Richer, Martin J.; Lang, Mark L.; Butler, Noah S.
2016-01-01
Recent data illustrate a key role for the transcriptional regulator Bach2 in orchestrating T cell differentiation and function. Although Bach2 has a well-described role in B cell differentiation, emerging data show that Bach2 is a prototypical member of a novel class of transcription factors that regulates transcriptional activity in T cells at super enhancers, or regions of high transcriptional activity. Accumulating data demonstrate specific roles for Bach2 in favoring regulatory T cell generation, restraining effector T cell differentiation and potentiating memory T cell development. Evidence suggests that Bach2 regulates various facets of T cell function by repressing other key transcriptional regulator such as Blimp-1. This review examines our current understanding of the role of Bach2 in T cell function and highlights the growing evidence that this transcriptional repressor functions as a key regulator involved in maintenance of T cell quiescence, T cell subset differentiation and memory T cell generation. PMID:27496973
Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function
Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua
2015-01-01
SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609
Silberstein, Lev; Goncalves, Kevin A; Kharchenko, Peter V; Turcotte, Raphael; Kfoury, Youmna; Mercier, Francois; Baryawno, Ninib; Severe, Nicolas; Bachand, Jacqueline; Spencer, Joel A; Papazian, Ani; Lee, Dongjun; Chitteti, Brahmananda Reddy; Srour, Edward F; Hoggatt, Jonathan; Tate, Tiffany; Lo Celso, Cristina; Ono, Noriaki; Nutt, Stephen; Heino, Jyrki; Sipilä, Kalle; Shioda, Toshihiro; Osawa, Masatake; Lin, Charles P; Hu, Guo-Fu; Scadden, David T
2016-10-06
Physiological stem cell function is regulated by secreted factors produced by niche cells. In this study, we describe an unbiased approach based on the differential single-cell gene expression analysis of mesenchymal osteolineage cells close to, and further removed from, hematopoietic stem/progenitor cells (HSPCs) to identify candidate niche factors. Mesenchymal cells displayed distinct molecular profiles based on their relative location. We functionally examined, among the genes that were preferentially expressed in proximal cells, three secreted or cell-surface molecules not previously connected to HSPC biology-the secreted RNase angiogenin, the cytokine IL18, and the adhesion molecule Embigin-and discovered that all of these factors are HSPC quiescence regulators. Therefore, our proximity-based differential single-cell approach reveals molecular heterogeneity within niche cells and can be used to identify novel extrinsic stem/progenitor cell regulators. Similar approaches could also be applied to other stem cell/niche pairs to advance the understanding of microenvironmental regulation of stem cell function. Copyright © 2016 Elsevier Inc. All rights reserved.
Fu, Shin-Huei; Yeh, Li-Tzu; Chu, Chin-Chen; Yen, B Lin-Ju; Sytwu, Huey-Kang
2017-07-21
B lymphocyte-induced maturation protein-1 (Blimp-1) serves as a master regulator of the development and function of antibody-producing B cells. Given that its function in T lymphocytes has been identified within the past decade, we review recent findings with emphasis on its role in coordinated control of gene expression during the development, differentiation, and function of T cells. Expression of Blimp-1 is mainly confined to activated T cells and is essential for the production of interleukin (IL)-10 by a subset of forkhead box (Fox)p3 + regulatory T cells with an effector phenotype. Blimp-1 is also required to induce cell elimination in the thymus and critically modulates peripheral T cell activation and proliferation. In addition, Blimp-1 promotes T helper (Th) 2 lineage commitment and limits Th1, Th17 and follicular helper T cell differentiation. Furthermore, Blimp-1 coordinates with other transcription factors to regulate expression of IL-2, IL-21 and IL-10 in effector T lymphocytes. In CD8 + T cells, Blimp-1 expression is distinct in heterogeneous populations at the stages of clonal expansion, differentiation, contraction and memory formation when they encounter antigens. Moreover, Blimp-1 plays a fundamental role in coordinating cytokine receptor signaling networks and transcriptional programs to regulate diverse aspects of the formation and function of effector and memory CD8 + T cells and their exhaustion. Blimp-1 also functions as a gatekeeper of T cell activation and suppression to prevent or dampen autoimmune disease, antiviral responses and antitumor immunity. In this review, we discuss the emerging roles of Blimp-1 in the complex regulation of gene networks that regulate the destiny and effector function of T cells and provide a Blimp-1-dominated transcriptional framework for T lymphocyte homeostasis.
Regulation of NK92-MI cell cytotoxicity by substance P.
Fu, W X; Qin, B; Zhou, A P; Yu, Q Y; Huang, Q J; Liang, Z F
2011-08-01
The neuropeptide substance P (SP) can regulate a number of immunological functions in vitro and in vivo and may regulate natural killer (NK) cell activity. Here, we investigated whether SP has a role in regulating NK92-MI cell function in vitro, and how it influences NK cell activity. We found that SP dose dependently increased the cytotoxicity of NK92-MI cells and had a maximal effect at a concentration of 10(-12) and 10(-10) m. Furthermore, the expression of cytotoxic-associated molecules (perforin, granzyme) and activating receptor NKp46 [a member of natural cytotoxicity receptors (NCRs)] was observed to be upregulated by SP at optimal concentration, at which SP enhanced the cytotoxicity of NK92-MI cells. Neurokinin-1 receptor (NK-1R), a functional receptor of SP, was found on NK92-MI cells, and the observed effects of SP on NK92-MI cells could be more partially blocked by an NK-1R antagonist. Our data suggest that SP induces NK92-MI cell cytotoxicity by directly increasing the expression of cytotoxic granules and upregulates NK92-MI cell receptor-mediated functions indirectly. Thus, SP may regulate NK cell function mainly through NK-1R. © 2011 The Authors. Scandinavian Journal of Immunology © 2011 Blackwell Publishing Ltd.
Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets.
Muller, Laurent; Mitsuhashi, Masato; Simms, Patricia; Gooding, William E; Whiteside, Theresa L
2016-02-04
Tumor cell-derived exosomes (TEX) suppress functions of immune cells. Here, changes in the gene profiles of primary human T lymphocytes exposed in vitro to exosomes were evaluated. CD4(+) Tconv, CD8(+) T or CD4(+) CD39(+) Treg were isolated from normal donors' peripheral blood and co-incubated with TEX or exosomes isolated from supernatants of cultured dendritic cells (DEX). Expression levels of 24-27 immune response-related genes in these T cells were quantified by qRT-PCR. In activated T cells, TEX and DEX up-regulated mRNA expression levels of multiple genes. Multifactorial data analysis of ΔCt values identified T cell activation and the immune cell type, but not exosome source, as factors regulating gene expression by exosomes. Treg were more sensitive to TEX-mediated effects than other T cell subsets. In Treg, TEX-mediated down-regulation of genes regulating the adenosine pathway translated into high expression of CD39 and increased adenosine production. TEX also induced up-regulation of inhibitory genes in CD4(+) Tconv, which translated into a loss of CD69 on their surface and a functional decline. Exosomes are not internalized by T cells, but signals they carry and deliver to cell surface receptors modulate gene expression and functions of human T lymphocytes.
Regulation of vesicular trafficking and leukocyte function by Rab27 GTPases and their effectors
Catz, Sergio Daniel
2013-01-01
The Rab27 family of GTPases regulates the efficiency and specificity of exocytosis in hematopoietic cells, including neutrophils, CTLs, NK cells, and mast cells. However, the mechanisms regulated by Rab27 GTPases are cell-specific, as they depend on the differential expression and function of particular effector molecules that are recruited by the GTPases. In addition, Rab27 GTPases participate in multiple steps of the regulation of the secretory process, including priming, tethering, docking, and fusion through sequential interaction with multiple effector molecules. Finally, recent reports suggest that Rab27 GTPases and their effectors regulate vesicular trafficking mechanisms other than exocytosis, including endocytosis and phagocytosis. This review focuses on the latest discoveries on the function of Rab27 GTPases and their effectors Munc13-4 and Slp1 in neutrophil function comparatively to their functions in other leukocytes. PMID:23378593
Xu, Huanbin; Wang, Xiaolei; Pahar, Bapi; Alvarez, Xavier; Rasmussen, Kelsi K.; Lackner, Andrew A.; Veazey, Ronald S.
2012-01-01
The common γc subunit molecule is shared among all γc cytokines and clearly involved in T-cell function, but its role in HIV infection and immunity is not well understood. Here, we examined expression and function of γc on T cells during SIV infection in Rhesus macaques. Surface γc distribution was differentially expressed on CD4+ and CD8+ T cells, and CD4+ naive/memory cell populations in various lymphoid tissues of normal macaques. However, surface γc expression was rapidly and significantly down-regulated on T cells in acute infection with pathogenic SIV, compared to infection with a less virulent SHIV or controls and did not recover on CD8+ T cells in the chronic stage. Moreover, the peripheral and CD4+T cell loss was inversely correlated with γc+ CD8+ T cells in individual tissues. γc+ T cells were mainly functional as evidenced by higher cytokine secretion and proliferative capacity. Further in vitro experiments found that surface γc expression could be down-regulated following high level of IL-7 treatment by both internalization and shedding. Down-regulation of γc during early HIV/SIV infection may inhibit T-cell function, particularly of CD8+ T cells, and, may be linked with immune failure and loss of viral containment.—Xu, H., Wang, X., Pahar, B., Alvarez, X., Rasmussen, K. K., Lackner, A. A., Veazey, R. S. Rapid down-regulation of γc on T cells in early SIV infection correlates with impairment of T-cell function. PMID:22375017
Solana, Jordi; Irimia, Manuel; Ayoub, Salah; Orejuela, Marta Rodriguez; Zywitza, Vera; Jens, Marvin; Tapial, Javier; Ray, Debashish; Morris, Quaid; Hughes, Timothy R; Blencowe, Benjamin J; Rajewsky, Nikolaus
2016-01-01
In contrast to transcriptional regulation, the function of alternative splicing (AS) in stem cells is poorly understood. In mammals, MBNL proteins negatively regulate an exon program specific of embryonic stem cells; however, little is known about the in vivo significance of this regulation. We studied AS in a powerful in vivo model for stem cell biology, the planarian Schmidtea mediterranea. We discover a conserved AS program comprising hundreds of alternative exons, microexons and introns that is differentially regulated in planarian stem cells, and comprehensively identify its regulators. We show that functional antagonism between CELF and MBNL factors directly controls stem cell-specific AS in planarians, placing the origin of this regulatory mechanism at the base of Bilaterians. Knockdown of CELF or MBNL factors lead to abnormal regenerative capacities by affecting self-renewal and differentiation sets of genes, respectively. These results highlight the importance of AS interactions in stem cell regulation across metazoans. DOI: http://dx.doi.org/10.7554/eLife.16797.001 PMID:27502555
Suenaga, Tadahiro; Arase, Hisashi; Yamasaki, Sho; Kohno, Masayuki; Yokosuka, Tadashi; Takeuchi, Arata; Hattori, Takamichi; Saito, Takashi
2007-11-01
Lymphocyte proliferation is regulated by signals through antigen receptors, co-stimulatory receptors, and other positive and negative modulators. Several membrane tetraspanning molecules are also involved in the regulation of lymphocyte growth and death. We cloned a new B cell-specific tetraspanning (BTS) membrane molecule, which is similar to CD20 in terms of expression, structure and function. BTS is specifically expressed in the B cell line and its expression is increased after the pre-B cell stage. BTS is expressed in intracellular granules and on the cell surface. Overexpression of BTS in immature B cell lines induces growth retardation through inhibition of cell cycle progression and cell size increase without inducing apoptosis. This inhibitory function is mediated predominantly by the N terminus of BTS. The development of mature B cells is inhibited in transgenic mice expressing BTS, suggesting that BTS is involved in the in vivo regulation of B cells. These results indicate that BTS plays a role in the regulation of cell division and B cell growth.
An Arabidopsis Gene Regulatory Network for Secondary Cell Wall Synthesis
Taylor-Teeples, M; Lin, L; de Lucas, M; Turco, G; Toal, TW; Gaudinier, A; Young, NF; Trabucco, GM; Veling, MT; Lamothe, R; Handakumbura, PP; Xiong, G; Wang, C; Corwin, J; Tsoukalas, A; Zhang, L; Ware, D; Pauly, M; Kliebenstein, DJ; Dehesh, K; Tagkopoulos, I; Breton, G; Pruneda-Paz, JL; Ahnert, SE; Kay, SA; Hazen, SP; Brady, SM
2014-01-01
Summary The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. Here, we present a protein-DNA network between Arabidopsis transcription factors and secondary cell wall metabolic genes with gene expression regulated by a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. These interactions will serve as a foundation for understanding the regulation of a complex, integral plant component. PMID:25533953
Liu, Yajie; Ye, Wei; Li, Beibei; Zhou, Xiaojing; Cui, Yuhai; Running, Mark P; Liu, Kede
2012-08-08
Cell division and cell fate decisions regulate organ formation and function in plant growth and development. It is still unclear how specific meristematic regulatory networks operate with the cell cycle machinery to translate stem cell identity and maintenance into cellular behavior. In this study, we address these questions by analysis of a shoot apex defective mutant, namely xcm9. Phenotypic analysis of the xcm9 mutant reveals concomitant premature termination of floral shoots with frequent bifurcation of the shoot apices, stems, and flowers. Microscopic observations show irregular cell organization in shoot apical meristems of xcm9. Positional cloning revealed that xcm9 is a loss of function allele of the CCS52A2/FZR1 gene, which has previously been implicated in root development. Expression analysis demonstrated that CCS52A2 maintains a higher transcriptional expression level in actively dividing tissue. Genetic studies indicated that the CCS52A2 gene functions together with WUSCHEL (WUS) and CLAVATA3 (CLV3) in regulating the development of the shoot meristem, and also contributes to this regulation together with the chromatin remodeling pathway. In addition, fewer xcm9 cells express CYCLIN B1:1, showing that cell cycle progression is disrupted in the mutant. We propose that the CCS52A2 gene is a mediator that functions together with meristematic genes to regulate meristem organization, and cross-functions with chromatin regulators in cell cycle progression during shoot apical meristem development.
2012-01-01
Background Midkine is a small heparin binding growth factor expressed in numerous tissues during development. The unique midkine gene in mammals has two paralogs in zebrafish: midkine-a (mdka) and midkine-b (mdkb). In the zebrafish retina, during both larval development and adult photoreceptor regeneration, mdka is expressed in retinal stem and progenitor cells and functions as a molecular component of the retina’s stem cell niche. In this study, loss-of-function and conditional overexpression were used to investigate the function of Mdka in the retina of the embryonic zebrafish. Results The results show that during early retinal development Mdka functions to regulate cell cycle kinetics. Following targeted knockdown of Mdka synthesis, retinal progenitors cycle more slowly, and this results in microphthalmia, a diminished rate of cell cycle exit and a temporal delay of cell cycle exit and neuronal differentiation. In contrast, Mdka overexpression results in acceleration of the cell cycle and retinal overgrowth. Mdka gain-of-function, however, does not temporally advance cell cycle exit. Experiments to identify a potential Mdka signaling pathway show that Mdka functions upstream of the HLH regulatory protein, Id2a. Gene expression analysis shows Mdka regulates id2a expression, and co-injection of Mdka morpholinos and id2a mRNA rescues the Mdka loss-of-function phenotype. Conclusions These data show that in zebrafish, Mdka resides in a shared Id2a pathway to regulate cell cycle kinetics in retinal progenitors. This is the first study to demonstrate the function of Midkine during retinal development and adds Midkine to the list of growth factors that transcriptionally regulate Id proteins. PMID:23111152
Luo, Jing; Uribe, Rosa A; Hayton, Sarah; Calinescu, Anda-Alexandra; Gross, Jeffrey M; Hitchcock, Peter F
2012-10-30
Midkine is a small heparin binding growth factor expressed in numerous tissues during development. The unique midkine gene in mammals has two paralogs in zebrafish: midkine-a (mdka) and midkine-b (mdkb). In the zebrafish retina, during both larval development and adult photoreceptor regeneration, mdka is expressed in retinal stem and progenitor cells and functions as a molecular component of the retina's stem cell niche. In this study, loss-of-function and conditional overexpression were used to investigate the function of Mdka in the retina of the embryonic zebrafish. The results show that during early retinal development Mdka functions to regulate cell cycle kinetics. Following targeted knockdown of Mdka synthesis, retinal progenitors cycle more slowly, and this results in microphthalmia, a diminished rate of cell cycle exit and a temporal delay of cell cycle exit and neuronal differentiation. In contrast, Mdka overexpression results in acceleration of the cell cycle and retinal overgrowth. Mdka gain-of-function, however, does not temporally advance cell cycle exit. Experiments to identify a potential Mdka signaling pathway show that Mdka functions upstream of the HLH regulatory protein, Id2a. Gene expression analysis shows Mdka regulates id2a expression, and co-injection of Mdka morpholinos and id2a mRNA rescues the Mdka loss-of-function phenotype. These data show that in zebrafish, Mdka resides in a shared Id2a pathway to regulate cell cycle kinetics in retinal progenitors. This is the first study to demonstrate the function of Midkine during retinal development and adds Midkine to the list of growth factors that transcriptionally regulate Id proteins.
Yang, Xue; Xiong, Qian; Wu, Ying; Li, Siting; Ge, Feng
2017-10-06
Circular RNAs (circRNAs), a class of widespread endogenous RNAs, play crucial roles in diverse biological processes and are potential biomarkers in diverse human diseases and cancers. Cerebellar-degeneration-related protein 1 antisense RNA (CDR1as), an oncogenic circRNA, is involved in human tumorigenesis and is dysregulated in hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying CDR1as functions in HCC remain unclear. Here we explored the functions of CDR1as and searched for CDR1as-regulated proteins in HCC cells. A quantitative proteomics strategy was employed to globally identify CDR1as-regulated proteins in HCC cells. In total, we identified 330 differentially expressed proteins (DEPs) upon enhanced CDR1as expression in HepG2 cells, indicating that they could be proteins regulated by CDR1as. Bioinformatic analysis revealed that many DEPs were involved in cell proliferation and the cell cycle. Further functional studies of epidermal growth factor receptor (EGFR) found that CDR1as exerts its effects on cell proliferation at least in part through the regulation of EGFR expression. We further confirmed that CDR1as could inhibit the expression of microRNA-7 (miR-7). EGFR is a validated target of miR-7; therefore, CDR1as may exert its function by regulating EGFR expression via targeting miR-7 in HCC cells. Taken together, we revealed novel functions and underlying mechanisms of CDR1as in HCC cells. This study serves as the first proteome-wide analysis of a circRNA-regulated protein in cells and provides a reliable and highly efficient method for globally identifying circRNA-regulated proteins.
Sharkia, Israa; Hadad Erlich, Tal; Landolina, Nadine; Assayag, Miri; Motzik, Alex; Rachmin, Inbal; Kay, Gillian; Porat, Ziv; Tshori, Sagi; Berkman, Neville; Levi-Schaffer, Francesca; Razin, Ehud
2017-07-01
We have recently observed that oxidative phosphorylation-mediated ATP production is essential for mast cell function. Pyruvate dehydrogenase (PDH) is the main regulator of the Krebs cycle and is located upstream of the electron transport chain. However, the role of PDH in mast cell function has not been described. Microphthalmia transcription factor (MITF) regulates the development, number, and function of mast cells. Localization of MITF to the mitochondria and its interaction with mitochondrial proteins has not been explored. We sought to explore the role played by PDH in mast cell exocytosis and to determine whether MITF is localized in the mitochondria and involved in regulation of PDH activity. Experiments were performed in vitro by using human and mouse mast cells, as well as rat basophil leukemia cells, and in vivo in mice. The effect of PDH inhibition on mast cell function was examined. PDH interaction with MITF was measured before and after immunologic activation. Furthermore, mitochondrial localization of MITF and its effect on PDH activity were determined. PDH is essential for immunologically mediated degranulation of mast cells. After activation, PDH is serine dephosphorylated. In addition, for the first time, we show that MITF is partially located in the mitochondria and interacts with PDH. This interaction is dependent on the phosphorylation state of PDH. Furthermore, mitochondrial MITF regulates PDH activity. The association of mitochondrial MITF with PDH emerges as an important regulator of mast cell function. Our findings indicate that PDH could arise as a new target for the manipulation of allergic diseases. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling*♦
Walliser, Claudia; Tron, Kyrylo; Clauss, Karen; Gutman, Orit; Kobitski, Andrei Yu.; Retlich, Michael; Schade, Anja; Röcker, Carlheinz; Henis, Yoav I.; Nienhaus, G. Ulrich; Gierschik, Peter
2015-01-01
The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca2+. The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca2+ and regulation of Ca2+-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca2+ release from intracellular stores; (iii) Ca2+ entry from the extracellular compartment; and (iv) nuclear translocation of the Ca2+-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca2+ signaling. PMID:25903139
Bai, Aiping; Guo, Yuan
2017-01-01
Acid sphingomyelinase (ASM) is a lipid hydrolase. By generating ceramide, ASM had been reported to have an important role in regulating immune cell functions inclusive of macrophages, NK cells, and CD8+ T cells, whereas the role of ASM bioactivity in regulation of human CD4+ T-cell functions remained uncertain. Recent studies have provided novel findings in this field. Upon stimulation of CD3 and/or CD28, ASM-dependent ceramide signaling mediates intracellular downstream signal cascades of CD3 and CD28, and regulates CD4+ T-cell activation and proliferation. Meanwhile, CD39 and CD161 have direct interactions with ASM, which mediates downstream signals inclusive of STAT3 and mTOR and thus defines human Th17 cells. Intriguingly, ASM mediates Th1 responses, but negatively regulates Treg functions. In this review, we summarized the pivotal roles of ASM in regulation of human CD4+ T-cell activation and responses. ASM/sphingolipid signaling may be a novel target for the therapy of human autoimmune diseases. PMID:28749465
Phosphodiesterases regulate airway smooth muscle function in health and disease.
Krymskaya, Vera P; Panettieri, Reynold A
2007-01-01
On the basis of structure, regulation, and kinetic properties, phosphodiesterases (PDEs) represent a superfamily of enzymes divided into 11 subfamilies that catalyze cytosolic levels of 3',5'-cyclic adenosine monophosphate (cAMP) or 3',5'-cyclic guanosine monophosphate (cGMP) to 5'-AMP or 5'-GMP, respectively. PDE4 represents the major PDE expressed in inflammatory cells as well as airway smooth muscle (ASM), and selective PDE4 inhibitors provide a broad spectrum of anti-inflammatory effects such as abrogating cytokine and chemokine release from inflammatory cells and inhibiting inflammatory cell trafficking. Due to cell- and tissue-specific gene expression and regulation, PDEs modulate unique organ-based functions. New tools or compounds that selectively inhibit PDE subfamilies and genetically engineered mice deficient in selective isoforms have greatly enhanced our understanding of PDE function in airway inflammation and resident cell function. This chapter will focus on recent advances in our understanding of the role of PDE in regulating ASM function.
Zhu, Lu; Almaça, Joana; Dadi, Prasanna K; Hong, Hao; Sakamoto, Wataru; Rossi, Mario; Lee, Regina J; Vierra, Nicholas C; Lu, Huiyan; Cui, Yinghong; McMillin, Sara M; Perry, Nicole A; Gurevich, Vsevolod V; Lee, Amy; Kuo, Bryan; Leapman, Richard D; Matschinsky, Franz M; Doliba, Nicolai M; Urs, Nikhil M; Caron, Marc G; Jacobson, David A; Caicedo, Alejandro; Wess, Jürgen
2017-02-01
β-arrestins are critical signalling molecules that regulate many fundamental physiological functions including the maintenance of euglycemia and peripheral insulin sensitivity. Here we show that inactivation of the β-arrestin-2 gene, barr2, in β-cells of adult mice greatly impairs insulin release and glucose tolerance in mice fed with a calorie-rich diet. Both glucose and KCl-induced insulin secretion and calcium responses were profoundly reduced in β-arrestin-2 (barr2) deficient β-cells. In human β-cells, barr2 knockdown abolished glucose-induced insulin secretion. We also show that the presence of barr2 is essential for proper CAMKII function in β-cells. Importantly, overexpression of barr2 in β-cells greatly ameliorates the metabolic deficits displayed by mice consuming a high-fat diet. Thus, our data identify barr2 as an important regulator of β-cell function, which may serve as a new target to improve β-cell function.
AIRE is a critical spindle-associated protein in embryonic stem cells
Gu, Bin; Lambert, Jean-Philippe; Cockburn, Katie; Gingras, Anne-Claude; Rossant, Janet
2017-01-01
Embryonic stem (ES) cells go though embryo-like cell cycles regulated by specialized molecular mechanisms. However, it is not known whether there are ES cell-specific mechanisms regulating mitotic fidelity. Here we showed that Autoimmune Regulator (Aire), a transcription coordinator involved in immune tolerance processes, is a critical spindle-associated protein in mouse ES(mES) cells. BioID analysis showed that AIRE associates with spindle-associated proteins in mES cells. Loss of function analysis revealed that Aire was important for centrosome number regulation and spindle pole integrity specifically in mES cells. We also identified the c-terminal LESLL motif as a critical motif for AIRE’s mitotic function. Combined maternal and zygotic knockout further revealed Aire’s critical functions for spindle assembly in preimplantation embryos. These results uncovered a previously unappreciated function for Aire and provide new insights into the biology of stem cell proliferation and potential new angles to understand fertility defects in humans carrying Aire mutations. DOI: http://dx.doi.org/10.7554/eLife.28131.001 PMID:28742026
Shen, Chong; Meng, Qin; Zhang, Guoliang
2013-08-01
Tissue engineering devices as in vitro cell culture systems in scaffolds has encountered the bottleneck due to their much lower cell functions than real tissues/organs in vivo. Such situation has been improved in some extent by mimicking the cell microenvironments in vivo from either chemical or physical ways. However, microenvironmental curvature, commonly seen in real tissues/organs, has never been manipulated to regulate the cell performance in vitro. In this regard, this paper fabricated polysulfone membranes with or without polyethylene glycol modification to investigate the impact of curvature on two renal tubular cells. Regardless the varying membrane curvatures among hollow fiber membranes of different diameters and flat membrane of zero curvature, both renal cells could well attach at 4 h of seeding and form similar confluent layers at 6 days on each membrane. Nevertheless, the renal cells on hollow fibers, though showing confluent morphology as those on flat membranes, expressed higher renal functions and, moreover, the renal functions significantly increased with the membrane curvature among hollow fibers. Such upregulation on functions was unassociated with mass transport barrier of hollow fibers, because the cultures on lengthwise cut hollow fibers without mass transfer barrier showed same curvature effect on renal functions as whole hollow fibers. It could be proposed that the curvature of hollow fiber membrane approaching to the large curvature in kidney tubules increased the mechanical stress in the renal cells and thus might up-regulate the renal cell functions. In conclusion, the increase of substrate curvature could up-regulate the cell functions without altering the confluent cell morphology and this finding will facilitate the design of functional tissue engineering devices. Copyright © 2013 Wiley Periodicals, Inc.
Xu, Huanbin; Wang, Xiaolei; Pahar, Bapi; Alvarez, Xavier; Rasmussen, Kelsi K; Lackner, Andrew A; Veazey, Ronald S
2012-06-01
The common γ(c) subunit molecule is shared among all γ(c) cytokines and clearly involved in T-cell function, but its role in HIV infection and immunity is not well understood. Here, we examined expression and function of γ(c) on T cells during SIV infection in Rhesus macaques. Surface γ(c) distribution was differentially expressed on CD4(+) and CD8(+) T cells, and CD4(+) naive/memory cell populations in various lymphoid tissues of normal macaques. However, surface γ(c) expression was rapidly and significantly down-regulated on T cells in acute infection with pathogenic SIV, compared to infection with a less virulent SHIV or controls and did not recover on CD8(+) T cells in the chronic stage. Moreover, the peripheral and CD4(+)T cell loss was inversely correlated with γ(c)(+) CD8(+) T cells in individual tissues. γ(c)(+) T cells were mainly functional as evidenced by higher cytokine secretion and proliferative capacity. Further in vitro experiments found that surface γ(c) expression could be down-regulated following high level of IL-7 treatment by both internalization and shedding. Down-regulation of γ(c) during early HIV/SIV infection may inhibit T-cell function, particularly of CD8(+) T cells, and, may be linked with immune failure and loss of viral containment.
microRNA regulation of T-cell differentiation and function
Jeker, Lukas T.; Bluestone, Jeffrey A.
2013-01-01
Summary microRNAs (miRNAs) are emerging as key controllers of T-cell differentiation and function. Their expression is dynamically regulated by extracellular signals such as costimulation and cytokine signals. miRNAs set thresholds for gene expression and optimize protein concentrations of genetic networks. Absence of individual miRNAs can lead to severe immune dysfunction. Here we review emerging principles and provide examples of important functions exerted by miRNAs. Although our understanding of miRNA function in T-cell differentiation is still rudimentary, the available evidence leaves no doubt that these small posttranscriptional regulators are indispensable for proper functioning of the immune system. PMID:23550639
An Arabidopsis gene regulatory network for secondary cell wall synthesis
Taylor-Teeples, M.; Lin, L.; de Lucas, M.; ...
2014-12-24
The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. In this paper, we present a protein–DNA network between Arabidopsis thaliana transcription factors and secondary cell wall metabolic genes with gene expression regulated bymore » a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. Finally, these interactions will serve as a foundation for understanding the regulation of a complex, integral plant component.« less
MicroRNA-214 Promotes Apoptosis in Canine Hemangiosarcoma by Targeting the COP1-p53 Axis.
Heishima, Kazuki; Mori, Takashi; Sakai, Hiroki; Sugito, Nobuhiko; Murakami, Mami; Yamada, Nami; Akao, Yukihiro; Maruo, Kohji
2015-01-01
MicroRNA-214 regulates both angiogenic function in endothelial cells and apoptosis in various cancers. However, the regulation and function of miR-214 is unclear in canine hemangiosarcoma, which is a spontaneous model of human angiosarcoma. The expression and functional roles of miR-214 in canine hemangiosarcoma were presently explored by performing miRNA TaqMan qRT-PCR and transfecting cells with synthetic microRNA. Here, we report that miR-214 was significantly down-regulated in the cell lines used and in clinical samples of canine hemangiosarcoma. Restoration of miR-214 expression reduced cell growth and induced apoptosis in canine hemangiosarcoma cell lines through transcriptional activation of p53-regulated genes although miR-214 had a slight effect of growth inhibition on normal endothelial cells. We identified COP1, which is a critical negative regulator of p53, as a novel direct target of miR-214. COP1 was overexpressed and the specific COP1 knockdown induced apoptosis through transcriptional activation of p53-regulated genes as well as did miR-214-transfection in HSA cell lines. Furthermore, p53 knockdown abolished the miR-214-COP1-mediated apoptosis; thus, miR-214 and COP1 regulated apoptosis through controlling p53 in HSA. In conclusion, miR-214 functioned as a tumor suppressor in canine hemangiosarcoma by inducing apoptosis through recovering the function of p53. miR-214 down-regulation and COP1 overexpression is likely to contribute to tumorigenesis of HSA. Therefore, targeting miR-214-COP1-p53 axis would possibly be a novel effective strategy for treatment of canine hemangiosarcoma and capable of being applied to the development of novel therapeutics for human angiosarcoma.
Modulation of cell function by electric field: a high-resolution analysis
Taghian, T.; Narmoneva, D. A.; Kogan, A. B.
2015-01-01
Regulation of cell function by a non-thermal, physiological-level electromagnetic field has potential for vascular tissue healing therapies and advancing hybrid bioelectronic technology. We have recently demonstrated that a physiological electric field (EF) applied wirelessly can regulate intracellular signalling and cell function in a frequency-dependent manner. However, the mechanism for such regulation is not well understood. Here, we present a systematic numerical study of a cell-field interaction following cell exposure to the external EF. We use a realistic experimental environment that also recapitulates the absence of a direct electric contact between the field-sourcing electrodes and the cells or the culture medium. We identify characteristic regimes and present their classification with respect to frequency, location, and the electrical properties of the model components. The results show a striking difference in the frequency dependence of EF penetration and cell response between cells suspended in an electrolyte and cells attached to a substrate. The EF structure in the cell is strongly inhomogeneous and is sensitive to the physical properties of the cell and its environment. These findings provide insight into the mechanisms for frequency-dependent cell responses to EF that regulate cell function, which may have important implications for EF-based therapies and biotechnology development. PMID:25994294
Redox Regulation of Cell Survival
Trachootham, Dunyaporn; Lu, Weiqin; Ogasawara, Marcia A.; Valle, Nilsa Rivera-Del
2008-01-01
Abstract Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in regulation of cell survival. In general, moderate levels of ROS/RNS may function as signals to promote cell proliferation and survival, whereas severe increase of ROS/RNS can induce cell death. Under physiologic conditions, the balance between generation and elimination of ROS/RNS maintains the proper function of redox-sensitive signaling proteins. Normally, the redox homeostasis ensures that the cells respond properly to endogenous and exogenous stimuli. However, when the redox homeostasis is disturbed, oxidative stress may lead to aberrant cell death and contribute to disease development. This review focuses on the roles of key transcription factors, signal-transduction pathways, and cell-death regulators in affecting cell survival, and how the redox systems regulate the functions of these molecules. The current understanding of how disturbance in redox homeostasis may affect cell death and contribute to the development of diseases such as cancer and degenerative disorders is reviewed. We also discuss how the basic knowledge on redox regulation of cell survival can be used to develop strategies for the treatment or prevention of those diseases. Antioxid. Redox Signal. 10, 1343–1374. PMID:18522489
Dissecting engineered cell types and enhancing cell fate conversion via CellNet
Morris, Samantha A.; Cahan, Patrick; Li, Hu; Zhao, Anna M.; San Roman, Adrianna K.; Shivdasani, Ramesh A.; Collins, James J.; Daley, George Q.
2014-01-01
SUMMARY Engineering clinically relevant cells in vitro holds promise for regenerative medicine, but most protocols fail to faithfully recapitulate target cell properties. To address this, we developed CellNet, a network biology platform that determines whether engineered cells are equivalent to their target tissues, diagnoses aberrant gene regulatory networks, and prioritizes candidate transcriptional regulators to enhance engineered conversions. Using CellNet, we improved B cell to macrophage conversion, transcriptionally and functionally, by knocking down predicted B cell regulators. Analyzing conversion of fibroblasts to induced hepatocytes (iHeps), CellNet revealed an unexpected intestinal program regulated by the master regulator Cdx2. We observed long-term functional engraftment of mouse colon by iHeps, thereby establishing their broader potential as endoderm progenitors and demonstrating direct conversion of fibroblasts into intestinal epithelium. Our studies illustrate how CellNet can be employed to improve direct conversion and to uncover unappreciated properties of engineered cells. PMID:25126792
Tellier, Julie; Shi, Wei; Minnich, Martina; Liao, Yang; Crawford, Simon; Smyth, Gordon K; Kallies, Axel; Busslinger, Meinrad; Nutt, Stephen L
2016-03-01
Plasma cell differentiation requires silencing of B cell transcription, while it establishes antibody-secretory function and long-term survival. The transcription factors Blimp-1 and IRF4 are essential for the generation of plasma cells; however, their function in mature plasma cells has remained elusive. We found that while IRF4 was essential for the survival of plasma cells, Blimp-1 was dispensable for this. Blimp-1-deficient plasma cells retained their transcriptional identity but lost the ability to secrete antibody. Blimp-1 regulated many components of the unfolded protein response (UPR), including XBP-1 and ATF6. The overlap in the functions of Blimp-1 and XBP-1 was restricted to that response, with Blimp-1 uniquely regulating activity of the kinase mTOR and the size of plasma cells. Thus, Blimp-1 was required for the unique physiological ability of plasma cells that enables the secretion of protective antibody.
The nuclear lamina regulates germline stem cell niche organization via modulation of EGFR signaling.
Chen, Haiyang; Chen, Xin; Zheng, Yixian
2013-07-03
Stem cell niche interactions have been studied extensively with regard to cell polarity and extracellular signaling. Less is known about the way in which signals and polarity cues integrate with intracellular structures to ensure appropriate niche organization and function. Here, we report that nuclear lamins function in the cyst stem cells (CySCs) of Drosophila testes to control the interaction of CySCs with the hub. This interaction is important for regulation of CySC differentiation and organization of the niche that supports the germline stem cells (GSCs). Lamin promotes nuclear retention of phosphorylated ERK in the CySC lineage by regulating the distribution of specific nucleoporins within the nuclear pores. Lamin-regulated nuclear epidermal growth factor (EGF) receptor signaling in the CySC lineage is essential for proliferation and differentiation of the GSCs and the transient amplifying germ cells. Thus, we have uncovered a role for the nuclear lamina in the integration of EGF signaling to regulate stem cell niche function. Copyright © 2013 Elsevier Inc. All rights reserved.
Wu, Xiao-nan; Shi, Tao-tao; He, Yao-hui; Wang, Fei-fei; Sang, Rui; Ding, Jian-cheng; Zhang, Wen-juan; Shu, Xing-yi; Shen, Hai-feng; Yi, Jia; Gao, Xiang; Liu, Wen
2017-01-01
Yin Yang 1 (YY1) is a multifunctional DNA-binding transcription factor shown to be critical in a variety of biological processes, and its activity and function have been shown to be regulated by multitude of mechanisms, which include but are not limited to post-translational modifications (PTMs), its associated proteins and cellular localization. YY2, the paralog of YY1 in mouse and human, has been proposed to function redundantly or oppositely in a context-specific manner compared with YY1. Despite its functional importance, how YY2’s DNA-binding activity and function are regulated, particularly by PTMs, remains completely unknown. Here we report the first PTM with functional characterization on YY2, namely lysine 247 monomethylation (K247me1), which was found to be dynamically regulated by SET7/9 and LSD1 both in vitro and in cultured cells. Functional study revealed that SET7/9-mediated YY2 methylation regulated its DNA-binding activity in vitro and in association with chromatin examined by chromatin immunoprecipitation coupled with sequencing (ChIP-seq) in cultured cells. Knockout of YY2, SET7/9 or LSD1 by CRISPR (clustered, regularly interspaced, short palindromic repeats)/Cas9-mediated gene editing followed by RNA sequencing (RNA-seq) revealed that a subset of genes was positively regulated by YY2 and SET7/9, but negatively regulated by LSD1, which were enriched with genes involved in cell proliferation regulation. Importantly, YY2-regulated gene transcription, cell proliferation and tumor growth were dependent, at least partially, on YY2 K247 methylation. Finally, somatic mutations on YY2 found in cancer, which are in close proximity to K247, altered its methylation, DNA-binding activity and gene transcription it controls. Our findings revealed the first PTM with functional implications imposed on YY2 protein, and linked YY2 methylation with its biological functions. PMID:29098080
Fang, Xiao-Qian; Qiao, Haifa; Groveman, Bradley R; Feng, Shuang; Pflueger, Melissa; Xin, Wen-Kuan; Ali, Mohammad K; Lin, Shuang-Xiu; Xu, Jindong; Duclot, Florian; Kabbaj, Mohamed; Wang, Wei; Ding, Xin-Sheng; Santiago-Sim, Teresa; Jiang, Xing-Hong; Salter, Michael W; Yu, Xian-Min
2015-11-19
Constitutive and regulated internalization of cell surface proteins has been extensively investigated. The regulated internalization has been characterized as a principal mechanism for removing cell-surface receptors from the plasma membrane, and signaling to downstream targets of receptors. However, so far it is still not known whether the functional properties of remaining (non-internalized) receptor/channels may be regulated by internalization of the same class of receptor/channels. The N-methyl-D-aspartate receptor (NMDAR) is a principal subtype of glutamate-gated ion channel and plays key roles in neuronal plasticity and memory functions. NMDARs are well-known to undergo two types of regulated internalization - homologous and heterologous, which can be induced by high NMDA/glycine and DHPG, respectively. In the present work, we investigated effects of regulated NMDAR internalization on the activity of residual cell-surface NMDARs and neuronal functions. In electrophysiological experiments we discovered that the regulated internalization of NMDARs not only reduced the number of cell surface NMDARs but also caused an inhibition of the activity of remaining (non-internalized) surface NMDARs. In biochemical experiments we identified that this functional inhibition of remaining surface NMDARs was mediated by increased serine phosphorylation of surface NMDARs, resulting from the activation of protein kinase D1 (PKD1). Knockdown of PKD1 did not affect NMDAR internalization but prevented the phosphorylation and inhibition of remaining surface NMDARs and NMDAR-mediated synaptic functions. These data demonstrate a novel concept that regulated internalization of cell surface NMDARs not only reduces the number of NMDARs on the cell surface but also causes an inhibition of the activity of remaining surface NMDARs through intracellular signaling pathway(s). Furthermore, modulating the activity of remaining surface receptors may be an effective approach for treating receptor internalization-induced changes in neuronal functions of the CNS.
2010-01-01
Background Appropriate control of mitochondrial function, morphology and biogenesis are crucial determinants of the general health of eukaryotic cells. It is therefore imperative that we understand the mechanisms that co-ordinate mitochondrial function with environmental signaling systems. The regulation of yeast mitochondrial function in response to nutritional change can be modulated by PKA activity. Unregulated PKA activity can lead to the production of mitochondria that are prone to the production of ROS, and an apoptotic form of cell death. Results We present evidence that mitochondria are sensitive to the level of cAMP/PKA signaling and can respond by modulating levels of respiratory activity or committing to self execution. The inappropriate activation of one of the yeast PKA catalytic subunits, Tpk3p, is sufficient to commit cells to an apoptotic death through transcriptional changes that promote the production of dysfunctional, ROS producing mitochondria. Our data implies that cAMP/PKA regulation of mitochondrial function that promotes apoptosis engages the function of multiple transcription factors, including HAP4, SOK2 and SCO1. Conclusions We propose that in yeast, as is the case in mammalian cells, mitochondrial function and biogenesis are controlled in response to environmental change by the concerted regulation of multiple transcription factors. The visualization of cAMP/TPK3 induced cell death within yeast colonies supports a model that PKA regulation plays a physiological role in coordinating respiratory function and cell death with nutritional status in budding yeast. PMID:21108829
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinhardt, Florian; Schultz, Julia; Waterstradt, Rica
Mitochondria form a tubular network in mammalian cells, and the mitochondrial life cycle is determined by fission, fusion and autophagy. Dynamin-related protein 1 (Drp1) has a pivotal role in these processes because it alone is able to constrict mitochondria. However, the regulation and function of Drp1 have been shown to vary between cell types. Mitochondrial morphology affects mitochondrial metabolism and function. In pancreatic beta cells mitochondrial metabolism is a key component of the glucose-induced cascade of insulin secretion. The goal of the present study was to investigate the action of Drp1 in pancreatic beta cells. For this purpose Drp1 wasmore » down-regulated by means of shDrp1 in insulin-secreting INS1 cells and mouse pancreatic islets. In INS1 cells reduced Drp1 expression resulted in diminished expression of proteins regulating mitochondrial fusion, namely mitofusin 1 and 2, and optic atrophy protein 1. Diminished mitochondrial dynamics can therefore be assumed. After down-regulation of Drp1 in INS1 cells and spread mouse islets the initially homogenous mitochondrial network characterised by a moderate level of interconnections shifted towards high heterogeneity with elongated, clustered and looped mitochondria. These morphological changes were found to correlate directly with functional alterations. Mitochondrial membrane potential and ATP generation were significantly reduced in INS1 cells after Drp1down-regulation. Finally, a significant loss of glucose-stimulated insulin secretion was demonstrated in INS1 cells and mouse pancreatic islets. In conclusion, Drp1 expression is important in pancreatic beta cells to maintain the regulation of insulin secretion. -- Highlights: •Down-regulation of Drp1 in INS1 cells reduces mitochondrial fusion protein expression. •Mitochondrial membrane potential in INS1 cells is diminished after Drp1 down-regulation. •Mitochondria become elongated after down-regulation of Drp1 in beta cells. •Down-regulation of Drp1 in islets evokes loss of glucose-stimulated insulin secretion.« less
Minireview: Thioredoxin-interacting protein: regulation and function in the pancreatic β-cell.
Shalev, Anath
2014-08-01
Pancreatic β-cells are responsible for insulin production, and loss of functional β-cell mass is now recognized as a critical step in the pathogenesis of both type 1 and type 2 diabetes. However, the factors controlling the life and death of the pancreatic β-cell have only started to be elucidated. Discovered as the top glucose-induced gene in a human islet microarray study 12 years ago, thioredoxin-interacting protein (TXNIP) has now emerged as such a key player in pancreatic β-cell biology. Since then, β-cell expression of TXNIP has been found to be tightly regulated by multiple factors and to be dramatically increased in diabetic islets. Elevated TXNIP levels induce β-cell apoptosis, whereas TXNIP deficiency protects against type 1 and type 2 diabetes by promoting β-cell survival. TXNIP interacts with and inhibits thioredoxin and thereby controls the cellular redox state, but it also belongs to the α-arrestin family of proteins and regulates a variety of metabolic processes. Most recently, TXNIP has been discovered to control β-cell microRNA expression, β-cell function, and insulin production. In this review, the current state of knowledge regarding regulation and function of TXNIP in the pancreatic β-cell and the implications for drug development are discussed.
Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik
2013-01-01
Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031
Razin, S V
2018-04-01
This issue of Biochemistry (Moscow) is devoted to the cell nucleus and mechanisms of transcription regulation. Over the years, biochemical processes in the cell nucleus have been studied in isolation, outside the context of their spatial organization. Now it is clear that segregation of functional processes within a compartmentalized cell nucleus is very important for the implementation of basic genetic processes. The functional compartmentalization of the cell nucleus is closely related to the spatial organization of the genome, which in turn plays a key role in the operation of epigenetic mechanisms. In this issue of Biochemistry (Moscow), we present a selection of review articles covering the functional architecture of the eukaryotic cell nucleus, the mechanisms of genome folding, the role of stochastic processes in establishing 3D architecture of the genome, and the impact of genome spatial organization on transcription regulation.
Regulation of Stem Cell Aging by Metabolism and Epigenetics.
Ren, Ruotong; Ocampo, Alejandro; Liu, Guang-Hui; Izpisua Belmonte, Juan Carlos
2017-09-05
Stem cell aging and exhaustion are considered important drivers of organismal aging. Age-associated declines in stem cell function are characterized by metabolic and epigenetic changes. Understanding the mechanisms underlying these changes will likely reveal novel therapeutic targets for ameliorating age-associated phenotypes and for prolonging human healthspan. Recent studies have shown that metabolism plays an important role in regulating epigenetic modifications and that this regulation dramatically affects the aging process. This review focuses on current knowledge regarding the mechanisms of stem cell aging, and the links between cellular metabolism and epigenetic regulation. In addition, we discuss how these interactions sense and respond to environmental stress in order to maintain stem cell homeostasis, and how environmental stimuli regulate stem cell function. Additionally, we highlight recent advances in the development of therapeutic strategies to rejuvenate dysfunctional aged stem cells. Copyright © 2017 Elsevier Inc. All rights reserved.
ZFP36 RNA-binding proteins restrain T-cell activation and anti-viral immunity.
Moore, Michael J; Blachere, Nathalie E; Fak, John J; Park, Christopher Y; Sawicka, Kirsty; Parveen, Salina; Zucker-Scharff, Ilana; Moltedo, Bruno; Rudensky, Alexander Y; Darnell, Robert B
2018-05-31
Dynamic post-transcriptional control of RNA expression by RNA-binding proteins (RBPs) is critical during immune response. ZFP36 RBPs are prominent inflammatory regulators linked to autoimmunity and cancer, but functions in adaptive immunity are less clear. We used HITS-CLIP to define ZFP36 targets in mouse T cells, revealing unanticipated actions in regulating T cell activation, proliferation, and effector functions. Transcriptome and ribosome profiling showed that ZFP36 represses mRNA target abundance and translation, notably through novel AU-rich sites in coding sequence. Functional studies revealed that ZFP36 regulates early T cell activation kinetics cell autonomously, by attenuating activation marker expression, limiting T cell expansion, and promoting apoptosis. Strikingly, loss of ZFP36 in vivo accelerated T cell responses to acute viral infection and enhanced anti-viral immunity. These findings uncover a critical role for ZFP36 RBPs in restraining T cell expansion and effector functions, and suggest ZFP36 inhibition as a strategy to enhance immune-based therapies. © 2018, Moore et al.
Seed Embryo Development Is Regulated via an AN3-MINI3 Gene Cascade
Meng, Lai-Sheng; Wang, Yi-Bo; Loake, Gary J.; Jiang, Ji-Hong
2016-01-01
In agriculture, seed mass is one of the most important components related to seed yield. MINISEED3 (MINI3) which encodes the transcriptional activator WRKY10, is thought to be a pivotal regulator of seed mass. In Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 (SHB1) associates with the promoter of MINI3, regulating embryo cell proliferation (both cell division and elongation), which, in turn, modulates seed mass. Furthermore, the recruitment of SHB1 via MINI3 to both its cognate promoter and that of IKU2 implies a two-step amplification for countering the low expression level of IKU2, which is thought to function as a molecular switch for seed cavity enlargement. However, it is largely unknown how embryo cell proliferation, which encompasses both cell division and elongation, is regulated by SHB1 and MINI3 function. Here, we show that a loss of function mutation within the transcriptional coactivator ANGUSTIFOLIA3 (AN3), increases seed mass. Further, AN3 associates with the MINI3 promoter in vivo. Genetic evidence indicates that the absence of MINI3 function suppresses the decrease of cell number observed in an3-4 mutants by regulating cell division and in turn inhibits increased cell size of the an3-4 line by controlling cell elongation. Thus, seed embryo development is modulated via an AN3-MINI3 gene cascade. This regulatory model provides a deeper understanding of seed mass regulation, which may in turn lead to increased crop yields. PMID:27857719
Diversification of caldesmon-linked actin cytoskeleton in cell motility
Mayanagi, Taira
2011-01-01
The actin cytoskeleton plays a key role in regulating cell motility. Caldesmon (CaD) is an actin-linked regulatory protein found in smooth muscle and non-muscle cells that is conserved among a variety of vertebrates. It binds and stabilizes actin filaments, as well as regulating actin-myosin interaction in a calcium (Ca2+)/calmodulin (CaM)- and/or phosphorylation-dependent manner. CaD function is regulated qualitatively by Ca2+/CaM and by its phosphorylation state and quantitatively at the mRNA level, by three different transcriptional regulation of the CALD1 gene. CaD has numerous functions in cell motility, such as migration, invasion and proliferation, exerted via the reorganization of the actin cytoskeleton. Here we will outline recent findings regarding CaD's structural features and functions. PMID:21350330
Identifying microRNAs that Regulate Neuroblastoma Cell Differentiation
2015-10-01
Award Number: W81XWH-13-1-0241 TITLE: Identifying that Regulate Neuroblastoma Cell Differentiation PRINCIPAL INVESTIGATOR: Dr. Liqin Du...inducing miRNA, miR- 449a. We examined the differentiation-inducing function of miR-449a in multiple neuroblastoma cell lines. We have demonstrated that...miR-449a functions as an inducer of cell differentiation in neuroblastoma cell lines with distinct genetic backgrounds, including the MYCN
RNCR3: A regulator of diabetes mellitus-related retinal microvascular dysfunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Kun; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing
Retinal microvascular abnormality is an important pathological feature of diabetic retinopathy. Herein, we report the role of lncRNA-RNCR3 in diabetes mellitus-induced retinal microvascular abnormalities. We show that RNCR3 is significantly up-regulated upon high glucose stress in vivo and in vitro. RNCR3 knockdown alleviates retinal vascular dysfunction in vivo, as shown by decreased acellular capillaries, decreased vascular leakage, and reduced inflammatory response. RNCR3 knockdown decreases retinal endothelial cell proliferation, and reduces cell migration and tube formation in vitro. RNCR3 regulates endothelial cell function through RNCR3/KLF2/miR-185-5p regulatory network. RNCR3 inhibition may be a treatment option for the prevention of diabetes mellitus-induced retinal microvascular abnormalities. - Highlights:more » • RNCR3 expression is significantly up-regulated upon high glucose stress. • RNCR3 knockdown alleviates retinal vascular dysfunction in vivo. • RNCR3 regulates retinal endothelial cell function in vitro. • RNCR3 regulates retinal endothelial cell function via RNCR3/KLF2/miR-185-5p pathway.« less
Function of OPG as a traffic regulator for RANKL is crucial for controlled osteoclastogenesis.
Aoki, Shigeki; Honma, Masashi; Kariya, Yoshiaki; Nakamichi, Yuko; Ninomiya, Tadashi; Takahashi, Naoyuki; Udagawa, Nobuyuki; Suzuki, Hiroshi
2010-09-01
The amount of the receptor activator of NF-κB ligand (RANKL) on the osteoblastic cell surface is considered to determine the magnitude of the signal input to osteoclast precursors and the degree of osteoclastogenesis. Previously, we have shown that RANKL is localized predominantly in lysosomal organelles, but little is found on the osteoblastic cell surface, and consequently, the regulated subcellular trafficking of RANKL in osteoblastic cells is important for controlled osteoclastogenesis. Here we have examined the involvement of osteoprotegerin (OPG), which is currently recognized as a decoy receptor for RANKL, in the regulation of RANKL behavior. It was suggested that OPG already makes a complex with RANKL in the Golgi apparatus and that the complex formation is necessary for RANKL sorting to the secretory lysosomes. It was also shown that each structural domain of OPG is indispensable for exerting OPG function as a traffic regulator. In particular, the latter domains of OPG, whose physiologic functions have been unclear, were indicated to sort RANKL molecules to lysosomes from the Golgi apparatus. In addition, the overexpression of RANK-OPG chimeric protein, which retained OPG function as a decoy receptor but lost the function as a traffic regulator, inhibited endogenous OPG function as a traffic regulator selectively in osteoblastic cells and resulted in the upregulation of osteoclastogenic ability despite the increased number of decoy receptor molecules. Conclusively, OPG function as a traffic regulator for RANKL is crucial for regulating osteoclastogenesis at least as well as that as a decoy receptor. © 2010 American Society for Bone and Mineral Research.
Campbell, Clinton J V; Lee, Jung Bok; Levadoux-Martin, Marilyne; Wynder, Tracy; Xenocostas, Anargyros; Leber, Brian; Bhatia, Mickie
2010-09-02
The molecular basis for the unique proliferative and self-renewal properties that hierarchically distinguish human stem cells from progenitors and terminally differentiated cells remains largely unknown. We report a role for the Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) as an indispensable regulator of self-renewal in human stem cells and show that a functional dependence on Mcl-1 defines the human stem cell hierarchy. In vivo pharmacologic targeting of the Bcl-2 family members in human hematopoietic stem cells (HSCs) and human leukemic stem cells reduced stem cell regenerative and self-renewal function. Subsequent protein expression studies showed that, among the Bcl-2 family members, only Mcl-1 was up-regulated exclusively in the human HSC fraction on in vivo regeneration of hematopoiesis. Short hairpin RNA-knockdown of Mcl-1 in human cord blood cells did not affect survival in the HSC or hematopoietic progenitor cell fractions in vitro but specifically reduced the in vivo self-renewal function of human HSCs. Moreover, knockdown of Mcl-1 in ontogenetically primitive human pluripotent stem cells resulted in almost complete ablation of stem cell self-renewal function. Our findings show that Mcl-1 is an essential regulator of stem cell self-renewal in humans and therefore represents an axis for therapeutic interventions.
Liu, Tao; Sims, David; Baum, Buzz
2009-01-01
In recent years RNAi screening has proven a powerful tool for dissecting gene functions in animal cells in culture. However, to date, most RNAi screens have been performed in a single cell line, and results then extrapolated across cell types and systems. Here, to dissect generic and cell type-specific mechanisms underlying cell morphology, we have performed identical kinome RNAi screens in six different Drosophila cell lines, derived from two distinct tissues of origin. This analysis identified a core set of kinases required for normal cell morphology in all lines tested, together with a number of kinases with cell type-specific functions. Most significantly, the screen identified a role for minibrain (mnb/DYRK1A), a kinase associated with Down's syndrome, in the regulation of actin-based protrusions in CNS-derived cell lines. This cell type-specific requirement was not due to the peculiarities in the morphology of CNS-derived cells and could not be attributed to differences in mnb expression. Instead, it likely reflects differences in gene expression that constitute the cell type-specific functional context in which mnb/DYRK1A acts. Using parallel RNAi screens and gene expression analyses across cell types we have identified generic and cell type-specific regulators of cell morphology, which include mnb/DYRK1A in the regulation of protrusion morphology in CNS-derived cell lines. This analysis reveals the importance of using different cell types to gain a thorough understanding of gene function across the genome and, in the case of kinases, the difficulties of using the differential gene expression to predict function.
Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton.
Yuan, Xue; Serra, Rosa A; Yang, Shuying
2015-01-01
Primary cilia are microtubule-based organelles that project from the cell surface to enable transduction of various developmental signaling pathways. The process of intraflagellar transport (IFT) is crucial for the building and maintenance of primary cilia. Ciliary dysfunction has been found in a range of disorders called ciliopathies, some of which display severe skeletal dysplasias. In recent years, interest has grown in uncovering the function of primary cilia/IFT proteins in bone development, mechanotransduction, and cellular regulation. We summarize recent advances in understanding the function of cilia and IFT proteins in the regulation of cell differentiation in osteoblasts, osteocytes, chondrocytes, and mesenchymal stem cells (MSCs). We also discuss the mechanosensory function of cilia and IFT proteins in bone cells, cilia orientation, and other functions of cilia in chondrocytes. © 2014 New York Academy of Sciences.
Tod, Jo; Hanley, Christopher J; Morgan, Mark R; Rucka, Marta; Mellows, Toby; Lopez, Maria‐Antoinette; Kiely, Philip; Moutasim, Karwan A; Frampton, Steven J; Sabnis, Durgagauri; Fine, David R; Johnson, Colin; Marshall, John F; Scita, Giorgio; Jenei, Veronika
2017-01-01
Abstract The integrin αvβ6 is up‐regulated in numerous carcinomas, where expression commonly correlates with poor prognosis. αvβ6 promotes tumour invasion, partly through regulation of proteases and cell migration, and is also the principal mechanism by which epithelial cells activate TGF‐β1; this latter function complicates therapeutic targeting of αvβ6, since TGF‐β1 has both tumour‐promoting and ‐suppressive effects. It is unclear how these different αvβ6 functions are linked; both require actin cytoskeletal reorganization, and it is suggested that tractive forces generated during cell migration activate TGF‐β1 by exerting mechanical tension on the ECM‐bound latent complex. We examined the functional relationship between cell invasion and TGF‐β1 activation in pancreatic ductal adenocarcinoma (PDAC) cells, and confirmed that both processes are αvβ6‐dependent. Surprisingly, we found that cellular functions could be biased towards either motility or TGF‐β1 activation depending on the presence or absence of epidermal growth factor receptor pathway substrate 8 (Eps8), a regulator of actin remodelling, endocytosis, and GTPase activation. Similar to αvβ6, we found that Eps8 was up‐regulated in >70% of PDACs. In complex with Abi1/Sos1, Eps8 regulated αvβ6‐dependent cell migration through activation of Rac1. Down‐regulation of Eps8, Sos1 or Rac1 suppressed cell movement, while simultaneously increasing αvβ6‐dependent TGF‐β1 activation. This latter effect was modulated through increased cell tension, regulated by Rho activation. Thus, the Eps8/Abi1/Sos1 tricomplex acts as a key molecular switch altering the balance between Rac1 and Rho activation; its presence or absence in PDAC cells modulates αvβ6‐dependent functions, resulting in a pro‐migratory (Rac1‐dependent) or a pro‐TGF‐β1 activation (Rho‐dependent) functional phenotype, respectively. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:28608476
Human Prostatic Acid Phosphatase: Structure, Function and Regulation
Muniyan, Sakthivel; Chaturvedi, Nagendra K.; Dwyer, Jennifer G.; LaGrange, Chad A.; Chaney, William G.; Lin, Ming-Fong
2013-01-01
Human prostatic acid phosphatase (PAcP) is a 100 kDa glycoprotein composed of two subunits. Recent advances demonstrate that cellular PAcP (cPAcP) functions as a protein tyrosine phosphatase by dephosphorylating ErbB-2/Neu/HER-2 at the phosphotyrosine residues in prostate cancer (PCa) cells, which results in reduced tumorigenicity. Further, the interaction of cPAcP and ErbB-2 regulates androgen sensitivity of PCa cells. Knockdown of cPAcP expression allows androgen-sensitive PCa cells to develop the castration-resistant phenotype, where cells proliferate under an androgen-reduced condition. Thus, cPAcP has a significant influence on PCa cell growth. Interestingly, promoter analysis suggests that PAcP expression can be regulated by NF-κB, via a novel binding sequence in an androgen-independent manner. Further understanding of PAcP function and regulation of expression will have a significant impact on understanding PCa progression and therapy. PMID:23698773
Lipids in the cell: organisation regulates function.
Santos, Ana L; Preta, Giulio
2018-06-01
Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.
mTORC2 regulates multiple aspects of NKT-cell development and function
Sklarz, Tammarah; Guan, Peng; Gohil, Mercy; Cotton, Renee M.; Ge, Moyar Q.; Haczku, Angela; Das, Rupali; Jordan, Martha S.
2017-01-01
Invariant NKT (iNKT) cells bridge innate and adaptive immunity by rapidly secreting cytokines and lysing targets following TCR recognition of lipid antigens. Based on their ability to secrete IFN-γ, IL-4 and IL-17A, iNKT-cells are classified as NKT-1, NKT-2 and NKT-17 subsets, respectively. The molecular pathways regulating iNKT-cell fate are not fully defined. Recent studies implicate Rictor, a required component of mTORC2, in the development of select iNKT-cell subsets, however these reports are conflicting. To resolve these questions, we used Rictorfl/fl CD4cre+ mice and found that Rictor is required for NKT-17 cell development and normal iNKT-cell cytolytic function. Conversely, Rictor is not absolutely required for IL-4 and IFN-γ production as peripheral iNKT-cells make copious amounts of these cytokines. Overall iNKT-cell numbers are dramatically reduced in the absence of Rictor. We provide data indicating Rictor regulates cell survival as well as proliferation of developing and mature iNKT-cells. Thus, mTORC2 regulates multiple aspects of iNKT-cell development and function. PMID:28078715
Photoreactive synthetic regulator of protein function and methods of use thereof
Trauner, Dirk; Isacoff, Ehud Y; Kramer, Richard H; Banghart, Matthew R; Fortin, Doris L; Mourot, Alexandre
2015-03-31
The present disclosure provides a photoreactive synthetic regulator of protein function. The present disclosure further provides a light-regulated polypeptide that includes a subject synthetic regulator. Also provided are cells and membranes comprising a subject light-regulated polypeptide. The present disclosure further provides methods of modulating protein function, involving use of light.
In Depth Analysis of Citrulline Specific CD4 T Cells in Rheumatoid Arthritis
2018-01-01
activation of lymphoid , myeloid and mast cells , indicating MALT1’s crucial role in innate and adaptive signaling. Therefore, MALT1 is regarded a...Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell regulation in RA Jane Buckner...IFRA) Program Session 7: Adaptive immunity vs. innate immunity and mesenchymal functions in RA Genetics, T cell specificity and T cell regulation in
Critical protein GAPDH and its regulatory mechanisms in cancer cells
Zhang, Jin-Ying; Zhang, Fan; Hong, Chao-Qun; Giuliano, Armando E.; Cui, Xiao-Jiang; Zhou, Guang-Ji; Zhang, Guo-Jun; Cui, Yu-Kun
2015-01-01
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), initially identified as a glycolytic enzyme and considered as a housekeeping gene, is widely used as an internal control in experiments on proteins, mRNA, and DNA. However, emerging evidence indicates that GAPDH is implicated in diverse functions independent of its role in energy metabolism; the expression status of GAPDH is also deregulated in various cancer cells. One of the most common effects of GAPDH is its inconsistent role in the determination of cancer cell fate. Furthermore, studies have described GAPDH as a regulator of cell death; other studies have suggested that GAPDH participates in tumor progression and serves as a new therapeutic target. However, related regulatory mechanisms of its numerous cellular functions and deregulated expression levels remain unclear. GAPDH is tightly regulated at transcriptional and posttranscriptional levels, which are involved in the regulation of diverse GAPDH functions. Several cancer-related factors, such as insulin, hypoxia inducible factor-1 (HIF-1), p53, nitric oxide (NO), and acetylated histone, not only modulate GAPDH gene expression but also affect protein functions via common pathways. Moreover, posttranslational modifications (PTMs) occurring in GAPDH in cancer cells result in new activities unrelated to the original glycolytic function of GAPDH. In this review, recent findings related to GAPDH transcriptional regulation and PTMs are summarized. Mechanisms and pathways involved in GAPDH regulation and its different roles in cancer cells are also described. PMID:25859407
Yeast as a model to study apoptosis?
Fleury, Christophe; Pampin, Mathieu; Tarze, Agathe; Mignotte, Bernard
2002-02-01
Programmed cell death (PCD) serves as a major mechanism for the precise regulation of cell numbers, and as a defense mechanism to remove unwanted and potentially dangerous cells. Despite the striking heterogeneity of cell death induction pathways, the execution of the death program is often associated with characteristic morphological and biochemical changes termed apoptosis. Although for a long time the absence of mitochondrial changes was considered as a hallmark of apoptosis, mitochondria appear today as the central executioner of programmed cell death. This crucial position of mitochondria in programmed cell death control is not due to a simple loss of function (deficit in energy supplying), but rather to an active process in the regulation of effector mechanisms. The large diversity of regulators of apoptosis in mammals and their numerous interactions complicate the analysis of their individual functions. Yeast, eukaryotic but unicellular organism, lack the main regulators of apoptosis (caspases, Bcl-2 family members, ...) found in mammals. This absence render them a powerful tool for heterologous expression, functional studies, and even cloning of new regulators of apoptosis. Great advances have thus been made in our understanding of the molecular mechanisms of Bcl-2 family members interactions with themselves and other cellular proteins, specially thanks to the two hybrid system and the easy manipulation of yeast (molecular biology and genetics). This review will focus on the use of yeast as a tool to identify new regulators and study function of mammalian apoptosis regulators.
AMP-activated protein kinase, stress responses and cardiovascular diseases
WANG, Shaobin; SONG, Ping; ZOU, Ming-Hui
2012-01-01
AMPK (AMP-activated protein kinase) is one of the key players in maintaining intracellular homoeostasis. AMPK is well known as an energy sensor and can be activated by increased intracellular AMP levels. Generally, the activation of AMPK turns on catabolic pathways that generate ATP, while inhibiting cell proliferation and biosynthetic processes that consume ATP. In recent years, intensive investigations on the regulation and the function of AMPK indicates that AMPK not only functions as an intracellular energy sensor and regulator, but is also a general stress sensor that is important in maintaining intracellular homoeostasis during many kinds of stress challenges. In the present paper, we will review recent literature showing that AMPK functions far beyond its proposed energy sensor and regulator function. AMPK regulates ROS (reactive oxygen species)/redox balance, autophagy, cell proliferation, cell apoptosis, cellular polarity, mitochondrial function and genotoxic response, either directly or indirectly via numerous downstream pathways under physiological and pathological conditions. PMID:22390198
Espinoza, J. Luis; Takami, Akiyoshi; Yoshioka, Katsuji; Nakata, Katsuya; Sato, Tokiharu; Kasahara, Yoshihito; Nakao, Shinji
2012-01-01
Background NKG2D is an activating receptor expressed by natural killer and T cells, which have crucial functions in tumor and microbial immunosurveillance. Several cytokines have been identified as modulators of NKG2D receptor expression. However, little is known about NKG2D gene regulation. In this study, we found that microRNA 1245 attenuated the expression of NKG2D in natural killer cells. Design and Methods We investigated the potential interactions between the 3′-untranslated region of the NKG2D gene and microRNA as well as their functional roles in the regulation of NKG2D expression and cytotoxicity in natural killer cells. Results Transforming growth factor-β1, a major negative regulator of NKG2D expression, post-transcriptionally up-regulated mature microRNA-1245 expression, thus down-regulating NKG2D expression and impairing NKG2D-mediated immune responses in natural killer cells. Conversely, microRNA-1245 down-regulation significantly increased the expression of NKG2D expression in natural killer cells, resulting in more efficient NKG2D-mediated cytotoxicity. Conclusions These results reveal a novel NKG2D regulatory pathway mediated by microRNA-1245, which may represent one of the mechanisms used by transforming growth factor-β1 to attenuate NKG2D expression in natural killer cells. PMID:22491735
Collecting Duct Intercalated Cell Function and Regulation
Roy, Ankita; Al-bataineh, Mohammad M.
2015-01-01
Intercalated cells are kidney tubule epithelial cells with important roles in the regulation of acid-base homeostasis. However, in recent years the understanding of the function of the intercalated cell has become greatly enhanced and has shaped a new model for how the distal segments of the kidney tubule integrate salt and water reabsorption, potassium homeostasis, and acid-base status. These cells appear in the late distal convoluted tubule or in the connecting segment, depending on the species. They are most abundant in the collecting duct, where they can be detected all the way from the cortex to the initial part of the inner medulla. Intercalated cells are interspersed among the more numerous segment-specific principal cells. There are three types of intercalated cells, each having distinct structures and expressing different ensembles of transport proteins that translate into very different functions in the processing of the urine. This review includes recent findings on how intercalated cells regulate their intracellular milieu and contribute to acid-base regulation and sodium, chloride, and potassium homeostasis, thus highlighting their potential role as targets for the treatment of hypertension. Their novel regulation by paracrine signals in the collecting duct is also discussed. Finally, this article addresses their role as part of the innate immune system of the kidney tubule. PMID:25632105
Halbleib, Jennifer M.; Sääf, Annika M.
2007-01-01
Although there is considerable evidence implicating posttranslational mechanisms in the development of epithelial cell polarity, little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized the temporal program of gene expression during cell–cell adhesion–initiated polarization of human Caco-2 cells in tissue culture, which develop structural and functional polarity similar to that of enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell–cell contacts between neighboring cells. Expression of genes involved in cell proliferation was down-regulated concomitant with induction of genes necessary for functional specialization of polarized epithelial cells. Transcriptional up-regulation of these latter genes correlated with formation of important structural and functional features in enterocyte differentiation and establishment of structural and functional cell polarity; components of the apical microvilli were induced as the brush border formed during polarization; as barrier function was established, expression of tight junction transmembrane proteins peaked; transcripts encoding components of the apical, but not the basal-lateral trafficking machinery were increased during polarization. Coordinated expression of genes encoding components of functional cell structures were often observed indicating temporal control of expression and assembly of multiprotein complexes. PMID:17699590
Mahato, Biraj; Home, Pratik; Rajendran, Ganeshkumar; Paul, Arindam; Saha, Biswarup; Ganguly, Avishek; Ray, Soma; Roy, Nairita; Swerdlow, Russell H.; Paul, Soumen
2014-01-01
Pluripotent stem cells (PSCs) contain functionally immature mitochondria and rely upon high rates of glycolysis for their energy requirements. Thus, altered mitochondrial function and promotion of aerobic glycolysis is key to maintain and induce pluripotency. However, signaling mechanisms that regulate mitochondrial function and reprogram metabolic preferences in self-renewing vs. differentiated PSC populations are poorly understood. Here, using murine embryonic stem cells (ESCs) as a model system, we demonstrate that atypical protein kinase C isoform, PKC lambda/iota (PKCλ/ι), is a key regulator of mitochondrial function in ESCs. Depletion of PKCλ/ι in ESCs maintains their pluripotent state as evident from germline offsprings. Interestingly, loss of PKCλ/ι in ESCs leads to impairment in mitochondrial maturation, organization and a metabolic shift toward glycolysis under differentiating condition. Our mechanistic analyses indicate that a PKCλ/ι-HIF1α-PGC1α axis regulates mitochondrial respiration and balances pluripotency in ESCs. We propose that PKCλ/ι could be a crucial regulator of mitochondrial function and energy metabolism in stem cells and other cellular contexts. PMID:25142417
Distinct intracellular sAC-cAMP domains regulate ER Ca2+ signaling and OXPHOS function.
Valsecchi, Federica; Konrad, Csaba; D'Aurelio, Marilena; Ramos-Espiritu, Lavoisier S; Stepanova, Anna; Burstein, Suzanne R; Galkin, Alexander; Magranè, Jordi; Starkov, Anatoly; Buck, Jochen; Levin, Lonny R; Manfredi, Giovanni
2017-11-01
cAMP regulates a wide variety of physiological functions in mammals. This single second messenger can regulate multiple, seemingly disparate functions within independently regulated cell compartments. We have previously identified one such compartment inside the matrix of the mitochondria, where soluble adenylyl cyclase (sAC) regulates oxidative phosphorylation (OXPHOS). We now show that sAC knockout fibroblasts have a defect in OXPHOS activity and attempt to compensate for this defect by increasing OXPHOS proteins. Importantly, sAC knockout cells also exhibit decreased probability of endoplasmic reticulum (ER) Ca 2+ release associated with diminished phosphorylation of the inositol 3-phosphate receptor. Restoring sAC expression exclusively in the mitochondrial matrix rescues OXPHOS activity and reduces mitochondrial biogenesis, indicating that these phenotypes are regulated by intramitochondrial sAC. In contrast, Ca 2+ release from the ER is only rescued when sAC expression is restored throughout the cell. Thus, we show that functionally distinct, sAC-defined, intracellular cAMP signaling domains regulate metabolism and Ca 2+ signaling. © 2017. Published by The Company of Biologists Ltd.
Deeg, Cornelia A; Amann, Barbara; Lutz, Konstantin; Hirmer, Sieglinde; Lutterberg, Karina; Kremmer, Elisabeth; Hauck, Stefanie M
2016-04-23
Müller glial cells are important regulators of physiological function of retina. In a model disease of retinal inflammation and spontaneous recurrent uveitis in horses (ERU), we could show that retinal Müller glial cells significantly change potassium and water channel protein expression during autoimmune pathogenesis. The most significantly changed channel protein in neuroinflammatory ERU was aquaporin 11 (AQP11). Aquaporins (AQP, 13 members) are important regulators of water and small solute transport through membranes. AQP11 is an unorthodox member of this family and was assigned to a third group of AQPs because of its difference in amino acid sequence (conserved sequence is only 11 %) and especially its largely unknown function. In order to gain insight into the distribution, localization, and function of AQP11 in the retina, we first developed a novel monoclonal antibody for AQP11 enabling quantification, localization, and functional studies. In the horse retina, AQP11 was exclusively expressed at Müller glial cell membranes. In uveitic condition, AQP11 disappeared from gliotic Müller cells concomitant with glutamine synthase. Since function of AQP11 is still under debate, we assessed the impact of AQP11 channel on cell volume regulation of primary Müller glial cells under different osmotic conditions. We conclude a concomitant role for AQP11 with AQP4 in water efflux from these glial cells, which is disturbed in ERU. This could probably contribute to swelling and subsequent severe complication of retinal edema through impaired intracellular fluid regulation. Therefore, AQP11 is important for physiological Müller glia function and the expression pattern and function of this water channel seems to have distinct functions in central nervous system. The significant reduction in neuroinflammation points to a crucial role in pathogenesis of autoimmune uveitis.
USDA-ARS?s Scientific Manuscript database
The regulation of mitochondrial biogenesis and function in the lactating mammary cell is poorly understood. The goal of this study was to use proteomics to relate temporal changes in mammary cell mitochondrial function during lactation to changes in the proteins that make up this organelle. The hypo...
Regulation of Memory T Cells by Interleukin-23.
Li, Yanchun; Wang, Hongbo; Lu, Honghua; Hua, Shucheng
2016-01-01
Interleukin-23 (IL-23), a member of the IL-12 family of cytokines, is a heterodimeric cytokine. It is composed of subunits p40 (shared with IL-12) and p19 (an IL-12 p35-related subunit) and is secreted by several types of immune cells, such as natural killer cells and dendritic cells. The IL-23 receptor is composed of the subunit IL-12Rβ1 and the IL-23-specific subunit IL-23R. The binding of IL-23 to its specific cell surface receptor regulates a number of functions, including proliferation and differentiation of cells and secretion of cell factors. Memory T cells are a subset of T cells that secrete numerous important cell factors, and they function in the immune response to infection and diseases like cancer, autoimmune disease and bronchial asthma. IL-23R is expressed on the surface of memory T cells, which suggests that it can specifically regulate memory T cell function. IL-23 has been widely used as a clinical indicator in immune-related diseases and shows potential for use in disease treatment. Here we review the current progress in the study of the role of IL-23 in the regulation of memory T cells. © 2016 S. Karger AG, Basel.
Fraser, Scott P.; Ozerlat-Gunduz, Iley; Brackenbury, William J.; Fitzgerald, Elizabeth M.; Campbell, Thomas M.; Coombes, R. Charles; Djamgoz, Mustafa B. A.
2014-01-01
Although ion channels are increasingly being discovered in cancer cells in vitro and in vivo, and shown to contribute to different aspects and stages of the cancer process, much less is known about the mechanisms controlling their expression. Here, we focus on voltage-gated Na+ channels (VGSCs) which are upregulated in many types of carcinomas where their activity potentiates cell behaviours integral to the metastatic cascade. Regulation of VGSCs occurs at a hierarchy of levels from transcription to post-translation. Importantly, mainstream cancer mechanisms, especially hormones and growth factors, play a significant role in the regulation. On the whole, in major hormone-sensitive cancers, such as breast and prostate cancer, there is a negative association between genomic steroid hormone sensitivity and functional VGSC expression. Activity-dependent regulation by positive feedback has been demonstrated in strongly metastatic cells whereby the VGSC is self-sustaining, with its activity promoting further functional channel expression. Such auto-regulation is unlike normal cells in which activity-dependent regulation occurs mostly via negative feedback. Throughout, we highlight the possible clinical implications of functional VGSC expression and regulation in cancer. PMID:24493753
Zeng, Xiankun; Singh, Shree Ram; Hou, David; Hou, Steven X.
2012-01-01
An increasing body of evidence suggests that tumors might originate from a few transformed cells that share many properties with normal stem cells. However, it remains unclear how normal stem cells are transformed into cancer stem cells. Here, we demonstrated that mutations causing the loss of tumor suppressor Sav or Scrib or activation of the oncogene Ras transform normal stem cells into cancer stem cells through a multistep process in the adult Drosophila Malpighian Tubules (MTs). In wild-type MTs, each stem cell generates one self-renewing and one differentiating daughter cell. However, in flies with loss-of-function sav or scrib or gain-of-function Ras mutations, both daughter cells grew and behaved like stem cells, leading to the formation of tumors in MTs. Ras functioned downstream of Sav and Scrib in regulating the stem cell transformation. The Ras-transformed stem cells exhibited many of the hallmarks of cancer, such as increased proliferation, reduced cell death, and failure to differentiate. We further demonstrated that several signal transduction pathways (including MEK/MAPK, RhoA, PKA, and TOR) mediate Rasṕ function in the stem cell transformation. Therefore, we have identified a molecular mechanism that regulates stem cell transformation, and this finding may lead to strategies for preventing tumor formation in certain organs. PMID:20432470
2013-01-01
Introduction In mammals, internal Na+ homeostasis is maintained through Na+ reabsorption via a variety of Na+ transport proteins with mutually compensating functions, which are expressed in different segments of the nephrons. In zebrafish, Na+ homeostasis is achieved mainly through the skin/gill ionocytes, namely Na+/H+ exchanger (NHE3b)-expressing H+-ATPase rich (HR) cells and Na+-Cl- cotransporter (NCC)-expressing NCC cells, which are functionally homologous to mammalian proximal and distal convoluted tubular cells, respectively. The present study aimed to investigate whether or not the functions of HR and NCC ionocytes are differentially regulated to compensate for disruptions of internal Na+ homeostasis and if the cell differentiation of the ionocytes is involved in this regulation pathway. Results Translational knockdown of ncc caused an increase in HR cell number and a resulting augmentation of Na+ uptake in zebrafish larvae, while NHE3b loss-of-function caused an increase in NCC cell number with a concomitant recovery of Na+ absorption. Environmental acid stress suppressed nhe3b expression in HR cells and decreased Na+ content, which was followed by up-regulation of NCC cells accompanied by recovery of Na+ content. Moreover, knockdown of ncc resulted in a significant decrease of Na+ content in acid-acclimated zebrafish. Conclusions These results provide evidence that HR and NCC cells exhibit functional redundancy in Na+ absorption, similar to the regulatory mechanisms in mammalian kidney, and suggest this functional redundancy is a critical strategy used by zebrafish to survive in a harsh environment that disturbs body fluid Na+ homeostasis. PMID:23924428
Robinson, George A; Waddington, Kirsty E; Pineda-Torra, Ines; Jury, Elizabeth C
2017-01-01
It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM) and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β), and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed.
Robinson, George A.; Waddington, Kirsty E.; Pineda-Torra, Ines; Jury, Elizabeth C.
2017-01-01
It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM) and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β), and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed. PMID:29225604
ATP-dependent chromatin remodeling in T cells.
Wurster, Andrea L; Pazin, Michael J
2012-02-01
One of the best studied systems for mammalian chromatin remodeling is transcriptional regulation during T cell development. The variety of these studies have led to important findings in T cell gene regulation and cell fate determination. Importantly, these findings have also advanced our knowledge of the function of remodeling enzymes in mammalian gene regulation. First we briefly present biochemical and cell-free analysis of 3 types of ATP dependent remodeling enzymes (SWI/SNF, Mi2, and ISWI) to construct an intellectual framework to understand how these enzymes might be working. Second, we compare and contrast the function of these enzymes during early (thymic) and late (peripheral) T cell development. Finally, we examine some of the gaps in our present understanding.
microRNAs in the regulation of dendritic cell functions in inflammation and atherosclerosis.
Busch, Martin; Zernecke, Alma
2012-08-01
Atherosclerosis has been established as a chronic inflammatory disease of the vessel wall. Among the mononuclear cell types recruited to the lesions, specialized dendritic cells (DCs) have gained increasing attention, and their secretory products and interactions shape the progression of atherosclerotic plaques. The regulation of DC functions by microRNAs (miRNAs) may thus be of primary importance in disease. We here systematically summarize the biogenesis and functions of miRNAs and provide an overview of miRNAs in DCs, their targets, and potential implications for atherosclerosis, with a particular focus on the best characterized miRNAs in DCs, namely, miR-155 and miR-146. MiRNA functions in DCs range from regulation of lipid uptake to cytokine production and T cell responses with a complex picture emerging, in which miRNAs cooperate or antagonize DC behavior, thereby promoting or counterbalancing inflammatory responses. As miRNAs regulate key functions of DCs known to control atherosclerotic vascular disease, their potential as a therapeutic target holds promise and should be attended to in future research.
Domínguez-Cuevas, Patricia; Porcelli, Ida; Daniel, Richard A; Errington, Jeff
2013-09-01
Cell morphogenesis in most bacteria is governed by spatiotemporal growth regulation of the peptidoglycan cell wall layer. Much is known about peptidoglycan synthesis but regulation of its turnover by hydrolytic enzymes is much less well understood. Bacillus subtilis has a multitude of such enzymes. Two of the best characterized are CwlO and LytE: cells lacking both enzymes have a lethal block in cell elongation. Here we show that activity of CwlO is regulated by an ABC transporter, FtsEX, which is required for cell elongation, unlike cell division as in Escherichia coli. Actin-like MreB proteins are thought to play a key role in orchestrating cell wall morphogenesis. B. subtilis has three MreB isologues with partially differentiated functions. We now show that the three MreB isologues have differential roles in regulation of the CwlO and LytE systems and that autolysins control different aspects of cell morphogenesis. The results add major autolytic activities to the growing list of functions controlled by MreB isologues in bacteria and provide new insights into the different specialized functions of essential cell wall autolysins. © 2013 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.
Use of whole genome expression analysis in the toxicity screening of nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fröhlich, Eleonore, E-mail: eleonore.froehlich@medunigraz.at; Meindl, Claudia; Wagner, Karin
2014-10-15
The use of nanoparticles (NPs) offers exciting new options in technical and medical applications provided they do not cause adverse cellular effects. Cellular effects of NPs depend on particle parameters and exposure conditions. In this study, whole genome expression arrays were employed to identify the influence of particle size, cytotoxicity, protein coating, and surface functionalization of polystyrene particles as model particles and for short carbon nanotubes (CNTs) as particles with potential interest in medical treatment. Another aim of the study was to find out whether screening by microarray would identify other or additional targets than commonly used cell-based assays formore » NP action. Whole genome expression analysis and assays for cell viability, interleukin secretion, oxidative stress, and apoptosis were employed. Similar to conventional assays, microarray data identified inflammation, oxidative stress, and apoptosis as affected by NP treatment. Application of lower particle doses and presence of protein decreased the total number of regulated genes but did not markedly influence the top regulated genes. Cellular effects of CNTs were small; only carboxyl-functionalized single-walled CNTs caused appreciable regulation of genes. It can be concluded that regulated functions correlated well with results in cell-based assays. Presence of protein mitigated cytotoxicity but did not cause a different pattern of regulated processes. - Highlights: • Regulated functions were screened using whole genome expression assays. • Polystyrene particles regulated more genes than short carbon nanotubes. • Protein coating of polystyrene particles did not change regulation pattern. • Functions regulated by microarray were confirmed by cell-based assay.« less
In-phase oscillation of global regulons is orchestrated by a pole-specific organizer
Janakiraman, Balaganesh; Mignolet, Johann; Narayanan, Sharath; Viollier, Patrick H.
2016-01-01
Cell fate determination in the asymmetric bacterium Caulobacter crescentus (Caulobacter) is triggered by the localization of the developmental regulator SpmX to the old (stalked) cell pole during the G1→S transition. Although SpmX is required to localize and activate the cell fate-determining kinase DivJ at the stalked pole in Caulobacter, in cousins such as Asticcacaulis, SpmX directs organelle (stalk) positioning and possibly other functions. We define the conserved σ54-dependent transcriptional activator TacA as a global regulator in Caulobacter whose activation by phosphorylation is indirectly down-regulated by SpmX. Using a combination of forward genetics and cytological screening, we uncover a previously uncharacterized and polarized component (SpmY) of the TacA phosphorylation control system, and we show that SpmY function and localization are conserved. Thus, SpmX organizes a site-specific, ancestral, and multifunctional regulatory hub integrating the in-phase oscillation of two global transcriptional regulators, CtrA (the master cell cycle transcriptional regulator A) and TacA, that perform important cell cycle functions. PMID:27791133
Hoefert, Jaimee E; Bjerke, Glen A; Wang, Dongmei; Yi, Rui
2018-06-04
The microRNA (miRNA)-200 (miR-200) family is highly expressed in epithelial cells and frequently lost in metastatic cancer. Despite intensive studies into their roles in cancer, their targets and functions in normal epithelial tissues remain unclear. Importantly, it remains unclear how the two subfamilies of the five-miRNA family, distinguished by a single nucleotide within the seed region, regulate their targets. By directly ligating miRNAs to their targeted mRNA regions, we identify numerous miR-200 targets involved in the regulation of focal adhesion, actin cytoskeleton, cell cycle, and Hippo/Yap signaling. The two subfamilies bind to largely distinct target sites, but many genes are coordinately regulated by both subfamilies. Using inducible and knockout mouse models, we show that the miR-200 family regulates cell adhesion and orientation in the hair germ, contributing to precise cell fate specification and hair morphogenesis. Our findings demonstrate that combinatorial targeting of many genes is critical for miRNA function and provide new insights into miR-200's functions. © 2018 Hoefert et al.
Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Gui-Zhen; Tian, Wei; Fu, Hai-Tao
Microvascular dysfunction is an important characteristic of diabetic retinopathy. Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. In this study, we investigated the role of lncRNA-MEG3 in diabetes-related microvascular dysfunction. We show that MEG3 expression level is significantly down-regulated in the retinas of STZ-induced diabetic mice, and endothelial cells upon high glucose and oxidative stress. MEG3 knockdown aggravates retinal vessel dysfunction in vivo, as shown by serious capillary degeneration, and increased microvascular leakage and inflammation. MEG3 knockdown also regulates retinal endothelial cell proliferation, migration, and tube formation in vitro. The role of MEG3 in endothelial cell function is mainlymore » mediated by the activation of PI3k/Akt signaling. MEG3 up-regulation may serve as a therapeutic strategy for treating diabetes-related microvascular complications. - Highlights: • LncRNA-MEG3 level is down-regulated upon diabetic stress. • MEG3 knockdown aggravates retinal vascular dysfunction in vivo. • MEG3 regulates retinal endothelial cell function in vitro. • MEG3 regulates endothelial cell function through PI3k/Akt signaling.« less
Genome-wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line
2011-01-01
Background When compared to primary chicken embryo fibroblast (CEF) cells, the immortal DF-1 CEF line exhibits enhanced growth rates and susceptibility to oxidative stress. Although genes responsible for cell cycle regulation and antioxidant functions have been identified, the genome-wide transcription profile of immortal DF-1 CEF cells has not been previously reported. Global gene expression in primary CEF and DF-1 cells was performed using a 4X44K chicken oligo microarray. Results A total of 3876 differentially expressed genes were identified with a 2 fold level cutoff that included 1706 up-regulated and 2170 down-regulated genes in DF-1 cells. Network and functional analyses using Ingenuity Pathways Analysis (IPA, Ingenuity® Systems, http://www.ingenuity.com) revealed that 902 of 3876 differentially expressed genes were classified into a number of functional groups including cellular growth and proliferation, cell cycle, cellular movement, cancer, genetic disorders, and cell death. Also, the top 5 gene networks with intermolecular connections were identified. Bioinformatic analyses suggested that DF-1 cells were characterized by enhanced molecular mechanisms for cell cycle progression and proliferation, suppressing cell death pathways, altered cellular morphogenesis, and accelerated capacity for molecule transport. Key molecules for these functions include E2F1, BRCA1, SRC, CASP3, and the peroxidases. Conclusions The global gene expression profiles provide insight into the cellular mechanisms that regulate the unique characteristics observed in immortal DF-1 CEF cells. PMID:22111699
Ugarte, Fernando; Sousae, Rebekah; Cinquin, Bertrand; ...
2015-10-17
Epigenetic regulation serves as the basis for stem cell differentiation into distinct cell types, but it is unclear how global epigenetic changes are regulated during this process. Here, we tested the hypothesis that global chromatin organization affects the lineage potential of stem cells and that manipulation of chromatin dynamics influences stem cell function. Using nuclease sensitivity assays, we found a progressive decrease in chromatin digestion among pluripotent embryonic stem cells (ESCs), multipotent hematopoietic stem cells (HSCs), and mature hematopoietic cells. Quantitative high-resolution microscopy revealed that ESCs contain significantly more euchromatin than HSCs, with a further reduction in mature cells. Increasedmore » cellular maturation also led to heterochromatin localization to the nuclear periphery. Functionally, prevention of heterochromatin formation by inhibition of the histone methyltransferase G9A resulted in delayed HSC differentiation. Lastly, our results demonstrate global chromatin rearrangements during stem cell differentiation and that heterochromatin formation by H3K9 methylation regulates HSC differentiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ugarte, Fernando; Sousae, Rebekah; Cinquin, Bertrand
Epigenetic regulation serves as the basis for stem cell differentiation into distinct cell types, but it is unclear how global epigenetic changes are regulated during this process. Here, we tested the hypothesis that global chromatin organization affects the lineage potential of stem cells and that manipulation of chromatin dynamics influences stem cell function. Using nuclease sensitivity assays, we found a progressive decrease in chromatin digestion among pluripotent embryonic stem cells (ESCs), multipotent hematopoietic stem cells (HSCs), and mature hematopoietic cells. Quantitative high-resolution microscopy revealed that ESCs contain significantly more euchromatin than HSCs, with a further reduction in mature cells. Increasedmore » cellular maturation also led to heterochromatin localization to the nuclear periphery. Functionally, prevention of heterochromatin formation by inhibition of the histone methyltransferase G9A resulted in delayed HSC differentiation. Lastly, our results demonstrate global chromatin rearrangements during stem cell differentiation and that heterochromatin formation by H3K9 methylation regulates HSC differentiation.« less
Zhang, Qingbin; Chen, Li; Cui, Shiman; Li, Yan; Zhao, Qi; Cao, Wei; Lai, Shixiang; Yin, Sanjun; Zuo, Zhixiang; Ren, Jian
2017-10-25
Although long noncoding RNAs (lncRNAs) have been emerging as critical regulators in various tissues and biological processes, little is known about their expression and regulation during the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in inflammatory microenvironment. In this study, we have identified 63 lncRNAs that are not annotated in previous database. These novel lncRNAs were not randomly located in the genome but preferentially located near protein-coding genes related to particular functions and diseases, such as stem cell maintenance and differentiation, development disorders and inflammatory diseases. Moreover, we have identified 650 differentially expressed lncRNAs among different subsets of PDLSCs. Pathway enrichment analysis for neighboring protein-coding genes of these differentially expressed lncRNAs revealed stem cell differentiation related functions. Many of these differentially expressed lncRNAs function as competing endogenous RNAs that regulate protein-coding transcripts through competing shared miRNAs.
Mitochondrial respiration controls lysosomal function during inflammatory T cell responses
Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria
2016-01-01
Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452
Redox-dependent regulation of epidermal growth factor receptor signaling.
Heppner, David E; van der Vliet, Albert
2016-08-01
Tyrosine phosphorylation-dependent cell signaling represents a unique feature of multicellular organisms, and is important in regulation of cell differentiation and specialized cell functions. Multicellular organisms also contain a diverse family of NADPH oxidases (NOXs) that have been closely linked with tyrosine kinase-based cell signaling and regulate tyrosine phosphorylation via reversible oxidation of cysteine residues that are highly conserved within many proteins involved in this signaling pathway. An example of redox-regulated tyrosine kinase signaling involves the epidermal growth factor receptor (EGFR), a widely studied receptor system with diverse functions in normal cell biology as well as pathologies associated with oxidative stress such as cancer. The purpose of this Graphical Redox Review is to highlight recently emerged concepts with respect to NOX-dependent regulation of this important signaling pathway. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
2017-01-01
CD4 T cells, including T regulatory cells (Treg cells) and effector T helper cells (Th cells), and recently identified innate lymphoid cells (ILCs) play important roles in host defense and inflammation. Both CD4 T cells and ILCs can be classified into distinct lineages based on their functions and the expression of lineage-specific genes, including those encoding effector cytokines, cell surface markers, and key transcription factors. It was first recognized that each lineage expresses a specific master transcription factor and the expression of these factors is mutually exclusive because of cross-regulation among these factors. However, recent studies indicate that the master regulators are often coexpressed. Furthermore, the expression of master regulators can be dynamic and quantitative. In this review, we will first discuss similarities and differences between the development and functions of CD4 T cell and ILC subsets and then summarize recent literature on quantitative, dynamic, and cell type–specific balance between the master transcription factors in determining heterogeneity and plasticity of these subsets. PMID:28630089
Das, Sudeshna; Chen, Q. Brent; Saucier, Joseph D.; Drescher, Brandon; Zong, Yan; Morgan, Sarah; Forstall, John; Meriwether, Andrew; Toranzo, Randy; Leal, Sandra M.
2014-01-01
We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch–Delta signaling pathway essential for specifying the fates of sensory organ precursor cells. This complements an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in diverse neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch–Delta signaling hierarchy and is essential for maintaining cell viability within by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis. PMID:23962751
Sumagin, Ronen; Parkos, Charles A
2014-01-01
Epithelial adhesion molecules play essential roles in regulating cellular function and maintaining mucosal tissue homeostasis. Some form epithelial junctional complexes to provide structural support for epithelial monolayers and act as a selectively permeable barrier separating luminal contents from the surrounding tissue. Others serve as docking structures for invading viruses and bacteria, while also regulating the immune response. They can either obstruct or serve as footholds for the immune cells recruited to mucosal surfaces. Currently, it is well appreciated that adhesion molecules collectively serve as environmental cue sensors and trigger signaling events to regulate epithelial function through their association with the cell cytoskeleton and various intracellular adapter proteins. Immune cells, particularly neutrophils (PMN) during transepithelial migration (TEM), can modulate adhesion molecule expression, conformation, and distribution, significantly impacting epithelial function and tissue homeostasis. This review discusses the roles of key intestinal epithelial adhesion molecules in regulating PMN trafficking and outlines the potential consequences on epithelial function. PMID:25838976
Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion
Bozadjieva, Nadejda; Dai, Xiao-Qing; Cummings, Kelsey; Gimeno, Jennifer; Powers, Alvin C.; Gittes, George K.; Rüegg, Markus A.; Hall, Michael N.; MacDonald, Patrick E.
2017-01-01
Glucagon plays a major role in the regulation of glucose homeostasis during fed and fasting states. However, the mechanisms responsible for the regulation of pancreatic α cell mass and function are not completely understood. In the current study, we identified mTOR complex 1 (mTORC1) as a major regulator of α cell mass and glucagon secretion. Using mice with tissue-specific deletion of the mTORC1 regulator Raptor in α cells (αRaptorKO), we showed that mTORC1 signaling is dispensable for α cell development, but essential for α cell maturation during the transition from a milk-based diet to a chow-based diet after weaning. Moreover, inhibition of mTORC1 signaling in αRaptorKO mice and in WT animals exposed to chronic rapamycin administration decreased glucagon content and glucagon secretion. In αRaptorKO mice, impaired glucagon secretion occurred in response to different secretagogues and was mediated by alterations in KATP channel subunit expression and activity. Additionally, our data identify the mTORC1/FoxA2 axis as a link between mTORC1 and transcriptional regulation of key genes responsible for α cell function. Thus, our results reveal a potential function of mTORC1 in nutrient-dependent regulation of glucagon secretion and identify a role for mTORC1 in controlling α cell–mass maintenance. PMID:29106387
Podshivalova, Katie; Salomon, Daniel R.
2014-01-01
MicroRNAs (miRNA) are a class of small non-coding RNAs that constitute an essential and evolutionarily conserved mechanism for post-transcriptional gene regulation. Multiple miRNAs have been described to play key roles in T lymphocyte development, differentiation and function. In this review we highlight the current literature regarding the differential expression of miRNAs in various models of mouse and human T cell biology and emphasize mechanistic understandings of miRNA regulation of thymocyte development, T cell activation, and differentiation into effector and memory subsets. We describe the participation of miRNAs in complex regulatory circuits shaping T cell proteomes in a context-dependent manner. It is striking that some miRNAs regulate multiple processes, while others only appear in limited functional contexts. It is also evident that the expression and function of specific miRNAs can differ between mouse and human systems. Ultimately, it is not always correct to simplify the complex events of T cell biology into a model driven by only one or two master regulator miRNAs. In reality, T cell activation and differentiation involves the expression of multiple miRNAs with many mRNA targets and thus, the true extent of miRNA regulation of T cell biology is likely far more vast than currently appreciated. PMID:24099302
Multiple functions of BCL-2 family proteins.
Hardwick, J Marie; Soane, Lucian
2013-02-01
BCL-2 family proteins are the regulators of apoptosis, but also have other functions. This family of interacting partners includes inhibitors and inducers of cell death. Together they regulate and mediate the process by which mitochondria contribute to cell death known as the intrinsic apoptosis pathway. This pathway is required for normal embryonic development and for preventing cancer. However, before apoptosis is induced, BCL-2 proteins have critical roles in normal cell physiology related to neuronal activity, autophagy, calcium handling, mitochondrial dynamics and energetics, and other processes of normal healthy cells. The relative importance of these physiological functions compared to their apoptosis functions in overall organismal physiology is difficult to decipher. Apoptotic and noncanonical functions of these proteins may be intertwined to link cell growth to cell death. Disentanglement of these functions may require delineation of biochemical activities inherent to the characteristic three-dimensional shape shared by distantly related viral and cellular BCL-2 family members.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Wen; Jones, Frank E., E-mail: fjones3@tulane.edu
2014-01-10
Highlights: •HER4/4ICD is an obligate coactivator for 37% of estrogen regulated genes. •HER4/4ICD coactivated genes selectively regulate estrogen stimulated proliferation. •Estrogen stimulated tumor cell migration occurs independent of HER4/4ICD. •Disrupting HER4/4ICD and ER coactivated gene expression may suppress breast cancer. -- Abstract: The EGFR-family member HER4 undergoes regulated intramembrane proteolysis (RIP) to generate an intracellular domain (4ICD) that functions as a transcriptional coactivator. Accordingly, 4ICD coactivates the estrogen receptor (ER) and associates with ER at target gene promoters in breast tumor cells. However, the extent of 4ICD coactivation of ER and the functional significance of the 4ICD/ER transcriptional complex ismore » unclear. To identify 4ICD coactivated genes we performed a microarray gene expression analysis of β-estradiol treated cells comparing control MCF-7 breast cancer cells to MCF-7 cells where HER4 expression was stably suppressed using a shRNA. In the MCF-7 cell line, β-estradiol significantly stimulated or repressed by 2-fold or more 726 or 53 genes, respectively. Significantly, HER4/4ICD was an obligate coactivator for 277 or 38% of the β-estradiol stimulated genes. Ingenuity Pathway Analysis of β-estradiol regulated genes identified significant associations with multiple cellular functions regulating cellular growth and proliferation, cell cycle progression, cancer metastasis, decreased hypoplasia, tumor cell migration, apoptotic resistance of tumor cells, and increased transcription. Genes coactivated by 4ICD displayed functional specificity by only significantly contributing to cellular growth and proliferation, cell cycle progression, and decreased hypoplasia. In direct concordance with these in situ results we show that HER4 knockdown in MCF-7 cells results in a loss of estrogen stimulated tumor cell proliferation and cell cycle progression, whereas, estrogen stimulated tumor cell migration was unaffected by loss of HER4 expression. In summary, we demonstrate for the first time that a cell surface receptor functions as an obligate ER coactivator with functional specificity associated with breast tumor cell proliferation and cell cycle progression. Nearly 90% of ER positive tumors coexpress HER4, therefore we predict that the majority of breast cancer patients would benefit from a strategy to therapeutic disengage ER/4ICD coregulated tumor cell proliferation.« less
Regulation, Signaling, and Physiological Functions of G-Proteins.
Syrovatkina, Viktoriya; Alegre, Kamela O; Dey, Raja; Huang, Xin-Yun
2016-09-25
Heterotrimeric guanine-nucleotide-binding regulatory proteins (G-proteins) mainly relay the information from G-protein-coupled receptors (GPCRs) on the plasma membrane to the inside of cells to regulate various biochemical functions. Depending on the targeted cell types, tissues, and organs, these signals modulate diverse physiological functions. The basic schemes of heterotrimeric G-proteins have been outlined. In this review, we briefly summarize what is known about the regulation, signaling, and physiological functions of G-proteins. We then focus on a few less explored areas such as the regulation of G-proteins by non-GPCRs and the physiological functions of G-proteins that cannot be easily explained by the known G-protein signaling pathways. There are new signaling pathways and physiological functions for G-proteins to be discovered and further interrogated. With the advancements in structural and computational biological techniques, we are closer to having a better understanding of how G-proteins are regulated and of the specificity of G-protein interactions with their regulators. Copyright © 2016 Elsevier Ltd. All rights reserved.
Intermediate Filaments Play a Pivotal Role in Regulating Cell Architecture and Function*
Lowery, Jason; Kuczmarski, Edward R.; Herrmann, Harald; Goldman, Robert D.
2015-01-01
Intermediate filaments (IFs) are composed of one or more members of a large family of cytoskeletal proteins, whose expression is cell- and tissue type-specific. Their importance in regulating the physiological properties of cells is becoming widely recognized in functions ranging from cell motility to signal transduction. IF proteins assemble into nanoscale biopolymers with unique strain-hardening properties that are related to their roles in regulating the mechanical integrity of cells. Furthermore, mutations in the genes encoding IF proteins cause a wide range of human diseases. Due to the number of different types of IF proteins, we have limited this short review to cover structure and function topics mainly related to the simpler homopolymeric IF networks composed of vimentin, and specifically for diseases, the related muscle-specific desmin IF networks. PMID:25957409
New insights into redox regulation of stem cell self-renewal and differentiation.
Ren, Fenglian; Wang, Kui; Zhang, Tao; Jiang, Jingwen; Nice, Edouard Collins; Huang, Canhua
2015-08-01
Reactive oxygen species (ROS), the natural byproducts of aerobic metabolism, are precisely orchestrated to evoke diverse signaling pathways. To date, studies have focused mainly on the detrimental effects of ROS in stem cells. Recently, accumulating evidence has suggested that ROS also function as second messengers that modulate stem cell self-renewal and differentiation by regulating intricate signaling networks. Although many efforts have been made to clarify the general effects of ROS on signal transduction in stem cells, less is known about the initial and direct executors of ROS signaling, which are known as 'redox sensors'. Modifications of cysteine residues in redox sensors are of significant importance in the modulation of protein function in response to different redox conditions. Intriguingly, most key molecules in ROS signaling and cell cycle regulation (including transcriptional factors and kinases) that are crucial in the regulation of stem cell self-renewal and differentiation have the potential to be redox sensors. We highlight herein the importance of redox regulation of these key regulators in stem cell self-renewal and differentiation. Understanding the mechanisms of redox regulation in stem cell self-renewal and differentiation will open exciting new perspectives for stem cell biology. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.
Functional defect in regulatory T cells in myasthenia gravis
Thiruppathi, Muthusamy; Rowin, Julie; Jiang, Qin Li; Sheng, Jian Rong; Prabhakar, Bellur S.; Meriggioli, Matthew N.
2012-01-01
Forkhead box P3 (FOXP3)+ is a transcription factor necessary for the function of regulatory T cells (Treg cells). Treg cells maintain immune homeostasis and self-tolerance, and play an important role in the prevention of autoimmune disease. Here, we discuss the role of Treg cells in the pathogenesis of myasthenia gravis (MG) and review evidence indicating that a significant defect in Treg cell in vitro suppressive function exists in MG patients, without an alteration in circulating frequency. This functional defect is associated with a reduced expression of key functional molecules such as FOXP3 on isolated Treg cells and appears to be more pronounced in immunosuppression-naive MG patients. In vitro administration of granulocyte-macrophage colony-stimulating factor (GM-CSF) enhanced the suppressive function of Treg cells and up-regulated FOXP3 expression. These findings indicate a clinically relevant Treg cell–intrinsic defect in immune regulation in MG that may reveal a novel therapeutic target. PMID:23252899
Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction
Richart, Adèle; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Guerin, Coralie; Gautier, Gregory; Blank, Ulrich; Heymes, Christophe; Luche, Elodie; Cousin, Béatrice; Rodewald, Hans-Reimer
2016-01-01
Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit–independent MC-deficient (Cpa3Cre/+) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca2+ desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force–Ca2+ interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators. PMID:27353089
Control of Innate and Adaptive Lymphocytes by the RAR-Retinoic Acid Axis.
Kim, Chang H
2018-02-01
Lymphocytes, such as T cells, B cells, and innate lymphoid cells (ILCs), play central roles in regulating immune responses. Retinoic acids (RAs) are vitamin A metabolites, produced and metabolized by certain tissue cells and myeloid cells in a tissue-specific manner. It has been established that RAs induce gut-homing receptors on T cells, B cells, and ILCs. A mounting body of evidence indicates that RAs exert far-reaching effects on functional differentiation and fate of these lymphocytes. For example, RAs promote effector T cell maintenance, generation of induced gut-homing regulatory and effector T cell subsets, antibody production by B cells, and functional maturation of ILCs. Key functions of RAs in regulating major groups of innate and adaptive lymphocytes are highlighted in this article.
Bioenergetics mechanisms regulating muscle stem cell self-renewal commitment and function.
Abreu, Phablo
2018-04-16
Muscle stem cells or satellite cells are crucial for muscle maintenance and repair. These cells are mitotically quiescent and uniformly express the transcription factor Pax7, intermittently entering the cell cycle to give rise to daughter myogenic precursors cells and fuse with neighboring myofibers or self-renew, replenishing the stem cell pool in adult skeletal muscle. Pivotal roles of muscle stem cells in muscle repair have been uncovered, but it still remains unclear how muscle stem cell self-renewal is molecularly regulated and how muscle stem cells maintain muscle tissue homeostasis. Defects in muscle stem cell regulation to maintain/return to quiescence and self-renew are observed in degenerative conditions such as aging and neuromuscular disease. Recent works has suggested the existence of metabolic regulation and mitochondrial alterations in muscle stem cells, influencing the self-renewal commitment and function. Here I present a brief overview of recent understanding of how metabolic reprogramming governs self-renewal commitment, which is essential for conservation of muscle satellite cell pools throughout life, as well as the implications for regenerative medicine. Copyright © 2018. Published by Elsevier Masson SAS.
The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression
Balda, Maria S.; Matter, Karl
2000-01-01
Epithelial tight junctions regulate paracellular diffusion and restrict the intermixing of apical and basolateral plasma membrane components. We now identify a Y-box transcription factor, ZONAB (ZO-1-associated nucleic acid-binding protein), that binds to the SH3 domain of ZO-1, a submembrane protein of tight junctions. ZONAB localizes to the nucleus and at tight junctions, and binds to sequences of specific promoters containing an inverted CCAAT box. In reporter assays, ZONAB and ZO-1 functionally interact in the regulation of the ErbB-2 promoter in a cell density-dependent manner. In stably transfected overexpressing cells, ZO-1 and ZONAB control expression of endogenous ErbB-2 and function in the regulation of paracellular permeability. These data indicate that tight junctions directly participate in the control of gene expression and suggest that they function in the regulation of epithelial cell differentiation. PMID:10790369
Interferon regulatory factors: A key to tumour immunity.
Chen, Yan-Jie; Li, Jing; Lu, Nan; Shen, Xi-Zhong
2017-08-01
Interferon regulatory factors (IRFs), which have 10 members, belong to the transcription factor family and were named because of the regulation of interferon expression. They play important roles in the immune regulation, cell differentiation, cell apoptosis, and cell cycle regulation. This article will review the functional characteristics and immune activity of the family members, especially in the role of cell differentiation and autoimmune diseases. Intensive studies will help uncover the pathogenesis of the disease in a more comprehensive view, and provide novel targets for disease treatment. But the most important problems yet to solve is IRFs function in the development processes of tumour, and whether IRFs can be an important regulator in tumour immune treatment. Copyright © 2017. Published by Elsevier B.V.
DeFuria, Jason; Belkina, Anna C.; Jagannathan-Bogdan, Madhumita; Snyder-Cappione, Jennifer; Carr, Jordan David; Nersesova, Yanina R.; Markham, Douglas; Strissel, Katherine J.; Watkins, Amanda A.; Zhu, Min; Allen, Jessica; Bouchard, Jacqueline; Toraldo, Gianluca; Jasuja, Ravi; Obin, Martin S.; McDonnell, Marie E.; Apovian, Caroline; Denis, Gerald V.; Nikolajczyk, Barbara S.
2013-01-01
Patients with type 2 diabetes (T2D) have disease-associated changes in B-cell function, but the role these changes play in disease pathogenesis is not well established. Data herein show B cells from obese mice produce a proinflammatory cytokine profile compared with B cells from lean mice. Complementary in vivo studies show that obese B cell–null mice have decreased systemic inflammation, inflammatory B- and T-cell cytokines, adipose tissue inflammation, and insulin resistance (IR) compared with obese WT mice. Reduced inflammation in obese/insulin resistant B cell–null mice associates with an increased percentage of anti-inflammatory regulatory T cells (Tregs). This increase contrasts with the sharply decreased percentage of Tregs in obese compared with lean WT mice and suggests that B cells may be critical regulators of T-cell functions previously shown to play important roles in IR. We demonstrate that B cells from T2D (but not non-T2D) subjects support proinflammatory T-cell function in obesity/T2D through contact-dependent mechanisms. In contrast, human monocytes increase proinflammatory T-cell cytokines in both T2D and non-T2D analyses. These data support the conclusion that B cells are critical regulators of inflammation in T2D due to their direct ability to promote proinflammatory T-cell function and secrete a proinflammatory cytokine profile. Thus, B cells are potential therapeutic targets for T2D. PMID:23479618
Cullin-4 regulates Wingless and JNK signaling-mediated cell death in the Drosophila eye
Tare, Meghana; Sarkar, Ankita; Bedi, Shimpi; Kango-Singh, Madhuri; Singh, Amit
2016-01-01
In all multicellular organisms, the fundamental processes of cell proliferation and cell death are crucial for growth regulation during organogenesis. Strict regulation of cell death is important to maintain tissue homeostasis by affecting processes like regulation of cell number, and elimination of unwanted/unfit cells. The developing Drosophila eye is a versatile model to study patterning and growth, where complex signaling pathways regulate growth and cell survival. However, the molecular mechanisms underlying regulation of these processes is not fully understood. In a gain-of-function screen, we found that misexpression of cullin-4 (cul-4), an ubiquitin ligase, can rescue reduced eye mutant phenotypes. Previously, cul-4 has been shown to regulate chromatin remodeling, cell cycle and cell division. Genetic characterization of cul-4 in the developing eye revealed that loss-of-function of cul-4 exhibits a reduced eye phenotype. Analysis of twin-spots showed that in comparison with their wild-type counterparts, the cul-4 loss-of-function clones fail to survive. Here we show that cul-4 clones are eliminated by induction of cell death due to activation of caspases. Aberrant activation of signaling pathways is known to trigger cell death in the developing eye. We found that Wingless (Wg) and c-Jun-amino-terminal-(NH2)-Kinase (JNK) signaling are ectopically induced in cul-4 mutant clones, and these signals co-localize with the dying cells. Modulating levels of Wg and JNK signaling by using agonists and antagonists of these pathways demonstrated that activation of Wg and JNK signaling enhances cul-4 mutant phenotype, whereas downregulation of Wg and JNK signaling rescues the cul-4 mutant phenotypes of reduced eye. Here we present evidences to demonstrate that cul-4 is involved in restricting Wg signaling and downregulation of JNK signaling-mediated cell death during early eye development. Overall, our studies provide insights into a novel role of cul-4 in promoting cell survival in the developing Drosophila eye. PMID:28032862
Rappolee, D A; Zhou, S; Puscheck, E E; Xie, Y
2013-05-01
Development can happen in one of two ways. Cells performing a necessary function can differentiate from stem cells before the need for it arises and stress does not develop. Or need arises before function, stress develops and stress signals are part of the normal stimuli that regulate developmental mechanisms. These mechanisms adjust stem cell differentiation to produce function in a timely and proportional manner. In this review, we will interpret data from studies of null lethal mutants for placental stress genes that suggest the latter possibility. Acknowledged stress pathways participate in stress-induced and -regulated differentiation in two ways. These pathways manage the homeostatic response to maintain stem cells during the stress. Stress pathways also direct stem cell differentiation to increase the first essential lineage and suppress later lineages when stem cell accumulation is diminished. This stress-induced differentiation maintains the conceptus during stress. Pathogenic outcomes arise because population sizes of normal stem cells are first depleted by decreased accumulation. The fraction of stem cells is further decreased by differentiation that is induced to compensate for smaller stem cell populations. Analysis of placental lethal null mutant genes known to mediate stress responses suggests that the labyrinthine placenta develops during, and is regulated by, hypoxic stress.
Hoffmann, Else Kay
2011-01-01
This mini review outlines studies of cell volume regulation in two closely related mammalian cell lines: nonadherent Ehrlich ascites tumour cells (EATC) and adherent Ehrlich Lettre ascites (ELA) cells. Focus is on the regulatory volume decrease (RVD) that occurs after cell swelling, the volume regulatory ion channels involved, and the mechanisms (cellular signalling pathways) that regulate these channels. Finally, I shall also briefly review current investigations in these two cell lines that focuses on how changes in cell volume can regulate cell functions such as cell migration, proliferation, and programmed cell death. Copyright © 2011 S. Karger AG, Basel.
Castaneda, Francisco; Rosin-Steiner, Sigrid; Jung, Klaus
2006-12-21
We previously found that ethanol at millimolar level (1 mM) activates the expression of transcription factors with subsequent regulation of apoptotic genes in human hepatocellular carcinoma (HCC) HepG2 cells. However, the role of ethanol on the expression of genes implicated in transcriptional and translational processes remains unknown. Therefore, the aim of this study was to characterize the effect of low concentration of ethanol on gene expression profiling in HepG2 cells using cDNA microarrays with especial interest in genes with transcriptional and translational function. The gene expression pattern observed in the ethanol-treated HepG2 cells revealed a relatively similar pattern to that found in the untreated control cells. The pairwise comparison analysis demonstrated four significantly up-regulated (COBRA1, ITGB4, STAU2, and HMGN3) genes and one down-regulated (ANK3) gene. All these genes exert their function on transcriptional and translational processes and until now none of these genes have been associated with ethanol. This functional genomic analysis demonstrates the reported interaction between ethanol and ethanol-regulated genes. Moreover, it confirms the relationship between ethanol-regulated genes and various signaling pathways associated with ethanol-induced apoptosis. The data presented in this study represents an important contribution toward the understanding of the molecular mechanisms of ethanol at low concentration in HepG2 cells, a HCC-derived cell line.
Castaneda, Francisco; Rosin-Steiner, Sigrid; Jung, Klaus
2007-01-01
We previously found that ethanol at millimolar level (1 mM) activates the expression of transcription factors with subsequent regulation of apoptotic genes in human hepatocellular carcinoma (HCC) HepG2 cells. However, the role of ethanol on the expression of genes implicated in transcriptional and translational processes remains unknown. Therefore, the aim of this study was to characterize the effect of low concentration of ethanol on gene expression profiling in HepG2 cells using cDNA microarrays with especial interest in genes with transcriptional and translational function. The gene expression pattern observed in the ethanol-treated HepG2 cells revealed a relatively similar pattern to that found in the untreated control cells. The pairwise comparison analysis demonstrated four significantly up-regulated (COBRA1, ITGB4, STAU2, and HMGN3) genes and one down-regulated (ANK3) gene. All these genes exert their function on transcriptional and translational processes and until now none of these genes have been associated with ethanol. This functional genomic analysis demonstrates the reported interaction between ethanol and ethanol-regulated genes. Moreover, it confirms the relationship between ethanol-regulated genes and various signaling pathways associated with ethanol-induced apoptosis. The data presented in this study represents an important contribution toward the understanding of the molecular mechanisms of ethanol at low concentration in HepG2 cells, a HCC-derived cell line. PMID:17211498
ATP-dependent chromatin remodeling in T cells
Wurster, Andrea L.; Pazin, Michael J.
2012-01-01
One of the best studied systems for mammalian chromatin remodeling is transcriptional regulation during T cell development. The variety of these studies have led to important findings in T cell gene regulation and cell fate determination. Importantly, these findings have also advanced our knowledge of the function of remodeling enzymes in mammalian gene regulation. In this review, first we briefly present biochemical/cell-free analysis of 3 types of ATP dependent remodeling enzymes (SWI/SNF, Mi2, and ISWI), to construct an intellectual framework to understand how these enzymes might be working. Second, we compare and contrast the function of these enzymes, during early (thymic) and late (peripheral) T cell development. Finally, we examine some of the gaps in our present understanding. PMID:21999456
Mahato, Biraj; Home, Pratik; Rajendran, Ganeshkumar; Paul, Arindam; Saha, Biswarup; Ganguly, Avishek; Ray, Soma; Roy, Nairita; Swerdlow, Russell H; Paul, Soumen
2014-11-01
Pluripotent stem cells (PSCs) contain functionally immature mitochondria and rely upon high rates of glycolysis for their energy requirements. Thus, altered mitochondrial function and promotion of aerobic glycolysis are key to maintain and induce pluripotency. However, signaling mechanisms that regulate mitochondrial function and reprogram metabolic preferences in self-renewing versus differentiated PSC populations are poorly understood. Here, using murine embryonic stem cells (ESCs) as a model system, we demonstrate that atypical protein kinase C isoform, PKC lambda/iota (PKCλ/ι), is a key regulator of mitochondrial function in ESCs. Depletion of PKCλ/ι in ESCs maintains their pluripotent state as evident from germline offsprings. Interestingly, loss of PKCλ/ι in ESCs leads to impairment in mitochondrial maturation, organization, and a metabolic shift toward glycolysis under differentiating condition. Our mechanistic analyses indicate that a PKCλ/ι-hypoxia-inducible factor 1α-PGC1α axis regulates mitochondrial respiration and balances pluripotency in ESCs. We propose that PKCλ/ι could be a crucial regulator of mitochondrial function and energy metabolism in stem cells and other cellular contexts. © 2014 AlphaMed Press.
Regulation of Mitochondria Function by TRAF3 in B Lymphocytes and B Cell Malignancies
2015-10-01
1, 2014. 2. Chair, Block Symposia of Innate Immune Responses in Monocytes/Macrophages, Dendritic Cells , and Myeloid Cells , the Annual Meeting of...Xie P. TRAF3-mediated regulation of innate immunity and inflammation. Research Forum, Department of Cell Biology and Neuroscience, Rutgers...TRAF3: a regulator of innate immunity and inflammation. Department of Cell & Molecular Physiology, University of Loyola, Chicago, IL. Aug. 27, 2014 9
The role of focal adhesion kinase in the regulation of cellular mechanical properties
NASA Astrophysics Data System (ADS)
Mierke, Claudia Tanja
2013-12-01
The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.
p53 regulates cytoskeleton remodeling to suppress tumor progression.
Araki, Keigo; Ebata, Takahiro; Guo, Alvin Kunyao; Tobiume, Kei; Wolf, Steven John; Kawauchi, Keiko
2015-11-01
Cancer cells possess unique characteristics such as invasiveness, the ability to undergo epithelial-mesenchymal transition, and an inherent stemness. Cell morphology is altered during these processes and this is highly dependent on actin cytoskeleton remodeling. Regulation of the actin cytoskeleton is, therefore, important for determination of cell fate. Mutations within the TP53 (tumor suppressor p53) gene leading to loss or gain of function (GOF) of the protein are often observed in aggressive cancer cells. Here, we highlight the roles of p53 and its GOF mutants in cancer cell invasion from the perspective of the actin cytoskeleton; in particular its reorganization and regulation by cell adhesion molecules such as integrins and cadherins. We emphasize the multiple functions of p53 in the regulation of actin cytoskeleton remodeling in response to the extracellular microenvironment, and oncogene activation. Such an approach provides a new perspective in the consideration of novel targets for anti-cancer therapy.
OCA-B regulation of B-cell development and function.
Teitell, Michael A
2003-10-01
The transcriptional co-activator OCA-B [for Oct co-activator from B cells, also known as OBF-1 (OCT-binding factor-1) and Bob1] is not required for B-cell genesis but does regulate subsequent B-cell development and function. OCA-B deficient mice show strain-specific, partial blocks at multiple stages of B-cell maturation and a complete disruption of germinal center formation in all strains, causing humoral immune deficiency and susceptibility to infection. OCA-B probably exerts its effects through the regulation of octamer-motif controlled gene expression. The OCA-B gene encodes two proteins of distinct molecular weight, designated p34 and p35. The p34 isoform localizes in the nucleus, whereas the p35 isoform is myristoylated and is bound to the cytoplasmic membrane. p35 can traffic to the nucleus and probably activates octamer-dependent transcription, although this OCA-B isoform might regulate B cells through membrane-related signal transduction.
Spire, an actin nucleation factor, regulates cell division during Drosophila heart development.
Xu, Peng; Johnson, Tamara L; Stoller-Conrad, Jessica R; Schulz, Robert A
2012-01-01
The Drosophila dorsal vessel is a beneficial model system for studying the regulation of early heart development. Spire (Spir), an actin-nucleation factor, regulates actin dynamics in many developmental processes, such as cell shape determination, intracellular transport, and locomotion. Through protein expression pattern analysis, we demonstrate that the absence of spir function affects cell division in Myocyte enhancer factor 2-, Tinman (Tin)-, Even-skipped- and Seven up (Svp)-positive heart cells. In addition, genetic interaction analysis shows that spir functionally interacts with Dorsocross, tin, and pannier to properly specify the cardiac fate. Furthermore, through visualization of double heterozygous embryos, we determines that spir cooperates with CycA for heart cell specification and division. Finally, when comparing the spir mutant phenotype with that of a CycA mutant, the results suggest that most Svp-positive progenitors in spir mutant embryos cannot undergo full cell division at cell cycle 15, and that Tin-positive progenitors are arrested at cell cycle 16 as double-nucleated cells. We conclude that Spir plays a crucial role in controlling dorsal vessel formation and has a function in cell division during heart tube morphogenesis.
Epigenetic regulation of planarian stem cells by the SET1/MLL family of histone methyltransferases
Hubert, Amy; Henderson, Jordana M.; Ross, Kelly G.; Cowles, Martis W.; Torres, Jessica; Zayas, Ricardo M.
2013-01-01
Chromatin regulation is a fundamental mechanism underlying stem cell pluripotency, differentiation, and the establishment of cell type-specific gene expression profiles. To examine the role of chromatin regulation in stem cells in vivo, we study regeneration in the freshwater planarian Schmidtea mediterranea. These animals possess a high concentration of pluripotent stem cells, which are capable of restoring any damaged or lost tissues after injury or amputation. Here, we identify the S. mediterranea homologs of the SET1/MLL family of histone methyltransferases and COMPASS and COMPASS-like complex proteins and investigate their role in stem cell function during regeneration. We identified six S. mediterranea homologs of the SET1/MLL family (set1, mll1/2, trr-1, trr-2, mll5–1 and mll5–2), characterized their patterns of expression in the animal, and examined their function by RNAi. All members of this family are expressed in the stem cell population and differentiated tissues. We show that set1, mll1/2, trr-1, and mll5–2 are required for regeneration and that set1, trr-1 and mll5–2 play roles in the regulation of mitosis. Most notably, knockdown of the planarian set1 homolog leads to stem cell depletion. A subset of planarian homologs of COMPASS and COMPASS-like complex proteins are also expressed in stem cells and implicated in regeneration, but the knockdown phenotypes suggest that some complex members also function in other aspects of planarian biology. This work characterizes the function of the SET1/MLL family in the context of planarian regeneration and provides insight into the role of these enzymes in adult stem cell regulation in vivo. PMID:23235145
Epigenetic regulation of planarian stem cells by the SET1/MLL family of histone methyltransferases.
Hubert, Amy; Henderson, Jordana M; Ross, Kelly G; Cowles, Martis W; Torres, Jessica; Zayas, Ricardo M
2013-01-01
Chromatin regulation is a fundamental mechanism underlying stem cell pluripotency, differentiation, and the establishment of cell type-specific gene expression profiles. To examine the role of chromatin regulation in stem cells in vivo, we study regeneration in the freshwater planarian Schmidtea mediterranea. These animals possess a high concentration of pluripotent stem cells, which are capable of restoring any damaged or lost tissues after injury or amputation. Here, we identify the S. mediterranea homologs of the SET1/MLL family of histone methyltransferases and COMPASS and COMPASS-like complex proteins and investigate their role in stem cell function during regeneration. We identified six S. mediterranea homologs of the SET1/MLL family (set1, mll1/2, trr-1, trr-2, mll5-1 and mll5-2), characterized their patterns of expression in the animal, and examined their function by RNAi. All members of this family are expressed in the stem cell population and differentiated tissues. We show that set1, mll1/2, trr-1, and mll5-2 are required for regeneration and that set1, trr-1 and mll5-2 play roles in the regulation of mitosis. Most notably, knockdown of the planarian set1 homolog leads to stem cell depletion. A subset of planarian homologs of COMPASS and COMPASS-like complex proteins are also expressed in stem cells and implicated in regeneration, but the knockdown phenotypes suggest that some complex members also function in other aspects of planarian biology. This work characterizes the function of the SET1/MLL family in the context of planarian regeneration and provides insight into the role of these enzymes in adult stem cell regulation in vivo.
Ogasawara, Takashi; Kohashi, Yuko; Ikari, Jun; Taniguchi, Toshibumi; Tsuruoka, Nobuhide; Watanabe-Takano, Haruko; Fujimura, Lisa; Sakamoto, Akemi; Hatano, Masahiko; Hirata, Hirokuni; Fukushima, Yasutsugu; Fukuda, Takeshi; Kurasawa, Kazuhiro; Tatsumi, Koichiro; Tokuhisa, Takeshi; Arima, Masafumi
2018-01-01
Transcriptional repressor B-cell lymphoma 6 (Bcl6) appears to regulate TH2 immune responses in allergies, but its precise role is unclear. We previously reported that Bcl6 suppressed IL-4 production in naïve CD4+ T cell-derived memory TH2 cells. To investigate Bcl6 function in allergic responses in naturally occurring memory phenotype CD4+ T (MPT) cells and their derived TH2 (MPTH2) cells, Bcl6-manipulated mice, highly conserved intron enhancer (hcIE)-deficient mice, and reporter mice for conserved noncoding sequence 2 (CNS2) 3′ distal enhancer region were used to elucidate Bcl6 function in MPT cells. The molecular mechanisms of Bcl6-mediated TH2 cytokine gene regulation were elucidated using cellular and molecular approaches. Bcl6 function in MPT cells was determined using adoptive transfer to naïve mice, which were assessed for allergic airway inflammation. Bcl6 suppressed IL-4 production in MPT and MPTH2 cells by suppressing CNS2 enhancer activity. Bcl6 downregulated Il4 expression in MPTH2 cells, but not MPT cells, by suppressing hcIE activity. The inhibitory functions of Bcl6 in MPT and MPTH2 cells attenuated allergic responses. Bcl6 is a critical regulator of IL-4 production by MPT and MPTH2 cells in TH2 immune responses related to the pathogenesis of allergies. PMID:29696026
GATA-3 function in innate and adaptive immunity.
Tindemans, Irma; Serafini, Nicolas; Di Santo, James P; Hendriks, Rudi W
2014-08-21
The zinc-finger transcription factor GATA-3 has received much attention as a master regulator of T helper 2 (Th2) cell differentiation, during which it controls interleukin-4 (IL-4), IL-5, and IL-13 expression. More recently, GATA-3 was shown to contribute to type 2 immunity through regulation of group 2 innate lymphoid cell (ILC2) development and function. Furthermore, during thymopoiesis, GATA-3 represses B cell potential in early T cell precursors, activates TCR signaling in pre-T cells, and promotes the CD4(+) T cell lineage after positive selection. GATA-3 also functions outside the thymus in hematopoietic stem cells, regulatory T cells, CD8(+) T cells, thymic natural killer cells, and ILC precursors. Here we discuss the varied functions of GATA-3 in innate and adaptive immune cells, with emphasis on its activity in T cells and ILCs, and examine the mechanistic basis for the dose-dependent, developmental-stage- and cell-lineage-specific activity of this transcription factor. Copyright © 2014 Elsevier Inc. All rights reserved.
The Prohormone VGF Regulates β Cell Function via Insulin Secretory Granule Biogenesis.
Stephens, Samuel B; Edwards, Robert J; Sadahiro, Masato; Lin, Wei-Jye; Jiang, Cheng; Salton, Stephen R; Newgard, Christopher B
2017-09-05
The prohormone VGF is expressed in neuroendocrine and endocrine tissues and regulates nutrient and energy status both centrally and peripherally. We and others have shown that VGF-derived peptides have direct action on the islet β cell as secretagogues and cytoprotective agents; however, the endogenous function of VGF in the β cell has not been described. Here, we demonstrate that VGF regulates secretory granule formation. VGF loss-of-function studies in both isolated islets and conditional knockout mice reveal a profound decrease in stimulus-coupled insulin secretion. Moreover, VGF is necessary to facilitate efficient exit of granule cargo from the trans-Golgi network and proinsulin processing. It also functions to replenish insulin granule stores following nutrient stimulation. Our data support a model in which VGF operates at a critical node of granule biogenesis in the islet β cell to coordinate insulin biosynthesis with β cell secretory capacity. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
C-RAF function at the genome-wide transcriptome level: A systematic view.
Huang, Ying; Zhang, Xin-Yu; An, Su; Yang, Yang; Liu, Ying; Hao, Qian; Guo, Xiao-Xi; Xu, Tian-Rui
2018-05-20
C-RAF was the first member of the RAF kinase family to be discovered. Since its discovery, C-RAF has been found to regulate many fundamental cell processes, such as cell proliferation, cell death, and metabolism. However, the majority of these functions are achieved through interactions with different proteins; the genes regulated by C-RAF in its active or inactive state remain unclear. In the work, we used RNA-seq analysis to study the global transcriptomes of C-RAF bearing or C-RAF knockout cells in quiescent or EGF activated states. We identified 3353 genes that are promoted or suppressed by C-RAF. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these genes are involved in drug addiction, cardiomyopathy, autoimmunity, and regulation of cell metabolism. Our results provide a panoramic view of C-RAF function, including known and novel functions, and have revealed potential targets for elucidating the role of C-RAF. Copyright © 2018 Elsevier B.V. All rights reserved.
DDX3X RNA helicase affects breast cancer cell cycle progression by regulating expression of KLF4.
Cannizzaro, Ester; Bannister, Andrew John; Han, Namshik; Alendar, Andrej; Kouzarides, Tony
2018-05-21
DDX3X is a multifunctional RNA helicase with documented roles in different cancer types. Here, we demonstrate that DDX3X plays an oncogenic role in breast cancer cells by modulating the cell cycle. Depletion of DDX3X in MCF7 cells slows cell proliferation by inducing a G1 phase arrest. Notably, DDX3X inhibits expression of Kruppel-like factor 4 (KLF4), a transcription factor and cell cycle repressor. Moreover, DDX3X directly interacts with KLF4 mRNA and regulates its splicing. We show that DDX3X-mediated repression of KLF4 promotes expression of S-phase inducing genes in MCF7 breast cancer cells. These findings provide evidence for a novel function of DDX3X in regulating expression and downstream functions of KLF4, a master negative regulator of the cell cycle. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Wang, Ying; Dong, Jie; Li, Dali; Lai, Li; Siwko, Stefan; Li, Yi; Liu, Mingyao
2013-09-01
The key signaling networks regulating mammary stem cells are poorly defined. The leucine-rich repeat containing G protein-coupled receptor (Lgr) family has been implicated in intestinal, gastric, and epidermal stem cell functions. We investigated whether Lgr4 functions in mammary gland development and mammary stem cells. We found that Lgr4(-/-) mice had delayed ductal development, fewer terminal end buds, and decreased side-branching. Crucially, the mammary stem cell repopulation capacity was severely impaired. Mammospheres from Lgr4(-/-) mice showed decreased Wnt signaling. Wnt3a treatment prevented the adverse effects of Lgr4 loss on organoid formation. Chromatin immunoprecipitation analysis indicated that Sox2 expression was controlled by the Lgr4/Wnt/β-catenin/Lef1 pathway. Importantly, Sox2 overexpression restored the in vivo mammary regeneration potential of Lgr4(-/-) mammary stem cells. Therefore, Lgr4 activates Sox2 to regulate mammary development and stem cell functions via Wnt/β-catenin/Lef1. © AlphaMed Press.
Material Cues as Potent Regulators of Epigenetics and Stem Cell Function.
Crowder, Spencer W; Leonardo, Vincent; Whittaker, Thomas; Papathanasiou, Peter; Stevens, Molly M
2016-01-07
Biophysical signals act as potent regulators of stem cell function, lineage commitment, and epigenetic status. In recent years, synthetic biomaterials have been used to study a wide range of outside-in signaling events, and it is now well appreciated that material cues modulate the epigenome. Here, we review the role of extracellular signals in guiding stem cell behavior via epigenetic regulation, and we stress the role of physicochemical material properties as an often-overlooked modulator of intracellular signaling. We also highlight promising new research tools for ongoing interrogation of the stem cell-material interface. Copyright © 2016 Elsevier Inc. All rights reserved.
Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis.
Byrne, M E; Barley, R; Curtis, M; Arroyo, J M; Dunham, M; Hudson, A; Martienssen, R A
Meristem function in plants requires both the maintenance of stem cells and the specification of founder cells from which lateral organs arise. Lateral organs are patterned along proximodistal, dorsoventral and mediolateral axes. Here we show that the Arabidopsis mutant asymmetric leaves1 (as1) disrupts this process. AS1 encodes a myb domain protein, closely related to PHANTASTICA in Antirrhinum and ROUGH SHEATH2 in maize, both of which negatively regulate knotted-class homeobox genes. AS1 negatively regulates the homeobox genes KNAT1 and KNAT2 and is, in turn, negatively regulated by the meristematic homeobox gene SHOOT MERISTEMLESS. This genetic pathway defines a mechanism for differentiating between stem cells and organ founder cells within the shoot apical meristem and demonstrates that genes expressed in organ primordia interact with meristematic genes to regulate shoot morphogenesis.
Differential PAX3 functions in normal skin melanocytes and melanoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medic, Sandra; Rizos, Helen; Ziman, Mel, E-mail: m.ziman@ecu.edu.au
2011-08-12
Highlights: {yields} PAX3 retains embryonic roles in adult melanocytes and melanoma cells. {yields} Promotes 'stem' cell-like phenotype via NES and SOX9 in both cells types. {yields} Regulates melanoma and melanocyte migration through MCAM and CSPG4. {yields} PAX3 regulates melanoma but not melanocyte proliferation via TPD52. {yields} Regulates melanoma cell (but not melanocyte) survival via BCL2L1 and PTEN. -- Abstract: The PAX3 transcription factor is the key regulator of melanocyte development during embryogenesis and is also frequently found in melanoma cells. While PAX3 is known to regulate melanocyte differentiation, survival, proliferation and migration during development, it is not clear if itsmore » function is maintained in adult melanocytes and melanoma cells. To clarify this we have assessed which genes are targeted by PAX3 in these cells. We show here that similar to its roles in development, PAX3 regulates complex differentiation networks in both melanoma cells and melanocytes, in order to maintain cells as 'stem' cell-like (via NES and SOX9). We show also that mediators of migration (MCAM and CSPG4) are common to both cell types but more so in melanoma cells. By contrast, PAX3-mediated regulation of melanoma cell proliferation (through TPD52) and survival (via BCL2L1 and PTEN) differs from that in melanocytes. These results suggest that by controlling cell proliferation, survival and migration as well as maintaining a less differentiated 'stem' cell like phenotype, PAX3 may contribute to melanoma development and progression.« less
Ahr function in lymphocytes: emerging concepts
Zhou, Liang
2015-01-01
The aryl hydrocarbon receptor (Ahr) is an important regulator of the development and function of both innate and adaptive immune cells through roles associated with Ahr's ability to respond to cellular and dietary ligands. Recent findings have revealed tissue and context-specific functions for Ahr in both homeostasis and in during an immune response. I review these findings here, and integrate them into the current understanding of the mechanisms that regulate Ahr transcription and function. I propose a conceptual framework in which Ahr function is determined by three factors: the amount of Ahr in any given cell, the abundance and potency of Ahr ligands within certain tissues, and the tissue microenvironment wherein Ahr+ cells reside. This complexity emphasizes the necessity cell-type specific genetic approaches towards the study of Ahr function. PMID:26700314
The histone H2A deubiquitinase Usp16 regulates hematopoiesis and hematopoietic stem cell function.
Gu, Yue; Jones, Amanda E; Yang, Wei; Liu, Shanrun; Dai, Qian; Liu, Yudong; Swindle, C Scott; Zhou, Dewang; Zhang, Zhuo; Ryan, Thomas M; Townes, Tim M; Klug, Christopher A; Chen, Dongquan; Wang, Hengbin
2016-01-05
Epigenetic mechanisms play important regulatory roles in hematopoiesis and hematopoietic stem cell (HSC) function. Subunits of polycomb repressive complex 1 (PRC1), the major histone H2A ubiquitin ligase, are critical for both normal and pathological hematopoiesis; however, it is unclear which of the several counteracting H2A deubiquitinases functions along with PRC1 to control H2A ubiquitination (ubH2A) level and regulates hematopoiesis in vivo. Here we investigated the function of Usp16 in mouse hematopoiesis. Conditional deletion of Usp16 in bone marrow resulted in a significant increase of global ubH2A level and lethality. Usp16 deletion did not change HSC number but was associated with a dramatic reduction of mature and progenitor cell populations, revealing a role in governing HSC lineage commitment. ChIP- and RNA-sequencing studies in HSC and progenitor cells revealed that Usp16 bound to many important hematopoietic regulators and that Usp16 deletion altered the expression of genes in transcription/chromosome organization, immune response, hematopoietic/lymphoid organ development, and myeloid/leukocyte differentiation. The altered gene expression was partly rescued by knockdown of PRC1 subunits, suggesting that Usp16 and PRC1 counterbalance each other to regulate cellular ubH2A level and gene expression in the hematopoietic system. We further discovered that knocking down Cdkn1a (p21cip1), a Usp16 target and regulated gene, rescued the altered cell cycle profile and differentiation defect of Usp16-deleted HSCs. Collectively, these studies identified Usp16 as one of the histone H2A deubiquitinases, which coordinates with the H2A ubiquitin ligase PRC1 to regulate hematopoiesis, and revealed cell cycle regulation by Usp16 as key for HSC differentiation.
The small protein MbiA interacts with MreB and modulates cell shape in Caulobacter crescentus
Yakhnina, Anastasiya A.; Gitai, Zemer
2014-01-01
Summary In Caulobacter crescentus, the actin homologue MreB is critical for cell shape maintenance. Despite the central importance of MreB for cell morphology and viability, very little is known about MreB-interacting factors. Here, we use an overexpression approach to identify a novel MreB interactor, MbiA. MbiA interacts with MreB in both biochemical and genetic assays, colocalizes with MreB throughout the cell cycle, and relies on MreB for its localization. MbiA over-expression mimics the loss of MreB function, severely perturbing cell morphology, inhibiting growth and inducing cell lysis. Additionally, mbiA deletion shows a synthetic growth phenotype with a hypomorphic allele of the MreB interactor RodZ, suggesting that these two MreB-interacting proteins either have partially redundant functions or participate in the same functional complex. Our work thus establishes MbiA as a novel cell shape regulator that appears to function through regulating MreB, and opens avenues for discovery of more MreB-regulating factors by showing that overexpression screens are a valuable tool for uncovering potentially redundant cell shape effectors. PMID:22804814
The small protein MbiA interacts with MreB and modulates cell shape in Caulobacter crescentus.
Yakhnina, Anastasiya A; Gitai, Zemer
2012-09-01
In Caulobacter crescentus, the actin homologue MreB is critical for cell shape maintenance. Despite the central importance of MreB for cell morphology and viability, very little is known about MreB-interacting factors. Here, we use an overexpression approach to identify a novel MreB interactor, MbiA. MbiA interacts with MreB in both biochemical and genetic assays, colocalizes with MreB throughout the cell cycle, and relies on MreB for its localization. MbiA overexpression mimics the loss of MreB function, severely perturbing cell morphology, inhibiting growth and inducing cell lysis. Additionally, mbiA deletion shows a synthetic growth phenotype with a hypomorphic allele of the MreB interactor RodZ, suggesting that these two MreB-interacting proteins either have partially redundant functions or participate in the same functional complex. Our work thus establishes MbiA as a novel cell shape regulator that appears to function through regulating MreB, and opens avenues for discovery of more MreB-regulating factors by showing that overexpression screens are a valuable tool for uncovering potentially redundant cell shape effectors. © 2012 Blackwell Publishing Ltd.
CCCTC-binding Factor Mediates Effects of Glucose On Beta Cell Survival
Tsui, Shanli; Dai, Wei; Lu, Luo
2013-01-01
Objectives Pancreatic islet β-cell survival is important in regulating insulin activities and maintaining glucose homeostasis. Recently, Pax6 has been shown to be essential for many vital functions in β-cells, though the molecular mechanisms of its regulation in β-cells remain unclear. The present study investigates the novel effects of glucose- and insulin-induced CTCF activity on Pax6 gene expression as well as the subsequent effects of insulin-activated signaling pathways on β-cell proliferation. Material and methods Pancreatic β-TC-1-6 cells were cultured in DMEM medium and stimulated with high concentrations of glucose (5 to 125 mM) and cell viability was assessed by MTT assays. The effect of CTCF on Pax6 was evaluated in high glucose-induced and CCCTC-binding Factor (CTCF)/Erk suppressed cells by promoter reporter and Western analyses. Results Increases in glucose and insulin concentrations up-regulated CTCF and consequently down-regulated Pax6 in β-cell survival and proliferation. Knocking-down CTCF directly affected Pax6 transcription through CTCF binding and blocked the response to glucose. Altered Erk activity mediated the effects of CTCF on controlling Pax6 expression, which partially regulates β-cell proliferation. Conclusions CTCF functions as a molecular mediator between insulin-induced upstream Erk signaling and Pax6 expression in pancreatic β-cells. This pathway may contribute to regulation of β-cell survival and proliferation. PMID:24354619
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukamoto, Yuta; Katayama, Chisako; Shinohara, Miki
Highlights: •Multiple functions of Rab5 GTPase in fission yeast were found. •Roles of Rab5 in fission yeast were discussed. •Relation between Rab5 and actin cytoskeleton were discussed. -- Abstract: Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our datamore » strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions.« less
Intermediate Filaments Play a Pivotal Role in Regulating Cell Architecture and Function.
Lowery, Jason; Kuczmarski, Edward R; Herrmann, Harald; Goldman, Robert D
2015-07-10
Intermediate filaments (IFs) are composed of one or more members of a large family of cytoskeletal proteins, whose expression is cell- and tissue type-specific. Their importance in regulating the physiological properties of cells is becoming widely recognized in functions ranging from cell motility to signal transduction. IF proteins assemble into nanoscale biopolymers with unique strain-hardening properties that are related to their roles in regulating the mechanical integrity of cells. Furthermore, mutations in the genes encoding IF proteins cause a wide range of human diseases. Due to the number of different types of IF proteins, we have limited this short review to cover structure and function topics mainly related to the simpler homopolymeric IF networks composed of vimentin, and specifically for diseases, the related muscle-specific desmin IF networks. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Pak functions downstream of Dock to regulate photoreceptor axon guidance in Drosophila.
Hing, H; Xiao, J; Harden, N; Lim, L; Zipursky, S L
1999-06-25
The SH2/SH3 adaptor protein Dock has been proposed to transduce signals from guidance receptors to the actin cytoskeleton in Drosophila photoreceptor (R cell) growth cones. Here, we demonstrate that Drosophila p21-activated kinase (Pak) is required in a Dock pathway regulating R cell axon guidance and targeting. Dock and Pak colocalize to R cell axons and growth cones, physically interact, and their loss-of-function phenotypes are indistinguishable. Normal patterns of R cell connectivity require Pak's kinase activity and binding sites for both Dock and Cdc42/Rac. A membrane-tethered form of Pak (Pak(myr) acts as a dominant gain-of-function protein. Retinal expression of Pak(myr) rescues the R cell connectivity phenotype in dock mutants. These data establish Pak as a critical regulator of axon guidance and a downstream effector of Dock in vivo.
T Cell Calcium Signaling Regulation by the Co-Receptor CD5
Freitas, Claudia M. Tellez
2018-01-01
Calcium influx is critical for T cell effector function and fate. T cells are activated when T cell receptors (TCRs) engage peptides presented by antigen-presenting cells (APC), causing an increase of intracellular calcium (Ca2+) concentration. Co-receptors stabilize interactions between the TCR and its ligand, the peptide-major histocompatibility complex (pMHC), and enhance Ca2+ signaling and T cell activation. Conversely, some co-receptors can dampen Ca2+ signaling and inhibit T cell activation. Immune checkpoint therapies block inhibitory co-receptors, such as cytotoxic T-lymphocyte associated antigen 4 (CTLA-4) and programmed death 1 (PD-1), to increase T cell Ca2+ signaling and promote T cell survival. Similar to CTLA-4 and PD-1, the co-receptor CD5 has been known to act as a negative regulator of T cell activation and to alter Ca2+ signaling and T cell function. Though much is known about the role of CD5 in B cells, recent research has expanded our understanding of CD5 function in T cells. Here we review these recent findings and discuss how our improved understanding of CD5 Ca2+ signaling regulation could be useful for basic and clinical research. PMID:29701673
USDA-ARS?s Scientific Manuscript database
Ubiquitin is a highly conserved 76-amino acid protein found in every eukaryotic cell. It has been proposed that ubiquitin has many cellular functions including DNA repair, transcription regulation, regulation of cell cycle and apoptosis. We identified two ubiquitin extension genes (Gr-Ubi1 and Gr-Ub...
Das, Sudeshna; Chen, Q Brent; Saucier, Joseph D; Drescher, Brandon; Zong, Yan; Morgan, Sarah; Forstall, John; Meriwether, Andrew; Toranzo, Randy; Leal, Sandra M
2013-01-01
We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch-Delta signaling pathway essential for specifying the fates of sensory organ precursor (SOP) cells. These findings complement an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in unique neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch-Delta signaling hierarchy and is essential for maintaining cell viability by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Shan, Changting; Fei, Fan; Li, Fengzhu; Zhuang, Bo; Zheng, Yulong; Wan, Yufeng; Chen, Jianhui
2017-05-01
MicroRNA-448 (miR-448) has been showed to be low-expressed and function as tumor suppressor in most human cancers. However, there are limited reports on the clinical significance and biological function of miR-448 in lung squamous cell carcinoma. In this study, we observed that miR-448 expression was decreased in lung squamous cell carcinoma tissues and cell lines. Meanwhile, miR-448 expression associated with differentiated degree, T classification (tumor size), N classification (lymph node metastasis), M classification (distant metastasis), clinical stage and prognosis of lung squamous cell carcinoma patients. In survival analysis, low expression of miR-448 was a poor independent prognostic factor for lung squamous cell carcinoma patients. Moreover, gain-of-function and loss-of-function studies showed miR-448 acted as a tumor suppressor regulating lung squamous cell carcinoma cells growth and metastasis. Furthermore, DCLK1 has been identified as a potential target for miR-448 to regulate lung squamous cell carcinoma cells growth and metastasis. In conclusion, miR-448 low-expression was a poor prognostic factor for lung squamous cell carcinoma patients, and miR-448 served as a tumor suppressor in lung squamous cell carcinoma cells via targeting DCLK1. Copyright © 2017. Published by Elsevier Masson SAS.
Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage.
Karimian, Ansar; Ahmadi, Yasin; Yousefi, Bahman
2016-06-01
An appropriate control over cell cycle progression depends on many factors. Cyclin-dependent kinase (CDK) inhibitor p21 (also known as p21(WAF1/Cip1)) is one of these factors that promote cell cycle arrest in response to a variety of stimuli. The inhibitory effect of P21 on cell cycle progression correlates with its nuclear localization. P21 can be induced by both p53-dependent and p53-independent mechanisms. Some other important functions attributed to p21 include transcriptional regulation, modulation or inhibition of apoptosis. These functions are largely dependent on direct p21/protein interactions and also on p21 subcellular localizations. In addition, p21 can play a role in DNA repair by interacting with proliferating cell nuclear antigen (PCNA). In this review, we will focus on the multiple functions of p21 in cell cycle regulation, apoptosis and gene transcription after DNA damage and briefly discuss the pathways and factors that have critical roles in p21 expression and activity. Copyright © 2016 Elsevier B.V. All rights reserved.
Polarity Proteins as Regulators of Cell Junction Complexes: Implications for Breast Cancer
Bazzoun, Dana; Lelièvre, Sophie; Talhouk, Rabih
2013-01-01
The epithelium of multicellular organisms possesses a well-defined architecture, referred to as polarity that coordinates the regulation of essential cell features. Polarity proteins are intimately linked to the protein complexes that make the tight, adherens and gap junctions; they contribute to the proper localization and assembly of these cell-cell junctions within cells and consequently to functional tissue organization. The establishment of cell-cell junctions and polarity are both implicated in the regulation of epithelial modifications in normal and cancer situations. Uncovering the mechanisms through which cell-cell junctions and epithelial polarization are established and how their interaction with the microenvironment direct cell and tissue organization has opened new venues for the development of cancer therapies. In this review, we focus on the breast epithelium to highlight how polarity and cell-cell junction proteins interact together in normal and cancerous contexts to regulate major cellular mechanisms such as migration. The impact of these proteins on epigenetic mechanisms responsible for resetting cells towards oncogenesis is discussed in light of increasing evidence that tissue polarity modulates chromatin function. Finally, we give an overview of recent breast cancer therapies that target proteins involved in cell-cell junctions. PMID:23458609
The Arf GAP CNT-2 regulates the apoptotic fate in C. elegans asymmetric neuroblast divisions.
Singhvi, Aakanksha; Teuliere, Jerome; Talavera, Karla; Cordes, Shaun; Ou, Guangshuo; Vale, Ronald D; Prasad, Brinda C; Clark, Scott G; Garriga, Gian
2011-06-07
During development, all cells make the decision to live or die. Although the molecular mechanisms that execute the apoptotic program are well defined, less is known about how cells decide whether to live or die. In C. elegans, this decision is linked to how cells divide asymmetrically [1, 2]. Several classes of molecules are known to regulate asymmetric cell divisions in metazoans, yet these molecules do not appear to control C. elegans divisions that produce apoptotic cells [3]. We identified CNT-2, an Arf GTPase-activating protein (GAP) of the AGAP family, as a novel regulator of this type of neuroblast division. Loss of CNT-2 alters daughter cell size and causes the apoptotic cell to adopt the fate of its sister cell, resulting in extra neurons. CNT-2's Arf GAP activity is essential for its function in these divisions. The N terminus of CNT-2, which contains a GTPase-like domain that defines the AGAP class of Arf GAPs, negatively regulates CNT-2's function. We provide evidence that CNT-2 regulates receptor-mediated endocytosis and consider the implications of its role in asymmetric cell divisions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Krebs, Kristi; Ruusmann, Anu; Simonlatser, Grethel; Velling, Teet
2015-12-01
FLNa is a ubiquitous cytoskeletal protein that links transmembrane receptors, including integrins, to F-actin and functions as a signalling intermediate. We investigated FLNa's role in the function of integrin-type collagen receptors, EGF-EGFR signalling and regulation of PKB/Akt and ERK1/2. Using FLNa-deficient M2 human melanoma cells, and same cells expressing EGFP-FLNa (M2F) or its Ig-like repeats 1-8+24, 8-15+24 and 16-24, we found that in M2F and M2 8-15+24 cells, EGF induced the increased phosphorylation of PKB/Akt and ERK1/2. In M2F cells EGF induced the localisation of these kinases to cell nucleus and lamellipodia, respectively, and the ERK1/2 phosphorylation-dependent co-immunoprecipitation of FLNa with ERK1/2. Only M2F and M2 8-15+24 cells adhered to and spread on type I collagen whereas on fibronectin all cells behaved similarly. α1β1 and α2β1 were the integrin-type collagen receptors expressed on these cells with primarily α1β1 localising to focal contacts and affecting cell adhesion and migration in a manner dependent on FLNa or its Ig-like repeats 8-15. Our results suggest a role for FLNa repeats 8-15 in the α1-subunit-dependent regulation of integrin α1β1 function, EGF-EGFR signalling to PKB/Akt and ERK1/2, identify ERK1/2 in EGF-induced FLNa-associated protein complexes, and show that the function of different integrins is subjected to differential regulation by FLNa. Copyright © 2015. Published by Elsevier GmbH.
Epitranscriptomics: A New Regulatory Mechanism of Brain Development and Function
Noack, Florian; Calegari, Federico
2018-01-01
Epigenetic modifications of DNA and chromatin are long known to control stem cell differentiation and organ function but the role of similar modifications at the level or regulatory RNAs is just beginning to emerge. Over 160 RNA modifications have been identified but their abundance, distribution and functional significance are not known. The few available maps of RNA modifications indicated their dynamic regulation during somatic stem cell differentiation, brain development and function in adulthood suggesting a hitherto unsuspected layer of regulation both at the level of RNA metabolism and post-transcriptional control of gene expression. The advent of programmable, RNA-specific CRISPR-Cas editing platforms together with the identification of RNA modifying enzymes now offers the opportunity to investigate the functional role of these elusive epitranscriptome changes. Here, we discuss recent insights in studying the most abundant modifications in functional mRNAs and lncRNAs, N6-methyladenosine and 5-(hydroxy-)methylcytosine, and their role in regulating somatic stem cell differentiation with particular attention to neural stem cells during mammalian corticogenesis. An outlook on novel CRISPR-Cas based systems that allow stem cell reprogramming by epitranscriptome-editing will also be discussed. PMID:29515357
Lee, Jong-Soo
2007-09-01
Mutations in the ATM (ataxia-telangiectasia mutated) gene, which encodes a 370 kd protein with a kinase catalytic domain, predisposes people to cancers, and these mutations are also linked to ataxia-telangiectasia (A-T). The histone acetylaion/deacetylation- dependent chromatin remodeling can activate the ATM kinase-mediated DNA damage signal pathway (in an accompanying work, Lee, 2007). This has led us to study whether this modification can impinge on the ATM-mediated DNA damage response via transcriptional modulation in order to understand the function of ATM in the regulation of gene transcription. To identify the genes whose expression is regulated by ATM in response to histone deaceylase (HDAC) inhibition, we performed an analysis of oligonucleotide microarrays with using the appropriate cell lines, isogenic A-T (ATM(-)) and control (ATM(+)) cells, following treatment with a HDAC inhibitor TSA. Treatment with TSA reprograms the differential gene expression profile in response to HDAC inhibition in ATM(-) cells and ATM(+) cells. We analyzed the genes that are regulated by TSA in the ATM-dependent manner, and we classified these genes into different functional categories, including those involved in cell cycle/DNA replication, DNA repair, apoptosis, growth/differentiation, cell- cell adhesion, signal transduction, metabolism and transcription. We found that while some genes are regulated by TSA without regard to ATM, the patterns of gene regulation are differentially regulated in an ATM-dependent manner. Taken together, these finding indicate that ATM can regulate the transcription of genes that play critical roles in the molecular response to DNA damage, and this response is modulated through an altered HDAC inhibition-mediated gene expression.
T Cell Receptor Signaling in the Control of Regulatory T Cell Differentiation and Function
Li, Ming O.; Rudensky, Alexander Y.
2016-01-01
Regulatory T cells (TReg cells), a specialized T cell lineage, have a pivotal function in the control of self-tolerance and inflammatory responses. Recent studies have revealed a discrete mode of TCR signaling that regulates Treg cell differentiation, maintenance and function and that impacts on gene expression, metabolism, cell adhesion and migration of these cells. Here, we discuss the emerging understanding of TCR-guided differentiation of Treg cells in the context of their function in health and disease. PMID:27026074
A new model of the distal convoluted tubule
Ko, Benjamin; Mistry, Abinash C.; Hanson, Lauren; Mallick, Rickta; Cooke, Leslie L.; Hack, Bradley K.; Cunningham, Patrick
2012-01-01
The Na+-Cl− cotransporter (NCC) in the distal convoluted tubule (DCT) of the kidney is a key determinant of Na+ balance. Disturbances in NCC function are characterized by disordered volume and blood pressure regulation. However, many details concerning the mechanisms of NCC regulation remain controversial or undefined. This is partially due to the lack of a mammalian cell model of the DCT that is amenable to functional assessment of NCC activity. Previously reported investigations of NCC regulation in mammalian cells have either not attempted measurements of NCC function or have required perturbation of the critical without a lysine kinase (WNK)/STE20/SPS-1-related proline/alanine-rich kinase regulatory pathway before functional assessment. Here, we present a new mammalian model of the DCT, the mouse DCT15 (mDCT15) cell line. These cells display native NCC function as measured by thiazide-sensitive, Cl−-dependent 22Na+ uptake and allow for the separate assessment of NCC surface expression and activity. Knockdown by short interfering RNA confirmed that this function was dependent on NCC protein. Similar to the mammalian DCT, these cells express many of the known regulators of NCC and display significant baseline activity and dimerization of NCC. As described in previous models, NCC activity is inhibited by appropriate concentrations of thiazides, and phorbol esters strongly suppress function. Importantly, they display release of WNK4 inhibition of NCC by small hairpin RNA knockdown. We feel that this new model represents a critical tool for the study of NCC physiology. The work that can be accomplished in such a system represents a significant step forward toward unraveling the complex regulation of NCC. PMID:22718890
Function of alternative splicing
Kelemen, Olga; Convertini, Paolo; Zhang, Zhaiyi; Wen, Yuan; Shen, Manli; Falaleeva, Marina; Stamm, Stefan
2017-01-01
Almost all polymerase II transcripts undergo alternative pre-mRNA splicing. Here, we review the functions of alternative splicing events that have been experimentally determined. The overall function of alternative splicing is to increase the diversity of mRNAs expressed from the genome. Alternative splicing changes proteins encoded by mRNAs, which has profound functional effects. Experimental analysis of these protein isoforms showed that alternative splicing regulates binding between proteins, between proteins and nucleic acids as well as between proteins and membranes. Alternative splicing regulates the localization of proteins, their enzymatic properties and their interaction with ligands. In most cases, changes caused by individual splicing isoforms are small. However, cells typically coordinate numerous changes in ‘splicing programs’, which can have strong effects on cell proliferation, cell survival and properties of the nervous system. Due to its widespread usage and molecular versatility, alternative splicing emerges as a central element in gene regulation that interferes with almost every biological function analyzed. PMID:22909801
Lalucque, Hervé; Silar, Philippe
2000-01-01
Background To date, in eukaryotes, ribosomal protein expression is known to be regulated at the transcriptional and/or translational levels. But other forms of regulation may be possible. Results Here, we report the successful tagging of functional ribosomal particles with a S7-GFP chimaeric protein, making it possible to observe in vivo ribosome dynamics in the filamentous fungus Podospora anserina. Microscopic observations revealed a novel kind of ribosomal protein regulation during the passage between cell growth and stationary phases, with a transient accumulation of ribosomal proteins and/or ribosome subunits in the nucleus, possibly the nucleolus, being observed at the beginning of stationary phase. Conclusion Nuclear sequestration can be another level of ribosomal protein regulation in eukaryotic cells.This may contribute to the regulation of cell growth and division. PMID:11112985
Bouchet, Jérôme; McCaffrey, Mary W; Graziani, Andrea; Alcover, Andrés
2018-07-04
Several families of small GTPases regulate a variety of fundamental cellular processes, encompassing growth factor signal transduction, vesicular trafficking and control of the cytoskeleton. Frequently, their action is hierarchical and complementary, but much of the detail of their functional interactions remains to be clarified. It is well established that Rab family members regulate a variety of intracellular vesicle trafficking pathways. Moreover, Rho family GTPases are pivotal for the control of the actin and microtubule cytoskeleton. However, the interplay between these 2 types of GTPases has been rarely reported. We discuss here our recent findings showing that Rab11, a key regulator of endosomal recycling, and Rac1, a central actin cytoskeleton regulator involved in lamellipodium formation and cell migration, interplay on endosomes through the Rab11 effector FIP3. In the context of the rapidly reactive T lymphocytes, Rab11-Rac1 endosomal functional interplay is important to control cell shape changes and cell symmetry during lymphocyte spreading and immunological synapse formation and ultimately modulate T cell activation.
Regulation of FOXO1-mediated transcription and cell proliferation by PARP-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamaki, Jun-ichi; Daitoku, Hiroaki; Yoshimochi, Kenji
2009-05-08
Forkhead box O (FOXO) transcription factors play an important role in a wide range of biological processes, including cell cycle control, apoptosis, detoxification of reactive oxygen species, and gluconeogenesis through regulation of gene expression. In this study, we demonstrated that PARP-1 functions as a negative regulator of FOXO1. We showed that PARP-1 directly binds to and poly(ADP-ribosyl)ates FOXO1 protein. PARP-1 represses FOXO1-mediated expression of cell cycle inhibitor p27{sup Kip1} gene. Notably, poly(ADP-ribosyl)ation activity was not required for the repressive effect of PARP-1 on FOXO1 function. Furthermore, knockdown of PARP-1 led to a decrease in cell proliferation in a manner dependentmore » on FOXO1 function. Chromatin immunoprecipitation experiments confirmed that PARP-1 is recruited to the p27{sup Kip1} gene promoter through a binding to FOXO1. These results suggest that PARP-1 acts as a corepressor for FOXO1, which could play an important role in proper cell proliferation by regulating p27{sup Kip1} gene expression.« less
MiRNAs: dynamic regulators of immune cell functions in inflammation and cancer.
Hirschberger, Simon; Hinske, Ludwig Christian; Kreth, Simone
2018-09-01
MicroRNAs (miRNAs), small noncoding RNA molecules, have emerged as important regulators of almost all cellular processes. By binding to specific sequence motifs within the 3'- untranslated region of their target mRNAs, they induce either mRNA degradation or translational repression. In the human immune system, potent miRNAs and miRNA-clusters have been discovered, that exert pivotal roles in the regulation of gene expression. By targeting cellular signaling hubs, these so-called immuno-miRs have fundamental regulative impact on both innate and adaptive immune cells in health and disease. Importantly, they also act as mediators of tumor immune escape. Secreted by cancer cells and consecutively taken up by immune cells, immuno-miRs are capable to influence immune functions towards a blunted anti-tumor response, thus shaping a permissive tumor environment. This review provides an overview of immuno-miRs and their functional impact on individual immune cell entities. Further, implications of immuno-miRs in the amelioration of tumor surveillance are discussed. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Ngkelo, Anta; Richart, Adèle; Kirk, Jonathan A; Bonnin, Philippe; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Le Gall, Sylvain; Renault, Nisa; Guerin, Coralie; Ranek, Mark J; Kervadec, Anaïs; Danelli, Luca; Gautier, Gregory; Blank, Ulrich; Launay, Pierre; Camerer, Eric; Bruneval, Patrick; Menasche, Philippe; Heymes, Christophe; Luche, Elodie; Casteilla, Louis; Cousin, Béatrice; Rodewald, Hans-Reimer; Kass, David A; Silvestre, Jean-Sébastien
2016-06-27
Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit-independent MC-deficient (Cpa3(Cre/+)) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca(2+) desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force-Ca(2+) interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators. ©2016 Ngkelo et al.
Desmoglein 3 regulates membrane trafficking of cadherins, an implication in cell-cell adhesion.
Moftah, Hanan; Dias, Kasuni; Apu, Ehsanul Hoque; Liu, Li; Uttagomol, Jutamas; Bergmeier, Lesley; Kermorgant, Stephanie; Wan, Hong
2017-05-04
E-cadherin mediated cell-cell adhesion plays a critical role in epithelial cell polarization and morphogenesis. Our recent studies suggest that the desmosomal cadherin, desmoglein 3 (Dsg3) cross talks with E-cadherin and regulates its adhesive function in differentiating keratinocytes. However, the underlying mechanism remains not fully elucidated. Since E-cadherin trafficking has been recognized to be a central determinant in cell-cell adhesion and homeostasis we hypothesize that Dsg3 may play a role in regulating E-cadherin trafficking and hence the cell-cell adhesion. Here we investigated this hypothesis in cells with loss of Dsg3 function through RNAi mediated Dsg3 knockdown or the stable expression of the truncated mutant Dsg3ΔC. Our results showed that loss of Dsg3 resulted in compromised cell-cell adhesion and reduction of adherens junction and desmosome protein expression as well as the cortical F-actin formation. As a consequence, cells failed to polarize but instead displayed aberrant cell flattening. Furthermore, retardation of E-cadherin internalization and recycling was consistently observed in these cells during the process of calcium induced junction assembling. In contrast, enhanced cadherin endocytosis was detected in cells with overexpression of Dsg3 compared to control cells. Importantly, this altered cadherin trafficking was found to be coincided with the reduced expression and activity of Rab proteins, including Rab5, Rab7 and Rab11 which are known to be involved in E-cadherin trafficking. Taken together, our findings suggest that Dsg3 functions as a key in cell-cell adhesion through at least a mechanism of regulating E-cadherin membrane trafficking.
Mechanical regulation of T-cell functions
Chen, Wei; Zhu, Cheng
2013-01-01
Summary T cells are key players of the mammalian adaptive immune system. They experience different mechanical microenvironments during their life cycles, from the thymus, secondary lymph organs, and peripheral tissues that are free of externally applied force but display variable substrate rigidities, to the blood and lymphatic circulation systems where complicated hydrodynamic forces are present. Regardless of whether T cells are subject to external forces or generate their own internal forces, they response and adapt to different biomechanical cues to modulate their adhesion, migration, trafficking, and triggering of immune functions through mechanical regulation of various molecules that bear force. These include adhesive receptors, immunoreceptors, motor proteins, cytoskeletal proteins, and their associated molecules. Here we discuss the forces acting on various surface and cytoplasmic proteins of a T cell in different mechanical milieus. We review existing data on how force regulates protein conformational changes and interactions with counter molecules, including integrins, actin, and the T-cell receptor, and how each relates to T-cell functions. PMID:24117820
The Wnt receptor Frizzled-4 modulates ADAM13 metalloprotease activity
Abbruzzese, Genevieve; Gorny, Anne-Kathrin; Kaufmann, Lilian T.; Cousin, Hélène; Kleino, Iivari; Steinbeisser, Herbert; Alfandari, Dominique
2015-01-01
ABSTRACT Cranial neural crest (CNC) cells are a transient population of stem cells that originate at the border of the neural plate and the epidermis, and migrate ventrally to contribute to most of the facial structures including bones, cartilage, muscles and ganglia. ADAM13 is a cell surface metalloprotease that is essential for CNC cell migration. Here, we show in Xenopus laevis embryos that the Wnt receptor Fz4 binds to the cysteine-rich domain of ADAM13 and negatively regulates its proteolytic activity in vivo. Gain of Fz4 function inhibits CNC cell migration and can be rescued by gain of ADAM13 function. Loss of Fz4 function also inhibits CNC cell migration and induces a reduction of mature ADAM13, together with an increase in the ADAM13 cytoplasmic fragment that is known to translocate into the nucleus to regulate gene expression. We propose that Fz4 associates with ADAM13 during its transport to the plasma membrane to regulate its proteolytic activity. PMID:25616895
Megha; Hasan, Gaiti
2017-04-15
Successful completion of animal development is fundamentally reliant on nutritional cues. Surviving periods of nutritional insufficiency requires adaptations that are coordinated, in part, by neural circuits. As neuropeptides secreted by neuroendocrine (NE) cells modulate neural circuits, we investigated NE cell function during development under nutrient stress. Starved Drosophila larvae exhibited reduced pupariation if either insulin signaling or IP 3 /Ca 2+ signaling were downregulated in NE cells. Moreover, an IP 3 R (inositol 1,4,5-trisphosphate receptor) loss-of-function mutant displayed reduced protein synthesis, which was rescued by overexpression of either InR (insulin receptor) or IP 3 R in NE cells of the mutant, suggesting that the two signaling pathways might be functionally compensatory. Furthermore, cultured IP 3 R mutant NE cells, but not neurons, exhibited reduced protein translation. Thus cell-specific regulation of protein synthesis by IP 3 R in NE cells influences protein metabolism. We propose that this regulation helps developing animals survive in poor nutritional conditions. © 2017. Published by The Company of Biologists Ltd.
IGF-1 promotes the development and cytotoxic activity of human NK cells
Ni, Fang; Sun, Rui; Fu, Binqing; Wang, Fuyan; Guo, Chuang; Tian, Zhigang; Wei, Haiming
2013-01-01
Insulin-like growth factor 1 (IGF-1) is a critical regulator of many physiological functions, ranging from longevity to immunity. However, little is known about the role of IGF-1 in natural killer cell development and function. Here, we identify an essential role for IGF-1 in the positive regulation of human natural killer cell development and cytotoxicity. Specifically, we show that human natural killer cells have the ability to produce IGF-1 and that differential endogenous IGF-1 expression leads to disparate cytotoxicity in human primary natural killer cells. Moreover, miR-483-3p is identified as a critical regulator of IGF-1 expression in natural killer cells. Overexpression of miR-483-3p has an effect similar to IGF-1 blockade and decreased natural killer cell cytotoxicity, whereas inhibition of miR-483-3p has the opposite effect, which is reversible with IGF-1 neutralizing antibody. These findings indicate that IGF-1 and miR-483-3p belong to a new class of natural killer cell functional modulators and strengthen the prominent role of IGF-1 in innate immunity. PMID:23403580
Insulin-like growth factor-I regulates GPER expression and function in cancer cells.
De Marco, P; Bartella, V; Vivacqua, A; Lappano, R; Santolla, M F; Morcavallo, A; Pezzi, V; Belfiore, A; Maggiolini, M
2013-02-07
Functional cross talk between insulin-like growth factor-I (IGF-I) system and estrogen signaling has been largely reported, although the underlying molecular mechanisms remain to be fully elucidated. As GPR30/GPER mediates rapid cell responses to estrogens, we evaluated the potential of IGF-I to regulate GPER expression and function in estrogen receptor (ER)α-positive breast (MCF-7) and endometrial (Ishikawa) cancer cells. We found that IGF-I transactivates the GPER promoter sequence and upregulates GPER mRNA and protein levels in both cells types. Similar data were found, at least in part, in carcinoma-associated fibroblasts. The upregulation of GPER expression by IGF-I involved the IGF-IR/PKCδ/ERK/c-fos/AP1 transduction pathway and required ERα, as ascertained by specific pharmacological inhibitors and gene-silencing. In both MCF-7 and Ishikawa cancer cells, the IGF-I-dependent cell migration required GPER and its main target gene CTGF, whereas the IGF-I-induced proliferation required both GPER and cyclin D1. Our data demonstrate that the IGF-I system regulates GPER expression and function, triggering the activation of a signaling network that leads to the migration and proliferation of cancer cells.
Matrix Rigidity Activates Wnt Signaling through Down-regulation of Dickkopf-1 Protein*
Barbolina, Maria V.; Liu, Yiuying; Gurler, Hilal; Kim, Mijung; Kajdacsy-Balla, Andre A.; Rooper, Lisa; Shepard, Jaclyn; Weiss, Michael; Shea, Lonnie D.; Penzes, Peter; Ravosa, Matthew J.; Stack, M. Sharon
2013-01-01
Cells respond to changes in the physical properties of the extracellular matrix with altered behavior and gene expression, highlighting the important role of the microenvironment in the regulation of cell function. In the current study, culture of epithelial ovarian cancer cells on three-dimensional collagen I gels led to a dramatic down-regulation of the Wnt signaling inhibitor dickkopf-1 with a concomitant increase in nuclear β-catenin and enhanced β-catenin/Tcf/Lef transcriptional activity. Increased three-dimensional collagen gel invasion was accompanied by transcriptional up-regulation of the membrane-tethered collagenase membrane type 1 matrix metalloproteinase, and an inverse relationship between dickkopf-1 and membrane type 1 matrix metalloproteinase was observed in human epithelial ovarian cancer specimens. Similar results were obtained in other tissue-invasive cells such as vascular endothelial cells, suggesting a novel mechanism for functional coupling of matrix adhesion with Wnt signaling. PMID:23152495
Matrix rigidity activates Wnt signaling through down-regulation of Dickkopf-1 protein.
Barbolina, Maria V; Liu, Yiuying; Gurler, Hilal; Kim, Mijung; Kajdacsy-Balla, Andre A; Rooper, Lisa; Shepard, Jaclyn; Weiss, Michael; Shea, Lonnie D; Penzes, Peter; Ravosa, Matthew J; Stack, M Sharon
2013-01-04
Cells respond to changes in the physical properties of the extracellular matrix with altered behavior and gene expression, highlighting the important role of the microenvironment in the regulation of cell function. In the current study, culture of epithelial ovarian cancer cells on three-dimensional collagen I gels led to a dramatic down-regulation of the Wnt signaling inhibitor dickkopf-1 with a concomitant increase in nuclear β-catenin and enhanced β-catenin/Tcf/Lef transcriptional activity. Increased three-dimensional collagen gel invasion was accompanied by transcriptional up-regulation of the membrane-tethered collagenase membrane type 1 matrix metalloproteinase, and an inverse relationship between dickkopf-1 and membrane type 1 matrix metalloproteinase was observed in human epithelial ovarian cancer specimens. Similar results were obtained in other tissue-invasive cells such as vascular endothelial cells, suggesting a novel mechanism for functional coupling of matrix adhesion with Wnt signaling.
Developmental and Functional Control of Natural Killer Cells by Cytokines
Wu, Yang; Tian, Zhigang; Wei, Haiming
2017-01-01
Natural killer (NK) cells are effective in combating infections and tumors and as such are tempting for adoptive transfer therapy. However, they are not homogeneous but can be divided into three main subsets, including cytotoxic, tolerant, and regulatory NK cells, with disparate phenotypes and functions in diverse tissues. The development and functions of such NK cells are controlled by various cytokines, such as fms-like tyrosine kinase 3 ligand (FL), kit ligand (KL), interleukin (IL)-3, IL-10, IL-12, IL-18, transforming growth factor-β, and common-γ chain family cytokines, which operate at different stages by regulating distinct signaling pathways. Nevertheless, the specific roles of each cytokine that regulates NK cell development or that shapes different NK cell functions remain unclear. In this review, we attempt to describe the characteristics of each cytokine and the existing protocols to expand NK cells using different combinations of cytokines and feeder cells. A comprehensive understanding of the role of cytokines in NK cell development and function will aid the generation of better efficacy for adoptive NK cell treatment. PMID:28824650
Complement-Related Regulates Autophagy in Neighboring Cells.
Lin, Lin; Rodrigues, Frederico S L M; Kary, Christina; Contet, Alicia; Logan, Mary; Baxter, Richard H G; Wood, Will; Baehrecke, Eric H
2017-06-29
Autophagy degrades cytoplasmic components and is important for development and human health. Although autophagy is known to be influenced by systemic intercellular signals, the proteins that control autophagy are largely thought to function within individual cells. Here, we report that Drosophila macroglobulin complement-related (Mcr), a complement ortholog, plays an essential role during developmental cell death and inflammation by influencing autophagy in neighboring cells. This function of Mcr involves the immune receptor Draper, suggesting a relationship between autophagy and the control of inflammation. Interestingly, Mcr function in epithelial cells is required for macrophage autophagy and migration to epithelial wounds, a Draper-dependent process. This study reveals, unexpectedly, that complement-related from one cell regulates autophagy in neighboring cells via an ancient immune signaling program. Copyright © 2017 Elsevier Inc. All rights reserved.
β1 integrin is a crucial regulator of pancreatic β-cell expansion
Diaferia, Giuseppe R.; Jimenez-Caliani, Antonio J.; Ranjitkar, Prerana; Yang, Wendy; Hardiman, Gary; Rhodes, Christopher J.; Crisa, Laura; Cirulli, Vincenzo
2013-01-01
Development of the endocrine compartment of the pancreas, as represented by the islets of Langerhans, occurs through a series of highly regulated events encompassing branching of the pancreatic epithelium, delamination and differentiation of islet progenitors from ductal domains, followed by expansion and three-dimensional organization into islet clusters. Cellular interactions with the extracellular matrix (ECM) mediated by receptors of the integrin family are postulated to regulate key functions in these processes. Yet, specific events regulated by these receptors in the developing pancreas remain unknown. Here, we show that ablation of the β1 integrin gene in developing pancreatic β-cells reduces their ability to expand during embryonic life, during the first week of postnatal life, and thereafter. Mice lacking β1 integrin in insulin-producing cells exhibit a dramatic reduction of the number of β-cells to only ∼18% of wild-type levels. Despite the significant reduction in β-cell mass, these mutant mice are not diabetic. A thorough phenotypic analysis of β-cells lacking β1 integrin revealed a normal expression repertoire of β-cell markers, normal architectural organization within islet clusters, and a normal ultrastructure. Global gene expression analysis revealed that ablation of this ECM receptor in β-cells inhibits the expression of genes regulating cell cycle progression. Collectively, our results demonstrate that β1 integrin receptors function as crucial positive regulators of β-cell expansion. PMID:23863477
Regulation of Mouse NK Cell Development and Function by Cytokines
Marçais, Antoine; Viel, Sébastien; Grau, Morgan; Henry, Thomas; Marvel, Jacqueline; Walzer, Thierry
2013-01-01
Natural Killer (NK) cells are innate lymphocytes with an important role in the early defense against intracellular pathogens and against tumors. Like other immune cells, almost every aspects of their biology are regulated by cytokines. Interleukin (IL)-15 is pivotal for their development, homeostasis, and activation. Moreover, numerous other activating or inhibitory cytokines such as IL-2, IL-4, IL-7, IL-10, IL-12, IL-18, IL-21, Transforming growth factor-β (TGFβ) and type I interferons regulate their activation and their effector functions at different stages of the immune response. In this review we summarize the current understanding on the effect of these different cytokines on NK cell development, homeostasis, and functions during steady-state or upon infection by different pathogens. We try to delineate the cellular sources of these cytokines, the intracellular pathways they trigger and the transcription factors they regulate. We describe the known synergies or antagonisms between different cytokines and highlight outstanding questions in this field of investigation. Finally, we discuss how a better knowledge of cytokine action on NK cells could help improve strategies to manipulate NK cells in different clinical situations. PMID:24376448
Functions of TAM RTKs in regulating spermatogenesis and male fertility in mice.
Chen, Yongmei; Wang, Huizhen; Qi, Nan; Wu, Hui; Xiong, Weipeng; Ma, Jing; Lu, Qingxian; Han, Daishu
2009-10-01
Mice lacking TYRO3, AXL and MER (TAM) receptor tyrosine kinases (RTKs) are male sterile. The mechanism of TAM RTKs in regulating male fertility remains unknown. In this study, we analyzed in more detail the testicular phenotype of TAM triple mutant (TAM(-/-)) mice with an effort to understand the mechanism. We demonstrate that the three TAM RTKs cooperatively regulate male fertility, and MER appears to be more important than AXL and TYRO3. TAM(-/-) testes showed a progressive loss of germ cells from elongated spermatids to spermatogonia. Young adult TAM(-/-) mice exhibited oligo-astheno-teratozoospermia and various morphological malformations of sperm cells. As the mice aged, the germ cells were eventually depleted from the seminiferous tubules. Furthermore, we found that TAM(-/-) Sertoli cells have an impaired phagocytic activity and a large number of differentially expressed genes compared to wild-type controls. By contrast, the function of Leydig cells was not apparently affected by the mutation of TAM RTKs. Therefore, we conclude that the suboptimal function of Sertoli cells leads to the impaired spermatogenesis in TAM(-/-) mice. The results provide novel insight into the mechanism of TAM RTKs in regulating male fertility.
Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy.
Izumi, Hiroto; Torigoe, Takayuki; Ishiguchi, Hiroshi; Uramoto, Hidetaka; Yoshida, Yoichiro; Tanabe, Mizuho; Ise, Tomoko; Murakami, Tadashi; Yoshida, Takeshi; Nomoto, Minoru; Kohno, Kimitoshi
2003-12-01
One of the major obstacles to the successful treatment of cancer is the complex biology of solid tumour development. Although regulation of intracellular pH has been shown to be critically important for many cellular functions, pH regulation has not been fully investigated in the field of cancer. It has, however, been shown that cellular pH is crucial for biological functions such as cell proliferation, invasion and metastasis, drug resistance and apoptosis. Hypoxic conditions are often observed during the development of solid tumours and lead to intracellular and extracellular acidosis. Cellular acidosis has been shown to be a trigger in the early phase of apoptosis and leads to activation of endonucleases inducing DNA fragmentation. To avoid intracellular acidification under such conditions, pH regulators are thought to be up-regulated in tumour cells. Four major types of pH regulator have been identified: the proton pump, the sodium-proton exchanger family (NHE), the bicarbonate transporter family (BCT) and the monocarboxylate transporter family (MCT). Here, we describe the structure and function of pH regulators expressed in tumour tissue. Understanding pH regulation in tumour cells may provide new ways of inducing tumour-specific apoptosis, thus aiding cancer chemotherapy.
The PBX1 lupus susceptibility gene regulates CD44 expression
Niu, Yuxin; Sengupta, Mayami; Titov, Anton A.; Choi, Seung-Chul; Morel, Laurence
2017-01-01
PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4+ T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and show that the lupus-associated isoform PBX1-d has unique molecular functions. PMID:28257976
Perk Gene Dosage Regulates Glucose Homeostasis by Modulating Pancreatic β-Cell Functions
Wang, Rong; Munoz, Elyse E.; Zhu, Siying; McGrath, Barbara C.; Cavener, Douglas R.
2014-01-01
Background Insulin synthesis and cell proliferation are under tight regulation in pancreatic β-cells to maintain glucose homeostasis. Dysfunction in either aspect leads to development of diabetes. PERK (EIF2AK3) loss of function mutations in humans and mice exhibit permanent neonatal diabetes that is characterized by insufficient β-cell mass and reduced proinsulin trafficking and insulin secretion. Unexpectedly, we found that Perk heterozygous mice displayed lower blood glucose levels. Methodology Longitudinal studies were conducted to assess serum glucose and insulin, intracellular insulin synthesis and storage, insulin secretion, and β-cell proliferation in Perk heterozygous mice. In addition, modulation of Perk dosage specifically in β-cells showed that the glucose homeostasis phenotype of Perk heterozygous mice is determined by reduced expression of PERK in the β-cells. Principal Findings We found that Perk heterozygous mice first exhibited enhanced insulin synthesis and secretion during neonatal and juvenile development followed by enhanced β-cell proliferation and a substantial increase in β-cell mass at the adult stage. These differences are not likely to entail the well-known function of PERK to regulate the ER stress response in cultured cells as several markers for ER stress were not differentially expressed in Perk heterozygous mice. Conclusions In addition to the essential functions of PERK in β-cells as revealed by severely diabetic phenotype in humans and mice completely deficient for PERK, reducing Perk gene expression by half showed that intermediate levels of PERK have a profound impact on β-cell functions and glucose homeostasis. These results suggest that an optimal level of PERK expression is necessary to balance several parameters of β-cell function and growth in order to achieve normoglycemia. PMID:24915520
Control of stem cell fate and function by engineering physical microenvironments
Kshitiz; Park, Jinseok; Kim, Peter; Helen, Wilda; Engler, Adam J; Levchenko, Andre; Kim, Deok-Ho
2012-01-01
The phenotypic expression and function of stem cells are regulated by their integrated response to variable microenvironmental cues, including growth factors and cytokines, matrix-mediated signals, and cell-cell interactions. Recently, growing evidence suggests that matrix-mediated signals include mechanical stimuli such as strain, shear stress, substrate rigidity and topography, and these stimuli have a more profound impact on stem cell phenotypes than had previously been recognized, e.g. self-renewal and differentiation through the control of gene transcription and signaling pathways. Using a variety of cell culture models enabled by micro and nanoscale technologies, we are beginning to systematically and quantitatively investigate the integrated response of cells to combinations of relevant mechanobiological stimuli. This paper reviews recent advances in engineering physical stimuli for stem cell mechanobiology and discusses how micro- and nanoscale engineered platforms can be used to control stem cell niches environment and regulate stem cell fate and function. PMID:23077731
Function of fusion regulatory proteins (FRPs) in immune cells and virus-infected cells.
Tsurudome, M; Ito, Y
2000-01-01
Two molecules that regulate cell fusion have been identified and designated fusion regulatory protein-1 (FRP-1) and FRP-2. FRP-1 is a complex composed of a glycosylated heavy chain and a nonglycosylated light chain that are disulfide linked. FRP-1 heavy chain is identical to 4F2/CD98 heavy chain, whereas FRP-2 is identical to integrin alpha3 subunit. The FRP-1 heavy chain is a multifunctional molecule: that is, fusion regulator, amino acid transporter, integrin regulator, comitogenic factor, Na+-Ca2+ exchanger, oncogenic protein, and so on. Several aspects of the structure and function of the FRP-1 system are reviewed: fusion regulatory molecular mechanisms, cross-talk between the FRP-1 and integrin, the FRP-1 system as amino acid transporter, and FRP-1-mediated T-cell activation. The FRP-1 system is involved in virus-mediated cell fusion and multinucleated giant cell formation of blood monocytes. Monoclonal antibodies against human FRP-1 heavy chain induce polykaryocytes that have properties as osteoclasts. Multiple steps participate in molecular mechanisms regulating cell fusion. The FRP-1 heavy chain supports amino acid transport activity and the FRP-1 light chains have recently been cloned as amino acid transporters that require association with the heavy chain to exhibit their activity. Novel pathways for monocyte-dependent regulation of T-cell activation have recently been found that are mediated by the FRP-1 system. In conclusion, the FRP-1 molecules are essential factors for basic cellular functions.
IL-21: an executor of B cell fate.
Konforte, Danijela; Simard, Nathalie; Paige, Christopher J
2009-02-15
IL-21 is a type I cytokine that shares the common receptor gamma-chain with IL-2, IL-4, IL-7, IL-9, and IL-15. B cells are one of the lymphoid cell types whose development and function are regulated by IL-21. Depending on the interplay with costimulatory signals and on the developmental stage of a B cell, IL-21 can induce proliferation, differentiation into Ig-producing plasma cells, or apoptosis in both mice and humans. Alone and in combination with Th cell-derived cytokines IL-21 can regulate class switch recombination to IgG, IgA, or IgE isotypes, indicating its important role in shaping the effector function of B cells. This review highlights the role of IL-21 in B cell development, function, and disease and provides some perspectives on the future studies in this area.
Vandewalle, Alain
2007-01-01
Cl(-) channels play important roles in the regulation of a variety of functions, including electrical excitability, cell volume regulation, transepithelial transport and acidification of cellular organelles. They are expressed in plasma membranes or reside in intracellular organelles. A large number of Cl(-) channels with different functions have been identified. Some of them are highly expressed in the kidney. They include members of the CLC Cl(-) channel family: ClC-K1 (or ClC-Ka), ClC-K2 (or ClC-Kb) and ClC-5. The identification of mutations responsible for human inherited diseases (Bartter syndrome for ClC-Kb and Dent's disease for ClC-5) and studies on knockout mice models have evidenced the physiological importance of these CLC Cl(-) channels, permitting better understanding on their functions in renal tubule epithelial cells. The cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel, also expressed in renal tubule epithelial cells, is involved in the transepithelial transport of Cl(-) in the distal nephron. This short review focuses on intrarenal distribution, subcellular localization and function of the ClK(-1), ClC-K2 and ClC-5 Cl(-) channels in renal tubule epithelial cells, and the role of the CFTR Cl(-) channel in chloride fluxes elicited by vasopressin in the distal nephron.
Aquaporin structure-function relationships: water flow through plant living cells.
Zhao, Chang-Xing; Shao, Hong-Bo; Chu, Li-Ye
2008-04-01
Plant aquaporins play an important role in water uptake and movement-an aquaporin that opens and closes a gate that regulates water movement in and out of cells. Some plant aquaporins also play an important role in response to water stress. Since their discovery, advancing knowledge of their structures and properties led to an understanding of the basic features of the water transport mechanism and increased illumination to water relations. Meanwhile, molecular and functional characterization of aquaporins has revealed the significance of their regulation in response to the adverse environments such as salinity and drought. This paper reviews the structure, species diversity, physiology function, regulation of plant aquaporins, and the relations between environmental factors and plant aquaporins. Complete understanding of aquaporin function and regulation is to integrate those mechanisms in time and space and to well regulate the permeation of water across biological membranes under changing environmental and developmental conditions.
Mitochondrial fission proteins regulate programmed cell death in yeast.
Fannjiang, Yihru; Cheng, Wen-Chih; Lee, Sarah J; Qi, Bing; Pevsner, Jonathan; McCaffery, J Michael; Hill, R Blake; Basañez, Gorka; Hardwick, J Marie
2004-11-15
The possibility that single-cell organisms undergo programmed cell death has been questioned in part because they lack several key components of the mammalian cell death machinery. However, yeast encode a homolog of human Drp1, a mitochondrial fission protein that was shown previously to promote mammalian cell death and the excessive mitochondrial fragmentation characteristic of apoptotic mammalian cells. In support of a primordial origin of programmed cell death involving mitochondria, we found that the Saccharomyces cerevisiae homolog of human Drp1, Dnm1, promotes mitochondrial fragmentation/degradation and cell death following treatment with several death stimuli. Two Dnm1-interacting factors also regulate yeast cell death. The WD40 repeat protein Mdv1/Net2 promotes cell death, consistent with its role in mitochondrial fission. In contrast to its fission function in healthy cells, Fis1 unexpectedly inhibits Dnm1-mediated mitochondrial fission and cysteine protease-dependent cell death in yeast. Furthermore, the ability of yeast Fis1 to inhibit mitochondrial fission and cell death can be functionally replaced by human Bcl-2 and Bcl-xL. Together, these findings indicate that yeast and mammalian cells have a conserved programmed death pathway regulated by a common molecular component, Drp1/Dnm1, that is inhibited by a Bcl-2-like function.
Roles of P21-activated kinases and associated proteins in epithelial wound healing.
Zegers, Mirjam
2008-01-01
The primary function of epithelia is to provide a barrier between the extracellular environment and the interior of the body. Efficient epithelial repair mechanisms are therefore crucial for homeostasis. The epithelial wound-healing process involves highly regulated morphogenetic changes of epithelial cells that are driven by dynamic changes of the cytoskeleton. P21-activated kinases are serine/threonine kinases that have emerged as important regulators of the cytoskeleton. These kinases, which are activated downsteam of the Rho GTPases Rac and cd42, were initially mostly implicated in the regulation of cell migration. More recently, however, these kinases were shown to have many additional functions that are relevant to the regulation of epithelial wound healing. Here, we provide an overview of the morphogenetic changes of epithelial cells during wound healing and the many functions of p21-activated kinases in these processes.
Circadian clock regulation of the cell cycle in the zebrafish intestine.
Peyric, Elodie; Moore, Helen A; Whitmore, David
2013-01-01
The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally.
Circadian Clock Regulation of the Cell Cycle in the Zebrafish Intestine
Peyric, Elodie; Moore, Helen A.; Whitmore, David
2013-01-01
The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally. PMID:24013905
Marshall, Elaine; Lowrey, Jacqueline; MacPherson, Sheila; Maybin, Jacqueline A.; Collins, Frances; Critchley, Hilary O. D.
2011-01-01
Context: The endometrium is a multicellular, steroid-responsive tissue that undergoes dynamic remodeling every menstrual cycle in preparation for implantation and, in absence of pregnancy, menstruation. Androgen receptors are present in the endometrium. Objective: The objective of the study was to investigate the impact of androgens on human endometrial stromal cells (hESC). Design: Bioinformatics was used to identify an androgen-regulated gene set and processes associated with their function. Regulation of target genes and impact of androgens on cell function were validated using primary hESC. Setting: The study was conducted at the University Research Institute. Patients: Endometrium was collected from women with regular menses; tissues were used for recovery of cells, total mRNA, or protein and for immunohistochemistry. Results: A new endometrial androgen target gene set (n = 15) was identified. Bioinformatics revealed 12 of these genes interacted in one pathway and identified an association with control of cell survival. Dynamic androgen-dependent changes in expression of the gene set were detected in hESC with nine significantly down-regulated at 2 and/or 8 h. Treatment of hESC with dihydrotestosterone reduced staurosporine-induced apoptosis and cell migration/proliferation. Conclusions: Rigorous in silico analysis resulted in identification of a group of androgen-regulated genes expressed in human endometrium. Pathway analysis and functional assays suggest androgen-dependent changes in gene expression may have a significant impact on stromal cell proliferation, migration, and survival. These data provide the platform for further studies on the role of circulatory or local androgens in the regulation of endometrial function and identify androgens as candidates in the pathogenesis of common endometrial disorders including polycystic ovarian syndrome, cancer, and endometriosis. PMID:21865353
Marchand, Benoît; Arsenault, Dominique; Raymond-Fleury, Alexandre; Boisvert, François-Michel; Boucher, Marie-Josée
2015-01-01
Glycogen synthase kinase-3 (GSK3) are ubiquitously expressed serine-threonine kinases involved in a plethora of functions ranging from the control of glycogen metabolism to transcriptional regulation. We recently demonstrated that GSK3 inhibition triggers JNK-cJUN-dependent apoptosis in human pancreatic cancer cells. However, the comprehensive picture of downstream GSK3-regulated pathways/functions remains elusive. Herein, counterbalancing the death signals, we show that GSK3 inhibition induces prosurvival signals through increased activity of the autophagy/lysosomal network. Our data also reveal a contribution of GSK3 in the regulation of the master transcriptional regulator of autophagy and lysosomal biogenesis, transcription factor EB (TFEB) in pancreatic cancer cells. Similarly to mammalian target of rapamycin (mTOR) inhibition, GSK3 inhibitors promote TFEB nuclear localization and leads to TFEB dephosphorylation through endogenous serine/threonine phosphatase action. However, GSK3 and mTOR inhibition impinge differently and independently on TFEB phosphorylation suggesting that TFEB is regulated by a panel of kinases and/or phosphatases. Despite their differential impact on TFEB phosphorylation, both GSK3 and mTOR inhibitors promote 14-3-3 dissociation and TFEB nuclear localization. Quantitative mass spectrometry analyses further reveal an increased association of TFEB with nuclear proteins upon GSK3 and mTOR inhibition suggesting a positive impact on TFEB transcriptional function. Finally, a predominant nuclear localization of TFEB is unveiled in fully fed pancreatic cancer cells, whereas a reduction in TFEB expression significantly impairs their capacity for growth in an anchorage-independent manner. In addition, TFEB-restricted cells are more sensitive to apoptosis upon GSK3 inhibition. Altogether, our data uncover new functions under the control of GSK3 in pancreatic cancer cells in addition to providing key insight into TFEB regulation. PMID:25561726
Current opinion in Microbiology Roles of adaptor proteins in regulation of bacterial proteolysis
Battesti, Aurelia; Gottesman, Susan
2013-01-01
Elimination of non-functional or unwanted proteins is critical for cell growth and regulation. In bacteria, ATP-dependent proteases target cytoplasmic proteins for degradation, contributing to both protein quality control and regulation of specific proteins, thus playing roles parallel to that of the proteasome in eukaryotic cells. Adaptor proteins provide a way to modulate the substrate specificity of the proteases and allow regulated proteolysis. Advances over the past few years have provided new insight into how adaptor proteins interact with both substrates and proteases and how adaptor functions are regulated. An important advance has come with the recognition of the critical roles of anti-adaptor proteins in regulating adaptor availability. PMID:23375660
Integrating physiological regulation with stem cell and tissue homeostasis
Nakada, Daisuke; Levi, Boaz P.; Morrison, Sean J.
2015-01-01
Summary Stem cells are uniquely able to self-renew, to undergo multilineage differentiation, and to persist throughout life in a number of tissues. Stem cells are regulated by a combination of shared and tissue-specific mechanisms and are distinguished from restricted progenitors by differences in transcriptional and epigenetic regulation. Emerging evidence suggests that other aspects of cellular physiology, including mitosis, signal transduction, and metabolic regulation also differ between stem cells and their progeny. These differences may allow stem cells to be regulated independently of differentiated cells in response to circadian rhythms, changes in metabolism, diet, exercise, mating, aging, infection, and disease. This allows stem cells to sustain homeostasis or to remodel relevant tissues in response to physiological change. Stem cells are therefore not only regulated by short-range signals that maintain homeostasis within their tissue of origin, but also by long-range signals that integrate stem cell function with systemic physiology. PMID:21609826
p21/Cyclin E pathway modulates anticlastogenic function of Bmi-1 in cancer cells
Deng, Wen; Zhou, Yuan; Tiwari, Agnes FY; Su, Hang; Yang, Jie; Zhu, Dandan; Lau, Victoria Ming Yi; Hau, Pok Man; Yip, Yim Ling; Cheung, Annie LM; Guan, Xin-Yuan; Tsao, Sai Wah
2015-01-01
Apart from regulating stem cell self-renewal, embryonic development and proliferation, Bmi-1 has been recently reported to be critical in the maintenance of genome integrity. In searching for novel mechanisms underlying the anticlastogenic function of Bmi-1, we observed, for the first time, that Bmi-1 positively regulates p21 expression. We extended the finding that Bmi-1 deficiency induced chromosome breaks in multiple cancer cell models. Interestingly, we further demonstrated that knockdown of cyclin E or ectopic overexpression of p21 rescued Bmi-1 deficiency-induced chromosome breaks. We therefore conclude that p21/cyclin E pathway is crucial in modulating the anticlastogenic function of Bmi-1. As it is well established that the overexpression of cyclin E potently induces genome instability and p21 suppresses the function of cyclin E, the novel and important implication from our findings is that Bmi-1 plays an important role in limiting genomic instability in cylin E-overexpressing cancer cells by positive regulation of p21. PMID:25131797
Yu, Jiayi; Zhou, Xiaofei; Nakaya, Mako; Jin, Wei; Cheng, Xuhong; Sun, Shao-Cong
2014-01-01
The Noncanonical NF-κB pathway induces processing of the NF-κB2 precursor protein p100 and, thereby, mediates activation of p52-containing NF-κB complexes. This pathway is crucial for B-cell maturation and humoral immunity, but its role in regulating T-cell function is less clear. Using mutant mice that express a non-processible p100, NF-κB2lym1, we show that the noncanonical NF-κB pathway has a T cell-intrinsic role in regulating the pathogenesis of a T cell-mediated autoimmunity, experimental autoimmune encephalomyelitis (EAE). Although the lym1 mutation does not interfere with naïve T-cell activation, it renders the Th17 cells defective in the production of inflammatory effector molecules, particularly the cytokine GM-CSF. We provide evidence that p52 binds to the promoter of the GM-CSF-encoding gene (Csf2) and cooperates with c-Rel in the transactivation of this target gene. Introduction of exogenous p52 or GM-CSF to the NF-κB2lym1 mutant T cells partially restores their ability to induce EAE. These results suggest that the noncanonical NF-κB pathway mediates induction of EAE by regulating the effector function of inflammatory T cells. PMID:24899500
A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem.
Dodsworth, Steven
2009-12-01
At the shoot apex of plants is a small region known as the shoot apical meristem (SAM) that maintains a population of undifferentiated (stem) cells whilst providing cells for developing lateral organs and the stem. All aerial structures of the plant develop from the SAM post-embryogenesis, enabling plants to grow in a characteristic modular fashion with great phenotypic and developmental plasticity throughout their lifetime. The maintenance of the stem cell population is intimately balanced with cell recruitment into differentiating tissues through intercellular communication involving a complex signalling network. Recent studies have shown that diverse regulators function in SAM maintenance, many of which converge on the WUSCHEL (WUS) gene. In this review the diverse regulatory modules that function in SAM maintenance are discussed: transcriptional and epigenetic control, hormonal regulation, and the balance with organogenesis. The central role of WUS as an integrator of multiple signals is highlighted; in addition, accessory feedback loops emerge as a feature enabling dynamic regulation of the stem cell niche.
Yano, Kentaro; Otsuka, Kyoma; Kato, Yuko; Kawabata, Hideaki; Ohmori, Shinya; Arakawa, Hiroshi; Ogihara, Takuo
2016-03-01
P-glycoprotein (P-gp) mediates efflux of many xenobiotics, including therapeutic drugs, from normal and tumour tissues, and its functional localization on the plasma membrane of cells is regulated by scaffold proteins, such as ezrin, radixin and moesin (ERM proteins). We previously reported that radixin is involved in post-translational regulation of P-gp in hepatocellular carcinoma HepG2 cells and mouse small intestine, but not in mouse kidney. Here, we investigated whether the role of ERM proteins in regulation of P-gp transport activity in cancers is the same as that in the corresponding normal tissues, using human colon adenocarcinoma (Caco-2) cells and renal carcinoma (Caki-1) cells. In Caco-2 cells, radixin silencing alone reduced the P-gp-mediated intracellular accumulation of rhodamine123 (Rho123), while the mRNA level of P-gp was unchanged. Thus, it appears that only radixin among the ERMs regulates P-gp activity in Caco-2 cells. On the other hand, none of the ERM proteins influenced P-gp activity in Caki-1 cells. The regulation of P-gp by ERM proteins is different between Caco-2 and Caki-1 cells. Moreover, these regulatory properties are the same as those of the corresponding normal tissues, and suggest that tissue-specific differences in the regulation of P-gp by ERM proteins are retained in cancerous tissues. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.
A balance of FGF and BMP signals regulates cell cycle exit and Equarin expression in lens cells
Jarrin, Miguel; Pandit, Tanushree; Gunhaga, Lena
2012-01-01
In embryonic and adult lenses, a balance of cell proliferation, cell cycle exit, and differentiation is necessary to maintain physical function. The molecular mechanisms regulating the transition of proliferating lens epithelial cells to differentiated primary lens fiber cells are poorly characterized. To investigate this question, we used gain- and loss-of-function analyses to modulate fibroblast growth factor (FGF) and/or bone morphogenetic protein (BMP) signals in chick lens/retina explants. Here we show that FGF activity plays a key role for proliferation independent of BMP signals. Moreover, a balance of FGF and BMP signals regulates cell cycle exit and the expression of Ccdc80 (also called Equarin), which is expressed at sites where differentiation of lens fiber cells occurs. BMP activity promotes cell cycle exit and induces Equarin expression in an FGF-dependent manner. In contrast, FGF activity is required but not sufficient to induce cell cycle exit or Equarin expression. Furthermore, our results show that in the absence of BMP activity, lens cells have increased cell cycle length or are arrested in the cell cycle, which leads to decreased cell cycle exit. Taken together, these findings suggest that proliferation, cell cycle exit, and early differentiation of primary lens fiber cells are regulated by counterbalancing BMP and FGF signals. PMID:22718906
RNAi targeting GPR4 influences HMEC-1 gene expression by microarray analysis
Ren, Juan; Zhang, Yuelang; Cai, Hui; Ma, Hongbing; Zhao, Dongli; Zhang, Xiaozhi; Li, Zongfang; Wang, Shufeng; Wang, Jiangsheng; Liu, Rui; Li, Yi; Qian, Jiansheng; Wei, Hongxia; Niu, Liying; Liu, Yan; Xiao, Lisha; Ding, Muyang; Jiang, Shiwen
2014-01-01
G-protein coupled receptor 4 (GPR4) belongs to a protein family comprised of 3 closely related G protein-coupled receptors. Recent studies have shown that GPR4 plays important roles in angiogenesis, proton sensing, and regulating tumor cells as an oncogenic gene. How GPR4 conducts its functions? Rare has been known. In order to detect the genes related to GPR4, microarray technology was employed. GPR4 is highly expressed in human vascular endothelial cell HMEC-1. Small interfering RNA against GPR4 was used to knockdown GPR4 expression in HMEC-1. Then RNA from the GPR4 knockdown cells and control cells were analyzed through genome microarray. Microarray results shown that among the whole genes and expressed sequence tags, 447 differentially expressed genes were identified, containing 318 up-regulated genes and 129 down-regulated genes. These genes whose expression dramatically changed may be involved in the GPR4 functions. These genes were related to cell apoptosis, cytoskeleton and signal transduction, cell proliferation, differentiation and cell-cycle regulation, gene transcription and translation and cell material and energy metabolism. PMID:24753754
Radhakrishnan, Karthika; Bhagya, Kongattu P; Kumar, Anil Tr; Devi, Anandavalli N; Sengottaiyan, Jeeva; Kumar, Pradeep G
2016-08-01
Autoimmune regulator (AIRE) is a gene associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE is expressed heavily in the thymic epithelial cells and is involved in maintaining self-tolerance through regulating the expression of tissue-specific antigens. The testes are the most predominant extrathymic location where a heavy expression of AIRE is reported. Homozygous Aire-deficient male mice were infertile, possibly due to impaired spermatogenesis, deregulated germ cell apoptosis, or autoimmunity. We report that AIRE is expressed in the testes of neonatal, adolescent, and adult mice. AIRE expression was detected in glial cell derived neurotrophic factor receptor alpha (GFRα)(+) (spermatogonia), GFRα(-)/synaptonemal complex protein (SCP3)(+) (meiotic), and GFRα(-)/Phosphoglycerate kinase 2 (PGK2)(+) (postmeiotic) germ cells in mouse testes. GC1-spg, a germ-cell-derived cell line, did not express AIRE. Retinoic acid induced AIRE expression in GC1-spg cells. Ectopic expression of AIRE in GC1-spg cells using label-free LC-MS/MS identified a total of 371 proteins that were differentially expressed. 100 proteins were up-regulated, and 271 proteins were down-regulated. Data are available via ProteomeXchange with identifier PXD002511. Functional analysis of the differentially expressed proteins showed increased levels of various nucleic-acid-binding proteins and transcription factors and a decreased level of various cytoskeletal and structural proteins in the AIRE overexpressing cells as compared with the empty vector-transfected controls. The transcripts of a select set of the up-regulated proteins were also elevated. However, there was no corresponding decrease in the mRNA levels of the down-regulated set of proteins. Molecular function network analysis indicated that AIRE influenced gene expression in GC1-spg cells by acting at multiple levels, including transcription, translation, RNA processing, protein transport, protein localization, and protein degradation, thus setting the foundation in understanding the functional role of AIRE in germ cell biology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Sugimoto, Asuna; Miyazaki, Aya; Kawarabayashi, Keita; Shono, Masayuki; Akazawa, Yuki; Hasegawa, Tomokazu; Ueda-Yamaguchi, Kimiko; Kitamura, Takamasa; Yoshizaki, Keigo; Fukumoto, Satoshi; Iwamoto, Tsutomu
2017-12-18
The extracellular environment regulates the dynamic behaviors of cells. However, the effects of hydrostatic pressure (HP) on cell fate determination of mesenchymal stem cells (MSCs) are not clearly understood. Here, we established a cell culture chamber to control HP. Using this system, we found that the promotion of osteogenic differentiation by HP is depend on bone morphogenetic protein 2 (BMP2) expression regulated by Piezo type mechanosensitive ion channel component 1 (PIEZO1) in MSCs. The PIEZO1 was expressed and induced after HP loading in primary MSCs and MSC lines, UE7T-13 and SDP11. HP and Yoda1, an activator of PIEZO1, promoted BMP2 expression and osteoblast differentiation, whereas inhibits adipocyte differentiation. Conversely, PIEZO1 inhibition reduced osteoblast differentiation and BMP2 expression. Furthermore, Blocking of BMP2 function by noggin inhibits HP induced osteogenic maker genes expression. In addition, in an in vivo model of medaka with HP loading, HP promoted caudal fin ray development whereas inhibition of piezo1 using GsMTx4 suppressed its development. Thus, our results suggested that PIEZO1 is responsible for HP and could functions as a factor for cell fate determination of MSCs by regulating BMP2 expression.
Kirik, Angela; Ehrhardt, David W.; Kirik, Viktor
2012-01-01
Organization of microtubules into ordered arrays involves spatial and temporal regulation of microtubule nucleation. Here, we show that acentrosomal microtubule nucleation in plant cells involves a previously unknown regulatory step that determines the geometry of microtubule nucleation. Dynamic imaging of interphase cortical microtubules revealed that the ratio of branching to in-bundle microtubule nucleation on cortical microtubules is regulated by the Arabidopsis thaliana B′′ subunit of protein phosphatase 2A, which is encoded by the TONNEAU2/FASS (TON2) gene. The probability of nucleation from γ-tubulin complexes localized at the cell cortex was not affected by a loss of TON2 function, suggesting a specific role of TON2 in regulating the nucleation geometry. Both loss of TON2 function and ectopic targeting of TON2 to the plasma membrane resulted in defects in cell shape, suggesting the importance of TON2-mediated regulation of the microtubule cytoskeleton in cell morphogenesis. Loss of TON2 function also resulted in an inability for cortical arrays to reorient in response to light stimulus, suggesting an essential role for TON2 and microtubule branching nucleation in reorganization of microtubule arrays. Our data establish TON2 as a regulator of interphase microtubule nucleation and provide experimental evidence for a novel regulatory step in the process of microtubule-dependent nucleation. PMID:22395485
Takahashi, Kaede; Fukushima, Kaori; Onishi, Yuka; Minami, Kanako; Otagaki, Shiho; Ishimoto, Kaichi; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi
2018-08-01
Free fatty acid receptor 1 (FFA1) and FFA4 mediate a variety of biological responses through binding of medium- and long-chain free fatty acids. The aim of this study was to investigate an involvement of FFA1 and FFA4 in the regulation of cellular functions during tumor progression in colon cancer cells. The long-term fluorouracil (5-FU) and cisplatin (CDDP) treated cells were generated from DLD1 cells (DLD-5FU and DLD-CDDP cells, respectively). FFAR1 expressions were lower in DLD-5FU and DLD-CDDP cells than in DLD1 cells. In contrast, DLD-5FU and DLD-CDDP cells showed the high FFAR4 expressions, compared with DLD1 cells. The cell motile activities of DLD-5FU and DLD-CDDP cells were reduced by GW9508 which is an agonist of FFA1 and FFA4. Moreover, GW1100, an antagonist of FFA1, inhibited the cell motile activities of DLD-5FU and DLD-CDDP cells. To evaluate whether FFA1 and FFA4 regulate the enhancement of cell motility, invasion and colony formation, highly migratory (hmDLD1) cells were established from DLD1 cells. FFAR1 expression was significantly higher in hmDLD1 cells than in DLD1 cells, but no change of FFAR4 expression was observed. The elevated cell motile and invasive activities and colony formation of hmDLD1 cells were suppressed by FFA1 inhibition. These results suggest that FFA1 and FFA4 are involved in the regulation of cellular functions during tumor progression in colon cancer DLD1 cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Molecular targets and signaling pathways regulated by nuclear translocation of syndecan-1.
Szatmári, Tünde; Mundt, Filip; Kumar-Singh, Ashish; Möbus, Lena; Ötvös, Rita; Hjerpe, Anders; Dobra, Katalin
2017-12-08
The cell-surface heparan sulfate proteoglycan syndecan-1 is important for tumor cell proliferation, migration, and cell cycle regulation in a broad spectrum of malignancies. Syndecan-1, however, also translocates to the cell nucleus, where it might regulate various molecular functions. We used a fibrosarcoma model to dissect the functions of syndecan-1 related to the nucleus and separate them from functions related to the cell-surface. Nuclear translocation of syndecan-1 hampered the proliferation of fibrosarcoma cells compared to the mutant lacking nuclear localization signal. The growth inhibitory effect of nuclear syndecan-1 was accompanied by significant accumulation of cells in the G0/G1 phase, which indicated a possible G1/S phase arrest. We implemented multiple, unsupervised global transcriptome and proteome profiling approaches and combined them with functional assays to disclose the molecular mechanisms that governed nuclear translocation and its related functions. We identified genes and pathways related to the nuclear compartment with network enrichment analysis of the transcriptome and proteome. The TGF-β pathway was activated by nuclear syndecan-1, and three genes were significantly altered with the deletion of nuclear localization signal: EGR-1 (early growth response 1), NEK11 (never-in-mitosis gene a-related kinase 11), and DOCK8 (dedicator of cytokinesis 8). These candidate genes were coupled to growth and cell-cycle regulation. Nuclear translocation of syndecan-1 influenced the activity of several other transcription factors, including E2F, NFκβ, and OCT-1. The transcripts and proteins affected by syndecan-1 showed a striking overlap in their corresponding biological processes. These processes were dominated by protein phosphorylation and post-translation modifications, indicative of alterations in intracellular signaling. In addition, we identified molecules involved in the known functions of syndecan-1, including extracellular matrix organization and transmembrane transport. Collectively, abrogation of nuclear translocation of syndecan-1 resulted in a set of changes clustering in distinct patterns, which highlighted the functional importance of nuclear syndecan-1 in hampering cell proliferation and the cell cycle. This study emphasizes the importance of the localization of syndecan-1 when considering its effects on tumor cell fate.
Ral GTPase and the exocyst regulate autophagy in a tissue-specific manner.
Tracy, Kirsten; Velentzas, Panagiotis D; Baehrecke, Eric H
2016-01-01
Autophagy traffics cellular components to the lysosome for degradation. Ral GTPase and the exocyst have been implicated in the regulation of stress-induced autophagy, but it is unclear whether they are global regulators of this process. Here, we investigate Ral function in different cellular contexts in Drosophila and find that it is required for autophagy during developmentally regulated cell death in salivary glands, but does not affect starvation-induced autophagy in the fat body. Furthermore, knockdown of exocyst subunits has a similar effect, preventing autophagy in dying cells but not in cells of starved animals. Notch activity is elevated in dying salivary glands, this change in Notch signaling is influenced by Ral, and decreased Notch function influences autophagy. These data indicate that Ral and the exocyst regulate autophagy in a context-dependent manner, and that in dying salivary glands, Ral mediates autophagy, at least in part, by regulation of Notch. © 2015 The Authors.
Petri, Robert Michael; Hackel, Alexander; Hahnel, Katrin; Dumitru, Claudia Alexandra; Bruderek, Kirsten; Flohe, Stefanie B; Paschen, Annette; Lang, Stephan; Brandau, Sven
2017-09-12
The interaction of mesenchymal stromal cells (MSCs) with natural killer (NK) cells is traditionally thought of as a static inhibitory model, whereby resting MSCs inhibit NK cell effector function. Here, we use a dynamic in vitro system of poly(I:C) stimulation to model the interaction of NK cells and tissue-resident MSCs in the context of infection or tissue injury. The experiments suggest a time-dependent system of regulation and feedback, where, at early time points, activated MSCs secrete type I interferon to enhance NK cell effector function, while at later time points TGF-β and IL-6 limit NK cell effector function and terminate inflammatory responses by induction of a regulatory senescent-like NK cell phenotype. Importantly, feedback of these regulatory NK cells to MSCs promotes survival, proliferation, and pro-angiogenic properties. Our data provide additional insight into the interaction of stromal cells and innate immune cells and suggest a model of time-dependent MSC polarization and licensing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Actin Engine in Immunological Synapse
Piragyte, Indre
2012-01-01
T cell activation and function require physical contact with antigen presenting cells at a specialized junctional structure known as the immunological synapse. Once formed, the immunological synapse leads to sustained T cell receptor-mediated signalling and stabilized adhesion. High resolution microscopy indeed had a great impact in understanding the function and dynamic structure of immunological synapse. Trends of recent research are now moving towards understanding the mechanical part of immune system, expanding our knowledge in mechanosensitivity, force generation, and biophysics of cell-cell interaction. Actin cytoskeleton plays inevitable role in adaptive immune system, allowing it to bear dynamic and precise characteristics at the same time. The regulation of mechanical engine seems very complicated and overlapping, but it enables cells to be very sensitive to external signals such as surface rigidity. In this review, we focus on actin regulators and how immune cells regulate dynamic actin rearrangement process to drive the formation of immunological synapse. PMID:22916042
Pituitary adenylate cyclase-activating polypeptide: a novel peptide with protean implications.
Pisegna, Joseph R; Oh, David S
2007-02-01
The purpose of this review is to highlight the importance of pituitary adenylate cyclase-activating polypeptide in physiological processes and to describe how this peptide is becoming increasingly recognized as having a major role in the body. Since its discovery in 1989, investigators have sought to determine the site of biological activity and the function of pituitary adenylate cyclase-activating polypeptide in maintaining homeostasis. Since its discovery, pituitary adenylate cyclase-activating polypeptide appears to play an important role in the regulation of processes within the central nervous system and gastrointestinal tract, as well in reproductive biology. Pituitary adenylate cyclase-activating polypeptide has been shown to regulate tumor cell growth and to regulate immune function through its effects on T lympocytes. These discoveries suggest the importance of pituitary adenylate cyclase-activating polypeptide in neuronal development, neuronal function, gastrointestinal tract function and reproduction. Future studies will examine more closely the role of pituitary adenylate cyclase-activating polypeptide in regulation of malignantly transformed cells, as well as in regulation of immune function.
E2F function in muscle growth is necessary and sufficient for viability in Drosophila
Zappia, Maria Paula; Frolov, Maxim V.
2016-01-01
The E2F transcription factor is a key cell cycle regulator. However, the inactivation of the entire E2F family in Drosophila is permissive throughout most of animal development until pupation when lethality occurs. Here we show that E2F function in the adult skeletal muscle is essential for animal viability since providing E2F function in muscles rescues the lethality of the whole-body E2F-deficient animals. Muscle-specific loss of E2F results in a significant reduction in muscle mass and thinner myofibrils. We demonstrate that E2F is dispensable for proliferation of muscle progenitor cells, but is required during late myogenesis to directly control the expression of a set of muscle-specific genes. Interestingly, E2f1 provides a major contribution to the regulation of myogenic function, while E2f2 appears to be less important. These findings identify a key function of E2F in skeletal muscle required for animal viability, and illustrate how the cell cycle regulator is repurposed in post-mitotic cells. PMID:26823289
EZH2: a pivotal regulator in controlling cell differentiation.
Chen, Ya-Huey; Hung, Mien-Chie; Li, Long-Yuan
2012-01-01
Epigenetic regulation plays an important role in stem cell self-renewal, maintenance and lineage differentiation. The epigenetic profiles of stem cells are related to their transcriptional signature. Enhancer of Zeste homlog 2 (EZH2), a catalytic subunit of epigenetic regulator Polycomb repressive complex 2 (PRC2), has been shown to be a key regulator in controlling cellular differentiation. EZH2 is a histone methyltransferase that not only methylates histone H3 on Lys 27 (H3K27me3) but also interacts with and recruits DNA methyltransferases to methylate CpG at certain EZH2 target genes to establish firm repressive chromatin structures, contributing to tumor progression and the regulation of development and lineage commitment both in embryonic stem cells (ESCs) and adult stem cells. In addition to its well-recognized epigenetic gene silencing function, EZH2 also directly methylates nonhistone targets such as the cardiac transcription factor, GATA4, resulting in attenuated GATA4 transcriptional activity and gene repression. This review addresses recent progress toward the understanding of the biological functions and regulatory mechanisms of EZH2 and its targets as well as their roles in stem cell maintenance and cell differentiation.
PrP(C) regulates epidermal growth factor receptor function and cell shape dynamics in Neuro2a cells.
Llorens, Franc; Carulla, Patricia; Villa, Ana; Torres, Juan M; Fortes, Puri; Ferrer, Isidre; del Río, José A
2013-10-01
The prion protein (PrP) plays a key role in prion disease pathogenesis. Although the misfolded and pathologic variant of this protein (PrP(SC)) has been studied in depth, the physiological role of PrP(C) remains elusive and controversial. PrP(C) is a cell-surface glycoprotein involved in multiple cellular functions at the plasma membrane, where it interacts with a myriad of partners and regulates several intracellular signal transduction cascades. However, little is known about the gene expression changes modulated by PrP(C) in animals and in cellular models. In this article, we present PrP(C)-dependent gene expression signature in N2a cells and its implication in the most overrepresented functions: cell cycle, cell growth and proliferation, and maintenance of cell shape. PrP(C) over-expression enhances cell proliferation and cell cycle re-entrance after serum stimulation, while PrP(C) silencing slows down cell cycle progression. In addition, MAP kinase and protein kinase B (AKT) pathway activation are under the regulation of PrP(C) in asynchronous cells and following mitogenic stimulation. These effects are due in part to the modulation of epidermal growth factor receptor (EGFR) by PrP(C) in the plasma membrane, where the two proteins interact in a multimeric complex. We also describe how PrP(C) over-expression modulates filopodia formation by Rho GTPase regulation mainly in an AKT-Cdc42-N-WASP-dependent pathway. © 2013 International Society for Neurochemistry.
Regulation of the Host Antiviral State by Intercellular Communications
Assil, Sonia; Webster, Brian; Dreux, Marlène
2015-01-01
Viruses usually induce a profound remodeling of host cells, including the usurpation of host machinery to support their replication and production of virions to invade new cells. Nonetheless, recognition of viruses by the host often triggers innate immune signaling, preventing viral spread and modulating the function of immune cells. It conventionally occurs through production of antiviral factors and cytokines by infected cells. Virtually all viruses have evolved mechanisms to blunt such responses. Importantly, it is becoming increasingly recognized that infected cells also transmit signals to regulate innate immunity in uninfected neighboring cells. These alternative pathways are notably mediated by vesicular secretion of various virus- and host-derived products (miRNAs, RNAs, and proteins) and non-infectious viral particles. In this review, we focus on these newly-described modes of cell-to-cell communications and their impact on neighboring cell functions. The reception of these signals can have anti- and pro-viral impacts, as well as more complex effects in the host such as oncogenesis and inflammation. Therefore, these “broadcasting” functions, which might be tuned by an arms race involving selective evolution driven by either the host or the virus, constitute novel and original regulations of viral infection, either highly localized or systemic. PMID:26295405
Hsiao, Jordy J; Ng, Brandon H; Smits, Melinda M; Wang, Jiahui; Jasavala, Rohini J; Martinez, Harryl D; Lee, Jinhee; Alston, Jhullian J; Misonou, Hiroaki; Trimmer, James S; Wright, Michael E
2015-03-31
Identifying cellular signaling pathways that become corrupted in the presence of androgens that increase the metastatic potential of organ-confined tumor cells is critical to devising strategies capable of attenuating the metastatic progression of hormone-naïve, organ-confined tumors. In localized prostate cancers, gene fusions that place ETS-family transcription factors under the control of androgens drive gene expression programs that increase the invasiveness of organ-confined tumor cells. C-X-C chemokine receptor type 4 (CXCR4) is a downstream target of ERG, whose upregulation in prostate-tumor cells contributes to their migration from the prostate gland. Recent evidence suggests that CXCR4-mediated proliferation and metastasis of tumor cells is regulated by CXCR7 through its scavenging of chemokine CXCL12. However, the role of androgens in regulating CXCR4-mediated motility with respect to CXCR7 function in prostate-cancer cells remains unclear. Immunocytochemistry, western blot, and affinity-purification analyses were used to study how androgens influenced the expression, subcellular localization, and function of CXCR7, CXCR4, and androgen receptor (AR) in LNCaP prostate-tumor cells. Moreover, luciferase assays and quantitative polymerase chain reaction (qPCR) were used to study how chemokines CXCL11 and CXCL12 regulate androgen-regulated genes (ARGs) in LNCaP prostate-tumor cells. Lastly, cell motility assays were carried out to determine how androgens influenced CXCR4-dependent motility through CXCL12. Here we show that, in the LNCaP prostate-tumor cell line, androgens coordinate the expression of CXCR4 and CXCR7, thereby promoting CXCL12/CXCR4-mediated cell motility. RNA interference experiments revealed functional interactions between AR and CXCR7 in these cells. Co-localization and affinity-purification experiments support a physical interaction between AR and CXCR7 in LNCaP cells. Unexpectedly, CXCR7 resided in the nuclear compartment and modulated AR-mediated transcription. Moreover, androgen-mediated cell motility correlated positively with the co-localization of CXCR4 and CXCR7 receptors, suggesting that cell migration may be linked to functional CXCR4/CXCR7 heterodimers. Lastly, CXCL12-mediated cell motility was CXCR7-dependent, with CXCR7 expression required for optimal expression of CXCR4 protein. Overall, our results suggest that inhibition of CXCR7 function might decrease the metastatic potential of organ-confined prostate cancers.
Impairment of T Cell Function in Parasitic Infections
Rodrigues, Vasco; Cordeiro-da-Silva, Anabela; Laforge, Mireille; Ouaissi, Ali; Akharid, Khadija; Silvestre, Ricardo; Estaquier, Jérôme
2014-01-01
In mammals subverted as hosts by protozoan parasites, the latter and/or the agonists they release are detected and processed by sensors displayed by many distinct immune cell lineages, in a tissue(s)-dependent context. Focusing on the T lymphocyte lineage, we review our present understanding on its transient or durable functional impairment over the course of the developmental program of the intracellular parasites Leishmania spp., Plasmodium spp., Toxoplasma gondii, and Trypanosoma cruzi in their mammalian hosts. Strategies employed by protozoa to down-regulate T lymphocyte function may act at the initial moment of naïve T cell priming, rendering T cells anergic or unresponsive throughout infection, or later, exhausting T cells due to antigen persistence. Furthermore, by exploiting host feedback mechanisms aimed at maintaining immune homeostasis, parasites can enhance T cell apoptosis. We will discuss how infections with prominent intracellular protozoan parasites lead to a general down-regulation of T cell function through T cell anergy and exhaustion, accompanied by apoptosis, and ultimately allowing pathogen persistence. PMID:24551250
Soares, Helena; Lasserre, Rémi; Alcover, Andrés
2013-11-01
Immunological synapses are specialized cell-cell contacts formed between T lymphocytes and antigen-presenting cells. They are induced upon antigen recognition and are crucial for T-cell activation and effector functions. The generation and function of immunological synapses depend on an active T-cell polarization process, which results from a finely orchestrated crosstalk between the antigen receptor signal transduction machinery, the actin and microtubule cytoskeletons, and controlled vesicle traffic. Although we understand how some of these particular events are regulated, we still lack knowledge on how these multiple cellular elements are harmonized to ensure appropriate T-cell responses. We discuss here our view on how T-cell receptor signal transduction initially commands cytoskeletal and vesicle traffic polarization, which in turn sets the immunological synapse molecular design that regulates T-cell activation. We also discuss how the human immunodeficiency virus (HIV-1) hijacks some of these processes impairing immunological synapse generation and function. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubo, Yoshinao; Yoshii, Hiroaki; Kamiyama, Haruka
Ezrin, radixin, and moesin (ERM) proteins supply functional linkage between integral membrane proteins and cytoskeleton in mammalian cells to regulate membrane protein dynamisms and cytoskeleton rearrangement. To assess potential role of the ERM proteins in HIV-1 lifecycle, we examined if suppression of ERM function in human cells expressing HIV-1 infection receptors influences HIV-1 envelope (Env)-mediated HIV-1-vector transduction and cell-cell fusion. Expression of an ezrin dominant negative mutant or knockdown of ezrin, radixin, or moesin with siRNA uniformly decreased transduction titers of HIV-1 vectors having X4-tropic Env. In contrast, transduction titers of R5-tropic Env HIV-1 vectors were decreased only by radixinmore » knockdown: ezrin knockdown had no detectable effects and moesin knockdown rather increased transduction titer. Each of the ERM suppressions had no detectable effects on cell surface expression of CD4, CCR5, and CXCR4 or VSV-Env-mediated HIV-1 vector transductions. Finally, the individual knockdown of ERM mRNAs uniformly decreased efficiency of cell-cell fusion mediated by X4- or R5-tropic Env and HIV-1 infection receptors. These results suggest that (i) the ERM proteins function as positive regulators of infection by X4-tropic HIV-1, (ii) moesin additionally functions as a negative regulator of R5-tropic HIV-1 virus infection at the early step(s) after the membrane fusion, and (iii) receptor protein dynamisms are regulated differently in R5- and X4-tropic HIV-1 infections.« less
Desmoglein 3 regulates membrane trafficking of cadherins, an implication in cell-cell adhesion
Moftah, Hanan; Dias, Kasuni; Apu, Ehsanul Hoque; Liu, Li; Uttagomol, Jutamas; Bergmeier, Lesley; Kermorgant, Stephanie; Wan, Hong
2017-01-01
ABSTRACT E-cadherin mediated cell-cell adhesion plays a critical role in epithelial cell polarization and morphogenesis. Our recent studies suggest that the desmosomal cadherin, desmoglein 3 (Dsg3) cross talks with E-cadherin and regulates its adhesive function in differentiating keratinocytes. However, the underlying mechanism remains not fully elucidated. Since E-cadherin trafficking has been recognized to be a central determinant in cell-cell adhesion and homeostasis we hypothesize that Dsg3 may play a role in regulating E-cadherin trafficking and hence the cell-cell adhesion. Here we investigated this hypothesis in cells with loss of Dsg3 function through RNAi mediated Dsg3 knockdown or the stable expression of the truncated mutant Dsg3ΔC. Our results showed that loss of Dsg3 resulted in compromised cell-cell adhesion and reduction of adherens junction and desmosome protein expression as well as the cortical F-actin formation. As a consequence, cells failed to polarize but instead displayed aberrant cell flattening. Furthermore, retardation of E-cadherin internalization and recycling was consistently observed in these cells during the process of calcium induced junction assembling. In contrast, enhanced cadherin endocytosis was detected in cells with overexpression of Dsg3 compared to control cells. Importantly, this altered cadherin trafficking was found to be coincided with the reduced expression and activity of Rab proteins, including Rab5, Rab7 and Rab11 which are known to be involved in E-cadherin trafficking. Taken together, our findings suggest that Dsg3 functions as a key in cell-cell adhesion through at least a mechanism of regulating E-cadherin membrane trafficking. PMID:27254775
Glycolysis determines dichotomous regulation of T cell subsets in hypoxia
Xu, Yang; Zhang, Ming; Savoldo, Barbara; Metelitsa, Leonid S.; Rodgers, John; Yustein, Jason T.; Neilson, Joel R.
2016-01-01
Hypoxia occurs in many pathological conditions, including chronic inflammation and tumors, and is considered to be an inhibitor of T cell function. However, robust T cell responses occur at many hypoxic inflammatory sites, suggesting that functions of some subsets are stimulated under low oxygen conditions. Here, we investigated how hypoxic conditions influence human T cell functions and found that, in contrast to naive and central memory T cells (TN and TCM), hypoxia enhances the proliferation, viability, and cytotoxic action of effector memory T cells (TEM). Enhanced TEM expansion in hypoxia corresponded to high hypoxia-inducible factor 1α (HIF1α) expression and glycolytic activity compared with that observed in TN and TCM. We determined that the glycolytic enzyme GAPDH negatively regulates HIF1A expression by binding to adenylate-uridylate–rich elements in the 3′-UTR region of HIF1A mRNA in glycolytically inactive TN and TCM. Conversely, active glycolysis with decreased GAPDH availability in TEM resulted in elevated HIF1α expression. Furthermore, GAPDH overexpression reduced HIF1α expression and impaired proliferation and survival of T cells in hypoxia, indicating that high glycolytic metabolism drives increases in HIF1α to enhance TEM function during hypoxia. This work demonstrates that glycolytic metabolism regulates the translation of HIF1A to determine T cell responses to hypoxia and implicates GAPDH as a potential mechanism for controlling T cell function in peripheral tissue. PMID:27294526
Vyas, Sejal; Chesarone-Cataldo, Melissa; Todorova, Tanya; Huang, Yun-Han; Chang, Paul
2013-01-01
The poly(ADP-ribose) polymerase (PARP) family of proteins use NAD+ as their substrate to modify acceptor proteins with adenosine diphosphate-ribose (ADPr) modifications. The function of most PARPs under physiological conditions is unknown. Here, to better understand this protein family, we systematically analyze the cell cycle localization of each PARP and of poly(ADP-ribose), a product of PARP activity, then identify the knock-down phenotype of each protein and perform secondary assays to elucidate function. We show that most PARPs are cytoplasmic, identify cell cycle differences in the ratio of nuclear to cytoplasmic poly(ADP-ribose), and identify four phenotypic classes of PARP function. These include the regulation of membrane structures, cell viability, cell division, and the actin cytoskeleton. Further analysis of PARP14 shows that it is a component of focal adhesion complexes required for proper cell motility and focal adhesion function. In total, we show that PARP proteins are critical regulators of eukaryotic physiology. PMID:23917125
Multifunctional glial support by Semper cells in the Drosophila retina
Charlton-Perkins, Mark A.
2017-01-01
Glial cells play structural and functional roles central to the formation, activity and integrity of neurons throughout the nervous system. In the retina of vertebrates, the high energetic demand of photoreceptors is sustained in part by Müller glia, an intrinsic, atypical radial glia with features common to many glial subtypes. Accessory and support glial cells also exist in invertebrates, but which cells play this function in the insect retina is largely undefined. Using cell-restricted transcriptome analysis, here we show that the ommatidial cone cells (aka Semper cells) in the Drosophila compound eye are enriched for glial regulators and effectors, including signature characteristics of the vertebrate visual system. In addition, cone cell-targeted gene knockdowns demonstrate that such glia-associated factors are required to support the structural and functional integrity of neighboring photoreceptors. Specifically, we show that distinct support functions (neuronal activity, structural integrity and sustained neurotransmission) can be genetically separated in cone cells by down-regulating transcription factors associated with vertebrate gliogenesis (pros/Prox1, Pax2/5/8, and Oli/Olig1,2, respectively). Further, we find that specific factors critical for glial function in other species are also critical in cone cells to support Drosophila photoreceptor activity. These include ion-transport proteins (Na/K+-ATPase, Eaat1, and Kir4.1-related channels) and metabolic homeostatic factors (dLDH and Glut1). These data define genetically distinct glial signatures in cone/Semper cells that regulate their structural, functional and homeostatic interactions with photoreceptor neurons in the compound eye of Drosophila. In addition to providing a new high-throughput model to study neuron-glia interactions, the fly eye will further help elucidate glial conserved "support networks" between invertebrates and vertebrates. PMID:28562601
Xing, Lei; Martyniuk, Christopher J; Esau, Crystal; Da Fonte, Dillon F; Trudeau, Vance L
2016-07-20
Radial glial cells (RGCs) are stem-like cells found in the developing and adult central nervous system. They function as both a scaffold to guide neuron migration and as progenitor cells that support neurogenesis. Our previous study revealed a close anatomical relationship between dopamine neurons and RGCs in the telencephalon of female goldfish. In this study, label-free proteomics was used to identify the proteins in a primary RGC culture and to determine the proteome response to the selective dopamine D1 receptor agonist SKF 38393 (10μM), in order to better understand dopaminergic regulation of RGCs. A total of 689 unique proteins were identified in the RGCs and these were classified into biological and pathological pathways. Proteins such as nucleolin (6.9-fold) and ependymin related protein 1 (4.9-fold) were increased in abundance while proteins triosephosphate isomerase (10-fold) and phosphoglycerate dehydrogenase (5-fold) were decreased in abundance. Pathway analysis revealed that proteins that consistently changed in abundance across biological replicates were related to small molecules such as ATP, lipids and steroids, hormones, glucose, cyclic AMP and Ca(2+). Sub-network enrichment analysis suggested that estrogen receptor signaling, among other transcription factors, is regulated by D1 receptor activation. This suggests that these signaling pathways are correlated to dopaminergic regulation of radial glial cell functions. Most proteins down-regulated by SKF 38393 were involved in cell cycle/proliferation, growth, death, and survival, which suggests that dopamine inhibits the progenitor-related processes of radial glial cells. Examples of differently expressed proteins including triosephosphate isomerase, nucleolin, phosphoglycerate dehydrogenase and capping protein (actin filament) muscle Z-line beta were validated by qPCR and western blot, which were consistent with MS/MS data in the direction of change. This is the first study to characterize the RGC proteome on a large scale in a vertebrate species. These data provide novel insight into glial protein networks that are associated with neuroendocrine function and neurogenesis in the teleost brain. While the role of radial glial cells in organizing brain structure and neurogenesis has been well studied, protein profiling experiments in this unique cell type has not been conducted. This study is the first to profile the proteome of goldfish radial glial cells in culture and to study the regulation of progenitor functions of radial glial cells by the neurotransmitter dopamine. This study provides the foundation for molecular network analysis in fish radial glial cells, and identifies cellular processes and signaling pathways in these cells with roles in neurogenesis and neuroendocrine function. Lastly, this study begins to characterize signatures and biomarkers for specific neuroendocrine and neurogenesis disruptors. Copyright © 2016 Elsevier B.V. All rights reserved.
Differential lactate and cholesterol synthetic activities in XY and XX Sertoli cells.
Shishido, Yurina; Baba, Takashi; Sato, Tetsuya; Shima, Yuichi; Miyabayashi, Kanako; Inoue, Miki; Akiyama, Haruhiko; Kimura, Hiroshi; Kanai, Yoshiakira; Ishihara, Yasuhiro; Haraguchi, Shogo; Miyazaki, Akira; Rozman, Damjana; Yamazaki, Takeshi; Choi, Man-Ho; Ohkawa, Yasuyuki; Suyama, Mikita; Morohashi, Ken-Ichirou
2017-02-02
SRY, a sex-determining gene, induces testis development in chromosomally female (XX) individuals. However, mouse XX Sertoli cells carrying Sry (XX/Sry Sertoli cells) are incapable of fully supporting germ cell development, even when the karyotype of the germ cells is XY. While it has therefore been assumed that XX/Sry Sertoli cells are not functionally equivalent to XY Sertoli cells, it has remained unclear which specific functions are affected. To elucidate the functional difference, we compared the gene expression of XY and XX/Sry Sertoli cells. Lactate and cholesterol metabolisms, essential for nursing the developing germ cells, were down-regulated in XX/Sry cells, which appears to be caused at least in part by the differential expression of histone modification enzymes SMCX/SMCY (H3K4me3 demethylase) and UTX/UTY (H3K27me3 demethylase) encoded by the sex chromosomes. We suggest that down-regulation of lactate and cholesterol metabolism that may be due to altered epigenetic modification affects the nursing functions of XX/Sry Sertoli cells.
Differential lactate and cholesterol synthetic activities in XY and XX Sertoli cells
Shishido, Yurina; Baba, Takashi; Sato, Tetsuya; Shima, Yuichi; Miyabayashi, Kanako; Inoue, Miki; Akiyama, Haruhiko; Kimura, Hiroshi; Kanai, Yoshiakira; Ishihara, Yasuhiro; Haraguchi, Shogo; Miyazaki, Akira; Rozman, Damjana; Yamazaki, Takeshi; Choi, Man-Ho; Ohkawa, Yasuyuki; Suyama, Mikita; Morohashi, Ken-ichirou
2017-01-01
SRY, a sex-determining gene, induces testis development in chromosomally female (XX) individuals. However, mouse XX Sertoli cells carrying Sry (XX/Sry Sertoli cells) are incapable of fully supporting germ cell development, even when the karyotype of the germ cells is XY. While it has therefore been assumed that XX/Sry Sertoli cells are not functionally equivalent to XY Sertoli cells, it has remained unclear which specific functions are affected. To elucidate the functional difference, we compared the gene expression of XY and XX/Sry Sertoli cells. Lactate and cholesterol metabolisms, essential for nursing the developing germ cells, were down-regulated in XX/Sry cells, which appears to be caused at least in part by the differential expression of histone modification enzymes SMCX/SMCY (H3K4me3 demethylase) and UTX/UTY (H3K27me3 demethylase) encoded by the sex chromosomes. We suggest that down-regulation of lactate and cholesterol metabolism that may be due to altered epigenetic modification affects the nursing functions of XX/Sry Sertoli cells. PMID:28150810
Ren, Bin
2018-04-24
FoxO1 has emerged as an important regulator of angiogenesis. Recent work published in this Journal shows that FoxO1 regulates VEGF expression in keratinocytes and is required for angiogenesis in wound healing. Since FoxO1 also regulates CD36 transcription, and endothelial cell differentiation and vascular maturation, this transcription factor may be essential for the formation of functional vascular networks via coupling the regulation of CD36 in vascular endothelial cells under physiological and pathological conditions. Although many outstanding questions remain to be answered, the mechanisms by which FoxO1 regulates VEGF in keratinocytes provide insight into the development of functional angiogenesis and further our understanding of vascular biology. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Regulation of the cellular and physiological effects of glutamine.
Chwals, Walter J
2004-10-01
Glutamine is the most abundant amino acid in humans and possesses many functions in the body. It is the major transporter of amino-nitrogen between cells and an important fuel source for rapidly dividing cells such as cells of the immune and gastrointestinal systems. It is important in the synthesis of nucleic acids, glutathione, citrulline, arginine, gamma aminobutyric acid, and glucose. It is important for growth, gastrointestinal integrity, acid-base homeostasis, and optimal immune function. The regulation of glutamine levels in cells via glutaminase and glutamine synthetase is discussed. The cellular and physiologic effects of glutamine upon the central nervous system, gastrointestinal function, during metabolic support, and following tissue injury and critical illness is also discussed.
Ji, Yuhua; Zhang, Jinsheng; Wang, Wenwen; Ji, Juling
2014-01-01
We previous reported that miR-27a regulates lipid metabolism and cell proliferation during hepatic stellate cells (HSCs) activation. To further explore the biological function and underlying mechanisms of miR-27a in HSCs, global protein expression affected by overexpression of miR-27a in HSCs was analyzed by a cleavable isotope-coded affinity tags (cICAT) based comparative proteomic approach. In the present study, 1267 non-redundant proteins were identified with unique accession numbers (score ≥1.3, i.e. confidence ≥95%), among which 1171 were quantified and 149 proteins (12.72%) were differentially expressed with a differential expression ratio of 1.5. We found that up-regulated proteins by miR-27a mainly participate in cell proliferation and myogenesis, while down-regulated proteins were the key enzymes involved in de novo lipid synthesis. The expression of a group of six miR-27a regulated proteins was validated and the function of one miR-27a regulated protein was further validated. The results not only delineated the underlying mechanism of miR-27a in modulating fat metabolism and cell proliferation, but also revealed a novel role of miR-27a in promoting myogenic tans-differentiation during HSCs activation. This study also exemplified proteomics strategy as a powerful tool for the functional study of miRNA.
Chang, Sheng-Wei; Wellmerling, Jack; Zhang, Xiaoli; Rayner, Rachael E; Osman, Wissam; Mertz, Sara; Amer, Amal O; Peeples, Mark E; Boyaka, Prosper N; Cormet-Boyaka, Estelle
2018-06-18
Marijuana consumption is on the rise in the US but the health benefits of cannabis smoking are controversial and the impact of cannabis components on lung homeostasis is not well-understood. Lung function requires a fine regulation of the ion channel CFTR, which is responsible for fluid homeostasis and mucocilliary clearance. The goal of this study was to assess the effect that exposure to Δ9-tetrahydrocannabinol (THC), the psychoactive substance present in marijuana, has on CFTR expression and function. Cultures of human bronchial epithelial cell line 16HBE14o- and primary human airway epithelial cells were exposed to THC. The expression of CFTR protein was determined by immunoblotting and CFTR function was measured using Ussing chambers. We also used specific pharmacological inhibitors of EGFR and ERK to determine the role of this pathway in THC-induced regulation of CFTR. THC decreased CFTR protein expression in primary human bronchial epithelial cells. This decrease was associated with reduced CFTR-mediated short-circuit currents. THC also induced activation of the ERK MAPK pathway via activation of EGFR. Inhibition of EGFR or MEK/ERK prevented THC-induced down regulation of CFTR protein expression. THC negatively regulates CFTR and this is mediated through the EGFR/ERK axis. This study provides the first evidence that THC present in marijuana reduces the expression and function of CFTR in airway epithelial cells. Copyright © 2018. Published by Elsevier B.V.
Horiguchi, Kotaro; Higuchi, Masashi; Yoshida, Saishu; Nakakura, Takashi; Tateno, Kozue; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Kato, Takako; Kato, Yukio
2014-11-01
S100β-positive cells, which do not express the classical pituitary hormones, appear to possess multifunctional properties and are assumed to be heterogeneous in the anterior pituitary gland. The presence of several protein markers has shown that S100β-positive cells are composed of populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. Recently, we succeeded in separating S100β-positive cells into round-cell (dendritic-cell-like) and process-cell types. We also found the characteristic expression of anti-inflammatory factors (interleukin-6, Il-6) and membrane receptors (integrin β-6) in the round type. Here, we further investigate the function of the subpopulation of S100β-positive cells. Since IL-6 is also a paracrine factor that regulates hormone producing-cells, we examine whether a correlation exists among extracellular acid stress, IL-6 and hormone production by using primary cultures of anterior pituitary cells. Dendritic-cell-like S100β-positive cells notably expressed Gpr68 (proton receptor) and Il-6. Furthermore, the expression of Il-6 and proopiomelanocortin (Pomc) was up-regulated by extracellular acidification. The functional role of IL-6 and GPR68 in the gene expression of Pomc during extracellular acidification was also examined. Small interfering RNA for Il-6 up-regulated Pomc expression and that for Gpr68 reversed the down-regulation of Il-6 and up-regulated Pomc expression by extracellular acidification. Thus, S100β-positive dendritic-like cells can sense an increase in extracellular protons via GPR68 and respond by the production of IL-6 in order to suppress the up-regulation of Pomc expression.
McGuire, P.G.; Rangasamy, S.; Maestas, J.; Das, A.
2011-01-01
Objective The mechanisms that regulate the physical interaction of pericytes and endothelial cells and the effects of these interactions on interendothelial cell junctions are not well understood. We determined the extent to which vascular pericytes could regulate pericyte-endothelial adhesion and the consequences that this disruption might have on the function of the endothelial barrier. Methods and Results Human retinal microvascular endothelial cells were co-cultured with pericytes, and the effect on the monolayer resistance of endothelial cells and expression of the cell junction molecules N-cadherin and VE-cadherin were measured. The molecules responsible for the effect of pericytes or pericyte conditioned media on the endothelial resistance and cell junction molecules were further analyzed. Our results indicate that pericytes increase the barrier properties of endothelial cell monolayers. This barrier function is maintained through the secretion of pericyte-derived sphingosine 1-phosphate (S1P). S1P aids in maintenance of microvascular stability by up-regulating the expression of N-cadherin and VE-cadherin, and down-regulating the expression of angiopoietin 2. Conclusion Under normal circumstances, the retinal vascular pericytes maintain pericyte-endothelial contacts and vascular barrier function through the secretion of S1P. Alteration of pericyte-derived S1P production may be an important mechanism in the development of diseases characterized by vascular dysfunction and increased permeability. PMID:21940944
Lima-Fernandes, Evelyne; Enslen, Hervé; Camand, Emeline; Kotelevets, Larissa; Boularan, Cédric; Achour, Lamia; Benmerah, Alexandre; Gibson, Lucien C D; Baillie, George S; Pitcher, Julie A; Chastre, Eric; Etienne-Manneville, Sandrine; Marullo, Stefano; Scott, Mark G H
2011-01-01
The tumour suppressor PTEN (phosphatase and tensin deleted on chromosome 10) regulates major cellular functions via lipid phosphatase-dependent and -independent mechanisms. Despite its fundamental pathophysiological importance, how PTEN's cellular activity is regulated has only been partially elucidated. We report that the scaffolding proteins β-arrestins (β-arrs) are important regulators of PTEN. Downstream of receptor-activated RhoA/ROCK signalling, β-arrs activate the lipid phosphatase activity of PTEN to negatively regulate Akt and cell proliferation. In contrast, following wound-induced RhoA activation, β-arrs inhibit the lipid phosphatase-independent anti-migratory effects of PTEN. β-arrs can thus differentially control distinct functional outputs of PTEN important for cell proliferation and migration. PMID:21642958
In TCR-Stimulated T-cells, N-ras Regulates Specific Genes and Signal Transduction Pathways
Lynch, Stephen J.; Zavadil, Jiri; Pellicer, Angel
2013-01-01
It has been recently shown that N-ras plays a preferential role in immune cell development and function; specifically: N-ras, but not H-ras or K-ras, could be activated at and signal from the Golgi membrane of immune cells following a low level T-cell receptor stimulus. The goal of our studies was to test the hypothesis that N-ras and H-ras played distinct roles in immune cells at the level of the transcriptome. First, we showed via mRNA expression profiling that there were over four hundred genes that were uniquely differentially regulated either by N-ras or H-ras, which provided strong evidence in favor of the hypothesis that N-ras and H-ras have distinct functions in immune cells. We next characterized the genes that were differentially regulated by N-ras in T cells following a low-level T-cell receptor stimulus. Of the large pool of candidate genes that were differentially regulated by N-ras downstream of TCR ligation, four genes were verified in qRT-PCR-based validation experiments (Dntt, Slc9a6, Chst1, and Lars2). Finally, although there was little overlap between individual genes that were regulated by N-ras in unstimulated thymocytes and stimulated CD4+ T-cells, there was a nearly complete correspondence between the signaling pathways that were regulated by N-ras in these two immune cell types. PMID:23755101
Leptin Metabolically Licenses T Cells for Activation to Link Nutrition and Immunity
Saucillo, Donte C.; Gerriets, Valerie A.; Sheng, John; Rathmell, Jeffrey C.; MacIver, Nancie J.
2013-01-01
Immune responses are highly energy dependent processes. Activated T cells increase glucose uptake and aerobic glycolysis to survive and function. Malnutrition and starvation limit nutrients and are associated with immune deficiency and increased susceptibility to infection. While it is clear that immunity is suppressed in times of nutrient stress, mechanisms that link systemic nutrition to T cell function are poorly understood. We show here that fasting leads to persistent defects in T cell activation and metabolism, as T cells from fasted animals had low glucose uptake and decreased ability to produce inflammatory cytokines, even when stimulated in nutrient-rich media. To explore the mechanism of this long-lasting T cell metabolic defect, we examined leptin, an adipokine reduced in fasting that regulates systemic metabolism and promotes effector T cell function. We show leptin is essential for activated T cells to upregulate glucose uptake and metabolism. This effect was cell-intrinsic and specific to activated effector T cells, as naïve T cells and Treg did not require leptin for metabolic regulation. Importantly, either leptin addition to cultured T cells from fasted animals or leptin injections to fasting animals was sufficient to rescue both T cell metabolic and functional defects. Leptin-mediated metabolic regulation was critical, as transgenic expression of the glucose transporter Glut1 rescued cytokine production of T cells from fasted mice. Together, these data demonstrate that induction of T cell metabolism upon activation is dependent on systemic nutritional status, and leptin links adipocytes to metabolically license activated T cells in states of nutritional sufficiency. PMID:24273001
Toll like Receptor 2 engagement on CD4+ T cells promotes TH9 differentiation and function.
Karim, Ahmad Faisal; Reba, Scott M; Li, Qing; Boom, W Henry; Rojas, Roxana E
2017-09-01
We have recently demonstrated that mycobacterial ligands engage Toll like receptor 2 (TLR2) on CD4 + T cells and up-regulate T-cell receptor (TCR) triggered Th1 responses in vitro and in vivo. To better understand the role of T-cell expressed TLR2 on CD4 + T-cell differentiation and function, we conducted a gene expression analysis of murine naïve CD4 + T-cells stimulated in the presence or absence of TLR2 co-stimulation. Unexpectedly, naïve CD4 + T-cells co-stimulated via TLR2 showed a significant up-regulation of Il9 mRNA compared to cells co-stimulated via CD28. Under TH9 differentiation, we observed up-regulation of TH9 differentiation, evidenced by increases in both percent of IL-9 secreting cells and IL-9 in culture supernatants in the presence of TLR2 agonist both in polyclonal and Ag85B cognate peptide specific stimulations. Under non-polarizing conditions, TLR2 engagement on CD4 + T-cells had minimal effect on IL-9 secretion and TH9 differentiation, likely due to a prominent effect of TLR2 signaling on IFN-γ secretion and TH1 differentiation. We also report that, TLR2 signaling in CD4 + T cells increased expression of transcription factors BATF and PU.1, known to positively regulate TH9 differentiation. These results reveal a novel role of T-cell expressed TLR2 in enhancing the differentiation and function of TH9 T cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
de Luis Balaguer, Maria Angels; Fisher, Adam P.; Clark, Natalie M.; Fernandez-Espinosa, Maria Guadalupe; Möller, Barbara K.; Weijers, Dolf; Williams, Cranos; Lorenzo, Oscar; Sozzani, Rosangela
2017-01-01
Identifying the transcription factors (TFs) and associated networks involved in stem cell regulation is essential for understanding the initiation and growth of plant tissues and organs. Although many TFs have been shown to have a role in the Arabidopsis root stem cells, a comprehensive view of the transcriptional signature of the stem cells is lacking. In this work, we used spatial and temporal transcriptomic data to predict interactions among the genes involved in stem cell regulation. To accomplish this, we transcriptionally profiled several stem cell populations and developed a gene regulatory network inference algorithm that combines clustering with dynamic Bayesian network inference. We leveraged the topology of our networks to infer potential major regulators. Specifically, through mathematical modeling and experimental validation, we identified PERIANTHIA (PAN) as an important molecular regulator of quiescent center function. The results presented in this work show that our combination of molecular biology, computational biology, and mathematical modeling is an efficient approach to identify candidate factors that function in the stem cells. PMID:28827319
Tim-3 and PD-1 regulate CD8+ T cell function to maintain early pregnancy in mice
XU, Yuan-Yuan; WANG, Song-Cun; LIN, Yi-Kong; LI, Da-Jin; DU, Mei-Rong
2017-01-01
During pregnancy, CD8+ T cells are important regulators in the balance of fetal tolerance and antiviral immunity. T-cell immunoglobulin mucin-3 (Tim-3) and programmed cell death-1 (PD-1) are well-recognized negative co-stimulatory molecules involved in viral persistence and tumor metastasis. Here, we demonstrate that CD8+ T cells co-expressing Tim-3 and PD-1 were down-regulated in the deciduae of female mice in abortion-prone matings compared with normal pregnant mice. In addition to their reduced numbers, the Tim-3+PD-1+CD8+ T cells produced lower levels of the anti-inflammatory cytokines interleukin (IL)-4 and IL-10, as well as a higher level of the pro-inflammatory cytokine interferon (IFN)-γ, relative to those from normal pregnancy. Furthermore, normal pregnant CBA/J females challenged with Tim-3- and/or PD-1-blocking antibodies were more susceptible to fetal resorption. These findings indicate that Tim-3 and PD-1 pathways play critical roles in regulating CD8+ T cell function and maintaining normal pregnancy. PMID:28331165
Benitez, Cecil M.; Qu, Kun; Sugiyama, Takuya; Pauerstein, Philip T.; Liu, Yinghua; Tsai, Jennifer; Gu, Xueying; Ghodasara, Amar; Arda, H. Efsun; Zhang, Jiajing; Dekker, Joseph D.; Tucker, Haley O.; Chang, Howard Y.; Kim, Seung K.
2014-01-01
The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus. PMID:25330008
Saia, Marco; Termanini, Alberto; Rizzi, Nicoletta; Mazza, Massimiliano; Barbieri, Elisa; Valli, Debora; Ciana, Paolo; Gruszka, Alicja M.; Alcalay, Myriam
2016-01-01
The AML1/ETO fusion protein found in acute myeloid leukemias functions as a transcriptional regulator by recruiting co-repressor complexes to its DNA binding site. In order to extend the understanding of its role in preleukemia, we expressed AML1/ETO in a murine immortalized pluripotent hematopoietic stem/progenitor cell line, EML C1, and found that genes involved in functions such as cell-to-cell adhesion and cell motility were among the most significantly regulated as determined by RNA sequencing. In functional assays, AML1/ETO-expressing cells showed a decrease in adhesion to stromal cells, an increase of cell migration rate in vitro, and displayed an impairment in homing and engraftment in vivo upon transplantation into recipient mice. Our results suggest that AML1/ETO expression determines a more mobile and less adherent phenotype in preleukemic cells, therefore altering the interaction with the hematopoietic niche, potentially leading to the migration across the bone marrow barrier and to disease progression. PMID:27713544
PTEN: Multiple Functions in Human Malignant Tumors.
Milella, Michele; Falcone, Italia; Conciatori, Fabiana; Cesta Incani, Ursula; Del Curatolo, Anais; Inzerilli, Nicola; Nuzzo, Carmen M A; Vaccaro, Vanja; Vari, Sabrina; Cognetti, Francesco; Ciuffreda, Ludovica
2015-01-01
PTEN is the most important negative regulator of the PI3K signaling pathway. In addition to its canonical, PI3K inhibition-dependent functions, PTEN can also function as a tumor suppressor in a PI3K-independent manner. Indeed, the PTEN network regulates a broad spectrum of biological functions, modulating the flow of information from membrane-bound growth factor receptors to nuclear transcription factors, occurring in concert with other tumor suppressors and oncogenic signaling pathways. PTEN acts through its lipid and protein phosphatase activity and other non-enzymatic mechanisms. Studies conducted over the past 10 years have expanded our understanding of the biological role of PTEN, showing that in addition to its ability to regulate proliferation and cell survival, it also plays an intriguing role in regulating genomic stability, cell migration, stem cell self-renewal, and tumor microenvironment. Changes in PTEN protein levels, location, and enzymatic activity through various molecular mechanisms can generate a continuum of functional PTEN levels in inherited syndromes, sporadic cancers, and other diseases. PTEN activity can indeed, be modulated by mutations, epigenetic silencing, transcriptional repression, aberrant protein localization, and post-translational modifications. This review will discuss our current understanding of the biological role of PTEN, how PTEN expression and activity are regulated, and the consequences of PTEN dysregulation in human malignant tumors.
PTEN: Multiple Functions in Human Malignant Tumors
Milella, Michele; Falcone, Italia; Conciatori, Fabiana; Cesta Incani, Ursula; Del Curatolo, Anais; Inzerilli, Nicola; Nuzzo, Carmen M. A.; Vaccaro, Vanja; Vari, Sabrina; Cognetti, Francesco; Ciuffreda, Ludovica
2015-01-01
PTEN is the most important negative regulator of the PI3K signaling pathway. In addition to its canonical, PI3K inhibition-dependent functions, PTEN can also function as a tumor suppressor in a PI3K-independent manner. Indeed, the PTEN network regulates a broad spectrum of biological functions, modulating the flow of information from membrane-bound growth factor receptors to nuclear transcription factors, occurring in concert with other tumor suppressors and oncogenic signaling pathways. PTEN acts through its lipid and protein phosphatase activity and other non-enzymatic mechanisms. Studies conducted over the past 10 years have expanded our understanding of the biological role of PTEN, showing that in addition to its ability to regulate proliferation and cell survival, it also plays an intriguing role in regulating genomic stability, cell migration, stem cell self-renewal, and tumor microenvironment. Changes in PTEN protein levels, location, and enzymatic activity through various molecular mechanisms can generate a continuum of functional PTEN levels in inherited syndromes, sporadic cancers, and other diseases. PTEN activity can indeed, be modulated by mutations, epigenetic silencing, transcriptional repression, aberrant protein localization, and post-translational modifications. This review will discuss our current understanding of the biological role of PTEN, how PTEN expression and activity are regulated, and the consequences of PTEN dysregulation in human malignant tumors. PMID:25763354
Hayakawa-Yano, Yoshika; Suyama, Satoshi; Nogami, Masahiro; Yugami, Masato; Koya, Ikuko; Furukawa, Takako; Zhou, Li; Abe, Manabu; Sakimura, Kenji; Takebayashi, Hirohide; Nakanishi, Atsushi; Okano, Hideyuki; Yano, Masato
2017-09-15
Cell type-specific transcriptomes are enabled by the action of multiple regulators, which are frequently expressed within restricted tissue regions. In the present study, we identify one such regulator, Quaking 5 (Qki5), as an RNA-binding protein (RNABP) that is expressed in early embryonic neural stem cells and subsequently down-regulated during neurogenesis. mRNA sequencing analysis in neural stem cell culture indicates that Qki proteins play supporting roles in the neural stem cell transcriptome and various forms of mRNA processing that may result from regionally restricted expression and subcellular localization. Also, our in utero electroporation gain-of-function study suggests that the nuclear-type Qki isoform Qki5 supports the neural stem cell state. We next performed in vivo transcriptome-wide protein-RNA interaction mapping to search for direct targets of Qki5 and elucidate how Qki5 regulates neural stem cell function. Combined with our transcriptome analysis, this mapping analysis yielded a bona fide map of Qki5-RNA interaction at single-nucleotide resolution, the identification of 892 Qki5 direct target genes, and an accurate Qki5-dependent alternative splicing rule in the developing brain. Last, our target gene list provides the first compelling evidence that Qki5 is associated with specific biological events; namely, cell-cell adhesion. This prediction was confirmed by histological analysis of mice in which Qki proteins were genetically ablated, which revealed disruption of the apical surface of the lateral wall in the developing brain. These data collectively indicate that Qki5 regulates communication between neural stem cells by mediating numerous RNA processing events and suggest new links between splicing regulation and neural stem cell states. © 2017 Hayakawa-Yano et al.; Published by Cold Spring Harbor Laboratory Press.
Gogada, Raghu; Yadav, Neelu; Liu, Junwei; Tang, Shaohua; Zhang, Dianmu; Schneider, Andrea; Seshadri, Athul; Sun, Leimin; Aldaz, C. Marcelo; Tang, Dean G.; Chandra, Dhyan
2013-01-01
Proapoptotic Bcl-2 homology 3-only protein Bim plays an important role in Bax/Bak-mediated cytochrome c release and apoptosis. Here, we provide evidence for a novel prosurvival function of Bim in cancer cells. Bim was constitutively overexpressed in multiple prostate and breast cancer cells as well as in primary tumor cells. Quantitative real time PCR analysis showed that Bim was transcriptionally up-regulated. We have identified eight endogenous E2F1-binding sites on the Bim promoter using in silico analysis. Luciferase assay demonstrated that Bim expression was E2F1-dependent as mutation of the E2F1-binding sites on the Bim promoter inhibited luciferase activities. In support, E2F1 silencing led to the loss of Bim expression in cancer cells. Bim primarily localized to mitochondrial and cytoskeleton-associated fractions. Bim silencing or microinjection of anti-Bim antibodies into the cell cytoplasm resulted in cell rounding, detachment, and subsequent apoptosis. We observed up-regulation of prosurvival proteins Bcl-xL and Mcl-1, which sequester Bim in cancer cells. In addition, a phosphorylated form of Bim was also elevated in cancer cells. These findings suggest that the constitutively overexpressed Bim may function as a prosurvival molecule in epithelial cancer cells, and phosphorylation and association with Bcl-xL/Mcl-1 block its proapoptotic functions. PMID:23152504
RAS oncogene-mediated deregulation of the transcriptome: from molecular signature to function.
Schäfer, Reinhold; Sers, Christine
2011-01-01
Transcriptome analysis of cancer cells has developed into a standard procedure to elucidate multiple features of the malignant process and to link gene expression to clinical properties. Gene expression profiling based on microarrays provides essentially correlative information and needs to be transferred to the functional level in order to understand the activity and contribution of individual genes or sets of genes as elements of the gene signature. To date, there exist significant gaps in the functional understanding of gene expression profiles. Moreover, the processes that drive the profound transcriptional alterations that characterize cancer cells remain mainly elusive. We have used pathway-restricted gene expression profiles derived from RAS oncogene-transformed cells and from RAS-expressing cancer cells to identify regulators downstream of the MAPK pathway.We describe the role of epigenetic regulation exemplified by the control of several immune genes in generic cell lines and colorectal cancer cells, particularly the functional interaction between signaling and DNA methylation. Moreover, we assess the role of the architectural transcription factor high mobility AT-hook 2 (HMGA2) as a regulator of the RAS-responsive transcriptome in ovarian epithelial cells. Finally, we describe an integrated approach combining pathway interference in colorectal cancer cells, gene expression profiling and computational analysis of regulatory elements of deregulated target genes. This strategy resulted in the identification of Y-box binding protein 1 (YBX1) as a regulator of MAPK-dependent proliferation and gene expression. The implications for a therapeutic application of HMGA2 gene silencing and the role of YBX1 as a prognostic factor are discussed.
Minchenko, Dmytro O; Kharkova, A P; Halkin, O V; Karbovskyi, L L; Minchenko, O H
2016-04-01
The aim of the present study was to investigate the effect of hypoxia on the expression of genes encoding insulin-like growth factors (IGF1 and IGF2), their receptor (IGF1R), binding protein-4 (IGFBP4), and stanniocalcin 2 (STC2) in U87 glioma cells in relation to inhibition of endoplasmic reticulum stress signaling mediated by IRE1 (inositol requiring enzyme 1) for evaluation of their possible significance in the control of tumor growth. The expression of IGF1, IGF2, IGF1R, IGFBP4, and STC2 genes in U87 glioma cells transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia was studied by qPCR. The expression of IGF1 and IGF2 genes is down-regulated in glioma cells without IRE1 signaling enzyme function in comparison with the control cells. At the same time, the expression of IGF1R, IGFBP4, and STC2 genes was up-regulated in glioma cells upon inhibition of IRE1, with more significant changes for IGFBP4 and STC2 genes. We also showed that hypoxia does not change significantly the expression of IGF1, IGF2, and IGF1R genes but up-regulated IGFBP4 and STC2 genes expression in control glioma cells. Moreover, the inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 in glioma cells does not change significantly the effect of hypoxia on the expression of IGF1, IGF1R, and IGFBP4 genes but introduces sensitivity of IGF2 gene to hypoxic condition. Thus, the expression of IGF2 gene is resistant to hypoxia only in control glioma cells and significantly down-regulated in cells without functional activity of IRE1 signaling enzyme, which is central mediator of the unfolded protein response and an important component of the tumor growth as well as metabolic diseases. Results of this study demonstrate that the expression of IGF1 and IGF1R genes is resistant to hypoxic condition both in control U87 glioma cells and cells without IRE1 signaling enzyme function. However, hypoxia significantly up-regulates the expression of IGFBP4 gene independently on the inhibition of IRE1 enzyme. These data show that proteins encoded by these genes are resistant to hypoxia except IGFBP4 and participate in the regulation of metabolic and proliferative processes through IRE1 signaling.
Modulation of Androgen Receptor Signaling in Hormonal Therapy-Resistant Prostate Cancer Cell Lines
Marques, Rute B.; Dits, Natasja F.; Erkens-Schulze, Sigrun; van IJcken, Wilfred F. J.; van Weerden, Wytske M.; Jenster, Guido
2011-01-01
Background Prostate epithelial cells depend on androgens for survival and function. In (early) prostate cancer (PCa) androgens also regulate tumor growth, which is exploited by hormonal therapies in metastatic disease. The aim of the present study was to characterize the androgen receptor (AR) response in hormonal therapy-resistant PC346 cells and identify potential disease markers. Methodology/Principal Findings Human 19K oligoarrays were used to establish the androgen-regulated expression profile of androgen-responsive PC346C cells and its derivative therapy-resistant sublines: PC346DCC (vestigial AR levels), PC346Flu1 (AR overexpression) and PC346Flu2 (T877A AR mutation). In total, 107 transcripts were differentially-expressed in PC346C and derivatives after R1881 or hydroxyflutamide stimulations. The AR-regulated expression profiles reflected the AR modifications of respective therapy-resistant sublines: AR overexpression resulted in stronger and broader transcriptional response to R1881 stimulation, AR down-regulation correlated with deficient response of AR-target genes and the T877A mutation resulted in transcriptional response to both R1881 and hydroxyflutamide. This AR-target signature was linked to multiple publicly available cell line and tumor derived PCa databases, revealing that distinct functional clusters were differentially modulated during PCa progression. Differentiation and secretory functions were up-regulated in primary PCa but repressed in metastasis, whereas proliferation, cytoskeletal remodeling and adhesion were overexpressed in metastasis. Finally, the androgen-regulated genes ENDOD1, MCCC2 and ACSL3 were selected as potential disease markers for RT-PCR quantification in a distinct set of human prostate specimens. ENDOD1 and ACSL3 showed down-regulation in high-grade and metastatic PCa, while MCCC2 was overexpressed in low-grade PCa. Conclusions/Significance AR modifications altered the transcriptional response to (anti)androgens in therapy-resistant cells. Furthermore, selective down-regulation of genes involved in differentiation and up-regulation of genes promoting proliferation and invasion suggest a disturbed balance between the growth and differentiation functions of the AR pathway during PCa progression. These findings may have implications in the current treatment and development of novel therapeutical approaches for metastatic PCa. PMID:21829708
The GIT–PIX complexes regulate the chemotactic response of rat basophilic leukaemia cells
Gavina, Manuela; Za, Lorena; Molteni, Raffaella; Pardi, Ruggero; Curtis, Ivan de
2009-01-01
Background information. Cell motility entails the reorganization of the cytoskeleton and membrane trafficking for effective protrusion. The GIT–PIX protein complexes are involved in the regulation of cell motility and adhesion and in the endocytic traffic of members of the family of G-protein-coupled receptors. We have investigated the function of the endogenous GIT complexes in the regulation of cell motility stimulated by fMLP (formyl-Met-Leu-Phe) peptide, in a rat basophilic leukaemia RBL-2H3 cell line stably expressing an HA (haemagglutinin)-tagged receptor for the fMLP peptide. Results. Our analysis shows that RBL cells stably transfected with the chemoattractant receptor expressed both GIT1–PIX and GIT2–PIX endogenous complexes. We have used silencing of the different members of the complex by small interfering RNAs to study the effects on a number of events linked to agonist-induced cell migration. We found that cell adhesion was not affected by depletion of any of the proteins of the GIT complex, whereas agonist-enhanced cell spreading was inhibited. Analysis of agonist-stimulated haptotactic cell migration indicated a specific positive effect of GIT1 depletion on trans-well migration. The internalization of the formyl-peptide receptor was also inhibited by depletion of GIT1 and GIT2. The effects of the GIT complexes on trafficking of the receptors was confirmed by an antibody-enhanced agonist-induced internalization assay, showing that depletion of PIX, GIT1 or GIT2 protein caused decreased perinuclear accumulation of internalized receptors. Conclusions. Our results show that endogenous GIT complexes are involved in the regulation of chemoattractant-induced cell motility and receptor trafficking, and support previous findings indicating an important function of the GIT complexes in the regulation of different G-protein-coupled receptors. Our results also indicate that endogenous GIT1 and GIT2 regulate distinct subsets of agonist-induced responses and suggest a possible functional link between the control of receptor trafficking and the regulation of cell motility by GIT proteins. PMID:19912111
Nrf2 regulates cellular behaviors and Notch signaling in oral squamous cell carcinoma cells.
Fan, Hong; Paiboonrungruan, Chorlada; Zhang, Xinyan; Prigge, Justin R; Schmidt, Edward E; Sun, Zheng; Chen, Xiaoxin
2017-11-04
Oxidative stress is known to play a pivotal role in the development of oral squamous cell carcinoma (OSCC). We have demonstrated that activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway has chemopreventive effects against oxidative stress-associated OSCC. However, Nrf2 have dual roles in cancer development; while it prevents carcinogenesis of normal cells, hyperactive Nrf2 also promotes the survival of cancer cells. This study is aimed to understand the function of Nrf2 in regulating cellular behaviors of OSCC cells, and the potential mechanisms through which Nrf2 facilitates OSCC. We established the Nrf2-overexpressing and Nrf2-knockdown OSCC cell lines, and examined the function of Nrf2 in regulating cell proliferation, migration, invasion, cell cycle and colony formation. Our data showed that Nrf2 overexpression promoted cancer phenotypes in OSCC cells, whereas Nrf2 silencing inhibited these phenotypes. In addition, Nrf2 positively regulated Notch signaling pathway in OSCC cells in vitro. Consistent with this observation, Nrf2 activation in Keap1 -/- mice resulted in not only hyperproliferation of squamous epithelial cells in mouse tongue as evidenced by increased expression of PCNA, but also activation of Notch signaling in these cells as evidenced by increased expression of NICD1 and Hes1. In conclusion, Nrf2 regulates cancer behaviors and Notch signaling in OSCC cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Rab5-regulated endocytosis plays a crucial role in apical extrusion of transformed cells.
Saitoh, Sayaka; Maruyama, Takeshi; Yako, Yuta; Kajita, Mihoko; Fujioka, Yoichiro; Ohba, Yusuke; Kasai, Nobuhiro; Sugama, Natsu; Kon, Shunsuke; Ishikawa, Susumu; Hayashi, Takashi; Yamazaki, Tomohiro; Tada, Masazumi; Fujita, Yasuyuki
2017-03-21
Newly emerging transformed cells are often eliminated from epithelial tissues. Recent studies have revealed that this cancer-preventive process involves the interaction with the surrounding normal epithelial cells; however, the molecular mechanisms underlying this phenomenon remain largely unknown. In this study, using mammalian cell culture and zebrafish embryo systems, we have elucidated the functional involvement of endocytosis in the elimination of RasV12-transformed cells. First, we show that Rab5, a crucial regulator of endocytosis, is accumulated in RasV12-transformed cells that are surrounded by normal epithelial cells, which is accompanied by up-regulation of clathrin-dependent endocytosis. Addition of chlorpromazine or coexpression of a dominant-negative mutant of Rab5 suppresses apical extrusion of RasV12 cells from the epithelium. We also show in zebrafish embryos that Rab5 plays an important role in the elimination of transformed cells from the enveloping layer epithelium. In addition, Rab5-mediated endocytosis of E-cadherin is enhanced at the boundary between normal and RasV12 cells. Rab5 functions upstream of epithelial protein lost in neoplasm (EPLIN), which plays a positive role in apical extrusion of RasV12 cells by regulating protein kinase A. Furthermore, we have revealed that epithelial defense against cancer (EDAC) from normal epithelial cells substantially impacts on Rab5 accumulation in the neighboring transformed cells. This report demonstrates that Rab5-mediated endocytosis is a crucial regulator for the competitive interaction between normal and transformed epithelial cells in mammals.
Vasanthakumar, Ajithkumar; Kallies, Axel
2017-11-03
Cytokines play an integral role in shaping innate and adaptive immune responses. Members of the interleukin (IL)-1 family regulate a plethora of immune-cell-mediated processes, which include pathogen defense and tissue homeostasis. Notably, the IL-1 family cytokine IL-33 promotes adaptive and innate type 2 immune responses, confers viral protection and facilitates glucose metabolism and tissue repair. At the cellular level, IL-33 stimulates differentiation, maintenance, and function of various immune cell types, including regulatory T cells, effector CD4 + and CD8 + T cells, macrophages, and type 2 innate lymphoid cells (ILC2s). Other IL-1 family members, such as IL-1β and IL-18 promote type 1 responses, while IL-37 limits immune activation. Although IL-1 cytokines play critical roles in immunity and tissue repair, their deregulated expression is often linked to autoimmune and inflammatory diseases. Therefore, IL-1 cytokines are regulated tightly by posttranscriptional mechanisms and decoy receptors. In this review, we discuss the biology and function of IL-1 family cytokines, with a specific focus on regulation and function of IL-33 in immune and tissue homeostasis. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
Coll, N S; Smidler, A; Puigvert, M; Popa, C; Valls, M; Dangl, J L
2014-01-01
Autophagy is a major nutrient recycling mechanism in plants. However, its functional connection with programmed cell death (PCD) is a topic of active debate and remains not well understood. Our previous studies established the plant metacaspase AtMC1 as a positive regulator of pathogen-triggered PCD. Here, we explored the linkage between plant autophagy and AtMC1 function in the context of pathogen-triggered PCD and aging. We observed that autophagy acts as a positive regulator of pathogen-triggered PCD in a parallel pathway to AtMC1. In addition, we unveiled an additional, pro-survival homeostatic function of AtMC1 in aging plants that acts in parallel to a similar pro-survival function of autophagy. This novel pro-survival role of AtMC1 may be functionally related to its prodomain-mediated aggregate localization and potential clearance, in agreement with recent findings using the single budding yeast metacaspase YCA1. We propose a unifying model whereby autophagy and AtMC1 are part of parallel pathways, both positively regulating HR cell death in young plants, when these functions are not masked by the cumulative stresses of aging, and negatively regulating senescence in older plants. PMID:24786830
Spatial epigenetics: linking nuclear structure and function in higher eukaryotes.
Jackson, Dean A
2010-09-20
Eukaryotic cells are defined by the genetic information that is stored in their DNA. To function, this genetic information must be decoded. In doing this, the information encoded in DNA is copied first into RNA, during RNA transcription. Primary RNA transcripts are generated within transcription factories, where they are also processed into mature mRNAs, which then pass to the cytoplasm. In the cytoplasm these mRNAs can finally be translated into protein in order to express the genetic information as a functional product. With only rare exceptions, the cells of an individual multicellular eukaryote contain identical genetic information. However, as different genes must be expressed in different cell types to define the structure and function of individual tissues, it is clear that mechanisms must have evolved to regulate gene expression. In higher eukaryotes, mechanisms that regulate the interaction of DNA with the sites where nuclear functions are performed provide one such layer of regulation. In this chapter, I evaluate how a detailed understanding of nuclear structure and chromatin dynamics are beginning to reveal how spatial mechanisms link chromatin structure and function. As these mechanisms operate to modulate the genetic information in DNA, the regulation of chromatin function by nuclear architecture defines the concept of 'spatial epigenetics'.
Cao, Zubing; Carey, Timothy S.; Ganguly, Avishek; Wilson, Catherine A.; Paul, Soumen; Knott, Jason G.
2015-01-01
Cell fate decisions are fundamental to the development of multicellular organisms. In mammals the first cell fate decision involves segregation of the pluripotent inner cell mass and the trophectoderm, a process regulated by cell polarity proteins, HIPPO signaling and lineage-specific transcription factors such as CDX2. However, the regulatory mechanisms that operate upstream to specify the trophectoderm lineage have not been established. Here we report that transcription factor AP-2γ (TFAP2C) functions as a novel upstream regulator of Cdx2 expression and position-dependent HIPPO signaling in mice. Loss- and gain-of-function studies and promoter analysis revealed that TFAP2C binding to an intronic enhancer is required for activation of Cdx2 expression during early development. During the 8-cell to morula transition TFAP2C potentiates cell polarity to suppress HIPPO signaling in the outside blastomeres. TFAP2C depletion triggered downregulation of PARD6B, loss of apical cell polarity, disorganization of F-actin, and activation of HIPPO signaling in the outside blastomeres. Rescue experiments using Pard6b mRNA restored cell polarity but only partially corrected position-dependent HIPPO signaling, suggesting that TFAP2C negatively regulates HIPPO signaling via multiple pathways. Several genes involved in regulation of the actin cytoskeleton (including Rock1, Rock2) were downregulated in TFAP2C-depleted embryos. Inhibition of ROCK1 and ROCK2 activity during the 8-cell to morula transition phenocopied TFAP2C knockdown, triggering a loss of position-dependent HIPPO signaling and decrease in Cdx2 expression. Altogether, these results demonstrate that TFAP2C facilitates trophectoderm lineage specification by functioning as a key regulator of Cdx2 transcription, cell polarity and position-dependent HIPPO signaling. PMID:25858457
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Juan; Xin, Beibei; Wang, Hui
Gastrin is absent in most normal adult pancreatic tissues but is highly expressed in pancreatic cancer tissues. Although Gastrin expression was reported to be associated with tumor proliferation in human pancreatic cancer, studies on the relationship between Gastrin and tumor metastasis in pancreatic cancer are rare. In this study, we performed an analysis to determine the effects of Gastrin on modulating the side populations, cell proportion and tumor cell metastatic potential and invasion activity and explored its mechanisms in pancreatic cancer. We indicated that Gastrin and ABCG2 were widely expressed in pancreatic cancer cell lines and overexpressed in cancer tissues.more » Gastrin induced ABCG2 expression, and this effect was mediated by NF-κB activation. Gastrin regulated the SP proportion of BxPC-3 cells via modulating ABCG2 expression. Through the regulation of the functions of NF-κB/ABCG2, Gastrin functionally promoted the migration and invasion in pancreatic cancer cell. The present study indicated that Gastrin induced ABCG2 expression by activating NF-κB and thereby modulated the SP proportion, tumor cell metastatic potential and invasion activity in pancreatic cancer. Gastrin could serve as an effective therapeutic target for the metastasis of pancreatic cancer. - Highlights: • Gastrin induces ABCG2 expression mediated by NF-κB activation. • Gastrin regulates NF-κB's function that binds to the ABCG2 promoter in BxPC-3 cells. • Gastrin promotes the SP proportion in BxPC-3 cells by modulating ABCG2 expression via activation of NF-κB molecule. • Gastrin induces an increase in migration and invasion potential in pancreatic cancer cell by regulating NF-κB/ABCG2 signaling.« less
Coulton, Arthur T.; East, Daniel A.; Galinska-Rakoczy, Agnieszka; Lehman, William; Mulvihill, Daniel P.
2010-01-01
Tropomyosin (Tm) is a conserved dimeric coiled-coil protein, which forms polymers that curl around actin filaments in order to regulate actomyosin function. Acetylation of the Tm N-terminal methionine strengthens end-to-end bonds, which enhances actin binding as well as the ability of Tm to regulate myosin motor activity in both muscle and non-muscle cells. In this study we explore the function of each Tm form within fission yeast cells. Electron microscopy and live cell imaging revealed that acetylated and unacetylated Tm associate with distinct actin structures within the cell, and that each form has a profound effect upon the shape and integrity of the polymeric actin filament. We show that, whereas Tm acetylation is required to regulate the in vivo motility of class II myosins, acetylated Tm had no effect on the motility of class I and V myosins. These findings illustrate a novel Tm-acetylation-state-dependent mechanism for regulating specific actomyosin cytoskeletal interactions. PMID:20807799
Yang, Rui; Lirussi, Dario; Thornton, Tina M; Jelley-Gibbs, Dawn M; Diehl, Sean A; Case, Laure K; Madesh, Muniswamy; Taatjes, Douglas J; Teuscher, Cory; Haynes, Laura; Rincón, Mercedes
2015-01-01
IL-6 plays an important role in determining the fate of effector CD4 cells and the cytokines that these cells produce. Here we identify a novel molecular mechanism by which IL-6 regulates CD4 cell effector function. We show that IL-6-dependent signal facilitates the formation of mitochondrial respiratory chain supercomplexes to sustain high mitochondrial membrane potential late during activation of CD4 cells. Mitochondrial hyperpolarization caused by IL-6 is uncoupled from the production of ATP by oxidative phosphorylation. However, it is a mechanism to raise the levels of mitochondrial Ca2+ late during activation of CD4 cells. Increased levels of mitochondrial Ca2+ in the presence of IL-6 are used to prolong Il4 and Il21 expression in effector CD4 cells. Thus, the effect of IL-6 on mitochondrial membrane potential and mitochondrial Ca2+ is an alternative pathway by which IL-6 regulates effector function of CD4 cells and it could contribute to the pathogenesis of inflammatory diseases. DOI: http://dx.doi.org/10.7554/eLife.06376.001 PMID:25974216
Zhao, Bin; Wei, Xiaomu; Li, Weiquan; Udan, Ryan S.; Yang, Qian; Kim, Joungmok; Xie, Joe; Ikenoue, Tsuneo; Yu, Jindan; Li, Li; Zheng, Pan; Ye, Keqiang; Chinnaiyan, Arul; Halder, Georg; Lai, Zhi-Chun; Guan, Kun-Liang
2007-01-01
The Hippo pathway plays a key role in organ size control by regulating cell proliferation and apoptosis in Drosophila. Although recent genetic studies have shown that the Hippo pathway is regulated by the NF2 and Fat tumor suppressors, the physiological regulations of this pathway are unknown. Here we show that in mammalian cells, the transcription coactivator YAP (Yes-associated protein), is inhibited by cell density via the Hippo pathway. Phosphorylation by the Lats tumor suppressor kinase leads to cytoplasmic translocation and inactivation of the YAP oncoprotein. Furthermore, attenuation of this phosphorylation of YAP or Yorkie (Yki), the Drosophila homolog of YAP, potentiates their growth-promoting function in vivo. Moreover, YAP overexpression regulates gene expression in a manner opposite to cell density, and is able to overcome cell contact inhibition. Inhibition of YAP function restores contact inhibition in a human cancer cell line bearing deletion of Salvador (Sav), a Hippo pathway component. Interestingly, we observed that YAP protein is elevated and nuclear localized in some human liver and prostate cancers. Our observations demonstrate that YAP plays a key role in the Hippo pathway to control cell proliferation in response to cell contact. PMID:17974916
Development and Function of the Drosophila Tracheal System.
Hayashi, Shigeo; Kondo, Takefumi
2018-06-01
The tracheal system of insects is a network of epithelial tubules that functions as a respiratory organ to supply oxygen to various target organs. Target-derived signaling inputs regulate stereotyped modes of cell specification, branching morphogenesis, and collective cell migration in the embryonic stage. In the postembryonic stages, the same set of signaling pathways controls highly plastic regulation of size increase and pattern elaboration during larval stages, and cell proliferation and reprograming during metamorphosis. Tracheal tube morphogenesis is also regulated by physicochemical interaction of the cell and apical extracellular matrix to regulate optimal geometry suitable for air flow. The trachea system senses both the external oxygen level and the metabolic activity of internal organs, and helps organismal adaptation to changes in environmental oxygen level. Cellular and molecular mechanisms underlying the high plasticity of tracheal development and physiology uncovered through research on Drosophila are discussed. Copyright © 2018 by the Genetics Society of America.
Identification of Akt Interaction Protein PHF20/TZP That Transcriptionally Regulates p53*
Park, Sungman; Kim, Donghwa; Dan, Han C.; Chen, Huihua; Testa, Joseph R.; Cheng, Jin Q.
2012-01-01
Akt regulates a diverse array of cellular functions, including cell survival, proliferation, differentiation, and metabolism. Although a number of molecules have been identified as upstream regulators and downstream targets of Akt, the mechanisms by which Akt regulates these cellular processes remain elusive. Here, we demonstrate that a novel transcription factor, PHF20/TZP (referring to Tudor and zinc finger domain containing protein), binds to Akt and induces p53 expression at the transcription level. Knockdown of PHF20 significantly reduces p53. PHF20 inhibits cell growth, DNA synthesis, and cell survival. Akt phosphorylates PHF20 at Ser291 in vitro and in vivo, which results in its translocation from the nucleus to the cytoplasm and attenuation of PHF20 function. These data indicate that PHF20 is a substrate of Akt and plays a role in Akt cell survival/growth signaling. PMID:22334668
Mikhaylova, Olga; Stratton, Yiwen; Hall, Daniel; Kellner, Emily; Ehmer, Birgit; Drew, Angela F.; Gallo, Catherine A.; Plas, David R.; Biesiada, Jacek; Meller, Jarek; Czyzyk-Krzeska, Maria F.
2012-01-01
Summary The von Hippel-Lindau tumor-suppressor gene (VHL) is lost in most clear cell renal cell carcinomas (ccRCC). Here, using human ccRCC specimens, VHL-deficient cells, and xenograft models, we show that miR-204 is a VHL-regulated tumor suppressor acting by inhibiting macroautophagy, with MAP1LC3B (LC3B) as a direct and functional target. Importantly, higher tumor grade of human ccRCC was correlated with a concomitant decrease in miR-204 and increase in LC3B levels, indicating that LC3B-mediated macroautophagy is necessary for RCC progression. VHL, in addition to inducing endogenous miR-204, triggered the expression of LC3C, an HIF-regulated LC3B paralog, that suppressed tumor growth. These data reveal a function of VHL as a tumor suppressing regulator of autophagic programs. PMID:22516261
Liu, Suxuan; Xiong, Xinyu; Zhao, Xianxian; Yang, Xiaofeng; Wang, Hong
2015-05-09
Eukaryotic cell membrane dynamics change in curvature during physiological and pathological processes. In the past ten years, a novel protein family, Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain proteins, has been identified to be the most important coordinators in membrane curvature regulation. The F-BAR domain family is a member of the Bin/Amphiphysin/Rvs (BAR) domain superfamily that is associated with dynamic changes in cell membrane. However, the molecular basis in membrane structure regulation and the biological functions of F-BAR protein are unclear. The pathophysiological role of F-BAR protein is unknown. This review summarizes the current understanding of structure and function in the BAR domain superfamily, classifies F-BAR family proteins into nine subfamilies based on domain structure, and characterizes F-BAR protein structure, domain interaction, and functional relevance. In general, F-BAR protein binds to cell membrane via F-BAR domain association with membrane phospholipids and initiates membrane curvature and scission via Src homology-3 (SH3) domain interaction with its partner proteins. This process causes membrane dynamic changes and leads to seven important cellular biological functions, which include endocytosis, phagocytosis, filopodium, lamellipodium, cytokinesis, adhesion, and podosome formation, via distinct signaling pathways determined by specific domain-binding partners. These cellular functions play important roles in many physiological and pathophysiological processes. We further summarize F-BAR protein expression and mutation changes observed in various diseases and developmental disorders. Considering the structure feature and functional implication of F-BAR proteins, we anticipate that F-BAR proteins modulate physiological and pathophysiological processes via transferring extracellular materials, regulating cell trafficking and mobility, presenting antigens, mediating extracellular matrix degradation, and transmitting signaling for cell proliferation.
Cell Cycle Regulation of Stem Cells by MicroRNAs.
Mens, Michelle M J; Ghanbari, Mohsen
2018-06-01
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules involved in the regulation of gene expression. They are involved in the fine-tuning of fundamental biological processes such as proliferation, differentiation, survival and apoptosis in many cell types. Emerging evidence suggests that miRNAs regulate critical pathways involved in stem cell function. Several miRNAs have been suggested to target transcripts that directly or indirectly coordinate the cell cycle progression of stem cells. Moreover, previous studies have shown that altered expression levels of miRNAs can contribute to pathological conditions, such as cancer, due to the loss of cell cycle regulation. However, the precise mechanism underlying miRNA-mediated regulation of cell cycle in stem cells is still incompletely understood. In this review, we discuss current knowledge of miRNAs regulatory role in cell cycle progression of stem cells. We describe how specific miRNAs may control cell cycle associated molecules and checkpoints in embryonic, somatic and cancer stem cells. We further outline how these miRNAs could be regulated to influence cell cycle progression in stem cells as a potential clinical application.
The Wnt receptor Frizzled-4 modulates ADAM13 metalloprotease activity.
Abbruzzese, Genevieve; Gorny, Anne-Kathrin; Kaufmann, Lilian T; Cousin, Hélène; Kleino, Iivari; Steinbeisser, Herbert; Alfandari, Dominique
2015-03-15
Cranial neural crest (CNC) cells are a transient population of stem cells that originate at the border of the neural plate and the epidermis, and migrate ventrally to contribute to most of the facial structures including bones, cartilage, muscles and ganglia. ADAM13 is a cell surface metalloprotease that is essential for CNC cell migration. Here, we show in Xenopus laevis embryos that the Wnt receptor Fz4 binds to the cysteine-rich domain of ADAM13 and negatively regulates its proteolytic activity in vivo. Gain of Fz4 function inhibits CNC cell migration and can be rescued by gain of ADAM13 function. Loss of Fz4 function also inhibits CNC cell migration and induces a reduction of mature ADAM13, together with an increase in the ADAM13 cytoplasmic fragment that is known to translocate into the nucleus to regulate gene expression. We propose that Fz4 associates with ADAM13 during its transport to the plasma membrane to regulate its proteolytic activity. © 2015. Published by The Company of Biologists Ltd.
Nakamura, Yuki; Hibino, Kayo; Yanagida, Toshio; Sako, Yasushi
2016-01-01
Son of sevenless (SOS) is a guanine nucleotide exchange factor that regulates cell behavior by activating the small GTPase RAS. Recent in vitro studies have suggested that an interaction between SOS and the GTP-bound active form of RAS generates a positive feedback loop that propagates RAS activation. However, it remains unclear how the multiple domains of SOS contribute to the regulation of the feedback loop in living cells. Here, we observed single molecules of SOS in living cells to analyze the kinetics and dynamics of SOS behavior. The results indicate that the histone fold and Grb2-binding domains of SOS concertedly produce an intermediate state of SOS on the cell surface. The fraction of the intermediated state was reduced in positive feedback mutants, suggesting that the feedback loop functions during the intermediate state. Translocation of RAF, recognizing the active form of RAS, to the cell surface was almost abolished in the positive feedback mutants. Thus, the concerted functions of multiple membrane-associating domains of SOS governed the positive feedback loop, which is crucial for cell fate decision regulated by RAS.
Pathological and therapeutic roles of innate lymphoid cells in diverse diseases.
Kim, Jisu; Kim, Geon; Min, Hyeyoung
2017-11-01
Innate lymphoid cells (ILCs) are a recently defined type of innate-immunity cells that belong to the lymphoid lineage and have lymphoid morphology but do not express an antigen-specific B cell or T-cell receptor. ILCs regulate immune functions prior to the formation of adaptive immunity and exert effector functions through a cytokine release. ILCs have been classified into three groups according to the transcription factors that regulate their development and function and the effector cytokines they produce. Of note, ILCs resemble T helper (Th) cells, such as Th1, Th2, and Th17 cells, and show a similar dependence on transcription factors and distinct cytokine production. Despite their short history in immunology, ILCs have received much attention, and numerous studies have revealed biological functions of ILCs including host defense against pathogens, inflammation, tissue repair, and metabolic homeostasis. Here, we describe recent findings about the roles of ILCs in the pathogenesis of various diseases and potential therapeutic targets.
Sojka, Dorothy K.; Fowell, Deborah J.
2011-01-01
CD4+CD25+Forkhead box P3 (Foxp3)+ regulatory T cells (Tregs) control immune responses to self and foreign antigens in secondary lymphoid organs and at tissue sites of inflammation. Tregs can modify the function of many immune cells and have been proposed to block early proliferation, differentiation, and effector function. Acute ablation of Tregs has revealed rapid cytokine production immediately after Treg removal, suggesting that Tregs may regulate effector function acutely rather than regulating the programming for immune function. We developed in vitro and in vivo models that enabled the direct test of Treg regulation of T-helper cell type 1 (Th1) differentiation. CD28 signaling is known to abrogate Treg suppression of IL-2 secretion and proliferation, but our studies show that Treg suppression of IFN-γ during Th1 priming proceeds despite enhanced CD28 signaling. Importantly, during Th1 differentiation, Tregs inhibited early IFN-γ transcription without disrupting expression of Th1-specific T-box transcription factor (Tbet) and Th1 programming. Acute shutoff of effector cytokine production by Tregs was selective for IFN-γ but not TNF-α and was independent of TGF-β and Epstein-Barr virus-induced gene 3. In vivo, Tregs potently controlled CD4 IFN-γ and CD4 effector cell expansion in the lymph node (four- to fivefold reduction) but not Th1 programming, independent of IL-10. Tregs additionally reduced CD4 IFN-γ in the inflamed dermis (twofold reduction) dependent on their production of IL-10. We propose a model for Treg inhibition of effector function based on acute cytokine regulation. Interestingly, Tregs used different regulatory mechanisms to regulate IFN-γ (IL-10–dependent or –independent) subject to the target T-cell stage of activation and its tissue location. PMID:22025707
Superenhancer reprogramming drives a B-cell–epithelial transition and high-risk leukemia
Hu, Yeguang; Zhang, Zhihong; Kashiwagi, Mariko; Yoshida, Toshimi; Joshi, Ila; Jena, Nilamani; Somasundaram, Rajesh; Emmanuel, Akinola Olumide; Sigvardsson, Mikael; Fitamant, Julien; El-Bardeesy, Nabeel; Gounari, Fotini; Van Etten, Richard A.; Georgopoulos, Katia
2016-01-01
IKAROS is required for the differentiation of highly proliferative pre-B-cell precursors, and loss of IKAROS function indicates poor prognosis in precursor B-cell acute lymphoblastic leukemia (B-ALL). Here we show that IKAROS regulates this developmental stage by positive and negative regulation of superenhancers with distinct lineage affiliations. IKAROS defines superenhancers at pre-B-cell differentiation genes together with B-cell master regulators such as PAX5, EBF1, and IRF4 but is required for a highly permissive chromatin environment, a function that cannot be compensated for by the other transcription factors. IKAROS is also highly enriched at inactive enhancers of genes normally expressed in stem–epithelial cells. Upon IKAROS loss, expression of pre-B-cell differentiation genes is attenuated, while a group of extralineage transcription factors that are directly repressed by IKAROS and depend on EBF1 relocalization at their enhancers for expression is induced. LHX2, LMO2, and TEAD–YAP1, normally kept separate from native B-cell transcription regulators by IKAROS, now cooperate directly with them in a de novo superenhancer network with its own feed-forward transcriptional reinforcement. Induction of de novo superenhancers antagonizes Polycomb repression and superimposes aberrant stem–epithelial cell properties in a B-cell precursor. This dual mechanism of IKAROS regulation promotes differentiation while safeguarding against a hybrid stem–epithelial–B-cell phenotype that underlies high-risk B-ALL. PMID:27664237
PD-1 and Tim-3 Pathways Regulate CD8+ T Cells Function in Atherosclerosis.
Qiu, Ming-Ke; Wang, Song-Cun; Dai, Yu-Xin; Wang, Shu-Qing; Ou, Jing-Min; Quan, Zhi-Wei
2015-01-01
T cell-mediated immunity plays a significant role in the development of atherosclerosis (AS). There is increasing evidence that CD8+ T cells are also involved in AS but their exact roles remain unclear. The inhibitory receptors programmed cell death-1 (PD-1) and T cell immunoglobulin and mucin domain 3 (Tim-3) are well known inhibitory molecules that play a crucial role in regulating CD8+ T cell activation or tolerance. Here, we demonstrate that the co-expression of PD-1 and Tim-3 on CD8+ T cells is up-regulated in AS patients. PD-1+ Tim-3+ CD8+ T cells are enriched for within the central T (TCM) cell subset, with high proliferative activity and CD127 expression. Co-expression of PD-1 and Tim-3 on CD8+ T cells is associated with increased anti-atherogenic cytokine production as well as decreased pro-atherogenic cytokine production. Blockade of PD-1 and Tim-3 results in a decrease of anti-atherogenic cytokine production by PD-1+ Tim-3+ CD8+ T cells and in an augmentation of TNF-α and IFN-γ production. These findings highlight the important role of the PD-1 and Tim-3 pathways in regulating CD8+ T cells function in human AS.
PD-1 and Tim-3 Pathways Regulate CD8+ T Cells Function in Atherosclerosis
Qiu, Ming-Ke; Wang, Song-Cun; Dai, Yu-Xin; Wang, Shu-Qing; Ou, Jing-Min; Quan, Zhi-Wei
2015-01-01
T cell-mediated immunity plays a significant role in the development of atherosclerosis (AS). There is increasing evidence that CD8+ T cells are also involved in AS but their exact roles remain unclear. The inhibitory receptors programmed cell death-1 (PD-1) and T cell immunoglobulin and mucin domain 3 (Tim-3) are well known inhibitory molecules that play a crucial role in regulating CD8+ T cell activation or tolerance. Here, we demonstrate that the co-expression of PD-1 and Tim-3 on CD8+ T cells is up-regulated in AS patients. PD-1+ Tim-3+ CD8+ T cells are enriched for within the central T (TCM) cell subset, with high proliferative activity and CD127 expression. Co-expression of PD-1 and Tim-3 on CD8+ T cells is associated with increased anti-atherogenic cytokine production as well as decreased pro-atherogenic cytokine production. Blockade of PD-1 and Tim-3 results in a decrease of anti-atherogenic cytokine production by PD-1+ Tim-3+ CD8+ T cells and in an augmentation of TNF-α and IFN-γ production. These findings highlight the important role of the PD-1 and Tim-3 pathways in regulating CD8+ T cells function in human AS. PMID:26035207
Gene function in early mouse embryonic stem cell differentiation
Sene, Kagnew Hailesellasse; Porter, Christopher J; Palidwor, Gareth; Perez-Iratxeta, Carolina; Muro, Enrique M; Campbell, Pearl A; Rudnicki, Michael A; Andrade-Navarro, Miguel A
2007-01-01
Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC) differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5) undergoing undirected differentiation into embryoid bodies (EBs) over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1), our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2) that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of mESC differentiation, and identifies a functional and phylogenetic signature for the genes involved. The data generated constitute a valuable resource for further studies. All DNA microarray data used in this study are available in the StemBase database of stem cell gene expression data [1] and in the NCBI's GEO database. PMID:17394647
Zheng, Yingfeng; Murphy, Leigh C.
2016-01-01
Cell cycle progression is tightly controlled by several kinase families including Cyclin-Dependent Kinases, Polo-Like Kinases, and Aurora Kinases. A large amount of data show that steroid hormone receptors and various components of the cell cycle, including cell cycle regulated kinases, interact, and this often results in altered transcriptional activity of the receptor. Furthermore, steroid hormones, through their receptors, can also regulate the transcriptional expression of genes that are required for cell cycle regulation. However, emerging data suggest that steroid hormone receptors may have roles in cell cycle progression independent of their transcriptional activity. The following is a review of how steroid receptors and their coregulators can regulate or be regulated by the cell cycle machinery, with a particular focus on roles independent of transcription in G2/M. PMID:26778927
The cysteine-rich domain regulates ADAM protease function in vivo.
Smith, Katherine M; Gaultier, Alban; Cousin, Helene; Alfandari, Dominique; White, Judith M; DeSimone, Douglas W
2002-12-09
ADAMs are membrane-anchored proteases that regulate cell behavior by proteolytically modifying the cell surface and ECM. Like other membrane-anchored proteases, ADAMs contain candidate "adhesive" domains downstream of their metalloprotease domains. The mechanism by which membrane-anchored cell surface proteases utilize these putative adhesive domains to regulate protease function in vivo is not well understood. We address this important question by analyzing the relative contributions of downstream extracellular domains (disintegrin, cysteine rich, and EGF-like repeat) of the ADAM13 metalloprotease during Xenopus laevis development. When expressed in embryos, ADAM13 induces hyperplasia of the cement gland, whereas ADAM10 does not. Using chimeric constructs, we find that the metalloprotease domain of ADAM10 can substitute for that of ADAM13, but that specificity for cement gland expansion requires a downstream extracellular domain of ADAM13. Analysis of finer resolution chimeras indicates an essential role for the cysteine-rich domain and a supporting role for the disintegrin domain. These and other results reveal that the cysteine-rich domain of ADAM13 cooperates intramolecularly with the ADAM13 metalloprotease domain to regulate its function in vivo. Our findings thus provide the first evidence that a downstream extracellular adhesive domain plays an active role in regulating ADAM protease function in vivo. These findings are likely relevant to other membrane-anchored cell surface proteases.
Qu, Shuo-Yao; He, Ya-Long; Zhang, Jian; Wu, Chang-Gui
2017-09-01
Basophils (BA) play an important role in the promotion of aberrant T helper type 2 (Th2) immune responses in asthma. It is not only the effective cell, but also modulates the initiation of Th2 immune responses. We earlier demonstrated that Notch signalling regulates the biological function of BAin vitro. However, whether this pathway plays the same role in vivo is not clear. The purpose of the present study was to investigate the effect of Notch signalling on BA function in the regulation of allergic airway inflammation in a murine model of asthma. Bone marrow BA were prepared by bone marrow cell culture in the presence of recombinant interleukin-3 (rIL-3; 300 pg/ml) for 7 days, followed by isolation of the CD49b + microbeads. The recombination signal binding protein J (RBP-J -/- ) BA were co-cultured with T cells, and the supernatant and the T-cell subtypes were examined. The results indicated disruption of the capacity of BA for antigen presentation alongside an up-regulation of the immunoregulatory function. This was possibly due to the low expression of OX40L in the RBP-J -/- BA. Basophils were adoptively transferred to ovalbumin-sensitized recipient mice, to establish an asthma model. Lung pathology, cytokine profiles of brobchoalveolar fluid, airway hyperactivity and the absolute number of Th1/Th2 cells in lungs were determined. Overall, our results indicate that the RBP-J-mediated Notch signalling is critical for BA-dependent immunoregulation. Deficiency of RBP-J influences the immunoregulatory functions of BA, which include activation of T cells and their differentiation into T helper cell subtypes. The Notch signalling pathway is a potential therapeutic target for BA-based immunotherapy against asthma. © 2017 John Wiley & Sons Ltd.
Minchenko, O H; Tsymbal, D O; Minchenko, D O; Kovalevska, O V; Karbovskyi, L L; Bikfalvi, A
2015-01-01
Hypoxia as well as the endoplasmic reticulum stress are important factors of malignant tumor growth and control of the expression of genes, which regulate numerous metabolic processes and cell proliferation. Furthermore, blockade of ERN1 (endoplasmic reticulum to nucleus 1) suppresses cell proliferation and tumor growth. We studied the effect of hypoxia on the expression of genes encoding the transcription factors such as E2F8 (E2F transcription factor 8), EPAS1 (endothelial PAS domain protein 1), TBX3 (T-box 3), ATF3 (activating transcription factor 3), FOXF1 (forkhead box F), and HOXC6 (homeobox C6) in U87 glioma cells with and without ERN1 signaling enzyme function. We have established that hypoxia enhances the expression of HOXC6, E2F8, ATF3, and EPAS1 genes but does not change TBX3 and FOXF1 gene expression in glioma cells with ERNI function. At the same time, the expression level of all studied genes is strongly decreased, except for TBX3 gene, in glioma cells without ERN1 function. Moreover, the inhibition of ERN1 signaling enzyme function significantly modifies the effect of hypoxia on the expression of these transcription factor genes. removes or introduces this regulation as well as changes a direction or magnitude of hypoxic regulation. Present study demonstrates that fine-tuning of the expression of proliferation related genes depends upon hypoxia and ERN1-mediated endoplasmic reticulum stress signaling and correlates with slower proliferation rate of glioma cells without ERN1 function.
Plasmodesmal regulation during plant-pathogen interactions.
Cheval, Cecilia; Faulkner, Christine
2018-01-01
Contents Summary 62 I. Introduction 62 II. Plasmodesmal regulation is an innate defence response 63 III. Reactive oxygen species regulate plasmodesmal function 63 IV. Plasmodesmal regulation by and of defence-associated small molecules 64 V. Plasmodesmata facilitate systemic defence signalling 64 VI. Virulent pathogens exploit plasmodesmata 66 VII. Outlook 66 Acknowledgements 66 References 66 SUMMARY: Plasmodesmata (PD) are plasma membrane-lined pores that connect neighbouring plant cells, bridging the cell wall and establishing cytoplasmic and membrane continuity between cells. PD are dynamic structures regulated by callose deposition in a variety of stress and developmental contexts. This process crudely controls the aperture of the pore and thus the flux of molecules between cells. During pathogen infection, plant cells initiate a range of immune responses and it was recently identified that, following perception of fungal and bacterial pathogens, plant cells initially close their PD. Systemic defence responses depend on the spread of signals between cells, raising questions about whether PD are in different functional states during different immune responses. It is well established that viral pathogens exploit PD to spread between cells, but it has more recently been identified that protein effectors secreted by fungal pathogens can spread between host cells via PD. It is possible that many classes of pathogens specifically target PD to aid infection, which would infer antagonistic regulation of PD by host and pathogen. How PD regulation benefits both host immune responses and pathogen infection is an important question and demands that we examine the multicellular nature of plant-pathogen interactions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Hawse, William F; Sheehan, Robert P; Miskov-Zivanov, Natasa; Menk, Ashley V; Kane, Lawrence P; Faeder, James R; Morel, Penelope A
2015-05-15
Signaling via the Akt/mammalian target of rapamycin pathway influences CD4(+) T cell differentiation; low levels favor regulatory T cell induction and high levels favor Th induction. Although the lipid phosphatase phosphatase and tensin homolog (PTEN) suppresses Akt activity, the control of PTEN activity is poorly studied in T cells. In this study, we identify multiple mechanisms that regulate PTEN expression. During Th induction, PTEN function is suppressed via lower mRNA levels, lower protein levels, and an increase in C-terminal phosphorylation. Conversely, during regulatory T cell induction, PTEN function is maintained through the stabilization of PTEN mRNA transcription and sustained protein levels. We demonstrate that differential Akt/mammalian target of rapamycin signaling regulates PTEN transcription via the FoxO1 transcription factor. A mathematical model that includes multiple modes of PTEN regulation recapitulates our experimental findings and demonstrates how several feedback loops determine differentiation outcomes. Collectively, this work provides novel mechanistic insights into how differential regulation of PTEN controls alternate CD4(+) T cell fate outcomes. Copyright © 2015 by The American Association of Immunologists, Inc.
Zhang, Feng; Shu, Jin-Ling; Li, Ying; Wu, Yu-Jing; Zhang, Xian-Zheng; Han, Le; Tang, Xiao-Yu; Wang, Chen; Wang, Qing-Tong; Chen, Jing-Yu; Chang, Yan; Wu, Hua-Xun; Zhang, Ling-Ling; Wei, Wei
2017-01-01
Paeoniflorin-6'- O -benzene sulfonate (code: CP-25) was the chemistry structural modifications of Paeoniflorin (Pae). CP-25 inhibited B cells proliferation stimulated by B cell activating factor belonging to the TNF family (BAFF) or Tumor necrosis factor alpha (TNF-alpha). CP-25, Rituximab and Etanercept reduced the percentage and numbers of CD19 + B cells, CD19 + CD20 + B cells, CD19 + CD27 + B cells and CD19 + CD20 + CD27 + B cells induced by BAFF or TNF-alpha. There was significant difference between CP-25 and Rituximab or CP-25 and Etanercept. CP-25 down-regulated the high expression of BAFFR, BCMA, and TACI stimulated by BAFF or TNF-alpha. The effects of Rituximab and Etanercept on BAFFR or BCMA were stronger than that of CP-25. CP-25, Rituximab and Etanercept down-regulated significantly the expression of TNFR1 and TNFR2 on B cell stimulated by BAFF or TNF-alpha. CP-25, Rituximab and Etanercept down-regulated the expression of MKK3, P-p38, P-p65, TRAF2, and p52 in B cells stimulated by BAFF and the expression of TRAF2 and P-p65 in B cells stimulated by TNF-alpha. These results suggest that CP-25 regulated moderately activated B cells function by regulating the classical and alternative NF-κB signaling pathway mediated by BAFF and TNF-alpha-TRAF2-NF-κB signaling pathway. This study suggests that CP-25 may be a promising anti-inflammatory immune and soft regulation drug.
[Role of nitric oxide as a regulator of cell processes in the formation of multiple organ failure].
Riabov, G A; Azisov, Iu M
2001-01-01
Main aspects of functional activity of nitric oxide (NO) are discussed. Physicochemical properties of NO, routes of its formation in man, and mechanism of its effects on physiological processes are described. In human body NO is formed as a result of activity of a specific enzyme, nitric oxide synthase. Three isoforms of the enzyme are known: neuronal, inducible, and endothelial. NO regulates vascular tone, cell adhesion, neurotransmission, bronchodilatation, and platelet aggregation. NO can protect and damage cells under different conditions. The effect of NO can be direct and mediated. Mechanisms of vasodilating effect of NO and of its effect on apoptosis are discussed. The role of NO in regulation of the functional activity of hepatocytes is described. Regulation of NO level in human organism is discussed.
Kagami, Yuya; Yoshida, Kiyotsugu
2016-12-01
In all organisms, the control of cell cycle progression is a fundamental process that is essential for cell growth, development, and survival. Through each cell cycle phase, the regulation of chromatin organization is essential for natural cell proliferation and maintaining cellular homeostasis. During mitosis, the chromatin morphology is dramatically changed to have a "thread-like" shape and the condensed chromosomes are segregated equally into two daughter cells. Disruption of the mitotic chromosome architecture physically impedes chromosomal behaviors, such as chromosome alignment and chromosome segregation; therefore, the proper mitotic chromosome structure is required to maintain chromosomal stability. Accumulating evidence has demonstrated that mitotic chromosome condensation is induced by condensin complexes. Moreover, recent studies have shown that condensin also modulates interphase chromatin and regulates gene expression. This review mainly focuses on the molecular mechanisms that condensin uses to exert its functions during the cell cycle progression. Moreover, we discuss the condensin-mediated chromosomal organization in cancer cells.
Titov, V N
2014-01-01
Metabolic syndrome (overeating) is a phylogenetically-determined succession of symptoms with the same pathogenesis. There is only one etiological factor, namely, increased consumption of physiologically optimal food. Enterocytes and omental fat cells are a phylogenetically early paracrine-regulated cell community that realizes the biological reactions of exo- and endotrophy. Visceral obesity, high levels of unesterified fatty acids (FA), formation of a pool of micellar FA in the blood, integration of these FA into endothelial cell plasma membrane and enlargement of adipocytes are the causes of hydrodynamic pressure elevation. Toll-like receptors recognize the associates between albumin and greater than physiological number of FA as "foreing" and initiate inflammatory response. "Endoplasm stress" develops in lipid-overloaded cells, protein synthesis (folding) in them is impaired and apoptosis-like cell death is activated. Visceral fat is a phylogenetically early depot of FA to fulfill the biological function of homeostasis, trophology, endoecology and adaptation; it is regulated at the level of paracrine communities and is anatomically limited. The subcutaneous fat depot fulfills the phylogenetically late function of locomotion; the depot size is not anatomically limited. Visceral fat cells have no receptors for phylogenetically late insulin (INS); specialized adipocyes bearing INS and GLUT4 receptors are cells that form the subcutaneous depot. These cells are regulated by phylogenetically late humoral factors at the entire body level. Leptin is an initiator of humoral hypothalamic regulation of in vivo number of ontogenetically programmed number of visceral INS-insensitive fat cells. It prevents "endoplasm stress" and apoptosis, being designed to regulate the amount of consumed food. Leptin initiates storage of FA from visceral pool into subcutaneous pool. Adiponectin is a phylogenetically late humoral hypothalamic regulatory factor that controls optimal number of fat cells in vivo. Its biological role consists in regulation of the number (proliferation) of insulin-dependent adipocytes in subcutaneous fatty tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukushima, Kaori; Takahashi, Kaede; Yamasaki, Eri
Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors exhibits a variety of biological effects, such as cell proliferation, motility and differentiation. The aim of this study was to evaluate the roles of LPA{sub 1} and LPA{sub 3} in cellular functions during tumor progression in pancreatic cancer cells. LPA{sub 1} and LPA{sub 3} knockdown cells were generated from PANC-1 cells. The cell motile and invasive activities of PANC-1 cells were inhibited by LPA{sub 1} and LPA{sub 3} knockdown. In gelatin zymography, LPA{sub 1} and LPA{sub 3} knockdown cells indicated the low activation of matrix metalloproteinase-2 (MMP-2) in the presence ofmore » LPA. Next, to assess whether LPA{sub 1} and LPA{sub 3} regulate cellular functions induced by anticancer drug, PANC-1 cells were treated with cisplatin (CDDP) for approximately 6 months. The cell motile and invasive activities of long-term CDDP treated cells were markedly higher than those of PANC-1 cells, correlating with the expression levels of LPAR1 and LPAR3 genes. In soft agar assay, the long-term CDDP treated cells formed markedly large sized colonies. In addition, the cell motile and invasive activities enhanced by CDDP were significantly suppressed by LPA{sub 1} and LPA{sub 3} knockdown as well as colony formation. These results suggest that LPA signaling via LPA{sub 1} and LPA{sub 3} play an important role in the regulation of cellular functions during tumor progression in PANC-1 cells. - Highlights: • The cell motile and invasive activities of PANC-1 cells were stimulated by LPA{sub 1} and LPA{sub 3}. • LPA{sub 1} and LPA{sub 3} enhanced MMP-2 activation in PANC-1 cells. • The expressions of LPAR1 and LPAR3 genes were elevated in PANC-1 cells treated with cisplatin. • The cell motile and invasive activities of PANC-1 cells treated with cisplatin were suppressed by LPA{sub 1} and LPA{sub 3} knockdown. • LPA{sub 1} and LPA{sub 3} are involved in the regulation of cellular functions during tumor progression in PANC-1 cells.« less
Yang, Yongil; Karlson, Dale
2012-08-01
The cold shock domain is among the most evolutionarily conserved nucleic acid binding domains from prokaryotes to higher eukaryotes, including plants. Although eukaryotic cold shock domain proteins have been extensively studied as transcriptional and post-transcriptional regulators during various developmental processes, their functional roles in plants remains poorly understood. In this study, AtCSP3 (At2g17870), which is one of four Arabidopsis thaliana c old s hock domain proteins (AtCSPs), was functionally characterized. Quantitative RT-PCR analysis confirmed high expression of AtCSP3 in reproductive and meristematic tissues. A homozygous atcsp3 loss-of-function mutant exhibits an overall reduced seedling size, stunted and orbicular rosette leaves, reduced petiole length, and curled leaf blades. Palisade mesophyll cells are smaller and more circular in atcsp3 leaves. Cell size analysis indicated that the reduced size of the circular mesophyll cells appears to be generated by a reduction of cell length along the leaf-length axis, resulting in an orbicular leaf shape. It was also determined that leaf cell expansion is impaired for lateral leaf development in the atcsp3 loss-of-function mutant, but leaf cell proliferation is not affected. AtCSP3 loss-of-function resulted in a dramatic reduction of LNG1 transcript, a gene that is involved in two-dimensional leaf polarity regulation. Transient subcellular localization of AtCSP3 in onion epidermal cells confirmed a nucleocytoplasmic localization pattern. Collectively, these data suggest that AtCSP3 is functionally linked to the regulation of leaf length by affecting LNG1 transcript accumulation during leaf development. A putative function of AtCSP3 as an RNA binding protein is also discussed in relation to leaf development.
NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals.
Bakker, A B; Wu, J; Phillips, J H; Lanier, L L
2000-01-01
A delicate balance between positive and negative signals regulates NK cell effector function. Activation of NK cells may be initiated by the triggering of multiple adhesion or costimulatory molecules, and can be counterbalanced by inhibitory signals induced by receptors for MHC class I. A common pathway of inhibitory signaling is provided by immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the cytoplasmic domains of these receptors which mediate the recruitment of SH2 domain-bearing tyrosine phosphate-1 (SHP-1). In contrast to the extensive progress that has been made regarding the negative regulation of NK cell function, our knowledge of the signals that activate NK cells is still poor. Recent studies of the activating receptor complexes have shed new light on the induction of NK cell effector function. Several NK receptors using novel adaptors with immunoreceptor tyrosine-based activation motifs (ITAMs) and with PI 3-kinase recruiting motifs have been implicated in NK cell stimulation.
Nanotopographical Modulation of Cell Function through Nuclear Deformation
Wang, Kai; Bruce, Allison; Mezan, Ryan; Kadiyala, Anand; Wang, Liying; Dawson, Jeremy; Rojanasakul, Yon; Yang, Yong
2016-01-01
Although nanotopography has been shown to be a potent modulator of cell behavior, it is unclear how the nanotopographical cue, through focal adhesions, affects the nucleus, eventually influencing cell phenotype and function. Thus, current methods to apply nanotopography to regulate cell behavior are basically empirical. We, herein, engineered nanotopographies of various shapes (gratings and pillars) and dimensions (feature size, spacing and height), and thoroughly investigated cell spreading, focal adhesion organization and nuclear deformation of human primary fibroblasts as the model cell grown on the nanotopographies. We examined the correlation between nuclear deformation and cell functions such as cell proliferation, transfection and extracellular matrix protein type I collagen production. It was found that the nanoscale gratings and pillars could facilitate focal adhesion elongation by providing anchoring sites, and the nanogratings could orient focal adhesions and nuclei along the nanograting direction, depending on not only the feature size but also the spacing of the nanogratings. Compared with continuous nanogratings, discrete nanopillars tended to disrupt the formation and growth of focal adhesions and thus had less profound effects on nuclear deformation. Notably, nuclear volume could be effectively modulated by the height of nanotopography. Further, we demonstrated that cell proliferation, transfection, and type I collagen production were strongly associated with the nuclear volume, indicating that the nucleus serves as a critical mechanosensor for cell regulation. Our study delineated the relationships between focal adhesions, nucleus and cell function and highlighted that the nanotopography could regulate cell phenotype and function by modulating nuclear deformation. This study provides insight into the rational design of nanotopography for new biomaterials and the cell–substrate interfaces of implants and medical devices. PMID:26844365
Sforza, Fabio; Nicoli, Francesco; Gallerani, Eleonora; Finessi, Valentina; Reali, Eva; Cafaro, Aurelio; Caputo, Antonella; Ensoli, Barbara; Gavioli, Riccardo
2014-07-31
HIV infection is characterized by several immune dysfunctions of both CD8⁺ and CD4⁺ T cells as hyperactivation, impairment of functionality and expansion of memory T cells. CD8⁺ T-cell dysfunctions have been associated with increased expression of T-bet, Eomesdermin and pro-inflammatory cytokines, and with down-regulation of CD127. The HIV-1 trans-activator of transcription (Tat) protein, which is released by infected cells and detected in tissues of HIV-positive individuals, is known to contribute to the dysregulation of CD4⁺ T cells; however, its effects on CD8⁺ T cells have not been investigated. Thus, in this study, we sought to address whether Tat may affect CD8⁺ T-cell functionality and programming. CD8⁺ T cells were activated by T-cell receptor engagement in the presence or absence of Tat. Cytokine production, killing capacity, surface phenotype and expression of transcription factors important for T-cell programming were evaluated. Tat favors the secretion of interleukin-2, interferon-γ and granzyme B in CD8⁺ T cells. Behind this functional modulation we observed that Tat increases the expression of T-bet, Eomesdermin, Blimp-1, Bcl-6 and Bcl-2 in activated but not in unstimulated CD8⁺ T lymphocytes. This effect is associated with the down-regulation of CD127 and the up-regulation of CD27. Tat deeply alters the programming and functionality of CD8⁺ T lymphocytes.
A positive feedback regulation of ISL-1 in DLBCL but not in pancreatic β-cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qiao, E-mail: zhangqiao200824@126.com; Yang, Zhe, E-mail: zheyang@bjmu.edu.cn; Wang, Weiping, E-mail: wwp@bjmu.edu.cn
2014-07-04
Highlights: • ISL-1 is highly expressed in human pancreatic β-cells and DLBCL. • ISL-1 accelerates the tumorigenesis of DLBCL in vivo. • c-Myc positively regulates ISL-1 expression in DLBCL but not in pancreatic β-cells. • ISL-1 and c-Myc forms an ISL-1/c-Myc transcriptional complex only in DLBCL. • Positive feedback regulation of ISL-1 does not exist in normal pancreatic β-cell. - Abstract: Insulin enhancer binding protein-1 (ISL-1), a LIM-homeodomain transcription factor, has been reported to play essential roles in promoting adult pancreatic β-cells proliferation. Recent studies indicate that ISL-1 may also involve in the occurrence of a variety of tumors. However,more » whether ISL-1 has any functional effect on tumorigenesis, and what are the differences on ISL-1 function in distinct conditions, are completely unknown. In this study, we found that ISL-1 was highly expressed in human pancreatic β-cells, as well as in diffuse large B cell lymphoma (DLBCL), but to a much less extent in other normal tissues or tumor specimens. Further study revealed that ISL-1 promoted the proliferation of pancreatic β-cells and DLBCL cells, and also accelerated the tumorigenesis of DLBCL in vivo. We also found that ISL-1 could activate c-Myc transcription not only in pancreatic β-cells but also in DLBCL cells. However, a cell-specific feedback regulation was detectable only in DLBCL cells. This auto-regulatory loop was established by the interaction of ISL-1 and c-Myc to form an ISL-1/c-Myc transcriptional complex, and synergistically to promote ISL-1 transcription through binding on the ISL-1 promoter. Taken together, our results demonstrate a positive feedback regulation of ISL-1 in DLBCL but not in pancreatic β-cells, which might result in the functional diversities of ISL-1 in different physiological and pathological processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kito, Hiroaki; Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto; Yamamura, Hisao
2015-04-10
Store-operated Ca{sup 2+} entry (SOCE) via Orai1 and STIM1 complex is supposed to have obligatory roles in the regulation of cellular functions of vascular endothelial cells, while little is known about the contribution of Orai2. Quantitative PCR and Western blot analyses indicated the expression of Orai2 and STIM2, in addition to Orai1 and STIM1 in bovine brain capillary endothelial cell line, t-BBEC117. During the exponential growth of t-BBEC117, the knockdown of Orai1 and STIM1 significantly reduced the SOCE activity, whereas Orai2 and STIM2 siRNAs had no effect. To examine whether endogenous SOCE activity contributes to the regulation of cell cyclemore » progression, t-BBEC117 were synchronized using double thymidine blockage. At the G2/M phase, Ca{sup 2+} influx via SOCE was decreased and Orai2 expression was increased compared to the G0/G1 phase. When Orai2 was knocked down at the G2/M phase, the decrease in SOCE was removed, and cell proliferation was partly attenuated. Taken together, Orai1 significantly contributes to cell proliferation via the functional expression, which is presumably independent of the cell cycle phases. In construct, Orai2 is specifically up-regulated during the G2/M phase, negatively modulates the SOCE activity, and may contribute to the regulation of cell cycle progression in brain capillary endothelial cells. - Highlights: • Orai1 is essential for SOCE activity in brain capillary endothelial cells (BCECs). • Cell cycle independent expression of Orai1 regulated SOCE and cell proliferation. • Orai2 was up-regulated only at G2/M phase and this consequently reduced SOCE. • Orai2 as well as Orai1 is a key player controlling SOCE and proliferation in BCECs.« less
Regulation of Satellite Cell Function in Sarcopenia
Alway, Stephen E.; Myers, Matthew J.; Mohamed, Junaith S.
2014-01-01
The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell) function that is impacted by the environment (niche) of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse, or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins, and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration). While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function. PMID:25295003
The Prospective Function of Curcumin Against the Negative Effects of Microgravity
NASA Astrophysics Data System (ADS)
Lewis, A.; Johnson, P.; Jejelowo, O. A.; Sodipe, A.; Shishodia, S.
2010-04-01
Microgravity has several deleterious effects on cells. These cells may exhibit an up-regulation or down-regulation of their gene expression. We are investigating the effects of the phytochemical curcumin on microgravity-induced deleterious effects.
Regulation and Function of Cdt1; A Key Factor in Cell Proliferation and Genome Stability
Pozo, Pedro N.; Cook, Jeanette Gowen
2016-01-01
Successful cell proliferation requires efficient and precise genome duplication followed by accurate chromosome segregation. The Cdc10-dependent transcript 1 protein (Cdt1) is required for the first step in DNA replication, and in human cells Cdt1 is also required during mitosis. Tight cell cycle controls over Cdt1 abundance and activity are critical to normal development and genome stability. We review here recent advances in elucidating Cdt1 molecular functions in both origin licensing and kinetochore–microtubule attachment, and we describe the current understanding of human Cdt1 regulation. PMID:28025526
Phosphoinositide function in cytokinesis.
Brill, Julie A; Wong, Raymond; Wilde, Andrew
2011-11-22
In systems as diverse as yeast, slime mold and animal cells, the levels and distribution of phosphatidylinositol phosphates (PIPs) must be strictly regulated for successful cell cleavage. The precise mechanism by which PIPs function in this process remains unknown. Recent experiments are beginning to shed light on the cellular pathways in which PIPs make key contributions during cytokinesis. In particular, PIPs promote proper actin cytoskeletal organization and direct membrane trafficking in dividing cells. Future research will uncover temporal and spatial regulation of the different PIPs, thus elucidating their role in cytoskeletal and membrane events that drive cell cleavage. Copyright © 2011 Elsevier Ltd. All rights reserved.
Regulation of tight junction assembly and epithelial morphogenesis by the heat shock protein Apg-2
Aijaz, Saima; Sanchez-Heras, Elena; Balda, Maria S; Matter, Karl
2007-01-01
Background Tight junctions are required for epithelial barrier formation and participate in the regulation of signalling mechanisms that control proliferation and differentiation. ZO-1 is a tight junction-associated adaptor protein that regulates gene expression, junction assembly and epithelial morphogenesis. We have previously demonstrated that the heat shock protein Apg-2 binds ZO-1 and thereby regulates its role in cell proliferation. Here, we addressed the question whether Apg-2 is also important for junction formation and epithelial morphogenesis. Results We demonstrate that depletion of Apg-2 by RNAi in MDCK cells did not prevent formation of functional tight junctions. Similar to ZO-1, however, reduced expression of Apg-2 retarded de novo junction assembly if analysed in a Ca-switch model. Formation of functional junctions, as monitored by measuring transepithelial electrical resistance, and recruitment of tight and adherens junction markers were retarded. If cultured in three dimensional extracellular matrix gels, Apg-2 depleted cells, as previously shown for ZO-1 depleted cells, did not form hollow polarised cysts but poorly organised, irregular structures. Conclusion Our data indicate that Apg-2 regulates junction assembly and is required for normal epithelial morphogenesis in a three-dimensional culture system, suggesting that Apg-2 is an important regulator of epithelial differentiation. As the observed phenotypes are similar to those previously described for ZO-1 depleted cells and depletion of Apg-2 retards junctional recruitment of ZO-1, regulation of ZO-1 is likely to be an important functional role for Apg-2 during epithelial differentiation. PMID:18028534
Regulation of tight junction assembly and epithelial morphogenesis by the heat shock protein Apg-2.
Aijaz, Saima; Sanchez-Heras, Elena; Balda, Maria S; Matter, Karl
2007-11-20
Tight junctions are required for epithelial barrier formation and participate in the regulation of signalling mechanisms that control proliferation and differentiation. ZO-1 is a tight junction-associated adaptor protein that regulates gene expression, junction assembly and epithelial morphogenesis. We have previously demonstrated that the heat shock protein Apg-2 binds ZO-1 and thereby regulates its role in cell proliferation. Here, we addressed the question whether Apg-2 is also important for junction formation and epithelial morphogenesis. We demonstrate that depletion of Apg-2 by RNAi in MDCK cells did not prevent formation of functional tight junctions. Similar to ZO-1, however, reduced expression of Apg-2 retarded de novo junction assembly if analysed in a Ca-switch model. Formation of functional junctions, as monitored by measuring transepithelial electrical resistance, and recruitment of tight and adherens junction markers were retarded. If cultured in three dimensional extracellular matrix gels, Apg-2 depleted cells, as previously shown for ZO-1 depleted cells, did not form hollow polarised cysts but poorly organised, irregular structures. Our data indicate that Apg-2 regulates junction assembly and is required for normal epithelial morphogenesis in a three-dimensional culture system, suggesting that Apg-2 is an important regulator of epithelial differentiation. As the observed phenotypes are similar to those previously described for ZO-1 depleted cells and depletion of Apg-2 retards junctional recruitment of ZO-1, regulation of ZO-1 is likely to be an important functional role for Apg-2 during epithelial differentiation.
Analysis of miRNA expression profiles in melatonin-exposed GC-1 spg cell line.
Zhu, Xiaoling; Chen, Shuxiong; Jiang, Yanwen; Xu, Ying; Zhao, Yun; Chen, Lu; Li, Chunjin; Zhou, Xu
2018-02-05
Melatonin is an endocrine neurohormone secreted by pinealocytes in the pineal gland. It exerts diverse physiological effects, such as circadian rhythm regulator and antioxidant. However, the functional importance of melatonin in spermatogenesis regulation remains unclear. The objectives of this study are to: (1) detect melatonin affection on miRNA expression profiles in GC-1 spg cells by miRNA deep sequencing (DeepSeq) and (2) define melatonin affected miRNA-mRNA interactions and associated biological processes using bioinformatics analysis. GC-1 spg cells were cultured with melatonin (10 -7 M) for 24h. DeepSeq data were validated using quantitative real-time reverse transcription polymerase chain reaction analysis (qRT-PCR). A total of 176 miRNA expressions were found to be significantly different between two groups (fold change of >2 or <0.5 and FDR<0.05). Among these expressions, 171 were up-regulated, and 5 were down-regulated. Ontology analysis of biological processes of these targets indicated a variety of biological functions. Pathway analysis indicated that the predicted targets were involved in cancers, apoptosis and signaling pathways, such as VEGF, TNF, Ras and Notch. Results implicated that melatonin could regulate the expression of miRNA to perform its physiological effects in GC-1 spg cells. These results should be useful to investigate the biological function of miRNAs regulated by melatonin in spermatogenesis and testicular germ cell tumor. Copyright © 2017 Elsevier B.V. All rights reserved.
Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling.
Oviedo, Néstor J; Pearson, Bret J; Levin, Michael; Sánchez Alvarado, Alejandro
2008-01-01
We have identified two genes, Smed-PTEN-1 and Smed-PTEN-2, capable of regulating stem cell function in the planarian Schmidtea mediterranea. Both genes encode proteins homologous to the mammalian tumor suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Inactivation of Smed-PTEN-1 and -2 by RNA interference (RNAi) in planarians disrupts regeneration, and leads to abnormal outgrowths in both cut and uncut animals followed soon after by death (lysis). The resulting phenotype is characterized by hyperproliferation of neoblasts (planarian stem cells), tissue disorganization and a significant accumulation of postmitotic cells with impaired differentiation capacity. Further analyses revealed that rapamycin selectively prevented such accumulation without affecting the normal neoblast proliferation associated with physiological turnover and regeneration. In animals in which PTEN function is abrogated, we also detected a significant increase in the number of cells expressing the planarian Akt gene homolog (Smed-Akt). However, functional abrogation of Smed-Akt in Smed-PTEN RNAi-treated animals does not prevent cell overproliferation and lethality, indicating that functional abrogation of Smed-PTEN is sufficient to induce abnormal outgrowths. Altogether, our data reveal roles for PTEN in the regulation of planarian stem cells that are strikingly conserved to mammalian models. In addition, our results implicate this protein in the control of stem cell maintenance during the regeneration of complex structures in planarians.
Genome-wide activity of unliganded estrogen receptor-α in breast cancer cells
Caizzi, Livia; Ferrero, Giulio; Cutrupi, Santina; Cordero, Francesca; Ballaré, Cecilia; Miano, Valentina; Reineri, Stefania; Ricci, Laura; Friard, Olivier; Testori, Alessandro; Corà, Davide; Caselle, Michele; Di Croce, Luciano; De Bortoli, Michele
2014-01-01
Estrogen receptor-α (ERα) has central role in hormone-dependent breast cancer and its ligand-induced functions have been extensively characterized. However, evidence exists that ERα has functions that are independent of ligands. In the present work, we investigated the binding of ERα to chromatin in the absence of ligands and its functions on gene regulation. We demonstrated that in MCF7 breast cancer cells unliganded ERα binds to more than 4,000 chromatin sites. Unexpectedly, although almost entirely comprised in the larger group of estrogen-induced binding sites, we found that unliganded-ERα binding is specifically linked to genes with developmental functions, compared with estrogen-induced binding. Moreover, we found that siRNA-mediated down-regulation of ERα in absence of estrogen is accompanied by changes in the expression levels of hundreds of coding and noncoding RNAs. Down-regulated mRNAs showed enrichment in genes related to epithelial cell growth and development. Stable ERα down-regulation using shRNA, which caused cell growth arrest, was accompanied by increased H3K27me3 at ERα binding sites. Finally, we found that FOXA1 and AP2γ binding to several sites is decreased upon ERα silencing, suggesting that unliganded ERα participates, together with other factors, in the maintenance of the luminal-specific cistrome in breast cancer cells. PMID:24639548
Beermann, Julia; Kirste, Dominique; Iwanov, Katharina; Lu, Dongchao; Kleemiß, Felix; Kumarswamy, Regalla; Schimmel, Katharina; Bär, Christian; Thum, Thomas
2018-01-01
The mammalian cell cycle is a complex and tightly controlled event. Myriads of different control mechanisms are involved in its regulation. Long non-coding RNAs (lncRNA) have emerged as important regulators of many cellular processes including cellular proliferation. However, a more global and unbiased approach to identify lncRNAs with importance for cell proliferation is missing. Here, we present a lentiviral shRNA library-based approach for functional lncRNA profiling. We validated our library approach in NIH3T3 (3T3) fibroblasts by identifying lncRNAs critically involved in cell proliferation. Using stringent selection criteria we identified lncRNA NR_015491.1 out of 3842 different RNA targets represented in our library. We termed this transcript Ntep (non-coding transcript essential for proliferation), as a bona fide lncRNA essential for cell cycle progression. Inhibition of Ntep in 3T3 and primary fibroblasts prevented normal cell growth and expression of key fibroblast markers. Mechanistically, we discovered that Ntep is important to activate P53 concomitant with increased apoptosis and cell cycle blockade in late G2/M. Our findings suggest Ntep to serve as an important regulator of fibroblast proliferation and function. In summary, our study demonstrates the applicability of an innovative shRNA library approach to identify long non-coding RNA functions in a massive parallel approach. PMID:29099486
Corre, Isabelle; Paris, François; Huot, Jacques
2017-01-01
By gating the traffic of molecules and cells across the vessel wall, endothelial cells play a central role in regulating cardiovascular functions and systemic homeostasis and in modulating pathophysiological processes such as inflammation and immunity. Accordingly, the loss of endothelial cell integrity is associated with pathological disorders that include atherosclerosis and cancer. The p38 mitogen-activated protein kinase (MAPK) cascades are major signaling pathways that regulate several functions of endothelial cells in response to exogenous and endogenous stimuli including growth factors, stress and cytokines. The p38 MAPK family contains four isoforms p38α, p38β, p38γ and p38δ that are encoded by four different genes. They are all widely expressed although to different levels in almost all human tissues. p38α/MAPK14, that is ubiquitously expressed is the prototype member of the family and is referred here as p38. It regulates the production of inflammatory mediators, and controls cell proliferation, differentiation, migration and survival. Its activation in endothelial cells leads to actin remodeling, angiogenesis, DNA damage response and thereby has major impact on cardiovascular homeostasis, and on cancer progression. In this manuscript, we review the biology of p38 in regulating endothelial functions especially in response to oxidative stress and during the metastatic process. PMID:28903453
Regulatory Myeloid Cells in Transplantation
Rosborough, Brian R.; Raïch-Regué, Dàlia; Turnquist, Heth R.; Thomson, Angus W.
2013-01-01
Regulatory myeloid cells (RMC) are emerging as novel targets for immunosuppressive (IS) agents and hold considerable promise as cellular therapeutic agents. Herein, we discuss the ability of regulatory macrophages (Mreg), regulatory dendritic cells (DCreg) and myeloid-derived suppressor cells (MDSC) to regulate alloimmunity, their potential as cellular therapeutic agents and the IS agents that target their function. We consider protocols for the generation of RMC and the selection of donor- or recipient-derived cells for adoptive cell therapy. Additionally, the issues of cell trafficking and antigen (Ag) specificity following RMC transfer are discussed. Improved understanding of the immunobiology of these cells has increased the possibility of moving RMC into the clinic to reduce the burden of current IS agents and promote Ag-specific tolerance. In the second half of this review, we discuss the influence of established and experimental IS agents on myeloid cell populations. IS agents believed historically to act primarily on T cell activation and proliferation are emerging as important regulators of RMC function. Better insights into the influence of IS agents on RMC will enhance our ability to develop cell therapy protocols to promote the function of these cells. Moreover, novel IS agents may be designed to target RMC in situ to promote Ag-specific immune regulation in transplantation and usher in a new era of immune modulation exploiting cells of myeloid origin. PMID:24092382
Blesson, Chellakkan Selvanesan; Sahlin, Lena
2012-09-25
Estrogens play a role in the regulation of genes associated with inflammation and immunity in neutrophils. Estrogen signalling is mediated by estrogen receptor (ER)α, ERβ, and G-protein-coupled estrogen receptor-1 (GPER). The mechanisms by which estrogen regulate genes in neutrophils are poorly understood. Our aim was to identify the presence of ERs and to characterize estrogen responsive genes in terminally differentiated neutrophil like HL-60 (nHL-60) cells using estradiol and selective ER agonists. ERs were identified by Western blotting and immunocytochemistry. Microarray technique was used to screen for differentially expressed genes and the selected genes were verified by quantitative PCR. We show the presence of functional ERα, ERβ and GPER. Microarray analysis showed the presence of genes that are uniquely regulated by a single ligand and also genes that are regulated by multiple ligands. We conclude that ERs are functionally active in nHL-60 cells regulating genes involved in key physiological functions. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Richter, Karin; Wirta, Valtteri; Dahl, Lina; Bruce, Sara; Lundeberg, Joakim; Carlsson, Leif; Williams, Cecilia
2006-01-01
Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin. PMID:16600034
Nibau, Candida; Di Stilio, Verónica S.; Wu, Hen-ming; Cheung, Alice Y.
2011-01-01
Arabidopsis thaliana SUPERMAN (SUP) plays an important role during flower development by maintaining the boundary between stamens and carpels in the inner two whorls. It was proposed that SUP maintains this boundary by regulating cell proliferation in both whorls, as loss-of-function superman mutants produce more stamens at the expense of carpels. However, the cellular mechanism that underlies SUP function remains unknown. Here Arabidopsis or tobacco (Nicotiana tabacum) SUP was overexpressed in tobacco plants to substantiate SUP's role as a regulator of cell proliferation and boundary definition and provide evidence that its biological role may be mediated via hormonal changes. It was found that moderate levels of SUP stimulated cell growth and proliferation, whereas high levels were inhibitory. SUP stimulated auxin- and cytokinin-regulated processes, and cells overexpressing SUP displayed reduced hormone dependency for proliferation and regeneration into plants. SUP also induced proliferation of female traits in the second and third flower whorls and promoted differentiation of petaloid properties in sepals, further supporting a role for SUP as a boundary regulator. Moreover, cytokinin suppressed stamen development and promoted differentiation of carpeloid tissues, suggesting that SUP may regulate male and female development via its effect on cytokinin signalling. Taken together, these observations suggest a model whereby the effect of SUP on cell growth and proliferation involves the modulation of auxin- and cytokinin-regulated processes. Furthermore, differential SUP expression or different sensitivities of different cell types to SUP may determine whether SUP stimulates or suppresses their proliferation. PMID:20980362
Cording, Jimmi; Günther, Ramona; Vigolo, Emilia; Tscheik, Christian; Winkler, Lars; Schlattner, Isabella; Lorenz, Dorothea; Haseloff, Reiner F; Schmidt-Ott, Kai M; Wolburg, Hartwig; Blasig, Ingolf E
2015-11-01
Tight junctions (TJs) seal paracellular clefts in epithelia/endothelia and form tissue barriers for proper organ function. TJ-associated marvel proteins (TAMPs; tricellulin, occludin, marvelD3) are thought to be relevant to regulation. Under normal conditions, tricellulin tightens tricellular junctions against macromolecules. Traces of tricellulin occur in bicellular junctions. As pathological disturbances have not been analyzed, the structure and function of human tricellulin, including potentially redox-sensitive Cys sites, were investigated under reducing/oxidizing conditions at 3- and 2-cell contacts. Ischemia, hypoxia, and reductants redistributed tricellulin from 3- to 2-cell contacts. The extracellular loop 2 (ECL2; conserved Cys321, Cys335) trans-oligomerized between three opposing cells. Substitutions of these residues caused bicellular localization. Cys362 in transmembrane domain 4 contributed to bicellular heterophilic cis-interactions along the cell membrane with claudin-1 and marvelD3, while Cys395 in the cytosolic C-terminal tail promoted homophilic tricellullar cis-interactions. The Cys sites included in homo-/heterophilic bi-/tricellular cis-/trans-interactions contributed to cell barrier tightness for small/large molecules. Tricellulin forms TJs via trans- and cis-association in 3-cell contacts, as demonstrated electron and quantified fluorescence microscopically; it tightens 3- and 2-cell contacts. Tricellulin's ECL2 specifically seals 3-cell contacts redox dependently; a structural model is proposed. TAMP ECL2 and claudins' ECL1 share functionally and structurally similar features involved in homo-/heterophilic tightening of cell-cell contacts. Tricellulin is a specific redox sensor and sealing element at 3-cell contacts and may compensate as a redox mediator for occludin loss at 2-cell contacts in vivo and in vitro. Molecular interaction mechanisms were proposed that contribute to tricellulin's function. In conclusion, tricellulin is a junctional redox regulator for ischemia-related alterations.
Roberts, Sheridan L.; Onaitis, Mark W.; Florio, Francesca; Quattrini, Angelo; Lloyd, Alison C.; D'Antonio, Maurizio
2017-01-01
Correct myelination is crucial for the function of the peripheral nervous system. Both positive and negative regulators within the axon and Schwann cell function to ensure the correct onset and progression of myelination during both development and following peripheral nerve injury and repair. The Sox2 transcription factor is well known for its roles in the development and maintenance of progenitor and stem cell populations, but has also been proposed in vitro as a negative regulator of myelination in Schwann cells. We wished to test fully whether Sox2 regulates myelination in vivo and show here that, in mice, sustained Sox2 expression in vivo blocks myelination in the peripheral nerves and maintains Schwann cells in a proliferative non-differentiated state, which is also associated with increased inflammation within the nerve. The plasticity of Schwann cells allows them to re-myelinate regenerated axons following injury and we show that re-myelination is also blocked by Sox2 expression in Schwann cells. These findings identify Sox2 as a physiological regulator of Schwann cell myelination in vivo and its potential to play a role in disorders of myelination in the peripheral nervous system. PMID:28743796
Zhan, Ming; Riordon, Daniel R.; Yan, Bin; Tarasova, Yelena S.; Bruweleit, Sarah; Tarasov, Kirill V.; Li, Ronald A.; Wersto, Robert P.; Boheler, Kenneth R.
2012-01-01
Embryonic stem cells (ESCs) are pluripotent and have unlimited self-renewal capacity. Although pluripotency and differentiation have been examined extensively, the mechanisms responsible for self-renewal are poorly understood and are believed to involve an unusual cell cycle, epigenetic regulators and pluripotency-promoting transcription factors. Here we show that B-MYB, a cell cycle regulated phosphoprotein and transcription factor critical to the formation of inner cell mass, is central to the transcriptional and co-regulatory networks that sustain normal cell cycle progression and self-renewal properties of ESCs. Phenotypically, B-MYB is robustly expressed in ESCs and induced pluripotent stem cells (iPSCs), and it is present predominantly in a hypo-phosphorylated state. Knockdown of B-MYB results in functional cell cycle abnormalities that involve S, G2 and M phases, and reduced expression of critical cell cycle regulators like ccnb1 and plk1. By conducting gene expression profiling on control and B-MYB deficient cells, ChIP-chip experiments, and integrative computational analyses, we unraveled a highly complex B-MYB-mediated transcriptional network that guides ESC self-renewal. The network encompasses critical regulators of all cell cycle phases and epigenetic regulators, pluripotency transcription factors, and differentiation determinants. B-MYB along with E2F1 and c-MYC preferentially co-regulate cell cycle target genes. B-MYB also co-targets genes regulated by OCT4, SOX2 and NANOG that are significantly associated with stem cell differentiation, embryonic development, and epigenetic control. Moreover, loss of B-MYB leads to a breakdown of the transcriptional hierarchy present in ESCs. These results coupled with functional studies demonstrate that B-MYB not only controls and accelerates cell cycle progression in ESCs it contributes to fate decisions and maintenance of pluripotent stem cell identity. PMID:22936984
Zhan, Ming; Riordon, Daniel R; Yan, Bin; Tarasova, Yelena S; Bruweleit, Sarah; Tarasov, Kirill V; Li, Ronald A; Wersto, Robert P; Boheler, Kenneth R
2012-01-01
Embryonic stem cells (ESCs) are pluripotent and have unlimited self-renewal capacity. Although pluripotency and differentiation have been examined extensively, the mechanisms responsible for self-renewal are poorly understood and are believed to involve an unusual cell cycle, epigenetic regulators and pluripotency-promoting transcription factors. Here we show that B-MYB, a cell cycle regulated phosphoprotein and transcription factor critical to the formation of inner cell mass, is central to the transcriptional and co-regulatory networks that sustain normal cell cycle progression and self-renewal properties of ESCs. Phenotypically, B-MYB is robustly expressed in ESCs and induced pluripotent stem cells (iPSCs), and it is present predominantly in a hypo-phosphorylated state. Knockdown of B-MYB results in functional cell cycle abnormalities that involve S, G2 and M phases, and reduced expression of critical cell cycle regulators like ccnb1 and plk1. By conducting gene expression profiling on control and B-MYB deficient cells, ChIP-chip experiments, and integrative computational analyses, we unraveled a highly complex B-MYB-mediated transcriptional network that guides ESC self-renewal. The network encompasses critical regulators of all cell cycle phases and epigenetic regulators, pluripotency transcription factors, and differentiation determinants. B-MYB along with E2F1 and c-MYC preferentially co-regulate cell cycle target genes. B-MYB also co-targets genes regulated by OCT4, SOX2 and NANOG that are significantly associated with stem cell differentiation, embryonic development, and epigenetic control. Moreover, loss of B-MYB leads to a breakdown of the transcriptional hierarchy present in ESCs. These results coupled with functional studies demonstrate that B-MYB not only controls and accelerates cell cycle progression in ESCs it contributes to fate decisions and maintenance of pluripotent stem cell identity.
Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron.
Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip
2016-01-01
Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons.
Copine1 regulates neural stem cell functions during brain development.
Kim, Tae Hwan; Sung, Soo-Eun; Cheal Yoo, Jae; Park, Jae-Yong; Yi, Gwan-Su; Heo, Jun Young; Lee, Jae-Ran; Kim, Nam-Soon; Lee, Da Yong
2018-01-01
Copine 1 (CPNE1) is a well-known phospholipid binding protein in plasma membrane of various cell types. In brain cells, CPNE1 is closely associated with AKT signaling pathway, which is important for neural stem cell (NSC) functions during brain development. Here, we investigated the role of CPNE1 in the regulation of brain NSC functions during brain development and determined its underlying mechanism. In this study, abundant expression of CPNE1 was observed in neural lineage cells including NSCs and immature neurons in human. With mouse brain tissues in various developmental stages, we found that CPNE1 expression was higher at early embryonic stages compared to postnatal and adult stages. To model developing brain in vitro, we used primary NSCs derived from mouse embryonic hippocampus. Our in vitro study shows decreased proliferation and multi-lineage differentiation potential in CPNE1 deficient NSCs. Finally, we found that the deficiency of CPNE1 downregulated mTOR signaling in embryonic NSCs. These data demonstrate that CPNE1 plays a key role in the regulation of NSC functions through the activation of AKT-mTOR signaling pathway during brain development. Copyright © 2017 Elsevier Inc. All rights reserved.
GSK3 as a Sensor Determining Cell Fate in the Brain.
Cole, Adam R
2012-01-01
Glycogen synthase kinase 3 (GSK3) is an unusual serine/threonine kinase that controls many neuronal functions, including neurite outgrowth, synapse formation, neurotransmission, and neurogenesis. It mediates these functions by phosphorylating a wide range of substrates involved in gene transcription, metabolism, apoptosis, cytoskeletal dynamics, signal transduction, lipid membrane dynamics, and trafficking, amongst others. This complicated list of diverse substrates generally follow a more simple pattern: substrates negatively regulated by GSK3-mediated phosphorylation favor a proliferative/survival state, while substrates positively regulated by GSK3 favor a more differentiated/functional state. Accordingly, GSK3 activity is higher in differentiated cells than undifferentiated cells and physiological (Wnt, growth factors) and pharmacological inhibitors of GSK3 promote the proliferative capacity of embryonic stem cells. In the brain, the level of GSK3 activity influences neural progenitor cell proliferation/differentiation in neuroplasticity and repair, as well as efficient neurotransmission in differentiated adult neurons. While defects in GSK3 activity are unlikely to be the primary cause of neurodegenerative diseases, therapeutic regulation of its activity to promote a proliferative/survival versus differentiated/mature functional environment in the brain could be a powerful strategy for treatment of neurodegenerative and other mental disorders.
GSK3 as a Sensor Determining Cell Fate in the Brain
Cole, Adam R.
2012-01-01
Glycogen synthase kinase 3 (GSK3) is an unusual serine/threonine kinase that controls many neuronal functions, including neurite outgrowth, synapse formation, neurotransmission, and neurogenesis. It mediates these functions by phosphorylating a wide range of substrates involved in gene transcription, metabolism, apoptosis, cytoskeletal dynamics, signal transduction, lipid membrane dynamics, and trafficking, amongst others. This complicated list of diverse substrates generally follow a more simple pattern: substrates negatively regulated by GSK3-mediated phosphorylation favor a proliferative/survival state, while substrates positively regulated by GSK3 favor a more differentiated/functional state. Accordingly, GSK3 activity is higher in differentiated cells than undifferentiated cells and physiological (Wnt, growth factors) and pharmacological inhibitors of GSK3 promote the proliferative capacity of embryonic stem cells. In the brain, the level of GSK3 activity influences neural progenitor cell proliferation/differentiation in neuroplasticity and repair, as well as efficient neurotransmission in differentiated adult neurons. While defects in GSK3 activity are unlikely to be the primary cause of neurodegenerative diseases, therapeutic regulation of its activity to promote a proliferative/survival versus differentiated/mature functional environment in the brain could be a powerful strategy for treatment of neurodegenerative and other mental disorders. PMID:22363258
Karunamuni, Ganga H.; Ma, Pei; Gu, Shi; Rollins, Andrew M.; Jenkins, Michael W.; Watanabe, Michiko
2014-01-01
Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest is in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies. PMID:25220155
Shaye, Daniel D; Greenwald, Iva
2016-11-15
The C. elegans excretory cell (EC) is a powerful model for tubulogenesis, a conserved process that requires precise cytoskeletal regulation. EXC-6, an ortholog of the disease-associated formin INF2, coordinates cell outgrowth and lumen formation during EC tubulogenesis by regulating F-actin at the tip of the growing canal and the dynamics of basolateral microtubules. EXC-6 functions in parallel with EXC-5/FGD, a predicted activator of the Rho GTPase Cdc42. Here, we identify the parallel pathway: EXC-5 functions through CDC-42 to regulate two other formins: INFT-2, another INF2 ortholog, and CYK-1, the sole ortholog of the mammalian diaphanous (mDia) family of formins. We show that INFT-2 promotes F-actin accumulation in the EC, and that CYK-1 inhibits INFT-2 to regulate F-actin levels and EXC-6-promoted outgrowth. As INF2 and mDia physically interact and cross-regulate in cultured cells, our work indicates that a conserved EXC-5-CDC-42 pathway modulates this regulatory interaction and that it is functionally important in vivo during tubulogenesis. © 2016. Published by The Company of Biologists Ltd.
The Populus homeobox gene ARBORKNOX2 regulates cell differentiation during secondary growth
Juan Du; Shawn D. Mansfield; Andrew T. Groover
2009-01-01
The stem cells of the vascular cambium divide to produce daughter cells, which in turn divide before undergoing differentiation during the radial growth of woody stems. The genetic regulation of these developmental events is poorly understood, however. We report here the cloning and functional characterization of a Populus class-I KNOX...
McConnell, Kristopher H.; Dixon, Michael; Calvi, Brian R.
2012-01-01
DNA replication origin activity changes during development. Chromatin modifications are known to influence the genomic location of origins and the time during S phase that they initiate replication in different cells. However, how chromatin regulates origins in concert with cell differentiation remains poorly understood. Here, we use developmental gene amplification in Drosophila ovarian follicle cells as a model to investigate how chromatin modifiers regulate origins in a developmental context. We find that the histone acetyltransferase (HAT) Chameau (Chm) binds to amplicon origins and is partially required for their function. Depletion of Chm had relatively mild effects on origins during gene amplification and genomic replication compared with previous knockdown of its ortholog HBO1 in human cells, which has severe effects on origin function. We show that another HAT, CBP (Nejire), also binds amplicon origins and is partially required for amplification. Knockdown of Chm and CBP together had a more severe effect on nucleosome acetylation and amplicon origin activity than knockdown of either HAT alone, suggesting that these HATs collaborate in origin regulation. In addition to their local function at the origin, we show that Chm and CBP also globally regulate the developmental transition of follicle cells into the amplification stages of oogenesis. Our results reveal a complexity of origin epigenetic regulation by multiple HATs during development and suggest that chromatin modifiers are a nexus that integrates differentiation and DNA replication programs. PMID:22951641
[Immune regulation activity and mechanism of Tibetan Kefir exopolysaccharide fractions].
Meng, Li; Zhang, Lanwei
2009-12-01
To investigate the effects and mechanism on immune regulation activity in mice of two Tibetan Kefir exoploysaccharides (EPS) with different molecular weight of 0.1 x 10(5) - 3 x 10(5) (fraction 1) and 1.8 x 10(3) (fraction 2). The immune regulation activity experiment was carried out in vitro based on the Functional Assessment Procedure and Test Methods of Health Food, which was issued by Ministry of Health of China. First, we treated mice subjects with EPS at doses of 40 mg/kg, 80 mg/kg, 120 mg/kg through ig. Then we detected the index of immune organs, the ability of antibody production (tested by HC50), activity of NK cell, delayed type hypersensitivity (DTH) and phagocytosis of macrophage in mice. Finally, we examined the expression of Erk protein in Macrophages by Western Blot assay. Fraction 1 could promote HC50, activity of NK cell and DTH in mice which low dose showed better. Fraction 2 could promote DTH, phagocytosis of macrophage which high dose showed better. The expression of Erk and COX-2 had the same trend with Phagocytic index. We verified the two fractions of Tibetan Kefir EPS could enhance immune functions in mice. Fraction 1 regulated immune function through NK cell and B cell while fraction 2 through macrophage cell and T cell. The effects to macrophage of Tibetan Kefir EPS in mice may realize through extra cellular signal-regulated kinase Erk pathway.
Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal
Lackford, Brad; Yao, Chengguo; Charles, Georgette M; Weng, Lingjie; Zheng, Xiaofeng; Choi, Eun-A; Xie, Xiaohui; Wan, Ji; Xing, Yi; Freudenberg, Johannes M; Yang, Pengyi; Jothi, Raja; Hu, Guang; Shi, Yongsheng
2014-01-01
mRNA alternative polyadenylation (APA) plays a critical role in post-transcriptional gene control and is highly regulated during development and disease. However, the regulatory mechanisms and functional consequences of APA remain poorly understood. Here, we show that an mRNA 3′ processing factor, Fip1, is essential for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Fip1 promotes stem cell maintenance, in part, by activating the ESC-specific APA profiles to ensure the optimal expression of a specific set of genes, including critical self-renewal factors. Fip1 expression and the Fip1-dependent APA program change during ESC differentiation and are restored to an ESC-like state during somatic reprogramming. Mechanistically, we provide evidence that the specificity of Fip1-mediated APA regulation depends on multiple factors, including Fip1-RNA interactions and the distance between APA sites. Together, our data highlight the role for post-transcriptional control in stem cell self-renewal, provide mechanistic insight on APA regulation in development, and establish an important function for APA in cell fate specification. PMID:24596251
Cell Cycle Regulators Guide Mitochondrial Activity in Radiation-Induced Adaptive Response
Alexandrou, Aris T.
2014-01-01
Abstract Significance: There are accruing concerns on potential genotoxic agents present in the environment including low-dose ionizing radiation (LDIR) that naturally exists on earth's surface and atmosphere and is frequently used in medical diagnosis and nuclear industry. Although its long-term health risk is being evaluated and remains controversial, LDIR is shown to induce temporary but significant adaptive responses in mammalian cells and animals. The mechanisms guiding the mitochondrial function in LDIR-induced adaptive response represent a unique communication between DNA damage and cellular metabolism. Elucidation of the LDIR-regulated mitochondrial activity may reveal new mechanisms adjusting cellular function to cope with hazardous environmental stress. Recent Advances: Key cell cycle regulators, including Cyclin D1/CDK4 and Cyclin B1/cyclin-dependent kinase 1 (CDK1) complexes, are actively involved in the regulation of mitochondrial functions via phosphorylation of their mitochondrial targets. Accumulating new evidence supports a concept that the Cyclin B1/CDK1 complex acts as a mediator in the cross talk between radiation-induced DNA damage and mitochondrial functions to coordinate cellular responses to low-level genotoxic stresses. Critical Issues: The LDIR-mediated mitochondrial activity via Cyclin B1/CDK1 regulation is an irreplaceable network that is able to harmonize vital cellular functions with adjusted mitochondrial metabolism to enhance cellular homeostasis. Future Directions: Further investigation of the coordinative mechanism that regulates mitochondrial activities in sublethal stress conditions, including LDIR, will reveal new insights of how cells cope with genotoxic injury and will be vital for future targeted therapeutic interventions that reduce environmental injury and cancer risk. Antioxid. Redox Signal. 20, 1463–1480. PMID:24180340
Taming the Sphinx: Mechanisms of Cellular Sphingolipid Homeostasis
Olson, D. K.; Fröhlich, F.; Farese, R; Walther, T. C.
2016-01-01
Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. PMID:26747648
Abiotic regulation: a common way for proteins to modulate their functions.
Zou, Zhi; Fu, Xinmiao
2015-01-01
Modulation of protein intrinsic activity in cells is generally carried out via a combination of four common ways, i.e., allosteric regulation, covalent modification, proteolytic cleavage and association of other regulatory proteins. Accumulated evidence indicate that changes of certain abiotic factors (e.g., temperature, pH, light and mechanical force) within or outside the cells directly influence protein structure and thus profoundly modulate the functions of a wide range of proteins, termed as abiotic regulatory proteins (e.g., heat shock factor, small heat shock protein, hemoglobin, zymogen, integrin, rhodopsin). Such abiotic regulation apparently differs from the four classic ways in perceiving and response to the signals. Importantly, it enables cells to directly and also immediately response to extracellular stimuli, thus facilitating the ability of organisms to resist against and adapt to the abiotic stress and thereby playing crucial roles in life evolution. Altogether, abiotic regulation may be considered as a common way for proteins to modulate their functions.
O-Linked N-Acetylglucosamine Cycling Regulates Mitotic Spindle Organization*
Tan, Ee Phie; Caro, Sarah; Potnis, Anish; Lanza, Christopher; Slawson, Chad
2013-01-01
Any defects in the correct formation of the mitotic spindle will lead to chromosomal segregation errors, mitotic arrest, or aneuploidy. We demonstrate that O-linked N-acetylglucosamine (O-GlcNAc), a post-translational modification of serine and threonine residues in nuclear and cytoplasmic proteins, regulates spindle function. In O-GlcNAc transferase or O-GlcNAcase gain of function cells, the mitotic spindle is incorrectly assembled. Chromosome condensation and centrosome assembly is impaired in these cells. The disruption in spindle architecture is due to a reduction in histone H3 phosphorylation by Aurora kinase B. However, gain of function cells treated with the O-GlcNAcase inhibitor Thiamet-G restored the assembly of the spindle and partially rescued histone phosphorylation. Together, these data suggest that the coordinated addition and removal of O-GlcNAc, termed O-GlcNAc cycling, regulates mitotic spindle organization and provides a potential new perspective on how O-GlcNAc regulates cellular events. PMID:23946484
The plasma membrane as a capacitor for energy and metabolism.
Ray, Supriyo; Kassan, Adam; Busija, Anna R; Rangamani, Padmini; Patel, Hemal H
2016-02-01
When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as "capacitors for energy and metabolism." Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell.
Guzun, Rita; Saks, Valdur
2010-03-08
The mechanisms of regulation of respiration and energy fluxes in the cells are analyzed based on the concepts of systems biology, non-equilibrium steady state kinetics and applications of Wiener's cybernetic principles of feedback regulation. Under physiological conditions cardiac function is governed by the Frank-Starling law and the main metabolic characteristic of cardiac muscle cells is metabolic homeostasis, when both workload and respiration rate can be changed manifold at constant intracellular level of phosphocreatine and ATP in the cells. This is not observed in skeletal muscles. Controversies in theoretical explanations of these observations are analyzed. Experimental studies of permeabilized fibers from human skeletal muscle vastus lateralis and adult rat cardiomyocytes showed that the respiration rate is always an apparent hyperbolic but not a sigmoid function of ADP concentration. It is our conclusion that realistic explanations of regulation of energy fluxes in muscle cells require systemic approaches including application of the feedback theory of Wiener's cybernetics in combination with detailed experimental research. Such an analysis reveals the importance of limited permeability of mitochondrial outer membrane for ADP due to interactions of mitochondria with cytoskeleton resulting in quasi-linear dependence of respiration rate on amplitude of cyclic changes in cytoplasmic ADP concentrations. The system of compartmentalized creatine kinase (CK) isoenzymes functionally coupled to ANT and ATPases, and mitochondrial-cytoskeletal interactions separate energy fluxes (mass and energy transfer) from signalling (information transfer) within dissipative metabolic structures - intracellular energetic units (ICEU). Due to the non-equilibrium state of CK reactions, intracellular ATP utilization and mitochondrial ATP regeneration are interconnected by the PCr flux from mitochondria. The feedback regulation of respiration occurring via cyclic fluctuations of cytosolic ADP, Pi and Cr/PCr ensures metabolic stability necessary for normal function of cardiac cells.
Identification of Cell Cycle-Regulated Genes by Convolutional Neural Network.
Liu, Chenglin; Cui, Peng; Huang, Tao
2017-01-01
The cell cycle-regulated genes express periodically with the cell cycle stages, and the identification and study of these genes can provide a deep understanding of the cell cycle process. Large false positives and low overlaps are big problems in cell cycle-regulated gene detection. Here, a computational framework called DLGene was proposed for cell cycle-regulated gene detection. It is based on the convolutional neural network, a deep learning algorithm representing raw form of data pattern without assumption of their distribution. First, the expression data was transformed to categorical state data to denote the changing state of gene expression, and four different expression patterns were revealed for the reported cell cycle-regulated genes. Then, DLGene was applied to discriminate the non-cell cycle gene and the four subtypes of cell cycle genes. Its performances were compared with six traditional machine learning methods. At last, the biological functions of representative cell cycle genes for each subtype are analyzed. Our method showed better and more balanced performance of sensitivity and specificity comparing to other machine learning algorithms. The cell cycle genes had very different expression pattern with non-cell cycle genes and among the cell-cycle genes, there were four subtypes. Our method not only detects the cell cycle genes, but also describes its expression pattern, such as when its highest expression level is reached and how it changes with time. For each type, we analyzed the biological functions of the representative genes and such results provided novel insight to the cell cycle mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Modeling the cost and benefit of proteome regulation in a growing bacterial cell
NASA Astrophysics Data System (ADS)
Sharma, Pooja; Pratim Pandey, Parth; Jain, Sanjay
2018-07-01
Escherichia coli cells differentially regulate the production of metabolic and ribosomal proteins in order to stay close to an optimal growth rate in different environments, and exhibit the bacterial growth laws as a consequence. We present a simple mathematical model of a growing-dividing cell in which an internal dynamical mechanism regulates the allocation of proteomic resources between different protein sectors. The model allows an endogenous determination of the growth rate of the cell as a function of cellular and environmental parameters, and reproduces the bacterial growth laws. We use the model and its variants to study the balance between the cost and benefit of regulation. A cost is incurred because cellular resources are diverted to produce the regulatory apparatus. We show that there is a window of environments or a ‘niche’ in which the unregulated cell has a higher fitness than the regulated cell. Outside this niche there is a large space of constant and time varying environments in which regulation is an advantage. A knowledge of the ‘niche boundaries’ allows one to gain an intuitive understanding of the class of environments in which regulation is an advantage for the organism and which would therefore favour the evolution of regulation. The model allows us to determine the ‘niche boundaries’ as a function of cellular parameters such as the size of the burden of the regulatory apparatus. This class of models may be useful in elucidating various tradeoffs in cells and in making in-silico predictions relevant for synthetic biology.
Zhang, Hui-Ming; Wheeler, Simon L.; Xia, Xue; Colyvas, Kim; Offler, Christina E.; Patrick, John W.
2017-01-01
Transfer cells (TCs) support high rates of membrane transport of nutrients conferred by a plasma membrane area amplified by lining a wall labyrinth comprised of an uniform wall layer (UWL) upon which intricate wall ingrowth (WI) papillae are deposited. A signal cascade of auxin, ethylene, extracellular hydrogen peroxide (H2O2) and cytosolic Ca2+ regulates wall labyrinth assembly. To identify gene cohorts regulated by each signal, a RNA- sequencing study was undertaken using Vicia faba cotyledons. When cotyledons are placed in culture, their adaxial epidermal cells spontaneously undergo trans-differentiation to epidermal TCs (ETCs). Expressed genes encoding proteins central to wall labyrinth formation (signaling, intracellular organization, cell wall) and TC function of nutrient transport were assembled. Transcriptional profiles identified 9,742 annotated ETC-specific differentially expressed genes (DEGs; Log2fold change > 1; FDR p ≤ 0.05) of which 1,371 belonged to signaling (50%), intracellular organization (27%), cell wall (15%) and nutrient transporters (9%) functional categories. Expression levels of 941 ETC-specific DEGs were found to be sensitive to the known signals regulating ETC trans-differentiation. Significantly, signals acting alone, or in various combinations, impacted similar numbers of ETC-specific DEGs across the four functional gene categories. Amongst the signals acting alone, H2O2 exerted most influence affecting expression levels of 56% of the ETC-specific DEGs followed by Ca2+ (21%), auxin (18%) and ethylene (5%). The dominance by H2O2 was evident across all functional categories, but became more attenuated once trans-differentiation transitioned into WI papillae formation. Amongst the eleven signal combinations, H2O2/Ca2+ elicited the greatest impact across all functional categories accounting for 20% of the ETC-specific DEG cohort. The relative influence of the other signals acting alone, or in various combinations, varied across the four functional categories and two phases of wall labyrinth construction. These transcriptome data provide a powerful information platform from which to examine signal transduction pathways and how these regulate expression of genes encoding proteins engaged in intracellular organization, cell wall construction and nutrient transport. PMID:29234338
Zhang, Hui-Ming; Wheeler, Simon L; Xia, Xue; Colyvas, Kim; Offler, Christina E; Patrick, John W
2017-01-01
Transfer cells (TCs) support high rates of membrane transport of nutrients conferred by a plasma membrane area amplified by lining a wall labyrinth comprised of an uniform wall layer (UWL) upon which intricate wall ingrowth (WI) papillae are deposited. A signal cascade of auxin, ethylene, extracellular hydrogen peroxide (H 2 O 2 ) and cytosolic Ca 2+ regulates wall labyrinth assembly. To identify gene cohorts regulated by each signal, a RNA- sequencing study was undertaken using Vicia faba cotyledons. When cotyledons are placed in culture, their adaxial epidermal cells spontaneously undergo trans -differentiation to epidermal TCs (ETCs). Expressed genes encoding proteins central to wall labyrinth formation (signaling, intracellular organization, cell wall) and TC function of nutrient transport were assembled. Transcriptional profiles identified 9,742 annotated ETC-specific differentially expressed genes (DEGs; Log 2 fold change > 1; FDR p ≤ 0.05) of which 1,371 belonged to signaling (50%), intracellular organization (27%), cell wall (15%) and nutrient transporters (9%) functional categories. Expression levels of 941 ETC-specific DEGs were found to be sensitive to the known signals regulating ETC trans -differentiation. Significantly, signals acting alone, or in various combinations, impacted similar numbers of ETC-specific DEGs across the four functional gene categories. Amongst the signals acting alone, H 2 O 2 exerted most influence affecting expression levels of 56% of the ETC-specific DEGs followed by Ca 2+ (21%), auxin (18%) and ethylene (5%). The dominance by H 2 O 2 was evident across all functional categories, but became more attenuated once trans -differentiation transitioned into WI papillae formation. Amongst the eleven signal combinations, H 2 O 2 /Ca 2+ elicited the greatest impact across all functional categories accounting for 20% of the ETC-specific DEG cohort. The relative influence of the other signals acting alone, or in various combinations, varied across the four functional categories and two phases of wall labyrinth construction. These transcriptome data provide a powerful information platform from which to examine signal transduction pathways and how these regulate expression of genes encoding proteins engaged in intracellular organization, cell wall construction and nutrient transport.
GARP: a key receptor controlling FOXP3 in human regulatory T cells.
Probst-Kepper, M; Geffers, R; Kröger, A; Viegas, N; Erck, C; Hecht, H-J; Lünsdorf, H; Roubin, R; Moharregh-Khiabani, D; Wagner, K; Ocklenburg, F; Jeron, A; Garritsen, H; Arstila, T P; Kekäläinen, E; Balling, R; Hauser, H; Buer, J; Weiss, S
2009-09-01
Recent evidence suggests that regulatory pathways might control sustained high levels of FOXP3 in regulatory CD4(+)CD25(hi) T (T(reg)) cells. Based on transcriptional profiling of ex vivo activated T(reg) and helper CD4(+)CD25(-) T (T(h)) cells we have identified GARP (glycoprotein-A repetitions predominant), LGALS3 (lectin, galactoside-binding, soluble, 3) and LGMN (legumain) as novel genes implicated in human T(reg) cell function, which are induced upon T-cell receptor stimulation. Retroviral overexpression of GARP in antigen-specific T(h) cells leads to an efficient and stable re-programming of an effector T cell towards a regulatory T cell, which involves up-regulation of FOXP3, LGALS3, LGMN and other T(reg)-associated markers. In contrast, overexpression of LGALS3 and LGMN enhance FOXP3 and GARP expression, but only partially induced a regulatory phenotype. Lentiviral down-regulation of GARP in T(reg) cells significantly impaired the suppressor function and was associated with down-regulation of FOXP3. Moreover, down-regulation of FOXP3 resulted in similar phenotypic changes and down-regulation of GARP. This provides compelling evidence for a GARP-FOXP3 positive feedback loop and provides a rational molecular basis for the known difference between natural and transforming growth factor-beta induced T(reg) cells as we show here that the latter do not up-regulate GARP. In summary, we have identified GARP as a key receptor controlling FOXP3 in T(reg) cells following T-cell activation in a positive feedback loop assisted by LGALS3 and LGMN, which represents a promising new system for the therapeutic manipulation of T cells in human disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xiao-cai; Xiao, Cui-cui; Li, Hua
Background: Transducin-Like Enhancer of Split protein 4 (TLE4) has been reported to be involved in some subsets of acute myeloid leukemia and colorectal cancer. In the present study, we aimed to explore the role of TLE4 in tumorigenesis and cancer progression in hepatocellular carcinoma (HCC). Methods: The expression pattern of TLE4 in HCC was determined by Western-blot and qRT-PCR, gain-of-function and loss-of-function was used to explore the biological role of TLE4 in HCC cells. A xenograft model was established to confirm its effects on proliferation. Results: The protein expression levels of TLE4 were significantly down-regulated in HCC tissues compared tomore » matched adjacent normal liver tissues. In vitro, down-regulation of TLE4 in Huh7 or SMMC-7721 promoted cell proliferation and ectopical expression of TLE4 in Hep3B or Bel-7404 suppressed cell proliferation. In addition, the cell colony formation ability was enhanced after down-regulation of TLE4 expression in Huh-7 but suppressed after over-expression in Hep3B. Furthermore, down-regulation of TLE4 increased the cell invasion ability, as well as increased the expression level of Vimentin and decreased that of E-cadherin, indicating a phenotype of epithelial-mesenchymal transition (EMT) in HCC cells. On the contrary, ectopical expression of TLE4 in HCC cells decreased the cell invasion ability and inhibited EMT. In vivo, compared to control group, xenograft tumor volumes were significantly decreased in TLE4 overexpression group. Conclusions: These results demonstrated that TLE4 might play important regulatory roles in cellular proliferation and EMT process in HCC. - Highlights: • TLE4 is significantly down-regulated in HCC samples. • Down regulated of TLE4 in HCC cells promotes cell proliferation. • Down regulated of TLE4 in HCC cells promotes epithelial-to-mesenchymal transition.« less
Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4
Schuette, Verena; Embgenbroich, Maria; Ulas, Thomas; Welz, Meike; Schulte-Schrepping, Jonas; Draffehn, Astrid M.; Quast, Thomas; Koch, Katharina; Nehring, Melanie; König, Jessica; Zweynert, Annegret; Harms, Frederike L.; Steiner, Nancy; Limmer, Andreas; Förster, Irmgard; Berberich-Siebelt, Friederike; Knolle, Percy A.; Wohlleber, Dirk; Kolanus, Waldemar; Beyer, Marc; Schultze, Joachim L.; Burgdorf, Sven
2016-01-01
The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8+ T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte–associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality. PMID:27601670
Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4.
Schuette, Verena; Embgenbroich, Maria; Ulas, Thomas; Welz, Meike; Schulte-Schrepping, Jonas; Draffehn, Astrid M; Quast, Thomas; Koch, Katharina; Nehring, Melanie; König, Jessica; Zweynert, Annegret; Harms, Frederike L; Steiner, Nancy; Limmer, Andreas; Förster, Irmgard; Berberich-Siebelt, Friederike; Knolle, Percy A; Wohlleber, Dirk; Kolanus, Waldemar; Beyer, Marc; Schultze, Joachim L; Burgdorf, Sven
2016-09-20
The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8(+) T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality.
Taniguchi, Kiichiro; Kokuryo, Akihiko; Imano, Takao; Minami, Ryunosuke; Nakagoshi, Hideki; Adachi-Yamada, Takashi
2014-12-20
In standard cell division, the cells undergo karyokinesis and then cytokinesis. Some cells, however, such as cardiomyocytes and hepatocytes, can produce binucleate cells by going through mitosis without cytokinesis. This cytokinesis skipping is thought to be due to the inhibition of cytokinesis machinery such as the central spindle or the contractile ring, but the mechanisms regulating it are unclear. We investigated them by characterizing the binucleation event during development of the Drosophila male accessory gland, in which all cells are binucleate. The accessory gland cells arrested the cell cycle at 50 hours after puparium formation (APF) and in the middle of the pupal stage stopped proliferating for 5 hours. They then restarted the cell cycle and at 55 hours APF entered the M-phase synchronously. At this stage, accessory gland cells binucleated by mitosis without cytokinesis. Binucleating cells displayed the standard karyokinesis progression but also showed unusual features such as a non-round shape, spindle orientation along the apico-basal axis, and poor assembly of the central spindle. Mud, a Drosophila homolog of NuMA, regulated the processes responsible for these three features, the classical isoform Mud(PBD) and the two newly characterized isoforms Mud(L) and Mud(S) regulated them differently: Mud(L) repressed cell rounding, Mud(PBD) and Mud(S) oriented the spindle along the apico-basal axis, and Mud(S) and Mud(L) repressed central spindle assembly. Importantly, overexpression of Mud(S) induced binucleation even in standard proliferating cells such as those in imaginal discs. We characterized the binucleation in the Drosophila male accessory gland and examined mechanisms that regulated unusual morphologies of binucleating cells. We demonstrated that Mud, a microtubule binding protein regulating spindle orientation, was involved in this binucleation. We suggest that atypical functions exerted by three structurally different isoforms of Mud regulate cell rounding, spindle orientation and central spindle assembly in binucleation. We also propose that Mud(S) is a key regulator triggering cytokinesis skipping in binucleation processes.
Identification of CD147 (basigin) as a mediator of trophoblast functions.
Lee, Cheuk-Lun; Lam, Maggie P Y; Lam, Kevin K W; Leung, Carmen O N; Pang, Ronald T K; Chu, Ivan K; Wan, Tiffany H L; Chai, Joyce; Yeung, William S B; Chiu, Philip C N
2013-11-01
Does CD147 regulate trophoblast functions in vitro? CD147 exists as a receptor complex on human trophoblast and regulates the implantation, invasion and differentiation of trophoblast. CD147 is a membrane protein implicated in a variety of physiological and pathological conditions due to its regulation of cell-cell recognition, cell differentiation and tissue remodeling. Reduced placental CD147 expression is associated with pre-eclampsia, but the mechanism of actions remains unclear. A loss of function approach or functional blocking antibody was used to study the function of CD147 in primary human cytotrophoblasts isolated from first trimester termination of pregnancy and/or in the BeWo cell line, which possesses characteristics of human cytotrophoblasts. CD147 expression was analyzed by immunofluorescence staining and western blotting. CD147-associated protein complex on plasma membrane were separated by blue native gel electrophoresis and identified by reversed-phase liquid chromatography coupled with quadrupole time-of-flight hybrid mass spectrometer. Cell proliferation and invasion were determined by fluorometric cell proliferation assays and transwell invasion assays, respectively. Matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA) activities were measured by gelatin gel zymography and uPA assay kits, respectively. Cell migration was determined by wound-healing assays. Cell fusion was analyzed by immunocytochemistry staining of E-cadherin and 4',6-diamidino-2-phenylindole. The transcripts of matrix proteinases and trophoblast lineage markers were measured by quantitative PCR. Extracellular signal-regulated kinase (ERK) activation was analyzed by western blot using antibodies against ERKs. CD147 exists as protein complexes on the plasma membrane of primary human cytotrophoblasts and BeWo cells. Several known CD147-interacting partners, including integrin β1 and monocarboxylate transporter-1, were identified. Suppression of CD147 by siRNA significantly (P < 0.05) reduced trophoblast-endometrial cell interaction, cell invasion, syncytialization, differentiation and ERK activation of BeWo cells. Consistently, anti-CD147 functional blocking antibody suppressed the invasiveness of primary human cytotrophoblasts. The reduced invasiveness was probably due to the restrained (P < 0.05) enzyme activities of MMP-2, MMP-9 and uPA. Most of the above findings are based on BeWo cell lines. These results need to be confirmed with human first trimester primary cytotrophoblast. This is the first study on the role of CD147 in trophoblast function. Further investigation on the function of CD147 and its associated protein complexes will enhance our understanding on human placentation. This work was supported in part by the University of Hong Kong Grant 201011159200. The authors have no competing interests to declare.
SIRT1 and HIF1α signaling in metabolism and immune responses.
Yu, Qing; Dong, Lin; Li, Yan; Liu, Gaungwei
2018-04-01
SIRT1 and HIF1α are regarded as two key metabolic sensors in cellular metabolism pathways and play vital roles in influencing immune responses. SIRT1 and HIF1α regulate immune responses in metabolism-dependent and -independent ways. Here, we summarized the recent knowledge of SIRT1 and HIF1α signaling in metabolism and immune responses. HIF1α is a direct target of SIRT1. Sometimes, SIRT1 and HIF1α cooperate or act separately to mediate immune responses. In innate immune responses, SIRT1 can regulate the glycolytic activity of myeloid-derived suppressor cells (MDSCs) and influence MDSC functional differentiation. SIRT1 can regulate monocyte function through NF-κB and PGC-1, accompanying an increased NAD + level. The SIRT1-HIF1α axis bridges the innate immune signal to an adaptive immune response by directing cytokine production of dendritic cells in a metabolism-independent manner, promoting the differentiation of CD4 + T cells. For adaptive immune cells, SIRT1 can mediate the differentiation of inflammatory T cell subsets in a NAD + -dependent manner. HIF1α can stimulate some glycolysis-associated genes and regulate the ATP and ROS generations. In addition, SIRT1-and HIF1α-associated metabolism inhibits the activity of mTOR, thus negatively regulating the differentiation and function of Th9 cells. As immune cells are crucial in controlling immune-associated diseases, SIRT1-and HIF1α associated-metabolism is closely linked to immune-associated diseases, including infection, tumors, allergic airway inflammation, and autoimmune diseases. Copyright © 2018 Elsevier B.V. All rights reserved.
Mps1 kinase regulates tumor cell viability via its novel role in mitochondria
Zhang, X; Ling, Y; Guo, Y; Bai, Y; Shi, X; Gong, F; Tan, P; Zhang, Y; Wei, C; He, X; Ramirez, A; Liu, X; Cao, C; Zhong, H; Xu, Q; Ma, R Z
2016-01-01
Targeting mitotic kinase monopolar spindle 1 (Mps1) for tumor therapy has been investigated for many years. Although it was suggested that Mps1 regulates cell viability through its role in spindle assembly checkpoint (SAC), the underlying mechanism remains less defined. In an endeavor to reveal the role of high levels of mitotic kinase Mps1 in the development of colon cancer, we unexpectedly found the amount of Mps1 required for cell survival far exceeds that of maintaining SAC in aneuploid cell lines. This suggests that other functions of Mps1 besides SAC are also employed to maintain cell viability. Mps1 regulates cell viability independent of its role in cytokinesis as the genetic depletion of Mps1 spanning from metaphase to cytokinesis affects neither cytokinesis nor cell viability. Furthermore, we developed a single-cycle inhibition strategy that allows disruption of Mps1 function only in mitosis. Using this strategy, we found the functions of Mps1 in mitosis are vital for cell viability as short-term treatment of mitotic colon cancer cell lines with Mps1 inhibitors is sufficient to cause cell death. Interestingly, Mps1 inhibitors synergize with microtubule depolymerizing drug in promoting polyploidization but not in tumor cell growth inhibition. Finally, we found that Mps1 can be recruited to mitochondria by binding to voltage-dependent anion channel 1 (VDAC1) via its C-terminal fragment. This interaction is essential for cell viability as Mps1 mutant defective for interaction fails to main cell viability, causing the release of cytochrome c. Meanwhile, deprivation of VDAC1 can make tumor cells refractory to loss of Mps1-induced cell death. Collectively, we conclude that inhibition of the novel mitochondrial function Mps1 is sufficient to kill tumor cells. PMID:27383047
Mps1 kinase regulates tumor cell viability via its novel role in mitochondria.
Zhang, X; Ling, Y; Guo, Y; Bai, Y; Shi, X; Gong, F; Tan, P; Zhang, Y; Wei, C; He, X; Ramirez, A; Liu, X; Cao, C; Zhong, H; Xu, Q; Ma, R Z
2016-07-07
Targeting mitotic kinase monopolar spindle 1 (Mps1) for tumor therapy has been investigated for many years. Although it was suggested that Mps1 regulates cell viability through its role in spindle assembly checkpoint (SAC), the underlying mechanism remains less defined. In an endeavor to reveal the role of high levels of mitotic kinase Mps1 in the development of colon cancer, we unexpectedly found the amount of Mps1 required for cell survival far exceeds that of maintaining SAC in aneuploid cell lines. This suggests that other functions of Mps1 besides SAC are also employed to maintain cell viability. Mps1 regulates cell viability independent of its role in cytokinesis as the genetic depletion of Mps1 spanning from metaphase to cytokinesis affects neither cytokinesis nor cell viability. Furthermore, we developed a single-cycle inhibition strategy that allows disruption of Mps1 function only in mitosis. Using this strategy, we found the functions of Mps1 in mitosis are vital for cell viability as short-term treatment of mitotic colon cancer cell lines with Mps1 inhibitors is sufficient to cause cell death. Interestingly, Mps1 inhibitors synergize with microtubule depolymerizing drug in promoting polyploidization but not in tumor cell growth inhibition. Finally, we found that Mps1 can be recruited to mitochondria by binding to voltage-dependent anion channel 1 (VDAC1) via its C-terminal fragment. This interaction is essential for cell viability as Mps1 mutant defective for interaction fails to main cell viability, causing the release of cytochrome c. Meanwhile, deprivation of VDAC1 can make tumor cells refractory to loss of Mps1-induced cell death. Collectively, we conclude that inhibition of the novel mitochondrial function Mps1 is sufficient to kill tumor cells.
Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L
2014-01-01
Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling.
Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L
2014-01-01
Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling. PMID:25628960
Thyroid hormone and cerebellar development.
Anderson, Grant W
2008-01-01
Thyroid hormone (TH) plays a key role in mammalian brain development. The developing brain is sensitive to both TH deficiency and excess. Brain development in the absence of TH results in motor skill deficiencies and reduced intellectual development. These functional abnormalities can be attributed to maldevelopment of specific cell types and regions of the brain including the cerebellum. TH functions at the molecular level by regulating gene transcription. Therefore, understanding how TH regulates cerebellar development requires identification of TH-regulated gene targets and the cells expressing these genes. Additionally, the process of TH-dependent regulation of gene expression is tightly controlled by mechanisms including regulation of TH transport, TH metabolism, toxicologic inhibition of TH signaling, and control of the nuclear TH response apparatus. This review will describe the functional, cellular, and molecular effects of TH deficit in the developing cerebellum and emphasize the most recent findings regarding TH action in this important brain region.
Kito, Hiroaki; Yamamura, Hisao; Suzuki, Yoshiaki; Yamamura, Hideto; Ohya, Susumu; Asai, Kiyofumi; Imaizumi, Yuji
2015-04-10
Store-operated Ca(2+) entry (SOCE) via Orai1 and STIM1 complex is supposed to have obligatory roles in the regulation of cellular functions of vascular endothelial cells, while little is known about the contribution of Orai2. Quantitative PCR and Western blot analyses indicated the expression of Orai2 and STIM2, in addition to Orai1 and STIM1 in bovine brain capillary endothelial cell line, t-BBEC117. During the exponential growth of t-BBEC117, the knockdown of Orai1 and STIM1 significantly reduced the SOCE activity, whereas Orai2 and STIM2 siRNAs had no effect. To examine whether endogenous SOCE activity contributes to the regulation of cell cycle progression, t-BBEC117 were synchronized using double thymidine blockage. At the G2/M phase, Ca(2+) influx via SOCE was decreased and Orai2 expression was increased compared to the G0/G1 phase. When Orai2 was knocked down at the G2/M phase, the decrease in SOCE was removed, and cell proliferation was partly attenuated. Taken together, Orai1 significantly contributes to cell proliferation via the functional expression, which is presumably independent of the cell cycle phases. In construct, Orai2 is specifically up-regulated during the G2/M phase, negatively modulates the SOCE activity, and may contribute to the regulation of cell cycle progression in brain capillary endothelial cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Zheng, Peng; Xiong, Qian; Wu, Ying; Chen, Ying; Chen, Zhuo; Fleming, Joy; Gao, Ding; Bi, Lijun; Ge, Feng
2015-01-01
Long noncoding RNAs (lncRNAs), which have emerged in recent years as a new and crucial layer of gene regulators, regulate various biological processes such as carcinogenesis and metastasis. HOTAIR (Hox transcript antisense intergenic RNA), a lncRNA overexpressed in most human cancers, has been shown to be an oncogenic lncRNA. Here, we explored the role of HOTAIR in HeLa cells and searched for proteins regulated by HOTAIR. To understand the mechanism of action of HOTAIR from a systems perspective, we employed a quantitative proteomic strategy to systematically identify potential targets of HOTAIR. The expression of 170 proteins was significantly dys-regulated after inhibition of HOTAIR, implying that they could be potential targets of HOTAIR. Analysis of this data at the systems level revealed major changes in proteins involved in diverse cellular components, including the cytoskeleton and the respiratory chain. Further functional studies on vimentin (VIM), a key protein involved in the cytoskeleton, revealed that HOTAIR exerts its effects on migration and invasion of HeLa cells, at least in part, through the regulation of VIM expression. Inhibition of HOTAIR leads to mitochondrial dysfunction and ultrastructural alterations, suggesting a novel role of HOTAIR in maintaining mitochondrial function in cancer cells. Our results provide novel insights into the mechanisms underlying the function of HOTAIR in cancer cells. We expect that the methods used in this study will become an integral part of functional studies of lncRNAs. PMID:25762744
Chang, Heng-Kwei
2015-01-01
Retinoic acid (RA), an active metabolite converted from vitamin A, plays an active role in immune function, such as defending against infections and immune regulation. Although RA affects various types of immune cells, including antigen-presenting cells, B lymphocytes, and T lymphocytes, whether it affects natural killer T (NKT) cells remain unknown. In this study, we found that RA decreased interferon (IFN)-γ production by activated NKT cells through T-cell receptor (TCR) and CD28. We also found that RA reduced extracellular signal-regulated kinase (ERK) phosphorylation, but increased phosphatase 2A (PP2A) activity in TCR/CD28-stimulated NKT cells. The increased PP2A activity, at least partly, contributed to the reduction of ERK phosphorylation. Since inhibition of ERK activation decreases IFN-γ production by TCR/CD28-stimulated NKT cells, RA may downregulate IFN-γ production by TCR/CD28-stimulated NKT cells through the PP2A-ERK pathway. Our results demonstrated a novel function of RA in modulating the IFN-γ expression by activated NKT cells. PMID:25343668
The PBX1 lupus susceptibility gene regulates CD44 expression.
Niu, Yuxin; Sengupta, Mayami; Titov, Anton A; Choi, Seung-Chul; Morel, Laurence
2017-05-01
PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4 + T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and shows that the lupus-associated isoform PBX1-d has unique molecular functions. Copyright © 2017 Elsevier Ltd. All rights reserved.
A role for intracellular and extracellular DEK in regulating hematopoiesis.
Capitano, Maegan L; Broxmeyer, Hal E
2017-07-01
Hematopoietic stem/progenitor cell fate decision during hematopoiesis is regulated by intracellular and extracellular signals such as transcription factors, growth factors, and cell-to-cell interactions. In this review, we explore the function of DEK, a nuclear phosphoprotein, on gene regulation. We also examine how DEK is secreted and internalized by cells, and discuss how both endogenous and extracellular DEK regulates hematopoiesis. Finally, we explore what currently is known about the regulation of DEK during inflammation. DEK negatively regulates the proliferation of early myeloid progenitor cells but has a positive effect on the differentiation of mature myeloid cells. Inflammation regulates intracellular DEK concentrations with inflammatory stimuli enhancing DEK expression. Inflammation-induced nuclear factor-kappa B activation is regulated by DEK, resulting in changes in the production of other inflammatory molecules such as IL-8. Inflammatory stimuli in turn regulates DEK secretion by cells of hematopoietic origin. However, how inflammation-induced expression and secretion of DEK regulates hematopoiesis remains unknown. Understanding how DEK regulates hematopoiesis under both homeostatic and inflammatory conditions may lead to a better understanding of the biology of HSCs and HPCs. Furthering our knowledge of the regulation of hematopoiesis will ultimately lead to new therapeutics that may increase the efficacy of hematopoietic stem cell transplantation.
Overexpression of neurofilament H disrupts normal cell structure and function
NASA Technical Reports Server (NTRS)
Szebenyi, Gyorgyi; Smith, George M.; Li, Ping; Brady, Scott T.
2002-01-01
Studying exogenously expressed tagged proteins in live cells has become a standard technique for evaluating protein distribution and function. Typically, expression levels of experimentally introduced proteins are not regulated, and high levels are often preferred to facilitate detection. However, overexpression of many proteins leads to mislocalization and pathologies. Therefore, for normative studies, moderate levels of expression may be more suitable. To understand better the dynamics of intermediate filament formation, transport, and stability in a healthy, living cell, we inserted neurofilament heavy chain (NFH)-green fluorescent protein (GFP) fusion constructs in adenoviral vectors with tetracycline (tet)-regulated promoters. This system allows for turning on or off the synthesis of NFH-GFP at a selected time, for a defined period, in a dose-dependent manner. We used this inducible system for live cell imaging of changes in filament structure and cell shape, motility, and transport associated with increasing NFH-GFP expression. Cells with low to intermediate levels of NFH-GFP were structurally and functionally similar to neighboring, nonexpressing cells. In contrast, overexpression led to pathological alterations in both filament organization and cell function. Copyright 2002 Wiley-Liss, Inc.
Jereb, Saša; Hwang, Hun-Way; Van Otterloo, Eric; Govek, Eve-Ellen; Fak, John J; Yuan, Yuan; Hatten, Mary E
2018-01-01
Alternative polyadenylation (APA) regulates mRNA translation, stability, and protein localization. However, it is unclear to what extent APA regulates these processes uniquely in specific cell types. Using a new technique, cTag-PAPERCLIP, we discovered significant differences in APA between the principal types of mouse cerebellar neurons, the Purkinje and granule cells, as well as between proliferating and differentiated granule cells. Transcripts that differed in APA in these comparisons were enriched in key neuronal functions and many differed in coding sequence in addition to 3’UTR length. We characterize Memo1, a transcript that shifted from expressing a short 3’UTR isoform to a longer one during granule cell differentiation. We show that Memo1 regulates granule cell precursor proliferation and that its long 3’UTR isoform is targeted by miR-124, contributing to its downregulation during development. Our findings provide insight into roles for APA in specific cell types and establish a platform for further functional studies. PMID:29578408
Zhao, Zhenze; Ma, Xiuye; Sung, Derek; Li, Monica; Kosti, Adam; Lin, Gregory; Chen, Yidong; Pertsemlidis, Alexander; Hsiao, Tzu-Hung; Du, Liqin
2015-01-01
microRNA-449a (miR-449a) has been identified to function as a tumor suppressor in several types of cancers. However, the role of miR-449a in neuroblastoma has not been intensively investigated. We recently found that the overexpression of miR-449a significantly induces neuroblastoma cell differentiation, suggesting its potential tumor suppressor function in neuroblastoma. In this study, we further investigated the mechanisms underlying the tumor suppressive function of miR-449a in neuroblastoma. We observed that miR-449a inhibits neuroblastoma cell survival and growth through 2 mechanisms—inducing cell differentiation and cell cycle arrest. Our comprehensive investigations on the dissection of the target genes of miR-449a revealed that 3 novel targets- MFAP4, PKP4 and TSEN15 -play important roles in mediating its differentiation-inducing function. In addition, we further found that its function in inducing cell cycle arrest involves down-regulating its direct targets CDK6 and LEF1. To determine the clinical significance of the miR-449a-mediated tumor suppressive mechanism, we examined the correlation between the expression of these 5 target genes in neuroblastoma tumor specimens and the survival of neuroblastoma patients. Remarkably, we noted that high tumor expression levels of all the 3 miR-449a target genes involved in regulating cell differentiation, but not the target genes involved in regulating cell cycle, are significantly correlated with poor survival of neuroblastoma patients. These results suggest the critical role of the differentiation-inducing function of miR-449a in determining neuroblastoma progression. Overall, our study provides the first comprehensive characterization of the tumor-suppressive function of miR-449a in neuroblastoma, and reveals the potential clinical significance of the miR-449a-mediated tumor suppressive pathway in neuroblastoma prognosis. PMID:25760387
Lawrence, Mitchell G.; Margaryan, Naira V.; Loessner, Daniela; Collins, Angus; Kerr, Kris M.; Turner, Megan; Seftor, Elisabeth A.; Stephens, Carson R.; Lai, John; BioResource, APC; Postovit, Lynne-Marie; Clements, Judith A.; Hendrix, Mary J.C.
2011-01-01
Background Nodal is a member of the Transforming Growth Factor β (TGFβ) superfamily that directs embryonic patterning and promotes the plasticity and tumorigenicity of tumor cells, but its role in the prostate is unknown. The goal of this study was to characterize the expression and function of Nodal in prostate cancer and determine whether, like other TGFβ ligands, it modulates androgen receptor (AR) activity. Methods Nodal expression was investigated using immunohistochemistry of tissue microarrays and Western blots of prostate cell lines. The functional role of Nodal was examined using Matrigel and soft agar growth assays. Cross-talk between Nodal and AR signaling was assessed with luciferase reporter assays and expression of endogenous androgen regulated genes. Results Significantly increased Nodal expression was observed in cancer compared with benign prostate specimens. Nodal was only expressed by DU145 and PC3 cells. All cell lines expressed Nodal’s co-receptor, Cripto-1, but lacked Lefty, a critical negative regulator of Nodal signaling. Recombinant human Nodal triggered downstream Smad2 phosphorylation in DU145 and LNCaP cells, and stable transfection of pre-pro-Nodal enhanced the growth of LNCaP cells in Matrigel and soft agar. Finally, Nodal attenuated AR signaling, reducing the activity of a PSA promoter construct in luciferase assays and down-regulating the endogenous expression of androgen regulated genes. Conclusions An aberrant Nodal signaling pathway is re-expressed and functionally active in prostate cancer cells. PMID:21656830
Th-POK regulates mammary gland lactation through mTOR-SREBP pathway.
Zhang, Rui; Ma, Huimin; Gao, Yuan; Wu, Yanjun; Qiao, Yuemei; Geng, Ajun; Cai, Cheguo; Han, Yingying; Zeng, Yi Arial; Liu, Xiaolong; Ge, Gaoxiang
2018-02-01
The Th-inducing POK (Th-POK, also known as ZBTB7B or cKrox) transcription factor is a key regulator of lineage commitment of immature T cell precursors. It is yet unclear the physiological functions of Th-POK besides helper T cell differentiation. Here we show that Th-POK is restrictedly expressed in the luminal epithelial cells in the mammary glands that is upregulated at late pregnancy and lactation. Lineage restrictedly expressed Th-POK exerts distinct biological functions in the mammary epithelial cells and T cells in a tissue-specific manner. Th-POK is not required for mammary epithelial cell fate determination. Mammary gland morphogenesis in puberty and alveologenesis in pregnancy are phenotypically normal in the Th-POK-deficient mice. However, Th-POK-deficient mice are defective in triggering the onset of lactation upon parturition with large cellular lipid droplets retained within alveolar epithelial cells. As a result, Th-POK knockout mice are unable to efficiently secret milk lipid and to nurse the offspring. Such defect is mainly attributed to the malfunctioned mammary epithelial cells, but not the tissue microenvironment in the Th-POK deficient mice. Th-POK directly regulates expression of insulin receptor substrate-1 (IRS-1) and insulin-induced Akt-mTOR-SREBP signaling. Th-POK deficiency compromises IRS-1 expression and Akt-mTOR-SREBP signaling in the lactating mammary glands. Conversely, insulin induces Th-POK expression. Thus, Th-POK functions as an important feed-forward regulator of insulin signaling in mammary gland lactation.
Th-POK regulates mammary gland lactation through mTOR-SREBP pathway
Wu, Yanjun; Qiao, Yuemei; Geng, Ajun; Cai, Cheguo; Han, Yingying; Zeng, Yi Arial
2018-01-01
The Th-inducing POK (Th-POK, also known as ZBTB7B or cKrox) transcription factor is a key regulator of lineage commitment of immature T cell precursors. It is yet unclear the physiological functions of Th-POK besides helper T cell differentiation. Here we show that Th-POK is restrictedly expressed in the luminal epithelial cells in the mammary glands that is upregulated at late pregnancy and lactation. Lineage restrictedly expressed Th-POK exerts distinct biological functions in the mammary epithelial cells and T cells in a tissue-specific manner. Th-POK is not required for mammary epithelial cell fate determination. Mammary gland morphogenesis in puberty and alveologenesis in pregnancy are phenotypically normal in the Th-POK-deficient mice. However, Th-POK-deficient mice are defective in triggering the onset of lactation upon parturition with large cellular lipid droplets retained within alveolar epithelial cells. As a result, Th-POK knockout mice are unable to efficiently secret milk lipid and to nurse the offspring. Such defect is mainly attributed to the malfunctioned mammary epithelial cells, but not the tissue microenvironment in the Th-POK deficient mice. Th-POK directly regulates expression of insulin receptor substrate-1 (IRS-1) and insulin-induced Akt-mTOR-SREBP signaling. Th-POK deficiency compromises IRS-1 expression and Akt-mTOR-SREBP signaling in the lactating mammary glands. Conversely, insulin induces Th-POK expression. Thus, Th-POK functions as an important feed-forward regulator of insulin signaling in mammary gland lactation. PMID:29420538
Versatile function of the circadian protein CIPC as a regulator of Erk activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsunaga, Ryota; Nishino, Tasuku; Yokoyama, Atsushi
2016-01-15
The CLOCK-interacting protein, Circadian (CIPC), has been identified as an additional negative-feedback regulator of the circadian clock. However, recent study on CIPC knockout mice has shown that CIPC is not critically required for basic circadian clock function, suggesting other unknown biological roles for CIPC. In this study, we focused on the cell cycle dependent nuclear-cytoplasmic shuttling function of CIPC and on identifying its binding proteins. Lys186 and 187 were identified as the essential amino acid residues within the nuclear localization signal (NLS) of CIPC. We identified CIPC-binding proteins such as the multifunctional enzyme CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase,more » and dihydroorotase), which is a key enzyme for de novo pyrimidine synthesis. Compared to control cells, HEK293 cells overexpressing wild-type CIPC showed suppressed cell proliferation and retardation of cell cycle. We also found that PMA-induced Erk activation was inhibited with expression of wild-type CIPC. In contrast, the NLS mutant of CIPC, which reduced the ability of CIPC to translocate into the nucleus, did not exhibit these biological effects. Since CAD and Erk have significant roles in cell proliferation and cell cycle, CIPC may work as a cell cycle regulator by interacting with these binding proteins. - Highlights: • CIPC is a cell cycle dependent nuclear-cytoplasmic shuttling protein. • K186 and 187are the essential amino acid residues within the NLS of CIPC. • CAD was identified as a novel CIPC-binding protein. • CIPC might regulate the activity and translocation of CAD in the cells.« less
Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea
2013-07-15
Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α{sub 1}-adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged bymore » Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy.« less
Chang, Hsun-Ming; Qiao, Jie; Leung, Peter C K
2016-12-01
Initially identified for their capability to induce heterotopic bone formation, bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong to the transforming growth factor β superfamily. Using cellular and molecular genetic approaches, recent studies have implicated intra-ovarian BMPs as potent regulators of ovarian follicular function. The bi-directional communication of oocytes and the surrounding somatic cells is mandatory for normal follicle development and oocyte maturation. This review summarizes the current knowledge on the physiological role and molecular determinants of these ovarian regulatory factors within the human germline-somatic regulatory loop. The regulation of ovarian function remains poorly characterized in humans because, while the fundamental process of follicular development and oocyte maturation is highly similar across species, most information on the regulation of ovarian function is obtained from studies using rodent models. Thus, this review focuses on the studies that used human biological materials to gain knowledge about human ovarian biology and disorders and to develop strategies for preventing, diagnosing and treating these abnormalities. Relevant English-language publications describing the roles of BMPs or growth differentiation factors (GDFs) in human ovarian biology and phenotypes were comprehensively searched using PubMed and the Google Scholar database. The publications included those published since the initial identification of BMPs in the mammalian ovary in 1999 through July 2016. Studies using human biological materials have revealed the expression of BMPs, GDFs and their putative receptors as well as their molecular signaling in the fundamental cells (oocyte, cumulus/granulosa cells (GCs) and theca/stroma cells) of the ovarian follicles throughout follicle development. With the availability of recombinant human BMPs/GDFs and the development of immortalized human cell lines, functional studies have demonstrated the physiological role of intra-ovarian BMPs/GDFs in all aspects of ovarian functions, from follicle development to steroidogenesis, cell-cell communication, oocyte maturation, ovulation and luteal function. Furthermore, there is crosstalk between these potent ovarian regulators and the endocrine signaling system. Dysregulation or naturally occurring mutations within the BMP system may lead to several female reproductive diseases. The latest development of recombinant BMPs, synthetic BMP inhibitors, gene therapy and tools for BMP-ligand sequestration has made the BMP pathway a potential therapeutic target in certain human fertility disorders; however, further clinical trials are needed. Recent studies have indicated that GDF8 is an intra-ovarian factor that may play a novel role in regulating ovarian functions in the human ovary. Intra-ovarian BMPs/GDFs are critical regulators of folliculogenesis and human ovarian functions. Any dysregulation or variations in these ligands or their receptors may affect the related intracellular signaling and influence ovarian functions, which accounts for several reproductive pathologies and infertility. Understanding the normal and pathological roles of intra-ovarian BMPs/GDFs, especially as related to GC functions and follicular fluid levels, will inform innovative approaches to fertility regulation and improve the diagnosis and treatment of ovarian disorders. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.
Park, Sangbin; Bustamante, Erika L.; Antonova, Julie; McLean, Graeme W.; Kim, Seung K.
2011-01-01
Drosophila neuroendocrine cells comprising the corpora cardiaca (CC) are essential for systemic glucose regulation and represent functional orthologues of vertebrate pancreatic α-cells. Although Drosophila CC cells have been regarded as developmental orthologues of pituitary gland, the genetic regulation of CC development is poorly understood. From a genetic screen, we identified multiple novel regulators of CC development, including Notch signaling factors. Our studies demonstrate that the disruption of Notch signaling can lead to the expansion of CC cells. Live imaging demonstrates localized emergence of extra precursor cells as the basis of CC expansion in Notch mutants. Contrary to a recent report, we unexpectedly found that CC cells originate from head mesoderm. We show that Tinman expression in head mesoderm is regulated by Notch signaling and that the combination of Daughterless and Tinman is sufficient for ectopic CC specification in mesoderm. Understanding the cellular, genetic, signaling, and transcriptional basis of CC cell specification and expansion should accelerate discovery of molecular mechanisms regulating ontogeny of organs that control metabolism. PMID:21901108
Kuzmina, U Sh; Zainullina, L F; Sadovnikov, S V; Vakhitov, V A; Vakhitova, Yu V
2018-06-19
To determine the role of NMDA receptors in the functional regulation of immunocompetent cells, comparative assay was carried out for genes expressed in the mononuclears in peripheral blood of healthy persons under normal conditions and after blockade of these receptors. The genes, whose expression changed in response to blockade of NMDA receptors in mononuclears, encode the products involved in regulation of the major functions of immune cells, such as proliferation (IL4, VCAM1, and CDKN2A), apoptosis (BAX, MYC, CDKN2A, HSPB1, and CADD45A), activation (IL4R, IL4, VCAM1, and CDKN2A), and differentiation (IL4, VCAM1, and BAX).
The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation
2016-01-01
Over the past decade, numerous advances have been made in the role and regulation of inflammasomes during pathogenic and sterile insults. An inflammasome complex comprises a sensor, an adaptor, and a zymogen procaspase-1. The functional output of inflammasome activation includes secretion of cytokines, IL-1β and IL-18, and induction of an inflammatory form of cell death called pyroptosis. Recent studies have highlighted the intersection of this inflammatory response with fundamental cellular processes. Novel modulators and functions of inflammasome activation conventionally associated with the maintenance of homeostatic biological functions have been uncovered. In this review, we discuss the biological processes involved in the activation and regulation of the inflammasome. PMID:27325789
Baker, Nicholas E.; Firth, Lucy C.
2015-01-01
It is thought that Retinal Determination gene products define the response made to cell-cell signals within the eye developmental field by binding to enhancers of genes that are also regulated by cell-cell signaling pathways. In Drosophila, Retinal Determination genes including Eyeless, teashirt, eyes absent, dachsous and sine oculis, are required for normal eye development and can induce ectopic eyes when mis-expressed. Characterization of the enhancers responsible for eye expression of the hedgehog, shaven, and atonal genes, as well as the dynamics of Retinal Determination gene expression themselves, now suggest a multilayered network whereby transcriptional regulation by either Retinal Determination genes or cell-cell signaling pathways can sometimes be indirect and mediated by other transcription factor intermediates. In this updated view of the interaction between extracellular information and cell intrinsic programs during development, regulation of individual genes might sometimes be several steps removed from either the Retinal Determination genes or cell-cell signaling pathways that nevertheless govern their expression. PMID:21607995
Chandrakesan, Parthasarathy; May, Randal; Weygant, Nathaniel; Qu, Dongfeng; Berry, William L; Sureban, Sripathi M; Ali, Naushad; Rao, Chinthalapally; Huycke, Mark; Bronze, Michael S; Houchen, Courtney W
2016-11-23
Crypt epithelial survival and regeneration after injury require highly coordinated complex interplay between resident stem cells and diverse cell types. The function of Dclk1 expressing tuft cells regulating intestinal epithelial DNA damage response for cell survival/self-renewal after radiation-induced injury is unclear. Intestinal epithelial cells (IECs) were isolated and purified and utilized for experimental analysis. We found that small intestinal crypts of Villin Cre ;Dclk1 f/f mice were hypoplastic and more apoptotic 24 h post-total body irradiation, a time when stem cell survival is p53-independent. Injury-induced ATM mediated DNA damage response, pro-survival genes, stem cell markers, and self-renewal ability for survival and restitution were reduced in the isolated intestinal epithelial cells. An even greater reduction in these signaling pathways was observed 3.5 days post-TBI, when peak crypt regeneration occurs. We found that interaction with Dclk1 is critical for ATM and COX2 activation in response to injury. We determined that Dclk1 expressing tuft cells regulate the whole intestinal epithelial cells following injury through paracrine mechanism. These findings suggest that intestinal tuft cells play an important role in regulating the ATM mediated DNA damage response, for epithelial cell survival/self-renewal via a Dclk1 dependent mechanism, and these processes are indispensable for restitution and function after severe radiation-induced injury.
New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment?
Coqueret, Olivier
2003-02-01
Cell division relies on the activation of cyclins, which bind to cyclin-dependent kinases (CDKs) to induce cell-cycle progression towards S phase and later to initiate mitosis. Since uncontrolled cyclin-dependent kinase activity is often the cause of human cancer, their function is tightly regulated by cell-cycle inhibitors such as the p21 and p27 Cip/Kip proteins. Following anti-mitogenic signals or DNA damage, p21 and p27 bind to cyclin-CDK complexes to inhibit their catalytic activity and induce cell-cycle arrest. Interestingly, recent discoveries suggest that p21 and p27 might have new activities that are unrelated to their function as CDK inhibitors. The identification of new targets of Cip/Kip proteins as well as evidence of Cip/Kip cytoplasmic relocalization have revealed unexpected functions for these proteins in the control of CDK activation, in the regulation of apoptosis and in transcriptional activation. This article discusses recent insights into these possible additional functions of p21 and p27.
Modulation of gastrointestinal vagal neurocircuits by hyperglycemia
Browning, Kirsteen N.
2013-01-01
Glucose sensing within autonomic neurocircuits is critical for the effective integration and regulation of a variety of physiological homeostatic functions including the co-ordination of vagally-mediated reflexes regulating gastrointestinal (GI) functions. Glucose regulates GI functions via actions at multiple sites of action, from modulating the activity of enteric neurons, endocrine cells, and glucose transporters within the intestine, to regulating the activity and responsiveness of the peripheral terminals, cell bodies and central terminals of vagal sensory neurons, to modifying both the activity and synaptic responsiveness of central brainstem neurons. Unsurprisingly, significant impairment in GI functions occurs in pathophysiological states where glucose levels are dysregulated, such as diabetes. A substantial obstacle to the development of new therapies to modify the disease, rather than treat the symptoms, are the gaps in our understanding of the mechanisms by which glucose modulates GI functions, particularly vagally-mediated responses and a more complete understanding of disease-related plasticity within these neurocircuits may open new avenues and targets for research. PMID:24324393
Regulation of early Xenopus development by ErbB signaling
Nie, Shuyi; Chang, Chenbei
2008-01-01
ErbB signaling has long been implicated in cancer formation and progression and is shown to regulate cell division, migration and death during tumorigenesis. The functions of the ErbB pathway during early vertebrate embryogenesis, however, are not well understood. Here we report characterization of ErbB activities during early frog development. Gain-of-function analyses show that EGFR, ErbB2 and ErbB4 induce ectopic tumor-like cell mass that contains increased numbers of mitotic cells. Both the muscle and the neural markers are expressed in these ectopic protrusions. ErbBs also induce mesodermal markers in ectodermal explants. Loss-of-function studies using carboxyl terminal-truncated dominant-negative ErbB receptors demonstrate that blocking ErbB signals leads to defective gastrulation movements and malformation of the embryonic axis with a reduction in the head structures in early frog embryos. These data, together with the observation that ErbBs are expressed early during frog embryogenesis, suggest that ErbBs regulate cell proliferation, movements and embryonic patterning during early Xenopus development. PMID:16258939
Trafficking Ion Transporters to the Apical Membrane of Polarized Intestinal Enterocytes.
Engevik, Amy Christine; Goldenring, James R
2018-01-02
Epithelial cells lining the gastrointestinal tract require distinct apical and basolateral domains to function properly. Trafficking and insertion of enzymes and transporters into the apical brush border of intestinal epithelial cells is essential for effective digestion and absorption of nutrients. Specific critical ion transporters are delivered to the apical brush border to facilitate fluid and electrolyte uptake. Maintenance of these apical transporters requires both targeted delivery and regulated membrane recycling. Examination of altered apical trafficking in patients with Microvillus Inclusion disease caused by inactivating mutations in MYO5B has led to insights into the regulation of apical trafficking by elements of the apical recycling system. Modeling of MYO5B loss in cell culture and animal models has led to recognition of Rab11a and Rab8a as critical regulators of apical brush border function. All of these studies show the importance of apical membrane trafficking dynamics in maintenance of polarized epithelial cell function. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sassoli, Chiara; Nosi, Daniele; Tani, Alessia
Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the singlemore » muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7{sup +} satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration.« less
Cationic Conjugated Polymers-Induced Quorum Sensing of Bacteria Cells.
Zhang, Pengbo; Lu, Huan; Chen, Hui; Zhang, Jiangyan; Liu, Libing; Lv, Fengting; Wang, Shu
2016-03-15
Bacteria quorum sensing (QS) has attracted significant interest for understanding cell-cell communication and regulating biological functions. In this work, we demonstrate that water-soluble cationic conjugated polymers (PFP-G2) can interact with bacteria to form aggregates through electrostatic interactions. With bacteria coated in the aggregate, PFP-G2 can induce the bacteria QS system and prolong the time duration of QS signal molecules (autoinducer-2 (AI-2)) production. The prolonged AI-2 can bind with specific protein and continuously regulate downstream gene expression. Consequently, the bacteria show a higher survival rate against antibiotics, resulting in decreased antimicrobial susceptibility. Also, AI-2 induced by PFP-G2 can stimulate 55.54 ± 12.03% more biofilm in E. coli. This method can be used to understand cell-cell communication and regulate biological functions, such as the production of signaling molecules, antibiotics, other microbial metabolites, and even virulence.
Local Actions of Melatonin in Somatic Cells of the Testis
Frungieri, Mónica Beatriz; Calandra, Ricardo Saúl; Rossi, Soledad Paola
2017-01-01
The pineal hormone melatonin regulates testicular function through the hypothalamic-adenohypophyseal axis. In addition, direct actions of melatonin in somatic cells of the testis have been described. Melatonin acts as a local modulator of the endocrine activity in Leydig cells. In Sertoli cells, melatonin influences cellular growth, proliferation, energy metabolism and the oxidation state, and consequently may regulate spermatogenesis. These data pinpoint melatonin as a key player in the regulation of testicular physiology (i.e., steroidogenesis, spermatogenesis) mostly in seasonal breeders. In patients with idiopathic infertility, melatonin exerts anti-proliferative and anti-inflammatory effects on testicular macrophages, and provides protective effects against oxidative stress in testicular mast cells. Consequently, melatonin is also involved in the modulation of inflammatory and oxidant/anti-oxidant states in testicular pathology. Overall, the literature data indicate that melatonin has important effects on testicular function and male reproduction. PMID:28561756
Kammerer, Ulrike; Kruse, Andrea; Barrientos, Gabriela; Arck, Petra C; Blois, Sandra M
2008-01-01
Successful mammalian pregnancy relies on the action of sophisticated regulatory mechanisms that allow the fetus (a semi-allograft) to grow and develop in the uterus in spite of being recognized by maternal immune cells. Among several immunocompetent cells present at the maternal fetal interface, dendritic cells (DC) seem to be of particular relevance for pregnancy maintenance given their unique ability to induce both antigen-specific immunity and tolerance. Thus, these cells would be potentially suitable candidates for the regulation of local immune responses within the uterus necessary to meet the difficult task of protecting the mother from infection without compromising fetal survival. Current evidence on decidual DC phenotype and function, and their role in the regulation of the maternal immune system during mouse and human pregnancy are discussed and reviewed herein; highlighting novel DC functions that seem to be of great importance for a successful pregnancy outcome.
The E3 ligase c-Cbl regulates dendritic cell activation
Chiou, Shin-Heng; Shahi, Payam; Wagner, Ryan T; Hu, Hongbo; Lapteva, Natalia; Seethammagari, Mamatha; Sun, Shao-Cong; Levitt, Jonathan M; Spencer, David M
2011-01-01
The activation of innate and adaptive immunity is always balanced by inhibitory signalling mechanisms to maintain tissue integrity. We have identified the E3 ligase c-Cbl––known for its roles in regulating lymphocyte signalling––as a modulator of dendritic cell activation. In c-Cbl-deficient dendritic cells, Toll-like receptor-induced expression of proinflammatory factors, such as interleukin-12, is increased, correlating with a greater potency of dendritic-cell-based vaccines against established tumours. This proinflammatory phenotype is accompanied by an increase in nuclear factor (NF)-κB activity. In addition, c-Cbl deficiency reduces both p50 and p105 levels, which have been shown to modulate the stimulatory function of NF-κB. Our data indicate that c-Cbl has a crucial, RING-domain-dependent role in regulating dendritic cell maturation, probably by facilitating the regulatory function of p105 and/or p50. PMID:21799517
Masuno, Kiriko; Haldar, Saptarsi M.; Jeyaraj, Darwin; Mailloux, Christina M.; Huang, Xiaozhu; Panettieri, Rey A.; Jain, Mukesh K.
2011-01-01
Glucocorticoids (GCs), which activate GC receptor (GR) signaling and thus modulate gene expression, are widely used to treat asthma. GCs exert their therapeutic effects in part through modulating airway smooth muscle (ASM) structure and function. However, the effects of genes that are regulated by GCs on airway function are not fully understood. We therefore used transcription profiling to study the effects of a potent GC, dexamethasone, on human ASM (HASM) gene expression at 4 and 24 hours. After 24 hours of dexamethasone treatment, nearly 7,500 genes had statistically distinguishable changes in expression; quantitative PCR validation of a 40-gene subset of putative GR-regulated genes in 6 HASM cell lines suggested that the early transcriptional targets of GR signaling are similar in independent HASM lines. Gene ontology analysis implicated GR targets in controlling multiple aspects of ASM function. One GR-regulated gene, the transcription factor, Kruppel-like factor 15 (Klf15), was already known to modulate vascular smooth and cardiac muscle function, but had no known role in the lung. We therefore analyzed the pulmonary phenotype of Klf15−/− mice after ovalbumin sensitization and challenge. We found diminished airway responses to acetylcholine in ovalbumin-challenged Klf15−/− mice without a significant change in the induction of asthmatic inflammation. In cultured cells, overexpression of Klf15 reduced proliferation of HASM cells, whereas apoptosis in Klf15−/− murine ASM cells was increased. Together, these results further characterize the GR-regulated gene network in ASM and establish a novel role for the GR target, Klf15, in modulating airway function. PMID:21257922
ATM-dependent DNA damage checkpoint functions regulate gene expression in human fibroblasts
Zhou, Tong; Chou, Jeff; Zhou, Yingchun; Simpson, Dennis A.; Cao, Feng; Bushel, Pierre R.; Paules, Richard S.; Kaufmann, William K.
2013-01-01
The relationships between profiles of global gene expression and DNA damage checkpoint functions were studied in cells from patients with ataxia telangiectasia (AT). Three telomerase-expressing AT fibroblast lines displayed the expected hypersensitivity to ionizing radiation (IR) and defects in DNA damage checkpoints. Profiles of global gene expression in AT cells were determined at 2, 6 and 24 h after treatment with 1.5 Gy IR or sham-treatment, and were compared to those previously recognized in normal human fibroblasts. Under basal conditions 160 genes or ESTs were differentially expressed in AT and normal fibroblasts, and these were associated by gene ontology with insulin-like growth factor binding and regulation of cell growth. Upon DNA damage, 1091 gene mRNAs were changed in at least two of the three AT cell lines. When compared with the 1811 genes changed in normal human fibroblasts after the same treatment, 715 were found in both AT and normal fibroblasts, including most genes categorized by gene ontology into cell cycle, cell growth and DNA damage response pathways. However, the IR-induced changes in these 715 genes in AT cells usually were delayed or attenuated in comparison to normal cells. The reduced change in DNA-damage-response genes and the attenuated repression of cell-cycle-regulated genes may account for the defects in cell cycle checkpoint function in AT cells. PMID:17699107
Leskov, Konstantin S; Araki, Shinako; Lavik, John-Paul; Gomez, Jose A; Gama, Vivian; Gonos, Efstathios S; Trougakos, Ioannis P; Matsuyama, Shigemi; Boothman, David A
2011-11-18
Expression of the clusterin (CLU) gene results in the synthesis of a conventional secretory isoform set (pre- and mature secretory clusterin proteins, psCLU/sCLU), as well as another set of intracellular isoforms, appearing in the cytoplasm (pre-nuclear CLU, pnCLU) and in the nucleus as an ∼55-kDa mature nuclear clusterin (nCLU) form. These two isoform sets have opposing cell functions: pro-survival and pro-death, respectively. Although much is known about the regulation and function of sCLU as a pro-survival factor, the regulation and function of endogenous nCLU in cell death are relatively unexplored. Here, we show that depletion of endogenous nCLU protein using siRNA specific to its truncated mRNA increased clonogenic survival of ionizing radiation (IR)-exposed cells. nCLU-mediated apoptosis was Bax-dependent, and lethality correlated with accumulation of mature nCLU protein. nCLU accumulation was regulated by CRM1 because binding between CRM1 and nCLU proteins was significantly diminished by leptomycin B (LMB), and nuclear levels of nCLU protein were significantly enhanced by LMB and IR co-treatment. Moreover, LMB treatment significantly enhanced IR-induced nCLU-mediated cell death responses. Importantly, bax(-/-) and bax(-/-)/bak(-/-) double knock-out cells were resistant to nCLU-mediated cell death, whereas bak(-/-) or wild-type bax(+/+)/bak(+/+) cells were hypersensitive. The regulation of nCLU by CRM1 nuclear export/import may explain recent clinical results showing that highly malignant tumors have lost the ability to accumulate nCLU levels, thereby avoiding growth inhibition and cell death.
New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells.
Brown, Dennis; Bouley, Richard; Păunescu, Teodor G; Breton, Sylvie; Lu, Hua A J
2012-05-15
Maintaining tight control over body fluid and acid-base homeostasis is essential for human health and is a major function of the kidney. The collecting duct is a mosaic of two cell populations that are highly specialized to perform these two distinct processes. The antidiuretic hormone vasopressin (VP) and its receptor, the V2R, play a central role in regulating the urinary concentrating mechanism by stimulating accumulation of the aquaporin 2 (AQP2) water channel in the apical membrane of collecting duct principal cells. This increases epithelial water permeability and allows osmotic water reabsorption to occur. An understanding of the basic cell biology/physiology of AQP2 regulation and trafficking has informed the development of new potential treatments for diseases such as nephrogenic diabetes insipidus, in which the VP/V2R/AQP2 signaling axis is defective. Tubule acidification due to the activation of intercalated cells is also critical to organ function, and defects lead to several pathological conditions in humans. Therefore, it is important to understand how these "professional" proton-secreting cells respond to environmental and cellular cues. Using epididymal proton-secreting cells as a model system, we identified the soluble adenylate cyclase (sAC) as a sensor that detects luminal bicarbonate and activates the vacuolar proton-pumping ATPase (V-ATPase) via cAMP to regulate tubular pH. Renal intercalated cells also express sAC and respond to cAMP by increasing proton secretion, supporting the hypothesis that sAC could function as a luminal sensor in renal tubules to regulate acid-base balance. This review summarizes recent advances in our understanding of these fundamental processes.
New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells
Bouley, Richard; Pǎunescu, Teodor G.; Breton, Sylvie; Lu, Hua A. J.
2012-01-01
Maintaining tight control over body fluid and acid-base homeostasis is essential for human health and is a major function of the kidney. The collecting duct is a mosaic of two cell populations that are highly specialized to perform these two distinct processes. The antidiuretic hormone vasopressin (VP) and its receptor, the V2R, play a central role in regulating the urinary concentrating mechanism by stimulating accumulation of the aquaporin 2 (AQP2) water channel in the apical membrane of collecting duct principal cells. This increases epithelial water permeability and allows osmotic water reabsorption to occur. An understanding of the basic cell biology/physiology of AQP2 regulation and trafficking has informed the development of new potential treatments for diseases such as nephrogenic diabetes insipidus, in which the VP/V2R/AQP2 signaling axis is defective. Tubule acidification due to the activation of intercalated cells is also critical to organ function, and defects lead to several pathological conditions in humans. Therefore, it is important to understand how these “professional” proton-secreting cells respond to environmental and cellular cues. Using epididymal proton-secreting cells as a model system, we identified the soluble adenylate cyclase (sAC) as a sensor that detects luminal bicarbonate and activates the vacuolar proton-pumping ATPase (V-ATPase) via cAMP to regulate tubular pH. Renal intercalated cells also express sAC and respond to cAMP by increasing proton secretion, supporting the hypothesis that sAC could function as a luminal sensor in renal tubules to regulate acid-base balance. This review summarizes recent advances in our understanding of these fundamental processes. PMID:22460710
INPP5E Preserves Genomic Stability through Regulation of Mitosis.
Sierra Potchanant, Elizabeth A; Cerabona, Donna; Sater, Zahi Abdul; He, Ying; Sun, Zejin; Gehlhausen, Jeff; Nalepa, Grzegorz
2017-03-15
The partially understood phosphoinositide signaling cascade regulates multiple aspects of cellular metabolism. Previous studies revealed that INPP5E, the inositol polyphosphate-5-phosphatase that is mutated in the developmental disorders Joubert and MORM syndromes, is essential for the function of the primary cilium and maintenance of phosphoinositide balance in nondividing cells. Here, we report that INPP5E further contributes to cellular homeostasis by regulating cell division. We found that silencing or genetic knockout of INPP5E in human and murine cells impairs the spindle assembly checkpoint, centrosome and spindle function, and maintenance of chromosomal integrity. Consistent with a cell cycle regulatory role, we found that INPP5E expression is cell cycle dependent, peaking at mitotic entry. INPP5E localizes to centrosomes, chromosomes, and kinetochores in early mitosis and shuttles to the midzone spindle at mitotic exit. Our findings identify the previously unknown, essential role of INPP5E in mitosis and prevention of aneuploidy, providing a new perspective on the function of this phosphoinositide phosphatase in health and development. Copyright © 2017 Sierra Potchanant et al.
Wnt signaling-mediated redox regulation maintains the germ line stem cell differentiation niche
Wang, Su; Gao, Yuan; Song, Xiaoqing; Ma, Xing; Zhu, Xiujuan; Mao, Ying; Yang, Zhihao; Ni, Jianquan; Li, Hua; Malanowski, Kathryn E; Anoja, Perera; Park, Jungeun; Haug, Jeff; Xie, Ting
2015-01-01
Adult stem cells continuously undergo self-renewal and generate differentiated cells. In the Drosophila ovary, two separate niches control germ line stem cell (GSC) self-renewal and differentiation processes. Compared to the self-renewing niche, relatively little is known about the maintenance and function of the differentiation niche. In this study, we show that the cellular redox state regulated by Wnt signaling is critical for the maintenance and function of the differentiation niche to promote GSC progeny differentiation. Defective Wnt signaling causes the loss of the differentiation niche and the upregulated BMP signaling in differentiated GSC progeny, thereby disrupting germ cell differentiation. Mechanistically, Wnt signaling controls the expression of multiple glutathione-S-transferase family genes and the cellular redox state. Finally, Wnt2 and Wnt4 function redundantly to maintain active Wnt signaling in the differentiation niche. Therefore, this study has revealed a novel strategy for Wnt signaling in regulating the cellular redox state and maintaining the differentiation niche. DOI: http://dx.doi.org/10.7554/eLife.08174.001 PMID:26452202
Tropomyosins as discriminators of myosin function.
Ostap, E Michael
2008-01-01
Vertebrate nonmuscle cells express multiple tropomyosin isoforms that are sorted to subcellular compartments that have distinct morphological and dynamic properties. The creation of these compartments has a role in controlling cell morphology, cell migration and polarization of cellular components. There is increasing evidence that nonmuscle myosins are regulated by tropomyosin in these compartments via the regulation of actin attachment, ATPase kinetics, or by stabilization of cytoskeletal tracks for myosin-based transport. In this chapter, I review the literature describing the regulation of various myosins by tropomyosins and consider the mechanisms for this regulation.
Maniatis, Nikolaos A.; Chernaya, Olga; Shinin, Vasily; Minshall, Richard D.
2012-01-01
The primary function of the mammalian lung is to facilitate diffusion of oxygen to venous blood and to ventilate carbon dioxide produced by catabolic reactions within cells. However, it is also responsible for a variety of other important functions, including host defense and production of vasoactive agents to regulate not only systemic blood pressure, but also water, electrolyte and acid-base balance. Caveolin-1 is highly expressed in the majority of cell types in the lung, including epithelial, endothelial, smooth muscle, connective tissue cells, and alveolar macrophages. Deletion of caveolin-1 in these cells results in major functional aberrations, suggesting that caveolin-1 may be crucial to lung homeostasis and development. Furthermore, generation of mutant mice that under-express caveolin-1 results in severe functional distortion with phenotypes covering practically the entire spectrum of known lung diseases, including pulmonary hypertension, fibrosis, increased endothelial permeability, and immune defects. In this Chapter, we outline the current state of knowledge regarding caveolin-1-dependent regulation of pulmonary cell functions and discuss recent research findings on the role of caveolin-1 in various pulmonary disease states, including obstructive and fibrotic pulmonary vascular and inflammatory diseases. PMID:22411320
Matsubara, Naoko; Imamura, Akihiro; Yonemizu, Tatsuya; Akatsu, Chizuru; Yang, Hongrui; Ueki, Akiharu; Watanabe, Natsuki; Abdu-Allah, Hajjaj; Numoto, Nobutaka; Takematsu, Hiromu; Kitazume, Shinobu; Tedder, Thomas F.; Marth, Jamey D.; Ito, Nobutoshi; Ando, Hiromune; Ishida, Hideharu; Kiso, Makoto; Tsubata, Takeshi
2018-01-01
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed in various immune cells and most of them carry signaling functions. High-affinity synthetic sialoside ligands have been developed for various Siglecs. Therapeutic potentials of the nanoparticles and compounds that contain multiple numbers of these sialosides and other reagents such as toxins and antigens have been demonstrated. However, whether immune responses can be regulated by monomeric sialoside ligands has not yet been known. CD22 (also known as Siglec-2) is an inhibitory molecule preferentially expressed in B lymphocytes (B cells) and is constitutively bound and functionally regulated by α2,6 sialic acids expressed on the same cell (cis-ligands). Here, we developed synthetic sialosides GSC718 and GSC839 that bind to CD22 with high affinity (IC50 ~100 nM), and inhibit ligand binding of CD22. When B cells are activated by B cell antigen receptor (BCR) ligation, both GSC718 and GSC839 downregulate proliferation of B cells, and this regulation requires both CD22 and α2,6 sialic acids. This result suggests that these sialosides regulate BCR ligation-induced B cell activation by reversing endogenous ligand-mediated regulation of CD22. By contrast, GSC718 and GSC839 augment B cell proliferation induced by TLR ligands or CD40 ligation, and this augmentation requires CD22 but not α2,6 sialic acids. Thus, these sialosides appear to enhance B cell activation by directly suppressing the inhibitory function of CD22 independently of endogenous ligand-mediated regulation. Moreover, GSC839 augments B cell proliferation that depends on both BCR ligation and CD40 ligation as is the case for in vivo B cell responses to antigens, and enhanced antibody production to the extent comparable to CpG oligonuleotides or a small amount of alum. Although these known adjuvants induce production of the inflammatory cytokines or accumulation of inflammatory cells, CD22-binding sialosides do not. Thus, synthetic sialosides that bind to CD22 with high-affinity modulate B cell activation through endogenous ligand-dependent and independent pathways, and carry an adjuvant activity without inducing inflammation. PMID:29725338
Matsubara, Naoko; Imamura, Akihiro; Yonemizu, Tatsuya; Akatsu, Chizuru; Yang, Hongrui; Ueki, Akiharu; Watanabe, Natsuki; Abdu-Allah, Hajjaj; Numoto, Nobutaka; Takematsu, Hiromu; Kitazume, Shinobu; Tedder, Thomas F; Marth, Jamey D; Ito, Nobutoshi; Ando, Hiromune; Ishida, Hideharu; Kiso, Makoto; Tsubata, Takeshi
2018-01-01
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed in various immune cells and most of them carry signaling functions. High-affinity synthetic sialoside ligands have been developed for various Siglecs. Therapeutic potentials of the nanoparticles and compounds that contain multiple numbers of these sialosides and other reagents such as toxins and antigens have been demonstrated. However, whether immune responses can be regulated by monomeric sialoside ligands has not yet been known. CD22 (also known as Siglec-2) is an inhibitory molecule preferentially expressed in B lymphocytes (B cells) and is constitutively bound and functionally regulated by α2,6 sialic acids expressed on the same cell (cis-ligands). Here, we developed synthetic sialosides GSC718 and GSC839 that bind to CD22 with high affinity (IC 50 ~100 nM), and inhibit ligand binding of CD22. When B cells are activated by B cell antigen receptor (BCR) ligation, both GSC718 and GSC839 downregulate proliferation of B cells, and this regulation requires both CD22 and α2,6 sialic acids. This result suggests that these sialosides regulate BCR ligation-induced B cell activation by reversing endogenous ligand-mediated regulation of CD22. By contrast, GSC718 and GSC839 augment B cell proliferation induced by TLR ligands or CD40 ligation, and this augmentation requires CD22 but not α2,6 sialic acids. Thus, these sialosides appear to enhance B cell activation by directly suppressing the inhibitory function of CD22 independently of endogenous ligand-mediated regulation. Moreover, GSC839 augments B cell proliferation that depends on both BCR ligation and CD40 ligation as is the case for in vivo B cell responses to antigens, and enhanced antibody production to the extent comparable to CpG oligonuleotides or a small amount of alum. Although these known adjuvants induce production of the inflammatory cytokines or accumulation of inflammatory cells, CD22-binding sialosides do not. Thus, synthetic sialosides that bind to CD22 with high-affinity modulate B cell activation through endogenous ligand-dependent and independent pathways, and carry an adjuvant activity without inducing inflammation.
Krüger, Angela V; Jelier, Rob; Dzyubachyk, Oleh; Zimmerman, Timo; Meijering, Erik; Lehner, Ben
2015-02-15
Chromatin regulators are widely expressed proteins with diverse roles in gene expression, nuclear organization, cell cycle regulation, pluripotency, physiology and development, and are frequently mutated in human diseases such as cancer. Their inhibition often results in pleiotropic effects that are difficult to study using conventional approaches. We have developed a semi-automated nuclear tracking algorithm to quantify the divisions, movements and positions of all nuclei during the early development of Caenorhabditis elegans and have used it to systematically study the effects of inhibiting chromatin regulators. The resulting high dimensional datasets revealed that inhibition of multiple regulators, including F55A3.3 (encoding FACT subunit SUPT16H), lin-53 (RBBP4/7), rba-1 (RBBP4/7), set-16 (MLL2/3), hda-1 (HDAC1/2), swsn-7 (ARID2), and let-526 (ARID1A/1B) affected cell cycle progression and caused chromosome segregation defects. In contrast, inhibition of cir-1 (CIR1) accelerated cell division timing in specific cells of the AB lineage. The inhibition of RNA polymerase II also accelerated these division timings, suggesting that normal gene expression is required to delay cell cycle progression in multiple lineages in the early embryo. Quantitative analyses of the dataset suggested the existence of at least two functionally distinct SWI/SNF chromatin remodeling complex activities in the early embryo, and identified a redundant requirement for the egl-27 and lin-40 MTA orthologs in the development of endoderm and mesoderm lineages. Moreover, our dataset also revealed a characteristic rearrangement of chromatin to the nuclear periphery upon the inhibition of multiple general regulators of gene expression. Our systematic, comprehensive and quantitative datasets illustrate the power of single cell-resolution quantitative tracking and high dimensional phenotyping to investigate gene function. Furthermore, the results provide an overview of the functions of essential chromatin regulators during the early development of an animal. Copyright © 2014 Elsevier Inc. All rights reserved.
Regulation of neuronal axon specification by glia-neuron gap junctions in C. elegans.
Meng, Lingfeng; Zhang, Albert; Jin, Yishi; Yan, Dong
2016-10-21
Axon specification is a critical step in neuronal development, and the function of glial cells in this process is not fully understood. Here, we show that C. elegans GLR glial cells regulate axon specification of their nearby GABAergic RME neurons through GLR-RME gap junctions. Disruption of GLR-RME gap junctions causes misaccumulation of axonal markers in non-axonal neurites of RME neurons and converts microtubules in those neurites to form an axon-like assembly. We further uncover that GLR-RME gap junctions regulate RME axon specification through activation of the CDK-5 pathway in a calcium-dependent manner, involving a calpain clp-4 . Therefore, our study reveals the function of glia-neuron gap junctions in neuronal axon specification and shows that calcium originated from glial cells can regulate neuronal intracellular pathways through gap junctions.
2017-01-01
Endothelial nitric-oxide synthase (eNOS) and its bioactive product, nitric oxide (NO), mediate many endothelial cell functions, including angiogenesis and vascular permeability. For example, vascular endothelial growth factor (VEGF)-mediated angiogenesis is inhibited upon reduction of NO bioactivity both in vitro and in vivo. Moreover, genetic disruption or pharmacological inhibition of eNOS attenuates angiogenesis during tissue repair, resulting in delayed wound closure. These observations emphasize that eNOS-derived NO can promote angiogenesis. Intriguingly, eNOS activity is regulated by nitric-oxide synthase trafficking inducer (NOSTRIN), which sequesters eNOS, thereby attenuating NO production. This has prompted significant interest in NOSTRIN's function in endothelial cells. We show here that NOSTRIN affects the functional transcriptome of endothelial cells by down-regulating several genes important for invasion and angiogenesis. Interestingly, the effects of NOSTRIN on endothelial gene expression were independent of eNOS activity. NOSTRIN also affected the expression of secreted cytokines involved in inflammatory responses, and ectopic NOSTRIN overexpression functionally restricted endothelial cell proliferation, invasion, adhesion, and VEGF-induced capillary tube formation. Furthermore, NOSTRIN interacted directly with TNF receptor-associated factor 6 (TRAF6), leading to the suppression of NFκB activity and inhibition of AKT activation via phosphorylation. Interestingly, TNF-α-induced NFκB pathway activation was reversed by NOSTRIN. We found that the SH3 domain of NOSTRIN is involved in the NOSTRIN-TRAF6 interaction and is required for NOSTRIN-induced down-regulation of endothelial cell proteins. These results have broad biological implications, as aberrant NOSTRIN expression leading to deactivation of the NFκB pathway, in turn triggering an anti-angiogenic cascade, might inhibit tumorigenesis and cancer progression. PMID:28235804
Parkin Modulates Endosomal Organization and Function of the Endo-Lysosomal Pathway.
Song, Pingping; Trajkovic, Katarina; Tsunemi, Taiji; Krainc, Dimitri
2016-02-24
Mutations in PARK2 (parkin), which encodes Parkin protein, an E3 ubiquitin ligase, are associated with autosomal recessive early-onset Parkinson's disease (PD). While several studies implicated Parkin in the regulation of mitophagy and proteasomal degradation, the precise mechanism leading to neurodegeneration upon Parkin loss of function remains incompletely understood. In this study, we found that Parkin modulates the endocytic pathway through the regulation of endosomal structure and function. We showed that loss of Parkin function led to decreased endosomal tubulation and membrane association of vesicle protein sorting 35 (VPS35) and sorting nexin 1 (SNX1), as well as decreased mannose 6 phosphate receptor (M6PR), suggesting the impairment of retromer pathway in Parkin-deficient cells. We also found increased formation of intraluminal vesicles coupled with enhanced release of exosomes in the presence of mutant Parkin. To elucidate the molecular mechanism of these alterations in the endocytic pathway in Parkin-deficient cells, we found that Parkin regulates the levels and activity of Rab7 by promoting its ubiquitination on lysine 38 residue. Both endogenous Rab7 in Parkin-deficient cells and overexpressed K38 R-Rab7 mutant displayed decreased effector binding and membrane association. Furthermore, overexpression of K38R-Rab7 in HEK293 cells phenocopied the increased secretion of exosomes observed in Parkin-deficient cells, suggesting that Rab7 deregulation may be at least partially responsible for the endocytic phenotype observed in Parkin-deficient cells. These findings establish a role for Parkin in regulating the endo-lysosomal pathway and retromer function and raise the possibility that alterations in these pathways contribute to the development of pathology in Parkin-linked Parkinson's disease. Copyright © 2016 the authors 0270-6474/16/362425-13$15.00/0.
Regulation and Function of TIFAB in Myelodysplastic Syndrome
2014-08-01
knockdown of TIFAB in human CD34+ hematopoietic stem /progenitor cells results in increased survival and proliferation, TIFAB inhibits TRAF6 protein...regulator of human hematopoietic cells . Our key observations show that knockdown of TIFAB in human CD34+ hematopoietic stem /progenitor cells results in...reveals an essential role of mTOR in hematopoietic stem cell engraftment and hematopoiesis. (2013). Haematologica,!98(9):!135381358.! PMID:!23716557
Guo, Lei; Chen, Chaoyu; Liang, Qiaoling; Karim, Md. Zunayet; Gorska, Magdalena M.; Alam, Rafeul
2012-01-01
MEK1 phosphorylates ERK1/2 and regulates T cell generation, differentiation and function. MEK1 has recently been shown to translocate to the nucleus. Its nuclear function is largely unknown. By studying human CD4 T cells we demonstrate that a low level of MEK1 is present in the nucleus of CD4 T cells under basal conditions. T cell activation further increases the nuclear translocation of MEK1. MEK1 interacts with the nuclear receptor co-repressor SMRT. MEK1 reduces the nuclear level of SMRT in an activation-dependent manner. MEK1 is recruited to the promoter of c-Fos upon TCR stimulation. Conversely, SMRT is bound to the c-Fos promoter under basal conditions and is removed upon TCR stimulation. We examined the role of SMRT in regulation of T cell function. siRNA-mediated knockdown of SMRT results in a biphasic effect on cytokine production. The production of the cytokines—IL2, IL4, IL10 and IFNγ increases in the early phase (8 hr) and then decreases in the late phase (48 hr). The late phase decrease is associated with inhibition of T cell proliferation. The late phase inhibition of T cell activation is, in part, mediated by IL10 that is produced in the early phase, and in part, by β-catenin signaling. Thus, we have identified a novel nuclear function of MEK1. MEK1 triggers a complex pattern of early T cell activation followed by a late inhibition through its interaction with SMRT. This biphasic dual effect likely reflects a homeostatic regulation of T cell function by MEK1. PMID:23225884
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Wenzhen; Yang, Bingwu; Fu, Huiling
As the core structure of flavonoids, flavone has been proved to possess anticancer effects. Flavone's growth inhibitory functions are related to NO. NO is synthesized by nitric oxide synthase (NOS), and generally increased in a variety of cancer cells. NO regulates multiple cellular responses by S-nitrosylation. In this study, we explored flavone-induced regulations on nitric oxide (NO)-related cellular processes in breast cancer cells. Our results showed that, flavone suppresses breast cancer cell proliferation and induces apoptosis. Flavone restrains NO synthesis by does-dependent inhibiting NOS enzymatic activity. The decrease of NO generation was detected by fluorescence microscopy and flow cytometry. Flavone-inducedmore » inhibitory effect on NOS activity is dependent on intact cell structure. For the NO-induced protein modification, flavone treatment significantly down-regulated protein S-nitrosylation, which was detected by “Biotin-switch” method. The present study provides a novel, NO-related mechanism for the anticancer function of flavone. - Highlights: • Flavone inhibits proliferation and induces apoptosis in MCF-7 cells. • Flavone decreases nitric oxide production by inhibiting NOS enzymatic activity in breast cancer cells. • Flavone down-regulates protein S-nitrosylation.« less
Castro-Alves, Victor Costa; Nascimento, João Roberto Oliveira do
2018-05-01
Macrophages play an essential role in lipid metabolism; however, the excessive uptake of modified lipids and cholesterol crystals (CC) leads to the formation of pro-inflammatory lipid-laden macrophages called foam cells. Since the α-1,6- and β-1,3-d-glucans from the basidiome and the mycelium of the edible mushroom Pleurotus albidus have previously been shown to regulate macrophage function, these glucans were tested in macrophage-like THP-1 cells previously exposed to acetylated low-density lipoproteins (acLDL) or CC. The glucans inhibited lipid-induced inflammation, but only the β-1,3-d-glucan regulated both the NLRP3 inflammasome activation and the expression of genes involved on lipid efflux in acLDL- or CC-pretreated cells, thereby reducing foam cell formation. In contrast, the two α-1,6-glucans tested inhibited foam cell formation only in acLDL-pretreated cells and had no effect on the expression of the peroxisome proliferator-activated receptor gamma and liver X receptor alpha genes, suggesting that these glucans regulate lipid influx rather than lipid efflux. Thus, α- and β-d-glucans differentially regulate lipid-induced inflammation and foam cell formation in macrophage-like cells. Furthermore, results emphasize that P. albidus has potential to be used as a functional food or as a source for the extraction of biologically-active glucans. Copyright © 2018 Elsevier B.V. All rights reserved.
Mitochondrial morphology transitions and functions: implications for retrograde signaling?
Picard, Martin; Shirihai, Orian S.; Gentil, Benoit J.
2013-01-01
In response to cellular and environmental stresses, mitochondria undergo morphology transitions regulated by dynamic processes of membrane fusion and fission. These events of mitochondrial dynamics are central regulators of cellular activity, but the mechanisms linking mitochondrial shape to cell function remain unclear. One possibility evaluated in this review is that mitochondrial morphological transitions (from elongated to fragmented, and vice-versa) directly modify canonical aspects of the organelle's function, including susceptibility to mitochondrial permeability transition, respiratory properties of the electron transport chain, and reactive oxygen species production. Because outputs derived from mitochondrial metabolism are linked to defined cellular signaling pathways, fusion/fission morphology transitions could regulate mitochondrial function and retrograde signaling. This is hypothesized to provide a dynamic interface between the cell, its genome, and the fluctuating metabolic environment. PMID:23364527
Lin, Yuli; Peng, Nana; Zhuang, Hongqin; Zhang, Di; Wang, Yao; Hua, Zi-Chun
2014-08-30
The urokinase-type plasminogen activator receptor (uPAR) is an important regulator of ECM proteolysis, cell-ECM interactions and cell signaling. uPAR and heat shock proteins HSP70 and MRJ (DNAJB6) have been implicated in tumor growth and metastasis. We have reported recently that MRJ (DNAJB6, a heat shock protein) can interact with uPAR and enhance cell adhesion. Here, we identified another heat shock protein HSP70 as a novel uPAR-interacting protein. We performed co-immunoprecipitation in human embryonic kidney (HEK) 293 and colon cancer HCT116 cells as well as immunofluorence assays in HEK293 cells stably transfected with uPAR to investigate the association of suPAR with HSP70/MRJ. To understand the biological functions of the triple complex of suPAR/HSP70/MRJ, we determined whether HSP70 and/or MRJ regulated uPAR-mediated cell invasion, migration, adhesion to vitronectin and MAPK pathway in two pair of human tumor cells (uPAR negative HEK293 cells vs HEK293 cells stably transfected with uPAR and HCT116 cells stably transfected with antisense-uPAR vs HCT116 mock cells transfected with vector only) using transwell assay, wound healing assay, quantitative RT-PCR analyzing mmp2 and mmp9 transcription levels, cell adhesion assay and Western blotting assay. HSP70 and MRJ formed a triple complex with uPAR and over-expression of MRJ enhanced the interaction between HSP70 and uPAR, while knockdown of MRJ decreased soluble uPAR in HCT116 cells (P < 0.05) and reduced the formation of the triple complex, suggesting that MRJ may act as an uPAR-specific adaptor protein to link uPAR to HSP70. Further experiments showed that knockdown of HSP70 and/or MRJ by siRNA inhibited uPAR-mediated cell adhesion to vitronectin as well as suppressed cell invasion and migration. Knockdown of HSP70 and/or MRJ inhibited expression of invasion related genes mmp2 and mmp9. Finally, HSP70 and/or MRJ up-regulated phosphorylation levels of ERK1/2 and FAK suggesting MAPK pathway was involved. All the biological function experiments in cell level showed an additive effect when HSP70 and MRJ were regulated simultaneously indicating their collaborated regulation effects on uPAR. These findings may offer a novel insight into the interactions between uPAR and HSP70/MRJ and their functions in cell adhesion and migration may provide more understanding of the roles in regulating cancer metastasis.
Huang, Shengkai; Li, Yan; Yuan, Xinghua; Zhao, Mei; Wang, Jia; Li, You; Li, Yuan; Lin, Hong; Zhang, Qiao; Wang, Wenjie; Li, Dongdong; Dong, Xin; Li, Lanfen; Liu, Min; Huang, Weiyan; Huang, Changzhi
2018-06-13
Ubiquilin4 (Ubqln4), a member of the UbL-UBA protein family, serves as an adaptor in the degradation of specific substrates via the proteasomal pathway. However, the biological function of Ubqln4 remains largely unknown, especially in cancer. Here, we reported that Ubqln4 was downregulated in gastric cancer tissues and functioned as a tumor suppressor by inhibiting gastric cancer cell proliferation in vivo and in vitro. Overexpression of Ubqln4-induced cellular senescence and G1-S cell cycle arrest in gastric cancer cells and activated the p53/p21 axis. Moreover, Ubqln4 regulated p21 through both p53-dependent and p53-independent manners. Ubqln4 interacted with RNF114, an E3 ubiquitin ligase of p21, and negatively regulated its expression level, which in turn stabilized p21 by attenuating proteasomal degradation of p21. These effects of Ubqln4 were partly abrogated in gastric cancer cells upon silencing of p21. Our findings not only establish the anti-tumor potential of Ubqln4 in gastric cancer but also reveal a role for Ubqln4 in regulation of the cell cycle and cellular senescence via stabilizing p21.
Liu, Y T; Li, S R; Wang, Z; Xiao, J Z
2016-09-13
Objective: To profile the gene expression changes associated with endoplasmic reticulum stress in INS-1-3 cells induced by thapsigargin (TG) and tunicamycin (TM). Methods: Normal cultured INS-1-3 cells were used as a control. TG and TM were used to induce endoplasmic reticulum stress in INS-1-3 cells. Digital gene expression profiling technique was used to detect differentially expressed gene. The changes of gene expression were detected by expression pattern clustering analysis, gene ontology (GO) function and pathway enrichment analysis. Real time polymerase chain reaction (RT-PCR) was used to verify the key changes of gene expression. Results: Compared with the control group, there were 57 (45 up-regulated, 12 down-regulated) and 135 (99 up-regulated, 36 down-regulated) differentially expressed genes in TG and TM group, respectively. GO function enrichment analyses indicated that the main enrichment was in the endoplasmic reticulum. In signaling pathway analysis, the identified pathways were related with endoplasmic reticulum stress, antigen processing and presentation, protein export, and most of all, the maturity onset diabetes of the young (MODY) pathway. Conclusion: Under the condition of endoplasmic reticulum stress, the related expression changes of transcriptional factors in MODY signaling pathway may be related with the impaired function in islet beta cells.
Yenuganti, Vengala Rao; Vanselow, Jens
2017-05-01
Cell culture models are essential for the detailed study of molecular processes. We analyze the dynamics of changes in a culture model of bovine granulosa cells. The cells were cultured for up to 8 days and analyzed for steroid production and gene expression. According to the expression of the marker genes CDH1, CDH2 and VIM, the cells maintained their mesenchymal character throughout the time of culture. In contrast, the levels of functionally important transcripts and of estradiol and progesterone production were rapidly down-regulated but showed a substantial up-regulation from day 4. FOXL2, a marker for granulosa cell identity, was also rapidly down-regulated after plating but completely recovered towards the end of culture. In contrast, expression of the Sertoli cell marker SOX9 and the lesion/inflammation marker PTGS2 increased during the first 2 days after plating but gradually decreased later on. We conclude that only long-term culture conditions (>4 days) allow the cells to recover from plating stress and to re-acquire characteristic granulosa cell features.
Tutton, P J; Barkla, D H
1989-01-01
The intestinal mucosa receives an adrenergic innervation for which there is no commonly accepted function. However, in recent years, cell kinetic studies have raised the possibility that this innervation may be an important regulator of crypt cell proliferation. The effects of noradrenaline released from adrenergic nerves is terminated principally by re-uptake of the amine into the nerve and this process can be inhibited by the antidepressant drug, desipramine. In this report desipramine is shown to accelerate crypt cell proliferation in intact, but not in chemically sympathectomized rats, thus adding support to the notion that regulation of crypt cell division is an important function of the sympathetic nervous system.
Galindo, Mario; Pratap, Jitesh; Young, Daniel W.; Hovhannisyan, Hayk; Im, Hee-Jeong; Choi, Je-Yong; Lian, Jane B.; Stein, Janet L.; Stein, Gary S.; van Wijnen, Andre J.
2010-01-01
The Runx2 (CBFA1/AML3/PEBP2αA) transcription factor promotes skeletal cell differentiation, but it also has a novel cell growth regulatory activity in osteoblasts. We addressed here whether Runx2 activity is functionally linked to cell cycle-related mechanisms that control normal osteoblast proliferation and differentiation. We found that the levels of Runx2 gene transcription, mRNA and protein, are each up-regulated with cessation of cell growth (i.e. G0/G1 transition) in preconfluent MC3T3 osteoblastic cells that do not yet express mature bone phenotypic gene expression. Cell growth regulation of Runx2 is also observed in primary calvarial osteoblasts and other osteoblastic cells with relatively normal cell growth characteristics, but not in osteosarcoma cells (e.g. SAOS-2 and ROS17/2.8). Runx2 levels are cell cycle-regulated in MC3T3 cells with respect to the G1/S and M/G1 transitions: expression oscillates from maximal levels during early G1 to minimal levels during early S phase and mitosis. However, in normal or immortalized (e.g. ATDC5) chondrocytic cells, Runx2 expression is suppressed during quiescence, and Runx2 levels are not regulated during G1 and S phase in ATDC5 cells. Antisense or small interfering RNA-mediated reduction of the low physiological levels of Runx2 in proliferating MC3T3 cells does not accelerate cell cycle progression. However, forced expression of Runx2 suppresses proliferation of MC3T3 preosteoblasts or C2C12 mesenchymal cells which have osteogenic potential. Forced elevation of Runx2 in synchronized MC3T3 cells causes a delay in G1. We propose that Runx2 levels and function are biologically linked to a cell growth-related G1 transition in osteoblastic cells. PMID:15781466
Novel interactions between erythroblast macrophage protein and cell migration.
Javan, Gulnaz T; Can, Ismail; Yeboah, Fred; Lee, Youngil; Soni, Shivani
2016-09-01
Erythroblast macrophage protein is a novel protein known to mediate attachment of erythroid cells to macrophages to form erythroblastic islands in bone marrow during erythropoiesis. Emp-null macrophages are small with round morphologies, and lack cytoplasmic projections which imply immature structure. The role of Emp in macrophage development and function is not fully elucidated. Macrophages perform varied functions (e.g. homeostasis, erythropoiesis), and are implicated in numerous pathophysiological conditions such as cellular malignancy. The objective of the current study is to investigate the interaction of Emp with cytoskeletal- and cell migration-associated proteins involved in macrophage functions. A short hairpin RNA lentiviral system was use to down-regulate the expression of Emp in macrophage cells. A cell migration assay revealed that the relocation of macrophages was significantly inhibited when Emp expression was decreased. To further analyze changes in gene expression related to cell motility, PCR array was performed by down-regulating Emp expression. The results indicated that expression of mitogen-activated protein kinase 1 and thymoma viral proto-oncogene 1 were significantly higher when Emp was down-regulated. The results implicate Emp in abnormal cell motility, thus, warrants to assess its role in cancer where tumor cell motility is required for invasion and metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.
Dynamic changes in gene expression during human trophoblast differentiation.
Handwerger, Stuart; Aronow, Bruce
2003-01-01
The genetic program that directs human placental differentiation is poorly understood. In a recent study, we used DNA microarray analyses to determine genes that are dynamically regulated during human placental development in an in vitro model system in which highly purified cytotrophoblast cells aggregate spontaneously and fuse to form a multinucleated syncytium that expresses placental lactogen, human chorionic gonadotropin, and other proteins normally expressed by fully differentiated syncytiotrophoblast cells. Of the 6918 genes present on the Incyte Human GEM V microarray that we analyzed over a 9-day period, 141 were induced and 256 were downregulated by more than 2-fold. The dynamically regulated genes fell into nine distinct kinetic patterns of induction or repression, as detected by the K-means algorithm. Classifying the genes according to functional characteristics, the regulated genes could be divided into six overall categories: cell and tissue structural dynamics, cell cycle and apoptosis, intercellular communication, metabolism, regulation of gene expression, and expressed sequence tags and function unknown. Gene expression changes within key functional categories were tightly coupled to the morphological changes that occurred during trophoblast differentiation. Within several key gene categories (e.g., cell and tissue structure), many genes were strongly activated, while others with related function were strongly repressed. These findings suggest that trophoblast differentiation is augmented by "categorical reprogramming" in which the ability of induced genes to function is enhanced by diminished synthesis of other genes within the same category. We also observed categorical reprogramming in human decidual fibroblasts decidualized in vitro in response to progesterone, estradiol, and cyclic AMP. While there was little overlap between genes that are dynamically regulated during trophoblast differentiation versus decidualization, many of the categories in which genes were strongly activated also contained genes whose expression was strongly diminished. Taken together, these findings point to a fundamental role for simultaneous induction and repression of mRNAs that encode functionally related proteins during the differentiation process.
Souza, Cleiton Martins; Davidson, Dominique; Rhee, Inmoo; Gratton, Jean-Philippe; Davis, Elaine C.; Veillette, André
2012-01-01
Protein-tyrosine phosphatase (PTP)-PEST (PTPN12) is ubiquitously expressed. It is essential for normal embryonic development and embryonic viability in mice. Herein we addressed the involvement of PTP-PEST in endothelial cell functions using a combination of genetic and biochemical approaches. By generating primary endothelial cells from an inducible PTP-PEST-deficient mouse, we found that PTP-PEST is not needed for endothelial cell differentiation and proliferation or for the control of endothelial cell permeability. Nevertheless, it is required for integrin-mediated adhesion and migration of endothelial cells. PTP-PEST-deficient endothelial cells displayed increased tyrosine phosphorylation of Cas, paxillin, and Pyk2, which were previously also implicated in integrin functions. By eliminating PTP-PEST in endothelial cells in vivo, we obtained evidence that expression of PTP-PEST in endothelial cells is required for normal vascular development and embryonic viability. Therefore, PTP-PEST is a key regulator of integrin-mediated functions in endothelial cells seemingly through its capacity to control Cas, paxillin, and Pyk2. This function explains at least in part the essential role of PTP-PEST in embryonic development and viability. PMID:23105101
Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling
Norris, Megan L; Pauli, Andrea; Gagnon, James A; Lord, Nathan D; Rogers, Katherine W; Mosimann, Christian; Zon, Leonard I
2017-01-01
Toddler/Apela/Elabela is a conserved secreted peptide that regulates mesendoderm development during zebrafish gastrulation. Two non-exclusive models have been proposed to explain Toddler function. The ‘specification model’ postulates that Toddler signaling enhances Nodal signaling to properly specify endoderm, whereas the ‘migration model’ posits that Toddler signaling regulates mesendodermal cell migration downstream of Nodal signaling. Here, we test key predictions of both models. We find that in toddler mutants Nodal signaling is initially normal and increasing endoderm specification does not rescue mesendodermal cell migration. Mesodermal cell migration defects in toddler mutants result from a decrease in animal pole-directed migration and are independent of endoderm. Conversely, endodermal cell migration defects are dependent on a Cxcr4a-regulated tether of the endoderm to mesoderm. These results suggest that Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling and indirectly affects endodermal cell migration via Cxcr4a-signaling. PMID:29117894
Xu, Zengguang; Zhang, Lei; Fei, Xuejie; Yi, Xiuwen; Li, Wenxian; Wang, Qingxiu
2014-07-01
Endogenous reactive oxygen species (ROS) control is important for the maintenance of self-renewal of embryonic stem (ES) cells. Although miRNAs have been found to be critically involved in the regulation of the self-renewal, whether miRNAs can regulate the signaling axis to control ROS in ES cells is unclear. Here we show that miR-29b specifically regulates the self-renewal of mouse ES cells in response to ROS generated by antioxidant-free culture. Sirt1 is the direct target of miR-29b and can also make mES cells sensitive to ROS and regulate the self-renewal of mES cells during the response of ROS. We further found that Sirt1 could attenuate the miR-29b function in regulating mES cells' self-renewal in response to ROS. Our results determined that miR-29b-Sirt1 axis regulates self-renewal of mES cells in response to ROS. Copyright © 2014 Elsevier Inc. All rights reserved.
He, Zuping; Jiang, Jiji; Kokkinaki, Maria; Tang, Lin; Zeng, Wenxian; Gallicano, Ian; Dobrinski, Ina; Dym, Martin
2013-10-01
Studies on spermatogonial stem cells (SSCs) are of unusual significance because they are the unique stem cells that transmit genetic information to subsequent generations and they can acquire pluripotency to become embryonic stem-like cells that have therapeutic applications in human diseases. MicroRNAs (miRNAs) have recently emerged as critical endogenous regulators in mammalian cells. However, the function and mechanisms of individual miRNAs in regulating SSC fate remain unknown. Here, we report for the first time that miRNA-20 and miRNA-106a are preferentially expressed in mouse SSCs. Functional assays in vitro and in vivo using miRNA mimics and inhibitors reveal that miRNA-20 and miRNA-106a are essential for renewal of SSCs. We further demonstrate that these two miRNAs promote renewal at the post-transcriptional level via targeting STAT3 and Ccnd1 and that knockdown of STAT3, Fos, and Ccnd1 results in renewal of SSCs. This study thus provides novel insights into molecular mechanisms regulating renewal and differentiation of SSCs and may have important implications for regulating male reproduction. © AlphaMed Press.
Bacillus cereus Induces Permeability of an In Vitro Blood-Retina Barrier▿
Moyer, A. L.; Ramadan, R. T.; Thurman, J.; Burroughs, A.; Callegan, M. C.
2008-01-01
Most Bacillus cereus toxin production is controlled by the quorum-sensing-dependent, pleiotropic global regulator plcR, which contributes to the organism's virulence in the eye. The purpose of this study was to analyze the effects of B. cereus infection and plcR-regulated toxins on the barrier function of retinal pigment epithelium (RPE) cells, the primary cells of the blood-retina barrier. Human ARPE-19 cells were apically inoculated with wild-type or quorum-sensing-deficient B. cereus, and cytotoxicity was analyzed. plcR-regulated toxins were not required for B. cereus-induced RPE cytotoxicity, but these toxins did increase the rate of cell death, primarily by necrosis. B. cereus infection of polarized RPE cell monolayers resulted in increased barrier permeability, independent of plcR-regulated toxins. Loss of both occludin and ZO-1 expression occurred by 8 h postinfection, but alterations in tight junctions appeared to precede cytotoxicity. Of the several proinflammatory cytokines analyzed, only interleukin-6 was produced in response to B. cereus infection. These results demonstrate the deleterious effects of B. cereus infection on RPE barrier function and suggest that plcR-regulated toxins may not contribute significantly to RPE barrier permeability during infection. PMID:18268029
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiuping, E-mail: xpzhou@xzmc.edu.cn; Lab of Neurosurgery, Xuzhou Medical College, Xuzhou, Jiangsu; Key Laboratory of Brain Disease Biology, Affiliated Hospital of Xuzhou Medical College, Jiangsu
Highlights: Black-Right-Pointing-Pointer The expression levels of Bex2 markedly increased in glioma tissues. Black-Right-Pointing-Pointer Bex2 over-expression promoted cell proliferation, while its down-regulation inhibited cell growth. Black-Right-Pointing-Pointer Bex2 down-regulation promoted cell apoptosis via JNK/c-Jun signaling pathway. -- Abstract: The function of Bex2, a member of the Brain Expressed X-linked gene family, in glioma is controversial and its mechanism is largely unknown. We report here that Bex2 regulates cell proliferation and apoptosis in malignant glioma cells via the c-Jun NH2-terminal kinase (JNK) pathway. The expression level of Bex2 is markedly increased in glioma tissues. We observed that Bex2 over-expression promotes cell proliferation, whilemore » down-regulation of Bex2 inhibits cell growth. Furthermore, Bex2 down-regulation promotes cell apoptosis and activates the JNK pathway; these effects were abolished by administration of the JNK specific inhibitor, (SP600125). Thus, Bex2 may be an important player during the development of glioma.« less
Architecture of GnRH-Gonadotrope-Vasculature Reveals a Dual Mode of Gonadotropin Regulation in Fish.
Golan, Matan; Zelinger, Einat; Zohar, Yonathan; Levavi-Sivan, Berta
2015-11-01
The function and components of the hypothalamic-pituitary axis are conserved among vertebrates; however, in fish, a neuroglandular mode of delivery (direct contact between axons and endocrine cells) was considered dominant, whereas in tetrapods hypothalamic signals are relayed to their targets via the hypophysial portal blood system (neurovascular delivery mode). By using a transgenic zebrafish model we studied the functional and anatomical aspects of gonadotrope regulation thus revisiting the existing model. FSH cells were found to be situated close to the vasculature whereas the compact organization of LH cells prevented direct contact of all cells with the circulation. GnRH3 fibers formed multiple boutons upon reaching the pituitary, but most of these structures were located in the neurohypophysis rather than adjacent to gonadotropes. A close association was observed between FSH cells and GnRH3 boutons, but only a fifth of the LH cells were in direct contact with GnRH3 axons, suggesting that FSH cells are more directly regulated than LH cells. GnRH3 fibers closely followed the vasculature in the neurohypophysis and formed numerous boutons along these tracts. These vessels were found to be permeable to relatively large molecules, suggesting the uptake of GnRH3 peptides. Our findings have important implications regarding the differential regulation of LH and FSH and contradict the accepted notion that fish pituitary cells are mostly regulated directly by hypothalamic fibers. Instead, we provide evidence that zebrafish apply a dual mode of gonadotrope regulation by GnRH3 that combines both neuroglandular and neurovascular components.
Yang, Kai; Jackson, Michael F.; MacDonald, John F.
2014-01-01
G Protein Coupled Receptors (GPCRs) are the largest family of receptors whose ligands constitute nearly a third of prescription drugs in the market. They are widely involved in diverse physiological functions including learning and memory. NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor family, are likewise ubiquitously expressed in the central nervous system (CNS) and play a pivotal role in learning and memory. Despite its critical contribution to physiological and pathophysiological processes, few pharmacological interventions aimed directly at regulating NMDAR function have been developed to date. However, it is well established that NMDAR function is precisely regulated by cellular signalling cascades recruited downstream of G protein coupled receptor (GPCR) stimulation. Accordingly, the downstream regulation of NMDARs likely represents an important determinant of outcome following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, the functional consequence of such regulation on NMDAR function varies, based not only on the identity of the GPCR, but also on the cell type in which relevant receptors are expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs involve numerous intracellular signalling molecules and regulatory proteins that vary from one cell type to another. In the present article, we highlight recent findings from studies that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR function and consequently NMDAR-dependent plasticity. PMID:24562329
Paclik, Daniela; Stehle, Christina; Lahmann, Annette; Hutloff, Andreas; Romagnani, Chiara
2015-10-01
Group 2 innate lymphoid cells (ILC2s) are innate effectors playing an important role in the defense against helminthic infections and in the pathogenesis of allergic inflammation. Cytokines have been identified as the major stimuli driving ILC2 activation and expansion. Conversely, it is unclear whether costimulatory molecules contribute to regulation of ILC2 functions. ILC2s display high expression of inducible T-cell costimulator (ICOS), which belongs to the CD28 superfamily, and which has been shown to control late effector T-cell functions, and is of utmost importance for the humoral immune response. However, the biological function of ICOS expression on ILC2s is unknown. Here, we show that ICOS signaling in mice regulates ILC2 homeostasis independently of T cells and B cells, by promoting proliferation and accumulation of mature ILC2s in lung and intestine. In a model of IL-33-induced airway inflammation, ICOS controls ILC2 activation and eosinophil infiltration in the lung. Our data identify a role of ICOS in innate immunity and indicate that not only cytokines, but also costimulatory pathways such as those involving ICOS, can contribute to regulate the ILC2 pool. Thus, ICOS costimulation blockade, which is currently under clinical evaluation for inhibiting the humoral immune response, could also target innate inflammatory circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
STAT3 is a critical cell-intrinsic regulator of human unconventional T cell numbers and function
Wilson, Robert P.; Ives, Megan L.; Rao, Geetha; Lau, Anthony; Payne, Kathryn; Kobayashi, Masao; Arkwright, Peter D.; Peake, Jane; Wong, Melanie; Adelstein, Stephen; Smart, Joanne M.; French, Martyn A.; Fulcher, David A.; Picard, Capucine; Bustamante, Jacinta; Boisson-Dupuis, Stephanie; Gray, Paul; Stepensky, Polina; Warnatz, Klaus; Freeman, Alexandra F.; Rossjohn, Jamie; McCluskey, James; Holland, Steven M.; Casanova, Jean-Laurent; Uzel, Gulbu; Ma, Cindy S.
2015-01-01
Unconventional T cells such as γδ T cells, natural killer T cells (NKT cells) and mucosal-associated invariant T cells (MAIT cells) are a major component of the immune system; however, the cytokine signaling pathways that control their development and function in humans are unknown. Primary immunodeficiencies caused by single gene mutations provide a unique opportunity to investigate the role of specific molecules in regulating human lymphocyte development and function. We found that individuals with loss-of-function mutations in STAT3 had reduced numbers of peripheral blood MAIT and NKT but not γδ T cells. Analysis of STAT3 mosaic individuals revealed that this effect was cell intrinsic. Surprisingly, the residual STAT3-deficient MAIT cells expressed normal levels of the transcription factor RORγt. Despite this, they displayed a deficiency in secretion of IL-17A and IL-17F, but were able to secrete normal levels of cytokines such as IFNγ and TNF. The deficiency in MAIT and NKT cells in STAT3-deficient patients was mirrored by loss-of-function mutations in IL12RB1 and IL21R, respectively. Thus, these results reveal for the first time the essential role of STAT3 signaling downstream of IL-23R and IL-21R in controlling human MAIT and NKT cell numbers. PMID:25941256
Graf, Philipp; Dolzblasz, Alicja; Würschum, Tobias; Lenhard, Michael; Pfreundt, Ulrike; Laux, Thomas
2010-03-01
Maintenance of stem cells in the Arabidopsis thaliana shoot meristem is regulated by signals from the underlying cells of the organizing center, provided through the transcription factor WUSCHEL (WUS). Here, we report the isolation of several independent mutants of MGOUN1 (MGO1) as genetic suppressors of ectopic WUS activity and enhancers of stem cell defects in hypomorphic wus alleles. mgo1 mutants have previously been reported to result in a delayed progression of meristem cells into differentiating organ primordia (Laufs et al., 1998). Genetic analyses indicate that MGO1 functions together with WUS in stem cell maintenance at all stages of shoot and floral meristems. Synergistic interactions of mgo1 with several chromatin mutants suggest that MGO1 affects gene expression together with chromatin remodeling pathways. In addition, the expression states of developmentally regulated genes are randomly switched in mgo1 in a mitotically inheritable way, indicating that MGO1 stabilizes epigenetic states against stochastically occurring changes. Positional cloning revealed that MGO1 encodes a putative type IB topoisomerase, which in animals and yeast has been shown to be required for regulation of DNA coiling during transcription and replication. The specific developmental defects in mgo1 mutants link topoisomerase IB function in Arabidopsis to stable propagation of developmentally regulated gene expression.
Titov, V N
2016-01-01
The phylogenetic processes continue to proceed in Homo Sapiens. At the very early stages ofphylogenesis, the ancient Archaea that formed mitochondria under symbiotic interaction with later bacterial cells conjointly formed yet another system. In this system, there are no cells' absorption of glucose if it is possible to absorb fatty acids from intercellular medium in the form of unesterfied fatty acids or ketonic bodies--metabolites of fatty acids. This is caused by objectively existed conditions and subsequent availability of substrates at the stages ofphylogenesis: acetate, ketonic bodies, fatty acids and only later glucose. The phylogenetically late insulin used after billions years the same dependencies at formation of regulation ofmetabolism offatty acids and cells' absorption of glucose. In order that syndrome ofresistance ceased to exist as afoundation of metabolic pandemic Homo Sapiens has to understand the following. After successful function ofArchaea+bacterial cells and considered by biology action of insulin for the third time in phylogenesis and using biological function of intelligence the content ofphylogenetically earlier palmitic saturated fatty acid infood can't to exceed possibilities of phylogenetically late lipoproteins to transfer it in intercellular medium and blood and cells to absorb it. It is supposed that at early stages of phylogenesis biological function of intelligence is primarily formed to bring into line "unconformities" of regulation of metabolism against the background of seeming relative biological "perfection". These unconformities were subsequently and separately formed at the level of cells in paracrin regulated cenosises of cells and organs and at the level of organism. The prevention of resistance to insulin basically requires biological function of intelligence, principle of self-restraint, bringing into line multiple desires of Homo Sapiens with much less extensive biological possibilities. The "unconformities" of regulation of metabolism in vivo are etiological factors of all metabolic pandemics including atherosclerosis, metabolic arterial hypertension, obesity and metabolic syndrome Tertiannondatum.
Falin, Rebecca A.; Miyazaki, Hiroaki
2011-01-01
Mammalian Ste20-like proline/alanine-rich kinase (SPAK) and oxidative stress-responsive 1 (OSR1) kinases phosphorylate and regulate cation-coupled Cl− cotransporter activity in response to cell volume changes. SPAK and OSR1 are activated via phosphorylation by upstream with-no-lysine (WNK) kinases. In Caenorhabditis elegans, the SPAK/OSR1 ortholog germinal center kinase (GCK)-3 binds to and regulates the activity of the cell volume- and meiotic cell cycle-dependent ClC anion channel CLH-3b. We tested the hypothesis that WNK kinases function in the GCK-3/CLH-3b signaling cascade. CLH-3b heterologously expressed in human embryonic kidney (HEK) cells was unaffected by coexpression with the single C. elegans WNK kinase, WNK-1, or kinase-dead WNK-1 dominant-negative mutants. RNA interference (RNAi) knockdown of the single Drosophila WNK kinase had no effect on the activity of CLH-3b expressed in Drosophila S2 cells. Similarly, RNAi silencing of C. elegans WNK-1 had no effect on basal or cell volume-sensitive activity of CLH-3b expressed endogenously in worm oocytes. Previous yeast 2-hybrid studies suggested that ERK kinases may function upstream of GCK-3. Pharmacological inhibition of ERK signaling disrupted CLH-3b activity in HEK cells in a GCK-3-dependent manner. RNAi silencing of the C. elegans ERK kinase MPK-1 or the ERK phosphorylating/activating kinase MEK-2 constitutively activated native CLH-3b. MEK-2 and MPK-1 play important roles in regulating the meiotic cell cycle in C. elegans oocytes. Cell cycle-dependent changes in MPK-1 correlate with the pattern of CLH-3b activation observed during oocyte meiotic maturation. We postulate that MEK-2/MPK-1 functions upstream from GCK-3 to regulate its activity during cell volume and meiotic cell cycle changes. PMID:21160027
LRF-mediated Dll4 repression in erythroblasts is necessary for hematopoietic stem cell maintenance
Lee, Sung-Uk; Maeda, Manami; Ishikawa, Yuichi; Li, Sierra Min; Wilson, Anne; Jubb, Adrian M.; Sakurai, Nagisa; Weng, Lihong; Fiorini, Emma; Radtke, Freddy; Yan, Minhong; MacDonald, H. Robson; Chen, Ching-Cheng
2013-01-01
Hematopoietic stem cells (HSCs) are the most primitive cells in the hematopoietic system and are under tight regulation for self-renewal and differentiation. Notch signals are essential for the emergence of definitive hematopoiesis in mouse embryos and are critical regulators of lymphoid lineage fate determination. However, it remains unclear how Notch regulates the balance between HSC self-renewal and differentiation in the adult bone marrow (BM). Here we report a novel mechanism that prevents HSCs from undergoing premature lymphoid differentiation in BM. Using a series of in vivo mouse models and functional HSC assays, we show that leukemia/lymphoma related factor (LRF) is necessary for HSC maintenance by functioning as an erythroid-specific repressor of Delta-like 4 (Dll4) expression. Lrf deletion in erythroblasts promoted up-regulation of Dll4 in erythroblasts, sensitizing HSCs to T-cell instructive signals in the BM. Our study reveals novel cross-talk between HSCs and erythroblasts, and sheds a new light on the regulatory mechanisms regulating the balance between HSC self-renewal and differentiation. PMID:23134786
Regulation of B cell functions by the sialic acid-binding receptors siglec-G and CD22.
Jellusova, Julia; Nitschke, Lars
2011-01-01
B cell antigen receptor (BCR) engagement can lead to many different physiologic outcomes. To achieve an appropriate response, the BCR signal is interpreted in the context of other stimuli and several additional receptors on the B cell surface participate in the modulation of the signal. Two members of the Siglec (sialic acid-binding immunoglobulin-like lectin) family, CD22 and Siglec-G have been shown to inhibit the BCR signal. Recent findings indicate that the ability of these two receptors to bind sialic acids might be important to induce tolerance to self-antigens. Sialylated glycans are usually absent on microbes but abundant in higher vertebrates and might therefore provide an important tolerogenic signal. Since the expression of the specific ligands for Siglec-G and CD22 is tightly regulated and since Siglecs are not only able to bind their ligands in trans but also on the same cell surface this might provide additional mechanisms to control the BCR signal. Although both Siglec-G and CD22 are expressed on B cells and are able to inhibit BCR mediated signaling, they also show unique biological functions. While CD22 is the dominant regulator of calcium signaling on conventional B2 cells and also seems to play a role on marginal zone B cells, Siglec-G exerts its function mainly on B1 cells and influences their lifespan and antibody production. Both Siglec-G and CD22 have also recently been linked to toll-like receptor signaling and may provide a link in the regulation of the adaptive and innate immune response of B cells.
Yoshikawa, Hirohide; Matsubara, Kenichi; Zhou, Xiaoling; Okamura, Shu; Kubo, Takahiko; Murase, Yaeko; Shikauchi, Yuko; Esteller, Manel; Herman, James G.; Wei Wang, Xin
2007-01-01
We found aberrant DNA methylation of the WNT10B promoter region in 46% of primary hepatocellular carcinoma (HCC) and 15% of colon cancer samples. Three of 10 HCC and one of two colon cancer cell lines demonstrated low or no expression, and 5-aza-2′deoxycytidine reactivated WNT10B expression with the induction of demethylation, indicating that WNT10B is silenced by DNA methylation in some cancers, whereas WNT10B expression is up-regulated in seven of the 10 HCC cell lines and a colon cancer cell line. These results indicate that WNT10B can be deregulated by either overexpression or silencing in cancer. We found that WNT10B up-regulated β-catenin/Tcf activity. However, WNT10B-overexpressing cells demonstrated a reduced growth rate and anchorage-independent growth that is independent of the β-catenin/Tcf activation, because mutant β-catenin–transduced cells did not suppress growth, and dominant-negative hTcf-4 failed to alleviate the growth suppression by WNT10B. Although WNT10B expression alone inhibits cell growth, it acts synergistically with the fibroblast growth factor (FGF) to stimulate cell growth. WNT10B is bifunctional, one function of which is involved in β-catenin/Tcf activation, and the other function is related to the down-regulation of cell growth through a different mechanism. We suggest that FGF switches WNT10B from a negative to a positive cell growth regulator. PMID:17761539
Dual role of wingless signaling in stem-like hematopoietic precursor maintenance in Drosophila.
Sinenko, Sergey A; Mandal, Lolitika; Martinez-Agosto, Julian A; Banerjee, Utpal
2009-05-01
In Drosophila, blood development occurs in a specialized larval hematopoietic organ, the lymph gland (LG), within which stem-like hemocyte precursors or prohemocytes differentiate to multiple blood cell types. Here we show that components of the Wingless (Wg) signaling pathway are expressed in prohemocytes. Loss- and gain-of-function analysis indicates that canonical Wg signaling is required for maintenance of prohemocytes and negatively regulates their differentiation. Wg signals locally in a short-range fashion within different compartments of the LG. In addition, Wg signaling positively regulates the proliferation and maintenance of cells that function as a hematopoietic niche in Drosophila, the posterior signaling center (PSC), and in the proliferation of crystal cells. Our studies reveal a conserved function of Wg signaling in the maintenance of stem-like blood progenitors and reveal an involvement of this pathway in the regulation of hemocyte differentiation through its action in the hematopoietic niche.
Lag-3, Tim-3, and TIGIT co-inhibitory receptors with specialized functions in immune regulation
Anderson, Ana C.; Joller, Nicole; Kuchroo, Vijay K.
2016-01-01
Summary Co-inhibitory receptors, such as CTLA-4 and PD-1, have an important role in regulating T cell responses and have proven to be effective targets in the setting of chronic diseases where constitutive co-inhibitory receptor expression on T cells dampens effector T cell responses. Unfortunately, many patients still fail to respond to therapies that target CTLA-4 and PD-1. The next wave of co-inhibitory receptor targets that are being explored in clinical trials include Lag-3, Tim-3, and TIGIT. These receptors while belonging to the same class of receptors as PD-1 and CTLA-4 exhibit unique functions especially at tissue sites where they regulate distinct aspects of immunity. Increased understanding of the specialized functions of these receptors will inform the rational application of therapies that target these receptors to the clinic. PMID:27192565
Lipids, lysosomes, and autophagy
2016-01-01
Lipids are essential components of a cell providing energy substrates for cellular processes, signaling intermediates, and building blocks for biological membranes. Lipids are constantly recycled and redistributed within a cell. Lysosomes play an important role in this recycling process that involves the recruitment of lipids to lysosomes via autophagy or endocytosis for their degradation by lysosomal hydrolases. The catabolites produced are redistributed to various cellular compartments to support basic cellular function. Several studies demonstrated a bidirectional relationship between lipids and lysosomes that regulate autophagy. While lysosomal degradation pathways regulate cellular lipid metabolism, lipids also regulate lysosome function and autophagy. In this review, we focus on this bidirectional relationship in the context of dietary lipids and provide an overview of recent evidence of how lipid-overload lipotoxicity, as observed in obesity and metabolic syndrome, impairs lysosomal function and autophagy that may eventually lead to cellular dysfunction or cell death. PMID:27330054
β-Arrestin2 functions as a phosphorylation-regulated suppressor of UV-induced NF-κB activation
Luan, Bing; Zhang, Zhenning; Wu, Yalan; Kang, Jiuhong; Pei, Gang
2005-01-01
NF-κB activation is an important mechanism of mammalian UV response to protect cells. UV-induced NF-κB activation depends on the casein kinase II (CK2) phosphorylation of IκBα at a cluster of C-terminal sites, but how it is regulated remains unclear. Here we demonstrate that β-arrestin2 can function as an effective suppressor of UV-induced NF-κB activation through its direct interaction with IκBα. CK2 phosphorylation of β-arrestin2 blocks its interaction with IκBα and abolishes its suppression of NF-κB activation, indicating that the β-arrestin2 phosphorylation is critical. Moreover, stimulation of β2-adrenergic receptors, a representative of G-protein-coupled receptors in epidermal cells, promotes dephosphorylation of β-arrestin2 and its suppression of NF-κB activation. Consequently, the β-arrestin2 suppression leads to promotion of UV-induced cell death, which is also under regulation of β-arrestin2 phosphorylation. Thus, β-arrestin2 is identified as a phosphorylation-regulated suppressor of UV response and this may play a functional role in the response of epidermal cells to UV. PMID:16308565
Lehman, Stacey L.; Cerniglia, George J.; Johannes, Gregg J.; Ye, Jiangbin; Ryeom, Sandra; Koumenis, Constantinos
2015-01-01
Multiple transcripts encode for the cell cycle inhibitor p21Cip1. These transcripts produce identical proteins but differ in their 5’ untranslated regions (UTRs). Although several stresses that induce p21 have been characterized, the mechanisms regulating the individual transcript variants and their functional significance are unknown. Here we demonstrate through 35S labeling, luciferase reporter assays, and polysome transcript profiling that activation of the Integrated Stress Response (ISR) kinase GCN2 selectively upregulates the translation of a p21 transcript variant containing 5’ upstream open reading frames (uORFs) through phosphorylation of the eukaryotic translation initiation factor eIF2α. Mutational analysis reveals that the uORFs suppress translation under basal conditions, but promote translation under stress. Functionally, ablation of p21 ameliorates G1/S arrest and reduces cell survival in response to GCN2 activation. These findings uncover a novel mechanism of p21 post-transcriptional regulation, offer functional significance for the existence of multiple p21 transcripts, and support a key role for GCN2 in regulating the cell cycle under stress. PMID:26102367
Immune regulation by CD40-CD40-l interactions - 2; Y2K update.
van Kooten, C
2000-11-01
CD40 is a cell surface receptor, which belongs to the TNF-R family, and which was first identified and functionally characterized on B lymphocytes. However, in recent years it has become clear that CD40 is expressed much broader, including expression on monocytes, dendritic cells, endothelial cells and epithelial cells. Therefore it is now thought that CD40 plays a more general role in immune regulation. The present paper reviews recent developments in this field of research, with main emphasis on CD40 signal transduction and on in vivo functions of CD40/CD40-L interactions.
Nakamura, Yuki; Hibino, Kayo; Yanagida, Toshio; Sako, Yasushi
2016-01-01
Son of sevenless (SOS) is a guanine nucleotide exchange factor that regulates cell behavior by activating the small GTPase RAS. Recent in vitro studies have suggested that an interaction between SOS and the GTP-bound active form of RAS generates a positive feedback loop that propagates RAS activation. However, it remains unclear how the multiple domains of SOS contribute to the regulation of the feedback loop in living cells. Here, we observed single molecules of SOS in living cells to analyze the kinetics and dynamics of SOS behavior. The results indicate that the histone fold and Grb2-binding domains of SOS concertedly produce an intermediate state of SOS on the cell surface. The fraction of the intermediated state was reduced in positive feedback mutants, suggesting that the feedback loop functions during the intermediate state. Translocation of RAF, recognizing the active form of RAS, to the cell surface was almost abolished in the positive feedback mutants. Thus, the concerted functions of multiple membrane-associating domains of SOS governed the positive feedback loop, which is crucial for cell fate decision regulated by RAS. PMID:27924253
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyer, Sukanya; Karig, David K; Norred, Sarah E
Engineered gene circuits offer an opportunity to harness biological systems for biotechnological and biomedical applications. However, reliance on host E. coli promoters for the construction of circuit elements, such as logic gates, makes implementation of predictable, independently functioning circuits difficult. In contrast, T7 promoters offer a simple orthogonal expression system for use in a variety of cellular backgrounds and even in cell free systems. Here we develop a T7 promoter system that can be regulated by two different transcriptional repressors for the construction of a logic gate that functions in cells and in cell free systems. We first present LacImore » repressible T7lacO promoters that are regulated from a distal lac operator site for repression. We next explore the positioning of a tet operator site within the T7lacO framework to create T7 promoters that respond to tet and lac repressors and realize an IMPLIES gate. Finally, we demonstrate that these dual input sensitive promoters function in a commercially available E. coli cell-free protein expression system. Together, our results contribute to the first demonstration of multi-input regulation of T7 promoters and expand the utility of T7 promoters in cell based as well as cell-free gene circuits.« less
Wang, Zhen; Wang, Xiaomin; Xie, Bo; Hong, Zonglie; Yang, Qingchuan
2018-06-01
In mammals, nucleostemin (NS), a nucleolar GTPase, is involved in stem cell proliferation, embryogenesis and ribosome biogenesis. Arabidopsis NUCLEOSTEMIN-LIKE 1 (NSN1) has previously been shown to be essential for plant growth and development. However, the role of NSN1 in cell proliferation is largely unknown. Using nsn1, a loss-of-function mutant of Arabidopsis NSN1, we investigated the function of NSN1 in plant cell proliferation and cell cycle regulation. Morphologically, nsn1 exhibited developmental defects in both leaves and roots, producing severely reduced vegetative organs with a much smaller number of cells than those in the wild type. Dynamic analysis of leaf and root growth revealed a lower cell proliferation rate and slower cell division in nsn1. Consistently, the transcriptional levels of key cell cycle genes, including those regulating the transition of G1-S and G2-M, were reduced drastically in nsn1. The introduction of CYCLIN B1::GUS into nsn1 resulted in confined expression of GUS in both the leaf primordia and root meristem, indicating that cell proliferation was hampered by the mutation of NSN1. Upon subjection to treatment with bleomycin and methyl methanesulfonate (MMS), nsn1 plants exhibited hypersensitivity to the genotoxic agents. In the nucleus, NSN1 interacted with nucleosome assembly protein1 (AtNAP1;1), a highly conserved histone chaperone functioning in cell proliferation. Notably, the N-terminal conserved domains of Arabidopsis NSN1 were critical for the physical interaction. As a conserved homolog of mammalian nucleostemin, Arabidopsis NSN1 plays pivotal roles in embryogenesis and ribosome biogenesis. In this study, NSN1 was found to function as a positive regulator in cell cycle progression. The interaction between NSN1 and histone chaperone AtNAP1;1, and the high resemblance in sensitivity to genotoxics between nsn1 and atnap1;1 imply the indispensability of the two nuclear proteins for cell cycle regulation. This work provides an insight into the delicate control of cell proliferation through the cooperation of a GTP-binding protein with a nucleosome assembly/disassembly protein in Arabidopsis.
Cell-derived micro-environment helps dental pulp stem cells promote dental pulp regeneration.
Zhang, Xuexin; Li, Hui; Sun, Jingjing; Luo, Xiangyou; Yang, Hefeng; Xie, Li; Yang, Bo; Guo, Weihua; Tian, Weidong
2017-10-01
The function of the dental pulp is closely connected to the extracellular matrix (ECM) structure, and ECM has received significant attention due to its biological functions for regulating cells. As such, the interaction between the ECM niche and cells is worth exploring for potential clinical uses. In this study, dental pulp stem cell (DPSC)-derived ECM (DPM) was prepared through cell culture and decellularization to function as the cell niche, and changes in DPSC behaviour and histological analysis of dental pulp tissue regeneration were evaluated following the DPM culture. DPM promoted the replication of DPSCs and exhibited retention of their mineralization. Then, the DPM-based culture strategy under odontogenic culture medium was further investigated, and the mineralization-related markers showed that DPSCs were regulated towards odontogenic differentiation. Dental pulp-like tissue with well-arranged ECM was harvested after a 2-month subcutaneous implantation in nude mice with DPM application. Additionally, DPSCs cultured on the plastic culture surface showed the up-regulation of mineralization makers in vitro, but there was a disorder in matrix formation and mineralization when the cells were cultured in vivo. DPM-based cultivation could serve as a cell niche and modulate DPSC behaviour, and this method also provided an alternative to harvest tissue-specific ECM and provided a strategy for ECM-cell interaction. © 2017 John Wiley & Sons Ltd.
Liu, Ying; Ao, Xiang; Jia, Zhaojun; Bai, Xiao-Yan; Xu, Zhaowei; Hu, Gaolei; Jiang, Xiao; Chen, Min; Wu, Huijian
2015-03-05
Estrogen receptors (ERs) are critical regulators of breast cancer development. Identification of molecules that regulate the function of ERs may facilitate the development of more effective breast cancer treatment strategies. In this study, we showed that the forkhead transcription factor FOXK2 interacted with ERα, and inhibited ERα-regulated transcriptional activities by enhancing the ubiquitin-mediated degradation of ERα. This process involved the interaction between FOXK2 and BRCA1/BARD1, the E3 ubiquitin ligase of ERα. FOXK2 interacted with BARD1 and acted as a scaffold protein for BRCA1/BARD1 and ERα, leading to enhanced degradation of ERα, which eventually accounted for its decreased transcriptional activity. Consistent with these observations, overexpression of FOXK2 inhibited the transcriptional activity of ERα, decreased the transcription of ERα target genes, and suppressed the proliferation of ERα-positive breast cancer cells. In contract, knockdown of FOXK2 in MCF-7 cells promoted cell proliferation. However, when ERα was also knocked down, knockdown of FOXK2 had no effect on cell proliferation. These findings suggested that FOXK2 might act as a negative regulator of ERα, and its association with both ERα and BRCA1/BARD1 could lead to the down-regulation of ERα transcriptional activity, effectively regulating the function of ERα.
O-GlcNAc: a novel regulator of immunometabolism.
Machacek, Miranda; Slawson, Chad; Fields, Patrick E
2018-06-01
The rapidly expanding field of immunometabolism focuses on how metabolism controls the function of immune cells. CD4 + T cells are essential for the adaptive immune response leading to the eradication of specific pathogens. However, when T cells are inappropriately over-active, they can drive autoimmunity, allergic disease, and chronic inflammation. The mechanisms by which metabolic changes influence function in CD4 + T cells are not fully understood. The post-translational protein modification, O-GlcNAc (O-linked β-N-acetylglucosamine), dynamically cycles on and off of intracellular proteins as cells respond to their environment and flux through metabolic pathways changes. As the rate of O-GlcNAc cycling fluctuates, protein function, stability, and/or localization can be affected. Thus, O-GlcNAc is critically poised at the nexus of cellular metabolism and function. This review highlights the intra- and extracellular metabolic factors that influence CD4 + T cell activation and differentiation and how O-GlcNAc regulates these processes. We also propose areas of future research that may illuminate O-GlcNAc's role in the plasticity and pathogenicity of CD4 + T cells and uncover new potential therapeutic targets.
Glucose metabolism regulates T cell activation, differentiation, and functions.
Palmer, Clovis S; Ostrowski, Matias; Balderson, Brad; Christian, Nicole; Crowe, Suzanne M
2015-01-01
The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation, and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The "Warburg effect" originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here, we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.
Laouar, Yasmina; Sutterwala, Fayyaz S; Gorelik, Leonid; Flavell, Richard A
2005-06-01
Interferon-gamma and interleukin 12 produced by the innate arm of the immune system are important regulators of T helper type 1 (T(H)1) cell development, but signals that negatively regulate their expression remain controversial. Here we show that transforming growth factor-beta (TGF-beta) controlled T(H)1 differentiation through the regulation of interferon-gamma produced by natural killer (NK) cells. Blockade of TGF-beta signaling in NK cells caused the accumulation of a large pool of NK cells secreting copious interferon-gamma, responsible for T(H)1 differentiation and protection from leishmania infection. In contrast, blockade of TGF-beta signaling in dendritic cells did not affect dendritic cell homeostasis or interleukin 12 production, thus indicating a previously undescribed demarcation of the function of TGF-beta in NK cells versus dendritic cells.
Palumbo, Tiziana; Poultsides, George A; Kouraklis, Grigorios; Liakakos, Theodore; Drakaki, Alexandra; Peros, George; Hatziapostolou, Maria; Iliopoulos, Dimitrios
2016-06-03
Cholangiocarcinoma is characterized by late diagnosis and a poor survival rate. MicroRNAs have been involved in the pathogenesis of different cancer types, including cholangiocarcinoma. Our aim was to identify novel microRNAs regulating cholangiocarcinoma cell growth in vitro and in vivo. A functional microRNA library screen was performed in human cholangiocarcinoma cells to identify microRNAs that regulate cholangiocarcinoma cell growth. Real-time PCR analysis evaluated miR-9 and XIAP mRNA levels in cholangiocarcinoma cells and tumors. The screen identified 21 microRNAs that regulated >50 % cholangiocarcinoma cell growth. MiR-410 was identified as the top suppressor of growth, while its overexpression significantly inhibited the invasion and colony formation ability of cholangiocarcinoma cells. Bioinformatics analysis revealed that microRNA-410 exerts its effects through the direct regulation of the X-linked inhibitor of apoptosis protein (XIAP). Furthermore, overexpression of miR-410 significantly reduced cholangiocarcinoma tumor growth in a xenograft mouse model through induction of apoptosis. In addition, we identified an inverse relationship between miR-410 and XIAP mRNA levels in human cholangiocarcinomas. Taken together, our study revealed a novel microRNA signaling pathway involved in cholangiocarcinoma and suggests that manipulation of the miR-410/XIAP pathway could have a therapeutic potential for cholangiocarcinoma.
Hu, Jun; Lv, Guohua; Zhou, Shuguang; Zhou, Yucheng; Nie, Bangxu; Duan, Hong; Zhang, Yunfeng; Yuan, Xiaofeng
2015-01-01
Osteosarcoma is the most common primary bone malignancy in children and young adults. Increasing results suggest that discovery of microRNAs (miRNAs) might provide a novel therapeutical target for osteosarcoma. MiR-182 expression level in osteosarcoma cell lines and tissues were assayed by qRT-PCR. MiRNA mimics or inhibitor were transfected for up-regulation or down-regulation of miR-182 expression. Cell function was assayed by CCK8, migration assay and invasion assay. The target genes of miR-182 were predicated by bioinformatics algorithm (TargetScan Human). MiR-182 was down-regulated in osteosarcoma tissues and cell lines. Overexpression of miR-182 inhibited tumor growth, migration and invasion. Subsequent investigation revealed that TIAM1 was a direct and functional target of miR-182 in osteosarcoma cells. Overexpression of miR-182 impaired TIAM1-induced inhibition of proliferation and invasion in osteosarcoma cells. Down-expression of miR-182 in osteosarcoma promoted tumor growth, migration and invasion by targeting TIAM1. MiR-182 might act as a tumor suppressor gene whose down-regulation contributes to the progression and metastasis of osteosarcoma, providing a potential therapy target for osteosarcoma patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukamoto, Yuta; Kagiwada, Satoshi; Shimazu, Sayuri
The small GTPase Rab5 is reported to regulate various cellular functions, such as vesicular transport and endocytosis. VPS9 domain-containing proteins are thought to activate Rab5(s) by their guanine-nucleotide exchange activities. Numerous VPS9 proteins have been identified and are structurally conserved from yeast to mammalian cells. However, the functional relationships among VPS9 proteins in cells remain unclear. Only one Rab5 and two VPS9 proteins were identified in the Schizosaccharomyces pombe genome. Here, we examined the cellular function of two VPS9 proteins and the relationship between these proteins in cellular functions. Vps901-GFP and Vps902-GFP exhibited dotted signals in vegetative and differentiated cells.more » vps901 deletion mutant (Δvps901) cells exhibited a phenotype deficient in the mating process and responses to high concentrations of ions, such as calcium and metals, and Δvps901Δvps902 double mutant cells exhibited round cell shapes similar to ypt5-909 (Rab5 mutant allele) cells. Deletion of both vps901 and vps902 genes completely abolished the mating process and responses to various stresses. A lack of vacuole formation and aberrant inner cell membrane structures were also observed in Δvps901Δvps902 cells by electron microscopy. These data strongly suggest that Vps901 and Vps902 are cooperatively involved in the regulation of cellular functions, such as cell morphology, sexual development, response to ion stresses, and vacuole formation, via Rab5 signaling pathways in fission yeast cells. - Highlights: • Roles of Rab5 activator VPS9 proteins in cellular functions. • Cooperation between VPS9 proteins in Rab5 signaling pathway. • Roles of each VPS9 protein in Rab5 signaling pathway are discussed.« less
An integrated view of suppressor T cell subsets in immunoregulation
Jiang, Hong; Chess, Leonard
2004-01-01
The immune system evolved to protect organisms from a virtually infinite variety of disease-causing agents but to avoid harmful responses to self. Because immune protective mechanisms include the elaboration of potent inflammatory molecules, antibodies, and killer cell activation — which together can not only destroy invading microorganisms, pathogenic autoreactive cells, and tumors, but also mortally injure normal cells — the immune system is inherently a “double-edged sword” and must be tightly regulated. Immune response regulation includes homeostatic mechanisms intrinsic to the activation and differentiation of antigen-triggered immunocompetent cells and extrinsic mechanisms mediated by suppressor cells. This review series will focus on recent advances indicating that distinct subsets of regulatory CD4+ and CD8+ T cells as well as NK T cells control the outgrowth of potentially pathogenic antigen-reactive T cells and will highlight the evidence that these suppressor T cells may play potentially important clinical roles in preventing and treating immune-mediated disease. Here we provide a historical overview of suppressor cells and the experimental basis for the existence of functionally and phenotypically distinct suppressor subsets. Finally, we will speculate on how the distinct suppressor cell subsets may function in concert to regulate immune responses. PMID:15520848
PD-1 ligand expression by human colonic myofibroblasts/fibroblasts regulates CD4+ T-cell activity.
Pinchuk, Irina V; Saada, Jamal I; Beswick, Ellen J; Boya, Gushyalatha; Qiu, Sumin M; Mifflin, Randy C; Raju, Gottumukkala S; Reyes, Victor E; Powell, Don W
2008-10-01
A prominent role for inhibitory molecules PD-L1 and PD-L2 in peripheral tolerance has been proposed. However, the phenotype and function of PD-L-expressing cells in human gut remains unclear. Recent studies suggest that colonic myofibroblasts (CMFs) and fibroblasts are important in the switch from acute inflammation to adaptive immunity. In the normal human colon, CMFs represent a distinct population of major histocompatibility complex class II(+) cells involved in the regulation of mucosal CD4(+) T-cell responses. PD-L1 and PD-L2 expression on human CMFs was determined using Western blot, fluorescence-activated cell sorter analysis and confocal microscopy. Lymphoproliferation assays and cytokine enzyme-linked immunosorbent assays were used to evaluate the role of B7 costimulators expressed by CMFs with regard to the regulation of preactivated T-helper cell responses. We demonstrate here the expression of PD-L1/2 molecules by normal human CMF and fibroblasts in situ and in culture. Both molecules support suppressive functions of CMFs in the regulation of activated CD4(+) T-helper cell proliferative responses; blocking this interaction reverses the suppressive effect of CMFs on T-cell proliferation and leads to increased production of the major T-cell growth factor, interleukin (IL)-2. PD-L1/2-mediated CMF suppressive functions are mainly due to the inhibition of IL-2 production, because supplementation of the coculture media with exogenous IL-2 led to partial recovery of activated T-cell proliferation. Our data suggest that stromal myofibroblasts and fibroblasts may limit T-helper cell proliferative activity in the gut and, thus, might play a prominent role in mucosal intestinal tolerance.
Wesley, Cedric S.; Guo, Heng; Chaudhry, Kanita A.; Thali, Markus J.; Yin, Jerry C.; Clason, Todd; Wesley, Umadevi V.
2011-01-01
Polypyrimidine Tract Binding (PTB) protein is a regulator of mRNA processing and translation. Genetic screens and studies of wing and bristle development during the post-embryonic stages of Drosophila suggest that it is a negative regulator of the Notch pathway. How PTB regulates the Notch pathway is unknown. Our studies of Drosophila embryogenesis indicate that (1) the Notch mRNA is a potential target of PTB, (2) PTB and Notch functions in the dorso-lateral regions of the Drosophila embryo are linked to actin regulation but not their functions in the ventral region, and (3) the actin-related Notch activity in the dorso-lateral regions might require a Notch activity at or near the cell surface that is different from the nuclear Notch activity involved in cell fate specification in the ventral region. These data raise the possibility that the Drosophila embryo is divided into zones of different PTB and Notch activities based on whether or not they are linked to actin regulation. They also provide clues to the almost forgotten role of Notch in cell adhesion and reveal a role for the Notch pathway in cell fusions. PMID:21750738
Protein-driven RNA nanostructured devices that function in vitro and control mammalian cell fate.
Shibata, Tomonori; Fujita, Yoshihiko; Ohno, Hirohisa; Suzuki, Yuki; Hayashi, Karin; Komatsu, Kaoru R; Kawasaki, Shunsuke; Hidaka, Kumi; Yonehara, Shin; Sugiyama, Hiroshi; Endo, Masayuki; Saito, Hirohide
2017-09-14
Nucleic acid nanotechnology has great potential for future therapeutic applications. However, the construction of nanostructured devices that control cell fate by detecting and amplifying protein signals has remained a challenge. Here we design and build protein-driven RNA-nanostructured devices that actuate in vitro by RNA-binding-protein-inducible conformational change and regulate mammalian cell fate by RNA-protein interaction-mediated protein assembly. The conformation and function of the RNA nanostructures are dynamically controlled by RNA-binding protein signals. The protein-responsive RNA nanodevices are constructed inside cells using RNA-only delivery, which may provide a safe tool for building functional RNA-protein nanostructures. Moreover, the designed RNA scaffolds that control the assembly and oligomerization of apoptosis-regulatory proteins on a nanometre scale selectively kill target cells via specific RNA-protein interactions. These findings suggest that synthetic RNA nanodevices could function as molecular robots that detect signals and localize target proteins, induce RNA conformational changes, and programme mammalian cellular behaviour.Nucleic acid nanotechnology has great potential for future therapeutic applications. Here the authors build protein-driven RNA nanostructures that can function within mammalian cells and regulate the cell fate.
Yin, Jie; Zhang, Yi-An; Liu, Tao-Tao; Zhu, Ji-Min; Shen, Xi-Zhong
2014-01-01
Pre-mRNA processing factor 19 (Prp19) activates pre-mRNA spliceosome and also mediates DNA damage response. Prp19 overexpression in cells with functional p53 leads to decreased apoptosis and increases cell survival after DNA damage. Here we showed that in hepatocellular carcinoma (HCC) cells with inactive p53 or functional p53, Prp19 was down-regulated due to the impaired stability under chemotherapeutic drug treatment. Silencing Prp19 expression enhanced apoptosis of HCC cells with or without chemotherapeutic drug treatment. Furthermore high level of Prp19 may inhibit chemotherapeutic drugs induced apoptosis in hepatocellular carcinoma cells through modulating myeloid leukemia cell differentiation 1 expression. These results indicated that targeting Prp19 may potentiate pro-apoptotic effect of chemotherapeutic agents on HCC.
Stem cell aging: mechanisms, regulators and therapeutic opportunities
Oh, Juhyun; Lee, Yang David; Wagers, Amy J
2014-01-01
Aging tissues experience a progressive decline in homeostatic and regenerative capacities, which has been attributed to degenerative changes in tissue-specific stem cells, stem cell niches and systemic cues that regulate stem cell activity. Understanding the molecular pathways involved in this age-dependent deterioration of stem cell function will be critical for developing new therapies for diseases of aging that target the specific causes of age-related functional decline. Here we explore key molecular pathways that are commonly perturbed as tissues and stem cells age and degenerate. We further consider experimental evidence both supporting and refuting the notion that modulation of these pathways per se can reverse aging phenotypes. Finally, we ask whether stem cell aging establishes an epigenetic ‘memory’ that is indelibly written or one that can be reset. PMID:25100532
Intermediates of Metabolism: From Bystanders to Signalling Molecules.
Haas, Robert; Cucchi, Danilo; Smith, Joanne; Pucino, Valentina; Macdougall, Claire Elizabeth; Mauro, Claudio
2016-05-01
The integration of biochemistry into immune cell biology has contributed immensely to our understanding of immune cell function and the associated pathologies. So far, most studies have focused on the regulation of metabolic pathways during an immune response and their contribution to its success. More recently, novel signalling functions of metabolic intermediates are being discovered that might play important roles in the regulation of immunity. Here we describe the three long-known small metabolites lactate, acetyl-CoA, and succinate in the context of immunometabolic signalling. Functions of these ubiquitous molecules are largely dependent on their intra- and extracellular concentrations as well as their subcompartmental localisation. Importantly, the signalling functions of these metabolic intermediates extend beyond self-regulatory roles and include cell-to-cell communication and sensing of microenvironmental conditions to elicit stress responses and cellular adaptation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fang, Feng; Flegler, Ayanna J; Du, Pan; Lin, Simon; Clevenger, Charles V
2009-01-01
Cyclophilin B (CypB) is a 21-kDa protein with peptidyl-prolyl cis-trans isomerase activity that functions as a transcriptional inducer for Stat5 and as a ligand for CD147. To better understand the global function of CypB in breast cancer, T47D cells with a small interfering RNA-mediated knockdown of CypB were generated. Subsequent expression profiling analysis showed that 663 transcripts were regulated by CypB knockdown, and that many of these gene products contributed to cell proliferation, cell motility, and tumorigenesis. Real-time PCR confirmed that STMN3, S100A4, S100A6, c-Myb, estrogen receptor alpha, growth hormone receptor, and progesterone receptor were all down-regulated in si-CypB cells. A linkage analysis of these array data to protein networks resulted in the identification of 27 different protein networks that were impacted by CypB knockdown. Functional assays demonstrated that CypB knockdown also decreased cell growth, proliferation, and motility. Immunohistochemical and immunofluorescent analyses of a matched breast cancer progression tissue microarray that was labeled with an anti-CypB antibody demonstrated a highly significant increase in CypB protein levels as a function of breast cancer progression. Taken together, these results suggest that the enhanced expression of CypB in malignant breast epithelium may contribute to the pathogenesis of this disease through its regulation of the expression of hormone receptors and gene products that are involved in cell proliferation and motility.
Fang, Feng; Flegler, Ayanna J.; Du, Pan; Lin, Simon; Clevenger, Charles V.
2009-01-01
Cyclophilin B (CypB) is a 21-kDa protein with peptidyl-prolyl cis-trans isomerase activity that functions as a transcriptional inducer for Stat5 and as a ligand for CD147. To better understand the global function of CypB in breast cancer, T47D cells with a small interfering RNA-mediated knockdown of CypB were generated. Subsequent expression profiling analysis showed that 663 transcripts were regulated by CypB knockdown, and that many of these gene products contributed to cell proliferation, cell motility, and tumorigenesis. Real-time PCR confirmed that STMN3, S100A4, S100A6, c-Myb, estrogen receptor α, growth hormone receptor, and progesterone receptor were all down-regulated in si-CypB cells. A linkage analysis of these array data to protein networks resulted in the identification of 27 different protein networks that were impacted by CypB knockdown. Functional assays demonstrated that CypB knockdown also decreased cell growth, proliferation, and motility. Immunohistochemical and immunofluorescent analyses of a matched breast cancer progression tissue microarray that was labeled with an anti-CypB antibody demonstrated a highly significant increase in CypB protein levels as a function of breast cancer progression. Taken together, these results suggest that the enhanced expression of CypB in malignant breast epithelium may contribute to the pathogenesis of this disease through its regulation of the expression of hormone receptors and gene products that are involved in cell proliferation and motility. PMID:19056847
Molecular Regulation of Endothelial Cells by NF-1
2013-01-01
cancer progression. The mammalian target of rapamycin (mTOR) is a serine threonine kinase, that exists in two distinct signaling complexes: mTORC1 and...abnormalities such as diabetes , with known vascular complications. Thus mTOR may be a significant regulator of endothelial cell functions
Yu, Yue; Liu, Liangliang; Xie, Ning; Xue, Hui; Fazli, Ladan; Buttyan, Ralph; Wang, Yuzhuo; Gleave, Martin
2013-01-01
Context: Like other tissues, the prostate is an admixture of many different cell types that can be segregated into components of the epithelium or stroma. Reciprocal interactions between these 2 types of cells are critical for maintaining prostate homeostasis, whereas aberrant stromal cell proliferation can disrupt this balance and result in diseases such as benign prostatic hyperplasia. Although the androgen and estrogen receptors are relatively well studied for their functions in controlling stromal cell proliferation and differentiation, the role of the progesterone receptor (PR) remains unclear. Objective: The aim of the study was to investigate the expression and function of the PR in the prostate. Design and Setting: Human prostate biopsies, renal capsule xenografts, and prostate stromal cells were used. Immunohistochemistry, Western blotting, real-time quantitative PCR, cell proliferation, flow cytometry, and gene microarray analyses were performed. Results: Two PR isoforms, PRA and PRB, are expressed in prostate stromal fibroblasts and smooth muscle cells, but not in epithelial cells. Both PR isoforms suppress prostate stromal cell proliferation through inhibition of the expression of cyclinA, cyclinB, and cdc25c, thus delaying cell cycling through S and M phases. Gene microarray analyses further demonstrated that PRA and PRB regulated different transcriptomes. However, one of the major gene groups commonly regulated by both PR isoforms was the one associated with regulation of cell proliferation. Conclusion: PR plays an inhibitory role in prostate stromal cell proliferation. PMID:23666965
Roles for Hedgehog signaling in adult organ homeostasis and repair
Petrova, Ralitsa; Joyner, Alexandra L.
2014-01-01
The hedgehog (HH) pathway is well known for its mitogenic and morphogenic functions during development, and HH signaling continues in discrete populations of cells within many adult mammalian tissues. Growing evidence indicates that HH regulates diverse quiescent stem cell populations, but the exact roles that HH signaling plays in adult organ homeostasis and regeneration remain poorly understood. Here, we review recently identified functions of HH in modulating the behavior of tissue-specific adult stem and progenitor cells during homeostasis, regeneration and disease. We conclude that HH signaling is a key factor in the regulation of adult tissue homeostasis and repair, acting via multiple different routes to regulate distinct cellular outcomes, including maintenance of plasticity, in a context-dependent manner. PMID:25183867
Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer.
Yeung, S J; Pan, J; Lee, M-H
2008-12-01
Despite diversity in genetic events in oncogenesis, cancer cells exhibit a common set of functional characteristics. Otto Warburg discovered that cancer cells have consistently higher rates of glycolysis than normal cells. The underlying mechanisms leading to the Warburg phenomenon include mitochondrial changes, upregulation of rate-limiting enzymes/proteins in glycolysis and intracellular pH regulation, hypoxia-induced switch to anaerobic metabolism, and metabolic reprogramming after loss of p53 function. The regulation of energy metabolism can be traced to a "triad" of transcription factors: c-MYC, HIF-1 and p53. Oncogenetic changes involve a nonrandom set of gene deletions, amplifications and mutations, and many oncogenes and tumor suppressor genes cluster along the signaling pathways that regulate c-MYC, HIF-1 and p53. Glycolysis in cancer cells has clinical implications in cancer diagnosis, treatment and interaction with diabetes mellitus. Many drugs targeting energy metabolism are in development. Future advances in technology may bring about transcriptome and metabolome-guided chemotherapy.
Inferring genome-wide interplay landscape between DNA methylation and transcriptional regulation.
Tang, Binhua; Wang, Xin
2015-01-01
DNA methylation and transcriptional regulation play important roles in cancer cell development and differentiation processes. Based on the currently available cell line profiling information from the ENCODE Consortium, we propose a Bayesian inference model to infer and construct genome-wide interaction landscape between DNA methylation and transcriptional regulation, which sheds light on the underlying complex functional mechanisms important within the human cancer and disease context. For the first time, we select all the currently available cell lines (>=20) and transcription factors (>=80) profiling information from the ENCODE Consortium portal. Through the integration of those genome-wide profiling sources, our genome-wide analysis detects multiple functional loci of interest, and indicates that DNA methylation is cell- and region-specific, due to the interplay mechanisms with transcription regulatory activities. We validate our analysis results with the corresponding RNA-sequencing technique for those detected genomic loci. Our results provide novel and meaningful insights for the interplay mechanisms of transcriptional regulation and gene expression for the human cancer and disease studies.
Aulds, Jason; Wierzbicki, Sara; McNairn, Adrian; Schmitt, Mark E.
2012-01-01
RNase mitochondrial RNA processing (MRP) is an essential, evolutionarily conserved endoribonuclease composed of 10 different protein subunits and a single RNA. RNase MRP has established roles in multiple pathways including ribosome biogenesis, cell cycle regulation, and mitochondrial DNA replication. Although each of these functions is important to cell growth, additional functions may exist given the essential nature of the complex. To identify novel RNase MRP substrates, we utilized RNA immunoprecipitation and microarray chip analysis to identify RNA that physically associates with RNase MRP. We identified several new potential substrates for RNase MRP including a cell cycle-regulated transcript, CTS1; the yeast homolog of the mammalian p27Kip1, SIC1; and the U2 RNA component of the spliceosome. In addition, we found RNase MRP to be involved in the regulation of the Ty1 transposon RNA. These results reinforce and broaden the role of RNase MRP in cell cycle regulation and help to identify new roles of this endoribonuclease. PMID:22977255
Aulds, Jason; Wierzbicki, Sara; McNairn, Adrian; Schmitt, Mark E
2012-10-26
RNase mitochondrial RNA processing (MRP) is an essential, evolutionarily conserved endoribonuclease composed of 10 different protein subunits and a single RNA. RNase MRP has established roles in multiple pathways including ribosome biogenesis, cell cycle regulation, and mitochondrial DNA replication. Although each of these functions is important to cell growth, additional functions may exist given the essential nature of the complex. To identify novel RNase MRP substrates, we utilized RNA immunoprecipitation and microarray chip analysis to identify RNA that physically associates with RNase MRP. We identified several new potential substrates for RNase MRP including a cell cycle-regulated transcript, CTS1; the yeast homolog of the mammalian p27(Kip1), SIC1; and the U2 RNA component of the spliceosome. In addition, we found RNase MRP to be involved in the regulation of the Ty1 transposon RNA. These results reinforce and broaden the role of RNase MRP in cell cycle regulation and help to identify new roles of this endoribonuclease.
Tpl2 kinase regulates T cell interferon-γ production and host resistance to Toxoplasma gondii
Watford, Wendy T.; Hissong, Bruce D.; Durant, Lydia R.; Yamane, Hidehiro; Muul, Linda M.; Kanno, Yuka; Tato, Cristina M.; Ramos, Haydeé L.; Berger, Alan E.; Mielke, Lisa; Pesu, Marko; Solomon, Benjamin; Frucht, David M.; Paul, William E.; Sher, Alan; Jankovic, Dragana; Tsichlis, Philip N.; O'Shea, John J.
2008-01-01
Tpl2 (Tumor progression locus 2), also known as Cot/MAP3K8, is a hematopoietically expressed serine-threonine kinase. Tpl2 is known to have critical functions in innate immunity in regulating tumor necrosis factor–α, Toll-like receptor, and G protein–coupled receptor signaling; however, our understanding of its physiological role in T cells is limited. We investigated the potential roles of Tpl2 in T cells and found that it was induced by interleukin-12 in human and mouse T cells in a Stat4-dependent manner. Deficiency of Tpl2 was associated with impaired interferon (IFN)-γ production. Accordingly, Tpl2−/− mice had impaired host defense against Toxoplasma gondii with reduced parasite clearance and decreased IFN-γ production. Furthermore, reconstitution of Rag2−/− mice with Tpl2-deficient T cells followed by T. gondii infection recapitulated the IFN-γ defect seen in the Tpl2-deficient mice, confirming a T cell–intrinsic defect. CD4+ T cells isolated from Tpl2−/− mice showed poor induction of T-bet and failure to up-regulate Stat4 protein, which is associated with impaired TCR-dependent extracellular signal-regulated kinase activation. These data underscore the role of Tpl2 as a regulator of T helper cell lineage decisions and demonstrate that Tpl2 has an important functional role in the regulation of Th1 responses. PMID:19001140
Brozovich, F.V.; Nicholson, C.J.; Degen, C.V.; Gao, Yuan Z.; Aggarwal, M.
2016-01-01
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function. PMID:27037223
Functional Analysis of the Drosophila Embryonic Germ Cell Transcriptome by RNA Interference
Bujna, Ágnes; Vilmos, Péter; Spirohn, Kerstin; Boutros, Michael; Erdélyi, Miklós
2014-01-01
In Drosophila melanogaster, primordial germ cells are specified at the posterior pole of the very early embryo. This process is regulated by the posterior localized germ plasm that contains a large number of RNAs of maternal origin. Transcription in the primordial germ cells is actively down-regulated until germ cell fate is established. Bulk expression of the zygotic genes commences concomitantly with the degradation of the maternal transcripts. Thus, during embryogenesis, maternally provided and zygotically transcribed mRNAs determine germ cell development collectively. In an effort to identify novel genes involved in the regulation of germ cell behavior, we carried out a large-scale RNAi screen targeting both maternal and zygotic components of the embryonic germ line transcriptome. We identified 48 genes necessary for distinct stages in germ cell development. We found pebble and fascetto to be essential for germ cell migration and germ cell division, respectively. Our data uncover a previously unanticipated role of mei-P26 in maintenance of embryonic germ cell fate. We also performed systematic co-RNAi experiments, through which we found a low rate of functional redundancy among homologous gene pairs. As our data indicate a high degree of evolutionary conservation in genetic regulation of germ cell development, they are likely to provide valuable insights into the biology of the germ line in general. PMID:24896584
Minchenko, D O; Riabovol, O O; Ratushna, O O; Minchenko, O H
2017-01-01
The aim of the present study was to examine the effect of inhibition of endoplasmic reticulum stress signaling, mediated by IRE1 (inositol requiring enzyme 1), which is a central mediator of the unfolded protein response on the expression of genes encoded estrogen related proteins (NRIP1/RIP140, TRIM16/EBBP, ESRRA/NR3B1, FAM162A/E2IG5, PGRMC2/PMBP, and SLC39A6/LIV-1) and their hypoxic regulation in U87 glioma cells for evaluation of their possible significance in the control of glioma cells proliferation. The expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells, transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia, was studied by a quantitative polymerase chain reaction. Inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 signaling enzyme function up-regulates the expression of EBBP, E2IG5, PGRMC2, and SLC39A6 genes is in U87 glioma cells in comparison with the control glioma cells, with more significant changes for E2IG5 and PGRMC2 genes. At the same time, the expression of NRIP1 and ESRRA genes is strongly down-regulated in glioma cells upon inhibition of IRE1. We also showed that hypoxia increases the expression of E2IG5, PGRMC2, and EBBP genes and decreases NRIP1 and ESRRA genes expression in control glioma cells. Furthermore, the inhibition of IRE1 in U87 glioma cells decreases the eff ect of hypoxia on the expression of E2IG5 and PGRMC2 genes, eliminates hypoxic regulation of NRIP1 gene, and enhances the sensitivity of ESRRA gene to hypoxic condition. Furthermore, the expression of SLC39A6 gene is resistant to hypoxia in both the glioma cells with and without IRE1 signaling enzyme function. Results of this investigation demonstrate that inhibition of IRE1 signaling enzyme function affects the expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells in gene specific manner and these changes possibly contribute to the suppression of the cell proliferation. Most of these genes are regulated by hypoxia and preferentially through IRE1 signaling pathway of endoplasmic reticulum stress.
Khaw, Swea Ling; Chin, Lingzi; Teh, Cathleen; Tay, Junliang; O'Day, Elizabeth; Korzh, Vladimir; Yang, Henry; Lal, Ashish; Lieberman, Judy; Lodish, Harvey F.; Lim, Bing
2011-01-01
MicroRNAs regulate networks of genes to orchestrate cellular functions. MiR-125b, the vertebrate homologue of the Caenorhabditis elegans microRNA lin-4, has been implicated in the regulation of neural and hematopoietic stem cell homeostasis, analogous to how lin-4 regulates stem cells in C. elegans. Depending on the cell context, miR-125b has been proposed to regulate both apoptosis and proliferation. Because the p53 network is a central regulator of both apoptosis and proliferation, the dual roles of miR-125b raise the question of what genes in the p53 network might be regulated by miR-125b. By using a gain- and loss-of-function screen for miR-125b targets in humans, mice, and zebrafish and by validating these targets with the luciferase assay and a novel miRNA pull-down assay, we demonstrate that miR-125b directly represses 20 novel targets in the p53 network. These targets include both apoptosis regulators like Bak1, Igfbp3, Itch, Puma, Prkra, Tp53inp1, Tp53, Zac1, and also cell-cycle regulators like cyclin C, Cdc25c, Cdkn2c, Edn1, Ppp1ca, Sel1l, in the p53 network. We found that, although each miRNA–target pair was seldom conserved, miR-125b regulation of the p53 pathway is conserved at the network level. Our results lead us to propose that miR-125b buffers and fine-tunes p53 network activity by regulating the dose of both proliferative and apoptotic regulators, with implications for tissue stem cell homeostasis and oncogenesis. PMID:21935352
Survivin Selectively Modulates Genes Deregulated in Human Leukemia Stem Cells
Fukuda, Seiji; Abe, Mariko; Onishi, Chie; Taketani, Takeshi; Purevsuren, Jamiyan; Yamaguchi, Seiji; Conway, Edward M.; Pelus, Louis M.
2011-01-01
ITD-Flt3 mutations are detected in leukemia stem cells (LSCs) in acute myeloid leukemia (AML) patients. While antagonizing Survivin normalizes ITD-Flt3-induced acute leukemia, it also impairs hematopoietic stem cell (HSC) function, indicating that identification of differences in signaling pathways downstream of Survivin between LSC and HSC are crucial to develop selective Survivin-based therapeutic strategies for AML. Using a Survivin-deletion model, we identified 1,096 genes regulated by Survivin in ITD-Flt3-transformed c-kit+, Sca-1+, and lineageneg (KSL) cells, of which 137 are deregulated in human LSC. Of the 137, 124 genes were regulated by Survivin exclusively in ITD-Flt3+ KSL cells but not in normal CD34neg KSL cells. Survivin-regulated genes in LSC connect through a network associated with the epidermal growth factor receptor signaling pathway and falls into various functional categories independent of effects on apoptosis. Pathways downstream of Survivin in LSC that are distinct from HSC can be potentially targeted for selective anti-LSC therapy. PMID:21253548
SATB1 plays an oncogenic role in esophageal cancer by up-regulation of FN1 and PDGFRB.
Song, Guiqin; Liu, Kang; Yang, Xiaolin; Mu, Bo; Yang, Junbao; He, Lang; Hu, Xin; Li, Qiujiang; Zhao, Yunxia; Cai, Xiaoming; Feng, Gang
2017-03-14
Esophageal cancer is a highly aggressive malignancy with very poor overall prognosis. Given the strong clinical relevance of SATB1 in esophagus cancer and other cancers suggested by previous studies, the exact function of SATB1 in esophagus cancer development is still unknown. Here we showed that the knockdown of SATB1 in esophageal cancer cell lines diminished the cell proliferation, survival and invasion. Whole genome transcriptome analysis of SATB1 knockdown cells revealed the different gene expression profiles between TE-1 cells and MDA-MB-231 cells. Network analysis and functional experiments further identified FN1 and PDGFRB to be key downstream genes regulated by SATB1 in esophageal cancer cells. Importantly, FN1 and PDGFRB were found to be highly expressed in human esophageal cancer. In summary, we provided the first molecular evidence that SATB1 played an oncogenic role in esophageal cancer by up-regulation of FN1 and PDGFRB.
Schoenborn, Alexi A; von Furstenberg, Richard J; Valsaraj, Smrithi; Hussain, Farah S; Stein, Molly; Shanahan, Michael T; Henning, Susan J; Gulati, Ajay S
2018-06-08
Paneth cells (PCs) are epithelial cells found in the small intestine, next to intestinal stem cells (ISCs) at the base of the crypts. PCs secrete antimicrobial peptides (AMPs) that regulate the commensal gut microbiota. In contrast, little is known regarding how the enteric microbiota reciprocally influences PC function. In this study, we sought to characterize the impact of the enteric microbiota on PC biology in the mouse small intestine. This was done by first enumerating jejunal PCs in germ-free (GF) versus conventionally-raised (CR) mice. We next evaluated the possible functional consequences of altered PC biology in these experimental groups by assessing epithelial proliferation, ISC numbers, and the production of AMPs. We found that PC numbers were significantly increased in CR versus GF mice; however, there were no differences in ISC numbers or cycling activity between groups. Of the AMPs assessed, only Reg3γ transcript expression was significantly increased in CR mice. Intriguingly, this increase was abrogated in cultured CR versus GF enteroids, and could not be re-induced with various bacterial ligands. Our findings demonstrate the enteric microbiota regulates PC function by increasing PC numbers and inducing Reg3γ expression, though the latter effect may not involve direct interactions between bacteria and the intestinal epithelium. In contrast, the enteric microbiota does not appear to regulate jejunal ISC census and proliferation. These are critical findings for investigators using GF mice and the enteroid system to study PC and ISC biology.
Ikeda, Miho; Ohme-Takagi, Masaru
2014-01-01
In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP), WUSCHEL (WUS), and WOUND INDUCED DEDIFFERENTIATION (WIND1) families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS, and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinoshita, Takashi; Nohata, Nijiro; Fuse, Miki
Highlights: Black-Right-Pointing-Pointer Tumor suppressive microRNA-133a regulates moesin (MSN) expression in HNSCC. Black-Right-Pointing-Pointer Silencing of MSN in HNSCC cells suppressed proliferation, migration and invasion. Black-Right-Pointing-Pointer The expression level of MSN was significantly up-regulated in cancer tissues. -- Abstract: Recently, many studies suggest that microRNAs (miRNAs) contribute to the development, invasion and metastasis of various types of human cancers. Our recent study revealed that expression of microRNA-133a (miR-133a) was significantly reduced in head and neck squamous cell carcinoma (HNSCC) and that restoration of miR-133a inhibited cell proliferation, migration and invasion in HNSCC cell lines, suggesting that miR-133a function as a tumor suppressor.more » Genome-wide gene expression analysis of miR-133a transfectants and TargetScan database showed that moesin (MSN) was a promising candidate of miR-133a target gene. MSN is a member of the ERM (ezrin, radixin and moesin) protein family and ERM function as cross-linkers between plasma membrane and actin-based cytoskeleton. The functions of MSN in cancers are controversial in previous reports. In this study, we focused on MSN and investigated whether MSN was regulated by tumor suppressive miR-133a and contributed to HNSCC oncogenesis. Restoration of miR-133a in HNSCC cell lines (FaDu, HSC3, IMC-3 and SAS) suppressed the MSN expression both in mRNA and protein level. Silencing study of MSN in HNSCC cell lines demonstrated significant inhibitions of cell proliferation, migration and invasion activities in si-MSN transfectants. In clinical specimen with HNSCC, the expression level of MSN was significantly up-regulated in cancer tissues compared to adjacent non-cancerous tissues. These data suggest that MSN may function as oncogene and is regulated by tumor suppressive miR-133a. Our analysis data of novel tumor-suppressive miR-133a-mediated cancer pathways could provide new insights into the potential mechanisms of HNSCC oncogenesis.« less
Regulation of STIM1 and SOCE by the ubiquitin-proteasome system (UPS).
Keil, Jeffrey M; Shen, Zhouxin; Briggs, Steven P; Patrick, Gentry N
2010-10-18
The ubiquitin proteasome system (UPS) mediates the majority of protein degradation in eukaryotic cells. The UPS has recently emerged as a key degradation pathway involved in synapse development and function. In order to better understand the function of the UPS at synapses we utilized a genetic and proteomic approach to isolate and identify novel candidate UPS substrates from biochemically purified synaptic membrane preparations. Using these methods, we have identified Stromal interacting molecule 1 (STIM1). STIM1 is as an endoplasmic reticulum (ER) calcium sensor that has been shown to regulate store-operated Ca(2+) entry (SOCE). We have characterized STIM1 in neurons, finding STIM1 is expressed throughout development with stable, high expression in mature neurons. As in non-excitable cells, STIM1 is distributed in a membranous and punctate fashion in hippocampal neurons. In addition, a population of STIM1 was found to exist at synapses. Furthermore, using surface biotinylation and live-cell labeling methods, we detect a subpopulation of STIM1 on the surface of hippocampal neurons. The role of STIM1 as a regulator of SOCE has typically been examined in non-excitable cell types. Therefore, we examined the role of the UPS in STIM1 and SOCE function in HEK293 cells. While we find that STIM1 is ubiquitinated, its stability is not altered by proteasome inhibitors in cells under basal conditions or conditions that activate SOCE. However, we find that surface STIM1 levels and thapsigargin (TG)-induced SOCE are significantly increased in cells treated with proteasome inhibitors. Additionally, we find that the overexpression of POSH (Plenty of SH3's), an E3 ubiquitin ligase recently shown to be involved in the regulation of Ca(2+) homeostasis, leads to decreased STIM1 surface levels. Together, these results provide evidence for previously undescribed roles of the UPS in the regulation of STIM1 and SOCE function.
pH regulators in invadosomal functioning: proton delivery for matrix tasting.
Brisson, Lucie; Reshkin, Stephan J; Goré, Jacques; Roger, Sébastien
2012-01-01
Invadosomes are actin-rich finger-like cellular structures sensing and interacting with the surrounding extracellular matrix (ECM) and involved in its proteolytic remodeling. Invadosomes are structures distinct from other adhesion complexes, and have been identified in normal cells that have to cross tissue barriers to fulfill their function such as leukocytes, osteoclasts and endothelial cells. They also represent features of highly aggressive cancer cells, allowing them to escape from the primary tumor, to invade surrounding tissues and to reach systemic circulation. They are localized to the ventral membrane of cells grown under 2-dimensional conditions and are supposed to be present all around cells grown in 3-dimensional matrices. Indeed invadosomes are key structures in physiological processes such as inflammation and the immune response, bone remodeling, tissue repair, but also in pathological conditions such as osteopetrosis and the development of metastases. Invadosomes are subdivided into podosomes, found in normal cells, and into invadopodia specific for cancer cells. While these two structures exhibit differences in organization, size, number and half-life, they share similarities in molecular composition, participation in cell-matrix adhesion and promoting matrix degradation. A key determinant in invadosomal function is the recruitment and release of proteases, such as matrix metalloproteinases (MMPs), serine proteases and cysteine cathepsins, together with their activation in a tightly controlled and highly acidic microenvironment. Therefore numerous pH regulators such as V-ATPases and Na(+)/H(+) exchangers, are found in invadosomes and are directly involved in their constitution as well as their functioning. This review focuses on the participation of pH regulators in invadosome function in physiological and pathological conditions, with a particular emphasis on ECM remodeling by osteoclasts during bone resorption and by cancer cells. Copyright © 2012 Elsevier GmbH. All rights reserved.
Role of miRNAs in CD4 T cell plasticity during inflammation and tolerance
Sethi, Apoorva; Kulkarni, Neeraja; Sonar, Sandip; Lal, Girdhari
2013-01-01
Gene expression is tightly regulated in a tuneable, cell-specific and time-dependent manner. Recent advancement in epigenetics and non-coding RNA (ncRNA) revolutionized the concept of gene regulation. In order to regulate the transcription, ncRNA can promptly response to the extracellular signals as compared to transcription factors present in the cells. microRNAs (miRNAs) are ncRNA (~22 bp) encoded in the genome, and present as intergenic or oriented antisense to neighboring genes. The strategic location of miRNA in coding genes helps in the coupled regulation of its expression with host genes. miRNA together with complex machinery called RNA-induced silencing complex (RISC) interacts with target mRNA and degrade the mRNA or inhibits the translation. CD4 T cells play an important role in the generation and maintenance of inflammation and tolerance. Cytokines and chemokines present in the inflamed microenvironment controls the differentiation and function of various subsets of CD4 T cells [Th1, Th2, Th17, and regulatory CD4 T cells (Tregs)]. Recent studies suggest that miRNAs play an important role in the development and function of all subsets of CD4 T cells. In current review, we focused on how various miRNAs are regulated by cell's extrinsic and intrinsic signaling, and how miRNAs affect the transdifferentiation of subsets of CD4 T cell and controls their plasticity during inflammation and tolerance. PMID:23386861
Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartley, Laura; Wu, Y.; Zhu, L.
Inefficient conversion of biomass to biofuels is one of the main barriers for biofuel production from such materials. Approximately half of polysaccharides in biomass remain unused by typical biochemical conversion methods. Conversion efficiency is influenced by the composition and structure of cell walls of biomass. Grasses such as wheat, maize, and rice, as well as dedicated perennial bioenergy crops, like switchgrass, make up ~55% of biomass that can be produced in the United States. Grass cell walls have a different composition and patterning compared with dicotyledonous plants, including the well-studied model plant, Arabidopsis. This project identified genetic determinants of cellmore » wall composition in grasses using both naturally occurring genetic variation of switchgrass and gene network reconstruction and functional assays in rice. In addition, the project linked functional data in rice and other species to switchgrass improvement efforts through curation of the most abundant class of regulators in the switchgrass genome. Characterizing natural diversity of switchgrass for variation in cell wall composition and properties, also known as quality, provides an unbiased avenue for identifying biologically viable diversity in switchgrass cell walls. To characterizing natural diversity, this project generated cell wall composition and enzymatic deconstruction data for ~450 genotypes of the Switchgrass Southern Association Collection (SSAC), a diverse collection composed of 36 switchgrass accessions from the southern U.S. distribution of switchgrass. Comparing these data with other measures of cell wall quality for the same samples demonstrated the complementary nature of the diverse characterization platforms now being used for biomass characterization. Association of the composition data with ~3.2K single nucleotide variant markers identified six significant single nucleotide variant markers co-associated with digestibility and another compositional trait. These markers might be used to select switchgrass genotypes with improved composition in breeding programs for biofuel and forage production. Because the SSAC continues to be characterized by collaborators in the bioenergy community, the data generated will be used to identify additional markers in higher resolution genotyping data to approach identifying the genes and alleles that cause natural variation in switchgrass cell wall quality. For example, these markers can be surveyed in the 2100-member Oklahoma Southern and Northern Lowland switchgrass collections that this project also characterized. An orthogonal approach to biodiversity studies, using comparative functional genomics permits systematic querying of how much regulatory information is likely to be transferable from dicots to grasses and use of accumulated functional genomics resources for better-characterized grass species, such as rice, itself a biomass source in global agriculture and in certain regions. The project generated and tested a number of specific hypotheses regarding cell wall transcription factors and enzymes of grasses. To aid identification of cell wall regulators, the project assembled a novel, highdepth and -quality gene association network using a general linearized model scoring system to combine rice gene network data. Using known or putative orthologs of Arabidopsis cell wall biosynthesis genes and regulators, the project pulled from this network a cell wall sub-network that includes 96 transcription factors. Reverse genetics of a co-ortholog of the Arabidopsis MYB61 transcription factor in rice revealed that this regulatory node has evolved the ability to regulate grass-specific cell wall synthesis enzymes. A transcription factor with such activity has not been previously characterized to our knowledge, representing a major conclusion of this work. Changes in gene expression in a protoplast-based assay demonstrated positive or negative roles in cell wall regulation for eleven other transcription factors from the rice gene network. Eight of fifteen (53%) of these have not previously been examined for this function. Some of these may represent novel grass-diverged cell wall regulators, while others are likely to have this function across angiosperms. A parallel effort of this project to expand knowledge of enzymes that have evolved to function in grass cell wall synthesis, revealed that a grass-diverged enzyme in rice, OsAT 5, ferulates monolignols that are naturally incorporated into grass cell walls. This finding opens potential natural selection avenues for improving biomass composition for downstream processing by weak base pretreatment. Thus, this project has significantly expanded knowledge of cell wall synthesis and regulation in rice, information that can be used in reverse genetics and synthetic biology approaches to re-engineer cell walls for improved production of biofuel and high-value products. To lay the foundation for translating these results directly for switchgrass improvement, the project employed a comparative phylogenetic analysis of the major group of cell wall transcription factors that have been found to function in cell wall regulation, the R 2R 3 MYBs. This analysis concluded that known cell wall regulators are largely conserved across switchgrass, rice, maize, poplar, and Arabidopsis. This interpretation is also largely consistent with the gene network analysis described above, though both approaches provide evidence that some co-orthologs of Arabidopsis regulators have diminished or increased in importance based on gene expression patterns. Also, several clades containing dicot cell wall regulators have expanded, consistent with the evolution of new cell wall regulators. This latter result is supported by functional analysis of the R 2R 3 MYB protein SWAM 1 in a collaboration between this project and the DOE-funded group of Dr. S. Hazen at the University of Massachusettes. The curation of the switchgrass genome through this project provides specific targets for future engineering of switchgrass cell wall regulation and may also facilitate identification of regulators that underlie the molecular markers that are genetically linked to differences in cell wall quality. With the goal of spurring further research and technological developments in lignocellulosic biofuel production, this work has been communicated to the bioenergy and cell wall communities though various presentations and publications. To date, three manuscripts have been published, two others are near to publication, three others are in an advanced state, and two to four more are likely to be written based on analyses still in progress. In addition, project participants have presented thirteen posters and talks at regional, national, and international meetings about aspects of this project. In sum, the work supported by this funding has made and communicated significant progress in identifying the genes that grasses use for cell wall synthesis and regulation, information that will be used by project participants and others to improve the efficiency of conversion of lignocellulosic biomass to biofuels.« less
Transcriptional Regulatory Networks in Saccharomyces cerevisiae
NASA Astrophysics Data System (ADS)
Lee, Tong Ihn; Rinaldi, Nicola J.; Robert, François; Odom, Duncan T.; Bar-Joseph, Ziv; Gerber, Georg K.; Hannett, Nancy M.; Harbison, Christopher T.; Thompson, Craig M.; Simon, Itamar; Zeitlinger, Julia; Jennings, Ezra G.; Murray, Heather L.; Gordon, D. Benjamin; Ren, Bing; Wyrick, John J.; Tagne, Jean-Bosco; Volkert, Thomas L.; Fraenkel, Ernest; Gifford, David K.; Young, Richard A.
2002-10-01
We have determined how most of the transcriptional regulators encoded in the eukaryote Saccharomyces cerevisiae associate with genes across the genome in living cells. Just as maps of metabolic networks describe the potential pathways that may be used by a cell to accomplish metabolic processes, this network of regulator-gene interactions describes potential pathways yeast cells can use to regulate global gene expression programs. We use this information to identify network motifs, the simplest units of network architecture, and demonstrate that an automated process can use motifs to assemble a transcriptional regulatory network structure. Our results reveal that eukaryotic cellular functions are highly connected through networks of transcriptional regulators that regulate other transcriptional regulators.
A role for adult TLX-positive neural stem cells in learning and behaviour.
Zhang, Chun-Li; Zou, Yuhua; He, Weimin; Gage, Fred H; Evans, Ronald M
2008-02-21
Neurogenesis persists in the adult brain and can be regulated by a plethora of external stimuli, such as learning, memory, exercise, environment and stress. Although newly generated neurons are able to migrate and preferentially incorporate into the neural network, how these cells are molecularly regulated and whether they are required for any normal brain function are unresolved questions. The adult neural stem cell pool is composed of orphan nuclear receptor TLX-positive cells. Here, using genetic approaches in mice, we demonstrate that TLX (also called NR2E1) regulates adult neural stem cell proliferation in a cell-autonomous manner by controlling a defined genetic network implicated in cell proliferation and growth. Consequently, specific removal of TLX from the adult mouse brain through inducible recombination results in a significant reduction of stem cell proliferation and a marked decrement in spatial learning. In contrast, the resulting suppression of adult neurogenesis does not affect contextual fear conditioning, locomotion or diurnal rhythmic activities, indicating a more selective contribution of newly generated neurons to specific cognitive functions.
Seo, Minchul; Kim, Jong-Heon; Suk, Kyoungho
2017-05-04
Recently, unbiased functional genetic selection identified novel cell migration-regulating genes. This RNAi-based functional selection was performed using 63,996 pooled lentiviral shRNAs targeting 21,332 mouse genes. After five rounds of selection using cells with accelerated or impaired migration, shRNAs were retrieved and identified by half-hairpin barcode sequencing using cells with the selected phenotypes. This selection process led to the identification of 29 novel cell migration regulators. One of these candidates, anaplastic lymphoma kinase (ALK), was further investigated. Subsequent studies revealed that ALK promoted cell migration through the PI3K-AKT pathway via the p55γ regulatory subunit of PI3K, rather than more commonly used p85 subunit. Western blot and immunohistochemistry studies using mouse brain tissues revealed similar temporal expression patterns of ALK, phospho-p55γ, and phospho-AKT during different stages of development. These data support an important role for the p55γ subunit of PI3K in ALK-induced cell migration during brain development.
Regulation of metabolic health and adipose tissue function by group 2 innate lymphoid cells.
Cautivo, Kelly M; Molofsky, Ari B
2016-06-01
Adipose tissue (AT) is home to an abundance of immune cells. With chronic obesity, inflammatory immune cells accumulate and promote insulin resistance and the progression to type 2 diabetes mellitus. In contrast, recent studies have highlighted the regulation and function of immune cells in lean, healthy AT, including those associated with type 2 or "allergic" immunity. Although traditionally activated by infection with multicellular helminthes, AT type 2 immunity is active independently of infection, and promotes tissue homeostasis, AT "browning," and systemic insulin sensitivity, protecting against obesity-induced metabolic dysfunction and type 2 diabetes mellitus. In particular, group 2 innate lymphoid cells (ILC2s) are integral regulators of AT type 2 immunity, producing the cytokines interleukin-5 and IL-13, promoting eosinophils and alternatively activated macrophages, and cooperating with and promoting AT regulatory T (Treg) cells. In this review, we focus on the recent developments in our understanding of group 2 innate lymphoid cell cells and type 2 immunity in AT metabolism and homeostasis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bengsch, Bertram; Johnson, Andy L; Kurachi, Makoto; Odorizzi, Pamela M; Pauken, Kristen E; Attanasio, John; Stelekati, Erietta; McLane, Laura M; Paley, Michael A; Delgoffe, Greg M; Wherry, E John
2016-08-16
Dynamic reprogramming of metabolism is essential for T cell effector function and memory formation. However, the regulation of metabolism in exhausted CD8(+) T (Tex) cells is poorly understood. We found that during the first week of chronic lymphocytic choriomeningitis virus (LCMV) infection, before severe dysfunction develops, virus-specific CD8(+) T cells were already unable to match the bioenergetics of effector T cells generated during acute infection. Suppression of T cell bioenergetics involved restricted glucose uptake and use, despite persisting mechanistic target of rapamycin (mTOR) signaling and upregulation of many anabolic pathways. PD-1 regulated early glycolytic and mitochondrial alterations and repressed transcriptional coactivator PGC-1α. Improving bioenergetics by overexpression of PGC-1α enhanced function in developing Tex cells. Therapeutic reinvigoration by anti-PD-L1 reprogrammed metabolism in a subset of Tex cells. These data highlight a key metabolic control event early in exhaustion and suggest that manipulating glycolytic and mitochondrial metabolism might enhance checkpoint blockade outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.
Expression and Regulation of Cholecystokinin Receptor in the Chicken's Immune Organs and Cells.
El-Kassas, Seham; Odemuyiwa, Solomon; Hajishengallis, George; Connell, Terry D; Nashar, Toufic O
2016-12-01
Cholecystokinin (CCK) is a neuropeptide that affects growth rate in chickens by regulating appetite. CCK peptides exert their function by binding to two identified receptors, CCKAR and CCKBR in the GI tract and the brain, respectively, as well as in other organs. In mammals, CCK/CCKAR interactions affect a number of immunological parameters, including regulation of lymphocytes and functioning of monocytes. Thus, food intake and growth can potentially be altered by infection and the resulting inflammatory immune response. It is uncertain, however, whether chicken express CCKAR in immune organs and cells, and, if so, whether CCKAR expression is regulated by pathogen derived inflammatory stimuli. Herein, we identify expression of CCKAR protein in chicken peripheral blood mononuclear cells (PBMC) including monocytes, and expression of the CCKAR gene in PBMC, thymus, bursa, and spleen, in selected commercial and pure chicken breeds. Further, stimulation with various types of E. coli heat-labile enterotoxins or lipopolysaccharide significantly regulated expression of CCKAR on monocytes in the different breeds. Ligation of CCKAR with antibodies in PBMC induced mobilization of Ca 2+ , indicating that CCKAR is signal competent. Injection with polyinosinic: polycytidylic acid (poly I:C), a synthetic analogue of double stranded viral RNA that binds Toll-Like Receptor-3 (TLR3), also regulated gene expressions of CCKAR and proinflammatory cytokines, in the different breeds. Interestingly, variations in the expression levels of proinflammatory cytokines in the different breeds were highly correlated with CCKAR expression levels. Taken together, these findings indicate that the physiological function of CCKAR in the chicken is tightly regulated in immune organs and cells by external inflammatory stimuli, which in turn regulate growth. This is the first report CCKAR expression in immune organs and cells, in any species, and the initial observation that CCKAR is regulated by inflammatory stimuli associated with bacterial and viral infection.
Expression and Regulation of Cholecystokinin Receptor in the Chicken's Immune Organs and Cells
El-Kassas, Seham; Odemuyiwa, Solomon; Hajishengallis, George; Connell, Terry D; Nashar, Toufic O
2017-01-01
Cholecystokinin (CCK) is a neuropeptide that affects growth rate in chickens by regulating appetite. CCK peptides exert their function by binding to two identified receptors, CCKAR and CCKBR in the GI tract and the brain, respectively, as well as in other organs. In mammals, CCK/CCKAR interactions affect a number of immunological parameters, including regulation of lymphocytes and functioning of monocytes. Thus, food intake and growth can potentially be altered by infection and the resulting inflammatory immune response. It is uncertain, however, whether chicken express CCKAR in immune organs and cells, and, if so, whether CCKAR expression is regulated by pathogen derived inflammatory stimuli. Herein, we identify expression of CCKAR protein in chicken peripheral blood mononuclear cells (PBMC) including monocytes, and expression of the CCKAR gene in PBMC, thymus, bursa, and spleen, in selected commercial and pure chicken breeds. Further, stimulation with various types of E. coli heat-labile enterotoxins or lipopolysaccharide significantly regulated expression of CCKAR on monocytes in the different breeds. Ligation of CCKAR with antibodies in PBMC induced mobilization of Ca2+, indicating that CCKAR is signal competent. Injection with polyinosinic: polycytidylic acid (poly I:C), a synthetic analogue of double stranded viral RNA that binds Toll-Like Receptor-3 (TLR3), also regulated gene expressions of CCKAR and proinflammatory cytokines, in the different breeds. Interestingly, variations in the expression levels of proinflammatory cytokines in the different breeds were highly correlated with CCKAR expression levels. Taken together, these findings indicate that the physiological function of CCKAR in the chicken is tightly regulated in immune organs and cells by external inflammatory stimuli, which in turn regulate growth. This is the first report CCKAR expression in immune organs and cells, in any species, and the initial observation that CCKAR is regulated by inflammatory stimuli associated with bacterial and viral infection. PMID:28149670
The β-galactoside-binding protein galectin-9 is critical in regulating the immune response, but the mechanism by which it functions remains unclear. We have demonstrated that galectin-9 is highly expressed by induced regulatory T cells (iTreg) and was crucial for the generation and function of iTreg cells, but not natural regulatory T (nTreg) cells. Galectin-9 expression
Tsujimura, Mari; Kusamori, Kosuke; Oda, Chihiro; Miyazaki, Airi; Katsumi, Hidemasa; Sakane, Toshiyasu; Nishikawa, Makiya; Yamamoto, Akira
2018-04-10
Though cell transplantation is becoming an attractive therapeutic method, uncontrolled cell proliferation or overexpression of cellular functions could cause adverse effects. These unfavorable outcomes could be avoided by regulating the proliferation or functioning of transplanted cells. In this study, we used a combination of the herpes simplex virus thymidine kinase (HSVtk) gene, a suicide gene, and ganciclovir (GCV) to control the proliferation and functioning of insulin-secreting cells after transplantation in diabetic mice. Mouse pancreatic β cell line MIN6 cells were selected as insulin-secreting cells for transfection with the HSVtk gene to obtain MIN6/HSVtk cells. Proliferation of MIN6/HSVtk cells was suppressed by GCV in a concentration-dependent manner; 0.25 μg/mL GCV maintained a constant number of MIN6/HSVtk cells for at least 16 days. MIN6 or MIN6/HSVtk cells were then transplanted to streptozotocin-induced diabetic mice. Mice transplanted with MIN6 cells exhibited hypoglycemia irrespective of GCV administration. In contrast, normal (around 150 mg/dL) blood glucose levels were maintained in mice transplanted with MIN6/HSVtk cells by a daily administration of 50 mg/kg of GCV. These results indicate that controlling the proliferation and functioning of HSVtk gene-expressing cells by GCV could greatly improve the usefulness and safety of cell-based therapy. Copyright © 2018 Elsevier B.V. All rights reserved.
Role of a new Rho family member in cell migration and axon guidance in C. elegans.
Zipkin, I D; Kindt, R M; Kenyon, C J
1997-09-05
Rho family GTPases are thought to regulate actin-dependent processes, but their functions in vivo are still poorly understood. We have investigated the function of a new, widely expressed Rho family member in C. elegans by analyzing mutations in the endogenous gene. Activated and null alleles all inhibit cell migration, demonstrating that this protein is required for cell migration in vivo. Only a small subset of the migrations inhibited by activating mutations are inhibited by null mutations, suggesting that considerable functional redundancy exists within this system. Our findings support this conclusion and show that mig-2 functions redundantly with another pathway to regulate nuclear migration. Surprisingly, activated alleles also cause misguided axon growth, suggesting that Rho family GTPases may couple guidance cues to process outgrowth.
Kadmiel, Mahita; Janoshazi, Agnes; Xu, Xiaojiang; Cidlowski, John A
2016-11-01
Glucocorticoids play diverse roles in almost all physiological systems of the body, including both anti-inflammatory and immunosuppressive roles. Synthetic glucocorticoids are one of the most widely prescribed drugs and are used in the treatment of conditions such as autoimmune diseases, allergies, ocular disorders and certain types of cancers. In the interest of investigating glucocorticoid actions in the cornea of the eye, we established that multiple cell types in mouse corneas express functional glucocorticoid receptor (GR) with corneal epithelial cells having robust expression. To define glucocorticoid actions in a cell type-specific manner, we employed immortalized human corneal epithelial (HCE) cell line to define the glucocorticoid transcriptome and elucidated its functions in corneal epithelial cells. Over 4000 genes were significantly regulated within 6 h of dexamethasone treatment, and genes associated with cell movement, cytoskeletal remodeling and permeability were highly regulated. Real-time in vitro wound healing assays revealed that glucocorticoids delay wound healing by attenuating cell migration. These functional alterations were associated with cytoskeletal remodeling at the wounded edge of a scratch-wounded monolayer. However, glucocorticoid treatment improved the organization of tight-junction proteins and enhanced the epithelial barrier function. Our results demonstrate that glucocorticoids profoundly alter corneal epithelial gene expression and many of these changes likely impact both wound healing and epithelial cell barrier function. Published by Elsevier Ltd.
Tight junction-based epithelial microenvironment and cell proliferation.
Tsukita, S; Yamazaki, Y; Katsuno, T; Tamura, A; Tsukita, S
2008-11-24
Belt-like tight junctions (TJs), referred to as zonula occludens, have long been regarded as a specialized differentiation of epithelial cell membranes. They are required for cell adhesion and paracellular barrier functions, and are now thought to be partly involved in fence functions and in cell polarization. Recently, the molecular bases of TJs have gradually been unveiled. TJs are constructed by TJ strands, whose basic frameworks are composed of integral membrane proteins with four transmembrane domains, designated claudins. The claudin family is supposedly composed of at least 24 members in mice and humans. Other types of integral membrane proteins with four transmembrane domains, namely occludin and tricellulin, as well as the single transmembrane proteins, JAMs (junctional adhesion molecules) and CAR (coxsackie and adenovirus receptor), are associated with TJ strands, and the high-level organization of TJ strands is likely to be established by membrane-anchored scaffolding proteins, such as ZO-1/2. Recent functional analyses of claudins in cell cultures and in mice have suggested that claudin-based TJs may have pivotal functions in the regulation of the epithelial microenvironment, which is critical for various biological functions such as control of cell proliferation. These represent the dawn of 'Barriology' (defined by Shoichiro Tsukita as the science of barriers in multicellular organisms). Taken together with recent reports regarding changes in claudin expression levels, understanding the regulation of the TJ-based microenvironment system will provide new insights into the regulation of polarization in the respect of epithelial microenvironment system and new viewpoints for developing anticancer strategies.
Roberts, Sheridan L; Dun, Xin-Peng; Doddrell, Robin D S; Mindos, Thomas; Drake, Louisa K; Onaitis, Mark W; Florio, Francesca; Quattrini, Angelo; Lloyd, Alison C; D'Antonio, Maurizio; Parkinson, David B
2017-09-01
Correct myelination is crucial for the function of the peripheral nervous system. Both positive and negative regulators within the axon and Schwann cell function to ensure the correct onset and progression of myelination during both development and following peripheral nerve injury and repair. The Sox2 transcription factor is well known for its roles in the development and maintenance of progenitor and stem cell populations, but has also been proposed in vitro as a negative regulator of myelination in Schwann cells. We wished to test fully whether Sox2 regulates myelination in vivo and show here that, in mice, sustained Sox2 expression in vivo blocks myelination in the peripheral nerves and maintains Schwann cells in a proliferative non-differentiated state, which is also associated with increased inflammation within the nerve. The plasticity of Schwann cells allows them to re-myelinate regenerated axons following injury and we show that re-myelination is also blocked by Sox2 expression in Schwann cells. These findings identify Sox2 as a physiological regulator of Schwann cell myelination in vivo and its potential to play a role in disorders of myelination in the peripheral nervous system. © 2017. Published by The Company of Biologists Ltd.
Acunzo, Julie; Katsogiannou, Maria; Rocchi, Palma
2012-10-01
Hsp27, αB-crystallin and HSP22 are ubiquitous small heat shock proteins (sHsp) whose expression is induced in response to a wide variety of unfavorable physiological and environmental conditions. These sHsp protect cells from otherwise lethal conditions mainly by their involvement in cell death pathways such as necrosis, apoptosis or autophagy. At a molecular level, the mechanisms accounting for sHsp functions in cell death are (1) prevention of denatured proteins aggregation, (2) regulation of caspase activity, (3) regulation of the intracellular redox state, (4) function in actin polymerization and cytoskeleton integrity and (5) proteasome-mediated degradation of selected proteins. In cancer cells, these sHsp are often overexpressed and associated with increased tumorigenicity, cancer cells metastatic potential and resistance to chemotherapy. Altogether, these properties suggest that Hsp27, αB-crystallin and Hsp22 are appropriate targets for modulating cell death pathways. In the present, we briefly review recent reports showing molecular evidence of cell death regulation by these sHsp and co-chaperones. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pelle Modulates dFoxO-Mediated Cell Death in Drosophila.
Wu, Chenxi; Chen, Yujun; Wang, Feng; Chen, Changyan; Zhang, Shiping; Li, Chaojie; Li, Wenzhe; Wu, Shian; Xue, Lei
2015-10-01
Interleukin-1 receptor-associated kinases (IRAKs) are crucial mediators of the IL-1R/TLR signaling pathways that regulate the immune and inflammation response in mammals. Recent studies also suggest a critical role of IRAKs in tumor development, though the underlying mechanism remains elusive. Pelle is the sole Drosophila IRAK homolog implicated in the conserved Toll pathway that regulates Dorsal/Ventral patterning, innate immune response, muscle development and axon guidance. Here we report a novel function of pll in modulating apoptotic cell death, which is independent of the Toll pathway. We found that loss of pll results in reduced size in wing tissue, which is caused by a reduction in cell number but not cell size. Depletion of pll up-regulates the transcription of pro-apoptotic genes, and triggers caspase activation and cell death. The transcription factor dFoxO is required for loss-of-pll induced cell death. Furthermore, loss of pll activates dFoxO, promotes its translocation from cytoplasm to nucleus, and up-regulates the transcription of its target gene Thor/4E-BP. Finally, Pll physically interacts with dFoxO and phosphorylates dFoxO directly. This study not only identifies a previously unknown physiological function of pll in cell death, but also shed light on the mechanism of IRAKs in cell survival/death during tumorigenesis.
ATF5 regulates β-cell survival during stress.
Juliana, Christine A; Yang, Juxiang; Rozo, Andrea V; Good, Austin; Groff, David N; Wang, Shu-Zong; Green, Michael R; Stoffers, Doris A
2017-02-07
The stress response and cell survival are necessary for normal pancreatic β-cell function, glucose homeostasis, and prevention of diabetes. The homeodomain transcription factor and human diabetes gene pancreas/duodenum homeobox protein 1 (Pdx1) regulates β-cell survival and endoplasmic reticulum stress susceptibility, in part through direct regulation of activating transcription factor 4 (Atf4). Here we show that Atf5, a close but less-studied relative of Atf4, is also a target of Pdx1 and is critical for β-cell survival under stress conditions. Pdx1 deficiency led to decreased Atf5 transcript, and primary islet ChIP-sequencing localized PDX1 to the Atf5 promoter, implicating Atf5 as a PDX1 target. Atf5 expression was stress inducible and enriched in β cells. Importantly, Atf5 deficiency decreased survival under stress conditions. Loss-of-function and chromatin occupancy experiments positioned Atf5 downstream of and parallel to Atf4 in the regulation of eIF4E-binding protein 1 (4ebp1), a mammalian target of rapamycin (mTOR) pathway component that inhibits protein translation. Accordingly, Atf5 deficiency attenuated stress suppression of global translation, likely enhancing the susceptibility of β cells to stress-induced apoptosis. Thus, we identify ATF5 as a member of the transcriptional network governing pancreatic β-cell survival during stress.
An extracatalytic function of CD45 in B cells is mediated by CD22
Coughlin, Sarah; Noviski, Mark; Mueller, James L.; Chuwonpad, Ammarina; Raschke, William C.; Weiss, Arthur; Zikherman, Julie
2015-01-01
The receptor-like tyrosine phosphatase CD45 regulates antigen receptor signaling by dephosphorylating the C-terminal inhibitory tyrosine of the src family kinases. However, despite its abundance, the function of the large, alternatively spliced extracellular domain of CD45 has remained elusive. We used normally spliced CD45 transgenes either incorporating a phosphatase-inactivating point mutation or lacking the cytoplasmic domain to uncouple the enzymatic and noncatalytic functions of CD45 in lymphocytes. Although these transgenes did not alter T-cell signaling or development irrespective of endogenous CD45 expression, both partially rescued the phenotype of CD45-deficient B cells. We identify a noncatalytic role for CD45 in regulating tonic, but not antigen-mediated, B-cell antigen receptor (BCR) signaling through modulation of the function of the inhibitory coreceptor CD22. This finding has important implications for understanding how naïve B cells maintain tonic BCR signaling while restraining inappropriate antigen-dependent activation to preserve clonal “ignorance.” PMID:26561584
Schrimpe-Rutledge, Alexandra C.; Fontès, Ghislaine; Gritsenko, Marina A.; Norbeck, Angela D.; Anderson, David J.; Waters, Katrina M.; Adkins, Joshua N.; Smith, Richard D.; Poitout, Vincent; Metz, Thomas O.
2012-01-01
The prevalence of diabetes mellitus is increasing dramatically throughout the world, and the disease has become a major public health issue. The most common form of the disease, type 2 diabetes, is characterized by insulin resistance and insufficient insulin production from the pancreatic beta-cell. Since glucose is the most potent regulator of beta-cell function under physiological conditions, identification of the insulin secretory defect underlying type 2 diabetes requires a better understanding of glucose regulation of human beta-cell function. To this aim, a bottom-up LC-MS/MS-based proteomics approach was used to profile pooled islets from multiple donors under basal (5 mM) or high (15 mM) glucose conditions. Our analysis discovered 256 differentially abundant proteins (~p<0.05) after 24 h of high glucose exposure from more than 4500 identified in total. Several novel glucose-regulated proteins were elevated under high glucose conditions, including regulators of mRNA splicing (Pleiotropic regulator 1), processing (Retinoblastoma binding protein 6), and function (Nuclear RNA export factor 1), in addition to Neuron navigator 1 and Plasminogen activator inhibitor 1. Proteins whose abundances markedly decreased during incubation at 15 mM glucose included Bax inhibitor 1 and Synaptotagmin-17. Up-regulation of Dicer 1 and SLC27A2 and down-regulation of Phospholipase Cβ4 were confirmed by Western blots. Many proteins found to be differentially abundant after high glucose stimulation are annotated as uncharacterized or hypothetical. These findings expand our knowledge of glucose regulation of the human islet proteome and suggest many hitherto unknown responses to glucose that require additional studies to explore novel functional roles. PMID:22578083
Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.
Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng
2014-01-01
Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.
Characteristics of hepatic stem/progenitor cells in the fetal and adult liver.
Koike, Hiroyuki; Taniguchi, Hideki
2012-11-01
The liver is an essential organ that maintains vital activity through its numerous important functions. It has a unique capability of fully regenerating after injury. Regulating a balance between self-renewal and differentiation of hepatic stem cells that are resources for functional mature liver cells is required for maintenance of tissue homeostasis. This review describes the characteristics of hepatic stem/progenitor cells and the regulatory mechanism of their self-renewal and differentiation capacity. In liver organogenesis, undifferentiated hepatic stem/progenitor cells expand their pool by repeated self-renewal in the early stage of liver development and then differentiate into two different types of cell lineage, namely hepatocytes and cholangiocytes. Liver development is regulated by expression of stem cell transcription factors in a complex multistep process. Recent studies suggest that stem cells are maintained by integrative regulation of gene expression patterns related to self-renewal and differentiation by epigenetic mechanisms such as histone modification and DNA methylation. Analysis of the proper regulatory mechanism of hepatic stem/progenitor cells is important for regenerative medicine that utilizes hepatic stem cells and for preventing liver cancer through clarification of the carcinogenetic mechanism involved in stem cell system failure.
PU.1 regulates TCR expression by modulating GATA-3 activity
Chang, Hua-Chen; Han, Ling; Jabeen, Rukhsana; Carotta, Sebastian; Nutt, Stephen L.; Kaplan, Mark H.
2009-01-01
The Ets transcription factor PU.1 is a master regulator for the development of multiple lineages during hematopoiesis. The expression pattern of PU.1 is dynamically regulated during early T lineage development in the thymus. We previously revealed that PU.1 delineates heterogeneity of effector Th2 populations. In this study, we further define the function of PU.1 on the Th2 phenotype using mice that specifically lack PU.1 in T cells using an lck-Cre transgene with a conditional Sfpi1 allele (Sfpi1lck-/-). While deletion of PU.1 by the lck-Cre transgene does not affect T cell development, Sfpi1lck-/- T cells have a lower activation threshold than wild type T cells. When TCR engagement is limiting, Sfpi1lck-/- T cells cultured in Th2 polarizing conditions secrete higher levels of Th2 cytokines and have greater cytokine homogeneity than wild type cells. We show that PU.1 modulates the levels of TCR expression in CD4+ T cells by regulating the DNA-binding activity of GATA-3 and limiting GATA-3 regulation of TCR gene expression. GATA-3 dependent regulation of TCR expression is also observed in Th1 and Th2 cells. In CD4+ T cells, PU.1 expression segregates into subpopulations of cells that have lower levels of surface TCR, suggesting that PU.1 contributes to the heterogeneity of TCR expression. Thus, we have identified a mechanism whereby increased GATA-3 function in the absence of the antagonizing activity of PU.1 leads to increased TCR expression, a reduced activation threshold and increased homogeneity in Th2 populations. PMID:19801513
Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Séverine; Bourge, Mickaël; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile
2014-01-01
The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants. PMID:25037213
The SLIT/ROBO pathway: a regulator of cell function with implications for the reproductive system
Dickinson, Rachel E; Duncan, W Colin
2010-01-01
The secreted SLIT glycoproteins and their Roundabout (ROBO) receptors were originally identified as important axon guidance molecules. They function as a repulsive cue with an evolutionarily conserved role in preventing axons from migrating to inappropriate locations during the assembly of the nervous system. In addition the SLIT-ROBO interaction is involved in the regulation of cell migration, cell death and angiogenesis and, as such, has a pivotal role during the development of other tissues such as the lung, kidney, liver and breast. The cellular functions that the SLIT/ROBO pathway controls during tissue morphogenesis are processes that are dysregulated during cancer development. Therefore inactivation of certain SLITs and ROBOs is associated with advanced tumour formation and progression in disparate tissues. Recent research has indicated that the SLIT/ROBO pathway could also have important functions in the reproductive system. The fetal ovary expresses most members of the SLIT and ROBO families. The SLITs and ROBOs also appear to be regulated by steroid hormones and regulate physiological cell functions in adult reproductive tissues such as the ovary and endometrium. Furthermore several SLITs and ROBOs are aberrantly expressed during the development of ovarian, endometrial, cervical and prostate cancer. This review will examine the roles this pathway could have in the development, physiology and pathology of the reproductive system and highlight areas for future research that could further dissect the influence of the SLIT/ROBO pathway in reproduction. PMID:20100881
The SLIT-ROBO pathway: a regulator of cell function with implications for the reproductive system.
Dickinson, Rachel E; Duncan, W Colin
2010-04-01
The secreted SLIT glycoproteins and their Roundabout (ROBO) receptors were originally identified as important axon guidance molecules. They function as a repulsive cue with an evolutionarily conserved role in preventing axons from migrating to inappropriate locations during the assembly of the nervous system. In addition the SLIT-ROBO interaction is involved in the regulation of cell migration, cell death and angiogenesis and, as such, has a pivotal role during the development of other tissues such as the lung, kidney, liver and breast. The cellular functions that the SLIT/ROBO pathway controls during tissue morphogenesis are processes that are dysregulated during cancer development. Therefore inactivation of certain SLITs and ROBOs is associated with advanced tumour formation and progression in disparate tissues. Recent research has indicated that the SLIT/ROBO pathway could also have important functions in the reproductive system. The fetal ovary expresses most members of the SLIT and ROBO families. The SLITs and ROBOs also appear to be regulated by steroid hormones and regulate physiological cell functions in adult reproductive tissues such as the ovary and endometrium. Furthermore several SLITs and ROBOs are aberrantly expressed during the development of ovarian, endometrial, cervical and prostate cancer. This review will examine the roles this pathway could have in the development, physiology and pathology of the reproductive system and highlight areas for future research that could further dissect the influence of the SLIT/ROBO pathway in reproduction.
Activation of Gαq subunits up-regulates the expression of the tumor suppressor Fhit.
Zuo, Hao; Chan, Anthony S L; Ammer, Hermann; Wong, Yung H
2013-12-01
The tumor suppressor Fhit protein is defective or absent in many tumor cells due to methylation, mutation or deletion of the FHIT gene. Despite numerous attempts to unravel the functions of Fhit, the mechanisms by which the function and expression of Fhit are regulated remain poorly understood. We have recently shown that activated Gαq subunits interact directly with Fhit and enhance its inhibitory effect on cell growth. Here we investigated the regulation of Fhit expression by Gq. Our results showed that Fhit was up-regulated specifically by activating Gα subunits of the Gq subfamily but not by those of the other G protein subfamilies. This up-regulation effect was mediated by a PKC/MEK pathway independent of Src-mediated Fhit Tyr(114) phosphorylation. We further demonstrated that elevated Fhit expression was due to the specific regulation of Fhit protein synthesis in the ribosome by activated Gαq, where the regulations of cap-dependent protein synthesis were apparently not required. Moreover, we showed that activated Gαq could increase cell-cell adhesion through Fhit. These findings provide a possible handle to modulate the level of the Fhit tumor suppressor by manipulating the activity of Gq-coupled receptors. © 2013. Published by Elsevier Inc. All rights reserved.
Xiao, Zhiming; Liu, Shaojun; Ai, Feiyan; Chen, Xiong; Li, Xiayu; Liu, Rui; Ren, Weiguo; Zhang, Xuemei; Shu, Peng; Zhang, Decai
2018-01-01
Loss-of-function of succinate dehydrogenase-B (SDHB) is a predisposing factor of aerobic glycolysis and cancer progression. Adenosine monophosphate activated protein kinase (AMPK) is involved in the regulation of aerobic glycolysis and the diverse hallmarks of cancer. The present study investigated whether AMPK mediated the regulatory effects of SDHB in aerobic glycolysis and cancer growth. The expression of SDHB and AMPK in colorectal cancer (CRC) and normal tissues was assessed by western blotting. HT-29 CRC cells were used to establish in vitro models of ectopic overexpression and knockdown of SDHB. SDHB was downregulated, while AMPK and phosphorylated-AMPK (Thr172) were upregulated in CRC tissues. Experiments involving the loss- or gain-of-function of SDHB, revealed that this protein negatively regulated AMPK by influencing its expression and activity. However, SDHB and AMPK were identified to suppress lactic acid production in CRC cells, indicating that each had an inhibitory effect on aerobic glycolysis. Therefore, the regulation of aerobic glycolysis by SDHB is unlikely to be mediated via AMPK. SDHB knockdown promoted the viability, migration and invasion of HT-29 cells, whereas inhibition of AMPK demonstrated the opposite effect. SDHB overexpression impaired cell migration and invasion, and this effect was reversed following AMPK activation. These results indicate that AMPK may mediate the effects of SDHB in CRC cell proliferation and migration. In conclusion, SDHB downregulation in CRC cells may increase AMPK activity, which may subsequently facilitate the proliferation and invasion of these cancer cells. However, the regulation of aerobic glycolysis by SDHB may be independent of AMPK. Further studies are warranted to elucidate the mechanism by which SDHB regulates aerobic glycolysis.
Booty, Matthew G.; Nunes-Alves, Cláudio; Carpenter, Stephen M.; Jayaraman, Pushpa; Behar, Samuel M.
2015-01-01
The differentiation of effector CD8+ T cells is a dynamically regulated process that varies during different infections and is influenced by the inflammatory milieu of the host. Here, we define three signals regulating CD8+ T cell responses during tuberculosis by focusing on cytokines known to affect disease outcome: IL-12, type I IFN, and IL-27. Using mixed bone marrow chimeras, we compared wild type and cytokine receptor knockout CD8+ T cells within the same mouse following aerosol infection with Mycobacterium tuberculosis. Four weeks post-infection, IL-12, type 1 IFN, and IL-27 were all required for efficient CD8+ T cell expansion in the lungs. We next determined if these cytokines directly promote CD8+ T cell priming or are required only for expansion in the lungs. Utilizing retrogenic CD8+ T cells specific for the Mtb antigen TB10.4 (EsxH), we observed that IL-12 is the dominant cytokine driving both CD8+ T cell priming in the lymph node and expansion in the lungs; however, type I IFN and IL-27 have non-redundant roles supporting pulmonary CD8+ T cell expansion. Thus, IL-12 is a major signal promoting priming in the lymph node, but a multitude of inflammatory signals converge in the lung to promote continued expansion. Furthermore, these cytokines regulate the differentiation and function of CD8+ T cells during tuberculosis. These data demonstrate distinct and overlapping roles for each of the cytokines examined and underscore the complexity of CD8+ T cell regulation during tuberculosis. PMID:26755819
MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes.
Ardestani, Amin; Paroni, Federico; Azizi, Zahra; Kaur, Supreet; Khobragade, Vrushali; Yuan, Ting; Frogne, Thomas; Tao, Wufan; Oberholzer, Jose; Pattou, Francois; Conte, Julie Kerr; Maedler, Kathrin
2014-04-01
Apoptotic cell death is a hallmark of the loss of insulin-producing beta cells in all forms of diabetes mellitus. Current treatments fail to halt the decline in functional beta cell mass, and strategies to prevent beta cell apoptosis and dysfunction are urgently needed. Here, we identified mammalian sterile 20-like kinase-1 (MST1) as a critical regulator of apoptotic beta cell death and function. Under diabetogenic conditions, MST1 was strongly activated in beta cells in human and mouse islets and specifically induced the mitochondrial-dependent pathway of apoptosis through upregulation of the BCL-2 homology-3 (BH3)-only protein BIM. MST1 directly phosphorylated the beta cell transcription factor PDX1 at T11, resulting in the latter's ubiquitination and degradation and thus in impaired insulin secretion. MST1 deficiency completely restored normoglycemia, beta cell function and survival in vitro and in vivo. We show MST1 as a proapoptotic kinase and key mediator of apoptotic signaling and beta cell dysfunction and suggest that it may serve as target for the development of new therapies for diabetes.
Regulation of K-Cl cotransport: from function to genes.
Adragna, N C; Di Fulvio, M; Lauf, P K
2004-10-01
This review intends to summarize the vast literature on K-Cl cotransport (COT) regulation from a functional and genetic viewpoint. Special attention has been given to the signaling pathways involved in the transporter's regulation found in several tissues and cell types, and more specifically, in vascular smooth muscle cells (VSMCs). The number of publications on K-Cl COT has been steadily increasing since its discovery at the beginning of the 1980s, with red blood cells (RBCs) from different species (human, sheep, dog, rabbit, guinea pig, turkey, duck, frog, rat, mouse, fish, and lamprey) being the most studied model. Other tissues/cell types under study are brain, kidney, epithelia, muscle/smooth muscle, tumor cells, heart, liver, insect cells, endothelial cells, bone, platelets, thymocytes and Leishmania donovani. One of the salient properties of K-Cl-COT is its activation by cell swelling and its participation in the recovery of cell volume, a process known as regulatory volume decrease (RVD). Activation by thiol modification with N-ethylmaleimide (NEM) has spawned investigations on the redox dependence of K-Cl COT, and is used as a positive control for the operation of the system in many tissues and cells. The most accepted model of K-Cl COT regulation proposes protein kinases and phosphatases linked in a chain of phosphorylation/dephosphorylation events. More recent studies include regulatory pathways involving the phosphatidyl inositol/protein kinase C (PKC)-mediated pathway for regulation by lithium (Li) in low-K sheep red blood cells (LK SRBCs), and the nitric oxide (NO)/cGMP/protein kinase G (PKG) pathway as well as the platelet-derived growth factor (PDGF)-mediated mechanism in VSMCs. Studies on VSM transfected cells containing the PKG catalytic domain demonstrated the participation of this enzyme in K-Cl COT regulation. Commonly used vasodilators activate K-Cl COT in a dose-dependent manner through the NO/cGMP/PKG pathway. Interaction between the cotransporter and the cytoskeleton appears to depend on the cellular origin and experimental conditions. Pathophysiologically, K-Cl COT is altered in sickle cell anemia and neuropathies, and it has also been proposed to play a role in blood pressure control. Four closely related human genes code for KCCs (KCC1-4). Although considerable information is accumulating on tissue distribution, function and pathologies associated with the different isoforms, little is known about the genetic regulation of the KCC genes in terms of transcriptional and post-transcriptional regulation. A few reports indicate that the NO/cGMP/PKG signaling pathway regulates KCC1 and KCC3 mRNA expression in VSMCs at the post-transcriptional level. However, the detailed mechanisms of post-transcriptional regulation of KCC genes and of regulation of KCC2 and KCC4 mRNA expression are unknown. The K-Cl COT field is expected to expand further over the next decades, as new isoforms and/or regulatory pathways are discovered and its implication in health and disease is revealed.
Cao, Zubing; Carey, Timothy S; Ganguly, Avishek; Wilson, Catherine A; Paul, Soumen; Knott, Jason G
2015-05-01
Cell fate decisions are fundamental to the development of multicellular organisms. In mammals the first cell fate decision involves segregation of the pluripotent inner cell mass and the trophectoderm, a process regulated by cell polarity proteins, HIPPO signaling and lineage-specific transcription factors such as CDX2. However, the regulatory mechanisms that operate upstream to specify the trophectoderm lineage have not been established. Here we report that transcription factor AP-2γ (TFAP2C) functions as a novel upstream regulator of Cdx2 expression and position-dependent HIPPO signaling in mice. Loss- and gain-of-function studies and promoter analysis revealed that TFAP2C binding to an intronic enhancer is required for activation of Cdx2 expression during early development. During the 8-cell to morula transition TFAP2C potentiates cell polarity to suppress HIPPO signaling in the outside blastomeres. TFAP2C depletion triggered downregulation of PARD6B, loss of apical cell polarity, disorganization of F-actin, and activation of HIPPO signaling in the outside blastomeres. Rescue experiments using Pard6b mRNA restored cell polarity but only partially corrected position-dependent HIPPO signaling, suggesting that TFAP2C negatively regulates HIPPO signaling via multiple pathways. Several genes involved in regulation of the actin cytoskeleton (including Rock1, Rock2) were downregulated in TFAP2C-depleted embryos. Inhibition of ROCK1 and ROCK2 activity during the 8-cell to morula transition phenocopied TFAP2C knockdown, triggering a loss of position-dependent HIPPO signaling and decrease in Cdx2 expression. Altogether, these results demonstrate that TFAP2C facilitates trophectoderm lineage specification by functioning as a key regulator of Cdx2 transcription, cell polarity and position-dependent HIPPO signaling. © 2015. Published by The Company of Biologists Ltd.
Ras proteins have multiple functions in vegetative cells of Dictyostelium.
Bolourani, Parvin; Spiegelman, George; Weeks, Gerald
2010-11-01
During the aggregation of Dictyostelium cells, signaling through RasG is more important in regulating cyclic AMP (cAMP) chemotaxis, whereas signaling through RasC is more important in regulating the cAMP relay. However, RasC is capable of substituting for RasG for chemotaxis, since rasG⁻ cells are only partially deficient in chemotaxis, whereas rasC⁻/rasG⁻ cells are totally incapable of chemotaxis. In this study we have examined the possible functional overlap between RasG and RasC in vegetative cells by comparing the vegetative cell properties of rasG⁻, rasC⁻, and rasC⁻/rasG⁻ cells. In addition, since RasD, a protein not normally found in vegetative cells, is expressed in vegetative rasG⁻ and rasC⁻/rasG⁻ cells and appears to partially compensate for the absence of RasG, we have also examined the possible functional overlap between RasG and RasD by comparing the properties of rasG⁻ and rasC⁻/rasG⁻ cells with those of the mutant cells expressing higher levels of RasD. The results of these two lines of investigation show that RasD is capable of totally substituting for RasG for cytokinesis and growth in suspension, whereas RasC is without effect. In contrast, for chemotaxis to folate, RasC is capable of partially substituting for RasG, but RasD is totally without effect. Finally, neither RasC nor RasD is able to substitute for the role that RasG plays in regulating actin distribution and random motility. These specificity studies therefore delineate three distinct and none-overlapping functions for RasG in vegetative cells.
Léger, Karolin; Hopp, Ann-Katrin; Fey, Monika; Hottiger, Michael O
2016-08-02
ADP-ribosylation is involved in a variety of biological processes, many of which are chromatin-dependent and linked to important functions during the cell cycle. However, any study on ADP-ribosylation and the cell cycle faces the problem that synchronization with chemical agents or by serum starvation and subsequent growth factor addition already activates ADP-ribosylation by itself. Here, we investigated the functional contribution of ARTD1 in cell cycle re-entry and G1/S cell cycle progression using T24 urinary bladder carcinoma cells, which synchronously re-enter the cell cycle after splitting without any additional stimuli. In synchronized cells, ARTD1 knockdown, but not inhibition of its enzymatic activity, caused specific down-regulation of cyclin E during cell cycle re-entry and G1/S progression through alterations of the chromatin composition and histone acetylation, but not of other E2F-1 target genes. Although Cdk2 formed a functional complex with the residual cyclin E, p27(Kip 1) protein levels increased in G1 upon ARTD1 knockdown most likely due to inappropriate cyclin E-Cdk2-induced phosphorylation-dependent degradation, leading to decelerated G1/S progression. These results provide evidence that ARTD1 regulates cell cycle re-entry and G1/S progression via cyclin E expression and p27(Kip 1) stability independently of its enzymatic activity, uncovering a novel cell cycle regulatory mechanism.
Turtle, Cameron J; Delrow, Jeff; Joslyn, Rochelle C; Swanson, Hillary M; Basom, Ryan; Tabellini, Laura; Delaney, Colleen; Heimfeld, Shelly; Hansen, John A; Riddell, Stanley R
2011-09-08
Type 17 programmed CD161(hi)CD8α(+) T cells contribute to mucosal immunity to bacteria and yeast. In early life, microbial colonization induces proliferation of CD161(hi) cells that is dependent on their expression of a semi-invariant Vα7.2(+) TCR. Although prevalent in adults, CD161(hi)CD8α(+) cells exhibit weak proliferative and cytokine responses to TCR ligation. The mechanisms responsible for the dichotomous response of neonatal and adult CD161(hi) cells, and the signals that enable their effector function, have not been established. We describe acquired regulation of TCR signaling in adult memory CD161(hi)CD8α(+) T cells that is absent in cord CD161(hi) cells and adult CD161(lo) cells. Regulated TCR signaling in CD161(hi) cells was due to profound alterations in TCR signaling pathway gene expression and could be overcome by costimulation through CD28 or innate cytokine receptors, which dictated the fate of their progeny. Costimulation with IL-1β during TCR ligation markedly increased proinflammatory IL-17 production, while IL-12-induced Tc1-like function and restored the response to TCR ligation without costimulation. CD161(hi) cells from umbilical cord blood and granulocyte colony stimulating factor-mobilized leukaphereses differed in frequency and function, suggesting future evaluation of the contribution of CD161(hi) cells in hematopoietic stem cell grafts to transplant outcomes is warranted.
Schuster, Christoph; Gaillochet, Christophe; Medzihradszky, Anna; Busch, Wolfgang; Daum, Gabor; Krebs, Melanie; Kehle, Andreas; Lohmann, Jan U
2014-02-24
Plants continuously maintain pluripotent stem cells embedded in specialized tissues called meristems, which drive long-term growth and organogenesis. Stem cell fate in the shoot apical meristem (SAM) is controlled by the homeodomain transcription factor WUSCHEL (WUS) expressed in the niche adjacent to the stem cells. Here, we demonstrate that the bHLH transcription factor HECATE1 (HEC1) is a target of WUS and that it contributes to SAM function by promoting stem cell proliferation, while antagonizing niche cell activity. HEC1 represses the stem cell regulators WUS and CLAVATA3 (CLV3) and, like WUS, controls genes with functions in metabolism and hormone signaling. Among the targets shared by HEC1 and WUS are phytohormone response regulators, which we show to act as mobile signals in a universal feedback system. Thus, our work sheds light on the mechanisms guiding meristem function and suggests that the underlying regulatory system is far more complex than previously anticipated. Copyright © 2014 Elsevier Inc. All rights reserved.
Mena binds α5 integrin directly and modulates α5β1 function.
Gupton, Stephanie L; Riquelme, Daisy; Hughes-Alford, Shannon K; Tadros, Jenny; Rudina, Shireen S; Hynes, Richard O; Lauffenburger, Douglas; Gertler, Frank B
2012-08-20
Mena is an Ena/VASP family actin regulator with roles in cell migration, chemotaxis, cell-cell adhesion, tumor cell invasion, and metastasis. Although enriched in focal adhesions, Mena has no established function within these structures. We find that Mena forms an adhesion-regulated complex with α5β1 integrin, a fibronectin receptor involved in cell adhesion, motility, fibronectin fibrillogenesis, signaling, and growth factor receptor trafficking. Mena bound directly to the carboxy-terminal portion of the α5 cytoplasmic tail via a 91-residue region containing 13 five-residue "LERER" repeats. In fibroblasts, the Mena-α5 complex was required for "outside-in" α5β1 functions, including normal phosphorylation of FAK and paxillin and formation of fibrillar adhesions. It also supported fibrillogenesis and cell spreading and controlled cell migration speed. Thus, fibroblasts require Mena for multiple α5β1-dependent processes involving bidirectional interactions between the extracellular matrix and cytoplasmic focal adhesion proteins.
Smith, Kristin E.; Raymond, Steven L.; Valenti, Micheala L.; Smith, Peter J.S.; Linser, Paul J.
2010-01-01
Ion regulation is a biological process crucial to the survival of mosquito larvae and a major organ responsible for this regulation is the rectum. The recta of anopheline larvae are distinct from other subfamilies of mosquitoes in several ways, yet have not yet been characterized extensively. Here we characterize the two major cell types of the anopheline rectum, DAR and non-DAR cells, using histological, physiological, and pharmacological analyses. Proton flux was measured at the basal membrane of 2%- and 50%-artificial sea water-reared An. albimanus larvae using self-referencing ion-selective microelectrodes, and the two cell types were found to differ in basal membrane proton flux. Additionally, differences in the response of that flux to pharmacological inhibitors in larvae reared in 2% versus 50% ASW indicate changes in protein function between the two rearing conditions. Finally, histological analyses suggest that the non-DAR cells are structurally suited for mediating ion transport. These data support a model of rectal ion regulation in which the non-DAR cells have a resorptive function in freshwater-reared larvae and a secretive function in saline water-reared larvae. In this way, anopheline larvae may adapt to varying salinities. PMID:20460167
Isogai, Tadamoto; Danuser, Gaudenz
2018-05-26
Cell migration is driven by propulsive forces derived from polymerizing actin that pushes and extends the plasma membrane. The underlying actin network is constantly undergoing adaptation to new mechano-chemical environments and intracellular conditions. As such, mechanisms that regulate actin dynamics inherently contain multiple feedback loops and redundant pathways. Given the highly adaptable nature of such a system, studies that use only perturbation experiments (e.g. knockdowns, overexpression, pharmacological activation/inhibition, etc.) are challenged by the nonlinearity and redundancy of the pathway. In these pathway configurations, perturbation experiments at best describe the function(s) of a molecular component in an adapting (e.g. acutely drug-treated) or fully adapted (e.g. permanent gene silenced) cell system, where the targeted component now resides in a non-native equilibrium. Here, we propose how quantitative live-cell imaging and analysis of constitutive fluctuations of molecular activities can overcome these limitations. We highlight emerging actin filament barbed-end biology as a prime example of a complex, nonlinear molecular process that requires a fluctuation analytic approach, especially in an unperturbed cellular system, to decipher functional interactions of barbed-end regulators, actin polymerization and membrane protrusion.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).
GSK3 and Polo-like kinase regulate ADAM13 function during cranial neural crest cell migration
Abbruzzese, Genevieve; Cousin, Hélène; Salicioni, Ana Maria; Alfandari, Dominique
2014-01-01
ADAMs are cell surface metalloproteases that control multiple biological processes by cleaving signaling and adhesion molecules. ADAM13 controls cranial neural crest (CNC) cell migration both by cleaving cadherin-11 to release a promigratory extracellular fragment and by controlling expression of multiple genes via its cytoplasmic domain. The latter activity is regulated by γ-secretase cleavage and the translocation of the cytoplasmic domain into the nucleus. One of the genes regulated by ADAM13, the protease calpain8, is essential for CNC migration. Although the nuclear function of ADAM13 is evolutionarily conserved, it is unclear whether the transcriptional regulation is also performed by other ADAMs and how this process may be regulated. We show that ADAM13 function to promote CNC migration is regulated by two phosphorylation events involving GSK3 and Polo-like kinase (Plk). We further show that inhibition of either kinase blocks CNC migration and that the respective phosphomimetic forms of ADAM13 can rescue these inhibitions. However, these phosphorylations are not required for ADAM13 proteolysis of its substrates, γ-secretase cleavage, or nuclear translocation of its cytoplasmic domain. Of significance, migration of the CNC can be restored in the absence of Plk phosphorylation by expression of calpain-8a, pointing to impaired nuclear activity of ADAM13. PMID:25298404
Shin, Jinwook; Park, Boyoun; Lee, Sungwook; Kim, Youngkyun; Biegalke, Bonita J.; Kang, Seongman; Ahn, Kwangseog
2006-01-01
Human cytomegalovirus encodes four unique short (US) region proteins, each of which is independently sufficient for causing the down-regulation of major histocompatibility complex (MHC) class I molecules on the cell surface. This down-regulation enables infected cells to evade recognition by cytotoxic T lymphocytes (CTLs) but makes them vulnerable to lysis by natural killer (NK) cells, which lyse those cells that lack MHC class I molecules. The 22-kDa US3 glycoprotein is able to down-regulate the surface expression of MHC class I molecules by dual mechanisms: direct endoplasmic reticulum retention by physical association and/or tapasin inhibition. The alternative splicing of the US3 gene generates two additional products, including 17-kDa and 3.5-kDa truncated isoforms; however, the functional significance of these isoforms during viral infection is unknown. Here, we describe a novel mode of self-regulation of US3 function that uses the endogenously produced truncated isoform. The truncated isoform itself neither binds to MHC class I molecules nor prevents the full-length US3 from interacting with MHC class I molecules. Instead, the truncated isoform associates with tapasin and competes with full-length US3 for binding to tapasin; thus, it suppresses the action of US3 that causes the disruption of the function of tapasin. Our results indicate that the truncated isoform of the US3 locus acts as a dominant negative regulator of full-length US3 activity. These data reflect the manner in which the virus has developed temporal survival strategies during viral infection against immune surveillance involving both CTLs and NK cells. PMID:16699020
Shin, Jinwook; Park, Boyoun; Lee, Sungwook; Kim, Youngkyun; Biegalke, Bonita J; Kang, Seongman; Ahn, Kwangseog
2006-06-01
Human cytomegalovirus encodes four unique short (US) region proteins, each of which is independently sufficient for causing the down-regulation of major histocompatibility complex (MHC) class I molecules on the cell surface. This down-regulation enables infected cells to evade recognition by cytotoxic T lymphocytes (CTLs) but makes them vulnerable to lysis by natural killer (NK) cells, which lyse those cells that lack MHC class I molecules. The 22-kDa US3 glycoprotein is able to down-regulate the surface expression of MHC class I molecules by dual mechanisms: direct endoplasmic reticulum retention by physical association and/or tapasin inhibition. The alternative splicing of the US3 gene generates two additional products, including 17-kDa and 3.5-kDa truncated isoforms; however, the functional significance of these isoforms during viral infection is unknown. Here, we describe a novel mode of self-regulation of US3 function that uses the endogenously produced truncated isoform. The truncated isoform itself neither binds to MHC class I molecules nor prevents the full-length US3 from interacting with MHC class I molecules. Instead, the truncated isoform associates with tapasin and competes with full-length US3 for binding to tapasin; thus, it suppresses the action of US3 that causes the disruption of the function of tapasin. Our results indicate that the truncated isoform of the US3 locus acts as a dominant negative regulator of full-length US3 activity. These data reflect the manner in which the virus has developed temporal survival strategies during viral infection against immune surveillance involving both CTLs and NK cells.
Hypoxia regulates microRNA expression in the human carotid body
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mkrtchian, Souren, E-mail: souren.mkrtchian@ki.se; Lee, Kian Leong, E-mail: csilkl@nus.edu.sg; Kåhlin, Jessica
The carotid body (CB) is the key sensing organ for physiological oxygen levels in the body. Under conditions of low oxygen (hypoxia), the CB plays crucial roles in signaling to the cardiorespiratory center in the medulla oblongata for the restoration of oxygen homeostasis. How hypoxia regulates gene expression in the human CB remains poorly understood. While limited information on transcriptional regulation in animal CBs is available, the identity and impact of important post-transcriptional regulators such as non-coding RNAs, and in particular miRNAs are not known. Here we show using ex vivo experiments that indeed a number of miRNAs are differentiallymore » regulated in surgically removed human CB slices when acute hypoxic conditions were applied. Analysis of the hypoxia-regulated miRNAs shows that they target biological pathways with upregulation of functions related to cell proliferation and immune response and downregulation of cell differentiation and cell death functions. Comparative analysis of the human CB miRNAome with the global miRNA expression patterns of a large number of different human tissues showed that the CB miRNAome had a unique profile which reflects its highly specialized functional status. Nevertheless, the human CB miRNAome is most closely related to the miRNA expression pattern of brain tissues indicating that they may have the most similar developmental origins. - Highlights: • Hypoxia triggers differential expression of many miRNAs in the human carotid body. • This can lead to the upregulation of proliferation and immune response functions. • CB expression profile in the carotid body resembles the miRNA expression pattern in the brain. • miRNAs are involved in the regulation of carotid body functions including oxygen sensing.« less
Wu, Jingfang; Sun, Shan; Li, Wenyan; Chen, Yan; Li, Huawei
2014-10-01
The ability of nonmammalian vertebrates to regenerate hair cells (HCs) after damage-induced HC loss has stimulated and inspired research in the field of HC regeneration. The protein pRb encoded by retinoblastoma gene Rb1 forces sensory progenitor cells to exit cell cycle and maintain differentiated HCs and supporting cells (SCs) in a quiescent state. pRb function is regulated by phosphorylation through the MEK/ERK or the pRb/Raf-1 signaling pathway. In our previous study, we have shown that pRb phosphorylation is crucial for progenitor cell proliferation and survival during the early embryonic stage of avian otocyst sensory epithelium development. However, in damaged avian utricle, the role of pRb in regulating the cell cycling of SCs or HCs regeneration still remains unclear. To further elucidate the function of pRb phosphorylation on SCs re-entering the cell cycle triggered by gentamycin-induced HCs damage, we isolated neonatal chicken utricles and treated them with the MEK inhibitor U0126 or the pRb/Raf-1 inhibitor RRD-251, respectively in vitro. We found that after gentamycin-induced HCs damage, pRb phosphorylation is important for the quiescent SCs re-entering the cell cycle in the neonatal chicken utricle. In addition, the proliferation of SCs decreased in a dose-dependent manner in response to both U0126 and RRD-251, which indicates that both the MEK/ERK and the pRb/Raf-1 signaling pathway play important roles in pRb phosphorylation in damaged neonatal chicken utricle. Together, these findings on the function of pRb in damaged neonatal chicken utricle improve our understanding of the regulation of the cell cycle of SCs after HCs loss and may shed light on the mammalian HC regeneration from SCs in damaged organs.
King, Ashleigh; Li, Lingli; Wong, David M.; Liu, Rui; Bamford, Rebecca; Strasser, Andreas
2017-01-01
Mechanistic differences in the development and function of adaptive, high-affinity antibody-producing B-2 cells and innate-like, “natural” antibody-producing B-1a cells remain poorly understood. Here we show that the multi-functional dynein light chain (DYNLL1/LC8) plays important roles in the establishment of B-1a cells in the peritoneal cavity and in the ongoing development of B-2 lymphoid cells in the bone marrow of mice. Epistasis analyses indicate that Dynll1 regulates B-1a and early B-2 cell development in a single, linear pathway with its direct transcriptional activator ASCIZ (ATMIN/ZNF822), and that the two genes also have complementary functions during late B-2 cell development. The B-2 cell defects caused by loss of DYNLL1 were associated with lower levels of the anti-apoptotic protein BCL-2, and could be supressed by deletion of pro-apoptotic BIM which is negatively regulated by both DYNLL1 and BCL-2. Defects in B cell development caused by loss of DYNLL1 could also be partially suppressed by a pre-arranged SWHEL Igm-B cell receptor transgene. In contrast to the rescue of B-2 cell numbers, the B-1a cell deficiency in Dynll1-deleted mice could not be suppressed by the loss of Bim, and was further compounded by the SWHEL transgene. Conversely, oncogenic MYC expression, which is synthetic lethal with Dynll1 deletion in B-2 cells, did not further reduce B-1a cell numbers in Dynll1-defcient mice. Finally, we found that the ASCIZ-DYNLL1 axis was also required for the early-juvenile development of aggressive MYC-driven and p53-deficient B cell lymphomas. These results identify ASCIZ and DYNLL1 as the core of a transcriptional circuit that differentially regulates the development of the B-1a and B-2 B lymphoid cell lineages and plays a critical role in lymphomagenesis. PMID:28922373
MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.
Xu, Hui; Yan, Yaping; Williams, Mark S; Carey, Gregory B; Yang, Jingxian; Li, Hongmei; Zhang, Guang-Xian; Rostami, Abdolmohamad
2010-11-01
MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK) and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.
Sun, Li-Li; Zhou, Zhong-Jing; An, Li-Jun; An, Yan; Zhao, Yong-Qin; Meng, Xiao-Fang; Steele-King, Clare; Gan, Yin-Bo
2013-07-01
Arabidopsis trichomes are large branched single cells that protrude from the epidermis. The first morphological indication of trichome development is an increase in nuclear content resulting from an initial cycle of endoreduplication. Our previous study has shown that the C2H2 zinc finger protein GLABROUS INFLORESCENCE STEMS (GIS) is required for trichome initiation in the inflorescence organ and for trichome branching in response to gibberellic acid signaling, although GIS gene does not play a direct role in regulating trichome cell division. Here, we describe a novel role of GIS, controlling trichome cell division indirectly by interacting genetically with a key endoreduplication regulator SIAMESE (SIM). Our molecular and genetic studies have shown that GIS might indireclty control cell division and trichome branching by acting downstream of SIM. A loss of function mutation of SIM signficantly reduced the expression of GIS. Futhermore, the overexpression of GIS rescued the trichome cluster cell phenotypes of sim mutant. The gain or loss of function of GIS had no significant effect on the expression of SIM. These results suggest that GIS may play an indirect role in regulating trichome cell division by genetically interacting with SIM.
The MafA Transcription Factor Becomes Essential to Islet β-Cells Soon After Birth
Hang, Yan; Yamamoto, Tsunehiko; Benninger, Richard K.P.; Brissova, Marcela; Guo, Min; Bush, Will; Piston, David W.; Powers, Alvin C.; Magnuson, Mark; Thurmond, Debbie C.; Stein, Roland
2014-01-01
The large Maf transcription factors, MafA and MafB, are expressed with distinct spatial–temporal patterns in rodent islet cells. Analysis of Mafa−/− and pancreas-specific Mafa∆panc deletion mutant mice demonstrated a primary role for MafA in adult β-cell activity, different from the embryonic importance of MafB. Our interests here were to precisely define when MafA became functionally significant to β-cells, to determine how this was affected by the brief period of postnatal MafB production, and to identify genes regulated by MafA during this period. We found that islet cell organization, β-cell mass, and β-cell function were influenced by 3 weeks of age in MafaΔpanc mice and compromised earlier in MafaΔpanc;Mafb+/− mice. A combination of genome-wide microarray profiling, electron microscopy, and metabolic assays were used to reveal mechanisms of MafA control. For example, β-cell replication was produced by actions on cyclin D2 regulation, while effects on granule docking affected first-phase insulin secretion. Moreover, notable differences in the genes regulated by embryonic MafB and postnatal MafA gene expression were found. These results not only clearly define why MafA is an essential transcriptional regulator of islet β-cells, but also why cell maturation involves coordinated actions with MafB. PMID:24520122
Myostatin signals through Pax7 to regulate satellite cell self-renewal
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarlane, Craig; Department of Biological Sciences, University of Waikato, Hamilton; Hennebry, Alex
2008-01-15
Myostatin, a Transforming Growth Factor-beta (TGF-{beta}) super-family member, has previously been shown to negatively regulate satellite cell activation and self-renewal. However, to date the mechanism behind Myostatin function in satellite cell biology is not known. Here we show that Myostatin signals via a Pax7-dependent mechanism to regulate satellite cell self-renewal. While excess Myostatin inhibited Pax7 expression via ERK1/2 signaling, an increase in Pax7 expression was observed following both genetic inactivation and functional antagonism of Myostatin. As a result, we show that either blocking or inactivating Myostatin enhances the partitioning of the fusion-incompetent self-renewed satellite cell lineage (high Pax7 expression, lowmore » MyoD expression) from the pool of actively proliferating myogenic precursor cells. Consistent with this result, over-expression of Pax7 in C2C12 myogenic cells resulted in increased self-renewal through a mechanism which slowed both myogenic proliferation and differentiation. Taken together, these results suggest that increased expression of Pax7 promotes satellite cell self-renewal, and furthermore Myostatin may control the process of satellite cell self-renewal through regulation of Pax7. Thus we speculate that, in addition to the intrinsic factors (such as Pax7), extrinsic factors both positive and negative in nature, will play a major role in determining the stemness of skeletal muscle satellite cells.« less
Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs
Phinney, Donald G.; Di Giuseppe, Michelangelo; Njah, Joel; Sala, Ernest; Shiva, Sruti; St Croix, Claudette M.; Stolz, Donna B.; Watkins, Simon C.; Di, Y. Peter; Leikauf, George D.; Kolls, Jay; Riches, David W. H.; Deiuliis, Giuseppe; Kaminski, Naftali; Boregowda, Siddaraju V.; McKenna, David H.; Ortiz, Luis A.
2015-01-01
Mesenchymal stem cells (MSCs) and macrophages are fundamental components of the stem cell niche and function coordinately to regulate haematopoietic stem cell self-renewal and mobilization. Recent studies indicate that mitophagy and healthy mitochondrial function are critical to the survival of stem cells, but how these processes are regulated in MSCs is unknown. Here we show that MSCs manage intracellular oxidative stress by targeting depolarized mitochondria to the plasma membrane via arrestin domain-containing protein 1-mediated microvesicles. The vesicles are then engulfed and re-utilized via a process involving fusion by macrophages, resulting in enhanced bioenergetics. Furthermore, we show that MSCs simultaneously shed micro RNA-containing exosomes that inhibit macrophage activation by suppressing Toll-like receptor signalling, thereby de-sensitizing macrophages to the ingested mitochondria. Collectively, these studies mechanistically link mitophagy and MSC survival with macrophage function, thereby providing a physiologically relevant context for the innate immunomodulatory activity of MSCs. PMID:26442449
Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs.
Phinney, Donald G; Di Giuseppe, Michelangelo; Njah, Joel; Sala, Ernest; Shiva, Sruti; St Croix, Claudette M; Stolz, Donna B; Watkins, Simon C; Di, Y Peter; Leikauf, George D; Kolls, Jay; Riches, David W H; Deiuliis, Giuseppe; Kaminski, Naftali; Boregowda, Siddaraju V; McKenna, David H; Ortiz, Luis A
2015-10-07
Mesenchymal stem cells (MSCs) and macrophages are fundamental components of the stem cell niche and function coordinately to regulate haematopoietic stem cell self-renewal and mobilization. Recent studies indicate that mitophagy and healthy mitochondrial function are critical to the survival of stem cells, but how these processes are regulated in MSCs is unknown. Here we show that MSCs manage intracellular oxidative stress by targeting depolarized mitochondria to the plasma membrane via arrestin domain-containing protein 1-mediated microvesicles. The vesicles are then engulfed and re-utilized via a process involving fusion by macrophages, resulting in enhanced bioenergetics. Furthermore, we show that MSCs simultaneously shed micro RNA-containing exosomes that inhibit macrophage activation by suppressing Toll-like receptor signalling, thereby de-sensitizing macrophages to the ingested mitochondria. Collectively, these studies mechanistically link mitophagy and MSC survival with macrophage function, thereby providing a physiologically relevant context for the innate immunomodulatory activity of MSCs.
The Regulatory Function of Eosinophils
Wen, Ting; Rothenberg, Marc E.
2016-01-01
Eosinophils are a minority circulating granulocyte classically viewed as being involved in host defense against parasites and promoting allergic reactions. However, a series of new regulatory functions for these cells have been identified in the past decade. During homeostasis, eosinophils develop in the bone marrow and migrate from the blood into target tissues following an eotaxin gradient, with IL-5 being a key cytokine for eosinophil proliferation, survival and priming. In multiple target tissues, eosinophils actively regulate a variety of immune functions through their vast arsenal of granule products and cytokines, as well as direct cellular interaction with cells in proximity. The immunologic regulation of eosinophils extends from innate immunity to adaptive immunity and also involves non-immune cells. Herein, we summarize recent findings regarding novel roles of murine and human eosinophils focused on interactions with other hematopoietic cells. We also review new experimental tools available and remaining questions to uncover a greater understanding of this enigmatic cell. PMID:27780017
The Regulatory Function of Eosinophils.
Wen, Ting; Rothenberg, Marc E
2016-10-01
Eosinophils are a minority circulating granulocyte classically viewed as being involved in host defense against parasites and promoting allergic reactions. However, a series of new regulatory functions for these cells have been identified in the past decade. During homeostasis, eosinophils develop in the bone marrow and migrate from the blood into target tissues following an eotaxin gradient, with interleukin-5 being a key cytokine for eosinophil proliferation, survival, and priming. In multiple target tissues, eosinophils actively regulate a variety of immune functions through their vast arsenal of granule products and cytokines, as well as direct cellular interaction with cells in proximity. The immunologic regulation of eosinophils extends from innate immunity to adaptive immunity and also involves non-immune cells. Herein, we summarize recent findings regarding novel roles of murine and human eosinophils, focusing on interactions with other hematopoietic cells. We also review new experimental tools available and remaining questions to uncover a greater understanding of this enigmatic cell.
Intrinsic Regulation of Thyroid Function by Thyroglobulin
Sellitti, Donald F.
2014-01-01
Background: The established paradigm for thyroglobulin (Tg) function is that of a high molecular weight precursor of the much smaller thyroid hormones, triiodothyronine (T3) and thyroxine (T4). However, speculation regarding the cause of the functional and morphologic heterogeneity of the follicles that make up the thyroid gland has given rise to the proposition that Tg is not only a precursor of thyroid hormones, but that it also functions as an important signal molecule in regulating thyroid hormone biosynthesis. Summary: Evidence supporting this alternative paradigm of Tg function, including the up- or downregulation by colloidal Tg of the transcription of Tg, iodide transporters, and enzymes employed in Tg iodination, and also the effects of Tg on the proliferation of thyroid and nonthyroid cells, is examined in the present review. Also discussed in detail are potential mechanisms of Tg signaling in follicular cells. Conclusions: Finally, we propose a mechanism, based on experimental observations of Tg effects on thyroid cell behavior, that could account for the phenomenon of follicular heterogeneity as a highly regulated cycle of increasing and decreasing colloidal Tg concentration that functions to optimize thyroid hormone production through the transcriptional activation or suppression of specific genes. PMID:24251883
p53-dependent programmed necrosis controls germ cell homeostasis during spermatogenesis.
Napoletano, Francesco; Gibert, Benjamin; Yacobi-Sharon, Keren; Vincent, Stéphane; Favrot, Clémentine; Mehlen, Patrick; Girard, Victor; Teil, Margaux; Chatelain, Gilles; Walter, Ludivine; Arama, Eli; Mollereau, Bertrand
2017-09-01
The importance of regulated necrosis in pathologies such as cerebral stroke and myocardial infarction is now fully recognized. However, the physiological relevance of regulated necrosis remains unclear. Here, we report a conserved role for p53 in regulating necrosis in Drosophila and mammalian spermatogenesis. We found that Drosophila p53 is required for the programmed necrosis that occurs spontaneously in mitotic germ cells during spermatogenesis. This form of necrosis involved an atypical function of the initiator caspase Dronc/Caspase 9, independent of its catalytic activity. Prevention of p53-dependent necrosis resulted in testicular hyperplasia, which was reversed by restoring necrosis in spermatogonia. In mouse testes, p53 was required for heat-induced germ cell necrosis, indicating that regulation of necrosis is a primordial function of p53 conserved from invertebrates to vertebrates. Drosophila and mouse spermatogenesis will thus be useful models to identify inducers of necrosis to treat cancers that are refractory to apoptosis.
miR-335 and miR-363 regulation of neuroblastoma tumorigenesis and metastasis.
Qiao, Jingbo; Lee, Sora; Paul, Pritha; Theiss, Lauren; Tiao, Joshua; Qiao, Lan; Kong, Andrew; Chung, Dai H
2013-08-01
microRNA (miRNA) functions broadly as post-transcriptional regulators of gene expression, and disproportionate miRNAs can result in dysregulation of oncogenes in cancer cells. We have previously shown that gastrin-releasing peptide receptor (GRP-R) signaling regulates tumorigenicity of neuroblastoma cells. Herein, we sought to characterize miRNA profile in GRP-R silenced neuroblastoma cells, and to determine the role of miRNAs on tumorigenicity and metastatic potential. Human neuroblastoma cell lines, BE(2)-C and SK-N-SH, were used for our study. Stably transfected GRP-R silenced cells were assessed for miRNA profiles. Cells were transfected with miR-335, miR-363, or miR-CON, a nontargeting control, and in vitro assays were performed. In vivo functions of miR-335 and miR-363 were also assessed in a spleen-liver metastasis murine model. GRP-R silencing significantly increased expression of miR-335 and miR-363 in BE(2)-C cells. Overexpression of miR-335 and miR-363 decreased tumorigenicity as measured by clonogenicity, anchorage-independent growth, and metastasis determined by cell invasion assay and liver metastasis in vivo. We report, for the first time, that GRP-R-mediated tumorigenicity and increased metastatic potential in neuroblastoma are regulated, in part, by miR-335 and miR-363. A better understanding of the anti-tumor functions of miRNAs could provide valuable insights to discerning molecular mechanisms responsible for neuroblastoma metastasis. Copyright © 2013 Mosby, Inc. All rights reserved.
Moreno, Marta; Fernández, Virginia; Monllau, Josep M.; Borrell, Víctor; Lerin, Carles; de la Iglesia, Núria
2015-01-01
Summary Neural stem cells (NSCs) reside in a hypoxic microenvironment within the brain. However, the crucial transcription factors (TFs) that regulate NSC biology under physiologic hypoxia are poorly understood. Here we have performed gene set enrichment analysis (GSEA) of microarray datasets from hypoxic versus normoxic NSCs with the aim of identifying pathways and TFs that are activated under oxygen concentrations mimicking normal brain tissue microenvironment. Integration of TF target (TFT) and pathway enrichment analysis identified the calcium-regulated TF NFATc4 as a major candidate to regulate hypoxic NSC functions. Nfatc4 expression was coordinately upregulated by top hypoxia-activated TFs, while NFATc4 target genes were enriched in hypoxic NSCs. Loss-of-function analyses further revealed that the calcineurin-NFATc4 signaling axis acts as a major regulator of NSC self-renewal and proliferation in vitro and in vivo by promoting the expression of TFs, including Id2, that contribute to the maintenance of the NSC state. PMID:26235896
Mitochondria: more than just a powerhouse.
McBride, Heidi M; Neuspiel, Margaret; Wasiak, Sylwia
2006-07-25
Pioneering biochemical studies have long forged the concept that the mitochondria are the 'energy powerhouse of the cell'. These studies, combined with the unique evolutionary origin of the mitochondria, led the way to decades of research focusing on the organelle as an essential, yet independent, functional component of the cell. Recently, however, our conceptual view of this isolated organelle has been profoundly altered with the discovery that mitochondria function within an integrated reticulum that is continually remodeled by both fusion and fission events. The identification of a number of proteins that regulate these activities is beginning to provide mechanistic details of mitochondrial membrane remodeling. However, the broader question remains regarding the underlying purpose of mitochondrial dynamics and the translation of these morphological transitions into altered functional output. One hypothesis has been that mitochondrial respiration and metabolism may be spatially and temporally regulated by the architecture and positioning of the organelle. Recent evidence supports and expands this idea by demonstrating that mitochondria are an integral part of multiple cell signaling cascades. Interestingly, proteins such as GTPases, kinases and phosphatases are involved in bi-directional communication between the mitochondrial reticulum and the rest of the cell. These proteins link mitochondrial function and dynamics to the regulation of metabolism, cell-cycle control, development, antiviral responses and cell death. In this review we will highlight the emerging evidence that provides molecular definition to mitochondria as a central platform in the execution of diverse cellular events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Gayoung; Kim, Hyun-Man
Cell scattering of epithelial carcinoma cancer cells is one of the critical event in tumorigenesis. Cells losing epithelial cohesion detach from aggregated epithelial cell masses and may migrate to fatal organs through metastasis. The present study investigated the molecular mechanism by which squamous cell carcinoma cells grow scattered at the early phase of transformation while maintaining the epithelial phenotype. We studied YD-10B cells, which are established from human oral squamous cell carcinoma, because the cells grow scattered without the development of E-cadherin junctions (ECJs) under routine culture conditions despite the high expression of functional E-cadherin. The functionality of their E-cadherinmore » was demonstrated in that YD-10B cells developed ECJs, transiently or persistently, when they were cultured on substrates coated with a low amount of fibronectin or to confluence. The phosphorylation of JNK was up-regulated in YD-10B cells compared with that in human normal oral keratinocyte cells or human squamous cell carcinoma cells, which grew aggregated along with well-organized ECJs. The suppression of JNK activity induced the aggregated growth of YD-10B cells concomitant with the development of ECJs. These results indicate for the first time that inherently up-regulated JNK activity induces the scattered growth of the oral squamous cell carcinoma cells through down-regulating the development of ECJ despite the expression of functional E-cadherin, a hallmark of the epithelial phenotype. - Highlights: • JNK dissociates YD-10B oral squamous cell carcinoma cells. • JNK suppresses the development of E-cadherin junctions of oral carcinoma cells. • Suppression of JNK activity reverses the scattered growth of oral carcinoma cells.« less
Beltran-Povea, Amparo; Caballano-Infantes, Estefania; Salguero-Aranda, Carmen; Martín, Franz; Soria, Bernat; Bedoya, Francisco J; Tejedo, Juan R; Cahuana, Gladys M
2015-01-01
Stem cell pluripotency and differentiation are global processes regulated by several pathways that have been studied intensively over recent years. Nitric oxide (NO) is an important molecule that affects gene expression at the level of transcription and translation and regulates cell survival and proliferation in diverse cell types. In embryonic stem cells NO has a dual role, controlling differentiation and survival, but the molecular mechanisms by which it modulates these functions are not completely defined. NO is a physiological regulator of cell respiration through the inhibition of cytochrome c oxidase. Many researchers have been examining the role that NO plays in other aspects of metabolism such as the cellular bioenergetics state, the hypoxia response and the relationship of these areas to stem cell stemness. PMID:25914767
Regulation of MHC class I expression by Foxp3 and its effect on Treg cell function
Mu, Jie; Tai, Xuguang; Iyer, Shankar S.; Weissman, Jocelyn D.; Singer, Alfred; Singer, Dinah S.
2014-01-01
Expression of MHC class I molecules, which provide immune surveillance against intracellular pathogens, is higher on lymphoid cells than on any other cell types. In T cells, this is a result of activation of class I transcription by the T cell enhanceosome consisting of Runx1, CBFβ and LEF1. We now report that MHC class I transcription in T cells also is enhanced by Foxp3, resulting in higher levels of class I in CD4+CD25+ T regulatory cells than in conventional CD4+CD25− T cells. Interestingly, the effect of Foxp3 regulation of MHC class I transcription is cell-type specific: Foxp3 increases MHC class I expression in T cells but represses it in epithelial tumor cells. In both cell types, Foxp3 targets the upstream IRE and downstream core promoter of the class I gene. Importantly, expression of MHC class I contributes to the function of CD4+CD25+ T regulatory cells by enhancing immune suppression, both in in vitro and in vivo. These findings identify MHC class I genes as direct targets of Foxp3 whose expression augments regulatory T cell function. PMID:24523508
Mukai, Masanori; Kato, Hirotaka; Hira, Seiji; Nakamura, Katsuhiro; Kita, Hiroaki; Kobayashi, Satoru
2011-01-01
Germ cells require intimate associations with surrounding somatic cells during gametogenesis. During oogenesis, gap junctions mediate communication between germ cells and somatic support cells. However, the molecular mechanisms by which gap junctions regulate the developmental processes during oogenesis are poorly understood. We have identified a female sterile allele of innexin2 (inx2), which encodes a gap junction protein in Drosophila. In females bearing this inx2 allele, cyst formation and egg chamber formation are impaired. In wild-type germaria, Inx2 is strongly expressed in escort cells and follicle cells, both of which make close contact with germline cells. We show that inx2 function in germarial somatic cells is required for the survival of early germ cells and promotes cyst formation, probably downstream of EGFR pathway, and that inx2 function in follicle cells promotes egg chamber formation through the regulation of DE-cadherin and Bazooka (Baz) at the boundary between germ cells and follicle cells. Furthermore, genetic experiments demonstrate that inx2 interacts with the zero population growth (zpg) gene, which encodes a germline-specific gap junction protein. These results indicate a multifunctional role for Inx2 gap junctions in somatic support cells in the regulation of early germ cell survival, cyst formation and egg chamber formation. Inx2 gap junctions may mediate the transfer of nutrients and signal molecules between germ cells and somatic support cells, as well as play a role in the regulation of cell adhesion. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.