated that phagocytosis mediated by a mouse mannose-binding CLR, SIGNR1 significantly suppressed the LPS-induced secretion of the specific pro-inflammatory cytokines from the resident peritoneal macrophages and the mouse macrophage-like cells that express SIGNR1 (RAW-SIGNR1). LPS-induced secretion of IL-6 from peritoneal macrophages suppressed in response to uptake of oligomannose-coated liposomes (OMLs), and the suppression was partly inhibited by treatment with an anti-SIGNR1 antibody. LPS-induced secretion of IL-6 from RAW-SIGNR1 cells was also clearly inhibited by treatment of the cells with OMLs >0.4μm in diameter, but treatment with OMLs <0.4μm in diameter did not affect the IL-6 secretion. In contrast, LPS-induced TNF-α secretion from the cells was not affected on treatment of the cells with OMLs. Suppression of the IL-6 secretion was not observed following treatment with oligomannose-containing soluble polymers or when cells were bound to an oligomannose-coated solid phase. Phagocytosis of oligomannose-coated liposomes did not interfere with the transcription of IL-6 mRNA, but did affect IL-6 mRNA stability, leading to suppression of IL-6 secretion. Interestingly, treatment of the cells with Ly290042, a PI3 kinase inhibitor, partly blocked the suppression of LPS-induced secretion of IL-6 by OML. Thus, we conclude that SIGNR1-mediated phagocytosis but not SIGNR1-mediated endocytosis and cell adhesion, suppresses the TLR4-mediated production of specific proinflammatory cytokines via PI3 kinase signaling.

  16. IL-1beta and LPS induce anorexia by distinct mechanisms differentially dependent on microsomal prostaglandin E synthase-1.

    PubMed

    Elander, Louise; Engström, Linda; Hallbeck, Martin; Blomqvist, Anders

    2007-01-01

    Recent work demonstrated that the febrile response to peripheral immune stimulation with proinflammatory cytokine IL-1beta or bacterial wall lipopolysaccharide (LPS) is mediated by induced synthesis of prostaglandin E(2) by the terminal enzyme microsomal prostaglandin E synthase-1 (mPGES-1). The present study examined whether a similar mechanism might also mediate the anorexia induced by these inflammatory agents. Transgenic mice with a deletion of the Ptges gene, which encodes mPGES-1, and wild-type controls were injected intraperitoneally with IL-1beta, LPS, or saline. Mice were free fed, and food intake was continuously monitored with an automated system for 12 h. Body weight was recorded every 24 h for 4 days. The IL-1beta induced anorexia in wild-type but not knock-out mice, and so it was almost completely dependent on mPGES-1. In contrast, LPS induced anorexia of the same magnitude in both phenotypes, and hence it was independent of mPGES-1. However, when the mice were prestarved for 22 h, LPS induced anorexia and concomitant body weight loss in the knock-out animals that was attenuated compared with the wild-type controls. These data suggest that IL-1beta and LPS induce anorexia by distinct immune-to-brain signaling pathways and that the anorexia induced by LPS is mediated by a mechanism different from the fever induced by LPS. However, nutritional state and/or motivational factors also seem to influence the pathways for immune signaling to the brain. Furthermore, both IL-1beta and LPS caused reduced meal size but not meal frequency, suggesting that both agents exerted an anhedonic effect during these experimental conditions.

  17. Inhibition of hydrogen sulfide production by gene silencing attenuates inflammatory activity by downregulation of NF-κB and MAP kinase activity in LPS-activated RAW 264.7 cells.

    PubMed

    Badiei, Alireza; Muniraj, Nethaji; Chambers, Stephen; Bhatia, Madhav

    2014-01-01

    Hydrogen sulfide is an endogenous inflammatory mediator produced by the activity of cystathionine γ-lyase (CSE) in macrophages. The objective of this study was to explore the mechanism by which hydrogen sulfide acts as an inflammatory mediator in lipopolysaccharide- (LPS-) induced macrophages. In this study, we used small interfering RNA (siRNA) to inhibit CSE expression in macrophages. We found that CSE silencing siRNA could reduce the LPS-induced activation of transcription factor nuclear factor-κB (NF-κB) significantly. Phosphorylation and activation of extra cellular signal-regulated kinase 1/2 (ERK1/2) increased in LPS-induced macrophages. We showed that phosphorylation of ERK in LPS-induced RAW 264.7 cells reached a peak 30 min after activation. Our findings show that silencing CSE gene by siRNA reduces phosphorylation and activation of ERK1/2 in LPS-induced RAW 264.7 cells. These findings suggest that siRNA reduces the inflammatory effects of hydrogen sulfide through the ERK-NF-κB signalling pathway and hydrogen sulfide plays its inflammatory role through ERK-NF-κB pathway in these cells.

  18. The Anti-Inflammatory Effects and Mechanisms of Eupafolin in Lipopolysaccharide-Induced Inflammatory Responses in RAW264.7 Macrophages

    PubMed Central

    Chen, Chin-Chaun; Lin, Ming-Wei; Liang, Chan-Jung; Wang, Shu-Huei

    2016-01-01

    Eupafolin is a flavone isolated from Artemisia princeps Pampanini (family Asteraceae). The aim of this study was to examine the anti-inflammatory effects of eupafolin in lipopolysaccharide (LPS)-treated RAW264.7 macrophages and LPS-induced mouse skin and lung inflammation models and to identify the mechanism underlying these effects. Eupafolin decreased the LPS-induced release of inflammatory mediators (iNOS, COX-2 and NO) and proinflammatory cytokines (IL-6 and TNF-α) from the RAW264.7 macrophages. Eupafolin inhibited the LPS-induced phosphorylation of p38 MAPK, ERK1/2, JNK, AKT and p65 and the nuclear translocation of p65 and c-fos. These effects were mainly mediated by the inhibition of JNK. In the mouse paw and lung models, eupafolin effectively suppressed the LPS-induced edema formation and down-regulated iNOS and COX-2 expression. These results demonstrated that eupafolin exhibits anti-inflammatory properties and suggested that eupafolin can be developed as an anti-inflammatory agent. PMID:27414646

  19. A(1) and A(3) adenosine receptors inhibit LPS-induced hypoxia-inducible factor-1 accumulation in murine astrocytes.

    PubMed

    Gessi, Stefania; Merighi, Stefania; Stefanelli, Angela; Fazzi, Debora; Varani, Katia; Borea, Pier Andrea

    2013-10-01

    Adenosine (Ado) exerts neuroprotective and anti-inflammatory functions by acting through four receptor subtypes A1, A2A, A2B and A3. Astrocytes are one of its targets in the central nervous system. Hypoxia-inducible factor-1 (HIF-1), a master regulator of oxygen homeostasis, is induced after hypoxia, ischemia and inflammation and plays an important role in brain injury. HIF-1 is expressed by astrocytes, however the regulatory role played by Ado on HIF-1α modulation induced by inflammatory and hypoxic conditions has not been investigated. Primary murine astrocytes were activated with lipopolysaccharide (LPS) with or without Ado, Ado receptor agonists, antagonists and receptor silencing, before exposure to normoxia or hypoxia. HIF-1α accumulation and downstream genes regulation were determined. Ado inhibited LPS-increased HIF-1α accumulation under both normoxic and hypoxic conditions, through activation of A1 and A3 receptors. In cells incubated with the blockers of p44/42 MAPK and Akt, LPS-induced HIF-1α accumulation was significantly decreased in normoxia and hypoxia, suggesting the involvement of p44/42 MAPK and Akt in this effect and Ado inhibited kinases phosphorylation. A series of angiogenesis and metabolism related genes were modulated by hypoxia in an HIF-1 dependent way, but not further increased by LPS, with the exception of GLUT-1 and hexochinase II that were elevated by LPS only in normoxia and inhibited by Ado receptors. Instead, genes involved in inflammation, like inducible nitric-oxide synthase (iNOS) and A2B receptors, were increased by LPS in normoxia, strongly stimulated by LPS in concert with hypoxia and inhibited by Ado, through A1 and A3 receptor subtypes. In conclusion A1 and A3 receptors reduce the LPS-mediated HIF-1α accumulation in murine astrocytes, resulting in a downregulation of genes involved in inflammation and hypoxic injury, like iNOS and A2B receptors, in both normoxic and hypoxic conditions.

  20. T4 Phage Tail Adhesin Gp12 Counteracts LPS-Induced Inflammation In Vivo

    PubMed Central

    Miernikiewicz, Paulina; Kłopot, Anna; Soluch, Ryszard; Szkuta, Piotr; Kęska, Weronika; Hodyra-Stefaniak, Katarzyna; Konopka, Agnieszka; Nowak, Marcin; Lecion, Dorota; Kaźmierczak, Zuzanna; Majewska, Joanna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2016-01-01

    Bacteriophages that infect Gram-negative bacteria often bind to the bacterial surface by interaction of specific proteins with lipopolysaccharide (LPS). Short tail fiber proteins (tail adhesin, gp12) mediate adsorption of T4-like bacteriophages to Escherichia coli, binding surface proteins or LPS. Produced as a recombinant protein, gp12 retains its ability to bind LPS. Since LPS is able to exert a major impact on the immune response in animals and in humans, we have tested LPS-binding phage protein gp12 as a potential modulator of the LPS-induced immune response. We have produced tail adhesin gp12 in a bacterial expression system and confirmed its ability to form trimers and to bind LPS in vitro by dynamic light scattering. This product had no negative effect on mammalian cell proliferation in vitro. Further, no harmful effects of this protein were observed in mice. Thus, gp12 was used in combination with LPS in a murine model, and it decreased the inflammatory response to LPS in vivo, as assessed by serum levels of cytokines IL-1 alpha and IL-6 and by histopathological analysis of spleen, liver, kidney and lungs. Thus, in future studies gp12 may be considered as a potential tool for modulating and specifically for counteracting LPS-related physiological effects in vivo. PMID:27471503

  1. LPS-induced microvascular leukocytosis can be assessed by blue-field entoptic phenomenon.

    PubMed

    Kolodjaschna, Julia; Berisha, Fatmire; Lung, Solveig; Schaller, Georg; Polska, Elzbieta; Jilma, Bernd; Wolzt, Michael; Schmetterer, Leopold

    2004-08-01

    Administration of low doses of Escherichia coli endotoxin [a lipopolysaccharide (LPS)] to humans enables the study of inflammatory mechanisms. The purpose of the present study was to investigate whether the blue-field entoptic technique may be used to quantify the increase in circulating leukocytes in the ocular microvasculature after LPS infusion. In addition, combined laser Doppler velocimetry and retinal vessel size measurement were used to study red blood cell movement. Twelve healthy male volunteers received 20 IU/kg iv LPS as a bolus infusion. Outcome parameters were measured at baseline and 4 h after LPS administration. In the first protocol (n = 6 subjects), ocular hemodynamic effects were assessed with the blue-field entoptic technique, the retinal vessel analyzer, and laser Doppler velocimetry. In the second protocol (n = 6 subjects), white blood cell (WBC) counts from peripheral blood samples and blue-field entoptic technique measurements were performed. LPS caused peripheral blood leukocytosis and increased WBC density in ocular microvessels (by 49%; P = 0.036) but did not change WBC velocity. In addition, retinal venous diameter was increased (by 9%; P = 0.008), but red blood cell velocity remained unchanged. The LPS-induced changes in retinal WBC density and leukocyte counts were significantly correlated (r = 0.87). The present study indicates that the blue-field entoptic technique can be used to assess microvascular leukocyte recruitment in vivo. In addition, our data indicate retinal venous dilation in response to endotoxin.

  2. Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis

    PubMed Central

    González-Terán, Bárbara; Cortés, José R.; Manieri, Elisa; Matesanz, Nuria; Verdugo, ρngeles; Rodríguez, María E.; González-Rodríguez, ρgueda; Valverde, ρngela; Martín, Pilar; Davis, Roger J.; Sabio, Guadalupe

    2012-01-01

    Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-α. TNF-α is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-α expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38γ/δ MAPK proteins is required for the elongation of nascent TNF-α protein in macrophages. The MKK3/6-p38γ/δ pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-α elongation. These results identify a new signaling pathway that regulates TNF-α production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-α production is involved. PMID:23202732

  3. tBHQ inhibits LPS-induced microglial activation via Nrf2-mediated suppression of p38 phosphorylation.

    PubMed

    Koh, Kyungmi; Cha, Youngnam; Kim, Sunyoung; Kim, Jiyoung

    2009-03-13

    Role of microglial Nrf2 activation in preventing neuronal death caused by microglial hyperactivation is investigated by using BV-2 microglial cells as modulator and primary neurons as target. Pretreatment of microglial cells with tBHQ, a phenolic antioxidant activating Nrf2, attenuated the LPS-derived overproduction of pro-inflammatory neurotoxic mediators like TNF-alpha, IL-1beta, IL-6, PGE(2), and NO as well as the morphological changes associated with microglial hyperactivation. Pretreatment of BV-2 cells with tBHQ suppressed LPS-induced phosphorylation of p38 required for overproduction of neurotoxic mediators. Results obtained using Nrf2-specific shRNA showed that expression of Nrf2 in microglia plays a critical role in tBHQ-derived suppression of LPS-induced p38 phosphorylation and microglial hyperactivation. Conditioned culture media taken from LPS-stimulated microglia cause neuronal death. However, the conditioned media taken from tBHQ-pretreated and LPS-stimulated microglia did not cause death of primary neurons. This suggested that prior activation of Nrf2 in microglia may inhibit microglial hyperactivation and prevent neuronal death.

  4. Alkaloids from Chelidonium majus and their inhibitory effects on LPS-induced NO production in RAW264.7 cells.

    PubMed

    Park, Ji Eun; Cuong, To Dao; Hung, Tran Manh; Lee, IkSoo; Na, MinKyun; Kim, Jin Cheol; Ryoo, SungWoo; Lee, Jeong Hyung; Choi, Jae Sue; Woo, Mi Hee; Min, Byung Sun

    2011-12-01

    A new alkaloid, methyl 2'-(7,8-dihydrosanguinarine-8-yl)acetate (1), together with six known alkaloids, stylopine (2), protopine (3), norchelidonine (4), chelidonine (5), berberine (6), and 8-hydroxydihydrosanguinarine (7), were isolated from Chelidonium majus. Their chemical structures were primarily established using 1D and 2D NMR techniques and mass spectrometry. The anti-inflammatory activity of the isolates was examined for their inhibitory effects on LPS-induced NO production in macrophage RAW264.7 cells. Among them, compounds 5 and 7 showed strong inhibitory activities toward the LPS-induced NO production in macrophage RAW264.7 cells with IC(50) values of 7.3 and 4.5 μM, respectively. In addition, compounds 5 and 7 inhibited the inductions of COX-2 and iNOS mRNA in dose-dependent manners, indicating that these compounds attenuated the syntheses of these transcripts at the transcriptional level. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKβ-dependent AMPK activation.

    PubMed

    Xu, Yuan; Xu, Yazhou; Wang, Yurong; Wang, Yunjie; He, Ling; Jiang, Zhenzhou; Huang, Zhangjian; Liao, Hong; Li, Jia; Saavedra, Juan M; Zhang, Luyong; Pang, Tao

    2015-11-01

    Brain inflammation plays an important role in the pathophysiology of many psychiatric and neurological diseases. During brain inflammation, microglia cells are activated, producing neurotoxic molecules and neurotrophic factors depending on their pro-inflammatory M1 and anti-inflammatory M2 phenotypes. It has been demonstrated that Angiotensin II type 1 receptor blockers (ARBs) ameliorate brain inflammation and reduce M1 microglia activation. The ARB telmisartan suppresses glutamate-induced upregulation of inflammatory genes in cultured primary neurons. We wished to clarify whether telmisartan, in addition, prevents microglia activation through polarization to an anti-inflammatory M2 phenotype. We found that telmisartan promoted M2 polarization and reduced M1 polarization in LPS-stimulated BV2 and primary microglia cells, effects partially dependent on PPARγ activation. The promoting effects of telmisartan on M2 polarization, were attenuated by an AMP-activated protein kinase (AMPK) inhibitor or AMPK knockdown, indicating that AMPK activation participates on telmisartan effects. Moreover, in LPS-stimulated BV2 cells, telmisartan enhancement of M2 gene expression was prevented by the inhibitor STO-609 and siRNA of calmodulin-dependent protein kinase kinase β (CaMKKβ), an upstream kinase of AMPK. Furthermore, telmisartan enhanced brain AMPK activation and M2 gene expression in a mouse model of LPS-induced neuroinflammation. In addition, telmisartan reduced the LPS-induced sickness behavior in this in vivo model, and this effect was prevented by prior administration of an AMPK inhibitor. Our results indicate that telmisartan can be considered as a novel AMPK activator, suppressing microglia activation by promoting M2 polarization. Telmisartan may provide a novel, safe therapeutic approach to treat brain disorders associated with enhanced inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury

    SciTech Connect

    Chen, Jiao; Shetty, Sreerama; Zhang, Ping; Gao, Rong; Hu, Yuxin; Wang, Shuxia; Li, Zhenyu; Fu, Jian

    2014-06-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1 h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia.

  7. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury.

    PubMed

    Chen, Jiao; Shetty, Sreerama; Zhang, Ping; Gao, Rong; Hu, Yuxin; Wang, Shuxia; Li, Zhenyu; Fu, Jian

    2014-06-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia.

  8. Cobalt protoporphyrin accelerates TFEB activation and lysosome reformation during LPS-induced septic insults in the rat heart.

    PubMed

    Unuma, Kana; Aki, Toshihiko; Funakoshi, Takeshi; Yoshida, Ken-ichi; Uemura, Koichi

    2013-01-01

    Lipopolysaccharide (LPS)-induced myocardial dysfunction is caused, at least in part, by mitochondrial dysfunction. Mitochondrial dysfunction and the oxidative damage associated with it are scavenged through various cellular defense systems such as autophagy to prevent harmful effects. Our recent study has demonstrated that cobalt protoporphyrin IX (CoPPIX), a potent inducer of heme oxygenase-1 (HO-1), ameliorates septic liver injuries by enhancing mitochondrial autophagy in rats. In our current study, we show that CoPPIX (5 mg/kg s.c.) not only accelerates the autophagic response but also promotes lysosome reformation in the rat heart treated with LPS (15 mg/kg i.p.). Lysosomal membrane-associated protein-2 (LAMP2), which is essential to the maintenance of lysosomal functions in the heart, is depleted transiently but restored rapidly during LPS administration in the rat. Activation of transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, was also observed, indicating a hyper consumption and subsequent reformation of the lysosome to meet the increased demand for autophagosome cleaning. CoPPIX was found to promote these processes and tended to restore the LPS-induced suppression of cardiac performances whilst chloroquine (CQ; 20 mg/kg i.p.), an inhibitor of lysosomes and autophagic protein degradation, abrogates these beneficial effects. The cardioprotective effect of CoPPIX against LPS toxicity was also observed via decreased levels of cardiac releasing enzymes in the plasma. Taken together, our current data indicate that lysosome reformation mediated by TFEB may be involved in cardioprotection against LPS-induced septic insults, and serve as a novel mechanism by which CoPPIX protects the heart against oxidative stress.

  9. Role of ceramide in lipopolysaccharide (LPS)-induced signaling. LPS increases ceramide rather than acting as a structural homolog.

    PubMed

    MacKichan, M L; DeFranco, A L

    1999-01-15

    Ceramide and ceramide-activated enzymes have been implicated in responses to bacterial lipopolysaccharide (LPS) and the proinflammatory cytokines tumor necrosis factor-alpha (TNF) and interleukin-1beta (IL-1). Although TNF and IL-1 cause elevation of cellular ceramide, which is thought to act as a second messenger, LPS has been proposed to signal by virtue of structural similarity to ceramide. We have investigated the relationship between ceramide and LPS by comparing the effects of a cell-permeable ceramide analog (C2-ceramide) and LPS on murine macrophage cell lines and by measuring ceramide levels in macrophages exposed to LPS. We found that while both C2-ceramide and LPS activated c-Jun N-terminal kinase (JNK), only LPS also activated extracellular signal-regulated kinases (ERKs). C2-ceramide was also unable to activate NF-kappaB, a transcription factor important for LPS-induced gene expression. Upon measurement of cellular ceramide in macrophage lines, we observed a small but rapid rise in ceramide, similar to that seen upon IL-1 or TNF treatment, suggesting LPS induces an increase in ceramide rather than interacting directly with ceramide-responsive enzymes. We found that C2-ceramide activated JNK and induced growth arrest in macrophages cell lines from both normal mice (Lpsn) and mice genetically unresponsive to LPS (Lpsd), whereas only Lpsn macrophages made these responses to LPS. Surprisingly, LPS treatment of Lpsd macrophages induced a rise in ceramide similar to that observed in LPS-responsive cells. These results indicate that the wild type Lps allele is not required for LPS-induced ceramide generation and suggest that ceramide elevation alone is insufficent stimulus for most responses to LPS.

  10. Wogonin inhibits LPS-induced tumor angiogenesis via suppressing PI3K/Akt/NF-κB signaling.

    PubMed

    Zhao, Kai; Song, Xiuming; Huang, Yujie; Yao, Jing; Zhou, Mi; Li, Zhiyu; You, Qidong; Guo, Qinglong; Lu, Na

    2014-08-15

    Wogonin has been shown to have anti-angiogenesis and anti-tumor effects. However, whether wogonin inhibits LPS-induced tumor angiogenesis is not well known. In this study, we investigated the effect of wogonin on inhibiting LPS-induced tumor angiogenesis and further probed the underlying mechanisms. ELISA results revealed that wogonin could suppress LPS-induced VEGF secretion from tumor cells. Transwell assay, tube formation assay, rat aortic ring assay and CAM model were used to evaluate the effect of wogonin on angiogenesis induced by MCF-7 cell (treated with LPS) in vitro and in vivo. The inhibitory effect of wogonin on angiogenesis in LPS-treated MCF-7 cells was then confirmed by the above in vitro and in vivo assays. The study of the molecular mechanism showed that wogonin could suppress PI3K/Akt signaling activation. Moreover, wogonin inhibited nuclear translocation of NF-κB and its binding to DNA. The result of real-time PCR and luciferase reporter assay suggested that VEGF expression was down-regulated by wogonin primarily at the transcriptional level. IGF-1 and p65 expression plasmid were used to activate PI3K/Akt and NF-κB pathways, and to observe the effect of wogonin on the simualtion of PI3K/Akt/NF-κB signaling. Taken together, the result suggested that wogonin was a potent inhibitor of tumor angiogenesis and provided a new insight into the mechanisms of wogonin against cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Brazilein Suppresses Inflammation through Inactivation of IRAK4-NF-κB Pathway in LPS-Induced Raw264.7 Macrophage Cells

    PubMed Central

    Kim, Kui-Jin; Yoon, Kye-Yoon; Yoon, Hyung-Sun; Oh, Sei-Ryang; Lee, Boo-Yong

    2015-01-01

    The medicinal herbal plant has been commonly used for prevention and intervention of disease and health promotions worldwide. Brazilein is a bioactive compound extracted from Caesalpinia sappan Linn. Several studies have showed that brazilein exhibited the immune suppressive effect and anti-oxidative function. However, the molecular targets of brazilein for inflammation prevention have remained elusive. Here, we investigated the mechanism underlying the inhibitory effect of brazilein on LPS-induced inflammatory response in Raw264.7 macrophage cells. We demonstrated that brazilein decreased the expression of IRAK4 protein led to the suppression of MAPK signaling and IKKβ, and subsequent inactivation of NF-κB and COX2 thus promoting the expression of the downstream target pro-inflammatory cytokines such as IL-1β, MCP-1, MIP-2, and IL-6 in LPS-induced Raw264.7 macrophage cells. Moreover, we observed that brazilein reduced the production of nitrite compared to the control in LPS-induced Raw264.7. Thus, we suggest that brazilein might be a useful bioactive compound for the prevention of IRAK-NF-κB pathway associated chronic diseases. PMID:26593910

  12. Epigenetic regulation of pro-inflammatory cytokine secretion by sphingosine 1-phosphate (S1P) in acute lung injury: Role of S1P lyase.

    PubMed

    Ebenezer, David L; Fu, Panfeng; Suryadevara, Vidyani; Zhao, Yutong; Natarajan, Viswanathan

    2017-01-01

    Cellular level of sphingosine-1-phosphate (S1P), the simplest bioactive sphingolipid, is tightly regulated by its synthesis catalyzed by sphingosine kinases (SphKs) 1 & 2 and degradation mediated by S1P phosphatases, lipid phosphate phosphatases, and S1P lyase. The pleotropic actions of S1P are attributed to its unique inside-out (extracellular) signaling via G-protein-coupled S1P1-5 receptors, and intracellular receptor independent signaling. Additionally, S1P generated in the nucleus by nuclear SphK2 modulates HDAC1/2 activity, regulates histone acetylation, and transcription of pro-inflammatory genes. Here, we present data on the role of S1P lyase mediated S1P signaling in regulating LPS-induced inflammation in lung endothelium. Blocking S1P lyase expression or activity attenuated LPS-induced histone acetylation and secretion of pro-inflammatory cytokines. Degradation of S1P by S1P lyase generates Δ2-hexadecenal and ethanolamine phosphate and the long-chain fatty aldehyde produced in the cytoplasmic compartment of the endothelial cell seems to modulate histone acetylation pattern, which is different from the nuclear SphK2/S1P signaling and inhibition of HDAC1/2. These in vitro studies suggest that S1P derived long-chain fatty aldehyde may be an epigenetic regulator of pro-inflammatory genes in sepsis-induced lung inflammation. Trapping fatty aldehydes and other short chain aldehydes such as 4-hydroxynonenal derived from S1P degradation and lipid peroxidation, respectively by cell permeable agents such as phloretin or other aldehyde trapping agents may be useful in treating sepsis-induced lung inflammation via modulation of histone acetylation. .

  13. A novel compound DSC suppresses lipopolysaccharide-induced inflammatory responses by inhibition of Akt/NF-κB signalling in macrophages.

    PubMed

    Liu, Xin-Hua; Pan, Li-Long; Jia, Yao-Ling; Wu, Dan; Xiong, Qing-Hui; Wang, Yang; Zhu, Yi-Zhun

    2013-05-15

    A novel compound [4-(2-acetoxy-3-((R)-3-(benzylthio)-1-methoxy-1-oxopropan-2-ylamino)-3-oxopropyl)-1,2-phenylene diacetate (DSC)], derived from Danshensu, exerted cytoprotective effects by anti-oxidative and anti-apoptotic activities in vitro. Herein, we reported the protective effects of DSC on lipopolysaccharide (LPS)-induced inflammatory responses in murine RAW264.7 macrophages and the underlying mechanisms. We showed that DSC concentration-dependently attenuated nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression with less cytotoxicity. Signal transduction studies indicated that DSC significantly inhibited LPS-induced phosphorylation of Akt, but not c-Jun N-terminal kinase 1/2, p38, or extracellular signal-regulated kinase 1/2. Meanwhile, LPS-induced nuclear translocation of nuclear factor-κB (NF-κB) p65 was decreased by DSC. Furthermore, a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 significantly suppressed LPS-induced NF-κB p65 nuclear translocation, iNOS expression, and NO production, which was also mimicked by pretreatment with DSC. These results suggested that DSC attenuated LPS-induced inflammatory response in macrophages, at least in part, through suppression of PI3K/Akt signaling and NF-κB activation.

  14. Chikusetsusaponin IVa Methyl Ester Isolated from the Roots of Achyranthes japonica Suppresses LPS-Induced iNOS, TNF-α, IL-6, and IL-1β Expression by NF-κB and AP-1 Inactivation.

    PubMed

    Lee, Hae-Jun; Shin, Ji-Sun; Lee, Woo-Seok; Shim, Heon-Yong; Park, Ji-Min; Jang, Dae-Sik; Lee, Kyung-Tae

    2016-01-01

    We investigated the effect of chikusetsusaponin IVa (CS) and chikusetsusaponin IVa methyl ester (CS-ME) from the roots of Achyranthes japonica NAKAI on lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in RAW264.7 macrophages. CS-ME more potently inhibited LPS-induced NO and PGE2 production than CS. CS-ME concentration-dependently inhibited LPS-induced tumor necrosis factor (TNF)-α and interleukin (IL)-6 and IL-1β production in RAW264.7 macrophages and mouse peritoneal macrophages. Consistent with these findings, CS-ME suppressed LPS-induced expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 at protein level as well as iNOS, COX-2, TNF-α, IL-6, and IL-1β at mRNA level. In addition, CS-ME suppressed LPS-induced transcriptional activity of nuclear factor (NF)-κB and activator protein (AP)-1. The anti-inflammatory properties of CS-ME might result from suppression of iNOS, COX-2, TNF-α, IL-6, and IL-1β expression through downregulation of NF-κB and AP-1 in macrophages.

  15. Ugonin M, a Helminthostachys zeylanica Constituent, Prevents LPS-Induced Acute Lung Injury through TLR4-Mediated MAPK and NF-κB Signaling Pathways.

    PubMed

    Wu, Kun-Chang; Huang, Shyh-Shyun; Kuo, Yueh-Hsiung; Ho, Yu-Ling; Yang, Chang-Syun; Chang, Yuan-Shiun; Huang, Guan-Jhong

    2017-04-01

    Helminthostachys zeylanica (L.) Hook. is plant that has been used in traditional Chinese medicine for centuries for the treatment of inflammation, fever, pneumonia, and various disorders. The aims of the present study are to figure out the possible effectiveness of the component Ugonin M, a unique flavonoid isolated from H. zeylanica, and to elucidate the mechanism(s) by which it works in the LPS-induced ALI model. In this study, Ugonin M not only inhibited the production of pro-inflammatory mediators such as NO, TNF-α, IL-1β, and IL-6, as well as infiltrated cellular counts and protein content in the bronchoalveolar lavage fluid (BALF) of lipopolysaccharides (LPS)-induced acute lung injury (ALI) mice, but also ameliorated the severity of pulmonary edemas through the score of a histological examination and the ratio of wet to dry weight of lung. Moreover, Ugonin M was observed to significantly suppress LPS-stimulated protein levels of iNOS and COX-2. In addition, we found that Ugonin M not only obviously suppressed NF-κB and MAPK activation via the degradation of NF-κB and IκB-α as well as ERK and p38MAPK active phosphorylation but also inhibited the protein expression level of TLR4. Further, Ugonin M treatment also suppressed the protein levels of MPO and enhanced the protein expressions of HO-1 and antioxidant enzymes (SOD, GPx, and CAT) in lung tissue of LPS-induced ALI mice. It is anticipated that through our findings, there is strong evidence that Ugonin M may exert a potential effect against LPS-induced ALI mice. Hence, Ugonin M could be one of the major effective components of H. zeylanica in the treatment of inflammatory disorders.

  16. Targeting the annexin 1-formyl peptide receptor 2/ALX pathway affords protection against bacterial LPS-induced pathologic changes in the murine adrenal cortex.

    PubMed

    Buss, Nicholas A P S; Gavins, Felicity N E; Cover, Patricia O; Terron, Andrea; Buckingham, Julia C

    2015-07-01

    Hypothalamo-pituitary-adrenocortical dysfunction contributes to morbidity and mortality in a high proportion of patients with sepsis. Here, we provide new insights into the underlying adrenal pathology. Using a murine model of endotoxemia (LPS injection), we demonstrate that adrenal insufficiency is triggered early in the disease. LPS induced a local inflammatory response in the adrenal gland within 4 hours of administration, coupled with increased expression of mRNAs for annexin A1 (AnxA1) and the formyl peptide receptors [(Fprs) 1, 2, and 3], a loss of lipid droplets in cortical cells (index of availability of cholesterol, the substrate for steroidogenesis), and a failure to mount a steroidogenic response to ACTH. Deletion of AnxA1 or Fpr2/3 in mice prevented lipid droplet loss, but not leukocyte infiltration. LPS increased adrenal myeloid differentiation primary response gene 88 and TLR2 mRNA expression, but not lymphocyte antigen 96 or TLR4. By contrast, neutrophil depletion prevented leukocyte infiltration and increased AnxA1, Fpr1, and Fpr3 mRNAs but had no impact on lipid droplet loss. Our novel data demonstrate that AnxA1 and Fpr2 have a critical role in the manifestation of adrenal insufficiency in this model, through regulation of cholesterol ester storage, suggesting that pharmacologic interventions targeting the AnxA1/FPR/ALX pathway may provide a new approach for the maintenance of adrenal steroidogenesis in sepsis. © FASEB.

  17. Protective effects and mechanisms of mogroside V on LPS-induced acute lung injury in mice.

    PubMed

    Shi, Dongfang; Zheng, Meizhu; Wang, Yumeng; Liu, Chunming; Chen, Shan

    2014-06-01

    Mogroside V, a compound isolated from Momordica grosvenori Swingle, which belongs to the Cucurbitaceae, is a traditional Chinese medicine reported to have anti-inflammatory potential in murine macrophages and a murine ear edema model. To investigate the effects and mechanisms of action of this compound in a model of acute lung injury (ALI) induced by lipopolysaccharides (LPS). Female BALB/c mice were treated with commercial mogroside V (2.5, 5 and 10 mg/kg) for 1 h prior to intranasal injection of LPS (10 μg in 50 μl). After 12 h, airway inflammation in the ALI model was determined by the wet/dry weight (W/D) ratio, myeloperoxidase (MPO) activity of lung tissue, leukocyte recruitment and cytokine levels in the bronchoalveolar lavage fluid (BALF). Additionally, lung tissue was examined by histology and western blotting to investigate the changes in pathology and the signalling in the presence and absence of mogroside V. Mogroside V at 5 and 10 mg/kg inhibited airway inflammation induced by LPS as measured by the decrease in the histological changes (44 and 67.3% reduction in lung injury score, respectively), a 28.9 and 55.3% reduction in lung MPO activity, and inflammatory cell counts, interleukin-1β (IL-1β, 382 and 280 pg/ml, respectively), IL-6 (378 and 232 pg/ml, respectively) and tumor necrosis factor-α (TNF-α, 12.5 and 7.8 ng/ml, respectively) levels in the BALF. Additionally, mogroside V treatment reduced the activation of cyclooxygenase 2 (COX-2), inducible NO synthase (iNOS), and the nuclear factor (NF)-κB. Together, these data suggest that mogroside V has the potential to protect against LPS-induced airway inflammation in a model of ALI.

  18. Angiopoietin-1 variant reduces LPS-induced microvascular dysfunction in a murine model of sepsis

    PubMed Central

    2012-01-01

    Introduction Severe sepsis is characterised by intravascular or extravascular infection with microbial agents, systemic inflammation and microcirculatory dysfunction, leading to tissue damage, organ failure and death. The growth factor angiopoietin (Ang-1) has therapeutic potential but recombinant Ang-1 tends to aggregate and has a short half-life in vivo. This study aimed to investigate the acute effects of the more stable Ang-1 variant matrilin-1-angiopoietin-1 (MAT.Ang-1) on the function of the microcirculation in an experimental model of sepsis, and whether any protection by MAT-Ang-1 was associated with modulation of inflammatory cytokines, angiogenic factors or the endothelial nitric oxide synthase (eNOS)-Akt and vascular endothelial (VE)-cadherin pathways. Methods Aluminium window chambers were implanted into the dorsal skinfold of male C3H/HeN mice (7 to 10 weeks old) to expose the striated muscle microcirculation. Endotoxemia was induced by intraperitoneal injection of lipopolysaccharide (LPS, 1 mg/kg at 0 and 19 hours). MAT.Ang-1 was administered intravenously 20 hours after the onset of sepsis. Microcirculatory function was evaluated by intravital microscopy and Doppler fluximetry. Results Endotoxemia resulted in macromolecular leak, which was ameliorated by MAT.Ang-1 post-treatment. LPS induced a dramatic reduction in tissue perfusion, which was improved by MAT.Ang-1. Proteome profiler array analysis of skeletal muscle also demonstrated increased inflammatory and reduced angiogenic factors during endotoxemia. MAT.Ang-1 post-treatment reduced the level of IL-1β but did not significantly induce the expression of angiogenic factors. MAT.Ang-1 alone did not induce leak or increase angiogenic factors but did reduce vascular endothelial growth factor expression in controls. Conclusion Administration of MAT.Ang-1 after the onset of sepsis protects the microcirculation from endotoxemia-induced vascular dysfunction through reducing inflammation but without pro

  19. Inhibition of CDKS by roscovitine suppressed LPS-induced ·NO production through inhibiting NFκB activation and BH4 biosynthesis in macrophages

    PubMed Central

    Wei, Na; Guan, Tongju; Xu, Hao; An, Jianzhong; Pritchard, Kirkwood A.

    2009-01-01

    In inflammatory diseases, tissue damage is critically associated with nitric oxide (·NO) and cytokines, which are overproduced in response to cellular release of endotoxins. Here we investigated the inhibitory effect of roscovitine, a selective inhibitor of cyclin-dependent kinases (CDKs) on ·NO production in mouse macrophages. In RAW264.7 cells, we found that roscovitine abolished the production of ·NO induced by lipopolysaccharide (LPS). Moreover, roscovitine significantly inhibited LPS-induced inducible nitric oxide synthase (iNOS) mRNA and protein expression. Our data also showed that roscovitine attenuated LPS-induced phosphorylation of IκB kinase β (IKKβ), IκB, and p65 but enhanced the phosphorylation of ERK, p38, and c-Jun NH2-terminal kinase (JNK). In addition, roscovitine dose dependently inhibited LPS-induced expression of cyclooxygenase-2 (COX)-2, IL-1β, and IL-6 but not tumor necrosis factor (TNF)-α. Tetrahydrobiopterin (BH4), an essential cofactor for iNOS, is easily oxidized to 7,8-dihydrobiopterin (BH2). Roscovitine significantly inhibited LPS-induced BH4 biosynthesis and decreased BH4-to-BH2 ratio. Furthermore, roscovitine greatly reduced the upregulation of GTP cyclohydrolase-1 (GCH-1), the rate-limiting enzyme for BH4 biosynthesis. Using other CDK inhibitors, we found that CDK1, CDK5, and CDK7, but not CDK2, significantly inhibited LPS-induced ·NO production in macrophages. Similarly, in isolated peritoneal macrophages, roscovitine strongly inhibited ·NO production, iNOS, and COX-2 upregulation, activation of NFκB, and induction of GCH-1 by LPS. Together, our data indicate that roscovitine abolishes LPS-induced ·NO production in macrophages by suppressing nuclear factor-κB activation and BH4 biosynthesis, which might be mediated by CDK1, CDK5, and CDK7. Our results also suggest that roscovitine may inhibit inflammation and that CDKs may play important roles in the mechanisms by which roscovitine attenuates inflammation. PMID:19553566

  20. Proteomic Analysis of HDAC3 Selective Inhibitor in the Regulation of Inflammatory Response of Primary Microglia

    PubMed Central

    Zhao, Qiuchen; Zhang, He; Chen, Yanting; Yuan, Zengqiang; Xu, Yun

    2017-01-01

    HDAC3 has been shown to regulate inflammation. However, the role of HDAC3 in primary microglia is largely unknown. RGFP966 is a newly discovered selective HDAC3 inhibitor. In this study, we used protein mass spectrometry to analyze protein alterations in LPS-treated primary microglia with the application of RGFP966. Generally, about 2000 proteins were studied. 168 of 444 (37.8%) LPS-induced proteins were significantly reduced with the treatment of RGFP966, which mainly concentrated on Toll-like receptor signaling pathway. In this regard, we selected Toll-like receptor 2 (TLR2), TLR3, TLR6, MAPK p38, CD36, and spleen tyrosine kinase (SYK) for further validation and found that they were all significantly upregulated after LPS stimulation and downregulated in the presence of RGFP966. Additionally, RGFP966 inhibited supernatant tumor necrosis factor (TNF)-α and Interleukin 6 (IL-6) concentrations. Activation of STAT3 and STAT5 was partially blocked by RGFP966 at 2 h after LPS-stimulation. The fluorescence intensity of CD16/32 was significantly decreased in LPS + RGFP966-treated group. In conclusion, our data provided a hint that RGFP966 may be a potential therapeutic medication combating microglia activation and inflammatory response in central nervous system, which was probably related to its repressive impacts on TLR signaling pathways and STAT3/STAT5 pathways. PMID:28293439

  1. Mechanism for Prenatal LPS-Induced DA Neuron Loss

    DTIC Science & Technology

    2005-03-01

    enter the human chorioamniotic environment of the fetus in women with bacterial vaginosis (BV). BV increases pro-inflammatory cytokines, including...occur receptor-4, is a well known inducer of pro-inflammatory had their mother had bacterial vaginosis , would be at in- cytokines and has been shown...etiology of PD. We hypothesized that individuals born to mothers with bacterial vaginosis (BV), a well known Although genetic factors account for some cases

  2. Thymus-expressed chemokine enhances Porphyromonas gingivalis LPS-induced osteoclast formation via NFATc1 activation.

    PubMed

    Usui, Michihiko; Okamatsu, Yoshimasa; Sato, Tsuyoshi; Hanatani, Tomoya; Moritani, Yuki; Sano, Kotaro; Yamamoto, Matsuo; Nakashima, Keisuke

    2016-06-01

    P. gingivalis is a gram-negative anaerobic bacterium and a major periodontal pathogen. LPS produced by P. gingivalis promotes osteoclast formation. TECK is a CC chemokine whose expression is increased in gingival epithelial cells exposed to P. gingivalis LPS. In this study, we investigated the effect of TECK in osteoclastogenesis induced by P. gingivalis LPS. Real time reverse transcriptase polymerase chain reaction (RTPCR) analysis and western blotting were performed to confirm TECK in MG63, human osteoblast cell line and primary murine osteoblasts and CCR9 in RAW 264.7 cells and murine bone marrow macrophages (BMMs) as osteoclast precursors. P. gingivalis LPS-treated BMMs and Raw 264.7 cells were cultured with or without TECK or TECK antibody to examine the effect of TECK on osteoclast formation. Cocultures with murine osteoblasts and bone marrow cells were also treated with or without TECK or TECK antibody. Luciferase assay and western blotting were used to determine whether TECK-CCR9 induced osteoclastogenesis was mediated through NFATc1 or NF-kB signaling. TECK was shown to be expressed by osteoblasts, and its receptor, CCR9, by osteoclast precursors. TECK increased P. gingivalis LPS-induced osteoclast numbers in an in vitro osteoclast formation assay using osteoclast precursors. The enhanced osteoclast formation by TECK was mediated by NFATc1, but not by NF-kB signaling. TECK may be a novel regulator of osteoclast formation induced by P. gingivalis LPS in periodontitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Analgesic and anti-hyperalgesic effects of epidural morphine in an equine LPS-induced acute synovitis model.

    PubMed

    van Loon, Johannes P A M; Menke, Eveline S; L'ami, Jiske J; Jonckheer-Sheehy, Valerie S M; Back, Willem; René van Weeren, P

    2012-08-01

    Epidural morphine is widely used in veterinary medicine, but there is no information about the anti-hyperalgesic and anti-inflammatory effects in acute inflammatory joint disease in horses. The analgesic, anti-hyperalgesic and anti-inflammatory effects of epidural morphine (100mg/animal or 0.17 ± 0.02 mg/kg) were therefore investigated in horses with acute synovitis. In a cross-over study, synovitis was induced in the talocrural joint by intra-articular lipopolysaccharide (LPS). The effect of epidural morphine was evaluated using physiological, kinematic and behavioural variables. Ranges of motion (ROM) of the metatarsophalangeal and talocrural joints were measured, clinical lameness scores and mechanical nociceptive thresholds (MNTs) were assessed and synovial fluid inflammatory markers were measured. The injection of LPS induced transient synovitis, resulting in clinical lameness, decreased ranges of motion in the talocrural and metatarsophalangeal joints, decreased limb loading at rest and increased composite pain scores. Epidural morphine resulted in a significant improvement in clinical lameness, increased ROM and improved loading of the LPS-injected limb at rest, with no effects on synovial fluid inflammatory markers. Morphine prevented a decrease in MNT and, hence, inhibited the development of hyperalgesia close to the dorsal aspect of inflamed talocrural joints. This study showed that epidural morphine provides analgesic and anti-hyperalgesic effects in horses with acute synovitis, without exerting peripheral anti-inflammatory effects.

  4. Allograft Inflammatory Factor 1 Functions as a Pro-Inflammatory Cytokine in the Oyster, Crassostrea ariakensis

    PubMed Central

    Xu, Ting; Liu, Xiao; Wu, Xinzhong

    2014-01-01

    The oyster Crassostrea ariakensis is an economically important bivalve species in China, unfortunately it has suffered severe mortalities in recent years caused by rickettsia-like organism (RLO) infection. Prevention and control of this disease is a priority for the development of oyster aquaculture. Allograft inflammatory factor-1 (AIF-1) was identified as a modulator of the immune response during macrophage activation and a key gene in host immune defense reaction and inflammatory response. Therefore we investigated the functions of C. ariakensis AIF-1 (Ca-AIF1) and its antibody (anti-CaAIF1) in oyster RLO/LPS-induced disease and inflammation. Ca-AIF1 encodes a 149 amino acid protein containing two typical Ca2+ binding EF-hand motifs and shares a 48–95% amino acid sequence identity with other animal AIF-1s. Tissue-specific expression analysis indicates that Ca-AIF1 is highly expressed in hemocytes. Significant and continuous up-regulation of Ca-AIF1 is detected when hemocytes are stimulated with RLO/LPS (RLO or LPS). Treatment with recombinant Ca-AIF1 protein significantly up-regulates the expression levels of LITAF, MyD88 and TGFβ. When anti-CaAIF1 antibody is added to RLO/LPS-challenged hemocyte monolayers, a significant reduction of RLO/LPS-induced LITAF is observed at 1.5–12 h after treatment, suggesting that interference with Ca-AIF1 can suppress the inflammatory response. Furthermore, flow cytometric analysis indicated that anti-CaAIF1 administration reduces RLO/LPS-induced apoptosis and necrosis rates of hemocytes. Collectively these findings suggest that Ca-AIF1 functions as a pro-inflammatory cytokine in the oyster immune response and is a potential target for controlling RLO infection and LPS-induced inflammation. PMID:24759987

  5. Flavonoid Apigenin Inhibits Lipopolysaccharide-Induced Inflammatory Response through Multiple Mechanisms in Macrophages

    PubMed Central

    Zhang, Xiaoxuan; Wang, Guangji; Gurley, Emily C.; Zhou, Huiping

    2014-01-01

    Background Apigenin is a non-toxic natural flavonoid that is abundantly present in common fruits and vegetables. It has been reported that apigenin has various beneficial health effects such as anti-inflammation and chemoprevention. Multiple studies have shown that inflammation is an important risk factor for atherosclerosis, diabetes, sepsis, various liver diseases, and other metabolic diseases. Although it has been long realized that apigenin has anti-inflammatory activities, the underlying functional mechanisms are still not fully understood. Methodology and Principal Findings In the present study, we examined the effect of apigenin on LPS-induced inflammatory response and further elucidated the potential underlying mechanisms in human THP-1-induced macrophages and mouse J774A.1 macrophages. By using the PrimePCR array, we were able to identify the major target genes regulated by apigenin in LPS-mediated immune response. The results indicated that apigenin significantly inhibited LPS-induced production of pro-inflammatory cytokines, such as IL-6, IL-1β, and TNF-α through modulating multiple intracellular signaling pathways in macrophages. Apigenin inhibited LPS-induced IL-1β production by inhibiting caspase-1 activation through the disruption of the NLRP3 inflammasome assembly. Apigenin also prevented LPS-induced IL-6 and IL-1β production by reducing the mRNA stability via inhibiting ERK1/2 activation. In addition, apigenin significantly inhibited TNF-α and IL-1β-induced activation of NF-κB. Conclusion and Significance Apigenin Inhibits LPS-induced Inflammatory Response through multiple mechanisms in macrophages. These results provided important scientific evidences for the potential application of apigenin as a therapeutic agent for inflammatory diseases. PMID:25192391

  6. OP-3 THE PROTECTIVE ROLE OF LACTOBACILLUS RHAMNOSUS GG-DERIVED FACTORS AGAINST LPS-INDUCED DAMAGE OF HUMAN COLONIC SMOOTH MUSCLE CELLS.

    PubMed

    A, Cicenia; F, Santagelo; L, Gambardella; V, Iebba; A, Scirocco; L, Pallotta; M, Marignani; P, Chirletti; M, Carabotti; S, Schippa; E, Corazziari; C, Severi

    2015-10-01

    Impaired gut barrier function has been reported in some functional gastrointestinal (GI) disorders.Evidences suggest that gut microbiota affects GI motility in particular Lactobacillus species elicits anti-inflammatory activity and exerts protective effects on damage induced by pathogen Gram negative-derived lipopolysaccharide(LPS).LPS produced an oxidative imbalance in human colonic smooth muscle cells (SMC) that persists after LPS-washout and contributes to SMC morphofunctional alterations. evaluate if supernatants harvested from LGG cultures protect SMC from LPS-induced myogenic damage. L. rhamnosus GG (ATCC 53103 strain) was grown in MRS medium and samples were collected from bacterial cultures in middle exponential phase,in early,in middle and late stationary phase (overnight).Supernatants were recovered,filtered and stored at -20 °C. Highly pure human SMC culture was then exposed for 24 h to highly purified LPS (1 μg/ml) of E.coli (O111:B4) in the absence and presence of the supernatants.Their effects were evaluated on LPS-induced SMC morphofunctional alterations and pro-inflammatory IL-6 production. Data are expressed as mean ± SE (p < 0.05 significant). LPS induced persistent significant 20.7% ± 1.2 cell shortening and 35.2% ± 2.6 decrease in contraction of human colonic SMC. These alterations were paralleled to a 238.5% ± 82.5 increase in IL-6 production.These effects disappeared in the presence of LGG-supernatants,following a progression related to LGG growth curve phases. Supernatants collected in the middle exponential phase already significantly partially restored LPS-induced cell shortening by 43.4% ± 10.2 and IL6 increase by 47.6% ± 13.1 but had no effect on LPS-induced inhibition of contraction. Supernatants collected later, in the early and middle stationary phase, further counteract LPS-induced damage, including inhibition of contraction. Maximal protective effects were observed with supernatants of the

  7. Cerium oxide nanoparticles alleviate oxidative stress and decreases Nrf-2/HO-1 in D-GALN/LPS induced hepatotoxicity.

    PubMed

    Hashem, Reem M; Rashd, Laila A; Hashem, Khalid S; Soliman, Hatem M

    2015-07-01

    Translocation of the master regulator of antioxidant-response element-driven antioxidant gene, nuclear factor erythroid 2 (Nrf-2) from the cytoplasm into the nucleus and triggering the transcription of hemoxygenase-1 (HO-1) to counteract the oxidative stress is a key feature in D-galactoseamine and lipopolysaccharide (D-GALN/LPS) induced hepatotoxicity. We mainly aimed to study the effect of cerium oxide (CeO2) nanoparticles on Nrf-2/HO-1 pathway whereas; it has previously shown to have an antioxidant effect in liver models. Administration of CeO2 nanoparticles significantly decreased the translocation of the cytoplasmic Nrf-2 with a concomitant decrement in the gene expression of HO-1 as it reveals a powerful antioxidative effect as indicated by the significant increase in the levels of glutathione (GSH), glutathione peroxidase (GPX1), glutathione reductase (GR), superoxide dismutase (SOD) and catalase. In synchronization, a substantial decrement in the levels of inducible nitric oxide synthase (iNOS), TBARS and percentage of DNA fragmentation was established. These results were confirmed by histopathology examination which showed a severe degeneration, haemorrhages, widened sinusoids and focal leukocyte infiltration in D-GALN/LPS treatment and these features were alleviated with CeO2 administration. In conclusion, CeO2 is a potential antioxidant that can effectively decrease the translocation of the cytoplasmic Nrf-2 into the nucleus and decrease HO-1 in D-GALN/LPS induced hepatotoxicity.

  8. Constituents of the stem barks of Ailanthus altissima and their potential to inhibit LPS-induced nitric oxide production.

    PubMed

    Kim, Hye Mi; Kim, Su Jung; Kim, Ha-Yeong; Ryu, Byeol; Kwak, Hokwang; Hur, Jonghyun; Choi, Jung-Hye; Jang, Dae Sik

    2015-03-01

    Three new canthinone type alkaloids, canthin-6-one-1-O-β-D-apiofuranosyl-(1→2)-β-D-glucopyranoside (1), canthin-6-one-1-O-[6-O-(3-hydroxy-3-methylglutaryl)]-β-D-glucopyranoside (2) and canthin-6-one-1-O-[2-β-D-apiofuranosyl-6-O-(3-hydroxy-3-methylglutaryl)]-β-D-glucopyranoside (3) were isolated from the stem barks of Ailanthus altissima together with four quassinoids (4-7), seven phenylpropanoids (8-14) and a lignan of previously known structure (15). The inflammatory activities of the 15 isolates were screened on LPS-induced nitric oxide (NO), a proinflammatory mediator, in RAW 264.7 cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Alpinia katsumadai H(AYATA) seed extract inhibit LPS-induced inflammation by induction of heme oxygenase-1 in RAW264.7 cells.

    PubMed

    Lee, Mee-Young; Seo, Chang-Seob; Lee, Jin-Ah; Shin, In-Sik; Kim, Su-Jeong; Ha, HeyKyung; Shin, Hyeun-Kyoo

    2012-04-01

    In the present study, we investigated the effects of Alpinia katsumadai H(AYATA) (Zingiberaceae) seed ethanolic extract (AKEE) and its three components on the production of inflammatory mediators and some potential underlying mechanisms in lipopolysaccharide (LPS)-induced inflammation RAW264.7 cells. The whole formula, AKEE, and three major component compounds were then evaluated for their effects on inflammation-related parameters using LPS-induced RAW264.7 cells. Production of namely nitric oxide (NO) and cytokine levels were measured by the Griess reagent and ELISA, respectively. To investigate the underlying mechanisms of anti-inflammatory activities of AKEE, protein expression of nitric oxide synthase (inducible nitric oxide synthase, iNOS), heme oxygenase-1 (HO-1), and nuclear factor-kappa B (NF-κB) were evaluated by western blot analysis. AKEE and the major group of compounds in AKEE (alpinetin, cardamonin, and pinocembrin) complement exert anti-inflammatory effects for NO and PGE(2) production. In addition, AKEE treatment significantly inhibited the LPS-induced production of interleukin-6 and tumor necrosis factor (TNF)-α, as well as the expression of iNOS. AKEE also induced HO-1 expression in RAW264.7 cells and inhibited the nuclear translocation of NF-κB by preventing degradation of the inhibitor kappa B-alpha. We also demonstrated that the effects of AKEE on TNF-α production were partially reversed by the HO-1 inhibitor tin protoporphyrin. These results indicate that AKEE and its major component may have anti-inflammatory activity via induction of HO-1 expression was partly responsible for the anti-inflammatory effects.

  10. LIPUS suppressed LPS-induced IL-1α through the inhibition of NF-κB nuclear translocation via AT1-PLCβ pathway in MC3T3-E1 cells.

    PubMed

    Nagao, Mayu; Tanabe, Natsuko; Manaka, Soichiro; Naito, Masako; Sekino, Jumpei; Takayama, Tadahiro; Kawato, Takayuki; Torigoe, Go; Kato, Shunichiro; Tsukune, Naoya; Maeno, Masao; Suzuki, Naoto; Sato, Shuichi

    2017-12-01

    Inflammatory cytokines, interleukin (IL)-1, IL-6, and TNF-α, are involved in inflammatory bone diseases such as rheumatoid osteoarthritis and periodontal disease. Particularly, periodontal disease, which destroys alveolar bone, is stimulated by lipopolysaccharide (LPS). Low-intensity pulsed ultrasound (LIPUS) is used for bone healing in orthopedics and dental treatments. However, the mechanism underlying effects of LIPUS on LPS-induced inflammatory cytokine are not well understood. We therefore aimed to investigate the role of LIPUS on LPS-induced IL-1α production. Mouse calvaria osteoblast-like cells MC3T3-E1 were incubated in the presence or absence of LPS (Porphyromonas gingivalis), and then stimulated with LIPUS for 30 min/day. To investigate the role of LIPUS, we determined the expression of IL-1α stimulated with LIPUS and treated with an angiotensin II receptor type 1 (AT1) antagonist, Losartan. We also investigate to clarify the pathway of LIPUS, we transfected siRNA silencing AT1 (siAT1) in MC3T3-E1. LIPUS inhibited mRNA and protein expression of LPS-induced IL-1α. LIPUS also reduced the nuclear translocation of NF-κB by LPS-induced IL-1α. Losartan and siAT1 blocked all the stimulatory effects of LIPUS on IL-1α production and IL-1α-mediated NF-κB translocation induced by LPS. Furthermore, PLCβ inhibitor U73122 recovered NF-κB translocation. These results suggest that LIPUS inhibits LPS-induced IL-1α via AT1-PLCβ in osteoblasts. We exhibit that these findings are in part of the signaling pathway of LIPUS on the anti-inflammatory effects of IL-1α expression. © 2017 Wiley Periodicals, Inc.

  11. Moringa fruit inhibits LPS-induced NO/iNOS expression through suppressing the NF-κ B activation in RAW264.7 cells.

    PubMed

    Lee, Hyo-Jin; Jeong, Yun-Jeong; Lee, Tae-Sung; Park, Yoon-Yub; Chae, Whi-Gun; Chung, Il-Kyung; Chang, Hyeun-Wook; Kim, Cheorl-Ho; Choi, Yung-Hyun; Kim, Wun-Jae; Moon, Sung-Kwon; Chang, Young-Chae

    2013-01-01

    In this study, we evaluated the anti-inflammatory effects of moringa (Moringa oleifera Lam.), a natural biologically active substance, by determining its inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells. Extracts from different parts of moringa (root, leaf, and fruit) reduced LPS-induced nitric oxide (NO) release in a dose-dependent manner. The moringa fruit extract most effectively inhibited LPS-induced NO production and levels of inducible nitric oxide synthase (iNOS). The moringa fruit extract also was shown to suppress the production of inflammatory cytokines including IL-1β, TNF-α, and IL-6. Furthermore, moringa fruit extract inhibited the cytoplasmic degradation of I κ B -α and the nuclear translocation of p65 proteins, resulting in lower levels of NF -κ B transactivation. Collectively, the results of this study demonstrate that moringa fruit extract reduces the levels of pro-inflammatory mediators including NO , IL-1β, TNF-α, and IL-6 via the inhibition of NF -κ B activation in RAW264.7 cells. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of moringa fruit extract.

  12. Inhibition of Glycogen Synthase Kinase 3β Ameliorates D-GalN/LPS-Induced Liver Injury by Reducing Endoplasmic Reticulum Stress-Triggered Apoptosis

    PubMed Central

    Zhang, Haiyan; Wen, Tao; Piao, Zhengfu; Zhou, Li; Zheng, Sujun; Zhang, Jing; Chen, Yu; Han, Yuanping; Duan, Zhongping; Ma, Yingji

    2012-01-01

    Background Glycogen synthase kinase 3β(GSK3β) is a ubiquitous serine-threonine protein kinase that participates in numerous cellular processes and disease pathophysiology. We aimed to determine therapeutic potential of GSK3β inhibition and its mechanism in a well-characterized model of lipopolysaccharide (LPS)-induced model of acute liver failure (ALF). Methodology In a murine ALF model induced by D-GalN(700 mg/kg)/LPS(10 µg/kg), we analyzed GSK3β mechanisms using a specific chemical inhibitor, SB216763, and detected the role of endoplasmic reticulum stress (ERS). Mice were administered SB216763 at 2 h before or after D-GalN/LPS injection, respectively, and then sacrificed 6 h after D-GalN/LPS treatment to evaluate its prophylactic and therapeutic function. The lethality rate, liver damage, ERS, cytokine expression, MAP kinase, hepatocyte apoptosis and expression of TLR 4 were evaluated, respectively. Whether the inhibition of GSK3β activation protected hepatocyte from ERS-induced apoptosis was investigated in vitro. Principal Findings GSK3β became quickly activated (dephosphorylated) upon D-GalN/LPS exposure. Administration of SB216763 not only ameliorated liver injury, as evidenced by reduced transaminase levels, and well-preserved liver architecture, but also decreased lethality. Moreover, GSK3β inhibition resulted in down-regulation of pro-apoptotic proteins C/EBP–homologous protein(CHOP) and caspase-12, which are related to ERS. To further demonstrate the role of ERS, we found that GSK3β inhibition protected hepatocyte from ERS-induced cell death. GSK3β inhibition down-regulated the MAPK pathways, reduced expression of inflammatory cytokines and decreased expression of TLR4. Conclusions Our findings demonstrate the key function of GSK3β signaling in the pathophysiology of ALF, especially in regulating the ERS, and provide a rationale for targeting GSK3β as a potential therapeutic strategy to ameliorate ALF. PMID:23028846

  13. Inhibiting IκBβ–NFκB signaling attenuates the expression of select pro-inflammatory genes

    PubMed Central

    McKenna, Sarah; Wright, Clyde J.

    2015-01-01

    ABSTRACT Multiple mediators of septic shock are regulated by the transcription factor nuclear factor κB (NFκB). However, complete NFκB inhibition can exacerbate disease, necessitating evaluation of targeted strategies to attenuate the pro-inflammatory response. Here, we demonstrate that in murine macrophages, low-dose NFκB inhibitors specifically attenuates lipopolysaccharide (LPS)-induced IκBβ degradation and the expression of a select subset of target genes (encoding IL1β, IL6, IL12β). Gain- and loss-of-function experiments demonstrate the necessary and sufficient role of inhibitor of NFκB family member IκBβ (also known as NFKBIB) in the expression of these genes. Furthermore, both fibroblasts and macrophages isolated from IκBβ overexpressing mice demonstrate attenuated LPS-induced IκBβ–NFκB signaling and IL1β, IL6 and IL12β expression. Further confirming the role of IκBβ and its NFκB subunit binding partner cRel in LPS-induced gene expression, pre-treatment of wild-type mouse embryonic fibroblasts with a cell-permeable peptide containing the cRel nuclear localization sequence attenuated IL6 expression. We prove that LPS-induced IκBβ–NFκB signaling can be selectively modulated to attenuate the expression of select pro-inflammatory target genes, thus providing therapeutic insights for patients exposed to systemic inflammatory stress. PMID:25908863

  14. Nitric oxide suppresses LPS-induced inflammation in a mouse asthma model by attenuating the interaction of IKK and Hsp90

    PubMed Central

    Lee, Ming-Yung; Sun, Kuang-Hui; Chiang, Chien-Ping; Huang, Ching-Feng; Sun, Guang-Huan; Tsou, Yu-Chi; Liu, Huan-Yun

    2015-01-01

    A feature of allergic airway disease is the observed increase of nitric oxide (NO) in exhaled breath. Gram-negative bacterial infections have also been linked with asthma exacerbations. However, the role of NO in asthma exacerbations with gram-negative bacterial infections is still unclear. In this study, we examined the role of NO in lipopolysaccharide (LPS)-induced inflammation in an ovalbumin (OVA)-challenged mouse asthma model. To determine whether NO affected the LPS-induced response, a NO donor (S-nitroso-N-acetylpenicillamine, SNAP) or a selective inhibitor of NO synthase (1400W) was injected intraperitoneally into the mice before the LPS stimulation. Decreased levels of proinflammatory cytokines were demonstrated in the bronchoalveolar lavage fluid from mice treated with SNAP, whereas increased levels of cytokines were found in the 1400W-treated mice. To further explore the molecular mechanism of NO-mediated inhibition of proinflammatory responses in macrophages, RAW 264.7 cells were treated with 1400W or SNAP before LPS stimulation. LPS-induced inflammation in the cells was attenuated by the presence of NO. The LPS-induced IκB kinase (IKK) activation and the expression of IKK were reduced by NO through attenuation of the interaction between Hsp90 and IKK in the cells. The IKK decrease in the lung immunohistopathology was verified in SNAP-treated asthma mice, whereas IKK increased in the 1400W-treated group. We report for the first time that NO attenuates the interaction between Hsp90 and IKK, decreasing the stability of IKK and causing the down-regulation of the proinflammatory response. Furthermore, the results suggest that NO may repress LPS-stimulated innate immunity to promote pulmonary bacterial infection in asthma patients. PMID:25519430

  15. The disintegrin, trimucrin, suppresses LPS-induced activation of phagocytes primarily through blockade of NF-κB and MAPK activation.

    PubMed

    Hung, Yu-Chun; Hsu, Chun-Chieh; Chung, Ching-Hu; Huang, Tur-Fu

    2016-07-01

    In addition to antiplatelet activity, disintegrin, a small-mass RGD-containing polypeptide, has been shown to exert anti-inflammatory effects but the mechanism involved remains unclear. In this study, we report that trimucrin, a disintegrin from the venom of Trimeresurus mucrosquamatus, inhibits lipopolysaccharide (LPS)-induced stimulation of THP-1 and RAW 264.7 cells. We also investigate the underlying mechanism. Trimucrin decreased the release of proinflammatory cytokines including tumor necrosis factor α (TNFα), interleukin-6 (IL-6), nitric oxide, and reactive oxygen species (ROS), and inhibited the adhesion and migration of LPS-activated phagocytes. Trimucrin significantly blocked the expression of nuclear factor kappaB (NF-κB)-related downstream inducible enzymes such as inducible nitric oxide synthase (iNOS) and COX-2. In addition, its anti-inflammatory effect was associated with the decreased mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, trimucrin concentration dependently inhibited LPS-induced phosphorylation of focal adhesion kinase (FAK), PI3K, and Akt. Trimucrin also reversed the DNA-binding activity of NF-κB by suppressing the LPS-induced nuclear translocation of p65 and the cytosolic IκB release. Flow cytometric analyses showed that trimucrin bound to cells in a concentration-dependent manner. The anti-αVβ3 mAb also specifically decreased the binding of fluorescein isothiocyanate (FITC)-conjugated trimucrin. Binding assays demonstrated that integrin αVβ3 was the binding site for trimucrin on THP-1 and RAW 264.7 cells. In conclusion, we showed that trimucrin decreases the inflammatory reaction through the attenuation of iNOS expression and nitric oxide (NO) production by blocking MAP kinase and the NF-κB activation in LPS-stimulated THP-1 and RAW 264.7 cells.

  16. Adiponectin Inhibits LPS-Induced HMGB1 Release through an AMP Kinase and Heme Oxygenase-1-Dependent Pathway in RAW 264 Macrophage Cells

    PubMed Central

    Kaede, Ryuji; Okamatsu-Ogura, Yuko

    2016-01-01

    High mobility group protein B1 (HMGB1) is a late inflammatory mediator that exaggerates septic symptoms. Adiponectin, an adipokine, has potent anti-inflammatory properties. However, possible effects of adiponectin on lipopolysaccharide- (LPS-) induced HMGB1 release are unknown. The aim of this study was to investigate effects of full length adiponectin on HMGB1 release in LPS-stimulated RAW 264 macrophage cells. Treatment of the cells with LPS alone significantly induced HMGB1 release associated with HMGB1 translocation from the nucleus to the cytosol. However, prior treatment with adiponectin suppressed LPS-induced HMGB1 release and translocation. The anti-inflammatory cytokine interleukin- (IL-) 10 similarly suppressed LPS-induced HMGB1 release. Adiponectin treatment decreased toll-like receptor 4 (TLR4) mRNA expression and increased heme oxygenase- (HO-) 1 mRNA expression without inducing IL-10 mRNA, while IL-10 treatment decreased TLR2 and HMGB1 mRNA expression and increased the expression of IL-10 and HO-1 mRNA. Treatment with the HO-1 inhibitor ZnPP completely prevented the suppression of HMGB1 release by adiponectin but only partially inhibited that induced by IL-10. Treatment with compound C, an AMP kinase (AMPK) inhibitor, abolished the increase in HO-1 expression and the suppression of HMGB1 release mediated by adiponectin. In conclusion, our results indicate that adiponectin suppresses HMGB1 release by LPS through an AMPK-mediated and HO-1-dependent IL-10-independent pathway. PMID:27313399

  17. EFFECTS OF SYSTEMIC NEUTROPHIL DEPLETION ON LPS-INDUCED AIRWAY DISEASE

    EPA Science Inventory

    Effects of Systemic Neutrophil Depletion on LPS-induced Airway Disease
    Jordan D. Savov, Stephen H. Gavett*, David M. Brass, Daniel L. Costa*, David A. Schwartz
    Pulmonary and Critical Care Division, Dept of Medicine ? Duke University Medical Center
    * National Health and E...

  18. NEUTROPHILS PLAY A CRITICAL ROLE IN THE DEVELOPMENT OF LPS-INDUCED AIRWAY DISEASE

    EPA Science Inventory

    ETD-02-045 (GAVETT) GPRA # 10108

    Neutrophils Play a Critical Role in the Development of LPS-Induced Airway Disease.
    Jordan D. Savov, Stephen H. Gavett*, David M. Brass, Daniel L. Costa*, and David A. Schwartz

    ABSTRACT
    We investigated the role of neutrophils...

  19. NEUTROPHILS PLAY A CRITICAL ROLE IN THE DEVELOPMENT OF LPS-INDUCED AIRWAY DISEASE

    EPA Science Inventory

    ETD-02-045 (GAVETT) GPRA # 10108

    Neutrophils Play a Critical Role in the Development of LPS-Induced Airway Disease.
    Jordan D. Savov, Stephen H. Gavett*, David M. Brass, Daniel L. Costa*, and David A. Schwartz

    ABSTRACT
    We investigated the role of neutrophils...

  20. EFFECTS OF SYSTEMIC NEUTROPHIL DEPLETION ON LPS-INDUCED AIRWAY DISEASE

    EPA Science Inventory

    Effects of Systemic Neutrophil Depletion on LPS-induced Airway Disease
    Jordan D. Savov, Stephen H. Gavett*, David M. Brass, Daniel L. Costa*, David A. Schwartz
    Pulmonary and Critical Care Division, Dept of Medicine ? Duke University Medical Center
    * National Health and E...

  1. Anti-Inflammatory Activity of Sanghuangporus sanghuang Mycelium

    PubMed Central

    Lin, Wang-Ching; Deng, Jeng-Shyan; Huang, Shyh-Shyun; Wu, Sheng-Hua; Chen, Chin-Chu; Lin, Wan-Rong; Lin, Hui-Yi; Huang, Guan-Jhong

    2017-01-01

    Acute lung injury (ALI) is characterized by inflammation of the lung tissue and oxidative injury caused by excessive accumulation of reactive oxygen species. Studies have suggested that anti-inflammatory or antioxidant agents could be used for the treatment of ALI with a good outcome. Therefore, our study aimed to test whether the mycelium extract of Sanghuangporus sanghuang (SS-1), believed to exhibit antioxidant and anti-inflammatory properties, could be used against the excessive inflammatory response associated with lipopolysaccharides (LPS)-induced ALI in mice and to investigate its possible mechanism of action. The experimental results showed that the administration of SS-1 could inhibit LPS-induced inflammation. SS-1 could reduce the number of inflammatory cells, inhibit myeloperoxidase (MPO) activity, regulate the TLR4/PI3K/Akt/mTOR pathway and the signal transduction of NF-κB and MAPK pathways in the lung tissue, and inhibit high mobility group box-1 protein 1 (HNGB1) activity in BALF. In addition, SS-1 could affect the synthesis of antioxidant enzymes Heme oxygenase 1 (HO-1) and Thioredoxin-1 (Trx-1) in the lung tissue and regulate signal transduction in the KRAB-associated protein-1 (KAP1)/nuclear factor erythroid-2-related factor Nrf2/Kelch Like ECH associated Protein 1 (Keap1) pathway. Histological results showed that administration of SS-1 prior to induction could inhibit the large-scale LPS-induced neutrophil infiltration of the lung tissue. Therefore, based on all experimental results, we propose that SS-1 exhibits a protective effect against LPS-induced ALI in mice. The mycelium of S. sanghuang can potentially be used for the treatment or prevention of inflammation-related diseases. PMID:28178212

  2. Glycolysis-dependent histone deacetylase 4 degradation regulates inflammatory cytokine production

    PubMed Central

    Wang, Bin; Liu, Ting-yu; Lai, Chun-Hsiang; Rao, Yan-hua; Choi, Moon-Chang; Chi, Jen-Tsan; Dai, Jian-wu; Rathmell, Jeffrey C.; Yao, Tso-Pang

    2014-01-01

    Activation of the inflammatory response is accompanied by a metabolic shift to aerobic glycolysis. Here we identify histone deacetylase 4 (HDAC4) as a new component of the immunometabolic program. We show that HDAC4 is required for efficient inflammatory cytokine production activated by lipopolysaccharide (LPS). Surprisingly, prolonged LPS treatment leads to HDAC4 degradation. LPS-induced HDAC4 degradation requires active glycolysis controlled by GSK3β and inducible nitric oxide synthase (iNOS). Inhibition of GSK3β or iNOS suppresses nitric oxide (NO) production, glycolysis, and HDAC4 degradation. We present evidence that sustained glycolysis induced by LPS treatment activates caspase-3, which cleaves HDAC4 and triggers its degradation. Of importance, a caspase-3–resistant mutant HDAC4 escapes LPS-induced degradation and prolongs inflammatory cytokine production. Our findings identify the GSK3β-iNOS-NO axis as a critical signaling cascade that couples inflammation to metabolic reprogramming and a glycolysis-driven negative feedback mechanism that limits inflammatory response by triggering HDAC4 degradation. PMID:25187650

  3. Glycolysis-dependent histone deacetylase 4 degradation regulates inflammatory cytokine production.

    PubMed

    Wang, Bin; Liu, Ting-Yu; Lai, Chun-Hsiang; Rao, Yan-hua; Choi, Moon-Chang; Chi, Jen-Tsan; Dai, Jian-wu; Rathmell, Jeffrey C; Yao, Tso-Pang

    2014-11-01

    Activation of the inflammatory response is accompanied by a metabolic shift to aerobic glycolysis. Here we identify histone deacetylase 4 (HDAC4) as a new component of the immunometabolic program. We show that HDAC4 is required for efficient inflammatory cytokine production activated by lipopolysaccharide (LPS). Surprisingly, prolonged LPS treatment leads to HDAC4 degradation. LPS-induced HDAC4 degradation requires active glycolysis controlled by GSK3β and inducible nitric oxide synthase (iNOS). Inhibition of GSK3β or iNOS suppresses nitric oxide (NO) production, glycolysis, and HDAC4 degradation. We present evidence that sustained glycolysis induced by LPS treatment activates caspase-3, which cleaves HDAC4 and triggers its degradation. Of importance, a caspase-3-resistant mutant HDAC4 escapes LPS-induced degradation and prolongs inflammatory cytokine production. Our findings identify the GSK3β-iNOS-NO axis as a critical signaling cascade that couples inflammation to metabolic reprogramming and a glycolysis-driven negative feedback mechanism that limits inflammatory response by triggering HDAC4 degradation. © 2014 Wang et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Ghrelin inhibits LPS-induced release of IL-6 from mouse dopaminergic neurones

    PubMed Central

    2013-01-01

    Background Ghrelin is an orexigenic stomach hormone that acts centrally to increase mid-brain dopamine neurone activity, amplify dopamine signaling and protect against neurotoxin-induced dopamine cell death in the mouse substantia nigra pars compacta (SNpc). In addition, ghrelin inhibits the lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines from peripheral macrophages, T-cells and from LPS stimulated microglia. Here we sought to determine whether ghrelin attenuates pro-inflammatory cytokine release from dopaminergic neurones. Findings The dopaminergic SN4741 cell-line, which derives from the mouse substantia nigra (SN) and expresses the ghrelin-receptor (growth hormone secretagogue receptor (GHS-R)) and the ghrelin-O-acyl transferase (GOAT) enzyme, was used to determine the neuro-immunomodulatory action of ghrelin. We induced innate immune activation via LPS challenge (1 μg/ml) of SN4741 neurones that had been pre-cultured in the presence or absence of ghrelin (1, 10, 100 nM) for 4 h. After 24 h supernatants were collected for detection of IL-1 beta (IL-1β ), TNF alpha (TNF-α) and IL-6 cytokines via enzyme linked immunosorbent assay (ELISA) analysis. Nuclear translocation of the transcription factor nuclear factor kappa B (NF-κB) was analyzed by Western blotting, and to determine viability of treatments a cell viability assay and caspase-3 immunohistochemistry were performed. We provide evidence that while IL-1β and TNF-α were not detectable under any conditions, SN4741 neurones constitutively released IL-6 under basal conditions and treatment with LPS significantly increased IL-6 secretion. Pre-treatment of neurones with ghrelin attenuated LPS-mediated IL-6 release at 24 h, an affect that was inhibited by the GHS-R antagonist [D-Lys3]-GHRP-6. However, while ghrelin pre-treatment attenuated the LPS-mediated increase in NF-κB, there was no alteration in its nuclear translocation. Cell viability assay and caspase-3 immunocytochemistry

  5. Ghrelin inhibits LPS-induced release of IL-6 from mouse dopaminergic neurones.

    PubMed

    Beynon, Amy L; Brown, M Rowan; Wright, Rhiannon; Rees, Mark I; Sheldon, I Martin; Davies, Jeffrey S

    2013-03-19

    Ghrelin is an orexigenic stomach hormone that acts centrally to increase mid-brain dopamine neurone activity, amplify dopamine signaling and protect against neurotoxin-induced dopamine cell death in the mouse substantia nigra pars compacta (SNpc). In addition, ghrelin inhibits the lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines from peripheral macrophages, T-cells and from LPS stimulated microglia. Here we sought to determine whether ghrelin attenuates pro-inflammatory cytokine release from dopaminergic neurones. The dopaminergic SN4741 cell-line, which derives from the mouse substantia nigra (SN) and expresses the ghrelin-receptor (growth hormone secretagogue receptor (GHS-R)) and the ghrelin-O-acyl transferase (GOAT) enzyme, was used to determine the neuro-immunomodulatory action of ghrelin. We induced innate immune activation via LPS challenge (1 μg/ml) of SN4741 neurones that had been pre-cultured in the presence or absence of ghrelin (1, 10, 100 nM) for 4 h. After 24 h supernatants were collected for detection of IL-1 beta (IL-1β ), TNF alpha (TNF-α) and IL-6 cytokines via enzyme linked immunosorbent assay (ELISA) analysis. Nuclear translocation of the transcription factor nuclear factor kappa B (NF-κB) was analyzed by Western blotting, and to determine viability of treatments a cell viability assay and caspase-3 immunohistochemistry were performed.We provide evidence that while IL-1β and TNF-α were not detectable under any conditions, SN4741 neurones constitutively released IL-6 under basal conditions and treatment with LPS significantly increased IL-6 secretion. Pre-treatment of neurones with ghrelin attenuated LPS-mediated IL-6 release at 24 h, an affect that was inhibited by the GHS-R antagonist [D-Lys3]-GHRP-6. However, while ghrelin pre-treatment attenuated the LPS-mediated increase in NF-κB, there was no alteration in its nuclear translocation. Cell viability assay and caspase-3 immunocytochemistry demonstrated that the

  6. Niclosamide suppresses RANKL-induced osteoclastogenesis and prevents LPS-induced bone loss

    SciTech Connect

    Cheon, Yoon-Hee; Kim, Ju-Young; Baek, Jong Min; Ahn, Sung-Jun; So, Hong-Seob; Oh, Jaemin

    2016-02-05

    Niclosamide (5-chloro-salicyl-(2-chloro-4-nitro) anilide) is an oral anthelmintic drug used for treating intestinal infection of most tapeworms. Recently, niclosamide was shown to have considerable efficacy against some tumor cell lines, including colorectal, prostate, and breast cancers, and acute myelogenous leukemia. Specifically, the drug was identified as a potent inhibitor of signal transducer and activator of transcription 3 (STAT3), which is associated with osteoclast differentiation and function. In this study, we assessed the effect of niclosamide on osteoclastogenesis in vitro and in vivo. Our in vitro study showed that receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast differentiation was inhibited by niclosamide, due to inhibition of serine–threonine protein kinase (Akt) phosphorylation, inhibitor of nuclear factor-kappaB (IκB), and STAT3 serine{sup 727}. Niclosamide decreased the expression of the major transcription factors c-Fos and NFATc1, and thereafter abrogated the mRNA expression of osteoclast-specific genes, including TRAP, OSCAR, αv/β3 integrin (integrin αv, integrin β3), and cathepsin K (CtsK). In an in vivo model, niclosamide prevented lipopolysaccharide-induced bone loss by diminishing osteoclast activity. Taken together, our results show that niclosamide is effective in suppressing osteoclastogenesis and may be considered as a new and safe therapeutic candidate for the clinical treatment of osteoclast-related diseases such as osteoporosis. - Highlights: • We first investigated the anti-osteoclastogenic effects of niclosamide in vitro and in vivo. • Niclosamide impairs the activation of the Akt-IκB-STAT3 ser{sup 727} signaling axis. • Niclosamide acts a negative regulator of actin ring formation during osteoclast differentiation. • Niclosamide suppresses LPS-induced bone loss in vivo. • Niclosamide deserves new evaluation as a potential treatment target in various bone diseases.

  7. Synthesis of indolyl-3-acetonitrile derivatives and their inhibitory effects on nitric oxide and PGE2 productions in LPS-induced RAW 264.7 cells.

    PubMed

    Kwon, Tae Hoon; Yoon, Ik Hwan; Shin, Ji-Sun; Lee, Young Hun; Kwon, Bong Jin; Lee, Kyung-Tae; Lee, Yong Sup

    2013-05-01

    Arvelexin is one of major constituents of Brassica rapa that exerts anti-inflammatory activities. Several indolyl-3-acetonitrile derivatives were synthesized as arvelexin analogs and evaluated for their abilities to inhibit NO and PGE2 productions in LPS-induced RAW 264.7 cells. Of the indolyl-3-acetonitriles synthesized, compound 2k, which possesses a hydroxyl group at C-7 position of the indole ring and an N-methyl substituent, more potently inhibited NO and PGE2 productions and was less cytotoxic than arvelexin on macrophage cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Carabrol suppresses LPS-induced nitric oxide synthase expression by inactivation of p38 and JNK via inhibition of I-{kappa}B{alpha} degradation in RAW 264.7 cells

    SciTech Connect

    Lee, Hwa Jin; Lim, Hyo Jin; Lee, Da Yeon; Jung, Hyeyoun; Kim, Mi-Ran; Moon, Dong-Cheul; Kim, Keun Il; Lee, Myeong-Sok; Ryu, Jae-Ha

    2010-01-15

    Carabrol, isolated from Carpesium macrocephalum, showed anti-inflammatory potential in LPS-induced RAW 264.7 murine macrophages. In present study, carabrol demonstrated the inhibitory activity on pro-inflammatory cytokines such as IL-1{beta}, IL-6 and TNF-{alpha}. In addition, mRNA and protein levels of iNOS and COX-2 were reduced by carabrol. Molecular analysis revealed that these suppressive effects were correlated with the inactivation of p38 and JNK via inhibition of NF-{kappa}B activation. Immunoblotting showed that carabrol suppressed LPS-induced degradation of I-{kappa}B{alpha} and decreased nuclear translocation of p65. Taken together, these results suggest that carabrol can be a modulator of pro-inflammatory signal transduction pathway in RAW 264.7 cells.

  9. In vitro Modulation of the LPS-Induced Proinflammatory Profile of Hepatocytes and Macrophages- Approaches for Intervention in Obesity?

    PubMed Central

    Kheder, Ramiar K.; Hobkirk, James; Stover, Cordula M.

    2016-01-01

    Low grade endotoxemia is a feature of obesity which is linked to development of steatohepatitis in non-alcoholic fatty liver disease. In this study, macrophages (J774) and hepatocytes (HepG2) were stimulated with lipopolysaccharide (LPS) from E. coli 0111: B4 and analyzed for modulation of this response when preconditioned or stimulated subsequent to LPS, with different doses of Vitamin D3 or docosahexaenoic acid (DHA) over a time period of 1 and 5 days. Pro-inflammatory TNFα and pro-fibrotic TGFβ released into the supernatants were measured by ELISA; qPCR was performed for Srebp-1c and PPARα mRNA (genes for products involved in fatty acid synthesis and catabolism, respectively). Vitamin D3 and DHA exerted a consistent, dose dependent anti-inflammatory effect, and increased PPARα relative to Srebp-1c in both cell types. By contrast, addition of free fatty acids (FFA, oleic acid/palmitic acid 2:1) caused aggravation of LPS-induced inflammatory reaction and an increase of Srebp-1c relative to PPARα. Our results argue in favor of dietary supplementation of Vitamin D3 or DHA (and avoidance of monounsaturated/saturated fatty acids) to alleviate development of fatty liver disease. PMID:27446914

  10. Aromatic-turmerone Attenuates LPS-Induced Neuroinflammation and Consequent Memory Impairment by Targeting TLR4-Dependent Signaling Pathway.

    PubMed

    Chen, Min; Chang, Yuan-Yuan; Huang, Shun; Xiao, Li-Hang; Zhou, Wei; Zhang, Lan-Yue; Li, Chun; Zhou, Ren-Ping; Tang, Jian; Lin, Li; Du, Zhi-Yun; Zhang, Kun

    2017-08-28

    Curcuma longa (turmeric) is a folk medicine in South and Southeast Asia, which has been widely used to alleviate chronic inflammation. Aromatic-turmerone is one of the main components abundant in turmeric essential oil. However, little information is available from controlled studies regarding its biological activities and underlying molecular mechanisms against chronic inflammation in the brain. In the current study, we employed a classical lipopolysaccharide (LPS) model to study the effect and mechanism of aromatic-turmerone on neuroinflammation. The effects of aromatic-turmerone were studied in LPS-treated mice and BV2 cells. The cognitive function assays, protein analyses, and histological examination were performed. Oral administration of aromatic-turmerone could reverse LPS-induced memory disturbance and normalize glucose intake and metabolism in the brains of mice. Moreover, aromatic-turmerone significantly limited brain damage, through inhibiting the activation of microglia and generation of inflammatory cytokines. Further study in vitro revealed that aromatic-turmerone targeted Toll-like receptor 4 (TLR4)-mediated downstream signaling, and lowered the release of inflammatory mediators. These observations indicate that aromatic-turmerone is effective in preventing brain damage caused by neuroinflammation and may be useful in the treatment of neuronal inflammatory diseases. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Alliin, a garlic (Allium sativum) compound, prevents LPS-induced inflammation in 3T3-L1 adipocytes.

    PubMed

    Quintero-Fabián, Saray; Ortuño-Sahagún, Daniel; Vázquez-Carrera, Manuel; López-Roa, Rocío Ivette

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile.

  12. Alliin, a Garlic (Allium sativum) Compound, Prevents LPS-Induced Inflammation in 3T3-L1 Adipocytes

    PubMed Central

    Quintero-Fabián, Saray; Ortuño-Sahagún, Daniel; Vázquez-Carrera, Manuel; López-Roa, Rocío Ivette

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile. PMID:24453416

  13. α₁ adrenoceptor activation by norepinephrine inhibits LPS-induced cardiomyocyte TNF-α production via modulating ERK1/2 and NF-κB pathway.

    PubMed

    Yu, Xiaohui; Jia, Baoyin; Wang, Faqiang; Lv, Xiuxiu; Peng, Xuemei; Wang, Yiyang; Li, Hongmei; Wang, Yanping; Lu, Daxiang; Wang, Huadong

    2014-02-01

    Cardiomyocyte tumour necrosis factor α (TNF-α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)-induced cardiomyocyte TNF-α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS-induced TNF-α production in a dose-dependent manner. α₁- adrenoceptor (AR) antagonist (prazosin), but neither β₁- nor β₂-AR antagonist, abrogated the inhibitory effect of NE on LPS-stimulated TNF-α production. Furthermore, phenylephrine (PE), an α₁-AR agonist, also suppressed LPS-induced TNF-α production. NE inhibited p38 phosphorylation and NF-κB activation, but enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and c-Fos expression in LPS-treated cardiomyocytes, all of which were reversed by prazosin pre-treatment. To determine whether ERK1/2 regulates c-Fos expression, p38 phosphorylation, NF-κB activation and TNF-α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c-Fos expression, p38 mitogen-activated protein kinase (MAPK) phosphorylation and TNF-α production, but not NF-κB activation in LPS-challenged cardiomyocytes. In addition, pre-treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS-induced TNF-α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c-Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF-α production and prevented LPS-provoked cardiac dysfunction. Altogether, these findings indicate that activation of α₁-AR by NE suppresses LPS-induced cardiomyocyte TNF-α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF-κB activation.

  14. 4,7-Dimethoxy-5-methyl-1,3-benzodioxole from Antrodia camphorata inhibits LPS-induced inflammation via suppression of NF-κB and induction HO-1 in RAW264.7 cells.

    PubMed

    Shie, Pei-Hsin; Wang, Sheng-Yang; Lay, Horng-Liang; Huang, Guan-Jhong

    2016-02-01

    Several benzenoid compounds have been isolated from Antrodia camphorata are known to have excellent anti-inflammatory activity. In this study, we investigated the anti-inflammatory potential of 4,7-dimethoxy-5-methyl-1,3-benzodioxole (DMB), one of the major benzenoid compounds isolated from the mycelia of A. camphorata. DMB significantly decreased the LPS-induced production of pro-inflammatory molecules, such as nitric oxide (NO), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in RAW264.7 cells. In addition, DMB suppressed the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose dependent manner. Moreover, DMB significantly suppressed LPS-induced nuclear translocation of nuclear factor-κB (NF-κB), and this inhibition was found to be associated with decreases in the phosphorylation and degradation of its inhibitor, inhibitory κB-α (IκB-α). Moreover, we found that DMB markedly inhibited the protein expression level of Toll-like receptor 4 (TLR4). Furthermore, treatment with DMB significantly increased hemoxygenase-1 (HO-1) expression in RAW264.7 cells, which is further confirmed by hemin, a HO-1 enhancer, significantly attenuated the LPS-induced pro-inflammatory molecules and iNOS and TLR4 protein levels. Taken together, the present study suggests that DMB may have therapeutic potential for the treatment of inflammatory diseases.

  15. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-{kappa}B, p38MAPK and Akt inhibition

    SciTech Connect

    Essafi-Benkhadir, Khadija; Refai, Amira; Riahi, Ichrak; Fattouch, Sami; Karoui, Habib; Essafi, Makram

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Quince peel polyphenols inhibit LPS-induced secretion of TNF-{alpha} and IL-8. Black-Right-Pointing-Pointer Quince peel polyphenols augment LPS-induced secretion of IL-10 and IL-6. Black-Right-Pointing-Pointer Quince peel polyphenols-mediated inhibition of LPS-induced secretion of TNF-{alpha} is partially mediated by IL-6. Black-Right-Pointing-Pointer The anti-inflammatory effects of quince polyphenols pass through NF-{kappa}B, p38MAPK and Akt inhibition. -- Abstract: Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effect of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-{alpha} and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-{alpha} secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-{kappa}B), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince

  16. Hypericum triquetrifolium—Derived Factors Downregulate the Production Levels of LPS-Induced Nitric Oxide and Tumor Necrosis Factor-α in THP-1 Cells

    PubMed Central

    Saad, Bashar; AbouAtta, Bernadette Soudah; Basha, Walid; Hmade, Alaa; Kmail, Abdalsalam; Khasib, Said; Said, Omar

    2011-01-01

    Based on knowledge from traditional Arab herbal medicine, this in vitro study aims to examine the anti-inflammatory mechanism of Hypericum triquetrifolium by measuring the expression and release of pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukine-6 (IL-6), and inducible nitric oxide synthase (iNOS) in human monocytic cells, THP-1. The effects were assessed by measuring the levels of secretory proteins and mRNA of TNF-α and IL-6, the levels of nitric oxide (NO) secretion and the expression of iNOS in THP-1 cells. Cells were treated with 5 μg lipopolysaccharide/ml (LPS) in the presence and absence of increasing concentrations of extracts from the aerial parts of H. triquetrifolium. During the entire experimental period, we used extract concentrations (up to 250 μg mL−1) that had no cytotoxic effects, as measured with MTT and LDH assays. Hypericum triquetrifolium extracts remarkably suppressed the LPS-induced NO release, significantly attenuated the LPS-induced transcription of iNOS and inhibited in a dose-dependent manner the expression and release of TNF-α. No significant effects were observed on the release of IL-6. Taken together, these results suggest that H. triquetrifolium probably exerts anti-inflammatory effects through the suppression of TNF-α and iNOS expressions. PMID:18955363

  17. Hypericum triquetrifolium-Derived Factors Downregulate the Production Levels of LPS-Induced Nitric Oxide and Tumor Necrosis Factor-α in THP-1 Cells.

    PubMed

    Saad, Bashar; Abouatta, Bernadette Soudah; Basha, Walid; Hmade, Alaa; Kmail, Abdalsalam; Khasib, Said; Said, Omar

    2011-01-01

    Based on knowledge from traditional Arab herbal medicine, this in vitro study aims to examine the anti-inflammatory mechanism of Hypericum triquetrifolium by measuring the expression and release of pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukine-6 (IL-6), and inducible nitric oxide synthase (iNOS) in human monocytic cells, THP-1. The effects were assessed by measuring the levels of secretory proteins and mRNA of TNF-α and IL-6, the levels of nitric oxide (NO) secretion and the expression of iNOS in THP-1 cells. Cells were treated with 5 μg lipopolysaccharide/ml (LPS) in the presence and absence of increasing concentrations of extracts from the aerial parts of H. triquetrifolium. During the entire experimental period, we used extract concentrations (up to 250 μg mL(-1)) that had no cytotoxic effects, as measured with MTT and LDH assays. Hypericum triquetrifolium extracts remarkably suppressed the LPS-induced NO release, significantly attenuated the LPS-induced transcription of iNOS and inhibited in a dose-dependent manner the expression and release of TNF-α. No significant effects were observed on the release of IL-6. Taken together, these results suggest that H. triquetrifolium probably exerts anti-inflammatory effects through the suppression of TNF-α and iNOS expressions.

  18. Adenosine modulates LPS-induced cytokine production in porcine monocytes.

    PubMed

    Ondrackova, Petra; Kovaru, Hana; Kovaru, Frantisek; Leva, Lenka; Faldyna, Martin

    2013-03-01

    Adenosine plays an important role during inflammation, particularly through modulation of monocyte function. The objective of the present study was to evaluate the effect of synthetic adenosine analogs on cytokine production by porcine monocytes. The LPS-stimulated cytokine production was measured by flow cytometry and quantitative real-time PCR. Adenosine receptor expression was measured by quantitative real-time PCR. The present study demonstrates that adenosine analog N-ethylcarboxyamidoadenosine (NECA) down-regulates TNF-α production and up-regulates IL-8 production by LPS-stimulated porcine monocytes. The effect was more pronounced in CD163(-) subset of monocytes compared to the CD163(+) subset. Although both monocyte subsets express mRNA for A1, A2A, A2B and A3 adenosine receptors, the treatment of monocytes with various adenosine receptor agonists and antagonists proved that the effect of adenosine is mediated preferentially via A2A adenosine receptor. Moreover, the study suggests that the effect of NECA on porcine monocytes alters the levels of the cytokines which could play a role in the differentiation of naive T cells into Th17 cells. The results suggest that adenosine plays an important role in modulation of cytokine production by porcine monocytes.

  19. Allium cepa L. and Quercetin Inhibit RANKL/Porphyromonas gingivalis LPS-Induced Osteoclastogenesis by Downregulating NF-κB Signaling Pathway.

    PubMed

    Oliveira, Tatiane; Figueiredo, Camila A; Brito, Carlos; Stavroullakis, Alexander; Ferreira, Ana Carolina; Nogueira-Filho, Getulio; Prakki, Anuradha

    2015-01-01

    Objectives. We evaluated the in vitro modulatory effects of Allium cepa L. extract (AcE) and quercetin (Qt) on osteoclastogenesis under inflammatory conditions (LPS-induced). Methods. RAW 264.7 cells were differentiated with 30 ng/mL of RANKL, costimulated with PgLPS (1 µg/mL), and treated with AcE (50-1000 µg/mL) or Qt (1.25, 2.5, or 5 µM). Cell viability was determined by alamarBlue and protein assays. Nuclei morphology was analysed by DAPI staining. TRAP assays were performed as follows: p-nitrophenyl phosphate was used to determine the acid phosphatase activity of the osteoclasts and TRAP staining was used to evaluate the number and size of TRAP-positive multinucleated osteoclast cells. Von Kossa staining was used to measure osteoclast resorptive activity. Cytokine levels were measured on osteoclast precursor cell culture supernatants. Using western blot analysis, p-IκBα and IκBα degradation, inhibitor of NF-kappaB, were evaluated. Results. Both AcE and Qt did not affect cell viability and significantly reduced osteoclastogenesis compared to control. We observed lower production of IL-6 and IL-1α and an increased production of IL-3 and IL-4. AcE and Qt downregulated NF-κB pathway. Conclusion. AcE and Qt may be inhibitors of osteoclastogenesis under inflammatory conditions (LPS-induced) via attenuation of RANKL/PgLPS-induced NF-κB activation.

  20. Allium cepa L. and Quercetin Inhibit RANKL/Porphyromonas gingivalis LPS-Induced Osteoclastogenesis by Downregulating NF-κB Signaling Pathway

    PubMed Central

    Oliveira, Tatiane; Figueiredo, Camila A.; Stavroullakis, Alexander; Ferreira, Ana Carolina; Nogueira-Filho, Getulio

    2015-01-01

    Objectives. We evaluated the in vitro modulatory effects of Allium cepa L. extract (AcE) and quercetin (Qt) on osteoclastogenesis under inflammatory conditions (LPS-induced). Methods. RAW 264.7 cells were differentiated with 30 ng/mL of RANKL, costimulated with PgLPS (1 µg/mL), and treated with AcE (50–1000 µg/mL) or Qt (1.25, 2.5, or 5 µM). Cell viability was determined by alamarBlue and protein assays. Nuclei morphology was analysed by DAPI staining. TRAP assays were performed as follows: p-nitrophenyl phosphate was used to determine the acid phosphatase activity of the osteoclasts and TRAP staining was used to evaluate the number and size of TRAP-positive multinucleated osteoclast cells. Von Kossa staining was used to measure osteoclast resorptive activity. Cytokine levels were measured on osteoclast precursor cell culture supernatants. Using western blot analysis, p-IκBα and IκBα degradation, inhibitor of NF-kappaB, were evaluated. Results. Both AcE and Qt did not affect cell viability and significantly reduced osteoclastogenesis compared to control. We observed lower production of IL-6 and IL-1α and an increased production of IL-3 and IL-4. AcE and Qt downregulated NF-κB pathway. Conclusion. AcE and Qt may be inhibitors of osteoclastogenesis under inflammatory conditions (LPS-induced) via attenuation of RANKL/PgLPS-induced NF-κB activation. PMID:26273314

  1. Gypenoside XLIX, a naturally occurring gynosaponin, PPAR-alpha dependently inhibits LPS-induced tissue factor expression and activity in human THP-1 monocytic cells

    SciTech Connect

    Huang, Tom Hsun-Wei; Van Hoan Tran; Roufogalis, Basil D.; Li Yuhao . E-mail: yuhao@pharm.usyd.edu.au

    2007-01-01

    Tissue factor (TF) is involved not only in the progression of atherosclerosis and other cardiovascular diseases, but is also associated with tumor growth, metastasis, and angiogenesis and hence may be an attractive target for directed cancer therapeutics. Gynostemma pentaphyllum (GP) is widely used in the treatment of various cardiovascular diseases including atherosclerosis, as well as cancers. Gypenoside (Gyp) XLIX, a dammarane-type glycoside, is one of the prominent components in GP. We have recently reported Gyp XLIX to be a potent peroxisome proliferator-activated receptor (PPAR)-alpha activator. Here we demonstrate that Gyp XLIX (0-300 {mu}M) concentration dependently inhibited TF promoter activity after induction by the inflammatory stimulus lipopolysaccharide (LPS) in human monocytic THP-1 cells transfected with promoter reporter constructs pTF-LUC. Furthermore, Gyp XLIX inhibited LPS-induced TF mRNA and protein overexpression in THP-1 monocyte cells. Its inhibition of LPS-induced TF hyperactivity was further confirmed by chromogenic enzyme activity assay. The activities of Gyp XLIX reported in this study were similar to those of Wy-14643, a potent synthetic PPAR-alpha activator. Furthermore, the Gyp XLIX-induced inhibitory effect on TF luciferase activity was completely abolished in the presence of the PPAR-alpha selective antagonist MK-886. The present findings suggest that Gyp XLIX inhibits LPS-induced TF overexpression and enhancement of its activity in human THP-1 monocytic cells via PPAR-alpha-dependent pathways. The data provide new insights into the basis of the use of the traditional Chinese herbal medicine G. pentaphyllum for the treatment of cardiovascular and inflammatory diseases, as well as cancers.

  2. Activation of Adenosine 2A receptor inhibits neutrophil apoptosis in an autophagy-dependent manner in mice with systemic inflammatory response syndrome

    PubMed Central

    Liu, Yang-Wuyue; Yang, Ting; Zhao, Li; Ni, Zhenhong; Yang, Nan; He, Fengtian; Dai, Shuang-Shuang

    2016-01-01

    Systemic inflammatory response syndrome (SIRS) is an overwhelming whole body inflammation caused by infectious diseases or sterile insults. Neutrophils are the dominant participants during inflammation, and their survival and death determine the initiation as well as resolution of SIRS. Apoptosis and autophagy are two fundamental cellular processes that modulating cell fate, but their correlation and regulators in neutrophils under SIRS condition have not been elucidated. In this study, we demonstrated that high dose of LPS induced both apoptosis and autophagy of neutrophils in a mouse SIRS model and LPS-stimulated neutrophils in vitro. Moreover, we found that the adenosine 2A receptor (A2AR), a known anti-inflammatory G protein-coupled receptor (GPCR), could inhibit LPS-induced neutrophil apoptosis by suppressing the LPS-induced autophagy. Activation of A2AR suppressed LPS-induced autophagy by inhibiting the ROS-JNK pathway as well as promoting GPCR βϒ subunit–AKT signaling. The A2AR-inhibited autophagy suppressed apoptosis of neutrophils by blocking caspase8, caspase3 and PARP signaling. These findings not only increase our understandings of neutrophils’ fate and function in response to systemic inflammation, but also identify a novel anti-inflammatory role of A2AR in modulating neutrophils’ survival during inflammation. PMID:27647162

  3. Anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue in lipopolysaccharide-stimulated RAW 264.7 macrophages and in vivo zebrafish model

    PubMed Central

    Ko, Seok-Chun

    2015-01-01

    BACKGROUND/OBJECTIVES In this study, potential anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue was assessed via nitric oxide (NO) production in lipopolysaccahride (LPS) induced RAW 264.7 macrophages and in vivo zebrafish model. MATERIALS/METHODS We investigated the ability of enzymatic hydrolysates from Styela clava flesh tissue to inhibit LPS-induced expression of pro-inflammatory mediators in RAW 264.7 macrophages, and the molecular mechanism through which this inhibition occurred. In addition, we evaluated anti-inflammatory effect of enzymatic hydrolysates against a LPS-exposed in in vivo zebrafish model. RESULTS Among the enzymatic hydrolysates, Protamex-proteolytic hydrolysate exhibited the highest NO inhibitory effect and was fractionated into three ranges of molecular weight by using ultrafiltration (UF) membranes (MWCO 5 kDa and 10 kDa). The above 10 kDa fraction down-regulated LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), thereby reducing production of NO and prostaglandin E2 (PGE2) in LPS-activated RAW 264.7 macrophages. The above 10 kDa fraction suppressed LPS-induced production of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. In addition, the above 10 kDa fraction inhibited LPS-induced phosphorylation of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), and p38. Furthermore, NO production in live zebrafish induced by LPS was reduced by addition of the above 10 kDa fraction from S. clava enzymatic hydrolysate. CONCLUSION The results of this study suggested that hydrolysates derived from S. clava flesh tissue would be new anti-inflammation materials in functional resources. PMID:26060532

  4. Maprotiline inhibits LPS-induced expression of adhesion molecules (ICAM-1 and VCAM-1) in human endothelial cells

    PubMed Central

    Rafiee, Laleh; Hajhashemi, Valiollah; Javanmard, Shaghayegh Haghjooy

    2016-01-01

    Regardless of the known anti-inflammatory potential of heterocyclic antidepressants, the mechanisms concerning their modulating effects are not completely known. In our earlier work, maprotiline, a heterocyclic antidepressants, considerably inhibited infiltration of polymorphonuclear cell leucocytes into the inflamed paw. To understand the mechanism involved, we evaluated the effect of vascular cell adhesion molecule (VCAM-1), intracellular adhesion molecule (ICAM-1) expression in stimulated endothelial cells. Endothelial cells were stimulated with lipopolysaccharide (LPS) in the presence and absence of maprotiline (10-8 to 10-6 M) and ICAM-1 and VCAM-1 expression were measured using real-time quantitative reverse transcription polymerase chain reaction. Maprotiline significantly decreased the LPS-induced expression of VCAM-1 at all applied concentrations. The expression of ICAM-1 decreased in the presence of maprotiline at 10-6 M concentration (P<0.05). Since maprotiline inhibits the expression of adhesion molecules, ICAM-1 and VCAM-1 in LPS-stimulated human endothelial cells, it can be a possible way through which maprotiline exerts its anti-inflammatory properties. PMID:27168753

  5. Suppression of LPS-induced NF-κB activity in macrophages by the synthetic aurone, (Z)-2-((5-(hydroxymethyl) furan-2-yl) methylene) benzofuran-3(2H)-one.

    PubMed

    Park, Hyo S; Nelson, David E; Taylor, Zachary E; Hayes, James B; Cunningham, Kirsten D; Arivett, Brock A; Ghosh, Rajarshi; Wolf, Larissa C; Taylor, Kimberley M; Farone, Mary B; Handy, Scott T; Farone, Anthony L

    2017-02-01

    Suppressing cytokine responses has frequently been shown to have promising therapeutic effects for many chronic inflammatory and autoimmune diseases. However, the severe side effects associated with the long-term use of current treatments, such as allergic reactions and increased risk of stroke, have focused attention towards the targeting of intracellular signaling mechanisms, such as NF-κB, that regulate inflammation. We synthesized a series of non-natural aurone derivatives and investigated their ability to suppress pro-inflammatory signaling in human monocyte (THP-1) and murine macrophage-like (RAW 267.4) cell lines. One of these derivatives, (Z)-2-((5-(hydroxymethyl) furan-2-yl) methylene) benzofuran-3(2H)-one (aurone 1), was found to inhibit LPS-induced secretion of the pro-inflammatory cytokines, tumor-necrosis factor α (TNFα), interleukin 1β (IL-1β), and IL-8 by THP-1 cells. To investigate the mechanism, we probed the effect of aurone 1 on LPS-induced MAPK and NF-κB signaling in both THP-1 and RAW264.7. While aurone 1 pre-treatment had no effect on the phosphorylation of ERK, JNK, or p38 MAPK, it strongly suppressed activation of IKK-β, as indicated by attenuation of Ser176/180 phosphorylation, resulting in decreased phosphorylation of p65 (ser536) as well as phosphorylation (ser32) and degradation of IκBα. Consistent with this, aurone 1 significantly reduced LPS-stimulated nuclear translocation of p65-containing NF-κB transcription factors and expression of an mCherry reporter of TNFα gene transactivation in RAW264.7 cells. Inhibition of TNFα expression at the transcription level was also demonstrated in THP-1 by qRT-PCR. In addition to its effects on cytokine expression, aurone 1 pre-treatment decreased expression of iNOS, a bona fide NF-κB target gene and marker of macrophage M1 polarization, resulting in decreased NO production in RAW264.7 cells. Together, these data indicate that aurone 1 may have the potential to function as a

  6. Suppression of lung inflammation in an LPS-induced acute lung injury model by the fruit hull of Gleditsia sinensis.

    PubMed

    Kim, Kyun Ha; Kwun, Min Jung; Han, Chang Woo; Ha, Ki-Tae; Choi, Jun-Yong; Joo, Myungsoo

    2014-10-15

    The fruit hull of Gleditsia sinensis (FGS) used in traditional Asian medicine was reported to have a preventive effect on lung inflammation in an acute lung injury (ALI) mouse model. Here, we explored FGS as a possible therapeutics against inflammatory lung diseases including ALI, and examined an underlying mechanism for the effect of FGS. The decoction of FGS in water was prepared and fingerprinted. Mice received an intra-tracheal (i.t.) FGS 2 h after an intra-peritoneal (i.p.) injection of lipopolysaccharide (LPS). The effect of FGS on lung inflammation was determined by chest imaging of NF-κB reporter mice, counting inflammatory cells in bronchoalveolar lavage fluid, analyzing lung histology, and performing semi-quantitative RT-PCR analysis of lung tissue. Impact of Nrf2 on FGS effect was assessed by comparing Nrf2 knockout (KO) and wild type (WT) mice that were treated similarly. Bioluminescence from the chest of the reporter mice was progressively increased to a peak at 16 h after an i.p. LPS treatment. FGS treatment 2 h after LPS reduced the bioluminescence and the expression of pro-inflammatory cytokine genes in the lung. While suppressing the infiltration of inflammatory cells to the lungs of WT mice, FGS post-treatment failed to reduce lung inflammation in Nrf2 KO mice. FGS activated Nrf2 and induced Nrf2-dependent gene expression in mouse lung. FGS post-treatment suppressed lung inflammation in an LPS-induced ALI mouse model, which was mediated at least in part by Nrf2. Our results suggest a therapeutic potential of FGS on inflammatory lung diseases.

  7. Eleutherococcus senticosus extract attenuates LPS-induced iNOS expression through the inhibition of Akt and JNK pathways in murine macrophage.

    PubMed

    Jung, Chang Hwa; Jung, Hee; Shin, Yong-Cheol; Park, Jong-Hyeong; Jun, Chan-Yong; Kim, Hyung-Min; Yim, Hee-Sun; Shin, Min-Gyu; Bae, Hyun-Soo; Kim, Sung-Hoon; Ko, Seong-Gyu

    2007-08-15

    Eleutherococcus senticosus (Araliaceae) is immunological modulator which has been successfully used for anti-inflammatory effectors on anti-rheumatic diseases in oriental medicine. Mitogen-activated protein kinases (MAPKs) and Akt modulate the transcription of many genes involved in the inflammatory process. In this study, we investigated the inhibitory effects of Eleutherococcus senticosus on the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharides (LPS)-activated macrophages. Finally, we studied the involvement of MAPKs and Akt signaling in the protective effect of Eleutherococcus senticosus in LPS-activated macrophages. Eleutherococcus senticosus significantly attenuated LPS-induced iNOS expression but not COX-2 expression. In using the standard inhibitors (MAPKs and Akt), our results show that Eleutherococcus senticosus downregulates inflammatory iNOS expression by blocking JNK and Akt activation.

  8. Complementary cereals and legumes for health: Synergistic interaction of sorghum flavones and cowpea flavonols against LPS-induced inflammation in colonic myofibroblasts.

    PubMed

    Agah, Shima; Kim, Hyemee; Mertens-Talcott, Susanne U; Awika, Joseph M

    2017-07-01

    Cereals and legumes are traditionally consumed together in many cultures, and may provide complementary health benefits beyond what is known about improved indispensable amino acid intake. Here, we use an in vitro model of inflammatory pathways to investigate whether the different flavonoids in sorghum and cowpea could synergistically reduce inflammation. Interactive effect of combining apigenin and quercetin, as well as extracts (70% acetone, v/v) from a flavone-dominated white sorghum and flavonol-dominated white cowpea, against LPS-induced NF-κB and downstream cytokines (TNF-α, IL-6, IL-8) gene and protein expression was evaluated using the CCD18Co colon myofibroblasts. Combination of apigenin and quercetin, and sorghum and cowpea extracts synergistically downregulated LPS-induced NF-κB gene and protein expression in a dose-dependent manner, with additive effect producing IC50 values that were 14.6 and 14.0 times, respectively, higher than 1:1 combined treatments. Similar strong synergistic interactions were observed for the downstream cytokines (IC50 values for additive effect 8.3-21 times higher than combined treatments). Furthermore, the ratios of the different combined treatments significantly affected the magnitude of synergy. Combining the structurally related cereal flavones and legume flavonols elicit strong synergistic anti-inflammatory response in LPS-stimulated nonmalignant colonocytes, likely by targeting interdependent mechanisms. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Macrolide antibiotics promote the LPS-induced upregulation of prostaglandin E receptor EP2 and thus attenuate macrolide suppression of IL-6 production.

    PubMed

    Sato, Yoshinori; Kaneko, Kenichi; Inoue, Matsuhisa

    2007-03-01

    We studied the influence of the inhibitory effect of clarithromycin (CAM) and erythromycin (EM) on the production of macrophage inflammatory protein (MIP)-2, interleukin-6 (IL-6), and prostaglandin E(2) (PGE(2)), as well as PGE(2) receptor (EP(2)) expression, by LPS-stimulated RAW264.7 cells. Production of IL-6 was significantly decreased by treatment with CAM or EM in a dose-dependent manner, but the inhibitory effect of CAM was significantly weaker than that of EM. In contrast, the production of MIP-2 and PGE(2) was inhibited to the same extent by CAM and EM. LPS induced the expression of EP(2) mRNA and its expression was promoted further by treatment with CAM or EM. In particular, CAM significantly upregulated EP(2) mRNA expression compared with that after stimulation by LPS alone. After treatment with a nonselective cyclooxygenase (COX) inhibitor (indomethacin), a selective COX-2 inhibitor (NS398), or an EP(2)/EP(4) receptor antagonist (AH6809), the inhibitory effect of CAM and EM on LPS-induced IL-6 production was equalized. These results indicate that macrolide antibiotics upregulate the expression of EP(2), which then attenuates the suppressive effect on IL-6 production of these antibiotics, suggesting that these drugs have a variable anti-inflammatory effect that could influence host defenses.

  10. Piracetam Attenuates LPS-Induced Neuroinflammation and Cognitive Impairment in Rats.

    PubMed

    Tripathi, Alok; Paliwal, Pankaj; Krishnamurthy, Sairam

    2017-02-07

    The present study was performed to investigate the effect of piracetam on neuroinflammation induced by lipopolysaccharide (LPS) and resulting changes in cognitive behavior. Neuroinflammation was induced by a single dose of LPS solution infused into each of the lateral cerebral ventricles in concentrations of 1 μg/μl, at a rate of 1 μl/min over a 5-min period, with a 5-min waiting period between the two infusions. Piracetam in doses of 50, 100, and 200 mg/kg i.p. was administered 30 min before LPS infusion and continued for 9 days. On ninth day, the behavioral test for memory and anxiety was done followed by blood collection and microdissection of the hippocampus (HIP) and prefrontal cortex brain regions. Piracetam attenuated the LPS-induced decrease in coping strategy to novel environment indicating anxiolytic activity. It also reversed the LPS-induced changes in the known arm and novel arm entries in the Y-maze test indicating amelioration of spatial memory impairment. Further, piracetam moderated LPS-induced decrease in the mitochondrial complex enzyme activities (I, II, IV, and V) and mitochondrial membrane potential. It ameliorated changes in hippocampal lipid peroxidation and nitrite levels including the activity of superoxide dismutase. Piracetam region specifically ameliorated LPS-induced increase in the level of IL-6 in HIP indicating anti-neuroinflammatory effect. Further, piracetam reduced HIP Aβ (1-40) and increased blood Aβ level suggesting efflux of Aβ from HIP to blood. Therefore, the present study indicates preclinical evidence for the use of piracetam in the treatment of neuroinflammatory disorders.

  11. Terpenoids from Tripterygium hypoglaucum and their inhibition of LPS-induced NO production.

    PubMed

    Zhao, Peng; Wang, Hao; Jin, Da-Qing; Ohizumi, Yasushi; Xu, Jing; Guo, Yuanqiang

    2014-01-01

    One new (1) and three known (2-4) sesquiterpenes and four known diterpenes (5-8) were isolated from the root bark of Tripterygium hypoglaucum. Their structures were elucidated on the basis of extensive spectroscopic analyses (IR, ESI-MS, HR-ESI-MS, 1D-NMR, and 2D-NMR). The inhibitory activity toward LPS-induced NO production of these terpenoids was evaluated, all the compounds showing inhibitory effects.

  12. Anti-inflammatory Effects of Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) In Vitro and In Vivo.

    PubMed

    Lee, Wonhwa; Bae, Jong-Sup

    2015-08-01

    Aspalathin (Asp) and nothofagin (Not) are two major active dihydrochalcones found in green rooibos, which have been reported for their anti-oxidant activity. Here, we investigated the anti-inflammatory effects and underlying mechanisms of Asp and Not against lipopolysaccharide (LPS)-mediated vascular inflammatory responses. The anti-inflammatory activities of Asp and Not were determined by measuring permeability, monocytes adhesion and migration, and activation of pro-inflammatory proteins in LPS-activated human umbilical vein endothelial cells (HUVECs) and mice. We found that each compound inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs), and adhesion/transendothelial migration of neutrophils to human endothelial cells. Asp and Not also suppressed LPS-induced hyperpermeability and leukocyte migration in vivo. Furthermore, each compound suppressed the production of tumor necrosis factor-α (TNF-α) or interleukin (IL)-6 and the activation of nuclear factor-κB (NF-κB) or extracellular regulated kinases (ERK) 1/2 by LPS. Moreover, treatment with each compound resulted in reduced LPS-induced lethal endotoxemia. These results suggest that Asp and Not posses anti-inflammatory functions by inhibiting hyperpermeability, expression of CAMs, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases.

  13. Ouabain Modulates the Lipid Composition of Hippocampal Plasma Membranes from Rats with LPS-induced Neuroinflammation.

    PubMed

    Garcia, Israel José Pereira; Kinoshita, Paula Fernanda; Scavone, Cristoforo; Mignaco, Julio Alberto; Barbosa, Leandro Augusto de Oliveira; Santos, Hérica de Lima

    2015-12-01

    The effects of ouabain (OUA) and lipopolysaccharide (LPS) in vivo on hippocampal membranes (RHM) of Wistar male rats aged 3 months were analyzed. After intraperitoneal (i.p.) injection of OUA only, LPS only, OUA plus LPS, or saline, the content of proteins, phospholipids, cholesterol and gangliosides from RHM was analyzed. The total protein and cholesterol contents of RHM were not significantly affected by OUA or LPS for the experimentally paired groups. In contrast, total phospholipids and gangliosides were strongly modulated by either OUA or LPS treatments. LPS reduced the total phospholipids (roughly 23 %) and increased the total gangliosides (approximately 40 %). OUA alone increased the total phospholipids (around 23 %) and also the total gangliosides (nearly 34 %). OUA pretreatment compensated the LPS-induced changes, preserving the total phospholipids and gangliosides around the same levels of the control. Thus, an acute treatment with OUA not only modulated the composition of hippocampal membranes from 3-month-old rats, but also was apparently able to counteract membrane alterations resulting from LPS-induced neuroinflammation. This study demonstrates for the first time that the OUA capacity modulates the lipid composition of hippocampal plasma membranes from rats with LPS-induced neuroinflammation.

  14. RAGE Plays a Role in LPS-Induced NF-κB Activation and Endothelial Hyperpermeability.

    PubMed

    Wang, Liqun; Wu, Jie; Guo, Xiaohua; Huang, Xuliang; Huang, Qiaobing

    2017-03-30

    Endothelial functional dysregulation and barrier disruption contribute to the initiation and development of sepsis. The receptor for advanced glycation end products (RAGE) has been demonstrated to be involved in the pathogenesis of sepsis. The present study aimed to investigate the role of RAGE in lipopolysaccharide (LPS)-induced nuclear factor-κB (NF-κB) activation in endothelial cells and the consequent endothelial hyperpermeability. LPS-induced upregulation of RAGE protein expression in human umbilical vein endothelial cells (HUVECs) was detected by western blotting. Activation of NF-κB was revealed using western blotting and immunofluorescent staining. LPS-elicited endothelial hyperpermeability was explored by transendothelial electrical resistance (TER) assay and endothelial monolayer permeability assay. The blocking antibody specific to RAGE was used to confirm the role of RAGE in LPS-mediated NF-κB activation and endothelial barrier disruption. We found that LPS upregulated the protein expression of RAGE in a dose- and time-dependent manner in HUVECs. Moreover, LPS triggered a significant phosphorylation and degradation of IκBα, as well as NF-κB p65 nuclear translocation. Moreover, we observed a significant increase in endothelial permeability after LPS treatment. However, the RAGE blocking antibody attenuated LPS-evoked NF-κB activation and endothelial hyperpermeability. Our results suggest that RAGE plays an important role in LPS-induced NF-κB activation and endothelial barrier dysfunction.

  15. Protective effects of leucine against lipopolysaccharide-induced inflammatory response in Labeo rohita fingerlings.

    PubMed

    Giri, Sib Sankar; Sen, Shib Sankar; Jun, Jin Woo; Sukumaran, Venkatachalam; Park, Se Chang

    2016-05-01

    The present study investigated the protective effects of leucine against lipopolysaccharide (LPS)-induced inflammatory responses in Labeo rohita (rohu) in vivo and in vitro. Primary hepatocytes, isolated from the hepatopancreas, were exposed to different concentrations of LPS for 24 h to induce an inflammatory response, and the protective effects of leucine against LPS-induced inflammation were studied. Finally, we investigated the efficiency of dietary leucine supplementation in attenuating an immune challenge induced by LPS in vivo. Exposure of cells to 10-25 μg mL(-1) of LPS for 24 h resulted in a significant production of nitric oxide and release of lactate dehydrogenase to the medium, whereas cell viability and protein content were reduced (p < 0.05). LPS exposure (10 μg mL(-1)) increased mRNA levels of the pro-inflammatory cytokines TNF-α, IL-1β and IL-8 in vitro (p < 0.05). However, pretreatment with leucine prevented the LPS-induced upregulation of TNF-α, IL-1β and IL-8 mRNAs by downregulating TLR4, MyD88, NF-κBp65, and MAPKp38 mRNA expression. Interestingly, mRNA expression of the anti-inflammatory cytokine, IL-10, which was increased by LPS treatment, was further enhanced (p < 0.05) by leucine pretreatment. The enhanced expression of IL-10 might inhibit the production of other pro-inflammatory cytokines. It was found that leucine pretreatment attenuated the excessive activation of LPS-induced TLR4-MyD88 signaling as manifested by lower level of TLR4, MyD88, MAPKp38, NF-κBp65 and increased level of IκB-α protein in leucine pre-treatment group. In vivo experiments demonstrated that leucine pre-supplementation could protect fish against LPS-induced inflammation through an attenuation of TLR4-MyD88 signaling pathway. Taken together, we propose that leucine pre-supplementation decreases LPS-induced immune damage in rohu by enhancing the expression of IL-10 and by regulating the TLR4-MyD88 signaling pathways.

  16. Anti-inflammatory effect of Taraxacum officinale leaves on lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells.

    PubMed

    Koh, Yoon-Jeoung; Cha, Dong-Soo; Ko, Je-Sang; Park, Hyun-Jin; Choi, Hee-Don

    2010-08-01

    To investigate the efficacy and the mechanism of the anti-inflammatory effect of Taraxacum officinale leaves (TOLs), the effect of a methanol extract and its fractions recovered from TOLs on lipopolysaccharide (LPS)-induced responses was studied in the mouse macrophage cell line, RAW 264.7. Cells were pretreated with various concentrations of the methanol extract and its fractions and subsequently incubated with LPS (1 microg/mL). The levels of nitric oxide (NO), prostaglandin (PG) E(2), and pro-inflammatory cytokines including tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6 were determined using enzyme-linked immunosorbent assays. Expressions of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 and activation of mitogen-activated protein (MAP) kinases were analyzed using western blotting. The methanol extract and its fractions inhibited LPS-induced production of NO, pro-inflammatory cytokines, and PGE(2) in a dose-dependent manner. The chloroform fraction significantly suppressed production of NO, PGE(2), and two pro-inflammatory cytokines (TNF-alpha and IL-1beta) in a dose-dependent manner with 50% inhibitory concentration values of 66.51, 90.96, 114.76, and 171.06 microg/mL, respectively. The ethyl acetate fraction also inhibited production of the inflammatory molecules. The chloroform and ethyl acetate fractions reduced LPS-induced expressions of iNOS and COX-2 and activation of MAP kinases in a dose-dependent manner. Among the fractions of the methanol extract, the chloroform and ethyl acetate fractions exhibited the most effective anti-inflammatory activities. These results show that the anti-inflammatory effects of TOLs are probably due to down-regulation of NO, PGE(2), and pro-inflammatory cytokines and reduced expressions of iNOS and COX-2 via inactivation of the MAP kinase signal pathway.

  17. Involvement of Phosphatidylinositol 3-Kinase-Mediated Up-Regulation of IκBα in Anti-Inflammatory Effect of Gemfibrozil in Microglia1

    PubMed Central

    Jana, Malabendu; Jana, Arundhati; Liu, Xiaojuan; Ghosh, Sankar; Pahan, Kalipada

    2008-01-01

    The present study underlines the importance of PI3K in mediating the anti-inflammatory effect of gemfibrozil, a prescribed lipid-lowering drug for humans, in mouse microglia. Gemfibrozil inhibited LPS-induced expression of inducible NO synthase (iNOS) and proinflammatory cytokines in mouse BV-2 microglial cells and primary microglia. By overexpressing wild-type and dominant-negative constructs of peroxisome proliferator-activated receptor-α (PPAR-α) in microglial cells and isolating primary microglia from PPAR-α−/− mice, we have demonstrated that gemfibrozil inhibits the activation of microglia independent of PPAR-α. Interestingly, gemfibrozil induced the activation of p85α-associated PI3K (p110β but not p110α) and inhibition of that PI3K by either chemical inhibitors or dominant-negative mutants abrogated the inhibitory effect of gemfibrozil. Conversely, overexpression of the constitutively active mutant of p110 enhanced the inhibitory effect of gemfibrozil on LPS-induced expression of proinflammatory molecules. Similarly, gemfibrozil also inhibited fibrillar amyloid β (Aβ)-, prion peptide (PrP)-, dsRNA (poly IC)-, HIV-1 Tat-, and 1-methyl-4-phenylpyridinium (MPP+)-, but not IFN-γ-, induced microglial expression of iNOS. Inhibition of PI3K also abolished the inhibitory effect of gemfibrozil on Aβ-, PrP-, poly IC-, Tat-, and MPP+-induced microglial expression of iNOS. Involvement of NF-κB activation in LPS-, Aβ-, PrP-, poly IC-, Tat-, and MPP+-, but not IFN-γ-, induced microglial expression of iNOS and stimulation of IκBα expression and inhibition of NF-κB activation by gemfibrozil via the PI3K pathway suggests that gemfibrozil inhibits the activation of NF-κB and the expression of proinflammatory molecules in microglia via PI3K-mediated up-regulation of IκBα. PMID:17785853

  18. Functional Toll-like receptor 4 expressed in lactotrophs mediates LPS-induced proliferation in experimental pituitary hyperplasia

    SciTech Connect

    Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo; Mukdsi, Jorge Humberto; Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela; Gutiérrez, Silvina; Torres, Alicia Inés; De Paul, Ana Lucía

    2013-11-15

    Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K

  19. Berteroin Present in Cruciferous Vegetables Exerts Potent Anti-Inflammatory Properties in Murine Macrophages and Mouse Skin

    PubMed Central

    Jung, Yoo Jin; Jung, Jae In; Cho, Han Jin; Choi, Myung-Sook; Sung, Mi-Kyung; Yu, Rina; Kang, Young-Hee; Park, Jung Han Yoon

    2014-01-01

    Berteroin (5-methylthiopentyl isothiocyanate) is a sulforaphane analog present in cruciferous vegetables, including Chinese cabbage, rucola salad leaves, and mustard oil. We examined whether berteroin exerts anti-inflammatory activities using lipopolysaccharide (LPS)-stimulated Raw 264.7 macrophages and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin inflammation models. Berteroin decreased LPS-induced release of inflammatory mediators and pro-inflammatory cytokines in Raw 264.7 macrophages. Berteroin inhibited LPS-induced degradation of inhibitor of κBα (IκBα) and nuclear factor-κB p65 translocation to the nucleus and DNA binding activity. Furthermore, berteroin suppressed degradation of IL-1 receptor-associated kinase and phosphorylation of transforming growth factor β activated kinase-1. Berteroin also inhibited LPS-induced phosphorylation of p38 MAPK, ERK1/2, and AKT. In the mouse ear, berteroin effectively suppressed TPA-induced edema formation and down-regulated iNOS and COX-2 expression as well as phosphorylation of AKT and ERK1/2. These results demonstrate that berteroin exhibits potent anti-inflammatory properties and suggest that berteroin can be developed as a skin anti-inflammatory agent. PMID:25393510

  20. Berteroin present in cruciferous vegetables exerts potent anti-inflammatory properties in murine macrophages and mouse skin.

    PubMed

    Jung, Yoo Jin; Jung, Jae In; Cho, Han Jin; Choi, Myung-Sook; Sung, Mi-Kyung; Yu, Rina; Kang, Young-Hee; Park, Jung Han Yoon

    2014-11-11

    Berteroin (5-methylthiopentyl isothiocyanate) is a sulforaphane analog present in cruciferous vegetables, including Chinese cabbage, rucola salad leaves, and mustard oil. We examined whether berteroin exerts anti-inflammatory activities using lipopolysaccharide (LPS)-stimulated Raw 264.7 macrophages and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin inflammation models. Berteroin decreased LPS-induced release of inflammatory mediators and pro-inflammatory cytokines in Raw 264.7 macrophages. Berteroin inhibited LPS-induced degradation of inhibitor of κBα (IκBα) and nuclear factor-κB p65 translocation to the nucleus and DNA binding activity. Furthermore, berteroin suppressed degradation of IL-1 receptor-associated kinase and phosphorylation of transforming growth factor β activated kinase-1. Berteroin also inhibited LPS-induced phosphorylation of p38 MAPK, ERK1/2, and AKT. In the mouse ear, berteroin effectively suppressed TPA-induced edema formation and down-regulated iNOS and COX-2 expression as well as phosphorylation of AKT and ERK1/2. These results demonstrate that berteroin exhibits potent anti-inflammatory properties and suggest that berteroin can be developed as a skin anti-inflammatory agent.

  1. Influence of Coenzyme Q_{10} on release of pro-inflammatory chemokines in the human monocytic cell line THP-1.

    PubMed

    Schmelzer, Constance; Lorenz, Gerti; Rimbach, Gerald; Döring, Frank

    2007-01-01

    Coenzyme Q_{10} (CoQ_{10}) is an obligatory element in the mitochondrial electron transport system and functions as a potent antioxidant of lipid membranes. In-vivo and in-vitro studies indicate an involvement of CoQ_{10} in inflammatory pathways. Here we studied in the human monocytic cell-line THP-1 the influence of CoQ_{10} on LPS-induced secretion of the pro-inflammatory chemokines Macrophage inflammatory protein-1 alpha (MIP-1alpha), Regulated upon activation, normal T cell expressed and secreted (RANTES) and Monocyte chemoattractant protein-1 (MCP-1). In comparison to unstimulated cells, LPS leads to 22-, 3- and 4.5-fold higher levels of MIP-1alpha, RANTES and MCP-1 in the cell culture medium, respectively. Pre-incubation of cells with 10 microM CoQ_{10} resulted in a significant decrease of LPS-induced MIP-1alpha and RANTES secretion to 55.04% (p = 0.02) and 76.84% (p = 0.04), respectively. In conclusion, CoQ_{10} reduces the LPS-induced secretion levels of the pro-inflammatory chemokines MIP-1alpha and RANTES in the human monocytic cell line THP-1. These data suggest that CoQ_{10} possesses anti-inflammatory properties.

  2. Mesenchymal stem cells improves survival in LPS-induced acute lung injury acting through inhibition of NETs formation.

    PubMed

    Pedrazza, Leonardo; Cunha, Aline Andrea; Luft, Carolina; Nunes, Nailê Karine; Schimitz, Felipe; Gassen, Rodrigo Benedetti; Breda, Ricardo Vaz; Donadio, Marcio Vinícius Fagundes; de Souza Wyse, Angela Terezinha; Pitrez, Paulo Marcio Condessa; Rosa, Jose Luis; de Oliveira, Jarbas Rodrigues

    2017-01-23

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are syndromes of acute hypoxemic respiratory failure resulting from a variety of direct and indirect injuries to the gas exchange parenchyma of the lungs. During the ALI, we have an increase release of proinflammatory cytokines and high reactive oxygen species (ROS) formation. These factors are responsible for the release and activation of neutrophil-derived proteases and the formation of neutrophil extracellular traps (NETs). The excessive increase in the release of NETs cause damage to lung tissue. Recent studies have studies involving the administration of mesenchymal stem cells (MSCs) for the treatment of experimental ALI has shown promising results. In this way, the objective of our study is to evaluate the ability of MSCs, in a lipopolysaccharide (LPS)-induced ALI model, to reduce inflammation, oxidative damage, and consequently decrease the release of NETs. Mice were submitted lung injury induced by intratracheal instillation of LPS and subsequently treated or not with MSCs. Treatment with MSCs was able to modulate pulmonary inflammation, decrease oxidative damage, and reduce the release of NETs. These benefits from treatment are evident when we observe a significant increase in the survival curve in the treated animals. Our results demonstrate that MSCs treatment is effective for the treatment of ALI. For the first time, it is described that MSCs can reduce the formation of NETs and an experimental model of ALI. This finding is directly related to these cells modulate the inflammatory response and oxidative damage in the course of the pathology.

  3. Inhibitory role of cholinergic system mediated via alpha7 nicotinic acetylcholine receptor in LPS-induced neuro-inflammation.

    PubMed

    Tyagi, Ethika; Agrawal, Rahul; Nath, Chandishwar; Shukla, Rakesh

    2010-02-01

    This study investigated the influence of the cholinergic system on neuro-inflammation using nicotinic and muscarinic receptor agonists and antagonists. Intracerebroventricular (ICV) injection of lipopolysaccharide (LPS, 50 microg) was used to induce neuro-inflammation in rats and estimations of pro-inflammatory cytokines, alpha7 nicotinic acetylcholine receptor (nAChR) mRNA expression were done in striatum, cerebral cortex, hippocampus and hypothalamus at 24 h after LPS injection. Nicotine (0.2, 0.4 and 0.8 mg/kg, i.p.) or oxotremorine (0.2, 0.4 and 0.8 mg/kg, i.p.) were administered 2 h prior to sacrifice. We found that only nicotine was able to block the proinflammatory cytokines induced by LPS whereas, oxotremorine was found ineffective. Methyllycaconitine (MLA; 1.25, 2.5 and 5 mg/kg, i.p.), an alpha7 nAChR antagonist or dihydro-beta-erythroidine (DHbetaE; 1.25, 2.5 and 5 mg/kg, i.p.), an alpha4beta2 nAChR antagonist, was given 20 min prior to nicotine in LPS-treated rats. Methyllycaconitine antagonized the anti-inflammatory effect of nicotine whereas DHbetaE showed no effect demonstrating that alpha7 nAChR is responsible for attenuation of LPS-induced pro-inflammatory cytokines. This study suggests that the inhibitory role of the central cholinergic system on neuro-inflammation is mediated via alpha7 nicotinic acetylcholine receptor and muscarinic receptors are not involved.

  4. Constituents of PG201 (Layla(®)), a multi-component phytopharmaceutical, with inhibitory activity on LPS-induced nitric oxide and prostaglandin E2 productions in macrophages.

    PubMed

    Kim, Hyun Ji; Kim, Hye Mi; Ryu, Byeol; Lee, Woo-Seok; Shin, Ji-Sun; Lee, Kyung-Tae; Jang, Dae Sik

    2016-02-01

    Fourteen compounds, coumarin (1), demethylsuberosin (2), xanthotoxin (3), psoralen (4), decursinol (5), decursin (6), decursinol angelate (7), chikusetsusaponin IVa (8), chikusetsusaponin IVa methyl ester (9), ethyl caffeate (10), syringaresinol (11), cnidilide (12), farnesol (13), and linoleic acid (14), were isolated from phytopharmaceutical PG201 (Layla(®)) by activity-guided fractionation utilizing inhibitory activity on nitric oxide (NO) production in vitro. The isolates 1-14 were evaluated for their inhibitory activity on LPS-induced NO and prostaglandin E2 (PGE2) productions in RAW 264.7 cells. All the compounds except 14 displayed suppressive effects on LPS-induced NO and PGE2 production with IC50 values ranging from 8 to 60 μM. Among these, compound 10 showed the most potent inhibitory effect on NO production from RAW 264.7 cells with an IC50 value of 8.25 μM. Compounds 2, 9, and 10 exhibited high inhibitory effects on PGE2 production with the IC50 values of 9.42, 7.51, and 6.49 μM, respectively. These findings suggest that compounds 2, 9, and 10 are the potential anti-inflammatory active constituents of PG201 and further study may be needed to explain their mechanism of action.

  5. Procyanidin dimer B2-mediated IRAK-M induction negatively regulates TLR4 signaling in macrophages

    SciTech Connect

    Sung, Nak-Yun; Yang, Mi-So; Song, Du-Sub; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon; Park, Hyun-Jin; Kim, Jae-Hun; Byun, Eui-Baek; Byun, Eui-Hong

    2013-08-16

    Highlights: •Pro B2 elevated the expression of IRAK-M, a negative regulator of TLR signaling. •LPS-induced expression of cell surface molecules was inhibited by Pro B2. •LPS-induced production of pro-inflammatory cytokines was inhibited by Pro B2. •Pro B2 inhibited LPS-induced activation of MAPKs and NF-κB through IRAK-M. •Pro B2 inactivated naïve T cells by inhibiting LPS-induced cytokines via IRAK-M. -- Abstract: Polyphenolic compounds have been found to possess a wide range of physiological activities that may contribute to their beneficial effects against inflammation-related diseases; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain to be elucidated. In this study, we investigated the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by procyanidin dimer B2 (Pro B2) in macrophages. Pro B2 markedly elevated the expression of the interleukin (IL)-1 receptor-associated kinase (IRAK)-M protein, a negative regulator of TLR signaling. Lipopolysaccharide (LPS)-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1β, IL-6, and IL-12p70) were inhibited by Pro B2, and this action was prevented by IRAK-M silencing. In addition, Pro B2-treated macrophages inhibited LPS-induced activation of mitogen-activated protein kinases such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase and the translocation of nuclear factor κB and p65 through IRAK-M. We also found that Pro B2-treated macrophages inactivated naïve T cells by inhibiting LPS-induced interferon-γ and IL-2 secretion through IRAK-M. These novel findings provide new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and the immune-pharmacological role of Pro B2 in the immune response against the development

  6. DC-SIGN reacts with TLR4 and regulates inflammatory cytokine expression via NF-κB activation in renal tubular epithelial cells during acute renal injury.

    PubMed

    Feng, Danying; Wang, Yanping; Liu, Yan; Wu, Liping; Li, Xiao; Chen, Yufan; Chen, Yuanyuan; Chen, Yafeng; Xu, Chundi; Yang, Ke; Zhou, Tong

    2017-09-12

    In the pathological process of acute kidney injury (AKI), innate immune receptors are essential in inflammatory response modulation; however, the precise molecular mechanisms are still unclear. Our study sought to demonstrate the inflammatory response mechanisms in renal tubular epithelial cells via Toll-like receptor 4 (TLR4) and dendritic cell-specific ICAM-3-grabbing non-integrin 1 (DC-SIGN) signaling. We found that DC-SIGN exhibited strong expression in renal tubular epithelial cells of human acute renal injury tissues. DC-SIGN protein expression was significantly increased when renal tubular epithelial cells were exposed to lipopolysaccharide (LPS) for a short period. Furthermore, DC-SIGN was involved in the activation of p65 by TLR4, which excluded p38 and JNK. Interleukin 6 (IL-6) and tumor necrosis factor-α (TNFα) expression were decreased after DC-SIGN knockdown. Furthermore, LPS induced endogenous interactions and plasma membrane co-expression between TLR4 and DC-SIGN. These results showed that DC-SIGN and TLR4 interactions regulate inflammatory responses in renal tubular epithelial cells and participate in AKI pathogenesis. This article is protected by copyright. All rights reserved. © 2017 British Society for Immunology.

  7. Lipoxin A4 inhibits lipopolysaccharide-induced production of inflammatory cytokines in keratinocytes by up-regulating SOCS2 and down-regulating TRAF6.

    PubMed

    Hu, Feng; Feng, Ai-Ping; Liu, Xin-Xin; Zhang, Song; Xu, Jun-Tao; Wang, Xin; Zhong, Xue-Lian; He, Meng-Wen; Chen, Hong-Xiang

    2015-06-01

    Liopxin A4 (LXA4) is considered to be a crucial modulator in the inflammatory responses. In the present study, we aimed to study the effect of LXA4 on the inflammatory cytokines production induced by lipopolysaccharide (LPS) and the possible mechanism in normal human epidermal keratinocytes (NHEKs). NHEKs were isolated and cultured. The expression of toll-like receptor 4 (TLR4), LXA4 receptor (ALXR) and aryl hydrocarbon receptor (AhR) in NHEKs was detected by reverse transcription polymerase chain reaction (RT-PCR). The mRNA and protein levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) were determined in NHEKs stimulated by LPS (10 μg/mL) with or without preincubation with LXA4 (100 nmol/L) for 30 min by real-time quantitative PCR (real-time qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The expression levels of tumor necrosis factor receptor-associated factor 6 (TRAF6) and suppressors of cytokine signaling 2 (SOCS2) mRNAs and proteins, and nuclear translocation of NF-kB-p65 were measured by real-time qPCR and Western blotting, respectively. The results showed that NHEKs expressed TLR4, ALXR and AhR. LXA4 significantly inhibited the mRNA and protein expression levels of TNF-α, IL-1β and TRAF6 induced by LPS in NHEKs, and LXA4 obviously increased the expression of SOCS2 at mRNA and protein levels. The nuclear NF-kB-p65 protein expression induced by LPS was inhibited after preincubation with LXA4 in NHEKs. It was concluded that LXA4 inhibits the LPS-induced production of TNF-α and IL-1β in NHEKs by up-regulating SOCS2 and down-regulating TRAF6.

  8. Endothelial cell tetrahydrobiopterin deficiency attenuates LPS-induced vascular dysfunction and hypotension☆

    PubMed Central

    Chuaiphichai, Surawee; Starr, Anna; Nandi, Manasi; Channon, Keith M.; McNeill, Eileen

    2016-01-01

    Overproduction of nitric oxide (NO) is thought to be a key mediator of the vascular dysfunction and severe hypotension in patients with endotoxaemia and septic shock. The contribution of NO produced directly in the vasculature by endothelial cells to the hypotension seen in these conditions, vs. the broader systemic increase in NO, is unclear. To determine the specific role of endothelium derived NO in lipopolysaccharide (LPS)-induced vascular dysfunction we administered LPS to mice deficient in endothelial cell tetrahydrobiopterin (BH4), the essential co-factor for NO production by NOS enzymes. Mice deficient in endothelial BH4 production, through loss of the essential biosynthesis enzyme Gch1 (Gch1fl/flTie2cre mice) received a 24 hour challenge with LPS or saline control. In vivo LPS treatment increased vascular GTP cyclohydrolase and BH4 levels in aortas, lungs and hearts, but this increase was significantly attenuated in Gch1fl/flTie2cre mice, which were also partially protected from the LPS-induced hypotension. In isometric tension studies, in vivo LPS treatment reduced the vasoconstriction response and impaired endothelium-dependent and independent vasodilatations in mesenteric arteries from wild-type mice, but not in Gch1fl/flTie2cre mesenteric arteries. Ex vivo LPS treatment decreased vasoconstriction response to phenylephrine in aortic rings from wild-type and not in Gch1fl/flTie2cre mice, even in the context of significant eNOS and iNOS upregulation. These data provide direct evidence that endothelial cell NO has a significant contribution to LPS-induced vascular dysfunction and hypotension and may provide a novel therapeutic target for the treatment of systemic inflammation and patients with septic shock. PMID:26276526

  9. Endothelial cell tetrahydrobiopterin deficiency attenuates LPS-induced vascular dysfunction and hypotension.

    PubMed

    Chuaiphichai, Surawee; Starr, Anna; Nandi, Manasi; Channon, Keith M; McNeill, Eileen

    2016-02-01

    Overproduction of nitric oxide (NO) is thought to be a key mediator of the vascular dysfunction and severe hypotension in patients with endotoxaemia and septic shock. The contribution of NO produced directly in the vasculature by endothelial cells to the hypotension seen in these conditions, vs. the broader systemic increase in NO, is unclear. To determine the specific role of endothelium derived NO in lipopolysaccharide (LPS)-induced vascular dysfunction we administered LPS to mice deficient in endothelial cell tetrahydrobiopterin (BH4), the essential co-factor for NO production by NOS enzymes. Mice deficient in endothelial BH4 production, through loss of the essential biosynthesis enzyme Gch1 (Gch1(fl/fl)Tie2cre mice) received a 24hour challenge with LPS or saline control. In vivo LPS treatment increased vascular GTP cyclohydrolase and BH4 levels in aortas, lungs and hearts, but this increase was significantly attenuated in Gch1(fl/fl)Tie2cre mice, which were also partially protected from the LPS-induced hypotension. In isometric tension studies, in vivo LPS treatment reduced the vasoconstriction response and impaired endothelium-dependent and independent vasodilatations in mesenteric arteries from wild-type mice, but not in Gch1(fl/fl)Tie2cre mesenteric arteries. Ex vivo LPS treatment decreased vasoconstriction response to phenylephrine in aortic rings from wild-type and not in Gch1(fl/fl)Tie2cre mice, even in the context of significant eNOS and iNOS upregulation. These data provide direct evidence that endothelial cell NO has a significant contribution to LPS-induced vascular dysfunction and hypotension and may provide a novel therapeutic target for the treatment of systemic inflammation and patients with septic shock.

  10. Sigma Receptor Ligand, (+)-Pentazocine, Suppresses Inflammatory Responses of Retinal Microglia

    PubMed Central

    Zhao, Jing; Ha, Yonju; Liou, Gregory I.; Gonsalvez, Graydon B.; Smith, Sylvia B.; Bollinger, Kathryn E.

    2014-01-01

    Purpose. To evaluate the effects of the σ 1 receptor (σR1) agonist, (+)-pentazocine, on lipopolysaccharide (LPS)–induced inflammatory changes in retinal microglia cells. Methods. Retinal microglia cells were isolated from Sprague-Dawley rat pups. Cells were treated with LPS with or without (+)-pentazocine and with or without the σR1 antagonist BD1063. Morphologic changes were assayed. Cell viability was assessed by using MTT assay. Supernatant levels of tumor necrosis factor α (TNF-α), interleukin 10, (IL-10), monocyte chemoattractant protein-1 (MCP-1), and nitric oxide (NO) were determined. Reactive oxygen species (ROS) formation was assayed, and levels of mitogen-activated protein kinases (MAPKs) were analyzed by using Western blot. Results. The σR1 protein was expressed in retinal microglia. Incubation with LPS and/or (+)-pentazocine did not alter cell viability or σR1 protein levels. Incubation with LPS for 24 hours induced a marked change in microglial morphology and a significant increase in secreted levels of TNF-α, IL-10, MCP-1, and NO. Pretreatment with (+)-pentazocine inhibited the LPS-induced morphologic changes. Release of TNF-α, IL-10, MCP-1, and NO was reduced with (+)-pentazocine. Intracellular ROS formation was suppressed with (+)-pentazocine. Phosphorylation of extracellular signal–regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was reduced in the presence of (+)-pentazocine. The σR1 antagonist BD1063 blocked the (+)-pentazocine–mediated inhibition of LPS-induced morphologic changes. In addition, BD1063 treatment blocked (+)-pentazocine–mediated suppression of LPS-induced TNF-α, IL-10, MCP-1, NO, and intracellular ROS release. Conclusions. Treatment with (+)-pentazocine suppressed inflammatory responses of retinal microglia and inhibited LPS-induced activation of ERK/JNK MAPK. In neurodegenerative disease, (+)-pentazocine may exert neuroprotective effects through manipulation of microglia. PMID:24812552

  11. GuaLou GuiZhi decoction inhibits LPS-induced microglial cell motility through the MAPK signaling pathway.

    PubMed

    Hu, Haixia; Li, Zuanfang; Zhu, Xiaoqin; Lin, Ruhui; Peng, Jun; Tao, Jing; Chen, Lidian

    2013-12-01

    Microglial activation plays an important role in neroinflammation following ischemic stroke. Activated microglial cells can then migrate to the site of injury to proliferate and release substances which induce secondary brain damage. It has been shown that microglial migration is associated with the activation of the mitogen-activated protein kinase (MAPK) signaling pathways. The Chinese formula, GuaLou GuiZhi decoction (GLGZD), has long been administered in clinical practice for the treatment of post-stroke disabilities, such as muscular spasticity. In a previous study, we demonstrated that the anti-inflammtory effects of GLGZD were mediated by the TLR4/NF-κB pathway in lipopolysaccharide (LPS)-stimulated microglial cells. Therefore, in this study, we evaluated the role of GLGZD in microglial migration by performing scratch wound assays and migration assays. We wished to elucidate the cellular and molecular mechanisms elicited by this TCM formula in microglial-induced inflammation by evaluating the release and expression of chemotactic cytokines [monocyte chemo-attractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α) and interleukin (IL)-8] by ELISA and quantitative PCR. Our results revealed that the migration of microglial cells was enhanced in the presence of LPS (100 ng/ml); however, GLGZD (100 µg/ml) significantly inhibited cell motility and the production of chemokines through the inhibition of the activation of the p38 and c-Jun N-terminal protein kinase (JNK) signaling pathway. We demonstrate the potential of GLGZD in the modulation of microglial motility by investigating the effects of GLGZD on microglial migration induced by LPS. Taken together, our data suggest that GLGZD per se cannot trigger microglial motility, whereas GLGZD impedes LPS-induced microglial migration through the activation of the MAPK signaling pathway. These results provide further evidence of the anti-inflammatory effects of GLGZD and its potential for use in

  12. Polyphenolic fraction of Lonicera caerulea L. fruits reduces oxidative stress and inflammatory markers induced by lipopolysaccharide in gingival fibroblasts.

    PubMed

    Zdarilová, A; Rajnochová Svobodová, A; Chytilová, K; Simánek, V; Ulrichová, J

    2010-06-01

    The most common oral diseases have a microbial aetiology. Pathogenic bacteria liberate a number of irritating agents including a lipopolysaccharide (LPS) that activates pro-inflammatory cytokines promoting increased activity of polymorphonucleocytes (PMN). Release of PMN-derived free radicals into an infected gingival area affects gums, periodontal ligaments and alveolar bone. Berries of Lonicera caerulea L. (blue honeysuckle) are rich in phenolics, particularly phenolic acids, flavonoids and anthocyanins that have multiple biological activities in vitro and in vivo such as antiadherence, antioxidant and anti-inflammatory. Studies have shown that polyphenols suppress a number of LPS-induced signals and thus could be effective against gingivitis. Here we assessed effects of the polyphenolic fraction of L. caerulea fruits (PFLC; containing 77% anthocyanins) on LPS-induced oxidative damage and inflammation in human gingival fibroblasts. Application of PFLC (10-50mug/ml) reduced reactive oxygen species (ROS) production, intracellular glutathione (GSH) depletion as well as lipid peroxidation in LPS-treated cells. PFLC treatment also inhibited LPS-induced up-regulation of interleukin-1beta (IL-1beta), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-alpha) and it suppressed expression of cyclooxygenase-2 (COX-2). The effects are presumably linked to its antioxidant and anti-inflammatory activities and suggest its use in attenuating the inflammatory process, including periodontal disease. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. BZ-26, a novel GW9662 derivate, attenuated inflammation by inhibiting the differentiation and activation of inflammatory macrophages.

    PubMed

    Bei, Yuncheng; Chen, Jiajia; Zhou, Feifei; Huang, Yahong; Jiang, Nan; Tan, Renxiang; Shen, Pingping

    2016-12-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) is considered to be an important transcriptional factor in regulation of macrophages differentiation and activation. We have synthesized a series of novel structural molecules based on GW9662's structure (named BZ-24, BZ-25 and BZ-26), and interaction activity was calculated by computational docking. BZ-26 had shown stronger interaction with PPARγ and had higher transcriptional inhibitory activity of PPARγ with lower dosage compared with GW9662. BZ-26 was proved to inhibit inflammatory macrophage differentiation. LPS-induced acute inflammation mouse model was applied to demonstrate its anti-inflammatory activity. And the results showed that BZ-26 administration attenuated plasma tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) secretion, which are vital cytokines in acute inflammation. The anti-inflammatory activity was examined in THP-1 cell line, and TNF-α, IL-6 and MCP-1, were significantly inhibited. The results of Western blot and luciferase reporter assay indicated that BZ-26 not only inhibited NF-κB transcriptional activity, but also abolished LPS-induce nuclear translocation of P65. We also test BZ-26 action in tumor-bearing chronic inflammation mouse model, and BZ-26 was able to alter macrophages phenotype, resulting in antitumor effect. All our data revealed that BZ-26 modulated LPS-induced acute inflammation via inhibiting inflammatory macrophages differentiation and activation, potentially via inhibition of NF-κB signal pathway.

  14. β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance.

    PubMed

    Novakovic, Boris; Habibi, Ehsan; Wang, Shuang-Yin; Arts, Rob J W; Davar, Robab; Megchelenbrink, Wout; Kim, Bowon; Kuznetsova, Tatyana; Kox, Matthijs; Zwaag, Jelle; Matarese, Filomena; van Heeringen, Simon J; Janssen-Megens, Eva M; Sharifi, Nilofar; Wang, Cheng; Keramati, Farid; Schoonenberg, Vivien; Flicek, Paul; Clarke, Laura; Pickkers, Peter; Heath, Simon; Gut, Ivo; Netea, Mihai G; Martens, Joost H A; Logie, Colin; Stunnenberg, Hendrik G

    2016-11-17

    Innate immune memory is the phenomenon whereby innate immune cells such as monocytes or macrophages undergo functional reprogramming after exposure to microbial components such as lipopolysaccharide (LPS). We apply an integrated epigenomic approach to characterize the molecular events involved in LPS-induced tolerance in a time-dependent manner. Mechanistically, LPS-treated monocytes fail to accumulate active histone marks at promoter and enhancers of genes in the lipid metabolism and phagocytic pathways. Transcriptional inactivity in response to a second LPS exposure in tolerized macrophages is accompanied by failure to deposit active histone marks at promoters of tolerized genes. In contrast, β-glucan partially reverses the LPS-induced tolerance in vitro. Importantly, ex vivo β-glucan treatment of monocytes from volunteers with experimental endotoxemia re-instates their capacity for cytokine production. Tolerance is reversed at the level of distal element histone modification and transcriptional reactivation of otherwise unresponsive genes. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Capsaicin pretreatment attenuates LPS-induced hypothermia through TRPV1-independent mechanisms in chicken.

    PubMed

    Nikami, Hideki; Mahmoud, Motamed Elsayed; Shimizu, Yasutake; Shiina, Takahiko; Hirayama, Haruko; Iwami, Momoe; Dosoky, Reem Mahmoud; Ahmed, Moustafa Mohamed; Takewaki, Tadashi

    2008-06-06

    It has been demonstrated that chicken TRPV1 (transient receptor potential vanilloid of subtype-1) is insensitive to capsaicin (CAP), and therefore, a chicken model is suitable to analyze the CAP-sensitive TRPV1-independent pathway. We elucidated here the possible involvement of the pathway in hypothermia induced by bacterial endotoxin (lipopolysaccharide, LPS) in chickens. Chicks were pretreated with CAP (10 mg/kg, iv) at 1, 2 and 3 days of age to desensitize them towards the CAP-sensitive pathway. An intravenous injection of LPS in 4-day-old chicks caused progressive hypothermia, ending with collapse and 78% mortality within 12 h after injection. The CAP pretreatment rescued the LPS-induced endotoxin shock and hypothermia in chicks. LPS-induced iNOS expression as well as NO production in liver and lung was suppressed by CAP pretreatment. CAP pretreatment also attenuated hypothermia due to exposure of chicks to cold ambient temperature. These findings suggest that a CAP-sensitive TRPV1-independent pathway may be involved in pathophysiological hypothermic reactions through the mediation of NO in chickens.

  16. Red Blood Cell Supernatant Potentiates LPS-Induced Proinflammatory Cytokine Response From Peripheral Blood Mononuclear Cells

    PubMed Central

    Nydam, Trevor L.; Clarke, Jason H.; Banerjee, Anirban; Silliman, Christopher C.; McCarter, Martin D.

    2009-01-01

    Allogeneic blood transfusion has an immunomodulatory capacity on its recipients through accumulation of immunologically active substances with blood storage, and prestorage leukoreduction reduces many of these mediators. We investigated lipopolysaccharide (LPS)-induced cytokine response of peripheral blood mononuclear cells (PBMCs) exposed to packed red blood cell (PRBC) supernatants from leukoreduced (LR) or non-leukoreduced (NLR) units with variable duration of storage. PRBC units were collected with or without leukoreduction on Day 0 before routine storage. The plasma fraction (supernatant) was isolated from LR and NLR units after 1 day (D1) or 42 days (D42) of storage and exposed to PBMCs versus control media for 24 h, then with LPS for an additional 24 h. Cell supernatants were analyzed for IL-1β, IL-6, IL-8, IL-10, and TNF-α by cytokine bead array. IL-1β, TNF-α, and IL-6 were significantly elevated in PRBC groups versus control. D42 NLR PRBC supernatant significantly increased secretion of IL-1β and IL-6 compared to D1 NLR PRBC supernatant. LR significantly attenuated the cytokine response of IL-1β. Thus, PRBC supernatant potentiates proinflammatory LPS-induced cytokine secretion from PBMCs. This response is accentuated with storage duration and partially attenuated with leukoreduction. These findings may partially explain the immune activation seen clinically after blood transfusion. PMID:19441884

  17. Morin hydrate augments phagocytosis mechanism and inhibits LPS induced autophagic signaling in murine macrophage.

    PubMed

    Jakhar, Rekha; Paul, Souren; Chauhan, Anil Kumar; Kang, Sun Chul

    2014-10-01

    Morin, a natural flavonoid that is the primary bioactive constituent of the family Moraceae, has been found to be associated with many therapeutic properties. In this study, we evaluated the immunomodulatory activities of increasing concentration of morin hydrate in vitro. Three different concentrations of morin hydrate (5, 10, and 15μM) were used to evaluate their effect on splenocyte proliferation, phagocytic activity of macrophages, cytokine secretion and complement inhibition. We also evaluated the role of morin hydrate on lipopolysaccharide (LPS) induced autophagy. Our study demonstrated that morin hydrate elicited a significant increase in splenocyte proliferation, phagocytic capacity and suppressed the production of cytokines and nitric oxide in activated macrophages. Humoral immunity measured by anti-complement activity showed an increase in inhibition of the complement system after the addition of morin hydrate, where morin hydrate at 15μM concentration induced a significant inhibition. Depending on our results, we can also conclude that morin hydrate protects macrophages from LPS induced autophagic cell death. Our findings suggest that morin hydrate represents a structurally diverse class of flavonoid and this structural variability can profoundly affect its cell-type specificity and its biological activities. Supplementation of immune cells with morin hydrate has an upregulating and immunoprotective effect that shows potential as a countermeasure to the immune dysfunction and suggests an interesting use in inflammation related diseases.

  18. In vitro and in vivo anti-inflammatory activities of high molecular weight sulfated polysaccharide; containing fucose separated from Sargassum horneri: Short communication.

    PubMed

    Sanjeewa, K K Asanka; Fernando, I P S; Kim, Seo-Young; Kim, Hyun-Soo; Ahn, Ginnae; Jee, Youngheun; Jeon, You-Jin

    2017-09-28

    Recent studies on crude and pure compounds from Sargassum horneri have shown promising bioactive properties. However, anti-inflammatory potentials of fucose-rich sulfated polysaccharides from S. horneri have not yet been discovered. In the present study, we evaluated the in vitro and in vivo anti-inflammatory activities of four polysaccharide fractions separated from membrane filters according to their molecular weights (<5kDa (f1), 5-10kDa (f2), 10-30kDa (f3), and >30kDa (f4)). According to the results, F4 fraction inhibited the lipopolysaccharides (LPS)-induced nitric oxide (NO) (IC50=87.12μg/mL) and prostaglandin E2 production as well as pro-inflammatory cytokine production in RAW 264.7 cells through down-regulating nuclear factor-κB signaling cascade. According to the results, f4 has a potential to down-regulate LPS-induced toxicity, cell death and NO production levels in LPS-induced in vivo zebrafish embryo model. These results suggest that f4 fraction has the potential to develop functional materials or drugs to treat inflammatory diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effect of a Soluble Epoxide Hydrolase Inhibitor, UC1728, on LPS-Induced Uveitis in the Rabbit

    PubMed Central

    McLellan, Gillian J.; Aktas, Zeynep; Hennes-Beean, Elizabeth; Kolb, Aaron W.; Larsen, Inna V.; Schmitz, Emily J.; Clausius, Hilary R.; Yang, Jun; Hwang, Sung Hee; Morisseau, Christophe; Inceoglu, Bora; Hammock, Bruce D.; Brandt, Curtis R.

    2016-01-01

    Cytochrome P450 epoxygenase isozymes convert free arachidonic acid into eicosanoids named epoxyeicosatrienoic acids (EETs) that have roles in regulating inflammation. EETs are rapidly converted to dihydroxyeicosatrienoic acids (DiHETs) by soluble epoxide hydrolase (sEH). Little is known about the potential role of these metabolites in uveitis, but conversion of EETs to DiHETs could contribute to the inflammation. We tested a potent and orally available inhibitor of sEH for its ability to reduce ocular inflammation in a rabbit LPS-induced model of uveitis. Rabbits were treated by subcutaneous injection with the sEH inhibitor (UC1728, 3 mg/kg), or the vehicle control (PEG400) and uveitis was assessed at 6, 24 and 48 h post-intracameral LPS injection using a modified Hackett-McDonald scoring system. Eyes treated by intra-cameral injection of PBS, or by aseptic preparation served as further controls. Signs of inflammation in this model were mild and transient. Treatment with UC1728 did not significantly reduce inflammation compared to animals treated with the PEG400 vehicle. Blood levels of UC1728 were a thousand fold higher than the in vitro determined inhibitory potency (IC50) of the compound suggesting a significant degree of inhibition of sEH in the rabbit. The lack of efficacy suggests that sEH or its substrates the EETs may not be involved in mediating inflammation in this model of uveitis. PMID:28066796

  20. Caspase‐8 regulates the expression of pro‐ and anti‐inflammatory cytokines in human bone marrow‐derived mesenchymal stromal cells

    PubMed Central

    Moen, Siv H.; Westhrin, Marita; Zahoor, Muhammad; Nørgaard, Nikolai N.; Hella, Hanne; Størdal, Berit; Sundan, Anders; Nilsen, Nadra J.; Sponaas, Anne‐Marit

    2016-01-01

    Abstract Introduction Mesenchymal stem cells, also called mesenchymal stromal cells, MSCs, have great potential in stem cell therapy partly due to their immunosuppressive properties. How these cells respond to chronic inflammatory stimuli is therefore of importance. Toll‐like receptors (TLR)s are innate immune receptors that mediate inflammatory signals in response to infection, stress, and damage. Caspase‐8 is involved in activation of NF‐kB downstream of TLRs in immune cells. Here we investigated the role of caspase‐8 in regulating TLR‐induced cytokine production from human bone marrow‐derived mesenchymal stromal cells (hBMSCs). Methods Cytokine expression in hBMCs in response to poly(I:C) and LPS was evaluated by PCR, multiplex cytokine assay, and ELISA. TLR3, TRIF, and caspase‐8 were silenced using siRNA. Caspase‐8 was also inhibited using a caspase‐8 inhibitor, z‐IEDT. Results We found that TLR3 agonist poly(I:C) and TLR4 agonist LPS induced secretion of several pro‐inflammatory cytokines in a TLR‐dependent manner which required the TLR signaling adaptor molecule TRIF. Further, poly(I:C) reduced the expression of anti‐inflammatory cytokines HGF and TGFβ whereas LPS reduced HGF expression only. Notably, caspase‐8 was involved in the induction of IL‐ IL‐1β, IL‐6, CXCL10, and in the inhibition of HGF and TGFβ. Conclusion Caspase‐8 appears to modulate hBMSCs into gaining a pro‐inflammatory phenotype. Therefore, inhibiting caspase‐8 in hBMSCs might promote an immunosuppressive phenotype which could be useful in clinical applications to treat inflammatory disorders. PMID:27621815