Science.gov

Sample records for regulates phototropic signal

  1. Nuclear Phytochrome A Signaling Promotes Phototropism in Arabidopsis[W][OA

    PubMed Central

    Kami, Chitose; Hersch, Micha; Trevisan, Martine; Genoud, Thierry; Hiltbrunner, Andreas; Bergmann, Sven; Fankhauser, Christian

    2012-01-01

    Phototropin photoreceptors (phot1 and phot2 in Arabidopsis thaliana) enable responses to directional light cues (e.g., positive phototropism in the hypocotyl). In Arabidopsis, phot1 is essential for phototropism in response to low light, a response that is also modulated by phytochrome A (phyA), representing a classical example of photoreceptor coaction. The molecular mechanisms underlying promotion of phototropism by phyA remain unclear. Most phyA responses require nuclear accumulation of the photoreceptor, but interestingly, it has been proposed that cytosolic phyA promotes phototropism. By comparing the kinetics of phototropism in seedlings with different subcellular localizations of phyA, we show that nuclear phyA accelerates the phototropic response, whereas in the fhy1 fhl mutant, in which phyA remains in the cytosol, phototropic bending is slower than in the wild type. Consistent with this data, we find that transcription factors needed for full phyA responses are needed for normal phototropism. Moreover, we show that phyA is the primary photoreceptor promoting the expression of phototropism regulators in low light (e.g., PHYTOCHROME KINASE SUBSTRATE1 [PKS1] and ROOT PHOTO TROPISM2 [RPT2]). Although phyA remains cytosolic in fhy1 fhl, induction of PKS1 and RPT2 expression still occurs in fhy1 fhl, indicating that a low level of nuclear phyA signaling is still present in fhy1 fhl. PMID:22374392

  2. Role of inositol 1,4,5-triphosphate signalling in gravitropic and phototropic gene expression.

    PubMed

    Salinas-Mondragon, Raul E; Kajla, Jyoti D; Perera, Imara Y; Brown, Christopher S; Sederoff, Heike Winter

    2010-12-01

    Plants sense light and gravity to orient their direction of growth. One common component in the early events of both phototropic and gravitropic signal transduction is activation of phospholipase C (PLC), which leads to an increase in inositol 1,4,5-triphosphate (InsP(3)) levels. The InsP(3) signal is terminated by hydrolysis of InsP(3) through inositolpolyphosphate-5-phosphatases (InsP 5-ptases). Arabidopsis plants expressing a heterologous InsP 5-ptase have low basal InsP(3) levels and exhibit reduced gravitropic and phototropic bending. Downstream effects of InsP(3)-mediated signalling are not understood. We used comparative transcript profiling to characterize gene expression changes in gravity- or light-stimulated Arabidopsis root apices that were manipulated in their InsP(3) metabolism either through inhibition of PLC activity or expression of InsP 5-ptase. We identified InsP(3)-dependent and InsP(3)-independent co-regulated gene sets in response to gravity or light stimulation. Inhibition of PLC activity in wild-type plants caused similar changes in transcript abundance in response to gravitropic and phototropic stimulation as in the transgenic lines. Therefore, we conclude that changes in gene expression in response to gravitropic and phototropic stimulation are mediated by two signal transduction pathways that vary in their dependence on changes in InsP(3).

  3. PHYTOCHROME KINASE SUBSTRATE1 regulates root phototropism and gravitropism.

    PubMed

    Boccalandro, Hernán E; De Simone, Silvia N; Bergmann-Honsberger, Ariane; Schepens, Isabelle; Fankhauser, Christian; Casal, Jorge J

    2008-01-01

    Light promotes the expression of PHYTOCHROME KINASE SUBSTRATE1 (PKS1) in the root of Arabidopsis thaliana, but the function of PKS1 in this organ is unknown. Unilateral blue light induced a negative root phototropic response mediated by phototropin 1 in wild-type seedlings. This response was absent in pks1 mutants. In the wild type, unilateral blue light enhanced PKS1 expression in the subapical region of the root several hours before bending was detectable. The negative phototropism and the enhanced PKS1 expression in response to blue light required phytochrome A (phyA). In addition, the pks1 mutation enhanced the root gravitropic response when vertically oriented seedlings were placed horizontally. The negative regulation of gravitropism by PKS1 occurred even in dark-grown seedlings and did not require phyA. Blue light also failed to induce negative phototropism in pks1 under reduced gravitational stimulation, indicating that the effect of pks1 on phototropism is not simply the consequence of the counteracting effect of enhanced gravitropism. We propose a model where the background level of PKS1 reduces gravitropism. After a phyA-dependent increase in its expression, PKS1 positively affects root phototropism and both effects contribute to negative curvature in response to unilateral blue light.

  4. Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway.

    PubMed Central

    Liscum, E; Briggs, W R

    1996-01-01

    Four genetic loci were recently identified by mutations that affect phototropism in Arabidopsis thaliana (L.) Heyhn. seedlings. It was hypothesized that one of these loci, NPH1, encodes the apoprotein for a phototropic photoreceptor. All of the alleles at the other three mutant loci (nph2, nph3, and nph4) contained wild-type levels of the putative NPH1 protein and exhibited normal blue-light-dependent phosphorylation of the NPH1 protein. This indicated that the NPH2, NPH3, and NPH4 proteins likely function downstream of NPH1 photoactivation. We show here that, although the nph2, nph3, and nph4 mutants are all altered with respect to their phototropic responses, only the nph4 mutants are also altered in their gravitropic responsiveness. Thus, NPH2 and NPH3 appear to act as signal carriers in a phototropism-specific pathway, whereas NPH4 is required for both phototropism and gravitropism and thus may function directly in the differential growth response. Despite their altered phototropic responses in blue and green light as etiolated seedlings, the nph2 and nph4 mutants exhibited less dramatic mutant phenotypes as de-etiolated seedlings and when etiolated seedlings were irradiated with unilateral ultraviolet-A (UV-A) light. Examination of the phototropic responses of a mutant deficient in biologically active phytochromes, hy1-100, indicated that phytochrome transformation by UV-A light mediates an increase in phototropic responsiveness, accounting for the greater phototropic curvature of the nph2 and nph4 mutants to UV-A light than to blue light. PMID:8819327

  5. Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport.

    PubMed

    Kami, Chitose; Allenbach, Laure; Zourelidou, Melina; Ljung, Karin; Schütz, Frédéric; Isono, Erika; Watahiki, Masaaki K; Yamamoto, Kotaro T; Schwechheimer, Claus; Fankhauser, Christian

    2014-02-01

    Phototropism allows plants to orient their photosynthetic organs towards the light. In Arabidopsis, phototropins 1 and 2 sense directional blue light such that phot1 triggers phototropism in response to low fluence rates, while both phot1 and phot2 mediate this response under higher light conditions. Phototropism results from asymmetric growth in the hypocotyl elongation zone that depends on an auxin gradient across the embryonic stem. How phototropin activation leads to this growth response is still poorly understood. Members of the phytochrome kinase substrate (PKS) family may act early in this pathway, because PKS1, PKS2 and PKS4 are needed for a normal phototropic response and they associate with phot1 in vivo. Here we show that PKS proteins are needed both for phot1- and phot2-mediated phototropism. The phototropic response is conditioned by the developmental asymmetry of dicotyledonous seedlings, such that there is a faster growth reorientation when cotyledons face away from the light compared with seedlings whose cotyledons face the light. The molecular basis for this developmental effect on phototropism is unknown; here we show that PKS proteins play a role at the interface between development and phototropism. Moreover, we present evidence for a role of PKS genes in hypocotyl gravi-reorientation that is independent of photoreceptors. pks mutants have normal levels of auxin and normal polar auxin transport, however they show altered expression patterns of auxin marker genes. This situation suggests that PKS proteins are involved in auxin signaling and/or lateral auxin redistribution.

  6. Plasma membrane H⁺ -ATPase regulation is required for auxin gradient formation preceding phototropic growth.

    PubMed

    Hohm, Tim; Demarsy, Emilie; Quan, Clément; Allenbach Petrolati, Laure; Preuten, Tobias; Vernoux, Teva; Bergmann, Sven; Fankhauser, Christian

    2014-01-01

    Phototropism is a growth response allowing plants to align their photosynthetic organs toward incoming light and thereby to optimize photosynthetic activity. Formation of a lateral gradient of the phytohormone auxin is a key step to trigger asymmetric growth of the shoot leading to phototropic reorientation. To identify important regulators of auxin gradient formation, we developed an auxin flux model that enabled us to test in silico the impact of different morphological and biophysical parameters on gradient formation, including the contribution of the extracellular space (cell wall) or apoplast. Our model indicates that cell size, cell distributions, and apoplast thickness are all important factors affecting gradient formation. Among all tested variables, regulation of apoplastic pH was the most important to enable the formation of a lateral auxin gradient. To test this prediction, we interfered with the activity of plasma membrane H⁺ -ATPases that are required to control apoplastic pH. Our results show that H⁺ -ATPases are indeed important for the establishment of a lateral auxin gradient and phototropism. Moreover, we show that during phototropism, H⁺ -ATPase activity is regulated by the phototropin photoreceptors, providing a mechanism by which light influences apoplastic pH. PMID:25261457

  7. Negative phototropism is seen in Arabidopsis inflorescences when auxin signaling is reduced to a minimal level by an Aux/IAA dominant mutation, axr2.

    PubMed

    Sato, Atsuko; Sasaki, Shu; Matsuzaki, Jun; Yamamoto, Kotaro T

    2015-01-01

    Inflorescences of a dominant mutant of Arabidopsis Aux/IAA7, axr2, showed negative phototropism with a similar fluence response curve to the positive phototropism of wild-type stems. Application of a synthetic auxin, NAA, and an inhibitor of polar auxin transport, NPA, increased and decreased respectively the magnitude of the phototropic response in the wild type, while in axr2 application of NAA reduced the negative phototropic response and NPA had no effect. Decapitation of the apex induced a small negative phototropism in wild-type stems, and had no effect in axr2 plants. Inflorescences of the double mutants of auxin transporters, pgp1 pgp19, showed no phototropic response, while decapitation resulted in a negative phototropic response. These results suggest that negative phototropism can occur when the level of auxin or of auxin signaling is reduced to a minimal level, and that in plant axial organs the default phototropic response to unilateral blue light may be negative. Expression of axr2 protein by an endodermis-specific promoter resulted in agravitropism of inflorescences in a similar way to that of axr2, but phototropism was normal, confirming that the endodermis does not play a critical role in phototropism.

  8. Light-induced phosphorylation of a membrane protein plays an early role in signal transduction for phototropism in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Reymond, P.; Short, T. W.; Briggs, W. R.; Poff, K. L.

    1992-01-01

    Blue light is known to cause rapid phosphorylation of a membrane protein in etiolated seedlings of several plant species, a protein that, at least in etiolated pea seedlings and maize coleoptiles, has been shown to be associated with the plasma membrane. The light-driven phosphorylation has been proposed on the basis of correlative evidence to be an early step in the signal transduction chain for phototropism. In the Arabidopsis thaliana mutant JK224, the sensitivity to blue light for induction of first positive phototropism is known to be 20- to 30-fold lower than in wild type, whereas second positive curvature appears to be normal. While light-induced phosphorylation can be demonstrated in crude membrane preparations from shoots of the mutant, the level of phosphorylation is dramatically lower than in wild type, as is the sensitivity to blue light. Another A. thaliana mutant, JK218, that completely lacks any phototropic responses to up to 2 h of irradiation, shows a normal level of light-induced phosphorylation at saturation. Since its gravitropic sensitivity is normal, it is presumably blocked in some step between photoreception and the confluence of the signal transduction pathways for phototropism and gravitropism. We conclude from mutant JK224 that light-induced phosphorylation plays an early role in the signal transduction chain for phototropism in higher plants.

  9. Light-induced phosphorylation of a membrane protein plays an early role in signal transduction for phototropism in Arabidopsis thaliana.

    PubMed Central

    Reymond, P; Short, T W; Briggs, W R; Poff, K L

    1992-01-01

    Blue light is known to cause rapid phosphorylation of a membrane protein in etiolated seedlings of several plant species, a protein that, at least in etiolated pea seedlings and maize coleoptiles, has been shown to be associated with the plasma membrane. The light-driven phosphorylation has been proposed on the basis of correlative evidence to be an early step in the signal transduction chain for phototropism. In the Arabidopsis thaliana mutant JK224, the sensitivity to blue light for induction of first positive phototropism is known to be 20- to 30-fold lower than in wild type, whereas second positive curvature appears to be normal. While light-induced phosphorylation can be demonstrated in crude membrane preparations from shoots of the mutant, the level of phosphorylation is dramatically lower than in wild type, as is the sensitivity to blue light. Another A. thaliana mutant, JK218, that completely lacks any phototropic responses to up to 2 h of irradiation, shows a normal level of light-induced phosphorylation at saturation. Since its gravitropic sensitivity is normal, it is presumably blocked in some step between photoreception and the confluence of the signal transduction pathways for phototropism and gravitropism. We conclude from mutant JK224 that light-induced phosphorylation plays an early role in the signal transduction chain for phototropism in higher plants. Images PMID:11537679

  10. Phytochromes A and B mediate red-light-induced positive phototropism in roots

    NASA Technical Reports Server (NTRS)

    Kiss, John Z.; Mullen, Jack L.; Correll, Melanie J.; Hangarter, Roger P.

    2003-01-01

    The interaction of tropisms is important in determining the final growth form of the plant body. In roots, gravitropism is the predominant tropistic response, but phototropism also plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism that is mediated by the phototropin family of photoreceptors. In contrast, red light induces a positive phototropism in Arabidopsis roots. Because this red-light-induced response is weak relative to both gravitropism and negative phototropism, we used a novel device to study phototropism without the complications of a counteracting gravitational stimulus. This device is based on a computer-controlled system using real-time image analysis of root growth and a feedback-regulated rotatable stage. Our data show that this system is useful to study root phototropism in response to red light, because in wild-type roots, the maximal curvature detected with this apparatus is 30 degrees to 40 degrees, compared with 5 degrees to 10 degrees without the feedback system. In positive root phototropism, sensing of red light occurs in the root itself and is not dependent on shoot-derived signals resulting from light perception. Phytochrome (Phy)A and phyB were severely impaired in red-light-induced phototropism, whereas the phyD and phyE mutants were normal in this response. Thus, PHYA and PHYB play a key role in mediating red-light-dependent positive phototropism in roots. Although phytochrome has been shown to mediate phototropism in some lower plant groups, this is one of the few reports indicating a phytochrome-dependent phototropism in flowering plants.

  11. Phytochromes A and B mediate red-light-induced positive phototropism in roots.

    PubMed

    Kiss, John Z; Mullen, Jack L; Correll, Melanie J; Hangarter, Roger P

    2003-03-01

    The interaction of tropisms is important in determining the final growth form of the plant body. In roots, gravitropism is the predominant tropistic response, but phototropism also plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism that is mediated by the phototropin family of photoreceptors. In contrast, red light induces a positive phototropism in Arabidopsis roots. Because this red-light-induced response is weak relative to both gravitropism and negative phototropism, we used a novel device to study phototropism without the complications of a counteracting gravitational stimulus. This device is based on a computer-controlled system using real-time image analysis of root growth and a feedback-regulated rotatable stage. Our data show that this system is useful to study root phototropism in response to red light, because in wild-type roots, the maximal curvature detected with this apparatus is 30 degrees to 40 degrees, compared with 5 degrees to 10 degrees without the feedback system. In positive root phototropism, sensing of red light occurs in the root itself and is not dependent on shoot-derived signals resulting from light perception. Phytochrome (Phy)A and phyB were severely impaired in red-light-induced phototropism, whereas the phyD and phyE mutants were normal in this response. Thus, PHYA and PHYB play a key role in mediating red-light-dependent positive phototropism in roots. Although phytochrome has been shown to mediate phototropism in some lower plant groups, this is one of the few reports indicating a phytochrome-dependent phototropism in flowering plants.

  12. Chemistry and biology of phototropism-regulating substances in higher plants.

    PubMed

    Yamamura, S; Hasegawa, K

    2001-01-01

    Most people are familiar with the sight of a young seedling bending towards a window or the brightest source of light to which it is exposed. This directional growth response is known as phototropism, which is caused by a lateral growth-promoting auxin in the bending organ (Cholodny-Went theory, cited in high school textbook). Recently, however, Bruinsma et al., Weiler et al., and Hasegawa et al. independently found that the shaded half did not contain more auxin than the illuminated one. Instead it was found that the even distribution of auxin was accompanied by a lateral gradient of growth inhibiting substances during phototropic curvature (Bruinsma-Hasegawa theory). We have isolated some photo-induced growth inhibitory substances related to phototropism, benzoxazolinones from light-grown maize shoots (Zea mays L.), raphanusanins from radish hypocotyl (Raphanus sativus var. hortensis f. gigantissimus M.), indolyacetonitrile from light-grown shoots (Brassica oleacea L.), 8-epixanthatin from sunflower hypocotyl (Helianthus annus L.), and quite recently uridine from oat coleoptile (Avena sativa L.). Chemical analyses have shown phototropic stimulations to cause curvature by inducing a local unequal distribution of growth-inhibiting substances that antagonize auxin in its cell-elongating activity. Finally, a model is presented for further studies on phototropism.

  13. Chemistry and biology of phototropism-regulating substances in higher plants.

    PubMed

    Yamamura, S; Hasegawa, K

    2001-01-01

    Most people are familiar with the sight of a young seedling bending towards a window or the brightest source of light to which it is exposed. This directional growth response is known as phototropism, which is caused by a lateral growth-promoting auxin in the bending organ (Cholodny-Went theory, cited in high school textbook). Recently, however, Bruinsma et al., Weiler et al., and Hasegawa et al. independently found that the shaded half did not contain more auxin than the illuminated one. Instead it was found that the even distribution of auxin was accompanied by a lateral gradient of growth inhibiting substances during phototropic curvature (Bruinsma-Hasegawa theory). We have isolated some photo-induced growth inhibitory substances related to phototropism, benzoxazolinones from light-grown maize shoots (Zea mays L.), raphanusanins from radish hypocotyl (Raphanus sativus var. hortensis f. gigantissimus M.), indolyacetonitrile from light-grown shoots (Brassica oleacea L.), 8-epixanthatin from sunflower hypocotyl (Helianthus annus L.), and quite recently uridine from oat coleoptile (Avena sativa L.). Chemical analyses have shown phototropic stimulations to cause curvature by inducing a local unequal distribution of growth-inhibiting substances that antagonize auxin in its cell-elongating activity. Finally, a model is presented for further studies on phototropism. PMID:11933243

  14. Genetic separation of phototropism and blue light inhibition of stem elongation

    NASA Technical Reports Server (NTRS)

    Liscum, E.; Young, J. C.; Poff, K. L.; Hangarter, R. P.

    1992-01-01

    Blue light-induced regulation of cell elongation is a component of the signal response pathway for both phototropic curvature and inhibition of stem elongation in higher plants. To determine if blue light regulates cell elongation in these responses through shared or discrete pathways, phototropism and hypocotyl elongation were investigated in several blue light response mutants in Arabidopsis thaliana. Specifically, the blu mutants that lack blue light-dependent inhibition of hypocotyl elongation were found to exhibit a normal phototropic response. In contrast, a phototropic null mutant (JK218) and a mutant that has a 20- to 30-fold shift in the fluence dependence for first positive phototropism (JK224) showed normal inhibition of hypocotyl elongation in blue light. F1 progeny of crosses between the blu mutants and JK218 showed normal phototropism and inhibition of hypocotyl elongation, and approximately 1 in 16 F2 progeny were double mutants lacking both responses. Thus, blue light-dependent inhibition of hypocotyl elongation and phototropism operate through at least some genetically distinct components.

  15. Genetic separation of phototropism and blue light inhibition of stem elongation.

    PubMed Central

    Liscum, E; Young, J C; Poff, K L; Hangarter, R P

    1992-01-01

    Blue light-induced regulation of cell elongation is a component of the signal response pathway for both phototropic curvature and inhibition of stem elongation in higher plants. To determine if blue light regulates cell elongation in these responses through shared or discrete pathways, phototropism and hypocotyl elongation were investigated in several blue light response mutants in Arabidopsis thaliana. Specifically, the blu mutants that lack blue light-dependent inhibition of hypocotyl elongation were found to exhibit a normal phototropic response. In contrast, a phototropic null mutant (JK218) and a mutant that has a 20- to 30-fold shift in the fluence dependence for first positive phototropism (JK224) showed normal inhibition of hypocotyl elongation in blue light. F1 progeny of crosses between the blu mutants and JK218 showed normal phototropism and inhibition of hypocotyl elongation, and approximately 1 in 16 F2 progeny were double mutants lacking both responses. Thus, blue light-dependent inhibition of hypocotyl elongation and phototropism operate through at least some genetically distinct components. Images Figure 1 PMID:11538049

  16. Arabidopsis ROOT PHOTOTROPISM2 Contributes to the Adaptation to High-Intensity Light in Phototropic Responses

    PubMed Central

    Haga, Ken; Tsuchida-Mayama, Tomoko; Yamada, Mizuki; Sakai, Tatsuya

    2015-01-01

    Living organisms adapt to changing light environments via mechanisms that enhance photosensitivity under darkness and attenuate photosensitivity under bright light conditions. In hypocotyl phototropism, phototropin1 (phot1) blue light photoreceptors mediate both the pulse light-induced, first positive phototropism and the continuous light-induced, second positive phototropism, suggesting the existence of a mechanism that alters their photosensitivity. Here, we show that light induction of ROOT PHOTOTROPISM2 (RPT2) underlies photosensory adaptation in hypocotyl phototropism of Arabidopsis thaliana. rpt2 loss-of-function mutants exhibited increased photosensitivity to very low fluence blue light but were insensitive to low fluence blue light. Expression of RPT2 prior to phototropic stimulation in etiolated seedlings reduced photosensitivity during first positive phototropism and accelerated second positive phototropism. Our microscopy and biochemical analyses indicated that blue light irradiation causes dephosphorylation of NONPHOTOTROPIC HYPOCOTYL3 (NPH3) proteins and mediates their release from the plasma membrane. These phenomena correlate closely with the desensitization of phot1 signaling during the transition period from first positive phototropism to second positive phototropism. RPT2 modulated the phosphorylation of NPH3 and promoted reconstruction of the phot1-NPH3 complex on the plasma membrane. We conclude that photosensitivity is increased in the absence of RPT2 and that this results in the desensitization of phot1. Light-mediated induction of RPT2 then reduces the photosensitivity of phot1, which is required for second positive phototropism under bright light conditions. PMID:25873385

  17. Phototropism: Growing towards an Understanding of Plant Movement[OPEN

    PubMed Central

    Liscum, Emmanuel; Askinosie, Scott K.; Leuchtman, Daniel L.; Morrow, Johanna; Willenburg, Kyle T.; Coats, Diana Roberts

    2014-01-01

    Phototropism, or the differential cell elongation exhibited by a plant organ in response to directional blue light, provides the plant with a means to optimize photosynthetic light capture in the aerial portion and water and nutrient acquisition in the roots. Tremendous advances have been made in our understanding of the molecular, biochemical, and cellular bases of phototropism in recent years. Six photoreceptors and their associated signaling pathways have been linked to phototropic responses under various conditions. Primary detection of directional light occurs at the plasma membrane, whereas secondary modulatory photoreception occurs in the cytoplasm and nucleus. Intracellular responses to light cues are processed to regulate cell-to-cell movement of auxin to allow establishment of a trans-organ gradient of the hormone. Photosignaling also impinges on the transcriptional regulation response established as a result of changes in local auxin concentrations. Three additional phytohormone signaling pathways have also been shown to influence phototropic responsiveness, and these pathways are influenced by the photoreceptor signaling as well. Here, we will discuss this complex dance of intra- and intercellular responses that are regulated by these many systems to give rise to a rapid and robust adaptation response observed as organ bending. PMID:24481074

  18. The Signal Transducer NPH3 Integrates the Phototropin1 Photosensor with PIN2-Based Polar Auxin Transport in Arabidopsis Root Phototropism[C][W

    PubMed Central

    Wan, Yinglang; Jasik, Jan; Wang, Li; Hao, Huaiqing; Volkmann, Dieter; Menzel, Diedrik; Mancuso, Stefano; Baluška, František; Lin, Jinxing

    2012-01-01

    Under blue light (BL) illumination, Arabidopsis thaliana roots grow away from the light source, showing a negative phototropic response. However, the mechanism of root phototropism is still unclear. Using a noninvasive microelectrode system, we showed that the BL sensor phototropin1 (phot1), the signal transducer NONPHOTOTROPIC HYPOCOTYL3 (NPH3), and the auxin efflux transporter PIN2 were essential for BL-induced auxin flux in the root apex transition zone. We also found that PIN2-green fluorescent protein (GFP) localized to vacuole-like compartments (VLCs) in dark-grown root epidermal and cortical cells, and phot1/NPH3 mediated a BL-initiated pathway that caused PIN2 redistribution to the plasma membrane. When dark-grown roots were exposed to brefeldin A (BFA), PIN2-GFP remained in VLCs in darkness, and BL caused PIN2-GFP disappearance from VLCs and induced PIN2-GFP-FM4-64 colocalization within enlarged compartments. In the nph3 mutant, both dark and BL BFA treatments caused the disappearance of PIN2-GFP from VLCs. However, in the phot1 mutant, PIN2-GFP remained within VLCs under both dark and BL BFA treatments, suggesting that phot1 and NPH3 play different roles in PIN2 localization. In conclusion, BL-induced root phototropism is based on the phot1/NPH3 signaling pathway, which stimulates the shootward auxin flux by modifying the subcellular targeting of PIN2 in the root apex transition zone. PMID:22374399

  19. Flavonols Mediate Root Phototropism and Growth through Regulation of Proliferation-to-Differentiation Transition.

    PubMed

    Silva-Navas, Javier; Moreno-Risueno, Miguel A; Manzano, Concepción; Téllez-Robledo, Bárbara; Navarro-Neila, Sara; Carrasco, Víctor; Pollmann, Stephan; Gallego, F Javier; Del Pozo, Juan C

    2016-06-01

    Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. Here, we show that illumination induces the accumulation of flavonols in Arabidopsis thaliana roots. During root illumination, flavonols rapidly accumulate at the side closer to light in the transition zone. This accumulation promotes asymmetrical cell elongation and causes differential growth between the two sides, leading to root bending. Furthermore, roots illuminated for a long period of time accumulate high levels of flavonols. This high flavonol content decreases both auxin signaling and PLETHORA gradient as well as superoxide radical content, resulting in reduction of cell proliferation. In addition, cytokinin and hydrogen peroxide, which promote root differentiation, induce flavonol accumulation in the root transition zone. As an outcome of prolonged light exposure and flavonol accumulation, root growth is reduced and a different root developmental zonation is established. Finally, we observed that these differentiation-related pathways are required for root light avoidance. We propose that flavonols function as positional signals, integrating hormonal and reactive oxygen species pathways to regulate root growth direction and rate in response to light.

  20. Flavonols Mediate Root Phototropism and Growth through Regulation of Proliferation-to-Differentiation Transition.

    PubMed

    Silva-Navas, Javier; Moreno-Risueno, Miguel A; Manzano, Concepción; Téllez-Robledo, Bárbara; Navarro-Neila, Sara; Carrasco, Víctor; Pollmann, Stephan; Gallego, F Javier; Del Pozo, Juan C

    2016-06-01

    Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. Here, we show that illumination induces the accumulation of flavonols in Arabidopsis thaliana roots. During root illumination, flavonols rapidly accumulate at the side closer to light in the transition zone. This accumulation promotes asymmetrical cell elongation and causes differential growth between the two sides, leading to root bending. Furthermore, roots illuminated for a long period of time accumulate high levels of flavonols. This high flavonol content decreases both auxin signaling and PLETHORA gradient as well as superoxide radical content, resulting in reduction of cell proliferation. In addition, cytokinin and hydrogen peroxide, which promote root differentiation, induce flavonol accumulation in the root transition zone. As an outcome of prolonged light exposure and flavonol accumulation, root growth is reduced and a different root developmental zonation is established. Finally, we observed that these differentiation-related pathways are required for root light avoidance. We propose that flavonols function as positional signals, integrating hormonal and reactive oxygen species pathways to regulate root growth direction and rate in response to light. PMID:26628743

  1. Phototropism: Mechanism and Outcomes

    PubMed Central

    Pedmale, Ullas V.; Celaya, R. Brandon; Liscum, Emmanuel

    2010-01-01

    Plants have evolved a wide variety of responses that allow them to adapt to the variable environmental conditions in which they find themselves growing. One such response is the phototropic response - the bending of a plant organ toward (stems and leaves) or away from (roots) a directional blue light source. Phototropism is one of several photoresponses of plants that afford mechanisms to alter their growth and development to changes in light intensity, quality and direction. Over recent decades much has been learned about the genetic, molecular and cell biological components involved in sensing and responding to phototropic stimuli. Many of these advances have been made through the utilization of Arabidopsis as a model for phototropic studies. Here we discuss such advances, as well as studies in other plant species where appropriate to the discussion of work in Arabidopsis. PMID:22303252

  2. Phototropism in gametophytic shoots of the moss Physcomitrella patens

    PubMed Central

    Bao, Liang; Yamamoto, Kotaro T; Fujita, Tomomichi

    2015-01-01

    Shoot phototropism enables plants to position their photosynthetic organs in favorable light conditions and thus benefits growth and metabolism in land plants. To understand the evolution of this response, we established an experimental system to study phototropism in gametophores of the moss Physcomitrella patens. The phototropic response of gametophores occurs slowly; a clear response takes place more than 24 hours after the onset of unilateral light irradiation, likely due to the slow growth rate of gametophores. We also found that red and far-red light can induce phototropism, with blue light being less effective. These results suggest that plants used a broad range of light wavelengths as phototropic signals during the early evolution of land plants. PMID:25848889

  3. Phototropism in gametophytic shoots of the moss Physcomitrella patens.

    PubMed

    Bao, Liang; Yamamoto, Kotaro T; Fujita, Tomomichi

    2015-01-01

    Shoot phototropism enables plants to position their photosynthetic organs in favorable light conditions and thus benefits growth and metabolism in land plants. To understand the evolution of this response, we established an experimental system to study phototropism in gametophores of the moss Physcomitrella patens. The phototropic response of gametophores occurs slowly; a clear response takes place more than 24 hours after the onset of unilateral light irradiation, likely due to the slow growth rate of gametophores. We also found that red and far-red light can induce phototropism, with blue light being less effective. These results suggest that plants used a broad range of light wavelengths as phototropic signals during the early evolution of land plants.

  4. Genetic separation of phototropism from blue light inhibition of hypocotyl elongation on Arabidopsis

    SciTech Connect

    Liscum, E.; Young, J.C.; Hangarter, R.P. ); Poff, K.L. )

    1991-05-01

    Phototropism and inhibition of stem elongation occur in response to blue light-induced inhibition of cell elongation. However, phototropism is a low fluence response and inhibition of hypocotyl elongation is a high irradiance response. The authors have isolated several mutant lines of Arabidopsis which lack blue light-induced inhibition of hypocotyl elongation but retain normal phototropic functions. In addition, a mutant line which completely lacks the phototropic response retains normal blue light-induced inhibition of hypocotyl elongation. F1 progeny of crosses between these two mutant classes exhibited wild-type phototropism and inhibition of hypocotyl elongation in response to blue light stimuli. In the F2 generation, one in sixteen seedlings were double mutants lacking both phototropism and blue light-induced hypocotyl growth inhibition. These studies conclusively show that blue light-induced phototropism and hypocotyl growth inhibition function through genetically distinct signal transduction or response systems.

  5. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli.

    PubMed Central

    Liscum, E; Briggs, W R

    1995-01-01

    The phototropic response is an important component of seedling establishment in higher plants because it orients the young seedlings for maximal photosynthetic light capture. Despite their obvious importance, little is known about the mechanisms underlying the perception and transduction of the light signals that induce phototropic curvatures. Here, we report the isolation of eight mutants of Arabidopsis that lack or have severely impaired phototropic responses. These nph (for nonphototropic hypocotyl) mutants comprise four genetic loci: nph1, nph2, nph3, and nph4. Physiological and biochemical characterization of the nph1 allele series indicated that the NPH1 locus may encode the apoprotein for a dual-chromophoric or multichromophoric holoprotein photoreceptor capable of absorbing UV-A, blue, and green light and that this photoreceptor regulates all the phototropic responses of Arabidopsis. It appears that the NPH1 protein is most likely a 120-kD plasma membrane-associated phosphoprotein because all of the nph1 mutations negatively affected the abundance of this protein. In addition, the putative NPH1 photoreceptor protein is genetically and biochemically distinct from the HY4 protein, which most likely acts as a photoreceptor for blue light-mediated hypocotyl growth inhibition. Furthermore, the NPH1 and HY4 proteins are not functionally redundant because mutations in either gene alone affect only one physiological response but not the other, thus providing strong support for the hypothesis that more than one blue light photoreceptor is required for the normal growth and development of a seedling. PMID:7773019

  6. Phytochrome mediates red-light-based positive phototropism in Arabidopsis roots

    NASA Astrophysics Data System (ADS)

    Correll, M.; Mullen, J.; Hangarter, R.; Kiss, J.

    Plants rely on sophisticated mechanisms to interpret the constant bombardment of incoming signals so they can adjust their growth accordingly. The environmental cues of gravity and light are particularly important for plant growth and development. While gravitropism has been extensively studied in roots, there has been increased emphasis on understanding the cellular and molecular basis of root phototropism. In addition to the blue-light-based negative phototropism, roots also exhibit a recently discovered positive phototropism in response to red light. In this paper, we characterize this red-light-based phototropism in roots of Arabidopsis.

  7. Shoot phototropism in higher plants: new light through old concepts.

    PubMed

    Christie, John M; Murphy, Angus S

    2013-01-01

    Light is a key environmental factor that drives many aspects of plant growth and development. Phototropism, the reorientation of growth toward or away from light, represents one of these important adaptive processes. Modern studies of phototropism began with experiments conducted by Charles Darwin demonstrating that light perception at the shoot apex of grass coleoptiles induces differential elongation in the lower epidermal cells. This led to the discovery of the plant growth hormone auxin and the Cholodny-Went hypothesis attributing differential tropic bending to lateral auxin relocalization. In the past two decades, molecular-genetic analyses in the model flowering plant Arabidopsis thaliana has identified the principal photoreceptors for phototropism and their mechanism of activation. In addition, several protein families of auxin transporters have been identified. Despite extensive efforts, however, it still remains unclear as to how photoreceptor activation regulates lateral auxin transport to establish phototropic growth. This review aims to summarize major developments from over the last century and how these advances shape our current understanding of higher plant phototropism. Recent progress in phototropism research and the way in which this research is shedding new light on old concepts, including the Cholodny-Went hypothesis, is also highlighted.

  8. The Rice COLEOPTILE PHOTOTROPISM1 Gene Encoding an Ortholog of Arabidopsis NPH3 Is Required for Phototropism of Coleoptiles and Lateral Translocation of AuxinW⃞

    PubMed Central

    Haga, Ken; Takano, Makoto; Neumann, Ralf; Iino, Moritoshi

    2005-01-01

    We isolated a mutant, named coleoptile phototropism1 (cpt1), from γ-ray–mutagenized japonica-type rice (Oryza sativa). This mutant showed no coleoptile phototropism and severely reduced root phototropism after continuous stimulation. A map-based cloning strategy and transgenic complementation test were applied to demonstrate that a NPH3-like gene deleted in the mutant corresponds to CPT1. Phylogenetic analysis of putative CPT1 homologs of rice and related proteins indicated that CPT1 has an orthologous relationship with Arabidopsis thaliana NPH3. These results, along with those for Arabidopsis, demonstrate that NPH3/CPT1 is a key signal transduction component of higher plant phototropism. In an extended study with the cpt1 mutant, it was found that phototropic differential growth is accompanied by a CPT1-independent inhibition of net growth. Kinetic investigation further indicated that a small phototropism occurs in cpt1 coleoptiles. This response, induced only transiently, was thought to be caused by the CPT1-independent growth inhibition. The 3H-indole-3-acetic acid applied to the coleoptile tip was asymmetrically distributed between the two sides of phototropically responding coleoptiles. However, no asymmetry was induced in cpt1 coleoptiles, indicating that lateral translocation of auxin occurs downstream of CPT1. It is concluded that the CPT1-dependent major phototropism of coleoptiles is achieved by lateral auxin translocation and subsequent growth redistribution. PMID:15598797

  9. Mutants of Arabidopsis thaliana with altered phototropism

    NASA Technical Reports Server (NTRS)

    Khurana, J. P.; Poff, K. L.

    1989-01-01

    Thirty five strains of Arabidopsis thaliana (L.) Heynh. have been identified with altered phototropic responses to 450-nm light. Four of these mutants have been more thoroughly characterized. Strain JK224 shows normal gravitropism and "second positive" phototropism. However, while the amplitude for "first positive" phototropism is the same as that in the wild-type, the threshold and fluence for the maximum response in "first positive" phototropism are shifted to higher fluence by a factor of 20-30. This mutant may represent an alteration in the photoreceptor pigment for phototropism. Strain JK218 exhibits no curvature to light at any fluence from 1 micromole m-2 to 2700 micromoles m-2, but shows normal gravitropism. Strain JK345 shows no "first positive" phototropism, and reduced gravitropism and "second positive" phototropism. Strain JK229 shows no measurable "first positive" phototropism, but normal gravitropism and "second positive" phototropism. Based on these data, it is suggested that: 1. gravitropism and phototropism contain at least one common element; 2. "first positive" and "second positive" phototropism contain at least one common element; and 3. "first positive" phototropism can be substantially altered without any apparent alteration of "second positive" phototropism.

  10. Spatial separation of light perception and growth response in maize root phototropism.

    PubMed

    Mullen, J L; Wolverton, C; Ishikawa, H; Hangarter, R P; Evans, M L

    2002-09-01

    Although the effects of gravity on root growth are well known and interactions between light and gravity have been reported, details of root phototropic responses are less documented. We used high-resolution image analysis to study phototropism in primary roots of Zea mays L. Similar to the location of perception in gravitropism, the perception of light was localized in the root cap. Phototropic curvature away from the light, on the other hand, developed in the central elongation zone, more basal than the site of initiation of gravitropic curvature. The phototropic curvature saturated at approximately 10 micromoles m-2 s-1 blue light with a peak curvature of 29 +/- 4 degrees, in part due to induction of positive gravitropism following displacement of the root tip from vertical during negative phototropism. However, at higher fluence rates, development of phototropic curvature is arrested even if gravitropism is avoided by maintaining the root cap vertically using a rotating feedback system. Thus continuous illumination can cause adaptation in the signalling pathway of the phototropic response in roots. PMID:12361060

  11. Spatial separation of light perception and growth response in maize root phototropism.

    PubMed

    Mullen, J L; Wolverton, C; Ishikawa, H; Hangarter, R P; Evans, M L

    2002-09-01

    Although the effects of gravity on root growth are well known and interactions between light and gravity have been reported, details of root phototropic responses are less documented. We used high-resolution image analysis to study phototropism in primary roots of Zea mays L. Similar to the location of perception in gravitropism, the perception of light was localized in the root cap. Phototropic curvature away from the light, on the other hand, developed in the central elongation zone, more basal than the site of initiation of gravitropic curvature. The phototropic curvature saturated at approximately 10 micromoles m-2 s-1 blue light with a peak curvature of 29 +/- 4 degrees, in part due to induction of positive gravitropism following displacement of the root tip from vertical during negative phototropism. However, at higher fluence rates, development of phototropic curvature is arrested even if gravitropism is avoided by maintaining the root cap vertically using a rotating feedback system. Thus continuous illumination can cause adaptation in the signalling pathway of the phototropic response in roots.

  12. Spatial separation of light perception and growth response in maize root phototropism

    NASA Technical Reports Server (NTRS)

    Mullen, J. L.; Wolverton, C.; Ishikawa, H.; Hangarter, R. P.; Evans, M. L.

    2002-01-01

    Although the effects of gravity on root growth are well known and interactions between light and gravity have been reported, details of root phototropic responses are less documented. We used high-resolution image analysis to study phototropism in primary roots of Zea mays L. Similar to the location of perception in gravitropism, the perception of light was localized in the root cap. Phototropic curvature away from the light, on the other hand, developed in the central elongation zone, more basal than the site of initiation of gravitropic curvature. The phototropic curvature saturated at approximately 10 micromoles m-2 s-1 blue light with a peak curvature of 29 +/- 4 degrees, in part due to induction of positive gravitropism following displacement of the root tip from vertical during negative phototropism. However, at higher fluence rates, development of phototropic curvature is arrested even if gravitropism is avoided by maintaining the root cap vertically using a rotating feedback system. Thus continuous illumination can cause adaptation in the signalling pathway of the phototropic response in roots.

  13. Phototropism in Hypocotyls of Radish

    PubMed Central

    Hasegawa, Koji; Noguchi, Hisashi; Tanoue, Chikako; Sando, Seiji; Takada, Mitsuo; Sakoda, Masako; Hashimoto, Tohru

    1987-01-01

    The first positive phototropic curvature induced by a pulse of unilateral white irradiation (0.1 watt per square meter, 30 seconds) of etiolated and de-etiolated Sakurajima radish (Raphanus sativus var hortensis f. gigantissimus Makino) hypocotyls was analyzed in terms of differential growth and growth inhibitor contents of the hypocotyls. In both etiolated and de-etiolated hypocotyls, the growth rates at the lighted sides were suppressed whereas those at the shaded ones showed no change. De-etiolation treatment induced a larger difference between the growth rates at the lighted and shaded sides of the hypocotyls, resulting in a larger curvature of de-etiolated seedlings than of etiolated ones. The contents of growth inhibitors, cis- and trans-raphanusanins, increased in the lighted but not in the shaded halves of the hypocotyls of etiolated seedlings. In de-etiolated seedlings, the two inhibitors increased due to the de-etiolation treatment. When de-etiolated seedlings were exposed to a pulse of unilateral irradiation the level of the two inhibitors remained high along the lighted side for 1 h following the light pulse, whereas at the shaded side the contents of the inhibitors abruptly decreased upon transfer to the dark, the difference between their amounts in the lighted and shaded sides being larger than in etiolated seedlings. Another growth inhibitor, raphanusamide, did not respond to the phototropic stimulus, although its amounts increased by the de-etiolation treatment. These data suggest that cis- and trans-raphanusanins are involved in the first positive phototropic response of radish hypocotyls, and that de-etiolation magnifies the phototropic response through induction of a larger lateral gradient of the raphanusanins in the hypocotyls by the phototropic stimulus. PMID:16665706

  14. Role of leaves in phototropism.

    PubMed

    Lam, S L; Leopold, A C

    1966-05-01

    Experiments with green seedlings of sunflower (Helianthus annuns L.) indicate the existence of a phototropic mechanism which involves the leaves or cotyledons, and which can produce an asymmetry of auxin content without the involvement of lateral auxin transport, the classic explanation of phototropism in etiolated seedlings. The basic lines of evidence for the leaf-mediated tropism are: 1) darkening of one cotyledon will cause curvature of the stem toward the lighted cotyledon: 2) the darkened cotyledon sustains an enhanced growth rate in the stem below it: 3) conversely, light suppresses the growth-stimulating effects of a single cotyledon: and 4) more diffusible auxin is obtained from the stem below darkened cotyledons than below lighted ones.

  15. Root phototropism: from dogma to the mechanism of blue light perception.

    PubMed

    Kutschera, Ulrich; Briggs, Winslow R

    2012-03-01

    In roots, the "hidden half" of all land plants, gravity is an important signal that determines the direction of growth in the soil. Hence, positive gravitropism has been studied in detail. However, since the 19th century, the response of roots toward unilateral light has also been analyzed. Based on studies on white mustard (Sinapis alba) seedlings, botanists have concluded that all roots are negatively phototropic. This "Sinapis-dogma" was refuted in a seminal study on root phototropism published a century ago, where it was shown that less then half of the 166 plant species investigated behave like S. alba, whereas 53% displayed no phototropic response at all. Here we summarize the history of research on root phototropism, discuss this phenomenon with reference to unpublished data on garden cress (Lepidium sativum) seedlings, and describe the effects of blue light on the negative bending response in Thale cress (Arabidopsis thaliana). The ecological significance of root phototropism is discussed and the relationships between gravi- and phototropism are outlined, with respect to the starch-statolith-theory of gravity perception. Finally, we present an integrative model of gravi- and blue light perception in the root tip of Arabidopsis seedlings. This hypothesis is based on our current view of the starch-statolith-concept and light sensing via the cytoplasmic red/blue light photoreceptor phytochrome A and the plasma membrane-associated blue light receptor phototropin-1. Open questions and possible research agendas for the future are summarized.

  16. Phytochrome A Mediates Blue-Light Enhancement of Second-Positive Phototropism in Arabidopsis

    PubMed Central

    Sullivan, Stuart; Hart, Jaynee E.; Rasch, Patrick; Walker, Catriona H.; Christie, John M.

    2016-01-01

    Hypocotyl phototropism of etiolated Arabidopsis seedlings is primarily mediated by the blue-light receptor kinase phototropin 1 (phot1). Phot1-mediated curvature to continuous unilateral blue light irradiation (0.5 μmol m−2 s−1) is enhanced by overhead pre-treatment with red light (20 μmol m−2 s−1 for 15 min) through the action of phytochrome (phyA). Here, we show that pre-treatment with blue light is equally as effective in eliciting phototropic enhancement and is dependent on phyA. Although blue light pre-treatment was sufficient to activate early phot1 signaling events, phot1 autophosphorylation in vivo was not found to be saturated, as assessed by subsequently measuring phot1 kinase activity in vitro. However, enhancement effects by red and blue light pre-treatment were not observed at higher intensities of phototropic stimulation (10 μmol m−2 s−1). Phototropic enhancement by red and blue light pre-treatments to 0.5 μmol m−2 s−1 unilateral blue light irradiation was also lacking in transgenic Arabidopsis where PHOT1 expression was restricted to the epidermis. Together, these findings indicate that phyA-mediated effects on phot1 signaling are restricted to low intensities of phototropic stimulation and originate from tissues other than the epidermis. PMID:27014313

  17. Phytochrome A Mediates Blue-Light Enhancement of Second-Positive Phototropism in Arabidopsis.

    PubMed

    Sullivan, Stuart; Hart, Jaynee E; Rasch, Patrick; Walker, Catriona H; Christie, John M

    2016-01-01

    Hypocotyl phototropism of etiolated Arabidopsis seedlings is primarily mediated by the blue-light receptor kinase phototropin 1 (phot1). Phot1-mediated curvature to continuous unilateral blue light irradiation (0.5 μmol m(-2) s(-1)) is enhanced by overhead pre-treatment with red light (20 μmol m(-2) s(-1) for 15 min) through the action of phytochrome (phyA). Here, we show that pre-treatment with blue light is equally as effective in eliciting phototropic enhancement and is dependent on phyA. Although blue light pre-treatment was sufficient to activate early phot1 signaling events, phot1 autophosphorylation in vivo was not found to be saturated, as assessed by subsequently measuring phot1 kinase activity in vitro. However, enhancement effects by red and blue light pre-treatment were not observed at higher intensities of phototropic stimulation (10 μmol m(-2) s(-1)). Phototropic enhancement by red and blue light pre-treatments to 0.5 μmol m(-2) s(-1) unilateral blue light irradiation was also lacking in transgenic Arabidopsis where PHOT1 expression was restricted to the epidermis. Together, these findings indicate that phyA-mediated effects on phot1 signaling are restricted to low intensities of phototropic stimulation and originate from tissues other than the epidermis. PMID:27014313

  18. Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis.

    PubMed

    Stone, Bethany B; Stowe-Evans, Emily L; Harper, Reneé M; Celaya, R Brandon; Ljung, Karin; Sandberg, Göran; Liscum, Emmanuel

    2008-01-01

    Phototropism represents a differential growth response by which plant organs can respond adaptively to changes in the direction of incident light to optimize leaf/stem positioning for photosynthetic light capture and root growth orientation for water/nutrient acquisition. Studies over the past few years have identified a number of components in the signaling pathway(s) leading to development of phototropic curvatures in hypocotyls. These include the phototropin photoreceptors (phot1 and phot2) that perceive directional blue-light (BL) cues and then stimulate signaling, leading to relocalization of the plant hormone auxin, as well as the auxin response factor NPH4/ARF7 that responds to changes in local auxin concentrations to directly mediate expression of genes likely encoding proteins necessary for development of phototropic curvatures. While null mutations in NPH4/ARF7 condition an aphototropic response to unidirectional BL, seedlings carrying the same mutations recover BL-dependent phototropic responsiveness if co-irradiated with red light (RL) or pre-treated with either ethylene. In the present study, we identify second-site enhancer mutations in the nph4 background that abrogate these recovery responses. One of these mutations--map1 (modifier of arf7 phenotypes 1)--was found to represent a missense allele of AUX1--a gene encoding a high-affinity auxin influx carrier previously associated with a number of root responses. Pharmacological studies and analyses of additional aux1 mutants confirmed that AUX1 functions as a modulator of hypocotyl phototropism. Moreover, we have found that the strength of dependence of hypocotyl phototropism on AUX1-mediated auxin influx is directly related to the auxin responsiveness of the seedling in question.

  19. Chloroplast retrograde signal regulates flowering.

    PubMed

    Feng, Peiqiang; Guo, Hailong; Chi, Wei; Chai, Xin; Sun, Xuwu; Xu, Xiumei; Ma, Jinfang; Rochaix, Jean-David; Leister, Dario; Wang, Haiyang; Lu, Congming; Zhang, Lixin

    2016-09-20

    Light is a major environmental factor regulating flowering time, thus ensuring reproductive success of higher plants. In contrast to our detailed understanding of light quality and photoperiod mechanisms involved, the molecular basis underlying high light-promoted flowering remains elusive. Here we show that, in Arabidopsis, a chloroplast-derived signal is critical for high light-regulated flowering mediated by the FLOWERING LOCUS C (FLC). We also demonstrate that PTM, a PHD transcription factor involved in chloroplast retrograde signaling, perceives such a signal and mediates transcriptional repression of FLC through recruitment of FVE, a component of the histone deacetylase complex. Thus, our data suggest that chloroplasts function as essential sensors of high light to regulate flowering and adaptive responses by triggering nuclear transcriptional changes at the chromatin level. PMID:27601637

  20. Changes in Ion Fluxes During Phototropic Bending of Etiolated Oat Coleoptiles

    PubMed Central

    BABOURINA, OLGA; GODFREY, LEITH; VOLTCHANSKII, KONSTANTIN

    2004-01-01

    • Background and Aims This work has been conducted to assist theoretical modelling of the different stages of the blue light (BL)‐induced phototropic signalling pathway and ion transport activity across plant membranes. Ion fluxes (Ca2+, H+, K+ and Cl–) in etiolated oat coleoptiles have been measured continuously before and during unilateral BL exposure. • Methods Changes in ion fluxes at the illuminated (light) and shadowed (dark) sides of etiolated oat coleoptiles (Avena sativa) were studied using a non‐invasive ion‐selective microelectrode technique (MIFE). The bending response was also measured continuously, and correlations between the changes in various ion fluxes and bending response have been investigated. For each ion the difference (Δ) between the magnitudes of flux at the light and dark sides of the coleoptile was calculated. • Key results Plants that demonstrated a phototropic bending response also demonstrated Ca2+ influx into the light side approximately 20 min after the start of BL exposure. This is regarded as part of the perception and transduction stages of the BL‐induced signal cascade. The first 10 min of bending were associated with substantial influx of H+, K+ and Cl– into the light (concave) side of the coleoptiles. • Conclusions The data suggest that Ca2+ participates in the signalling stage of the BL‐induced phototropism, whereas the phototropic bending response is linked to changes in the transport of H+, K+ and Cl–. PMID:15155378

  1. Red-light-induced positive phototropism in Arabidopsis roots

    NASA Technical Reports Server (NTRS)

    Ruppel, N. J.; Hangarter, R. P.; Kiss, J. Z.

    2001-01-01

    The interaction between light and gravity is critical in determining the final form of a plant. For example, the competing activities of gravitropism and phototropism can determine the final orientation of a stem or root. The results reported here indicate that, in addition to the previously described blue-light-dependent negative phototropic response in roots, roots of Arahidopsis thaliana (L.) Heynh. display a previously unknown red-light-dependent positive phototropic response. Both phototropic responses in roots are considerably weaker than the graviresponse, which often masks phototropic curvature. However, through the use of mutant strains with impaired gravitropism, we were able to identify a red-light-dependent positive phototropic response in Arabidopsis roots. The red-induced positive phototropic response is considerably weaker than the blue-light response and is barely detectable in plants with a normal gravitropic response.

  2. Phototropism in Arabidopsis roots is mediated by two sensory systems

    NASA Astrophysics Data System (ADS)

    Kiss, John Z.; Ruppel, Nicholas J.; Hangarter, Roger P.

    Phototropism has been well-characterized in stems and stem-like organs, but there have been relatively few studies of root phototropism. Our experiments suggest that there are two photosensory systems that elicit phototropic responses in roots of Arabidopsis thaliana: a previously identified blue-light photoreceptor system mediated by phototropin (= NPH1 protein) and a novel red-light-based mechanism. The phototropic responses in roots are much weaker than the graviresponse, which competes with and often masks the phototropic response. It was through the use of mutant plants with a weakened graviresponse that we were able to identify the activity of the red-light-dependent phototropic system. In addition, the red-light-based photoresponse in roots is even weaker compared to the blue-light response. Our results also suggest that phytochrome may be involved in mediating positive phototropism in roots.

  3. Red-light-induced positive phototropism in Arabidopsis roots.

    PubMed

    Ruppel, N J; Hangarter, R P; Kiss, J Z

    2001-02-01

    The interaction between light and gravity is critical in determining the final form of a plant. For example, the competing activities of gravitropism and phototropism can determine the final orientation of a stem or root. The results reported here indicate that, in addition to the previously described blue-light-dependent negative phototropic response in roots, roots of Arahidopsis thaliana (L.) Heynh. display a previously unknown red-light-dependent positive phototropic response. Both phototropic responses in roots are considerably weaker than the graviresponse, which often masks phototropic curvature. However, through the use of mutant strains with impaired gravitropism, we were able to identify a red-light-dependent positive phototropic response in Arabidopsis roots. The red-induced positive phototropic response is considerably weaker than the blue-light response and is barely detectable in plants with a normal gravitropic response.

  4. Studying Phototropism Using a Small Growth Chamber.

    ERIC Educational Resources Information Center

    Fisher, Maryanna, F.; Llewellyn, Gerald C.

    1978-01-01

    Describes a simple and inexpensive way to construct two small growth chambers for studying phototropism in the science classroom. One chamber is designed to illustrate how plants grow around obstacles to reach light and the other to illustrate directional light responses. (HM)

  5. PKS1 plays a role in red-light-based positive phototropism in roots.

    PubMed

    Molas, Maria Lia; Kiss, John Z

    2008-06-01

    Aerial parts of plants curve towards the light (i.e. positive phototropism), and roots typically grow away from the light (i.e. negative phototropism). In addition, Arabidopsis roots exhibit positive phototropism relative to red light (RL), and this response is mediated by phytochromes A and B (phyA and phyB). Upon light stimulation, phyA and phyB interact with the phytochrome kinase substrate (PKS1) in the cytoplasm. In this study, we investigated the role of PKS1, along with phyA and phyB, in the positive phototropic responses to RL in roots. Using a high-resolution feedback system, we studied the phenotypic responses of roots of phyA, phyB, pks1, phyA pks1 and phyB pks1 null mutants as well as the PKS1-overexpressing line in response to RL. PKS1 emerged as an intermediary in the signalling pathways and appears to promote a negative curvature to RL in roots. In addition, phyA and phyB were both essential for a positive response to RL and act in a complementary fashion. However, either photoreceptor acting without the other results in negative curvature in response to red illumination so that the mode of action differs depending on whether phyA and phyB act independently or together. Our results suggest that PKS1 is part of a signalling pathway independent of phyA and phyB and that PKS1 modulates RL-based root phototropism.

  6. Buder revisited: cell and organ polarity during phototropism.

    PubMed

    Nick, P; Furuya, M

    1996-10-01

    The induction of a radial polarity by environmental stimuli was studied at the cellular and organ levels, with phototropism chosen as a model. The light gradient acting on the whole coleoptile was opposed to the light direction acting upon individual cells in the classical Buder experiment, irradiating from the inside out. Alternatively, the stimulus was administered to the coleoptile tip with a microbeam-irradiation device. Tropistic curvature was assayed as a marker for the response of the whole organ, whereas cell elongation and the orientation of cortical microtubules were taken as markers for the responses of individual cells. Upon tip irradiation, signals much faster than basipetal auxin transport migrate towards the base. The data are discussed in terms of an organ polarity that is the primary result of the asymmetric light signal and affects, in a second step, an endogenous radial polarity of epidermal cells. PMID:11539325

  7. Stem Sensitivity and Ethylene Involvement in Phototropism of Mung Bean

    PubMed Central

    Brennan, Thomas; Gunckel, James E.; Frenkel, Chaim

    1976-01-01

    A system is described for the examination of phototropism in the epicotyl of a dicot seedling, mung bean (Phaseolus aureus Roxb.), under conditions approximating nature, including the use of intact, nonetiolated plants exposed to elevated, continuous, white, unilateral light. It is found that in this system perception of the phototropic stimulus by the leaves alone cannot account for the curvature, and that exposure of the stem is also necessary. The phototropic response was found to be strongly altered in nonintact plants. Hypobaric treatment indicates that ethylene may participate in phototropism, possibly by acting as an inhibitor of auxin transport. PMID:16659468

  8. Asymmetric distribution of auxin correlates with gravitropism and phototropism but not with autostraightening (autotropism) in pea epicotyls.

    PubMed

    Haga, Ken; Iino, Moritoshi

    2006-01-01

    The relationships between the distribution of the native auxin indole-3-acetic acid (IAA) and tropisms in the epicotyl of red light-grown pea (Pisum sativum L.) seedlings have been investigated. The distribution measurement was made in a defined zone of the third internode, using (3)H-IAA applied from the plumule as a tracer. The tropisms investigated were gravitropism, pulse-induced phototropism, and time-dependent phototropism. The investigation was extended to the phase of autostraightening (autotropism) that followed gravitropic curvature. It was found that IAA is asymmetrically distributed between the two halves of the zone, with a greater IAA level occurring on the convex side, at early stages of gravitropic and phototropic curvatures. This asymmetry was found in epidermal peels and, except for one case (pulse-induced phototropism), no asymmetry was detected in whole tissues. It was concluded, in support of earlier results, that auxin asymmetry mediates gravitropism and phototropism and that the epidermis or peripheral cell layers play an important role in the establishment of auxin asymmetry in pea epicotyls. During autostraightening, which results from a reversal of growth asymmetry, the extent of IAA asymmetry was reduced, but its direction was not reversed. This result demonstrated that autostraightening is not regulated through auxin distribution. In this study, the growth on either side of the investigated zone was also measured. In some cases, the measured IAA distribution could not adequately explain the local growth rate, necessitating further detailed investigation. PMID:16467412

  9. Role of Leaves in Phototropism 1

    PubMed Central

    Lam, Shue-Lock; Leopold, A. C.

    1966-01-01

    Experiments with green seedlings of sunflower (Helianthus annuns L.) indicate the existence of a phototropic mechanism which involves the leaves or cotyledons, and which can produce an asymmetry of auxin content without the involvement of lateral auxin transport, the classic explanation of phototropism in etiolated seedlings. The basic lines of evidence for the leaf-mediated tropism are: 1) darkening of one cotyledon will cause curvature of the stem toward the lighted cotyledon: 2) the darkened cotyledon sustains an enhanced growth rate in the stem below it: 3) conversely, light suppresses the growth-stimulating effects of a single cotyledon: and 4) more diffusible auxin is obtained from the stem below darkened cotyledons than below lighted ones. PMID:16656329

  10. Anisotropic plant growth due to phototropism.

    PubMed

    Pietruszka, M; Lewicka, S

    2007-01-01

    Phototropism--the directional curvature of organs in response to lateral differences in light intensity and/or quality--represents one of the most rapid and visually obvious reaction of plants to changes in their light environment. It is a topic of fundamental interest to understand the mechanics of plants during growth. We propose a generalization of the scalar Lockhart model (1965) to three dimensional deformation, solve the new equation in two particular cases and compare results with empirical data. We believe that carefully designed experiments linked to our model will provide (by determining the active transport coefficient) a new method for qualitative description of auxin redistribution during phototropism. The proposed method supplements very recent investigations concerning specific auxin-influx and -efflux carriers (LAX and PIN proteins). PMID:17106746

  11. Growth Distribution during Phototropism of Arabidopsis thaliana Seedlings.

    PubMed Central

    Orbovic, V.; Poff, K. L.

    1993-01-01

    The elongation rates of two opposite sides of hypocotyls of Arabidopsis thaliana seedlings were measured during phototropism by using an infrared imaging system. In first positive phototropism, second positive phototropism, and red light-enhanced first positive phototropism, curvature toward the light source was the result of an increase in the rate of elongation of the shaded side and a decrease in the rate of elongation of the lighted side of the seedlings. The phase of straightening that followed maximum curvature resulted from a decrease in the elongation rate of the shaded side and an increase in the elongation rate of the lighted side. These data for the three types of blue light-induced phototropism tested in this study and for the phase of straightening are all clearly consistent with the growth rate changes predicted by the Cholodny-Went theory. PMID:12231922

  12. Phototropism and gravitropism in lateral roots of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kiss, John Z.; Miller, Kelley M.; Ogden, Lisa A.; Roth, Kelly K.

    2002-01-01

    Gravitropism and, to a lesser extent, phototropism have been characterized in primary roots, but little is known about structural/functional aspects of these tropisms in lateral roots. Therefore, in this study, we report on tropistic responses in lateral roots of Arabidopsis thaliana. Lateral roots initially are plagiogravitropic, but when they reach a length of approximately 10 mm, these roots grow downward and exhibit positive orthogravitropism. Light and electron microscopic studies demonstrate a correlation between positive gravitropism and development of columella cells with large, sedimented amyloplasts in wild-type plants. Lateral roots display negative phototropism in response to white and blue light and positive phototropism in response to red light. As is the case with primary roots, the photoresponse is weak relative to the graviresponse, but phototropism is readily apparent in starchless mutant plants, which are impaired in gravitropism. To our knowledge, this is the first report of phototropism of lateral roots in any plant species.

  13. Phototropism and gravitropism in lateral roots of Arabidopsis.

    PubMed

    Kiss, John Z; Miller, Kelley M; Ogden, Lisa A; Roth, Kelly K

    2002-01-01

    Gravitropism and, to a lesser extent, phototropism have been characterized in primary roots, but little is known about structural/functional aspects of these tropisms in lateral roots. Therefore, in this study, we report on tropistic responses in lateral roots of Arabidopsis thaliana. Lateral roots initially are plagiogravitropic, but when they reach a length of approximately 10 mm, these roots grow downward and exhibit positive orthogravitropism. Light and electron microscopic studies demonstrate a correlation between positive gravitropism and development of columella cells with large, sedimented amyloplasts in wild-type plants. Lateral roots display negative phototropism in response to white and blue light and positive phototropism in response to red light. As is the case with primary roots, the photoresponse is weak relative to the graviresponse, but phototropism is readily apparent in starchless mutant plants, which are impaired in gravitropism. To our knowledge, this is the first report of phototropism of lateral roots in any plant species.

  14. Endocannabinoid Signaling Regulates Sleep Stability

    PubMed Central

    Pava, Matthew J.; Makriyannis, Alexandros; Lovinger, David M.

    2016-01-01

    The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis. PMID:27031992

  15. Endocannabinoid Signaling Regulates Sleep Stability.

    PubMed

    Pava, Matthew J; Makriyannis, Alexandros; Lovinger, David M

    2016-01-01

    The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis. PMID:27031992

  16. Endocannabinoid Signaling Regulates Sleep Stability.

    PubMed

    Pava, Matthew J; Makriyannis, Alexandros; Lovinger, David M

    2016-01-01

    The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis.

  17. Regulation of Hippo signalling by p38 signalling.

    PubMed

    Huang, Dashun; Li, Xiaojiao; Sun, Li; Huang, Ping; Ying, Hao; Wang, Hui; Wu, Jiarui; Song, Haiyun

    2016-08-01

    The Hippo signalling pathway has a crucial role in growth control during development, and its dysregulation contributes to tumorigenesis. Recent studies uncover multiple upstream regulatory inputs into Hippo signalling, which affects phosphorylation of the transcriptional coactivator Yki/YAP/TAZ by Wts/Lats. Here we identify the p38 mitogen-activated protein kinase (MAPK) pathway as a new upstream branch of the Hippo pathway. In Drosophila, overexpression of MAPKK gene licorne (lic), or MAPKKK gene Mekk1, promotes Yki activity and induces Hippo target gene expression. Loss-of-function studies show that lic regulates Hippo signalling in ovary follicle cells and in the wing disc. Epistasis analysis indicates that Mekk1 and lic affect Hippo signalling via p38b and wts We further demonstrate that the Mekk1-Lic-p38b cascade inhibits Hippo signalling by promoting F-actin accumulation and Jub phosphorylation. In addition, p38 signalling modulates actin filaments and Hippo signalling in parallel to small GTPases Ras, Rac1, and Rho1. Lastly, we show that p38 signalling regulates Hippo signalling in mammalian cell lines. The Lic homologue MKK3 promotes nuclear localization of YAP via the actin cytoskeleton. Upregulation or downregulation of the p38 pathway regulates YAP-mediated transcription. Our work thus reveals a conserved crosstalk between the p38 MAPK pathway and the Hippo pathway in growth regulation. PMID:27402810

  18. Phototropism in Hypocotyls of Radish 1

    PubMed Central

    Hasegawa, Koji; Noguchi, H.; Iwagawa, T.; Hase, T.

    1986-01-01

    Three growth inhibitors which might be involved in phototropism of Sakurajima radish (Raphanus sativus var. hortensis f. gigantissimus Makino) hypocotyls, were isolated as crystalline forms from light-exposed radish seedlings and identified as cis- and trans-raphanusanins and 6-methoxy-2,3,4,5-tetrahydro-1,3-oxazepin-2-one (designated raphanusamide). The cis- and trans-raphanusanins inhibited growth of etiolated radish hypocotyls at concentrations higher than 1.5 micromolar, raphanusamide at concentrations higher than 20 micromolar. PMID:16664968

  19. Lateral movement of auxin in phototropism.

    PubMed

    Dela Fuente, R K; Leopold, A C

    1968-07-01

    Lateral movement of indoleacetic acid-1-(14)C in corn coleoptiles was measured as radioactivity moving laterally following unilateral application of the auxin. The data suggest that there is an endogenous lateral movement of auxin, and that phototropic stimulation of the coleoptile depresses lateral movement towards the light and enhances lateral movement away from the light. The lateral movement was found to be principally as indoleacetic acid. In experiments using sunflower hypocotyl sections, evidence is also presented to support the suggestion that lateral redistribution of auxin may be effected by a deflection of auxin around a barrier to basipetal transport.

  20. Phototropism in Hypocotyls of Radish 1

    PubMed Central

    Noguchi, Hisashi; Hasegawa, Koji

    1987-01-01

    When etiolated radish (Raphanus sativus var. hortensis f. gigantissimus Makino) hypocotyls were subjected to a continuous unilateral illumination with white fluorescent light at 0.05, 0.1, or 1 watt per square meter, the suppression of the growth rate on the lighted side depended on the light intensity. The growth rate at the shaded side was only a little affected by the illumination at 0.05 and 0.1 watt per square meter but considerably suppressed by that at 1 watt per square meter. Upon a continuous unequal bilateral illumination, the growth rate was more strongly suppressed on the side of the higher intensity than on the side of the lower one, resulting in phototropic curvature toward the light source of the higher intensity. It was calculated from correlation analysis of light intensity and growth rate that, on an average, 6.9% of the irradiation applied to one side reached the opposite side. The amounts of cis- and trans-raphanusanins and raphanusamide in hypocotyls subjected to unilateral or unequal bilateral illumination increased much more at the side of the lighted or the higher intensity than at the opposite side. The present study demonstrates that phototropism in radish hypocotyl is correlated with and we conclude caused by a gradient of growth inhibition in the hypocotyl, depending on irradiation-induced amounts of cis- and trans-raphanusanins and raphanusamide. PMID:16665305

  1. Interactions between gravitropism and phototropism in plants

    NASA Technical Reports Server (NTRS)

    Correll, Melanie J.; Kiss, John Z.

    2002-01-01

    To receive adequate light and nutrients for survival, plants orient stems and stem-like organs toward light and away from the gravity vector and, conversely, orient roots into the soil, away from light toward the direction of gravity. Therefore, both gravity and light can influence the differential growth of plant organs. To add to the complexity of the interactions between gravity and light, each stimulus can enhance or reduce the effectiveness of the other. On earth, the constant presence of gravity makes it difficult to determine whether plant growth and development is influenced by gravity or light alone or the combination of the two stimuli. In the past decade, our understanding of the gravity and light transduction pathways has advanced through the use of mutants in either gravitropic or phototropic responses and the use of innovative techniques that reduce the effects of one stimulus on the other. Thus, both unique and common elements in the transduction pathways of the gravitropic and phototropic responses have been isolated. This article is focused on the interactions between the light- and gravity-transduction pathways and describes methods used to separate the influences of these two environmental stimuli.

  2. Regulation of Drosophila lifespan by JNK signaling

    PubMed Central

    Biteau, Benoit; Karpac, Jason; Hwangbo, DaeSung; Jasper, Heinrich

    2010-01-01

    Cellular responses to extrinsic and intrinsic insults have to be carefully regulated to properly coordinate cytoprotection, repair processes, cell proliferation and apoptosis. Stress signaling pathways, most prominently the Jun-N-terminal Kinase (JNK) pathway, are critical regulators of such cellular responses and have accordingly been implicated in the regulation of lifespan in various organisms. JNK signaling promotes cytoprotective gene expression, but also interacts with the Insulin signaling pathway to influence growth, metabolism, stress tolerance and regeneration. Here, we review recent studies in Drosophila that elucidate the tissue-specific and systemic consequences of JNK activation that ultimately impact lifespan of the organism. PMID:21111799

  3. How Do Gangliosides Regulate RTKs Signaling?

    PubMed Central

    Julien, Sylvain; Bobowski, Marie; Steenackers, Agata; Le Bourhis, Xuefen; Delannoy, Philippe

    2013-01-01

    Gangliosides, the glycosphingolipids carrying one or several sialic acid residues, are located on the outer leaflet of the plasma membrane in glycolipid-enriched microdomains, where they interact with molecules of signal transduction pathways including receptors tyrosine kinases (RTKs). The role of gangliosides in the regulation of signal transduction has been reported in many cases and in a large number of cell types. In this review, we summarize the current knowledge on the biosynthesis of gangliosides and the mechanism by which they regulate RTKs signaling. PMID:24709879

  4. Master Regulators in Plant Glucose Signaling Networks

    PubMed Central

    Sheen, Jen

    2014-01-01

    The daily life of photosynthetic plants revolves around sugar production, transport, storage and utilization, and the complex sugar metabolic and signaling networks integrate internal regulators and environmental cues to govern and sustain plant growth and survival. Although diverse sugar signals have emerged as pivotal regulators from embryogenesis to senescence, glucose is the most ancient and conserved regulatory signal that controls gene and protein expression, cell-cycle progression, central and secondary metabolism, as well as growth and developmental programs. Glucose signals are perceived and transduced by two principal mechanisms: direct sensing through glucose sensors and indirect sensing via a variety of energy and metabolite sensors. This review focuses on the comparative and functional analyses of three glucose-modulated master regulators in Arabidopsis thaliana, the hexokinase1 (HXK1) glucose sensor, the energy sensor kinases KIN10/KIN11 inactivated by glucose, and the glucose-activated target of rapamycin (TOR) kinase. These regulators are evolutionarily conserved, but have evolved universal and unique regulatory wiring and functions in plants and animals. They form protein complexes with multiple partners as regulators or effectors to serve distinct functions in different subcellular locales and organs, and play integrative and complementary roles from cellular signaling and metabolism to development in the plant glucose signaling networks. PMID:25530701

  5. Signaling mechanisms regulating Wallerian degeneration

    PubMed Central

    Freeman, Marc R.

    2014-01-01

    Summary Wallerian degeneration (WD) occurs after an axon is cut or crushed and entails the disintegration and clearance of the severed axon distal to the injury site. WD was initially thought to result from the passive wasting away of the distal axonal fragment, presumably because it lacked a nutrient supply from the cell body. The discovery of the slow Wallerian degeneration (Wlds) mutant mouse, in which distal severed axons survive intact for weeks rather than only 1–2 days, radically changed our thoughts on the autonomy of axon survival. Wlds taught us that under some conditions the axonal compartment can survive for weeks after axotomy without a cell body. The phenotypic and molecular characterization of Wlds and current models for Wlds molecular function are reviewed herein—the mechanism(s) by which WldS spares severed axons remains unresolved. However, recent studies inspired by Wlds have led to the identification of the first “axon death” signaling molecules whose endogenous activities promote axon destruction during WD. PMID:24907513

  6. Mitochondrial retrograde signaling regulates neuronal function

    PubMed Central

    Cagin, Umut; Duncan, Olivia F.; Gatt, Ariana P.; Dionne, Marc S.; Sweeney, Sean T.; Bateman, Joseph M.

    2015-01-01

    Mitochondria are key regulators of cellular homeostasis, and mitochondrial dysfunction is strongly linked to neurodegenerative diseases, including Alzheimer’s and Parkinson’s. Mitochondria communicate their bioenergetic status to the cell via mitochondrial retrograde signaling. To investigate the role of mitochondrial retrograde signaling in neurons, we induced mitochondrial dysfunction in the Drosophila nervous system. Neuronal mitochondrial dysfunction causes reduced viability, defects in neuronal function, decreased redox potential, and reduced numbers of presynaptic mitochondria and active zones. We find that neuronal mitochondrial dysfunction stimulates a retrograde signaling response that controls the expression of several hundred nuclear genes. We show that the Drosophila hypoxia inducible factor alpha (HIFα) ortholog Similar (Sima) regulates the expression of several of these retrograde genes, suggesting that Sima mediates mitochondrial retrograde signaling. Remarkably, knockdown of Sima restores neuronal function without affecting the primary mitochondrial defect, demonstrating that mitochondrial retrograde signaling is partly responsible for neuronal dysfunction. Sima knockdown also restores function in a Drosophila model of the mitochondrial disease Leigh syndrome and in a Drosophila model of familial Parkinson’s disease. Thus, mitochondrial retrograde signaling regulates neuronal activity and can be manipulated to enhance neuronal function, despite mitochondrial impairment. PMID:26489648

  7. Neurotrophin signalling pathways regulating neuronal apoptosis.

    PubMed

    Miller, F D; Kaplan, D R

    2001-07-01

    Recent evidence indicates that naturally occurring neuronal death in mammals is regulated by the interplay between receptor-mediated prosurvival and proapoptotic signals. The neurotrophins, a family of growth factors best known for their positive effects on neuronal biology, have now been shown to mediate both positive and negative survival signals, by signalling through the Trk and p75 neurotrophin receptors, respectively. The mechanisms whereby these two neurotrophin receptors interact to determine neuronal survival have been difficult to decipher, largely because both can signal independently or coincidentally, depending upon the cell or developmental context. Nonetheless, the past several years have seen significant advances in our understanding of this receptor signalling system. In this review, we focus on the proapoptotic actions of the p75 neurotrophin receptor (p75NTR), and on the interplay between Trk and p75NTR that determines neuronal survival.

  8. Neurotrophin signalling pathways regulating neuronal apoptosis.

    PubMed

    Miller, F D; Kaplan, D R

    2001-07-01

    Recent evidence indicates that naturally occurring neuronal death in mammals is regulated by the interplay between receptor-mediated prosurvival and proapoptotic signals. The neurotrophins, a family of growth factors best known for their positive effects on neuronal biology, have now been shown to mediate both positive and negative survival signals, by signalling through the Trk and p75 neurotrophin receptors, respectively. The mechanisms whereby these two neurotrophin receptors interact to determine neuronal survival have been difficult to decipher, largely because both can signal independently or coincidentally, depending upon the cell or developmental context. Nonetheless, the past several years have seen significant advances in our understanding of this receptor signalling system. In this review, we focus on the proapoptotic actions of the p75 neurotrophin receptor (p75NTR), and on the interplay between Trk and p75NTR that determines neuronal survival. PMID:11529497

  9. METABOLISM Wnt Signaling Regulates Hepatic Metabolism

    PubMed Central

    Liu, Hongjun; Fergusson, Maria M.; Wu, J. Julie; Rovira, Ilsa I.; Liu, Jie; Gavrilova, Oksana; Lu, Teng; Bao, Jianjun; Han, Donghe; Sack, Michael N.; Finkel, Toren

    2011-01-01

    The contribution of the Wnt pathway has been extensively characterized in embryogenesis, differentiation, and stem cell biology but not in mammalian metabolism. Here, using in vivo gain- and loss-of-function models, we demonstrate an important role for Wnt signaling in hepatic metabolism. In particular, β-Catenin, the downstream mediator of canonical Wnt signaling, altered serum glucose concentrations and regulated hepatic glucose production. β-catenin also modulated hepatic insulin signaling. Furthermore, β-catenin interacted with the transcription factor FoxO1 in livers from mice under starved conditions. The interaction of FoxO1 with β-catenin regulated the transcriptional activation of the genes encoding glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), the two rate-limiting enzymes in hepatic gluconeogenesis. Moreover, starvation induced the hepatic expression of mRNAs encoding different Wnt isoforms. In addition, nutrient deprivation appeared to favor the association of β-catenin with FoxO family members, rather than with members of the T cell factor of transcriptional activators. Notably, in a model of diet-induced obesity, hepatic deletion of β-catenin improved overall metabolic homeostasis. These observations implicate Wnt signaling in the modulation of hepatic metabolism and raise the possibility that Wnt signaling may play a similar role in the metabolic regulation of other tissues. PMID:21285411

  10. Gravitational Compensation and the Phototropic Response of Oat Coleoptiles 1

    PubMed Central

    Shen-Miller, J.; Gordon, S. A.

    1967-01-01

    Avena seedlings were germinated and grown while continuously rotated on the horizontal axis of a clinostat. The coleoptiles of these gravity-compensated plants were phototropically more responsive than those of plants rotated on a vertical axis. When the plants were compensated after unilateral irradiation, phototropic curvature of the shoot progressed for the next 6 hours, with the rate of curving decreasing about 3 hours after irradiation. The decrease in rate was less in the plants gravity-compensated before irradiation than in those vertically rotated. In the period 70 to 76 hours after planting, the growth rate of the compensated coleoptiles was significantly less than that of the vertically rotated seedlings. The greater phototropic curvature, the decreased growth rate, and the slower rate of straightening of the curved, compensated shoot can be correlated with several consequences of compensation: an increase in sensitivity to auxin, a lowering of auxin content in the coleoptile tip, and possibly, from an interaction between compensation and phototropic stimulation, an enhanced difference in auxin transport between the illuminated and shaded halves of the unilaterally irradiated shoot. The phototropic response of the vertically rotated seedling was significantly different from that of the vertical stationary, indicating the importance of vertically rotated controls in clinostat experiments. Images PMID:16656514

  11. Arrestins: ubiquitous regulators of cellular signaling pathways.

    PubMed

    Gurevich, Eugenia V; Gurevich, Vsevolod V

    2006-01-01

    In vertebrates, the arrestins are a family of four proteins that regulate the signaling and trafficking of hundreds of different G-protein-coupled receptors (GPCRs). Arrestin homologs are also found in insects, protochordates and nematodes. Fungi and protists have related proteins but do not have true arrestins. Structural information is available only for free (unbound) vertebrate arrestins, and shows that the conserved overall fold is elongated and composed of two domains, with the core of each domain consisting of a seven-stranded beta-sandwich. Two main intramolecular interactions keep the two domains in the correct relative orientation, but both of these interactions are destabilized in the process of receptor binding, suggesting that the conformation of bound arrestin is quite different. As well as binding to hundreds of GPCR subtypes, arrestins interact with other classes of membrane receptors and more than 20 surprisingly diverse types of soluble signaling protein. Arrestins thus serve as ubiquitous signaling regulators in the cytoplasm and nucleus.

  12. Dynamic Redox Regulation of IL-4 Signaling.

    PubMed

    Dwivedi, Gaurav; Gran, Margaret A; Bagchi, Pritha; Kemp, Melissa L

    2015-11-01

    Quantifying the magnitude and dynamics of protein oxidation during cell signaling is technically challenging. Computational modeling provides tractable, quantitative methods to test hypotheses of redox mechanisms that may be simultaneously operative during signal transduction. The interleukin-4 (IL-4) pathway, which has previously been reported to induce reactive oxygen species and oxidation of PTP1B, may be controlled by several other putative mechanisms of redox regulation; widespread proteomic thiol oxidation observed via 2D redox differential gel electrophoresis upon IL-4 treatment suggests more than one redox-sensitive protein implicated in this pathway. Through computational modeling and a model selection strategy that relied on characteristic STAT6 phosphorylation dynamics of IL-4 signaling, we identified reversible protein tyrosine phosphatase (PTP) oxidation as the primary redox regulatory mechanism in the pathway. A systems-level model of IL-4 signaling was developed that integrates synchronous pan-PTP oxidation with ROS-independent mechanisms. The model quantitatively predicts the dynamics of IL-4 signaling over a broad range of new redox conditions, offers novel hypotheses about regulation of JAK/STAT signaling, and provides a framework for interrogating putative mechanisms involving receptor-initiated oxidation.

  13. The role of cotyledons in phototropism of de-etiolated seedlings.

    PubMed

    Shuttleworth, J E; Black, M

    1977-01-01

    Simulated "phototropic" curvatures caused by differential masking of the cotyledons of de-etiolated seedlings exposed to white light are unconnected with true phototropism. In Cucumis sativus L. and Helianthus annuus L. such curvatures result from a red-light-induced inhibition coming from the exposed cotyledon. True phototropic bending in these species under long-term exposure to fairly high irradiances (as in nature) is a response to blue light. It occurs even when cotyledons are completely covered. These results show that the cotyledons do not perceive the phototropic stimulus and need not be illuminated for phototropism to occur.

  14. Blue and green light-induced phototropism in Arabidopsis thaliana and Lactuca sativa L. seedlings

    SciTech Connect

    Steinitz, B.; Ren, Z.; Poff, K.L.

    1985-01-01

    Exposure time-response curves for blue and green light-induced phototropic bending in hypocotyls of Arabidopsis thaliana (L.) Heynh. and Lactuca sativa L. seedlings are presented. These seedlings show significant phototropic sensitivity up to 540 to 550 nanometers. Since wavelengths longer than 560 nanometers do not induce phototropic bending, it is suggested that the response to 510 to 550 nanometers light is mediated by the specific blue light photoreceptor of phototropism. The authors advise care in the use of green safelights for studies of phototropism.

  15. Phototropism and gravitropism in transgenic lines of Arabidopsis altered in the phytochrome pathway.

    PubMed

    Hopkins, Jane A; Kiss, John Z

    2012-07-01

    Phytochromes are a family of photoreceptor molecules, absorbing primarily in red and far-red, that are important in many aspects of plant development. These studies investigated the role of phytochromes in phototropism and gravitropism of seedlings of Arabidopsis thaliana. We used two transgenic lines, one which lacked phytochromes specifically in the roots (M0062/UASBVR) and the other lacked phytochromes in the shoots (CAB3::pBVR). These transgenic plants are deficient in the phytochrome chromophore in specific tissues due the expression of biliverdin IXa reductase (BVR), which binds to precursors of the chromophore. Experiments were performed in both light and dark conditions to determine whether roots directly perceive light signals or if the signal is perceived in the shoot and then transmitted to the root during tropistic curvature. Kinetics of tropisms and growth were assayed by standard methods or with a computer-based feedback system. We found that the perception of red light occurs directly in the root during phototropism in this organ and that signaling also may occur from root to shoot in gravitropism.

  16. Auxin Redistribution during First Positive Phototropism in Corn Coleoptiles 1

    PubMed Central

    Nick, Peter; Schäfer, Eberhard; Furuya, Masaki

    1992-01-01

    In red-light grown corn (Zea mays L. cv Brio42.HT) coleoptiles, cortical microtubules adjacent to the outer cell wall of the outer epidermis reorient from transverse to longitudinal in response to auxin depletion and after phototropic stimulation in the lighted side of the coleoptile. This was used as an in situ assay of cellular auxin concentration. The fluence-response relation for the blue light-induced reorientation is compared with that for first positive phototropism and the dose-response relationship for the auxin-dependent reorientation. The result supports the theory by Cholodny and Went, claiming that phototropic stimulation results in auxin displacement across the coleoptile. In terms of microtubule orientation, this displacement becomes even more pronounced after preirradiation with a weak blue light pulse from above. ImagesFigure 2 PMID:16669036

  17. Phototropism in Hypocotyls of Radish 1

    PubMed Central

    Noguchi, H.; Nishitani, K.; Bruinsma, J.; Hasegawa, Koji

    1986-01-01

    When etiolated radish (Raphanus sativus var. hortensis f. gigantissimus Makino) hypocotyls were subjected to a continuous unilateral illumination with white fluorescent light (0.1 watt per square meter), the growth rate at the lighted side was strongly inhibited for the first 2 hours, while that at the shaded side showed no change. After 2.5 hours growth on the lighted side recovered gradually, while that on the shaded side was slightly inhibited. The neutral growth inhibitors, cis- and trans-raphanusanins and raphanusamide, were determined in the lighted and shaded sides from 1 hour before until 2 hours after the start of unilateral illumination. In the lighted side, cis- and trans-raphanusanins increased by 0.5 hour after the start of illumination, reached 3 to 3.5-fold greater concentrations than in the shaded side after 1 hour, and then decreased gradually. Raphanusamide increased in the lighted side to a 3-fold greater concentration than that in the shaded one 2 hours after the start of the illumination. Unilateral applications of cis- and trans-raphanusanins and raphanusamide suppressed the growth of the hypocotyl on the applied side more than that on the opposite one, causing the hypocotyls to bend towards the site of application. The data suggest that phototropic curvature in radish is caused by the light-induced synthesis of growth-inhibiting cis- and trans-raphanusanins, and raphanusamide at the site of illumination. PMID:16664969

  18. Understanding phototropism: from Darwin to today.

    PubMed

    Holland, Jennifer J; Roberts, Diana; Liscum, Emmanuel

    2009-01-01

    Few individuals have had the lasting impact on such a breadth of science as Charles Darwin. While his writings about time aboard the HMS Beagle, his study of the Galapagos islands (geology, fauna, and flora), and his theories on evolution are well known, less appreciated are his studies on plant growth responses to a variety of environmental stimuli. In fact, Darwin, together with the help of his botanist son Francis, left us an entire book, 'The power of movements in plants', describing his many, varied, and insightful observations on this topic. Darwin's findings have provided an impetus for an entire field of study, the study of plant tropic responses, or differential growth (curvature) of plant organs in response to directional stimuli. One tropic response that has received a great deal of attention is the phototropic response, or curvature response to directional light. This review summarizes many of the most significant advancements that have been made in our understanding of this response and place these recent findings in the context of Darwin's initial observations.

  19. Auxin signaling modules regulate maize inflorescence architecture

    PubMed Central

    Galli, Mary; Liu, Qiujie; Moss, Britney L.; Malcomber, Simon; Li, Wei; Gaines, Craig; Federici, Silvia; Roshkovan, Jessica; Meeley, Robert; Nemhauser, Jennifer L.; Gallavotti, Andrea

    2015-01-01

    In plants, small groups of pluripotent stem cells called axillary meristems are required for the formation of the branches and flowers that eventually establish shoot architecture and drive reproductive success. To ensure the proper formation of new axillary meristems, the specification of boundary regions is required for coordinating their development. We have identified two maize genes, BARREN INFLORESCENCE1 and BARREN INFLORESCENCE4 (BIF1 and BIF4), that regulate the early steps required for inflorescence formation. BIF1 and BIF4 encode AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins, which are key components of the auxin hormone signaling pathway that is essential for organogenesis. Here we show that BIF1 and BIF4 are integral to auxin signaling modules that dynamically regulate the expression of BARREN STALK1 (BA1), a basic helix-loop-helix (bHLH) transcriptional regulator necessary for axillary meristem formation that shows a striking boundary expression pattern. These findings suggest that auxin signaling directly controls boundary domains during axillary meristem formation and define a fundamental mechanism that regulates inflorescence architecture in one of the most widely grown crop species. PMID:26464512

  20. Auxin signaling modules regulate maize inflorescence architecture.

    PubMed

    Galli, Mary; Liu, Qiujie; Moss, Britney L; Malcomber, Simon; Li, Wei; Gaines, Craig; Federici, Silvia; Roshkovan, Jessica; Meeley, Robert; Nemhauser, Jennifer L; Gallavotti, Andrea

    2015-10-27

    In plants, small groups of pluripotent stem cells called axillary meristems are required for the formation of the branches and flowers that eventually establish shoot architecture and drive reproductive success. To ensure the proper formation of new axillary meristems, the specification of boundary regions is required for coordinating their development. We have identified two maize genes, BARREN INFLORESCENCE1 and BARREN INFLORESCENCE4 (BIF1 and BIF4), that regulate the early steps required for inflorescence formation. BIF1 and BIF4 encode AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins, which are key components of the auxin hormone signaling pathway that is essential for organogenesis. Here we show that BIF1 and BIF4 are integral to auxin signaling modules that dynamically regulate the expression of BARREN STALK1 (BA1), a basic helix-loop-helix (bHLH) transcriptional regulator necessary for axillary meristem formation that shows a striking boundary expression pattern. These findings suggest that auxin signaling directly controls boundary domains during axillary meristem formation and define a fundamental mechanism that regulates inflorescence architecture in one of the most widely grown crop species.

  1. Physical strain-mediated microtubule reorientation in the epidermis of gravitropically or phototropically stimulated maize coleoptiles.

    PubMed

    Fischer, K; Schopfer, P

    1998-07-01

    During gravitropic and phototropic curvature of the maize coleoptile, the cortical microtubules (MTs) adjacent to the outer epidermal cell wall assume opposite orientations at the two sides of the organ. Starting from a uniformly random pattern during straight growth in darkness, the MTs reorientate perpendicularly to the organ axis at the outer (faster growing) side and parallel to the organ axis at the inner (slower growing) side. As similar reorientations can be induced during straight growth by increasing or decreasing the effective auxin concentration, it has been proposed that these reorientations may be used as a diagnostic test for assessing the auxin status of the epidermal cells during tropic curvature. This idea was tested by determining the MT orientations in the coleoptile of intact maize seedlings in which the gravitropic or phototropic curvature was prevented or inversed by an appropriate mechanical counterforce. Forces that just prevented the coleoptile from curving in a gravity or light field prevented reorientations of the MTs. Forces strong enough to overcompensate the tropic stimuli by enforcing curvature in the opposite direction induced reorientations of the MTs opposite to those produced by tropic stimulation. These results show that the MTs at the outer surface of the coleoptile respond to changes in mechanical tissue strain rather than to gravitropic or phototropic stimuli and associated changes at the level of auxin or any other element in the signal transduction chain between perception of tropic stimuli and asymmetric growth response. It is proposed that cortical MTs can act as strain gauges in a positive feed-back regulatory circle utilized for amplification and stabilization of environmentally induced changes in the direction of elongation growth. PMID:11536886

  2. Testosterone signaling and the regulation of spermatogenesis.

    PubMed

    Walker, William H

    2011-04-01

    Spermatogenesis and male fertility are dependent upon the presence of testosterone in the testis. In the absence of testosterone or the androgen receptor, spermatogenesis does not proceed beyond the meiosis stage. The major cellular target and translator of testosterone signals to developing germ cells is the Sertoli cell. In the Sertoli cell, testosterone signals can be translated directly to changes in gene expression (the classical pathway) or testosterone can activate kinases that may regulate processes required to maintain spermatogenesis (the non-classical pathway). Contributions of the classical and non-classical testosterone signaling pathways to the maintenance of spermatogenesis are discussed. Studies that may further elaborate the mechanisms by with the pathways support spermatogenesis are proposed. PMID:22319659

  3. Localized signals that regulate transendothelial migration.

    PubMed

    Muller, William A

    2016-02-01

    Transendothelial migration (TEM) of leukocytes is the step in leukocyte emigration in which the leukocyte actually leaves the blood vessel to carry out its role in the inflammatory response. It is therefore, arguably the most critical step in emigration. This review focuses on two of the many aspects of this process that have seen important recent developments. The adhesion molecules, PECAM (CD31) and CD99 that regulate two major steps in TEM, do so by regulating specific signals. PECAM initiates the signaling pathway responsible for the calcium flux that is required for TEM. Calcium enters through the cation channel TRPC6 and recruits the first wave of trafficking of membrane from the lateral border recycling compartment (LBRC). CD99 signals through soluble adenylate cyclase to activate protein kinase A to recruit a second wave of LBRC trafficking. Another process that is critical for TEM is transient removal of VE-cadherin from the site of TEM. However, the local signaling pathways that are responsible for this appear to be different from those that open the junctions to increase vascular permeability. PMID:26584476

  4. Phototropism experiments in microgravity-the Seedling Growth project in the EMCS on the ISS

    NASA Astrophysics Data System (ADS)

    Kiss, John; Edelmann, Richard; Herranz, Raul; Medina, Francisco Javier; Millar, Katherine

    The microgravity environment aboard orbiting spacecraft has provided a unique laboratory to explore important topics in basic plant biology. Our group has utilized the European Modular Cultivation System (EMCS) aboard the International Space Station (ISS) to study plant growth, development, tropisms, and gene expression in a series of spaceflight experiments. The most current project performed on the ISS was termed Seeding Growth-1 (SG-1) which builds on the previous TROPI (for tropisms) experiments. TROPI-1 was the first EMCS experiment, and we discovered a novel red-light-based phototropism in hypocotyls of seedlings grown in microgravity (Millar et al. 2010). In TROPI-2, our experiments were extended to reduced gravity levels and found that 0.1-0.3 g can attenuate the red-light response (Kiss et al. 2012). In addition, we performed gene profiling studies and noted that approximately 280 genes that were differentially regulated at least two-fold in the space samples compared to the ground controls (Correll et al. 2013). Major technical and operational changes in SG-1 (launched in March 2013) compared to the TROPI experiments include: improvements in lighting conditions within the EMCS to optimize the environment for phototropism studies and the use of infrared illumination to provide high-quality images of the seedlings. In SG-1, the red-light-based phototropism in roots and hypocotyls of seedlings that was noted in TROPI-2 was confirmed and now can be more precisely characterized based on the improvements in procedures. As we move forward, the SG-2 experiments (to be launched in 2014), in addition to a continued focus on phototropism, will consider the cell cycle as well as the growth and proliferation of plant cells in microgravity (Matía et al. 2010). Furthermore, the lessons learned from sequential experiments from TROPI-1 to TROPI-2 to SG-1 can provide insights to other researchers developing space experiments in plant biology. References: Correll M.J., T

  5. Desensitization and recovery of phototropic responsiveness in Arabidopsis thaliana.

    PubMed Central

    Janoudi, A K; Poff, K L

    1993-01-01

    Phototropism is induced by blue light, which also induces desensitization, a partial or total loss of phototropic responsiveness. The fluence and fluence-rate dependence of desensitization and recovery from desensitization have been measured for etiolated and red light (669-nm) preirradiated Arabidopsis thaliana seedlings. The extent of desensitization increased as the fluence of the desensitizing 450-nm light was increased from 0.3 to 60 micromoles m-2 s-1. At equal fluences, blue light caused more desensitization when given at a fluence rate of 1.0 micromole m-2 s-1 than at 0.3 micromole m-2 s-1. In addition, seedlings irradiated with blue light at the higher fluence rate required a longer recovery time than seedlings irradiated at the lower fluence rate. A red light preirradiation, probably mediated via phytochrome, decreased the time required for recovery from desensitization. The minimum time for detectable recovery was about 65 s, and the maximum time observed was about 10 min. It is proposed that the descending arm of the fluence-response relationship for first positive phototropism is a consequence of desensitization, and that the time threshold for second positive phototropism establishes a period during which recovery from desensitization occurs. PMID:11537496

  6. Desensitization and recovery of phototropic responsiveness in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Janoudi, A. K.; Poff, K. L.

    1993-01-01

    Phototropism is induced by blue light, which also induces desensitization, a partial or total loss of phototropic responsiveness. The fluence and fluence-rate dependence of desensitization and recovery from desensitization have been measured for etiolated and red light (669-nm) preirradiated Arabidopsis thaliana seedlings. The extent of desensitization increased as the fluence of the desensitizing 450-nm light was increased from 0.3 to 60 micromoles m-2 s-1. At equal fluences, blue light caused more desensitization when given at a fluence rate of 1.0 micromole m-2 s-1 than at 0.3 micromole m-2 s-1. In addition, seedlings irradiated with blue light at the higher fluence rate required a longer recovery time than seedlings irradiated at the lower fluence rate. A red light preirradiation, probably mediated via phytochrome, decreased the time required for recovery from desensitization. The minimum time for detectable recovery was about 65 s, and the maximum time observed was about 10 min. It is proposed that the descending arm of the fluence-response relationship for first positive phototropism is a consequence of desensitization, and that the time threshold for second positive phototropism establishes a period during which recovery from desensitization occurs.

  7. Regulation of Redox Signaling by Selenoproteins

    PubMed Central

    Alkan, Zeynep

    2010-01-01

    The unique chemistry of oxygen has been both a resource and threat for life on Earth for at least the last 2.4 billion years. Reduction of oxygen to water allows extraction of more metabolic energy from organic fuels than is possible through anaerobic glycolysis. On the other hand, partially reduced oxygen can react indiscriminately with biomolecules to cause genetic damage, disease, and even death. Organisms in all three superkingdoms of life have developed elaborate mechanisms to protect against such oxidative damage and to exploit reactive oxygen species as sensors and signals in myriad processes. The sulfur amino acids, cysteine and methionine, are the main targets of reactive oxygen species in proteins. Oxidative modifications to cysteine and methionine can have profound effects on a protein’s activity, structure, stability, and subcellular localization. Non-reversible oxidative modifications (oxidative damage) may contribute to molecular, cellular, and organismal aging and serve as signals for repair, removal, or programmed cell death. Reversible oxidation events can function as transient signals of physiological status, extracellular environment, nutrient availability, metabolic state, cell cycle phase, immune function, or sensory stimuli. Because of its chemical similarity to sulfur and stronger nucleophilicity and acidity, selenium is an extremely efficient catalyst of reactions between sulfur and oxygen. Most of the biological activity of selenium is due to selenoproteins containing selenocysteine, the 21st genetically encoded protein amino acid. The most abundant selenoproteins in mammals are the glutathione peroxidases (five to six genes) that reduce hydrogen peroxide and lipid hydroperoxides at the expense of glutathione and serve to limit the strength and duration of reactive oxygen signals. Thioredoxin reductases (three genes) use nicotinamide adenine dinucleotide phosphate to reduce oxidized thioredoxin and its homologs, which regulate a plethora

  8. Regulation of redox signaling by selenoproteins.

    PubMed

    Hawkes, Wayne Chris; Alkan, Zeynep

    2010-06-01

    The unique chemistry of oxygen has been both a resource and threat for life on Earth for at least the last 2.4 billion years. Reduction of oxygen to water allows extraction of more metabolic energy from organic fuels than is possible through anaerobic glycolysis. On the other hand, partially reduced oxygen can react indiscriminately with biomolecules to cause genetic damage, disease, and even death. Organisms in all three superkingdoms of life have developed elaborate mechanisms to protect against such oxidative damage and to exploit reactive oxygen species as sensors and signals in myriad processes. The sulfur amino acids, cysteine and methionine, are the main targets of reactive oxygen species in proteins. Oxidative modifications to cysteine and methionine can have profound effects on a protein's activity, structure, stability, and subcellular localization. Non-reversible oxidative modifications (oxidative damage) may contribute to molecular, cellular, and organismal aging and serve as signals for repair, removal, or programmed cell death. Reversible oxidation events can function as transient signals of physiological status, extracellular environment, nutrient availability, metabolic state, cell cycle phase, immune function, or sensory stimuli. Because of its chemical similarity to sulfur and stronger nucleophilicity and acidity, selenium is an extremely efficient catalyst of reactions between sulfur and oxygen. Most of the biological activity of selenium is due to selenoproteins containing selenocysteine, the 21st genetically encoded protein amino acid. The most abundant selenoproteins in mammals are the glutathione peroxidases (five to six genes) that reduce hydrogen peroxide and lipid hydroperoxides at the expense of glutathione and serve to limit the strength and duration of reactive oxygen signals. Thioredoxin reductases (three genes) use nicotinamide adenine dinucleotide phosphate to reduce oxidized thioredoxin and its homologs, which regulate a plethora of

  9. phot1 Inhibition of ABCB19 Primes Lateral Auxin Fluxes in the Shoot Apex Required For Phototropism

    PubMed Central

    Christie, John M.; Thomson, Catriona E.; Lin, Jinshan; Titapiwatanakun, Boosaree; Ennis, Margaret; Kaiserli, Eirini; Lee, Ok Ran; Adamec, Jiri; Peer, Wendy A.; Murphy, Angus S.

    2011-01-01

    It is well accepted that lateral redistribution of the phytohormone auxin underlies the bending of plant organs towards light. In monocots, photoreception occurs at the shoot tip above the region of differential growth. Despite more than a century of research, it is still unresolved how light regulates auxin distribution and where this occurs in dicots. Here, we establish a system in Arabidopsis thaliana to study hypocotyl phototropism in the absence of developmental events associated with seedling photomorphogenesis. We show that auxin redistribution to the epidermal sites of action occurs at and above the hypocotyl apex, not at the elongation zone. Within this region, we identify the auxin efflux transporter ATP-BINDING CASSETTE B19 (ABCB19) as a substrate target for the photoreceptor kinase PHOTOTROPIN 1 (phot1). Heterologous expression and physiological analyses indicate that phosphorylation of ABCB19 by phot1 inhibits its efflux activity, thereby increasing auxin levels in and above the hypocotyl apex to halt vertical growth and prime lateral fluxes that are subsequently channeled to the elongation zone by PIN-FORMED 3 (PIN3). Together, these results provide new insights into the roles of ABCB19 and PIN3 in establishing phototropic curvatures and demonstrate that the proximity of light perception and differential phototropic growth is conserved in angiosperms. PMID:21666806

  10. Phytochrome is required for the occurrence of time-dependent phototropism in maize coleoptiles

    PubMed

    Liu, Y J; Iino, M

    1996-12-01

    Time-dependent phototropism (TDP), sometimes called second positive curvature, occurs when the duration of phototropic stimulation with blue light (B) exceeds a few minutes. TDP was characterized in maize (Zea mays L.) coleoptiles raised under continuous red light (R). Subsequently, coleoptiles adapted to darkness were used to investigate the effect of R on TDP. It was found that TDP, which is induced in R-grown coleoptiles, does not occur in dark-adapted coleoptiles and that dark-adapted coleoptiles begin to show TDP after treatment with R. The TDP responsiveness became maximal 1-2 h after treatment with a R pulse and decreased during the next few hours. At least 10 min was required after a short pulse of R before the coleoptile began to respond to B for the induction of TDP. The effect of R in establishing the TDP responsiveness was totally suppressed by a pulse of far-red light given immediately after an inductive pulse of R. It is concluded that the mechanism of TDP requires for its establishment a R signal perceived by phytochrome. The TDP of R-grown and R-pretreated coleoptiles showed relationships to stimulation times and fluence rates that are similar to those reported for oat coleoptiles, except that TDP of maize showed a sharp increase in its magnitude within a narrow range of stimulation times as short as 5-10 min. PMID:11539322

  11. Dynamic near-infrared imaging reveals transient phototropic change in retinal rod photoreceptors.

    PubMed

    Lu, Rongwen; Levy, Alexander M; Zhang, Qiuxiang; Pittler, Steven J; Yao, Xincheng

    2013-10-01

    Stiles-Crawford effect (SCE) is exclusively observed in cone photoreceptors, but why the SCE is absent in rod photoreceptors is still a mystery. In this study, we employed dynamic near infrared light imaging to monitor photoreceptor kinetics in freshly isolated frog and mouse retinas stimulated by oblique visible light flashes. It was observed that retinal rods could rapidly (onset: ∼10 ms for frog and 5 ms for mouse; time-to-peak: ∼200 ms for frog and 30 ms for mouse) shift toward the direction of the visible light, which might quickly compensate for the loss of luminous efficiency due to oblique illumination. In contrast, such directional movement was negligible in retinal cones. Moreover, transient rod phototropism could contribute to characteristic intrinsic optical signal (IOS). We anticipate that further study of the transient rod phototropism may not only provide insight into better understanding of the nature of vision but also promise an IOS biomarker for functional mapping of rod physiology at high resolution.

  12. Restoration of phototropic responsiveness in decapitated maize coleoptiles.

    PubMed

    Kaldenhoff, R; Iino, M

    1997-08-01

    The literature indicates that the tip of maize (Zea mays L.) coleoptiles has the localized functions of producing auxin for growth and perceiving unilateral light stimuli and translocating auxin laterally for phototropism. There is evidence that the auxinproducing function of the tip is restored in decapitated coleoptiles. We examined whether the functions for phototropism are also restored by using blue-light conditions that induced a first pulse-induced positive phototropism (fPIPP) and a time-dependent phototropism (TDP). When the apical 5 mm, in which photosensing predominantly takes place, was removed, no detectable fPIPP occurred even if indole-3-acetic acid (lanolin mixture) was applied to the cut end. However, when the blue-light stimulation was delayed after decapitation, fPIPP became inducible in the coleoptile stumps supplied with indole-3-acetic-acid/lanolin (0.01 mg g-1), indicating that phototropic responsiveness was restored. This restoration progressed 1 to 2 h after decapitation, and the curvature response became comparable to that of intact coleoptiles. The results for TDP were qualitatively similar, but some quantitative differences were observed. It appeared that the overall TDP was based on a major photosensing mechanism specific to the tip and on at least one additional mechanism not specific to the tip, and that the tip-specific TDP was restored in decapitated coleoptiles with kinetics similar to that for fPIPP. It is suggested that the photoreceptor system, which accounts for fPIPP and a substantial part of TDP, is regenerated in decapitated coleoptiles, perhaps together with the mechanism for lateral auxin translocation. PMID:11536822

  13. Evolutionarily conserved regulation of TOR signalling.

    PubMed

    Takahara, Terunao; Maeda, Tatsuya

    2013-07-01

    The target of rapamycin (TOR) is an evolutionarily conserved protein kinase that regulates cell growth in response to various environmental as well as intracellular cues through the formation of 2 distinct TOR complexes (TORC), TORC1 and TORC2. Dysregulation of TORC1 and TORC2 activity is closely associated with various diseases, including diabetes, cancer and neurodegenerative disorders. Over the past few years, new regulatory mechanisms of TORC1 and TORC2 activity have been elucidated. Furthermore, recent advances in the study of TOR inhibitors have revealed previously unrecognized cellular functions of TORC1. In this review, we briefly summarize the current understanding of the evolutionarily conserved TOR signalling from upstream regulators to downstream events.

  14. Phototropism and geotropism in maize coleoptiles are spatially correlated with increases in cytosolic free calcium.

    PubMed

    Gehring, C A; Williams, D A; Cody, S H; Parish, R W

    1990-06-01

    Phototropism and gravitropism in the shoots and roots of higher plants are the result of asymmetric growth. This is explained by the redistribution of growth regulators following exposure to gravity or unilateral light (the Cholodny-Went hypothesis). The positive phototropism and the negative geotropism of grass seedling coleoptiles are believed to result from lateral movement of auxin from the irradiated to the shaded side and from the upper to the lower side, respectively. Many physiological processes in plants, including auxin-induced cell elongation, are reported to be under the control of calcium. Added auxin triggers oscillations in cytosolic free calcium ([Ca2+]cyt) and cytosolic pH (pHcyt) in epidermal cells of maize coleoptiles. Until recently, it has not been possible to visualize these changes spatially with the commonly used fluorescent cation indicators. Using a scanning laser confocal microscope, a new visible wavelength Ca2+ probe fluo-3 and the fluorescent pH indicator BCECF, we have recorded rapid light-induced increases in [Ca2+]cyt and a lowering of pHcyt of cells on the shaded side of maize coleoptiles. In horizontally orientated coleoptiles, [Ca2+]cyt increases and pHcyt decreases in the more rapidly elongating cells on the lower side. For the first time, rapid changes in [Ca2+]cyt and pHcyt are correlated directly with increases in cell elongation stimulated by light and gravity.

  15. Fibroblast Growth Factor Signaling in Metabolic Regulation.

    PubMed

    Nies, Vera J M; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T; Atkins, Annette R; Evans, Ronald M; Jonker, Johan W; Downes, Michael Robert

    2015-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  16. Evidence that zeaxanthin is not the photoreceptor for phototropism in maize coleoptiles.

    PubMed

    Palmer, J M; Warpeha, K M; Briggs, W R

    1996-04-01

    The photoreceptor that mediates blue-light-induced phototropism in dark-grown seedlings of higher plants has not been identified, although the carotenoid zeaxanthin has recently been proposed as the putative chromophore. In the experiments described in this paper, we analyzed phototropism and a blue-light-induced protein phosphorylation that has been genetically and physiologically implicated in phototropism in wild-type maize (Zea mays L.) seedlings and compared the results with those from seedlings that are either carotenoid deficient through a genetic lesion or have been chemically treated to block carotenoid biosynthesis. The blue-light-dependent phototropism and phosphorylation responses of seedlings deficient in carotenoids are the same as those of seedlings containing normal levels of carotenoids. These results and those in the literature make it unlikely that zeaxanthin or any other carotenoid is the chromophore of the blue-light photoreceptor for phototropism or the blue-light-induced phosphorylation related to phototropism. PMID:11536774

  17. Bioelectric Signaling Regulates Size in Zebrafish Fins

    PubMed Central

    Perathoner, Simon; Daane, Jacob M.; Henrion, Ulrike; Seebohm, Guiscard; Higdon, Charles W.; Johnson, Stephen L.; Nüsslein-Volhard, Christiane; Harris, Matthew P.

    2014-01-01

    The scaling relationship between the size of an appendage or organ and that of the body as a whole is tightly regulated during animal development. If a structure grows at a different rate than the rest of the body, this process is termed allometric growth. The zebrafish another longfin (alf) mutant shows allometric growth resulting in proportionally enlarged fins and barbels. We took advantage of this mutant to study the regulation of size in vertebrates. Here, we show that alf mutants carry gain-of-function mutations in kcnk5b, a gene encoding a two-pore domain potassium (K+) channel. Electrophysiological analysis in Xenopus oocytes reveals that these mutations cause an increase in K+ conductance of the channel and lead to hyperpolarization of the cell. Further, somatic transgenesis experiments indicate that kcnk5b acts locally within the mesenchyme of fins and barbels to specify appendage size. Finally, we show that the channel requires the ability to conduct K+ ions to increase the size of these structures. Our results provide evidence for a role of bioelectric signaling through K+ channels in the regulation of allometric scaling and coordination of growth in the zebrafish. PMID:24453984

  18. Fibroblast Growth Factor Signaling in Metabolic Regulation

    PubMed Central

    Nies, Vera J. M.; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T.; Atkins, Annette R.; Evans, Ronald M.; Jonker, Johan W.; Downes, Michael Robert

    2016-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions. PMID:26834701

  19. Phytochrome-Mediated Phototropism in De-Etiolated Seedlings 1

    PubMed Central

    Ballaré, Carlos L.; Scopel, Ana L.; Radosevich, Steven R.; Kendrick, Richard E.

    1992-01-01

    Phototropic responses to broadband far red (FR) radiation were investigated in fully de-etiolated seedlings of a long-hypocotyl mutant (lh) of cucumber (Cucumis sativus L.), which is deficient in phytochrome-B, and its near isogenic wild type (WT). Continuous unilateral FR light provided against a background of white light induced negative curvatures (i.e. bending away from the FR light source) in hypocotyls of WT seedlings. This response was fluence-rate dependent and was absent in the lh mutant, even at very high fluence rates of FR. The phototropic effect of FR light on WT seedlings was triggered in the hypocotyls and occurred over a range of fluence rates in which FR was very effective in promoting hypocotyl elongation. FR light had no effect on elongation of lh-mutant hypocotyls. Seedlings grown in the field showed negative phototropic responses to the proximity of neighboring plants that absorbed blue (B) and red light and back-reflected FR radiation. The bending response was significantly larger in WT than in lh seedlings. Responses of WT and lh seedlings to lateral B light were very similar; however, elimination of the lateral B light gradients created by the proximity of plant neighbors abolished the negative curvature only in the case of lh seedlings. More than 40% of the total hypocotyl curvature induced in WT seedlings by the presence of neighboring plants was present after equilibrating the fluence rates of B light received by opposite sides of the hypocotyl. These results suggest that: (a) phytochrome functions as a phototropic sensor in de-etiolated plants, and (b) in patchy canopy environments, young seedlings actively project new leaves into light gaps via stem bending responses elicited by the B-absorbing photoreceptor(s) and phytochrome. PMID:16652942

  20. SIGNALS AND REGULATORS THAT GOVERN STREPTOMYCES DEVELOPMENT

    PubMed Central

    McCormick, Joseph R.; Flärdh, Klas

    2012-01-01

    Streptomyces coelicolor is the genetically best characterized species of a populous genus belonging to the Gram-positive Actinobacteria. Streptomycetes are filamentous soil organisms, well known for the production of a plethora of biologically active secondary metabolic compounds. The Streptomyces developmental life cycle is uniquely complex, and involves coordinated multicellular development with both physiological and morphological differentiation of several cell types, culminating in production of secondary metabolites and dispersal of mature spores. This review presents a current appreciation of the signaling mechanisms used to orchestrate the decision to undergo morphological differentiation, and the regulators and regulatory networks that direct the intriguing development of multigenomic hyphae, first to form specialized aerial hyphae, and then to convert them into chains of dormant spores. This current view of S. coelicolor development is destined for rapid evolution as data from “-omics” studies shed light on gene regulatory networks, new genetic screens identify hitherto unknown players, and the resolution of our insights into the underlying cell biological processes steadily improve. PMID:22092088

  1. Relationships between xanthoxin, phototropism, and elongation growth in the sunflower seedling Helianthus annuus L.

    PubMed

    Franssen, J M; Bruinsma, J

    1981-04-01

    For phototropic curvature of a green sunflower seedling, only the hypocotyl has to be illuminated; the tip and cotyledons are not involved in stimulus perception. The etiolated seedling is phototropically insensitive, illumination of only the hypocotyl renders it sensitive. It is concluded that the photoreceptor is located within the responding organ. In curving seedlings, the endogenous indoleacetic acid (IAA) remains evenly distributed. However, the inhibitor, xanthoxin (Xa), accumulates on the illuminated side. The degree of phototropic response is generally related to the concentration of Xa. The amount of phototropic curvature is independent of the rate of elongation growth, the former can be changed without affecting the latter, and vice versa. The data conflict with the Cholodny-Went theory, whereas they support the hypothesis of Blaauw that the phototropic reaction is caused by the local accumulation of a growth-inhibiting substance on the irradiated side.

  2. Studies on the growth and development in Spirogyra : VI. Phototropic response of Spirogyra filaments.

    PubMed

    Tanaka, K; Kitazawa, S; Sasaki, T; Ooshima, N; Yamada, T

    1986-01-01

    The phototropic response of Spirogyra sp. filaments and its relation with the different phases of their diurnal movements were studied. The filaments rapidly responded to unilateral irradiation; curvature towards the light source began in their tip region but shifted down to more basal regions. However, this typical and steady phototropic curvature could be observed only in the GnSt phase of the diurnal movement. In the other phases competitive states between the phototropic movement and other kinds of movement were evident. Thus, from the results of our previous and present studies it is proposed that the diurnal movement of Spirogyra filaments is composed of various individual movements, including a phototropic one; among these movements there exists a certain balance determined by the culture conditions and the time of day, and the phototropic movement is relatively inferior to the other movements.

  3. [Zinc signaling-mediated regulation of dentin and periodontal tissues].

    PubMed

    Fukada, Toshiyuki; Idaira, Yayoi; Shimoda, Shinji; Asada, Yoshinobu

    2015-12-01

    An essential trace element zinc is required for variety of cellular functions and physiological responses, therefore, downregulation of zinc homeostasis cause serious problems in health, such as growth retardation and abnormal bone formation. Recent technical advances contributed to reveal that zinc ion regulated by zinc transporters acts as a signaling mediator, called zinc signaling that involves in mammalian physiology and pathogenesis. This review will address the current understanding of the roles of zinc signaling in regulation of dentin formation and periodontal tissues homeostasis.

  4. Artificial phototropism based on a photo-thermo-responsive hydrogel

    NASA Astrophysics Data System (ADS)

    Gopalakrishna, Hamsini

    Solar energy is leading in renewable energy sources and the aspects surrounding the efforts to harvest light are gaining importance. One such aspect is increasing the light absorption, where heliotropism comes into play. Heliotropism, the ability to track the sun across the sky, can be integrated with solar cells for more efficient photon collection and other optoelectronic systems. Inspired by plants, which optimize incident sunlight in nature, several researchers have made artificial heliotropic and phototropic systems. This project aims to design, synthesize and characterize a material system and evaluate its application in a phototropic system. A gold nanoparticle (Au NP) incorporated poly(N-isopropylacrylamide) (PNIPAAm) hydrogel was synthesized as a photo-thermo-responsive material in our phototropic system. The Au NPs generate heat from the incident via plasmonic resonance to induce a volume phase change of the thermo-responsive hydrogel PNIPAAm. PNIPAAm shrinks or swells at temperature above or below 32°C. Upon irradiation, the Au NP-PNIPAAm micropillar actuates, specifically bending toward the incident light and precisely following the varying incident angle. Swelling ratio tests, bending angle tests with a static incident light and bending tests with varying angles were carried out on hydrogel samples with varying Au NP concentrations. Swelling ratios ranging from 1.45 to 2.9 were recorded for pure hydrogel samples and samples with very low Au NP concentrations. Swelling ratios of 2.41 and 3.37 were calculated for samples with low and high concentrations of Au NPs, respectively. A bending of up to 88° was observed in Au NP-hydrogel pillars with a low Au NP concentration with a 90° incident angle. The light tracking performance was assessed by the slope of the pillar Bending angle (response angle) vs. Incident light angle plot. A slope of 1 indicates ideal tracking with top of the pillar being normal to the incident light, maximizing the photon

  5. Proinflammatory signaling regulates hematopoietic stem cell emergence

    PubMed Central

    Espín-Palazón, Raquel; Stachura, David L.; Campbell, Clyde A.; García-Moreno, Diana; Cid, Natasha Del; Kim, Albert D.; Candel, Sergio; Meseguer, José; Mulero, Victoriano; Traver, David

    2014-01-01

    Summary Hematopoietic stem cells (HSCs) underlie the production of blood and immune cells for the lifetime of an organism. In vertebrate embryos, HSCs arise from the unique transdifferentiation of hemogenic endothelium comprising the floor of the dorsal aorta during a brief developmental window. To date, this process has not been replicated in vitro from pluripotent precursors, partly because the full complement of required signaling inputs remains to be determined. Here, we show that TNFR2 via TNFα activates the Notch and NF-κB signaling pathways to establish HSC fate, indicating a requirement for inflammatory signaling in HSC generation. We determine that primitive neutrophils are the major source of TNFα, assigning a role for transient innate immune cells in establishing the HSC program. These results demonstrate that proinflammatory signaling, in the absence of infection, is utilized by the developing embryo to generate the lineal precursors of the adult hematopoietic system. PMID:25416946

  6. Regulation of cholesterol biosynthesis and cancer signaling

    PubMed Central

    Gorin, Andrey; Gabitova, Linara; Astsaturov, Igor

    2012-01-01

    Cellular growth is highly dependent on sustained production of lipids. Sterol composition of cellular membranes determines multiple biochemical and biophysical properties of membrane-based processes including vesicle traffic, receptor signaling and assembly of protein complexes. Lipid biogenesis has become an attractive biochemical target in cancer given the high level of dependency on sterols and lipids in a cancer cell. This review summarized the current knowledge of mechanisms of interaction between the metabolism of sterols and receptor signaling. PMID:22824431

  7. Red Light Enhancement of the Phototropic Response of Etiolated Pea Stems 1

    PubMed Central

    Kang, Bin G.; Burg, Stanley P.

    1974-01-01

    In the subapical third internode of 7-day-old etiolated pea seedlings, the magnitude of phototropic curvature in response to continuous unilateral blue illumination is increased when seedlings are pre-exposed to brief red light. The effect of red light on blue light-induced phototropism becomes manifest maximally 4 or more hours after red illumination, and closely parallels the promotive action of red light on the elongation of the subapical cells. Ethylene inhibits phototropic curvature by an inhibitory action on cell elongation without affecting the lateral transport of auxin. Pretreatment of seedlings with gibberellic acid causes increased phototropic curvature, but experiments using 14C-gibberellic acid indicate that gibberellic acid itself is not laterally transported under phototropic stimuli. Neither red light nor gibberellic acid treatment has any promotive effect on blue light-induced lateral transport of 3H-indoleacetic acid. Under conditions where phototropic curvature is increased by red light treatment, low concentrations of indoleacetic acid applied in lanolin paste to the apical cut end of the seedling cause an increased elongation response in subapical tissue. This could explain increased phototropic curvature caused by red light treatment. PMID:16658721

  8. Red light enhancement of the phototropic response of etiolated pea stems.

    PubMed

    Kang, B G; Burg, S P

    1974-03-01

    In the subapical third internode of 7-day-old etiolated pea seedlings, the magnitude of phototropic curvature in response to continuous unilateral blue illumination is increased when seedlings are pre-exposed to brief red light. The effect of red light on blue light-induced phototropism becomes manifest maximally 4 or more hours after red illumination, and closely parallels the promotive action of red light on the elongation of the subapical cells. Ethylene inhibits phototropic curvature by an inhibitory action on cell elongation without affecting the lateral transport of auxin. Pretreatment of seedlings with gibberellic acid causes increased phototropic curvature, but experiments using (14)C-gibberellic acid indicate that gibberellic acid itself is not laterally transported under phototropic stimuli. Neither red light nor gibberellic acid treatment has any promotive effect on blue light-induced lateral transport of (3)H-indoleacetic acid. Under conditions where phototropic curvature is increased by red light treatment, low concentrations of indoleacetic acid applied in lanolin paste to the apical cut end of the seedling cause an increased elongation response in subapical tissue. This could explain increased phototropic curvature caused by red light treatment. PMID:16658721

  9. A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals.

    PubMed

    Davière, Jean-Michel; Achard, Patrick

    2016-01-01

    Plant phenotypic plasticity is controlled by diverse hormone pathways, which integrate and convey information from multiple developmental and environmental signals. Moreover, in plants many processes such as growth, development, and defense are regulated in similar ways by multiple hormones. Among them, gibberellins (GAs) are phytohormones with pleiotropic actions, regulating various growth processes throughout the plant life cycle. Previous work has revealed extensive interplay between GAs and other hormones, but the molecular mechanism became apparent only recently. Molecular and physiological studies have demonstrated that DELLA proteins, considered as master negative regulators of GA signaling, integrate multiple hormone signaling pathways through physical interactions with transcription factors or regulatory proteins from different families. In this review, we summarize the latest progress in GA signaling and its direct crosstalk with the main phytohormone signaling, emphasizing the multifaceted role of DELLA proteins with key components of major hormone signaling pathways.

  10. Kinase active Misshapen regulates Notch signaling in Drosophila melanogaster.

    PubMed

    Mishra, Abhinava K; Sachan, Nalani; Mutsuddi, Mousumi; Mukherjee, Ashim

    2015-11-15

    Notch signaling pathway represents a principal cellular communication system that plays a pivotal role during development of metazoans. Drosophila misshapen (msn) encodes a protein kinase, which is related to the budding yeast Ste20p (sterile 20 protein) kinase. In a genetic screen, using candidate gene approach to identify novel kinases involved in Notch signaling, we identified msn as a novel regulator of Notch signaling. Data presented here suggest that overexpression of kinase active form of Msn exhibits phenotypes similar to Notch loss-of-function condition and msn genetically interacts with components of Notch signaling pathway. Kinase active form of Msn associates with Notch receptor and regulate its signaling activity. We further show that kinase active Misshapen leads to accumulation of membrane-tethered form of Notch. Moreover, activated Msn also depletes Armadillo and DE-Cadherin from adherens junctions. Thus, this study provides a yet unknown mode of regulation of Notch signaling by Misshapen. PMID:26431585

  11. Neurotrophin signaling endosomes: biogenesis, regulation, and functions.

    PubMed

    Yamashita, Naoya; Kuruvilla, Rejji

    2016-08-01

    In the nervous system, communication between neurons and their post-synaptic target cells is critical for the formation, refinement and maintenance of functional neuronal connections. Diffusible signals secreted by target tissues, exemplified by the family of neurotrophins, impinge on nerve terminals to influence diverse developmental events including neuronal survival and axonal growth. Key mechanisms of action of target-derived neurotrophins include the cell biological processes of endocytosis and retrograde trafficking of their Trk receptors from growth cones to cell bodies. In this review, we summarize the molecular mechanisms underlying this endosome-mediated signaling, focusing on the instructive role of neurotrophin signaling itself in directing its own trafficking. Recent studies have linked impaired neurotrophin trafficking to neurodevelopmental disorders, highlighting the relevance of neurotrophin endosomes in human health. PMID:27327126

  12. Role of regulator of G protein signaling proteins in bone

    PubMed Central

    Keinan, David; Yang, Shuying; Cohen, Robert E.; Yuan, Xue; Liu, Tongjun; Li, Yi-Ping

    2014-01-01

    Regulators of G protein signaling (RGS) proteins are a family with more than 30 proteins that all contain an RGS domain. In the past decade, increasing evidence has indicated that RGS proteins play crucial roles in the regulation of G protein coupling receptors (GPCR), G proteins, and calcium signaling during cell proliferation, migration, and differentiation in a variety of tissues. In bone, those proteins modulate bone development and remodeling by influencing various signaling pathways such as GPCR-G protein signaling, Wnt, calcium oscillations and PTH. This review summarizes the recent advances in the understanding of the regulation of RGS genes expression, as well as the functions and mechanisms of RGS proteins, especially in regulating GPCR-G protein signaling, Wnt signaling, calcium oscillations signaling and PTH signaling during bone development and remodeling. This review also highlights the regulation of different RGS proteins in osteoblasts, chondrocytes and osteoclasts. The knowledge from the recent advances of RGS study summarized in the review would provide the insights into new therapies for bone diseases. PMID:24389209

  13. Spectrin regulates Hippo signaling by modulating cortical actomyosin activity

    PubMed Central

    Deng, Hua; Wang, Wei; Yu, Jianzhong; Zheng, Yonggang; Qing, Yun; Pan, Duojia

    2015-01-01

    The Hippo pathway controls tissue growth through a core kinase cascade that impinges on the transcription of growth-regulatory genes. Understanding how this pathway is regulated in development remains a major challenge. Recent studies suggested that Hippo signaling can be modulated by cytoskeletal tension through a Rok-myosin II pathway. How cytoskeletal tension is regulated or its relationship to the other known upstream regulators of the Hippo pathway remains poorly defined. In this study, we identify spectrin, a contractile protein at the cytoskeleton-membrane interface, as an upstream regulator of the Hippo signaling pathway. We show that, in contrast to canonical upstream regulators such as Crumbs, Kibra, Expanded, and Merlin, spectrin regulates Hippo signaling in a distinct way by modulating cortical actomyosin activity through non-muscle myosin II. These results uncover an essential mediator of Hippo signaling by cytoskeleton tension, providing a new entry point to dissecting how mechanical signals regulate Hippo signaling in living tissues. DOI: http://dx.doi.org/10.7554/eLife.06567.001 PMID:25826608

  14. Signal regulators of systemic acquired resistance

    PubMed Central

    Gao, Qing-Ming; Zhu, Shifeng; Kachroo, Pradeep; Kachroo, Aardra

    2015-01-01

    Salicylic acid (SA) is an important phytohormone that plays a vital role in a number of physiological responses, including plant defense. The last two decades have witnessed a number of breakthroughs related to biosynthesis, transport, perception and signaling mediated by SA. These findings demonstrate that SA plays a crictical role in both local and systemic defense responses. Systemic acquired resistance (SAR) is one such SA-dependent response. SAR is a long distance signaling mechanism that provides broad spectrum and long-lasting resistance to secondary infections throughout the plant. This unique feature makes SAR a highly desirable trait in crop production. This review summarizes the recent advances in the role of SA in SAR and discusses its relationship to other SAR inducers. PMID:25918514

  15. Roles for Regulator of G Protein Signaling Proteins in Synaptic Signaling and Plasticity.

    PubMed

    Gerber, Kyle J; Squires, Katherine E; Hepler, John R

    2016-02-01

    The regulator of G protein signaling (RGS) family of proteins serves critical roles in G protein-coupled receptor (GPCR) and heterotrimeric G protein signal transduction. RGS proteins are best understood as negative regulators of GPCR/G protein signaling. They achieve this by acting as GTPase activating proteins (GAPs) for Gα subunits and accelerating the turnoff of G protein signaling. Many RGS proteins also bind additional signaling partners that either regulate their functions or enable them to regulate other important signaling events. At neuronal synapses, GPCRs, G proteins, and RGS proteins work in coordination to regulate key aspects of neurotransmitter release, synaptic transmission, and synaptic plasticity, which are necessary for central nervous system physiology and behavior. Accumulating evidence has revealed key roles for specific RGS proteins in multiple signaling pathways at neuronal synapses, regulating both pre- and postsynaptic signaling events and synaptic plasticity. Here, we review and highlight the current knowledge of specific RGS proteins (RGS2, RGS4, RGS7, RGS9-2, and RGS14) that have been clearly demonstrated to serve critical roles in modulating synaptic signaling and plasticity throughout the brain, and we consider their potential as future therapeutic targets.

  16. Knowing when to grow: signals regulating bud dormancy.

    PubMed

    Horvath, David P; Anderson, James V; Chao, Wun S; Foley, Michael E

    2003-11-01

    Dormancy regulation in vegetative buds is a complex process necessary for plant survival, development and architecture. Our understanding of and ability to manipulate these processes are crucial for increasing the yield and availability of much of the world's food. In many cases, release of dormancy results in increased cell division and changes in developmental programs. Much can be learned about dormancy regulation by identifying interactions of signals in these crucial processes. Internal signals such as hormones and sugar, and external signals such as light act through specific, overlapping signal transduction pathways to regulate endo-, eco- and paradormancy. Epigenetic-like regulation of endodormancy suggests a possible role for chromatin remodeling similar to that known for the vernalization responses during flowering.

  17. Regulation of Wnt/β-Catenin Signaling by Protein Kinases

    PubMed Central

    Verheyen, Esther M.; Gottardi, Cara J.

    2011-01-01

    The Wnt/β-catenin signaling pathway plays essential roles during development and adult tissue homeostasis. Inappropriate activation of the pathway can result in a variety of malignancies. Protein kinases have emerged as key regulators at multiple steps of the Wnt pathway. In this review, we present a synthesis covering the latest information on how Wnt signaling is regulated by diverse protein kinases. PMID:19623618

  18. IAPs: Modular regulators of cell signalling.

    PubMed

    Budhidarmo, Rhesa; Day, Catherine L

    2015-03-01

    Members of the inhibitor of apoptosis (IAP) family are characterised by the presence of at least one baculoviral IAP repeat (BIR) domain. However, during the course of evolution, other globular modules have been adopted to perform distinct functions. Consequently, the IAP family is now recognised as consisting of members that perform critical functions in different aspects of cellular regulation. In this review, the structural diversity present within the IAP protein family is presented. Known structures of individual domains are discussed and their properties are described in light of recent data. In particular the plasticity of BIR domains and their ability to accommodate different binding partners is highlighted, as well as the importance of communication between the domains in regulating the covalent attachment of ubiquitin.

  19. Mechanism of specific inhibition of phototropism by phenylacetic acid in corn seedling

    SciTech Connect

    Vierstra, R.D.; Poff, K.L.

    1981-05-01

    Using geotropism as a control for phototropism, compounds similar to phenylacetic acid that phototreact with flavins and/or have auxin-like activity were examined for their ability to specifically inhibit phototropism in corn seedlings using geotropism as a control. Results using indole-3-acetic acid, napthalene-1-acetic acid, naphthalene-2-acetic acid, phenylacetic acid, and ..beta..-phenylpyruvic acid suggest that such compounds will specifically inhibit phototropism primarily because of their photoreactivity with flavins and not their auxin activity. In addition, the in vivo concentration of phenylacetic acid required to induce specificity was well below that required to stimulate coleoptile growth. Estimates of the percentage of photoreceptor pigment inactivated by phenylacetic acid (>10%) suggest that phenylacetic acid could be used to photoaffinity label the flavoprotein involved in corn seedling phototropism.

  20. Mutants of Arabidopsis thaliana with Decreased Amplitude in Their Phototropic Response 1

    PubMed Central

    Khurana, Jitendra P.; Ren, Zhangling; Steinitz, Benjamin; Parks, Brian; Best, Thérèse R.; Poff, Kenneth L.

    1989-01-01

    Two mutants of Arabidopsis thaliana have been identified with decreased phototropism to 450-nanometer light. Fluence-response relationships for these strains (ZR8 and ZR19) to single and multiple flashes of light show thresholds, curve shapes, and fluence for maximum curvature in `first positive' phototropism which are the same as those of the wild type. Similarly, there is no alteration from the wild type in the kinetics of curvature or in the optimum dark period separating sequential flashes in a multiple flash regimen. In addition, in both strains, gravitropism is decreased compared to the wild type by an amount which is comparable to the decrease in phototropism. Based on reciprocal backcrosses, it appears that the alteration is due to a recessive nuclear mutation. It is suggested that ZR8 and ZR19 represent alterations in some step analogous to an amplifier, downstream of the photoreceptor pigment, and common to both phototropism and gravitropism. PMID:11537461

  1. Phosphatase and Tensin Homologue: Novel Regulation by Developmental Signaling

    PubMed Central

    Jerde, Travis J.

    2015-01-01

    Phosphatase and tensin homologue (PTEN) is a critical cell endogenous inhibitor of phosphoinositide signaling in mammalian cells. PTEN dephosphorylates phosphoinositide trisphosphate (PIP3), and by so doing PTEN has the function of negative regulation of Akt, thereby inhibiting this key intracellular signal transduction pathway. In numerous cell types, PTEN loss-of-function mutations result in unopposed Akt signaling, producing numerous effects on cells. Numerous reports exist regarding mutations in PTEN leading to unregulated Akt and human disease, most notably cancer. However, less is commonly known about nonmutational regulation of PTEN. This review focuses on an emerging literature on the regulation of PTEN at the transcriptional, posttranscriptional, translational, and posttranslational levels. Specifically, a focus is placed on the role developmental signaling pathways play in PTEN regulation; this includes insulin-like growth factor, NOTCH, transforming growth factor, bone morphogenetic protein, wnt, and hedgehog signaling. The regulation of PTEN by developmental mediators affects critical biological processes including neuronal and organ development, stem cell maintenance, cell cycle regulation, inflammation, response to hypoxia, repair and recovery, and cell death and survival. Perturbations of PTEN regulation consequently lead to human diseases such as cancer, chronic inflammatory syndromes, developmental abnormalities, diabetes, and neurodegeneration. PMID:26339505

  2. PHOTOTROPIC CIRCUS MOVEMENTS OF LIMAX AS AFFECTED BY TEMPERATURE.

    PubMed

    Crozier, W J; Federighi, H

    1924-09-20

    1. The theory of animal phototropism requires for particular instances a knowledge of the action of light as exerted through each of two bilaterally located receptors functioning singly. The measurement of "circus movements" which this involves must be concerned with such aspects of the reaction as are demonstrably dependent upon the effect of light. 2. The negatively phototropic slug Limax maximus exhibits very definite and continuous circus movement under vertical illumination when one eye-tentacle has been removed. The amplitude of the circling movement, measured in degrees deflection per cm. of path as an index of maintained differential tonus, is intimately related to the concurrent velocity of creeping. Analysis of the orienting mechanism is facilitated by the fact that in gasteropods such as Limax the animal creeps by means of the pedal organ, but orients (turns) by a totally distinct set of muscles in the dorsal and lateral regions of the body wall. 3. The expression of the phototropic orienting tendency, with illumination constant, is greatly influenced by the temperature. Above a zone centering at 15 degrees , the amplitude of turning (degrees per cm. of path) is determined by the temperature in accurate agreement with Arrhenius' equation for chemical reaction velocity, with the critical increment micro = 16,820; and the rate of creeping is progressively less as the temperature rises, micro for its reciprocal being 10,900. Below 15 degrees , the velocity of creeping becomes less the the lower the temperature, micro being again 16,800; while the amplitude of orientation is limited merely by the velocity of creeping, its reciprocal being directly proportional thereto. 4. Measurements of Limax circus movements in terms of turning deflection as function of light intensity must therefore be carried out at a temperature well above 15 degrees . 5. The analysis provides a gross physical model of how an end-result may be influenced by temperature according to the

  3. Regulation of insect behavior via the insulin-signaling pathway

    PubMed Central

    Erion, Renske; Sehgal, Amita

    2013-01-01

    The insulin/insulin-like growth factor signaling (IIS) pathway is well-established as a critical regulator of growth and metabolic homeostasis across the animal kingdom. Insulin-like peptides (ILPs), the functional analogs of mammalian insulin, were initially discovered in the silkmoth Bombyx mori and subsequently identified in many other insect species. Initial research focused on the role of insulin signaling in metabolism, cell proliferation, development, reproduction and aging. More recently however, increasing attention has been given to the role of insulin in the regulation of neuronal function and behavior. Here we review the role of insulin signaling in two specific insect behaviors: feeding and locomotion. PMID:24348428

  4. Regulation of Hedgehog Signalling Inside and Outside the Cell

    PubMed Central

    Ramsbottom, Simon A.; Pownall, Mary E.

    2016-01-01

    The hedgehog (Hh) signalling pathway is conserved throughout metazoans and plays an important regulatory role in both embryonic development and adult homeostasis. Many levels of regulation exist that control the release, reception, and interpretation of the hedgehog signal. The fatty nature of the Shh ligand means that it tends to associate tightly with the cell membrane, and yet it is known to act as a morphogen that diffuses to elicit pattern formation. Heparan sulfate proteoglycans (HSPGs) play a major role in the regulation of Hh distribution outside the cell. Inside the cell, the primary cilium provides an important hub for processing the Hh signal in vertebrates. This review will summarise the current understanding of how the Hh pathway is regulated from ligand production, release, and diffusion, through to signal reception and intracellular transduction. PMID:27547735

  5. Aberrant regulation of Wnt signaling in hepatocellular carcinoma

    PubMed Central

    Liu, Li-Juan; Xie, Shui-Xiang; Chen, Ya-Tang; Xue, Jing-Ling; Zhang, Chuan-Jie; Zhu, Fan

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Several signaling pathways, including the wingless/int-1 (Wnt) signaling pathway, have been shown to be commonly activated in HCC. The Wnt signaling pathway can be triggered via both catenin β1 (CTNNB1)-dependent (also known as “canonical”) and CTNNB1-independent (often referred to as “non-canonical”) pathways. Specifically, the canonical Wnt pathway is one of those most frequently reported in HCC. Aberrant regulation from three complexes (the cell-surface receptor complex, the cytoplasmic destruction complex and the nuclear CTNNB1/T-cell-specific transcription factor/lymphoid enhancer binding factor transcriptional complex) are all involved in HCC. Although the non-canonical Wnt pathway is rarely reported, two main non-canonical pathways, Wnt/planar cell polarity pathway and Wnt/Ca2+ pathway, participate in the regulation of hepatocarcinogenesis. Interestingly, the canonical Wnt pathway is antagonized by non-canonical Wnt signaling in HCC. Moreover, other signaling cascades have also been demonstrated to regulate the Wnt pathway through crosstalk in HCC pathogenesis. This review provides a perspective on the emerging evidence that the aberrant regulation of Wnt signaling is a critical mechanism for the development of HCC. Furthermore, crosstalk between different signaling pathways might be conducive to the development of novel molecular targets of HCC. PMID:27672271

  6. Regulation of Bone Morphogenetic Protein Signaling by ADP-ribosylation*

    PubMed Central

    Watanabe, Yukihide; Papoutsoglou, Panagiotis; Maturi, Varun; Tsubakihara, Yutaro; Hottiger, Michael O.; Heldin, Carl-Henrik; Moustakas, Aristidis

    2016-01-01

    We previously established a mechanism of negative regulation of transforming growth factor β signaling mediated by the nuclear ADP-ribosylating enzyme poly-(ADP-ribose) polymerase 1 (PARP1) and the deribosylating enzyme poly-(ADP-ribose) glycohydrolase (PARG), which dynamically regulate ADP-ribosylation of Smad3 and Smad4, two central signaling proteins of the pathway. Here we demonstrate that the bone morphogenetic protein (BMP) pathway can also be regulated by the opposing actions of PARP1 and PARG. PARG positively contributes to BMP signaling and forms physical complexes with Smad5 and Smad4. The positive role PARG plays during BMP signaling can be neutralized by PARP1, as demonstrated by experiments where PARG and PARP1 are simultaneously silenced. In contrast to PARG, ectopic expression of PARP1 suppresses BMP signaling, whereas silencing of endogenous PARP1 enhances signaling and BMP-induced differentiation. The two major Smad proteins of the BMP pathway, Smad1 and Smad5, interact with PARP1 and can be ADP-ribosylated in vitro, whereas PARG causes deribosylation. The overall outcome of this mode of regulation of BMP signal transduction provides a fine-tuning mechanism based on the two major enzymes that control cellular ADP-ribosylation. PMID:27129221

  7. Aberrant regulation of Wnt signaling in hepatocellular carcinoma.

    PubMed

    Liu, Li-Juan; Xie, Shui-Xiang; Chen, Ya-Tang; Xue, Jing-Ling; Zhang, Chuan-Jie; Zhu, Fan

    2016-09-01

    Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Several signaling pathways, including the wingless/int-1 (Wnt) signaling pathway, have been shown to be commonly activated in HCC. The Wnt signaling pathway can be triggered via both catenin β1 (CTNNB1)-dependent (also known as "canonical") and CTNNB1-independent (often referred to as "non-canonical") pathways. Specifically, the canonical Wnt pathway is one of those most frequently reported in HCC. Aberrant regulation from three complexes (the cell-surface receptor complex, the cytoplasmic destruction complex and the nuclear CTNNB1/T-cell-specific transcription factor/lymphoid enhancer binding factor transcriptional complex) are all involved in HCC. Although the non-canonical Wnt pathway is rarely reported, two main non-canonical pathways, Wnt/planar cell polarity pathway and Wnt/Ca(2+) pathway, participate in the regulation of hepatocarcinogenesis. Interestingly, the canonical Wnt pathway is antagonized by non-canonical Wnt signaling in HCC. Moreover, other signaling cascades have also been demonstrated to regulate the Wnt pathway through crosstalk in HCC pathogenesis. This review provides a perspective on the emerging evidence that the aberrant regulation of Wnt signaling is a critical mechanism for the development of HCC. Furthermore, crosstalk between different signaling pathways might be conducive to the development of novel molecular targets of HCC. PMID:27672271

  8. Aberrant regulation of Wnt signaling in hepatocellular carcinoma

    PubMed Central

    Liu, Li-Juan; Xie, Shui-Xiang; Chen, Ya-Tang; Xue, Jing-Ling; Zhang, Chuan-Jie; Zhu, Fan

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Several signaling pathways, including the wingless/int-1 (Wnt) signaling pathway, have been shown to be commonly activated in HCC. The Wnt signaling pathway can be triggered via both catenin β1 (CTNNB1)-dependent (also known as “canonical”) and CTNNB1-independent (often referred to as “non-canonical”) pathways. Specifically, the canonical Wnt pathway is one of those most frequently reported in HCC. Aberrant regulation from three complexes (the cell-surface receptor complex, the cytoplasmic destruction complex and the nuclear CTNNB1/T-cell-specific transcription factor/lymphoid enhancer binding factor transcriptional complex) are all involved in HCC. Although the non-canonical Wnt pathway is rarely reported, two main non-canonical pathways, Wnt/planar cell polarity pathway and Wnt/Ca2+ pathway, participate in the regulation of hepatocarcinogenesis. Interestingly, the canonical Wnt pathway is antagonized by non-canonical Wnt signaling in HCC. Moreover, other signaling cascades have also been demonstrated to regulate the Wnt pathway through crosstalk in HCC pathogenesis. This review provides a perspective on the emerging evidence that the aberrant regulation of Wnt signaling is a critical mechanism for the development of HCC. Furthermore, crosstalk between different signaling pathways might be conducive to the development of novel molecular targets of HCC.

  9. Feedback Regulation of Kinase Signaling Pathways by AREs and GREs

    PubMed Central

    Vlasova-St. Louis, Irina; Bohjanen, Paul R.

    2016-01-01

    In response to environmental signals, kinases phosphorylate numerous proteins, including RNA-binding proteins such as the AU-rich element (ARE) binding proteins, and the GU-rich element (GRE) binding proteins. Posttranslational modifications of these proteins lead to a significant changes in the abundance of target mRNAs, and affect gene expression during cellular activation, proliferation, and stress responses. In this review, we summarize the effect of phosphorylation on the function of ARE-binding proteins ZFP36 and ELAVL1 and the GRE-binding protein CELF1. The networks of target mRNAs that these proteins bind and regulate include transcripts encoding kinases and kinase signaling pathways (KSP) components. Thus, kinase signaling pathways are involved in feedback regulation, whereby kinases regulate RNA-binding proteins that subsequently regulate mRNA stability of ARE- or GRE-containing transcripts that encode components of KSP. PMID:26821046

  10. Oscillatory Dynamics of the Extracellular Signal-regulated Kinase Pathway

    SciTech Connect

    Shankaran, Harish; Wiley, H. S.

    2010-12-01

    The extracellular signal-regulated kinase (ERK) pathway is a central signaling pathway in development and disease and is regulated by multiple negative and positive feedback loops. Recent studies have shown negative feedback from ERK to upstream regulators can give rise to biochemical oscillations with a periodicity of between 15-30 minutes. Feedback due to the stimulated transcription of negative regulators of the ERK pathway can also give rise to transcriptional oscillations with a periodicity of 1-2h. The biological significance of these oscillations is not clear, but recent evidence suggests that transcriptional oscillations participate in developmental processes, such as somite formation. Biochemical oscillations are more enigmatic, but could provide a mechanism for encoding different types of inputs into a common signaling pathway.

  11. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  12. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  13. The roles of signaling pathways in regulating kidney development.

    PubMed

    Xiao, Qiu; Rongfei, Wei; Lingqiang, Zhang; Fuchu, He

    2015-01-01

    The development of mammalian kidney is a complex process. The reciprocal inductive interactions between epithelial cells and metanephric mesenchymal cells determine cell fates including proliferation, growth, apoptosis, and eventually contribute to the formation of an intact kidney. Multiple signaling pathways, including the GDNF/Ret, Wnt and BMP signaling pathways, have been shown to regulate the development of kidney. A myriad of signaling pathways and their cross-talks form a precise spatiotemporal regulatory network, which ensures the kidney to be properly organized. In this review, we summarize the physiological process of kidney development as well as the involved signaling pathways and their interplay.

  14. Dose-Response Curves for Radish Seedling Phototropism 12

    PubMed Central

    Everett, Marylee

    1974-01-01

    Radish seedlings (Raphanus sativus L.) were grown for 4 days in complete darkness, or in white light, or for 3 days in darkness followed by 1 day of red light. Phototropic dose-response curves for the seedlings grown in these three ways were determined with 460-nm light. The dark-grown and red light-treated seedlings responded with positive curvatures of no more than 10° to energy doses in the first positive range and with larger positive curvatures in the second positive dose range. No indifferent or negative curvature was seen with the light intensity used. White light-grown seedlings did not respond to first positive energy doses, but responded as strongly to second positive doses as the other types of seedlings. PMID:16658864

  15. Signaling and transcriptional regulation in osteoblast commitment and differentiation

    PubMed Central

    Huang, Wei; Yang, Shuying; Shao, Jianzhong; Li, Yi-Ping

    2013-01-01

    The major event that triggers osteogenesis is the transition of mesenchymal stem cells into bone forming, differentiating osteoblast cells. Osteoblast differentiation is the primary component of bone formation, exemplified by the synthesis, deposition and mineralization of extracellular matrix. Although not well understood, osteoblast differentiation from mesenchymal stem cells is a well-orchestrated process. Recent advances in molecular and genetic studies using gene targeting in mouse enable a better understanding of the multiple factors and signaling networks that control the differentiation process at a molecular level. Osteoblast commitment and differentiation are controlled by complex activities involving signal transduction and transcriptional regulation of gene expression. We review Wnt signaling pathway and Runx2 regulation network, which are critical for osteoblast differentiation. Many other factors and signaling pathways have been implicated in regulation of osteoblast differentiation in a network manner, such as the factors Osterix, ATF4, and SATB2 and the TGF-beta, Hedgehog, FGF, ephrin, and sympathetic signaling pathways. This review summarizes the recent advances in the studies of signaling transduction pathways and transcriptional regulation of osteoblast cell lineage commitment and differentiation. The knowledge of osteoblast commitment and differentiation should be applied towards the development of new diagnostic and therapeutic alternatives for human bone diseases. PMID:17485283

  16. New Insights into How Trafficking Regulates T Cell Receptor Signaling

    PubMed Central

    Lou, Jieqiong; Rossy, Jérémie; Deng, Qiji; Pageon, Sophie V.; Gaus, Katharina

    2016-01-01

    There is emerging evidence that exocytosis plays an important role in regulating T cell receptor (TCR) signaling. The trafficking molecules involved in lytic granule (LG) secretion in cytotoxic T lymphocytes (CTL) have been well-studied due to the immune disorder known as familial hemophagocytic lymphohistiocytosis (FHLH). However, the knowledge of trafficking machineries regulating the exocytosis of receptors and signaling molecules remains quite limited. In this review, we summarize the reported trafficking molecules involved in the transport of the TCR and downstream signaling molecules to the cell surface. By combining this information with the known knowledge of LG exocytosis and general exocytic trafficking machinery, we attempt to draw a more complete picture of how the TCR signaling network and exocytic trafficking matrix are interconnected to facilitate T cell activation. This also highlights how membrane compartmentalization facilitates the spatiotemporal organization of cellular responses that are essential for immune functions. PMID:27508206

  17. Hedgehog signaling regulates liver sinusoidal endothelial cell capillarisation

    PubMed Central

    Xie, Guanhua; Choi, Steve S.; Syn, Wing-Kin; Michelotti, Gregory A.; Swiderska-Syn, Marzena; Karaca, Gamze; Chan, Isaac S.; Chen, Yuping; Diehl, Anna Mae

    2013-01-01

    Objective Vascular remodeling during liver damage involves loss of healthy liver sinusoidal endothelial cell (LSEC) phenotype via capillarisation. Hedgehog (Hh) signaling regulates vascular development and increases during liver injury. Therefore, we examined its role in capillarisation. Design Primary LSEC were cultured for 5 days to induce capillarisation. Pharmacologic, antibody-mediated, and genetic approaches were used to manipulate Hh signaling. Effects on mRNA and protein expression of Hh-regulated genes and capillarisation markers were evaluated by qRT-PCR and immunoblot. Changes in LSEC function were assessed by migration and tube forming assay, and gain/loss of fenestrae was examined by electron microscopy. Mice with acute or chronic liver injury were treated with Hh inhibitors; effects on capillarisation were assessed by immunohistochemistry. Results Freshly isolated LSEC expressed Hh ligands, Hh receptors, and Hh ligand antagonist Hhip. Capillarisation was accompanied by repression of Hhip and increased expression of Hh-regulated genes. Treatment with Hh agonist further induced expression of Hh ligands and Hh-regulated genes, and up-regulated capillarisation-associated genes; whereas Hh signaling antagonist or Hh ligand neutralizing antibody each repressed expression of Hh target genes and capillarisation markers. LSEC isolated from SmoloxP/loxP transgenic mice that had been infected with adenovirus expressing Cre-recombinase to delete Smoothened showed over 75% knockdown of Smoothened. During culture, Smoothened-deficient LSEC had inhibited Hh signaling, less induction of capillarisation-associated genes, and retention of fenestrae. In mice with injured livers, inhibiting Hh signaling prevented capillarisation. Conclusions LSEC produce and respond to Hh ligands, and use Hh signaling to regulate complex phenotypic changes that occur during capillarisation. PMID:22362915

  18. Endothelial cell expression of haemoglobin α regulates nitric oxide signalling.

    PubMed

    Straub, Adam C; Lohman, Alexander W; Billaud, Marie; Johnstone, Scott R; Dwyer, Scott T; Lee, Monica Y; Bortz, Pamela Schoppee; Best, Angela K; Columbus, Linda; Gaston, Benjamin; Isakson, Brant E

    2012-11-15

    Models of unregulated nitric oxide (NO) diffusion do not consistently account for the biochemistry of NO synthase (NOS)-dependent signalling in many cell systems. For example, endothelial NOS controls blood pressure, blood flow and oxygen delivery through its effect on vascular smooth muscle tone, but the regulation of these processes is not adequately explained by simple NO diffusion from endothelium to smooth muscle. Here we report a new model for the regulation of NO signalling by demonstrating that haemoglobin (Hb) α (encoded by the HBA1 and HBA2 genes in humans) is expressed in human and mouse arterial endothelial cells and enriched at the myoendothelial junction, where it regulates the effects of NO on vascular reactivity. Notably, this function is unique to Hb α and is abrogated by its genetic depletion. Mechanistically, endothelial Hb α haem iron in the Fe(3+) state permits NO signalling, and this signalling is shut off when Hb α is reduced to the Fe(2+) state by endothelial cytochrome b5 reductase 3 (CYB5R3, also known as diaphorase 1). Genetic and pharmacological inhibition of CYB5R3 increases NO bioactivity in small arteries. These data reveal a new mechanism by which the regulation of the intracellular Hb α oxidation state controls NOS signalling in non-erythroid cells. This model may be relevant to haem-containing globins in a broad range of NOS-containing somatic cells. PMID:23123858

  19. PTP-Pez: a novel regulator of TGFbeta signaling.

    PubMed

    Wyatt, Leila; Khew-Goodall, Yeesim

    2008-08-01

    The TGFbetas are a family of pleiotropic cytokines that mediate diverse effects including the regulation of cell cycle progression, apoptosis, tissue remodelling and epithelial-mesenchymal transition (EMT). These diverse effects allow the TGFbetas to play multiple and even opposing roles in different contexts during embryonal development, tissue homeostasis and cancer progression. We recently reported that the protein tyrosine phosphatase Pez is a novel inducer of TGFbeta signaling, regulating EMT and organogenesis in developing zebrafish embryos, and leading to TGFbeta-mediated EMT when overexpressed in vitro in epithelial MDCK cells. A number of mutations in Pez have been shown to be associated with breast and colorectal cancers, although the effect of these mutations on Pez function and their contribution to cancer progression remains unclear. Our finding that Pez regulates TGFbeta signaling is therefore of interest not only in the context of identifying a novel upstream regulator of TGFbeta signaling, but also in implicating the dysregulation of TGFbeta signaling as a possible link between Pez mutation and cancer progression. Here we discuss the implications of our research, in the context of dysregulation of TGFbeta signaling in cancer and other human pathologies. PMID:18677119

  20. Phototropism of Arabidopsis thaliana in microgravity and fractional gravity on the International Space Station.

    PubMed

    Kiss, John Z; Millar, Katherine D L; Edelmann, Richard E

    2012-08-01

    While there is a great deal of knowledge regarding plant growth and development in microgravity aboard orbiting spacecraft, there is little information available about these parameters in reduced or fractional gravity conditions (less than the nominal 1g on Earth). Thus, in these experiments using the European Modular Cultivation System on the International Space Station, we studied the interaction between phototropism and gravitropism in the WT and mutants of phytochrome A and B of Arabidopis thaliana. Fractional gravity and the 1 g control were provided by centrifuges in the spaceflight hardware, and unidirectional red and blue illumination followed a white light growth period in the time line of the space experiments. The existence of red-light-based positive phototropism in hypocotyls of seedlings that is mediated by phytochrome was confirmed in these microgravity experiments. Fractional gravity studies showed an attenuation of red-light-based phototropism in both roots and hypocotyls of seedlings occurring due to gravitational accelerations ranging from 0.l to 0.3 g. In contrast, blue-light negative phototropism in roots, which was enhanced in microgravity compared with the 1g control, showed a significant attenuation at 0.3 g. In addition, our studies suggest that the well-known red-light enhancement of blue-light-induced phototropism in hypocotyls is likely due to an indirect effect by the attenuation of gravitropism. However, red-light enhancement of root blue-light-based phototropism may occur via a more direct effect on the phototropism system itself, most likely through the phytochrome photoreceptors. To our knowledge, these experiments represent the first to examine the behavior of flowering plants in fractional or reduced gravity conditions. PMID:22481136

  1. Phototropism of Arabidopsis thaliana in microgravity and fractional gravity on the International Space Station.

    PubMed

    Kiss, John Z; Millar, Katherine D L; Edelmann, Richard E

    2012-08-01

    While there is a great deal of knowledge regarding plant growth and development in microgravity aboard orbiting spacecraft, there is little information available about these parameters in reduced or fractional gravity conditions (less than the nominal 1g on Earth). Thus, in these experiments using the European Modular Cultivation System on the International Space Station, we studied the interaction between phototropism and gravitropism in the WT and mutants of phytochrome A and B of Arabidopis thaliana. Fractional gravity and the 1 g control were provided by centrifuges in the spaceflight hardware, and unidirectional red and blue illumination followed a white light growth period in the time line of the space experiments. The existence of red-light-based positive phototropism in hypocotyls of seedlings that is mediated by phytochrome was confirmed in these microgravity experiments. Fractional gravity studies showed an attenuation of red-light-based phototropism in both roots and hypocotyls of seedlings occurring due to gravitational accelerations ranging from 0.l to 0.3 g. In contrast, blue-light negative phototropism in roots, which was enhanced in microgravity compared with the 1g control, showed a significant attenuation at 0.3 g. In addition, our studies suggest that the well-known red-light enhancement of blue-light-induced phototropism in hypocotyls is likely due to an indirect effect by the attenuation of gravitropism. However, red-light enhancement of root blue-light-based phototropism may occur via a more direct effect on the phototropism system itself, most likely through the phytochrome photoreceptors. To our knowledge, these experiments represent the first to examine the behavior of flowering plants in fractional or reduced gravity conditions.

  2. Regulation, Signaling, and Physiological Functions of G-Proteins.

    PubMed

    Syrovatkina, Viktoriya; Alegre, Kamela O; Dey, Raja; Huang, Xin-Yun

    2016-09-25

    Heterotrimeric guanine-nucleotide-binding regulatory proteins (G-proteins) mainly relay the information from G-protein-coupled receptors (GPCRs) on the plasma membrane to the inside of cells to regulate various biochemical functions. Depending on the targeted cell types, tissues, and organs, these signals modulate diverse physiological functions. The basic schemes of heterotrimeric G-proteins have been outlined. In this review, we briefly summarize what is known about the regulation, signaling, and physiological functions of G-proteins. We then focus on a few less explored areas such as the regulation of G-proteins by non-GPCRs and the physiological functions of G-proteins that cannot be easily explained by the known G-protein signaling pathways. There are new signaling pathways and physiological functions for G-proteins to be discovered and further interrogated. With the advancements in structural and computational biological techniques, we are closer to having a better understanding of how G-proteins are regulated and of the specificity of G-protein interactions with their regulators. PMID:27515397

  3. Regulation, Signaling, and Physiological Functions of G-Proteins.

    PubMed

    Syrovatkina, Viktoriya; Alegre, Kamela O; Dey, Raja; Huang, Xin-Yun

    2016-09-25

    Heterotrimeric guanine-nucleotide-binding regulatory proteins (G-proteins) mainly relay the information from G-protein-coupled receptors (GPCRs) on the plasma membrane to the inside of cells to regulate various biochemical functions. Depending on the targeted cell types, tissues, and organs, these signals modulate diverse physiological functions. The basic schemes of heterotrimeric G-proteins have been outlined. In this review, we briefly summarize what is known about the regulation, signaling, and physiological functions of G-proteins. We then focus on a few less explored areas such as the regulation of G-proteins by non-GPCRs and the physiological functions of G-proteins that cannot be easily explained by the known G-protein signaling pathways. There are new signaling pathways and physiological functions for G-proteins to be discovered and further interrogated. With the advancements in structural and computational biological techniques, we are closer to having a better understanding of how G-proteins are regulated and of the specificity of G-protein interactions with their regulators.

  4. PECAM-1 ligation negatively regulates TLR4 signaling in macrophages.

    PubMed

    Rui, Yuxiang; Liu, Xingguang; Li, Nan; Jiang, Yingming; Chen, Guoyou; Cao, Xuetao; Wang, Jianli

    2007-12-01

    Uncontrolled TLR4 signaling may induce excessive production of proinflammatory cytokines and lead to harmful inflammation; therefore, negative regulation of TLR4 signaling attracts much attention now. PECAM-1, a member of Ig-ITIM family, can mediate inhibitory signals in T cells and B cells. However, the role and the mechanisms of PECAM-1 in the regulation of TLR4-mediated LPS response in macrophages remain unclear. In this study, we demonstrate that PECAM-1 ligation with CD38-Fc fusion protein negatively regulates LPS-induced proinflammatory cytokine TNF-alpha, IL-6, and IFN-beta production by inhibiting JNK, NF-kappaB, and IFN regulatory factor 3 activation in macrophages. In addition, PECAM-1 ligation-recruited Src homology region 2 domain-containing phosphatase 1 (SHP-1) and Src homology region 2 domain-containing phosphatase 2 (SHP-2) may be involved in the inhibitory effect of PECAM-1 on TLR4 signaling. Consistently, silencing of PECAM-1 enhances the macrophage response to LPS stimulation. Taken together with the data that PECAM-1 is constitutively expressed in macrophages and its expression is up-regulated by LPS stimulation, PECAM-1 might function as a feedback negative regulator of LPS inflammatory response in macrophages. This study may provide a potential target for intervention of inflammatory diseases. PMID:18025177

  5. Large-signal transient response of a switching regulator

    NASA Astrophysics Data System (ADS)

    Harada, K.; Nabeshima, T.

    Analytical and experimental considerations on the large-signal transient-responses of the buck-type switching regulator are described. The behaviour under the large-signal operation is different from the case of small signal because of the saturation characteristics of the PWM feedback controller. The effect of this nonlinearity is analyzed by dividing its operation into three modes. As a result, the maximum peak values of the inrush current and output voltage are obtained analytically both for the start-up and for the step change of the load current.

  6. THEMIS: a critical TCR signal regulator for ligand discrimination.

    PubMed

    Gascoigne, Nicholas R J; Acuto, Oreste

    2015-04-01

    Genetic approaches identified THEMIS as a critical element driving positive selection of CD4(+)CD8(+) thymocytes towards maturation. THEMIS is expressed only in the T-cell lineage, and is recruited to the proximity of signaling T-cell antigen receptors (TCR) by association with the membrane scaffold LAT. However, its molecular role remained an enigma until recently. Conventionally positively-selected T-cells are lacking in THEMIS-deficient mice, leading to the initial hypothesis that THEMIS positively regulates TCR signaling. Recent data show that THEMIS deficiency increases rather than decreases TCR signaling, leading to augmented apoptosis. The finding that THEMIS is constitutively bound to the tyrosine phosphatases SHP1 or SHP2, provides a mechanism for THEMIS action. When recruited onto LAT, THEMIS-SHP promotes immediate dephosphorylation of TCR-proximal signaling components. This negative feedback is central in setting sharp signaling thresholds and helps explain the exquisite ligand discrimination by the TCR, particularly during thymocyte selection.

  7. Potential Mechanisms Underlying Intercortical Signal Regulation via Cholinergic Neuromodulators

    PubMed Central

    Whittington, Miles A.; Kopell, Nancy J.

    2015-01-01

    The dynamical behavior of the cortex is extremely complex, with different areas and even different layers of a cortical column displaying different temporal patterns. A major open question is how the signals from different layers and different brain regions are coordinated in a flexible manner to support function. Here, we considered interactions between primary auditory cortex and adjacent association cortex. Using a biophysically based model, we show how top-down signals in the beta and gamma regimes can interact with a bottom-up gamma rhythm to provide regulation of signals between the cortical areas and among layers. The flow of signals depends on cholinergic modulation: with only glutamatergic drive, we show that top-down gamma rhythms may block sensory signals. In the presence of cholinergic drive, top-down beta rhythms can lift this blockade and allow signals to flow reciprocally between primary sensory and parietal cortex. SIGNIFICANCE STATEMENT Flexible coordination of multiple cortical areas is critical for complex cognitive functions, but how this is accomplished is not understood. Using computational models, we studied the interactions between primary auditory cortex (A1) and association cortex (Par2). Our model is capable of replicating interaction patterns observed in vitro and the simulations predict that the coordination between top-down gamma and beta rhythms is central to the gating process regulating bottom-up sensory signaling projected from A1 to Par2 and that cholinergic modulation allows this coordination to occur. PMID:26558772

  8. Insulin/IGF signaling and its regulation in Drosophila.

    PubMed

    Nässel, Dick R; Liu, Yiting; Luo, Jiangnan

    2015-09-15

    Taking advantage of Drosophila as a genetically tractable experimental animal much progress has been made in our understanding of how the insulin/IGF signaling (IIS) pathway regulates development, growth, metabolism, stress responses and lifespan. The role of IIS in regulation of neuronal activity and behavior has also become apparent from experiments in Drosophila. This review briefly summarizes these functional roles of IIS, and also how the insulin producing cells (IPCs) are regulated in the fly. Furthermore, we discuss functional aspects of the spatio-temporal production of eight different insulin-like peptides (DILP1-8) that are thought to act on one known receptor (dInR) in Drosophila.

  9. Organelle size: a cilium length signal regulates IFT cargo loading.

    PubMed

    Pan, Junmin; Snell, William J

    2014-01-20

    Cilia grow by assembling structural precursors delivered to their tips by intraflagellar transport. New work on ciliary length control indicates that, during ciliary growth, cilia send a length signal to the cytoplasm that regulates cargo loading onto the constitutively trafficking intraflagellar transport machinery.

  10. Regulation of Mitoflash Biogenesis and Signaling by Mitochondrial Dynamics

    PubMed Central

    Li, Wenwen; Sun, Tao; Liu, Beibei; Wu, Di; Qi, Wenfeng; Wang, Xianhua; Ma, Qi; Cheng, Heping

    2016-01-01

    Mitochondria are highly dynamic organelles undergoing constant network reorganization and exhibiting stochastic signaling events in the form of mitochondrial flashes (mitoflashes). Here we investigate whether and how mitochondrial network dynamics regulate mitoflash biogenesis and signaling. We found that mitoflash frequency was largely invariant when network fragmentized or redistributed in the absence of mitofusin (Mfn) 1, Mfn2, or Kif5b. However, Opa1 deficiency decreased spontaneous mitoflash frequency due to superimposing changes in respiratory function, whereas mitoflash response to non-metabolic stimulation was unchanged despite network fragmentation. In Drp1- or Mff-deficient cells whose mitochondria hyperfused into a single whole-cell reticulum, the frequency of mitoflashes of regular amplitude and duration was again unaltered, although brief and low-amplitude “miniflashes” emerged because of improved detection ability. As the network reorganized, however, the signal mass of mitoflash signaling was dynamically regulated in accordance with the degree of network connectivity. These findings demonstrate a novel functional role of mitochondrial network dynamics and uncover a magnitude- rather than frequency-modulatory mechanism in the regulation of mitoflash signaling. In addition, our data support a stochastic trigger model for the ignition of mitoflashes. PMID:27623243

  11. SYK Regulates mTOR Signaling in AML

    PubMed Central

    Carnevale, Julia; Ross, Linda; Puissant, Alexandre; Banerji, Versha; Stone, Richard M.; DeAngelo, Daniel J.; Ross, Kenneth N.; Stegmaier, Kimberly

    2014-01-01

    Spleen Tyrosine Kinase (SYK) was recently identified as a new target in acute myeloid leukemia (AML); however, its mechanistic role in this disease is poorly understood. Based on the known interaction between SYK and mTOR signaling in lymphoma, we hypothesized that SYK may regulate mTOR signaling in AML. Both small-molecule inhibition of SYK and SYK-directed shRNA suppressed mTOR and its downstream signaling effectors, as well as its upstream activator, AKT. Moreover, the inhibition of multiple nodes of the PI3K signaling pathway enhanced the effects of SYK suppression on AML cell viability and differentiation. Evaluation of the collateral MAPK pathway revealed a heterogeneous response to SYK inhibition in AML with down-regulation of MEK and ERK phosphorylation in some AML cell lines but a paradoxical increase in MEK/ERK phosphorylation in RAS-mutated AML. These studies reveal SYK as a regulator of mTOR and MAPK signaling in AML and demonstrate that inhibition of PI3K pathway activity enhances the effects of SYK inhibition on AML cell viability and differentiation. PMID:23535559

  12. Regulation of Mitoflash Biogenesis and Signaling by Mitochondrial Dynamics.

    PubMed

    Li, Wenwen; Sun, Tao; Liu, Beibei; Wu, Di; Qi, Wenfeng; Wang, Xianhua; Ma, Qi; Cheng, Heping

    2016-01-01

    Mitochondria are highly dynamic organelles undergoing constant network reorganization and exhibiting stochastic signaling events in the form of mitochondrial flashes (mitoflashes). Here we investigate whether and how mitochondrial network dynamics regulate mitoflash biogenesis and signaling. We found that mitoflash frequency was largely invariant when network fragmentized or redistributed in the absence of mitofusin (Mfn) 1, Mfn2, or Kif5b. However, Opa1 deficiency decreased spontaneous mitoflash frequency due to superimposing changes in respiratory function, whereas mitoflash response to non-metabolic stimulation was unchanged despite network fragmentation. In Drp1- or Mff-deficient cells whose mitochondria hyperfused into a single whole-cell reticulum, the frequency of mitoflashes of regular amplitude and duration was again unaltered, although brief and low-amplitude "miniflashes" emerged because of improved detection ability. As the network reorganized, however, the signal mass of mitoflash signaling was dynamically regulated in accordance with the degree of network connectivity. These findings demonstrate a novel functional role of mitochondrial network dynamics and uncover a magnitude- rather than frequency-modulatory mechanism in the regulation of mitoflash signaling. In addition, our data support a stochastic trigger model for the ignition of mitoflashes. PMID:27623243

  13. Lipid rafts as major platforms for signaling regulation in cancer.

    PubMed

    Mollinedo, Faustino; Gajate, Consuelo

    2015-01-01

    Cell signaling does not apparently occur randomly over the cell surface, but it seems to be integrated very often into cholesterol-rich membrane domains, termed lipid rafts. Membrane lipid rafts are highly ordered membrane domains that are enriched in cholesterol, sphingolipids and gangliosides, and behave as major modulators of membrane geometry, lateral movement of molecules, traffic and signal transduction. Because the lipid and protein composition of membrane rafts differs from that of the surrounding membrane, they provide an additional level of compartmentalization, serving as sorting platforms and hubs for signal transduction proteins. A wide number of signal transduction processes related to cell adhesion, migration, as well as to cell survival and proliferation, which play major roles in cancer development and progression, are dependent on lipid rafts. Despite lipid rafts harbor mainly critical survival signaling pathways, including insulin-like growth factor I (IGF-I)/phosphatidylinositol 3-kinase (PI3K)/Akt signaling, recent evidence suggests that these membrane domains can also house death receptor-mediated apoptotic signaling. Recruitment of this death receptor signaling pathway in membrane rafts can be pharmacologically modulated, thus opening up the possibility to regulate cell demise with a therapeutic use. The synthetic ether phospholipid edelfosine shows a high affinity for cholesterol and accumulates in lipid rafts in a number of malignant hematological cells, leading to an efficient in vitro and in vivo antitumor activity by inducing translocation of death receptors and downstream signaling molecules to these membrane domains. Additional antitumor drugs have also been shown to act, at least in part, by recruiting death receptors in lipid rafts. The partition of death receptors together with downstream apoptotic signaling molecules in membrane rafts has led us to postulate the concept of a special liquid-ordered membrane platform coined as

  14. Kinetic separation of phototropism from blue-light inhibition of stem elongation

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1985-01-01

    These experiments tested the hypothesis that phototropic bending arises when a light gradient across the stem differentially inhibits cell elongation because of direct inhibition of cell elongation by light (the Blaauw hypothesis). Continuous irradiation of dark-grown cucumber seedlings (Cucumis sativus L.) with unilateral blue light inhibited hypocotyl elongation within 30 s, but did not induce phototropic curvature until 4.5 h after the start of irradiation. Marking experiments showed that curvature began simultaneously at the top and bottom of the growing region. In situ measurements of the light gradient across the stem with a glass fiber optic indicated that a 5- to 6-fold difference in fluence rate was established on the two sides of the stem. The light gradient established at the start of irradiation was the same as that after 6 h of irradiation. Changes in gravitropic responsiveness during this period were also ruled out. Calculations show that the light gradient should have caused curvature which would be detectable within 30 to 60 min and which would extrapolate to the start of irradiation--if the Blaauw hypothesis were correct. The long lag for phototropism in this case indicates that rapid inhibition of cell elongation by blue light does not cause the asymmetrical growth of phototropism. Rather, phototropism is superimposed upon this separate light growth response.

  15. Root phototropism: how light and gravity interact in shaping plant form

    NASA Technical Reports Server (NTRS)

    Kiss, John Z.; Correll, Melanie J.; Mullen, Jack L.; Hangarter, Roger P.; Edelmann, Richard E.

    2003-01-01

    The interactions among tropisms can be critical in determining the final growth form of plants and plant organs. We have studied tropistic responses in roots as an example of these type of interactions. While gravitropism is the predominant tropistic response in roots, phototropism also plays a role in the oriented growth in this organ in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism. In the flowering plant Arabidopsis, the photosensitive pigments phytochrome A (phyA) and phytochrome B (phyB) mediate this positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. While blue-light-based negative phototropism is primarily mediated by the phototropin family of photoreceptors, the phyA and phyAB mutants (but not phyB) were inhibited in this response relative to the WT. The differences observed in phototropic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in plants and that phytochrome plays a key role in integrating multiple environmental stimuli.

  16. Root phototropism: how light and gravity interact in shaping plant form.

    PubMed

    Kiss, John Z; Correll, Melanie J; Mullen, Jack L; Hangarter, Roger P; Edelmann, Richard E

    2003-06-01

    The interactions among tropisms can be critical in determining the final growth form of plants and plant organs. We have studied tropistic responses in roots as an example of these type of interactions. While gravitropism is the predominant tropistic response in roots, phototropism also plays a role in the oriented growth in this organ in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism. In the flowering plant Arabidopsis, the photosensitive pigments phytochrome A (phyA) and phytochrome B (phyB) mediate this positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. While blue-light-based negative phototropism is primarily mediated by the phototropin family of photoreceptors, the phyA and phyAB mutants (but not phyB) were inhibited in this response relative to the WT. The differences observed in phototropic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in plants and that phytochrome plays a key role in integrating multiple environmental stimuli.

  17. Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants.

    PubMed

    Vitha, S; Zhao, L; Sack, F D

    2000-02-01

    Root gravitropism in wild-type Arabidopsis and in two starchless mutants, pgm1-1 and adg1-1, was evaluated as a function of light position to determine the relative strengths of negative phototropism and of gravitropism and how much phototropism affects gravitropic measurements. Gravitropism was stronger than phototropism in some but not all light positions in wild-type roots grown for an extended period, indicating that the relationship between the two tropisms is more complex than previously reported. Root phototropism significantly influenced the time course of gravitropic curvature and the two measures of sensitivity. Light from above during horizontal exposure overestimated all three parameters for all three genotypes except the wild-type perception time. At the irradiance used (80 micromol m(-2) s(-1)), the shortest periods of illumination found to exaggerate gravitropism were 45 min of continuous illumination and 2-min doses of intermittent illumination. By growing roots in circumlateral light or by gravistimulating in the dark, corrected values were obtained for each gravitropic parameter. Roots of both starchless mutants were determined to be about three times less sensitive than prior estimates. This study demonstrates the importance of accounting for phototropism in the design of root gravitropism experiments in Arabidopsis.

  18. Signaling networks regulating leukocyte podosome dynamics and function

    PubMed Central

    Dovas, Athanassios; Cox, Dianne

    2011-01-01

    Podosomes are ventral adhesion structures prominent in cells of the myeloid lineage. A common aspect of these cells is that they are highly motile and are required to traverse multiple tissue barriers in order to perform their functions. Recently podosomes have gathered attention from researchers as important cellular structures that can influence cell adhesion, motility and matrix remodeling. Adhesive and soluble ligands act via transmembrane receptors and propagate signals to the leukocyte cytoskeleton via small G proteins of the Rho family, tyrosine kinases and scaffold proteins and are able to induce podosome formation and rearrangements. Manipulation of the signals that regulate podosome formation and dynamics can therefore be a strategy to interfere with leukocyte functions in a multitude of pathological settings, such as infections, atherosclerosis and arthritis. Here, we review the major signaling molecules that act in the formation and regulation of podosomes. PMID:21342664

  19. Copper as a key regulator of cell signalling pathways.

    PubMed

    Grubman, Alexandra; White, Anthony R

    2014-05-22

    Copper is an essential element in many biological processes. The critical functions associated with copper have resulted from evolutionary harnessing of its potent redox activity. This same property also places copper in a unique role as a key modulator of cell signal transduction pathways. These pathways are the complex sequence of molecular interactions that drive all cellular mechanisms and are often associated with the interplay of key enzymes including kinases and phosphatases but also including intracellular changes in pools of smaller molecules. A growing body of evidence is beginning to delineate the how, when and where of copper-mediated control over cell signal transduction. This has been driven by research demonstrating critical changes to copper homeostasis in many disorders including cancer and neurodegeneration and therapeutic potential through control of disease-associated cell signalling changes by modulation of copper-protein interactions. This timely review brings together for the first time the diverse actions of copper as a key regulator of cell signalling pathways and discusses the potential strategies for controlling disease-associated signalling processes using copper modulators. It is hoped that this review will provide a valuable insight into copper as a key signal regulator and stimulate further research to promote our understanding of copper in disease and therapy.

  20. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    SciTech Connect

    Lin, Yi-Ting; Ding, Jing-Ya; Li, Ming-Yang; Yeh, Tien-Shun; Wang, Tsu-Wei; Yu, Jenn-Yah

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  1. Olfactory plasticity is regulated by pheromonal signaling in Caenorhabditis elegans

    PubMed Central

    Yamada, Koji; Hirotsu, Takaaki; Matsuki, Masahiro; Butcher, Rebecca A; Tomioka, Masahiro; Ishihara, Takeshi; Clardy, Jon; Kunitomo, Hirofumi; Iino, Yuichi

    2011-01-01

    Population density-dependent dispersal is a well-characterized strategy of animal behavior in which dispersal rate increases when population density is higher. C. elegans shows positive chemotaxis to a set of odorants, but the chemotaxis switches from attraction to dispersal after prolonged exposure to the odorants. We show here that this plasticity of olfactory behavior is dependent on population density and this regulation is mediated by pheromonal signaling. We show that a peptide SNET-1 negatively regulates olfactory plasticity and its expression is down-regulated by the pheromone. NEP-2, a homologue of the extracellular peptidase neprilysin, antagonizes SNET-1 and this function is essential for olfactory plasticity. These results suggest that population density information is transmitted through the external pheromone and endogenous peptide signaling to modulate chemotactic behavior. PMID:20929849

  2. TGF-β Signaling in Stem Cell Regulation.

    PubMed

    Li, Wenlin; Wei, Wanguo; Ding, Sheng

    2016-01-01

    The transforming growth factor-β (TGF-β) family of cytokines, including TGF-β, bone morphogenic proteins (BMPs), and activin/nodal, is a group of crucial morphogens in embryonic development, and plays key roles in modulating stem/progenitor cell fate. TGF-β signaling is essential in maintaining the pluripotency of human pluripotent stem cells (hPSCs), including both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), and its modulation can direct lineage-specific differentiation. Recent studies also demonstrate TGF-β signaling negatively regulates reprogramming and inhibition of TGF-β signaling can enhance reprogramming through facilitating mesenchymal-to-epithelial transition (MET). This chapter introduces methods of modulating somatic cell reprogramming to iPSCs and neural induction from hPSCs through modulating TGF-β signaling by chemical approaches.

  3. Mechanosensitive β-catenin signaling regulates lymphatic vascular development.

    PubMed

    Cha, Boksik; Srinivasan, R Sathish

    2016-08-01

    The Wnt/β-catenin signaling is an evolutionarily conserved pathway that plays a pivotal role in embryonic development and adult homeostasis. However, we have limited information about the involvement of Wnt/β-catenin signaling in the lymphatic vascular system that regulates fluid homeostasis by absorbing interstitial fluid and returning it to blood circulation. In this recent publication we report that canonical Wnt/β-catenin signaling is highly active and critical for the formation of lymphovenus valves (LVVs) and lymphatic valves (LVs). β-catenin directly associates with the regulatory elements of the lymphedema-associated transcription factor, FOXC2 and activates its expression in an oscillatory shear stress (OSS)-dependent manner. The phenotype of β-catenin null embryos was rescued by FOXC2 overexpression. These results suggest that Wnt/β-catenin signaling is a mechanotransducer that links fluid force with lymphatic vascular development. [BMB Reports 2016; 49(8): 403-404]. PMID:27418286

  4. Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation

    PubMed Central

    Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2015-01-01

    The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865

  5. The transcription factor Zeb2 regulates signaling in mast cells.

    PubMed

    Barbu, Emilia Alina; Zhang, Juan; Berenstein, Elsa H; Groves, Jacqueline R; Parks, Lauren M; Siraganian, Reuben P

    2012-06-15

    Mast cell activation results in the release of stored and newly synthesized inflammatory mediators. We found that Zeb2 (also named Sip1, Zfhx1b), a zinc finger transcription factor, regulates both early and late mast cell responses. Transfection with small interfering RNA (siRNA) reduced Zeb2 expression and resulted in decreased FcεRI-mediated degranulation, with a parallel reduction in receptor-induced activation of NFAT and NF-κB transcription factors, but an enhanced response to the LPS-mediated activation of NF-κB. There was variable and less of a decrease in the Ag-mediated release of the cytokines TNF-α, IL-13, and CCL-4. This suggests that low Zeb2 expression differentially regulates signaling pathways in mast cells. Multiple phosphorylation events were impaired that affected molecules both at early and late events in the signaling pathway. The Zeb2 siRNA-treated mast cells had altered cell cycle progression, as well as decreased expression of several molecules including cell surface FcεRI and its β subunit, Gab2, phospholipase-Cγ1, and phospholipase-Cγ2, all of which are required for receptor-induced signal transduction. The results indicate that the transcription factor Zeb2 controls the expression of molecules thereby regulating signaling in mast cells.

  6. Notch signaling regulates gastric antral LGR5 stem cell function

    PubMed Central

    Demitrack, Elise S; Gifford, Gail B; Keeley, Theresa M; Carulli, Alexis J; VanDussen, Kelli L; Thomas, Dafydd; Giordano, Thomas J; Liu, Zhenyi; Kopan, Raphael; Samuelson, Linda C

    2015-01-01

    The major signaling pathways regulating gastric stem cells are unknown. Here we report that Notch signaling is essential for homeostasis of LGR5+ antral stem cells. Pathway inhibition reduced proliferation of gastric stem and progenitor cells, while activation increased proliferation. Notch dysregulation also altered differentiation, with inhibition inducing mucous and endocrine cell differentiation while activation reduced differentiation. Analysis of gastric organoids demonstrated that Notch signaling was intrinsic to the epithelium and regulated growth. Furthermore, in vivo Notch manipulation affected the efficiency of organoid initiation from glands and single Lgr5-GFP stem cells, suggesting regulation of stem cell function. Strikingly, constitutive Notch activation in LGR5+ stem cells induced tissue expansion via antral gland fission. Lineage tracing using a multi-colored reporter demonstrated that Notch-activated stem cells rapidly generate monoclonal glands, suggesting a competitive advantage over unmanipulated stem cells. Notch activation was associated with increased mTOR signaling, and mTORC1 inhibition normalized NICD-induced increases in proliferation and gland fission. Chronic Notch activation induced undifferentiated, hyper-proliferative polyps, suggesting that aberrant activation of Notch in gastric stem cells may contribute to gastric tumorigenesis. PMID:26271103

  7. Regulation of Cardiac Hypertrophic Signaling by Prolyl Isomerase Pin1

    PubMed Central

    Toko, Haruhiro; Konstandin, Mathias H.; Doroudgar, Shirin; Ormachea, Lucia; Joyo, Eri; Joyo, Anya Y.; Din, Shabana; Gude, Natalie A.; Collins, Brett; Völkers, Mirko; Thuerauf, Donna J.; Glembotski, Christopher C.; Chen, Chun-Hau; Lu, Kun Ping; Müller, Oliver J.; Uchida, Takafumi; Sussman, Mark A.

    2013-01-01

    Rationale Cardiac hypertrophy results from the complex interplay of differentially regulated cascades based upon the phosphorylation status of involved signaling molecules. While numerous critical regulatory kinases and phosphatases have been identified in the myocardium, the intracellular mechanism for temporal regulation of signaling duration and intensity remains obscure. In the non-myocyte context, control of folding, activity, and stability of proteins is mediated by the prolyl isomerase Pin1, but the role of Pin1 in the heart is unknown. Objective To establish the role of Pin1 in the heart. Methods and Results Here we show that either genetic deletion or cardiac over-expression of Pin1 blunts hypertrophic responses induced by transaortic constriction and consequent cardiac failure in vivo. Mechanistically, we find that Pin1 directly binds to Akt, MEK and Raf-1 in cultured cardiomyocytes following hypertrophic stimulation. Furthermore, loss of Pin1 leads to diminished hypertrophic signaling of Akt and MEK, while over-expression of Pin1 increases Raf-1 phosphorylation on the auto-inhibitory site Ser259 leading to reduced MEK activation. Conclusions Collectively, these data support a role for Pin1 as a central modulator of the intensity and duration of two major hypertrophic signaling pathways, thereby providing a novel target for regulation and control of cardiac hypertrophy. PMID:23487407

  8. TGF-β Signaling Regulates Cementum Formation through Osterix Expression

    PubMed Central

    Choi, Hwajung; Ahn, Yu-Hyun; Kim, Tak-Heun; Bae, Cheol-Hyeon; Lee, Jeong-Chae; You, Hyung-Keun; Cho, Eui-Sic

    2016-01-01

    TGF-β/BMPs have widely recognized roles in mammalian development, including in bone and tooth formation. To define the functional relevance of the autonomous requirement for TGF-β signaling in mouse tooth development, we analyzed osteocalcin-Cre mediated Tgfbr2 (OCCreTgfbr2fl/fl) conditional knockout mice, which lacks functional TGF-β receptor II (TβRII) in differentiating cementoblasts and cementocytes. Strikingly, OCCreTgfbr2fl/fl mutant mice exhibited a sharp reduction in cellular cementum mass with reduced matrix secretion and mineral apposition rates. To explore the molecular mechanisms underlying the roles of TGF-β signaling through TβRII in cementogenesis, we established a mouse cementoblast model with decreased TβRII expression using OCCM-30 cells. Interestingly, the expression of osterix (Osx), one of the major regulators of cellular cementum formation, was largely decreased in OCCM-30 cells lacking TβRII. Consequently, in those cells, functional ALP activity and the expression of genes associated with cementogenesis were reduced and the cells were partially rescued by Osx transduction. We also found that TGF-β signaling directly regulates Osx expression through a Smad-dependent pathway. These findings strongly suggest that TGF-β signaling plays a major role as one of the upstream regulators of Osx in cementoblast differentiation and cementum formation. PMID:27180803

  9. SEPT4 is regulated by the Notch signaling pathway.

    PubMed

    Liu, Wenbin

    2012-04-01

    Notch receptor-mediated signaling is an evolutionarily conserved pathway that regulates diverse developmental processes and its dysregulation has been implicated in a variety of developmental disorders and cancers. Notch functions in these processes by activating expression of its target genes. Septin 4 (SEPT4) is a polymerizing GTP-binding protein that serves as scaffold for diverse molecules and is involved in cell proliferation and apoptosis. After activation of the Notch signal, the expression of SEPT4 is up-regulated and cell proliferation is inhibited. When the Notch signal is inhibited by the CSL (CBF1/Su(H)/Lag-1)-binding-domain-negative Mastermind-like protein 1, the expression of SEPT4 is down-regulated, proliferation and colony formation of cells are promoted, but cell adhesion ability is decreased. Nevertheless, the SEPT4 expression is not affected after knock-down of CSL. Meanwhile, if SEPT4 activity is inhibited through RNA interference, the protein level and activity of NOTCH1 remains unchanged, but cell proliferation is dysregulated. This indicates that SEPT4 is a Notch target gene. This relationship between Notch signaling pathway and SEPT4 offers a potential basis for further study of developmental control and carcinogenesis. PMID:21938432

  10. Stress regulates endocannabinoid-CB1 receptor signaling.

    PubMed

    Hillard, Cecilia J

    2014-10-01

    The CB1 cannabinoid receptor is a G protein coupled receptor that is widely expressed throughout the brain. The endogenous ligands for the CB1 receptor (endocannabinoids) are N-arachidonylethanolamine and 2-arachidonoylglycerol; together the endocannabinoids and CB1R subserve activity dependent, retrograde inhibition of neurotransmitter release in the brain. Deficiency of CB1 receptor signaling is associated with anhedonia, anxiety, and persistence of negative memories. CB1 receptor-endocannabinoid signaling is activated by stress and functions to buffer or dampen the behavioral and endocrine effects of acute stress. Its role in regulation of neuronal responses is more complex. Chronic variable stress exposure reduces endocannabinoid-CB1 receptor signaling and it is hypothesized that the resultant deficiency in endocannabinoid signaling contributes to the negative consequences of chronic stress. On the other hand, repeated exposure to the same stress can sensitize CB1 receptor signaling, resulting in dampening of the stress response. Data are reviewed that support the hypothesis that CB1 receptor signaling is stress responsive and that maintaining robust endocannabinoid/CB1 receptor signaling provides resilience against the development of stress-related pathologies.

  11. Phosphoinositides Regulate Ciliary Protein Trafficking to Modulate Hedgehog Signaling

    PubMed Central

    Roberson, Elle C.; Garcia, Galo; Abedin, Monika; Schurmans, Stéphane; Inoue, Takanari; Reiter, Jeremy F.

    2015-01-01

    SUMMARY Primary cilia interpret vertebrate Hedgehog (Hh) signals. Why cilia are essential for signaling is unclear. One possibility is that some forms of signaling require a distinct membrane lipid composition, found at cilia. We found that the ciliary membrane contains a particular phosphoinositide, PI(4)P, whereas a different phosphoinositide, PI(4,5)P2, is restricted to the membrane of the ciliary base. This distribution is created by Inpp5e, a ciliary phosphoinositide 5-phosphatase. Without Inpp5e, ciliary PI(4,5)P2 levels are elevated and Hh signaling is disrupted. Inpp5e limits the ciliary levels of inhibitors of Hh signaling, including Gpr161 and the PI(4,5)P2-binding protein Tulp3. Increasing ciliary PI(4,5)P2 levels or conferring the ability to bind PI(4)P on Tulp3 increases the ciliary localization of Tulp3. Lowering Tulp3 in cells lacking Inpp5e reduces ciliary Gpr161 levels and restores Hh signaling. Therefore, Inpp5e regulates ciliary membrane phosphoinositide composition, and Tulp3 reads out ciliary phosphoinositides to control ciliary protein localization, enabling Hh signaling. PMID:26305592

  12. Cytokinin signaling regulates pavement cell morphogenesis in Arabidopsis.

    PubMed

    Li, Hongjiang; Xu, Tongda; Lin, Deshu; Wen, Mingzhang; Xie, Mingtang; Duclercq, Jérôme; Bielach, Agnieszka; Kim, Jungmook; Reddy, G Venugopala; Zuo, Jianru; Benková, Eva; Friml, Jiří; Guo, Hongwei; Yang, Zhenbiao

    2013-02-01

    The puzzle piece-shaped Arabidopsis leaf pavement cells (PCs) with interdigitated lobes and indents is a good model system to investigate the mechanisms that coordinate cell polarity and shape formation within a tissue. Auxin has been shown to coordinate the interdigitation by activating ROP GTPase-dependent signaling pathways. To identify additional components or mechanisms, we screened for mutants with abnormal PC morphogenesis and found that cytokinin signaling regulates the PC interdigitation pattern. Reduction in cytokinin accumulation and defects in cytokinin signaling (such as in ARR7-over-expressing lines, the ahk3cre1 cytokinin receptor mutant, and the ahp12345 cytokinin signaling mutant) enhanced PC interdigitation, whereas over-production of cytokinin and over-activation of cytokinin signaling in an ARR20 over-expression line delayed or abolished PC interdigitation throughout the cotyledon. Genetic and biochemical analyses suggest that cytokinin signaling acts upstream of ROPs to suppress the formation of interdigitated pattern. Our results provide novel mechanistic understanding of the pathways controlling PC shape and uncover a new role for cytokinin signaling in cell morphogenesis.

  13. Beclin 1 regulates growth factor receptor signaling in breast cancer.

    PubMed

    Rohatgi, R A; Janusis, J; Leonard, D; Bellvé, K D; Fogarty, K E; Baehrecke, E H; Corvera, S; Shaw, L M

    2015-10-16

    Beclin 1 is a haploinsufficient tumor suppressor that is decreased in many human tumors. The function of beclin 1 in cancer has been attributed primarily to its role in the degradative process of macroautophagy. However, beclin 1 is a core component of the vacuolar protein sorting 34 (Vps34)/class III phosphatidylinositoI-3 kinase (PI3KC3) and Vps15/p150 complex that regulates multiple membrane-trafficking events. In the current study, we describe an alternative mechanism of action for beclin 1 in breast cancer involving its control of growth factor receptor signaling. We identify a specific stage of early endosome maturation that is regulated by beclin 1, the transition of APPL1-containing phosphatidyIinositol 3-phosphate-negative (PI3P(-)) endosomes to PI3P(+) endosomes. Beclin 1 regulates PI3P production in response to growth factor stimulation to control the residency time of growth factor receptors in the PI3P(-)/APPL(+)-signaling-competent compartment. As a result, suppression of BECN1 sustains growth factor-stimulated AKT and ERK activation resulting in increased breast carcinoma cell invasion. In human breast tumors, beclin 1 expression is inversely correlated with AKT and ERK phosphorylation. Our data identify a novel role for beclin 1 in regulating growth factor signaling and reveal a mechanism by which loss of beclin 1 expression would enhance breast cancer progression.

  14. Kinetics for Phototropic Curvature by Etiolated Seedlings of Arabidopsis thaliana 1

    PubMed Central

    Orbović, Vladimir; Poff, Kenneth L.

    1991-01-01

    An infrared-imaging system has been used to study the influence of gravity on the kinetics of first positive phototropism. The development of phototropic curvature of etiolated seedlings of Arabidopsis thaliana was measured in the absence of visible radiation. Following a pulse of blue light, stationary seedlings curved to a maximum of approximately 16° about 80 minutes after stimulation. The seedlings then curved upward again or straightened by about 6° during the subsequent 100 minutes. Seedlings rotated on a clinostat reached a similar maximum curvature following photostimulation. These seedlings maintained that curvature for 30 to 40 minutes before subsequently straightening to the same extent as the stationary seedlings. It is concluded that straightening is not a consequence of gravitropism, although gravity has some effect on the phototropism kinetics. PMID:11538373

  15. The role of mutants in the search for the photoreceptor for phototropism in higher plants.

    PubMed

    Briggs, W R; Liscum, E

    1997-01-01

    Early attempts to identify the chromophore of the photoreceptor for phototropism are reviewed. Carotenoids and flavins were the principal candidates, but studies with grass coleoptiles devoid of carotenoids suggest that at least in these organs carotenoids are most unlikely to play that role. The status of characterization of a gene for a putative photoreceptor protein is also reviewed. As the action spectrum for phototropism resembles the absorption spectrum of a flavoprotein, flavoproteins are attractive candidates at present, especially since the CRY1 photoreceptor in Arabidopsis thaliana that mediates blue light-dependent hypocotyl growth suppression has flavin adenine dinucleotide as one of its two chromophores. As the second chromophore appears to be pterin, pterins should not be ruled out as candidate chromophores for the photoreceptor for phototropism. PMID:11542766

  16. Time threshold for second positive phototropism is decreased by a preirradiation with red light

    NASA Technical Reports Server (NTRS)

    Konjevic, R.; Apel, P.; Poff, K. L.

    1992-01-01

    A second positive phototropic response is exhibited by a plant after the time of irradiation has exceeded a time threshold. The time threshold of dark-grown seedlings is about 15 minutes for Arabidopsis thaliana. This threshold is decreased to about 4 minutes by a 669-nanometer preirradiation. Tobacco (Nicotiana tabacum) seedlings show a similar response. The time threshold of dark-grown seedlings is about 60 minutes for tobacco, and is decreased to about 15 minutes after a preirradiation with either 450- or 669- nanometer light. The existence of a time threshold for second positive phototropism and the dependence of this threshold on the irradiation history of the seedling contribute to the complexity of the fluence response relationship for phototropism.

  17. Time threshold for second positive phototropism is decreased by a preirradiation with red light.

    PubMed Central

    Janoudi A-K; Konjevic, R; Apel, P; Poff, K L

    1992-01-01

    A second positive phototropic response is exhibited by a plant after the time of irradiation has exceeded a time threshold. The time threshold of dark-grown seedlings is about 15 minutes for Arabidopsis thaliana. This threshold is decreased to about 4 minutes by a 669-nanometer preirradiation. Tobacco (Nicotiana tabacum) seedlings show a similar response. The time threshold of dark-grown seedlings is about 60 minutes for tobacco, and is decreased to about 15 minutes after a preirradiation with either 450- or 669- nanometer light. The existence of a time threshold for second positive phototropism and the dependence of this threshold on the irradiation history of the seedling contribute to the complexity of the fluence response relationship for phototropism. PMID:11537887

  18. EIN2-directed translational regulation of ethylene signaling in Arabidopsis.

    PubMed

    Li, Wenyang; Ma, Mengdi; Feng, Ying; Li, Hongjiang; Wang, Yichuan; Ma, Yutong; Li, Mingzhe; An, Fengying; Guo, Hongwei

    2015-10-22

    Ethylene is a gaseous phytohormone that plays vital roles in plant growth and development. Previous studies uncovered EIN2 as an essential signal transducer linking ethylene perception on ER to transcriptional regulation in the nucleus through a "cleave and shuttle" model. In this study, we report another mechanism of EIN2-mediated ethylene signaling, whereby EIN2 imposes the translational repression of EBF1 and EBF2 mRNA. We find that the EBF1/2 3' UTRs mediate EIN2-directed translational repression and identify multiple poly-uridylates (PolyU) motifs as functional cis elements of 3' UTRs. Furthermore, we demonstrate that ethylene induces EIN2 to associate with 3' UTRs and target EBF1/2 mRNA to cytoplasmic processing-body (P-body) through interacting with multiple P-body factors, including EIN5 and PABs. Our study illustrates translational regulation as a key step in ethylene signaling and presents mRNA 3' UTR functioning as a "signal transducer" to sense and relay cellular signaling in plants. VIDEO ABSTRACT.

  19. Biophysical mechanism of transient retinal phototropism in rod photoreceptors

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaohui; Thapa, Damber; Wang, Benquan; Gai, Shaoyan; Yao, Xincheng

    2016-03-01

    Oblique light stimulation evoked transient retinal phototropism (TRP) has been recently detected in frog and mouse retinas. High resolution microscopy of freshly isolated retinas indicated that the TRP is predominated by rod photoreceptors. Comparative confocal microscopy and optical coherence tomography (OCT) revealed that the TRP predominantly occurred from the photoreceptor outer segment (OS). However, biophysical mechanism of rod OS change is still unknown. In this study, frog retinal slices, which open a cross section of retinal photoreceptor and other functional layers, were used to test the effect of light stimulation on rod OS. Near infrared light microscopy was employed to monitor photoreceptor changes in retinal slices stimulated by a rectangular-shaped visible light flash. Rapid rod OS length change was observed after the stimulation delivery. The magnitude and direction of the rod OS change varied with the position of the rods within the stimulated area. In the center of stimulated region the length of the rod OS shrunk, while in the peripheral region the rod OS tip swung towards center region in the plane perpendicular to the incident stimulus light. Our experimental result and theoretical analysis suggest that the observed TRP may reflect unbalanced disc-shape change due to localized pigment bleaching. Further investigation is required to understand biochemical mechanism of the observed rod OS kinetics. Better study of the TRP may provide a noninvasive biomarker to enable early detection of age-related macular degeneration (AMD) and other diseases that are known to produce retinal photoreceptor dysfunctions.

  20. Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish.

    PubMed

    Lovely, C Ben; Swartz, Mary E; McCarthy, Neil; Norrie, Jacqueline L; Eberhart, Johann K

    2016-06-01

    The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we show that pouch morphogenesis requires Bmp signaling from 10-18 h post-fertilization, immediately following gastrulation. Blocking Bmp signaling during this window results in morphological defects to the pouches and craniofacial skeleton. Using genetic chimeras we show that Bmp signals directly to the endoderm for proper morphogenesis. Time-lapse imaging and analysis of reporter transgenics show that Bmp signaling is necessary for pouch outpocketing via the Fibroblast growth factor (Fgf) pathway. Double loss-of-function analyses demonstrate that Bmp and Fgf signaling interact synergistically in craniofacial development. Collectively, our analyses shed light on the tissue and signaling interactions that regulate development of the vertebrate face. PMID:27122171

  1. Regulation of PP2A by Sphingolipid Metabolism and Signaling

    PubMed Central

    Oaks, Joshua; Ogretmen, Besim

    2014-01-01

    Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that is a primary regulator of cellular proliferation through targeting of proliferative kinases, cell cycle regulators, and apoptosis inhibitors. It is through the regulation of these regulatory elements that gives PP2A tumor suppressor functions. In addition to mutations on the regulatory subunits, the phosphatase/tumor suppressing activity of PP2A is also inhibited in several cancer types due to overexpression or modification of the endogenous PP2A inhibitors such as SET/I2PP2A. This review focuses on the current literature regarding the interactions between the lipid signaling molecules, selectively sphingolipids, and the PP2A inhibitor SET for the regulation of PP2A, and the therapeutic potential of sphingolipids as PP2A activators for tumor suppression via targeting SET oncoprotein. PMID:25642418

  2. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling.

    PubMed

    Woodard, Geoffrey E; Jardín, Isaac; Berna-Erro, A; Salido, Gines M; Rosado, Juan A

    2015-01-01

    Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.

  3. Regulation of PCP by the Fat signaling pathway

    PubMed Central

    Matis, Maja; Axelrod, Jeffrey D.

    2013-01-01

    Planar cell polarity (PCP) in epithelia, orthogonal to the apical–basal axis, is essential for numerous developmental events and physiological functions. Drosophila model systems have been at the forefront of studies revealing insights into mechanisms regulating PCP and have revealed distinct signaling modules. One of these, involving the atypical cadherins Fat and Dachsous and the ectokinase Four-jointed, appears to link the direction of cell polarization to the tissue axes. We discuss models for the function of this signaling module as well as several unanswered questions that may guide future investigations. PMID:24142873

  4. Insulin signalling and the regulation of glucose and lipid metabolism

    NASA Astrophysics Data System (ADS)

    Saltiel, Alan R.; Kahn, C. Ronald

    2001-12-01

    The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide. In both disorders, tissues such as muscle, fat and liver become less responsive or resistant to insulin. This state is also linked to other common health problems, such as obesity, polycystic ovarian disease, hyperlipidaemia, hypertension and atherosclerosis. The pathophysiology of insulin resistance involves a complex network of signalling pathways, activated by the insulin receptor, which regulates intermediary metabolism and its organization in cells. But recent studies have shown that numerous other hormones and signalling events attenuate insulin action, and are important in type 2 diabetes.

  5. Gravitropism and phototropism of oat coleoptiles: post-tropic autostraightening and tissue shrinkage during tropism.

    PubMed

    Tarui, Y; Iino, M

    1999-01-01

    We measured changes in length on the two opposite sides of the red-light-grown oat (Avena sativa L.) coleoptiles subjected to either gravitropic or phototropic stimulation and subsequently rotated on a horizontal clinostat. The length measurement was conducted using three 5 mm-long zones delimited by ink markers from the tip. Curvature of each zone was analyzed from the length difference between the two sides. Gravitropism was induced by displacing the seedling from the vertical by 30 degrees or 90 degrees for 25 min. Phototropism was induced by exposing the coleoptile to unilateral blue light for 30 s, which provided a fluence (1.0 micromoles m-2) optimal for the pulse-induced positive phototropism or a lower, suboptimal fluence (0.03 micromoles m-2). After negatively gravitropic bending, the upper two zones straightened rapidly at either displacement angle. After positively phototropic bending, straightening occurred, but only in the top zone and at the lower fluence. The upper two zones straightened rapidly, however, when bilateral blue light (30 s; 15 micromoles m-2 from either direction) was applied 25 min after unilateral stimulation at the higher fluence. Bilateral blue light alone induced no curvature. These results confirm that the straightening of gravitropically bent coleoptiles is autonomic, and suggest that a similar autonomic response participates in the straightening of phototropically bent coleoptiles. Suppression of elongation on the concave side of the coleoptile mainly accounted for gravitropic and phototropic curvatures. The concave side of the top zone shrank during both tropisms. This shrinkage progressed at a high rate from the beginning of curvature response, suggesting that a drop in turgor pressure is the main and direct cause of the shrinkage. PMID:11542618

  6. Gravitropism and phototropism of oat coleoptiles: Post-tropic autostraightening and tissue shrinkage during tropism

    NASA Astrophysics Data System (ADS)

    Tarui, Y.; Iino, M.

    1999-01-01

    We measured changes in length on the two opposite sides of the red-light-grown oat (Avena sativa L.) coleoptiles subjected to either gravitropic or phototropic stimulation and subsequently rotated on a horizontal clinostat. The length measurement was conducted using three 5 mm-long zones delimited by ink markers from the tip. Curvature of each zone was analyzed from the length difference between the two sides. Gravitropism was induced by displacing the seedling from the vertical by 30° or 90° for 25 min. Phototropism was induced by exposing the coleoptile to unilateral blue light for 30 s, which provided a fluence (1.0 μmol m-2) optimal for the pulse-induced positive phototropism or a lower, suboptimal fluence (0.03 μmol m-2). After negatively gravitropic bending, the upper two zones straightened rapidly at either displacement angle. After positively phototropic bending, straightening occurred, but only in the top zone and at the lower fluence. The upper two zones straightened rapidly, however, when bilateral blue light (30 s; 15 μmol m-2 from either direction) was applied 25 min after unilateral stimulation at the higher fluence. Bilateral blue light alone induced no curvature. These results confirm that the straightening of gravitropically bent coleoptiles is autonomic, and suggest that a similar autonomic response participates in the straightening of phototropically bent coleoptiles. Suppression of elongation on the concave side of the coleoptile mainly accounted for gravitropic and phototropic curvatures. The concave side of the top zone shrank during both tropisms. This shrinkage progressed at a high rate from the beginning of curvature response, suggesting that a drop in turgor pressure is the main and direct cause of the shrinkage.

  7. Merlin, a regulator of Hippo signaling, regulates Wnt/β-catenin signaling

    PubMed Central

    Kim, Soyoung; Jho, Eek-hoon

    2016-01-01

    Merlin, encoded by the NF2 gene, is a tumor suppressor that exerts its function via inhibiting mitogenic receptors at the plasma membrane. Although multiple mutations in Merlin have been identified in Neurofibromatosis type II (NF2) disease, its molecular mechanism is not fully understood. Here, we show that Merlin interacts with LRP6 and inhibits LRP6 phosphorylation, a critical step for the initiation of Wnt signaling. We found that treatment of Wnt3a caused phosphorylation of Merlin by PAK1, leading to detachment of Merlin from LRP6 and allowing the initiation of Wnt/β-catenin signaling. A higher level of β-catenin was found in tissues from NF2 patients. Enhanced proliferation and migration caused by knockdown of Merlin in glioblastoma cells were inhibited by suppression of β-catenin. Conclusively, these results suggest that sustained Wnt/β-catenin signaling activity induced by abrogation of Merlin-mediated inhibition of LRP6 phosphorylation might be a cause of NF2 disease. [BMB Reports 2016; 49(7): 357-358] PMID:27345717

  8. Redox signaling regulated by electrophiles and reactive sulfur species.

    PubMed

    Nishida, Motohiro; Kumagai, Yoshito; Ihara, Hideshi; Fujii, Shigemoto; Motohashi, Hozumi; Akaike, Takaaki

    2016-03-01

    Redox signaling is a key modulator of oxidative stress induced by nonspecific insults of biological molecules generated by reactive oxygen species. Current redox biology is revisiting the traditional concept of oxidative stress, such that toxic effects of reactive oxygen species are protected by diverse antioxidant systems upregulated by oxidative stress responses that are physiologically mediated by redox-dependent cell signaling pathways. Redox signaling is thus precisely regulated by endogenous electrophilic substances that are generated from reactive oxygen species and nitric oxide and its derivative reactive species during stress responses. Among electrophiles formed endogenously, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) has unique cell signaling functions, and pathways for its biosynthesis, signaling mechanism, and metabolism in cells have been clarified. Reactive sulfur species such as cysteine hydropersulfides that are abundant in cells are likely involved in 8-nitro-cGMP metabolism. These new aspects of redox biology may stimulate innovative and multidisciplinary research in cell and stem cell biology; infectious diseases, cancer, metabolic syndrome, ageing, and neurodegenerative diseases; and other oxidative stress-related disorders. This review focuses on the most recent progress in the biosynthesis, cell signaling, and metabolism of 8-nitro-cGMP, which is a likely target for drug development and lead to discovery of novel therapeutics for many diseases. PMID:27013774

  9. Redox signaling regulated by electrophiles and reactive sulfur species

    PubMed Central

    Nishida, Motohiro; Kumagai, Yoshito; Ihara, Hideshi; Fujii, Shigemoto; Motohashi, Hozumi; Akaike, Takaaki

    2016-01-01

    Redox signaling is a key modulator of oxidative stress induced by nonspecific insults of biological molecules generated by reactive oxygen species. Current redox biology is revisiting the traditional concept of oxidative stress, such that toxic effects of reactive oxygen species are protected by diverse antioxidant systems upregulated by oxidative stress responses that are physiologically mediated by redox-dependent cell signaling pathways. Redox signaling is thus precisely regulated by endogenous electrophilic substances that are generated from reactive oxygen species and nitric oxide and its derivative reactive species during stress responses. Among electrophiles formed endogenously, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) has unique cell signaling functions, and pathways for its biosynthesis, signaling mechanism, and metabolism in cells have been clarified. Reactive sulfur species such as cysteine hydropersulfides that are abundant in cells are likely involved in 8-nitro-cGMP metabolism. These new aspects of redox biology may stimulate innovative and multidisciplinary research in cell and stem cell biology; infectious diseases, cancer, metabolic syndrome, ageing, and neurodegenerative diseases; and other oxidative stress-related disorders. This review focuses on the most recent progress in the biosynthesis, cell signaling, and metabolism of 8-nitro-cGMP, which is a likely target for drug development and lead to discovery of novel therapeutics for many diseases. PMID:27013774

  10. Larynx carcinoma regulates tumor-associated macrophages through PLGF signaling

    PubMed Central

    Zhou, Xu; Qi, Ying

    2015-01-01

    Cancer neovascularization plays an essential role in the metastasis of larynx carcinoma (LC). However, the underlying molecular mechanisms are not completely understood. Recently, we reported that placental growth factor (PLGF) regulates expression of matrix metalloproteinase 3 (MMP3) through ERK/MAPK signaling pathway in LC. Here, we show that MMP9 upregulated in LC, and appeared to be mainly produced by M2 macrophages (tumor-associated macrophages (TAM)). In a transwell co-culture system, PLGF secreted by LC cells triggered macrophage polarization to a TAM subtype that releases MMP9. Moreover, MMP9 was found to be activated in the PLGF-polarized TAM via transforming growth factor β (TGFβ) receptor signaling activation. Furthermore, PLGF in LC cells induced macrophage polarization in vivo, and significantly promoted the growth of LC. Thus, together with our previous work, our study highlights a pivotal role of cross-talk between TAM and LC in regulating the metastasis of LC. PMID:25961789

  11. MAPK/JNK signalling: a potential autophagy regulation pathway

    PubMed Central

    Zhou, Yuan-Yuan; Li, Ying; Jiang, Wei-Qin; Zhou, Lin-Fu

    2015-01-01

    Autophagy refers to a lysosomal degradative pathway or a process of self-cannibalization. This pathway maintains nutrients levels for vital cellular functions during periods of starvation and it provides cells with survival advantages under various stress situations. However, the mechanisms responsible for the induction and regulation of autophagy are poorly understood. The c-Jun NH2-terminal kinase (JNK) signal transduction pathway functions to induce defence mechanisms that protect organisms against acute oxidative and xenobiotic insults. This pathway has also been repeatedly linked to the molecular events involved in autophagy regulation. The present review will focus on recent advances in understanding of the relationship between mitogen-activated protein kinase (MAPK)/JNK signalling and autophagic cell death. PMID:26182361

  12. Cellular redox regulation, signaling, and stress response in plants.

    PubMed

    Shigeoka, Shigeru; Maruta, Takanori

    2014-01-01

    Cellular and organellar redox states, which are characterized by the balance between oxidant and antioxidant pool sizes, play signaling roles in the regulation of gene expression and protein function in a wide variety of plant physiological processes including stress acclimation. Reactive oxygen species (ROS) and ascorbic acid (AsA) are the most abundant oxidants and antioxidants, respectively, in plant cells; therefore, the metabolism of these redox compounds must be strictly and spatiotemporally controlled. In this review, we provided an overview of our previous studies as well as recent advances in (1) the molecular mechanisms and regulation of AsA biosynthesis, (2) the molecular and genetic properties of ascorbate peroxidases, and (3) stress acclimation via ROS-derived oxidative/redox signaling pathways, and discussed future perspectives in this field.

  13. Metabolic control of signalling pathways and metabolic auto-regulation.

    PubMed

    Lorendeau, Doriane; Christen, Stefan; Rinaldi, Gianmarco; Fendt, Sarah-Maria

    2015-08-01

    Metabolic alterations have emerged as an important hallmark in the development of various diseases. Thus, understanding the complex interplay of metabolism with other cellular processes such as cell signalling is critical to rationally control and modulate cellular physiology. Here, we review in the context of mammalian target of rapamycin, AMP-activated protein kinase and p53, the orchestrated interplay between metabolism and cellular signalling as well as transcriptional regulation. Moreover, we discuss recent discoveries in auto-regulation of metabolism (i.e. how metabolic parameters such as metabolite levels activate or inhibit enzymes and thus metabolic pathways). Finally, we review functional consequences of post-translational modification on metabolic enzyme abundance and/or activities.

  14. Circadian regulation of hormone signaling and plant physiology.

    PubMed

    Atamian, Hagop S; Harmer, Stacey L

    2016-08-01

    The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways.

  15. ASK1 signalling regulates brown and beige adipocyte function

    PubMed Central

    Hattori, Kazuki; Naguro, Isao; Okabe, Kohki; Funatsu, Takashi; Furutani, Shotaro; Takeda, Kohsuke; Ichijo, Hidenori

    2016-01-01

    Recent studies suggest that adult humans have active brown or beige adipocytes, the activation of which might be a therapeutic strategy for the treatment of diverse metabolic diseases. Here we show that the protein kinase ASK1 regulates brown and beige adipocytes function. In brown or white adipocytes, the PKA-ASK1-p38 axis is activated in response to cAMP signalling and contributes to the cell-autonomous induction of genes, including Ucp1. Global and fat-specific ASK1 deficiency leads to impaired metabolic responses, including thermogenesis and oxygen consumption, at the cell and whole-body levels, respectively. Our data thus indicate that the ASK1 signalling axis is a regulator of brown and beige adipocyte gene expression and function. PMID:27045525

  16. JAK/Stat signaling regulates heart precursor diversification in Drosophila

    PubMed Central

    Johnson, Aaron N.; Mokalled, Mayssa H.; Haden, Tom N.; Olson, Eric N.

    2011-01-01

    Intercellular signal transduction pathways regulate the NK-2 family of transcription factors in a conserved gene regulatory network that directs cardiogenesis in both flies and mammals. The Drosophila NK-2 protein Tinman (Tin) was recently shown to regulate Stat92E, the Janus kinase (JAK) and Signal transducer and activator of transcription (Stat) pathway effector, in the developing mesoderm. To understand whether the JAK/Stat pathway also regulates cardiogenesis, we performed a systematic characterization of JAK/Stat signaling during mesoderm development. Drosophila embryos with mutations in the JAK/Stat ligand upd or in Stat92E have non-functional hearts with luminal defects and inappropriate cell aggregations. Using strong Stat92E loss-of-function alleles, we show that the JAK/Stat pathway regulates tin expression prior to heart precursor cell diversification. tin expression can be subdivided into four phases and, in Stat92E mutant embryos, the broad phase 2 expression pattern in the dorsal mesoderm does not restrict to the constrained phase 3 pattern. These embryos also have an expanded pericardial cell domain. We show the E(spl)-C gene HLHm5 is expressed in a pattern complementary to tin during phase 3 and that this expression is JAK/Stat dependent. In addition, E(spl)-C mutant embryos phenocopy the cardiac defects of Stat92E embryos. Mechanistically, JAK/Stat signals activate E(spl)-C genes to restrict Tin expression and the subsequent expression of the T-box transcription factor H15 to direct heart precursor diversification. This study is the first to characterize a role for the JAK/Stat pathway during cardiogenesis and identifies an autoregulatory circuit in which tin limits its own expression domain. PMID:21965617

  17. Regulation of Interferon Gamma Signaling by Suppressors of Cytokine Signaling and Regulatory T Cells

    PubMed Central

    Larkin, Joseph; Ahmed, Chulbul M.; Wilson, Tenisha D.; Johnson, Howard M.

    2013-01-01

    Regulatory T cells (Tregs) play an indispensable role in the prevention of autoimmune disease, as interferon gamma (IFNγ) mediated, lethal auto-immunity occurs (in both mice and humans) in their absence. In addition, Tregs have been implicated in preventing the onset of autoimmune and auto-inflammatory conditions associated with aberrant IFNγ signaling such as type 1 diabetes, lupus, and lipopolysaccharide (LPS) mediated endotoxemia. Notably, suppressor of cytokine signaling-1 deficient (SOCS1−/−) mice also succumb to a lethal auto-inflammatory disease, dominated by excessive IFNγ signaling and bearing similar disease course kinetics to Treg deficient mice. Moreover SOCS1 deficiency has been implicated in lupus progression, and increased susceptibility to LPS mediated endotoxemia. Although it has been established that Tregs and SOCS1 play a critical role in the regulation of IFNγ signaling, and the prevention of lethal auto-inflammatory disease, the role of Treg/SOCS1 cross-talk in the regulation of IFNγ signaling has been essentially unexplored. This is especially pertinent as recent publications have implicated a role of SOCS1 in the stability of peripheral Tregs. This review will examine the emerging research findings implicating a critical role of the intersection of the SOCS1 and Treg regulatory pathways in the control of IFN gamma signaling and immune system function. PMID:24391643

  18. Regulation of IGF -1 signaling by microRNAs

    PubMed Central

    Jung, Hwa Jin; Suh, Yousin

    2014-01-01

    The insulin-like growth factor 1 (IGF-1) signaling pathway regulates critical biological processes including development, homeostasis, and aging. Dysregulation of this pathway has been implicated in a myriad of diseases such as cancers, neurodegenerative diseases, and metabolic disorders, making the IGF-1 signaling pathway a prime target to develop therapeutic and intervention strategies. Recently, small non-coding RNA molecules in ∼22 nucleotide length, microRNAs (miRNAs), have emerged as a new regulator of biological processes in virtually all organ systems and increasing studies are linking altered miRNA function to disease mechanisms. A miRNA binds to 3’UTRs of multiple target genes and coordinately downregulates their expression, thereby exerting a profound influence on gene regulatory networks. Here we review the components of the IGF-1 signaling pathway that are known targets of miRNA regulation, and highlight recent studies that suggest therapeutic potential of these miRNAs against various diseases. PMID:25628647

  19. Cannabinoid receptor signaling regulates liver development and metabolism.

    PubMed

    Liu, Leah Y; Alexa, Kristen; Cortes, Mauricio; Schatzman-Bone, Stephanie; Kim, Andrew J; Mukhopadhyay, Bani; Cinar, Resat; Kunos, George; North, Trista E; Goessling, Wolfram

    2016-02-15

    Endocannabinoid (EC) signaling mediates psychotropic effects and regulates appetite. By contrast, potential roles in organ development and embryonic energy consumption remain unknown. Here, we demonstrate that genetic or chemical inhibition of cannabinoid receptor (Cnr) activity disrupts liver development and metabolic function in zebrafish (Danio rerio), impacting hepatic differentiation, but not endodermal specification: loss of cannabinoid receptor 1 (cnr1) and cnr2 activity leads to smaller livers with fewer hepatocytes, reduced liver-specific gene expression and proliferation. Functional assays reveal abnormal biliary anatomy and lipid handling. Adult cnr2 mutants are susceptible to hepatic steatosis. Metabolomic analysis reveals reduced methionine content in Cnr mutants. Methionine supplementation rescues developmental and metabolic defects in Cnr mutant livers, suggesting a causal relationship between EC signaling, methionine deficiency and impaired liver development. The effect of Cnr on methionine metabolism is regulated by sterol regulatory element-binding transcription factors (Srebfs), as their overexpression rescues Cnr mutant liver phenotypes in a methionine-dependent manner. Our work describes a novel developmental role for EC signaling, whereby Cnr-mediated regulation of Srebfs and methionine metabolism impacts liver development and function.

  20. Axin Regulates Dendritic Spine Morphogenesis through Cdc42-Dependent Signaling

    PubMed Central

    Chen, Yu; Liang, Zhuoyi; Fei, Erkang; Chen, Yuewen; Zhou, Xiaopu; Fang, Weiqun; Fu, Wing-Yu; Fu, Amy K. Y.; Ip, Nancy Y.

    2015-01-01

    During development, scaffold proteins serve as important platforms for orchestrating signaling complexes to transduce extracellular stimuli into intracellular responses that regulate dendritic spine morphology and function. Axin (“axis inhibitor”) is a key scaffold protein in canonical Wnt signaling that interacts with specific synaptic proteins. However, the cellular functions of these protein–protein interactions in dendritic spine morphology and synaptic regulation are unclear. Here, we report that Axin protein is enriched in synaptic fractions, colocalizes with the postsynaptic marker PSD-95 in cultured hippocampal neurons, and interacts with a signaling protein Ca2+/calmodulin-dependent protein kinase II (CaMKII) in synaptosomal fractions. Axin depletion by shRNA in cultured neurons or intact hippocampal CA1 regions significantly reduced dendritic spine density. Intriguingly, the defective dendritic spine morphogenesis in Axin-knockdown neurons could be restored by overexpression of the small Rho-GTPase Cdc42, whose activity is regulated by CaMKII. Moreover, pharmacological stabilization of Axin resulted in increased dendritic spine number and spontaneous neurotransmission, while Axin stabilization in hippocampal neurons reduced the elimination of dendritic spines. Taken together, our findings suggest that Axin promotes dendritic spine stabilization through Cdc42-dependent cytoskeletal reorganization. PMID:26204446

  1. Signal transduction regulating meristem development in Arabidopsis. Final report

    SciTech Connect

    Cark, Steven E.

    2003-09-10

    Research support by DE-FG02-96ER20227 focused on the CLV loci and their regulation of organ formation at the Arabidopsis shoot meristem. Shoot meristem function is central to plant development as all of the above-ground organs and tissues of the plant are derived post-embryonically from the shoot meristem. At the shoot meristem, stem cells are maintained, and progeny cells undergo a switch toward differentiation and organ formation. The CLV loci, represented by three genes CLV1, CLV2 and CLV3 are key regulators of meristem development. Each of the CLV loci encode a putative receptor-mediated signaling component. When this work began, virtually nothing was known about receptor-mediated signaling in plants. Thus, our goal was to both characterize these genes and the proteins they encode as regulators of meristem development, and to investigate how receptor-mediated signaling might function in plants. Our work lead to several major publications that were significant contributions to understanding this system.

  2. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling.

    PubMed

    Ray, Poulomi; Chapman, Susan C

    2015-01-01

    Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.

  3. Astrocytes regulate adult hippocampal neurogenesis through ephrin-B signaling

    PubMed Central

    Ashton, Randolph S.; Conway, Anthony; Pangarkar, Chinmay; Bergen, Jamie; Lim, Kwang-Il; Shah, Priya; Bissell, Mina; Schaffer, David V.

    2012-01-01

    Neurogenesis in the adult hippocampus involves activation of quiescent neural stem cells (NSCs) to yield transiently amplifying NSCs and progenitors, and ultimately neurons that affect learning and memory. This process is tightly controlled by microenvironmental cues, though few endogenous factors are known to regulate neuronal differentiation. While astrocytes have been implicated, their role in juxtacrine (i.e. cell-cell contact-dependent) signaling within NSC niches has not been investigated. We show that ephrin-B2 presented from rodent hippocampal astrocytes regulates neurogenesis in vivo. Furthermore, clonal analysis in NSC fate-mapping studies reveals a novel role for ephrin-B2 in instructing neuronal differentiation. Additionally, ephrin-B2 signaling, transduced by EphB4 receptors on NSCs, activates β-catenin in vitro and in vivo independent of Wnt signaling and upregulates proneural transcription factors. Ephrin-B2+ astrocytes thus promote neuronal differentiation of adult NSCs through juxtacrine signaling, findings that advance our understanding of adult neurogenesis and may have future regenerative medicine implications. PMID:22983209

  4. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling.

    PubMed

    Ray, Poulomi; Chapman, Susan C

    2015-01-01

    Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis. PMID:26237312

  5. Endothelial HIF signaling regulates pulmonary fibrosis-associated pulmonary hypertension.

    PubMed

    Bryant, Andrew J; Carrick, Ryan P; McConaha, Melinda E; Jones, Brittany R; Shay, Sheila D; Moore, Christy S; Blackwell, Thomas R; Gladson, Santhi; Penner, Niki L; Burman, Ankita; Tanjore, Harikrishna; Hemnes, Anna R; Karwandyar, Ayub K; Polosukhin, Vasiliy V; Talati, Megha A; Dong, Hui-Jia; Gleaves, Linda A; Carrier, Erica J; Gaskill, Christa; Scott, Edward W; Majka, Susan M; Fessel, Joshua P; Haase, Volker H; West, James D; Blackwell, Timothy S; Lawson, William E

    2016-02-01

    Pulmonary hypertension (PH) complicating chronic parenchymal lung disease, such as idiopathic pulmonary fibrosis, results in significant morbidity and mortality. Since the hypoxia-inducible factor (HIF) signaling pathway is important for development of pulmonary hypertension in chronic hypoxia, we investigated whether HIF signaling in vascular endothelium regulates development of PH related to pulmonary fibrosis. We generated a transgenic model in which HIF is deleted within vascular endothelial cells and then exposed these mice to chronic intraperitoneal bleomycin to induce PH associated with lung fibrosis. Although no differences in the degree of fibrotic remodeling were observed, we found that endothelial HIF-deficient mice were protected against development of PH, including right ventricle and pulmonary vessel remodeling. Similarly, endothelial HIF-deficient mice were protected from PH after a 4-wk exposure to normobaric hypoxia. In vitro studies of pulmonary vascular endothelial cells isolated from the HIF-targeted mice and controls revealed that endothelial HIF signaling increases endothelial cell expression of connective tissue growth factor, enhances vascular permeability, and promotes pulmonary artery smooth muscle cell proliferation and wound healing ability, all of which have the potential to impact the development of PH in vivo. Taken together, these studies demonstrate that vascular endothelial cell HIF signaling is necessary for development of hypoxia and pulmonary fibrosis associated PH. As such, HIF and HIF-regulated targets represent a therapeutic target in these conditions.

  6. Platelet adhesion signalling and the regulation of thrombus formation.

    PubMed

    Gibbins, Jonathan M

    2004-07-15

    Platelets perform a central role in haemostasis and thrombosis. They adhere to subendothelial collagens exposed at sites of blood vessel injury via the glycoprotein (GP) Ib-V-IX receptor complex, GPVI and integrin alpha(2)beta(1). These receptors perform distinct functions in the regulation of cell signalling involving non-receptor tyrosine kinases (e.g. Src, Fyn, Lyn, Syk and Btk), adaptor proteins, phospholipase C and lipid kinases such as phosphoinositide 3-kinase. They are also coupled to an increase in cytosolic calcium levels and protein kinase C activation, leading to the secretion of paracrine/autocrine platelet factors and an increase in integrin receptor affinities. Through the binding of plasma fibrinogen and von Willebrand Factor to integrin alpha(IIb)beta(3), a platelet thrombus is formed. Although increasing evidence indicates that each of the adhesion receptors GPIb-V-IX and GPVI and integrins alpha(2)beta(1) and alpha(IIb)beta(3) contribute to the signalling that regulates this process, the individual roles of each are only beginning to be dissected. By contrast, adhesion receptor signalling through platelet endothelial cell adhesion molecule 1 (PECAM-1) is implicated in the inhibition of platelet function and thrombus formation in the healthy circulation. Recent studies indicate that understanding of platelet adhesion signalling mechanisms might enable the development of new strategies to treat and prevent thrombosis. PMID:15252124

  7. Insulin signaling regulates neurite growth during metamorphic neuronal remodeling.

    PubMed

    Gu, Tingting; Zhao, Tao; Hewes, Randall S

    2014-01-15

    Although the growth capacity of mature neurons is often limited, some neurons can shift through largely unknown mechanisms from stable maintenance growth to dynamic, organizational growth (e.g. to repair injury, or during development transitions). During insect metamorphosis, many terminally differentiated larval neurons undergo extensive remodeling, involving elimination of larval neurites and outgrowth and elaboration of adult-specific projections. Here, we show in the fruit fly, Drosophila melanogaster (Meigen), that a metamorphosis-specific increase in insulin signaling promotes neuronal growth and axon branching after prolonged stability during the larval stages. FOXO, a negative effector in the insulin signaling pathway, blocked metamorphic growth of peptidergic neurons that secrete the neuropeptides CCAP and bursicon. RNA interference and CCAP/bursicon cell-targeted expression of dominant-negative constructs for other components of the insulin signaling pathway (InR, Pi3K92E, Akt1, S6K) also partially suppressed the growth of the CCAP/bursicon neuron somata and neurite arbor. In contrast, expression of wild-type or constitutively active forms of InR, Pi3K92E, Akt1, Rheb, and TOR, as well as RNA interference for negative regulators of insulin signaling (PTEN, FOXO), stimulated overgrowth. Interestingly, InR displayed little effect on larval CCAP/bursicon neuron growth, in contrast to its strong effects during metamorphosis. Manipulations of insulin signaling in many other peptidergic neurons revealed generalized growth stimulation during metamorphosis, but not during larval development. These findings reveal a fundamental shift in growth control mechanisms when mature, differentiated neurons enter a new phase of organizational growth. Moreover, they highlight strong evolutionarily conservation of insulin signaling in neuronal growth regulation.

  8. Crosstalk between mitochondrial stress signals regulates yeast chronological lifespan.

    PubMed

    Schroeder, Elizabeth A; Shadel, Gerald S

    2014-01-01

    Mitochondrial DNA (mtDNA) exists in multiple copies per cell and is essential for oxidative phosphorylation. Depleted or mutated mtDNA promotes numerous human diseases and may contribute to aging. Reduced TORC1 signaling in the budding yeast, Saccharomyces cerevisiae, extends chronological lifespan (CLS) in part by generating a mitochondrial ROS (mtROS) signal that epigenetically alters nuclear gene expression. To address the potential requirement for mtDNA maintenance in this response, we analyzed strains lacking the mitochondrial base-excision repair enzyme Ntg1p. Extension of CLS by mtROS signaling and reduced TORC1 activity, but not caloric restriction, was abrogated in ntg1Δ strains that exhibited mtDNA depletion without defects in respiration. The DNA damage response (DDR) kinase Rad53p, which transduces pro-longevity mtROS signals, is also activated in ntg1Δ strains. Restoring mtDNA copy number alleviated Rad53p activation and re-established CLS extension following mtROS signaling, indicating that Rad53p senses mtDNA depletion directly. Finally, DDR kinases regulate nucleus-mitochondria localization dynamics of Ntg1p. From these results, we conclude that the DDR pathway senses and may regulate Ntg1p-dependent mtDNA stability. Furthermore, Rad53p senses multiple mitochondrial stresses in a hierarchical manner to elicit specific physiological outcomes, exemplified by mtDNA depletion overriding the ability of Rad53p to transduce an adaptive mtROS longevity signal.

  9. Crosstalk between mitochondrial stress signals regulates yeast chronological lifespan

    PubMed Central

    Schroeder, Elizabeth A.; Shadel, Gerald S.

    2014-01-01

    Mitochondrial DNA (mtDNA) exists in multiple copies per cell and is essential for oxidative phosphorylation. Depleted or mutated mtDNA promotes numerous human diseases and may contribute to aging. Reduced TORC1 signaling in the budding yeast, Saccharomyces cerevisiae, extends chronological lifespan (CLS) in part by generating a mitochondrial ROS (mtROS) signal that epigenetically alters nuclear gene expression. To address the potential requirement for mtDNA maintenance in this response, we analyzed strains lacking the mitochondrial base-excision repair enzyme Ntg1p. Extension of CLS by mtROS signaling and reduced TORC1 activity, but not caloric restriction, was abrogated in ntg1Δ strains that exhibited mtDNA depletion without defects in respiration. The DNA damage response (DDR) kinase Rad53p, which transduces pro-longevity mtROS signals, is also activated in ntg1Δ strains. Restoring mtDNA copy number alleviated Rad53p activation and re-established CLS extension mtROS-mediated longevity signaling, indicating that Rad53p senses mtDNA depletion directly. Finally, DDR kinases regulate nucleus-mitochondria localization dynamics of Ntg1p. From these results, we conclude that the DDR pathway senses mtDNA instability and regulates Ntg1p in response. Furthermore, Rad53p senses multiple mitochondrial stresses in a hierarchical manner to elicit specific physiological outcomes, exemplified by mtDNA depletion overriding the ability of Rad53p to transduce an adaptive mtROS longevity signal. PMID:24373996

  10. Signal integration by Ca2+ regulates intestinal stem cell activity

    PubMed Central

    Deng, Hansong; Gerencser, Akos A.; Jasper, Heinrich

    2015-01-01

    Summary Somatic stem cells (SCs) maintain tissue homeostasis by dynamically adjusting proliferation and differentiation in response to stress and metabolic cues. Here, we identify Ca2+ signaling as a central regulator of intestinal SC (ISC) activity in Drosophila. We find that dietary L-glutamate stimulates ISC division and gut growth. The metabotropic glutamate receptor (mGluR) is required in ISCs for this response and for an associated modulation of cytosolic Ca2+ oscillations that results in sustained high cytosolic Ca2+ concentrations. High cytosolic Ca2+ induces ISC proliferation by regulating Calcineurin and CREB - regulated transcriptional co-activator (CRTC). In response to a wide range of dietary and stress stimuli, ISCs reversibly transition between Ca2+ oscillation states that represent poised or activated modes of proliferation, respectively. We propose that the dynamic regulation of intracellular Ca2+ levels allows effective integration of diverse mitogenic signals in ISCs to tailor their proliferative activity to the needs of the tissue. PMID:26633624

  11. Hedgehog Signaling Regulates the Survival of Gastric Cancer Cells by Regulating the Expression of Bcl-2

    PubMed Central

    Han, Myoung-Eun; Lee, Young-Suk; Baek, Sun-Yong; Kim, Bong-Seon; Kim, Jae-Bong; Oh, Sae-Ock

    2009-01-01

    Gastric cancer is the second most common cause of cancer deaths worldwide. The underlying molecular mechanisms of its carcinogenesis are relatively poorly characterized. Hedgehog (Hh) signaling, which is critical for development of various organs including the gastrointestinal tract, has been associated with gastric cancer. The present study was undertaken to reveal the underlying mechanism by which Hh signaling controls gastric cancer cell proliferation. Treatment of gastric cancer cells with cyclopamine, a specific inhibitor of Hh signaling pathway, reduced proliferation and induced apoptosis of gastric cancer cells. Cyclopamine treatment induced cytochrome c release from mitochondria and cleavage of caspase 9. Moreover, Bcl-2 expression was significantly reduced by cyclopamine treatment. These results suggest that Hh signaling regulates the survival of gastric cancer cells by regulating the expression of Bcl-2. PMID:19742123

  12. Hedgehog Signaling Regulates Telomerase Reverse Transcriptase in Human Cancer Cells

    PubMed Central

    Mazumdar, Tapati; Sandhu, Ranjodh; Qadan, Maha; DeVecchio, Jennifer; Magloire, Victoria; Agyeman, Akwasi; Li, Bibo; Houghton, Janet A.

    2013-01-01

    The Hedgehog (HH) signaling pathway is critical for normal embryonic development, tissue patterning and cell differentiation. Aberrant HH signaling is involved in multiple human cancers. HH signaling involves a multi-protein cascade activating the GLI proteins that transcriptionally regulate HH target genes. We have previously reported that HH signaling is essential for human colon cancer cell survival and inhibition of this signal induces DNA damage and extensive cell death. Here we report that the HH/GLI axis regulates human telomerase reverse transcriptase (hTERT), which determines the replication potential of cancer cells. Suppression of GLI1/GLI2 functions by a C-terminus truncated GLI3 repressor mutant (GLI3R), or by GANT61, a pharmacological inhibitor of GLI1/GLI2, reduced hTERT protein expression in human colon cancer, prostate cancer and Glioblastoma multiforme (GBM) cell lines. Expression of an N-terminus deleted constitutively active mutant of GLI2 (GLI2ΔN) increased hTERT mRNA and protein expression and hTERT promoter driven luciferase activity in human colon cancer cells while GANT61 inhibited hTERT mRNA expression and hTERT promoter driven luciferase activity. Chromatin immunoprecipitation with GLI1 or GLI2 antibodies precipitated fragments of the hTERT promoter in human colon cancer cells, which was reduced upon exposure to GANT61. In contrast, expression of GLI1 or GLI2ΔN in non-malignant 293T cells failed to alter the levels of hTERT mRNA and protein, or hTERT promoter driven luciferase activity. Further, expression of GLI2ΔN increased the telomerase enzyme activity, which was reduced by GANT61 administration in human colon cancer, prostate cancer, and GBM cells. These results identify hTERT as a direct target of the HH signaling pathway, and reveal a previously unknown role of the HH/GLI axis in regulating the replication potential of cancer cells. These findings are of significance in understanding the important regulatory mechanisms that

  13. Paradoxical signaling regulates structural plasticity in dendritic spines.

    PubMed

    Rangamani, Padmini; Levy, Michael G; Khan, Shahid; Oster, George

    2016-09-01

    Transient spine enlargement (3- to 5-min timescale) is an important event associated with the structural plasticity of dendritic spines. Many of the molecular mechanisms associated with transient spine enlargement have been identified experimentally. Here, we use a systems biology approach to construct a mathematical model of biochemical signaling and actin-mediated transient spine expansion in response to calcium influx caused by NMDA receptor activation. We have identified that a key feature of this signaling network is the paradoxical signaling loop. Paradoxical components act bifunctionally in signaling networks, and their role is to control both the activation and the inhibition of a desired response function (protein activity or spine volume). Using ordinary differential equation (ODE)-based modeling, we show that the dynamics of different regulators of transient spine expansion, including calmodulin-dependent protein kinase II (CaMKII), RhoA, and Cdc42, and the spine volume can be described using paradoxical signaling loops. Our model is able to capture the experimentally observed dynamics of transient spine volume. Furthermore, we show that actin remodeling events provide a robustness to spine volume dynamics. We also generate experimentally testable predictions about the role of different components and parameters of the network on spine dynamics. PMID:27551076

  14. Localized JNK signaling regulates organ size during development

    PubMed Central

    Willsey, Helen Rankin; Zheng, Xiaoyan; Carlos Pastor-Pareja, José; Willsey, A Jeremy; Beachy, Philip A; Xu, Tian

    2016-01-01

    A fundamental question of biology is what determines organ size. Despite demonstrations that factors within organs determine their sizes, intrinsic size control mechanisms remain elusive. Here we show that Drosophila wing size is regulated by JNK signaling during development. JNK is active in a stripe along the center of developing wings, and modulating JNK signaling within this stripe changes organ size. This JNK stripe influences proliferation in a non-canonical, Jun-independent manner by inhibiting the Hippo pathway. Localized JNK activity is established by Hedgehog signaling, where Ci elevates dTRAF1 expression. As the dTRAF1 homolog, TRAF4, is amplified in numerous cancers, these findings provide a new mechanism for how the Hedgehog pathway could contribute to tumorigenesis, and, more importantly, provides a new strategy for cancer therapies. Finally, modulation of JNK signaling centers in developing antennae and legs changes their sizes, suggesting a more generalizable role for JNK signaling in developmental organ size control. DOI: http://dx.doi.org/10.7554/eLife.11491.001 PMID:26974344

  15. An Nfic-hedgehog signaling cascade regulates tooth root development.

    PubMed

    Liu, Yang; Feng, Jifan; Li, Jingyuan; Zhao, Hu; Ho, Thach-Vu; Chai, Yang

    2015-10-01

    Coordination between the Hertwig's epithelial root sheath (HERS) and apical papilla (AP) is crucial for proper tooth root development. The hedgehog (Hh) signaling pathway and Nfic are both involved in tooth root development; however, their relationship has yet to be elucidated. Here, we establish a timecourse of mouse molar root development by histological staining of sections, and we demonstrate that Hh signaling is active before and during root development in the AP and HERS using Gli1 reporter mice. The proper pattern of Hh signaling activity in the AP is crucial for the proliferation of dental mesenchymal cells, because either inhibition with Hh inhibitors or constitutive activation of Hh signaling activity in transgenic mice leads to decreased proliferation in the AP and shorter roots. Moreover, Hh activity is elevated in Nfic(-/-) mice, a root defect model, whereas RNA sequencing and in situ hybridization show that the Hh attenuator Hhip is downregulated. ChIP and RNAscope analyses suggest that Nfic binds to the promoter region of Hhip. Treatment of Nfic(-/-) mice with Hh inhibitor partially restores cell proliferation, AP growth and root development. Taken together, our results demonstrate that an Nfic-Hhip-Hh signaling pathway is crucial for apical papilla growth and proper root formation. This discovery provides insight into the molecular mechanisms regulating tooth root development.

  16. An Nfic-hedgehog signaling cascade regulates tooth root development

    PubMed Central

    Liu, Yang; Feng, Jifan; Li, Jingyuan; Zhao, Hu; Ho, Thach-Vu; Chai, Yang

    2015-01-01

    Coordination between the Hertwig's epithelial root sheath (HERS) and apical papilla (AP) is crucial for proper tooth root development. The hedgehog (Hh) signaling pathway and Nfic are both involved in tooth root development; however, their relationship has yet to be elucidated. Here, we establish a timecourse of mouse molar root development by histological staining of sections, and we demonstrate that Hh signaling is active before and during root development in the AP and HERS using Gli1 reporter mice. The proper pattern of Hh signaling activity in the AP is crucial for the proliferation of dental mesenchymal cells, because either inhibition with Hh inhibitors or constitutive activation of Hh signaling activity in transgenic mice leads to decreased proliferation in the AP and shorter roots. Moreover, Hh activity is elevated in Nfic−/− mice, a root defect model, whereas RNA sequencing and in situ hybridization show that the Hh attenuator Hhip is downregulated. ChIP and RNAscope analyses suggest that Nfic binds to the promoter region of Hhip. Treatment of Nfic−/− mice with Hh inhibitor partially restores cell proliferation, AP growth and root development. Taken together, our results demonstrate that an Nfic-Hhip-Hh signaling pathway is crucial for apical papilla growth and proper root formation. This discovery provides insight into the molecular mechanisms regulating tooth root development. PMID:26293299

  17. Light signaling and the phytohormonal regulation of shoot growth.

    PubMed

    Kurepin, Leonid V; Pharis, Richard P

    2014-12-01

    Shoot growth of dicot plants is rigorously controlled by the interactions of environmental cues with several groups of phytohormones. The signaling effects of light on shoot growth are of special interest, as both light irradiance and light quality change rapidly throughout the day, causing profound changes in stem elongation and leaf area growth. Among the several dicot species examined, we have focused on sunflower (Helianthus annuus L.) because its shoots are robust and their growth is highly plastic. Sunflower shoots thus constitute an ideal tissue for assessing responses to both light irradiance and light quality signals. Herein, we discuss the possible roles of gibberellins, auxin, ethylene, cytokinins and brassinosteroids in mediating the stem elongation and leaf area growth that is induced by shade light. To do this we uncoupled the plant's responses to changes in the red to far-red [R/FR] light ratio from its responses to changes in irradiance of photosynthetically active radiation [PAR]. Reducing each of R/FR light ratio and PAR irradiance results in increased sunflower stem elongation. However, the plant's response for leaf area growth differs considerably, with a low R/FR ratio generally promoting leaf area growth, whereas low irradiance PAR inhibits it. The increased stem elongation that occurs in response to lowering R/FR ratio and PAR irradiance is accomplished at the expense of leaf area growth. In effect, the low PAR irradiance signal overrides the low R/FR ratio signal in shade light's control of leaf growth and development. Three hormone groups, gibberellins, auxin and ethylene are directly involved in regulating these light-mediated shoot growth changes. Gibberellins and auxin function as growth promoters, with auxin likely acting as an up-regulator of gibberellin biosynthesis. Ethylene functions as a growth-inhibitor and probably interacts with gibberellins in regulating both stem and leaf growth of the sunflower shoot. PMID:25443853

  18. Complex inhibitory microcircuitry regulates retinal signaling near visual threshold.

    PubMed

    Grimes, William N; Zhang, Jun; Tian, Hua; Graydon, Cole W; Hoon, Mrinalini; Rieke, Fred; Diamond, Jeffrey S

    2015-07-01

    Neuronal microcircuits, small, localized signaling motifs involving two or more neurons, underlie signal processing and computation in the brain. Compartmentalized signaling within a neuron may enable it to participate in multiple, independent microcircuits. Each A17 amacrine cell in the mammalian retina contains within its dendrites hundreds of synaptic feedback microcircuits that operate independently to modulate feedforward signaling in the inner retina. Each of these microcircuits comprises a small (<1 μm) synaptic varicosity that typically receives one excitatory synapse from a presynaptic rod bipolar cell (RBC) and returns two reciprocal inhibitory synapses back onto the same RBC terminal. Feedback inhibition from the A17 sculpts the feedforward signal from the RBC to the AII, a critical component of the circuitry mediating night vision. Here, we show that the two inhibitory synapses from the A17 to the RBC express kinetically distinct populations of GABA receptors: rapidly activating GABA(A)Rs are enriched at one synapse while more slowly activating GABA(C)Rs are enriched at the other. Anatomical and electrophysiological data suggest that macromolecular complexes of voltage-gated (Cav) channels and Ca(2+)-activated K(+) channels help to regulate GABA release from A17 varicosities and limit GABA(C)R activation under certain conditions. Finally, we find that selective elimination of A17-mediated feedback inhibition reduces the signal to noise ratio of responses to dim flashes recorded in the feedforward pathway (i.e., the AII amacrine cell). We conclude that A17-mediated feedback inhibition improves the signal to noise ratio of RBC-AII transmission near visual threshold, thereby improving visual sensitivity at night. PMID:25972578

  19. Epigenetic regulator Lid maintains germline stem cells through regulating JAK-STAT signaling pathway activity

    PubMed Central

    Tarayrah, Lama; Li, Yuping; Gan, Qiang; Chen, Xin

    2015-01-01

    ABSTRACT Signaling pathways and epigenetic mechanisms have both been shown to play essential roles in regulating stem cell activity. While the role of either mechanism in this regulation is well established in multiple stem cell lineages, how the two mechanisms interact to regulate stem cell activity is not as well understood. Here we report that in the Drosophila testis, an H3K4me3-specific histone demethylase encoded by little imaginal discs (lid) maintains germline stem cell (GSC) mitotic index and prevents GSC premature differentiation. Lid is required in germ cells for proper expression of the Stat92E transcription factor, the downstream effector of the Janus kinase signal transducer and activator of transcription (JAK-STAT) signaling pathway. Our findings support a germ cell autonomous role for the JAK-STAT pathway in maintaining GSCs and place Lid as an upstream regulator of this pathway. Our study provides new insights into the biological functions of a histone demethylase in vivo and sheds light on the interaction between epigenetic mechanisms and signaling pathways in regulating stem cell activities. PMID:26490676

  20. Notch signaling indirectly promotes chondrocyte hypertrophy via regulation of BMP signaling and cell cycle arrest

    PubMed Central

    Shang, Xifu; Wang, Jinwu; Luo, Zhengliang; Wang, Yongjun; Morandi, Massimo M.; Marymont, John V.; Hilton, Matthew J.; Dong, Yufeng

    2016-01-01

    Cell cycle regulation is critical for chondrocyte differentiation and hypertrophy. Recently we identified the Notch signaling pathway as an important regulator of chondrocyte proliferation and differentiation during mouse cartilage development. To investigate the underlying mechanisms, we assessed the role for Notch signaling regulation of the cell cycle during chondrocyte differentiation. Real-time RT-PCR data showed that over-expression of the Notch Intracellular Domain (NICD) significantly induced the expression of p57, a cell cycle inhibitor, in chondrocytes. Flow cytometric analyses further confirmed that over-expression of NICD in chondrocytes enhances the G0/G1 cell cycle transition and cell cycle arrest. In contrast, treatment of chondrocytes with the Notch inhibitor, DAPT, decreased both endogenous and BMP2-induced SMAD 1/5/8 phosphorylation and knockdown of SMAD 1/5/8 impaired NICD-induced chondrocyte differentiation and p57 expression. Co-immunoprecipitation using p-SMAD 1/5/8 and NICD antibodies further showed a strong interaction of these proteins during chondrocyte maturation. Finally, RT-PCR and Western blot results revealed a significant reduction in the expression of the SMAD-related phosphatase, PPM1A, following NICD over-expression. Taken together, our results demonstrate that Notch signaling induces cell cycle arrest and thereby initiates chondrocyte hypertrophy via BMP/SMAD-mediated up-regulation of p57. PMID:27146698

  1. Signaling by bone morphogenetic proteins directs formation of an ectodermal signaling center that regulates craniofacial development.

    PubMed

    Foppiano, Silvia; Hu, Diane; Marcucio, Ralph S

    2007-12-01

    We previously described a signaling center, the Frontonasal Ectodermal Zone (FEZ) that regulates growth and patterning of the frontonasal process (FNP). The FEZ is comprised of FNP ectoderm flanking a boundary between Sonic hedgehog (Shh) and Fibroblast growth factor 8 (Fgf8) expression domains. Our objective was to examine BMP signaling during formation of the FEZ. We blocked BMP signaling throughout the FNP prior to FEZ formation by infecting chick embryos at stage 10 (HH10) with a replication-competent avian retrovirus encoding the BMP antagonist Noggin. We assessed gene expression patterns in the FNP 72 h after infection (approximately HH22) and observed that Shh expression was reduced or absent. In the mesenchyme, we observed that Bmp2 transcripts were absent while the Bmp4 expression domain was expanded proximally. In addition to the molecular changes, infected embryos also exhibited facial malformations at 72 and 96 h after infection suggesting that the FEZ did not form. Our data indicate that reduced cell proliferation, but not apoptosis, in the mesenchyme contributed to the phenotype that we observed. Additionally, adding exogenous SHH into the mesenchyme of RCAS-Noggin-infected embryos did not restore Bmp2 and Bmp4 to a normal pattern of expression. These data indicate that BMP signaling mediates interactions between tissues in the FNP that regulate FEZ formation; and that the correct pattern of Bmp2 and Bmp4, but not Bmp7, expression in the FNP mesenchyme requires signaling by the BMP pathway.

  2. Negative Regulation of Cytoplasmic RNA-Mediated Antiviral Signaling

    PubMed Central

    Komuro, Akihiko; Bamming, Darja

    2008-01-01

    The recent, rapid progress in our understanding of cytoplasmic RNA-mediated antiviral innate immune signaling was initiated by the discovery of retinoic acid-inducible gene I (RIG-I) as a sensor of viral RNA [1]. It is now widely recognized that RIG-I and related RNA helicases, melanoma differentiated-associated gene-5 (MDA5) and laboratory of genetics and physiology-2 (LGP2), can initiate and/or regulate RNA and virus -mediated type I IFN production and antiviral responses. As with other cytokine systems, production of type I IFN is a transient process, and can be hazardous to the host if unregulated, resulting in chronic cellular toxicity or inflammatory and autoimmune diseases [2-9]. In addition, the RIG-I-like receptor (RLR) system is a fundamental target for virus-encoded immune suppression, with many indirect and direct examples of interference described. In this article, we review the current understanding of endogenous negative regulation in RLR signaling and explore direct inhibition of RLR signaling by viruses as a host immune evasion strategy. PMID:18703349

  3. Noncoding RNAs Regulating p53 and c-Myc Signaling.

    PubMed

    Mei, Yide; Wu, Mian

    2016-01-01

    p53 is one of the most important tumor suppressors and is known to play critical roles in the process of tumor development. Similarly, as an important proto-oncogenes, c-Myc is activated in over half of human cancers. Both p53 and c-Myc participate in almost every crucial decision of almost every cell. Therefore, it is utmost important to gain a better understanding of how they affect multiple cellular processes. The physiological and pathologic patterns of p53 and c-Myc regulations are modulated by a large number of cis-elements and transfactors (RNAs and proteins). These elements and factors are composed of a complicated network of intracellular and extracellular pathways. How the noncoding RNAs are involved in their regulations has not been comprehensively reviewed. In this chapter, we will list and describe recently published important noncoding RNAs including microRNAs and long noncoding RNAs, which act as effectors and regulators for both p53 and c-Myc regulation. The purpose of this chapter is to provide a recent progress of noncoding RNA in the regulation of p53 and c-Myc on network of cellular signaling and its potential implications in both basic science and clinical application. PMID:27376742

  4. Signal inhibition by a dynamically regulated pool of monophosphorylated MAPK

    PubMed Central

    Nagiec, Michal J.; McCarter, Patrick C.; Kelley, Joshua B.; Dixit, Gauri; Elston, Timothy C.; Dohlman, Henrik G.

    2015-01-01

    Protein kinases regulate a broad array of cellular processes and do so through the phosphorylation of one or more sites within a given substrate. Many protein kinases are themselves regulated through multisite phosphorylation, and the addition or removal of phosphates can occur in a sequential (processive) or a stepwise (distributive) manner. Here we measured the relative abundance of the monophosphorylated and dual-phosphorylated forms of Fus3, a member of the mitogen-activated protein kinase (MAPK) family in yeast. We found that upon activation with pheromone, a substantial proportion of Fus3 accumulates in the monophosphorylated state. Introduction of an additional copy of Fus3 lacking either phosphorylation site leads to dampened signaling. Conversely, cells lacking the dual-specificity phosphatase (msg5Δ) or that are deficient in docking to the MAPK-scaffold (Ste5ND) accumulate a greater proportion of dual-phosphorylated Fus3. The double mutant exhibits a synergistic, or “synthetic,” supersensitivity to pheromone. Finally, we present a predictive computational model that combines MAPK scaffold and phosphatase activities and is sufficient to account for the observed MAPK profiles. These results indicate that the monophosphorylated and dual-phosphorylated forms of the MAPK act in opposition to one another. Moreover, they reveal a new mechanism by which the MAPK scaffold acts dynamically to regulate signaling. PMID:26179917

  5. Retrograde neurotrophin signaling through Tollo regulates synaptic growth in Drosophila

    PubMed Central

    Miller, Daniel L.; Ganetzky, Barry

    2014-01-01

    Toll-like receptors (TLRs) are best characterized for their roles in mediating dorsoventral patterning and the innate immune response. However, recent studies indicate that TLRs are also involved in regulating neuronal growth and development. Here, we demonstrate that the TLR Tollo positively regulates growth of the Drosophila melanogaster larval neuromuscular junction (NMJ). Tollo mutants exhibited NMJ undergrowth, whereas increased expression of Tollo led to NMJ overgrowth. Tollo expression in the motoneuron was both necessary and sufficient for regulating NMJ growth. Dominant genetic interactions together with altered levels of phosphorylated c-Jun N-terminal kinase (JNK) and puc-lacZ expression revealed that Tollo signals through the JNK pathway at the NMJ. Genetic interactions also revealed that the neurotrophin Spätzle3 (Spz3) is a likely Tollo ligand. Spz3 expression in muscle and proteolytic activation via the Easter protease was necessary and sufficient to promote NMJ growth. These results demonstrate the existence of a novel neurotrophin signaling pathway that is required for synaptic development in Drosophila. PMID:24662564

  6. Tubedown regulation of retinal endothelial permeability signaling pathways

    PubMed Central

    Ho, Nhu; Gendron, Robert L.; Grozinger, Kindra; Whelan, Maria A.; Hicks, Emily Anne; Tennakoon, Bimal; Gardiner, Danielle; Good, William V.; Paradis, Hélène

    2015-01-01

    ABSTRACT Tubedown (Tbdn; Naa15), a subunit of the N-terminal acetyltransferase NatA, complexes with the c-Src substrate Cortactin and supports adult retinal homeostasis through regulation of vascular permeability. Here we investigate the role of Tbdn expression on signaling components of retinal endothelial permeability to understand how Tbdn regulates the vasculature and supports retinal homeostasis. Tbdn knockdown-induced hyperpermeability to Albumin in retinal endothelial cells was associated with an increase in the levels of activation of the Src family kinases (SFK) c-Src, Fyn and Lyn and phospho-Cortactin (Tyr421). The knockdown of Cortactin expression reduced Tbdn knockdown-induced permeability to Albumin and the levels of activated SFK. Inhibition of SFK in retinal endothelial cells decreased Tbdn knockdown-induced permeability to Albumin and phospho-Cortactin (Tyr421) levels. Retinal lesions of endothelial-specific Tbdn knockdown mice, with tissue thickening, fibrovascular growth, and hyperpermeable vessels displayed an increase in the levels of activated c-Src. Moreover, the retinal lesions of patients with proliferative diabetic retinopathy (PDR) associated with a loss of Tbdn expression and hyperpermeability to Albumin displayed increased levels of activated SFK in retinal blood vessels. Taken together, these results implicate Tbdn as an important regulator of retinal endothelial permeability and homeostasis by modulating a signaling pathway involving c-Src and Cortactin. PMID:26142315

  7. Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots

    NASA Technical Reports Server (NTRS)

    Correll, Melanie J.; Coveney, Katrina M.; Raines, Steven V.; Mullen, Jack L.; Hangarter, Roger P.; Kiss, John Z.

    2003-01-01

    Phototropism as well as gravitropism plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. Phytochrome A (phyA) and phyB mediate the positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. In blue-light-based negative phototropism, phyA and phyAB (but not phyB) were inhibited in the response relative to the WT. In root gravitropism, phyB and phyAB (but not phyA) were inhibited in the response compared to the WT. The differences observed in tropistic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in roots and that phytochrome plays a key role in plant development by integrating multiple environmental stimuli. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  8. Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots.

    PubMed

    Correll, Melanie J; Coveney, Katrina M; Raines, Steven V; Mullen, Jack L; Hangarter, Roger P; Kiss, John Z

    2003-01-01

    Phototropism as well as gravitropism plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. Phytochrome A (phyA) and phyB mediate the positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. In blue-light-based negative phototropism, phyA and phyAB (but not phyB) were inhibited in the response relative to the WT. In root gravitropism, phyB and phyAB (but not phyA) were inhibited in the response compared to the WT. The differences observed in tropistic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in roots and that phytochrome plays a key role in plant development by integrating multiple environmental stimuli.

  9. Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots

    NASA Astrophysics Data System (ADS)

    Correll, Melanie J.; Coveney, Katrina M.; Raines, Steven V.; Mullen, Jack L.; Hangarter, Roger P.; Kiss, John Z.

    2003-05-01

    Phototropism as well as gravitropism plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. Phytochrome A (phyA) and phyB mediate the positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. In blue-light-based negative phototropism, phyA and phyAB (but not phyB) were inhibited in the response relative to the WT. In root gravitropism, phyB and phyAB (but not phyA) were inhibited in the response compared to the WT. The differences observed in tropistic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in roots and that phytochrome plays a key role in plant development by integrating multiple environmental stimuli.

  10. Regulation of T-cell receptor signalling by membrane microdomains

    PubMed Central

    Razzaq, Tahir M; Ozegbe, Patricia; Jury, Elizabeth C; Sembi, Phupinder; Blackwell, Nathan M; Kabouridis, Panagiotis S

    2004-01-01

    There is now considerable evidence suggesting that the plasma membrane of mammalian cells is compartmentalized by functional lipid raft microdomains. These structures are assemblies of specialized lipids and proteins and have been implicated in diverse biological functions. Analysis of their protein content using proteomics and other methods revealed enrichment of signalling proteins, suggesting a role for these domains in intracellular signalling. In T lymphocytes, structure/function experiments and complementary pharmacological studies have shown that raft microdomains control the localization and function of proteins which are components of signalling pathways regulated by the T-cell antigen receptor (TCR). Based on these studies, a model for TCR phosphorylation in lipid rafts is presented. However, despite substantial progress in the field, critical questions remain. For example, it is unclear if membrane rafts represent a homogeneous population and if their structure is modified upon TCR stimulation. In the future, proteomics and the parallel development of complementary analytical methods will undoubtedly contribute in further delineating the role of lipid rafts in signal transduction mechanisms. PMID:15554919

  11. CGI-58, a key regulator of lipid homeostasis and signaling in plants, also regulates polyamine metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative Gene Identification-58 (CGI-58) is an alpha/beta hydrolase-type protein that regulates lipid homeostasis and signaling in eukaryotes by interacting with and stimulating the activity of several different types of proteins, including a lipase in mammalian cells and a peroxisomal ABC transp...

  12. Emerging EPO and EPO receptor regulators and signal transducers

    PubMed Central

    Kuhrt, David

    2015-01-01

    As essential mediators of red cell production, erythropoietin (EPO) and its cell surface receptor (EPO receptor [EPOR]) have been intensely studied. Early investigations defined basic mechanisms for hypoxia-inducible factor induction of EPO expression, and within erythroid progenitors EPOR engagement of canonical Janus kinase 2/signal transducer and activator of transcription 5 (JAK2/STAT5), rat sarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (RAS/MEK/ERK), and phosphatidylinositol 3-kinase (PI3K) pathways. Contemporary genetic, bioinformatic, and proteomic approaches continue to uncover new clinically relevant modulators of EPO and EPOR expression, and EPO’s biological effects. This Spotlight review highlights such factors and their emerging roles during erythropoiesis and anemia. PMID:25887776

  13. Pneumococcal hydrogen peroxide-induced stress signaling regulates inflammatory genes.

    PubMed

    Loose, Maria; Hudel, Martina; Zimmer, Klaus-Peter; Garcia, Ernesto; Hammerschmidt, Sven; Lucas, Rudolf; Chakraborty, Trinad; Pillich, Helena

    2015-01-15

    Microbial infections can induce aberrant responses in cellular stress pathways, leading to translational attenuation, metabolic restriction, and activation of oxidative stress, with detrimental effects on cell survival. Here we show that infection of human airway epithelial cells with Streptococcus pneumoniae leads to induction of endoplasmic reticulum (ER) and oxidative stress, activation of mitogen-associated protein kinase (MAPK) signaling pathways, and regulation of their respective target genes. We identify pneumococcal H2O2 as the causative agent for these responses, as both catalase-treated and pyruvate oxidase-deficient bacteria lacked these activities. Pneumococcal H2O2 induced nuclear NF-κB translocation and transcription of proinflammatory cytokines. Inhibition of translational arrest and ER stress by salubrinal or of MAPK signaling pathways attenuate cytokine transcription. These results provide strong evidence for the notion that inhibition of translation is an important host pathway in monitoring harmful pathogen-associated activities, thereby enabling differentiation between pathogenic and nonpathogenic bacteria. PMID:25183769

  14. Emerging EPO and EPO receptor regulators and signal transducers.

    PubMed

    Kuhrt, David; Wojchowski, Don M

    2015-06-01

    As essential mediators of red cell production, erythropoietin (EPO) and its cell surface receptor (EPO receptor [EPOR]) have been intensely studied. Early investigations defined basic mechanisms for hypoxia-inducible factor induction of EPO expression, and within erythroid progenitors EPOR engagement of canonical Janus kinase 2/signal transducer and activator of transcription 5 (JAK2/STAT5), rat sarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (RAS/MEK/ERK), and phosphatidylinositol 3-kinase (PI3K) pathways. Contemporary genetic, bioinformatic, and proteomic approaches continue to uncover new clinically relevant modulators of EPO and EPOR expression, and EPO's biological effects. This Spotlight review highlights such factors and their emerging roles during erythropoiesis and anemia. PMID:25887776

  15. Host mTORC1 Signaling Regulates Andes Virus Replication

    PubMed Central

    McNulty, Shannon; Flint, Mike; Nichol, Stuart T.

    2013-01-01

    Hantavirus pulmonary syndrome (HPS) is a severe respiratory disease characterized by pulmonary edema, with fatality rates of 35 to 45%. Disease occurs following infection with pathogenic New World hantaviruses, such as Andes virus (ANDV), which targets lung microvascular endothelial cells. During replication, the virus scavenges 5′-m7G caps from cellular mRNA to ensure efficient translation of viral proteins by the host cell cap-dependent translation machinery. In cells, the mammalian target of rapamycin (mTOR) regulates the activity of host cap-dependent translation by integrating amino acid, energy, and oxygen availability signals. Since there is no approved pharmacological treatment for HPS, we investigated whether inhibitors of the mTOR pathway could reduce hantavirus infection. Here, we demonstrate that treatment with the FDA-approved rapamycin analogue temsirolimus (CCI-779) blocks ANDV protein expression and virion release but not entry into primary human microvascular endothelial cells. This effect was specific to viral proteins, as temsirolimus treatment did not block host protein synthesis. We confirmed that temsirolimus targeted host mTOR complex 1 (mTORC1) and not a viral protein, as knockdown of mTORC1 and mTORC1 activators but not mTOR complex 2 components reduced ANDV replication. Additionally, primary fibroblasts from a patient with tuberous sclerosis exhibited increased mTORC1 activity and increased ANDV protein expression, which were blocked following temsirolimus treatment. Finally, we show that ANDV glycoprotein Gn colocalized with mTOR and lysosomes in infected cells. Together, these data demonstrate that mTORC1 signaling regulates ANDV replication and suggest that the hantavirus Gn protein may modulate mTOR and lysosomal signaling during infection, thus bypassing the cellular regulation of translation. PMID:23135723

  16. Identification of a neurovascular signaling pathway regulating seizures in mice

    PubMed Central

    Fredriksson, Linda; Stevenson, Tamara K; Su, Enming J; Ragsdale, Margaret; Moore, Shannon; Craciun, Stefan; Schielke, Gerald P; Murphy, Geoffrey G; Lawrence, Daniel A

    2015-01-01

    Objective A growing body of evidence suggests that increased blood–brain barrier (BBB) permeability can contribute to the development of seizures. The protease tissue plasminogen activator (tPA) has been shown to promote BBB permeability and susceptibility to seizures. In this study, we examined the pathway regulated by tPA in seizures. Methods An experimental model of kainate-induced seizures was used in genetically modified mice, including mice deficient in tPA (tPA−/−), its inhibitor neuroserpin (Nsp−/−), or both (Nsp:tPA−/−), and in mice conditionally deficient in the platelet-derived growth factor receptor alpha (PDGFRα). Results Compared to wild-type (WT) mice, Nsp−/− mice have significantly reduced latency to seizure onset and generalization; whereas tPA−/− mice have the opposite phenotype, as do Nsp:tPA−/− mice. Furthermore, interventions that maintain BBB integrity delay seizure propagation, whereas osmotic disruption of the BBB in seizure-resistant tPA−/− mice dramatically reduces the time to seizure onset and accelerates seizure progression. The phenotypic differences in seizure progression between WT, tPA−/−, and Nsp−/− mice are also observed in electroencephalogram recordings in vivo, but absent in ex vivo electrophysiological recordings where regulation of the BBB is no longer necessary to maintain the extracellular environment. Finally, we demonstrate that these effects on seizure progression are mediated through signaling by PDGFRα on perivascular astrocytes. Interpretation Together, these data identify a specific molecular pathway involving tPA-mediated PDGFRα signaling in perivascular astrocytes that regulates seizure progression through control of the BBB. Inhibition of PDGFRα signaling and maintenance of BBB integrity might therefore offer a novel clinical approach for managing seizures. PMID:26273685

  17. Regulation of connexin signaling by the epigenetic machinery

    PubMed Central

    Vinken, Mathieu

    2015-01-01

    Connexins and their channels are involved in the control of all aspects of the cellular life cycle, ranging from cell growth to cell death, by mediating extracellular, intercellular and intracellular communication. These multifaceted aspects of connexin-related cellular signaling obviously require strict regulation. While connexin channel activity is mainly directed by posttranslational modifications, connexin expression as such is managed by classical cis/trans mechanisms. Over the past few years, it has become clear that connexin production is equally dictated by epigenetic actions. This paper provides an overview of the role of major determinants of the epigenome, including DNA methylation, histone acetylation and microRNA species, in connexin expression. PMID:26566120

  18. Regulation of connexin signaling by the epigenetic machinery.

    PubMed

    Vinken, Mathieu

    2016-02-01

    Connexins and their channels are involved in the control of all aspects of the cellular life cycle, ranging from cell growth to cell death, by mediating extracellular, intercellular and intracellular communication. These multifaceted aspects of connexin-related cellular signaling obviously require strict regulation. While connexin channel activity is mainly directed by posttranslational modifications, connexin expression as such is managed by classical cis/trans mechanisms. Over the past few years, it has become clear that connexin production is equally dictated by epigenetic actions. This paper provides an overview of the role of major determinants of the epigenome, including DNA methylation, histone acetylation and microRNA species, in connexin expression. PMID:26566120

  19. Small-signal, continuous, exact model of PWM voltage regulators

    NASA Astrophysics Data System (ADS)

    Burkhardt, W.; Maranesi, P.; Varoli, V.

    1985-02-01

    The small-signal time-continuous open-loop response of buck, boost, and buck-boost pulse-width-modulation (PWM) voltage regulators using MOSFET switches in their power stages is modeled, applying a time-domain sampling theorem (Woodward, 1953) to obtain the Fourier open-loop transfer function corresponding to the comb function describing the response at the chopping instants only. The results are presented graphically along with simplified circuit diagrams of the PWM devices, and the accuracy and computational efficiency of the analytical approach are indicated.

  20. Fisetin regulates obesity by targeting mTORC1 signaling.

    PubMed

    Jung, Chang Hwa; Kim, Heemun; Ahn, Jiyun; Jeon, Tae-Il; Lee, Dae-Hee; Ha, Tae-Youl

    2013-08-01

    Fisetin, a flavonol present in vegetables and fruits, possesses antioxidative and anti-inflammatory properties. In this study, we have demonstrated that fisetin prevents diet-induced obesity through regulation of the signaling of mammalian target of rapamycin complex 1 (mTORC1), a central mediator of cellular growth, cellular proliferation and lipid biosynthesis. To evaluate whether fisetin regulates mTORC1 signaling, we investigated the phosphorylation and kinase activity of the 70-kDa ribosomal protein S6 kinase 1 (S6K1) and mTORC1 in 3T3-L1 preadipocytes. Fisetin treatment of preadipocytes reduced the phosphorylation of S6K1 and mTORC1 in a time- and concentration-dependent manner. To further our understanding of how fisetin negatively regulates mTORC1 signaling, we analyzed the phosphorylation of S6K1, mTOR and Akt in fisetin-treated TSC2-knockdown cells. The results suggested that fisetin treatment inhibits mTORC1 activity in an Akt-dependent manner. Recent studies have shown that adipocyte differentiation is dependent on mTORC1 activity. Fisetin treatment inhibited adipocyte differentiation, consistent with the negative effect of fisetin on mTOR. The inhibitory effect of fisetin on adipogenesis is dependent of mTOR activity, suggesting that fisetin inhibits adipogenesis and the accumulation of intracellular triglycerides during adipocyte differentiation by targeting mTORC1 signaling. Fisetin supplementation in mice fed a high-fat diet (HFD) significantly attenuated HFD-induced increases in body weight and white adipose tissue. We also observed that fisetin efficiently suppressed the phosphorylation of Akt, S6K1 and mTORC1 in adipose tissue. Collectively, these results suggest that inhibition of mTORC1 signaling by fisetin prevents adipocyte differentiation of 3T3-L1 preadipocytes and obesity in HFD-fed mice. Therefore, fisetin may be a useful phytochemical agent for attenuating diet-induced obesity.

  1. DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection

    PubMed Central

    Fonouni-Farde, Camille; Tan, Sovanna; Baudin, Maël; Brault, Mathias; Wen, Jiangqi; Mysore, Kirankumar S.; Niebel, Andreas; Frugier, Florian; Diet, Anouck

    2016-01-01

    Legumes develop symbiotic interactions with rhizobial bacteria to form nitrogen-fixing nodules. Bacterial Nod factors (NFs) and plant regulatory pathways modulating NF signalling control rhizobial infections and nodulation efficiency. Here we show that gibberellin (GA) signalling mediated by DELLA proteins inhibits rhizobial infections and controls the NF induction of the infection marker ENOD11 in Medicago truncatula. Ectopic expression of a constitutively active DELLA protein in the epidermis is sufficient to promote ENOD11 expression in the absence of symbiotic signals. We show using heterologous systems that DELLA proteins can interact with the nodulation signalling pathway 2 (NSP2) and nuclear factor-YA1 (NF-YA1) transcription factors that are essential for the activation of NF responses. Furthermore, MtDELLA1 can bind the ERN1 (ERF required for nodulation 1) promoter and positively transactivate its expression. Overall, we propose that GA-dependent action of DELLA proteins may directly regulate the NSP1/NSP2 and NF-YA1 activation of ERN1 transcription to regulate rhizobial infections. PMID:27586842

  2. DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection.

    PubMed

    Fonouni-Farde, Camille; Tan, Sovanna; Baudin, Maël; Brault, Mathias; Wen, Jiangqi; Mysore, Kirankumar S; Niebel, Andreas; Frugier, Florian; Diet, Anouck

    2016-01-01

    Legumes develop symbiotic interactions with rhizobial bacteria to form nitrogen-fixing nodules. Bacterial Nod factors (NFs) and plant regulatory pathways modulating NF signalling control rhizobial infections and nodulation efficiency. Here we show that gibberellin (GA) signalling mediated by DELLA proteins inhibits rhizobial infections and controls the NF induction of the infection marker ENOD11 in Medicago truncatula. Ectopic expression of a constitutively active DELLA protein in the epidermis is sufficient to promote ENOD11 expression in the absence of symbiotic signals. We show using heterologous systems that DELLA proteins can interact with the nodulation signalling pathway 2 (NSP2) and nuclear factor-YA1 (NF-YA1) transcription factors that are essential for the activation of NF responses. Furthermore, MtDELLA1 can bind the ERN1 (ERF required for nodulation 1) promoter and positively transactivate its expression. Overall, we propose that GA-dependent action of DELLA proteins may directly regulate the NSP1/NSP2 and NF-YA1 activation of ERN1 transcription to regulate rhizobial infections. PMID:27586842

  3. A Common Fluence Threshold for First Positive and Second Positive Phototropism in Arabidopsis thaliana1

    PubMed Central

    Janoudi, Abdul; Poff, Kenneth L.

    1990-01-01

    The relationship between the amount of light and the amount of response for any photobiological process can be based on the number of incident quanta per unit time (fluence rate-response) or on the number of incident quanta during a given period of irradiation (fluence-response). Fluence-response and fluence rate-response relationships have been measured for second positive phototropism by seedlings of Arabidopsis thaliana. The fluence-response relationships exhibit a single limiting threshold at about 0.01 micromole per square meter when measured at fluence rates from 2.4 × 10−5 to 6.5 × 10−3 micromoles per square meter per second. The threshold values in the fluence rateresponse curves decrease with increasing time of irradiation, but show a common fluence threshold at about 0.01 micromole per square meter. These thresholds are the same as the threshold of about 0.01 micromole per square meter measured for first positive phototropism. Based on these data, it is suggested that second positive curvature has a threshold in time of about 10 minutes. Moreover, if the times of irradiation exceed the time threshold, there is a single limiting fluence threshold at about 0.01 micromole per square meter. Thus, the limiting fluence threshold for second positive phototropism is the same as the fluence threshold for first positive phototropism. Based on these data, we suggest that this common fluence threshold for first positive and second positive phototropism is set by a single photoreceptor pigment system. PMID:11537470

  4. Regulation of costimulatory signal in maternal-fetal immune tolerance.

    PubMed

    Jin, Li-Ping; Fan, Deng-Xuan; Li, Da-Jin

    2011-08-01

    A pregnancy is associated with modifications in the immune status of the mother, but the mechanisms are not well understood. Several observations have indicated that CD28/CTLA-4 and B7-1/B7-2 are involved in the maternal-fetal immune regulation. This review aims to recapitulate our current knowledge concerning the role of CD28/CTLA-4 and B7-1/B7-2 in maternal-fetal immune regulation. Several studies suggest that up-regulation of B7-2 and/or CD28 and/or down-regulation of CTLA-4 are correlated with the occurrence of pregnancy loss. Therefore, an accurate expression of costimulatory molecules at the maternal-fetal interface may ensure that the decidual cells do not elicit a 'danger' signal to the maternal immune system, perhaps instead contributing to the establishment of immune tolerance in vivo. It is showed that costimulation blockade with anti-B7 mAbs results in altered allogeneic T-cell response and overcomes increased maternal rejection to the fetus, which improves fetus growth in the abortion-prone system. These findings suggest that the anti-B7-treated T cells not only function as potent suppresser cells but also exert immunoregulatory effect on the maternal T cells. This procedure might be potentially useful to immunotherapy for human recurrent spontaneous abortion. PMID:21276120

  5. Light-Mediated Hormonal Regulation of Plant Growth and Development.

    PubMed

    de Wit, Mieke; Galvão, Vinicius Costa; Fankhauser, Christian

    2016-04-29

    Light is crucial for plant life, and perception of the light environment dictates plant growth, morphology, and developmental changes. Such adjustments in growth and development in response to light conditions are often established through changes in hormone levels and signaling. This review discusses examples of light-regulated processes throughout a plant's life cycle for which it is known how light signals lead to hormonal regulation. Light acts as an important developmental switch in germination, photomorphogenesis, and transition to flowering, and light cues are essential to ensure light capture through architectural changes during phototropism and the shade avoidance response. In describing well-established links between light perception and hormonal changes, we aim to give insight into the mechanisms that enable plants to thrive in variable light environments.

  6. Calcineurin/NFAT signaling in osteoblasts regulates bone mass.

    PubMed

    Winslow, Monte M; Pan, Minggui; Starbuck, Michael; Gallo, Elena M; Deng, Lei; Karsenty, Gerard; Crabtree, Gerald R

    2006-06-01

    Development and repair of the vertebrate skeleton requires the precise coordination of bone-forming osteoblasts and bone-resorbing osteoclasts. In diseases such as osteoporosis, bone resorption dominates over bone formation, suggesting a failure to harmonize osteoclast and osteoblast function. Here, we show that mice expressing a constitutively nuclear NFATc1 variant (NFATc1(nuc)) in osteoblasts develop high bone mass. NFATc1(nuc) mice have massive osteoblast overgrowth, enhanced osteoblast proliferation, and coordinated changes in the expression of Wnt signaling components. In contrast, viable NFATc1-deficient mice have defects in skull bone formation in addition to impaired osteoclast development. NFATc1(nuc) mice have increased osteoclastogenesis despite normal levels of RANKL and OPG, indicating that an additional NFAT-regulated mechanism influences osteoclastogenesis in vivo. Calcineurin/NFATc signaling in osteoblasts controls the expression of chemoattractants that attract monocytic osteoclast precursors, thereby coupling bone formation and bone resorption. Our results indicate that NFATc1 regulates bone mass by functioning in both osteoblasts and osteoclasts. PMID:16740479

  7. praja2 regulates KSR1 stability and mitogenic signaling

    PubMed Central

    Rinaldi, L; Delle Donne, R; Sepe, M; Porpora, M; Garbi, C; Chiuso, F; Gallo, A; Parisi, S; Russo, L; Bachmann, V; Huber, R G; Stefan, E; Russo, T; Feliciello, A

    2016-01-01

    The kinase suppressor of Ras 1 (KSR1) has a fundamental role in mitogenic signaling by scaffolding components of the Ras/MAP kinase pathway. In response to Ras activation, KSR1 assembles a tripartite kinase complex that optimally transfers signals generated at the cell membrane to activate ERK. We describe a novel mechanism of ERK attenuation based on ubiquitin-dependent proteolysis of KSR1. Stimulation of membrane receptors by hormones or growth factors induced KSR1 polyubiquitination, which paralleled a decline of ERK1/2 signaling. We identified praja2 as the E3 ligase that ubiquitylates KSR1. We showed that praja2-dependent regulation of KSR1 is involved in the growth of cancer cells and in the maintenance of undifferentiated pluripotent state in mouse embryonic stem cells. The dynamic interplay between the ubiquitin system and the kinase scaffold of the Ras pathway shapes the activation profile of the mitogenic cascade. By controlling KSR1 levels, praja2 directly affects compartmentalized ERK activities, impacting on physiological events required for cell proliferation and maintenance of embryonic stem cell pluripotency. PMID:27195677

  8. Regulation of EphB1 expression by dopamine signaling.

    PubMed

    Halladay, A K; Yue, Y; Michna, L; Widmer, D A; Wagner, G C; Zhou, R

    2000-12-28

    The Eph family tyrosine kinase receptors and their ligands have been implicated in axon guidance and neuronal migration during development of the nervous system. In the current study, we aim to characterize the nature of changes in EphB1 receptor expression following increases or decreases in dopamine activity. Neonatal mice (P3) were injected with 6-hydroxydopamine and allowed 13 days to recover. These animals show a profound depletion of dopamine in all areas assayed, with a corresponding dose-dependent decrease in EphB1 expression. Day 3 pups were also injected either chronically (P3-P16) or acutely (P3 only) with cocaine to determine how enhancing dopamine signaling would affect EphB1 signal density. It was found that both treatments significantly increased expression of EphB1 in the cortex, striatum and substantia nigra. Finally, animals were treated prenatally (E15-E17) with cocaine and sacrificed on P7. These animals also showed an increase in EphB1 signal density, but only in the dopaminergic terminal areas in the cortex and striatum. These studies indicate that dopamine activity regulates developmental expression of the tyrosine kinase receptor EphB1. PMID:11146119

  9. Nitrite as regulator of hypoxic signaling in mammalian physiology

    PubMed Central

    van Faassen, Ernst E.; Bahrami, Soheyl; Feelisch, Martin; Hogg, Neil; Kelm, Malte; Kim-Shapiro, Daniel B.; Kozlov, Andrey V.; Li, Haitao; Lundberg, Jon O.; Mason, Ron; Nohl, Hans; Rassaf, Tienush; Samouilov, Alexandre; Slama-Schwok, Anny; Shiva, Sruti; Vanin, Anatoly F.; Weitzberg, Eddie; Zweier, Jay; Gladwin, Mark T.

    2009-01-01

    In this review we consider the physiological effects of endogenous and pharmacological levels of nitrite under conditions of hypoxia. In humans, the nitrite anion has long been considered as metastable intermediate in the oxidation of nitric oxide radicals to the stable metabolite nitrate. This oxidation cascade was thought to be irreversible under physiological conditions. However, a growing body of experimental observations attests that the presence of endogenous nitrite regulates a number of signaling events along the physiological and pathophysiological oxygen gradient. Hypoxic signaling events include vasodilation, modulation of mitochondrial respiration, and cytoprotection following ischemic insult. These phenomena are attributed to the reduction of nitrite anions to nitric oxide if local oxygen levels in tissues decrease. Recent research identified a growing list of enzymatic and non-enzymatic pathways for this endogenous reduction of nitrite. Additional direct signaling events not involving free nitric oxide are proposed. We here discuss the mechanisms and properties of these various pathways and the role played by the local concentration of free oxygen in the affected tissue. PMID:19219851

  10. Adenosine signaling and the regulation of chronic lung disease

    PubMed Central

    Zhou, Yang; Schneider, Daniel J.; Blackburn, Michael R.

    2009-01-01

    Chronic lung diseases such as asthma, chronic obstructive pulmonary disease and interstitial lung disease are characterized by inflammation and tissue remodeling processes that compromise pulmonary function. Adenosine is produced in the inflamed and damaged lung where it plays numerous roles in the regulation of inflammation and tissue remodeling. Extracellular adenosine serves as an autocrine and paracrine signaling molecule by engaging cell surface adenosine receptors. Preclinical and cellular studies suggest that adenosine plays an anti-inflammatory role in processes associated with acute lung disease, where activation of the A2AR and A2BR have promising implications for the treatment of these disorders. In contrast, there is growing evidence that adenosine signaling through the A1R, A2BR and A3R may serve pro-inflammatory and tissue remodeling functions in chronic lung diseases. This review discusses the current progress of research efforts and clinical trials aimed at understanding the complexities of this signaling pathway as they pertain to the development of treatment strategies for chronic lung diseases. PMID:19426761

  11. Phospholipase D Controls Dictyostelium Development By Regulating G Protein Signaling

    PubMed Central

    Ray, Sibnath; Chen, Yi; Ayoung, Joanna; Hanna, Rachel; Brazill, Derrick

    2010-01-01

    Dictyostelium discoideum cells normally exist as individual amoebae, but will enter a period of multicellular development upon starvation. The initial stages of development involve the aggregation of individual cells, using cAMP as a chemoattractant. Chemotaxis is initiated when cAMP binds to its receptor, cAR1, and activates the associated G protein, Gα2βγ. However, chemotaxis will not occur unless there is a high density of starving cells present, as measured by high levels of the secreted quorum sensing molecule, CMF. We previously demonstrated that cells lacking PldB bypass the need for CMF and can aggregate at low cell density, whereas cells overexpressing pldB do not aggregate even at high cell density. Here, we found that PldB controlled both cAMP chemotaxis and cell sorting. PldB was also required by CMF to regulate G protein signaling. Specifically, CMF used PldB, to regulate the dissociation of Gα2 from Gβγ. Using fluorescence resonance energy transfer (FRET), we found that along with cAMP, CMF increased the dissociation of the G protein. In fact, CMF augmented the dissociation induced by cAMP. This augmentation was lost in cells lacking PldB. PldB appears to mediate the CMF signal through the production of phosphatidic acid, as exogenously added phosphatidic acid phenocopies overexpression of pldB. These results suggest that phospholipase D activity is required for CMF to alter the kinetics of cAMP-induced G protein signaling. PMID:20950684

  12. [RGS proteins (regulators of G protein signaling) and their roles in regulation of immune response].

    PubMed

    Lewandowicz, Anna M; Kowalski, Marek L; Pawliczak, Rafał

    2004-01-01

    RGS proteins (Regulators of G-protein Signaling) comprise a protein family responsible for regulating G proteins. By enhancing the GTPase activity of the a subunit, they speed up the reconstruction of the heterotrimeric structure of G protein, thus inhibiting its signal transduction. Sst2 protein in yeast Saccharomyces cervisiae, FlbA in fungus Aspergillus nidulans, and Egl-10 in the nematode Caenorhabditis elegans are the first native G regulators with GTPase activity (GAPs:--GTPase-activating proteins). The existence of over 30 RGS human proteins has been confirmed thus far, and they have been grouped and classified into six subfamilies. In immunocompetent cells, RGS proteins are entangled in a complicate net of different interrelating signal pathways. They are connected with B- and T-cell chemokine susceptibility, efficient T cell proliferation, and the regulation of B cell maturation. They also take an essential part in inflammation. High hopes are held for drugs, which handle would be RGS proteins and which would further provide the possibility of modifying the pharmacokinetics of drugs acting through G protein- coupled receptors. The aim of this review is to discuss the new RGS protein family and explain the potential involvement of RGS proteins in the modulation of the immune response PMID:15459549

  13. A divergent canonical WNT-signaling pathway regulates microtubule dynamics

    PubMed Central

    Ciani, Lorenza; Krylova, Olga; Smalley, Matthew J.; Dale, Trevor C.; Salinas, Patricia C.

    2004-01-01

    Dishevelled (DVL) is associated with axonal microtubules and regulates microtubule stability through the inhibition of the serine/threonine kinase, glycogen synthase kinase 3β (GSK-3β). In the canonical WNT pathway, the negative regulator Axin forms a complex with β-catenin and GSK-3β, resulting in β-catenin degradation. Inhibition of GSK-3β by DVL increases β-catenin stability and TCF transcriptional activation. Here, we show that Axin associates with microtubules and unexpectedly stabilizes microtubules through DVL. In turn, DVL stabilizes microtubules by inhibiting GSK-3β through a transcription- and β-catenin–independent pathway. More importantly, axonal microtubules are stabilized after DVL localizes to axons. Increased microtubule stability is correlated with a decrease in GSK-3β–mediated phosphorylation of MAP-1B. We propose a model in which Axin, through DVL, stabilizes microtubules by inhibiting a pool of GSK-3β, resulting in local changes in the phosphorylation of cellular targets. Our data indicate a bifurcation in the so-called canonical WNT-signaling pathway to regulate microtubule stability. PMID:14734535

  14. The Hippo-Salvador signaling pathway regulates renal tubulointerstitial fibrosis.

    PubMed

    Seo, Eunjeong; Kim, Wan-Young; Hur, Jeongmi; Kim, Hanbyul; Nam, Sun Ah; Choi, Arum; Kim, Yu-Mi; Park, Sang Hee; Chung, Chaeuk; Kim, Jin; Min, Soohong; Myung, Seung-Jae; Lim, Dae-Sik; Kim, Yong Kyun

    2016-08-23

    Renal tubulointerstitial fibrosis (TIF) is the final pathway of various renal injuries that result in chronic kidney disease. The mammalian Hippo-Salvador signaling pathway has been implicated in the regulation of cell proliferation, cell death, tissue regeneration, and tumorigenesis. Here, we report that the Hippo-Salvador pathway plays a role in disease development in patients with TIF and in a mouse model of TIF. Mice with tubular epithelial cell (TEC)-specific deletions of Sav1 (Salvador homolog 1) exhibited aggravated renal TIF, enhanced epithelial-mesenchymal transition-like phenotypic changes, apoptosis, and proliferation after unilateral ureteral obstruction (UUO). Moreover, Sav1 depletion in TECs increased transforming growth factor (TGF)-β and activated β-catenin expression after UUO, which likely accounts for the abovementioned enhanced TEC fibrotic phenotype. In addition, TAZ (transcriptional coactivator with PDZ-binding motif), a major downstream effector of the Hippo pathway, was significantly activated in Sav1-knockout mice in vivo. An in vitro study showed that TAZ directly regulates TGF-β and TGF-β receptor II expression. Collectively, our data indicate that the Hippo-Salvador pathway plays a role in the pathogenesis of TIF and that regulating this pathway may be a therapeutic strategy for reducing TIF.

  15. The Hippo-Salvador signaling pathway regulates renal tubulointerstitial fibrosis

    PubMed Central

    Seo, Eunjeong; Kim, Wan-Young; Hur, Jeongmi; Kim, Hanbyul; Nam, Sun Ah; Choi, Arum; Kim, Yu-Mi; Park, Sang Hee; Chung, Chaeuk; Kim, Jin; Min, Soohong; Myung, Seung-Jae; Lim, Dae-Sik; Kim, Yong Kyun

    2016-01-01

    Renal tubulointerstitial fibrosis (TIF) is the final pathway of various renal injuries that result in chronic kidney disease. The mammalian Hippo-Salvador signaling pathway has been implicated in the regulation of cell proliferation, cell death, tissue regeneration, and tumorigenesis. Here, we report that the Hippo-Salvador pathway plays a role in disease development in patients with TIF and in a mouse model of TIF. Mice with tubular epithelial cell (TEC)-specific deletions of Sav1 (Salvador homolog 1) exhibited aggravated renal TIF, enhanced epithelial-mesenchymal transition-like phenotypic changes, apoptosis, and proliferation after unilateral ureteral obstruction (UUO). Moreover, Sav1 depletion in TECs increased transforming growth factor (TGF)-β and activated β-catenin expression after UUO, which likely accounts for the abovementioned enhanced TEC fibrotic phenotype. In addition, TAZ (transcriptional coactivator with PDZ-binding motif), a major downstream effector of the Hippo pathway, was significantly activated in Sav1-knockout mice in vivo. An in vitro study showed that TAZ directly regulates TGF-β and TGF-β receptor II expression. Collectively, our data indicate that the Hippo-Salvador pathway plays a role in the pathogenesis of TIF and that regulating this pathway may be a therapeutic strategy for reducing TIF. PMID:27550469

  16. Regulation of ERBB3/HER3 signaling in cancer

    PubMed Central

    Mujoo, Kalpana; Choi, Byung-Kwon; Huang, Zhao; Zhang, Ningyan; An, Zhiqiang

    2014-01-01

    ERBB3/HER3 is emerging as a molecular target for various cancers. HER3 is overexpressed and activated in a number of cancer types under the conditions of acquired resistance to other HER family therapeutic interventions such as tyrosine kinase inhibitors and antibody therapies. Regulation of the HER3 expression and signaling involves numerous HER3 interacting proteins. These proteins include PI3K, Shc, and E3 ubiquitin ligases NEDD4 and Nrdp1. Furthermore, recent identification of a number of HER3 oncogenic mutations in colon and gastric cancers elucidate the role of HER3 in cancer development. Despite the strong evidence regarding the role of HER3 in cancer, the current understanding of the regulation of HER3 expression and activation requires additional research. Moreover, the lack of biomarkers for HER3-driven cancer poses a big challenge for the clinical development of HER3 targeting antibodies. Therefore, a better understanding of HER3 regulation should improve the strategies to therapeutically target HER3 for cancer therapy. PMID:25400118

  17. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications

    PubMed Central

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling. PMID:25628960

  18. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications.

    PubMed

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling.

  19. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications.

    PubMed

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling. PMID:25628960

  20. Hydrogen peroxide sensing, signaling and regulation of transcription factors

    PubMed Central

    Marinho, H. Susana; Real, Carla; Cyrne, Luísa; Soares, Helena; Antunes, Fernando

    2014-01-01

    The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly

  1. Extracellular Signal-Regulated Kinase-2 within the Ventral Tegmental Area Regulates Responses to Stress

    PubMed Central

    Iñiguez, Sergio D.; Vialou, Vincent; Warren, Brandon L.; Cao, Jun-Li; Alcantara, Lyonna F.; Davis, Lindsey C.; Manojlovic, Zarko; Neve, Rachael L.; Russo, Scott J.; Han, Ming-Hu; Nestler, Eric J.; Bolaños-Guzmán, Carlos A.

    2010-01-01

    Neurotrophic factors and their signaling pathways have been implicated in the neurobiological adaptations in response to stress and the regulation of mood-related behaviors. A candidate signaling molecule implicated in mediating these cellular responses is the extracellular signal-regulated kinase (ERK1/2), although its functional role in mood regulation remains to be fully elucidated. Here we show that acute (1 d) or chronic (4 weeks) exposure to unpredictable stress increases phosphorylation of ERK1/2 and of two downstream targets (ribosomal S6 kinase and mitogen- and stress-activated protein kinase 1) within the ventral tegmental area (VTA), an important substrate for motivated behavior and mood regulation. Using herpes simplex virus-mediated gene transfer to assess the functional significance of this ERK induction, we show that overexpressing ERK2 within the VTA increases susceptibility to stress as measured in the forced swim test, responses to unconditioned nociceptive stimuli, and elevated plus maze in Sprague Dawley male rats, and in the tail suspension test and chronic social defeat stress procedure in C57BL/6 male mice. In contrast, blocking ERK2 activity in the VTA produces stress-resistant behavioral responses in these same assays and also blocks a chronic stress-induced reduction in sucrose preference. The effects induced by ERK2 blockade were accompanied by decreases in the firing frequency of VTA dopamine neurons, an important electrophysiological hallmark of resilient-like behavior. Together, these results strongly implicate a role for ERK2 signaling in the VTA as a key modulator of responsiveness to stress and mood-related behaviors. PMID:20519540

  2. The ubiquitin-proteasome system regulates plant hormone signaling

    PubMed Central

    Santner, Aaron; Estelle, Mark

    2011-01-01

    SUMMARY Plants utilize the ubiquitin-proteasome system (UPS) to modulate nearly every aspect of growth and development. Ubiquitin is covalently attached to target proteins through the action of three enzymes known as E1, E2, and E3. The ultimate outcome of this post-translational modification depends on the nature of the ubiquitin linkage and the extent of polyubiquitination. In most cases, ubiquitination results in degradation of the target protein in the 26S proteasome. During the last 10 years it has become clear that the UPS plays a prominent regulatory role in hormone biology. E3 ubiquitin ligases in particular actively participate in hormone perception, de-repression of hormone signaling pathways, degradation of hormone specific transcription factors, and regulation of hormone biosynthesis. It is certain that additional functions will be discovered as more of the nearly 1200 potential E3s in plants are elucidated. PMID:20409276

  3. Regulation of Ca2+ Signaling in Pulmonary Hypertension

    PubMed Central

    Won, Jun Yeon

    2013-01-01

    Understanding the cellular and molecular mechanisms involved in the development and progression of pulmonary hypertension (PH) remains imperative if we are to successfully improve the quality of life and life span of patients with the disease. A whole plethora of mechanisms are associated with the development and progression of PH. Such complexity makes it difficult to isolate one particular pathway to target clinically. Changes in intracellular free calcium concentration, the most common intracellular second messenger, can have significant impact in defining the pathogenic mechanisms leading to its development and persistence. Signaling pathways leading to the elevation of [Ca2+]cyt contribute to pulmonary vasoconstriction, excessive proliferation of smooth muscle cells and ultimately pulmonary vascular remodeling. This current review serves to summarize the some of the most recent advances in the regulation of calcium during pulmonary hypertension. PMID:23439762

  4. Small G proteins and their regulators in cellular signalling.

    PubMed

    Csépányi-Kömi, Roland; Lévay, Magdolna; Ligeti, Erzsébet

    2012-04-28

    Small molecular weight GTPases (small G proteins) are essential in the transduction of signals from different plasma membrane receptors. Due to their endogenous GTP-hydrolyzing activity, these proteins function as time-dependent biological switches controlling diverse cellular functions including cell shape and migration, cell proliferation, gene transcription, vesicular transport and membrane-trafficking. This review focuses on endocrine diseases linked to small G proteins. We provide examples for the regulation of the activity of small G proteins by various mechanisms such as posttranslational modifications, guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) or guanine nucleotide dissociation inhibitors (GDIs). Finally we summarize endocrine diseases where small G proteins or their regulatory proteins have been revealed as the cause.

  5. Regulation of organismal proteostasis by trans-cellular chaperone signaling

    PubMed Central

    van Oosten-Hawle, Patricija; Porter, Robert S.; Morimoto, Richard I.

    2013-01-01

    Summary A major challenge for metazoans is to ensure that different tissues each expressing distinctive proteomes are, nevertheless, well protected at an organismal level from proteotoxic stress. We have examined this and show that expression of endogenous metastable protein sensors in muscle cells induces a systemic stress response throughout multiple tissues of C. elegans. Suppression of misfolding in muscle cells can be achieved not only by enhanced expression of HSP90 in muscle cells, but as effective by elevated expression of HSP90 in intestine or neuronal cells. This cell-non-autonomous control of HSP90 expression relies upon transcriptional feedback between somatic tissues that is regulated by the FoxA transcription factor PHA-4. This trans-cellular chaperone signaling response maintains organismal proteostasis when challenged by a local tissue imbalance in folding and provides the basis for a novel form of organismal stress sensing surveillance. PMID:23746847

  6. Molecular immunology--gene regulation and signal transduction.

    PubMed

    Hopkins, John

    2002-09-10

    Research on 'molecular immunology-gene regulation and signal transduction' in veterinary species is relatively new. The reason for its novelty is that until recently there have been very few tools with which we can work. Over the last 10 years the veterinary immunology community has succeeded in generating panels of defined monoclonal antibodies (mAb) and cloned genes that has enabled such work to be started. More recently, quantitative, high-resolution analytical tools for veterinary species have begun to be developed; some of these are specific for veterinary species and others have been adapted from human or rodent systems. Of the species-specific tools that have recently been developed perhaps the most widely used are the immunoassays for cytokines, RNAase protection assays (RPAs) and in the near future oligonucleotide and EST-based microarrays. This presentation will describe some of these assays and discuss their relative advantages and disadvantages.

  7. Repair Injured Heart by Regulating Cardiac Regenerative Signals

    PubMed Central

    Wang, Lei; Paul, Christian

    2016-01-01

    Cardiac regeneration is a homeostatic cardiogenic process by which the sections of malfunctioning adult cardiovascular tissues are repaired and renewed employing a combination of both cardiomyogenesis and angiogenesis. Unfortunately, while high-quality regeneration can be performed in amphibians and zebrafish hearts, mammalian hearts do not respond in kind. Indeed, a long-term loss of proliferative capacity in mammalian adult cardiomyocytes in combination with dysregulated induction of tissue fibrosis impairs mammalian endogenous heart regenerative capacity, leading to deleterious cardiac remodeling at the end stage of heart failure. Interestingly, several studies have demonstrated that cardiomyocyte proliferation capacity is retained in mammals very soon after birth, and cardiac regeneration potential is correspondingly preserved in some preadolescent vertebrates after myocardial infarction. There is therefore great interest in uncovering the molecular mechanisms that may allow heart regeneration during adult stages. This review will summarize recent findings on cardiac regenerative regulatory mechanisms, especially with respect to extracellular signals and intracellular pathways that may provide novel therapeutics for heart diseases. Particularly, both in vitro and in vivo experimental evidences will be presented to highlight the functional role of these signaling cascades in regulating cardiomyocyte proliferation, cardiomyocyte growth, and maturation, with special emphasis on their responses to heart tissue injury. PMID:27799944

  8. A cyclic GMP-dependent signalling pathway regulates bacterial phytopathogenesis.

    PubMed

    An, Shi-Qi; Chin, Ko-Hsin; Febrer, Melanie; McCarthy, Yvonne; Yang, Jauo-Guey; Liu, Chung-Liang; Swarbreck, David; Rogers, Jane; Maxwell Dow, J; Chou, Shan-Ho; Ryan, Robert P

    2013-09-11

    Cyclic guanosine 3',5'-monophosphate (cyclic GMP) is a second messenger whose role in bacterial signalling is poorly understood. A genetic screen in the plant pathogen Xanthomonas campestris (Xcc) identified that XC_0250, which encodes a protein with a class III nucleotidyl cyclase domain, is required for cyclic GMP synthesis. Purified XC_0250 was active in cyclic GMP synthesis in vitro. The linked gene XC_0249 encodes a protein with a cyclic mononucleotide-binding (cNMP) domain and a GGDEF diguanylate cyclase domain. The activity of XC_0249 in cyclic di-GMP synthesis was enhanced by addition of cyclic GMP. The isolated cNMP domain of XC_0249 bound cyclic GMP and a structure-function analysis, directed by determination of the crystal structure of the holo-complex, demonstrated the site of cyclic GMP binding that modulates cyclic di-GMP synthesis. Mutation of either XC_0250 or XC_0249 led to a reduced virulence to plants and reduced biofilm formation in vitro. These findings describe a regulatory pathway in which cyclic GMP regulates virulence and biofilm formation through interaction with a novel effector that directly links cyclic GMP and cyclic di-GMP signalling.

  9. Integrin signalling regulates YAP and TAZ to control skin homeostasis

    PubMed Central

    Elbediwy, Ahmed; Vincent-Mistiaen, Zoé I.; Spencer-Dene, Bradley; Stone, Richard K.; Boeing, Stefan; Wculek, Stefanie K.; Cordero, Julia; Tan, Ee H.; Ridgway, Rachel; Brunton, Val G.; Sahai, Erik; Gerhardt, Holger; Behrens, Axel; Malanchi, Ilaria; Sansom, Owen J.; Thompson, Barry J.

    2016-01-01

    ABSTRACT The skin is a squamous epithelium that is continuously renewed by a population of basal layer stem/progenitor cells and can heal wounds. Here, we show that the transcription regulators YAP and TAZ localise to the nucleus in the basal layer of skin and are elevated upon wound healing. Skin-specific deletion of both YAP and TAZ in adult mice slows proliferation of basal layer cells, leads to hair loss and impairs regeneration after wounding. Contact with the basal extracellular matrix and consequent integrin-Src signalling is a key determinant of the nuclear localisation of YAP/TAZ in basal layer cells and in skin tumours. Contact with the basement membrane is lost in differentiating daughter cells, where YAP and TAZ become mostly cytoplasmic. In other types of squamous epithelia and squamous cell carcinomas, a similar control mechanism is present. By contrast, columnar epithelia differentiate an apical domain that recruits CRB3, Merlin (also known as NF2), KIBRA (also known as WWC1) and SAV1 to induce Hippo signalling and retain YAP/TAZ in the cytoplasm despite contact with the basal layer extracellular matrix. When columnar epithelial tumours lose their apical domain and become invasive, YAP/TAZ becomes nuclear and tumour growth becomes sensitive to the Src inhibitor Dasatinib. PMID:26989177

  10. Ethylene Signaling Influences Light-Regulated Development in Pea.

    PubMed

    Weller, James L; Foo, Eloise M; Hecht, Valérie; Ridge, Stephen; Vander Schoor, Jacqueline K; Reid, James B

    2015-09-01

    Plant responses to light involve a complex network of interactions among multiple plant hormones. In a screen for mutants showing altered photomorphogenesis under red light, we identified a mutant with dramatically enhanced leaf expansion and delayed petal senescence. We show that this mutant exhibits reduced sensitivity to ethylene and carries a nonsense mutation in the single pea (Pisum sativum) ortholog of the ethylene signaling gene ETHYLENE INSENSITIVE2 (EIN2). Consistent with this observation, the ein2 mutation rescues the previously described effects of ethylene overproduction in mature phytochrome-deficient plants. In seedlings, ein2 confers a marked increase in leaf expansion under monochromatic red, far-red, or blue light, and interaction with phytochromeA, phytochromeB, and long1 mutants confirms that ein2 enhances both phytochrome- and cryptochrome-dependent responses in a LONG1-dependent manner. In contrast, minimal effects of ein2 on seedling development in darkness or high-irradiance white light show that ethylene is not limiting for development under these conditions. These results indicate that ethylene signaling constrains leaf expansion during deetiolation in pea and provide further evidence that down-regulation of ethylene production may be an important component mechanism in the broader control of photomorphogenic development by phytochrome and cryptochrome.

  11. Hedgehog signaling regulates gene expression in planarian glia

    PubMed Central

    Wang, Irving E; Lapan, Sylvain W; Scimone, M Lucila; Clandinin, Thomas R; Reddien, Peter W

    2016-01-01

    Hedgehog signaling is critical for vertebrate central nervous system (CNS) development, but its role in CNS biology in other organisms is poorly characterized. In the planarian Schmidtea mediterranea, hedgehog (hh) is expressed in medial cephalic ganglia neurons, suggesting a possible role in CNS maintenance or regeneration. We performed RNA sequencing of planarian brain tissue following RNAi of hh and patched (ptc), which encodes the Hh receptor. Two misregulated genes, intermediate filament-1 (if-1) and calamari (cali), were expressed in a previously unidentified non-neural CNS cell type. These cells expressed orthologs of astrocyte-associated genes involved in neurotransmitter uptake and metabolism, and extended processes enveloping regions of high synapse concentration. We propose that these cells are planarian glia. Planarian glia were distributed broadly, but only expressed if-1 and cali in the neuropil near hh+ neurons. Planarian glia and their regulation by Hedgehog signaling present a novel tractable system for dissection of glia biology. DOI: http://dx.doi.org/10.7554/eLife.16996.001 PMID:27612382

  12. Regulation of Nuclear Localization of Signaling Proteins by Cytokinin

    SciTech Connect

    Kieber, J.J.

    2010-05-01

    Cytokinins are a class of mitogenic plant hormones that play an important role in most aspects of plant development, including shoot and root growth, vascular and photomorphogenic development and leaf senescence. A model for cytokinin perception and signaling has emerged that is similar to bacterial two-component phosphorelays. In this model, binding of cytokinin to the extracellular domain of the Arabidopsis histidine kinase (AHKs) receptors induces autophosphorylation within the intracellular histidine-kinase domain. The phosphoryl group is subsequently transferred to cytosolic Arabidopsis histidine phosphotransfer proteins (AHPs), which have been suggested to translocate to the nucleus in response to cytokinin treatment, where they then transfer the phosphoryl group to nuclear-localized response regulators (Type-A and Type-B ARRs). We examined the effects of cytokinin on AHP subcellular localization in Arabidopsis and, contrary to expectations, the AHPs maintained a constant nuclear/cytosolic distribution following cytokinin treatment. Furthermore, mutation of the conserved phosphoacceptor histidine residue of the AHP, as well as disruption of multiple cytokinin signaling elements, did not affect the subcellular localization of the AHP proteins. Finally, we present data indicating that AHPs maintain a nuclear/cytosolic distribution by balancing active transport into and out of the nucleus. Our findings suggest that the current models indicating relocalization of AHP protein into the nucleus in response to cytokinin are incorrect. Rather, AHPs actively maintain a consistent nuclear/cytosolic distribution regardless of the status of the cytokinin response pathway.

  13. Basic amino-acid side chains regulate transmembrane integrin signalling.

    PubMed

    Kim, Chungho; Schmidt, Thomas; Cho, Eun-Gyung; Ye, Feng; Ulmer, Tobias S; Ginsberg, Mark H

    2011-12-18

    Side chains of Lys/Arg near transmembrane domain (TMD) membrane-water interfaces can 'snorkel', placing their positive charge near negatively charged phospholipid head groups; however, snorkelling's functional effects are obscure. Integrin β TMDs have such conserved basic amino acids. Here we use NMR spectroscopy to show that integrin β(3)(Lys 716) helps determine β(3) TMD topography. The α(ΙΙb)β(3) TMD structure indicates that precise β(3) TMD crossing angles enable the assembly of outer and inner membrane 'clasps' that hold the αβ TMD together to limit transmembrane signalling. Mutation of β(3)(Lys 716) caused dissociation of α(ΙΙb)β(3) TMDs and integrin activation. To confirm that altered topography of β(3)(Lys 716) mutants activated α(ΙΙb)β(3), we used directed evolution of β(3)(K716A) to identify substitutions restoring default state. Introduction of Pro(711) at the midpoint of β(3) TMD (A711P) increased α(ΙΙb)β(3) TMD association and inactivated integrin α(ΙΙb)β(3)(A711P,K716A). β(3)(Pro 711) introduced a TMD kink of 30 ± 1° precisely at the border of the outer and inner membrane clasps, thereby decoupling the tilt between these segments. Thus, widely occurring snorkelling residues in TMDs can help maintain TMD topography and membrane-embedding, thereby regulating transmembrane signalling.

  14. Structure, functional regulation and signaling properties of Rap2B

    PubMed Central

    QU, DEBAO; HUANG, HUI; DI, JIEHUI; GAO, KEYU; LU, ZHENG; ZHENG, JUNNIAN

    2016-01-01

    The Ras family small guanosine 5′-triphosphate (GTP)-binding protein Rap2B is is a member of the Ras oncogene family and a novel target of p53 that regulates the p53-mediated pro-survival function of cells. The Rap2B protein shares ~90% homology with Rap2A, and its sequence is 70% identical to other members of the Rap family such as RaplA and RaplB. As a result, Rap2B has been theorized to have similar signaling effectors to the GTPase-binding protein Rap, which mediates various biological functions, including the regulation of sterile 20/mitogen-activated proteins. Since its identification in the early 1990s, Rap2B has elicited a considerable interest. Numerous studies indicate that Rap2B exerts specific biological functions, including binding and stimulating phospholipase C-ε and interferon-γ. In addition, downregulation of Rap2B affects the growth of melanoma cells. The present review summarizes the possible effectors and biological functions of Rap2B. Increasing evidence clearly supports the association between Rap2B function and tumor development. Therefore, it is conceivable that anticancer drugs targeting Rap2B may be generated as novel therapies against cancer. PMID:27073477

  15. TLR signals posttranscriptionally regulate the cytokine trafficking mediator sortilin

    PubMed Central

    Yabe-Wada, Toshiki; Matsuba, Shintaro; Takeda, Kazuya; Sato, Tetsuya; Suyama, Mikita; Ohkawa, Yasuyuki; Takai, Toshiyuki; Shi, Haifeng; Philpott, Caroline C.; Nakamura, Akira

    2016-01-01

    Regulating the transcription, translation and secretion of cytokines is crucial for controlling the appropriate balance of inflammation. Here we report that the sorting receptor sortilin plays a key role in cytokine production. We observed interactions of sortilin with multiple cytokines including IFN-α, and sortilin depletion in plasmacytoid dendritic cells (pDCs) led to a reduction of IFN-α secretion, suggesting a pivotal role of sortilin in the exocytic trafficking of IFN-α in pDCs. Moreover, sortilin mRNA was degraded posttranscriptionally upon stimulation with various TLR ligands. Poly-rC-binding protein 1 (PCBP1) recognized the C-rich element (CRE) in the 3′ UTR of sortilin mRNA, and depletion of PCBP1 enhanced the degradation of sortilin transcripts, suggesting that PCBP1 can act as a trans-acting factor to stabilize sortilin transcripts. The nucleotide-binding ability of PCBP1 was impaired by zinc ions and alterations of intracellular zinc affect sortilin expression. PCBP1 may therefore control the stability of sortilin transcripts by sensing intracellular zinc levels. Collectively, our findings provide insights into the posttranslational regulation of cytokine production through the posttranscriptional control of sortilin expression by TLR signals. PMID:27220277

  16. Sensor–response regulator interactions in a cross-regulated signal transduction network

    PubMed Central

    Huynh, TuAnh Ngoc; Chen, Li-Ling

    2015-01-01

    Two-component signal transduction involves phosphoryl transfer between a histidine kinase sensor and a response regulator effector. The nitrate-responsive two-component signal transduction systems in Escherichia coli represent a paradigm for a cross-regulation network, in which the paralogous sensor–response regulator pairs, NarX–NarL and NarQ–NarP, exhibit both cognate (e.g. NarX–NarL) and non-cognate (e.g. NarQ–NarL) interactions to control output. Here, we describe results from bacterial adenylate cyclase two-hybrid (BACTH) analysis to examine sensor dimerization as well as interaction between sensor–response regulator cognate and non-cognate pairs. Although results from BACTH analysis indicated that the NarX and NarQ sensors interact with each other, results from intragenic complementation tests demonstrate that they do not form functional heterodimers. Additionally, intragenic complementation shows that both NarX and NarQ undergo intermolecular autophosphorylation, deviating from the previously reported correlation between DHp (dimerization and histidyl phosphotransfer) domain loop handedness and autophosphorylation mode. Results from BACTH analysis revealed robust interactions for the NarX–NarL, NarQ–NarL and NarQ–NarP pairs but a much weaker interaction for the NarX–NarP pair. This demonstrates that asymmetrical cross-regulation results from differential binding affinities between different sensor–regulator pairs. Finally, results indicate that the NarL effector (DNA-binding) domain inhibits NarX–NarL interaction. Missense substitutions at receiver domain residue Ser-80 enhanced NarX–NarL interaction, apparently by destabilizing the NarL receiver–effector domain interface. PMID:25873583

  17. TIM-1 signaling in B cells regulates antibody production

    SciTech Connect

    Ma, Juan; Usui, Yoshihiko; Takeda, Kazuyoshi; Harada, Norihiro; Yagita, Hideo; Okumura, Ko; Akiba, Hisaya

    2011-03-11

    Highlights: {yields} TIM-1 is highly expressed on anti-IgM + anti-CD40-stimulated B cells. {yields} Anti-TIM-1 mAb enhanced proliferation and Ig production on activated B cell in vitro. {yields} TIM-1 signaling regulates Ab production by response to TI-2 and TD antigens in vivo. -- Abstract: Members of the T cell Ig and mucin (TIM) family have recently been implicated in the control of T cell-mediated immune responses. In this study, we found TIM-1 expression on anti-IgM- or anti-CD40-stimulated splenic B cells, which was further up-regulated by the combination of anti-IgM and anti-CD40 Abs. On the other hand, TIM-1 ligand was constitutively expressed on B cells and inducible on anti-CD3{sup +} anti-CD28-stimulated CD4{sup +} T cells. In vitro stimulation of activated B cells by anti-TIM-1 mAb enhanced proliferation and expression of a plasma cell marker syndecan-1 (CD138). We further examined the effect of TIM-1 signaling on antibody production in vitro and in vivo. Higher levels of IgG2b and IgG3 secretion were detected in the culture supernatants of the anti-TIM-1-stimulated B cells as compared with the control IgG-stimulated B cells. When immunized with T-independent antigen TNP-Ficoll, TNP-specific IgG1, IgG2b, and IgG3 Abs were slightly increased in the anti-TIM-1-treated mice. When immunized with T-dependent antigen OVA, serum levels of OVA-specific IgG2b, IgG3, and IgE Abs were significantly increased in the anti-TIM-1-treated mice as compared with the control IgG-treated mice. These results suggest that TIM-1 signaling in B cells augments antibody production by enhancing B cell proliferation and differentiation.

  18. Role of the Cotyledons in the Phototropic Response of Lavatera cretica Seedlings

    PubMed Central

    Schwartz, Amnon; Koller, Dov

    1980-01-01

    Young seedlings of Lavatera cretica L. exhibit positive phototropism. The hypocotyl perceives unilateral illumination with blue light and curves towards the light source by unequal growth. In addition, the cotyledonary laminas perceive the vectorial component of unilateral illumination with blue light and reorient normal to the beam by creating a turgor differential in their pulvini. Excision of one cotyledon resulted in negative organotropic curvature of the hypocotyl, away from the remaining cotyledon. Illumination of the cotyledonary lamina did not participate in the phototropic curvature of the hypocotyl, so long as the lamina was free to reorient to face the beam. When the lamina was continuously exposed to vectorial photoexcitation, elongation of the hypocotyl on the side carrying the cotyledon could be enhanced, or inhibited, depending on the direction of the beam striking its lamina. Images PMID:16661400

  19. Fractional gravity studies on the ISS of sensory mechanisms involved in phototropism

    NASA Astrophysics Data System (ADS)

    Kiss, John Z.; Correll, Melanie; Edelmann, Richard; Millar, Katherine

    The major goals of this research are (1) to better understand cellular mechanisms of pho-totropism in plants and (2) to determine the effects and influence of gravity on light perception in plants. Because of the interfering effect of the strong gravitropic response, microgravity conditions are needed to effectively study phototropism. Experiments performed on the In-ternational Space Station (ISS) were used to explore the mechanisms of both blue-light and red-light-induced phototropism in plants. We utilized the European Modular Cultivation Sys-tem (EMCS), which has environmental controls for plant growth as well as centrifuges for gravity treatments. TROPI-1 (for tropisms) was successfully performed on the ISS during late 2006. We obtained data on seedlings grown in microgravity and discovered a novel positive phototropic response to red light in hypocotyls of seedlings of Arabidopsis thaliana. However, one problem encoun-tered during TROPI-1 was low seed germination due to long storage periods (8 months) in flight hardware. Thus, the originally proposed fractional gravity studies were not performed. TROPI-2 provides an opportunity to regain the results from these important fractional gravity experiments. TROPI-2 experiments will provide a better understanding of how plants integrate sensory input from multiple light and gravity perception systems. This information is important for growing plants on long-term space missions as part of life support systems. The fractional gravity studies contain 0.16g (Moon) and 0.38g (Mars) treatments, so information to be obtained is relevant to exploration objectives

  20. Regulator of G-protein signaling 18 integrates activating and inhibitory signaling in platelets.

    PubMed

    Gegenbauer, Kristina; Elia, Giuliano; Blanco-Fernandez, Alfonso; Smolenski, Albert

    2012-04-19

    Regulator of G-protein signaling 18 (RGS18) is a GTPase-activating protein for the G-α-q and G-α-i subunits of heterotrimeric G-proteins that turns off signaling by G-protein coupled receptors. RGS18 is highly expressed in platelets. In the present study, we show that the 14-3-3γ protein binds to phosphorylated serines 49 and 218 of RGS18. Platelet activation by thrombin, thromboxane A2, or ADP stimulates the association of 14-3-3 and RGS18, probably by increasing the phosphorylation of serine 49. In contrast, treatment of platelets with prostacyclin and nitric oxide, which trigger inhibitory cyclic nucleotide signaling involving cyclic AMP-dependent protein kinase A (PKA) and cyclic GMP-dependent protein kinase I (PKGI), induces the phosphorylation of serine 216 of RGS18 and the detachment of 14-3-3. Serine 216 phosphorylation is able to block 14-3-3 binding to RGS18 even in the presence of thrombin, thromboxane A2, or ADP. 14-3-3-deficient RGS18 is more active compared with 14-3-3-bound RGS18, leading to a more pronounced inhibition of thrombin-induced release of calcium ions from intracellular stores. Therefore, PKA- and PKGI-mediated detachment of 14-3-3 activates RGS18 to block Gq-dependent calcium signaling. These findings indicate cross-talk between platelet activation and inhibition pathways at the level of RGS18 and Gq. PMID:22234696

  1. Extracellular signal regulated kinase 5 mediates signals triggered by the novel tumor promoter palytoxin

    SciTech Connect

    Charlson, Aaron T.; Zeliadt, Nicholette A.; Wattenberg, Elizabeth V.

    2009-12-01

    Palytoxin is classified as a non-12-O-tetradecanoylphorbol-13-acetate (TPA)-type skin tumor because it does not bind to or activate protein kinase C. Palytoxin is thus a novel tool for investigating alternative signaling pathways that may affect carcinogenesis. We previously showed that palytoxin activates three major members of the mitogen activated protein kinase (MAPK) family, extracellular signal regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Here we report that palytoxin also activates another MAPK family member, called ERK5, in HeLa cells and in keratinocytes derived from initiated mouse skin (308 cells). By contrast, TPA does not activate ERK5 in these cell lines. The major cell surface receptor for palytoxin is the Na+,K+-ATPase. Accordingly, ouabain blocked the ability of palytoxin to activate ERK5. Ouabain alone did not activate ERK5. ERK5 thus represents a divergence in the signaling pathways activated by these two agents that bind to the Na+,K+-ATPase. Cycloheximide, okadaic acid, and sodium orthovanadate did not mimic the effect of palytoxin on ERK5. These results indicate that the stimulation of ERK5 by palytoxin is not simply due to inhibition of protein synthesis or inhibition of serine/threonine or tyrosine phosphatases. Therefore, the mechanism by which palytoxin activates ERK5 differs from that by which it activates ERK1/2, JNK, and p38. Finally, studies that used pharmacological inhibitors and shRNA to block ERK5 action indicate that ERK5 contributes to palytoxin-stimulated c-Fos gene expression. These results suggest that ERK5 can act as an alternative mediator for transmitting diverse tumor promoter-stimulated signals.

  2. Phototropism involves a lateral gradient of growth inhibitors, not of auxin. A review.

    PubMed

    Bruinsma, J; Hasegawa, K

    1989-01-01

    During phototropic curvature, indolyl-3-acetic acid (IAA) remains evenly distributed in the hypocotyl of sunflower (Helianthus annuus L.) and in the oat (Avena sativa L.) coleoptile. At the irradiated side, growth inhibiting substances accumulate. In sunflower, basipetal movement of a growth factor is not involved, since the top of the seedling can be covered or removed without affecting the photo-tropic response; this response, moreover, is independent of the rate of elongation growth. The chemical nature of the growth-inhibiting substances is only partly known. In the hypocotyl they occur in the neutral fraction: in sunflower cis-xanthoxin is one of them, in radish (Raphanus sativus L.) cis- and trans-raphanusanins, and possibly raphanusamide, are involved. The inhibitor(s) in the oat coleoptile are acidic. During curvature, their amount remains rather constant but the distribution changes with an accumulation at the irradiated side. It is concluded that phototropic curvature is brought about by an accumulation, at the irradiated side, of growth-inhibiting substances that unilaterally reduce cell elongation even though the IAA distribution is uniform.

  3. Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se–Te films

    PubMed Central

    Sadtler, Bryce; Burgos, Stanley P.; Batara, Nicolas A.; Beardslee, Joseph A.; Atwater, Harry A.; Lewis, Nathan S.

    2013-01-01

    Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium–tellurium (Se–Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light–matter interactions in the Se–Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns. PMID:24218617

  4. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis.

    PubMed

    Rzepka, Zuzanna; Buszman, Ewa; Beberok, Artur; Wrześniok, Dorota

    2016-01-01

    Melanins are natural pigments of skin, hair and eyes and can be classified into two main types: brown to black eumelanin and yellow to reddish-brown pheomelanin. Biosynthesis of melanins takes place in melanosomes, which are specialized cytoplasmic organelles of melanocytes - dendritic cells located in the basal layer of the epidermis, uveal tract of the eye, hair follicles, as well as in the inner ear, central nervous system and heart. Melanogenesis is a multistep process and begins with the conversion of amino acid L-tyrosine to DOPAquinone. The addition of cysteine or glutathione to DOPAquinone leads to the intermediates formation, followed by subsequent transformations and polymerization to the final product, pheomelanin. In the absence of thiol compounds DOPAquinone undergoes an intramolecular cyclization and oxidation to form DOPAchrome, which is then converted to 5,6-dihydroksyindole (DHI) or 5,6-dihydroxyindole-2-carboxylic acid (DHICA). Eumelanin is formed by polymerization of DHI and DHICA and their quinones. Regulation of melanogenesis is achieved by physical and biochemical factors. The article presents the intracellular signaling pathways: cAMP/PKA/CREB/MITF cascade, MAP kinases cascade, PLC/DAG/PKCβ cascade and NO/cGMP/PKG cascade, which are involved in the regulation of expression and activity of the melanogenesis-related proteins by ultraviolet radiation and endogenous agents (cytokines, hormones). Activity of the key melanogenic enzyme, tyrosinase, is also affected by pH and temperature. Many pharmacologically active substances are able to inhibit or stimulate melanin biosynthesis, as evidenced by in vitro studies on cultured pigment cells. PMID:27356601

  5. Regulation of mesangial cell function by vasodilatory signaling molecules.

    PubMed

    Buschhausen, L; Seibold, S; Gross, O; Matthaeus, T; Weber, M; Schulze-Lohoff, E

    2001-08-15

    Proliferation of mesangial cells and expansion of mesangial matrix is a hallmark of glomerular disease leading to end-stage renal failure and requiring renal replacement therapy. Independently from the type of injury, e.g. in glomerulonephritis or diabetic nephropathy, the response to injury is remarkably uniform. Chronic glomerular disease is frequently associated with increases in systemic blood pressure and altered intraglomerular hemodynamics. Furthermore, reduction of systemic blood pressure and inhibition of the vasoconstrictor peptide angiotensin II have been shown to delay end-stage renal failure in various types of human kidney disease. Since vasoconstrictors of mesangial cells and efferent glomerular arterioli, such as angiotensin II, are thought to be detrimental for the progression of chronic glomerular disease, we propose that vasodilatory factors which antagonize the effects of angiotensin II, might have beneficial effects during the course of progressive kidney disease. To support this concept we will summarize currently available data on the role of vasodilatory signaling molecules such as natriuretic peptides (ANP, BNP and CNP), nitric oxide (NO), the prostaglandines PGE2 and prostacycline, and the purine mediator adenosine in the regulation of mesangial function.

  6. Regulation of cell signaling and apoptosis by tumor suppressor WWOX

    PubMed Central

    Lo, Jui-Yen; Chou, Ying-Tsen; Lai, Feng-Jie

    2015-01-01

    Human fragile WWOX gene encodes a tumor suppressor WW domain-containing oxidoreductase (named WWOX, FOR, or WOX1). Functional suppression of WWOX prevents apoptotic cell death induced by a variety of stress stimuli, such as tumor necrosis factor, UV radiation, and chemotherapeutic drug treatment. Loss of WWOX gene expression due to gene deletions, loss of heterozygosity, chromosomal translocations, or epigenetic silencing is frequently observed in human malignant cancer cells. Acquisition of chemoresistance in squamous cell carcinoma, osteosarcoma, and breast cancer cells is associated with WWOX deficiency. WWOX protein physically interacts with many signaling molecules and exerts its regulatory effects on gene transcription and protein stability and subcellular localization to control cell survival, proliferation, differentiation, autophagy, and metabolism. In this review, we provide an overview of the recent advances in understanding the molecular mechanisms by which WWOX regulates cellular functions and stress responses. A potential scenario is that activation of WWOX by anticancer drugs is needed to overcome chemoresistance and trigger cancer cell death, suggesting that WWOX can be regarded as a prognostic marker and a candidate molecule for targeted cancer therapies. PMID:25595191

  7. Interleukin 2 activates extracellular signal-regulated protein kinase 2

    PubMed Central

    1993-01-01

    Interleukin 2 (IL-2) stimulated activation of the 42-kD extracellular signal-regulated kinase 2 (Erk2) in murine IL-3-dependent cells, expressing either high or intermediate affinity IL-2 receptors. Activation was both rapid, occurring within 5 min of IL-2 addition, and prolonged, remaining elevated for 30 min. Activation of Erk2 appeared to be necessary for IL-2 stimulation of proliferation, as deletion of a region of the cytoplasmic domain of the IL-2 receptor beta chain, essential for IL-2 stimulation of proliferation, abolished Erk2 activation by IL-2. Furthermore, cells that had been deprived of cytokine for 24 h were then refractory to IL-2 stimulation of both Erk2 activity and proliferation. However, elevation of Erk2 activity was not sufficient to stimulate proliferation, as protein kinase C activation stimulated Erk2 activity but not DNA synthesis. Also, cells exposed to IL-2 in the presence of rapamycin showed full Erk2 activation but not DNA synthesis. These data suggest that IL-2 must stimulate both Erk2 activity and a further pathway(s) to trigger cell proliferation. PMID:8376945

  8. BMP signaling and microtubule organization regulate synaptic strength

    PubMed Central

    Ball, Robin W.; Peled, Einat; Guerrero, Giovanna; Isacoff, Ehud Y.

    2015-01-01

    The strength of synaptic transmission between a neuron and multiple postsynaptic partners can vary considerably. We have studied synaptic heterogeneity using the glutamatergic Drosophila neuromuscular junction (NMJ), which contains multiple synaptic connections of varying strength between a motor axon and muscle fiber. In larval NMJs, there is a gradient of synaptic transmission from weak proximal to strong distal boutons. We imaged synaptic transmission with the postsynaptically targeted fluorescent calcium sensor SynapCam, to investigate the molecular pathways that determine synaptic strength and set up this gradient. We discovered that mutations in the Bone Morphogenetic Protein (BMP) signaling pathway disrupt production of strong distal boutons. We find that strong connections contain unbundled microtubules in the boutons, suggesting a role for microtubule organization in transmission strength. The spastin mutation, which disorganizes microtubules, disrupted the transmission gradient, supporting this interpretation. We propose that the BMP pathway, shown previously to function in the homeostatic regulation of synaptic growth, also boosts synaptic transmission in a spatially selective manner that depends on the microtubule system. PMID:25681521

  9. Regulation of PKC mediated signaling by calcium during visceral leishmaniasis.

    PubMed

    Roy, Nivedita; Chakraborty, Supriya; Paul Chowdhury, Bidisha; Banerjee, Sayantan; Halder, Kuntal; Majumder, Saikat; Majumdar, Subrata; Sen, Parimal C

    2014-01-01

    Calcium is an ubiquitous cellular signaling molecule that controls a variety of cellular processes and is strictly maintained in the cellular compartments by the coordination of various Ca2+ pumps and channels. Two such fundamental calcium pumps are plasma membrane calcium ATPase (PMCA) and Sarco/endoplasmic reticulum calcium ATPase (SERCA) which play a pivotal role in maintaining intracellular calcium homeostasis. This intracellular Ca2+ homeostasis is often disturbed by the protozoan parasite Leishmania donovani, the causative organism of visceral leishmaniasis. In the present study we have dileneated the involvement of PMCA4 and SERCA3 during leishmaniasis. We have observed that during leishmaniasis, intracellular Ca2+ concentration was up-regulated and was further controlled by both PMCA4 and SERCA3. Inhibition of these two Ca2+-ATPases resulted in decreased parasite burden within the host macrophages due to enhanced intracellular Ca2+. Contrastingly, on the other hand, activation of PMCA4 was found to enhance the parasite burden. Our findings also highlighted the importance of Ca2+ in the modulation of cytokine balance during leishmaniasis. These results thus cumulatively suggests that these two Ca2+-ATPases play prominent roles during visceral leishmaniasis. PMID:25329062

  10. Mitotic Checkpoint Regulators Control Insulin Signaling and Metabolic Homeostasis.

    PubMed

    Choi, Eunhee; Zhang, Xiangli; Xing, Chao; Yu, Hongtao

    2016-07-28

    Insulin signaling regulates many facets of animal physiology. Its dysregulation causes diabetes and other metabolic disorders. The spindle checkpoint proteins MAD2 and BUBR1 prevent precocious chromosome segregation and suppress aneuploidy. The MAD2 inhibitory protein p31(comet) promotes checkpoint inactivation and timely chromosome segregation. Here, we show that whole-body p31(comet) knockout mice die soon after birth and have reduced hepatic glycogen. Liver-specific ablation of p31(comet) causes insulin resistance, hyperinsulinemia, glucose intolerance, and hyperglycemia and diminishes the plasma membrane localization of the insulin receptor (IR) in hepatocytes. MAD2 directly binds to IR and facilitates BUBR1-dependent recruitment of the clathrin adaptor AP2 to IR. p31(comet) blocks the MAD2-BUBR1 interaction and prevents spontaneous clathrin-mediated IR endocytosis. BUBR1 deficiency enhances insulin sensitivity in mice. BUBR1 depletion in hepatocytes or the expression of MAD2-binding-deficient IR suppresses the metabolic phenotypes of p31(comet) ablation. Our findings establish a major IR regulatory mechanism and link guardians of chromosome stability to nutrient metabolism. PMID:27374329

  11. Cyclic AMP signalling pathways in the regulation of uterine relaxation

    PubMed Central

    Yuan, Wei; López Bernal, Andrés

    2007-01-01

    Studying the mechanism(s) of uterine relaxation is important and will be helpful in the prevention of obstetric difficulties such as preterm labour, which remains a major cause of perinatal mortality and morbidity. Multiple signalling pathways regulate the balance between maintaining relative uterine quiescence during gestation, and the transition to the contractile state at the onset of parturition. Elevation of intracellular cyclic AMP promotes myometrial relaxation, and thus quiescence, via effects on multiple intracellular targets including calcium channels, potassium channels and myosin light chain kinase. A complete understanding of cAMP regulatory pathways (synthesis and hydrolysis) would assist in the development of better tocolytics to delay or inhibit preterm labour. Here we review the enzymes involved in cAMP homoeostasis (adenylyl cyclases and phosphodiesterases) and possible myometrial substrates for the cAMP dependent protein kinase. We must emphasise the need to identify novel pharmacological targets in human pregnant myometrium to achieve safe and selective uterine relaxation when this is indicated in preterm labour or other obstetric complications. PMID:17570154

  12. Peroxiredoxin 1 suppresses apoptosis via regulation of the apoptosis signal-regulating kinase 1 signaling pathway in human oral leukoplakia

    PubMed Central

    ZHANG, MIN; NIU, WENWEN; ZHANG, JIANFEI; GE, LIHUA; YANG, JING; SUN, ZHENG; TANG, XIAOFEI

    2015-01-01

    Peroxiredoxin 1 (Prx1) has a significant role in several malignant types of tumor. However, the role of Prx1 in oral leukoplakia (OLK) has remained to be elucidated. OLK is a common precancerous lesion of the oral mucosa that has a very high malignant transformation rate. The aim of the present study was to investigate the roles of Prx1, and its association with apoptosis signal-regulating kinase 1 (ASK1) and p38 in OLK. A total of 20 OLK samples and 10 normal oral mucosa samples were obtained from patients at the Beijing Stomatological Hospital (Beijing, China). The messenger RNA (mRNA) and protein expression levels of Prx1, ASK1 and p38 were determined by polymerase chain reaction and western blot analysis, respectively. Flow cytometry was used to detect cell apoptosis. The interaction between Prx1 and ASK1 was examined in H2O2-treated DOK cells by glutathione-S-transferase pull-down assays and by co-immunoprecipitation in vitro. Compared with those of the normal oral mucosa, the mRNA levels of Prx1, ASK1 and p38 were elevated in OLK tissues (P<0.05). The protein expression levels of Prx1, phosphorylated-ASK1 (p-ASK1) and p-p38 were also significantly enhanced in OLK tissues compared with those of the normal mucosa (P<0.05). In Prx1-knockdown DOK cells, ASK1 and p38 were activated, leading to enhanced levels of apoptosis in response to H2O2. No clear interaction between Prx1 and ASK1 was detected in H2O2-treated DOK cells. Prx1 was suggested to be involved in OLK pathogenesis by providing resistance against extracellular damages from oxidative stress via inhibition of the ASK1-induced apoptotic signaling pathway. Targeting Prx1 may provide a novel therapeutic strategy for the treatment of patients with OLK. PMID:26622762

  13. Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase

    NASA Technical Reports Server (NTRS)

    Park, H.; Go, Y. M.; Darji, R.; Choi, J. W.; Lisanti, M. P.; Maland, M. C.; Jo, H.

    2000-01-01

    Fluid shear stress activates a member of the mitogen-activated protein (MAP) kinase family, extracellular signal-regulated kinase (ERK), by mechanisms dependent on cholesterol in the plasma membrane in bovine aortic endothelial cells (BAEC). Caveolae are microdomains of the plasma membrane that are enriched with cholesterol, caveolin, and signaling molecules. We hypothesized that caveolin-1 regulates shear activation of ERK. Because caveolin-1 is not exposed to the outside, cells were minimally permeabilized by Triton X-100 (0.01%) to deliver a neutralizing, polyclonal caveolin-1 antibody (pCav-1) inside the cells. pCav-1 then bound to caveolin-1 and inhibited shear activation of ERK but not c-Jun NH(2)-terminal kinase. Epitope mapping studies showed that pCav-1 binds to caveolin-1 at two regions (residues 1-21 and 61-101). When the recombinant proteins containing the epitopes fused to glutathione-S-transferase (GST-Cav(1-21) or GST-Cav(61-101)) were preincubated with pCav-1, only GST-Cav(61-101) reversed the inhibitory effect of the antibody on shear activation of ERK. Other antibodies, including m2234, which binds to caveolin-1 residues 1-21, had no effect on shear activation of ERK. Caveolin-1 residues 61-101 contain the scaffolding and oligomerization domains, suggesting that binding of pCav-1 to these regions likely disrupts the clustering of caveolin-1 or its interaction with signaling molecules involved in the shear-sensitive ERK pathway. We suggest that caveolae-like domains play a critical role in the mechanosensing and/or mechanosignal transduction of the ERK pathway.

  14. The chemistry of social regulation: multicomponent signals in ant societies.

    PubMed

    Hölldobler, B

    1995-01-01

    Chemical signals mediating communication in ant societies are usually complex mixtures of substances with considerable variation in molecular composition and in relative proportions of components. Such multicomponent signals can be produced in single exocrine glands, but they can also be composed with secretions from several glands. This variation is often functional, identifying groups or specific actions on a variety of organizational levels. Chemical signals can be further combined with cues from other sensory modalities, such as vibrational or tactile stimuli. These kinds of accessory signals usually serve in modulatory communication, lowering the response threshold in the recipient for the actual releasing stimulus. Comparative studies suggest that modulatory signals evolved through ritualization from actions originally not related to the same behavioral context, and modulatory signals may further evolve to become independent releasing signals.

  15. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    PubMed

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins. PMID:24297163

  16. Irradiance-dependent regulation of gravitropism by red light in protonemata of the moss Ceratodon purpureus

    NASA Technical Reports Server (NTRS)

    Kern, V. D.; Sack, F. D.

    1999-01-01

    Apical cells of protonemata of the moss Ceratodon purpureus (Hedw.) Brid. are negatively gravitropic in the dark and positively phototropic in red light. Various fluence rates of unilateral red light were tested to determine whether both tropisms operate simultaneously. At irradiances > or = 140 nmol m-2 s-1 no gravitropism could be detected and phototropism predominated, despite the presence of amyloplast sedimentation. Gravitropism occurred at irradiances lower than 140 nmol m-1 s-1 with most cells oriented above the horizontal but not upright. At these low fluence rates, phototropism was indistinct at 1 g but apparent in microgravity, indicating that gravitropism and phototropism compete at 1 g. The frequency of protonemata that were negatively phototropic varied with the fluence rate and the duration of illumination, as well as with the position of the apical cell before illumination. These data show that the fluence rate of red light regulates whether gravitropism is allowed or completely repressed, and that it influences the polarity of phototropism and the extent to which apical cells are aligned in the light path.

  17. Irradiance-dependent regulation of gravitropism by red light in protonemata of the moss Ceratodon purpureus.

    PubMed

    Kern, V D; Sack, F D

    1999-09-01

    Apical cells of protonemata of the moss Ceratodon purpureus (Hedw.) Brid. are negatively gravitropic in the dark and positively phototropic in red light. Various fluence rates of unilateral red light were tested to determine whether both tropisms operate simultaneously. At irradiances > or = 140 nmol m-2 s-1 no gravitropism could be detected and phototropism predominated, despite the presence of amyloplast sedimentation. Gravitropism occurred at irradiances lower than 140 nmol m-1 s-1 with most cells oriented above the horizontal but not upright. At these low fluence rates, phototropism was indistinct at 1 g but apparent in microgravity, indicating that gravitropism and phototropism compete at 1 g. The frequency of protonemata that were negatively phototropic varied with the fluence rate and the duration of illumination, as well as with the position of the apical cell before illumination. These data show that the fluence rate of red light regulates whether gravitropism is allowed or completely repressed, and that it influences the polarity of phototropism and the extent to which apical cells are aligned in the light path. PMID:10502096

  18. Plant elicitor peptides are conserved signals regulating direct and indirect anti-herbivore defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. As the first described plant peptide signal, systemin regulates anti-herbivore defenses in the Solanaceae, but in other plant families peptides with analogous activity have remained elusive. In the ...

  19. Plant elicitor peptides are conserved signals regulating direct and indirect anti-herbivore defense

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect-induced defenses occur in nearly all plants and are regulated by conserved signaling pathways. As the first described plant peptide signal, systemin regulates anti-herbivore defenses in the Solanaceae, but in other plant families peptides with analogous activity have remained elusive. In th...

  20. Regulation of Protease-activated Receptor 1 Signaling by the Adaptor Protein Complex 2 and R4 Subfamily of Regulator of G Protein Signaling Proteins*

    PubMed Central

    Chen, Buxin; Siderovski, David P.; Neubig, Richard R.; Lawson, Mark A.; Trejo, JoAnn

    2014-01-01

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of “regulator of G protein signaling” (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 420AKKAA424 mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins. PMID:24297163

  1. Signals and Cells Involved in Regulating Liver Regeneration

    PubMed Central

    Kang, Liang-I.; Mars, Wendy M.; Michalopoulos, George K.

    2012-01-01

    Liver regeneration is a complex phenomenon aimed at maintaining a constant liver mass in the event of injury resulting in loss of hepatic parenchyma. Partial hepatectomy is followed by a series of events involving multiple signaling pathways controlled by mitogenic growth factors (HGF, EGF) and their receptors (MET and EGFR). In addition multiple cytokines and other signaling molecules contribute to the orchestration of a signal which drives hepatocytes into DNA synthesis. The other cell types of the liver receive and transmit to hepatocytes complex signals so that, in the end of the regenerative process, complete hepatic tissue is assembled and regeneration is terminated at the proper time and at the right liver size. If hepatocytes fail to participate in this process, the biliary compartment is mobilized to generate populations of progenitor cells which transdifferentiate into hepatocytes and restore liver size. PMID:24710554

  2. Regulation of the feedback antagonist naked cuticle by Wingless signaling

    PubMed Central

    Chang, Jinhee L.; Chang, Mikyung V.; Barolo, Scott; Cadigan, Ken M.

    2008-01-01

    Signaling pathways usually activate transcriptional targets in a cell type-specific manner. Notable exceptions are pathway-specific feedback antagonists, which serve to restrict the range or duration of the signal. These factors are often activated by their respective pathways in a broad array of cell types. For example, the Wnt ligand Wingless (Wg) activates the naked cuticle (nkd) gene in all tissues examined throughout Drosophila development. How does the nkd gene respond in such an unrestricted manner to Wg signaling? Analysis in cell culture revealed regions of the nkd locus that contain Wg response elements (WREs) that are directly activated by the pathway via the transcription factor TCF. In flies, Wg signaling activates these WREs in multiple tissues, in distinct but overlapping patterns. These WREs are necessary and largely sufficient for nkd expression in late stage larval tissues, but only contribute to part of the embryonic expression pattern of nkd. These results demonstrate that nkd responsiveness to Wg signaling is achieved by several WREs which are broadly (but not universally) activated by the pathway. The existence of several WREs in the nkd locus may have been necessary to allow the Wg signaling-Nkd feedback circuit to remain intact as Wg expression diversified during animal evolution. PMID:18585374

  3. The role of the extracellular signal-regulated kinase signaling pathway in mood modulation.

    PubMed

    Einat, Haim; Yuan, Peixiong; Gould, Todd D; Li, Jianling; Du, JianHua; Zhang, Lei; Manji, Husseini K; Chen, Guang

    2003-08-13

    The neurobiological underpinnings of mood modulation, molecular pathophysiology of manic-depressive illness, and therapeutic mechanism of mood stabilizers are largely unknown. The extracellular signal-regulated kinase (ERK) pathway is activated by neurotrophins and other neuroactive chemicals to produce their effects on neuronal differentiation, survival, regeneration, and structural and functional plasticity. We found that lithium and valproate, commonly used mood stabilizers for the treatment of manic-depressive illness, stimulated the ERK pathway in the rat hippocampus and frontal cortex. Both drugs increased the levels of activated phospho-ERK44/42, activated phospho-ribosomal protein S6 kinase-1 (RSK1) (a substrate of ERK), phospho-CREB (cAMP response element-binding protein) and phospho-B cell lymphoma protein-2 antagonist of cell death (substrates of RSK), and BDNF. Inhibiting the ERK pathway with the blood-brain barrier-penetrating mitogen-activated protein kinase (MAP kinase)/ERK kinase (MEK) kinase inhibitor SL327, but not with the nonblood-brain barrier-penetrating MEK inhibitor U0126, decreased immobility time and increased swimming time of rats in the forced-swim test. SL327, but not U0126, also increased locomotion time and distance traveled in a large open field. The behavioral changes in the open field were prevented with chronic lithium pretreatment. SL327-induced behavioral changes are qualitatively similar to the changes induced by amphetamine, a compound that induces relapse in remitted manic patients and mood elevation in normal subjects. These data suggest that the ERK pathway may mediate the antimanic effects of mood stabilizers.

  4. The Adapter Molecule Sin Regulates T-Cell-Receptor-Mediated Signal Transduction by Modulating Signaling Substrate Availability

    PubMed Central

    Xing, Luzhou; Donlin, Laura T.; Miller, Rebecca H.; Alexandropoulos, Konstantina

    2004-01-01

    Engagement of the T-cell receptor (TCR) results in the activation of a multitude of signaling events that regulate the function of T lymphocytes. These signaling events are in turn modulated by adapter molecules, which control the final functional output through the formation of multiprotein complexes. In this report, we identified the adapter molecule Sin as a new regulator of T-cell activation. We found that the expression of Sin in transgenic T lymphocytes and Jurkat T cells inhibited interleukin-2 expression and T-cell proliferation. This inhibitory effect was specific and was due to defective phospholipase C-γ (PLC-γ) phosphorylation and activation. In contrast to other adapters that become phosphorylated upon TCR stimulation, Sin was constitutively phosphorylated in resting cells by the Src kinase Fyn and bound to signaling intermediates, including PLC-γ. In stimulated cells, Sin was transiently dephosphorylated, which coincided with transient dissociation of Fyn and PLC-γ. Downregulation of Sin expression using Sin-specific short interfering RNA oligonucleotides inhibited transcriptional activation in response to TCR stimulation. Our results suggest that endogenous Sin influences T-lymphocyte signaling by sequestering signaling substrates and regulating their availability and/or activity in resting cells, while Sin is required for targeting these intermediates to the TCR for fast signal transmission during stimulation. PMID:15121874

  5. Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling.

    PubMed

    Friedman, Adam A; Tucker, George; Singh, Rohit; Yan, Dong; Vinayagam, Arunachalam; Hu, Yanhui; Binari, Richard; Hong, Pengyu; Sun, Xiaoyun; Porto, Maura; Pacifico, Svetlana; Murali, Thilakam; Finley, Russell L; Asara, John M; Berger, Bonnie; Perrimon, Norbert

    2011-10-25

    Characterizing the extent and logic of signaling networks is essential to understanding specificity in such physiological and pathophysiological contexts as cell fate decisions and mechanisms of oncogenesis and resistance to chemotherapy. Cell-based RNA interference (RNAi) screens enable the inference of large numbers of genes that regulate signaling pathways, but these screens cannot provide network structure directly. We describe an integrated network around the canonical receptor tyrosine kinase (RTK)-Ras-extracellular signal-regulated kinase (ERK) signaling pathway, generated by combining parallel genome-wide RNAi screens with protein-protein interaction (PPI) mapping by tandem affinity purification-mass spectrometry. We found that only a small fraction of the total number of PPI or RNAi screen hits was isolated under all conditions tested and that most of these represented the known canonical pathway components, suggesting that much of the core canonical ERK pathway is known. Because most of the newly identified regulators are likely cell type- and RTK-specific, our analysis provides a resource for understanding how output through this clinically relevant pathway is regulated in different contexts. We report in vivo roles for several of the previously unknown regulators, including CG10289 and PpV, the Drosophila orthologs of two components of the serine/threonine-protein phosphatase 6 complex; the Drosophila ortholog of TepIV, a glycophosphatidylinositol-linked protein mutated in human cancers; CG6453, a noncatalytic subunit of glucosidase II; and Rtf1, a histone methyltransferase.

  6. SP8 regulates signaling centers during craniofacial development.

    PubMed

    Kasberg, Abigail D; Brunskill, Eric W; Steven Potter, S

    2013-09-15

    Much of the bone, cartilage and smooth muscle of the vertebrate face is derived from neural crest (NC) cells. During craniofacial development, the anterior neural ridge (ANR) and olfactory pit (OP) signaling centers are responsible for driving the outgrowth, survival, and differentiation of NC populated facial prominences, primarily via FGF. While much is known about the functional importance of signaling centers, relatively little is understood of how these signaling centers are made and maintained. In this report we describe a dramatic craniofacial malformation in mice mutant for the zinc finger transcription factor gene Sp8. At E14.5 they show facial prominences that are reduced in size and underdeveloped, giving an almost faceless phenotype. At later times they show severe midline defects, excencephaly, hyperterlorism, cleft palate, and a striking loss of many NC and paraxial mesoderm derived cranial bones. Sp8 expression was primarily restricted to the ANR and OP regions during craniofacial development. Analysis of an extensive series of conditional Sp8 mutants confirmed the critical role of Sp8 in signaling centers, and not directly in the NC and paraxial mesoderm cells. The NC cells of the Sp8 mutants showed increased levels of apoptosis and decreased cell proliferation, thereby explaining the reduced sizes of the facial prominences. Perturbed gene expression in the Sp8 mutants was examined by laser capture microdissection coupled with microarrays, as well as in situ hybridization and immunostaining. The most dramatic differences included striking reductions in Fgf8 and Fgf17 expression in the ANR and OP signaling centers. We were also able to achieve genetic and pharmaceutical partial rescue of the Sp8 mutant phenotype by reducing Sonic Hedgehog (SHH) signaling. These results show that Sp8 primarily functions to promote Fgf expression in the ANR and OP signaling centers that drive the survival, proliferation, and differentiation of the NC and paraxial

  7. SP8 regulates signaling centers during craniofacial development

    PubMed Central

    Kasberg, Abigail D.; Brunskill, Eric W.; Potter, S. Steven

    2014-01-01

    Much of the bone, cartilage and smooth muscle of the vertebrate face is derived from neural crest (NC) cells. During craniofacial development, the anterior neural ridge (ANR) and olfactory pit (OP) signaling centers are responsible for driving the outgrowth, survival, and differentiation of NC populated facial prominences, primarily via FGF. While much is known about the functional importance of signaling centers, relatively little is understood of how these signaling centers are made and maintained. In this report we describe a dramatic craniofacial malformation in mice mutant for the zinc finger transcription factor gene Sp8. At E14.5 they show facial prominences that are reduced in size and underdeveloped, giving an almost faceless phenotype. At later times they show severe midline defects, excencephaly, hyperterlorism, cleft palate, and a striking loss of many NC and paraxial mesoderm derived cranial bones. Sp8 expression was primarily restricted to the ANR and OP regions during craniofacial development. Analysis of an extensive series of conditional Sp8 mutants confirmed the critical role of Sp8 in signaling centers, and not directly in the NC and paraxial mesoderm cells. The NC cells of the Sp8 mutants showed increased levels of apoptosis and decreased cell proliferation, thereby explaining the reduced sizes of the facial prominences. Perturbed gene expression in the Sp8 mutants was examined by laser capture microdissection coupled with microarrays, as well as in situ hybridization and immunostaining. The most dramatic differences included striking reductions in Fgf8 and Fgf17 expression in the ANR and OP signaling centers. We were also able to achieve genetic and pharmaceutical partial rescue of the Sp8 mutant phenotype by reducing Sonic Hedgehog (SHH) signaling. These results show that Sp8 primarily functions to promote Fgf expression in the ANR and OP signaling centers that drive the survival, proliferation, and differentiation of the NC and paraxial

  8. Protons as second messenger regulators of G protein signaling

    PubMed Central

    Isom, Daniel G.; Sridharan, Vishwajith; Baker, Rachael; Clement, Sarah T.; Smalley, David M.; Dohlman, Henrik G.

    2013-01-01

    Summary In response to environmental stress cells often generate pH signals that serve to protect vital cellular components and reprogram gene expression for survival. A major barrier to our understanding of this process has been the identification of signaling proteins that detect changes in intracellular pH. To identify candidate pH sensors we developed a computer algorithm that searches proteins for networks of proton-binding sidechains. This analysis indicates that Gα subunits, the principal transducers of G protein-coupled receptor signals, are pH sensors. Our structure-based calculations and biophysical investigations reveal that Gα subunits contain networks of pH-sensing sidechains buried between their Ras and helical domains. We show further that proton binding induces changes in conformation that promote Gα phosphorylation and suppress receptor-initiated signaling. Together, our computational, biophysical and cellular analyses reveal a new and unexpected function for G proteins as mediators of stress-response signaling. PMID:23954348

  9. ROS Homeostasis Regulates Somatic Embryogenesis via the Regulation of Auxin Signaling in Cotton*

    PubMed Central

    Zhou, Ting; Yang, Xiyan; Guo, Kai; Deng, Jinwu; Xu, Jiao; Gao, Wenhui; Lindsey, Keith; Zhang, Xianlong

    2016-01-01

    Somatic embryogenesis (S.E.) is a versatile model for understanding the mechanisms of plant embryogenesis and a useful tool for plant propagation. To decipher the intricate molecular program and potentially to control the parameters affecting the frequency of S.E., a proteomics approach based on two-dimensional gel electrophoresis (2-DE) combined with MALDI-TOF/TOF was used. A total of 149 unique differentially expressed proteins (DEPs) were identified at different stages of cotton S.E. compared with the initial control (0 h explants). The expression profile and functional annotation of these DEPs revealed that S.E. activated stress-related proteins, including several reactive oxygen species (ROS)-scavenging enzymes. Proteins implicated in metabolic, developmental, and reproductive processes were also identified. Further experiments were performed to confirm the role of ROS-scavenging enzymes, suggesting the involvement of ROS homeostasis during S.E. in cotton. Suppressing the expression of specifically identified GhAPX proteins resulted in the inhibition of dedifferentiation. Accelerated redifferentiation was observed in the suppression lines of GhAPXs or GhGSTL3 in parallel with the alteration of endogenous ascorbate metabolism and accumulation of endogenous H2O2 content. Moreover, disrupting endogenous redox homeostasis through the application of high concentrations of DPI, H2O2, BSO, or GSH inhibited the dedifferentiation of cotton explants. Mild oxidation induced through BSO treatment facilitated the transition from embryogenic calluses (ECs) to somatic embryos. Meanwhile, auxin homeostasis was altered through the perturbation of ROS homeostasis by chemical treatments or suppression of ROS-scavenging proteins, along with the activating/suppressing the transcription of genes related to auxin transportation and signaling. These results show that stress responses are activated during S.E. and may regulate the ROS homeostasis by interacting with auxin signaling

  10. ROS Homeostasis Regulates Somatic Embryogenesis via the Regulation of Auxin Signaling in Cotton.

    PubMed

    Zhou, Ting; Yang, Xiyan; Guo, Kai; Deng, Jinwu; Xu, Jiao; Gao, Wenhui; Lindsey, Keith; Zhang, Xianlong

    2016-06-01

    Somatic embryogenesis (S.E.) is a versatile model for understanding the mechanisms of plant embryogenesis and a useful tool for plant propagation. To decipher the intricate molecular program and potentially to control the parameters affecting the frequency of S.E., a proteomics approach based on two-dimensional gel electrophoresis (2-DE) combined with MALDI-TOF/TOF was used. A total of 149 unique differentially expressed proteins (DEPs) were identified at different stages of cotton S.E. compared with the initial control (0 h explants). The expression profile and functional annotation of these DEPs revealed that S.E. activated stress-related proteins, including several reactive oxygen species (ROS)-scavenging enzymes. Proteins implicated in metabolic, developmental, and reproductive processes were also identified. Further experiments were performed to confirm the role of ROS-scavenging enzymes, suggesting the involvement of ROS homeostasis during S.E. in cotton. Suppressing the expression of specifically identified GhAPX proteins resulted in the inhibition of dedifferentiation. Accelerated redifferentiation was observed in the suppression lines of GhAPXs or GhGSTL3 in parallel with the alteration of endogenous ascorbate metabolism and accumulation of endogenous H2O2 content. Moreover, disrupting endogenous redox homeostasis through the application of high concentrations of DPI, H2O2, BSO, or GSH inhibited the dedifferentiation of cotton explants. Mild oxidation induced through BSO treatment facilitated the transition from embryogenic calluses (ECs) to somatic embryos. Meanwhile, auxin homeostasis was altered through the perturbation of ROS homeostasis by chemical treatments or suppression of ROS-scavenging proteins, along with the activating/suppressing the transcription of genes related to auxin transportation and signaling. These results show that stress responses are activated during S.E. and may regulate the ROS homeostasis by interacting with auxin signaling

  11. Post-Transcriptional Regulation of Interferons and Their Signaling Pathways

    PubMed Central

    2014-01-01

    Interferons (IFNs) are low molecular weight cell-derived proteins that include the type I, II, and III IFN families. IFNs are critical for an optimal immune response during microbial infections while dysregulated expression can lead to autoimmune diseases. Given its role in disease, it is important to understand cellular mechanisms of IFN regulation. 3′ untranslated regions (3′ UTRs) have emerged as potent regulators of mRNA and protein dosage and are controlled through multiple regulatory elements including adenylate uridylate (AU)-rich elements (AREs) and microRNA (miRNA) recognition elements. These AREs are targeted by RNA-binding proteins (ARE-BPs) for degradation and/or stabilization through an ARE-mediated decay process. miRNA are endogenous, single-stranded RNA molecules ∼22 nucleotides in length that regulate mRNA translation through the miRNA-induced silencing complex. IFN transcripts, like other labile mRNAs, harbor AREs in their 3′ UTRs that dictate the turnover of mRNA. This review is a survey of the literature related to IFN regulation by miRNA, ARE-BPs, and how these complexes interact dynamically on the 3′ UTR. Additionally, downstream effects of these post-transcriptional regulators on the immune response will be discussed. Review topics include past studies, current understanding, and future challenges in the study of post-transcriptional regulation affecting IFN responses. PMID:24702117

  12. Light-regulated translocation of signaling proteins in Drosophila photoreceptors

    PubMed Central

    Frechter, Shahar; Minke, Baruch

    2007-01-01

    Illumination of Drosophila photoreceptor cells induces multi-facet responses, which include generation of the photoreceptor potential, screening pigment migration and translocation of signaling proteins which is the focus of recent extensive research. Translocation of three signaling molecules is covered in this review: (1) Light-dependent translocation of arrestin from the cytosol to the signaling membrane, the rhabdomere, determines the lifetime of activated rhodopsin. Arrestin translocates in PIP3 and NINAC myosin III dependent manner, and specific mutations which disrupt the interaction between arrestin and PIP3 or NINAC also impair the light-dependant translocation of arrestin and the termination of the response to light. (2) Activation of Drosophila visual G protein, DGq, causes a massive and reversible, translocation of the α subunit from the signaling membrane to the cytosol, accompanied by activity-dependent architectural changes. Analysis of the translocation and the recovery kinetics of DGqα in wild-type flies and specific visual mutants indicated that DGqα is necessary but not sufficient for the architectural changes. (3) The TRP-like (TRPL) but not TRP channels translocate in a light-dependent manner between the rhabdomere and the cell body. As a physiological consequence of this light-dependent modulation of the TRP/TRPL ratio, the photoreceptors of dark-adapted flies operate at a wider dynamic range, which allows the photoreceptors enriched with TRPL to function better in darkness and dim background illumination. Altogether, signal-dependent movement of signaling proteins plays a major role in the maintenance and function of photoreceptor cells. PMID:16458490

  13. The Multiple Signaling Systems Regulating Virulence in Pseudomonas aeruginosa

    PubMed Central

    Nadal Jimenez, Pol; Koch, Gudrun; Thompson, Jessica A.; Xavier, Karina B.; Cool, Robbert H.

    2012-01-01

    Summary: Cell-to-cell communication is a major process that allows bacteria to sense and coordinately react to the fluctuating conditions of the surrounding environment. In several pathogens, this process triggers the production of virulence factors and/or a switch in bacterial lifestyle that is a major determining factor in the outcome and severity of the infection. Understanding how bacteria control these signaling systems is crucial to the development of novel antimicrobial agents capable of reducing virulence while allowing the immune system of the host to clear bacterial infection, an approach likely to reduce the selective pressures for development of resistance. We provide here an up-to-date overview of the molecular basis and physiological implications of cell-to-cell signaling systems in Gram-negative bacteria, focusing on the well-studied bacterium Pseudomonas aeruginosa. All of the known cell-to-cell signaling systems in this bacterium are described, from the most-studied systems, i.e., N-acyl homoserine lactones (AHLs), the 4-quinolones, the global activator of antibiotic and cyanide synthesis (GAC), the cyclic di-GMP (c-di-GMP) and cyclic AMP (cAMP) systems, and the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), to less-well-studied signaling molecules, including diketopiperazines, fatty acids (diffusible signal factor [DSF]-like factors), pyoverdine, and pyocyanin. This overview clearly illustrates that bacterial communication is far more complex than initially thought and delivers a clear distinction between signals that are quorum sensing dependent and those relying on alternative factors for their production. PMID:22390972

  14. Cellular defense processes regulated by pathogen-elicited receptor signaling

    NASA Astrophysics Data System (ADS)

    Wu, Rongcong; Goldsipe, Arthur; Schauer, David B.; Lauffenburger, Douglas A.

    2011-06-01

    Vertebrates are constantly threatened by the invasion of microorganisms and have evolved systems of immunity to eliminate infectious pathogens in the body. Initial sensing of microbial agents is mediated by the recognition of pathogens by means of molecular structures expressed uniquely by microbes of a given type. So-called 'Toll-like receptors' are expressed on host epithelial barrier cells play an essential role in the host defense against microbial pathogens by inducing cell responses (e.g., proliferation, death, cytokine secretion) via activation of intracellular signaling networks. As these networks, comprising multiple interconnecting dynamic pathways, represent highly complex multi-variate "information processing" systems, the signaling activities particularly critical for governing the host cell responses are poorly understood and not easily ascertained by a priori theoretical notions. We have developed over the past half-decade a "data-driven" computational modeling approach, on a 'cue-signal-response' combined experiment/computation paradigm, to elucidate key multi-variate signaling relationships governing the cell responses. In an example presented here, we study how a canonical set of six kinase pathways combine to effect microbial agent-induced apoptotic death of a macrophage cell line. One modeling technique, partial least-squares regression, yielded the following key insights: {a} signal combinations most strongly correlated to apoptotic death are orthogonal to those most strongly correlated with release of inflammatory cytokines; {b} the ratio of two key pathway activities is the most powerful predictor of microbe-induced macrophage apoptotic death; {c} the most influential time-window of this signaling activity ratio is surprisingly fast: less than one hour after microbe stimulation.

  15. Protein kinase C in the immune system: from signalling to chromatin regulation.

    PubMed

    Lim, Pek Siew; Sutton, Christopher Ray; Rao, Sudha

    2015-12-01

    Protein kinase C (PKC) form a key family of enzymes involved in signalling pathways that specifically phosphorylates substrates at serine/threonine residues. Phosphorylation by PKC is important in regulating a variety of cellular events such as cell proliferation and the regulation of gene expression. In the immune system, PKCs are involved in regulating signal transduction pathways important for both innate and adaptive immunity, ultimately resulting in the expression of key immune genes. PKCs act as mediators during immune cell signalling through the immunological synapse. PKCs are traditionally known to be cytoplasmic signal transducers and are well embedded in the signalling pathways of cells to mediate the cells' response to a stimulus from the plasma membrane to the nucleus. PKCs are also found to transduce signals within the nucleus, a process that is distinct from the cytoplasmic signalling pathway. There is now growing evidence suggesting that PKC can directly regulate gene expression programmes through a non-traditional role as nuclear kinases. In this review, we will focus on the role of PKCs as key cytoplasmic signal transducers in immune cell signalling, as well as its role in nuclear signal transduction. We will also highlight recent evidence for its newly discovered regulatory role in the nucleus as a chromatin-associated kinase.

  16. Extracellular signals and receptor-like kinases regulating ROP GTPases in plants

    PubMed Central

    Miyawaki, Kaori N.; Yang, Zhenbiao

    2014-01-01

    Rho-like GTPase from plants (ROPs) function as signaling switches that control a wide variety of cellular functions and behaviors including cell morphogenesis, cell division and cell differentiation. The Arabidopsis thaliana genome encodes 11 ROPs that form a distinct single subfamily contrarily to animal or fungal counterparts where multiple subfamilies of Rho GTPases exist. Since Rho proteins bind to their downstream effector proteins only in their GTP-bound “active” state, the activation of ROPs by upstream factor(s) is a critical step in the regulation of ROP signaling. Therefore, it is critical to examine the input signals that lead to the activation of ROPs. Recent findings showed that the plant hormone auxin is an important signal for the activation of ROPs during pavement cell morphogenesis as well as for other developmental processes. In contrast to auxin, another plant hormone, abscisic acid, negatively regulates ROP signaling. Calcium is another emerging signal in the regulation of ROP signaling. Several lines of evidence indicate that plasma membrane localized-receptor like kinases play a critical role in the transmission of the extracellular signals to intracellular ROP signaling pathways. This review focuses on how these signals impinge upon various direct regulators of ROPs to modulate various plant processes. PMID:25295042

  17. The Tec Kinase-Regulated Phosphoproteome Reveals a Mechanism for the Regulation of Inhibitory Signals in Murine Macrophages.

    PubMed

    Tampella, Giacomo; Kerns, Hannah M; Niu, Deqiang; Singh, Swati; Khim, Socheath; Bosch, Katherine A; Garrett, Meghan E; Moguche, Albanus; Evans, Erica; Browning, Beth; Jahan, Tahmina A; Nacht, Mariana; Wolf-Yadlin, Alejandro; Plebani, Alessandro; Hamerman, Jessica A; Rawlings, David J; James, Richard G

    2015-07-01

    Previous work has shown conflicting roles for Tec family kinases in regulation of TLR-dependent signaling in myeloid cells. In the present study, we performed a detailed investigation of the role of the Tec kinases Btk and Tec kinases in regulating TLR signaling in several types of primary murine macrophages. We demonstrate that primary resident peritoneal macrophages deficient for Btk and Tec secrete less proinflammatory cytokines in response to TLR stimulation than do wild-type cells. In contrast, we found that bone marrow-derived and thioglycollate-elicited peritoneal macrophages deficient for Btk and Tec secrete more proinflammatory cytokines than do wild-type cells. We then compared the phosphoproteome regulated by Tec kinases and LPS in primary peritoneal and bone marrow-derived macrophages. From this analysis we determined that Tec kinases regulate different signaling programs in these cell types. In additional studies using bone marrow-derived macrophages, we found that Tec and Btk promote phosphorylation events necessary for immunoreceptor-mediated inhibition of TLR signaling. Taken together, our results are consistent with a model where Tec kinases (Btk, Tec, Bmx) are required for TLR-dependent signaling in many types of myeloid cells. However, our data also support a cell type-specific TLR inhibitory role for Btk and Tec that is mediated by immunoreceptor activation and signaling via PI3K. PMID:26026062

  18. The Tec kinase-regulated phosphoproteome reveals a mechanism for the regulation of inhibitory signals in murine macrophages

    PubMed Central

    Tampella, Giacomo; Kerns, Hannah M.; Niu, Deqiang; Singh, Swati; Khim, Socheath; Bosch, Katherine A.; Garrett, Meghan E.; Moguche, Albanus; Evans, Erica; Browning, Beth; Jahan, Tahmina A.; Nacht, Mariana; Wolf-Yadlin, Alejandro; Plebani, Alessandro; Hamerman, Jessica A.; Rawlings, David J.; James, Richard G.

    2015-01-01

    Previous work has shown conflicting roles for Tec family kinases in regulation of Toll-like receptor (TLR)-dependent signalling in myeloid cells. In the present study, we performed a detailed investigation of the role of Btk and Tec kinases in regulating TLR signalling in several types of primary murine macrophages. We demonstrate that primary resident peritoneal macrophages deficient for Btk and Tec secrete less pro-inflammatory cytokines in response to TLR stimulation than wild type cells. In contrast, we found that bone marrow-derived and thioglycollate-elicited peritoneal macrophages deficient for Btk and Tec secrete more pro-inflammatory cytokines than wild type cells. We then compared the phosphoproteome regulated by Tec kinases and lipopolysaccharide in primary peritoneal and bone marrow derived macrophages. From this analysis we determined that Tec kinases regulate different signalling programs in these cell types. In additional studies using bone marrow-derived macrophages, we find that Tec and Btk promote phosphorylation events necessary for immunoreceptor-mediated inhibition of TLR signalling. Taken together, our results are consistent with a model where Tec kinases (Btk, Tec, Bmx) are required for TLR-dependent signalling in many types of myeloid cells. However, our data also support a cell type-specific TLR-inhibitory role for Btk and Tec that is mediated by immunoreceptor activation and signalling via PI3K. PMID:26026062

  19. Nitric Oxide Regulation of H-NOX Signaling Pathways in Bacteria.

    PubMed

    Nisbett, Lisa-Marie; Boon, Elizabeth M

    2016-09-01

    Nitric oxide (NO) is a freely diffusible, radical gas that has now been established as an integral signaling molecule in eukaryotes and bacteria. It has been demonstrated that NO signaling is initiated upon ligation to the heme iron of an H-NOX domain in mammals and in some bacteria. Bacterial H-NOX proteins have been found to interact with enzymes that participate in signaling pathways and regulate bacterial processes such as quorum sensing, biofilm formation, and symbiosis. Here, we review the biochemical characterization of these signaling pathways and, where available, describe how ligation of NO to H-NOX specifically regulates the activity of these pathways and their associated bacterial phenotypes.

  20. Mutations in Transcriptional Regulators Allow Selective Engineering of Signal Integration Logic

    PubMed Central

    2014-01-01

    ABSTRACT Bacterial cells monitor their environment by sensing a set of signals. Typically, these environmental signals affect promoter activities by altering the activity of transcription regulatory proteins. Promoters are often regulated by more than one regulatory protein, and in these cases the relevant signals are integrated by certain logic. In this work, we study how single amino acid substitutions in a regulatory protein (GalR) affect transcriptional regulation and signal integration logic at a set of engineered promoters. Our results suggest that point mutations in regulatory genes allow independent evolution of regulatory logic at different promoters. PMID:24961691

  1. Cellular Architecture Regulates Collective Calcium Signaling and Cell Contractility

    PubMed Central

    Hoying, James B.; Deymier, Pierre A.; Zhang, Donna D.; Wong, Pak Kin

    2016-01-01

    A key feature of multicellular systems is the ability of cells to function collectively in response to external stimuli. However, the mechanisms of intercellular cell signaling and their functional implications in diverse vascular structures are poorly understood. Using a combination of computational modeling and plasma lithography micropatterning, we investigate the roles of structural arrangement of endothelial cells in collective calcium signaling and cell contractility. Under histamine stimulation, endothelial cells in self-assembled and microengineered networks, but not individual cells and monolayers, exhibit calcium oscillations. Micropatterning, pharmacological inhibition, and computational modeling reveal that the calcium oscillation depends on the number of neighboring cells coupled via gap junctional intercellular communication, providing a mechanistic basis of the architecture-dependent calcium signaling. Furthermore, the calcium oscillation attenuates the histamine-induced cytoskeletal reorganization and cell contraction, resulting in differential cell responses in an architecture-dependent manner. Taken together, our results suggest that endothelial cells can sense and respond to chemical stimuli according to the vascular architecture via collective calcium signaling. PMID:27196735

  2. Role of Glycolytic Intermediates in Global Regulation and Signal Transduction. Final Report

    SciTech Connect

    Liao, J.C.

    2000-05-08

    The goal of this project is to determine the role of glycolytic intermediates in regulation of cell physiology. It is known that many glycolytic intermediates are involved in regulation of enzyme activities at the kinetic level. However, little is known regarding the role of these metabolites in global regulation and signal transduction. This project aims to investigate the role of glycolytic intermediates in the regulation of gene expression.

  3. Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis.

    PubMed

    Ding, Zhaojun; Galván-Ampudia, Carlos S; Demarsy, Emilie; Łangowski, Łukasz; Kleine-Vehn, Jürgen; Fan, Yuanwei; Morita, Miyo T; Tasaka, Masao; Fankhauser, Christian; Offringa, Remko; Friml, Jiří

    2011-04-01

    Phototropism is an adaptation response, through which plants grow towards the light. It involves light perception and asymmetric distribution of the plant hormone auxin. Here we identify a crucial part of the mechanism for phototropism, revealing how light perception initiates auxin redistribution that leads to directional growth. We show that light polarizes the cellular localization of the auxin efflux carrier PIN3 in hypocotyl endodermis cells, resulting in changes in auxin distribution and differential growth. In the dark, high expression and activity of the PINOID (PID) kinase correlates with apolar targeting of PIN3 to all cell sides. Following illumination, light represses PINOID transcription and PIN3 is polarized specifically to the inner cell sides by GNOM ARF GTPase GEF (guanine nucleotide exchange factor)-dependent trafficking. Thus, differential trafficking at the shaded and illuminated hypocotyl side aligns PIN3 polarity with the light direction, and presumably redirects auxin flow towards the shaded side, where auxin promotes growth, causing hypocotyls to bend towards the light. Our results imply that PID phosphorylation-dependent recruitment of PIN proteins into distinct trafficking pathways is a mechanism to polarize auxin fluxes in response to different environmental and endogenous cues.

  4. Study of plant phototropic responses to different LEDs illumination in microgravity

    NASA Astrophysics Data System (ADS)

    Zyablova, Natalya; Berkovich, Yuliy A.; Skripnikov, Alexander; Nikitin, Vladimir

    2012-07-01

    The purpose of the experiment planned for Russian BION-M #1, 2012, biosatellite is research of Physcomitrella patens (Hedw.) B.S.G. phototropic responses to different light stimuli in microgravity. The moss was chosen as small-size higher plant. The experimental design involves five lightproof culture flasks with moss gametophores fixed inside the cylindrical container (diameter 120 mm; height 240 mm). The plants in each flask are illuminated laterally by one of the following LEDs: white, blue (475 nm), red (625 nm), far red (730 nm), infrared (950 nm). The gametophores growth and bending are captured periodically by means of five analogue video cameras and recorder. The programmable command module controls power supply of each camera and each light source, commutation of the cameras and functioning of video recorder. Every 20 minutes the recorder is sequentially connecting to one of the cameras. This results in a clip, containing 5 sets of frames in a row. After landing time-lapse films are automatically created. As a result we will have five time-lapse films covering transformations in each of the five culture flasks. Onground experiments demonstrated that white light induced stronger gametophores phototropic bending as compared to red and blue stimuli. The comparison of time-lapse recordings in the experiments will provide useful information to optimize lighting assemblies for space plant growth facilities.

  5. PIF4 Integrates Multiple Environmental and Hormonal Signals for Plant Growth Regulation in Arabidopsis

    PubMed Central

    Choi, Hyunmo; Oh, Eunkyoo

    2016-01-01

    As sessile organisms, plants must be able to adapt to the environment. Plants respond to the environment by adjusting their growth and development, which is mediated by sophisticated signaling networks that integrate multiple environmental and endogenous signals. Recently, increasing evidence has shown that a bHLH transcription factor PIF4 plays a major role in the multiple signal integration for plant growth regulation. PIF4 is a positive regulator in cell elongation and its activity is regulated by various environmental signals, including light and temperature, and hormonal signals, including auxin, gibberellic acid and brassinosteroid, both transcriptionally and post-translationally. Moreover, recent studies have shown that the circadian clock and metabolic status regulate endogenous PIF4 level. The PIF4 transcription factor cooperatively regulates the target genes involved in cell elongation with hormone-regulated transcription factors. Therefore, PIF4 is a key integrator of multiple signaling pathways, which optimizes growth in the environment. This review will discuss our current understanding of the PIF4-mediated signaling networks that control plant growth. PMID:27432188

  6. PIF4 Integrates Multiple Environmental and Hormonal Signals for Plant Growth Regulation in Arabidopsis.

    PubMed

    Choi, Hyunmo; Oh, Eunkyoo

    2016-08-31

    As sessile organisms, plants must be able to adapt to the environment. Plants respond to the environment by adjusting their growth and development, which is mediated by sophisticated signaling networks that integrate multiple environmental and endogenous signals. Recently, increasing evidence has shown that a bHLH transcription factor PIF4 plays a major role in the multiple signal integration for plant growth regulation. PIF4 is a positive regulator in cell elongation and its activity is regulated by various environmental signals, including light and temperature, and hormonal signals, including auxin, gibberellic acid and brassinosteroid, both transcriptionally and post-translationally. Moreover, recent studies have shown that the circadian clock and metabolic status regulate endogenous PIF4 level. The PIF4 transcription factor cooperatively regulates the target genes involved in cell elongation with hormone-regulated transcription factors. Therefore, PIF4 is a key integrator of multiple signaling pathways, which optimizes growth in the environment. This review will discuss our current understanding of the PIF4-mediated signaling networks that control plant growth. PMID:27432188

  7. Activation of the Extracellular Signal-Regulated Kinase Signaling Is Critical for Human Umbilical Cord Mesenchymal Stem Cell Osteogenic Differentiation

    PubMed Central

    Li, Chen-Shuang; Zheng, Zhong; Su, Xiao-Xia; Wang, Fei; Ling, Michelle; Zou, Min; Zhou, Hong

    2016-01-01

    Human umbilical cord mesenchymal stem cells (hUCMSCs) are recognized as candidate progenitor cells for bone regeneration. However, the mechanism of hUCMSC osteogenesis remains unclear. In this study, we revealed that mitogen-activated protein kinases (MAPKs) signaling is involved in hUCMSC osteogenic differentiation in vitro. Particularly, the activation of c-Jun N-terminal kinases (JNK) and p38 signaling pathways maintained a consistent level in hUCMSCs through the entire 21-day osteogenic differentiation period. At the same time, the activation of extracellular signal-regulated kinases (ERK) signaling significantly increased from day 5, peaked at day 9, and declined thereafter. Moreover, gene profiling of osteogenic markers, alkaline phosphatase (ALP) activity measurement, and alizarin red staining demonstrated that the application of U0126, a specific inhibitor for ERK activation, completely prohibited hUCMSC osteogenic differentiation. However, when U0126 was removed from the culture at day 9, ERK activation and osteogenic differentiation of hUCMSCs were partially recovered. Together, these findings demonstrate that the activation of ERK signaling is essential for hUCMSC osteogenic differentiation, which points out the significance of ERK signaling pathway to regulate the osteogenic differentiation of hUCMSCs as an alternative cell source for bone tissue engineering. PMID:26989682

  8. ROP GTPase Signaling in The Hormonal Regulation of Plant Growth

    SciTech Connect

    Yang, Zhenbiao

    2013-05-24

    I secured funding from the DOE to investigate the effect of auxin signaling on ROP9. This was based on our preliminary data showing that ROP9 is activated by auxin. However, we were unable to show that rop9 knockout mutants have altered sensitivity to auxin. Instead, we found that auxin activates both ROP2 and ROP6, and relevant mutants exhibit reduced sensitivity to auxin. Therefore we used the fund to strengthen our research on ROP2 and ROP6. My laboratory made major advancements in the recent years in the understanding of the effect of auxin signaling on ROP2 and ROP6. This is clearly exemplified by the numerous publications acknowledging fund DE-FG0204ER15555 as the source of funding.

  9. Dendritic Spines as Tunable Regulators of Synaptic Signals

    PubMed Central

    Tønnesen, Jan; Nägerl, U. Valentin

    2016-01-01

    Neurons are perpetually receiving vast amounts of information in the form of synaptic input from surrounding cells. The majority of input occurs at thousands of dendritic spines, which mediate excitatory synaptic transmission in the brain, and is integrated by the dendritic and somatic compartments of the postsynaptic neuron. The functional role of dendritic spines in shaping biochemical and electrical signals transmitted via synapses has long been intensely studied. Yet, many basic questions remain unanswered, in particular regarding the impact of their nanoscale morphology on electrical signals. Here, we review our current understanding of the structure and function relationship of dendritic spines, focusing on the controversy of electrical compartmentalization and the potential role of spine structural changes in synaptic plasticity. PMID:27340393

  10. Spatially coordinated kinase signaling regulates local axon degeneration.

    PubMed

    Chen, Mark; Maloney, Janice A; Kallop, Dara Y; Atwal, Jasvinder K; Tam, Stephen J; Baer, Kristin; Kissel, Holger; Kaminker, Joshua S; Lewcock, Joseph W; Weimer, Robby M; Watts, Ryan J

    2012-09-26

    In addition to being a hallmark of neurodegenerative disease, axon degeneration is used during development of the nervous system to prune unwanted connections. In development, axon degeneration is tightly regulated both temporally and spatially. Here, we provide evidence that degeneration cues are transduced through various kinase pathways functioning in spatially distinct compartments to regulate axon degeneration. Intriguingly, glycogen synthase kinase-3 (GSK3) acts centrally, likely modulating gene expression in the cell body to regulate distally restricted axon degeneration. Through a combination of genetic and pharmacological manipulations, including the generation of an analog-sensitive kinase allele mutant mouse for GSK3β, we show that the β isoform of GSK3, not the α isoform, is essential for developmental axon pruning in vitro and in vivo. Additionally, we identify the dleu2/mir15a/16-1 cluster, previously characterized as a regulator of B-cell proliferation, and the transcription factor tbx6, as likely downstream effectors of GSK3β in axon degeneration.

  11. A self-regulating biomolecular comparator for processing oscillatory signals

    PubMed Central

    Agrawal, Deepak K.; Franco, Elisa; Schulman, Rebecca

    2015-01-01

    While many cellular processes are driven by biomolecular oscillators, precise control of a downstream on/off process by a biochemical oscillator signal can be difficult: over an oscillator's period, its output signal varies continuously between its amplitude limits and spends a significant fraction of the time at intermediate values between these limits. Further, the oscillator's output is often noisy, with particularly large variations in the amplitude. In electronic systems, an oscillating signal is generally processed by a downstream device such as a comparator that converts a potentially noisy oscillatory input into a square wave output that is predominantly in one of two well-defined on and off states. The comparator's output then controls downstream processes. We describe a method for constructing a synthetic biochemical device that likewise produces a square-wave-type biomolecular output for a variety of oscillatory inputs. The method relies on a separation of time scales between the slow rate of production of an oscillatory signal molecule and the fast rates of intermolecular binding and conformational changes. We show how to control the characteristics of the output by varying the concentrations of the species and the reaction rates. We then use this control to show how our approach could be applied to process different in vitro and in vivo biomolecular oscillators, including the p53-Mdm2 transcriptional oscillator and two types of in vitro transcriptional oscillators. These results demonstrate how modular biomolecular circuits could, in principle, be combined to build complex dynamical systems. The simplicity of our approach also suggests that natural molecular circuits may process some biomolecular oscillator outputs before they are applied downstream. PMID:26378119

  12. Notch signaling regulates venous arterialization during zebrafish fin regeneration

    PubMed Central

    Kametani, Yoshiko; Chi, Neil C.; Stainier, Didier Y.R.; Takada, Shinji

    2015-01-01

    In order to protect against blood pressure, a mature artery is supported by mural cells which include vascular smooth muscle cells and pericytes. To regenerate a functional vascular system, arteries should be properly reconstructed with mural cells although the mechanisms underlying artery reconstruction remain unclear. In this study, we examined the process of artery reconstruction during regeneration of the zebrafish caudal fin as a model to study arterial formation in an adult setting. During fin regeneration, the arteries and veins form a net-like vasculature called the vascular plexus, and this plexus undergoes remodeling to form a new artery and 2 flanking veins. We found that the new vascular plexus originates mainly from venous cells in the stump but very rarely from the arterial cells. Interestingly, these vein-derived cells contributed to the reconstructed arteries. This arterialization was dependent on Notch signaling, and further analysis revealed that Notch signaling was required for the initiation of arterial gene expression. In contrast, venous remodeling did not require Notch signaling. These results provide new insights towards understanding mechanisms of vascular regeneration and illustrate the utility of the adult zebrafish fin to study this process. PMID:25810153

  13. Danger signalling during cancer cell death: origins, plasticity and regulation

    PubMed Central

    Garg, A D; Martin, S; Golab, J; Agostinis, P

    2014-01-01

    Accumulating data indicates that following anti-cancer treatments, cancer cell death can be perceived as immunogenic or tolerogenic by the immune system. The former is made possible due to the ability of certain anti-cancer modalities to induce immunogenic cell death (ICD) that is associated with the emission of damage-associated molecular patterns (DAMPs), which assist in unlocking a sequence of events leading to the development of anti-tumour immunity. In response to ICD inducers, activation of endoplasmic reticulum (ER) stress has been identified to be indispensable to confer the immunogenic character of cancer cell death, due to its ability to coordinate the danger signalling pathways responsible for the trafficking of vital DAMPs and subsequent anti-cancer immune responses. However, in recent times, certain processes apart from ER stress have emerged (e.g., autophagy and possibly viral response-like signature), which have the ability to influence danger signalling. In this review, we discuss the molecular nature, emerging plasticity in the danger signalling mechanisms and immunological impact of known DAMPs in the context of immunogenic cancer cell death. We also discuss key effector mechanisms modulating the interface between dying cancer cells and the immune cells, which we believe are crucial for the therapeutic relevance of ICD in the context of human cancers, and also discuss the influence of experimental conditions and animal models on these. PMID:23686135

  14. Dosage-dependent hedgehog signals integrated with Wnt/β-catenin signaling regulate external genitalia formation as an appendicular program

    PubMed Central

    Miyagawa, Shinichi; Moon, Anne; Haraguchi, Ryuma; Inoue, Chie; Harada, Masayo; Nakahara, Chiaki; Suzuki, Kentaro; Matsumaru, Daisuke; Kaneko, Takehito; Matsuo, Isao; Yang, Lei; Taketo, Makoto M.; Iguchi, Taisen; Evans, Sylvia M.; Yamada, Gen

    2009-01-01

    Embryonic appendicular structures, such as the limb buds and the developing external genitalia, are suitable models with which to analyze the reciprocal interactions of growth factors in the regulation of outgrowth. Although several studies have evaluated the individual functions of different growth factors in appendicular growth, the coordinated function and integration of input from multiple signaling cascades is poorly understood. We demonstrate that a novel signaling cascade governs formation of the embryonic external genitalia [genital tubercle (GT)]. We show that the dosage of Shh signal is tightly associated with subsequent levels of Wnt/β-catenin activity and the extent of external genitalia outgrowth. In Shh-null mouse embryos, both expression of Wnt ligands and Wnt/β-catenin signaling activity are downregulated. β-catenin gain-of-function mutation rescues defective GT outgrowth and Fgf8 expression in Shh-null embryos. These data indicate that Wnt/β-catenin signaling in the distal urethral epithelium acts downstream of Shh signaling during GT outgrowth. The current data also suggest that Wnt/β-catenin regulates Fgf8 expression via Lef/Tcf binding sites in a 3′ conserved enhancer. Fgf8 induces phosphorylation of Erk1/2 and cell proliferation in the GT mesenchyme in vitro, yet Fgf4/8 compound-mutant phenotypes indicate dispensable functions of Fgf4/8 and the possibility of redundancy among multiple Fgfs in GT development. Our results provide new insights into the integration of growth factor signaling in the appendicular developmental programs that regulate external genitalia development. PMID:19906864

  15. Hedgehog Signaling Regulates the Ciliary Transport of Odorant Receptors in Drosophila.

    PubMed

    Sanchez, Gonzalo M; Alkhori, Liza; Hatano, Eduardo; Schultz, Sebastian W; Kuzhandaivel, Anujaianthi; Jafari, Shadi; Granseth, Björn; Alenius, Mattias

    2016-01-26

    Hedgehog (Hh) signaling is a key regulatory pathway during development and also has a functional role in mature neurons. Here, we show that Hh signaling regulates the odor response in adult Drosophila olfactory sensory neurons (OSNs). We demonstrate that this is achieved by regulating odorant receptor (OR) transport to and within the primary cilium in OSN neurons. Regulation relies on ciliary localization of the Hh signal transducer Smoothened (Smo). We further demonstrate that the Hh- and Smo-dependent regulation of the kinesin-like protein Cos2 acts in parallel to the intraflagellar transport system (IFT) to localize ORs within the cilium compartment. These findings expand our knowledge of Hh signaling to encompass chemosensory modulation and receptor trafficking.

  16. Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle.

    PubMed

    Hornberger, Troy A

    2011-09-01

    Mechanical stimuli play a major role in the regulation of skeletal muscle mass, and the maintenance of muscle mass contributes significantly to disease prevention and issues associated with the quality of life. Although the link between mechanical signals and the regulation of muscle mass has been recognized for decades, the mechanisms involved in converting mechanical information into the molecular events that control this process remain poorly defined. Nevertheless, our knowledge of these mechanisms is advancing and recent studies have revealed that signaling through a protein kinase called the mammalian target of rapamycin (mTOR) plays a central role in this event. In this review we will, (1) discuss the evidence which implicates mTOR in the mechanical regulation of skeletal muscle mass, (2) provide an overview of the mechanisms through which signaling by mTOR can be regulated, and (3) summarize our current knowledge of the potential mechanisms involved in the mechanical activation of mTOR signaling. PMID:21621634

  17. The ubiquitin–proteasome system and signal transduction pathways regulating Epithelial Mesenchymal transition of cancer

    PubMed Central

    2012-01-01

    Epithelial to Mesenchymal transition (EMT) in cancer, a process permitting cancer cells to become mobile and metastatic, has a signaling hardwire forged from development. Multiple signaling pathways that regulate carcinogenesis enabling characteristics in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis are also the main players in EMT. These pathways, as almost all cellular processes, are in their turn regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS). Ubiquitination is the covalent link of target proteins with the small protein ubiquitin and serves as a signal to target protein degradation by the proteasome or to other outcomes such as endocytosis, degradation by the lysosome or specification of cellular localization. This paper reviews signal transduction pathways regulating EMT and being regulated by ubiquitination. PMID:22827778

  18. Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle.

    PubMed

    Hornberger, Troy A

    2011-09-01

    Mechanical stimuli play a major role in the regulation of skeletal muscle mass, and the maintenance of muscle mass contributes significantly to disease prevention and issues associated with the quality of life. Although the link between mechanical signals and the regulation of muscle mass has been recognized for decades, the mechanisms involved in converting mechanical information into the molecular events that control this process remain poorly defined. Nevertheless, our knowledge of these mechanisms is advancing and recent studies have revealed that signaling through a protein kinase called the mammalian target of rapamycin (mTOR) plays a central role in this event. In this review we will, (1) discuss the evidence which implicates mTOR in the mechanical regulation of skeletal muscle mass, (2) provide an overview of the mechanisms through which signaling by mTOR can be regulated, and (3) summarize our current knowledge of the potential mechanisms involved in the mechanical activation of mTOR signaling.

  19. Activation of Smurf E3 Ligase Promoted by Smoothened Regulates Hedgehog Signaling through Targeting Patched Turnover

    PubMed Central

    Zheng, Xiudeng; Chen, Zhenping; Sun, Liwei; Wang, Hailong; Zhu, Yuanxiang; Zhang, Jing; Yang, Shuyan; Lu, Yi; Sun, Qinmiao; Tao, Yi; Liu, Feng; Zhao, Yun; Chen, Dahua

    2013-01-01

    Hedgehog signaling plays conserved roles in controlling embryonic development; its dysregulation has been implicated in many human diseases including cancers. Hedgehog signaling has an unusual reception system consisting of two transmembrane proteins, Patched receptor and Smoothened signal transducer. Although activation of Smoothened and its downstream signal transduction have been intensively studied, less is known about how Patched receptor is regulated, and particularly how this regulation contributes to appropriate Hedgehog signal transduction. Here we identified a novel role of Smurf E3 ligase in regulating Hedgehog signaling by controlling Patched ubiquitination and turnover. Moreover, we showed that Smurf-mediated Patched ubiquitination depends on Smo activity in wing discs. Mechanistically, we found that Smo interacts with Smurf and promotes it to mediate Patched ubiquitination by targeting the K1261 site in Ptc. The further mathematic modeling analysis reveals that a bidirectional control of activation of Smo involving Smurf and Patched is important for signal-receiving cells to precisely interpret external signals, thereby maintaining Hedgehog signaling reliability. Finally, our data revealed an evolutionarily conserved role of Smurf proteins in controlling Hh signaling by targeting Ptc during development. PMID:24302888

  20. Participation of signaling cascades in the regulation of erythropoiesis under conditions of cytostatic treatment.

    PubMed

    Dygai, A M; Zhdanov, V V; Miroshnichenko, L A; Udut, E V; Zyuz'kov, G N; Simanina, E V; Chaikovskii, A V; Stavrova, L A; Trofimova, E S; Burmina, Ya V

    2015-01-01

    We studied the role of signaling pathways in the regulation of erythropoiesis against the background of myelosuppression caused by administration of 5-fluorouracil. The important role of cyclic AMP in the maturation of erythroid progenitors after cytostatic treatment was demonstrated. The secretory activity of myelokaryocytes during the period of erythroid hemopoiesis recovery is mainly regulated via the p38 MAPK signaling pathway; non-erythropoietin factors are involved in the formation of erythropoietic activity of adherent cells of the microenvironment.

  1. Participation of signaling cascades in the regulation of erythropoiesis under conditions of cytostatic treatment.

    PubMed

    Dygai, A M; Zhdanov, V V; Miroshnichenko, L A; Udut, E V; Zyuz'kov, G N; Simanina, E V; Chaikovskii, A V; Stavrova, L A; Trofimova, E S; Burmina, Ya V

    2015-01-01

    We studied the role of signaling pathways in the regulation of erythropoiesis against the background of myelosuppression caused by administration of 5-fluorouracil. The important role of cyclic AMP in the maturation of erythroid progenitors after cytostatic treatment was demonstrated. The secretory activity of myelokaryocytes during the period of erythroid hemopoiesis recovery is mainly regulated via the p38 MAPK signaling pathway; non-erythropoietin factors are involved in the formation of erythropoietic activity of adherent cells of the microenvironment. PMID:25578863

  2. Receptor tyrosine kinase signaling regulates replication of the peste des petits ruminants virus.

    PubMed

    Chaudhary, K; Chaubey, K K; Singh, S V; Kumar, N

    2015-03-01

    In this study, we found out that blocking the receptor tyrosine kinase (RTK) signaling in Vero cells by tryphostin AG879 impairs the in vitro replication of the peste des petits ruminants virus (PPRV). A reduced virus replication in Trk1-knockdown (siRNA) Vero cells confirmed the essential role of RTK in the virus replication, in particular a specific regulation of viral RNA synthesis. These data represent the first evidence that the RTK signaling regulates replication of a morbillivirus. PMID:25790054

  3. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding.

    PubMed

    Kim, Jae Geun; Suyama, Shigetomo; Koch, Marco; Jin, Sungho; Argente-Arizon, Pilar; Argente, Jesús; Liu, Zhong-Wu; Zimmer, Marcelo R; Jeong, Jin Kwon; Szigeti-Buck, Klara; Gao, Yuanqing; Garcia-Caceres, Cristina; Yi, Chun-Xia; Salmaso, Natalina; Vaccarino, Flora M; Chowen, Julie; Diano, Sabrina; Dietrich, Marcelo O; Tschöp, Matthias H; Horvath, Tamas L

    2014-07-01

    We found that leptin receptors were expressed in hypothalamic astrocytes and that their conditional deletion led to altered glial morphology and synaptic inputs onto hypothalamic neurons involved in feeding control. Leptin-regulated feeding was diminished, whereas feeding after fasting or ghrelin administration was elevated in mice with astrocyte-specific leptin receptor deficiency. These data reveal an active role of glial cells in hypothalamic synaptic remodeling and control of feeding by leptin.

  4. Spatiotemporal regulation of early lipolytic signaling in adipocytes.

    PubMed

    Martin, Sally; Okano, Satomi; Kistler, Carol; Fernandez-Rojo, Manuel A; Hill, Michelle M; Parton, Robert G

    2009-11-13

    Hormone-sensitive lipase (HSL) is a key enzyme regulating the acute activation of lipolysis. HSL functionality is controlled by multiple phosphorylation events, which regulate its association with the surface of lipid droplets (LDs). We determined the progression and stability of HSL phosphorylation on individual serine residues both spatially and temporally in adipocytes using phospho-specific antibodies. Within seconds of beta-adrenergic receptor activation, HSL was phosphorylated on Ser-660, the phosphorylated form appearing in the peripheral cytosol prior to rapid translocation to, and stable association with, LDs. In contrast, phosphorylation of HSL on Ser-563 was delayed, the phosphorylated protein was predominantly detected on LDs, and mutation of the Ser-659/Ser-660 site to Ala significantly reduced subsequent phosphorylation on Ser-563. Phosphorylation of HSL on Ser-565 was observed in control cells; the phosphorylated protein was translocated to LDs with similar kinetics to total HSL, and the degree of phosphorylation was inversely related to phospho-HSL(Ser-563). These results describe the remarkably rapid, sequential phosphorylation of specific serine residues in HSL at spatially distinct intracellular locales, providing new insight into the complex regulation of lipolysis. PMID:19755426

  5. Reconstruction of Signaling Networks Regulating Fungal Morphogenesis by Transcriptomics▿ †

    PubMed Central

    Meyer, Vera; Arentshorst, Mark; Flitter, Simon J.; Nitsche, Benjamin M.; Kwon, Min Jin; Reynaga-Peña, Cristina G.; Bartnicki-Garcia, Salomon; van den Hondel, Cees A. M. J. J.; Ram, Arthur F. J.

    2009-01-01

    Coordinated control of hyphal elongation and branching is essential for sustaining mycelial growth of filamentous fungi. In order to study the molecular machinery ensuring polarity control in the industrial fungus Aspergillus niger, we took advantage of the temperature-sensitive (ts) apical-branching ramosa-1 mutant. We show here that this strain serves as an excellent model system to study critical steps of polar growth control during mycelial development and report for the first time a transcriptomic fingerprint of apical branching for a filamentous fungus. This fingerprint indicates that several signal transduction pathways, including TORC2, phospholipid, calcium, and cell wall integrity signaling, concertedly act to control apical branching. We furthermore identified the genetic locus affected in the ramosa-1 mutant by complementation of the ts phenotype. Sequence analyses demonstrated that a single amino acid exchange in the RmsA protein is responsible for induced apical branching of the ramosa-1 mutant. Deletion experiments showed that the corresponding rmsA gene is essential for the growth of A. niger, and complementation analyses with Saccharomyces cerevisiae evidenced that RmsA serves as a functional equivalent of the TORC2 component Avo1p. TORC2 signaling is required for actin polarization and cell wall integrity in S. cerevisiae. Congruently, our microscopic investigations showed that polarized actin organization and chitin deposition are disturbed in the ramosa-1 mutant. The integration of the transcriptomic, genetic, and phenotypic data obtained in this study allowed us to reconstruct a model for cellular events involved in apical branching. PMID:19749177

  6. Pre-LTP requires extracellular signal-regulated kinase in the ACC

    PubMed Central

    Yamanaka, Manabu; Tian, Zhen; Darvish-Ghane, Soroush

    2016-01-01

    The extracellular signal-regulated kinase is an important protein kinase for cortical plasticity. Long-term potentiation in the anterior cingulate cortex is believed to play important roles in chronic pain, fear, and anxiety. Previous studies of extracellular signal-regulated kinase are mainly focused on postsynaptic form of long-term potentiation (post-long-term potentiation). Little is known about the relationship between extracellular signal-regulated kinase and presynaptic long-term potentiation (pre-long-term potentiation) in cortical synapses. In this study, we examined whether pre-long-term potentiation in the anterior cingulate cortex requires the activation of presynaptic extracellular signal-regulated kinase. We found that p42/p44 mitogen-activated protein kinase inhibitors, PD98059 and U0126, suppressed the induction of pre-long-term potentiation. By contrast, these inhibitors did not affect the maintenance of pre-long-term potentiation. Using pharmacological inhibitors, we found that pre-long-term potentiation recorded for 1 h did not require transcriptional or translational processes. Our results strongly indicate that the activation of presynaptic extracellular signal-regulated kinase is required for the induction of pre-long-term potentiation, and this involvement may explain the contribution of extracellular signal-regulated kinase to mood disorders. PMID:27178245

  7. Intervertebral Disc Development Is Regulated by Wnt/β-catenin Signaling

    PubMed Central

    Kondo, Naoki; Yuasa, Takahito; Shimono, Kengo; Tung, Weien; Okabe, Takahiro; Yasuhara, Rika; Pacifici, Maurizio; Zhang, Yejia; Iwamoto, Masahiro; Enomoto-Iwamoto, Motomi

    2010-01-01

    Study Design Histological analysis of intervertebral disc (IVD) in three types of transgenic mice. Objectives To investigate the role of Wnt/β-catenin signaling in regulation of IVD development and organization. Summary of Background Data β-catenin dependent Wnt signaling is one of the central regulators in cartilage development during limb skeletal formation. Little is known, however, about the physiological relevance of this signaling pathway to IVD development and organization. Methods Temporal-spatial distribution of Wnt/β-catenin signaling activity was examined in IVD using Wnt/β-catenin reporter (TOPGAL) mice. The structural changes in the mouse IVD components such as the nucleus pulposus (NP), endplate (EP), annulus fibrosus (AF), and the growth plate (GP) of the vertebral body were analyzed following transient activation of Wnt/β-catenin signaling or deletion of β-catenin in the mice. Results Activity of Wnt/β-catenin signaling was high in EP, AF and GP in the embryonic stages and decreased at the postnatal stage; it was undetectable in the embryonic NP but up-regulated after birth. The transient activation of Wnt/β-catenin signaling caused severe deterioration of the GP and the AF, whereas deficiency of β-catenin accelerated bone formation in between EP and GP. Conclusion The findings in this study suggest that proper regulation of Wnt/β-catenin signaling is required for development and organization of IVD. PMID:21270710

  8. Bone morphogenetic protein (BMP) signaling regulates mitotic checkpoint protein levels in human breast cancer cells.

    PubMed

    Yan, Hualong; Zhu, Songcheng; Song, Chenlin; Liu, Naifa; Kang, Jiuhong

    2012-04-01

    Aberrant expression of mitotic checkpoint genes compromises mitotic checkpoint, leads to chromosome instability and tumorigenesis. However, the cell signals that control mitotic checkpoint gene expression have not been reported so far. In the present study we show that, in human breast cancer cells, chemical inhibition of Bone morphogenetic proteins (BMPs), but not Transforming Growth Factor-β (TGF-β), abrogates the mitotic arrest induced by nocodazole. Protein expression analysis reveals that inhibition of BMP signaling dramatically down regulates protein levels of mitotic checkpoint components BUB3, Hec1, TTK and MAD2, but inhibition of TGF-β has relatively minor effect on the expression of these proteins. Activation of BMP signaling specifically up regulates BUB3, and activation of Activin A signaling globally down regulates these proteins level. Furthermore, overexpressing MAD2, TTK, BUB3 or Hec1 significantly rescues the mitotic arrest defect caused by BMP inhibition. Our results demonstrated for the first time that TGF-β family cytokines are cellular signals regulating mitotic checkpoint and perturbations in intrinsic BMP signaling could lead to suppression of mitotic checkpoint signaling by downregulating key checkpoint proteins. The results suggest a possible mechanism by which dysregulation of TGF-β signaling causes mitotic checkpoint defects and drives tumorigenesis. The finding also provides a potential and more specific strategy for cancer prevention by targeting BMP and mitotic checkpoint connection. PMID:22234345

  9. Characterization and Regulation of Suppressor of Cytokine Signaling (SOCS) Genes in Yellow Perch (Perca flavescens)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The suppressor of cytokine signaling (SOCS) proteins are a family of intracellular proteins that are centrally involved with vertebrate growth, development, and immunity via their effects as negative feedback regulators of cytokine (and hormone) signaling. A number of SOCS genes have been recently ...

  10. Notch signaling controls chondrocyte hypertrophy via indirect regulation of Sox9

    PubMed Central

    Kohn, Anat; Rutkowski, Timothy P; Liu, Zhaoyang; Mirando, Anthony J; Zuscik, Michael J; O’Keefe, Regis J; Hilton, Matthew J

    2015-01-01

    RBPjk-dependent Notch signaling regulates both the onset of chondrocyte hypertrophy and the progression to terminal chondrocyte maturation during endochondral ossification. It has been suggested that Notch signaling can regulate Sox9 transcription, although how this occurs at the molecular level in chondrocytes and whether this transcriptional regulation mediates Notch control of chondrocyte hypertrophy and cartilage development is unknown or controversial. Here we have provided conclusive genetic evidence linking RBPjk-dependent Notch signaling to the regulation of Sox9 expression and chondrocyte hypertrophy by examining tissue-specific Rbpjk mutant (Prx1Cre;Rbpjkf/f), Rbpjk mutant/Sox9 haploinsufficient (Prx1Cre;Rbpjkf/f;Sox9f/+), and control embryos for alterations in SOX9 expression and chondrocyte hypertrophy during cartilage development. These studies demonstrate that Notch signaling regulates the onset of chondrocyte maturation in a SOX9-dependent manner, while Notch-mediated regulation of terminal chondrocyte maturation likely functions independently of SOX9. Furthermore, our in vitro molecular analyses of the Sox9 promoter and Notch-mediated regulation of Sox9 gene expression in chondrogenic cells identified the ability of Notch to induce Sox9 expression directly in the acute setting, but suppresses Sox9 transcription with prolonged Notch signaling that requires protein synthesis of secondary effectors. PMID:26558140

  11. Zfp423 Regulates Sonic Hedgehog Signaling via Primary Cilium Function

    PubMed Central

    Hamilton, Bruce A.

    2016-01-01

    Zfp423 encodes a 30-zinc finger transcription factor that intersects several canonical signaling pathways. Zfp423 mutations result in ciliopathy-related phenotypes, including agenesis of the cerebellar vermis in mice and Joubert syndrome (JBTS19) and nephronophthisis (NPHP14) in humans. Unlike most ciliopathy genes, Zfp423 encodes a nuclear protein and its developmental expression is complex, leading to alternative proposals for cellular mechanisms. Here we show that Zfp423 is expressed by cerebellar granule cell precursors, that loss of Zfp423 in these precursors leads to cell-intrinsic reduction in proliferation, loss of response to Shh, and primary cilia abnormalities that include diminished frequency of both Smoothened and IFT88 localization. Loss of Zfp423 alters expression of several genes encoding key cilium components, including increased expression of Tulp3. Tulp3 is a direct binding target of Zfp423 and reducing the overexpression of Tulp3 in Zfp423-deficient cells suppresses Smoothened translocation defects. These results define Zfp423 deficiency as a bona fide ciliopathy, acting upstream of Shh signaling, and indicate a mechanism intrinsic to granule cell precursors for the resulting cerebellar hypoplasia. PMID:27727273

  12. Regulation of amyloid precursor protein processing by serotonin signaling.

    PubMed

    Pimenova, Anna A; Thathiah, Amantha; De Strooper, Bart; Tesseur, Ina

    2014-01-01

    Proteolytic processing of the amyloid precursor protein (APP) by the β- and γ-secretases releases the amyloid-β peptide (Aβ), which deposits in senile plaques and contributes to the etiology of Alzheimer's disease (AD). The α-secretase cleaves APP in the Aβ peptide sequence to generate soluble APPα (sAPPα). Upregulation of α-secretase activity through the 5-hydroxytryptamine 4 (5-HT4) receptor has been shown to reduce Aβ production, amyloid plaque load and to improve cognitive impairment in transgenic mouse models of AD. Consequently, activation of 5-HT4 receptors following agonist stimulation is considered to be a therapeutic strategy for AD treatment; however, the signaling cascade involved in 5-HT4 receptor-stimulated proteolysis of APP remains to be determined. Here we used chemical and siRNA inhibition to identify the proteins which mediate 5-HT4d receptor-stimulated α-secretase activity in the SH-SY5Y human neuronal cell line. We show that G protein and Src dependent activation of phospholipase C are required for α-secretase activity, while, unexpectedly, adenylyl cyclase and cAMP are not involved. Further elucidation of the signaling pathway indicates that inositol triphosphate phosphorylation and casein kinase 2 activation is also a prerequisite for α-secretase activity. Our findings provide a novel route to explore the treatment of AD through 5-HT4 receptor-induced α-secretase activation.

  13. Erythropoietin regulates Treg cells in asthma through TGFβ receptor signaling.

    PubMed

    Wan, Guoshi; Wei, Bing

    2015-01-01

    Asthma is a chronic inflammatory disorder of the airways, the development of which is suppressed by regulatory T cells (Treg). Erythropoietin (EPO) is originally defined as a hematopoietic growth factor. Recently, the anti-inflammatory effects of EPO in asthma have been acknowledged. However, the underlying mechanisms remain ill-defined. Here, we showed that EPO treatment significantly reduced the severity of an ovalbumin (OVA)-induced asthma in mice, seemingly through promoting Foxp3-mediated activation of Treg cells in OVA-treated mouse lung. The activation of Treg cells resulted from increases in transforming growth factor β1 (TGFβ1), which were mainly produced by M2 macrophages (M2M). In vitro, Co-culture with M2M increased Foxp3 levels in Treg cells and the Treg cell number, in a TGFβ receptor signaling dependent manner. Moreover, elimination of macrophages abolished the therapeutic effects of EPO in vivo. Together, our data suggest that EPO may increase M2M, which activate Treg cells through TGFβ receptor signaling to mitigate the severity of asthma.

  14. Erythropoietin regulates Treg cells in asthma through TGFβ receptor signaling

    PubMed Central

    Wan, Guoshi; Wei, Bing

    2015-01-01

    Asthma is a chronic inflammatory disorder of the airways, the development of which is suppressed by regulatory T cells (Treg). Erythropoietin (EPO) is originally defined as a hematopoietic growth factor. Recently, the anti-inflammatory effects of EPO in asthma have been acknowledged. However, the underlying mechanisms remain ill-defined. Here, we showed that EPO treatment significantly reduced the severity of an ovalbumin (OVA)-induced asthma in mice, seemingly through promoting Foxp3-mediated activation of Treg cells in OVA-treated mouse lung. The activation of Treg cells resulted from increases in transforming growth factor β1 (TGFβ1), which were mainly produced by M2 macrophages (M2M). In vitro, Co-culture with M2M increased Foxp3 levels in Treg cells and the Treg cell number, in a TGFβ receptor signaling dependent manner. Moreover, elimination of macrophages abolished the therapeutic effects of EPO in vivo. Together, our data suggest that EPO may increase M2M, which activate Treg cells through TGFβ receptor signaling to mitigate the severity of asthma. PMID:26807178

  15. Purinergic regulation of vascular endothelial growth factor signaling in angiogenesis

    PubMed Central

    Rumjahn, S M; Yokdang, N; Baldwin, K A; Thai, J; Buxton, I L O

    2009-01-01

    P2Y purine nucleotide receptors (P2YRs) promote endothelial cell tubulogenesis through breast cancer cell-secreted nucleoside diphosphate kinase (NDPK). We tested the hypothesis that activated P2Y1 receptors transactivate vascular endothelial growth factor receptor (VEGFR-2) in angiogenic signaling. P2Y1R stimulation (10 μM 2-methyl-thio-ATP (2MS-ATP)) of angiogenesis is suppressed by the VEGFR-2 tyrosine kinase inhibitor, SU1498 (1 μM). Phosphorylation of VEGFR-2 by 0.0262 or 2.62 nM VEGF was comparable with 0.01 or 10 μM 2MS-ATP stimulation of the P2Y1R. 2MS-ATP, and VEGF stimulation increased tyrosine phosphorylation at tyr1175. 2MS-ATP (0.1–10 μM) also stimulated EC tubulogenesis in a dose-dependent manner. The addition of sub-maximal VEGF (70 pM) in the presence of increasing concentrations of 2MS-ATP yielded additive effects at 2MS-ATP concentrations <3 μM, whereas producing saturated and less than additive effects at ⩾3 μM. We propose that the VEGF receptor can be activated in the absence of VEGF, and that the P2YR–VEGFR2 interaction and resulting signal transduction is a critical determinant of vascular homoeostasis and tumour-mediated angiogenesis. PMID:19367276

  16. Regulation of amyloid precursor protein processing by serotonin signaling.

    PubMed

    Pimenova, Anna A; Thathiah, Amantha; De Strooper, Bart; Tesseur, Ina

    2014-01-01

    Proteolytic processing of the amyloid precursor protein (APP) by the β- and γ-secretases releases the amyloid-β peptide (Aβ), which deposits in senile plaques and contributes to the etiology of Alzheimer's disease (AD). The α-secretase cleaves APP in the Aβ peptide sequence to generate soluble APPα (sAPPα). Upregulation of α-secretase activity through the 5-hydroxytryptamine 4 (5-HT4) receptor has been shown to reduce Aβ production, amyloid plaque load and to improve cognitive impairment in transgenic mouse models of AD. Consequently, activation of 5-HT4 receptors following agonist stimulation is considered to be a therapeutic strategy for AD treatment; however, the signaling cascade involved in 5-HT4 receptor-stimulated proteolysis of APP remains to be determined. Here we used chemical and siRNA inhibition to identify the proteins which mediate 5-HT4d receptor-stimulated α-secretase activity in the SH-SY5Y human neuronal cell line. We show that G protein and Src dependent activation of phospholipase C are required for α-secretase activity, while, unexpectedly, adenylyl cyclase and cAMP are not involved. Further elucidation of the signaling pathway indicates that inositol triphosphate phosphorylation and casein kinase 2 activation is also a prerequisite for α-secretase activity. Our findings provide a novel route to explore the treatment of AD through 5-HT4 receptor-induced α-secretase activation. PMID:24466315

  17. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    SciTech Connect

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo

    2013-07-19

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways.

  18. Brassinosteroid regulated kinases (BRKs) that mediate brassinosteroid signal transduction and uses thereof

    DOEpatents

    Wang, Zhi-Yong; Tang, Wenqiang

    2013-09-24

    The present invention identifies a novel family of kinases regulated by brassinosteroids, referred to as BRKs (brassinosteroid regulated kinases) or BSKs (brassinosteroid signaling kinases). The present invention provides methods for modulating the response of a plant cell to a brassinosteroid using BRKs.

  19. Peroxiredoxins in Regulation of MAPK Signalling Pathways; Sensors and Barriers to Signal Transduction

    PubMed Central

    Latimer, Heather R.; Veal, Elizabeth A.

    2016-01-01

    Peroxiredoxins are highly conserved and abundant peroxidases. Although the thioredoxin peroxidase activity of peroxiredoxin (Prx) is important to maintain low levels of endogenous hydrogen peroxide, Prx have also been shown to promote hydrogen peroxide-mediated signalling. Mitogen activated protein kinase (MAPK) signalling pathways mediate cellular responses to a variety of stimuli, including reactive oxygen species (ROS). Here we review the evidence that Prx can act as both sensors and barriers to the activation of MAPK and discuss the underlying mechanisms involved, focusing in particular on the relationship with thioredoxin. PMID:26813660

  20. The Shc locus regulates insulin signaling and adiposity in mammals

    PubMed Central

    Tomilov, Alexey A.; Ramsey, Jon J.; Hagopian, Kevork; Giorgio, Marco; Kim, Kyoungmi M.; Lam, Adam; Migliaccio, Enrica; Lloyd, Kent C.; Berniakovich, Ina; Prolla, Tomas A.; Pelicci, PierGiuseppe; Cortopassi, Gino A.

    2014-01-01

    Summary Longevity of a p66Shc knockout strain (ShcP) was previously attributed to increased stress resistance and altered mitochondria. Microarrays of ShcP tissues indicated alterations in insulin signaling. Consistent with this observation, ShcP mice were more insulin sensitive and glucose tolerant at organismal and tissue levels, as was a novel p66Shc knockout (ShcL). Increasing and decreasing Shc expression in cell lines decreased and increased insulin sensitivity, respectively – consistent with p66Shc's function as a repressor of insulin signaling. However, differences between the two p66Shc knockout strains were also observed. ShcL mice were fatter and susceptible to fatty diets, and their fat was more insulin sensitive than controls. On the other hand, ShcP mice were leaner and resisted fatty diets, and their adipose was less insulin sensitive than controls. ShcL and ShcP strains are both highly inbred on the C57Bl/6 background, so we investigated gene expression at the Shc locus, which encodes three isoforms, p66, p52, and p46. Isoform p66 is absent in both strains; thus, the remaining difference to which to attribute the ‘lean’ phenotype is expression of the other two isoforms. ShcL mice have a precise deletion of p66Shc and normal expression of p52 and p46Shc isoforms in all tissues; thus, a simple deletion of p66Shc results in a ‘fat’ phenotype. However, ShcP mice in addition to p66Shc deletion have a fourfold increase in p46Shc expression in white fat. Thus, p46Shc overexpression in fat, rather than p66Shc deletion, is the likely cause of decreased adiposity and reduced insulin sensitivity in the fat of ShcP mice, which has implications for the longevity of the strain. PMID:21040401

  1. Dopamine signaling regulates the projection patterns in the mouse chiasm.

    PubMed

    Chen, Tingting; Hu, Yunlong; Lin, Xiaotan; Huang, Xinping; Liu, Bin; Leung, Peggy; Chan, Sun-On; Guo, Deyin; Jin, Guangyi

    2015-11-01

    Ocular albinism (OA) is characterized by inadequate L-3, 4-dihydroxyphenylalanine (L-DOPA) and dopamine (DA) in the eyes. This study investigated DA-related signaling pathways in mouse chiasm projection patterns and the potential role of ocular albinism type 1 (OA1) and dopamine 1A (D1A) receptors in the optic pathway. In embryonic day (E) E13-E15 retina, most L-DOPA and OA1-positive cells were distributed among Müller glial cells on E13 and retinal ganglion cells (RGC) on E14. In the ventral diencephalon, OA1 and L-DOPA were strongly expressed on the optic chiasm (OC) and optic tract (OT), respectively, but weak on the optic stalk (OS). At E13-E15, DA and D1A staining was predominately expressed in radially arranged cells with a neuronal expression pattern. In the ventral diencephalon, DA and D1A were strongly expressed on the OC, OT and OS. Furthermore, L-DOPA significantly inhibited retinal axon outgrowth in both the dorsal nasal (DN) and ventral temporal (VT) groups. DA inhibited retinal axon outgrowth, which was abolished by the D1A antagonist SCH23390. Brain slice cultures indicated that L-DOPA inhibited axons that crossed at the OC of E13 embryos, which was not abolished by DA. L-DOPA also inhibited axons that crossed at the OC of albino mice. Albino mice exhibited reduced ipsilateral retinal projections compared with C57 pigmented mice. No significant difference was identified in the uncrossed projections of albino mice following L-DOPA and DA expression. Furthermore, transcription factor Zic family member 2 (Zic2) upregulated OA1 mRNA expression. Our findings provide critical insights into DA-related signaling in retinal development. PMID:26363092

  2. The cold response of CBF genes in barley is regulated by distinct signaling mechanisms.

    PubMed

    Marozsán-Tóth, Zsuzsa; Vashegyi, Ildikó; Galiba, Gábor; Tóth, Balázs

    2015-06-01

    Cold acclimation ability is crucial in the winter survival of cereals. In this process CBF transcription factors play key role, therefore understanding the regulation of these genes might provide useful knowledge for molecular breeding. In the present study the signal transduction pathways leading to the cold induction of different CBF genes were investigated in barley cv. Nure using pharmacological approach. Our results showed that the cold induced expression of CBF9 and CBF14 transcription factors is regulated by phospholipase C, phospholipase D pathways and calcium. On the contrary, these pathways have negative effect on the cold induction of CBF12 that is regulated by a different, as yet unidentified pathway. The diversity in the regulation of these transcription factors corresponds to their sequence based phylogenetic relationships suggesting that their evolutionary separation happened on structural, functional and regulational levels as well. On the CBF effector gene level, the signaling regulation is more complex, resultant effect of multiple pathways.

  3. Gliolectin positively regulates Notch signalling during wing-vein specification in Drosophila.

    PubMed

    Prasad, Naveen; Shashidhara, Lingadahalli S

    2015-01-01

    Notch signalling is essential for animal development. It integrates multiple pathways controlling cell fate and specification. Here we report the genetic characterization of Gliolectin, presumably a lectin, a cytoplasmic protein, significantly enriched in Golgi bodies. Its expression overlaps with regions where Notch is activated. Loss of gliolectin function results in ectopic veins, while gain of its function causes loss of wing veins. It positively regulates Enhancer of split mβ, a target of Notch signalling. These observations suggest that it is a positive regulator of Notch signalling during wing development in Drosophila. PMID:26505251

  4. Regulation and function of syk tyrosine kinase in mast cell signaling and beyond.

    PubMed

    de Castro, Rodrigo Orlandini

    2011-01-01

    The protein tyrosine kinase Syk plays a critical role in FcεRI signaling in mast cells. Binding of Syk to phosphorylated immunoreceptor tyrosine-based activation motifs (p-ITAM) of the receptor subunits results in conformational changes and tyrosine phosphorylation at multiple sites that leads to activation of Syk. The phosphorylated tyrosines throughout the molecule play an important role in the regulation of Syk-mediated signaling. Reconstitution of receptor-mediated signaling in Syk(-/-) cells by wild-type Syk or mutants which have substitution of these tyrosines with phenylalanine together with in vitro assays has been useful strategies to understand the regulation and function of Syk.

  5. Post-transcriptional regulation of ethylene perception and signaling in Arabidopsis

    SciTech Connect

    Schaller, George Eric

    2014-03-19

    The simple gas ethylene functions as an endogenous regulator of plant growth and development, and modulates such energy relevant processes as photosynthesis and biomass accumulation. Ethylene is perceived in the plant Arabidopsis by a five-member family of receptors related to bacterial histidine kinases. Our data support a general model in which the receptors exist as parts of larger protein complexes. Our goals have been to (1) characterize physical interactions among members of the signaling complex; (2) the role of histidine-kinase transphosphorylation in signaling by the complex; and (3) the role of a novel family of proteins that regulate signal output by the receptors.

  6. Autocrine signaling involved in cell volume regulation: the role of released transmitters and plasma membrane receptors.

    PubMed

    Franco, Rodrigo; Panayiotidis, Mihalis I; de la Paz, Lenin D Ochoa

    2008-07-01

    Cell volume regulation is a basic homeostatic mechanism transcendental for the normal physiology and function of cells. It is mediated principally by the activation of osmolyte transport pathways that result in net changes in solute concentration that counteract cell volume challenges in its constancy. This process has been described to be regulated by a complex assortment of intracellular signal transduction cascades. Recently, several studies have demonstrated that alterations in cell volume induce the release of a wide variety of transmitters including hormones, ATP and neurotransmitters, which have been proposed to act as extracellular signals that regulate the activation of cell volume regulatory mechanisms. In addition, changes in cell volume have also been reported to activate plasma membrane receptors (including tyrosine kinase receptors, G-protein coupled receptors and integrins) that have been demonstrated to participate in the regulatory process of cell volume. In this review, we summarize recent studies about the role of changes in cell volume in the regulation of transmitter release as well as in the activation of plasma membrane receptors and their further implications in the regulation of the signaling machinery that regulates the activation of osmolyte flux pathways. We propose that the autocrine regulation of Ca2+-dependent and tyrosine phosphorylation-dependent signaling pathways by the activation of plasma membrane receptors and swelling-induced transmitter release is necessary for the activation/regulation of osmolyte efflux pathways and cell volume recovery. Furthermore, we emphasize the importance of studying these extrinsic signals because of their significance in the understanding of the physiology of cell volume regulation and its role in cell biology in vivo, where the constraint of the extracellular space might enhance the autocrine or even paracrine signaling induced by these released transmitters. PMID:18300263

  7. Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system.

    PubMed

    Luo, Jiang-Yun; Zhang, Yang; Wang, Li; Huang, Yu

    2015-07-15

    Bone morphogenetic proteins (BMPs) play key roles in the regulation of cell proliferation, differentiation and apoptosis in various tissues and organs, including the cardiovascular system. BMPs signal through both Smad-dependent and -independent cascades to exert a wide spectrum of biological activities. Cardiovascular disorders such as abnormal angiogenesis, atherosclerosis, pulmonary hypertension and cardiac hypertrophy have been linked to aberrant BMP signalling. To correct the dysregulated BMP signalling in cardiovascular pathogenesis, it is essential to get a better understanding of how the regulators and effectors of BMP signalling control cardiovascular function and how the dysregulated BMP signalling contributes to cardiovascular dysfunction. We hence highlight several key regulators of BMP signalling such as extracellular regulators of ligands, mechanical forces, microRNAs and small molecule drugs as well as typical BMP effectors like direct downstream target genes, mitogen-activated protein kinases, reactive oxygen species and microRNAs. The insights into these molecular processes will help target both the regulators and important effectors to reverse BMP-associated cardiovascular pathogenesis. PMID:25952563

  8. Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system.

    PubMed

    Luo, Jiang-Yun; Zhang, Yang; Wang, Li; Huang, Yu

    2015-07-15

    Bone morphogenetic proteins (BMPs) play key roles in the regulation of cell proliferation, differentiation and apoptosis in various tissues and organs, including the cardiovascular system. BMPs signal through both Smad-dependent and -independent cascades to exert a wide spectrum of biological activities. Cardiovascular disorders such as abnormal angiogenesis, atherosclerosis, pulmonary hypertension and cardiac hypertrophy have been linked to aberrant BMP signalling. To correct the dysregulated BMP signalling in cardiovascular pathogenesis, it is essential to get a better understanding of how the regulators and effectors of BMP signalling control cardiovascular function and how the dysregulated BMP signalling contributes to cardiovascular dysfunction. We hence highlight several key regulators of BMP signalling such as extracellular regulators of ligands, mechanical forces, microRNAs and small molecule drugs as well as typical BMP effectors like direct downstream target genes, mitogen-activated protein kinases, reactive oxygen species and microRNAs. The insights into these molecular processes will help target both the regulators and important effectors to reverse BMP-associated cardiovascular pathogenesis.

  9. Mitogen-activated protein kinase phosphatase 1 negatively regulates MAPK signaling in mouse hypothalamus.

    PubMed

    Adachi, Koichi; Goto, Motomitsu; Onoue, Takeshi; Tsunekawa, Taku; Shibata, Miyuki; Hagimoto, Shigeru; Ito, Yoshihiro; Banno, Ryoichi; Suga, Hidetaka; Sugimura, Yoshihisa; Oiso, Yutaka; Arima, Hiroshi

    2014-05-21

    Mitogen-activated protein kinase phosphatase 1 (MKP-1) is shown to negatively regulate MAPK signaling in various peripheral tissues as well as the central nervous system such as cortex, striatum and hippocampus. In this study, we examined whether MKP-1 regulates MAPK signaling in the mouse hypothalamus. Intraperitoneal injection of TNFα significantly increased MKP-1 mRNA expression in paraventricular and arcuate nuclei in the hypothalamus. TNFα treatment induced increases in MKP-1 expression at both mRNA and protein levels, accompanied by the inactivation of MAPK signaling in mouse hypothalamic explants. Inhibition of MKP-1 by its inhibitor or siRNA increased MAPK activity in the explants. Our data indicate that MKP-1 negatively regulates MAPK signaling in the mouse hypothalamus.

  10. Angiogenic factor signaling regulates centrosome duplication in endothelial cells of developing blood vessels

    PubMed Central

    Taylor, Sarah M.; Nevis, Kathleen R.; Park, Hannah L.; Rogers, Gregory C.; Rogers, Stephen L.; Cook, Jeanette G.

    2010-01-01

    Regulated vascular endothelial growth factor (VEGF) signaling is required for proper angiogenesis, and excess VEGF signaling results in aberrantly formed vessels that do not function properly. Tumor endothelial cells have excess centrosomes and are aneuploid, properties that probably contribute to the morphologic and functional abnormalities of tumor vessels. We hypothesized that endothelial cell centrosome number is regulated by signaling via angiogenic factors, such as VEGF. We found that endothelial cells in developing vessels exposed to elevated VEGF signaling display centrosome overduplication. Signaling from VEGF, through either MEK/ERK or AKT to cyclin E/Cdk2, is amplified in association with centrosome overduplication, and blockade of relevant pathway components rescued the centrosome overduplication defect. Endothelial cells exposed to elevated FGF also had excess centrosomes, suggesting that multiple angiogenic factors regulate centrosome number. Endothelial cells with excess centrosomes survived and formed aberrant spindles at mitosis. Developing vessels exposed to elevated VEGF signaling also exhibited increased aneuploidy of endothelial cells, which is associated with cellular dysfunction. These results provide the first link between VEGF signaling and regulation of the centrosome duplication cycle, and suggest that endothelial cell centrosome overduplication contributes to aberrant angiogenesis in developing vessel networks exposed to excess angiogenic factors. PMID:20664058

  11. Astrocyte sodium signaling and the regulation of neurotransmission.

    PubMed

    Kirischuk, Sergei; Héja, László; Kardos, Julianna; Billups, Brian

    2016-10-01

    The transmembrane Na(+) concentration gradient is an important source of energy required not only to enable the generation of action potentials in excitable cells, but also for various transmembrane transporters both in excitable and non-excitable cells, like astrocytes. One of the vital functions of astrocytes in the central nervous system (CNS) is to regulate neurotransmitter concentrations in the extracellular space. Most neurotransmitters in the CNS are removed from the extracellular space by Na(+) -dependent neurotransmitter transporters (NeuTs) expressed both in neurons and astrocytes. Neuronal NeuTs control mainly phasic synaptic transmission, i.e., synaptically induced transient postsynaptic potentials, while astrocytic NeuTs contribute to the termination of phasic neurotransmission and modulate the tonic tone, i.e., the long-lasting activation of extrasynaptic receptors by neurotransmitter that has diffused out of the synaptic cleft. Consequently, local intracellular Na(+) ([Na(+) ]i ) transients occurring in astrocytes, for example via the activation of ionotropic neurotransmitter receptors, can affect the driving force for neurotransmitter uptake, in turn modulating the spatio-temporal profiles of neurotransmitter levels in the extracellular space. As some NeuTs are close to thermodynamic equilibrium under resting conditions, an increase in astrocytic [Na(+) ]i can stimulate the direct release of neurotransmitter via NeuT reversal. In this review we discuss the role of astrocytic [Na(+) ]i changes in the regulation of uptake/release of neurotransmitters. It is emphasized that an activation of one neurotransmitter system, including either its ionotropic receptor or Na(+) -coupled co-transporter, can strongly influence, or even reverse, other Na(+) -dependent NeuTs, with potentially significant consequences for neuronal communication. GLIA 2016;64:1655-1666. PMID:26566753

  12. Astrocyte sodium signaling and the regulation of neurotransmission.

    PubMed

    Kirischuk, Sergei; Héja, László; Kardos, Julianna; Billups, Brian

    2016-10-01

    The transmembrane Na(+) concentration gradient is an important source of energy required not only to enable the generation of action potentials in excitable cells, but also for various transmembrane transporters both in excitable and non-excitable cells, like astrocytes. One of the vital functions of astrocytes in the central nervous system (CNS) is to regulate neurotransmitter concentrations in the extracellular space. Most neurotransmitters in the CNS are removed from the extracellular space by Na(+) -dependent neurotransmitter transporters (NeuTs) expressed both in neurons and astrocytes. Neuronal NeuTs control mainly phasic synaptic transmission, i.e., synaptically induced transient postsynaptic potentials, while astrocytic NeuTs contribute to the termination of phasic neurotransmission and modulate the tonic tone, i.e., the long-lasting activation of extrasynaptic receptors by neurotransmitter that has diffused out of the synaptic cleft. Consequently, local intracellular Na(+) ([Na(+) ]i ) transients occurring in astrocytes, for example via the activation of ionotropic neurotransmitter receptors, can affect the driving force for neurotransmitter uptake, in turn modulating the spatio-temporal profiles of neurotransmitter levels in the extracellular space. As some NeuTs are close to thermodynamic equilibrium under resting conditions, an increase in astrocytic [Na(+) ]i can stimulate the direct release of neurotransmitter via NeuT reversal. In this review we discuss the role of astrocytic [Na(+) ]i changes in the regulation of uptake/release of neurotransmitters. It is emphasized that an activation of one neurotransmitter system, including either its ionotropic receptor or Na(+) -coupled co-transporter, can strongly influence, or even reverse, other Na(+) -dependent NeuTs, with potentially significant consequences for neuronal communication. GLIA 2016;64:1655-1666.

  13. Fuz Regulates Craniofacial Development through Tissue Specific Responses to Signaling Factors

    PubMed Central

    Zhang, Zichao; Wlodarczyk, Bogdan J.; Niederreither, Karen; Venugopalan, Shankar; Florez, Sergio; Finnell, Richard H.; Amendt, Brad A.

    2011-01-01

    The planar cell polarity effector gene Fuz regulates ciliogenesis and Fuz loss of function studies reveal an array of embryonic phenotypes. However, cilia defects can affect many signaling pathways and, in humans, cilia defects underlie several craniofacial anomalies. To address this, we analyzed the craniofacial phenotype and signaling responses of the Fuz−/− mice. We demonstrate a unique role for Fuz in regulating both Hedgehog (Hh) and Wnt/β-catenin signaling during craniofacial development. Fuz expression first appears in the dorsal tissues and later in ventral tissues and craniofacial regions during embryonic development coincident with cilia development. The Fuz−/− mice exhibit severe craniofacial deformities including anophthalmia, agenesis of the tongue and incisors, a hypoplastic mandible, cleft palate, ossification/skeletal defects and hyperplastic malformed Meckel's cartilage. Hh signaling is down-regulated in the Fuz null mice, while canonical Wnt signaling is up-regulated revealing the antagonistic relationship of these two pathways. Meckel's cartilage is expanded in the Fuz−/− mice due to increased cell proliferation associated with the up-regulation of Wnt canonical target genes and decreased non-canonical pathway genes. Interestingly, cilia development was decreased in the mandible mesenchyme of Fuz null mice, suggesting that cilia may antagonize Wnt signaling in this tissue. Furthermore, expression of Fuz decreased expression of Wnt pathway genes as well as a Wnt-dependent reporter. Finally, chromatin IP experiments demonstrate that β-catenin/TCF-binding directly regulates Fuz expression. These data demonstrate a new model for coordination of Hh and Wnt signaling and reveal a Fuz-dependent negative feedback loop controlling Wnt/β-catenin signaling. PMID:21935430

  14. Impact of ACTH Signaling on Transcriptional Regulation of Steroidogenic Genes

    PubMed Central

    Ruggiero, Carmen; Lalli, Enzo

    2016-01-01

    The trophic peptide hormone adrenocorticotropic (ACTH) stimulates steroid hormone biosynthesis evoking both a rapid, acute response and a long-term, chronic response, via the activation of cAMP/protein kinase A (PKA) signaling. The acute response is initiated by the mobilization of cholesterol from lipid stores and its delivery to the inner mitochondrial membrane, a process that is mediated by the steroidogenic acute regulatory protein. The chronic response results in the increased coordinated transcription of genes encoding steroidogenic enzymes. ACTH binding to its cognate receptor, melanocortin 2 receptor (MC2R), stimulates adenylyl cyclase, thus inducing cAMP production, PKA activation, and phosphorylation of specific nuclear factors, which bind to target promoters and facilitate coactivator protein recruitment to direct steroidogenic gene transcription. This review provides a general view of the transcriptional control exerted by the ACTH/cAMP system on the expression of genes encoding for steroidogenic enzymes in the adrenal cortex. Special emphasis will be given to the transcription factors required to mediate ACTH-dependent transcription of steroidogenic genes. PMID:27065945

  15. Carbonylation Modification Regulates Na/K-ATPase Signaling and Salt Sensitivity: A Review and a Hypothesis

    PubMed Central

    Shah, Preeya T.; Martin, Rebecca; Yan, Yanling; Shapiro, Joseph I.; Liu, Jiang

    2016-01-01

    Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions. Accumulating evidence indicates that oxidative stress not only regulates the Na/K-ATPase enzymatic activity, but also regulates its signaling and other functions. While cardiotonic steroids (CTS)-induced increase in reactive oxygen species (ROS) generation is an intermediate step in CTS-mediated Na/K-ATPase signaling, increase in ROS alone also stimulates Na/K-ATPase signaling. Based on literature and our observations, we hypothesize that ROS have biphasic effects on Na/K-ATPase signaling, transcellular sodium transport, and urinary sodium excretion. Oxidative modulation, in particular site specific carbonylation of the Na/K-ATPase α1 subunit, is a critical step in proximal tubular Na/K-ATPase signaling and decreased transcellular sodium transport leading to increases in urinary sodium excretion. However, once this system is overstimulated, the signaling, and associated changes in sodium excretion are blunted. This review aims to evaluate ROS-mediated carbonylation of the Na/K-ATPase, and its potential role in the regulation of pump signaling and sodium reabsorption in the renal proximal tubule (RPT). PMID:27445847

  16. Carbonylation Modification Regulates Na/K-ATPase Signaling and Salt Sensitivity: A Review and a Hypothesis.

    PubMed

    Shah, Preeya T; Martin, Rebecca; Yan, Yanling; Shapiro, Joseph I; Liu, Jiang

    2016-01-01

    Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions. Accumulating evidence indicates that oxidative stress not only regulates the Na/K-ATPase enzymatic activity, but also regulates its signaling and other functions. While cardiotonic steroids (CTS)-induced increase in reactive oxygen species (ROS) generation is an intermediate step in CTS-mediated Na/K-ATPase signaling, increase in ROS alone also stimulates Na/K-ATPase signaling. Based on literature and our observations, we hypothesize that ROS have biphasic effects on Na/K-ATPase signaling, transcellular sodium transport, and urinary sodium excretion. Oxidative modulation, in particular site specific carbonylation of the Na/K-ATPase α1 subunit, is a critical step in proximal tubular Na/K-ATPase signaling and decreased transcellular sodium transport leading to increases in urinary sodium excretion. However, once this system is overstimulated, the signaling, and associated changes in sodium excretion are blunted. This review aims to evaluate ROS-mediated carbonylation of the Na/K-ATPase, and its potential role in the regulation of pump signaling and sodium reabsorption in the renal proximal tubule (RPT).

  17. Regulation of the BMP Signaling-Responsive Transcriptional Network in the Drosophila Embryo

    PubMed Central

    Saunders, Abbie; Wilcockson, Scott G.; Zeef, Leo A. H.; Donaldson, Ian J.; Ashe, Hilary L.

    2016-01-01

    The BMP signaling pathway has a conserved role in dorsal-ventral axis patterning during embryonic development. In Drosophila, graded BMP signaling is transduced by the Mad transcription factor and opposed by the Brinker repressor. In this study, using the Drosophila embryo as a model, we combine RNA-seq with Mad and Brinker ChIP-seq to decipher the BMP-responsive transcriptional network underpinning differentiation of the dorsal ectoderm during dorsal-ventral axis patterning. We identify multiple new BMP target genes, including positive and negative regulators of EGF signaling. Manipulation of EGF signaling levels by loss- and gain-of-function studies reveals that EGF signaling negatively regulates embryonic BMP-responsive transcription. Therefore, the BMP gene network has a self-regulating property in that it establishes a balance between its activity and that of the antagonistic EGF signaling pathway to facilitate correct patterning. In terms of BMP-dependent transcription, we identify key roles for the Zelda and Zerknüllt transcription factors in establishing the resulting expression domain, and find widespread binding of insulator proteins to the Mad and Brinker-bound genomic regions. Analysis of embryos lacking the BEAF-32 insulator protein shows reduced transcription of a peak BMP target gene and a reduction in the number of amnioserosa cells, the fate specified by peak BMP signaling. We incorporate our findings into a model for Mad-dependent activation, and discuss its relevance to BMP signal interpretation in vertebrates. PMID:27379389

  18. MicroRNA-142-3p Negatively Regulates Canonical Wnt Signaling Pathway

    PubMed Central

    Hu, Tanyu; Phiwpan, Krung; Guo, Jitao; Zhang, Wei; Guo, Jie; Zhang, Zhongmei; Zou, Mangge; Zhang, Xuejie; Zhang, Jianhua

    2016-01-01

    Wnt/β-catenin signaling pathway plays essential roles in mammalian development and tissue homeostasis. MicroRNAs (miRNAs) are a class of regulators involved in modulating this pathway. In this study, we screened miRNAs regulating Wnt/β-catenin signaling by using a TopFlash based luciferase reporter. Surprisingly, we found that miR-142 inhibited Wnt/β-catenin signaling, which was inconsistent with a recent study showing that miR-142-3p targeted Adenomatous Polyposis Coli (APC) to upregulate Wnt/β-catenin signaling. Due to the discordance, we elaborated experiments by using extensive mutagenesis, which demonstrated that the stem-loop structure was important for miR-142 to efficiently suppress Wnt/β-catenin signaling. Moreover, the inhibitory effect of miR-142 relies on miR-142-3p rather than miR-142-5p. Further, we found that miR-142-3p directly modulated translation of Ctnnb1 mRNA (encoding β-catenin) through binding to its 3’ untranslated region (3’ UTR). Finally, miR-142 was able to repress cell cycle progression by inhibiting active Wnt/β-catenin signaling. Thus, our findings highlight the inhibitory role of miR-142-3p in Wnt/β-catenin signaling, which help to understand the complex regulation of Wnt/β-catenin signaling. PMID:27348426

  19. Regulation of Notch signaling and endocytosis by the Lgl neoplastic tumor suppressor

    PubMed Central

    Portela, Marta; Parsons, Linda M; Grzeschik, Nicola A; Richardson, Helena E

    2015-01-01

    The evolutionarily conserved neoplastic tumor suppressor protein, Lethal (2) giant larvae (Lgl), plays roles in cell polarity and tissue growth via regulation of the Hippo pathway. In our recent study, we showed that in the developing Drosophila eye epithelium, depletion of Lgl leads to increased ligand-dependent Notch signaling. lgl mutant tissue also exhibits an accumulation of early endosomes, recycling endosomes, early-multivesicular body markers and acidic vesicles. We showed that elevated Notch signaling in lgl− tissue can be rescued by feeding larvae the vesicle de-acidifying drug chloroquine, revealing that Lgl attenuates Notch signaling by limiting vesicle acidification. Strikingly, chloroquine also rescued the lgl− overgrowth phenotype, suggesting that the Hippo pathway defects were also rescued. In this extraview, we provide additional data on the regulation of Notch signaling and endocytosis by Lgl, and discuss possible mechanisms by which Lgl depletion contributes to signaling pathway defects and tumorigenesis. PMID:25789785

  20. RGS1 regulates myeloid cell accumulation in atherosclerosis and aortic aneurysm rupture through altered chemokine signalling

    PubMed Central

    Patel, Jyoti; McNeill, Eileen; Douglas, Gillian; Hale, Ashley B.; de Bono, Joseph; Lee, Regent; Iqbal, Asif J.; Regan-Komito, Daniel; Stylianou, Elena; Greaves, David R.; Channon, Keith M.

    2015-01-01

    Chemokine signalling drives monocyte recruitment in atherosclerosis and aortic aneurysms. The mechanisms that lead to retention and accumulation of macrophages in the vascular wall remain unclear. Regulator of G-Protein Signalling-1 (RGS1) deactivates G-protein signalling, reducing the response to sustained chemokine stimulation. Here we show that Rgs1 is upregulated in atherosclerotic plaque and aortic aneurysms. Rgs1 reduces macrophage chemotaxis and desensitizes chemokine receptor signalling. In early atherosclerotic lesions, Rgs1 regulates macrophage accumulation and is required for the formation and rupture of Angiotensin II-induced aortic aneurysms, through effects on leukocyte retention. Collectively, these data reveal a role for Rgs1 in leukocyte trafficking and vascular inflammation and identify Rgs1, and inhibition of chemokine receptor signalling as potential therapeutic targets in vascular disease. PMID:25782711

  1. Genome-wide identification of phospho-regulators of Wnt signaling in Drosophila.

    PubMed

    Swarup, Sharan; Pradhan-Sundd, Tirthadipa; Verheyen, Esther M

    2015-04-15

    Evolutionarily conserved intercellular signaling pathways regulate embryonic development and adult tissue homeostasis in metazoans. The precise control of the state and amplitude of signaling pathways is achieved in part through the kinase- and phosphatase-mediated reversible phosphorylation of proteins. In this study, we performed a genome-wide in vivo RNAi screen for kinases and phosphatases that regulate the Wnt pathway under physiological conditions in the Drosophila wing disc. Our analyses have identified 54 high-confidence kinases and phosphatases capable of modulating the Wnt pathway, including 22 novel regulators. These candidates were also assayed for a role in the Notch pathway, and numerous phospho-regulators were identified. Additionally, each regulator of the Wnt pathway was evaluated in the wing disc for its ability to affect the mechanistically similar Hedgehog pathway. We identified 29 dual regulators that have the same effect on the Wnt and Hedgehog pathways. As proof of principle, we established that Cdc37 and Gilgamesh/CK1γ inhibit and promote signaling, respectively, by functioning at analogous levels of these pathways in both Drosophila and mammalian cells. The Wnt and Hedgehog pathways function in tandem in multiple developmental contexts, and the identification of several shared phospho-regulators serve as potential nodes of control under conditions of aberrant signaling and disease. PMID:25852200

  2. Porcine circovirus type 2 replication is impaired by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway

    SciTech Connect

    Wei Li; Liu Jue

    2009-03-30

    Postweaning multisystemic wasting syndrome, which is primarily caused by porcine circovirus type 2 (PCV2), is an emerging and important swine disease. We have recently shown that PCV2 induces nuclear factor kappa B activation and its activation is required for active replication, but the other cellular factors involved in PCV2 replication are not well defined. The extracellular signal-regulated kinase (ERK) which served as an important component of cellular signal transduction pathways has been shown to regulate many viral infections. In this report, we show that PCV2 activates ERK1/2 in PCV2-infected PK15 cells dependent on viral replication. The PCV2-induced ERK1/2 leads to phosphorylation of the ternary complex factor Elk-1, which kinetically paralleled ERK1/2 activation. Inhibition of ERK activation with U0126, a specific MEK1/2 inhibitor, significantly reduced viral progeny release. Investigations into the mechanism of ERK1/2 regulation revealed that inhibition of ERK activation leads to decreased viral transcription and lower virus protein expression. These data indicate that the ERK signaling pathway is involved in PCV2 infection and beneficial to PCV2 replication in the cultured cells.

  3. Regulation of cell division and expansion by sugar and auxin signaling

    PubMed Central

    Wang, Lu; Ruan, Yong-Ling

    2013-01-01

    Plant growth and development are modulated by concerted actions of a variety of signaling molecules. In recent years, evidence has emerged on the roles of sugar and auxin signals network in diverse aspects of plant growth and development. Here, based on recent progress of genetic analyses and gene expression profiling studies, we summarize the functional similarities, diversities, and their interactions of sugar and auxin signals in regulating two major processes of plant development: cell division and cell expansion. We focus on roles of sugar and auxin signaling in both vegetative and reproductive tissues including developing seed. PMID:23755057

  4. Signaling and regulation of G protein-coupled receptors in airway smooth muscle

    PubMed Central

    Billington, Charlotte K; Penn, Raymond B

    2003-01-01

    Signaling through G protein-coupled receptors (GPCRs) mediates numerous airway smooth muscle (ASM) functions including contraction, growth, and "synthetic" functions that orchestrate airway inflammation and promote remodeling of airway architecture. In this review we provide a comprehensive overview of the GPCRs that have been identified in ASM cells, and discuss the extent to which signaling via these GPCRs has been characterized and linked to distinct ASM functions. In addition, we examine the role of GPCR signaling and its regulation in asthma and asthma treatment, and suggest an integrative model whereby an imbalance of GPCR-derived signals in ASM cells contributes to the asthmatic state. PMID:12648290

  5. Signaling Networks Regulating Development of the Lower Respiratory Tract

    PubMed Central

    Ornitz, David M.; Yin, Yongjun

    2012-01-01

    The lungs serve the primary function of air-blood gas exchange in all mammals and in terrestrial vertebrates. Efficient gas exchange requires a large surface area that provides intimate contact between the atmosphere and the circulatory system. To achieve this, the lung contains a branched conducting system (the bronchial tree) and specialized air-blood gas exchange units (the alveoli). The conducting system brings air from the external environment to the alveoli and functions to protect the lung from debris that could obstruct airways, from entry of pathogens, and from excessive loss of fluids. The distal lung enables efficient exchange of gas between the alveoli and the conducting system and between the alveoli and the circulatory system. In this article, we highlight developmental and physiological mechanisms that specify, pattern, and regulate morphogenesis of this complex and essential organ. Recent advances have begun to define molecular mechanisms that control many of the important processes required for lung organogenesis; however, many questions remain. A deeper understanding of these molecular mechanisms will aid in the diagnosis and treatment of congenital lung disease and in the development of strategies to enhance the reparative response of the lung to injury and eventually permit regeneration of functional lung tissue. PMID:22550231

  6. Desmoglein 3-Dependent Signaling Regulates Keratinocyte Migration and Wound Healing.

    PubMed

    Rötzer, Vera; Hartlieb, Eva; Winkler, Julia; Walter, Elias; Schlipp, Angela; Sardy, Miklós; Spindler, Volker; Waschke, Jens

    2016-01-01

    The desmosomal transmembrane adhesion molecules desmoglein 3 (Dsg3) and desmocollin 3 (Dsc3) are required for strong keratinocyte cohesion. Recently, we have shown that Dsg3 associates with p38 mitogen-activated protein kinase (p38MAPK) and suppresses its activity. Here, we further investigated the role of Dsg3-dependent control of p38MAPK function. Dsg3-deficient mice display recurrent spontaneously healing skin erosions. In lesional and perilesional biopsies, p38MAPK activation was detectable compared with control animals. This led us to speculate that Dsg3 regulates wound repair in a p38MAPK-dependent manner. Indeed, scratch-wounded keratinocyte monolayers exhibited p38MAPK activation and loss of Dsg3 in cells lining the wound edge. Human keratinocytes after silencing of Dsg3 as well as primary cells isolated from Dsg3 knockout animals exhibited accelerated migration, which was further corroborated in an ex vivo skin outgrowth assay. Importantly, migration was efficiently blocked by inhibition of p38MAPK, indicating that p38MAPK mediates the effects observed upon loss of Dsg3. In line with this, we show that levels of active p38MAPK associated with Dsc3 are increased in Dsg3-deficient cells. These data indicate that Dsg3 controls a switch from an adhesive to a migratory keratinocyte phenotype via p38MAPK inhibition. Thus, loss of Dsg3 adhesion may foster wound closure by allowing p38MAPK-dependent migration. PMID:26763450

  7. Purinergic Signaling as a Regulator of Th17 Cell Plasticity

    PubMed Central

    Fernández, Dominique; Flores-Santibáñez, Felipe; Neira, Jocelyn; Osorio-Barrios, Francisco; Tejón, Gabriela; Nuñez, Sarah; Hidalgo, Yessia; Fuenzalida, Maria Jose; Meza, Daniel; Ureta, Gonzalo; Lladser, Alvaro; Pacheco, Rodrigo; Acuña-Castillo, Claudio; Guixé, Victoria; Quintana, Francisco J.; Bono, Maria Rosa; Rosemblatt, Mario; Sauma, Daniela

    2016-01-01

    T helper type 17 (Th17) lymphocytes, characterized by the production of interleukin-17 and other pro-inflammatory cytokines, are present in intestinal lamina propria and have been described as important players driving intestinal inflammation. Recent evidence, supporting the notion of a functional and phenotypic instability of Th17 cells, has shown that Th17 differentiate into type 1 regulatory (Tr1) T cells during the resolution of intestinal inflammation. Moreover, it has been suggested that the expression of CD39 ectonucleotidase endows Th17 cells with immunosuppressive properties. However, the exact role of CD39 ectonucleotidase in Th17 cells has not been studied in the context of intestinal inflammation. Here we show that Th17 cells expressing CD39 ectonucleotidase can hydrolyze ATP and survive to ATP-induced cell death. Moreover, in vitro-generated Th17 cells expressing the CD39 ectonucleotidase produce IL-10 and are less pathogenic than CD39 negative Th17 cells in a model of experimental colitis in Rag-/- mice. Remarkably, we show that CD39 activity regulates the conversion of Th17 cells to IL-10-producing cells in vitro, which is abrogated in the presence of ATP and the CD39-specific inhibitor ARL67156. All these data suggest that CD39 expression by Th17 cells allows the depletion of ATP and is crucial for IL-10 production and survival during the resolution of intestinal inflammation. PMID:27322617

  8. CD28 and ITK signals regulate autoreactive T cell trafficking

    PubMed Central

    Jain, Nitya; Miu, Bing; Jiang, Jian-kang; McKinstry, Kai K.; Prince, Amanda; Swain, Susan L; Greiner, Dale L.; Thomas, Craig J.; Sanderson, Michael J.; Berg, Leslie J; Kang, Joonsoo

    2013-01-01

    Activation of self-reactive T cells and their trafficking to target tissues leads to autoimmune organ destruction. Mice lacking the coinhibitory receptor CTLA-4 develop fatal autoimmunity characterized by massive lymphocytic invasion into non-lymphoid tissues. Here we demonstrate that the CD28 costimulatory pathway regulates the trafficking of self-reactive Ctla4−/− T cells to tissues. Co-ablation of the CD28-activated Tec family kinase ITK does not block spontaneous T cell activation, but instead causes self-reactive Ctla4−/− T cells to accumulate in secondary lymphoid organs. Despite a fulminant autoimmune process in the lymphoid compartment, Itk−/−Ctla4−/− mice are otherwise healthy and exhibit a long lifespan. We propose that ITK licenses autoreactive T cells to enter tissues to mount destructive immune responses. Importantly, ITK inhibitors mimic the null mutant phenotype and also prevent pancreatic islet infiltration by diabetogenic T cells in mouse models of Type I diabetes, highlighting their potential utility for the treatment of human autoimmune disorders. PMID:24270545

  9. Calcitriol transmembrane signalling: regulation of rat muscle phospholipase D activity.

    PubMed

    Facchinetti, M M; Boland, R; de Boland, A R

    1998-01-01

    In rat skeletal muscle, calcitriol, the hormonal form of vitamin D3, rapidly stimulates the biphasic formation of diacylglycerol (DAG), the second phase being independent of phosphoinositide hydrolysis driven by phospholipase C. In this work we showed that the effect of calcitriol on the second phase of DAG formation was totally inhibited in the absence of extracellular Ca2+ and by the Ca2+-channel blockers nifedipine and verapamil, whereas the Ca2+ ionophore A23184, similar to calcitriol, increased DAG formation by 100%. GTPgammaS, which activates G protein-mediated signals, mimicked the effects of the hormone while GDPbetaS, an inhibitor of G proteins, suppressed calcitriol-induced DAG formation. To elucidate the metabolic pathway of the late phase of DAG production, we examined the contribution of phospholipase D (PLD), which acts on phosphatidylcholine (PC) generating phosphatidic acid that is converted to DAG by a phosphatidate phosphohydrolase. In [3H]arachidonate-labeled muscle, calcitriol increased [3H]phosphatidylethanol (PEt) formation in the presence of ethanol, a reaction specific for PLD. The effects of the hormone were time- and dose-dependent with maximum PEt levels achieved at 10(-9) M. The phorbol ester TPA also stimulated PEt formation. The combination of calcitriol and TPA was more effective than either compound alone. In rat muscle, calcitriol increased PKC activity in a time-dependent fashion. Bisindolymaleimide, a selective inhibitor of the enzyme, completely suppressed TPA-induced PEt and attenuated the effects of the hormone. These results provide the first evidence concerning calcitriol stimulation of the hydrolysis of PC in a mammalian tissue through a phospholipase D catalyzed mechanism involving Ca2+, protein kinase C, and G proteins.

  10. Influence of electrolytes on growth, phototropism, nutation and surface potential in etiolated cucumber seedlings

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Cosgrove, D. J.

    1993-01-01

    A variety of electrolytes (10-30 mol m-3) increased the relative growth rate of etiolated cucumber (Cucumis sativus L. cv. Burpee's Pickler) hypocotyls by 20-50% relative to water-only controls. The nonelectrolyte mannitol inhibited growth by 10%. All salts tested were effective, regardless of chemical composition or valence. Measurements of cell-sap osmolality ruled out an osmotic mechanism for the growth stimulation by electrolytes. This, and the nonspecificity of the response, indicate that an electrical property of the solutions was responsible for their growth-stimulating activity. Measurements of surface electrical potential supported this reasoning. Treatment with electrolytes also enhanced nutation and altered the pattern of phototropic curvature development. A novel analytical method for quantitating these effects on growth was developed. The evidence indicates that electrolytes influence an electrophysiological parameter that is involved in the control of cell expansion and the coordination of growth underlying tropisms and nutations.

  11. Dependence of the phototropic response of Arabidopsis thaliana on fluence rate and wavelength

    PubMed Central

    Konjević, Radomir; Steinitz, Benjamin; Poff, Kenneth L.

    1989-01-01

    In the phototropic response of Arabidopsis thaliana seedlings, the shape of the fluence-response relation depends on fluence rate and wavelength. At low fluence rates, the response to 450-nm light is characterized by a single maximum at about 0.3 μmol·m-2. At higher fluence rates, the response shows two distinct maxima, I and II, at 0.3 and 3.5 μmol·m-2, respectively. The response to 500-nm light shows a single maximum at 2 μmol·m-2, and the response to 510-nm light shows a single maximum at 4.5 μmol·m-2, independent of fluence rate. The response to 490-nm light shows a maximal at 4.5 μmol·m-2 and a shoulder at about 0.6 μmol·m-2. Preirradiation with high-fluence 510-nm light from above, immediately followed by unilateral 450-nm light, eliminates maximum II but not maximum I. Preirradiation with high-fluence 450-nm light from above eliminates the response to subsequent unilateral irradiation with either 450-nm or 510-nm light. The recovery of the response following high-fluence 450-nm light is considerably slower than the recovery following high-fluence 510-nm light. Unilateral irradiation with low-fluence 510-nm light followed by 450-nm light results in curvature that is approximately the sum of those produced by either irradiation alone. Based on these results, it is proposed that phototropism in A. thaliana seedlings is mediated by at least two blue-light photoreceptor pigments. PMID:16594094

  12. Physiological asymmetry in etiolated pea epicotyls: relation to patterns of auxin distribution and phototropic behavior

    NASA Technical Reports Server (NTRS)

    Kuhn, H.; Galston, A. W.

    1992-01-01

    Etiolated pea seedlings require transformation of Pr phytochrome to Pfr before they display optimal phototropic response to unilateral blue light. This study investigates the possible role of auxin transport in explaining these phenomena. Labeled [2-14C]IAA applied to the intact terminal buds of dark-grown and red light-treated pea seedlings was measured 210 min later on the shaded and illuminated sides of the epicotyl as a function of direction and duration of irradiation with blue light. Totally darkened epicotyls show an asymmetry in distribution of radioactivity in the upper growth zone of the epicotyl, in favor of the side under the concave part of the apical hook. Red light, which greatly potentiates curvature toward subsequent unilateral blue light, lowers this asymmetry. Blue light directed to the epicotyl of red-pretreated plants in a plane parallel to the hook and from the side bearing the convex portion of the hook induces positive phototropic curvature as well as a surplus of radioactivity on the illuminated side of the upper epicotyl and on the shaded side of the lower growth zone of the epicotyl. Light directed to the side bearing the concave part of the hook also causes an accumulation of counts in the upper part of the lighted side but produces neither curvature of the epicotyl nor accumulation of counts in the lower shaded side. Because of this built-in physiological asymmetry in the growth zone just below the apical hook, it is difficult to explain the effects of red and blue light on curvature in terms of patterns of auxin distribution alone.

  13. Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway.

    PubMed

    Kim, Tae-Houn; Hauser, Felix; Ha, Tracy; Xue, Shaowu; Böhmer, Maik; Nishimura, Noriyuki; Munemasa, Shintaro; Hubbard, Katharine; Peine, Nora; Lee, Byeong-Ha; Lee, Stephen; Robert, Nadia; Parker, Jane E; Schroeder, Julian I

    2011-06-01

    Coordinated regulation of protection mechanisms against environmental abiotic stress and pathogen attack is essential for plant adaptation and survival. Initial abiotic stress can interfere with disease-resistance signaling [1-6]. Conversely, initial plant immune signaling may interrupt subsequent abscisic acid (ABA) signal transduction [7, 8]. However, the processes involved in this crosstalk between these signaling networks have not been determined. By screening a 9600-compound chemical library, we identified a small molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that rapidly downregulates ABA-dependent gene expression and also inhibits ABA-induced stomatal closure. Transcriptome analyses show that DFPM also stimulates expression of plant defense-related genes. Major early regulators of pathogen-resistance responses, including EDS1, PAD4, RAR1, and SGT1b, are required for DFPM-and notably also for Pseudomonas-interference with ABA signal transduction, whereas salicylic acid, EDS16, and NPR1 are not necessary. Although DFPM does not interfere with early ABA perception by PYR/RCAR receptors or ABA activation of SnRK2 kinases, it disrupts cytosolic Ca(2+) signaling and downstream anion channel activation in a PAD4-dependent manner. Our findings provide evidence that activation of EDS1/PAD4-dependent plant immune responses rapidly disrupts ABA signal transduction and that this occurs at the level of Ca(2+) signaling, illuminating how the initial biotic stress pathway interferes with ABA signaling.

  14. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling.

    PubMed

    Stephen, Terri-Leigh; Higgs, Nathalie F; Sheehan, David F; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I Lorena; Kittler, Josef T

    2015-12-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca(2+). Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca(2+)-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca(2+) in astrocytic processes. Thus, the regulation of intracellular Ca(2+) signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca(2+) wave propagation, gliotransmission, and ultimately neuronal function. PMID:26631479

  15. Dopamine Signaling Regulates Fat Content through β-Oxidation in Caenorhabditis elegans

    PubMed Central

    Barros, Alexandre Guimarães de Almeida; Bridi, Jessika Cristina; de Souza, Bruno Rezende; de Castro Júnior, Célio; de Lima Torres, Karen Cecília; Malard, Leandro; Jorio, Ado; de Miranda, Débora Marques; Ashrafi, Kaveh; Romano-Silva, Marco Aurélio

    2014-01-01

    The regulation of energy balance involves an intricate interplay between neural mechanisms that respond to internal and external cues of energy demand and food availability. Compelling data have implicated the neurotransmitter dopamine as an important part of body weight regulation. However, the precise mechanisms through which dopamine regulates energy homeostasis remain poorly understood. Here, we investigate mechanisms through which dopamine modulates energy storage. We showed that dopamine signaling regulates fat reservoirs in Caenorhabditis elegans. We found that the fat reducing effects of dopamine were dependent on dopaminergic receptors and a set of fat oxidation enzymes. Our findings reveal an ancient role for dopaminergic regulation of fat and suggest that dopamine signaling elicits this outcome through cascades that ultimately mobilize peripheral fat depots. PMID:24465759

  16. Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    McMurray, R. J.; Wann, A. K. T.; Thompson, C. L.; Connelly, J. T.; Knight, M. M.

    2013-12-01

    The primary cilium regulates cellular signalling including influencing wnt sensitivity by sequestering β-catenin within the ciliary compartment. Topographic regulation of intracellular actin-myosin tension can control stem cell fate of which wnt is an important mediator. We hypothesized that topography influences mesenchymal stem cell (MSC) wnt signaling through the regulation of primary cilia structure and function. MSCs cultured on grooves expressed elongated primary cilia, through reduced actin organization. siRNA inhibition of anterograde intraflagellar transport (IFT88) reduced cilia length and increased active nuclear β-catenin. Conversely, increased primary cilia assembly in MSCs cultured on the grooves was associated with decreased levels of nuclear active β-catenin, axin-2 induction and proliferation, in response to wnt3a. This negative regulation, on grooved topography, was reversed by siRNA to IFT88. This indicates that subtle regulation of IFT and associated cilia structure, tunes the wnt response controlling stem cell differentiation.

  17. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling

    PubMed Central

    Stephen, Terri-Leigh; Higgs, Nathalie F.; Sheehan, David F.; Al Awabdh, Sana; López-Doménech, Guillermo; Arancibia-Carcamo, I. Lorena

    2015-01-01

    It is fast emerging that maintaining mitochondrial function is important for regulating astrocyte function, although the specific mechanisms that govern astrocyte mitochondrial trafficking and positioning remain poorly understood. The mitochondrial Rho-GTPase 1 protein (Miro1) regulates mitochondrial trafficking and detachment from the microtubule transport network to control activity-dependent mitochondrial positioning in neurons. However, whether Miro proteins are important for regulating signaling-dependent mitochondrial dynamics in astrocytic processes remains unclear. Using live-cell confocal microscopy of rat organotypic hippocampal slices, we find that enhancing neuronal activity induces transient mitochondrial remodeling in astrocytes, with a concomitant, transient reduction in mitochondrial trafficking, mediated by elevations in intracellular Ca2+. Stimulating neuronal activity also induced mitochondrial confinement within astrocytic processes in close proximity to synapses. Furthermore, we show that the Ca2+-sensing EF-hand domains of Miro1 are important for regulating mitochondrial trafficking in astrocytes and required for activity-driven mitochondrial confinement near synapses. Additionally, activity-dependent mitochondrial positioning by Miro1 reciprocally regulates the levels of intracellular Ca2+ in astrocytic processes. Thus, the regulation of intracellular Ca2+ signaling, dependent on Miro1-mediated mitochondrial positioning, could have important consequences for astrocyte Ca2+ wave propagation, gliotransmission, and ultimately neuronal function. SIGNIFICANCE STATEMENT Mitochondria are key cellular organelles that play important roles in providing cellular energy and buffering intracellular calcium ions. The mechanisms that control mitochondrial distribution within the processes of glial cells called astrocytes and the impact this may have on calcium signaling remains unclear. We show that activation of glutamate receptors or increased neuronal

  18. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation

    PubMed Central

    Rahman, Md Shaifur; Akhtar, Naznin; Jamil, Hossen Mohammad; Banik, Rajat Suvra; Asaduzzaman, Sikder M

    2015-01-01

    Transforming growth factor-beta (TGF-β)/bone morphogenetic protein (BMP) plays a fundamental role in the regulation of bone organogenesis through the activation of receptor serine/threonine kinases. Perturbations of TGF-β/BMP activity are almost invariably linked to a wide variety of clinical outcomes, i.e., skeletal, extra skeletal anomalies, autoimmune, cancer, and cardiovascular diseases. Phosphorylation of TGF-β (I/II) or BMP receptors activates intracellular downstream Smads, the transducer of TGF-β/BMP signals. This signaling is modulated by various factors and pathways, including transcription factor Runx2. The signaling network in skeletal development and bone formation is overwhelmingly complex and highly time and space specific. Additive, positive, negative, or synergistic effects are observed when TGF-β/BMP interacts with the pathways of MAPK, Wnt, Hedgehog (Hh), Notch, Akt/mTOR, and miRNA to regulate the effects of BMP-induced signaling in bone dynamics. Accumulating evidence indicates that Runx2 is the key integrator, whereas Hh is a possible modulator, miRNAs are regulators, and β-catenin is a mediator/regulator within the extensive intracellular network. This review focuses on the activation of BMP signaling and interaction with other regulatory components and pathways highlighting the molecular mechanisms regarding TGF-β/BMP function and regulation that could allow understanding the complexity of bone tissue dynamics. PMID:26273537

  19. Ubiquitin-dependent regulation of G protein-coupled receptor trafficking and signaling.

    PubMed

    Marchese, Adriano; Trejo, Joann

    2013-03-01

    G protein-coupled receptors (GPCRs) belong to one of the largest family of signaling receptors in the mammalian genome [1]. GPCRs elicit cellular responses to multiple diverse stimuli and play essential roles in human health and disease. GPCRs have important clinical implications in various diseases and are the targets of approximately 25-50% of all marketed drugs [2,3]. Understanding how GPCRs are regulated is essential to delineating their role in normal physiology and in the pathophysiology of several diseases. Given the vast number and diversity of GPCRs, it is likely that multiple mechanisms exist to regulate GPCR function. While GPCR signaling is typically regulated by desensitization and endocytosis mediated by phosphorylation and β-arrestins, it can also be modulated by ubiquitination. Ubiquitination is emerging an important regulatory process that may have unique roles in governing GPCR trafficking and signaling. Recent studies have revealed a mechanistic link between GPCR phosphorylation, β-arrestins and ubiquitination that may be applicable to some GPCRs but not others. While the function of ubiquitination is generally thought to promote receptor endocytosis and endosomal sorting, recent studies have revealed that ubiquitination also plays an important role in positive regulation of GPCR signaling. Here, we will review recent developments in our understanding of how ubiquitin regulates GPCR endocytic trafficking and how it contributes to signal transduction induced by GPCR activation.

  20. Regulation of dopamine D2 receptor-mediated extracellular signal-regulated kinase signaling and spine formation by GABAA receptors in hippocampal neurons.

    PubMed

    Yoon, Dong-Hoon; Yoon, Sehyoun; Kim, Donghoon; Kim, Hyun; Baik, Ja-Hyun

    2015-01-23

    Dopamine (DA) signaling via DA receptors is known to control hippocampal activity that contributes to learning, memory, and synaptic plasticity. In primary hippocampal neuronal culture, we observed that dopamine D2 receptors (D2R) co-localized with certain subtypes of GABAA receptors, namely α1, β3, and γ2 subunits, as revealed by double immunofluorocytochemical analysis. Treatment with the D2R agonist, quinpirole, was shown to elicit an increase in phosphorylation of extracellular signal-regulated kinase (ERK) in hippocampal neurons. This phosphorylation was inhibited by pretreatment with the GABAA receptor agonist, muscimol. Furthermore, treatment of hippocampal neurons with quinpirole increased the dendritic spine density and this regulation was totally blocked by pretreatment with a MAP kinase kinase (MEK) inhibitor (PD98059), D2R antagonist (haloperidol), or by the GABAA receptor agonist, muscimol. These results suggest that D2R-mediated ERK phosphorylation can control spine formation and that the GABAA receptor negatively regulates the D2R-induced spine formation through ERK signaling in hippocampal neurons, thus indicating a potential role of D2R in the control of hippocampal neuronal excitability. PMID:25483619

  1. Oxytocin in the regulation of social behaviours in medial amygdala-lesioned mice via the inhibition of the extracellular signal-regulated kinase signalling pathway.

    PubMed

    Wang, Yu; Zhao, Shanshan; Wu, Zhe; Feng, Yu; Zhao, Chuansheng; Zhang, Chaodong

    2015-05-01

    The neuropeptide oxytocin (OXT) has been implicated in the pathophysiology of behavioural deficits among patients with autism spectrum disorder (ASD). However, the molecular mechanisms underlying its role in ASD remain unclear. In the present study, a murine model with ASD-like phenotypes was induced by intra-medial amygdala injection of N-methyl-d-aspartate, and it was used to investigate the role of OXT in behaviour regulation. Behavioural tests were performed to verify the ASD-like phenotypes of N-methyl-d-aspartate-treated mice, and the results showed that mice with bilateral medial amygdala lesions presented significant behavioural deficits, including impaired learning and memory and increased anxiety and depression. We also observed a notably decreased level of OXT in both the plasma and the hypothalamus of medial amygdala-lesioned mice, and the extracellular signal-regulated kinase (ERK) was activated. Further studies demonstrated that the administration of OXT alleviated ASD-like symptoms and significantly inhibited phosphorylation of ERK; the inhibitory effect was similar to that of U0126, an ERK signalling inhibitor. In addition, OXT administration modulated the expression of downstream proteins of the ERK signalling pathway, such as cyclic adenosine monophosphate response element binding and c-fos. Taken together, our data indicate that OXT plays an important role in ameliorating behavioural deficits in an ASD-like mouse model, which was mediated by inhibiting the ERK signalling pathway and its downstream proteins.

  2. Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling.

    PubMed

    Chen, Su-Ren; Liu, Yi-Xun

    2015-04-01

    Spermatogenesis is a continuous and productive process supported by the self-renewal and differentiation of spermatogonial stem cells (SSCs), which arise from undifferentiated precursors known as gonocytes and are strictly controlled in a special 'niche' microenvironment in the seminiferous tubules. Sertoli cells, the only somatic cell type in the tubules, directly interact with SSCs to control their proliferation and differentiation through the secretion of specific factors. Spermatocyte meiosis is another key step of spermatogenesis, which is regulated by Sertoli cells on the luminal side of the blood-testis barrier through paracrine signaling. In this review, we mainly focus on the role of Sertoli cells in the regulation of SSC self-renewal and spermatocyte meiosis, with particular emphasis on paracrine and endocrine-mediated signaling pathways. Sertoli cell growth factors, such as glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2), as well as Sertoli cell transcription factors, such as ETS variant 5 (ERM; also known as ETV5), nociceptin, neuregulin 1 (NRG1), and androgen receptor (AR), have been identified as the most important upstream factors that regulate SSC self-renewal and spermatocyte meiosis. Other transcription factors and signaling pathways (GDNF-RET-GFRA1 signaling, FGF2-MAP2K1 signaling, CXCL12-CXCR4 signaling, CCL9-CCR1 signaling, FSH-nociceptin/OPRL1, retinoic acid/FSH-NRG/ERBB4, and AR/RB-ARID4A/ARID4B) are also addressed.

  3. The scaffold protein MUPP1 regulates odorant-mediated signaling in olfactory sensory neurons.

    PubMed

    Baumgart, Sabrina; Jansen, Fabian; Bintig, Willem; Kalbe, Benjamin; Herrmann, Christian; Klumpers, Fabian; Köster, S David; Scholz, Paul; Rasche, Sebastian; Dooley, Ruth; Metzler-Nolte, Nils; Spehr, Marc; Hatt, Hanns; Neuhaus, Eva M

    2014-06-01

    The olfactory signal transduction cascade transforms odor information into electrical signals by a cAMP-based amplification mechanism. The mechanisms underlying the very precise temporal and spatial organization of the relevant signaling components remains poorly understood. Here, we identify, using co-immunoprecipitation experiments, a macromolecular assembly of signal transduction components in mouse olfactory neurons, organized through MUPP1. Disruption of the PDZ signaling complex, through use of an inhibitory peptide, strongly impaired odor responses and changed the activation kinetics of olfactory sensory neurons. In addition, our experiments demonstrate that termination of the response is dependent on PDZ-based scaffolding. These findings provide new insights into the functional organization, and regulation, of olfactory signal transduction. PMID:24652834

  4. Role of Wnt and Notch signaling in regulating hair cell regeneration in the cochlea.

    PubMed

    Waqas, Muhammad; Zhang, Shasha; He, Zuhong; Tang, Mingliang; Chai, Renjie

    2016-09-01

    Sensory hair cells in the inner ear are responsible for sound recognition. Damage to hair cells in adult mammals causes permanent hearing impairment because these cells cannot regenerate. By contrast, newborn mammals possess limited regenerative capacity because of the active participation of various signaling pathways, including Wnt and Notch signaling. The Wnt and Notch pathways are highly sophisticated and conserved signaling pathways that control multiple cellular events necessary for the formation of sensory hair cells. Both signaling pathways allow resident supporting cells to regenerate hair cells in the neonatal cochlea. In this regard, Wnt and Notch signaling has gained increased research attention in hair cell regeneration. This review presents the current understanding of the Wnt and Notch signaling pathways in the auditory portion of the inner ear and discusses the possibilities of controlling these pathways with the hair cell fate determiner Atoh1 to regulate hair cell regeneration in the mammalian cochlea.

  5. Role of Wnt and Notch signaling in regulating hair cell regeneration in the cochlea.

    PubMed

    Waqas, Muhammad; Zhang, Shasha; He, Zuhong; Tang, Mingliang; Chai, Renjie

    2016-09-01

    Sensory hair cells in the inner ear are responsible for sound recognition. Damage to hair cells in adult mammals causes permanent hearing impairment because these cells cannot regenerate. By contrast, newborn mammals possess limited regenerative capacity because of the active participation of various signaling pathways, including Wnt and Notch signaling. The Wnt and Notch pathways are highly sophisticated and conserved signaling pathways that control multiple cellular events necessary for the formation of sensory hair cells. Both signaling pathways allow resident supporting cells to regenerate hair cells in the neonatal cochlea. In this regard, Wnt and Notch signaling has gained increased research attention in hair cell regeneration. This review presents the current understanding of the Wnt and Notch signaling pathways in the auditory portion of the inner ear and discusses the possibilities of controlling these pathways with the hair cell fate determiner Atoh1 to regulate hair cell regeneration in the mammalian cochlea. PMID:27527363

  6. Chemical biology tools for regulating RAS signaling complexity in space and time.

    PubMed

    van Hattum, Hilde; Waldmann, Herbert

    2014-09-18

    Rat sarcoma (RAS) family members are small GTPases that control a number of signaling pathways important for normal cellular proliferation. Therefore, it is no surprise that a significant portion of human tumors express constitutively active mutated RAS proteins, which leads to deregulation of RAS signaling pathways, resulting in pathological perturbations of cell growth and death. Although the molecular details of RAS signaling cascades are well understood, there is still a largely unmet need for small molecule probes to control RAS signaling in space and time. More broadly, given the prevalence of mutated RAS in cancer, the need to translate the insights obtained from using small molecule probes into clinically useful drugs is also significant. In this review, we introduce RAS proteins and the signaling pathways they are involved in, and discuss some of the innovative chemical biology approaches to regulate RAS signaling, which include the exploitation of newly identified binding pockets, covalent inhibitors for mutated RAS, and RAS localization impairment.

  7. Wnt signaling regulates multipolar-to-bipolar transition of migrating neurons in the cerebral cortex.

    PubMed

    Boitard, Michael; Bocchi, Riccardo; Egervari, Kristof; Petrenko, Volodymyr; Viale, Beatrice; Gremaud, Stéphane; Zgraggen, Eloisa; Salmon, Patrick; Kiss, Jozsef Z

    2015-03-01

    The precise timing of pyramidal cell migration from the ventricular germinal zone to the cortical plate is essential for establishing cortical layers, and migration errors can lead to neurodevelopmental disorders underlying psychiatric and neurological diseases. Here, we report that Wnt canonical as well as non-canonical signaling is active in pyramidal precursors during radial migration. We demonstrate using constitutive and conditional genetic strategies that transient downregulation of canonical Wnt/β-catenin signaling during the multipolar stage plays a critical role in polarizing and orienting cells for radial migration. In addition, we show that reduced canonical Wnt signaling is triggered cell autonomously by time-dependent expression of Wnt5A and activation of non-canonical signaling. We identify ephrin-B1 as a canonical Wnt-signaling-regulated target in control of the multipolar-to-bipolar switch. These findings highlight the critical role of Wnt signaling activity in neuronal positioning during cortical development. PMID:25732825

  8. Wnt signaling regulates multipolar-to-bipolar transition of migrating neurons in the cerebral cortex.

    PubMed

    Boitard, Michael; Bocchi, Riccardo; Egervari, Kristof; Petrenko, Volodymyr; Viale, Beatrice; Gremaud, Stéphane; Zgraggen, Eloisa; Salmon, Patrick; Kiss, Jozsef Z

    2015-03-01

    The precise timing of pyramidal cell migration from the ventricular germinal zone to the cortical plate is essential for establishing cortical layers, and migration errors can lead to neurodevelopmental disorders underlying psychiatric and neurological diseases. Here, we report that Wnt canonical as well as non-canonical signaling is active in pyramidal precursors during radial migration. We demonstrate using constitutive and conditional genetic strategies that transient downregulation of canonical Wnt/β-catenin signaling during the multipolar stage plays a critical role in polarizing and orienting cells for radial migration. In addition, we show that reduced canonical Wnt signaling is triggered cell autonomously by time-dependent expression of Wnt5A and activation of non-canonical signaling. We identify ephrin-B1 as a canonical Wnt-signaling-regulated target in control of the multipolar-to-bipolar switch. These findings highlight the critical role of Wnt signaling activity in neuronal positioning during cortical development.

  9. What have we learned about phototropism from spaceflight experiments? Novel responses to light discovered during the Seedling Growth project on the ISS.

    NASA Astrophysics Data System (ADS)

    Kiss, John Z.; Edelmann, Richard; Herranz, Raul; Medina, Francisco Javier; Vandenbrink, Joshua

    2016-07-01

    In response to external stimuli, plants exhibit directed growth responses termed tropisms. Phototropism is directed growth of plants in response to light while gravitropism is the tropistic movement of plants in response to gravity. The integration of these tropisms (along with other growth movements) results in the overall growth form of the plant. Utilizing the European Modular Cultivation System (EMCS) on the International Space Station (ISS), we were able to decouple phototropism from the effects of gravitropism. The Seedling Growth (SG-1, 2, 3) series of experiments employed the centrifuge in the EMCS to create fractional/reduced gravity environments (0, 0.3, 0.5, 0.8 and 1g) to help discern the relationship between the phototropic response and gravitropism in seedlings of Arabidopsis thaliana. In SG, seedlings were exposed to continuous red light, continuous blue light, and red-to-blue light cycles at various gravity levels in order to characterize the phototropic response. Image downlinks from the ISS allowed for analysis of growth and curvature measurements under differential light and gravity conditions. Previous results from our space experiments identified a unique red-light-based phototropism in roots and shoots. The most recent results from SG-1 and SG-2 (2015) reveal a novel positive phototropic curvature in roots of seedlings illuminated with blue light under microgravity conditions. In addition, a positive phototropic response of roots and shoots exposed to red light was observed in microgravity, confirming our previous observations. The phototropic response of shoots to blue light appears to be largely unaffected by fractional gravity. In addition to the WT (Landsberg ecotype), phytochrome A and B mutants were utilized to elucidate the role phytochromes play in blue and red light perception and the resulting phototropic responses. Understanding the relationship between phototropic and gravitropic responses is an important first step in being able

  10. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease.

    PubMed

    Cao, Xuetao

    2016-01-01

    In the initiation of innate immune responses against pathogens, pattern-recognition receptors (PRRs) have an essential role in recognizing specific components of microorganisms and triggering responses that eliminate the invading microorganisms. However, inappropriate activation of PRRs can lead to prolonged inflammation and even to autoimmune and inflammatory diseases. Thus, PRR-triggered responses are regulated through the degradation or translocation of the innate receptors themselves and through the involvement of intracellular regulators or amplifiers. In addition, a complex interplay between PRRs and/or other immune pathways finely tunes the outcome of host immune defence responses. In this Review, I describe many of the numerous distinct mechanisms for the self-regulation and cross-regulation of innate immune receptor signalling.

  11. Correlations between proton-efflux patterns and growth patterns during geotropism and phototropism in maize and sunflower.

    PubMed

    Mulkey, T J; Kuzmanoff, K M; Evans, M L

    1981-07-01

    By placing seedlings of sunflower (Helianthus annuus L.) or maize (Zea mays L.) on agar plates containing a pH indicator dye it is possible to observe surface pH patterns along the growing seedling by observing color changes of the indicator dye. Using this method we find that in geotropically stimulated sunflower hypocotyls or maize coleoptiles there is enhanced proton efflux on the lower surface of the organ prior to the initiation of curvature. As curvature develops the pattern of differential acid efflux becomes more intense. A similar phenomenon is observed when these organs are exposed to unilateral illumination, i.e. enhanced acid efflux occurs on the dark side of the organ prior to the initiation of phototropic curvature and the pattern of differential acid efflux intensifies as phototropic curvature develops. These observations indicate that differential acid efflux occurs in response to tropistic stimuli and that the acid efflux pattern may mediate the development of tropistic curvatures.

  12. ROP GTPase-mediated auxin signaling regulates pavement cell interdigitation in Arabidopsis thaliana.

    PubMed

    Lin, Deshu; Ren, Huibo; Fu, Ying

    2015-01-01

    In multicellular plant organs, cell shape formation depends on molecular switches to transduce developmental or environmental signals and to coordinate cell-to-cell communication. Plants have a specific subfamily of the Rho GTPase family, usually called Rho of Plants (ROP), which serve as a critical signal transducer involved in many cellular processes. In the last decade, important advances in the ROP-mediated regulation of plant cell morphogenesis have been made by using Arabidopsis thaliana leaf and cotyledon pavement cells. Especially, the auxin-ROP signaling networks have been demonstrated to control interdigitated growth of pavement cells to form jigsaw-puzzle shapes. Here, we review findings related to the discovery of this novel auxin-signaling mechanism at the cell surface. This signaling pathway is to a large extent independent of the well-known Transport Inhibitor Response (TIR)-Auxin Signaling F-Box (AFB) pathway, and instead requires Auxin Binding Protein 1 (ABP1) interaction with the plasma membrane-localized, transmembrane kinase (TMK) receptor-like kinase to regulate ROP proteins. Once activated, ROP influences cytoskeletal organization and inhibits endocytosis of the auxin transporter PIN1. The present review focuses on ROP signaling and its self-organizing feature allowing ROP proteins to serve as a bustling signal decoder and integrator for plant cell morphogenesis.

  13. Signaling, Regulation, and Specificity of the Type II p21-activated Kinases*

    PubMed Central

    Ha, Byung Hak; Morse, Elizabeth M.; Turk, Benjamin E.; Boggon, Titus J.

    2015-01-01

    The p21-activated kinases (PAKs) are a family of six serine/threonine kinases that act as key effectors of RHO family GTPases in mammalian cells. PAKs are subdivided into two groups: type I PAKs (PAK1, PAK2, and PAK3) and type II PAKs (PAK4, PAK5, and PAK6). Although these groups are involved in common signaling pathways, recent work indicates that the two groups have distinct modes of regulation and have both unique and common substrates. Here, we review recent insights into the molecular level details that govern regulation of type II PAK signaling. We also consider mechanisms by which signal transduction is regulated at the level of substrate specificity. Finally, we discuss the implications of these studies for clinical targeting of these kinases. PMID:25855792

  14. PPM1A Regulates Antiviral Signaling by Antagonizing TBK1-Mediated STING Phosphorylation and Aggregation

    PubMed Central

    Li, Zexing; Liu, Ge; Sun, Liwei; Teng, Yan; Guo, Xuejiang; Jia, Jianhang; Sha, Jiahao; Yang, Xiao; Chen, Dahua; Sun, Qinmiao

    2015-01-01

    Stimulator of interferon genes (STING, also known as MITA and ERIS) is critical in protecting the host against DNA pathogen invasion. However, the molecular mechanism underlying the regulation of STING remains unclear. Here, we show that PPM1A negatively regulates antiviral signaling by targeting STING in its phosphatase activity-dependent manner, and in a line with this, PPM1A catalytically dephosphorylates STING and TBK1 in vitro. Importantly, we provide evidence that whereas TBK1 promotes STING aggregation in a phosphorylation-dependent manner, PPM1A antagonizes STING aggregation by dephosphorylating both STING and TBK1, emphasizing that phosphorylation is crucial for the efficient activation of STING. Our findings demonstrate a novel regulatory circuit in which STING and TBK1 reciprocally regulate each other to enable efficient antiviral signaling activation, and PPM1A dephosphorylates STING and TBK1, thereby balancing this antiviral signal transduction. PMID:25815785

  15. Selective regulation of MAP kinase signaling by an endomembrane phosphatidylinositol 4-kinase.

    PubMed

    Cappell, Steven D; Dohlman, Henrik G

    2011-04-29

    Multiple MAP kinase pathways share components yet initiate distinct biological processes. Signaling fidelity can be maintained by scaffold proteins and restriction of signaling complexes to discreet subcellular locations. For example, the yeast MAP kinase scaffold Ste5 binds to phospholipids produced at the plasma membrane and promotes selective MAP kinase activation. Here we show that Pik1, a phosphatidylinositol 4-kinase that localizes primarily to the Golgi, also regulates MAP kinase specificity but does so independently of Ste5. Pik1 is required for full activation of the MAP kinases Fus3 and Hog1 and represses activation of Kss1. Further, we show by genetic epistasis analysis that Pik1 likely regulates Ste11 and Ste50, components shared by all three MAP kinase pathways, through their interaction with the scaffold protein Opy2. These findings reveal a new regulator of signaling specificity functioning at endomembranes rather than at the plasma membrane. PMID:21388955

  16. Orphan receptor IL-17RD regulates Toll-like receptor signalling via SEFIR/TIR interactions.

    PubMed

    Mellett, Mark; Atzei, Paola; Bergin, Ronan; Horgan, Alan; Floss, Thomas; Wurst, Wolfgang; Callanan, John J; Moynagh, Paul N

    2015-01-01

    Receptor families of the innate immune response engage in 'cross-talk' to tailor optimal immune responses against invading pathogens. However, these responses are subject to multiple levels of regulation to keep in check aberrant inflammatory signals. Here, we describe a role for the orphan receptor interleukin-17 receptor D (IL-17RD) in negatively regulating Toll-like receptor (TLR)-induced responses. Deficiency of IL-17RD expression in cells leads to enhanced pro-inflammatory signalling and gene expression in response to TLR stimulation, and Il17rd(-/-) mice are more susceptible to TLR-induced septic shock. We demonstrate that the intracellular Sef/IL-17R (SEFIR) domain of IL-17RD targets TIR adaptor proteins to inhibit TLR downstream signalling thus revealing a paradigm involving cross-regulation of members of the IL-17R and TLR families.

  17. Protein Tyrosine Phosphatases: From Housekeeping Enzymes to Master-Regulators of Signal Transduction

    PubMed Central

    Tonks, Nicholas K.

    2013-01-01

    There are many misconceptions surrounding the roles of protein phosphatases in the regulation of signal transduction, perhaps the most damaging of which is the erroneous view that these enzymes exert their effects merely as constitutively active housekeeping enzymes. On the contrary, the phosphatases are critical, specific regulators of signaling in their own right and serve an essential function, in a coordinated manner with the kinases, to determine the response to a physiological stimulus. This review is a personal perspective on the development of our understanding of the protein tyrosine phosphatase (PTP) family of enzymes. I have discussed various aspects of the structure, regulation and function of the PTP family, which I hope will illustrate the fundamental importance of these enzymes to the control of signal transduction. PMID:23176256

  18. Neuronal Regulation of Schwann Cell Mitochondrial Ca(2+) Signaling during Myelination.

    PubMed

    Ino, Daisuke; Sagara, Hiroshi; Suzuki, Junji; Kanemaru, Kazunori; Okubo, Yohei; Iino, Masamitsu

    2015-09-29

    Schwann cells (SCs) myelinate peripheral neurons to promote the rapid conduction of action potentials, and the process of myelination is known to be regulated by signals from axons to SCs. Given that SC mitochondria are one of the potential regulators of myelination, we investigated whether SC mitochondria are regulated by axonal signaling. Here, we show a purinergic mechanism that sends information from neurons to SC mitochondria during myelination. Our results show that electrical stimulation of rat sciatic nerve increases extracellular ATP levels enough to activate purinergic receptors. Indeed, electrical stimulation of sciatic nerves induces Ca(2+) increases in the cytosol and the mitochondrial matrix of surrounding SCs via purinergic receptor activation. Chronic suppression of this pathway during active myelination suppressed the longitudinal and radial development of myelinating SCs and caused hypomyelination. These results demonstrate a neuron-to-SC mitochondria signaling, which is likely to have an important role in proper myelination.

  19. RKIP regulates MAP kinase signaling in cells with defective B-Raf activity.

    PubMed

    Zeng, Lingchun; Ehrenreiter, Karin; Menon, Jyotsana; Menard, Ray; Kern, Florian; Nakazawa, Yoko; Bevilacqua, Elena; Imamoto, Akira; Baccarini, Manuela; Rosner, Marsha Rich

    2013-05-01

    MAP kinase (MAPK) signaling results from activation of Raf kinases in response to external or internal stimuli. Here, we demonstrate that Raf kinase inhibitory protein (RKIP) regulates the activation of MAPK when B-Raf signaling is defective. We used multiple models including mouse embryonic fibroblasts (MEFs) and primary keratinocytes from RKIP- or Raf-deficient mice as well as allografts in mice to investigate the mechanism. Loss of B-Raf protein or activity significantly reduces MAPK activation in these cells. We show that RKIP depletion can rescue the compromised ERK activation and promote proliferation, and this rescue occurs through a Raf-1 dependent mechanism. These results provide formal evidence that RKIP is a bona fide regulator of Raf-1. We propose a new model in which RKIP plays a key role in regulating the ability of cells to signal through Raf-1 to ERK in B-Raf compromised cells.

  20. Signalling mucin Msb2 Regulates adaptation to thermal stress in Candida albicans

    PubMed Central

    Saraswat, Darpan; Kumar, Rohitashw; Pande, Tanaya; Edgerton, Mira; Cullen, Paul J.

    2016-01-01

    Summary Temperature is a potent inducer of fungal dimorphism. Multiple signalling pathways control the response to growth at high temperature, but the sensors that regulate these pathways are poorly defined. We show here that the signalling mucin Msb2 is a global regulator of temperature stress in the fungal pathogen Candida albicans. Msb2 was required for survival and hyphae formation at 42°C. The cytoplasmic signalling domain of Msb2 regulated temperature-dependent activation of the CEK mitogen activated proteins kinase (MAPK) pathway. The extracellular glycosylated domain of Msb2 (100–900 amino acid residues) had a new and unexpected role in regulating the protein kinase C (PKC) pathway. Msb2 also regulated temperature-dependent induction of genes encoding regulators and targets of the unfolded protein response (UPR), which is a protein quality control (QC) pathway in the endoplasmic reticulum that controls protein folding/degradation in response to high temperature and other stresses. The heat shock protein and cell wall component Ssa1 was also required for hyphae formation and survival at 42° C and regulated the CEK and PKC pathways. PMID:26749104

  1. Diverse Regulation of Temperature Sensation by Trimeric G-Protein Signaling in Caenorhabditis elegans

    PubMed Central

    Ujisawa, Tomoyo; Ohta, Akane; Uda-Yagi, Misato

    2016-01-01

    Temperature sensation by the nervous system is essential for life and proliferation of animals. The molecular-physiological mechanisms underlying temperature signaling have not been fully elucidated. We show here that diverse regulatory machinery underlies temperature sensation through trimeric G-protein signaling in the nematode Caenorhabditis elegans. Molecular-genetic studies demonstrated that cold tolerance is regulated by additive functions of three Gα proteins in a temperature-sensing neuron, ASJ, which is also known to be a light-sensing neuron. Optical recording of calcium concentration in ASJ upon temperature-changes demonstrated that three Gα proteins act in different aspects of temperature signaling. Calcium concentration changes in ASJ upon temperature change were unexpectedly decreased in a mutant defective in phosphodiesterase, which is well known as a negative regulator of calcium increase. Together, these data demonstrate commonalities and differences in the molecular components concerned with light and temperature signaling in a single sensory neuron. PMID:27788246

  2. Canonical Wnt signalling regulates epithelial patterning by modulating levels of laminins in zebrafish appendages

    PubMed Central

    Nagendran, Monica; Arora, Prateek; Gori, Payal; Mulay, Aditya; Ray, Shinjini; Jacob, Tressa; Sonawane, Mahendra

    2015-01-01

    The patterning and morphogenesis of body appendages – such as limbs and fins – is orchestrated by the activities of several developmental pathways. Wnt signalling is essential for the induction of limbs. However, it is unclear whether a canonical Wnt signalling gradient exists and regulates the patterning of epithelium in vertebrate appendages. Using an evolutionarily old appendage – the median fin in zebrafish – as a model, we show that the fin epithelium exhibits graded changes in cellular morphology along the proximo-distal axis. This epithelial pattern is strictly correlated with the gradient of canonical Wnt signalling activity. By combining genetic analyses with cellular imaging, we show that canonical Wnt signalling regulates epithelial cell morphology by modulating the levels of laminins, which are extracellular matrix components. We have unravelled a hitherto unknown mechanism involved in epithelial patterning, which is also conserved in the pectoral fins – evolutionarily recent appendages that are homologous to tetrapod limbs. PMID:25519245

  3. Recent advances in understanding carotenoid-derived signaling molecules in regulating plant growth and development

    PubMed Central

    Tian, Li

    2015-01-01

    Carotenoids (C40) are synthesized in plastids and perform numerous important functions in these organelles. In addition, carotenoids can be processed into smaller signaling molecules that regulate various phases of the plant’s life cycle. Besides the relatively well-studied phytohormones abscisic acid (ABA) and strigolactones (SLs), additional carotenoid-derived signaling molecules have been discovered and shown to regulate plant growth and development. As a few excellent reviews summarized recent research on ABA and SLs, this mini review will focus on progress made on identification and characterization of the emerging carotenoid-derived signals. Overall, a better understanding of carotenoid-derived signaling molecules has immediate applications in improving plant biomass production which in turn will have far reaching impacts on providing food, feed, and fuel for the growing world population. PMID:26442092

  4. Nerve Growth Factor Regulates Transient Receptor Potential Vanilloid 2 via Extracellular Signal-Regulated Kinase Signaling To Enhance Neurite Outgrowth in Developing Neurons

    PubMed Central

    Cohen, Matthew R.; Johnson, William M.; Pilat, Jennifer M.; Kiselar, Janna; DeFrancesco-Lisowitz, Alicia; Zigmond, Richard E.

    2015-01-01

    Neurite outgrowth is key to the formation of functional circuits during neuronal development. Neurotrophins, including nerve growth factor (NGF), increase neurite outgrowth in part by altering the function and expression of Ca2+-permeable cation channels. Here we report that transient receptor potential vanilloid 2 (TRPV2) is an intracellular Ca2+-permeable TRPV channel upregulated by NGF via the mitogen-activated protein kinase (MAPK) signaling pathway to augment neurite outgrowth. TRPV2 colocalized with Rab7, a late endosome protein, in addition to TrkA and activated extracellular signal-regulated kinase (ERK) in neurites, indicating that the channel is closely associated with signaling endosomes. In line with these results, we showed that TRPV2 acts as an ERK substrate and identified the motifs necessary for phosphorylation of TRPV2 by ERK. Furthermore, neurite length, TRPV2 expression, and TRPV2-mediated Ca2+ signals were reduced by mutagenesis of these key ERK phosphorylation sites. Based on these findings, we identified a previously uncharacterized mechanism by which ERK controls TRPV2-mediated Ca2+ signals in developing neurons and further establish TRPV2 as a critical intracellular ion channel in neuronal function. PMID:26416880

  5. An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration

    PubMed Central

    Ye, Lihua; Robertson, Morgan A.; Mastracci, Teresa L.; Anderson, Ryan M.

    2016-01-01

    As one of the key nutrient sensors, insulin signaling plays an important role in integrating environmental energy cues with organism growth. In adult organisms, relative insufficiency of insulin signaling induces compensatory expansion of insulin-secreting pancreatic beta (β) cells. However, little is known about how insulin signaling feedback might influence neogenesis of β cells during embryonic development. Using genetic approaches and a unique cell transplantation system in developing zebrafish, we have uncovered a novel role for insulin signaling in the negative regulation of pancreatic progenitor cell differentiation. Blocking insulin signaling in the pancreatic progenitors hastened the expression of the essential β cell genes insulin and pdx1, and promoted β cell fate at the expense of alpha cell fate. In addition, loss of insulin signaling promoted β cell regeneration and destabilization of alpha cell character. These data indicate that insulin signaling constitutes a tunable mechanism for β cell compensatory plasticity during early development. Moreover, using a novel blastomere-to-larva transplantation strategy, we found that loss of insulin signaling in endoderm-committed blastomeres drove their differentiation into β cells. Furthermore, the extent of this differentiation was dependent on the function of the β cell mass in the host. Altogether, our results indicate that modulation of insulin signaling will be crucial for the development of β cell restoration therapies for diabetics; further clarification of the mechanisms of insulin signaling in β cell progenitors will reveal therapeutic targets for both in vivo and in vitro β cell generation. PMID:26658317

  6. An insulin signaling feedback loop regulates pancreas progenitor cell differentiation during islet development and regeneration.

    PubMed

    Ye, Lihua; Robertson, Morgan A; Mastracci, Teresa L; Anderson, Ryan M

    2016-01-15

    As one of the key nutrient sensors, insulin signaling plays an important role in integrating environmental energy cues with organism growth. In adult organisms, relative insufficiency of insulin signaling induces compensatory expansion of insulin-secreting pancreatic beta (β) cells. However, little is known about how insulin signaling feedback might influence neogenesis of β cells during embryonic development. Using genetic approaches and a unique cell transplantation system in developing zebrafish, we have uncovered a novel role for insulin signaling in the negative regulation of pancreatic progenitor cell differentiation. Blocking insulin signaling in the pancreatic progenitors hastened the expression of the essential β cell genes insulin and pdx1, and promoted β cell fate at the expense of alpha cell fate. In addition, loss of insulin signaling promoted β cell regeneration and destabilization of alpha cell character. These data indicate that insulin signaling constitutes a tunable mechanism for β cell compensatory plasticity during early development. Moreover, using a novel blastomere-to-larva transplantation strategy, we found that loss of insulin signaling in endoderm-committed blastomeres drove their differentiation into β cells. Furthermore, the extent of this differentiation was dependent on the function of the β cell mass in the host. Altogether, our results indicate that modulation of insulin signaling will be crucial for the development of β cell restoration therapies for diabetics; further clarification of the mechanisms of insulin signaling in β cell progenitors will reveal therapeutic targets for both in vivo and in vitro β cell generation. PMID:26658317

  7. Dendritic cell maturation requires STAT1 and is under feedback regulation by suppressors of cytokine signaling.

    PubMed

    Jackson, Sharon H; Yu, Cheng-Rong; Mahdi, Rashid M; Ebong, Samuel; Egwuagu, Charles E

    2004-02-15

    In this study we show that activation of STAT pathways is developmentally regulated and plays a role in dendritic cell (DC) differentiation and maturation. The STAT6 signaling pathway is constitutively activated in immature DC (iDC) and declines as iDCs differentiate into mature DCs (mDCs). However, down-regulation of this pathway during DC differentiation is accompanied by dramatic induction of suppressors of cytokine signaling 1 (SOCS1), SOCS2, SOCS3, and cytokine-induced Src homology 2-containing protein expression, suggesting that inhibition of STAT6 signaling may be required for DC maturation. In contrast, STAT1 signaling is most robust in mDCs and is not inhibited by the up-regulated SOCS proteins, indicating that STAT1 and STAT6 pathways are distinctly regulated in maturing DC. Furthermore, optimal activation of STAT1 during DC maturation requires both IL-4 and GM-CSF, suggesting that synergistic effects of both cytokines may in part provide the requisite STAT1 signaling intensity for DC maturation. Analyses of STAT1(-/-) DCs reveal a role for STAT1 in repressing CD86 expression in precursor DCs and up-regulating CD40, CD11c, and SOCS1 expression in mDCs. We further show that SOCS proteins are differentially induced by IL-4 and GM-CSF in DCs. SOCS1 is primarily induced by IL-4 through a STAT1-dependent mechanism, whereas SOCS3 is induced mainly by GM-CSF. Taken together, these results suggest that cytokine-induced maturation of DCs is under feedback regulation by SOCS proteins and that the switch from constitutive activation of the STAT6 pathway in iDCs to predominant use of STAT1 signals in mDC is mediated in part by STAT1-induced SOCS expression.

  8. PKA-CREB-BDNF signaling regulated long lasting antidepressant activities of Yueju but not ketamine

    PubMed Central

    Xue, Wenda; Wang, Wei; Gong, Tong; Zhang, Hailou; Tao, Weiwei; Xue, Lihong; Sun, Yan; Wang, Fushun; Chen, Gang

    2016-01-01

    Yueju confers antidepressant effects in a rapid and long-lasting manner, similar to ketamine. CREB (cAMP-response element binding protein) signaling is implicated in depression pathology and antidepressant responses. However, the role of CREB and associated brain derived neurotrophic factor (BDNF) signaling in rapid and long-lasting antidepressant effects remains unclear. Here, we demonstrated that ICR and Kunming strain mice conferred antidepressant responses lasting for 1 and 5 days, respectively, following a single dose of Yueju. One day post Yueju in Kunming but not ICR strain mice, expression of total and phosphorylated CREB, as well as the CREB signaling activator, PKA (protein kinase A) was up-regulated in the hippocampus. Although BDNF gene expression increased at 3 hours in both strains, it remained up-regulated at 1 day only in Kunming mice. Ketamine showed similar strain-dependent behavioral effects. However, blockade of PKA/CREB signaling blunted the antidepressant effects and reversed the up-regulation of BDNF gene expression by Yueju, but not ketamine. Conversely, blockade of mammalian target of rapamycin signaling led to opposite effects. Taken altogether, prolonged transcriptional up-regulation of hippocampal BDNF may account for the stain-dependent enduring antidepressant responses to Yueju and ketamine, but it was mediated via PKA/CREB pathway only for Yueju. PMID:27197752

  9. [Mechanism of stomatal regulation by root sourced signaling and its agricultural signficance].

    PubMed

    Guo, Anhong; Li, Zhaoxiang; Liu, Gengshan; Yang, Yuanyan; An, Shunqing

    2004-06-01

    Under soil drought condition, root sourced signal abcisic acid (ABA) plays an important role in the long distance signaling process, and can be a measurement of soil water availability. ABA is also an effective stomatal closing agent, and acts to reduce transpiration and canopy water loss. This paper briefly introduced the physiological mechanism and theoretical model about the stomatal regulation by root sourced signaling, and indicated that the combination of this model with root water absorption model and stomatal conductance model could be more effective in depicting the response of plant to soil drying and atmospheric drought. In addition, some effective irrigation approaches, such as regulated deficit irrigation (RDI), partial root-zone drying (PRD) and controlled alternative irrigation (CAI) were profited from the mechanism of plant water use regulation by the root sourced signaling. These irrigation measures favored to reasonably distribute available soil water in root-zone. Root signaling system also played important role in regulating root growth and its development, retarding shoot growth to adjusting root shoot ratio, and optimizing assimilation allocation to favor to improve reproductive development. These processes hold substantial promise for enhancing crop water use efficiency. PMID:15362642

  10. The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast

    PubMed Central

    Henry, Susan A.; Gaspar, Maria L.; Jesch, Stephen A.

    2014-01-01

    This article focuses on discoveries of the mechanisms governing the regulation of glycerolipid metabolism and stress response signaling in response to the phospholipid precursor, inositol. The regulation of glycerolipid lipid metabolism in yeast in response to inositol is highly complex, but increasingly well understood, and the roles of individual lipids in stress response are also increasingly well characterized. Discoveries that have emerged over several decades of genetic, molecular and biochemical analyses of metabolic, regulatory and signaling responses of yeast cells, both mutant and wild type, to the availability of the phospholipid precursor, inositol are discussed. PMID:24418527

  11. The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast.

    PubMed

    Henry, Susan A; Gaspar, Maria L; Jesch, Stephen A

    2014-05-01

    This article focuses on discoveries of the mechanisms governing the regulation of glycerolipid metabolism and stress response signaling in response to the phospholipid precursor, inositol. The regulation of glycerolipid lipid metabolism in yeast in response to inositol is highly complex, but increasingly well understood, and the roles of individual lipids in stress response are also increasingly well characterized. Discoveries that have emerged over several decades of genetic, molecular and biochemical analyses of metabolic, regulatory and signaling responses of yeast cells, both mutant and wild type, to the availability of the phospholipid precursor, inositol are discussed.

  12. Multilayered regulations of RIG-I in the anti-viral signaling pathway.

    PubMed

    Kim, Nari; Now, Hesung; Nguyen, Nhung T H; Yoo, Joo-Yeon

    2016-09-01

    RIG-I is a cytosolic receptor recognizing virus-specific RNA structures and initiates an antiviral signaling that induces the production of interferons and proinflammatory cytokines. Because inappropriate RIG-I signaling affects either viral clearance or immune toxicity, multiple regulations of RIG-I have been investigated since its discovery as the viral RNA detector. In this review, we describe the recent progress in research on the regulation of RIG-I activity or abundance. Specifically, we focus on the mechanism that modulates RIG-I-dependent antiviral response through post-translational modifications of or protein-protein interactions with RIG-I. PMID:27572506

  13. Arabidopsis FHY3/CPD45 regulates far-red light signaling and chloroplast division in parallel.

    PubMed

    Chang, Ning; Gao, Yuefang; Zhao, Lin; Liu, Xiaomin; Gao, Hongbo

    2015-01-01

    CPD45 (chloroplast division45),which is also known as FHY3 (far-red elongated hypocotyl3), is a key factor in the far-red light signaling pathway in Arabidopsis. We previously showed that FHY3/CPD45 also regulates chloroplast division. Because light is also a regulator of chloroplast development and division, we sought to clarify the relationship between far-red light signaling and chloroplast division pathways. We found that the chloroplast division mutant arc5-3 had no defect in far-red light sensing, and that constitutive overexpression of ARC5 rescued the chloroplast division defect, but not the defect in far-red light signaling, of cpd45. fhy1, which is defective in far-red light signaling, exhibited normal chloroplast division. Constitutive overexpression of FHY1 rescued the far-red light signaling defect, but not the chloroplast division defect, of cpd45. Moreover, ARC5 and FHY1 expression were not affected in fhy1 and arc5-3, respectively. Based on these results, we propose that FHY3/CPD45 regulates far-red light signaling and chloroplast division in parallel by activating the expression of FHY1 and ARC5 independently. This work demonstrates how relationships between different pathways in a gene regulatory network can be explored. PMID:25872642

  14. Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum

    PubMed Central

    Echevarría, Wihelma; Leite, M. Fatima; Guerra, Mateus T.; Zipfel, Warren R.; Nathanson, Michael H.

    2013-01-01

    Calcium is a second messenger in virtually all cells and tissues1. Calcium signals in the nucleus have effects on gene transcription and cell growth that are distinct from those of cytosolic calcium signals; however, it is unknown how nuclear calcium signals are regulated. Here we identify a reticular network of nuclear calcium stores that is continuous with the endoplasmic reticulum and the nuclear envelope. This network expresses inositol 1,4,5-trisphosphate (InsP3) receptors, and the nuclear component of InsP3-mediated calcium signals begins in its locality. Stimulation of these receptors with a little InsP3 results in small calcium signals that are initiated in this region of the nucleus. Localized release of calcium in the nucleus causes nuclear protein kinase C (PKC) to translocate to the region of the nuclear envelope, whereas release of calcium in the cytosol induces translocation of cytosolic PKC to the plasma membrane. Our findings show that the nucleus contains a nucleoplasmic reticulum with the capacity to regulate calcium signals in localized subnuclear regions. The presence of such machinery provides a potential mechanism by which calcium can simultaneously regulate many independent processes in the nucleus. PMID:12717445

  15. Differential role for p120-catenin in regulation of TLR4 signaling in macrophages

    PubMed Central

    Yang, Zhiyong; Sun, Dong; Yan, Zhibo; Reynolds, Albert B.; Christman, John W.; Minshall, Richard D.; Malik, Asrar B.; Zhang, Yang; Hu, Guochang

    2014-01-01

    Activation of TLR signaling through recognition of pathogen-associated molecular patterns is essential for the innate immune response against bacterial and viral infections. We have shown that p120-catenin suppresses TLR4-mediated NF-κB signaling in LPS-challenged endothelial cells. Here we report that p120-catenin differentially regulates LPS/TLR4 signaling in mouse bone marrow-derived macrophages. We observed that p120-catenin inhibited MyD88-dependent NF-κB activation and release of TNF-α and IL-6, but enhanced TIR-domain-containing adapter-inducing interferon-β (TRIF)-dependent IRF3 activation and release of IFN-β upon LPS exposure. p120-catenin silencing diminished LPS-induced TLR4 internalization, whereas genetic and pharmacological inhibition of RhoA GTPase rescued the decrease in endocytosis of TLR4 and TLR4-MyD88 signaling and reversed the increase in TLR4-TRIF signaling induced by p120-catenin depletion. Furthermore, we demonstrated that altered p120-catenin expression in macrophages regulates the inflammatory phenotype of LPS-induced acute lung injury. These results indicate that p120-catenin functions as a differential regulator of TLR4 signaling pathways by facilitating TLR4 endocytic trafficking in macrophages and support a novel role for p120-catenin in influencing the macrophages in the lung inflammatory response to endotoxin. PMID:25015829

  16. Arabidopsis FHY3/CPD45 regulates far-red light signaling and chloroplast division in parallel

    PubMed Central

    Chang, Ning; Gao, Yuefang; Zhao, Lin; Liu, Xiaomin; Gao, Hongbo

    2015-01-01

    CPD45 (chloroplast division45),which is also known as FHY3 (far-red elongated hypocotyl3), is a key factor in the far-red light signaling pathway in Arabidopsis. We previously showed that FHY3/CPD45 also regulates chloroplast division. Because light is also a regulator of chloroplast development and division, we sought to clarify the relationship between far-red light signaling and chloroplast division pathways. We found that the chloroplast division mutant arc5-3 had no defect in far-red light sensing, and that constitutive overexpression of ARC5 rescued the chloroplast division defect, but not the defect in far-red light signaling, of cpd45. fhy1, which is defective in far-red light signaling, exhibited normal chloroplast division. Constitutive overexpression of FHY1 rescued the far-red light signaling defect, but not the chloroplast division defect, of cpd45. Moreover, ARC5 and FHY1 expression were not affected in fhy1 and arc5-3, respectively. Based on these results, we propose that FHY3/CPD45 regulates far-red light signaling and chloroplast division in parallel by activating the expression of FHY1 and ARC5 independently. This work demonstrates how relationships between different pathways in a gene regulatory network can be explored. PMID:25872642

  17. miRNA-34c regulates Notch signaling during bone development

    PubMed Central

    Bae, Yangjin; Yang, Tao; Zeng, Huan-Chang; Campeau, Philippe M.; Chen, Yuqing; Bertin, Terry; Dawson, Brian C.; Munivez, Elda; Tao, Jianning; Lee, Brendan H.

    2012-01-01

    During bone homeostasis, osteoblast and osteoclast differentiation is coupled and regulated by multiple signaling pathways and their downstream transcription factors. Here, we show that microRNA 34 (miR-34) is significantly induced by BMP2 during osteoblast differentiation. In vivo, osteoblast-specific gain of miR-34c in mice leads to an age-dependent osteoporosis due to the defective mineralization and proliferation of osteoblasts and increased osteoclastogenesis. In osteoblasts, miR-34c targets multiple components of the Notch signaling pathway, including Notch1, Notch2 and Jag1 in a direct manner, and influences osteoclast differentiation in a non-cell-autonomous fashion. Taken together, our results demonstrate that miR-34c is critical during osteoblastogenesis in part by regulating Notch signaling in bone homeostasis. Furthermore, miR-34c-mediated post-transcriptional regulation of Notch signaling in osteoblasts is one possible mechanism to modulate the proliferative effect of Notch in the committed osteoblast progenitors which may be important in the pathogenesis of osteosarcomas. Therefore, understanding the functional interaction of miR-34 and Notch signaling in normal bone development and in bone cancer could potentially lead to therapies modulating miR-34 signaling. PMID:22498974

  18. Arabidopsis FHY3/CPD45 regulates far-red light signaling and chloroplast division in parallel.

    PubMed

    Chang, Ning; Gao, Yuefang; Zhao, Lin; Liu, Xiaomin; Gao, Hongbo

    2015-04-15

    CPD45 (chloroplast division45),which is also known as FHY3 (far-red elongated hypocotyl3), is a key factor in the far-red light signaling pathway in Arabidopsis. We previously showed that FHY3/CPD45 also regulates chloroplast division. Because light is also a regulator of chloroplast development and division, we sought to clarify the relationship between far-red light signaling and chloroplast division pathways. We found that the chloroplast division mutant arc5-3 had no defect in far-red light sensing, and that constitutive overexpression of ARC5 rescued the chloroplast division defect, but not the defect in far-red light signaling, of cpd45. fhy1, which is defective in far-red light signaling, exhibited normal chloroplast division. Constitutive overexpression of FHY1 rescued the far-red light signaling defect, but not the chloroplast division defect, of cpd45. Moreover, ARC5 and FHY1 expression were not affected in fhy1 and arc5-3, respectively. Based on these results, we propose that FHY3/CPD45 regulates far-red light signaling and chloroplast division in parallel by activating the expression of FHY1 and ARC5 independently. This work demonstrates how relationships between different pathways in a gene regulatory network can be explored.

  19. HPS4/SABRE regulates plant responses to phosphate starvation through antagonistic interaction with ethylene signalling

    PubMed Central

    Yu, Hailan; Luo, Nan; Sun, Lichao; Liu, Dong

    2012-01-01

    The phytohormone ethylene plays important roles in regulating plant responses to phosphate (Pi) starvation. To date, however, no molecular components have been identified that interact with ethylene signalling in regulating such responses. In this work, an Arabidopsis mutant, hps4, was characterized that exhibits enhanced responses to Pi starvation, including increased inhibition of primary root growth, enhanced expression of Pi starvation-induced genes, and overproduction of root-associated acid phosphatases. Molecular cloning indicated that hps4 is a new allele of SABRE, which was previously identified as an important regulator of cell expansion in Arabidopsis. HPS4/SABRE antagonistically interacts with ethylene signalling to regulate plant responses to Pi starvation. Furthermore, it is shown that Pi-starved hps4 mutants accumulate more auxin in their root tips than the wild type, which may explain the increased inhibition of their primary root growth when grown under Pi deficiency. PMID:22615140

  20. Signal integration by Ca(2+) regulates intestinal stem-cell activity.

    PubMed

    Deng, Hansong; Gerencser, Akos A; Jasper, Heinrich

    2015-12-10

    Somatic stem cells maintain tissue homeostasis by dynamically adjusting proliferation and differentiation in response to stress and metabolic cues. Here we identify Ca(2+) signalling as a central regulator of intestinal stem cell (ISC) activity in Drosophila. We show that dietary L-glutamate stimulates ISC division and gut growth. The metabotropic glutamate receptor (mGluR) is required in ISCs for this response, and for an associated modulation of cytosolic Ca(2+) oscillations that results in sustained high cytosolic Ca(2+) concentrations. High cytosolic Ca(2+) concentrations induce ISC proliferation by regulating Calcineurin and CREB-regulated transcriptional co-activator (Crtc). In response to a wide range of dietary and stress stimuli, ISCs reversibly transition between Ca(2+) oscillation states that represent poised or activated modes of proliferation, respectively. We propose that the dynamic regulation of intracellular Ca(2+) levels allows effective integration of diverse mitogenic signals in ISCs to adapt their proliferative activity to the needs of the tissue.

  1. IFT80 is essential for chondrocyte differentiation by regulating hedgehog and Wnt signaling pathways

    PubMed Central

    Wang, Changdong; Yuan, Xue; Yang, Shuying

    2013-01-01

    Partial mutation of intraflagellar transport 80 (IFT80) in humans causes Jeune asphyxiating thoracic dystrophy (JATD) and short-rib polydactyly (SRP) syndrome type III. These diseases are autosomal recessive chondrodysplasias that share clinical similarities, including shortened long bones and constricted thoracic cage. However, the role and mechanism of IFT80 in the regulation of chondrocyte differentiation and function remain largely unknown. We hypothesize that IFT80 is required for the formation and function of cilia and plays a critical role in chondrogenic differentiation by regulating Hedgehog (Hh) and Wingless (Wnt) signaling pathways. To test this hypothesis, we first analyzed the IFT80 expression pattern and found that IFT80 was predominantly expressed in growth plate chondrocytes and during chondrogenic differentiation. Silencing IFT80 impaired cilia formation and chondrogenic differentiation in mouse bone marrow derived stromal cells (BMSCs), and decreased the expression of chondrocyte marker genes—collagen II and aggrecan. Additionally, silencing IFT80 down-regulated Hh signaling activity whereas up-regulated Wnt signaling activity. The overexpression of Gli2 in IFT80-silenced cells promoted chondrogenesis and recovered the chondrogenic deficiency from IFT80 silencing. Overall, our results demonstrate that IFT80 is essential for chondrocyte differentiation by regulating the Hh and Wnt signaling pathways. PMID:23333501

  2. Feeding state-dependent regulation of developmental plasticity via CaMKI and neuroendocrine signaling

    PubMed Central

    Neal, Scott J; Takeishi, Asuka; O'Donnell, Michael P; Park, JiSoo; Hong, Myeongjin; Butcher, Rebecca A; Kim, Kyuhyung; Sengupta, Piali

    2015-01-01

    Information about nutrient availability is assessed via largely unknown mechanisms to drive developmental decisions, including the choice of Caenorhabditis elegans larvae to enter into the reproductive cycle or the dauer stage. In this study, we show that CMK-1 CaMKI regulates the dauer decision as a function of feeding state. CMK-1 acts cell-autonomously in the ASI, and non cell-autonomously in the AWC, sensory neurons to regulate expression of the growth promoting daf-7 TGF-β and daf-28 insulin-like peptide (ILP) genes, respectively. Feeding state regulates dynamic subcellular localization of CMK-1, and CMK-1-dependent expression of anti-dauer ILP genes, in AWC. A food-regulated balance between anti-dauer ILP signals from AWC and pro-dauer signals regulates neuroendocrine signaling and dauer entry; disruption of this balance in cmk-1 mutants drives inappropriate dauer formation under well-fed conditions. These results identify mechanisms by which nutrient information is integrated in a small neuronal network to modulate neuroendocrine signaling and developmental plasticity. DOI: http://dx.doi.org/10.7554/eLife.10110.001 PMID:26335407

  3. SPX proteins regulate Pi homeostasis and signaling in different subcellular level.

    PubMed

    Zhou, Zhipeng; Wang, Zhiye; Lv, Qundan; Shi, Jing; Zhong, Yongjia; Wu, Ping; Mao, Chuanzao

    2015-01-01

    To cope with low phosphate (Pi) availability, plants have to adjust its gene expression profile to facilitate Pi acquisition and remobilization. Sensing the levels of Pi is essential for reprogramming the gene expression profile to adapt to the fluctuating Pi environment. AtPHR1 in Arabidopsis and OsPHR2 in rice are central regulators of Pi signaling, which regulates the expression of phosphate starvation-induced (PSI) genes by binding to the P1BS elements in the promoter of PSI genes. However, how the Pi level affects the central regulator to regulate the PSI genes have puzzled us for a decade. Recent progress in SPX proteins indicated that the SPX proteins play important role in regulating the activity of central regulator AtPHR1/OsPHR2 in a Pi dependent manner at different subcellular levels.

  4. Desmosomes: Regulators of Cellular Signaling and Adhesion in Epidermal Health and Disease

    PubMed Central

    Johnson, Jodi L.; Najor, Nicole A.; Green, Kathleen J.

    2014-01-01

    Desmosomes are intercellular junctions that mediate cell–cell adhesion and anchor the intermediate filament network to the plasma membrane, providing mechanical resilience to tissues such as the epidermis and heart. In addition to their critical roles in adhesion, desmosomal proteins are emerging as mediators of cell signaling important for proper cell and tissue functions. In this review we highlight what is known about desmosomal proteins regulating adhesion and signaling in healthy skin—in morphogenesis, differentiation and homeostasis, wound healing, and protection against environmental damage. We also discuss how human diseases that target desmosome molecules directly or interfere indirectly with these mechanical and signaling functions to contribute to pathogenesis. PMID:25368015

  5. Peroxide-dependent MGL sulfenylation regulates 2-AG-mediated endocannabinoid signaling in brain neurons

    PubMed Central

    Dotsey, Emmanuel Y.; Jung, Kwang-Mook; Basit, Abdul; Wei, Don; Daglian, Jennifer; Vacondio, Federica; Armirotti, Andrea; Mor, Marco; Piomelli, Daniele

    2015-01-01

    SUMMARY The second messenger hydrogen peroxide transduces changes in cellular redox state by reversibly oxidizing protein cysteine residues to sulfenic acid. This signaling event regulates many cellular processes, but has been never shown to occur in the brain. Here we report that hydrogen peroxide heightens endocannabinoid signaling in brain neurons through sulfenylation of cysteines C201 and C208 in monoacylglycerol lipase (MGL), a serine hydrolase that deactivates the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG) in nerve terminals. The results suggest that MGL sulfenylation may provide a presynaptic control point for 2-AG-mediated endocannabinoid signaling. PMID:26000748

  6. Peroxide-Dependent MGL Sulfenylation Regulates 2-AG-Mediated Endocannabinoid Signaling in Brain Neurons.

    PubMed

    Dotsey, Emmanuel Y; Jung, Kwang-Mook; Basit, Abdul; Wei, Don; Daglian, Jennifer; Vacondio, Federica; Armirotti, Andrea; Mor, Marco; Piomelli, Daniele

    2015-05-21

    The second messenger hydrogen peroxide transduces changes in the cellular redox state by reversibly oxidizing protein cysteine residues to sulfenic acid. This signaling event regulates many cellular processes but has never been shown to occur in the brain. Here, we report that hydrogen peroxide heightens endocannabinoid signaling in brain neurons through sulfenylation of cysteines C201 and C208 in monoacylglycerol lipase (MGL), a serine hydrolase that deactivates the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG) in nerve terminals. The results suggest that MGL sulfenylation may provide a presynaptic control point for 2-AG-mediated endocannabinoid signaling.

  7. Cellular Noise Suppression by the Regulator of G Protein Signaling Sst2

    PubMed Central

    Dixit, Gauri; Kelley, Joshua B.; Houser, John R.; Elston, Timothy C.; Dohlman, Henrik G.

    2014-01-01

    Summary G proteins and their associated receptors process information from a variety of environmental stimuli to induce appropriate cellular responses. Generally speaking, each cell in a population responds within defined limits despite large variation in the expression of protein signaling components. Therefore we postulated that noise suppression is encoded within the signaling system. Using the yeast mating pathway as a model we evaluated the ability of a regulator of G protein signaling (RGS) protein to suppress noise. We found that the RGS protein Sst2 limits variability in transcription and morphogenesis in response to pheromone stimulation. While signal suppression is a result of both the GAP (GTPase accelerating) and receptor binding functions of Sst2, noise suppression requires only the GAP activity. Taken together our findings reveal a hitherto overlooked role of RGS proteins as noise suppressors, and demonstrate an ability to uncouple signal and noise in a prototypical stimulus-response pathway. PMID:24954905

  8. Hedgehog Is a Positive Regulator of FGF Signalling during Embryonic Tracheal Cell Migration

    PubMed Central

    Butí, Elisenda; Mesquita, Duarte; Araújo, Sofia J.

    2014-01-01

    Cell migration is a widespread and complex process that is crucial for morphogenesis and for the underlying invasion and metastasis of human cancers. During migration, cells are steered toward target sites by guidance molecules that induce cell direction and movement through complex intracellular mechanisms. The spatio-temporal regulation of the expression of these guidance molecules is of extreme importance for both normal morphogenesis and human disease. One way to achieve this precise regulation is by combinatorial inputs of different transcription factors. Here we used Drosophila melanogaster mutants with migration defects in the ganglionic branches of the tracheal system to further clarify guidance regulation during cell migration. By studying the cellular consequences of overactivated Hh signalling, using ptc mutants, we found that Hh positively regulates Bnl/FGF levels during embryonic stages. Our results show that Hh modulates cell migration non-autonomously in the tissues surrounding the action of its activity. We further demonstrate that the Hh signalling pathway regulates bnl expression via Stripe (Sr), a zinc-finger transcription factor with homology to the Early Growth Response (EGR) family of vertebrate transcription factors. We propose that Hh modulates embryonic cell migration by participating in the spatio-temporal regulation of bnl expression in a permissive mode. By doing so, we provide a molecular link between the activation of Hh signalling and increased chemotactic responses during cell migration. PMID:24651658

  9. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice[OPEN

    PubMed Central

    Huang, Debao; Wang, Shaogan; Zhang, Baocai; Shang-Guan, Keke; Shi, Yanyun; Zhang, Dongmei; Liu, Xiangling; Wu, Kun; Xu, Zuopeng; Fu, Xiangdong; Zhou, Yihua

    2015-01-01

    Cellulose, which can be converted into numerous industrial products, has important impacts on the global economy. It has long been known that cellulose synthesis in plants is tightly regulated by various phytohormones. However, the underlying mechanism of cellulose synthesis regulation remains elusive. Here, we show that in rice (Oryza sativa), gibberellin (GA) signals promote cellulose synthesis by relieving the interaction between SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and NACs, the top-layer transcription factors for secondary wall formation. Mutations in GA-related genes and physiological treatments altered the transcription of CELLULOSE SYNTHASE genes (CESAs) and the cellulose level. Multiple experiments demonstrated that transcription factors NAC29/31 and MYB61 are CESA regulators in rice; NAC29/31 directly regulates MYB61, which in turn activates CESA expression. This hierarchical regulation pathway is blocked by SLR1-NAC29/31 interactions. Based on the results of anatomical analysis and GA content examination in developing rice internodes, this signaling cascade was found to be modulated by varied endogenous GA levels and to be required for internode development. Genetic and gene expression analyses were further performed in Arabidopsis thaliana GA-related mutants. Altogether, our findings reveal a conserved mechanism by which GA regulates secondary wall cellulose synthesis in land plants and provide a strategy for manipulating cellulose production and plant growth. PMID:26002868

  10. Activin Signaling Targeted by Insulin/dFOXO Regulates Aging and Muscle Proteostasis in Drosophila

    PubMed Central

    Bai, Hua; Kang, Ping; Hernandez, Ana Maria; Tatar, Marc

    2013-01-01

    Reduced insulin/IGF signaling increases lifespan in many animals. To understand how insulin/IGF mediates lifespan in Drosophila, we performed chromatin immunoprecipitation-sequencing analysis with the insulin/IGF regulated transcription factor dFOXO in long-lived insulin/IGF signaling genotypes. Dawdle, an Activin ligand, is bound and repressed by dFOXO when reduced insulin/IGF extends lifespan. Reduced Activin signaling improves performance and protein homeostasis in muscles of aged flies. Activin signaling through the Smad binding element inhibits the transcription of Autophagy-specific gene 8a (Atg8a) within muscle, a factor controlling the rate of autophagy. Expression of Atg8a within muscle is sufficient to increase lifespan. These data reveal how insulin signaling can regulate aging through control of Activin signaling that in turn controls autophagy, representing a potentially conserved molecular basis for longevity assurance. While reduced Activin within muscle autonomously retards functional aging of this tissue, these effects in muscle also reduce secretion of insulin-like peptides at a distance from the brain. Reduced insulin secretion from the brain may subsequently reinforce longevity assurance through decreased systemic insulin/IGF signaling. PMID:24244197

  11. Regulation of Wingless signaling by the CKI family in Drosophila limb development

    PubMed Central

    Zhang, Lei; Jia, Jianhang; Wang, Bing; Amanai, Kazuhito; Wharton, Keith A.; Jiang, Jin

    2007-01-01

    Summary The Wingless (Wg)/Wnt signaling pathway regulates a myriad of developmental processes and its malfunction leads to human disorders including cancer. Recent studies suggest that casein kinase I (CKI) family members play pivotal roles in the Wg/Wnt pathway. However, genetic evidence for the involvement of CKI family members in physiological Wg/Wnt signaling events is lacking. In addition, there are conflicting reports regarding whether a given CKI family member functions as a positive or negative regulator of the pathway. Here we examine the roles of seven CKI family members in Wg signaling during Drosophila limb development. We find that increased CKIε stimulates whereas dominant negative or a null CKIε mutation inhibits Wg signaling. In contrast, inactivation of CKIα by RNA interference (RNAi) leads to ectopic Wg signaling. Interestingly, hypomorphic CKIε mutations synergize with CKIα RNAi to induce ectopic Wg signaling, revealing a negative role for CKIε. Conversely, CKIα RNAi enhances the loss-of-Wg phenotypes caused by CKIε null mutation, suggesting a positive role for CKIα. While none of the other five CKI isoforms can substitute for CKIα in its inhibitory role in the Wg pathway, several CKI isoforms including CG12147 exhibit a positive role based on overexpression. Moreover, loss of Gilgamesh (Gish)/CKIγ attenuates Wg signaling activity. Finally, we provide evidence that several CKI isoforms including CKIα and Gish/CKIγ can phosphorylate the Wg co-receptor Arrow (Arr), which may account, at least in part, for their positive roles in the Wg pathway. PMID:16987508

  12. Regulation of wingless signaling by the CKI family in Drosophila limb development.

    PubMed

    Zhang, Lei; Jia, Jianhang; Wang, Bing; Amanai, Kazuhito; Wharton, Keith A; Jiang, Jin

    2006-11-01

    The Wingless (Wg)/Wnt signaling pathway regulates a myriad of developmental processes and its malfunction leads to human disorders including cancer. Recent studies suggest that casein kinase I (CKI) family members play pivotal roles in the Wg/Wnt pathway. However, genetic evidence for the involvement of CKI family members in physiological Wg/Wnt signaling events is lacking. In addition, there are conflicting reports regarding whether a given CKI family member functions as a positive or negative regulator of the pathway. Here we examine the roles of seven CKI family members in Wg signaling during Drosophila limb development. We find that increased CKIepsilon stimulates whereas dominant-negative or a null CKIepsilon mutation inhibits Wg signaling. In contrast, inactivation of CKIalpha by RNA interference (RNAi) leads to ectopic Wg signaling. Interestingly, hypomorphic CKIepsilon mutations synergize with CKIalpha RNAi to induce ectopic Wg signaling, revealing a negative role for CKIepsilon. Conversely, CKIalpha RNAi enhances the loss-of-Wg phenotypes caused by CKIepsilon null mutation, suggesting a positive role for CKIalpha. While none of the other five CKI isoforms can substitute for CKIalpha in its inhibitory role in the Wg pathway, several CKI isoforms including CG12147 exhibit a positive role based on overexpression. Moreover, loss of Gilgamesh (Gish)/CKIgamma attenuates Wg signaling activity. Finally, we provide evidence that several CKI isoforms including CKIalpha and Gish/CKIgamma can phosphorylate the Wg coreceptor Arrow (Arr), which may account, at least in part, for their positive roles in the Wg pathway. PMID:16987508

  13. Intracellular calcium signals regulate growth of hepatic stellate cells via specific effects on cell cycle progression

    PubMed Central

    Soliman, Elwy M.; Rodrigues, Michele Angela; Gomes, Dawidson Assis; Sheung, Nina; Yu, Jin; Amaya, Maria Jimina; Nathanson, Michael H.; Dranoff, Jonathan A.

    2010-01-01

    Hepatic stellate cells (HSC) are important mediators of liver fibrosis. Hormones linked to downstream intracellular Ca2+ signals upregulate HSC proliferation, but the mechanisms by which this occurs are unknown. Nuclear and cytosolic Ca2+ signals may have distinct effects on cell proliferation, so we expressed plasmid and adenoviral constructs containing the Ca2+ chelator parvalbumin (PV) linked to either a nuclear localization sequence (NLS) or a nuclear export sequence (NES) to block Ca2+ signals in distinct compartments within LX-2 immortalized human HSC and primary rat HSC. PV-NLS and PV-NES constructs each targeted to the appropriate intracellular compartment and blocked Ca2+ signals only within that compartment. PV-NLS and PV-NES constructs inhibited HSC growth. Furthermore, blockade of nuclear or cytosolic Ca2+ signals arrested growth at the G2/mitosis (G2/M) cell-cycle interface and prevented the onset of mitosis. Blockade of nuclear or cytosolic Ca2+ signals downregulated phosphorylation of the G2/M checkpoint phosphatase Cdc25C. Inhibition of calmodulin kinase II (CaMK II) had identical effects on LX-2 growth and Cdc25C phosphorylation. We propose that nuclear and cytosolic Ca2+ are critical signals that regulate HSC growth at the G2/M checkpoint via CaMK II-mediated regulation of Cdc25C phosphorylation. These data provide a new logical target for pharmacological therapy directed against progression of liver fibrosis. PMID:19131107

  14. Wnt/β-catenin signaling regulated SATB1 promotes colorectal cancer tumorigenesis and progression.

    PubMed

    Mir, R; Pradhan, S J; Patil, P; Mulherkar, R; Galande, S

    2016-03-31

    The chromatin organizer SATB1 has been implicated in the development and progression of multiple cancers including breast and colorectal cancers. However, the regulation and role of SATB1 in colorectal cancers is poorly understood. Here, we demonstrate that expression of SATB1 is induced upon hyperactivation of Wnt/β-catenin signaling and repressed upon depletion of TCF7L2 (TCF4) and β-catenin. Using several colorectal cancer cell line models and the APC min mutant zebrafish in vivo model, we established that SATB1 is a novel target of Wnt/β-catenin signaling. We show that direct binding of TCF7L2/β-catenin complex on Satb1 promoter is required for the regulation of SATB1. Moreover, SATB1 is sufficient to regulate the expression of β-catenin, members of TCF family, multiple downstream effectors and mediators of Wnt pathway. SATB1 potentiates the cellular changes and expression of key cancer-associated genes in non-aggressive colorectal cells, promotes their aggressive phenotype and tumorigenesis in vivo. Conversely, depletion of SATB1 from aggressive cells reprograms the expression of cancer-associated genes, reverses their cancer phenotype and reduces the potential of these cells to develop tumors in vivo. We also show that SATB1 and β-catenin bind to the promoters of TCF7L2 and the downstream targets of Wnt signaling and regulate their expression. Our findings suggest that SATB1 shares a feedback regulatory network with TCF7L2/β-catenin signaling and is required for Wnt signaling-dependent regulation of β-catenin. Collectively, these results provide unequivocal evidence to establish that SATB1 reprograms the expression of tumor growth- and metastasis-associated genes to promote tumorigenesis and functionally overlaps with Wnt signaling critical for colorectal cancer tumorigenesis.

  15. Regulation of IL-4 Receptor Signaling by STUB1 in Lung Inflammation

    PubMed Central

    Wei, Qin; Sha, Youbao; Bhattacharya, Abhisek; Fattah, Elmoataz Abdel; Bonilla, Diana; Jyothula, Soma S. S. K.; Pandit, Lavannya; Khurana Hershey, Gurjit K.

    2014-01-01

    Rationale: IL-4Rα, the common receptor component for IL-4 and IL-13, plays a critical role in IL-4– and IL-13–mediated signaling pathways that regulate airway inflammation and remodeling. However, the regulatory mechanisms underlying IL-4Rα turnover and its signal termination remain elusive. Objectives: To evaluate the role of STUB1 (STIP1 homology and U-Box containing protein 1) in regulating IL-4R signaling in airway inflammation. Methods: The roles of STUB1 in IL-4Rα degradation and its signaling were investigated by immunoblot, immunoprecipitation, and flow cytometry. The involvement of STUB1 in airway inflammation was determined in vivo by measuring lung inflammatory cells infiltration, mucus production, serum lgE levels, and alveolar macrophage M2 activation in STUB1−/− mice. STUB1 expression was evaluated in airway epithelium of patients with asthma and lung tissues of subjects with chronic obstructive pulmonary disease. Measurements and Main Results: STUB1 interacted with IL-4Rα and targeted it for ubiquitination-mediated proteasomal degradation, terminating IL-4 or IL-13 signaling. STUB1 knockout cells showed increased levels of IL-4Rα and sustained STAT6 activation, whereas STUB1 overexpression reduced IL-4Rα levels. Mice deficient in STUB1 had spontaneous airway inflammation, alternative M2 activation of alveolar macrophage, and increased serum IgE. STUB1 levels were increased in airways of subjects with asthma or chronic obstructive pulmonary disease, suggesting that up-regulation of STUB1 might be an important feedback mechanism to dampen IL-4R signaling in airway inflammation. Conclusions: Our study identified a previously uncharacterized role for STUB1 in regulating IL-4R signaling, which might provide a new strategy for attenuating airway inflammation. PMID:24251647

  16. Rapid estrogen signaling negatively regulates PTEN activity through phosphorylation in endometrial cancer cells

    PubMed Central

    Scully, Melanie M.; Palacios-Helgeson, Leslie K.; Wah, Lah S.; Jackson, Twila A.

    2014-01-01

    Hyperestrogenicity is a risk factor for endometrial cancer. 17β-estradiol (E2) is known to stimulate both genomic and nongenomic estrogen receptor-α (ERα) actions in a number of reproductive tissues. However, the contributions of transcription-independent ERα signaling on normal and malignant endometrium are not fully understood. Phosphatase and tensin homolog (PTEN) is a tumor suppressor that decreases cellular mitosis primarily through negative regulation of the phosphoinositide 3-kinase/AKT signaling axis. PTEN levels are elevated during the E2 dominated, mitotically active, proliferative phase of the menstrual cycle, indicating possible hormonal regulation of PTEN in the uterus. In order to determine if rapid E2 signaling regulates PTEN, we used ERα positive, PTEN positive, endometrial cells. We show that cytosolic E2/ERα signaling leads to increased phosphorylation of PTEN at key regulatory residues. Importantly, E2 stimulation decreased PTEN lipid phosphatase activity and caused consequent increases in phospho-AKT. We further demonstrate that cytosolic ERα forms a complex with PTEN in an E2-dependent manner, and that ERα constitutively complexes with protein kinase2-α (CK2α), a kinase previously shown to phosphorylate the C-terminal tail of PTEN. These results provide mechanistic support for an E2-dependent, ERα cytosolic signaling complex that negatively regulates PTEN activity through carboxy terminus phosphorylation. Using an animal model, we show that sustained E2 signaling results in increased phospho-PTEN (S380, T382, T383), total PTEN and phospho-AKT (S473). Taken together, we provide a novel mechanism in which transcription-independent E2/ERα signaling may promote a pro-tumorigenic environment in the endometrium. PMID:24844349

  17. Ca²⁺ signaling and regulation of fluid secretion in salivary gland acinar cells.

    PubMed

    Ambudkar, Indu S

    2014-06-01

    Neurotransmitter stimulation of plasma membrane receptors stimulates salivary gland fluid secretion via a complex process that is determined by coordinated temporal and spatial regulation of several Ca(2+) signaling processes as well as ion flux systems. Studies over the past four decades have demonstrated that Ca(2+) is a critical factor in the control of salivary gland function. Importantly, critical components of this process have now been identified, including plasma membrane receptors, calcium channels, and regulatory proteins. The key event in activation of fluid secretion is an increase in intracellular [Ca(2+)] ([Ca(2+)]i) triggered by IP3-induced release of Ca(2+) from ER via the IP3R. This increase regulates the ion fluxes required to drive vectorial fluid secretion. IP3Rs determine the site of initiation and the pattern of [Ca(2+)]i signal in the cell. However, Ca(2+) entry into the cell is required to sustain the elevation of [Ca(2+)]i and fluid secretion. This Ca(2+) influx pathway, store-operated calcium influx pathway (SOCE), has been studied in great detail and the regulatory mechanisms as well as key molecular components have now been identified. Orai1, TRPC1, and STIM1 are critical components of SOCE and among these, Ca(2+) entry via TRPC1 is a major determinant of fluid secretion. The receptor-evoked Ca(2+) signal in salivary gland acinar cells is unique in that it starts at the apical pole and then rapidly increases across the cell. The basis for the polarized Ca(2+) signal can be ascribed to the polarized arrangement of the Ca(2+) channels, transporters, and signaling proteins. Distinct localization of these proteins in the cell suggests compartmentalization of Ca(2+) signals during regulation of fluid secretion. This chapter will discuss new concepts and findings regarding the polarization and control of Ca(2+) signals in the regulation of fluid secretion.

  18. Arm-in-Arm Response Regulator Dimers Promote Intermolecular Signal Transduction

    PubMed Central

    Baker, Anna W.; Satyshur, Kenneth A.; Moreno Morales, Neydis

    2016-01-01

    ABSTRACT Bacteriophytochrome photoreceptors (BphPs) and their cognate response regulators make up two-component signal transduction systems which direct bacteria to mount phenotypic responses to changes in environmental light quality. Most of these systems utilize single-domain response regulators to transduce signals through unknown pathways and mechanisms. Here we describe the photocycle and autophosphorylation kinetics of RtBphP1, a red light-regulated histidine kinase from the desert bacterium Ramlibacter tataouinensis. RtBphP1 undergoes red to far-red photoconversion with rapid thermal reversion to the dark state. RtBphP1 is autophosphorylated in the dark; this activity is inhibited under red light. The RtBphP1 cognate response regulator, the R. tataouinensis bacteriophytochrome response regulator (RtBRR), and a homolog, AtBRR from Agrobacterium tumefaciens, crystallize unexpectedly as arm-in-arm dimers, reliant on a conserved hydrophobic motif, hFWAhL (where h is a hydrophobic M, V, L, or I residue). RtBRR and AtBRR dimerize distinctly from four structurally characterized phytochrome response regulators found in photosynthetic organisms and from all other receiver domain homodimers in the Protein Data Bank. A unique cacodylate-zinc-histidine tag metal organic framework yielded single-wavelength anomalous diffraction phases and may be of general interest. Examination of the effect of the BRR stoichiometry on signal transduction showed that phosphorylated RtBRR is accumulated more efficiently than the engineered monomeric RtBRR (RtBRRmon) in phosphotransfer reactions. Thus, we conclude that arm-in-arm dimers are a relevant signaling intermediate in this class of two-component regulatory systems. IMPORTANCE BphP histidine kinases and their cognate response regulators comprise widespread red light-sensing two-component systems. Much work on BphPs has focused on structural understanding of light sensing and on enhancing the natural infrared fluorescence of these

  19. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    SciTech Connect

    Wang, Guang; Li, Yan; Wang, Xiao-yu; Han, Zhe; Chuai, Manli; Wang, Li-jing; Ho Lee, Kenneth Ka; Geng, Jian-guo; Yang, Xuesong

    2013-05-01

    Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes to block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1{sup +} migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug{sup +} pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1{sup +} migrating NCCs but reduced Pax7 expression and fewer Slug{sup +} pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube

  20. Protein Kinase C and Extracellular Signal-Regulated Kinase Regulate Movement, Attachment, Pairing and Egg Release in Schistosoma mansoni

    PubMed Central

    Ressurreição, Margarida; De Saram, Paulu; Kirk, Ruth S.; Rollinson, David; Emery, Aidan M.; Page, Nigel M.; Davies, Angela J.; Walker, Anthony J.

    2014-01-01

    Protein kinases C (PKCs) and extracellular signal-regulated kinases (ERKs) are evolutionary conserved cell signalling enzymes that coordinate cell function. Here we have employed biochemical approaches using ‘smart’ antibodies and functional screening to unravel the importance of these enzymes to Schistosoma mansoni physiology. Various PKC and ERK isotypes were detected, and were differentially phosphorylated (activated) throughout the various S. mansoni life stages, suggesting isotype-specific roles and differences in signalling complexity during parasite development. Functional kinase mapping in adult worms revealed that activated PKC and ERK were particularly associated with the adult male tegument, musculature and oesophagus and occasionally with the oesophageal gland; other structures possessing detectable activated PKC and/or ERK included the Mehlis' gland, ootype, lumen of the vitellaria, seminal receptacle and excretory ducts. Pharmacological modulation of PKC and ERK activity in adult worms using GF109203X, U0126, or PMA, resulted in significant physiological disturbance commensurate with these proteins occupying a central position in signalling pathways associated with schistosome muscular activity, neuromuscular coordination, reproductive function, attachment and pairing. Increased activation of ERK and PKC was also detected in worms following praziquantel treatment, with increased signalling associated with the tegument and excretory system and activated ERK localizing to previously unseen structures, including the cephalic ganglia. These findings support roles for PKC and ERK in S. mansoni homeostasis, and identify these kinase groups as potential targets for chemotherapeutic treatments against human schistosomiasis, a neglected tropical disease of enormous public health significance. PMID:24921927

  1. Wnt/{beta}-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    SciTech Connect

    Teng, Ying; Wang, Xiuwen; Wang, Yawei; Ma, Daoxin

    2010-02-12

    Wnt/{beta}-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that {beta}-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of {beta}-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of {beta}-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/{beta}-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  2. E3 Ubiquitin Ligases Pellinos as Regulators of Pattern Recognition Receptor Signaling and Immune responses

    PubMed Central

    Medvedev, Andrei E.; Murphy, Michael; Zhou, Hao; Li, Xiaoxia

    2015-01-01

    SUMMARY Pellinos are a family of E3 ubiquitin ligases discovered for their role in catalyzing K63-linked polyubiquitination of Pelle, an IL-1 receptor-associated kinase homologue in the Drosophila Toll pathway. Subsequent studies have revealed the central and non-redundant roles of mammalian Pellino-1, Pellino-2 and Pelino-3 in signaling pathways emanating from IL-1 receptors, Toll-like receptors, NOD-like receptors, T- and B-cell receptors. While Pellinos ability to interact with many signaling intermediates suggested their scaffolding roles, recent findings in mice expressing ligase-inactive Pellinos demonstrated the importance of Pellino ubiquitin ligase activity. Cell-specific functions of Pellinos have emerged, e.g., Pellino-1 being a negative regulator in T-lymphocytes and a positive regulator in myeloid cells, and details of molecular regulation of receptor signaling by various members of the Pellino family have been revealed. In this review, we have summarized current information about Pellino-mediated regulation of signaling by pattern recognition receptors, T-cell and B-cell receptors and TNF receptors, and discuss Pellino’s role in sepsis and infectious diseases, as well as in autoimmune, inflammatory and allergic disorders. We also provide our perspective on the potential of targeting Pellinos with peptide- or small molecule-based drug compounds as a new therapeutic approach for septic shock and autoimmune pathologies. PMID:26085210

  3. No Special K! A Signal Detection Framework for the Strategic Regulation of Memory Accuracy

    ERIC Educational Resources Information Center

    Higham, Philip A.

    2007-01-01

    Two experiments investigated criterion setting and metacognitive processes underlying the strategic regulation of accuracy on the Scholastic Aptitude Test (SAT) using Type-2 signal detection theory (SDT). In Experiment 1, report bias was manipulated by penalizing participants either 0.25 (low incentive) or 4 (high incentive) points for each error.…

  4. Long- and short-distance signaling in the regulation of lateral plant growth.

    PubMed

    Brackmann, Klaus; Greb, Thomas

    2014-06-01

    Lateral growth of shoot and root axes by the formation of secondary vascular tissues is an instructive example for the plasticity of plant growth processes. Being purely postembryonic, lateral growth strongly depends on environmental input and is tightly regulated by long- and short-distance signaling. In general, plant vasculature represents the main route for long-distance transport of compounds throughout the plant body, thereby providing also a fast and efficient signaling pipeline for the coordination of growth and development. The vasculature consists of three major tissues; the xylem conducts water and nutrients, the phloem transports mainly organic compounds and the vascular cambium is a group of undifferentiated stem cells responsible for the continuous production of secondary vascular tissues. Notably, the close proximity to functional vascular tissues makes the vascular cambium especially accessible for the regulation by long-distance-derived signaling molecules as well as by the physical and physiological properties of transport streams. Thus, the vascular cambium offers unique opportunities for studying the complex regulation of plant growth processes. In this review, we focus on recent findings about long- and short-distance signaling mechanisms regulating cambium activity and, thereby, lateral expansion of plant growth axes by the formation of additional vascular tissues.

  5. Astroglial CB1 cannabinoid receptors regulate leptin signaling in mouse brain astrocytes.

    PubMed

    Bosier, Barbara; Bellocchio, Luigi; Metna-Laurent, Mathilde; Soria-Gomez, Edgar; Matias, Isabelle; Hebert-Chatelain, Etienne; Cannich, Astrid; Maitre, Marlène; Leste-Lasserre, Thierry; Cardinal, Pierre; Mendizabal-Zubiaga, Juan; Canduela, Miren Josune; Reguero, Leire; Hermans, Emmanuel; Grandes, Pedro; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Type-1 cannabinoid (CB1) and leptin (ObR) receptors regulate metabolic and astroglial functions, but the potential links between the two systems in astrocytes were not investigated so far. Genetic and pharmacological manipulations of CB1 receptor expression and activity in cultured cortical and hypothalamic astrocytes demonstrated that cannabinoid signaling controls the levels of ObR expression. Lack of CB1 receptors also markedly impaired leptin-mediated activation of signal transducers and activators of transcription 3 and 5 (STAT3 and STAT5) in astrocytes. In particular, CB1 deletion determined a basal overactivation of STAT5, thereby leading to the downregulation of ObR expression, and leptin failed to regulate STAT5-dependent glycogen storage in the absence of CB1 receptors. These results show that CB1 receptors directly interfere with leptin signaling and its ability to regulate glycogen storage, thereby representing a novel mechanism linking endocannabinoid and leptin signaling in the regulation of brain energy storage and neuronal functions.

  6. ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK.

    PubMed

    Khatiwala, Chirag B; Kim, Peter D; Peyton, Shelly R; Putnam, Andrew J

    2009-05-01

    The compliance of the extracellular matrix (ECM) regulates osteogenic differentiation by modulating extracellular signal-regulated kinase (ERK) activity. However, the molecular mechanism linking ECM compliance to the ERK-mitogen-activated protein kinase (MAPK) pathway remains unclear. Furthermore, RhoA has been widely implicated in integrin-mediated signaling and mechanotransduction. We studied the relationship between RhoA and ERK-MAPK signaling to determine their roles in the regulation of osteogenesis by ECM compliance. Inhibition of RhoA and ROCK in MC3T3-E1 pre-osteoblasts cultured on substrates of varying compliance reduced ERK activity, whereas constitutively active RhoA enhanced it. The expression of RUNX2, a potent osteogenic transcription factor, was increased on stiffer matrices and correlated with elevated ERK activity. Inhibition of RhoA, ROCK, or the MAPK pathway diminished RUNX2 activity and delayed the onset of osteogenesis as shown by altered osteocalcin (OCN) and bone sialoprotein (BSP) gene expression, alkaline phosphatase (ALP) activity, and matrix mineralization. These data establish that one possible mechanism by which ECM rigidity regulates osteogenic differentiation involves MAPK activation downstream of the RhoA-ROCK signaling pathway.

  7. Intracellular calcium signaling regulates autophagy via calcineurin-mediated TFEB dephosphorylation

    PubMed Central

    Tong, Yanju; Song, Fuyong

    2015-01-01

    The transcription-regulating activity of TFEB is dependent on its phosphorylation modification, but the phosphatase(s) involved in TFEB dephosphorylation have remained elusive. It has now become clear that lysosomal calcium signaling activates calcineurin, an endogenous serine/threonine phosphatase, which dephosphorylate TFEB leading to upregulation of autophagy. PMID:26043755

  8. E3 ubiquitin ligases Pellinos as regulators of pattern recognition receptor signaling and immune responses.

    PubMed

    Medvedev, Andrei E; Murphy, Michael; Zhou, Hao; Li, Xiaoxia

    2015-07-01

    Pellinos are a family of E3 ubiquitin ligases discovered for their role in catalyzing K63-linked polyubiquitination of Pelle, an interleukin-1 (IL-1) receptor-associated kinase homolog in the Drosophila Toll pathway. Subsequent studies have revealed the central and non-redundant roles of mammalian Pellino-1, Pellino-2, and Pelino-3 in signaling pathways emanating from IL-1 receptors, Toll-like receptors, NOD-like receptors, T- and B-cell receptors. While Pellinos ability to interact with many signaling intermediates suggested their scaffolding roles, recent findings in mice expressing ligase-inactive Pellinos demonstrated the importance of Pellino ubiquitin ligase activity. Cell-specific functions of Pellinos have emerged, e.g. Pellino-1 being a negative regulator in T lymphocytes and a positive regulator in myeloid cells, and details of molecular regulation of receptor signaling by various members of the Pellino family have been revealed. In this review, we summarize current information about Pellino-mediated regulation of signaling by pattern recognition receptors, T-cell and B-cell receptors and tumor necrosis factor receptors, and discuss Pellinos roles in sepsis and infectious diseases, as well as in autoimmune, inflammatory, and allergic disorders. We also provide our perspective on the potential of targeting Pellinos with peptide- or small molecule-based drug compounds as a new therapeutic approach for septic shock and autoimmune pathologies.

  9. Role of Regulators of G Protein Signaling Proteins in Bone Physiology and Pathophysiology

    PubMed Central

    Jules, Joel; Yang, Shuying; Chen, Wei; Li, Yi-Ping

    2016-01-01

    Regulators of G protein signaling (RGS) proteins enhance the intrinsic GTPase activity of α subunits of the heterotrimeric G protein complex of G protein-coupled receptors (GPCRs) and thereby inactivate signal transduction initiated by GPCRs. The RGS family consists of nearly 37 members with a conserved RGS homology domain which is critical for their GTPase accelerating activity. RGS proteins are expressed in most tissues, including heart, lung, brain, kidney, and bone and play essential roles in many physiological and pathological processes. In skeletal development and bone homeostasis as well as in many bone disorders, RGS proteins control the functions of various GPCRs, including the parathyroid hormone receptor type 1 and calcium-sensing receptor and also regulate various critical signaling pathways, such as Wnt and calcium oscillations. This chapter will discuss the current findings on the roles of RGS proteins in regulating signaling of key GPCRs in skeletal development and bone homeostasis. We also will examine the current updates of RGS proteins’ regulation of calcium oscillations in bone physiology and highlight the roles of RGS proteins in selected bone pathological disorders. Despite the recent advances in bone and mineral research, RGS proteins remain understudied in the skeletal system. Further understanding of the roles of RGS proteins in bone should not only provide great insights into the molecular basis of various bone diseases but also generate great therapeutic drug targets for many bone diseases. PMID:26123302

  10. Tight regulation of diacylglycerol-mediated signaling is critical for proper invariant NKT cell development

    PubMed Central

    Shen, Shudan; Wu, Jinhong; Srivatsan, Sruti; Gorentla, Balachandra; Shin, Jinwook; Xu, Li; Zhong, Xiao-Ping

    2011-01-01

    Type I natural killer T (NKT) cells, or iNKT cells, express a semi-invariant T cell receptor characterized by its unique V α 14-Jα 18 usage (iV α 14TCR). Upon interaction with glycolipid/CD1d complexes, the iV α 14TCRs transduce signals that are essential for iNKT selection and maturation. However, it remains unclear how these signals are regulated and how important such regulations are during iNKT development. Diacylglycerol (DAG) is an essential second messenger downstream of the TCR that activates the PKCθ-IKKα/β-NFκB pathway, known to be crucial for iNKT development, as well as the RasGRP1-Ras-Erk1/2 pathway in T cells. DAG kinases (DGKs) play an important role in controlling intracellular DAG concentration and thereby negatively regulate DAG signaling. Here we report that simultaneous absence of DAG kinase α and ζ causes severe defects in iNKT development, coincident with enhanced IKK-NFκB and Ras-Erk1/2 activation. Moreover, constitutive IKKβ and Ras activities also result in iNKT developmental defects. Thus, DAG-mediated signaling is not only essential but also needs to be tightly regulated for proper iNKT cell development. PMID:21775687

  11. Plasmodesmata localizing proteins regulate transport and signaling during systemic acquired immunity in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Systemic acquired resistance (SAR) in plants is mediated by the signaling molecules azelaic acid (AzA),glycerol-3-phosphate (G3P), and salicylic acid (SA).Here, we show that AzA and G3P transport occurs via the symplastic route, which is regulated by channels known as plasmodesmata (PD). In contrast...

  12. Structure of the response regulator RPA3017 involved in red-light signaling in Rhodopseudomonas palustris.

    PubMed

    Yang, Xuefei; Zeng, Xiaoli; Moffat, Keith; Yang, Xiaojing

    2015-10-01

    Two-component signal transduction is the major signaling mechanism that enables bacteria to survive and thrive in complex environmental conditions. The photosynthetic bacterium R. palustris employs two tandem bacteriophytochromes, RpBphP2 and RpBphP3, to perceive red-light signals that regulate the synthesis of light-harvesting complexes under low-light conditions. Both RpBphP2 and RpBphP3 are photosensory histidine kinases coupled to the same response regulator RPA3017. Together, they constitute a two-component system that converts a red-light signal into a biological signal. In this work, the crystal structure of RPA3017 in the unphosphorylated form at 1.9 Å resolution is presented. This structure reveals a tightly associated dimer arrangement that is conserved among phytochrome-related response regulators. The conserved active-site architecture provides structural insight into the phosphotransfer reaction between RpBphP2/RpBphP3 and RPA3017. Based on structural comparisons and homology modeling, how specific recognition between RpBphP2/RpBphP3 and RPA3017 is achieved at the molecular level is further explored.

  13. Hsp70-Bag3 interactions regulate cancer-related signaling networks.

    PubMed

    Colvin, Teresa A; Gabai, Vladimir L; Gong, Jianlin; Calderwood, Stuart K; Li, Hu; Gummuluru, Suryaram; Matchuk, Olga N; Smirnova, Svetlana G; Orlova, Nina V; Zamulaeva, Irina A; Garcia-Marcos, Mikel; Li, Xiaokai; Young, Z T; Rauch, Jennifer N; Gestwicki, Jason E; Takayama, Shinichi; Sherman, Michael Y

    2014-09-01

    Bag3, a nucleotide exchange factor of the heat shock protein Hsp70, has been implicated in cell signaling. Here, we report that Bag3 interacts with the SH3 domain of Src, thereby mediating the effects of Hsp70 on Src signaling. Using several complementary approaches, we established that the Hsp70-Bag3 module is a broad-acting regulator of cancer cell signaling by modulating the activity of the transcription factors NF-κB, FoxM1, Hif1α, the translation regulator HuR, and the cell-cycle regulators p21 and survivin. We also identified a small-molecule inhibitor, YM-1, that disrupts the Hsp70-Bag3 interaction. YM-1 mirrored the effects of Hsp70 depletion on these signaling pathways, and in vivo administration of this drug was sufficient to suppress tumor growth in mice. Overall, our results defined Bag3 as a critical factor in Hsp70-modulated signaling and offered a preclinical proof-of-concept that the Hsp70-Bag3 complex may offer an appealing anticancer target.

  14. Regulator of G protein signaling 2 (RGS2) deficiency accelerates the progression of kidney fibrosis.

    PubMed

    Jang, Hee-Seong; Kim, Jee In; Noh, Mira; Rhee, Man Hee; Park, Kwon Moo

    2014-09-01

    The regulator of G protein signaling 2 (RGS2) is a potent negative regulator of Gq protein signals including the angiotensin II (AngII)/AngII receptor signal, which plays a critical role in the progression of fibrosis. However, the role of RGS2 on the progression of kidney fibrosis has not been assessed. Here, we investigated the role of RGS2 in kidney fibrosis induced by unilateral ureteral obstruction (UUO) in mice. UUO resulted in increased expression of RGS2 mRNA and protein in the kidney along with increases of AngII and its type 1 receptor (AT1R) signaling and fibrosis. Furthermore, UUO increased the levels of F4/80, Ly6G, myeloperoxidase, and CXCR4 in the kidneys. RGS2 deficiency significantly enhanced these changes in the kidney. RGS2 deletion in the bone marrow-derived cells by transplanting the bone marrow of RGS2 knock-out mice into wild type mice enhanced UUO-induced kidney fibrosis. Overexpression of RGS2 in HEK293 cells, a human embryonic kidney cell line, and RAW264.7 cells, a monocyte/macrophage line, inhibited the AngII-induced activation of ERK and increase of CXCR4 expression. These findings provide the first evidence that RGS2 negatively regulates the progression of kidney fibrosis following UUO, likely by suppressing fibrogenic and inflammatory responses through the inhibition of AngII/AT1R signaling.

  15. Regulator of G protein signaling 2 (RGS2) deficiency accelerates the progression of kidney fibrosis.

    PubMed

    Jang, Hee-Seong; Kim, Jee In; Noh, Mira; Rhee, Man Hee; Park, Kwon Moo

    2014-09-01

    The regulator of G protein signaling 2 (RGS2) is a potent negative regulator of Gq protein signals including the angiotensin II (AngII)/AngII receptor signal, which plays a critical role in the progression of fibrosis. However, the role of RGS2 on the progression of kidney fibrosis has not been assessed. Here, we investigated the role of RGS2 in kidney fibrosis induced by unilateral ureteral obstruction (UUO) in mice. UUO resulted in increased expression of RGS2 mRNA and protein in the kidney along with increases of AngII and its type 1 receptor (AT1R) signaling and fibrosis. Furthermore, UUO increased the levels of F4/80, Ly6G, myeloperoxidase, and CXCR4 in the kidneys. RGS2 deficiency significantly enhanced these changes in the kidney. RGS2 deletion in the bone marrow-derived cells by transplanting the bone marrow of RGS2 knock-out mice into wild type mice enhanced UUO-induced kidney fibrosis. Overexpression of RGS2 in HEK293 cells, a human embryonic kidney cell line, and RAW264.7 cells, a monocyte/macrophage line, inhibited the AngII-induced activation of ERK and increase of CXCR4 expression. These findings provide the first evidence that RGS2 negatively regulates the progression of kidney fibrosis following UUO, likely by suppressing fibrogenic and inflammatory responses through the inhibition of AngII/AT1R signaling. PMID:24973550

  16. Hypoxia. Regulation of NFκB signalling during inflammation: the role of hydroxylases

    PubMed Central

    Oliver, Kathryn M; Taylor, Cormac T; Cummins, Eoin P

    2009-01-01

    NFκB is a master regulator of innate immunity and inflammatory signalling. Microenvironmental hypoxia has long been identified as being coincident with chronic inflammation. The contribution of microenvironmental hypoxia to NFκB-induced inflammation has more recently been appreciated. Identification of the co-regulation of NFκB and hypoxia inducible factor (HIF) pathways by 2-oxo-glutarate-dependent hydroxylase family members has highlighted an intimate relationship between NFκB inflammatory signalling and HIF-mediated hypoxic signalling pathways. Adding another layer of complexity to our understanding of the role of NFκB inflammatory signalling by hypoxia is the recent recognition of the contribution of basal NFκB activity to HIF-1α transcription. This observation implicates an important and previously unappreciated role for NFκB in inflammatory disease where HIF-1α is activated. The present review will discuss recent literature pertaining to the regulation of NFκB inflammatory signalling by hypoxia and some of the inflammatory diseases where this may play an important role. Furthermore, we will discuss the potential for prolylhydroxylase inhibitors in inflammatory disease. PMID:19291263

  17. Type One Protein Phosphatase 1 and Its Regulatory Protein Inhibitor 2 Negatively Regulate ABA Signaling

    PubMed Central

    Zhao, Yang; Xie, Shaojun; Batelli, Giorgia; Wang, Bangshing; Duan, Cheng-Guo; Wang, Xingang; Xing, Lu; Lei, Mingguang; Yan, Jun; Zhu, Xiaohong; Zhu, Jian-Kang

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant growth, development and responses to biotic and abiotic stresses. The core ABA signaling pathway consists of three major components: ABA receptor (PYR1/PYLs), type 2C Protein Phosphatase (PP2C) and SNF1-related protein kinase 2 (SnRK2). Nevertheless, the complexity of ABA signaling remains to be explored. To uncover new components of ABA signal transduction pathways, we performed a yeast two-hybrid screen for SnRK2-interacting proteins. We found that Type One Protein Phosphatase 1 (TOPP1) and its regulatory protein, At Inhibitor-2 (AtI-2), physically interact with SnRK2s and also with PYLs. TOPP1 inhibited the kinase activity of SnRK2.6, and this inhibition could be enhanced by AtI-2. Transactivation assays showed that TOPP1 and AtI-2 negatively regulated the SnRK2.2/3/6-mediated activation of the ABA responsive reporter gene RD29B, supporting a negative role of TOPP1 and AtI-2 in ABA signaling. Consistent with these findings, topp1 and ati-2 mutant plants displayed hypersensitivities to ABA and salt treatments, and transcriptome analysis of TOPP1 and AtI-2 knockout plants revealed an increased expression of multiple ABA-responsive genes in the mutants. Taken together, our results uncover TOPP1 and AtI-2 as negative regulators of ABA signaling. PMID:26943172

  18. Insulin receptor regulates food intake through sulfakinin signaling in the red flour beetle, Tribolium castaneum.

    PubMed

    Lin, Xianyu; Yu, Na; Smagghe, Guy

    2016-06-01

    Insects obtain energy and nutrients via feeding to support growth and development. The insulin signaling pathway is involved in the regulation of feeding; however, the underlying mechanisms are not fully understood. Here, we show that insulin signaling regulates food intake via crosstalk with neuropeptide sulfakinin in the red flour beetle, Tribolium castaneum. Silencing of the insulin receptor (InR) decreased the food intake in the penultimate and final instar stages, leading to a decrease of weight gain and mortality during larval-pupal metamorphosis. Interestingly, the knockdown of InR co-occurred with an increased expression of sulfakinin (sk), a gene encoding neuropeptide SK functioning as a satiety signal. In parallel, double silencing of sk and InR eliminated the inhibitory effect on food intake as induced by silencing of InR and the larvae died as prepupae. In conclusion, this study shows, for the first time, that the insulin/InR signaling regulates food intake through the sulfakinin signaling pathway in the larval stages of this important model and pest insect, indicating a novel target for pest control. PMID:26972481

  19. Crosstalk between Akt/GSK3β signaling and dynamin-1 regulates clathrin-mediated endocytosis

    PubMed Central

    Reis, Carlos R; Chen, Ping-Hung; Srinivasan, Saipraveen; Aguet, François; Mettlen, Marcel; Schmid, Sandra L

    2015-01-01

    Clathrin-mediated endocytosis (CME) regulates signaling from the plasma membrane. Analysis of clathrin-coated pit (CCP) dynamics led us to propose the existence of a rate-limiting, regulatory step(s) that monitor the fidelity of early stages in CCP maturation. Here we show that nascent endocytic vesicles formed in mutant cells displaying rapid, dysregulated CME are defective in early endosomal trafficking, maturation and acidification, confirming the importance of this “checkpoint.” Dysregulated CME also alters EGF receptor signaling and leads to constitutive activation of the protein kinase Akt. Dynamin-1, which was thought to be neuron specific, is activated by the Akt/GSK3β signaling cascade in non-neuronal cells to trigger rapid, dysregulated CME. Acute activation of dynamin-1 in RPE cells by inhibition of GSK3β accelerates CME, alters CCP dynamics and, unexpectedly, increases the rate of CCP initiation. CRISPR-Cas9n-mediated knockout and reconstitution studies establish that dynamin-1 is activated by Akt/GSK3β signaling in H1299 non-small lung cancer cells. These findings provide direct evidence for an isoform-specific role for dynamin in regulating CME and reveal a feed-forward pathway that could link signaling from cell surface receptors to the regulation of CME. PMID:26139537

  20. Functional Differences of Very-Low-Density Lipoprotein Receptor Splice Variants in Regulating Wnt Signaling

    PubMed Central

    Chen, Qian; Takahashi, Yusuke; Oka, Kazuhiro

    2016-01-01

    The very-low-density lipoprotein receptor (VLDLR) negatively regulates Wnt signaling. VLDLR has two major alternative splice variants, VLDLRI and VLDLRII, but their biological significance and distinction are unknown. Here we found that most tissues expressed both VLDLRI and VLDLRII, while the retina expressed only VLDLRII. The shed soluble VLDLR extracellular domain (sVLDLR-N) was detected in the conditioned medium of retinal pigment epithelial cells, interphotoreceptor matrix, and mouse plasma, indicating that ectodomain shedding of VLDLR occurs endogenously. VLDLRII displayed a higher ectodomain shedding rate and a more potent inhibitory effect on Wnt signaling than VLDLRI in vitro and in vivo. O-glycosylation, which is present in VLDLRI but not VLDLRII, determined the differential ectodomain shedding rates. Moreover, the release of sVLDLR-N was inhibited by a metalloproteinase inhibitor, TAPI-1, while it was promoted by phorbol 12-myristate 13-acetate (PMA). In addition, sVLDLR-N shedding was suppressed under hypoxia. Further, plasma levels of sVLDLR-N were reduced in both type 1 and type 2 diabetic mouse models. We concluded that VLDLRI and VLDLRII had differential roles in regulating Wnt signaling and that decreased plasma levels of sVLDLR-N may contribute to Wnt signaling activation in diabetic complications. Our study reveals a novel mechanism for intercellular regulation of Wnt signaling through VLDLR ectodomain shedding. PMID:27528615

  1. Regulation of chondrogenesis by protein kinase C: Emerging new roles in calcium signalling.

    PubMed

    Matta, Csaba; Mobasheri, Ali

    2014-05-01

    During chondrogenesis, complex intracellular signalling pathways regulate an intricate series of events including condensation of chondroprogenitor cells and nodule formation followed by chondrogenic differentiation. Reversible phosphorylation of key target proteins is of particular importance during this process. Among protein kinases known to be involved in these pathways, protein kinase C (PKC) subtypes play pivotal roles. However, the precise function of PKC isoenzymes during chondrogenesis and in mature articular chondrocytes is still largely unclear. In this review, we provide a historical overview of how the concept of PKC-mediated chondrogenesis has evolved, starting from the first discoveries of PKC isoform expression and activity. Signalling components upstream and downstream of PKC, leading to the stimulation of chondrogenic differentiation, are also discussed. Although it is evident that we are only at the beginning to understand what roles are assigned to PKC subtypes during chondrogenesis and how they are regulated, there are many yet unexplored aspects in this area. There is evidence that calcium signalling is a central regulator in differentiating chondroprogenitors; still, clear links between intracellular calcium signalling and prototypical calcium-dependent PKC subtypes such as PKCalpha have not been established. Exploiting putative connections and shedding more light on how exactly PKC signalling pathways influence cartilage formation should open new perspectives for a better understanding of healthy as well as pathological differentiation processes of chondrocytes, and may also lead to the development of novel therapeutic approaches. PMID:24440668

  2. Fibroblast growth factor receptor signaling in oligodendrocytes regulates myelin sheath thickness.

    PubMed

    Furusho, Miki; Dupree, Jeffrey L; Nave, Klaus-Armin; Bansal, Rashmi

    2012-05-01

    Formation of the CNS white matter is developmentally tightly regulated, but the molecules and mechanisms of myelination control in the postnatal CNS are poorly understood. Here, we show that myelin growth is controlled by fibroblast growth factor (FGF) signaling, originally identified as a proliferative signal for oligodendrocyte precursor cells (OPCs) in vitro. We created two lines of mice lacking both FGF receptor 1 (Fgfr1) and Fgfr2 in oligodendrocyte-lineage cells but found that in these mice OPC proliferation and differentiation were unaffected. In addition, axonal ensheathment and the initiation of myelination were on time. However, the rapid growth of CNS myelin, normally occurring in the second postnatal week, was strongly inhibited. Throughout adulthood, the myelin sheath remained disproportionately thin relative to the axon caliber. In adult mice, mutant oligodendrocytes were normal in number, whereas the transcription of major myelin genes was reduced. This FGF receptor-mediated stimulation of mature oligodendrocytes could also be modeled in vitro, demonstrating that enhanced expansion of oligodendroglial processes requires signaling by extracellular signal regulated kinase-1 and -2 (Erk1/2), downstream mediators of mitogen-activated protein kinase (MAPK). In vivo, Erk1/2-MAPK activity was reduced in the hypomyelinated CNS of Fgfr1/Fgfr2 mutant mice. These studies reveal a previously unrecognized function of FGF receptor signaling in oligodendrocytes that contributes to the regulation of myelin sheath thickness and that uncouples the initiation of ensheathment from the later phase of continued myelin growth.

  3. Structure of the response regulator RPA3017 involved in red-light signaling in Rhodopseudomonas palustris

    PubMed Central

    Yang, Xuefei; Zeng, Xiaoli; Moffat, Keith; Yang, Xiaojing

    2015-01-01

    Two-component signal transduction is the major signaling mechanism that enables bacteria to survive and thrive in complex environmental conditions. The photosynthetic bacterium R. palustris employs two tandem bacteriophytochromes, RpBphP2 and RpBphP3, to perceive red-light signals that regulate the synthesis of light-harvesting complexes under low-light conditions. Both RpBphP2 and RpBphP3 are photosensory histidine kinases coupled to the same response regulator RPA3017. Together, they constitute a two-component system that converts a red-light signal into a biological signal. In this work, the crystal structure of RPA3017 in the unphosphorylated form at 1.9 Å resolution is presented. This structure reveals a tightly associated dimer arrangement that is conserved among phytochrome-related response regulators. The conserved active-site architecture provides structural insight into the phosphotransfer reaction between RpBphP2/RpBphP3 and RPA3017. Based on structural comparisons and homology modeling, how specific recognition between RpBphP2/RpBphP3 and RPA3017 is achieved at the molecular level is further explored. PMID:26457509

  4. Crosstalk between Akt/GSK3β signaling and dynamin-1 regulates clathrin-mediated endocytosis.

    PubMed

    Reis, Carlos R; Chen, Ping-Hung; Srinivasan, Saipraveen; Aguet, François; Mettlen, Marcel; Schmid, Sandra L

    2015-08-13

    Clathrin-mediated endocytosis (CME) regulates signaling from the plasma membrane. Analysis of clathrin-coated pit (CCP) dynamics led us to propose the existence of a rate-limiting, regulatory step(s) that monitor the fidelity of early stages in CCP maturation. Here we show that nascent endocytic vesicles formed in mutant cells displaying rapid, dysregulated CME are defective in early endosomal trafficking, maturation and acidification, confirming the importance of this "checkpoint." Dysregulated CME also alters EGF receptor signaling and leads to constitutive activation of the protein kinase Akt. Dynamin-1, which was thought to be neuron specific, is activated by the Akt/GSK3β signaling cascade in non-neuronal cells to trigger rapid, dysregulated CME. Acute activation of dynamin-1 in RPE cells by inhibition of GSK3β accelerates CME, alters CCP dynamics and, unexpectedly, increases the rate of CCP initiation. CRISPR-Cas9n-mediated knockout and reconstitution studies establish that dynamin-1 is activated by Akt/GSK3β signaling in H1299 non-small lung cancer cells. These findings provide direct evidence for an isoform-specific role for dynamin in regulating CME and reveal a feed-forward pathway that could link signaling from cell surface receptors to the regulation of CME.

  5. Orbital experiment ``Gravisensor'': phototropic reactions of the moss Physcomitrella patens to different types of LED lighting.

    NASA Astrophysics Data System (ADS)

    Nikitin, Vladimir; Berkovich, Yuliy A.; Skripnikov, Alexander; Zyablova, Natalya; Mukhoyan, Makar; Emelianov, Grigory

    the light source was maximal (about 90º) with white lighting, and somewhat smaller with 730 nm. Under red and blue light the angle of phototropic inclination was difficult to measure due to poor growth of the shoots.In ground control the growth rate under blue light was several times higher, than in flight and final degree of inclination of the shoot tip came to about 10º. In ground control under side red lighting the growth was weak, while demonstrating a pronounced phototropic bend of 90º. In ground control in the dark a vertical growth of one shoot was observed with the rate somewhat larger, than in flight variant. Data on the dynamics of inclination of experimental and control plants are presented. The acquired data will be used to analyse the mechanisms of phototropic growth changes of moss shoots.

  6. Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways dependent on Rho GTPases

    PubMed Central

    Yamauchi, Junji; Chan, Jonah R.; Shooter, Eric M.

    2004-01-01

    Neurotrophins are recognized widely as essential factors in the developing nervous system. Previously, we demonstrated that neurotrophin 3 activation of TrkC inhibits Schwann cell myelination and enhances the migration of primary Schwann cells through the signaling pathway regulated by the Rho GTPases Rac1 and Cdc42. Here, we show that neurotrophins activate divergent signaling pathways to promote or inhibit Schwann cell migration. Endogenous brain-derived neurotrophic factor acting through p75NTR inhibits Schwann cell migration dramatically by Src kinase-dependent activation of the guanine-nucleotide exchange factor Vav2 and RhoA. Together, these results suggest that neurotrophins and their receptors differentially regulate Schwann cell migration through the signaling pathways that depend on Rho GTPases. PMID:15161978

  7. Multifaceted signaling regulators of chondrogenesis: Implications in cartilage regeneration and tissue engineering

    PubMed Central

    Green, Jordan D.; Tollemar, Viktor; Dougherty, Mark; Yan, Zhengjian; Yin, Liangjun; Ye, Jixing; Collier, Zachary; Mohammed, Maryam K.; Haydon, Rex C.; Luu, Hue H.; Kang, Richard; Lee, Michael J.; Ho, Sherwin H.; He, Tong-Chuan; Shi, Lewis L.; Athiviraham, Aravind

    2015-01-01

    Defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity and avascular nature. Current surgical treatment options do not ensure consistent regeneration of hyaline cartilage in favor of fibrous tissue. Here, we review the current understanding of the most important biological regulators of chondrogenesis and their interactions, to provide insight into potential applications for cartilage tissue engineering. These include various signaling pathways, including: fibroblast growth factors (FGFs), transforming growth factor β (TGF-β)/bone morphogenic proteins (BMPs), Wnt/β-catenin, Hedgehog, Notch, hypoxia, and angiogenic signaling pathways. Transcriptional and epigenetic regulation of chondrogenesis will also be discussed. Advances in our understanding of these signaling pathways have led to promising advances in cartilage regeneration and tissue engineering. PMID:26835506

  8. Natural Guided Genome Engineering Reveals Transcriptional Regulators Controlling Quorum-Sensing Signal Degradation

    PubMed Central

    Mothe, Nicolas; Velours, Christophe; Legrand, Pierre; Moréra, Solange; Faure, Denis

    2015-01-01

    Quorum-quenching (QQ) are natural or engineered processes disrupting the quorum-sensing (QS) signalling which controls virulence and persistence (e.g. biofilm) in numerous bacteria. QQ involves different enzymes including lactonases, amidases, oxidases and reductases which degrade the QS molecules such as N-acylhomoserine lactones (NAHL). Rhodococcus erythropolis known to efficiently degrade NAHL is proposed as a biocontrol agent and a reservoir of QQ-enzymes for biotechnology. In R. erythropolis, regulation of QQ-enzymes remains unclear. In this work, we performed genome engineering on R. erythropolis, which is recalcitrant to reverse genetics, in order to investigate regulation of QQ-enzymes at a molecular and structural level with the aim to improve the QQ activity. Deep-sequencing of the R. erythropolis enhanced variants allowed identification of a punctual mutation in a key-transcriptional factor QsdR (Quorum sensing degradation Regulation) which regulates the sole QQ-lactonase QsdA identified so far. Using biophysical and structural studies on QsdR, we demonstrate that QQ activity can be improved by modifying the regulation of QQ-enzymes degrading QS signal. This modification requiring the change of only one amino-acid in a transcriptional factor leads to an enhanced R. erythropolis in which the QS-signal degradation pathway is strongly activated. PMID:26554837

  9. RRAD inhibits the Warburg effect through negative regulation of the NF-κB signaling

    PubMed Central

    Wu, Rui; Lin, Meihua; Liang, Yingjian; Liu, Jia; Wang, Xiaolong; Yang, Bo; Feng, Zhaohui

    2015-01-01

    Cancer cells preferentially use aerobic glycolysis to meet their increased energetic and biosynthetic demands, a phenomenon known as the Warburg effect. Its underlying mechanism is not fully understood. RRAD, a small GTPase, is a potential tumor suppressor in lung cancer. RRAD expression is frequently down-regulated in lung cancer, which is associated with tumor progression and poor prognosis. Recently, RRAD was reported to repress the Warburg effect, indicating that down-regulation of RRAD expression is an important mechanism contributing to the Warburg effect in lung cancer. However, the mechanism by which RRAD inhibits the Warburg effect remains unclear. Here, we found that RRAD negatively regulates the NF-κB signaling to inhibit the GLUT1 translocation and the Warburg effect in lung cancer cells. Mechanically, RRAD directly binds to the p65 subunit of the NF-κB complex and inhibits the nuclear translocation of p65, which in turn negatively regulates the NF-κB