Sample records for regulating cellular immunity

  1. Rab GTPases in Immunity and Inflammation.

    PubMed

    Prashar, Akriti; Schnettger, Laura; Bernard, Elliott M; Gutierrez, Maximiliano G

    2017-01-01

    Strict spatiotemporal control of trafficking events between organelles is critical for maintaining homeostasis and directing cellular responses. This regulation is particularly important in immune cells for mounting specialized immune defenses. By controlling the formation, transport and fusion of intracellular organelles, Rab GTPases serve as master regulators of membrane trafficking. In this review, we discuss the cellular and molecular mechanisms by which Rab GTPases regulate immunity and inflammation.

  2. The Transcription Factor EB Links Cellular Stress to the Immune Response



    PubMed Central

    Nabar, Neel R.; Kehrl, John H.

    2017-01-01

    The transcription factor EB (TFEB) is the master transcriptional regulator of autophagy and lysosome biogenesis. Recent advances have led to a paradigm shift in our understanding of lysosomes from a housekeeping cellular waste bin to a dynamically regulated pathway that is efficiently turned up or down based on cellular needs. TFEB coordinates the cellular response to nutrient deprivation and other forms of cell stress through the lysosome system, and regulates a myriad of cellular processes associated with this system including endocytosis, phagocytosis, autophagy, and lysosomal exocytosis. Autophagy and the endolysosomal system are critical to both the innate and adaptive arms of the immune system, with functions in effector cell priming and direct pathogen clearance. Recent studies have linked TFEB to the regulation of the immune response through the endolysosmal pathway and by direct transcriptional activation of immune related genes. In this review, we discuss the current understanding of TFEB’s function and the molecular mechanisms behind TFEB activation. Finally, we discuss recent advances linking TFEB to the immune response that positions lysosomal signaling as a potential target for immune modulation. PMID:28656016

  3. The Transcription Factor EB Links Cellular Stress to the Immune Response

.

    PubMed

    Nabar, Neel R; Kehrl, John H

    2017-06-01

    The transcription factor EB (TFEB) is the master transcriptional regulator of autophagy and lysosome biogenesis. Recent advances have led to a paradigm shift in our understanding of lysosomes from a housekeeping cellular waste bin to a dynamically regulated pathway that is efficiently turned up or down based on cellular needs. TFEB coordinates the cellular response to nutrient deprivation and other forms of cell stress through the lysosome system, and regulates a myriad of cellular processes associated with this system including endocytosis, phagocytosis, autophagy, and lysosomal exocytosis. Autophagy and the endolysosomal system are critical to both the innate and adaptive arms of the immune system, with functions in effector cell priming and direct pathogen clearance. Recent studies have linked TFEB to the regulation of the immune response through the endolysosmal pathway and by direct transcriptional activation of immune related genes. In this review, we discuss the current understanding of TFEB's function and the molecular mechanisms behind TFEB activation. Finally, we discuss recent advances linking TFEB to the immune response that positions lysosomal signaling as a potential target for immune modulation.

  4. Modulation of occluding junctions alters the hematopoietic niche to trigger immune activation

    PubMed Central

    Khadilkar, Rohan J; Vogl, Wayne; Goodwin, Katharine

    2017-01-01

    Stem cells are regulated by signals from their microenvironment, or niche. During Drosophila hematopoiesis, a niche regulates prohemocytes to control hemocyte production. Immune challenges activate cell-signalling to initiate the cellular and innate immune response. Specifically, certain immune challenges stimulate the niche to produce signals that induce prohemocyte differentiation. However, the mechanisms that promote prohemocyte differentiation subsequent to immune challenges are poorly understood. Here we show that bacterial infection induces the cellular immune response by modulating occluding-junctions at the hematopoietic niche. Occluding-junctions form a permeability barrier that regulates the accessibility of prohemocytes to niche derived signals. The immune response triggered by infection causes barrier breakdown, altering the prohemocyte microenvironment to induce immune cell production. Moreover, genetically induced barrier ablation provides protection against infection by activating the immune response. Our results reveal a novel role for occluding-junctions in regulating niche-hematopoietic progenitor signalling and link this mechanism to immune cell production following infection. PMID:28841136

  5. Ubiquitin in Influenza Virus Entry and Innate Immunity.

    PubMed

    Rudnicka, Alina; Yamauchi, Yohei

    2016-10-24

    Viruses are obligatory cellular parasites. Their mission is to enter a host cell, to transfer the viral genome, and to replicate progeny whilst diverting cellular immunity. The role of ubiquitin is to regulate fundamental cellular processes such as endocytosis, protein degradation, and immune signaling. Many viruses including influenza A virus (IAV) usurp ubiquitination and ubiquitin-like modifications to establish infection. In this focused review, we discuss how ubiquitin and unanchored ubiquitin regulate IAV host cell entry, and how histone deacetylase 6 (HDAC6), a cytoplasmic deacetylase with ubiquitin-binding activity, mediates IAV capsid uncoating. We also discuss the roles of ubiquitin in innate immunity and its implications in the IAV life cycle.

  6. Ubiquitin in Influenza Virus Entry and Innate Immunity

    PubMed Central

    Rudnicka, Alina; Yamauchi, Yohei

    2016-01-01

    Viruses are obligatory cellular parasites. Their mission is to enter a host cell, to transfer the viral genome, and to replicate progeny whilst diverting cellular immunity. The role of ubiquitin is to regulate fundamental cellular processes such as endocytosis, protein degradation, and immune signaling. Many viruses including influenza A virus (IAV) usurp ubiquitination and ubiquitin-like modifications to establish infection. In this focused review, we discuss how ubiquitin and unanchored ubiquitin regulate IAV host cell entry, and how histone deacetylase 6 (HDAC6), a cytoplasmic deacetylase with ubiquitin-binding activity, mediates IAV capsid uncoating. We also discuss the roles of ubiquitin in innate immunity and its implications in the IAV life cycle. PMID:27783058

  7. Dead cell phagocytosis and innate immune checkpoint

    PubMed Central

    Yoon, Kyoung Wan

    2017-01-01

    The human body loses several billions of cells daily. When cells die in vivo, the corpse of each dead cell is immediately cleared. Specifically, dead cells are efficiently recognized and cleared by multiple types of neighboring phagocytes. Early research on cell death focused more on molecular mechanisms of cell death regulation while the cellular corpses were merely considered cellular debris. However, it has come to light that various biological stimuli following cell death are important for immune regulation. Clearance of normal dead cells occurs silently in immune tolerance. Exogenous or mutated antigens of malignant or infected cells can initiate adaptive immunity, thereby inducing immunogenicity by adjuvant signals. Several pathogens and cancer cells have strategies to limit the adjuvant signals and escape immune surveillance. In this review, we present an overview of the mechanisms of dead cell clearance and its immune regulations. PMID:28768566

  8. Dead cell phagocytosis and innate immune checkpoint.

    PubMed

    Yoon, Kyoung Wan

    2017-10-01

    The human body loses several billions of cells daily. When cells die in vivo, the corpse of each dead cell is immediately cleared. Specifically, dead cells are efficiently recognized and cleared by multiple types of neighboring phagocytes. Early research on cell death focused more on molecular mechanisms of cell death regulation while the cellular corpses were merely considered cellular debris. However, it has come to light that various biological stimuli following cell death are important for immune regulation. Clearance of normal dead cells occurs silently in immune tolerance. Exogenous or mutated antigens of malignant or infected cells can initiate adaptive immunity, thereby inducing immunogenicity by adjuvant signals. Several pathogens and cancer cells have strategies to limit the adjuvant signals and escape immune surveillance. In this review, we present an overview of the mechanisms of dead cell clearance and its immune regulations. [BMB Reports 2017; 50(10): 496-503].

  9. MiRNAs: dynamic regulators of immune cell functions in inflammation and cancer.

    PubMed

    Hirschberger, Simon; Hinske, Ludwig Christian; Kreth, Simone

    2018-09-01

    MicroRNAs (miRNAs), small noncoding RNA molecules, have emerged as important regulators of almost all cellular processes. By binding to specific sequence motifs within the 3'- untranslated region of their target mRNAs, they induce either mRNA degradation or translational repression. In the human immune system, potent miRNAs and miRNA-clusters have been discovered, that exert pivotal roles in the regulation of gene expression. By targeting cellular signaling hubs, these so-called immuno-miRs have fundamental regulative impact on both innate and adaptive immune cells in health and disease. Importantly, they also act as mediators of tumor immune escape. Secreted by cancer cells and consecutively taken up by immune cells, immuno-miRs are capable to influence immune functions towards a blunted anti-tumor response, thus shaping a permissive tumor environment. This review provides an overview of immuno-miRs and their functional impact on individual immune cell entities. Further, implications of immuno-miRs in the amelioration of tumor surveillance are discussed. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Histone deacetylases as regulators of inflammation and immunity.

    PubMed

    Shakespear, Melanie R; Halili, Maria A; Irvine, Katharine M; Fairlie, David P; Sweet, Matthew J

    2011-07-01

    Histone deacetylases (HDACs) remove an acetyl group from lysine residues of target proteins to regulate cellular processes. Small-molecule inhibitors of HDACs cause cellular growth arrest, differentiation and/or apoptosis, and some are used clinically as anticancer drugs. In animal models, HDAC inhibitors are therapeutic for several inflammatory diseases, but exacerbate atherosclerosis and compromise host defence. Loss of HDAC function has also been linked to chronic lung diseases in humans. These contrasting effects might reflect distinct roles for individual HDACs in immune responses. Here, we review the current understanding of innate and adaptive immune pathways that are regulated by classical HDAC enzymes. The objective is to provide a rationale for targeting (or not targeting) individual HDAC enzymes with inhibitors for future immune-related applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Mechanisms regulating skin immunity and inflammation.

    PubMed

    Pasparakis, Manolis; Haase, Ingo; Nestle, Frank O

    2014-05-01

    Immune responses in the skin are important for host defence against pathogenic microorganisms. However, dysregulated immune reactions can cause chronic inflammatory skin diseases. Extensive crosstalk between the different cellular and microbial components of the skin regulates local immune responses to ensure efficient host defence, to maintain and restore homeostasis, and to prevent chronic disease. In this Review, we discuss recent findings that highlight the complex regulatory networks that control skin immunity, and we provide new paradigms for the mechanisms that regulate skin immune responses in host defence and in chronic inflammation.

  12. The neuroendocrine immunomodulatory axis-like pathway mediated by circulating haemocytes in pacific oyster Crassostrea gigas.

    PubMed

    Liu, Zhaoqun; Zhou, Zhi; Jiang, Qiufen; Wang, Lingling; Yi, Qilin; Qiu, Limei; Song, Linsheng

    2017-01-01

    The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of host. In this study, a neuroendocrine immunomodulatory axis (NIA)-like pathway mediated by the nervous system and haemocytes was characterized in the oyster Crassostrea gigas Once invaded pathogen was recognized by the host, the nervous system would temporally release neurotransmitters to modulate the immune response. Instead of acting passively, oyster haemocytes were able to mediate neuronal immunomodulation promptly by controlling the expression of specific neurotransmitter receptors on cell surface and modulating their binding sensitivities, thus regulating intracellular concentration of Ca 2+ This neural immunomodulation mediated by the nervous system and haemocytes could influence cellular immunity in oyster by affecting mRNA expression level of TNF genes, and humoral immunity by affecting the activities of key immune-related enzymes. In summary, though simple in structure, the 'nervous-haemocyte' NIA-like pathway regulates both cellular and humoral immunity in oyster, meaning a world to the effective immune regulation of the NEI network. © 2017 The Authors.

  13. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function

    PubMed Central

    Sokolovska, Anna; Becker, Christine E.; Eddie Ip, WK; Rathinam, Vijay A.K.; Brudner, Matthew; Paquette, Nicholas; Tanne, Antoine; Vanaja, Sivapriya K.; Moore, Kathryn J.; Fitzgerald, Katherine A.; Lacy-Hulbert, Adam; Stuart, Lynda M.

    2013-01-01

    Phagocytosis is a fundamental cellular process that is pivotal for immunity as it coordinates microbial killing, innate immune activation and antigen presentation. An essential step in this process is phagosome acidification, which regulates a number of functions of these organelles that allow them to participate in processes essential to both innate and adaptive immunity. Here we report that acidification of phagosomes containing Gram-positive bacteria is regulated by the NLRP3-inflammasome and caspase-1. Active caspase-1 accumulates on phagosomes and acts locally to control the pH by modulating buffering by the NADPH oxidase NOX2. These data provide insight into a mechanism by which innate immune signals can modify cellular defenses and establish a new function for the NLRP3-inflammasome and caspase-1 in host defense. PMID:23644505

  14. Epigenetic Alterations in Cellular Immunity: New Insights into Autoimmune Diseases.

    PubMed

    Wang, Zijun; Lu, Qianjin; Wang, Zhihui

    2017-01-01

    Epigenetic modification is an additional regulator in immune responses as the genome-wide profiling somehow fails to explain the sophisticated mechanisms in autoimmune diseases. The effect of epigenetic modifications on adaptive immunity derives from their regulations to induce a permissive or negative gene expression. Epigenetic events, such as DNA methylation, histone modifications and microRNAs (miRNAs) are often found in T cell activation, differentiation and commitment which are the major parts in cellular immunity. Recognizing the complexity of interactions between epigenetic mechanisms and immune disturbance in autoimmune diseases is essential for the exploration of efficient therapeutic targets. In this review, we summarize a list of studies that indicate the significance of dysregulated epigenetic modifications in autoimmune diseases while focusing on T cell immunity. © 2017 The Author(s)Published by S. Karger AG, Basel.

  15. Parasitoid wasp venom SERCA regulates Drosophila calcium levels and inhibits cellular immunity.

    PubMed

    Mortimer, Nathan T; Goecks, Jeremy; Kacsoh, Balint Z; Mobley, James A; Bowersock, Gregory J; Taylor, James; Schlenke, Todd A

    2013-06-04

    Because parasite virulence factors target host immune responses, identification and functional characterization of these factors can provide insight into poorly understood host immune mechanisms. The fruit fly Drosophila melanogaster is a model system for understanding humoral innate immunity, but Drosophila cellular innate immune responses remain incompletely characterized. Fruit flies are regularly infected by parasitoid wasps in nature and, following infection, flies mount a cellular immune response culminating in the cellular encapsulation of the wasp egg. The mechanistic basis of this response is largely unknown, but wasps use a mixture of virulence proteins derived from the venom gland to suppress cellular encapsulation. To gain insight into the mechanisms underlying wasp virulence and fly cellular immunity, we used a joint transcriptomic/proteomic approach to identify venom genes from Ganaspis sp.1 (G1), a previously uncharacterized Drosophila parasitoid species, and found that G1 venom contains a highly abundant sarco/endoplasmic reticulum calcium ATPase (SERCA) pump. Accordingly, we found that fly immune cells termed plasmatocytes normally undergo a cytoplasmic calcium burst following infection, and that this calcium burst is required for activation of the cellular immune response. We further found that the plasmatocyte calcium burst is suppressed by G1 venom in a SERCA-dependent manner, leading to the failure of plasmatocytes to become activated and migrate toward G1 eggs. Finally, by genetically manipulating plasmatocyte calcium levels, we were able to alter fly immune success against G1 and other parasitoid species. Our characterization of parasitoid wasp venom proteins led us to identify plasmatocyte cytoplasmic calcium bursts as an important aspect of fly cellular immunity.

  16. Actin retrograde flow controls natural killer cell response by regulating the conformation state of SHP-1.

    PubMed

    Matalon, Omri; Ben-Shmuel, Aviad; Kivelevitz, Jessica; Sabag, Batel; Fried, Sophia; Joseph, Noah; Noy, Elad; Biber, Guy; Barda-Saad, Mira

    2018-03-01

    Natural killer (NK) cells are a powerful weapon against viral infections and tumor growth. Although the actin-myosin (actomyosin) cytoskeleton is crucial for a variety of cellular processes, the role of mechanotransduction, the conversion of actomyosin mechanical forces into signaling cascades, was never explored in NK cells. Here, we demonstrate that actomyosin retrograde flow (ARF) controls the immune response of primary human NK cells through a novel interaction between β-actin and the SH2-domain-containing protein tyrosine phosphatase-1 (SHP-1), converting its conformation state, and thereby regulating NK cell cytotoxicity. Our results identify ARF as a master regulator of the NK cell immune response. Since actin dynamics occur in multiple cellular processes, this mechanism might also regulate the activity of SHP-1 in additional cellular systems. © 2018 The Authors.

  17. Drosophila cellular immunity: a story of migration and adhesion.

    PubMed

    Fauvarque, Marie-Odile; Williams, Michael J

    2011-05-01

    Research during the past 15 years has led to significant breakthroughs, providing evidence of a high degree of similarity between insect and mammalian innate immune responses, both humoural and cellular, and highlighting Drosophila melanogaster as a model system for studying the evolution of innate immunity. In a manner similar to cells of the mammalian monocyte and macrophage lineage, Drosophila immunosurveillance cells (haemocytes) have a number of roles. For example, they respond to wound signals, are involved in wound healing and contribute to the coagulation response. Moreover, they participate in the phagocytosis and encapsulation of invading pathogens, are involved in the removal of apoptotic bodies and produce components of the extracellular matrix. There are several reasons for using the Drosophila cellular immune response as a model to understand cell signalling during adhesion and migration in vivo: many genes involved in the regulation of Drosophila haematopoiesis and cellular immunity have been maintained across taxonomic groups ranging from flies to humans, many aspects of Drosophila and mammalian innate immunity seem to be conserved, and Drosophila is a simplified and well-studied genetic model system. In the present Commentary, we will discuss what is known about cellular adhesion and migration in the Drosophila cellular immune response, during both embryonic and larval development, and where possible compare it with related mechanisms in vertebrates.

  18. Neuroendocrine regulation of inflammation

    PubMed Central

    Padro, Caroline J.; Sanders, Virginia M.

    2014-01-01

    The interaction between the sympathetic nervous system and the immune system has been documented over the last several decades. In this review, the neuroanatomical, cellular, and molecular evidence for neuroimmune regulation in the maintenance of immune homeostasis will be discussed, as well as the potential impact of neuroimmune dysregulation in health and disease. PMID:24486056

  19. Metabolic regulation of inflammation.

    PubMed

    Gaber, Timo; Strehl, Cindy; Buttgereit, Frank

    2017-05-01

    Immune cells constantly patrol the body via the bloodstream and migrate into multiple tissues where they face variable and sometimes demanding environmental conditions. Nutrient and oxygen availability can vary during homeostasis, and especially during the course of an immune response, creating a demand for immune cells that are highly metabolically dynamic. As an evolutionary response, immune cells have developed different metabolic programmes to supply them with cellular energy and biomolecules, enabling them to cope with changing and challenging metabolic conditions. In the past 5 years, it has become clear that cellular metabolism affects immune cell function and differentiation, and that disease-specific metabolic configurations might provide an explanation for the dysfunctional immune responses seen in rheumatic diseases. This Review outlines the metabolic challenges faced by immune cells in states of homeostasis and inflammation, as well as the variety of metabolic configurations utilized by immune cells during differentiation and activation. Changes in cellular metabolism that contribute towards the dysfunctional immune responses seen in rheumatic diseases are also briefly discussed.

  20. Digital gene expression analysis in hemocytes of the white shrimp Litopenaeus vannamei in response to low salinity stress.

    PubMed

    Zhao, Qun; Pan, Luqing; Ren, Qin; Hu, Dongxu

    2015-02-01

    The white shrimp Litopenaeus vannamei has been greatly impacted by low salinity stress. To gain knowledge on the immune response in L. vannamei under such stress, we investigated digital gene expression (DEG) in L. vannamei hemocytes using the deep-sequencing platform Illumina HiSeq 2000. In total, 38,155 high quality unigenes with average length 770 bp were generated; 145 and 79 genes were identified up- or down-regulated, respectively. Functional categorization and pathways of the differentially expressed genes revealed that immune signaling pathways, cellular immunity, humoral immunity, apoptosis, cellular protein synthesis, lipid transport and energy metabolism were the differentially regulated processes occurring during low salinity stress. These results will provide a resource for subsequent gene expression studies regarding environmental stress and a valuable gene information for a better understanding of immune mechanisms of L. vannamei under low salinity stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Role of Vanadium in Cellular and Molecular Immunology: Association with Immune-Related Inflammation and Pharmacotoxicology Mechanisms

    PubMed Central

    Tsave, Olga; Petanidis, Savvas; Kioseoglou, Efrosini; Yavropoulou, Maria P.; Yovos, John G.; Anestakis, Doxakis; Tsepa, Androniki; Salifoglou, Athanasios

    2016-01-01

    Over the last decade, a diverse spectrum of vanadium compounds has arisen as anti-inflammatory therapeutic metallodrugs targeting various diseases. Recent studies have demonstrated that select well-defined vanadium species are involved in many immune-driven molecular mechanisms that regulate and influence immune responses. In addition, advances in cell immunotherapy have relied on the use of metallodrugs to create a “safe,” highly regulated, environment for optimal control of immune response. Emerging findings include optimal regulation of B/T cell signaling and expression of immune suppressive or anti-inflammatory cytokines, critical for immune cell effector functions. Furthermore, in-depth perusals have explored NF-κB and Toll-like receptor signaling mechanisms in order to enhance adaptive immune responses and promote recruitment or conversion of inflammatory cells to immunodeficient tissues. Consequently, well-defined vanadium metallodrugs, poised to access and resensitize the immune microenvironment, interact with various biomolecular targets, such as B cells, T cells, interleukin markers, and transcription factors, thereby influencing and affecting immune signaling. A synthetically formulated and structure-based (bio)chemical reactivity account of vanadoforms emerges as a plausible strategy for designing drugs characterized by selectivity and specificity, with respect to the cellular molecular targets intimately linked to immune responses, thereby giving rise to a challenging field linked to the development of immune system vanadodrugs. PMID:27190573

  2. Vaccine induced differential expressions of miRNAs at cytolytic stage in chickens resistant or susceptible to Marek’s disease

    USDA-ARS?s Scientific Manuscript database

    Gene expression regulation is critical for all cellular processes since dysregulation of it often results in elevated disease risk and compromised cellular immunity. MicroRNAs (miRNAs) directly regulate gene expression post-transcriptionally through base-pairing with regions in the 3’-untranslated s...

  3. LIGHT regulates inflamed draining lymph node hypertrophy

    PubMed Central

    Zhu, Mingzhao; Yang, Yajun; Wang, Yugang; Wang, Zhongnan; Fu, Yang-Xin

    2011-01-01

    Lymph node (LN) hypertrophy, the increased cellularity of LNs, is the major indication of the initiation and expansion of the immune response against infection, vaccination, cancer or autoimmunity. The mechanisms underlying LN hypertrophy remain poorly defined. Here, we demonstrate that LIGHT (TNFSF14) is a novel factor essential for LN hypertrophy after CFA immunization. Mechanistically, LIGHT is required for the influx of lymphocytes into but not egress out of LNs. In addition, LIGHT is required for DC migration from the skin to draining LNs. Compared with WT mice, LIGHT−/− mice express lower levels of chemokines in skin and addressins in LN vascular endothelial cells after CFA immunization. We unexpectedly observed that LIGHT from radioresistant rather than radiosensitive cells, likely Langerhans cells, is required for LN hypertrophy. Importantly, antigen-specific T cell responses were impaired in DLN of LIGHT−/− mice, suggesting the importance of LIGHT regulation of LN hypertrophy in the generation of an adaptive immune response. Collectively, our data reveal a novel cellular and molecular mechanism for the regulation of LN hypertrophy and its potential impact on the generation of an optimal adaptive immune response. PMID:21572030

  4. Cellular and Molecular Players in Adipose Tissue Inflammation in the Development of Obesity-induced Insulin Resistance

    PubMed Central

    Lee, Byung-Cheol; Lee, Jongsoon

    2013-01-01

    There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. PMID:23707515

  5. The cAMP Pathway as Therapeutic Target in Autoimmune and Inflammatory Diseases

    PubMed Central

    Raker, Verena Katharina; Becker, Christian; Steinbrink, Kerstin

    2016-01-01

    Nucleotide signaling molecules contribute to the regulation of cellular pathways. In the immune system, cyclic adenosine monophosphate (cAMP) is well established as a potent regulator of innate and adaptive immune cell functions. Therapeutic strategies to interrupt or enhance cAMP generation or effects have immunoregulatory potential in autoimmune and inflammatory disorders. Here, we provide an overview of the cyclic AMP axis and its role as a regulator of immune functions and discuss the clinical and translational relevance of interventions with these processes. PMID:27065076

  6. Structure and Function of Viral Deubiquitinating Enzymes.

    PubMed

    Bailey-Elkin, Ben A; Knaap, Robert C M; Kikkert, Marjolein; Mark, Brian L

    2017-11-10

    Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including innate and adaptive immune responses. Ubiquitin-mediated control over these processes can be reversed by cellular deubiquitinating enzymes (DUBs), which remove ubiquitin from cellular targets and depolymerize polyubiquitin chains. The importance of protein ubiquitination to host immunity has been underscored by the discovery of viruses that encode proteases with deubiquitinating activity, many of which have been demonstrated to actively corrupt cellular ubiquitin-dependent processes to suppress innate antiviral responses and promote viral replication. DUBs have now been identified in diverse viral lineages, and their characterization is providing valuable insights into virus biology and the role of the ubiquitin system in host antiviral mechanisms. Here, we provide an overview of the structural biology of these fascinating viral enzymes and their role innate immune evasion and viral replication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Hantaviruses induce cell type- and viral species-specific host microRNA expression signatures

    PubMed Central

    Shin, Ok Sarah; Kumar, Mukesh; Yanagihara, Richard; Song, Jin-Won

    2014-01-01

    The mechanisms of hantavirus-induced modulation of host cellular immunity remain poorly understood. Recently, microRNAs (miRNAs) have emerged as a class of essential regulators of host immune response genes. To ascertain if differential host miRNA expression toward representative hantavirus species correlated with immune response genes, miRNA expression profiles were analyzed in human endothelial cells, macrophages and epithelial cells infected with pathogenic and nonpathogenic rodent- and shrew-borne hantaviruses. Distinct miRNA expression profiles were observed in a cell type- and viral species-specific pattern. A subset of miRNAs, including miR-151-5p and miR-1973, were differentially expressed between Hantaan virus and Prospect Hill virus. Pathway analyses confirmed that the targets of selected miRNAs were associated with inflammatory responses and innate immune receptor-mediated signaling pathways. Our data suggest that differential immune responses following hantavirus infection may be regulated in part by cellular miRNA through dysregulation of genes critical to the inflammatory process. PMID:24074584

  8. A chitinase from pacific white shrimp Litopenaeus vannamei involved in immune regulation.

    PubMed

    Niu, Shengwen; Yang, Linwei; Zuo, Hongliang; Zheng, Jiefu; Weng, Shaoping; He, Jianguo; Xu, Xiaopeng

    2018-08-01

    Chitinases are a group of hydrolytic enzymes that hydrolyze chitin and widely exist in organisms. Studies in mammals have demonstrated that chitinases play important roles in regulation of humoral and cellular immune responses. In arthropods, although it is well known that chitinases are involved in growth, molting and development, the current knowledge on the role of chitinases in immunity, especially in immune regulation, remains largely unknown. In this study, a chitinase (LvChi5) from Litopenaeus vannamei was representatively selected for studying its immune function. The start codon of LvChi5 was corrected by 5'RACE analysis and its protein sequence was reanalyzed. LvChi5 contains a catalytic domain and a chitin binding domain and shows no inhibitory effect on growth of bacteria in vitro. However, in vivo experiments demonstrated that silencing of LvChi5 increased the mortality of shrimp infected with white spot syndrome virus (WSSV) and Vibro parahaemolyticus and significantly upregulated the load of pathogens in tissues. The expression of various immune related genes, including transcription factors, antimicrobial peptides and other functional proteins with antibacterial and antiviral activities, was widely changed in LvChi5 silencing shrimp. Moreover, the recombinant LvChi5 protein could enhance the phagocytic activity of hemocytes against bacteria. These suggested that shrimp chitinase could play a role in regulation of both humoral and cellular immune responses in shrimp. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Structure and functions of the chaperone-like p97/CDC48 in plants.

    PubMed

    Bègue, Hervé; Jeandroz, Sylvain; Blanchard, Cécile; Wendehenne, David; Rosnoblet, Claire

    2017-01-01

    The chaperone-like p97 is a member of the AAA+ ATPase enzyme family that contributes to numerous cellular activities. P97 has been broadly studied in mammals (VCP/p97) and yeasts (CDC48: Cell Division Cycle 48/p97) and numerous investigations highlighted that this protein is post-translationally regulated, is structured in homohexamer and interacts with partners and cofactors that direct it to distinct cellular signalization pathway including protein quality control and degradation, cell cycle regulation, genome stability, vesicular trafficking, autophagy and immunity. p97 is also conserved in plants (CDC48) but its functions are less understood. In the present review we intended to present the state of the art of the structure, regulation and functions of CDC48 in plants. Evidence accumulated underline that CDC48 plays a crucial role in development, cell cycle regulation and protein turnover in plants. Furthermore, its involvement in plant immunity has recently emerged and first interacting partners have been identified, shedding light on its putative cellular activities. Identification of emerging functions of CDC48 in plants opens new roads of research in immunity and provides new insights into the mechanisms of protein quality control. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Insulin resistance in patients with recurrent pregnancy loss is associated with lymphocyte population aberration.

    PubMed

    Yan, Yan; Bao, Shihua; Sheng, Shile; Wang, Liuliu; Tu, Weiyan

    2017-12-01

    This study was designed to investigate the relationship of insulin resistance (IR) and cellular immune abnormalities associated with women with recurrent pregnancy loss (RPL). Women with RPL were divided into two groups according to their homeostasis model assessment for IR (HOMA-IR) scores. The IR group received metformin approximately 3 months before pregnancy. The percentage of lymphocyte subsets and other blood biochemical indices were tested. The HOMA-IR and fasting serum insulin levels were related to the percentage of lymphocyte subsets. The women with RPL had higher CD3 + and CD3 + CD4 + cell levels while CD56 + CD16 + cell levels were lower. A higher likelihood of cellular immune abnormalities was observed. Women with normal lymphocyte subsets had normal pregnancy outcomes. Metformin significantly downregulated CD3 + and CD3 + CD4 + cells and improved pregnancy outcomes. IR was associated with cellular immune abnormalities in RPL. The data suggests that metformin affected the immune/inflammatory response, which may regulate the cellular immune balance and improve pregnancy outcomes. Abbreviations RPL: recurrent pregnancy loss; IR insulin resistance; HOMA-IR: homeostasis model assessment for IR.

  11. Role of Hippo signaling in regulating immunity.

    PubMed

    Hong, Lixin; Li, Xun; Zhou, Dawang; Geng, Jing; Chen, Lanfen

    2018-03-22

    The Hippo signaling pathway has been established as a key regulator of organ size control, tumor suppression, and tissue regeneration in multiple organisms. Recently, emerging evidence has indicated that Hippo signaling might play an important role in regulating the immune system in both Drosophila and mammals. In particular, patients bearing a loss-of-function mutation of MST1 are reported to have an autosomal recessive primary immunodeficiency syndrome. MST1/2 kinases, the mammalian orthologs of Drosophila Hippo, may activate the non-canonical Hippo signaling pathway via MOB1A/B and/or NDR1/2 or cross-talk with other essential signaling pathways to regulate both innate and adaptive immunity. In this review, we present and discuss recent findings of cellular mechanisms/functions of Hippo signaling in the innate immunity in Drosophila and in mammals, T cell immunity, as well as the implications of Hippo signaling for tumor immunity.

  12. Innate Immune Regulations and Liver Ischemia Reperfusion Injury

    PubMed Central

    Lu, Ling; Zhou, Haoming; Ni, Ming; Wang, Xuehao; Busuttil, Ronald; Kupiec-Weglinski, Jerzy; Zhai, Yuan

    2016-01-01

    Liver ischemia reperfusion activates innate immune system to drive the full development of inflammatory hepatocellular injury. Damage-associated molecular patterns (DAMPs) stimulate myeloid and dendritic cells via pattern recognition receptors (PRRs) to initiate the immune response. Complex intracellular signaling network transduces inflammatory signaling to regulate both innate immune cell activation and parenchymal cell death. Recent studies have revealed that DAMPs may trigger not only proinflammatory, but also immune regulatory responses by activating different PRRs or distinctive intracellular signaling pathways or in special cell populations. Additionally, tissue injury milieu activates PRR-independent receptors which also regulate inflammatory disease processes. Thus, the innate immune mechanism of liver IRI involves diverse molecular and cellular interactions, subjected to both endogenous and exogenous regulation in different cells. A better understanding of these complicated regulatory pathways/network is imperative for us in designing safe and effective therapeutic strategy to ameliorate liver IRI in patients. PMID:27861288

  13. Diverse mechanisms evolved by DNA viruses to inhibit early host defenses

    PubMed Central

    Sheng, Xinlei; Song, Bokai; Cristea, Ileana M.

    2016-01-01

    In mammalian cells, early defenses against infection by pathogens are mounted through a complex network of signaling pathways shepherded by immune-modulatory pattern-recognition receptors. As obligate parasites, the survival of viruses is dependent upon the evolutionary acquisition of mechanisms that tactfully dismantle and subvert the cellular intrinsic and innate immune responses. Here, we review the diverse mechanisms by which viruses that accommodate DNA genomes are able to circumvent activation of cellular immunity. We start by discussing viral manipulation of host defense protein levels by either transcriptional regulation or protein degradation. We next review viral strategies used to repurpose or inhibit these cellular immune factors by molecular hijacking or by regulating their post-translational modification status. Additionally, we explore the infection-induced temporal modulation of apoptosis to facilitate viral replication and spread. Lastly, the co-evolution of viruses with their hosts is highlighted by the acquisition of elegant mechanisms for suppressing host defenses via viral mimicry of host factors. In closing, we present a perspective on how characterizing these viral evasion tactics both broadens the understanding of virus-host interactions and reveals essential functions of the immune system at the molecular level. This knowledge is critical in understanding the sources of viral pathogenesis, as well as for the design of antiviral therapeutics and autoimmunity treatments. PMID:27650455

  14. c-di-AMP: An Essential Molecule in the Signaling Pathways that Regulate the Viability and Virulence of Gram-Positive Bacteria

    PubMed Central

    Fahmi, Tazin; Port, Gary C.

    2017-01-01

    Signal transduction pathways enable organisms to monitor their external environment and adjust gene regulation to appropriately modify their cellular processes. Second messenger nucleotides including cyclic adenosine monophosphate (c-AMP), cyclic guanosine monophosphate (c-GMP), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) play key roles in many signal transduction pathways used by prokaryotes and/or eukaryotes. Among the various second messenger nucleotides molecules, c-di-AMP was discovered recently and has since been shown to be involved in cell growth, survival, and regulation of virulence, primarily within Gram-positive bacteria. The cellular level of c-di-AMP is maintained by a family of c-di-AMP synthesizing enzymes, diadenylate cyclases (DACs), and degradation enzymes, phosphodiesterases (PDEs). Genetic manipulation of DACs and PDEs have demonstrated that alteration of c-di-AMP levels impacts both growth and virulence of microorganisms. Unlike other second messenger molecules, c-di-AMP is essential for growth in several bacterial species as many basic cellular functions are regulated by c-di-AMP including cell wall maintenance, potassium ion homeostasis, DNA damage repair, etc. c-di-AMP follows a typical second messenger signaling pathway, beginning with binding to receptor molecules to subsequent regulation of downstream cellular processes. While c-di-AMP binds to specific proteins that regulate pathways in bacterial cells, c-di-AMP also binds to regulatory RNA molecules that control potassium ion channel expression in Bacillus subtilis. c-di-AMP signaling also occurs in eukaryotes, as bacterially produced c-di-AMP stimulates host immune responses during infection through binding of innate immune surveillance proteins. Due to its existence in diverse microorganisms, its involvement in crucial cellular activities, and its stimulating activity in host immune responses, c-di-AMP signaling pathway has become an attractive antimicrobial drug target and therefore has been the focus of intensive study in several important pathogens. PMID:28783096

  15. Gene expression profiling of Japanese psoriatic skin reveals an increased activity in molecular stress and immune response signals.

    PubMed

    Kulski, Jerzy K; Kenworthy, William; Bellgard, Matthew; Taplin, Ross; Okamoto, Koichi; Oka, Akira; Mabuchi, Tomotaka; Ozawa, Akira; Tamiya, Gen; Inoko, Hidetoshi

    2005-12-01

    Gene expression profiling was performed on biopsies of affected and unaffected psoriatic skin and normal skin from seven Japanese patients to obtain insights into the pathways that control this disease. HUG95A Affymetrix DNA chips that contained oligonucleotide arrays of approximately 12,000 well-characterized human genes were used in the study. The statistical analysis of the Affymetrix data, based on the ranking of the Student t-test statistic, revealed a complex regulation of molecular stress and immune gene responses. The majority of the 266 induced genes in affected and unaffected psoriatic skin were involved with interferon mediation, immunity, cell adhesion, cytoskeleton restructuring, protein trafficking and degradation, RNA regulation and degradation, signalling transduction, apoptosis and atypical epidermal cellular proliferation and differentiation. The disturbances in the normal protein degradation equilibrium of skin were reflected by the significant increase in the gene expression of various protease inhibitors and proteinases, including the induced components of the ATP/ubiquitin-dependent non-lysosomal proteolytic pathway that is involved with peptide processing and presentation to T cells. Some of the up-regulated genes, such as TGM1, IVL, FABP5, CSTA and SPRR, are well-known psoriatic markers involved in atypical epidermal cellular organization and differentiation. In the comparison between the affected and unaffected psoriatic skin, the transcription factor JUNB was found at the top of the statistical rankings for the up-regulated genes in affected skin, suggesting that it has an important but as yet undefined role in psoriasis. Our gene expression data and analysis suggest that psoriasis is a chronic interferon- and T-cell-mediated immune disease of the skin where the imbalance in epidermal cellular structure, growth and differentiation arises from the molecular antiviral stress signals initiating inappropriate immune responses.

  16. Mevalonate Biosynthesis Intermediates Are Key Regulators of Innate Immunity in Bovine Endometritis

    PubMed Central

    Collier, Christine; Griffin, Sholeem; Schuberth, Hans-Joachim; Sandra, Olivier; Smith, David G.; Mahan, Suman; Dieuzy-Labaye, Isabelle; Sheldon, I. Martin

    2016-01-01

    Metabolic changes can influence inflammatory responses to bacteria. To examine whether localized manipulation of the mevalonate pathway impacts innate immunity, we exploited a unique mucosal disease model, endometritis, where inflammation is a consequence of innate immunity. IL responses to pathogenic bacteria and LPS were modulated in bovine endometrial cell and organ cultures by small molecules that target the mevalonate pathway. Treatment with multiple statins, bisphosphonates, squalene synthase inhibitors, and small interfering RNA showed that inhibition of farnesyl-diphosphate farnesyl transferase (squalene synthase), but not 3-hydroxy-3-methylglutaryl-CoA reductase or farnesyl diphosphate synthase, reduced endometrial organ and cellular inflammatory responses to pathogenic bacteria and LPS. Although manipulation of the mevalonate pathway reduced cellular cholesterol, impacts on inflammation were independent of cholesterol concentration as cholesterol depletion using cyclodextrins did not alter inflammatory responses. Treatment with the isoprenoid mevalonate pathway-intermediates, farnesyl diphosphate and geranylgeranyl diphosphate, also reduced endometrial cellular inflammatory responses to LPS. These data imply that manipulating the mevalonate pathway regulates innate immunity within the endometrium, and that isoprenoids are regulatory molecules in this process, knowledge that could be exploited for novel therapeutic strategies. PMID:26673142

  17. TAM receptor tyrosine kinase function and the immunopathology of liver disease.

    PubMed

    Mukherjee, S K; Wilhelm, A; Antoniades, C G

    2016-06-01

    Tyro3, Axl, MERTK (TAM) receptor tyrosine kinases are implicated in the regulation of the innate immune response through clearance of apoptotic cellular debris and control of cytokine signaling cascades. As a result they are pivotal in regulating the inflammatory response to tissue injury. Within the liver, immune regulatory signaling is employed to prevent the overactivation of innate immunity in response to continual antigenic challenge from the gastrointestinal tract. In this review we appraise current understanding of the role of TAM receptor function in the regulation of both innate and adaptive immunity, with a focus on its impact upon hepatic inflammatory pathology. Copyright © 2016 the American Physiological Society.

  18. High-Concentrate Diet-Induced Change of Cellular Metabolism Leads to Decreases of Immunity and Imbalance of Cellular Activities in Rumen Epithelium.

    PubMed

    Lu, Zhongyan; Shen, Hong; Shen, Zanming

    2018-01-01

    In animals, the immune and cellular processes of tissue largely depend on the status of local metabolism. However, in the rumen epithelium, how the cellular metabolism affects epithelial immunity, and cellular processes, when the diet is switched from energy-rich to energy-excess status, with regard to animal production and health, have not as yet been reported. RNA-seq was applied to compare the biological processes altered by an increase of dietary concentration from 10% to 35% with those altered by an increase of dietary concentration from 35% to 65% (dietary concentrate: the non-grass component in diet, including corn, soya bean meal and additive. High concentrate diet composed of 35% grass, 55% corn, 8% soya bean meal and 2% additive). In addition to the functional analysis of enriched genes in terms of metabolism, the immune system, and cellular process, the highly correlated genes to the enriched metabolism genes were identified, and the function and signaling pathways related to the differentially expressed neighbors were compared among the groups. The variation trends of molar proportions of ruminal SCFAs and those of enriched pathways belonging to metabolism, immune system, and cellular process were altered with the change of diets. With regard to metabolism, lipid metabolism and amino acid metabolism were most affected. According to the correlation analysis, both innate and adaptive immune responses were promoted by the metabolism genes enriched under the 65% concentrate diet. However, the majority of immune responses were suppressed under the 35% concentrate diet. Moreover, the exclusive upregulation of cell growth and dysfunction of cellular transport and catabolism were induced by the metabolism genes enriched under the 65% concentrate diet. On the contrary, a balanced regulation of cellular processes was detected under the 35% concentrate diet. These results indicated that the alterations of cellular metabolism promote the alterations in cellular immunity, repair, and homeostasis in the rumen epithelium, thereby leading to the switch of concentrate effects from positive to negative with regard to animal production and health. © 2018 The Author(s). Published by S. Karger AG, Basel.

  19. Self-eating and self-defense: autophagy controls innate immunity and adaptive immunity.

    PubMed

    Liu, Guangwei; Bi, Yujing; Wang, Ruoning; Wang, Xianghui

    2013-04-01

    Autophagy (macroautophagy; "self-eating") is a degradation process, in which cytoplasmic content is engulfed and degraded by the lysosome. And, immunity is an important mechanism of the "self-defense" system. Autophagy has long been recognized as a stress response to nutrient deprivation. This will provide energy and anabolic building blocks to maintain cellular bioenergetic homeostasis. Thus, autophagy plays critical roles in regulating a wide variety of pathophysiological processes, including tumorigenesis, embryo development, tissue remodeling, and most recently, immunity. The latter shows that a self-eating (autophagy) process could regulate a self-defense (immune) system. In this review, we summarize the recent findings regarding the regulatory and mechanistic insights of the autophagy pathway in immunity.

  20. Autoimmune therapies targeting costimulation and emerging trends in multivalent therapeutics.

    PubMed

    Chittasupho, Chuda; Siahaan, Teruna J; Vines, Charlotte M; Berkland, Cory

    2011-07-01

    Proteins participating in immunological signaling have emerged as important targets for controlling the immune response. A multitude of receptor-ligand pairs that regulate signaling pathways of the immune response have been identified. In the complex milieu of immune signaling, therapeutic agents targeting mediators of cellular signaling often either activate an inflammatory immune response or induce tolerance. This review is primarily focused on therapeutics that inhibit the inflammatory immune response by targeting membrane-bound proteins regulating costimulation or mediating immune-cell adhesion. Many of these signals participate in larger, organized structures such as the immunological synapse. Receptor clustering and arrangement into organized structures is also reviewed and emerging trends implicating a potential role for multivalent therapeutics is posited.

  1. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance.

    PubMed

    Lee, Byung-Cheol; Lee, Jongsoon

    2014-03-01

    There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Trans-Golgi network/early endosome: a central sorting station for cargo proteins in plant immunity.

    PubMed

    LaMontagne, Erica D; Heese, Antje

    2017-12-01

    In plants, the trans-Golgi network (TGN) functionally overlaps with the early endosome (EE), serving as a central sorting hub to direct newly synthesized and endocytosed cargo to the cell surface or vacuole. Here, we focus on the emerging role of the TGN/EE in sorting of immune cargo proteins for effective plant immunity against pathogenic bacteria and fungi. Specific vesicle coat and regulatory components at the TGN/EE ensure that immune cargoes are correctly sorted and transported to the location of their cellular functions. Our understanding of the identity of immune cargoes and the underlying cellular mechanisms regulating their sorting are still rudimentary, but this knowledge is essential to understanding the physiological contribution of the TGN/EE to effective immune responses. Copyright © 2017. Published by Elsevier Ltd.

  3. HIF Transcription Factors, Inflammation, and Immunity

    PubMed Central

    Palazon, Asis; Goldrath, Ananda; Nizet, Victor

    2015-01-01

    The hypoxic response in cells and tissues is mediated by the family of hypoxia-inducible factor (HIF) transcription factors that play an integral role in the metabolic changes that drive cellular adaptation to low oxygen availability. HIF expression and stabilization in immune cells can be triggered by hypoxia, but also by other factors associated with pathological stress: e.g., inflammation, infectious microorganisms, and cancer. HIF induces a number of aspects of host immune function, from boosting phagocyte microbicidal capacity to driving T cell differentiation and cytotoxic activity. Cellular metabolism is emerging as a key regulator of immunity, and it constitutes another layer of fine-tuned immune control by HIF that can dictate myeloid cell and lymphocyte development, fate, and function. Here we discuss how oxygen sensing in the immune microenvironment shapes immunological response and examine how HIF and the hypoxia pathway control innate and adaptive immunity. PMID:25367569

  4. HIF transcription factors, inflammation, and immunity.

    PubMed

    Palazon, Asis; Goldrath, Ananda W; Nizet, Victor; Johnson, Randall S

    2014-10-16

    The hypoxic response in cells and tissues is mediated by the family of hypoxia-inducible factor (HIF) transcription factors; these play an integral role in the metabolic changes that drive cellular adaptation to low oxygen availability. HIF expression and stabilization in immune cells can be triggered by hypoxia, but also by other factors associated with pathological stress: e.g., inflammation, infectious microorganisms, and cancer. HIF induces a number of aspects of host immune function, from boosting phagocyte microbicidal capacity to driving T cell differentiation and cytotoxic activity. Cellular metabolism is emerging as a key regulator of immunity, and it constitutes another layer of fine-tuned immune control by HIF that can dictate myeloid cell and lymphocyte development, fate, and function. Here we discuss how oxygen sensing in the immune microenvironment shapes immunological response and examine how HIF and the hypoxia pathway control innate and adaptive immunity.

  5. Human immunodeficiency virus (HIV) type 1 Vpr induces differential regulation of T cell costimulatory molecules: Direct effect of Vpr on T cell activation and immune function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatachari, Narasimhan J.; Majumder, Biswanath; Ayyavoo, Velpandi

    2007-02-20

    Human immunodeficiency virus type 1 (HIV-1) viral proteins disrupt the normal host cellular immune pathways thus exploiting the cellular machinery for replication, survival and to escape host immune attack. Here we evaluated the direct effects of HIV-1 Vpr-mediated immune modulation of infected T cells. Vpr specifically downregulated the expression of CD28 and increased the expression of CTLA-4, whereas no significant difference in the expression of CD25 and HLA-DR was observed. Interferon gamma (IFN-{gamma}) production in T cells was evaluated as a measure of the downstream effector functions. Results indicate that Vpr significantly inhibited IFN-{gamma} production and this may, in part,more » due to Vpr's ability to inhibit the nuclear translocation of NF-{kappa}B, and its transcriptional regulation. Together these results support that HIV-1 Vpr selectively dysregulates the immune functions at multiple levels and exerts its inhibitory effects in the presence of other viral proteins.« less

  6. Regulation of the cellular and physiological effects of glutamine.

    PubMed

    Chwals, Walter J

    2004-10-01

    Glutamine is the most abundant amino acid in humans and possesses many functions in the body. It is the major transporter of amino-nitrogen between cells and an important fuel source for rapidly dividing cells such as cells of the immune and gastrointestinal systems. It is important in the synthesis of nucleic acids, glutathione, citrulline, arginine, gamma aminobutyric acid, and glucose. It is important for growth, gastrointestinal integrity, acid-base homeostasis, and optimal immune function. The regulation of glutamine levels in cells via glutaminase and glutamine synthetase is discussed. The cellular and physiologic effects of glutamine upon the central nervous system, gastrointestinal function, during metabolic support, and following tissue injury and critical illness is also discussed.

  7. Cell-Mediated Immune Function and Cytokine Regulation During Space Flight

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The changes in immune function which occur during space flight potentially expose the crews to an increased risk for development of illness. Decreased cellular immune function has been repeatedly documented after space flight and confirmed during flight by in vivo delayed-type hypersensitivity testing. However, correlation of immune changes with a clinically significant risk factor has not yet been performed. Our hypothesis is that space flight induces a decrease in cell-mediated immune function accompanied by a shift from a type 1 cytokine pattern (favoring cell-mediated immunity) to a type 2 cytokine pattern (favoring humoral immunity). We further hypothesize that reactivation of latent viruses will occur during space flight in association with the decreased cellular immunity. To test these hypotheses, we will determine the effects of space flight on cell-mediated immunity and viral reactivation. We will utilize delayed-type hypersensitivity testing as an in vivo measure of integrated cell-mediated immune function. The production of cytokines and immunoregulatory factors by lymphocytes and monocytes will be measured to determine whether changes in cytokine patterns are associated with the space flight-induced immune dysregulation. Correlation of antigen-specific immune changes with reactivation of latent herpes viruses will be determined by measuring peripheral levels of viral (CMV, VZV, EBV) antigen-specific T cells and comparing to the levels of EBV-infected B-cells by fluorescence in situ hybridization and flow cytometry. A comparison of cell-mediated immune function, cytokine regulation and viral reactivation will provide new insights into crew member health risks during flight.

  8. Leptin and zinc relation: In regulation of food intake and immunity

    PubMed Central

    Baltaci, Abdulkerim Kasim; Mogulkoc, Rasim

    2012-01-01

    Leptin is synthesized and released by the adipose tissue. Leptin, which carries the information about energy reserves of the body to the brain, controls food intake by acting on neuropeptide Y (NPY), which exercises a food-intake-increasing effect through relevant receptors in the hypothalamus. Zinc deficiency is claimed to result in anorexia, weight loss, poor food efficiency, and growth impairment. The fact that obese individuals have low zinc and high leptin levels suggests that there is a relation between zinc and nutrition, and consequently also between zinc and leptin. Leptin deficiency increases the predisposition to infections and this increase is associated with the impairments in the production of cytokines. Zinc has a key role in the sustenance of immune resistance against infections. Dietary zinc deficiency negatively affects CD+4 cells, Th functions, and consequently, cell-mediated immunity by causing a decrease in the production of IL-2, IF-γ, and TNF-α, which are Th1 products. The relation between zinc and the concerned cytokines in particular, and the fact that leptin has a part in the immune responses mediated by these cytokines demonstrate that an interaction among cellular immunity, leptin and zinc is inevitable. An overall evaluation of the information presented above suggests that there are complex relations among food intake, leptin and zinc on one hand and among cellular immunity, leptin and zinc on the other. The aim of the present review was to draw attention to the possible relation between zinc and leptin in dietary regulation and cellular immunity. PMID:23565497

  9. Complement-Mediated Regulation of Metabolism and Basic Cellular Processes.

    PubMed

    Hess, Christoph; Kemper, Claudia

    2016-08-16

    Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Role of vitamin D in cytotoxic T lymphocyte immunity to pathogens and cancer.

    PubMed

    Sarkar, Surojit; Hewison, Martin; Studzinski, George P; Li, Yan Chun; Kalia, Vandana

    2016-01-01

    The discovery of vitamin D receptor (VDR) expression in immune cells has opened up a new area of research into immunoregulation by vitamin D, a niche that is distinct from its classical role in skeletal health. Today, about three decades since this discovery, numerous cellular and molecular targets of vitamin D in the immune system have been delineated. Moreover, strong clinical associations between vitamin D status and the incidence/severity of many immune-regulated disorders (e.g. infectious diseases, cancers and autoimmunity) have prompted the idea of using vitamin D supplementation to manipulate disease outcome. While much is known about the effects of vitamin D on innate immune responses and helper T (T(H)) cell immunity, there has been relatively limited progress on the frontier of cytotoxic T lymphocyte (CTL) immunity--an arm of host cellular adaptive immunity that is crucial for the control of such intracellular pathogens as human immunodeficiency virus (HIV), tuberculosis (TB), malaria, and hepatitis C virus (HCV). In this review, we discuss the strong historical and clinical link between vitamin D and infectious diseases that involves cytotoxic T lymphocyte (CTL) immunity, present our current understanding as well as critical knowledge gaps in the realm of vitamin D regulation of host CTL responses, and highlight potential regulatory connections between vitamin D and effector and memory CD8 T cell differentiation events during infections.

  11. TRIM25 in the Regulation of the Antiviral Innate Immunity.

    PubMed

    Martín-Vicente, María; Medrano, Luz M; Resino, Salvador; García-Sastre, Adolfo; Martínez, Isidoro

    2017-01-01

    TRIM25 is an E3 ubiquitin ligase enzyme that is involved in various cellular processes, including regulation of the innate immune response against viruses. TRIM25-mediated ubiquitination of the cytosolic pattern recognition receptor RIG-I is an essential step for initiation of the intracellular antiviral response and has been thoroughly documented. In recent years, however, additional roles of TRIM25 in early innate immunity are emerging, including negative regulation of RIG-I, activation of the melanoma differentiation-associated protein 5-mitochondrial antiviral signaling protein-TRAF6 antiviral axis and modulation of p53 levels and activity. In addition, the ability of TRIM25 to bind RNA may uncover new mechanisms by which this molecule regulates intracellular signaling and/or RNA virus replication.

  12. Evasion of host immune defenses by human papillomavirus.

    PubMed

    Westrich, Joseph A; Warren, Cody J; Pyeon, Dohun

    2017-03-02

    A majority of human papillomavirus (HPV) infections are asymptomatic and self-resolving in the absence of medical interventions. Various innate and adaptive immune responses, as well as physical barriers, have been implicated in controlling early HPV infections. However, if HPV overcomes these host immune defenses and establishes persistence in basal keratinocytes, it becomes very difficult for the host to eliminate the infection. The HPV oncoproteins E5, E6, and E7 are important in regulating host immune responses. These oncoproteins dysregulate gene expression, protein-protein interactions, posttranslational modifications, and cellular trafficking of critical host immune modulators. In addition to the HPV oncoproteins, sequence variation and dinucleotide depletion in papillomavirus genomes has been suggested as an alternative strategy for evasion of host immune defenses. Since anti-HPV host immune responses are also considered to be important for antitumor immunity, immune dysregulation by HPV during virus persistence may contribute to immune suppression essential for HPV-associated cancer progression. Here, we discuss cellular pathways dysregulated by HPV that allow the virus to evade various host immune defenses. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Evasion of Host Immune Defenses by Human Papillomavirus

    PubMed Central

    Westrich, Joseph A.; Warren, Cody J.; Pyeon, Dohun

    2016-01-01

    A majority of human papillomavirus (HPV) infections are asymptomatic and self-resolving in the absence of medical interventions. Various innate and adaptive immune responses, as well as physical barriers, have been implicated in controlling early HPV infections. However, if HPV overcomes these host immune defenses and establishes persistence in basal keratinocytes, it becomes very difficult for the host to eliminate the infection. The HPV oncoproteins E5, E6, and E7 are important in regulating host immune responses. These oncoproteins dysregulate gene expression, protein-protein interactions, posttranslational modifications, and cellular trafficking of critical host immune modulators. In addition to the HPV oncoproteins, sequence variation and dinucleotide depletion in papillomavirus genomes has been suggested as an alternative strategy for evasion of host immune defenses. Since anti-HPV host immune responses are also considered to be important for antitumor immunity, immune dysregulation by HPV during virus persistence may contribute to immune suppression essential for HPV-associated cancer progression. Here, we discuss cellular pathways dysregulated by HPV that allow the virus to evade various host immune defenses. PMID:27890631

  14. Norovirus P particle efficiently elicits innate, humoral and cellular immunity.

    PubMed

    Fang, Hao; Tan, Ming; Xia, Ming; Wang, Leyi; Jiang, Xi

    2013-01-01

    Norovirus (NoV) P domain complexes, the 24 mer P particles and the P dimers, induced effective humoral immunity, but their role in the cellular immune responses remained unclear. We reported here a study on cellular immune responses of the two P domain complexes in comparison with the virus-like particle (VLP) of a GII.4 NoV (VA387) in mice. The P domain complexes induced significant central memory CD4(+) T cell phenotypes (CD4(+) CD44(+) CD62L(+) CCR7(+)) and activated polyclonal CD4(+) T cells as shown by production of Interleukin (IL)-2, Interferon (IFN)-γ, and Tumor Necrosis Factor (TNF)-α. Most importantly, VA387-specific CD4(+) T cell epitope induced a production of IFN-γ, indicating an antigen-specific CD4(+) T cell response in P domain complex-immunized mice. Furthermore, P domain complexes efficiently induced bone marrow-derived dendritic cell (BMDC) maturation, evidenced by up-regulation of co-stimulatory and MHC class II molecules, as well as production of IL-12 and IL-1β. Finally, P domain complex-induced mature dendritic cells (DCs) elicited proliferation of specific CD4(+) T cells targeting VA387 P domain. Overall, we conclude that the NoV P domain complexes are efficiently presented by DCs to elicit not only humoral but also cellular immune responses against NoVs. Since the P particle is highly effective for both humoral and cellular immune responses and easily produced in Escherichia coli (E. coli), it is a good choice of vaccine against NoVs and a vaccine platform against other diseases.

  15. Cellular miR-2909 RNomics governs the genes that ensure immune checkpoint regulation.

    PubMed

    Kaul, Deepak; Malik, Deepti; Wani, Sameena

    2018-06-20

    Cross-talk between coding RNAs and regulatory non-coding microRNAs, within human genome, has provided compelling evidence for the existence of flexible checkpoint control of T-Cell activation. The present study attempts to demonstrate that the interplay between miR-2909 and its effector KLF4 gene has the inherent capacity to regulate genes coding for CTLA4, CD28, CD40, CD134, PDL1, CD80, CD86, IL-6 and IL-10 within normal human peripheral blood mononuclear cells (PBMCs). Based upon these findings, we propose a pathway that links miR-2909 RNomics with the genes coding for immune checkpoint regulators required for the maintenance of immune homeostasis.

  16. Mitochondria: An Organelle of Bacterial Origin Controlling Inflammation

    PubMed Central

    Meyer, Alain; Laverny, Gilles; Bernardi, Livio; Charles, Anne Laure; Alsaleh, Ghada; Pottecher, Julien; Sibilia, Jean; Geny, Bernard

    2018-01-01

    Inflammation is a cellular and molecular response to infection and/or tissues injury. While a suited inflammatory response in intensity and time allows for killing pathogens, clearing necrotic tissue, and healing injury; an excessive inflammatory response drives various diseases in which inflammation and tissues damages/stress self-sustain each other. Microbes have been poorly implied in non-resolving inflammation, emphasizing the importance of endogenous regulation of inflammation. Mitochondria have been historically identified as the main source of cellular energy, by coupling the oxidation of fatty acids and pyruvate with the production of high amount of adenosine triphosphate by the electron transport chain. Mitochondria are also the main source of reactive oxygen species. Interestingly, research in the last decade has highlighted that since its integration in eukaryote cells, this organelle of bacterial origin has not only been tolerated by immunity, but has also been placed as a central regulator of cell defense. In intact cells, mitochondria regulate cell responses to critical innate immune receptors engagement. Downstream intracellular signaling pathways interact with mitochondrial proteins and are tuned by mitochondrial functioning. Moreover, upon cell stress or damages, mitochondrial components are released into the cytoplasm or the extra cellular milieu, where they act as danger signals when recognized by innate immune receptors. Finally, by regulating the energetic state of immunological synapse between dendritic cells and lymphocytes, mitochondria regulate the inflammation fate toward immunotolerance or immunogenicity. As dysregulations of these processes have been recently involved in various diseases, the identification of the underlying mechanisms might open new avenues to modulate inflammation. PMID:29725325

  17. Cellular energy metabolism in T-lymphocytes.

    PubMed

    Gaber, Timo; Strehl, Cindy; Sawitzki, Birgit; Hoff, Paula; Buttgereit, Frank

    2015-01-01

    Energy homeostasis is a hallmark of cell survival and maintenance of cell function. Here we focus on the impact of cellular energy metabolism on T-lymphocyte differentiation, activation, and function in health and disease. We describe the role of transcriptional and posttranscriptional regulation of lymphocyte metabolism on immune functions of T cells. We also summarize the current knowledge about T-lymphocyte adaptations to inflammation and hypoxia, and the impact on T-cell behavior of pathophysiological hypoxia (as found in tumor tissue, chronically inflamed joints in rheumatoid arthritis and during bone regeneration). A better understanding of the underlying mechanisms that control immune cell metabolism and immune response may provide therapeutic opportunities to alter the immune response under conditions of either immunosuppression or inflammation, potentially targeting infections, vaccine response, tumor surveillance, autoimmunity, and inflammatory disorders.

  18. Gap junctions in cells of the immune system: structure, regulation and possible functional roles.

    PubMed

    Sáez, J C; Brañes, M C; Corvalán, L A; Eugenín, E A; González, H; Martínez, A D; Palisson, F

    2000-04-01

    Gap junction channels are sites of cytoplasmic communication between contacting cells. In vertebrates, they consist of protein subunits denoted connexins (Cxs) which are encoded by a gene family. According to their Cx composition, gap junction channels show different gating and permeability properties that define which ions and small molecules permeate them. Differences in Cx primary sequences suggest that channels composed of different Cxs are regulated differentially by intracellular pathways under specific physiological conditions. Functional roles of gap junction channels could be defined by the relative importance of permeant substances, resulting in coordination of electrical and/or metabolic cellular responses. Cells of the native and specific immune systems establish transient homo- and heterocellular contacts at various steps of the immune response. Morphological and functional studies reported during the last three decades have revealed that many intercellular contacts between cells in the immune response present gap junctions or "gap junction-like" structures. Partial characterization of the molecular composition of some of these plasma membrane structures and regulatory mechanisms that control them have been published recently. Studies designed to elucidate their physiological roles suggest that they might permit coordination of cellular events which favor the effective and timely response of the immune system.

  19. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases.

    PubMed

    Akdis, Mübeccel; Aab, Alar; Altunbulakli, Can; Azkur, Kursat; Costa, Rita A; Crameri, Reto; Duan, Su; Eiwegger, Thomas; Eljaszewicz, Andrzej; Ferstl, Ruth; Frei, Remo; Garbani, Mattia; Globinska, Anna; Hess, Lena; Huitema, Carly; Kubo, Terufumi; Komlosi, Zsolt; Konieczna, Patricia; Kovacs, Nora; Kucuksezer, Umut C; Meyer, Norbert; Morita, Hideaki; Olzhausen, Judith; O'Mahony, Liam; Pezer, Marija; Prati, Moira; Rebane, Ana; Rhyner, Claudio; Rinaldi, Arturo; Sokolowska, Milena; Stanic, Barbara; Sugita, Kazunari; Treis, Angela; van de Veen, Willem; Wanke, Kerstin; Wawrzyniak, Marcin; Wawrzyniak, Paulina; Wirz, Oliver F; Zakzuk, Josefina Sierra; Akdis, Cezmi A

    2016-10-01

    There have been extensive developments on cellular and molecular mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections during the last few years. Better understanding the functions, reciprocal regulation, and counterbalance of subsets of immune and inflammatory cells that interact through interleukins, interferons, TNF-α, and TGF-β offer opportunities for immune interventions and novel treatment modalities in the era of development of biological immune response modifiers particularly targeting these molecules or their receptors. More than 60 cytokines have been designated as interleukins since the initial discoveries of monocyte and lymphocyte interleukins (called IL-1 and IL-2, respectively). Studies of transgenic or gene-deficient mice with altered expression of these cytokines or their receptors and analyses of mutations and polymorphisms in human genes that encode these products have provided essential information about their functions. Here we review recent developments on IL-1 to IL-38, TNF-α, TGF-β, and interferons. We highlight recent advances during the last few years in this area and extensively discuss their cellular sources, targets, receptors, signaling pathways, and roles in immune regulation in patients with allergy and asthma and other inflammatory diseases. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  20. Effects of Simulated Microgravity on Functions of Neutrophil-like HL-60 Cells

    NASA Astrophysics Data System (ADS)

    Wang, Chengzhi; Li, Ning; Zhang, Chen; Sun, Shujin; Gao, Yuxin; Long, Mian

    2015-11-01

    Altered gravity, especially microgravity affects cellular functions of immune cells and can result in immune dysfunction for long-term, manned spaceflight and space exploration. The underlying mechanism, however, of sensing and responding to the gravity alteration is poorly understood. Here, a rotary cell culture system (RCCS) bioreactor was used to elucidate the effects of simulated microgravity on polymorphonuclear neutrophils (PMN)-like HL-60 cells. Alteration of cell morphology, up-regulation of (nitric oxide) NO production, enhancement of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemotactic protein 1 (MCP-1) secretion, and diversity of cellular adhesion molecule expression were observed for the cells cultured in RCCS, leading to the up-regulated inflammatory immune responses and host defense. It was also indicated that such alterations in biological responses of PMNs mediated the reduced rolling velocity and decreased adhesion of PMN-like HL-60 cells on endothelial cells under shear flow. This work furthers the understandings in the effects and mechanism of microgravity on PMN functions, which are potentially helpful for optimizing the countermeasures to immune suppression in the future long-term, manned spaceflight.

  1. Involvement of autophagy in T cell biology.

    PubMed

    Oral, Ozlem; Yedier, Ozlem; Kilic, Seval; Gozuacik, Devrim

    2017-01-01

    Autophagy is an essential cellular pathway that sequesters various cytoplasmic components, including accumulated proteins, damaged organelles or invading microorganisms and delivers them to lysosomes for degradation. The function of autophagy has been reported in various tissues and systems, including its role in the regulation of cellular immunity. Autophagy plays a fundamental role at various stages of T cell maturation. It regulates the thymocyte selection and the generation of T cell repertoire by presenting intracellular antigens to MHC class molecules. Autophagy is crucial for metabolic regulation of T cells, and therefore supports cell survival and homeostasis, particularly in activated mature T cells. Furthermore, deletion of specific autophagy-related genes induces several immunological alterations including differentiation of activated T cells into regulatory, memory or natural killer T cells. In this review, we emphasize the impact of autophagy on T cell development, activation and differentiation, which is pivotal for the adaptive immune system.

  2. HDAC Inhibitors as Epigenetic Regulators of the Immune System: Impacts on Cancer Therapy and Inflammatory Diseases

    PubMed Central

    Montgomery, McKale R.; Leyva, Kathryn J.

    2016-01-01

    Histone deacetylase (HDAC) inhibitors are powerful epigenetic regulators that have enormous therapeutic potential and have pleiotropic effects at the cellular and systemic levels. To date, HDAC inhibitors are used clinically for a wide variety of disorders ranging from hematopoietic malignancies to psychiatric disorders, are known to have anti-inflammatory properties, and are in clinical trials for several other diseases. In addition to influencing gene expression, HDAC enzymes also function as part of large, multisubunit complexes which have many nonhistone targets, alter signaling at the cellular and systemic levels, and result in divergent and cell-type specific effects. Thus, the effects of HDAC inhibitor treatment are too intricate to completely understand with current knowledge but the ability of HDAC inhibitors to modulate the immune system presents intriguing therapeutic possibilities. This review will explore the complexity of HDAC inhibitor treatment at the cellular and systemic levels and suggest strategies for effective use of HDAC inhibitors in biomedical research, focusing on the ability of HDAC inhibitors to modulate the immune system. The possibility of combining the documented anticancer effects and newly emerging immunomodulatory effects of HDAC inhibitors represents a promising new combinatorial therapeutic approach for HDAC inhibitor treatments. PMID:27556043

  3. GABAergic neurons in cerebellar interposed nucleus modulate cellular and humoral immunity via hypothalamic and sympathetic pathways.

    PubMed

    Lu, Jian-Hua; Wang, Xiao-Qin; Huang, Yan; Qiu, Yi-Hua; Peng, Yu-Ping

    2015-06-15

    Our previous work has shown that cerebellar interposed nucleus (IN) modulates immune function. Herein, we reveal mechanism underlying the immunomodulation. Treatment of bilateral cerebellar IN of rats with 3-mercaptopropionic acid (3-MP), a glutamic acid decarboxylase antagonist that reduces γ-aminobutyric acid (GABA) synthesis, enhanced cellular and humoral immune responses to bovine serum albumin, whereas injection of vigabatrin, a GABA-transaminase inhibitor that inhibits GABA degradation, in bilateral cerebellar IN attenuated the immune responses. The 3-MP or vigabatrin administrations in the cerebellar IN decreased or increased hypothalamic GABA content and lymphoid tissues' norepinephrine content, respectively, but did not alter adrenocortical or thyroid hormone levels in serum. In addition, a direct GABAergic projection from cerebellar IN to hypothalamus was found. These findings suggest that GABAergic neurons in cerebellar IN regulate immune system via hypothalamic and sympathetic pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. TRIM25 in the Regulation of the Antiviral Innate Immunity

    PubMed Central

    Martín-Vicente, María; Medrano, Luz M.; Resino, Salvador; García-Sastre, Adolfo; Martínez, Isidoro

    2017-01-01

    TRIM25 is an E3 ubiquitin ligase enzyme that is involved in various cellular processes, including regulation of the innate immune response against viruses. TRIM25-mediated ubiquitination of the cytosolic pattern recognition receptor RIG-I is an essential step for initiation of the intracellular antiviral response and has been thoroughly documented. In recent years, however, additional roles of TRIM25 in early innate immunity are emerging, including negative regulation of RIG-I, activation of the melanoma differentiation-associated protein 5–mitochondrial antiviral signaling protein–TRAF6 antiviral axis and modulation of p53 levels and activity. In addition, the ability of TRIM25 to bind RNA may uncover new mechanisms by which this molecule regulates intracellular signaling and/or RNA virus replication. PMID:29018447

  5. The Rab GTPase Rab8 as a shared regulator of ciliogenesis and immune synapse assembly: From a conserved pathway to diverse cellular structures.

    PubMed

    Patrussi, Laura; Baldari, Cosima T

    2016-01-01

    Rab GTPases, which form the largest branch of the Ras GTPase superfamily, regulate almost every step of vesicle-mediated trafficking. Among them, Rab8 is an essential participant in primary cilium formation. In a report recently published in the Journal of Cell Science, Finetti and colleagues identify Rab8 as a novel player in vesicular traffic in the non-ciliated T lymphocytes, which contributes to the assembly of the specialized signaling platform known as the immune synapse. By interacting with the v-SNARE VAMP-3, Rab8 is indeed responsible for the final docking/fusion step in T cell receptor (TCR) recycling to the immune synapse. A second important take-home message which comes to light from this work is that VAMP-3 also interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of Smoothened at the plasma membrane. Hence the data presented in this report, in addition to identifying Rab8 as a novel player in vesicular traffic to the immune synapse, reveal how both ciliated and non-ciliated cells take advantage of a conserved pathway to build highly specific cellular structures.

  6. Characterization of the gilthead seabream (Sparus aurata L.) immune response under a natural lymphocystis disease virus outbreak.

    PubMed

    Cordero, H; Cuesta, A; Meseguer, J; Esteban, M A

    2016-12-01

    Lymphocystis or lymphocystis disease virus (LCDV) is distributed worldwide and affects many fresh and marine water fish species. LCDV is commonly found in aquaria fish species but also in farmed fish species, among them the gilthead seabream (Sparus aurata L.). The immune status of gilthead seabream (S. aurata) specimens under a natural outbreak of LCDV was studied. The replication of the virus was demonstrated in infected fish, but not in control fish. The results showed decreased total serum IgM levels and increased innate cellular immune response (peroxidase and respiratory burst activities) of head kidney leucocytes in LCDV-infected fish, compared to the values obtained in uninfected specimens. In addition, transcription of antiviral genes (ifn and irf3) was down-regulated in the skin of LCDV-positive fish as well as genes involved in cellular immunity (csf1r, mhc2a, tcra and ighm) that were down-regulated in skin and head kidney of infected fish. By contrast, the transcription of nccrp1 was up-regulated in head kidney after LCDV infection. These present results show that head kidney leucocytes are activated to encounter the virus at the sites of replication. © 2016 John Wiley & Sons Ltd.

  7. SUMO-Enriched Proteome for Drosophila Innate Immune Response

    PubMed Central

    Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S.

    2015-01-01

    Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. PMID:26290570

  8. SUMO-Enriched Proteome for Drosophila Innate Immune Response.

    PubMed

    Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S

    2015-08-18

    Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. Copyright © 2015 Handu et al.

  9. Inherent X-Linked Genetic Variability and Cellular Mosaicism Unique to Females Contribute to Sex-Related Differences in the Innate Immune Response.

    PubMed

    Spolarics, Zoltan; Peña, Geber; Qin, Yong; Donnelly, Robert J; Livingston, David H

    2017-01-01

    Females have a longer lifespan and better general health than males. Considerable number of studies also demonstrated that, after trauma and sepsis, females present better outcomes as compared to males indicating sex-related differences in the innate immune response. The current notion is that differences in the immuno-modulatory effects of sex hormones are the underlying causative mechanism. However, the field remains controversial and the exclusive role of sex hormones has been challenged. Here, we propose that polymorphic X-linked immune competent genes, which are abundant in the population are important players in sex-based immuno-modulation and play a key role in causing sex-related outcome differences following trauma or sepsis. We describe the differences in X chromosome (ChrX) regulation between males and females and its consequences in the context of common X-linked polymorphisms at the individual as well as population level. We also discuss the potential pathophysiological and immune-modulatory aspects of ChrX cellular mosaicism, which is unique to females and how this may contribute to sex-biased immune-modulation. The potential confounding effects of ChrX skewing of cell progenitors at the bone marrow is also presented together with aspects of acute trauma-induced de novo ChrX skewing at the periphery. In support of the hypothesis, novel observations indicating ChrX skewing in a female trauma cohort as well as case studies depicting the temporal relationship between trauma-induced cellular skewing and the clinical course are also described. Finally, we list and discuss a selected set of polymorphic X-linked genes, which are frequent in the population and have key regulatory or metabolic functions in the innate immune response and, therefore, are primary candidates for mediating sex-biased immune responses. We conclude that sex-related differences in a variety of disease processes including the innate inflammatory response to injury and infection may be related to the abundance of X-linked polymorphic immune-competent genes, differences in ChrX regulation, and inheritance patterns between the sexes and the presence of X-linked cellular mosaicism, which is unique to females.

  10. The Immune Response and the Pathogenesis of Idiopathic Inflammatory Myositis: a Critical Review.

    PubMed

    Ceribelli, Angela; De Santis, Maria; Isailovic, Natasa; Gershwin, M Eric; Selmi, Carlo

    2017-02-01

    The pathogenesis of idiopathic inflammatory myositis (IIMs, including polymyositis and dermatomyositis) remains largely enigmatic, despite advances in the study of the role played by innate immunity, adaptive immunity, genetic predisposition, and environmental factors in an orchestrated response. Several factors are involved in the inflammatory state that characterizes the different forms of IIMs which share features and mechanisms but are clearly different with respect to the involved sites and characteristics of the inflammation. Cellular and non-cellular mechanisms of both the immune and non-immune systems have been identified as key regulators of inflammation in polymyositis/dermatomyositis, particularly at different stages of disease, leading to the fibrotic state that characterizes the end stage. Among these, a special role is played by an interferon signature and complement cascade with different mechanisms in polymyositis and dermatomyositis; these differences can be identified also histologically in muscle biopsies. Numerous cellular components of the adaptive and innate immune response are present in the site of tissue inflammation, and the complexity of idiopathic inflammatory myositis is further supported by the involvement of non-immune mechanisms such as hypoxia and autophagy. The aim of this comprehensive review is to describe the major pathogenic mechanisms involved in the onset of idiopathic inflammatory myositis and to report on the major working hypothesis with therapeutic implications.

  11. Parasitism and venom of ectoparasitoid Scleroderma guani impairs host cellular immunity.

    PubMed

    Li, Li-Fang; Xu, Zhi-Wen; Liu, Nai-Yong; Wu, Guo-Xing; Ren, Xue-Min; Zhu, Jia-Ying

    2018-06-01

    Venom is a prominently maternal virulent factor utilized by parasitoids to overcome hosts immune defense. With respect to roles of this toxic mixture involved in manipulating hosts immunity, great interest has been mostly restricted to Ichneumonoidea parasitoids associated with polydnavirus (PDV), of which venom is usually considered as a helper component to enhance the role of PDV, and limited Chalcidoidea species. In contrast, little information is available in other parasitoids, especially ectoparasitic species not carrying PDV. The ectoparasitoid Scleroderma guani injects venom into its host, Tenebrio molitor, implying its venom was involved in suppression of hosts immune response for successful parasitism. Thus, we investigated the effects of parasitism and venom of this parasitoid on counteracting the cellular immunity of its host by examining changes of hemocyte counts, and hemocyte spreading and encapsulation ability. Total hemocyte counts were elevated in parasitized and venom-injected pupae. The spreading behavior of both granulocytes and plasmatocytes was impaired by parasitization and venom. High concentration of venom led to more severely increased hemocyte counts and suppression of hemocyte spreading. The ability of hemocyte encapsulation was inhibited by venom in vitro. In addition to immediate effects observed, venom showed persistent interference in hosts cellular immunity. These results indicate that venom alone from S. guani plays a pivotal role in blocking hosts cellular immune response, serving as a regulator that guarantees the successful development of its progenies. The findings provide a foundation for further investigation of the underlying mechanisms in immune inhibitory action of S. guani venom. © 2018 Wiley Periodicals, Inc.

  12. Exosomes Function in Tumor Immune Microenvironment.

    PubMed

    Huang, Yin; Liu, Keli; Li, Qing; Yao, Yikun; Wang, Ying

    2018-01-01

    Immune cells and mesenchymal stem/stromal cells are the major cellular components in tumor microenvironment that actively migrate to tumor sites by sensing "signals" released from tumor cells. Together with other stromal cells, they form the soil for malignant cell progression. In the crosstalk between tumor cells and its surrounded microenvironment, exosomes exert multiple functions in shaping tumor immune responses. In tumor cells, their exosomes can lead to pro-tumor immune responses, whereas in immune cells, their derived exosomes can operate on tumor cells and regulate their ability to growth, metastasis, even reaction to chemotherapy. Employing exosomes as vehicles for the delivery products to initiate anti-tumor immune responses has striking therapeutic effects on tumor progression. Thus, exosomes are potential therapeutic targets in tumor-related clinical conditions. Here we discuss the role of exosomes in regulating tumor immune microenvironment and future indications for the clinical application of exosomes.

  13. MontanideTM Gel01 ST adjuvant enhances PRRS modified live vaccine efficacy by regulating porcine humoral and cellular immune responses

    USDA-ARS?s Scientific Manuscript database

    Porcine reproductive and respiratory syndrome (PRRS) is a devastating disease caused by the PRRS virus. The MontanideTM class of flexible polymeric adjuvants has recently been shown to enhance protective immunity against PRRSV infection in piglets when used in combination with PRRS modified live vac...

  14. Interleukin (IL)-33 and the IL-1 Family of Cytokines-Regulators of Inflammation and Tissue Homeostasis.

    PubMed

    Vasanthakumar, Ajithkumar; Kallies, Axel

    2017-11-03

    Cytokines play an integral role in shaping innate and adaptive immune responses. Members of the interleukin (IL)-1 family regulate a plethora of immune-cell-mediated processes, which include pathogen defense and tissue homeostasis. Notably, the IL-1 family cytokine IL-33 promotes adaptive and innate type 2 immune responses, confers viral protection and facilitates glucose metabolism and tissue repair. At the cellular level, IL-33 stimulates differentiation, maintenance, and function of various immune cell types, including regulatory T cells, effector CD4 + and CD8 + T cells, macrophages, and type 2 innate lymphoid cells (ILC2s). Other IL-1 family members, such as IL-1β and IL-18 promote type 1 responses, while IL-37 limits immune activation. Although IL-1 cytokines play critical roles in immunity and tissue repair, their deregulated expression is often linked to autoimmune and inflammatory diseases. Therefore, IL-1 cytokines are regulated tightly by posttranscriptional mechanisms and decoy receptors. In this review, we discuss the biology and function of IL-1 family cytokines, with a specific focus on regulation and function of IL-33 in immune and tissue homeostasis. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis

    PubMed Central

    2012-01-01

    Background Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis and is closely related to human T-cell leukemia virus type I. The Tax protein of BLV is a transcriptional activator of viral replication and a key contributor to oncogenic potential. We previously identified interesting mutant forms of Tax with elevated (TaxD247G) or reduced (TaxS240P) transactivation effects on BLV replication and propagation. However, the effects of these mutations on functions other than transcriptional activation are unknown. In this study, to identify genes that play a role in the cascade of signal events regulated by wild-type and mutant Tax proteins, we used a large-scale host cell gene-profiling approach. Results Using a microarray containing approximately 18,400 human mRNA transcripts, we found several alterations after the expression of Tax proteins in genes involved in many cellular functions such as transcription, signal transduction, cell growth, apoptosis, stress response, and immune response, indicating that Tax protein has multiple biological effects on various cellular environments. We also found that TaxD247G strongly regulated more genes involved in transcription, signal transduction, and cell growth functions, contrary to TaxS240P, which regulated fewer genes. In addition, the expression of genes related to stress response significantly increased in the presence of TaxS240P as compared to wild-type Tax and TaxD247G. By contrast, the largest group of downregulated genes was related to immune response, and the majority of these genes belonged to the interferon family. However, no significant difference in the expression level of downregulated genes was observed among the Tax proteins. Finally, the expression of important cellular factors obtained from the human microarray results were validated at the RNA and protein levels by real-time quantitative reverse transcription-polymerase chain reaction and western blotting, respectively, after transfecting Tax proteins into bovine cells and human HeLa cells. Conclusion A comparative analysis of wild-type and mutant Tax proteins indicates that Tax protein exerts a significant impact on cellular functions as diverse as transcription, signal transduction, cell growth, stress response and immune response. Importantly, our study is the first report that shows the extent to which BLV Tax regulates the innate immune response. PMID:22455445

  16. Transcriptome Analysis Reveals Markers of Aberrantly Activated Innate Immunity in Vitiligo Lesional and Non-Lesional Skin

    PubMed Central

    Huang, Yuanshen; Wang, Yang; Yu, Jie; Gao, Min; Levings, Megan; Wei, Shencai; Zhang, Shengquan; Xu, Aie; Su, Mingwan; Dutz, Jan; Zhang, Xuejun; Zhou, Youwen

    2012-01-01

    Background Vitiligo is characterized by the death of melanocytes in the skin. This is associated with the presence of T cell infiltrates in the lesional borders. However, at present, there is no detailed and systematic characterization on whether additional cellular or molecular changes are present inside vitiligo lesions. Further, it is unknown if the normal appearing non-lesional skin of vitiligo patients is in fact normal. The purpose of this study is to systematically characterize the molecular and cellular characteristics of the lesional and non-lesional skin of vitiligo patients. Methods and Materials Paired lesional and non-lesional skin biopsies from twenty-three vitiligo patients and normal skin biopsies from sixteen healthy volunteers were obtained with informed consent. The following aspects were analyzed: (1) transcriptome changes present in vitiligo skin using DNA microarrays and qRT-PCR; (2) abnormal cellular infiltrates in vitiligo skin explant cultures using flow cytometry; and (3) distribution of the abnormal cellular infiltrates in vitiligo skin using immunofluorescence microscopy. Results Compared with normal skin, vitiligo lesional skin contained 17 genes (mostly melanocyte-specific genes) whose expression was decreased or absent. In contrast, the relative expression of 13 genes was up-regulated. The up-regulated genes point to aberrant activity of the innate immune system, especially natural killer cells in vitiligo. Strikingly, the markers of heightened innate immune responses were also found to be up-regulated in the non-lesional skin of vitiligo patients. Conclusions and Clinical Implications As the first systematic transcriptome characterization of the skin in vitiligo patients, this study revealed previously unknown molecular markers that strongly suggest aberrant innate immune activation in the microenvironment of vitiligo skin. Since these changes involve both lesional and non-lesional skin, our results suggest that therapies targeting the entire skin surface may improve treatment outcomes. Finally, this study revealed novel mediators that may facilitate future development of vitiligo therapies. PMID:23251420

  17. Improving the Th1 cellular efficacy of the lead Yersinia pestis rF1-V subunit vaccine using SA-4-1BBL as a novel adjuvant.

    PubMed

    Dinc, Gunes; Pennington, Jarrod M; Yolcu, Esma S; Lawrenz, Matthew B; Shirwan, Haval

    2014-09-03

    The lead candidate plague subunit vaccine is the recombinant fusion protein rF1-V adjuvanted with alum. While alum generates Th2 regulated robust humoral responses, immune protection against Yersinia pestis has been shown to also involve Th1 driven cellular responses. Therefore, the rF1-V-based subunit vaccine may benefit from an adjuvant system that generates a mixed Th1 and humoral immune response. We herein assessed the efficacy of a novel SA-4-1BBL costimulatory molecule as a Th1 adjuvant to improve cellular responses generated by the rF1-V vaccine. SA-4-1BBL as a single adjuvant had better efficacy than alum in generating CD4(+) and CD8(+) T cells producing TNFα and IFNγ, signature cytokines for Th1 responses. The combination of SA-4-1BBL with alum further increased this Th1 response as compared with the individual adjuvants. Analysis of the humoral response revealed that SA-4-1BBL as a single adjuvant did not generate a significant Ab response against rF1-V, and SA-4-1BBL in combination with alum did not improve Ab titers. However, the combined adjuvants significantly increased the ratio of Th1 regulated IgG2c in C57BL/6 mice to the Th2 regulated IgG1. Finally, a single vaccination with rF1-V adjuvanted with SA-4-1BBL+alum had better protective efficacy than vaccines containing individual adjuvants. Taken together, these results demonstrate that SA-4-1BBL improves the protective efficacy of the alum adjuvanted lead rF1-V subunit vaccine by generating a more balanced Th1 cellular and humoral immune response. As such, this adjuvant platform may prove efficacious not only for the rF1-V vaccine but also against other infections that require both cellular and humoral immune responses for protection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. African swine fever virus controls the host transcription and cellular machinery of protein synthesis.

    PubMed

    Sánchez, Elena G; Quintas, Ana; Nogal, Marisa; Castelló, Alfredo; Revilla, Yolanda

    2013-04-01

    Throughout a viral infection, the infected cell reprograms the gene expression pattern in order to establish a satisfactory antiviral response. African swine fever virus (ASFV), like other complex DNA viruses, sets up a number of strategies to evade the host's defense systems, such as apoptosis, inflammation and immune responses. The capability of the virus to persist in its natural hosts and in domestic pigs, which recover from infection with less virulent isolates, suggests that the virus displays effective mechanisms to escape host defense systems. ASFV has been described to regulate the activation of several transcription factors, thus regulating the activation of specific target genes during ASFV infection. Whereas some reports have concerned about anti-apoptotic ASFV genes and the molecular mechanisms by which ASFV interferes with inducible gene transcription and immune evasion, less is yet known regarding how ASFV regulates the translational machinery in infected cells, although a recent report has shown a mechanism for favored expression of viral genes based on compartmentalization of viral mRNA and ribosomes with cellular translation factors within the virus factory. The viral mechanisms involved both in the regulation of host genes transcription and in the control of cellular protein synthesis are summarized in this review. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Uncovering the immune responses of Apis mellifera ligustica larval gut to Ascosphaera apis infection utilizing transcriptome sequencing.

    PubMed

    Chen, Dafu; Guo, Rui; Xu, Xijian; Xiong, Cuiling; Liang, Qin; Zheng, Yanzhen; Luo, Qun; Zhang, Zhaonan; Huang, Zhijian; Kumar, Dhiraj; Xi, Weijun; Zou, Xuan; Liu, Min

    2017-07-20

    Honeybees are susceptible to a variety of diseases, including chalkbrood, which is capable of causing huge losses of both the number of bees and colony productivity. This research is designed to characterize the transcriptome profiles of Ascosphaera apis-treated and un-treated larval guts of Apis mellifera ligustica in an attempt to unravel the molecular mechanism underlying the immune responses of western honeybee larval guts to mycosis. In this study, 24, 296 and 2157 genes were observed to be differentially expressed in A. apis-treated Apis mellifera (4-, 5- and 6-day-old) compared with un-treated larval guts. Moreover, the expression patterns of differentially expressed genes (DEGs) were examined via trend analysis, and subsequently, gene ontology analysis and KEGG pathway enrichment analysis were conducted for DEGs involved in up- and down-regulated profiles. Immunity-related pathways were selected for further analysis, and our results demonstrated that a total of 13 and 50 DEGs were annotated in the humoral immune-related and cellular immune-related pathways, respectively. Additionally, we observed that many DEGs up-regulated in treated guts were part of cellular immune pathways, such as the lysosome, ubiquitin mediated proteolysis, and insect hormone biosynthesis pathways and were induced by A. apis invasion. However, more down-regulated DEGs were restrained. Surprisingly, a majority of DEGs within the Toll-like receptor signaling pathway, and the MAPK signaling pathway were up-regulated in treated guts, while all but two genes involved in the NF-κB signaling pathway were down-regulated, which suggested that most genes involved in humoral immune-related pathways were activated in response to the invasive fungal pathogen. This study's findings provide valuable information regarding the investigation of the molecular mechanism of immunity defenses of A. m. ligustica larval guts to infection with A. apis. Furthermore, these studies lay the groundwork for future researches on key genes controlling the susceptibility of A. m. ligustica larvae to chalkbrood. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Network representations of immune system complexity

    PubMed Central

    Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A.; Germain, Ronald N.; Dutta, Bhaskar

    2015-01-01

    The mammalian immune system is a dynamic multi-scale system composed of a hierarchically organized set of molecular, cellular and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single cell responses to increasingly complex networks of in vivo cellular interaction, positioning and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather non-linear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multi-scale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853

  1. Neuroendocrine mechanisms for immune system regulation during stress in fish.

    PubMed

    Nardocci, Gino; Navarro, Cristina; Cortés, Paula P; Imarai, Mónica; Montoya, Margarita; Valenzuela, Beatriz; Jara, Pablo; Acuña-Castillo, Claudio; Fernández, Ricardo

    2014-10-01

    In the last years, the aquaculture crops have experienced an explosive and intensive growth, because of the high demand for protein. This growth has increased fish susceptibility to diseases and subsequent death. The constant biotic and abiotic changes experienced by fish species in culture are challenges that induce physiological, endocrine and immunological responses. These changes mitigate stress effects at the cellular level to maintain homeostasis. The effects of stress on the immune system have been studied for many years. While acute stress can have beneficial effects, chronic stress inhibits the immune response in mammals and teleost fish. In response to stress, a signaling cascade is triggered by the activation of neural circuits in the central nervous system because the hypothalamus is the central modulator of stress. This leads to the production of catecholamines, corticosteroid-releasing hormone, adrenocorticotropic hormone and glucocorticoids, which are the essential neuroendocrine mediators for this activation. Because stress situations are energetically demanding, the neuroendocrine signals are involved in metabolic support and will suppress the "less important" immune function. Understanding the cellular mechanisms of the neuroendocrine regulation of immunity in fish will allow the development of new pharmaceutical strategies and therapeutics for the prevention and treatment of diseases triggered by stress at all stages of fish cultures for commercial production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Proinflammatory tachykinins that signal through the neurokinin 1 receptor promote survival of dendritic cells and potent cellular immunity.

    PubMed

    Janelsins, Brian M; Mathers, Alicia R; Tkacheva, Olga A; Erdos, Geza; Shufesky, William J; Morelli, Adrian E; Larregina, Adriana T

    2009-03-26

    Dendritic cells (DCs) are the preferred targets for immunotherapy protocols focused on stimulation of cellular immune responses. However, regardless of initial promising results, ex vivo generated DCs do not always promote immune-stimulatory responses. The outcome of DC-dependent immunity is regulated by proinflammatory cytokines and neuropeptides. Proinflammatory neuropeptides of the tachykinin family, including substance P (SP) and hemokinin-1 (HK-1), bind the neurokinin 1 receptor (NK1R) and promote stimulatory immune responses. Nevertheless, the ability of pro-inflammatory tachykinins to affect the immune functions of DCs remains elusive. In the present work, we demonstrate that mouse bone marrow-derived DCs (BMDCs) generated in the presence of granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-4 (IL-4), express functional NK1R. Signaling via NK1R with SP, HK-1, or the synthetic agonist [Sar(9)Met(O(2))(11)]-SP rescues DCs from apoptosis induced by deprivation of GM-CSF and IL-4. Mechanistic analysis demonstrates that NK1R agonistic binding promotes DC survival via PI3K-Akt signaling cascade. In adoptive transfer experiments, NK1R-signaled BMDCs loaded with Ag exhibit increased longevity in draining lymph nodes, resulting in enhanced and prolonged effector cellular immunity. Our results contribute to the understanding of the interactions between the immune and nervous systems that control DC function and present a novel approach for ex vivo-generation of potent immune-stimulatory DCs.

  3. Post-Translational Modification Control of Innate Immunity.

    PubMed

    Liu, Juan; Qian, Cheng; Cao, Xuetao

    2016-07-19

    A coordinated balance between the positive and negative regulation of pattern-recognition receptor (PRR)-initiated innate inflammatory responses is required to ensure the most favorable outcome for the host. Post-translational modifications (PTMs) of innate sensors and downstream signaling molecules influence their activity and function by inducing their covalent linkage to new functional groups. PTMs including phosphorylation and polyubiquitination have been shown to potently regulate innate inflammatory responses through the activation, cellular translocation, and interaction of innate receptors, adaptors, and downstream signaling molecules in response to infectious and dangerous signals. Other PTMs such as methylation, acetylation, SUMOylation, and succinylation are increasingly implicated in the regulation of innate immunity and inflammation. In this review, we focus on the roles of PTMs in controlling PRR-triggered innate immunity and inflammatory responses. The emerging roles of PTMs in the pathogenesis and potential treatment of infectious and inflammatory immune diseases are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Suppression of Antigen-Specific T Cell Responses by the Kaposi's Sarcoma-Associated Herpesvirus Viral OX2 Protein and Its Cellular Orthologue, CD200

    PubMed Central

    Misstear, Karen; Chanas, Simon A.; Rezaee, S. A. Rahim; Colman, Rachel; Quinn, Laura L.; Long, Heather M.; Goodyear, Oliver; Lord, Janet M.; Hislop, Andrew D.

    2012-01-01

    Regulating appropriate activation of the immune response in the healthy host despite continual immune surveillance dictates that immune responses must be either self-limiting and therefore negatively regulated following their activation or prevented from developing inappropriately. In the case of antigen-specific T cells, their response is attenuated by several mechanisms, including ligation of CTLA-4 and PD-1. Through the study of the viral OX2 (vOX2) immunoregulator encoded by Kaposi's sarcoma-associated herpesvirus (KSHV), we have identified a T cell-attenuating role both for this protein and for CD200, a cellular orthologue of the viral vOX2 protein. In vitro, antigen-presenting cells (APC) expressing either native vOX2 or CD200 suppressed two functions of cognate antigen-specific T cell clones: gamma interferon (IFN-γ) production and mobilization of CD107a, a cytolytic granule component and measure of target cell killing ability. Mechanistically, vOX2 and CD200 expression on APC suppressed the phosphorylation of ERK1/2 mitogen-activated protein kinase in responding T cells. These data provide the first evidence for a role of both KSHV vOX2 and cellular CD200 in the negative regulation of antigen-specific T cell responses. They suggest that KSHV has evolved to harness the host CD200-based mechanism of attenuation of T cell responses to facilitate virus persistence and dissemination within the infected individual. Moreover, our studies define a new paradigm in immune modulation by viruses: the provision of a negative costimulatory signal to T cells by a virus-encoded orthologue of CD200. PMID:22491458

  5. Leukocyte susceptibility and immune response against Vibrio parahaemolyticus in Totoaba macdonaldi.

    PubMed

    Reyes-Becerril, Martha; Alamillo, Erika; Sánchez-Torres, Luvia; Ascencio-Valle, Felipe; Perez-Urbiola, Juan C; Angulo, Carlos

    2016-12-01

    Vibrio parahaemolyticus is a serious pathogen that affects aquaculture. Nonetheless, to the best of our knowledge, no studies have focused on its immunological implications in Totoaba macdonaldi. Thus, the early immune response to V. parahaemolyticus in juveniles of totoaba was studied at 24 h post-infection with an in vivo study. In addition, changes in cellular innate immune parameters - phagocytosis, respiratory burst activity and viability (annexin V/propidium iodide) - were evaluated in vitro in head-kidney, spleen and thymus leukocytes at 6 and 24 h after bacterial stimulation by flow cytometry. Simultaneously, the expression levels of two immune-relevant genes (IL-1β and IL-8) were measured by using real time PCR. During in vivo study, mRNA transcripts of IL-1β were highly expressed in spleen, thymus and intestine and down-regulated in liver after 24 h post-infection. IL-8 gene expression was upregulated in spleen, intestine and liver compared to that of non-infected fish and down-regulated in thymus after 24 h post-infection. Generally, the results showed a significant decrease in cellular immune responses during the infection, principally in phagocytic ability and respiratory burst. The survival or viability of stimulated leukocytes was significantly reduced causing necrosis and apoptosis, indicating a robust killing response by V. parahaemolyticus. Finally the in vitro analysis showed that transcript levels of IL-1β and IL-8 were up-regulated during stimulation with V. parahaemolyticus in head-kidney, spleen and intestine and down-regulated in thymus at any time of the experiment. Although V. parahaemolyticus has been reported to be an important pathogen for many aquatic organisms, to our knowledge this might be the first report of early-immune response in juvenile totoaba and these immune parameters may be reliable indicators and can be useful in the health control of this species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. SIRT1 and HIF1α signaling in metabolism and immune responses.

    PubMed

    Yu, Qing; Dong, Lin; Li, Yan; Liu, Gaungwei

    2018-04-01

    SIRT1 and HIF1α are regarded as two key metabolic sensors in cellular metabolism pathways and play vital roles in influencing immune responses. SIRT1 and HIF1α regulate immune responses in metabolism-dependent and -independent ways. Here, we summarized the recent knowledge of SIRT1 and HIF1α signaling in metabolism and immune responses. HIF1α is a direct target of SIRT1. Sometimes, SIRT1 and HIF1α cooperate or act separately to mediate immune responses. In innate immune responses, SIRT1 can regulate the glycolytic activity of myeloid-derived suppressor cells (MDSCs) and influence MDSC functional differentiation. SIRT1 can regulate monocyte function through NF-κB and PGC-1, accompanying an increased NAD + level. The SIRT1-HIF1α axis bridges the innate immune signal to an adaptive immune response by directing cytokine production of dendritic cells in a metabolism-independent manner, promoting the differentiation of CD4 + T cells. For adaptive immune cells, SIRT1 can mediate the differentiation of inflammatory T cell subsets in a NAD + -dependent manner. HIF1α can stimulate some glycolysis-associated genes and regulate the ATP and ROS generations. In addition, SIRT1-and HIF1α-associated metabolism inhibits the activity of mTOR, thus negatively regulating the differentiation and function of Th9 cells. As immune cells are crucial in controlling immune-associated diseases, SIRT1-and HIF1α associated-metabolism is closely linked to immune-associated diseases, including infection, tumors, allergic airway inflammation, and autoimmune diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Molecular piracy: manipulation of the ubiquitin system by Kaposi's sarcoma-associated herpesvirus.

    PubMed

    Fujimuro, Masahiro; Hayward, S Diane; Yokosawa, Hideyoshi

    2007-01-01

    Ubiquitination, one of several post-translational protein modifications, plays a key role in the regulation of cellular events, including protein degradation, signal transduction, endocytosis, protein trafficking, apoptosis and immune responses. Ubiquitin attachment at the lysine residue of cellular factors acts as a signal for endocytosis and rapid degradation by the 26S proteasome. It has recently been observed that viruses, especially oncogenic herpesviruses, utilise molecular piracy by encoding their own proteins to interfere with regulation of cell signalling. Kaposi's sarcoma- associated herpesvirus (KSHV) manipulates the ubiquitin system to facilitate cell proliferation, anti-apoptosis and evasion from immunity. In this review, we will describe the strategies used by KSHV at distinct stages of the viral life-cycle to control the ubiquitin system and promote oncogenesis and viral persistence. (c) 2007 John Wiley & Sons, Ltd.

  8. A Systems Biology Approach Reveals that Tissue Tropism to West Nile Virus Is Regulated by Antiviral Genes and Innate Immune Cellular Processes

    PubMed Central

    Suthar, Mehul S.; Brassil, Margaret M.; Blahnik, Gabriele; McMillan, Aimee; Ramos, Hilario J.; Proll, Sean C.; Belisle, Sarah E.; Katze, Michael G.; Gale, Michael

    2013-01-01

    The actions of the RIG-I like receptor (RLR) and type I interferon (IFN) signaling pathways are essential for a protective innate immune response against the emerging flavivirus West Nile virus (WNV). In mice lacking RLR or IFN signaling pathways, WNV exhibits enhanced tissue tropism, indicating that specific host factors of innate immune defense restrict WNV infection and dissemination in peripheral tissues. However, the immune mechanisms by which the RLR and IFN pathways coordinate and function to impart restriction of WNV infection are not well defined. Using a systems biology approach, we defined the host innate immune response signature and actions that restrict WNV tissue tropism. Transcriptional profiling and pathway modeling to compare WNV-infected permissive (spleen) and nonpermissive (liver) tissues showed high enrichment for inflammatory responses, including pattern recognition receptors and IFN signaling pathways, that define restriction of WNV replication in the liver. Assessment of infected livers from Mavs−/−×Ifnar−/− mice revealed the loss of expression of several key components within the natural killer (NK) cell signaling pathway, including genes associated with NK cell activation, inflammatory cytokine production, and NK cell receptor signaling. In vivo analysis of hepatic immune cell infiltrates from WT mice demonstrated that WNV infection leads to an increase in NK cell numbers with enhanced proliferation, maturation, and effector action. In contrast, livers from Mavs−/−×Ifnar−/− infected mice displayed reduced immune cell infiltration, including a significant reduction in NK cell numbers. Analysis of cocultures of dendritic and NK cells revealed both cell-intrinsic and -extrinsic roles for the RLR and IFN signaling pathways to regulate NK cell effector activity. Taken together, these observations reveal a complex innate immune signaling network, regulated by the RLR and IFN signaling pathways, that drives tissue-specific antiviral effector gene expression and innate immune cellular processes that control tissue tropism to WNV infection. PMID:23544010

  9. Leptin in the interplay of inflammation, metabolism and immune system disorders.

    PubMed

    Abella, Vanessa; Scotece, Morena; Conde, Javier; Pino, Jesús; Gonzalez-Gay, Miguel Angel; Gómez-Reino, Juan J; Mera, Antonio; Lago, Francisca; Gómez, Rodolfo; Gualillo, Oreste

    2017-02-01

    Leptin is one of the most relevant factors secreted by adipose tissue and the forerunner of a class of molecules collectively called adipokines. Initially discovered in 1994, its crucial role as a central regulator in energy homeostasis has been largely described during the past 20 years. Once secreted into the circulation, leptin reaches the central and peripheral nervous systems and acts by binding and activating the long form of leptin receptor (LEPR), regulating appetite and food intake, bone mass, basal metabolism, reproductive function and insulin secretion, among other processes. Research on the regulation of different adipose tissues has provided important insights into the intricate network that links nutrition, metabolism and immune homeostasis. The neuroendocrine and immune systems communicate bi-directionally through common ligands and receptors during stress responses and inflammation, and control cellular immune responses in several pathological situations including immune-inflammatory rheumatic diseases. This Review discusses the latest findings regarding the role of leptin in the immune system and metabolism, with particular emphasis on its effect on autoimmune and/or inflammatory rheumatic diseases, such as rheumatoid arthritis and osteoarthritis.

  10. Vitamin A

    USDA-ARS?s Scientific Manuscript database

    Vitamin A is essential during embryonic development and, in the adult, it is necessary for vision, immunity, metabolism, cellular proliferation, differentiation, and apoptosis. Recently, additional functions of vitamin A such as regulation of energy balance, insulin signaling and nervous system acti...

  11. Long noncoding RNA in hematopoiesis and immunity.

    PubMed

    Satpathy, Ansuman T; Chang, Howard Y

    2015-05-19

    Dynamic gene expression during cellular differentiation is tightly coordinated by transcriptional and post-transcriptional mechanisms. An emerging theme is the central role of long noncoding RNAs (lncRNAs) in the regulation of this specificity. Recent advances demonstrate that lncRNAs are expressed in a lineage-specific manner and control the development of several cell types in the hematopoietic system. Moreover, specific lncRNAs are induced to modulate innate and adaptive immune responses. lncRNAs can function via RNA-DNA, RNA-RNA, and RNA-protein target interactions. As a result, they affect several stages of gene regulation, including chromatin modification, mRNA biogenesis, and protein signaling. We discuss recent advances, future prospects, and challenges in understanding the roles of lncRNAs in immunity and immune-mediated diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Parkin negatively regulates the antiviral signaling pathway by targeting TRAF3 for degradation.

    PubMed

    Xin, Di; Gu, Haiyan; Liu, Enping; Sun, Qinmiao

    2018-06-14

    Chronic neuroinflammation is a characteristic of Parkinson's disease (PD). Previous investigations have shown that Parkin gene mutations are related to the early-onset recessive form of PD and isolated juvenile-onset PD. Further, Parkin plays important roles in mitochondrial quality control and cytokine-induced cell death. However, whether Parkin regulates other cellular events is still largely unknown. In this study, we performed overexpression and knockout experiments, and found that Parkin negatively regulates antiviral immune responses against RNA and DNA viruses. Mechanistically, we show that Parkin interacts with tumor necrosis factor receptor-associated factor 3 (TRAF3) to regulate stability of TRAF3 protein by promoting K48-linked ubiquitination. Our findings suggest that Parkin plays a novel role in innate immune signaling by targeting TRAF3 for degradation, and maintaining the balance of innate antiviral immunity. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Potential roles of DNA methylation in the initiation and establishment of replicative senescence revealed by array-based methylome and transcriptome analyses

    PubMed Central

    Sakaki, Mizuho; Ebihara, Yukiko; Okamura, Kohji; Nakabayashi, Kazuhiko; Igarashi, Arisa; Matsumoto, Kenji; Hata, Kenichiro; Kobayashi, Yoshiro

    2017-01-01

    Cellular senescence is classified into two groups: replicative and premature senescence. Gene expression and epigenetic changes are reported to differ between these two groups and cell types. Normal human diploid fibroblast TIG-3 cells have often been used in cellular senescence research; however, their epigenetic profiles are still not fully understood. To elucidate how cellular senescence is epigenetically regulated in TIG-3 cells, we analyzed the gene expression and DNA methylation profiles of three types of senescent cells, namely, replicatively senescent, ras-induced senescent (RIS), and non-permissive temperature-induced senescent SVts8 cells, using gene expression and DNA methylation microarrays. The expression of genes involved in the cell cycle and immune response was commonly either down- or up-regulated in the three types of senescent cells, respectively. The altered DNA methylation patterns were observed in replicatively senescent cells, but not in prematurely senescent cells. Interestingly, hypomethylated CpG sites detected on non-CpG island regions (“open sea”) were enriched in immune response-related genes that had non-CpG island promoters. The integrated analysis of gene expression and methylation in replicatively senescent cells demonstrated that differentially expressed 867 genes, including cell cycle- and immune response-related genes, were associated with DNA methylation changes in CpG sites close to the transcription start sites (TSSs). Furthermore, several miRNAs regulated in part through DNA methylation were found to affect the expression of their targeted genes. Taken together, these results indicate that the epigenetic changes of DNA methylation regulate the expression of a certain portion of genes and partly contribute to the introduction and establishment of replicative senescence. PMID:28158250

  14. Leptin, immune responses and autoimmune disease. Perspectives on the use of leptin antagonists.

    PubMed

    Peelman, F; Iserentant, H; Eyckerman, S; Zabeau, L; Tavernier, J

    2005-01-01

    The pivotal role of leptin in regulating body weight and energy homeostasis is very well established. More recently, leptin also emerged as an important regulator of T-cell-dependent immunity. Reduced leptin levels, as observed during periods of starvation, correlate with an impaired cellular immune response, whereby especially the T(H)1 pro-inflammatory immune response appears to be affected. Physiologically, this could reflect the high energy demand of such processes, which are suppressed in animals or people with nutrient shortage. Several autoimmune diseases are T(H)1 T-cell dependent. In line with a pro-inflammatory role for leptin, animal models of leptin deficiency are markedly resistant to a variety of T-cell dependent autoimmune diseases. Here, we review the role of leptin in immune responses, with emphasis on autoimmune diseases. The design and potential use of leptin antagonists is also discussed.

  15. Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepithelial migration

    PubMed Central

    Sumagin, Ronen; Parkos, Charles A

    2014-01-01

    Epithelial adhesion molecules play essential roles in regulating cellular function and maintaining mucosal tissue homeostasis. Some form epithelial junctional complexes to provide structural support for epithelial monolayers and act as a selectively permeable barrier separating luminal contents from the surrounding tissue. Others serve as docking structures for invading viruses and bacteria, while also regulating the immune response. They can either obstruct or serve as footholds for the immune cells recruited to mucosal surfaces. Currently, it is well appreciated that adhesion molecules collectively serve as environmental cue sensors and trigger signaling events to regulate epithelial function through their association with the cell cytoskeleton and various intracellular adapter proteins. Immune cells, particularly neutrophils (PMN) during transepithelial migration (TEM), can modulate adhesion molecule expression, conformation, and distribution, significantly impacting epithelial function and tissue homeostasis. This review discusses the roles of key intestinal epithelial adhesion molecules in regulating PMN trafficking and outlines the potential consequences on epithelial function. PMID:25838976

  16. The transition between immune and disease states in a cellular automaton model of clonal immune response

    NASA Astrophysics Data System (ADS)

    Bezzi, Michele; Celada, Franco; Ruffo, Stefano; Seiden, Philip E.

    1997-02-01

    In this paper we extend the Celada-Seiden (CS) model of the humoral immune response to include infections virus and killer T cells (cellular response). The model represents molecules and cells with bitstrings. The response of the system to virus involves a competition between the ability of the virus to kill the host cells and the host's ability to eliminate the virus. We find two basins of attraction in the dynamics of this system, one is identified with disease and the other with the immune state. There is also an oscillating state that exists on the border of these two stable states. Fluctuations in the population of virus or antibody can end the oscillation and drive the system into one of the stable states. The introduction of mechanisms of cross-regulation between the two responses can bias the system towards one of them. We also study a mean field model, based on coupled maps, to investigate virus-like infections. This simple model reproduces the attractors for average populations observed in the cellular automaton. All the dynamical behavior connected to spatial extension is lost, as is the oscillating feature. Thus the mean field approximation introduced with coupled maps destroys oscillations.

  17. The lymphoid cell network in the skin.

    PubMed

    Tikoo, Shweta; Jain, Rohit; Kurz, Angela Rm; Weninger, Wolfgang

    2018-05-01

    Cutaneous immunity represents a crucial component of the mammalian immune response. The presence of a large array of commensal microorganisms along with a myriad of environmental stresses necessitates constant immuno-surveillance of the tissue. To achieve a perfect balance between immune-tolerance and immune-activation, the skin harbors strategically localized immune cell populations that modulate these responses. To maintain homeostasis, innate and adaptive immune cells assimilate microenvironmental cues and coordinate cellular and molecular functions in a spatiotemporal manner. The role of lymphoid cells in cutaneous immunity is gaining much appreciation due to their important roles in regulating skin health and pathology. In this review, we aim to highlight the recent advances in the field of cutaneous lymphoid biology. © 2018 Australasian Society for Immunology Inc.

  18. Galectin-3 in autoimmunity and autoimmune diseases

    PubMed Central

    de Oliveira, Felipe L; Gatto, Mariele; Bassi, Nicola; Luisetto, Roberto; Ghirardello, Anna; Punzi, Leonardo

    2015-01-01

    Galectin-3 (gal-3) is a β-galactoside-binding lectin, which regulates cell–cell and extracellular interactions during self/non-self-antigen recognition and cellular activation, proliferation, differentiation, migration and apoptosis. It plays a significant role in cellular and tissue pathophysiology by organizing niches that drive inflammation and immune responses. Gal-3 has some therapeutic potential in several diseases, including chronic inflammatory disorders, cancer and autoimmune diseases. Gal-3 exerts a broad spectrum of functions which differs according to its intra- or extracellular localization. Recombinant gal-3 strategy has been used to identify potential mode of action of gal-3; however, exogenous gal-3 may not reproduce the functions of the endogenous gal-3. Notably, gal-3 induces monocyte–macrophage differentiation, interferes with dendritic cell fate decision, regulates apoptosis on T lymphocytes and inhibits B-lymphocyte differentiation into immunoglobulin secreting plasma cells. Considering the influence of these cell populations in the pathogenesis of several autoimmune diseases, gal-3 seems to play a role in development of autoimmunity. Gal-3 has been suggested as a potential therapeutic agent in patients affected with some autoimmune disorders. However, the precise role of gal-3 in driving the inflammatory process in autoimmune or immune-mediated disorders remains elusive. Here, we reviewed the involvement of gal-3 in cellular and tissue events during autoimmune and immune-mediated inflammatory diseases. PMID:26142116

  19. YODA MAP3K kinase regulates plant immune responses conferring broad-spectrum disease resistance.

    PubMed

    Sopeña-Torres, Sara; Jordá, Lucía; Sánchez-Rodríguez, Clara; Miedes, Eva; Escudero, Viviana; Swami, Sanjay; López, Gemma; Piślewska-Bednarek, Mariola; Lassowskat, Ines; Lee, Justin; Gu, Yangnan; Haigis, Sabine; Alexander, Danny; Pattathil, Sivakumar; Muñoz-Barrios, Antonio; Bednarek, Pawel; Somerville, Shauna; Schulze-Lefert, Paul; Hahn, Michael G; Scheel, Dierk; Molina, Antonio

    2018-04-01

    Mitogen-activated protein kinases (MAPKs) cascades play essential roles in plants by transducing developmental cues and environmental signals into cellular responses. Among the latter are microbe-associated molecular patterns perceived by pattern recognition receptors (PRRs), which trigger immunity. We found that YODA (YDA) - a MAPK kinase kinase regulating several Arabidopsis developmental processes, like stomatal patterning - also modulates immune responses. Resistance to pathogens is compromised in yda alleles, whereas plants expressing the constitutively active YDA (CA-YDA) protein show broad-spectrum resistance to fungi, bacteria, and oomycetes with different colonization modes. YDA functions in the same pathway as ERECTA (ER) Receptor-Like Kinase, regulating both immunity and stomatal patterning. ER-YDA-mediated immune responses act in parallel to canonical disease resistance pathways regulated by phytohormones and PRRs. CA-YDA plants exhibit altered cell-wall integrity and constitutively express defense-associated genes, including some encoding putative small secreted peptides and PRRs whose impairment resulted in enhanced susceptibility phenotypes. CA-YDA plants show strong reprogramming of their phosphoproteome, which contains protein targets distinct from described MAPKs substrates. Our results suggest that, in addition to stomata development, the ER-YDA pathway regulates an immune surveillance system conferring broad-spectrum disease resistance that is distinct from the canonical pathways mediated by described PRRs and defense hormones. © 2018 Universidad Politécnica de Madrid (UPM) New Phytologist © 2018 New Phytologist Trust.

  20. Progranulin, lysosomal regulation and neurodegenerative disease.

    PubMed

    Kao, Aimee W; McKay, Andrew; Singh, Param Priya; Brunet, Anne; Huang, Eric J

    2017-06-01

    The discovery that heterozygous and homozygous mutations in the gene encoding progranulin are causally linked to frontotemporal dementia and lysosomal storage disease, respectively, reveals previously unrecognized roles of the progranulin protein in regulating lysosome biogenesis and function. Given the importance of lysosomes in cellular homeostasis, it is not surprising that progranulin deficiency has pleiotropic effects on neural circuit development and maintenance, stress response, innate immunity and ageing. This Progress article reviews recent advances in progranulin biology emphasizing its roles in lysosomal function and brain innate immunity, and outlines future avenues of investigation that may lead to new therapeutic approaches for neurodegeneration.

  1. Ubiquitination in the antiviral immune response.

    PubMed

    Davis, Meredith E; Gack, Michaela U

    2015-05-01

    Ubiquitination has long been known to regulate fundamental cellular processes through the induction of proteasomal degradation of target proteins. More recently, 'atypical' non-degradative types of polyubiquitin chains have been appreciated as important regulatory moieties by modulating the activity or subcellular localization of key signaling proteins. Intriguingly, many of these non-degradative types of ubiquitination regulate the innate sensing pathways initiated by pattern recognition receptors (PRRs), ultimately coordinating an effective antiviral immune response. Here we discuss recent advances in understanding the functional roles of degradative and atypical types of ubiquitination in innate immunity to viral infections, with a specific focus on the signaling pathways triggered by RIG-I-like receptors, Toll-like receptors, and the intracellular viral DNA sensor cGAS. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Targeting methionine cycle as a potential therapeutic strategy for immune disorders.

    PubMed

    Li, Heng; Lu, Huimin; Tang, Wei; Zuo, Jianping

    2017-08-23

    Methionine cycle plays an essential role in regulating many cellular events, especially transmethylation reactions, incorporating the methyl donor S-adenosylmethionine (SAM). The transmethylations and substances involved in the cycle have shown complicated effects and mechanisms on immunocytes developments and activations, and exert crucial impacts on the pathological processes in immune disorders. Areas covered: Methionine cycle has been considered as an effective means of drug developments. This review discussed the role of methionine cycle in immune responses and summarized the potential therapeutic strategies based on the cycle, including SAM analogs, methyltransferase inhibitors, S-adenosylhomocysteine hydrolase (SAHH) inhibitors, adenosine receptors specific agonists or antagonists and homocysteine (Hcy)-lowering reagents, in treating human immunodeficiency virus (HIV) infections, systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic sclerosis (SSc) and other immune disorders. Expert opinion: New targets and biomarkers grown out of methionine cycle have developed rapidly in the past decades. However, impacts of epigenetic regulations on immune disorders are unclear and whether the substances in methionine cycle can be clarified as biomarkers remains controversial. Therefore, further elucidation on the role of epigenetic regulations and substances in methionine cycle may contribute to exploring the cycle-derived biomarkers and drugs in immune disorders.

  3. Natural Killer Dendritic Cells Enhance Immune Responses Elicited by α -Galactosylceramide-Stimulated Natural Killer T Cells.

    PubMed

    Lee, Sung Won; Park, Hyun Jung; Kim, Nayoung; Hong, Seokmann

    2013-01-01

    Natural killer dendritic cells (NKDCs) possess potent anti-tumor activity, but the cellular effect of NKDC interactions with other innate immune cells is unclear. In this study, we demonstrate that the interaction of NKDCs and natural killer T (NKT) cells is required for the anti-tumor immune responses that are elicited by α -galactosylceramide ( α -GC) in mice. The rapid and strong expression of interferon- γ by NKDCs after α -GC stimulation was dependent on NKT cells. Various NK and DC molecular markers and cytotoxic molecules were up-regulated following α -GC administration. This up-regulation could improve NKDC presentation of tumor antigens and increase cytotoxicity against tumor cells. NKDCs were required for the stimulation of DCs, NK cells, and NKT cells. The strong anti-tumor immune responses elicited by α -GC may be due to the down-regulation of regulatory T cells. Furthermore, the depletion of NKDCs dampened the tumor clearance mediated by α -GC-stimulated NKT cells in vivo. Taken together, these results indicate that complex interactions of innate immune cells might be required to achieve optimal anti-tumor immune responses during the early stages of tumorigenesis.

  4. The role of basic leucine zipper transcription factor E4BP4 in the immune system and immune-mediated diseases.

    PubMed

    Yin, Jinghua; Zhang, Jian; Lu, Qianjin

    2017-07-01

    Basic leucine zipper transcription factor E4BP4 (also known as NFIL3) has been implicated in the molecular and cellular mechanisms of functions and activities in mammals. The interactions between E4BP4 and major regulators of cellular processes have triggered significant interest in the roles of E4BP4 in the pathogenesis of certain chronic diseases. Indeed, novel discoveries have been emerging to illustrate the involvement of E4BP4 in multiple disorders. It is recognized that E4BP4 is extensively involved in some immune-mediated diseases, but the mechanisms of E4BP4 involvement in these complex diseases remain poorly defined. Here we review the regulatory mechanisms of E4BP4 engaging in not only the biological function but also the development of immune-mediated diseases, paving the way for future therapies. Copyright © 2017. Published by Elsevier Inc.

  5. A core viral protein binds host nucleosomes to sequester immune danger signals

    PubMed Central

    Avgousti, Daphne C.; Herrmann, Christin; Kulej, Katarzyna; Pancholi, Neha J.; Sekulic, Nikolina; Petrescu, Joana; Molden, Rosalynn C.; Blumenthal, Daniel; Paris, Andrew J.; Reyes, Emigdio D.; Ostapchuk, Philomena; Hearing, Patrick; Seeholzer, Steven H.; Worthen, G. Scott; Black, Ben E.; Garcia, Benjamin A.; Weitzman, Matthew D.

    2016-01-01

    Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses1. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important role in innate immune responses2. Viral encoded core basic proteins compact viral genomes but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones3. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles4,5, it is unknown whether protein VII impacts cellular chromatin. Our observation that protein VII alters cellular chromatin led us to hypothesize that this impacts antiviral responses during adenovirus infection. We found that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in chromatin of members of the high-mobility group protein B family (HMGB1, HMGB2, and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses6,7. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling. PMID:27362237

  6. Sleep Health: Reciprocal Regulation of Sleep and Innate Immunity

    PubMed Central

    Irwin, Michael R; Opp, Mark R

    2017-01-01

    Sleep disturbances including insomnia independently contribute to risk of inflammatory disorders and major depressive disorder. This review and overview provides an integrated understanding of the reciprocal relationships between sleep and the innate immune system and considers the role of sleep in the nocturnal regulation of the inflammatory biology dynamics; the impact of insomnia complaints, extremes of sleep duration, and experimental sleep deprivation on genomic, cellular, and systemic markers of inflammation; and the influence of sleep complaints and insomnia on inflammaging and molecular processes of cellular aging. Clinical implications of this research include discussion of the contribution of sleep disturbance to depression and especially inflammation-related depressive symptoms. Reciprocal action of inflammatory mediators on the homeostatic regulation of sleep continuity and sleep macrostructure, and the potential of interventions that target insomnia to reverse inflammation, are also reviewed. Together, interactions between sleep and inflammatory biology mechanisms underscore the implications of sleep disturbance for inflammatory disease risk, and provide a map to guide the development of treatments that modulate inflammation, improve sleep, and promote sleep health. PMID:27510422

  7. Endogenous extra-cellular heat shock protein 72: releasing signal(s) and function.

    PubMed

    Fleshner, M; Johnson, J D

    2005-08-01

    Exposure to acute physical and/or psychological stressors induces a cascade of physiological changes collectively termed the stress response. The stress response is demonstrable at the behavioural, neural, endocrine and cellular levels. Stimulation of the stress response functions to improve an organism's chance of survival during acute stressor challenge. The current review focuses on one ubiquitous cellular stress response, up-regulation of heat shock protein 72 (Hsp72). Although a great deal is known about the function of intra-cellular Hsp72 during exposure to acute stressors, little is understood about the potential function of endogenous extra-cellular Hsp72 (eHsp72). The current review will develop the hypothesis that eHsp72 release may be a previously unrecognized feature of the acute stress response and may function as an endogenous 'danger signal' for the immune system. Specifically, it is proposed that exposure to physical or psychological acute stressors stimulate the release of endogenous eHsp72 into the blood via an alpha1-adrenergic receptor-mediated mechanism and that elevated eHsp72 functions to facilitate innate immunity in the presence of bacterial challenge.

  8. Role of calcium permeable channels in dendritic cell migration.

    PubMed

    Sáez, Pablo J; Sáez, Juan C; Lennon-Duménil, Ana-María; Vargas, Pablo

    2018-06-01

    Calcium ion (Ca 2+ ) is an essential second messenger involved in multiple cellular and subcellular processes. Ca 2+ can be released and sensed globally or locally within cells, providing complex signals of variable amplitudes and time-scales. The key function of Ca 2+ in the regulation of acto-myosin contractility has provided a simple explanation for its role in the regulation of immune cell migration. However, many questions remain, including the identity of the Ca 2+ stores, channels and upstream signals involved in this process. Here, we focus on dendritic cells (DCs), because their immune sentinel function heavily relies on their capacity to migrate within tissues and later on between tissues and lymphoid organs. Deciphering the mechanisms by which cytoplasmic Ca 2+ regulate DC migration should shed light on their role in initiating and tuning immune responses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The role of the plasma membrane H+-ATPase in plant-microbe interactions.

    PubMed

    Elmore, James Mitch; Coaker, Gitta

    2011-05-01

    Plasma membrane (PM) H+-ATPases are the primary pumps responsible for the establishment of cellular membrane potential in plants. In addition to regulating basic aspects of plant cell function, these enzymes contribute to signaling events in response to diverse environmental stimuli. Here, we focus on the roles of the PM H+-ATPase during plant-pathogen interactions. PM H+-ATPases are dynamically regulated during plant immune responses and recent quantitative proteomics studies suggest complex spatial and temporal modulation of PM H+-ATPase activity during early pathogen recognition events. Additional data indicate that PM H+-ATPases cooperate with the plant immune signaling protein RIN4 to regulate stomatal apertures during bacterial invasion of leaf tissue. Furthermore, pathogens have evolved mechanisms to manipulate PM H+-ATPase activity during infection. Thus, these ubiquitous plant enzymes contribute to plant immune responses and are targeted by pathogens to increase plant susceptibility.

  10. Infection-specific phosphorylation of glutamyl-prolyl tRNA synthetase induces antiviral immunity

    PubMed Central

    Lee, Eun-Young; Lee, Hyun-Cheol; Kim, Hyun-Kwan; Jang, Song Yee; Park, Seong-Jun; Kim, Yong-Hoon; Kim, Jong Hwan; Hwang, Jungwon; Kim, Jae-Hoon; Kim, Tae-Hwan; Arif, Abul; Kim, Seon-Young; Choi, Young-Ki; Lee, Cheolju; Lee, Chul-Ho; Jung, Jae U; Fox, Paul L; Kim, Sunghoon; Lee, Jong-Soo; Kim, Myung Hee

    2016-01-01

    The mammalian cytoplasmic multi-tRNA synthetase complex (MSC) is a depot system that regulates non-translational cellular functions. Here we found that the MSC component glutamyl-prolyl-tRNA synthetase (EPRS) switched its function following viral infection and exhibited potent antiviral activity. Infection-specific phosphorylation of EPRS at Ser990 induced its dissociation from the MSC, after which it was guided to the antiviral signaling pathway, where it interacted with PCBP2, a negative regulator of mitochondrial antiviral signaling protein (MAVS) that is critical for antiviral immunity. This interaction blocked PCBP2-mediated ubiquitination of MAVS and ultimately suppressed viral replication. EPRS-haploid (Eprs+/−) mice showed enhanced viremia and inflammation and delayed viral clearance. This stimulus-inducible activation of MAVS by EPRS suggests an unexpected role for the MSC as a regulator of immune responses to viral infection. PMID:27595231

  11. The making of a lymphocyte: the choice among disparate cell fates and the IKAROS enigma.

    PubMed

    Georgopoulos, Katia

    2017-03-01

    Lymphocyte differentiation is set to produce myriad immune effector cells with the ability to respond to multitudinous foreign substances. The uniqueness of this developmental system lies in not only the great diversity of cellular functions that it can generate but also the ability of its differentiation intermediates and mature effector cells to expand upon demand, thereby providing lifelong immunity. Surprisingly, the goals of this developmental system are met by a relatively small group of DNA-binding transcription factors that work in concert to control the timing and magnitude of gene expression and fulfill the demands for cellular specialization, expansion, and maintenance. The cellular and molecular mechanisms through which these lineage-promoting transcription factors operate have been a focus of basic research in immunology. The mechanisms of development discerned in this effort are guiding clinical research on disorders with an immune cell base. Here, I focus on IKAROS, one of the earliest regulators of lymphoid lineage identity and a guardian of lymphocyte homeostasis. © 2017 Georgopoulos; Published by Cold Spring Harbor Laboratory Press.

  12. Unique aspects of the perinatal immune system.

    PubMed

    Zhang, Xiaoming; Zhivaki, Dania; Lo-Man, Richard

    2017-08-01

    The early stages of life are associated with increased susceptibility to infection, which is in part due to an ineffective immune system. In the context of infection, the immune system must be stimulated to provide efficient protection while avoiding insufficient or excessive activation. Yet, in early life, age-dependent immune regulation at molecular and cellular levels contributes to a reduced immunological fitness in terms of pathogen clearance and response to vaccines. To enable microbial colonization to be tolerated at birth, epigenetic immune cell programming and early life-specific immune regulatory and effector mechanisms ensure that vital functions and organ development are supported and that tissue damage is avoided. Advancement in our understanding of age-related remodelling of immune networks and the consequent tuning of immune responsiveness will open up new possibilities for immune intervention and vaccine strategies that are designed specifically for early life.

  13. An update: Epstein-Barr virus and immune evasion via microRNA regulation.

    PubMed

    Zuo, Lielian; Yue, Wenxin; Du, Shujuan; Xin, Shuyu; Zhang, Jing; Liu, Lingzhi; Li, Guiyuan; Lu, Jianhong

    2017-06-01

    Epstein-Barr virus (EBV) is an oncogenic virus that ubiquitously establishes life-long persistence in humans. To ensure its survival and maintain its B cell transformation function, EBV has developed powerful strategies to evade host immune responses. Emerging evidence has shown that microRNAs (miRNAs) are powerful regulators of the maintenance of cellular homeostasis. In this review, we summarize current progress on how EBV utilizes miRNAs for immune evasion. EBV encodes miRNAs targeting both viral and host genes involved in the immune response. The miRNAs are found in two gene clusters, and recent studies have demonstrated that lack of these clusters increases the CD4 + and CD8 + T cell response of infected cells. These reports strongly indicate that EBV miRNAs are critical for immune evasion. In addition, EBV is able to dysregulate the expression of a variety of host miRNAs, which influence multiple immune-related molecules and signaling pathways. The transport via exosomes of EBV-regulated miRNAs and viral proteins contributes to the construction and modification of the inflammatory tumor microenvironment. During EBV immune evasion, viral proteins, immune cells, chemokines, pro-inflammatory cytokines, and pro-apoptosis molecules are involved. Our increasing knowledge of the role of miRNAs in immune evasion will improve the understanding of EBV persistence and help to develop new treatments for EBV-associated cancers and other diseases.

  14. Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model

    PubMed Central

    Limmer, Stefanie; Haller, Samantha; Drenkard, Eliana; Lee, Janice; Yu, Shen; Kocks, Christine; Ausubel, Frederick M.; Ferrandon, Dominique

    2011-01-01

    An in-depth mechanistic understanding of microbial infection necessitates a molecular dissection of host–pathogen relationships. Both Drosophila melanogaster and Pseudomonas aeruginosa have been intensively studied. Here, we analyze the infection of D. melanogaster by P. aeruginosa by using mutants in both host and pathogen. We show that orally ingested P. aeruginosa crosses the intestinal barrier and then proliferates in the hemolymph, thereby causing the infected flies to die of bacteremia. Host defenses against ingested P. aeruginosa included an immune deficiency (IMD) response in the intestinal epithelium, systemic Toll and IMD pathway responses, and a cellular immune response controlling bacteria in the hemocoel. Although the observed cellular and intestinal immune responses appeared to act throughout the course of the infection, there was a late onset of the systemic IMD and Toll responses. In this oral infection model, P. aeruginosa PA14 did not require its type III secretion system or other well-studied virulence factors such as the two-component response regulator GacA or the protease AprA for virulence. In contrast, the quorum-sensing transcription factor RhlR, but surprisingly not LasR, played a key role in counteracting the cellular immune response against PA14, possibly at an early stage when only a few bacteria are present in the hemocoel. These results illustrate the power of studying infection from the dual perspective of host and pathogen by revealing that RhlR plays a more complex role during pathogenesis than previously appreciated. PMID:21987808

  15. The multiple roles of the innate immune system in the regulation of apoptosis and inflammation in the brain.

    PubMed

    Griffiths, Mark R; Gasque, Philippe; Neal, James W

    2009-03-01

    Central nervous system (CNS) tissues contain cells (i.e. glia and neurons) that have innate immune functions. These cells express a range of receptors that are capable of detecting and clearing apoptotic cells and regulating inflammatory responses. Phagocytosis of apoptotic cells is a nonphlogistic (i.e. noninflammatory) process that provides immune regulation through anti-inflammatory cytokines andregulatory T cells. Neurons and glia express cellular death signals, including CD95Fas/CD95L, FasL, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and tumor necrosis factor receptor 1 (TNFR), through which they can trigger apoptosis in T cells and other infiltrating cells. Microglia, astrocytes, ependymal cells, and neurons express defense collagens and scavenger and phagocytic receptors that recognize apoptotic cells displaying apoptotic cell-associated molecular patterns, which serve as markers of "altered self." Glia also express pentraxins and complement proteins (C1q, C3b, and iC3b) that opsonize apoptotic cells, making them targets for the phagocytic receptors CR3 and CR4. Immunoregulatory molecules such as the complement regulator CD46 are lost from apoptotic cells and stimulate phagocytosis, whereas the expression of CD47 and CD200 is upregulated during apoptosis; this inhibits proinflammatory microglial cytokine expression, thereby reducing the severity of inflammation. This review outlines the cellular pathways used for the detection and phagocytosis of apoptotic cells in vitro and in experimental models of CNS inflammation.

  16. Microbial Invasion vs. Tick Immune Regulation.

    PubMed

    Sonenshine, Daniel E; Macaluso, Kevin R

    2017-01-01

    Ticks transmit a greater variety of pathogenic agents that cause disease in humans and animals than any other haematophagous arthropod, including Lyme disease, Rocky Mountain spotted fever, human granulocytic anaplasmosis, babesiosis, tick-borne encephalitis, Crimean Congo haemorhagic fever, and many others (Gulia-Nuss et al., 2016). Although diverse explanations have been proposed to explain their remarkable vectorial capacity, among the most important are their blood feeding habit, their long term off-host survival, the diverse array of bioactive molecules that disrupt the host's natural hemostatic mechanisms, facilitate blood flow, pain inhibitors, and minimize inflammation to prevent immune rejection (Hajdušek et al., 2013). Moreover, the tick's unique intracellular digestive processes allow the midgut to provide a relatively permissive microenvironment for survival of invading microbes. Although tick-host-pathogen interactions have evolved over more than 300 million years (Barker and Murrell, 2008), few microbes have been able to overcome the tick's innate immune system, comprising both humoral and cellular processes that reject them. Similar to most eukaryotes, the signaling pathways that regulate the innate immune response, i.e., the Toll, IMD (Immunodeficiency) and JAK-STAT (Janus Kinase/ Signal Transducers and Activators of Transcription) also occur in ticks (Gulia-Nuss et al., 2016). Recognition of pathogen-associated molecular patterns (PAMPs) on the microbial surface triggers one or the other of these pathways. Consequently, ticks are able to mount an impressive array of humoral and cellular responses to microbial challenge, including anti-microbial peptides (AMPs), e.g., defensins, lysozymes, microplusins, etc., that directly kill, entrap or inhibit the invaders. Equally important are cellular processes, primarily phagocytosis, that capture, ingest, or encapsulate invading microbes, regulated by a primordial system of thioester-containing proteins, fibrinogen-related lectins and convertase factors (Hajdušek et al., 2013). Ticks also express reactive oxygen species (ROS) as well as glutathione-S-transferase, superoxide dismutase, heat shock proteins and even protease inhibitors that kill or inhibit microbes. Nevertheless, many tick-borne microorganisms are able to evade the tick's innate immune system and survive within the tick's body. The examples that follow describe some of the many different strategies that have evolved to enable ticks to transmit the agents of human and/or animal disease.

  17. Overexpression of adhesion molecules and barrier molecules is associated with differential infiltration of immune cells in non-small cell lung cancer.

    PubMed

    Chae, Young Kwang; Choi, Wooyoung M; Bae, William H; Anker, Jonathan; Davis, Andrew A; Agte, Sarita; Iams, Wade T; Cruz, Marcelo; Matsangou, Maria; Giles, Francis J

    2018-01-18

    Immunotherapy is emerging as a promising option for lung cancer treatment. Various endothelial adhesion molecules, such as integrin and selectin, as well as various cellular barrier molecules such as desmosome and tight junctions, regulate T-cell infiltration in the tumor microenvironment. However, little is known regarding how these molecules affect immune cells in patients with lung cancer. We demonstrated for the first time that overexpression of endothelial adhesion molecules and cellular barrier molecule genes was linked to differential infiltration of particular immune cells in non-small cell lung cancer. Overexpression of endothelial adhesion molecule genes is associated with significantly lower infiltration of activated CD4 and CD8 T-cells, but higher infiltration of activated B-cells and regulatory T-cells. In contrast, overexpression of desmosome genes was correlated with significantly higher infiltration of activated CD4 and CD8 T-cells, but lower infiltration of activated B-cells and regulatory T-cells in lung adenocarcinoma. This inverse relation of immune cells aligns with previous studies of tumor-infiltrating B-cells inhibiting T-cell activation. Although overexpression of endothelial adhesion molecule or cellular barrier molecule genes alone was not predictive of overall survival in our sample, these genetic signatures may serve as biomarkers of immune exclusion, or resistance to T-cell mediated immunotherapy.

  18. Fcgamma receptors: old friends and new family members.

    PubMed

    Nimmerjahn, Falk; Ravetch, Jeffrey V

    2006-01-01

    Although cellular receptors for immunoglobulins were first identified nearly 40 years ago, their central role in the immune response was discovered only in the last decade. They are key players in both the afferent and efferent phase of an immune response, setting thresholds for B cell activation, regulating the maturation of dendritic cells, and coupling the exquisite specificity of the antibody response to innate effector pathways, such as phagocytosis, antibody-dependent cellular cytotoxicity, and the recruitment and activation of inflammatory cells. Moreover, because of their general presence as receptor pairs consisting of activating and inhibitory molecules on the same cell, they have become a paradigm for studying the balance of positive and negative signals that ultimately determine the outcome of an immune response. This review will summarize recent results in Fc-receptor biology with an emphasis on data obtained in in vivo model systems.

  19. Isolation and characterization of an immunosuppressive protein from venom of the pupa-specific endoparasitoid Pteromalus puparum.

    PubMed

    Wu, Ma-li; Ye, Gong-yin; Zhu, Jia-ying; Chen, Xue-xin; Hu, Cui

    2008-10-01

    In hymenopteran parasitoids devoid of symbiotic viruses, venom proteins appear to play a major role in host immune suppression and host regulation. Not much is known about the active components of venom proteins in these parasitoids, especially those that have the functions involved in the suppression of host cellular immunity. Here, we report the isolation and characterization of a venom protein Vn.11 with 24.1 kDa in size from Pteromalus puparum, a pupa-specific endoparasitoid of Pieris rapae. The Vn.11 venom protein is isolated with the combination of ammonium sulfate precipitation and anion exchange chromatography, and its purity is verified using SDS-PAGE analysis. Like crude venom, the Vn.11 venom protein significantly inhibits the spreading behavior and encapsulation ability of host hemocytes in vitro. It is suggested that this protein is an actual component of P. puparum crude venom as host cellular-immune suppressive factor.

  20. Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism

    PubMed Central

    Fessler, Michael B.

    2015-01-01

    Four decades ago, it was observed that stimulation of T cells induces rapid changes in cellular cholesterol that are required before proliferation can commence. Investigators returning to this phenomenon have finally revealed its molecular underpinnings. Cholesterol trafficking and its dysregulation are now also recognized to strongly influence dendritic cell function, T cell polarization, and antibody responses. In this review, the state of the literature is reviewed on how cholesterol and its trafficking regulate the cells of the adaptive immune response and in vivo disease phenotypes of dysregulated adaptive immunity, including allergy, asthma, and autoimmune disease. Emerging evidence supporting a potential role for statins and other lipid-targeted therapies in the treatment of these diseases is presented. Just as vascular biologists have embraced immunity in the pathogenesis and treatment of atherosclerosis, so should basic and clinical immunologists in allergy, pulmonology, and other disciplines seek to encompass a basic understanding of lipid science. PMID:26149587

  1. Intermediates of Metabolism: From Bystanders to Signalling Molecules.

    PubMed

    Haas, Robert; Cucchi, Danilo; Smith, Joanne; Pucino, Valentina; Macdougall, Claire Elizabeth; Mauro, Claudio

    2016-05-01

    The integration of biochemistry into immune cell biology has contributed immensely to our understanding of immune cell function and the associated pathologies. So far, most studies have focused on the regulation of metabolic pathways during an immune response and their contribution to its success. More recently, novel signalling functions of metabolic intermediates are being discovered that might play important roles in the regulation of immunity. Here we describe the three long-known small metabolites lactate, acetyl-CoA, and succinate in the context of immunometabolic signalling. Functions of these ubiquitous molecules are largely dependent on their intra- and extracellular concentrations as well as their subcompartmental localisation. Importantly, the signalling functions of these metabolic intermediates extend beyond self-regulatory roles and include cell-to-cell communication and sensing of microenvironmental conditions to elicit stress responses and cellular adaptation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The Regulatory Function of Eosinophils

    PubMed Central

    Wen, Ting; Rothenberg, Marc E.

    2016-01-01

    Eosinophils are a minority circulating granulocyte classically viewed as being involved in host defense against parasites and promoting allergic reactions. However, a series of new regulatory functions for these cells have been identified in the past decade. During homeostasis, eosinophils develop in the bone marrow and migrate from the blood into target tissues following an eotaxin gradient, with IL-5 being a key cytokine for eosinophil proliferation, survival and priming. In multiple target tissues, eosinophils actively regulate a variety of immune functions through their vast arsenal of granule products and cytokines, as well as direct cellular interaction with cells in proximity. The immunologic regulation of eosinophils extends from innate immunity to adaptive immunity and also involves non-immune cells. Herein, we summarize recent findings regarding novel roles of murine and human eosinophils focused on interactions with other hematopoietic cells. We also review new experimental tools available and remaining questions to uncover a greater understanding of this enigmatic cell. PMID:27780017

  3. The Regulatory Function of Eosinophils.

    PubMed

    Wen, Ting; Rothenberg, Marc E

    2016-10-01

    Eosinophils are a minority circulating granulocyte classically viewed as being involved in host defense against parasites and promoting allergic reactions. However, a series of new regulatory functions for these cells have been identified in the past decade. During homeostasis, eosinophils develop in the bone marrow and migrate from the blood into target tissues following an eotaxin gradient, with interleukin-5 being a key cytokine for eosinophil proliferation, survival, and priming. In multiple target tissues, eosinophils actively regulate a variety of immune functions through their vast arsenal of granule products and cytokines, as well as direct cellular interaction with cells in proximity. The immunologic regulation of eosinophils extends from innate immunity to adaptive immunity and also involves non-immune cells. Herein, we summarize recent findings regarding novel roles of murine and human eosinophils, focusing on interactions with other hematopoietic cells. We also review new experimental tools available and remaining questions to uncover a greater understanding of this enigmatic cell.

  4. Low dosages: new chemotherapeutic weapons on the battlefield of immune-related disease

    PubMed Central

    Liu, Jing; Zhao, Jie; Hu, Liang; Cao, Yuchun; Huang, Bo

    2011-01-01

    Chemotherapeutic drugs eliminate tumor cells at relatively high doses and are considered weapons against tumors in clinics and hospitals. However, despite their ability to induce cellular apoptosis, chemotherapeutic drugs should probably be regarded more as a class of cell regulators than cell killers, if the dosage used and the fact that their targets are involved in basic molecular events are considered. Unfortunately, the regulatory properties of chemotherapeutic drugs are usually hidden or masked by the massive cell death induced by high doses. Recent evidence has begun to suggest that low dosages of chemotherapeutic drugs might profoundly regulate various intracellular aspects of normal cells, especially immune cells. Here, we discuss the immune regulatory roles of three kinds of chemotherapeutic drugs under low-dose conditions and propose low dosages as potential new chemotherapeutic weapons on the battlefield of immune-related disease. PMID:21423201

  5. Changing partners at the dance

    PubMed Central

    Kallal, Lara E.; Biron, Christine A.

    2013-01-01

    Differential use of cellular and molecular components shapes immune responses, but understanding of how these are regulated to promote defense and health during infections is still incomplete. Examples include signaling from members of the Janus activated kinase-signal transducer and activator of transcription (JAK-STAT) cytokine family. Following receptor stimulation, individual JAK-STAT cytokines have preferences for particular key STAT molecules to lead to specific cellular responses. Certain of these cytokines, however, can conditionally activate alternative STATs as well as elicit pleiotropic and paradoxical effects. Studies examining basal and infection conditions are revealing intrinsic and induced cellular differences in various intracellular STAT concentrations to control the biological consequences of cytokine exposure. The system can be likened to changing partners at a dance based on competition and relative availability, and sets a framework for understanding the particular conditions promoting subset biological functions of cytokines as needed during evolving immune responses to infections. PMID:24058795

  6. The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response

    PubMed Central

    Ezelle, Heather J.; Malathi, Krishnamurthy; Hassel, Bret A.

    2016-01-01

    The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2′-5′-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed. PMID:26760998

  7. The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response.

    PubMed

    Ezelle, Heather J; Malathi, Krishnamurthy; Hassel, Bret A

    2016-01-08

    The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2'-5'-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed.

  8. TRIM Family Proteins: Roles in Autophagy, Immunity, and Carcinogenesis.

    PubMed

    Hatakeyama, Shigetsugu

    2017-04-01

    Tripartite motif (TRIM) family proteins, most of which have E3 ubiquitin ligase activities, have various functions in cellular processes including intracellular signaling, development, apoptosis, protein quality control, innate immunity, autophagy, and carcinogenesis. The ubiquitin system is one of the systems for post-translational modifications, which play crucial roles not only as markers for degradation of target proteins by the proteasome but also as regulators of protein-protein interactions and of the activation of enzymes. Accumulating evidence has shown that TRIM family proteins have unique, important roles and that their dysregulation causes several diseases classified as cancer, immunological disease, or developmental disorders. In this review we focus on recent emerging topics on TRIM proteins in the regulation of autophagy, innate immunity, and carcinogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Arginine methylation regulates c-Myc-dependent transcription by altering promoter recruitment of the acetyltransferase p300.

    PubMed

    Tikhanovich, Irina; Zhao, Jie; Bridges, Brian; Kumer, Sean; Roberts, Ben; Weinman, Steven A

    2017-08-11

    Protein arginine methyltransferase 1 (PRMT1) is an essential enzyme controlling about 85% of the total cellular arginine methylation in proteins. We have shown previously that PRMT1 is an important regulator of innate immune responses and that it is required for M2 macrophage differentiation. c-Myc is a transcription factor that is critical in regulating cell proliferation and also regulates the M2 transcriptional program in macrophages. Here, we sought to determine whether c-Myc in myeloid cells is regulated by PRMT1-dependent arginine methylation. We found that PRMT1 activity was necessary for c-Myc binding to the acetyltransferase p300. PRMT1 inhibition decreased p300 recruitment to c-Myc target promoters and increased histone deacetylase 1 (HDAC1) recruitment, thereby decreasing transcription at these sites. Moreover, PRMT1 inhibition blocked c-Myc-mediated induction of several of its target genes, including peroxisome proliferator-activated receptor γ ( PPARG ) and mannose receptor C-type 1 ( MRC1 ), suggesting that PRMT1 is necessary for c-Myc function in M2 macrophage differentiation. Of note, in primary human blood monocytes, p300-c-Myc binding was strongly correlated with PRMT1 expression, and in liver sections, PRMT1, c-Myc, and M2 macrophage levels were strongly correlated with each other. Both PRMT1 levels and M2 macrophage numbers were significantly lower in livers from individuals with a history of spontaneous bacterial peritonitis, known to have defective cellular immunity. In conclusion, our findings demonstrate that PRMT1 is an important regulator of c-Myc function in myeloid cells. PRMT1 loss in individuals with cirrhosis may contribute to their immune defects. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. RIG-I Like Receptors and Their Signaling Crosstalk in the Regulation of Antiviral Immunity

    PubMed Central

    Ramos, Hilario J; Gale, Michael

    2011-01-01

    During virus infection, multiple immune signaling pathways are triggered, both within the host cell and bystander cells of an infected tissue. These pathways act in concert to mediate innate antiviral immunity and to initiate the inflammatory response against infection. The RIG-I-like receptor (RLR) family of pattern recognition receptors (PRRs) is a group of cytosolic RNA helicase proteins that can identify viral RNA as nonself via binding to pathogen associated molecular patter (PAMP) motifs within RNA ligands that accumulate during virus infection. This interaction then leads to triggering of an innate antiviral response within the infected cells through RLR induction of downstream effector molecules such as type I interferon (IFN) and other pro-inflammatory cytokines that serve to induce antiviral and inflammatory gene expression within the local tissue. Cellular regulation of RLR signaling is a critical process that can direct the outcome of infection and is essential for governance of the overall immune response and avoidance of immune toxicity. Mechanisms of positive and negative regulation of RLR signaling have been identified that include signaling crosstalk between RLR pathways and Nuclear Oligomerization Domain (NOD)-Like Receptor (NLR) pathways and Caspase networks. Furthermore, many viruses have evolved mechanisms to target these pathways to promote enhanced replication and spread within the host. These virus-host interactions therefore carry important consequences for host immunity and viral pathogenesis. Understanding the pivotal role of RLRs in immune regulation and signaling crosstalk in antiviral immunity may provide new insights into therapeutic strategies for the control of virus infection and immunity. PMID:21949557

  11. Plant Virus Infection and the Ubiquitin Proteasome Machinery: Arms Race along the Endoplasmic Reticulum.

    PubMed

    Verchot, Jeanmarie

    2016-11-19

    The endoplasmic reticulum (ER) is central to plant virus replication, translation, maturation, and egress. Ubiquitin modification of ER associated cellular and viral proteins, alongside the actions of the 26S proteasome, are vital for the regulation of infection. Viruses can arrogate ER associated ubiquitination as well as cytosolic ubiquitin ligases with the purpose of directing the ubiquitin proteasome system (UPS) to new targets. Such targets include necessary modification of viral proteins which may stabilize certain complexes, or modification of Argonaute to suppress gene silencing. The UPS machinery also contributes to the regulation of effector triggered immunity pattern recognition receptor immunity. Combining the results of unrelated studies, many positive strand RNA plant viruses appear to interact with cytosolic Ub-ligases to provide novel avenues for controlling the deleterious consequences of disease. Viral interactions with the UPS serve to regulate virus infection in a manner that promotes replication and movement, but also modulates the levels of RNA accumulation to ensure successful biotrophic interactions. In other instances, the UPS plays a central role in cellular immunity. These opposing roles are made evident by contrasting studies where knockout mutations in the UPS can either hamper viruses or lead to more aggressive diseases. Understanding how viruses manipulate ER associated post-translational machineries to better manage virus-host interactions will provide new targets for crop improvement.

  12. [Immune regulation activity and mechanism of Tibetan Kefir exopolysaccharide fractions].

    PubMed

    Meng, Li; Zhang, Lanwei

    2009-12-01

    To investigate the effects and mechanism on immune regulation activity in mice of two Tibetan Kefir exoploysaccharides (EPS) with different molecular weight of 0.1 x 10(5) - 3 x 10(5) (fraction 1) and 1.8 x 10(3) (fraction 2). The immune regulation activity experiment was carried out in vitro based on the Functional Assessment Procedure and Test Methods of Health Food, which was issued by Ministry of Health of China. First, we treated mice subjects with EPS at doses of 40 mg/kg, 80 mg/kg, 120 mg/kg through ig. Then we detected the index of immune organs, the ability of antibody production (tested by HC50), activity of NK cell, delayed type hypersensitivity (DTH) and phagocytosis of macrophage in mice. Finally, we examined the expression of Erk protein in Macrophages by Western Blot assay. Fraction 1 could promote HC50, activity of NK cell and DTH in mice which low dose showed better. Fraction 2 could promote DTH, phagocytosis of macrophage which high dose showed better. The expression of Erk and COX-2 had the same trend with Phagocytic index. We verified the two fractions of Tibetan Kefir EPS could enhance immune functions in mice. Fraction 1 regulated immune function through NK cell and B cell while fraction 2 through macrophage cell and T cell. The effects to macrophage of Tibetan Kefir EPS in mice may realize through extra cellular signal-regulated kinase Erk pathway.

  13. Cellular Immune Response to Cytomegalovirus Infection After Renal Transplantation

    PubMed Central

    Linnemann, Calvin C.; Kauffman, Carol A.; First, M. Roy; Schiff, Gilbert M.; Phair, John P.

    1978-01-01

    A prospective study of 15 patients who received renal transplants defined the effect of renal transplantation on the cellular immune response to cytomegalovirus infection. Of 15 patients, 14 developed cytomegalovirus infection, usually in the first 2 months after transplantation, and all infections were accompanied by a normal humoral immune response. After the initiation of immunosuppressive therapy and transplantation, there was a general depression of lymphocyte transformation, as reflected in the response to phytohemagglutinin, accompanied by a specific defect in cellular immunity, as indicated by lymphocyte transformation to cytomegalovirus antigen. Eleven patients had cellular immunity to cytomegalovirus before transplantation, and all of these became negative in the first month after transplantation. In subsequent months, only 6 of the 14 study patients with cytomegalovirus infection developed specific cellular immune responses to cytomegalovirus. This occurred most often in patients who had severe febrile illnesses in association with infection. The specific cellular immune response which developed in the posttransplant period did not persist in three of the patients. This study demonstrates the dissociation of the humoral and cellular immune response to cytomegalovirus infection in renal transplant patients and indicates the importance of the loss of cellular immunity in the appearance of infection. Previously infected patients lost their cell-mediated immunity and had reactivation infections despite the presence of serum antibody. PMID:215541

  14. Protection against simian/human immunodeficiency virus (SHIV) 89.6P in macaques after coimmunization with SHIV antigen and IL-15 plasmid

    PubMed Central

    Boyer, Jean D.; Robinson, Tara M.; Kutzler, Michele A.; Vansant, Gordon; Hokey, David A.; Kumar, Sanjeev; Parkinson, Rose; Wu, Ling; Sidhu, Maninder K.; Pavlakis, George N.; Felber, Barbara K.; Brown, Charles; Silvera, Peter; Lewis, Mark G.; Monforte, Joseph; Waldmann, Thomas A.; Eldridge, John; Weiner, David B.

    2007-01-01

    The cell-mediated immune profile induced by a recombinant DNA vaccine was assessed in the simian/HIV (SHIV) and macaque model. The vaccine strategy included coimmunization of a DNA-based vaccine alone or in combination with an optimized plasmid encoding macaque IL-15 (pmacIL-15). We observed strong induction of vaccine-specific IFN-γ-producing CD8+ and CD4+ effector T cells in the vaccination groups. Animals were subsequently challenged with 89.6p. The vaccine groups were protected from ongoing infection, and the IL-15 covaccinated group showed a more rapidly controlled infection than the group treated with DNA vaccine alone. Lymphocytes isolated from the group covaccinated with pmacIL-15 had higher cellular proliferative responses than lymphocytes isolated from the macaques that received SHIV DNA alone. Vaccine antigen activation of lymphocytes was also studied for a series of immunological molecules. Although mRNA for IFN-γ was up-regulated after antigen stimulation, the inflammatory molecules IL-8 and MMP-9 were down-regulated. These observed immune profiles are potentially reflective of the ability of the different groups to control SHIV replication. This study demonstrates that an optimized IL-15 immune adjuvant delivered with a DNA vaccine can impact the cellular immune profile in nonhuman primates and lead to enhanced suppression of viral replication. PMID:18000037

  15. Mitochondrial dysfunction as a trigger of innate immune responses and inflammation.

    PubMed

    West, A Phillip

    2017-11-01

    A growing literature indicates that mitochondria are key participants in innate immune pathways, functioning as both signaling platforms and contributing to effector responses. In addition to regulating antiviral signaling and antibacterial immunity, mitochondria are also important drivers of inflammation caused by sterile injury. Much research on mitochondrial control of immunity now centers on understanding how mitochondrial constituents released during cellular damage simulate the innate immune system. When mitochondrial integrity is compromised, mitochondrial damage-associated molecular patterns engage pattern recognition receptors, trigger inflammation, and promote pathology in an expanding list of diseases. Here, I review the emerging knowledge of mitochondrial dysfunction in innate immune responses and discuss how environmental exposures may induce mitochondrial damage to potentiate inflammation and human disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Zn2+ at a cellular crossroads

    PubMed Central

    Liang, Xiaomeng; Dempski, Robert E.; Burdette, Shawn C.

    2016-01-01

    Zinc is an essential micronutrient for cellular homeostasis. Initially proposed to only contribute to cellular viability through structural roles and non-redox catalysis, advances in quantifying changes in nM and pM quantities of Zn2+ have elucidated increasing functions as an important signaling molecule. This includes Zn2+-mediated regulation of transcription factors and subsequent protein expression, storage and release of intracellular compartments of zinc quanta into the extracellular space which modulates plasma membrane protein function, as well as intracellular signaling pathways which contribute to the immune response. This review highlights some recent advances in our understanding of zinc signaling. PMID:27010344

  17. CgA1AR-1 acts as an alpha-1 adrenergic receptor in oyster Crassostrea gigas mediating both cellular and humoral immune response.

    PubMed

    Liu, Zhaoqun; Zhou, Zhi; Wang, Lingling; Qiu, Limei; Zhang, Huan; Wang, Hao; Song, Linsheng

    2016-11-01

    We have now cloned an alpha-1 adrenergic receptor (A1AR) from the cDNA library of oyster Crassostrea gigas, designating as CgA1AR-1. The full length of CgA1AR-1 was 1149 bp and it encodes a protein of 382 amino acids containing a 7 transmembrane domain, whose putative topology was similar to the A1ARs in higher organisms and shared similarity of 19% with mammalian A1ARs according to the phylogenic analysis. After cell transfection of CgA1AR-1 into HEK293T cells and the incubation with its specific agonist norepinephrine (NE), the concentration of second messenger Ca 2+ increased significantly (p < 0.05). But, this increasing of Ca 2+ could be inhibited by adding A1AR antagonist DOX. Tissue distribution assays using qRT-PCR suggested that CgA1AR-1 mRNA was ubiquitously expressed in all the major tissues of oyster. LPS stimulation could induce the up-regulation of CgA1AR-1 mRNA in haemocytes from 12 h to 24 h post stimulation. Moreover, the blocking of CgA1AR-1 by DOX before LPS stimulation affected the mRNA expression of oyster TNF (CGI_10005109 and CGI_10006440) in haemocytes, resulting in the rise of haemocyte phagocytic rate and apoptosis index. In addition to cellular immunity, CgA1AR-1 was also involved in humoral immunity of oyster. Inhibition of CgA1AR-1 with DOX could repress the up-regulation of LZY and SOD activities caused by LPS stimulation. These results suggested that CgA1AR-1 acted as an α-1 adrenergic receptor in cetacholaminergic neuroendocrine-immune network mediating both cellular and humoral immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Induced ER-chaperones regulate a novel receptor-like kinase to mediate a viral innate immune response

    PubMed Central

    Caplan, Jeffrey L.; Zhu, Xiaohong; Mamillapalli, Padmavathi; Marathe, Rajendra; Anandalakshmi, Radhamani; Dinesh-Kumar, S. P.

    2009-01-01

    Summary The plant innate immune response requires a rapid, global reprogramming of cellular processes. Here we employed two complementary proteomic methods, two-dimensional differential in-gel electrophoresis (2D-DIGE) and iTRAQ, to identify differentially regulated proteins early during a defense response. Besides defense-related proteins, the constituents of the largest category of up-regulated proteins were cytoplasmic- and endoplasmic reticulum (ER)-residing molecular chaperones. Silencing of ER-resident protein disulfide isomerases, NbERp57 and NbP5, and the calreticulins, NbCRT2 and NbCRT3, lead to a partial loss of N immune receptor-mediated defense against Tobacco mosaic virus (TMV). Furthermore, NbCRT2 and NbCRT3 are required for the expression of a novel induced receptor-like kinase (IRK). IRK is a plasma membrane-localized protein required for the N-mediated hypersensitive response programmed cell death (HR-PCD) and resistance to TMV. These data support a model in which ER-resident chaperones are required for the accumulation of membrane bound or secreted proteins that are necessary for innate immunity. PMID:19917500

  19. Stress proteins and the immune response.

    PubMed

    Moseley, P

    2000-07-25

    The heat shock or stress response is one of the most highly conserved adaptive responses in nature. In single cell organisms, the stress response confers tolerance to a variety of stresses including hyperthermia, hyperoxia, hypoxia, and other perturbations, which alter protein synthesis. This tolerance phenomenon is also extremely important in the multicellular organism, resulting in not only thermal tolerance, but also resistance to stresses of the whole organism such as ischemia-reperfusion injury. Moreover, recent data indicates that these stress proteins have the ability to modulate the cellular immune response. Although the terms heat shock proteins (HSPs) and stress proteins are often used interchangeably, the term stress proteins includes the HSPs, the glucose-regulated proteins (GRPs) and ubiquitin. The stress proteins may be grouped by molecular weight ranging from the large 110 kDa HSP110 to ubiquitin at 8 kDa. These proteins serve as cellular chaperones, participating in protein synthesis and transport through the various cellular compartments. Because these proteins have unique cellular localizations, the chaperone function of the stress proteins often involves a transfer of peptides between stress proteins as the peptide is moved between cellular compartments. For example, HSP70 is a cytosolic and nuclear chaperone, which is critical for the transfer of cellular peptides in the mitochondrion through a hand-off that involves mitochondrial HSP60 at the inner mitochondrial membrane. Similarly, cytosolic proteins are transferred from HSP70 to gp96 as they move into the endoplasmic reticulum. The central role of the stress proteins in the transfer of peptides through the cell may be responsible for the recently recognized importance of the stress proteins in the modulation of the immune system [Feder, M.E., Hofmann, G.E., 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243-282.]. This importance in immune regulation is best addressed using Matzinger's model of the immune response - The Danger Theory of Immunity [Matzinger, P., Fuchs, E.J., 1996. Beyond self and non-self: immunity is a conversation, not a war. J. NIH Res. 8, 35-39.]. Matzinger suggests that an immune system model based on the differentiation between "self and non-self" does not easily account for the changes that occur in the organism with growth and development. Why, for example does an organism not self-destruct when the immune system encounters the myriad of new peptides generated at puberty? Instead, she proposes a model of immune function based on the ability to detect and address dangers. This model states that the basic function of all cells of the organism is appropriately timed death "from natural causes". This type of cell death, or apoptosis, generates no stress signals. If, on the other hand, a cell is "murdered" by an infectious agent or dies an untimely death due to necrosis or ischemia, the cell undergoes a stress response with the liberation of stress protein-peptide complexes into the extracellular environment upon cell lysis. Not only do they serve as a "danger signal" to alert the immune system to the death of a cell under stress, but their role as protein carriers allows the immune effector cells to survey the peptides released by this stressed cell and to activate against new or unrecognized peptides carried by the stress protein. Matzinger bases the Danger Theory of Immunity on three "Laws of Lymphotics". These laws state that: (1) resting T lymphocytes require both antigen stimulation by an antigen-presenting cell (APC) and co-stimulation with a danger signal to become activated; (2) the co-stimulatory signal must be received through the APC; and (3) T cells receiving only antigen stimulation without the co-stimulatory signal undergo apoptosis. The Danger Theory gives a simple model for both tolerance and activation. (ABSTRACT TRUNCATED)

  20. White Shrimp Litopenaeus vannamei That Have Received Gracilaria tenuistipitata Extract Show Early Recovery of Immune Parameters after Ammonia Stressing.

    PubMed

    Chen, Yu-Yuan; Chen, Jiann-Chu; Lin, Yong-Chin; Yeh, Su-Tuen; Huang, Chien-Lun

    2015-06-05

    White shrimp Litopenaeus vannamei immersed in seawater (35‰) containing Gracilaria tenuistipitata extract (GTE) at 0 (control), 400, and 600 mg/L for 3 h were exposed to 5 mg/L ammonia-N (ammonia as nitrogen), and immune parameters including hyaline cells (HCs), granular cells (GCs, including semi-granular cells), total hemocyte count (THC), phenoloxidase (PO) activity, respiratory bursts (RBs), superoxide dismutase (SOD) activity, lysozyme activity, and hemolymph protein level were examined 24~120 h post-stress. The immune parameters of shrimp immersed in 600 mg/L GTE returned to original values earlier, at 96~120 h post-stress, whereas in control shrimp they did not. In another experiment, shrimp were immersed in seawater containing GTE at 0 and 600 mg/L for 3 h and examined for transcript levels of immune-related genes at 24 h post-stress. Transcript levels of lipopolysaccharide and β-1,3-glucan binding protein (LGBP), peroxinectin (PX), cytMnSOD, mtMnSOD, and HSP70 were up-regulated at 24 h post-stress in GTE receiving shrimp. We concluded that white shrimp immersed in seawater containing GTE exhibited a capability for maintaining homeostasis by regulating cellular and humoral immunity against ammonia stress as evidenced by up-regulated gene expression and earlier recovery of immune parameters.

  1. Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance.

    PubMed

    Yamada, Akiko; Arakaki, Rieko; Saito, Masako; Kudo, Yasusei; Ishimaru, Naozumi

    2017-01-01

    Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediated immune regulation that induces beneficial or harmful effects is associated with the onset or development of immune disorders. Studies on mutations in genes encoding Fas and FasL gene of humans and mice contributed to our understanding of the pathogenesis of autoimmune diseases. Here, we review the opposing functions of Fas/FasL-mediated signaling, bilateral effects of Fas/FasL on in immune cells, and complex pathogenesis of autoimmunity mediated by Fas/FasL.

  2. Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance

    PubMed Central

    Yamada, Akiko; Arakaki, Rieko; Saito, Masako; Kudo, Yasusei; Ishimaru, Naozumi

    2017-01-01

    Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediated immune regulation that induces beneficial or harmful effects is associated with the onset or development of immune disorders. Studies on mutations in genes encoding Fas and FasL gene of humans and mice contributed to our understanding of the pathogenesis of autoimmune diseases. Here, we review the opposing functions of Fas/FasL-mediated signaling, bilateral effects of Fas/FasL on in immune cells, and complex pathogenesis of autoimmunity mediated by Fas/FasL. PMID:28424702

  3. Inability of spleen cells from chancre-immune rabbits to confer immunity to challenge with Treponema pallidum.

    PubMed Central

    Baughn, R E; Musher, D M; Simmons, C B

    1977-01-01

    Although several lines of evidence suggest that cellular immune mechanisms play a role in controlling infection due to Treponema pallidum, recent studies have shown that induction of acquired cellular resistance by antigenically unrelated organisms fails to protect rabbits against syphilitic infection, thereby casting doubt on this hypothesis. In the present paper we describe attempts to transfer immunity to syphilis by using spleen cells from chancre-immune rabbits. Intravenous infusion of 2 X 10(8) spleen lymphocytes was capable of transferring acquired cellular resistance to Listeria and delayed hypersensitivity to tuberculin. However, in eight separate experiments using outbred or inbred rabbits, 2 X 10(8) spleen cells from syphilis-immune animals failed to confer resistance to T. pallidum whether by intravenous or intradermal challenge. Mixing immune lymphocytes with treponemes immediately before intradermal inoculation also failed to confer resistance. Despite the fact that syphilitic infection stimulates cellular immune mechanisms and induces acquired cellular resistance to antigenically unrelated organisms, cellular immunity may not play an important role in immunity to syphilis. PMID:143456

  4. Onchocerciasis modulates the immune response to mycobacterial antigens

    PubMed Central

    Stewart, G R; Boussinesq, M; Coulson, T; Elson, L; Nutman, T; Bradley, J E

    1999-01-01

    Chronic helminth infection induces a type-2 cellular immune response. In contrast to this, mycobacterial infections commonly induce a type-1 immune response which is considered protective. Type-2 responses and diminished type-1 responses to mycobacteria have been previously correlated with active infection states such as pulmonary tuberculosis and lepromatous leprosy. The present study examines the immune responses of children exposed to both the helminth parasite Onchocerca volvulus and the mycobacterial infections, Mycobacterium tuberculosis and M. leprae. Proliferation of peripheral blood mononuclear cells (PBMC) and production of IL-4 in response to both helminth and mycobacterial antigen (PPD) decreased dramatically with increasing microfilarial (MF) density. Although interferon-gamma (IFN-γ) production strongly correlated with cellular proliferation, it was surprisingly not related to MF density for either antigen. IL-4 production in response to helminth antigen and PPD increased with ascending children's age. IFN-γ and cellular proliferation to PPD were not related to age, but in response to helminth antigen were significantly higher in children of age 9–12 years than children of either the younger age group (5–8 years) or the older group (13–16 years). Thus, there was a MF density-related down-regulation of cellular responsiveness and age-related skewing toward type 2 which was paralleled in response to both the helminth antigen and PPD. This parasite-induced immunomodulation of the response to mycobacteria correlates with a previous report of doubled incidence of lepromatous leprosy in onchocerciasis hyperendemic regions. Moreover, this demonstration that helminth infection in humans can modulate the immune response to a concurrent infection or immunological challenge is of critical importance to future vaccination strategies. PMID:10469056

  5. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2013-12-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.

  6. Regulatory T cells: mechanisms of differentiation and function.

    PubMed

    Josefowicz, Steven Z; Lu, Li-Fan; Rudensky, Alexander Y

    2012-01-01

    The immune system has evolved to mount an effective defense against pathogens and to minimize deleterious immune-mediated inflammation caused by commensal microorganisms, immune responses against self and environmental antigens, and metabolic inflammatory disorders. Regulatory T (Treg) cell-mediated suppression serves as a vital mechanism of negative regulation of immune-mediated inflammation and features prominently in autoimmune and autoinflammatory disorders, allergy, acute and chronic infections, cancer, and metabolic inflammation. The discovery that Foxp3 is the transcription factor that specifies the Treg cell lineage facilitated recent progress in understanding the biology of regulatory T cells. In this review, we discuss cellular and molecular mechanisms in the differentiation and function of these cells.

  7. MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells

    PubMed Central

    Jones, Russell G.; Pearce, Edward J.

    2017-01-01

    Tissue-resident immune cells must balance survival in peripheral tissues with the capacity to respond rapidly upon infection or tissue damage, and in turn couple these responses with intrinsic metabolic control and conditions in the tissue microenvironment. The serine/threonine kinase mammalian/mechanistic target of rapamycin (mTOR) is a central integrator of extracellular and intracellular growth signals and cellular metabolism and plays important roles in both innate and adaptive immune responses. This review discusses the function of mTOR signaling in the differentiation and function of tissue-resident immune cells, with focus on the role of mTOR as a metabolic sensor and its impact on metabolic regulation in innate and adaptive immune cells. We also discuss the impact of metabolic constraints in tissues on immune homeostasis and disease, and how manipulating mTOR activity with drugs such as rapamycin can modulate immunity in these contexts. PMID:28514674

  8. Mucosal and systemic anti-HIV immunity controlled by A20 in mouse dendritic cells.

    PubMed

    Hong, Bangxing; Song, Xiao-Tong; Rollins, Lisa; Berry, Lindsey; Huang, Xue F; Chen, Si-Yi

    2011-02-01

    Both mucosal and systemic immune responses are required for preventing or containing HIV transmission and chronic infection. However, currently described vaccination approaches are largely ineffective in inducing both mucosal and systemic responses. In this study, we found that the ubiquitin-editing enzyme A20--an inducible feedback inhibitor of the TNFR, RIG-I, and TLR signaling pathways that broadly controls the maturation, cytokine production, and immunostimulatory potency of DCs--restricted systemically immunized DCs to induce both robust mucosal and systemic HIV-specific cellular and humoral responses. Mechanistic studies revealed that A20 regulated DC production of retinoic acid and proinflammatory cytokines, inhibiting the expression of gut-homing receptors on T and B cells. Furthermore, A20-silenced, hyperactivated DCs exhibited an enhanced homing capacity to draining and gut-associated lymphoid tissues (GALTs) after systemic administration. Thus, this study provides insights into the role of A20 in innate immunity. This work may allow the development of an efficient HIV vaccination strategy that is capable of inducing both robust systemic and mucosal anti-HIV cellular and humoral responses.

  9. Single-cell protein secretomic signatures as potential correlates to tumor cell lineage evolution and cell–cell interaction

    PubMed Central

    Kwak, Minsuk; Mu, Luye; Lu, Yao; Chen, Jonathan J.; Brower, Kara; Fan, Rong

    2013-01-01

    Secreted proteins including cytokines, chemokines, and growth factors represent important functional regulators mediating a range of cellular behavior and cell–cell paracrine/autocrine signaling, e.g., in the immunological system (Rothenberg, 2007), tumor microenvironment (Hanahan and Weinberg, 2011), or stem cell niche (Gnecchi etal., 2008). Detection of these proteins is of great value not only in basic cell biology but also for diagnosis and therapeutic monitoring of human diseases such as cancer. However, due to co-production of multiple effector proteins from a single cell, referred to as polyfunctionality, it is biologically informative to measure a panel of secreted proteins, or secretomic signature, at the level of single cells. Recent evidence further indicates that a genetically identical cell population can give rise to diverse phenotypic differences (Niepel etal., 2009). Non-genetic heterogeneity is also emerging as a potential barrier to accurate monitoring of cellular immunity and effective pharmacological therapies (Cohen etal., 2008; Gascoigne and Taylor, 2008), but can hardly assessed using conventional approaches that do not examine cellular phenotype at the functional level. It is known that cytokines, for example, in the immune system define the effector functions and lineage differentiation of immune cells. In this article, we hypothesize that protein secretion profile may represent a universal measure to identify the definitive correlate in the larger context of cellular functions to dissect cellular heterogeneity and evolutionary lineage relationship in human cancer. PMID:23390614

  10. The essential role of G protein-coupled receptor (GPCR) signaling in regulating T cell immunity.

    PubMed

    Wang, Dashan

    2018-06-01

    The aim of this paper is to clarify the critical role of GPCR signaling in T cell immunity. The G protein-coupled receptors (GPCRs) are the most common targets in current pharmaceutical industry, and represent the largest and most versatile family of cell surface communicating molecules. GPCRs can be activated by a diverse array of ligands including neurotransmitters, chemokines as well as sensory stimuli. Therefore, GPCRs are involved in many key cellular and physiological processes, such as sense of light, taste and smell, neurotransmission, metabolism, endocrine and exocrine secretion. In recent years, GPCRs have been found to play an important role in immune system. T cell is an important type of immune cell, which plays a central role in cell-mediated immunity. A variety of GPCRs and their signaling mediators (RGS proteins, GRKs and β-arrestin) have been found to express in T cells and involved T cell-mediated immunity. We will summarize the role of GPCR signaling and their regulatory molecules in T cell activation, homeostasis and function in this article. GPCR signaling plays an important role in T cell activation, homeostasis and function. GPCR signaling is critical in regulating T cell immunity.

  11. Modulatory effects of vitamin D on peripheral cellular immunity in patients with recurrent miscarriage.

    PubMed

    Chen, Xian; Yin, Biao; Lian, Ruo-Chun; Zhang, Tao; Zhang, Hong-Zhan; Diao, Liang-Hui; Li, Yu-Ye; Huang, Chun-Yu; Liang, De-Sheng; Zeng, Yong

    2016-12-01

    We aimed to investigate the modulatory effects of vitamin D on peripheral blood cellular immune response in patients with recurrent miscarriage (RM). The effect of vitamin D on the number of peripheral blood cells, T helper 1 (Th1) cytokines, and NK cytotoxicity was measured in 99 women with RM. The percentage of CD19 + B cells and NK cytotoxicity at an effector-to-target cell (E:T) ratio of 50:1, 25:1, and 12.5:1 were significantly higher in the vitamin D insufficiency group (VDI) than in the vitamin D normal group (VDN) (P<.05 each). The proportion of TNF-α-expressing Th cells was significantly higher in the vitamin D deficiency group (VDD) than in VDN (P<.05). However, there were no significant differences between VDI and VDD. This dysregulation was significantly reduced with 1,25(OH) 2 D supplementation. The data suggest that the abnormalities of cellular immune response were observed in RM patients with a low vitamin D level, which could be regulated to some extent with 1,25(OH) 2 D supplementation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Expression of the autoantigen TRIM33/TIF1γ in skin and muscle of patients with dermatomyositis is upregulated, together with markers of cellular stress.

    PubMed

    Scholtissek, B; Ferring-Schmitt, S; Maier, J; Wenzel, J

    2017-08-01

    Dermatomyositis (DM) is an autoimmune disorder associated with a dysregulation of immune homeostasis of both the innate and adaptive immune system. Earlier data suggested that these two arms of the immune system interconnect in DM. In the current study, we analysed the association of autoantigen expression [adaptive system components: Mi2, transcriptional intermediary factor (TIF)1γ, small ubiquitin-like modifier 1 activating enzyme subunit (SAE)1, melanoma differentiation-associated protein (MDA)5] with markers of cellular stress (innate system components: MxA, p53) in skin and muscle (immunohistology and gene expression data, respectively). We found that distinctive self-antigens of DM were elevated in both skin and muscle tissue. In particular, TIF1γ expression was seen in autoimmune diseases including DM, but not in other inflammatory skin disorders. This upregulation was closely associated with p53 expression and type I interferon-regulated inflammation, suggesting that upregulation of autoantigens in the skin and muscle of patients with DM might be driven by cellular stress. Better understanding of these mechanisms could pave the way for new therapeutic concepts focusing on stress reduction. © 2017 British Association of Dermatologists.

  13. PARP13 and RNA regulation in immunity and cancer

    PubMed Central

    Todorova, Tanya; Bock, Florian; Chang, Paul

    2015-01-01

    Posttranscriptional regulation of RNA is an important mechanism for activating and resolving cellular stress responses. Poly(ADP-ribose) Polymerase-13 (PARP13), also known as ZC3HAV1 and Zinc-finger Antiviral Protein (ZAP), is an RNA-binding protein that regulates the stability, and translation of specific mRNAs, and modulates the miRNA silencing pathway to globally impact miRNA targets. These functions of PARP13 are important components of the cellular response to stress. In addition, the ability of PARP13 to restrict oncogenic viruses and to repress the pro-survival cytokine receptor TRAILR4 suggests that it can be protective against malignant transformation and cancer development. The relevance of PARP13 to human health and disease make it a promising therapeutic target. PMID:25851173

  14. Eicosanoids up-regulate production of reactive oxygen species by NADPH-dependent oxidase in Spodoptera exigua phagocytic hemocytes

    USDA-ARS?s Scientific Manuscript database

    Eicosanoids mediate cellular immune responses in insects, including phagocytosis of invading microbes. Phagocytosis entails two major steps, the internalization of microbes and the subsequent killing of them via formation of reactive oxygen species (ROS). Here, we posed the hypothesis that eicosanoi...

  15. CD40 expression in Wehi-164 cell line

    PubMed Central

    Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad

    2010-01-01

    CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body’s defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein expression of CD40 but no surface expression. These results suggest that the Wehi-164 cell line down regulates expression of CD40 on the surface for evasion of immune system. PMID:20496113

  16. CD40 expression in Wehi-164 cell line.

    PubMed

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad

    2010-07-01

    CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body's defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein expression of CD40 but no surface expression. These results suggest that the Wehi-164 cell line down regulates expression of CD40 on the surface for evasion of immune system.

  17. Dusp5 negatively regulates IL-33-mediated eosinophil survival and function

    PubMed Central

    Holmes, Derek A; Yeh, Jung-Hua; Yan, Donghong; Xu, Min; Chan, Andrew C

    2015-01-01

    Mitogen-activated protein kinase (MAPK) activation controls diverse cellular functions including cellular survival, proliferation, and apoptosis. Tuning of MAPK activation is counter-regulated by a family of dual-specificity phosphatases (DUSPs). IL-33 is a recently described cytokine that initiates Th2 immune responses through binding to a heterodimeric IL-33Rα (ST2L)/IL-1α accessory protein (IL-1RAcP) receptor that coordinates activation of ERK and NF-κB pathways. We demonstrate here that DUSP5 is expressed in eosinophils, is upregulated following IL-33 stimulation and regulates IL-33 signaling. Dusp5−/− mice have prolonged eosinophil survival and enhanced eosinophil effector functions following infection with the helminth Nippostrongylus brasiliensis. IL-33-activated Dusp5−/− eosinophils exhibit increased cellular ERK1/2 activation and BCL-XL expression that results in enhanced eosinophil survival. In addition, Dusp5−/− eosinophils demonstrate enhanced IL-33-mediated activation and effector functions. Together, these data support a role for DUSP5 as a novel negative regulator of IL-33-dependent eosinophil function and survival. PMID:25398911

  18. Injury-induced immune responses in Hydra.

    PubMed

    Wenger, Yvan; Buzgariu, Wanda; Reiter, Silke; Galliot, Brigitte

    2014-08-01

    The impact of injury-induced immune responses on animal regenerative processes is highly variable, positive or negative depending on the context. This likely reflects the complexity of the innate immune system that behaves as a sentinel in the transition from injury to regeneration. Early-branching invertebrates with high regenerative potential as Hydra provide a unique framework to dissect how injury-induced immune responses impact regeneration. A series of early cellular events likely require an efficient immune response after amputation, as antimicrobial defence, epithelial cell stretching for wound closure, migration of interstitial progenitors toward the wound, cell death, phagocytosis of cell debris, or reconstruction of the extracellular matrix. The analysis of the injury-induced transcriptomic modulations of 2636 genes annotated as immune genes in Hydra identified 43 genes showing an immediate/early pulse regulation in all regenerative contexts examined. These regulations point to an enhanced cytoprotection via ROS signaling (Nrf, C/EBP, p62/SQSMT1-l2), TNFR and TLR signaling (TNFR16-like, TRAF2l, TRAF5l, jun, fos-related, SIK2, ATF1/CREB, LRRC28, LRRC40, LRRK2), proteasomal activity (p62/SQSMT1-l1, Ced6/Gulf, NEDD8-conjugating enzyme Ubc12), stress proteins (CRYAB1, CRYAB2, HSP16.2, DnaJB9, HSP90a1), all potentially regulating NF-κB activity. Other genes encoding immune-annotated proteins such as NPYR4, GTPases, Swap70, the antiproliferative BTG1, enzymes involved in lipid metabolism (5-lipoxygenase, ACSF4), secreted clotting factors, secreted peptidases are also pulse regulated upon bisection. By contrast, metalloproteinases and antimicrobial peptide genes largely follow a context-dependent regulation, whereas the protease inhibitor α2macroglobulin gene exhibits a sustained up-regulation. Hence a complex immune response to injury is linked to wound healing and regeneration in Hydra. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Nitric Oxide-Mediated Maintenance of Redox Homeostasis Contributes to NPR1-Dependent Plant Innate Immunity Triggered by Lipopolysaccharides1[C][W

    PubMed Central

    Sun, Aizhen; Nie, Shengjun; Xing, Da

    2012-01-01

    The perception of lipopolysaccharides (LPS) by plant cells can lead to nitric oxide (NO) production and defense gene induction. However, the signaling cascades underlying these cellular responses have not yet been resolved. This work investigated the biosynthetic origin of NO and the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) to gain insight into the mechanism involved in LPS-induced resistance of Arabidopsis (Arabidopsis thaliana). Analysis of inhibitors and mutants showed that LPS-induced NO synthesis was mainly mediated by an arginine-utilizing source of NO generation. Furthermore, LPS-induced NO caused transcript accumulation of alternative oxidase genes and increased antioxidant enzyme activity, which enhanced antioxidant capacity and modulated redox state. We also analyzed the subcellular localization of NPR1 to identify the mechanism for protein-modulated plant innate immunity triggered by LPS. LPS-activated defense responses, including callose deposition and defense-related gene expression, were found to be regulated through an NPR1-dependent pathway. In summary, a significant NO synthesis induced by LPS contributes to the LPS-induced defense responses by up-regulation of defense genes and modulation of cellular redox state. Moreover, NPR1 plays an important role in LPS-triggered plant innate immunity. PMID:22926319

  20. The Role of Reactive-Oxygen-Species in Microbial Persistence and Inflammation

    PubMed Central

    Spooner, Ralee; Yilmaz, Özlem

    2011-01-01

    The mechanisms of chronic infections caused by opportunistic pathogens are of keen interest to both researchers and health professionals globally. Typically, chronic infectious disease can be characterized by an elevation in immune response, a process that can often lead to further destruction. Reactive-Oxygen-Species (ROS) have been strongly implicated in the aforementioned detrimental response by host that results in self-damage. Unlike excessive ROS production resulting in robust cellular death typically induced by acute infection or inflammation, lower levels of ROS produced by host cells are increasingly recognized to play a critical physiological role for regulating a variety of homeostatic cellular functions including growth, apoptosis, immune response, and microbial colonization. Sources of cellular ROS stimulation can include “danger-signal-molecules” such as extracellular ATP (eATP) released by stressed, infected, or dying cells. Particularly, eATP-P2X7 receptor mediated ROS production has been lately found to be a key modulator for controlling chronic infection and inflammation. There is growing evidence that persistent microbes can alter host cell ROS production and modulate eATP-induced ROS for maintaining long-term carriage. Though these processes have yet to be fully understood, exploring potential positive traits of these “injurious” molecules could illuminate how opportunistic pathogens maintain persistence through physiological regulation of ROS signaling. PMID:21339989

  1. Epigenetic Alterations in Human Papillomavirus-Associated Cancers

    PubMed Central

    Song, Christine; McLaughlin-Drubin, Margaret E.

    2017-01-01

    Approximately 15–20% of human cancers are caused by viruses, including human papillomaviruses (HPVs). Viruses are obligatory intracellular parasites and encode proteins that reprogram the regulatory networks governing host cellular signaling pathways that control recognition by the immune system, proliferation, differentiation, genomic integrity, and cell death. Given that key proteins in these regulatory networks are also subject to mutation in non-virally associated diseases and cancers, the study of oncogenic viruses has also been instrumental to the discovery and analysis of many fundamental cellular processes, including messenger RNA (mRNA) splicing, transcriptional enhancers, oncogenes and tumor suppressors, signal transduction, immune regulation, and cell cycle control. More recently, tumor viruses, in particular HPV, have proven themselves invaluable in the study of the cancer epigenome. Epigenetic silencing or de-silencing of genes can have cellular consequences that are akin to genetic mutations, i.e., the loss and gain of expression of genes that are not usually expressed in a certain cell type and/or genes that have tumor suppressive or oncogenic activities, respectively. Unlike genetic mutations, the reversible nature of epigenetic modifications affords an opportunity of epigenetic therapy for cancer. This review summarizes the current knowledge on epigenetic regulation in HPV-infected cells with a focus on those elements with relevance to carcinogenesis. PMID:28862667

  2. Glucose supplement reverses the fasting-induced suppression of cellular immunity in Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Xu, De-Li; Wang, De-Hua

    2011-10-01

    Glucose plays an important role in immunity. Three day fasting will decrease cellular immunity and blood glucose levels in Mongolian gerbils (Meriones unguiculatus). In the present study, we tested the hypothesis that glucose supplement can reverse the fasting-induced suppression in cellular immunity in gerbils. Twenty-eight male gerbils were selected and randomly divided into fed and fasting groups. Half of the gerbils in each group were then provided with either 10% glucose water or pure water. After 66 h, each gerbil was injected with phytohaemagglutinin (PHA) solution to challenge cellular immunity. Results showed that glucose supplement restored blood glucose levels in fasted gerbils to those of the fed controls. It also recovered cellular immunity, body fat mass and serum leptin levels in fasted gerbils to the values of the fed controls. Blood glucose levels were positively correlated with body fat mass, leptin levels and cellular immune responses. Thymus and spleen masses, and white blood cells in fasted gerbils were not affected by glucose supplement. In general, our data demonstrate that glucose supplement could reverse fasting-induced suppression of cellular immunity in Mongolian gerbils. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. TET1 and TET3 are essential in induction of Th2-type immunity partly through regulation of IL-4/13A expression in zebrafish model.

    PubMed

    Yang, Chao; Li, Zhuo; Kang, Wei; Tian, Yu; Yan, Yuzhu; Chen, Wei

    2016-10-10

    It has been considered that epigenetic modulation can affect a diverse array of cellular activities, in which ten eleven translocation (TET) methylcytosine dioxygenase family members refer to a group of fundamental components involved in catalyzation of 5-hydroxymethylcytosine and modification of gene expression. Even though the function of TET proteins has been gradually revealed, their roles in immune regulation are still largely unknown. Recent studies provided clues that TET2 could regulate several innate immune-related inflammatory mediators in mammals. This study sought to explore the function of TET family members in potential T-helper (Th) cell differentiation involved in adaptive immunity by utilizing a zebrafish model. As shown by results, soluble antigens could induce expression of zebrafish IL-4/13A (i.e. a pivotal Th2-type cytokine essential in Th2 cell differentiation and functions), and further trigger the expression of Th1- and Th2-related genes. It is noteworthy that this response was accompanied by the up-regulation of two TET family members (TET1 and TET3) both in immune organs (spleen and kidney) and cells (peripheral lymphocytes). Knocking-down of TET1 and TET3 will give rise to the decreased responses of IL-4/13A induction against exogenous soluble antigen stimulation, and further restrain the expression of Th2-related genes, which indicates a restrained Th2 cell differentiation. Nonetheless, TET2 did not exhibit effect on the modification of Th1/Th2 related gene expression. Hence, these data showed that TET1 and TET3 might be two significant epigenetic regulators involved in Th2 differentiation through regulation of IL-4/13A expression. This is the first report to show that TET family members play indispensable roles in Th2-type immunity, indicating an epigenetic modulation manner involved in adaptive immune regulations and responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Factor H: A Complement Regulator in Health and Disease, and a Mediator of Cellular Interactions

    PubMed Central

    Kopp, Anne; Hebecker, Mario; Svobodová, Eliška; Józsi, Mihály

    2012-01-01

    Complement is an essential part of innate immunity as it participates in host defense against infections, disposal of cellular debris and apoptotic cells, inflammatory processes and modulation of adaptive immune responses. Several soluble and membrane-bound regulators protect the host from the potentially deleterious effects of uncontrolled and misdirected complement activation. Factor H is a major soluble regulator of the alternative complement pathway, but it can also bind to host cells and tissues, protecting them from complement attack. Interactions of factor H with various endogenous ligands, such as pentraxins, extracellular matrix proteins and DNA are important in limiting local complement-mediated inflammation. Impaired regulatory as well as ligand and cell recognition functions of factor H, caused by mutations or autoantibodies, are associated with the kidney diseases: atypical hemolytic uremic syndrome and dense deposit disease and the eye disorder: age-related macular degeneration. In addition, factor H binds to receptors on host cells and is involved in adhesion, phagocytosis and modulation of cell activation. In this review we discuss current concepts on the physiological and pathophysiological roles of factor H in light of new data and recent developments in our understanding of the versatile roles of factor H as an inhibitor of complement activation and inflammation, as well as a mediator of cellular interactions. A detailed knowledge of the functions of factor H in health and disease is expected to unravel novel therapeutic intervention possibilities and to facilitate the development or improvement of therapies. PMID:24970127

  5. dOCRL maintains immune cell quiescence by regulating endosomal traffic

    PubMed Central

    Del Signore, Steven J.; Biber, Sarah A.; Lehmann, Katherine S.; Heimler, Stephanie R.; Rosenfeld, Benjamin H.; Eskin, Tania L.

    2017-01-01

    Lowe Syndrome is a developmental disorder characterized by eye, kidney, and neurological pathologies, and is caused by mutations in the phosphatidylinositol-5-phosphatase OCRL. OCRL plays diverse roles in endocytic and endolysosomal trafficking, cytokinesis, and ciliogenesis, but it is unclear which of these cellular functions underlie specific patient symptoms. Here, we show that mutation of Drosophila OCRL causes cell-autonomous activation of hemocytes, which are macrophage-like cells of the innate immune system. Among many cell biological defects that we identified in docrl mutant hemocytes, we pinpointed the cause of innate immune cell activation to reduced Rab11-dependent recycling traffic and concomitantly increased Rab7-dependent late endosome traffic. Loss of docrl amplifies multiple immune-relevant signals, including Toll, Jun kinase, and STAT, and leads to Rab11-sensitive mis-sorting and excessive secretion of the Toll ligand Spåtzle. Thus, docrl regulation of endosomal traffic maintains hemocytes in a poised, but quiescent state, suggesting mechanisms by which endosomal misregulation of signaling may contribute to symptoms of Lowe syndrome. PMID:29028801

  6. Too sweet to resist: Control of immune cell function by O-GlcNAcylation.

    PubMed

    de Jesus, Tristan; Shukla, Sudhanshu; Ramakrishnan, Parameswaran

    2018-06-02

    O-linked β-N-acetyl glucosamine modification (O-GlcNAcylation) is a dynamic, reversible posttranslational modification of cytoplasmic and nuclear proteins. O-GlcNAcylation depends on nutrient availability and the hexosamine biosynthetic pathway (HBP), which produces the donor substrate UDP-GlcNAc. O-GlcNAcylation is mediated by a single enzyme, O-GlcNAc transferase (OGT), which adds GlcNAc and another enzyme, O-GlcNAcase (OGA), which removes O-GlcNAc from proteins. O-GlcNAcylation controls vital cellular processes including transcription, translation, the cell cycle, metabolism, and cellular stress. Aberrant O-GlcNAcylation has been implicated in various pathologies including Alzheimer's disease, diabetes, obesity, and cancer. Growing evidences indicate that O-GlcNAcylation plays crucial roles in regulating immunity and inflammatory responses, especially under hyperglycemic conditions. This review will highlight the emerging functions of O-GlcNAcylation in mammalian immunity under physiological and various pathological conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Targeting inflammation in pancreatic cancer: Clinical translation

    PubMed Central

    Steele, Colin William; Kaur Gill, Nina Angharad; Jamieson, Nigel Balfour; Carter, Christopher Ross

    2016-01-01

    Preclinical modelling studies are beginning to aid development of therapies targeted against key regulators of pancreatic cancer progression. Pancreatic cancer is an aggressive, stromally-rich tumor, from which few people survive. Within the tumor microenvironment cellular and extracellular components exist, shielding tumor cells from immune cell clearance, and chemotherapy, enhancing progression of the disease. The cellular component of this microenvironment consists mainly of stellate cells and inflammatory cells. New findings suggest that manipulation of the cellular component of the tumor microenvironment is possible to promote immune cell killing of tumor cells. Here we explore possible immunogenic therapeutic strategies. Additionally extracellular stromal elements play a key role in protecting tumor cells from chemotherapies targeted at the pancreas. We describe the experimental findings and the pitfalls associated with translation of stromally targeted therapies to clinical trial. Finally, we discuss the key inflammatory signal transducers activated subsequent to driver mutations in oncogenic Kras in pancreatic cancer. We present the preclinical findings that have led to successful early trials of STAT3 inhibitors in pancreatic adenocarcinoma. PMID:27096033

  8. Vitamin K3 suppressed inflammatory and immune responses in a redox-dependent manner.

    PubMed

    Checker, Rahul; Sharma, Deepak; Sandur, Santosh K; Khan, Nazir M; Patwardhan, Raghavendra S; Kohli, Vineet; Sainis, Krishna B

    2011-08-01

    Recent investigations suggest that cellular redox status may play a key role in the regulation of several immune functions. Treatment of lymphocytes with vitamin K3 (menadione) resulted in a significant decrease in cellular GSH/GSSG ratio and concomitant increase in the ROS levels. It also suppressed Concanavalin A (Con A)-induced proliferation and cytokine production in lymphocytes and CD4 + T cells in vitro. Immunosuppressive effects of menadione were abrogated only by thiol containing antioxidants. Mass spectrometric analysis showed that menadione directly interacted with thiol antioxidant GSH. Menadione completely suppressed Con A-induced activation of ERK, JNK and NF-κB in lymphocytes. It also significantly decreased the homeostasis driven proliferation of syngeneic CD4 + T cells. Further, menadione significantly delayed graft-vs-host disease morbidity and mortality in mice. Menadione suppressed phytohemagglutinin-induced cytokine production in human peripheral blood mononuclear cells. These results reveal that cellular redox perturbation by menadione is responsible for significant suppression of lymphocyte responses.

  9. Alarmins and immunity.

    PubMed

    Yang, De; Han, Zhen; Oppenheim, Joost J

    2017-11-01

    More than a decade has passed since the conceptualization of the "alarmin" hypothesis. The alarmin family has been expanding in terms of both number and the concept. It has recently become clear that alarmins play important roles as initiators and participants in a diverse range of physiological and pathophysiological processes such as host defense, regulation of gene expression, cellular homeostasis, wound healing, inflammation, allergy, autoimmunity, and oncogenesis. Here, we provide a general view on the participation of alarmins in the induction of innate and adaptive immune responses, as well as their contribution to tumor immunity. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  10. Toxicology and cellular effect of manufactured nanomaterials

    DOEpatents

    Chen, Fanqing

    2014-07-22

    The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.

  11. Effects of water extract of Curcuma longa (L.) roots on immunity and telomerase function.

    PubMed

    Pan, Min-Hsiung; Wu, Jia-Ching; Ho, Chi-Tang; Badmaev, Vladimir

    2017-05-12

    Background Immunity and Longevity Methods A water extract of Curcuma longa (L.) [vern. Turmeric] roots (TurmericImmune™) standardized for a minimum 20 % of turmeric polysaccharides ukonan A, B, C and D was evaluated for its biological properties in in vitro tissue culture studies. Results The water extract of turmeric (TurP) exhibited induced-nitric oxide (NO) production in RAW264.7 macrophages. These results suggested the immunomodulatory effects of TurP. In addition, the polysaccharides up-regulated function of telomerase reverse transcriptase (TERT) equally to the phenolic compound from turmeric, curcumin. Conclusions The ukonan family of polysaccharides may assist in promoting cellular immune responses, tissue repair and lifespan by enhancing immune response and telomere function.

  12. Radiation-induced effects and the immune system in cancer

    PubMed Central

    Kaur, Punit; Asea, Alexzander

    2012-01-01

    Chemotherapy and radiation therapy (RT) are standard therapeutic modalities for patients with cancers, and could induce various tumor cell death modalities, releasing tumor-derived antigens as well as danger signals that could either be captured for triggering anti-tumor immune response. Historic studies examining tissue and cellular responses to RT have predominantly focused on damage caused to proliferating malignant cells leading to their death. However, there is increasing evidence that RT also leads to significant alterations in the tumor microenvironment, particularly with respect to effects on immune cells and infiltrating tumors. This review will focus on immunologic consequences of RT and discuss the therapeutic reprogramming of immune responses in tumors and how it regulates efficacy and durability to RT. PMID:23251903

  13. Radiation-induced effects and the immune system in cancer.

    PubMed

    Kaur, Punit; Asea, Alexzander

    2012-01-01

    Chemotherapy and radiation therapy (RT) are standard therapeutic modalities for patients with cancers, and could induce various tumor cell death modalities, releasing tumor-derived antigens as well as danger signals that could either be captured for triggering anti-tumor immune response. Historic studies examining tissue and cellular responses to RT have predominantly focused on damage caused to proliferating malignant cells leading to their death. However, there is increasing evidence that RT also leads to significant alterations in the tumor microenvironment, particularly with respect to effects on immune cells and infiltrating tumors. This review will focus on immunologic consequences of RT and discuss the therapeutic reprogramming of immune responses in tumors and how it regulates efficacy and durability to RT.

  14. The Developmental Intestinal Regulator ELT-2 Controls p38-Dependent Immune Responses in Adult C. elegans

    PubMed Central

    Block, Dena H. S.; Twumasi-Boateng, Kwame; Kang, Hae Sung; Carlisle, Jolie A.; Hanganu, Alexandru; Lai, Ty Yu-Jen; Shapira, Michael

    2015-01-01

    GATA transcription factors play critical roles in cellular differentiation and development. However, their roles in mature tissues are less understood. In C. elegans larvae, the transcription factor ELT-2 regulates terminal differentiation of the intestine. It is also expressed in the adult intestine, where it was suggested to maintain intestinal structure and function, and where it was additionally shown to contribute to infection resistance. To study the function of elt-2 in adults we characterized elt-2-dependent gene expression following its knock-down specifically in adults. Microarray analysis identified two ELT-2-regulated gene subsets: one, enriched for hydrolytic enzymes, pointed at regulation of constitutive digestive functions as a dominant role of adult elt-2; the second was enriched for immune genes that are induced in response to Pseudomonas aeruginosa infection. Focusing on the latter, we used genetic analyses coupled to survival assays and quantitative RT-PCR to interrogate the mechanism(s) through which elt-2 contributes to immunity. We show that elt-2 controls p38-dependent gene induction, cooperating with two p38-activated transcription factors, ATF-7 and SKN-1. This demonstrates a mechanism through which the constitutively nuclear elt-2 can impact induced responses, and play a dominant role in C. elegans immunity. PMID:26016853

  15. Neuroimmune Axes of the Blood–Brain Barriers and Blood–Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions

    PubMed Central

    Erickson, Michelle A.

    2018-01-01

    Central nervous system (CNS) barriers predominantly mediate the immune-privileged status of the brain, and are also important regulators of neuroimmune communication. It is increasingly appreciated that communication between the brain and immune system contributes to physiologic processes, adaptive responses, and disease states. In this review, we discuss the highly specialized features of brain barriers that regulate neuroimmune communication in health and disease. In section I, we discuss the concept of immune privilege, provide working definitions of brain barriers, and outline the historical work that contributed to the understanding of CNS barrier functions. In section II, we discuss the unique anatomic, cellular, and molecular characteristics of the vascular blood–brain barrier (BBB), blood–cerebrospinal fluid barrier, and tanycytic barriers that confer their functions as neuroimmune interfaces. In section III, we consider BBB-mediated neuroimmune functions and interactions categorized as five neuroimmune axes: disruption, responses to immune stimuli, uptake and transport of immunoactive substances, immune cell trafficking, and secretions of immunoactive substances. In section IV, we discuss neuroimmune functions of CNS barriers in physiologic and disease states, as well as pharmacological interventions for CNS diseases. Throughout this review, we highlight many recent advances that have contributed to the modern understanding of CNS barriers and their interface functions. PMID:29496890

  16. Innate Immune Cytokines, Fibroblast Phenotypes, and Regulation of Extracellular Matrix in Lung.

    PubMed

    Richards, Carl D

    2017-02-01

    Chronic inflammation can be caused by adaptive immune responses in autoimmune and allergic conditions, driven by a T lymphocyte subset balance (TH1, TH2, Th17, Th22, and/or Treg) and skewed cellular profiles in an antigen-specific manner. However, several chronic inflammatory diseases have no clearly defined adaptive immune mechanisms that drive chronicity. These conditions include those that affect the lung such as nonatopic asthma or idiopathic pulmonary fibrosis comprising significant health problems. The remodeling of extracellular matrix (ECM) causes organ dysfunction, and it is largely generated by fibroblasts as the major cell controlling net ECM. As such, these are potential targets of treatment approaches in the context of ECM pathology. Fibroblast phenotypes contribute to ECM and inflammatory cell accumulation, and they are integrated into chronic disease mechanisms including cancer. Evidence suggests that innate cytokine responses may be critical in nonallergic/nonautoimmune disease, and they enable environmental agent exposure mechanisms that are independent of adaptive immunity. Innate immune cytokines derived from macrophage subsets (M1/M2) and innate lymphoid cell (ILC) subsets can directly regulate fibroblast function. We also suggest that STAT3-activating gp130 cytokines can sensitize fibroblasts to the innate cytokine milieu to drive phenotypes and exacerbate existing adaptive responses. Here, we review evidence exploring innate cytokine regulation of fibroblast behavior.

  17. Th1 stimulatory proteins of Leishmania donovani: comparative cellular and protective responses of rTriose phosphate isomerase, rProtein disulfide isomerase and rElongation factor-2 in combination with rHSP70 against visceral leishmaniasis.

    PubMed

    Jaiswal, Anil Kumar; Khare, Prashant; Joshi, Sumit; Kushawaha, Pramod Kumar; Sundar, Shyam; Dube, Anuradha

    2014-01-01

    In visceral leishmaniasis, the recovery from the disease is always associated with the generation of Th1-type of cellular responses. Based on this, we have previously identified several Th1-stimulatory proteins of Leishmania donovani -triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and elongation factor-2 (EL-2) etc. including heat shock protein 70 (HSP70) which induced Th1-type of cellular responses in both cured Leishmania patients/hamsters. Since, HSPs, being the logical targets for vaccines aimed at augmenting cellular immunity and can be early targets in the immune response against intracellular pathogens; they could be exploited as vaccine/adjuvant to induce long-term immunity more effectively. Therefore, in this study, we checked whether HSP70 can further enhance the immunogenicity and protective responses of the above said Th1-stimulatory proteins. Since, in most of the studies, immunogenicity of HSP70 of L. donovani was assessed in native condition, herein we generated recombinant HSP70 and tested its potential to stimulate immune responses in lymphocytes of cured Leishmania infected hamsters as well as in the peripheral blood mononuclear cells (PBMCs) of cured patients of VL either individually or in combination with above mentioned recombinant proteins. rLdHSP70 alone elicited strong cellular responses along with remarkable up-regulation of IFN-γ and IL-12 cytokines and extremely lower level of IL-4 and IL-10. Among the various combinations, rLdHSP70 + rLdPDI emerged as superior one augmenting improved cellular responses followed by rLdHSP70 + rLdEL-2. These combinations were further evaluated for its protective potential wherein rLdHSP70 + rLdPDI again conferred utmost protection (∼80%) followed by rLdHSP70 + rLdEL-2 (∼75%) and generated a strong cellular immune response with significant increase in the levels of iNOS transcript as well as IFN-γ and IL-12 cytokines which was further supported by the high level of IgG2 antibody in vaccinated animals. These observations indicated that vaccine(s) based on combination of HSP70 with Th1-stimulatory protein(s) may be a viable proposition against intracellular pathogens.

  18. Th1 Stimulatory Proteins of Leishmania donovani: Comparative Cellular and Protective Responses of rTriose Phosphate Isomerase, rProtein Disulfide Isomerase and rElongation Factor-2 in Combination with rHSP70 against Visceral Leishmaniasis

    PubMed Central

    Jaiswal, Anil Kumar; Khare, Prashant; Joshi, Sumit; Kushawaha, Pramod Kumar; Sundar, Shyam; Dube, Anuradha

    2014-01-01

    In visceral leishmaniasis, the recovery from the disease is always associated with the generation of Th1-type of cellular responses. Based on this, we have previously identified several Th1-stimulatory proteins of Leishmania donovani -triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and elongation factor-2 (EL-2) etc. including heat shock protein 70 (HSP70) which induced Th1-type of cellular responses in both cured Leishmania patients/hamsters. Since, HSPs, being the logical targets for vaccines aimed at augmenting cellular immunity and can be early targets in the immune response against intracellular pathogens; they could be exploited as vaccine/adjuvant to induce long-term immunity more effectively. Therefore, in this study, we checked whether HSP70 can further enhance the immunogenicity and protective responses of the above said Th1-stimulatory proteins. Since, in most of the studies, immunogenicity of HSP70 of L. donovani was assessed in native condition, herein we generated recombinant HSP70 and tested its potential to stimulate immune responses in lymphocytes of cured Leishmania infected hamsters as well as in the peripheral blood mononuclear cells (PBMCs) of cured patients of VL either individually or in combination with above mentioned recombinant proteins. rLdHSP70 alone elicited strong cellular responses along with remarkable up-regulation of IFN-γ and IL-12 cytokines and extremely lower level of IL-4 and IL-10. Among the various combinations, rLdHSP70 + rLdPDI emerged as superior one augmenting improved cellular responses followed by rLdHSP70 + rLdEL-2. These combinations were further evaluated for its protective potential wherein rLdHSP70 + rLdPDI again conferred utmost protection (∼80%) followed by rLdHSP70 + rLdEL-2 (∼75%) and generated a strong cellular immune response with significant increase in the levels of iNOS transcript as well as IFN-γ and IL-12 cytokines which was further supported by the high level of IgG2 antibody in vaccinated animals. These observations indicated that vaccine(s) based on combination of HSP70 with Th1-stimulatory protein(s) may be a viable proposition against intracellular pathogens. PMID:25268700

  19. White Shrimp Litopenaeus vannamei That Have Received Gracilaria tenuistipitata Extract Show Early Recovery of Immune Parameters after Ammonia Stressing

    PubMed Central

    Chen, Yu-Yuan; Chen, Jiann-Chu; Lin, Yong-Chin; Yeh, Su-Tuen; Huang, Chien-Lun

    2015-01-01

    White shrimp Litopenaeus vannamei immersed in seawater (35‰) containing Gracilaria tenuistipitata extract (GTE) at 0 (control), 400, and 600 mg/L for 3 h were exposed to 5 mg/L ammonia-N (ammonia as nitrogen), and immune parameters including hyaline cells (HCs), granular cells (GCs, including semi-granular cells), total hemocyte count (THC), phenoloxidase (PO) activity, respiratory bursts (RBs), superoxide dismutase (SOD) activity, lysozyme activity, and hemolymph protein level were examined 24~120 h post-stress. The immune parameters of shrimp immersed in 600 mg/L GTE returned to original values earlier, at 96~120 h post-stress, whereas in control shrimp they did not. In another experiment, shrimp were immersed in seawater containing GTE at 0 and 600 mg/L for 3 h and examined for transcript levels of immune-related genes at 24 h post-stress. Transcript levels of lipopolysaccharide and β-1,3-glucan binding protein (LGBP), peroxinectin (PX), cytMnSOD, mtMnSOD, and HSP70 were up-regulated at 24 h post-stress in GTE receiving shrimp. We concluded that white shrimp immersed in seawater containing GTE exhibited a capability for maintaining homeostasis by regulating cellular and humoral immunity against ammonia stress as evidenced by up-regulated gene expression and earlier recovery of immune parameters. PMID:26058012

  20. Immune modulation with high-dose heat-shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis.

    PubMed

    Chandawarkar, Rajiv Y; Wagh, Mihir S; Kovalchin, Joseph T; Srivastava, Pramod

    2004-04-01

    Immunization with heat-shock protein (HSP) gp96 elicits protective immunity to the cancer or virus-infected cells from which it is derived. Low doses of gp96 generate immunity, while doses 10 times the immunizing dose do not. We show here that injection of high doses of gp96 generates CD4(+) T cells that down-regulate a variety of ongoing immune responses. Immunization with high doses of gp96 prevents myelin basic protein- or proteolipid protein-induced autoimmune encephalomyelitis in SJL mice and the onset of diabetes in non-obese diabetic mice. The suppression of immune response can be adoptively transferred with CD4(+) cells and does not partition with the CD25 phenotype. The immunomodulatory properties of gp96 (and possibly other HSP) may be used for antigen-specific activation or suppression of cellular immune responses. The latter may form the basis for novel immunotherapies for autoimmune diseases.

  1. Protein tyrosine kinase and mitogen-activated protein kinase signalling pathways contribute to differences in heterophil-mediated innate immune responsiveness between two lines of broilers

    USDA-ARS?s Scientific Manuscript database

    Protein tyrosine phosphorylation mediates signal transduction of cellular processes, with protein tyrosine kinases (PTKs) regulating virtually all signaling events. The mitogen-activated protein kinase (MAPK) super-family consists of three conserved pathways that convert receptor activation into ce...

  2. Chicken macrophages infected with Salmonella (S.) Enteritidis or S. heidelberg produce differential responses in immune and metabolic signaling pathways

    USDA-ARS?s Scientific Manuscript database

    Protein kinases act in coordination with phosphatases to control protein phosphorylation and regulate signaling pathways and cellular processes involved in nearly every functions of cell life. Salmonella are known to manipulate the host kinase network to gain entrance and survive inside host cells....

  3. Roles and regulations of the ETS transcription factor ELF4/MEF

    PubMed Central

    Suico, Mary Ann; Shuto, Tsuyoshi; Kai, Hirofumi

    2017-01-01

    Abstract Most E26 transformation-specific (ETS) transcription factors are involved in the pathogenesis and progression of cancer. This is in part due to the roles of ETS transcription factors in basic biological processes such as growth, proliferation, and differentiation, and also because of their regulatory functions that have physiological relevance in tumorigenesis, immunity, and basal cellular homoeostasis. A member of the E74-like factor (ELF) subfamily of the ETS transcription factor family—myeloid elf-1-like factor (MEF), designated as ELF4—has been shown to be critically involved in immune response and signalling, osteogenesis, adipogenesis, cancer, and stem cell quiescence. ELF4 carries out these functions as a transcriptional activator or through interactions with its partner proteins. Mutations in ELF4 cause aberrant interactions and induce downstream processes that may lead to diseased cells. Knowing how ELF4 impinges on certain cellular processes and how it is regulated in the cells can lead to a better understanding of the physiological and pathological consequences of modulated ELF4 activity. PMID:27932483

  4. Glucose metabolism regulates T cell activation, differentiation, and functions.

    PubMed

    Palmer, Clovis S; Ostrowski, Matias; Balderson, Brad; Christian, Nicole; Crowe, Suzanne M

    2015-01-01

    The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation, and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The "Warburg effect" originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here, we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.

  5. PARylation of the forkhead-associated domain protein DAWDLE regulates plant immunity.

    PubMed

    Feng, Baomin; Ma, Shisong; Chen, Sixue; Zhu, Ning; Zhang, Shuxin; Yu, Bin; Yu, Yu; Le, Brandon; Chen, Xuemei; Dinesh-Kumar, Savithramma P; Shan, Libo; He, Ping

    2016-12-01

    Protein poly(ADP-ribosyl)ation (PARylation) primarily catalyzed by poly(ADP-ribose) polymerases (PARPs) plays a crucial role in controlling various cellular responses. However, PARylation targets and their functions remain largely elusive. Here, we deployed an Arabidopsis protein microarray coupled with in vitro PARylation assays to globally identify PARylation targets in plants. Consistent with the essential role of PARylation in plant immunity, the forkhead-associated (FHA) domain protein DAWDLE (DDL), one of PARP2 targets, positively regulates plant defense to both adapted and non-adapted pathogens. Arabidopsis PARP2 interacts with and PARylates DDL, which was enhanced upon treatment of bacterial flagellin. Mass spectrometry and mutagenesis analysis identified multiple PARylation sites of DDL by PARP2. Genetic complementation assays indicate that DDL PARylation is required for its function in plant immunity. In contrast, DDL PARylation appears to be dispensable for its previously reported function in plant development partially mediated by the regulation of microRNA biogenesis. Our study uncovers many previously unknown PARylation targets and points to the distinct functions of DDL in plant immunity and development mediated by protein PARylation and small RNA biogenesis, respectively. © 2016 The Authors.

  6. BamHI-A rightward frame 1, an Epstein–Barr virus-encoded oncogene and immune modulator

    PubMed Central

    Hoebe, Eveline K; Le Large, Tessa Y S; Greijer, Astrid E; Middeldorp, Jaap M

    2013-01-01

    Epstein–Barr virus (EBV) causes several benign and malignant disorders of lymphoid and epithelial origin. EBV-related tumors display distinct patterns of viral latent gene expression, of which the BamHI-A rightward frame 1 (BARF1) is selectively expressed in carcinomas, regulated by cellular differentiation factors including ΔNp63α. BARF1 functions as a viral oncogene, immortalizing and transforming epithelial cells of different origin by acting as a mitogenic growth factor, inducing cyclin-D expression, and up-regulating antiapoptotic Bcl-2, stimulating host cell growth and survival. In addition, secreted hexameric BARF1 has immune evasive properties, functionally corrupting macrophage colony stimulating factor, as supported by recent functional and structural data. Therefore, BARF1, an intracellular and secreted protein, not only has multiple pathogenic functions but also can function as a target for immune responses. Deciphering the role of BARF1 in EBV biology will contribute to novel diagnostic and treatment options for EBV-driven carcinomas. Herein, we discuss recent insights on the regulation of BARF1 expression and aspects of structure-function relating to its oncogenic and immune suppressive properties. © 2013 The Authors. Reviews in Medical Virology published by John Wiley & Sons, Ltd. PMID:23996634

  7. Minocycline attenuates HIV-1 infection and suppresses chronic immune activation in humanized NOD/LtsZ-scidIL-2Rγnull mice

    PubMed Central

    Singh, Maneesh; Singh, Pratibha; Vaira, Dolores; Amand, Mathieu; Rahmouni, Souad; Moutschen, Michel

    2014-01-01

    More than a quarter of a century of research has established chronic immune activation and dysfunctional T cells as central features of chronic HIV infection and subsequent immunodeficiency. Consequently, the search for a new immunomodulatory therapy that could reduce immune activation and improve T-cell function has been increased. However, the lack of small animal models for in vivo HIV study has hampered progress. In the current study, we have investigated a model of cord blood haematopoietic progenitor cells (CB-HPCs) -transplanted humanized NOD/LtsZ-scidIL-2Rγnull mice in which progression of HIV infection is associated with widespread chronic immune activation and inflammation. Indeed, HIV infection in humanized NSG mice caused up-regulation of several T-cell immune activation markers such as CD38, HLA-DR, CD69 and co-receptor CCR5. T-cell exhaustion markers PD-1 and CTLA-4 were found to be significantly up-regulated on T cells. Moreover, increased plasmatic levels of lipopolysaccharide, sCD14 and interleukin-10 were also observed in infected mice. Treatment with minocycline resulted in a significant decrease of expression of cellular and plasma immune activation markers, inhibition of HIV replication and improved T-cell counts in HIV-infected humanized NSG mice. The study demonstrates that minocycline could be an effective, low-cost adjunctive treatment to regulate chronic immune activation and replication of HIV. PMID:24409837

  8. BIOMATERIAL STRATEGIES FOR IMMUNOMODULATION

    PubMed Central

    Hotaling, Nathan A.; Tang, Li; Irvine, Darrell J.; Babensee, Julia E.

    2016-01-01

    Strategies to enhance, suppress, or qualitatively shape the immune response are of importance for diverse biomedical applications, such as the development of new vaccines, treatments for autoimmune diseases and allergies, strategies for regenerative medicine, and immunotherapies for cancer. However, the intricate cellular and molecular signals regulating the immune system are major hurdles to predictably manipulating the immune response and developing safe and effective therapies. To meet this challenge, biomaterials are being developed that control how, where, and when immune cells are stimulated in vivo, and that can finely control their differentiation in vitro. We review recent advances in the field of biomaterials for immunomodulation, focusing particularly on designing biomaterials to provide controlled immunostimulation, targeting drugs and vaccines to lymphoid organs, and serving as scaffolds to organize immune cells and emulate lymphoid tissues. These ongoing efforts highlight the many ways in which biomaterials can be brought to bear to engineer the immune system. PMID:26421896

  9. Immunomodulatory effects of Hericium erinaceus derived polysaccharides are mediated by intestinal immunology.

    PubMed

    Sheng, Xiaotong; Yan, Jingmin; Meng, Yue; Kang, Yuying; Han, Zhen; Tai, Guihua; Zhou, Yifa; Cheng, Hairong

    2017-03-22

    This study was aimed at investigating the immunomodulating activity of Hericium erinaceus polysaccharide (HEP) in mice, by assessing splenic lymphocyte proliferation (cell-mediated immunity), serum hemolysin levels (humoral immunity), phagocytic capacity of peritoneal cavity phagocytes (macrophage phagocytosis), and NK cell activity. ELISA of immunoglobulin A (SIgA) in the lamina propria, and western blotting of small intestinal proteins were also performed to gain insight into the mechanism by which HEP affects the intestinal immune system. Here, we report that HEP improves immune function by functionally enhancing cell-mediated and humoral immunity, macrophage phagocytosis, and NK cell activity. In addition, HEP was found to upregulate the secretion of SIgA and activate the MAPK and AKT cellular signaling pathways in the intestine. In conclusion, all these results allow us to postulate that the immunomodulatory effects of HEP are most likely attributed to the effective regulation of intestinal mucosal immune activity.

  10. Innate cellular sources of interleukin-17A regulate macrophage accumulation in cigarette- smoke-induced lung inflammation in mice.

    PubMed

    Bozinovski, Steven; Seow, Huei Jiunn; Chan, Sheau Pyng Jamie; Anthony, Desiree; McQualter, Jonathan; Hansen, Michelle; Jenkins, Brendan J; Anderson, Gary P; Vlahos, Ross

    2015-11-01

    Cigarette smoke (CS) is the major cause of chronic obstructive pulmonary disease (COPD). Interleukin-17A (IL-17A) is a pivotal cytokine that regulates lung immunity and inflammation. The aim of the present study was to investigate how IL-17A regulates CS-induced lung inflammation in vivo. IL-17A knockout (KO) mice and neutralization of IL-17A in wild-type (WT) mice reduced macrophage and neutrophil recruitment and chemokine (C-C motif) ligand 2 (CCL2), CCL3 and matrix metalloproteinase (MMP)-12 mRNA expression in response to acute CS exposure. IL-17A expression was increased in non-obese diabetic (NOD) severe combined immunodeficiency SCID) mice with non-functional B- and T-cells over a 4-week CS exposure period, where macrophages accumulated to the same extent as in WT mice. Gene expression analysis by QPCR (quantitative real-time PCR) of isolated immune cell subsets detected increased levels of IL-17A transcript in macrophages, neutrophils and NK/NKT cells in the lungs of CS-exposed mice. In order to further explore the relative contribution of innate immune cellular sources, intracellular IL-17A staining was performed. In the present study, we demonstrate that CS exposure primes natural killer (NK), natural killer T (NKT) and γδ T-cells to produce more IL-17A protein and CS alone increased the frequency of IL17+ γδ T-cells in the lung, whereas IL-17A protein was not detected in macrophages and neutrophils. Our data suggest that activation of innate cellular sources of IL-17A is an essential mediator of macrophage accumulation in CS-exposed lungs. Targeting non-conventional T-cell sources of IL-17A may offer an alternative strategy to reduce pathogenic macrophages in COPD. © 2015 Authors; published by Portland Press Limited.

  11. EVM005: an ectromelia-encoded protein with dual roles in NF-κB inhibition and virulence.

    PubMed

    van Buuren, Nicholas; Burles, Kristin; Schriewer, Jill; Mehta, Ninad; Parker, Scott; Buller, R Mark; Barry, Michele

    2014-08-01

    Poxviruses contain large dsDNA genomes encoding numerous open reading frames that manipulate cellular signalling pathways and interfere with the host immune response. The NF-κB signalling cascade is an important mediator of innate immunity and inflammation, and is tightly regulated by ubiquitination at several key points. A critical step in NF-κB activation is the ubiquitination and degradation of the inhibitor of kappaB (IκBα), by the cellular SCFβ-TRCP ubiquitin ligase complex. We show here that upon stimulation with TNFα or IL-1β, Orthopoxvirus-infected cells displayed an accumulation of phosphorylated IκBα, indicating that NF-κB activation was inhibited during poxvirus infection. Ectromelia virus is the causative agent of lethal mousepox, a natural disease that is fatal in mice. Previously, we identified a family of four ectromelia virus genes (EVM002, EVM005, EVM154 and EVM165) that contain N-terminal ankyrin repeats and C-terminal F-box domains that interact with the cellular SCF ubiquitin ligase complex. Since degradation of IκBα is catalyzed by the SCFβ-TRCP ubiquitin ligase, we investigated the role of the ectromelia virus ankyrin/F-box protein, EVM005, in the regulation of NF-κB. Expression of Flag-EVM005 inhibited both TNFα- and IL-1β-stimulated IκBα degradation and p65 nuclear translocation. Inhibition of the NF-κB pathway by EVM005 was dependent on the F-box domain, and interaction with the SCF complex. Additionally, ectromelia virus devoid of EVM005 was shown to inhibit NF-κB activation, despite lacking the EVM005 open reading frame. Finally, ectromelia virus devoid of EVM005 was attenuated in both A/NCR and C57BL/6 mouse models, indicating that EVM005 is required for virulence and immune regulation in vivo.

  12. EVM005: An Ectromelia-Encoded Protein with Dual Roles in NF-κB Inhibition and Virulence

    PubMed Central

    Schriewer, Jill; Mehta, Ninad; Parker, Scott; Buller, R. Mark; Barry, Michele

    2014-01-01

    Poxviruses contain large dsDNA genomes encoding numerous open reading frames that manipulate cellular signalling pathways and interfere with the host immune response. The NF-κB signalling cascade is an important mediator of innate immunity and inflammation, and is tightly regulated by ubiquitination at several key points. A critical step in NF-κB activation is the ubiquitination and degradation of the inhibitor of kappaB (IκBα), by the cellular SCFβ-TRCP ubiquitin ligase complex. We show here that upon stimulation with TNFα or IL-1β, Orthopoxvirus-infected cells displayed an accumulation of phosphorylated IκBα, indicating that NF-κB activation was inhibited during poxvirus infection. Ectromelia virus is the causative agent of lethal mousepox, a natural disease that is fatal in mice. Previously, we identified a family of four ectromelia virus genes (EVM002, EVM005, EVM154 and EVM165) that contain N-terminal ankyrin repeats and C-terminal F-box domains that interact with the cellular SCF ubiquitin ligase complex. Since degradation of IκBα is catalyzed by the SCFβ-TRCP ubiquitin ligase, we investigated the role of the ectromelia virus ankyrin/F-box protein, EVM005, in the regulation of NF-κB. Expression of Flag-EVM005 inhibited both TNFα- and IL-1β-stimulated IκBα degradation and p65 nuclear translocation. Inhibition of the NF-κB pathway by EVM005 was dependent on the F-box domain, and interaction with the SCF complex. Additionally, ectromelia virus devoid of EVM005 was shown to inhibit NF-κB activation, despite lacking the EVM005 open reading frame. Finally, ectromelia virus devoid of EVM005 was attenuated in both A/NCR and C57BL/6 mouse models, indicating that EVM005 is required for virulence and immune regulation in vivo. PMID:25122471

  13. Innate cellular sources of interleukin-17A regulate macrophage accumulation in cigarette- smoke-induced lung inflammation in mice

    PubMed Central

    Bozinovski, Steven; Seow, Huei Jiunn; Chan, Sheau Pyng Jamie; Anthony, Desiree; McQualter, Jonathan; Hansen, Michelle; Jenkins, Brendan J.; Anderson, Gary P.

    2015-01-01

    Cigarette smoke (CS) is the major cause of chronic obstructive pulmonary disease (COPD). Interleukin-17A (IL-17A) is a pivotal cytokine that regulates lung immunity and inflammation. The aim of the present study was to investigate how IL-17A regulates CS-induced lung inflammation in vivo. IL-17A knockout (KO) mice and neutralization of IL-17A in wild-type (WT) mice reduced macrophage and neutrophil recruitment and chemokine (C-C motif) ligand 2 (CCL2), CCL3 and matrix metalloproteinase (MMP)-12 mRNA expression in response to acute CS exposure. IL-17A expression was increased in non-obese diabetic (NOD) severe combined immunodeficiency SCID) mice with non-functional B- and T-cells over a 4-week CS exposure period, where macrophages accumulated to the same extent as in WT mice. Gene expression analysis by QPCR (quantitative real-time PCR) of isolated immune cell subsets detected increased levels of IL-17A transcript in macrophages, neutrophils and NK/NKT cells in the lungs of CS-exposed mice. In order to further explore the relative contribution of innate immune cellular sources, intracellular IL-17A staining was performed. In the present study, we demonstrate that CS exposure primes natural killer (NK), natural killer T (NKT) and γδ T-cells to produce more IL-17A protein and CS alone increased the frequency of IL17+ γδ T-cells in the lung, whereas IL-17A protein was not detected in macrophages and neutrophils. Our data suggest that activation of innate cellular sources of IL-17A is an essential mediator of macrophage accumulation in CS-exposed lungs. Targeting non-conventional T-cell sources of IL-17A may offer an alternative strategy to reduce pathogenic macrophages in COPD. PMID:26201093

  14. A Brief Journey through the Immune System

    PubMed Central

    Yatim, Karim M.

    2015-01-01

    This review serves as an introduction to an Immunology Series for the Nephrologist published in CJASN. It provides a brief overview of the immune system, how it works, and why it matters to kidneys. This review describes in broad terms the main divisions of the immune system (innate and adaptive), their cellular and tissue components, and the ways by which they function and are regulated. The story is told through the prism of evolution in order to relay to the reader why the immune system does what it does and why imperfections in the system can lead to renal disease. Detailed descriptions of cell types, molecules, and other immunologic curiosities are avoided as much as possible in an effort to not detract from the importance of the broader concepts that define the immune system and its relationship to the kidney. PMID:25845377

  15. Manipulating the antigen-specific immune response by the hydrophobicity of amphiphilic poly(γ-glutamic acid) nanoparticles.

    PubMed

    Shima, Fumiaki; Akagi, Takami; Uto, Tomofumi; Akashi, Mitsuru

    2013-12-01

    The new generation vaccines are safe but poorly immunogenic, and thus they require the use of adjuvants. However, conventional vaccine adjuvants fail to induce potent cellular immunity, and their toxicity and side-effects hinder the clinical use. Therefore, a vaccine adjuvant which is safe and can induce an antigen-specific cellular immunity-biased immune response is urgently required. In the development of nanoparticle-based vaccine adjuvants, the hydrophobicity is one of the most important factors. It could control the interaction between the encapsulated antigens and/or nanoparticles with immune cells. In this study, nanoparticles (NPs) composed of amphiphilic poly(γ-glutamic acid)-graft-L-phenylalanine ethyl ester (γ-PGA-Phe) with various grafting degrees of hydrophobic side chains were prepared to evaluate the effect of hydrophobicity of vaccine carriers on the antigen encapsulation behavior, cellular uptake, activation of dendritic cells (DCs), and induction of antigen-specific cellular immunity-biased immune responses. These NPs could efficiently encapsulate antigens, and the uptake amount of the encapsulated antigen by DCs was dependent on the hydrophobicity of γ-PGA-Phe NPs. Moreover, the activation potential of the DCs and the induction of antigen-specific cellular immunity were correlated with the hydrophobicity of γ-PGA-Phe NPs. By controlling the hydrophobicity of antigen-encapsulated γ-PGA-Phe NPs, the activation potential of DCs was able to manipulate about 5 to 30-hold than the conventional vaccine, and the cellular immunity was about 10 to 40-hold. These results suggest that the hydrophobicity of NPs is a key factor for changing the interaction between NPs and immune cells, and thus the induction of cellular immunity-biased immune response could be achieved by controlling the hydrophobicity of them. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. A specific immune transcriptomic profile discriminates chronic kidney disease patients in predialysis from hemodialyzed patients

    PubMed Central

    2013-01-01

    Background Chronic kidney disease (CKD) patients present a complex interaction between the innate and adaptive immune systems, in which immune activation (hypercytokinemia and acute-phase response) and immune suppression (impairment of response to infections and poor development of adaptive immunity) coexist. In this setting, circulating uremic toxins and microinflammation play a critical role. This condition, already present in the last stages of renal damage, seems to be enhanced by the contact of blood with bioincompatible extracorporeal hemodialysis (HD) devices. However, although largely described, the cellular machinery associated to the CKD- and HD-related immune-dysfunction is still poorly defined. Understanding the mechanisms behind this important complication may generate a perspective for improving patients outcome. Methods To better recognize the biological bases of the CKD-related immune dysfunction and to identify differences between CKD patients in conservative (CKD) from those in HD treatment, we used an high-throughput strategy (microarray) combined with classical bio-molecular approaches. Results Immune transcriptomic screening of peripheral blood mononuclear cells (1030 gene probe sets selected by Gene-Ontology) showed that 275 gene probe sets (corresponding to 213 genes) discriminated 9 CKD patients stage III-IV (mean ± SD of eGFR: 32.27±14.7 ml/min) from 17 HD patients (p < 0.0001, FDR = 5%). Seventy-one genes were up- and 142 down-regulated in HD patients. Functional analysis revealed, then, close biological links among the selected genes with a pivotal role of PTX3, IL-15 (up-regulated in HD) and HLA-G (down-regulated in HD). ELISA, performed on an independent testing-group [11 CKD stage III-IV (mean ± SD of eGFR: 30.26±14.89 ml/min) and 13 HD] confirmed that HLA-G, a protein with inhibition effects on several immunological cell lines including natural killers (NK), was down-expressed in HD (p = 0.04). Additionally, in the testing-group, protein levels of CX3CR1, an highly selective chemokine receptor and surface marker for cytotoxic effector lymphocytes, resulted higher expressed in HD compared to CKD (p < 0.01). Conclusion Taken together our results show, for the first time, that HD patients present a different immune-pattern compared to the un-dialyzed CKD patients. Among the selected genes, some of them encode for important biological elements involved in proliferation/activation of cytotoxic effector lymphocytes and in the immune-inflammatory cellular machinery. Additionally, this study reveals new potential diagnostic bio-markers and therapeutic targets. PMID:23663527

  17. MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells.

    PubMed

    Jones, Russell G; Pearce, Edward J

    2017-05-16

    Tissue-resident immune cells must balance survival in peripheral tissues with the capacity to respond rapidly upon infection or tissue damage, and in turn couple these responses with intrinsic metabolic control and conditions in the tissue microenvironment. The serine/threonine kinase mammalian/mechanistic target of rapamycin (mTOR) is a central integrator of extracellular and intracellular growth signals and cellular metabolism and plays important roles in both innate and adaptive immune responses. This review discusses the function of mTOR signaling in the differentiation and function of tissue-resident immune cells, with focus on the role of mTOR as a metabolic sensor and its impact on metabolic regulation in innate and adaptive immune cells. We also discuss the impact of metabolic constraints in tissues on immune homeostasis and disease, and how manipulating mTOR activity with drugs such as rapamycin can modulate immunity in these contexts. Copyright © 2017. Published by Elsevier Inc.

  18. Hyaluronic Acid-Modified Cationic Lipid-PLGA Hybrid Nanoparticles as a Nanovaccine Induce Robust Humoral and Cellular Immune Responses.

    PubMed

    Liu, Lanxia; Cao, Fengqiang; Liu, Xiaoxuan; Wang, Hai; Zhang, Chao; Sun, Hongfan; Wang, Chun; Leng, Xigang; Song, Cunxian; Kong, Deling; Ma, Guilei

    2016-05-18

    Here, we investigated the use of hyaluronic acid (HA)-decorated cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles (HA-DOTAP-PLGA NPs) as vaccine delivery vehicles, which were originally developed for the cytosolic delivery of genes. Our results demonstrated that after the NPs uptake by dendritic cells (DCs), some of the antigens that were encapsulated in HA-DOTAP-PLGA NPs escaped to the cytosolic compartment, and whereas some of the antigens remained in the endosomal/lysosomal compartment, where both MHC-I and MHC-II antigen presentation occurred. Moreover, HA-DOTAP-PLGA NPs led to the up-regulation of MHC, costimulatory molecules, and cytokines. In vivo experiments further revealed that more powerful immune responses were induced from mice immunized with HA-DOTAP-PLGA NPs when compared with cationic lipid-PLGA nanoparticles and free ovalbumin (OVA); the responses included antigen-specific CD4(+) and CD8(+) T-cell responses, the production of antigen-specific IgG antibodies and the generation of memory CD4(+) and CD8(+) T cells. Overall, these data demonstrate the high potential of HA-DOTAP-PLGA NPs for use as vaccine delivery vehicles to elevate cellular and humoral immune responses.

  19. Poxviruses Utilize Multiple Strategies to Inhibit Apoptosis

    PubMed Central

    Nichols, Daniel Brian; De Martini, William; Cottrell, Jessica

    2017-01-01

    Cells have multiple means to induce apoptosis in response to viral infection. Poxviruses must prevent activation of cellular apoptosis to ensure successful replication. These viruses devote a substantial portion of their genome to immune evasion. Many of these immune evasion products expressed during infection antagonize cellular apoptotic pathways. Poxvirus products target multiple points in both the extrinsic and intrinsic apoptotic pathways, thereby mitigating apoptosis during infection. Interestingly, recent evidence indicates that poxviruses also hijack cellular means of eliminating apoptotic bodies as a means to spread cell to cell through a process called apoptotic mimicry. Poxviruses are the causative agent of many human and veterinary diseases. Further, there is substantial interest in developing these viruses as vectors for a variety of uses including vaccine delivery and as oncolytic viruses to treat certain human cancers. Therefore, an understanding of the molecular mechanisms through which poxviruses regulate the cellular apoptotic pathways remains a top research priority. In this review, we consider anti-apoptotic strategies of poxviruses focusing on three relevant poxvirus genera: Orthopoxvirus, Molluscipoxvirus, and Leporipoxvirus. All three genera express multiple products to inhibit both extrinsic and intrinsic apoptotic pathways with many of these products required for virulence. PMID:28786952

  20. [THE SYSTEMIC IMMUNITY CELLULAR LINK REACTION IN PATIENTS WITH TRAUMATIC ILLNESS].

    PubMed

    Plehutsa, I M; Sydorchuk, R I; Plehutsa, O M

    2015-01-01

    The effect of trauma on parameters of cellular immunity changes is studied. The study includes 52 patients with various forms of traumatic illness, aged 18-69 years (37.91-4.28). The control group consisted of 16 patients who underwent routine surgery not related to the pathology of musculoskeletal system. All patients of the main group were divided into 3 groups according to severity of the condition. Analysis of parameters of cellular link of immune system was performed by defining subpopulations of T-lymphocytes in indirect immunofluorescence method using a panel of monoclonal antibodies for CD3, CD4, CD8, CD22 lymphocytes' receptors and calculation of integrated indicators. The highest expression (immune disorders of II-III grades) of changes of cellular immunity observed in patients with severe traumatic: illness (expand clinical picture). Surgical intervention, even without traumatic injury significantly impact cellular immunity, but in patients with traumatic illness immunity violation were significantly higher than in comparison groups patients except immunoregulatory index.

  1. Human Immunodeficiency Virus Immune Cell Receptors, Coreceptors, and Cofactors: Implications for Prevention and Treatment.

    PubMed

    Woodham, Andrew W; Skeate, Joseph G; Sanna, Adriana M; Taylor, Julia R; Da Silva, Diane M; Cannon, Paula M; Kast, W Martin

    2016-07-01

    In the last three decades, extensive research on human immunodeficiency virus (HIV) has highlighted its capability to exploit a variety of strategies to enter and infect immune cells. Although CD4(+) T cells are well known as the major HIV target, with infection occurring through the canonical combination of the cluster of differentiation 4 (CD4) receptor and either the C-C chemokine receptor type 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4) coreceptors, HIV has also been found to enter other important immune cell types such as macrophages, dendritic cells, Langerhans cells, B cells, and granulocytes. Interestingly, the expression of distinct cellular cofactors partially regulates the rate in which HIV infects each distinct cell type. Furthermore, HIV can benefit from the acquisition of new proteins incorporated into its envelope during budding events. While several publications have investigated details of how HIV manipulates particular cell types or subtypes, an up-to-date comprehensive review on HIV tropism for different immune cells is lacking. Therefore, this review is meant to focus on the different receptors, coreceptors, and cofactors that HIV exploits to enter particular immune cells. Additionally, prophylactic approaches that have targeted particular molecules associated with HIV entry and infection of different immune cells will be discussed. Unveiling the underlying cellular receptors and cofactors that lead to HIV preference for specific immune cell populations is crucial in identifying novel preventative/therapeutic targets for comprehensive strategies to eliminate viral infection.

  2. Human Immunodeficiency Virus Immune Cell Receptors, Coreceptors, and Cofactors: Implications for Prevention and Treatment

    PubMed Central

    Woodham, Andrew W.; Skeate, Joseph G.; Sanna, Adriana M.; Taylor, Julia R.; Da Silva, Diane M.; Cannon, Paula M.

    2016-01-01

    Abstract In the last three decades, extensive research on human immunodeficiency virus (HIV) has highlighted its capability to exploit a variety of strategies to enter and infect immune cells. Although CD4+ T cells are well known as the major HIV target, with infection occurring through the canonical combination of the cluster of differentiation 4 (CD4) receptor and either the C-C chemokine receptor type 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4) coreceptors, HIV has also been found to enter other important immune cell types such as macrophages, dendritic cells, Langerhans cells, B cells, and granulocytes. Interestingly, the expression of distinct cellular cofactors partially regulates the rate in which HIV infects each distinct cell type. Furthermore, HIV can benefit from the acquisition of new proteins incorporated into its envelope during budding events. While several publications have investigated details of how HIV manipulates particular cell types or subtypes, an up-to-date comprehensive review on HIV tropism for different immune cells is lacking. Therefore, this review is meant to focus on the different receptors, coreceptors, and cofactors that HIV exploits to enter particular immune cells. Additionally, prophylactic approaches that have targeted particular molecules associated with HIV entry and infection of different immune cells will be discussed. Unveiling the underlying cellular receptors and cofactors that lead to HIV preference for specific immune cell populations is crucial in identifying novel preventative/therapeutic targets for comprehensive strategies to eliminate viral infection. PMID:27410493

  3. Redox control of protein-DNA interactions: from molecular mechanisms to significance in signal transduction, gene expression, and DNA replication.

    PubMed

    Shlomai, Joseph

    2010-11-01

    Protein-DNA interactions play a key role in the regulation of major cellular metabolic pathways, including gene expression, genome replication, and genomic stability. They are mediated through the interactions of regulatory proteins with their specific DNA-binding sites at promoters, enhancers, and replication origins in the genome. Redox signaling regulates these protein-DNA interactions using reactive oxygen species and reactive nitrogen species that interact with cysteine residues at target proteins and their regulators. This review describes the redox-mediated regulation of several master regulators of gene expression that control the induction and suppression of hundreds of genes in the genome, regulating multiple metabolic pathways, which are involved in cell growth, development, differentiation, and survival, as well as in the function of the immune system and cellular response to intracellular and extracellular stimuli. It also discusses the role of redox signaling in protein-DNA interactions that regulate DNA replication. Specificity of redox regulation is discussed, as well as the mechanisms providing several levels of redox-mediated regulation, from direct control of DNA-binding domains through the indirect control, mediated by release of negative regulators, regulation of redox-sensitive protein kinases, intracellular trafficking, and chromatin remodeling.

  4. Recent Advances in Type-2-Cell-Mediated Immunity: Insights from Helminth Infection.

    PubMed

    Harris, Nicola L; Loke, P'ng

    2017-12-19

    Type-2-cell-mediated immune responses play a critical role in mediating both host-resistance and disease-tolerance mechanisms during helminth infections. Recently, type 2 cell responses have emerged as major regulators of tissue repair and metabolic homeostasis even under steady-state conditions. In this review, we consider how studies of helminth infection have contributed toward our expanding cellular and molecular understanding of type-2-cell-mediated immunity, as well as new areas such as the microbiome. By studying how these successful parasites form chronic infections without overt pathology, we are gaining additional insights into allergic and inflammatory diseases, as well as normal physiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. VIPhyb, an antagonist of vasoactive intestinal peptide receptor, enhances cellular antiviral immunity in murine cytomegalovirus infected mice.

    PubMed

    Li, Jian-Ming; Darlak, Kasia A; Southerland, Lauren; Hossain, Mohammad S; Jaye, David L; Josephson, Cassandra D; Rosenthal, Hilary; Waller, Edmund K

    2013-01-01

    Vasoactive intestinal peptide (VIP) is a neuropeptide hormone that suppresses Th1-mediated cellular immunity. We previously reported that VIP-knockout (VIP-KO) mice have enhanced cellular immune responses and increased survival following murine cytomegalovirus (mCMV) infection in C57BL/6 mice. In this study, we tested whether treatment with a VIP receptor antagonistic peptide protects C57BL/6 and BALB/c mice from mCMV-infection. One week of daily subcutaneous injections of VIPhyb was non-toxic and did not alter frequencies of immune cell subsets in non-infected mice. VIPhyb administration to mCMV-infected C57BL/6 and BALB/c mice markedly enhanced survival, viral clearance, and reduced liver and lung pathology compared with saline-treated controls. The numbers of effector/memory CD8+ T-cells and mature NK cells were increased in VIPhyb-treated mice compared with PBS-treated groups. Pharmacological blockade of VIP-receptor binding or genetic blockade of VIP-signaling prevented the up-regulation of PD-L1 and PD-1 expression on DC and activated CD8+ T-cells, respectively, in mCMV-infected mice, and enhanced CD80, CD86, and MHC-II expression on conventional and plasmacytoid DC. VIPhyb-treatment increased type-I IFN synthesis, numbers of IFN-γ- and TNF-α-expressing NK cells and T-cells, and the numbers of mCMV-M45 epitope-peptide-MHC-I tetramer CD8+ T-cells following mCMV infection. VIP-treatment lowered the percentage of Treg cells in spleens compared with PBS-treated WT mice following mCMV infection, while significantly decreasing levels of serum VEGF induced by mCMV-infection. The mice in all treated groups exhibited similar levels of anti-mCMV antibody titers. Short-term administration of a VIP-receptor antagonist represents a novel approach to enhance innate and adaptive cellular immunity in a murine model of CMV infection.

  6. A secretome analysis reveals that PPARα is upregulated by fractionated-dose γ-irradiation in three-dimensional keratinocyte cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeeyong; Kim, Hyun-Ji; Yi, Jae Youn, E-mail: yjy_71@kcch.re.kr

    Studies have shown that γ-irradiation induces various biological responses, including oxidative stress and apoptosis, as well as cellular repair and immune system responses. However, most such studies have been performed using traditional two-dimensional cell culture systems, which are limited in their ability to faithfully represent in vivo conditions. A three-dimensional (3D) environment composed of properly interconnected and differentiated cells that allow communication and cooperation among cells via secreted molecules would be expected to more accurately reflect cellular responses. Here, we investigated γ-irradiation–induced changes in the secretome of 3D-cultured keratinocytes. An analysis of keratinocyte secretome profiles following fractionated-dose γ-irradiation revealed changes inmore » genes involved in cell adhesion, angiogenesis, and the immune system. Notably, peroxisome proliferator-activated receptor-α (PPARα) was upregulated in response to fractionated-dose γ-irradiation. This upregulation was associated with an increase in the transcription of known PPARα target genes in secretome, including angiopoietin-like protein 4, dermokine and kallikrein-related peptide 12, which were differentially regulated by fractionated-dose γ-irradiation. Collectively, our data imply a mechanism linking γ-irradiation and secretome changes, and suggest that these changes could play a significant role in the coordinated cellular responses to harmful ionizing radiation, such as those associated with radiation therapy. This extension of our understanding of γ-irradiation-induced secretome changes has the potential to improve radiation therapy strategies. - Highlights: • γ-irradiation induced changes of cell adhesion, angiogenesis, and immune system in secretome of 3D-cultured keratinocytes. • Peroxisome proliferator-activated receptor-α (PPARα) was upregulated in response to fractionated-dose γ-irradiation. • The known PPARα target genes were differentially regulated by fractionated-dose γ-irradiation.« less

  7. Transcriptional Regulation of T-Cell Lipid Metabolism: Implications for Plasma Membrane Lipid Rafts and T-Cell Function.

    PubMed

    Robinson, George A; Waddington, Kirsty E; Pineda-Torra, Ines; Jury, Elizabeth C

    2017-01-01

    It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM) and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β), and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed.

  8. Transcriptional Regulation of T-Cell Lipid Metabolism: Implications for Plasma Membrane Lipid Rafts and T-Cell Function

    PubMed Central

    Robinson, George A.; Waddington, Kirsty E.; Pineda-Torra, Ines; Jury, Elizabeth C.

    2017-01-01

    It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM) and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β), and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed. PMID:29225604

  9. System-Wide Associations between DNA-Methylation, Gene Expression, and Humoral Immune Response to Influenza Vaccination.

    PubMed

    Zimmermann, Michael T; Oberg, Ann L; Grill, Diane E; Ovsyannikova, Inna G; Haralambieva, Iana H; Kennedy, Richard B; Poland, Gregory A

    2016-01-01

    Failure to achieve a protected state after influenza vaccination is poorly understood but occurs commonly among aged populations experiencing greater immunosenescence. In order to better understand immune response in the elderly, we studied epigenetic and transcriptomic profiles and humoral immune response outcomes in 50-74 year old healthy participants. Associations between DNA methylation and gene expression reveal a system-wide regulation of immune-relevant functions, likely playing a role in regulating a participant's propensity to respond to vaccination. Our findings show that sites of methylation regulation associated with humoral response to vaccination impact known cellular differentiation signaling and antigen presentation pathways. We performed our analysis using per-site and regionally average methylation levels, in addition to continuous or dichotomized outcome measures. The genes and molecular functions implicated by each analysis were compared, highlighting different aspects of the biologic mechanisms of immune response affected by differential methylation. Both cis-acting (within the gene or promoter) and trans-acting (enhancers and transcription factor binding sites) sites show significant associations with measures of humoral immunity. Specifically, we identified a group of CpGs that, when coordinately hypo-methylated, are associated with lower humoral immune response, and methylated with higher response. Additionally, CpGs that individually predict humoral immune responses are enriched for polycomb-group and FOXP2 transcription factor binding sites. The most robust associations implicate differential methylation affecting gene expression levels of genes with known roles in immunity (e.g. HLA-B and HLA-DQB2) and immunosenescence. We believe our data and analysis strategy highlight new and interesting epigenetic trends affecting humoral response to vaccination against influenza; one of the most common and impactful viral pathogens.

  10. Nitric oxide–mediated regulation of ferroportin-1 controls macrophage iron homeostasis and immune function in Salmonella infection

    PubMed Central

    Nairz, Manfred; Schleicher, Ulrike; Schroll, Andrea; Sonnweber, Thomas; Theurl, Igor; Ludwiczek, Susanne; Talasz, Heribert; Brandacher, Gerald; Moser, Patrizia L.; Muckenthaler, Martina U.; Fang, Ferric C.; Bogdan, Christian

    2013-01-01

    Nitric oxide (NO) generated by inducible NO synthase 2 (NOS2) affects cellular iron homeostasis, but the underlying molecular mechanisms and implications for NOS2-dependent pathogen control are incompletely understood. In this study, we found that NO up-regulated the expression of ferroportin-1 (Fpn1), the major cellular iron exporter, in mouse and human cells. Nos2−/− macrophages displayed increased iron content due to reduced Fpn1 expression and allowed for an enhanced iron acquisition by the intracellular bacterium Salmonella typhimurium. Nos2 gene disruption or inhibition of NOS2 activity led to an accumulation of iron in the spleen and splenic macrophages. Lack of NO formation resulted in impaired nuclear factor erythroid 2-related factor-2 (Nrf2) expression, resulting in reduced Fpn1 transcription and diminished cellular iron egress. After infection of Nos2−/− macrophages or mice with S. typhimurium, the increased iron accumulation was paralleled by a reduced cytokine (TNF, IL-12, and IFN-γ) expression and impaired pathogen control, all of which were restored upon administration of the iron chelator deferasirox or hyperexpression of Fpn1 or Nrf2. Thus, the accumulation of iron in Nos2−/− macrophages counteracts a proinflammatory host immune response, and the protective effect of NO appears to partially result from its ability to prevent iron overload in macrophages PMID:23630227

  11. Cyclophilin A as a potential genetic adjuvant to improve HIV-1 Gag DNA vaccine immunogenicity by eliciting broad and long-term Gag-specific cellular immunity in mice.

    PubMed

    Hou, Jue; Zhang, Qicheng; Liu, Zheng; Wang, Shuhui; Li, Dan; Liu, Chang; Liu, Ying; Shao, Yiming

    2016-01-01

    Previous research has shown that host Cyclophilin A (CyPA) can promote dendritic cell maturation and the subsequent innate immune response when incorporated into an HIV-1 Gag protein to circumvent the resistance of dendritic cells to HIV-1 infection. This led us to hypothesize that CyPA may improve HIV-1 Gag-specific vaccine immunogenicity via binding with Gag antigen. The adjuvant effect of CyPA was evaluated using a DNA vaccine with single or dual expression cassettes. Mouse studies indicated that CyPA specifically and markedly promoted HIV-1 Gag-specific cellular immunity but not an HIV-1 Env-specific cellular response. The Gag/CyPA dual expression cassettes stimulated a greater Gag-specific cellular immune response, than Gag immunization alone. Furthermore, CyPA induced a broad Gag-specific T cell response and strong cellular immunity that lasted up to 5 months. In addition, CyPA skewed to cellular rather than humoral immunity. To investigate the mechanisms of the adjuvant effect, site-directed mutagenesis in CyPA, including active site residues H54Q and F60A resulted in mutants that were co-expressed with Gag in dual cassettes. The immune response to this vaccine was analyzed in vivo. Interestingly, the wild type CyPA markedly increased Gag cellular immunity, but the H54Q and F60A mutants drastically reduced CyPA adjuvant activation. Therefore, we suggest that the adjuvant effect of CyPA was based on Gag-CyPA-specific interactions. Herein, we report that Cyclophilin A can augment HIV-1 Gag-specific cellular immunity as a genetic adjuvant in multiplex DNA immunization strategies, and that activity of this adjuvant is specific, broad, long-term, and based on Gag-CyPA interaction.

  12. Plasma and cellular fibronectin: distinct and independent functions during tissue repair

    PubMed Central

    2011-01-01

    Fibronectin (FN) is a ubiquitous extracellular matrix (ECM) glycoprotein that plays vital roles during tissue repair. The plasma form of FN circulates in the blood, and upon tissue injury, is incorporated into fibrin clots to exert effects on platelet function and to mediate hemostasis. Cellular FN is then synthesized and assembled by cells as they migrate into the clot to reconstitute damaged tissue. The assembly of FN into a complex three-dimensional matrix during physiological repair plays a key role not only as a structural scaffold, but also as a regulator of cell function during this stage of tissue repair. FN fibrillogenesis is a complex, stepwise process that is strictly regulated by a multitude of factors. During fibrosis, there is excessive deposition of ECM, of which FN is one of the major components. Aberrant FN-matrix assembly is a major contributing factor to the switch from normal tissue repair to misregulated fibrosis. Understanding the mechanisms involved in FN assembly and how these interplay with cellular, fibrotic and immune responses may reveal targets for the future development of therapies to regulate aberrant tissue-repair processes. PMID:21923916

  13. REGULATION OF THE T-CELL RESPONSE BY CD39

    PubMed Central

    Takenaka, Maisa C.; Robson, Simon; Quintana, Francisco J.

    2016-01-01

    The ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1, or CD39) catalyzes the phosphohydrolysis of extracellular adenosine triphosphate (eATP) and diphosphate (eADP) released under conditions of inflammatory stress and cell injury. CD39 generates adenosine monophosphate (AMP), which is in turn used by the ecto-5’-nucleotidase CD73 to synthesize adenosine. These ectonucleotidases have major impacts on the dynamic equilibrium of pro-inflammatory eATP and ADP nucleotides vs. immunosuppressive adenosine nucleosides. Indeed, CD39 plays a dominant role in the purinergic regulation of inflammation and the immune response because its expression is influenced by genetic and environmental factors. Here, we review the specific role of CD39 in the kinetic regulation of cellular immune responses in the evolution of disease. We focus on the effects of CD39 on T cells and explore potential clinical applications in autoimmunity, chronic infections and cancer. PMID:27236363

  14. Bruton's Tyrosine Kinase: An Emerging Key Player in Innate Immunity.

    PubMed

    Weber, Alexander N R; Bittner, Zsofia; Liu, Xiao; Dang, Truong-Minh; Radsak, Markus Philipp; Brunner, Cornelia

    2017-01-01

    Bruton's tyrosine kinase (BTK) was initially discovered as a critical mediator of B cell receptor signaling in the development and functioning of adaptive immunity. Growing evidence also suggests multiple roles for BTK in mononuclear cells of the innate immune system, especially in dendritic cells and macrophages. For example, BTK has been shown to function in Toll-like receptor-mediated recognition of infectious agents, cellular maturation and recruitment processes, and Fc receptor signaling. Most recently, BTK was additionally identified as a direct regulator of a key innate inflammatory machinery, the NLRP3 inflammasome. BTK has thus attracted interest not only for gaining a more thorough basic understanding of the human innate immune system but also as a target to therapeutically modulate innate immunity. We here review the latest developments on the role of BTK in mononuclear innate immune cells in mouse versus man, with specific emphasis on the sensing of infectious agents and the induction of inflammation. Therapeutic implications for modulating innate immunity and critical open questions are also discussed.

  15. Targeting complement-mediated immunoregulation for cancer immunotherapy.

    PubMed

    Kolev, Martin; Markiewski, Maciej M

    2018-06-01

    Complement was initially discovered as an assembly of plasma proteins "complementing" the cytolytic activity of antibodies. However, our current knowledge places this complex system of several plasma proteins, receptors, and regulators in the center of innate immunity as a bridge between the initial innate responses and adaptive immune reactions. Consequently, complement appears to be pivotal for elimination of pathogens, not only as an early response defense, but by directing the subsequent adaptive immune response. The discovery of functional intracellular complement and its roles in cellular metabolism opened novel avenues for research and potential therapeutic implications. The recent studies demonstrating immunoregulatory functions of complement in the tumor microenvironment and the premetastatic niche shifted the paradigm on our understanding of functions of the complement system in regulating immunity. Several complement proteins, through their interaction with cells in the tumor microenvironment and in metastasis-targeted organs, contribute to modulating tumor growth, antitumor immunity, angiogenesis, and therefore, the overall progression of malignancy and, perhaps, responsiveness of cancer to different therapies. Here, we focus on recent progress in our understanding of immunostimulatory vs. immunoregulatory functions of complement and potential applications of these findings to the design of novel therapies for cancer patients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Zinc as a Gatekeeper of Immune Function

    PubMed Central

    Wessels, Inga; Maywald, Martina; Rink, Lothar

    2017-01-01

    After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14), zinc “exporters” (ZnT 1–10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function. PMID:29186856

  17. The stress-response sensor chop regulates the function and accumulation of myeloid-derived suppressor cells in tumors.

    PubMed

    Thevenot, Paul T; Sierra, Rosa A; Raber, Patrick L; Al-Khami, Amir A; Trillo-Tinoco, Jimena; Zarreii, Parisa; Ochoa, Augusto C; Cui, Yan; Del Valle, Luis; Rodriguez, Paulo C

    2014-09-18

    Adaptation of malignant cells to the hostile milieu present in tumors is an important determinant of their survival and growth. However, the interaction between tumor-linked stress and antitumor immunity remains poorly characterized. Here, we show the critical role of the cellular stress sensor C/EBP-homologous protein (Chop) in the accumulation and immune inhibitory activity of tumor-infiltrating myeloid-derived suppressor cells (MDSCs). MDSCs lacking Chop had decreased immune-regulatory functions and showed the ability to prime T cell function and induce antitumor responses. Chop expression in MDSCs was induced by tumor-linked reactive oxygen and nitrogen species and regulated by the activating-transcription factor-4. Chop-deficient MDSCs displayed reduced signaling through CCAAT/enhancer-binding protein-β, leading to a decreased production of interleukin-6 (IL-6) and low expression of phospho-STAT3. IL-6 overexpression restored immune-suppressive activity of Chop-deficient MDSCs. These findings suggest the role of Chop in tumor-induced tolerance and the therapeutic potential of targeting Chop in MDSCs for cancer immunotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Complement Activation in Inflammatory Skin Diseases

    PubMed Central

    Giang, Jenny; Seelen, Marc A. J.; van Doorn, Martijn B. A.; Rissmann, Robert; Prens, Errol P.; Damman, Jeffrey

    2018-01-01

    The complement system is a fundamental part of the innate immune system, playing a crucial role in host defense against various pathogens, such as bacteria, viruses, and fungi. Activation of complement results in production of several molecules mediating chemotaxis, opsonization, and mast cell degranulation, which can contribute to the elimination of pathogenic organisms and inflammation. Furthermore, the complement system also has regulating properties in inflammatory and immune responses. Complement activity in diseases is rather complex and may involve both aberrant expression of complement and genetic deficiencies of complement components or regulators. The skin represents an active immune organ with complex interactions between cellular components and various mediators. Complement involvement has been associated with several skin diseases, such as psoriasis, lupus erythematosus, cutaneous vasculitis, urticaria, and bullous dermatoses. Several triggers including auto-antibodies and micro-organisms can activate complement, while on the other hand complement deficiencies can contribute to impaired immune complex clearance, leading to disease. This review provides an overview of the role of complement in inflammatory skin diseases and discusses complement factors as potential new targets for therapeutic intervention. PMID:29713318

  19. IL17 factors are early regulators in the gut epithelium during inflammatory response to Vibrio in the sea urchin larva

    PubMed Central

    Buckley, Katherine M; Ho, Eric Chun Hei; Hibino, Taku; Schrankel, Catherine S; Schuh, Nicholas W; Wang, Guizhi; Rast, Jonathan P

    2017-01-01

    IL17 cytokines are central mediators of mammalian immunity. In vertebrates, these factors derive from diverse cellular sources. Sea urchins share a molecular heritage with chordates that includes the IL17 system. Here, we characterize the role of epithelial expression of IL17 in the larval gut-associated immune response. The purple sea urchin genome encodes 10 IL17 subfamilies (35 genes) and 2 IL17 receptors. Most of these subfamilies are conserved throughout echinoderms. Two IL17 subfamilies are sequentially strongly upregulated and attenuated in the gut epithelium in response to bacterial disturbance. IL17R1 signal perturbation results in reduced expression of several response genes including an IL17 subtype, indicating a potential feedback. A third IL17 subfamily is activated in adult immune cells indicating that expression in immune cells and epithelia is divided among families. The larva provides a tractable model to investigate the regulation and consequences of gut epithelial IL17 expression across the organism. DOI: http://dx.doi.org/10.7554/eLife.23481.001 PMID:28447937

  20. Neuro-glial crosstalk in inflammatory bowel disease.

    PubMed

    Neunlist, M; Van Landeghem, L; Bourreille, A; Savidge, T

    2008-06-01

    Inflammatory bowel disease (IBD) is a multifactorial disease in which environmental, immune and genetic factors are involved in the pathogenesis. Although biological therapies (antibodies anti-tumour necrosis factor-alpha or anti-integrin) have considerably improved the symptoms and quality of life of IBD patients, some drawbacks have emerged limiting their long-term use. In addition, prevention of relapses and treatment of resistant ulcers remains a clinical challenge. In this context, a better understanding of the pathophysiology of IBD and the development of novel therapeutic intervention would benefit from further basic and preclinical research into the role of the cellular microenvironment and the interaction between its cellular constituents. In this context, the role of the enteric nervous system (ENS) in the regulation of the intestinal epithelial barrier (IEB) and the gut immune response has fuelled an increased interest in the last few years. Recent advances, summarized in this review, have highlighted the ENS as playing a key role in the control of IEB functions and gut immune homeostasis, and that alterations of the ENS could be directly associated in the development of IBD and its associated symptoms.

  1. Immunological tools for the assessment of both humoral and cellular immune responses in Foxes (Vulpes vulpes) using ovalbumin and cholera toxin B as an antigenic model.

    PubMed

    Rolland-Turner, Magali; Farre, Guillaume; Muller, Delphine; Rouet, Nelly; Boue, Franck

    2004-10-22

    The immune response in the fox (Vulpes vulpes), despite the success of the oral rabies vaccine is not well characterized, and specific immunological tools are needed. To investigate both the humoral and cellular immune response, we used ovalbumin (OVA) and cholera toxin B (CTB) as an antigenic model to set-up ELISA and ELISPOT antibodies secreting cells (ASC) assays in the fox model. Identification of antibodies that cross-react with fox immunoglobulin was performed by Western blot, and their use was adapted for both the ELISA and ELISPOT ASC assay. The humoral and cellular specific immune responses were assessed after intra-muscular or intra-nasal immunization. Intra-muscular immunization resulted in the development of both cellular and humoral anti-OVA and anti-CTB responses in peripheral blood mononuclear cells (PBMCs). Immunization via the intra-nasal route resulted in the development of a cellular and humoral response against CTB in PBMCs. This immune response was confirmed using splenocytes from immunized animals by ELISPOT assay at euthanasia. Females immunized via the intra-nasal route developed specific anti-CTB IgM, IgA and IgG in vaginal fluids after the initial boost (day 26) showing that mucosal immunization produces a vaginal immune response in foxes. These immunological tools developed here are now available to be adapted to other antigenic models to facilitate further immune studies in foxes.

  2. Quantitative interactome reveals that porcine reproductive and respiratory syndrome virus nonstructural protein 2 forms a complex with viral nucleocapsid protein and cellular vimentin.

    PubMed

    Song, Tao; Fang, Liurong; Wang, Dang; Zhang, Ruoxi; Zeng, Songlin; An, Kang; Chen, Huanchun; Xiao, Shaobo

    2016-06-16

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has heavily impacted the global swine industry. The PRRSV nonstructural protein 2 (nsp2) plays crucial roles in viral replication and host immune regulation, most likely by interacting with viral or cellular proteins that have not yet been identified. In this study, a quantitative interactome approach based on immunoprecipitation and stable isotope labeling with amino acids in cell culture (SILAC) was performed to identify nsp2-interacting proteins in PRRSV-infected cells with an nsp2-specific monoclonal antibody. Nine viral proteins and 62 cellular proteins were identified as potential nsp2-interacting partners. Our data demonstrate that the PRRSV nsp1α, nsp1β, and nucleocapsid proteins all interact directly with nsp2. Nsp2-interacting cellular proteins were classified into different functional groups and an interactome network of nsp2 was generated. Interestingly, cellular vimentin, a known receptor for PRRSV, forms a complex with nsp2 by using viral nucleocapsid protein as an intermediate. Taken together, the nsp2 interactome under the condition of virus infection clarifies a role of nsp2 in PRRSV replication and immune evasion. Viral proteins must interact with other virus-encoded proteins and/or host cellular proteins to function, and interactome analysis is an ideal approach for identifying such interacting proteins. In this study, we used the quantitative interactome methodology to identify the viral and cellular proteins that potentially interact with the nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) under virus infection conditions, thus providing a rich source of potential viral and cellular interaction partners for PRRSV nsp2. Based on the interactome data, we further demonstrated that PRRSV nsp2 and nucleocapsid protein together with cellular vimentin, form a complex that may be essential for viral attachment and replication, which partly explains the role of nsp2 in PRRSV replication and immune evasion. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. TAM receptor signaling in development.

    PubMed

    Burstyn-Cohen, Tal

    2017-01-01

    TYRO3, AXL and MERTK comprise the TAM family of receptor protein tyrosine kinases. Activated by their ligands, protein S (PROS1) and growth-arrest-specific 6 (GAS6), they mediate numerous cellular functions throughout development and adulthood. Expressed by a myriad of cell types and tissues, they have been implicated in homeostatic regulation of the immune, nervous, vascular, bone and reproductive systems. The loss-of-function of TAM signaling in adult tissues culminates in the destruction of tissue homeostasis and diseased states, while TAM gain-of-function in various tumors promotes cancer phenotypes. Combinatorial ligand-receptor interactions may elicit different molecular and cellular responses. Many of the TAM regulatory functions are essentially developmental, taking place both during embryogenesis and postnatally. This review highlights current knowledge on the role of TAM receptors and their ligands during these developmental processes in the immune, nervous, vascular and reproductive systems.

  4. Novel microscopy-based screening method reveals regulators of contact-dependent intercellular transfer

    PubMed Central

    Michael Frei, Dominik; Hodneland, Erlend; Rios-Mondragon, Ivan; Burtey, Anne; Neumann, Beate; Bulkescher, Jutta; Schölermann, Julia; Pepperkok, Rainer; Gerdes, Hans-Hermann; Kögel, Tanja

    2015-01-01

    Contact-dependent intercellular transfer (codeIT) of cellular constituents can have functional consequences for recipient cells, such as enhanced survival and drug resistance. Pathogenic viruses, prions and bacteria can also utilize this mechanism to spread to adjacent cells and potentially evade immune detection. However, little is known about the molecular mechanism underlying this intercellular transfer process. Here, we present a novel microscopy-based screening method to identify regulators and cargo of codeIT. Single donor cells, carrying fluorescently labelled endocytic organelles or proteins, are co-cultured with excess acceptor cells. CodeIT is quantified by confocal microscopy and image analysis in 3D, preserving spatial information. An siRNA-based screening using this method revealed the involvement of several myosins and small GTPases as codeIT regulators. Our data indicates that cellular protrusions and tubular recycling endosomes are important for codeIT. We automated image acquisition and analysis to facilitate large-scale chemical and genetic screening efforts to identify key regulators of codeIT. PMID:26271723

  5. Exaptive origins of regulated mRNA decay in eukaryotes

    PubMed Central

    Hamid, Fursham M.

    2016-01-01

    Eukaryotic gene expression is extensively controlled at the level of mRNA stability and the mechanisms underlying this regulation are markedly different from their archaeal and bacterial counterparts. We propose that two such mechanisms, nonsense‐mediated decay (NMD) and motif‐specific transcript destabilization by CCCH‐type zinc finger RNA‐binding proteins, originated as a part of cellular defense against RNA pathogens. These branches of the mRNA turnover pathway might have been used by primeval eukaryotes alongside RNA interference to distinguish their own messages from those of RNA viruses and retrotransposable elements. We further hypothesize that the subsequent advent of “professional” innate and adaptive immunity systems allowed NMD and the motif‐triggered mechanisms to be efficiently repurposed for regulation of endogenous cellular transcripts. This scenario explains the rapid emergence of archetypical mRNA destabilization pathways in eukaryotes and argues that other aspects of post‐transcriptional gene regulation in this lineage might have been derived through a similar exaptation route. PMID:27438915

  6. Exaptive origins of regulated mRNA decay in eukaryotes.

    PubMed

    Hamid, Fursham M; Makeyev, Eugene V

    2016-09-01

    Eukaryotic gene expression is extensively controlled at the level of mRNA stability and the mechanisms underlying this regulation are markedly different from their archaeal and bacterial counterparts. We propose that two such mechanisms, nonsense-mediated decay (NMD) and motif-specific transcript destabilization by CCCH-type zinc finger RNA-binding proteins, originated as a part of cellular defense against RNA pathogens. These branches of the mRNA turnover pathway might have been used by primeval eukaryotes alongside RNA interference to distinguish their own messages from those of RNA viruses and retrotransposable elements. We further hypothesize that the subsequent advent of "professional" innate and adaptive immunity systems allowed NMD and the motif-triggered mechanisms to be efficiently repurposed for regulation of endogenous cellular transcripts. This scenario explains the rapid emergence of archetypical mRNA destabilization pathways in eukaryotes and argues that other aspects of post-transcriptional gene regulation in this lineage might have been derived through a similar exaptation route. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.

  7. Impact of Heat Stress on Cellular and Transcriptional Adaptation of Mammary Epithelial Cells in Riverine Buffalo (Bubalus Bubalis)

    PubMed Central

    Kapila, Neha; Sharma, Ankita; Kishore, Amit; Sodhi, Monika; Tripathi, Pawan K.; Mohanty, Ashok K.

    2016-01-01

    The present study aims to identify the heat responsive genes and biological pathways in heat stressed buffalo mammary epithelial cells (MECs). The primary mammary epithelial cells of riverine buffalo were exposed to thermal stress at 42°C for one hour. The cells were subsequently allowed to recover at 37°C and harvested at different time intervals (30 min to 48 h) along with control samples (un-stressed). In order to assess the impact of heat stress in buffalo MECs, several in-vitro cellular parameters (lactate dehydrogenase activity, cell proliferation assay, cellular viability, cell death and apoptosis) and transcriptional studies were conducted. The heat stress resulted in overall decrease in cell viability and cell proliferation of MECs while induction of cellular apoptosis and necrosis. The transcriptomic profile of heat stressed MECs was generated using Agilent 44 K bovine oligonucleotide array and at cutoff criteria of ≥3-or ≤3 fold change, a total of 153 genes were observed to be upregulated while 8 genes were down regulated across all time points post heat stress. The genes that were specifically up-regulated or down-regulated were identified as heat responsive genes. The upregulated genes in heat stressed MECs belonged to heat shock family viz., HSPA6, HSPB8, DNAJB2, HSPA1A. Along with HSPs, genes like BOLA, MRPL55, PFKFB3, PSMC2, ENDODD1, ARID5A, and SENP3 were also upregulated. Microarray data revealed that the heat responsive genes belonged to different functional classes viz., chaperons; immune responsive; cell proliferation and metabolism related. Gene ontology analysis revealed enrichment of several biological processes like; cellular process, metabolic process, response to stimulus, biological regulation, immune system processes and signaling. The transcriptome analysis data was further validated by RT-qPCR studies. Several HSP (HSP40, HSP60, HSP70, HSP90, and HSPB1), apoptotic (Bax and Bcl2), immune (IL6, TNFα and NF-kβ) and oxidative stress (GPX1 and DUSP1) related genes showed differential expression profile at different time points post heat stress. The transcriptional data strongly indicated the induction of survival/apoptotic mechanism in heat stressed buffalo MECs. The overrepresented pathways across all time points were; electron transport chain, cytochrome P450, apoptosis, MAPK, FAS and stress induction of HSP regulation, delta Notch signaling, apoptosis modulation by HSP70, EGFR1 signaling, cytokines and inflammatory response, oxidative stress, TNF-alpha and NF- kB signaling pathway. The study thus identified several genes from different functional classes and biological pathways that could be termed as heat responsive in buffalo MEC. The responsiveness of buffalo MECs to heat stress in the present study clearly suggested its suitability as a model to understand the modulation of buffalo mammary gland expression signature in response to environmental heat load. PMID:27682256

  8. Genetically defined race, but not sex, is associated with higher humoral and cellular immune responses to measles vaccination

    PubMed Central

    Voigt, Emily A.; Ovsyannikova, Inna G.; Haralambieva, Iana H.; Kennedy, Richard B.; Larrabee, Beth R.; Schaid, Daniel J.; Poland, Gregory A.

    2017-01-01

    In addition to host genetic and environmental factors, variations in immune responses to vaccination are influenced by demographic variables, such as race and sex. The influence of genetic race and sex on measles vaccine responses is not well understood, yet important for the development of much-needed improved measles vaccines with lower failure rates. We assessed associations between genetically defined race and sex with measles humoral and cellular immunity after measles vaccination in three independent and geographically distinct cohorts totaling 2,872 healthy racially diverse children, older adolescents, and young adults. We found no associations between biological sex and either humoral or cellular immunity to measles vaccine, and no correlation between humoral and cellular immunity in these study subjects. Genetically defined race was, however, significantly associated with both measles vaccine-induced humoral and cellular immune responses, with subjects genetically classified as having African-American ancestry demonstrating significantly higher antibody and cell-mediated immune responses relative to subjects of Caucasian ancestry. This information may be useful in designing novel measles vaccines that are optimally effective across human genetic backgrounds. PMID:27591105

  9. Ahr function in lymphocytes: emerging concepts

    PubMed Central

    Zhou, Liang

    2015-01-01

    The aryl hydrocarbon receptor (Ahr) is an important regulator of the development and function of both innate and adaptive immune cells through roles associated with Ahr's ability to respond to cellular and dietary ligands. Recent findings have revealed tissue and context-specific functions for Ahr in both homeostasis and in during an immune response. I review these findings here, and integrate them into the current understanding of the mechanisms that regulate Ahr transcription and function. I propose a conceptual framework in which Ahr function is determined by three factors: the amount of Ahr in any given cell, the abundance and potency of Ahr ligands within certain tissues, and the tissue microenvironment wherein Ahr+ cells reside. This complexity emphasizes the necessity cell-type specific genetic approaches towards the study of Ahr function. PMID:26700314

  10. Circadian transcription factor BMAL1 regulates innate immunity against select RNA viruses.

    PubMed

    Majumdar, Tanmay; Dhar, Jayeeta; Patel, Sonal; Kondratov, Roman; Barik, Sailen

    2017-02-01

    BMAL1 (brain and muscle ARNT-like protein 1, also known as MOP3 or ARNT3) belongs to the family of the basic helix-loop-helix (bHLH)-PAS domain-containing transcription factors, and is a key component of the molecular oscillator that generates circadian rhythms. Here, we report that BMAL1-deficient cells are significantly more susceptible to infection by two major respiratory viruses of the Paramyxoviridae family, namely RSV and PIV3. Embryonic fibroblasts from Bmal1 -/- mice produced nearly 10-fold more progeny virus than their wild type controls. These results were supported by animal studies whereby pulmonary infection of RSV produced a more severe disease and morbidity in Bmal1 -/- mice. These results show that BMAL1 can regulate cellular innate immunity against specific RNA viruses.

  11. Adoptive cellular therapy of cancer: exploring innate and adaptive cellular crosstalk to improve anti-tumor efficacy.

    PubMed

    Payne, Kyle K; Bear, Harry D; Manjili, Masoud H

    2014-08-01

    The mammalian immune system has evolved to produce multi-tiered responses consisting of both innate and adaptive immune cells collaborating to elicit a functional response to a pathogen or neoplasm. Immune cells possess a shared ancestry, suggestive of a degree of coevolution that has resulted in optimal functionality as an orchestrated and highly collaborative unit. Therefore, the development of therapeutic modalities that harness the immune system should consider the crosstalk between cells of the innate and adaptive immune systems in order to elicit the most effective response. In this review, the authors will discuss the success achieved using adoptive cellular therapy in the treatment of cancer, recent trends that focus on purified T cells, T cells with genetically modified T-cell receptors and T cells modified to express chimeric antigen receptors, as well as the use of unfractionated immune cell reprogramming to achieve optimal cellular crosstalk upon infusion for adoptive cellular therapy.

  12. miRNAs as new molecular insights into inflammatory bowel disease: Crucial regulators in autoimmunity and inflammation.

    PubMed

    Xu, Xiao-Min; Zhang, Hong-Jie

    2016-02-21

    Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammatory disorders of the gastrointestinal tract, and includes two major phenotypes: ulcerative colitis and Crohn's disease. The pathogenesis of IBD is not fully understood as of yet. It is believed that IBD results from complicated interactions between environmental factors, genetic predisposition, and immune disorders. miRNAs are a class of small non-coding RNAs that can regulate gene expression by targeting the 3'-untranslated region of specific mRNAs for degradation or translational inhibition. miRNAs are considered to play crucial regulatory roles in many biologic processes, such as immune cellular differentiation, proliferation, and apoptosis, and maintenance of immune homeostasis. Recently, aberrant expression of miRNAs was revealed to play an important role in autoimmune diseases, including IBD. In this review, we discuss the current understanding of how miRNAs regulate autoimmunity and inflammation by affecting the differentiation, maturation, and function of various immune cells. In particular, we focus on describing specific miRNA expression profiles in tissues and peripheral blood that may be associated with the pathogenesis of IBD. In addition, we summarize the opportunities for utilizing miRNAs as new biomarkers and as potential therapeutic targets in IBD.

  13. Effects of sodium fluoride on blood cellular and humoral immunity in mice.

    PubMed

    Guo, Hongrui; Kuang, Ping; Luo, Qin; Cui, Hengmin; Deng, Huidan; Liu, Huan; Lu, Yujiao; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Li, Yinglun; Wang, Xun; Zhao, Ling

    2017-10-17

    Exposure to high fluorine can cause toxicity in human and animals. Currently, there are no systematic studies on effects of high fluorine on blood cellular immunity and humoral immunity in mice. We evaluated the alterations of blood cellular immunity and humoral immunity in mice by using flow cytometry and ELISA. In the cellular immunity, we found that sodium fluoride (NaF) in excess of 12 mg/Kg resulted in a significant decrease in the percentages of CD3 + , CD3 + CD4 + , CD3 + CD8 + T lymphocytes in the peripheral blood. Meanwhile, serum T helper type 1 (Th1) cytokines including interleukin (IL)-2, interferon (IFN)-γ, tumor necrosis factor (TNF), and Th2 cytokines including IL-4, IL-6, IL-10, and Th17 cytokine (IL-17A) contents were decreased. In the humoral immunity, NaF reduced the peripheral blood percentages of CD19 + B lymphocytes and serum immunoglobulin A (IgA), immunoglobulin G (IgG) and immunoglobulin M (IgM). The above results show that NaF can reduce blood cellular and humoral immune function in mice, providing an excellent animal model for clinical studies on immunotoxicity-related fluorosis.

  14. A Functional Toll-Interacting Protein Variant Is Associated with Bacillus Calmette-Guérin-Specific Immune Responses and Tuberculosis.

    PubMed

    Shah, Javeed A; Musvosvi, Munyaradzi; Shey, Muki; Horne, David J; Wells, Richard D; Peterson, Glenna J; Cox, Jeffery S; Daya, Michelle; Hoal, Eileen G; Lin, Lin; Gottardo, Raphael; Hanekom, Willem A; Scriba, Thomas J; Hatherill, Mark; Hawn, Thomas R

    2017-08-15

    The molecular mechanisms that regulate tuberculosis susceptibility and bacillus Calmette-Guérin (BCG)-induced immunity are mostly unknown. However, induction of the adaptive immune response is a critical step in host control of Mycobacterium tuberculosis. Toll-interacting protein (TOLLIP) is a ubiquitin-binding protein that regulates innate immune responses, including Toll-like receptor signaling, which initiate adaptive immunity. TOLLIP variation is associated with susceptibility to tuberculosis, but the mechanism by which it regulates tuberculosis immunity is poorly understood. To identify functional TOLLIP variants and evaluate the role of TOLLIP variation on innate and adaptive immune responses to mycobacteria and susceptibility to tuberculosis. We used human cellular immunology approaches to characterize the role of a functional TOLLIP variant on monocyte mRNA expression and M. tuberculosis-induced monocyte immune functions. We also examined the association of TOLLIP variation with BCG-induced T-cell responses and susceptibility to latent tuberculosis infection. We identified a functional TOLLIP promoter region single-nucleotide polymorphism, rs5743854, which was associated with decreased TOLLIP mRNA expression in infant monocytes. After M. tuberculosis infection, TOLLIP-deficient monocytes demonstrated increased IL-6, increased nitrite, and decreased bacterial replication. The TOLLIP-deficiency G/G genotype was associated with decreased BCG-specific IL-2 + CD4 + T-cell frequency and proliferation. This genotype was also associated with increased susceptibility to latent tuberculosis infection. TOLLIP deficiency is associated with decreased BCG-specific T-cell responses and increased susceptibility to tuberculosis. We hypothesize that the heightened antibacterial monocyte responses after vaccination of TOLLIP-deficient infants are responsible for decreased BCG-specific T-cell responses. Activating TOLLIP may provide a novel adjuvant strategy for BCG vaccination.

  15. Regulation of contact sensitivity in non-obese diabetic (NOD) mice by innate immunity.

    PubMed

    Szczepanik, Marian; Majewska-Szczepanik, Monika; Wong, Florence S; Kowalczyk, Paulina; Pasare, Chandrashekhar; Wen, Li

    2018-06-25

    Genetic background influences allergic immune responses to environmental stimuli. Non-obese diabetic (NOD) mice are highly susceptible to environmental stimuli. Little is known about the interaction of autoimmune genetic factors with innate immunity in allergies, especially skin hypersensitivity. To study the interplay of innate immunity and autoimmune genetic factors in contact hypersensitivity (CHS) by using various innate immunity-deficient NOD mice. Toll-like receptor (TLR) 2-deficient, TLR9-deficient and MyD88-deficient NOD mice were used to investigate CHS. The cellular mechanism was determined by flow cytometry in vitro and adoptive cell transfer in vivo. To investigate the role of MyD88 in dendritic cells (DCs) in CHS, we also used CD11c MyD88+  MyD88 -/- NOD mice, in which MyD88 is expressed only in CD11c + cells. We found that innate immunity negatively regulates CHS, as innate immunity-deficient NOD mice developed exacerbated CHS accompanied by increased numbers of skin-migrating CD11c + DCs expressing higher levels of major histocompatibility complex II and CD80. Moreover, MyD88 -/- NOD mice had increased numbers of CD11c +  CD207 -  CD103 + DCs and activated T effector cells in the skin-draining lymph nodes. Strikingly, re-expression of MyD88 in CD11c + DCs (CD11c MyD88+  MyD88 -/- NOD mice) restored hyper-CHS to a normal level in MyD88 -/- NOD mice. Our results suggest that the autoimmune-prone NOD genetic background aggravates CHS regulated by innate immunity, through DCs and T effector cells. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Driving mechanisms of passive and active transport across cellular membranes as the mechanisms of cell metabolism and development as well as the mechanisms of cellular distance reactions on hormonal expression and the immune response.

    PubMed

    Ponisovskiy, M R

    2011-01-01

    The article presents mechanisms of cell metabolism, cell development, cell activity, and maintenance of cellular stability. The literature is reviewed from the point of view of these concepts. The balance between anabolic and catabolic processes induces chemical potentials in the extracellular and intracellular media. The chemical potentials of these media are defined as the driving forces of both passive and active transport of substances across cellular membranes. The driving forces of substance transport across cellular membranes as in cellular metabolism and in immune responses and hormonal expressions are considered in the biochemical and biophysical models, reflecting the mechanisms for maintenance of stability of the internal medium and internal energy of an organism. The interactions of passive transport and active transport of substances across cellular walls promote cell proliferation, as well as the mechanism of cellular capacitors, promoting remote reactions across distance for hormonal expression and immune responses. The offered concept of cellular capacitors has given the possibility to explain the mechanism of remote responses of cells to new situations, resulting in the appearance of additional agents. The biophysical model develops an explanation of some cellular functions: cellular membrane action have been identified with capacitor action, based on the similarity of the structures and as well as on similarity of biophysical properties of electric data that confirm the action of the compound-specific interactions of cells within an organism, promoting hormonal expressions and immune responses to stabilize the thermodynamic system of an organism. Comparison of a cellular membrane action to a capacitor has given the possibility for the explanations of exocytosis and endocytosis mechanisms, internalization of the receptor-ligand complex, selection as a receptor reaction to a ligand by immune responses or hormonal effects, reflecting cellular distance reactions on the hormonal expressions, immune responses, and specificity of the mechanisms of immune reactions. Reviewing current research of cell activity, explanations are presented of mechanisms of apoptosis, autophagy, hormonal expression, and immune responses from the point of view of described cellular mechanisms. Thermodynamic laws are used to confirm the importance of the actions of these mechanisms for maintenance of stability of the internal medium and internal energy of an organism.

  17. Pathogens: raft hijackers.

    PubMed

    Mañes, Santos; del Real, Gustavo; Martínez-A, Carlos

    2003-07-01

    Throughout evolution, organisms have developed immune-surveillance networks to protect themselves from potential pathogens. At the cellular level, the signalling events that regulate these defensive responses take place in membrane rafts--dynamic microdomains that are enriched in cholesterol and glycosphingolipids--that facilitate many protein-protein and lipid-protein interactions at the cell surface. Pathogens have evolved many strategies to ensure their own survival and to evade the host immune system, in some cases by hijacking rafts. However, understanding the means by which pathogens exploit rafts might lead to new therapeutic strategies to prevent or alleviate certain infectious diseases, such as those caused by HIV-1 or Ebola virus.

  18. Nitric oxide mediates antimicrobial peptide gene expression by activating eicosanoid signaling

    PubMed Central

    Sadekuzzaman, Md.

    2018-01-01

    Nitric oxide (NO) mediates both cellular and humoral immune responses in insects. Its mediation of cellular immune responses uses eicosanoids as a downstream signal. However, the cross-talk with two immune mediators was not known in humoral immune responses. This study focuses on cross-talk between two immune mediators in inducing gene expression of anti-microbial peptides (AMPs) of a lepidopteran insect, Spodoptera exigua. Up-regulation of eight AMPs was observed in S. exigua against bacterial challenge. However, the AMP induction was suppressed by injection of an NO synthase inhibitor, L-NAME, while little expressional change was observed on injecting its enantiomer, D-NAME. The functional association between NO biosynthesis and AMP gene expression was further supported by RNA interference (RNAi) against NO synthase (SeNOS), which suppressed AMP gene expression under the immune challenge. The AMP induction was also mimicked by NO alone because injecting an NO analog, SNAP, without bacterial challenge significantly induced the AMP gene expression. Interestingly, an eicosanoid biosynthesis inhibitor, dexamethasone (DEX), suppressed the NO induction of AMP expression. The inhibitory activity of DEX was reversed by the addition of arachidonic acid, a precursor of eicosanoid biosynthesis. AMP expression of S. exigua was also controlled by the Toll/IMD signal pathway. The RNAi of Toll receptors or Relish suppressed AMP gene expression by suppressing NO levels and subsequently reducing PLA2 enzyme activity. These results suggest that eicosanoids are a downstream signal of NO mediation of AMP expression against bacterial challenge. PMID:29466449

  19. New activity of yamamarin, an insect pentapeptide, on immune system of mealworm, Tenebrio molitor.

    PubMed

    Walkowiak-Nowicka, K; Nowicki, G; Kuczer, M; Rosiński, G

    2017-09-12

    In insects, two types of the immune responses, cellular and humoral, constitute a defensive barrier against various parasites and pathogens. In response to pathogens, insects produce a wide range of immune agents that act on pathogens directly, such as cecropins or lysozyme, or indirectly by the stimulation of hemocyte migration or by increasing phenoloxidase (PO) activity. Recently, many new immunologically active substances from insects, such as peptides and polypeptides, have been identified. Nevertheless, in the most cases, their physiological functions are not fully known. One such substance is yamamarin - a pentapeptide isolated from the silk moth Antheraea yamamai. This yamamarin possesses strong antiproliferative properties and is probably involved in diapause regulation. Here, we examined the immunotropic activity of yamamarin by testing its impact on selected functions of the immune system in heterologous bioassays with the beetle Tenebrio molitor, commonly known as a stored grains pest. Our results indicate that the pentapeptide affects the activity of immune processes in the beetle. We show that yamamarin induces changes in both humoral and cellular responses. The yamamarin increases the activity of PO, as well as causes changes in the hemocyte cytoskeleton and stimulates phagocytic activity. We detected an increased number of apoptotic hemocytes, however after the yamamarin injection, no significant variations in the antibacterial activity in the hemolymph were observed. The obtained data suggest that yamamarin could be an important controller of the immune system in T. molitor.

  20. MicroRNA expression profiling in tonsils of calves challenged with a laboratory strain or field isolates of Bovine Respiratory Syncytial Virus

    USDA-ARS?s Scientific Manuscript database

    Bovine respiratory syncytial virus (BRSV) is a leading cause of bovine respiratory disease in cattle worldwide. MicroRNAs have been suggested to play a role in viral infections via their regulation of cellular molecules involved in either viral replication or in host innate immunity to infection. Th...

  1. Reactive oxygen species-dependent Toll/NF-κB activation in the Drosophila hematopoietic niche confers resistance to wasp parasitism.

    PubMed

    Louradour, Isabelle; Sharma, Anurag; Morin-Poulard, Ismael; Letourneau, Manon; Vincent, Alain; Crozatier, Michèle; Vanzo, Nathalie

    2017-11-01

    Hematopoietic stem/progenitor cells in the adult mammalian bone marrow ensure blood cell renewal. Their cellular microenvironment, called 'niche', regulates hematopoiesis both under homeostatic and immune stress conditions. In the Drosophila hematopoietic organ, the lymph gland, the posterior signaling center (PSC) acts as a niche to regulate the hematopoietic response to immune stress such as wasp parasitism. This response relies on the differentiation of lamellocytes, a cryptic cell type, dedicated to pathogen encapsulation and killing. Here, we establish that Toll/NF-κB pathway activation in the PSC in response to wasp parasitism non-cell autonomously induces the lymph gland immune response. Our data further establish a regulatory network where co-activation of Toll/NF-κB and EGFR signaling by ROS levels in the PSC/niche controls lymph gland hematopoiesis under parasitism. Whether a similar regulatory network operates in mammals to control emergency hematopoiesis is an open question.

  2. Visualization of T Cell-Regulated Monocyte Clusters Mediating Keratinocyte Death in Acquired Cutaneous Immunity.

    PubMed

    Liu, Zheng; Yang, Fei; Zheng, Hao; Fan, Zhan; Qiao, Sha; Liu, Lei; Tao, Juan; Luo, Qingming; Zhang, Zhihong

    2018-06-01

    It remains unclear how monocytes are mobilized to amplify inflammatory reactions in T cell-mediated adaptive immunity. Here, we investigate dynamic cellular events in the cascade of inflammatory responses through intravital imaging of a multicolor-labeled murine contact hypersensitivity model. We found that monocytes formed clusters around hair follicles in the contact hypersensitivity model. In this process, effector T cells encountered dendritic cells under regions of monocyte clusters and secreted IFN-γ, which mobilizes CCR2-dependent monocyte interstitial migration and CXCR2-dependent monocyte cluster formation. We showed that hair follicles shaped the inflammatory microenvironment for communication among the monocytes, keratinocytes, and effector T cells. After disrupting the T cell-mobilized monocyte clusters through CXCR2 antagonization, monocyte activation and keratinocyte apoptosis were significantly inhibited. Our study provides a new perspective on effector T cell-regulated monocyte behavior, which amplifies the inflammatory reaction in acquired cutaneous immunity. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Phosphorylation of influenza A virus NS1 protein at threonine 49 suppresses its interferon antagonistic activity.

    PubMed

    Kathum, Omer Abid; Schräder, Tobias; Anhlan, Darisuren; Nordhoff, Carolin; Liedmann, Swantje; Pande, Amit; Mellmann, Alexander; Ehrhardt, Christina; Wixler, Viktor; Ludwig, Stephan

    2016-06-01

    Phosphorylation and dephosphorylation acts as a fundamental molecular switch that alters protein function and thereby regulates many cellular processes. The non-structural protein 1 (NS1) of influenza A virus is an important factor regulating virulence by counteracting cellular immune responses against viral infection. NS1 was shown to be phosphorylated at several sites; however, so far, no function has been conclusively assigned to these post-translational events yet. Here, we show that the newly identified phospho-site threonine 49 of NS1 is differentially phosphorylated in the viral replication cycle. Phosphorylation impairs binding of NS1 to double-stranded RNA and TRIM25 as well as complex formation with RIG-I, thereby switching off its interferon antagonistic activity. Because phosphorylation was shown to occur at later stages of infection, we hypothesize that at this stage other functions of the multifunctional NS1 beyond its interferon-antagonistic activity are needed. © 2016 The Authors Cellular Microbiology published by John Wiley & Sons Ltd.

  4. ISG15 in the tumorigenesis and treatment of cancer: An emerging role in malignancies of the digestive system

    PubMed Central

    Zuo, Chaohui; Sheng, Xinyi; Ma, Min; Xia, Man; Ouyang, Linda

    2016-01-01

    The interferon-stimulated gene 15 ubiquitin-like modifier (ISG15) encodes an IFN-inducible, ubiquitin-like protein. The ISG15 protein forms conjugates with numerous cellular proteins that are involved in a multitude of cellular functions, including interferon-induced immune responses and the regulation of cellular protein turnover. The expression of ISG15 and ISG15-mediated conjugation has been implicated in a wide range of human tumors and cancer cell lines, but the roles of ISG15 in tumorigenesis and responses to anticancer treatments remain largely unknown. In this review, we discuss the findings of recent studies with regard to the role of ISG15 pathways in cancers of the digestive system. PMID:27626310

  5. ISG15 in the tumorigenesis and treatment of cancer: An emerging role in malignancies of the digestive system.

    PubMed

    Zuo, Chaohui; Sheng, Xinyi; Ma, Min; Xia, Man; Ouyang, Linda

    2016-11-08

    The interferon-stimulated gene 15 ubiquitin-like modifier (ISG15) encodes an IFN-inducible, ubiquitin-like protein. The ISG15 protein forms conjugates with numerous cellular proteins that are involved in a multitude of cellular functions, including interferon-induced immune responses and the regulation of cellular protein turnover. The expression of ISG15 and ISG15-mediated conjugation has been implicated in a wide range of human tumors and cancer cell lines, but the roles of ISG15 in tumorigenesis and responses to anticancer treatments remain largely unknown. In this review, we discuss the findings of recent studies with regard to the role of ISG15 pathways in cancers of the digestive system.

  6. Staphylococcus aureus Colonization: Modulation of Host Immune Response and Impact on Human Vaccine Design

    PubMed Central

    Brown, Aisling F.; Leech, John M.; Rogers, Thomas R.; McLoughlin, Rachel M.

    2014-01-01

    In apparent contrast to its invasive potential Staphylococcus aureus colonizes the anterior nares of 20–80% of the human population. The relationship between host and microbe appears particularly individualized and colonization status seems somehow predetermined. After decolonization, persistent carriers often become re-colonized with their prior S. aureus strain, whereas non-carriers resist experimental colonization. Efforts to identify factors facilitating colonization have thus far largely focused on the microorganism rather than on the human host. The host responds to S. aureus nasal colonization via local expression of anti-microbial peptides, lipids, and cytokines. Interplay with the co-existing microbiota also influences colonization and immune regulation. Transient or persistent S. aureus colonization induces specific systemic immune responses. Humoral responses are the most studied of these and little is known of cellular responses induced by colonization. Intriguingly, colonized patients who develop bacteremia may have a lower S. aureus-attributable mortality than their non-colonized counterparts. This could imply a staphylococcal-specific immune “priming” or immunomodulation occurring as a consequence of colonization and impacting on the outcome of infection. This has yet to be fully explored. An effective vaccine remains elusive. Anti-S. aureus vaccine strategies may need to drive both humoral and cellular immune responses to confer efficient protection. Understanding the influence of colonization on adaptive response is essential to intelligent vaccine design, and may determine the efficacy of vaccine-mediated immunity. Clinical trials should consider colonization status and the resulting impact of this on individual patient responses. We urgently need an increased appreciation of colonization and its modulation of host immunity. PMID:24409186

  7. The Scaffold Immune Microenvironment: Biomaterial-Mediated Immune Polarization in Traumatic and Nontraumatic Applications.

    PubMed

    Sadtler, Kaitlyn; Allen, Brian W; Estrellas, Kenneth; Housseau, Franck; Pardoll, Drew M; Elisseeff, Jennifer H

    2017-10-01

    The immune system mediates tissue growth and homeostasis and is the first responder to injury or biomaterial implantation. Recently, it has been appreciated that immune cells play a critical role in wound healing and tissue repair and should thus be considered potentially beneficial, particularly in the context of scaffolds for regenerative medicine. In this study, we present a flow cytometric analysis of cellular recruitment to tissue-derived extracellular matrix scaffolds, where we quantitatively describe the infiltration and polarization of several immune subtypes, including macrophages, dendritic cells, neutrophils, monocytes, T cells, and B cells. We define a specific scaffold-associated macrophage (SAM) that expresses CD11b + F4/80 + CD11c +/- CD206 hi CD86 + MHCII + that are characteristic of an M2-like cell (CD206 hi ) with high antigen presentation capabilities (MHCII + ). Adaptive immune cells tightly regulate the phenotype of a mature SAM. These studies provide a foundation for detailed characterization of the scaffold immune microenvironment of a given biomaterial scaffold to determine the effect of scaffold changes on immune response and subsequent therapeutic outcome of that material.

  8. The cellular and humoral immunity assay in patients with complicated urolithiasis.

    PubMed

    Ceban, E; Banov, P; Galescu, A; Tanase, D

    2017-01-01

    Especially complicated, renal lithiasis contributes to the general inflammatory syndrome development that interferes with nonspecific, humoral and cellular immune system. The surgical treatment of nephrolithiasis is closely related to drug therapy of urinary infection, one of the reasons being the reduction of the immune status. The work is performed by evaluating the immunological status preoperatively in 58 patients with complicated lithiasis. The analysis of the status in these patients demonstrated that complicated urolithiasis results in significant changes in the immune system, these changes being expressed at the cellular and humoral level of immunity.

  9. How Stem Cells Speak with Host Immune Cells in Inflammatory Brain Diseases

    PubMed Central

    Pluchino, Stefano; Cossetti, Chiara

    2014-01-01

    Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS) may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses, and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells. Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS. Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases. Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases. PMID:23633288

  10. Multiscale computational modeling reveals a critical role for TNF-α receptor 1 dynamics in tuberculosis granuloma formation.

    PubMed

    Fallahi-Sichani, Mohammad; El-Kebir, Mohammed; Marino, Simeone; Kirschner, Denise E; Linderman, Jennifer J

    2011-03-15

    Multiple immune factors control host responses to Mycobacterium tuberculosis infection, including the formation of granulomas, which are aggregates of immune cells whose function may reflect success or failure of the host to contain infection. One such factor is TNF-α. TNF-α has been experimentally characterized to have the following activities in M. tuberculosis infection: macrophage activation, apoptosis, and chemokine and cytokine production. Availability of TNF-α within a granuloma has been proposed to play a critical role in immunity to M. tuberculosis. However, in vivo measurement of a TNF-α concentration gradient and activities within a granuloma are not experimentally feasible. Further, processes that control TNF-α concentration and activities in a granuloma remain unknown. We developed a multiscale computational model that includes molecular, cellular, and tissue scale events that occur during granuloma formation and maintenance in lung. We use our model to identify processes that regulate TNF-α concentration and cellular behaviors and thus influence the outcome of infection within a granuloma. Our model predicts that TNF-αR1 internalization kinetics play a critical role in infection control within a granuloma, controlling whether there is clearance of bacteria, excessive inflammation, containment of bacteria within a stable granuloma, or uncontrolled growth of bacteria. Our results suggest that there is an interplay between TNF-α and bacterial levels in a granuloma that is controlled by the combined effects of both molecular and cellular scale processes. Finally, our model elucidates processes involved in immunity to M. tuberculosis that may be new targets for therapy.

  11. Regulatory Myeloid Cells in Transplantation

    PubMed Central

    Rosborough, Brian R.; Raïch-Regué, Dàlia; Turnquist, Heth R.; Thomson, Angus W.

    2013-01-01

    Regulatory myeloid cells (RMC) are emerging as novel targets for immunosuppressive (IS) agents and hold considerable promise as cellular therapeutic agents. Herein, we discuss the ability of regulatory macrophages (Mreg), regulatory dendritic cells (DCreg) and myeloid-derived suppressor cells (MDSC) to regulate alloimmunity, their potential as cellular therapeutic agents and the IS agents that target their function. We consider protocols for the generation of RMC and the selection of donor- or recipient-derived cells for adoptive cell therapy. Additionally, the issues of cell trafficking and antigen (Ag) specificity following RMC transfer are discussed. Improved understanding of the immunobiology of these cells has increased the possibility of moving RMC into the clinic to reduce the burden of current IS agents and promote Ag-specific tolerance. In the second half of this review, we discuss the influence of established and experimental IS agents on myeloid cell populations. IS agents believed historically to act primarily on T cell activation and proliferation are emerging as important regulators of RMC function. Better insights into the influence of IS agents on RMC will enhance our ability to develop cell therapy protocols to promote the function of these cells. Moreover, novel IS agents may be designed to target RMC in situ to promote Ag-specific immune regulation in transplantation and usher in a new era of immune modulation exploiting cells of myeloid origin. PMID:24092382

  12. Immunoprotective responses of T helper type 1 stimulatory protein‐S‐adenosyl‐L‐homocysteine hydrolase against experimental visceral leishmaniasis

    PubMed Central

    Khare, P.; Jaiswal, A. K.; Tripathi, C. D. P.; Sundar, S.

    2016-01-01

    Summary It is well known that a patient in clinical remission of visceral leishmaniasis (VL) remains immune to reinfection, which provides a rationale for the feasibility of a vaccine against this deadly disease. In earlier studies, observation of significant cellular responses in treated Leishmania patients as well as in hamsters against leishmanial antigens from different fractions led to its further proteomic characterization, wherein S‐adenosyl‐L‐homocysteine hydrolase (AdoHcy) was identified as a helper type 1 (Th1) stimulatory protein. The present study includes immunological characterization of this protein, its cellular responses [lymphoproliferation, nitric oxide (NO) production and cytokine responses] in treated Leishmania‐infected hamsters and patients as well as prophylactic efficacy against Leishmania challenge in hamsters and the immune responses generated thereof. Significantly higher cellular responses were noticed against recombinant L. donovani S‐adenosyl‐L‐homocysteine hydrolase (rLdAdoHcy) compared to soluble L. donovani antigen in treated samples. Moreover, stimulation of peripheral blood mononuclear cells with rLdAdoHcy up‐regulated the levels of interferon (IFN)‐γ, interleukin (IL)−12 and down‐regulated IL‐10. Furthermore, vaccination with rLdAdoHcy generated perceptible delayed‐type hypersensitivity response and exerted considerably good prophylactic efficacy (∼70% inhibition) against L. donovani challenge. The efficacy was confirmed by the increased expression levels of inducible NO synthase and Th1‐type cytokines, IFN‐γ and IL‐12 and down‐regulation of IL‐4, IL‐10 and transforming growth factor (TGF)‐β. The results indicate the potentiality of rLdAdoHcy protein as a suitable vaccine candidate against VL. PMID:26898994

  13. Immunoprotective responses of T helper type 1 stimulatory protein-S-adenosyl-L-homocysteine hydrolase against experimental visceral leishmaniasis.

    PubMed

    Khare, P; Jaiswal, A K; Tripathi, C D P; Sundar, S; Dube, A

    2016-08-01

    It is well known that a patient in clinical remission of visceral leishmaniasis (VL) remains immune to reinfection, which provides a rationale for the feasibility of a vaccine against this deadly disease. In earlier studies, observation of significant cellular responses in treated Leishmania patients as well as in hamsters against leishmanial antigens from different fractions led to its further proteomic characterization, wherein S-adenosyl-L-homocysteine hydrolase (AdoHcy) was identified as a helper type 1 (Th1) stimulatory protein. The present study includes immunological characterization of this protein, its cellular responses [lymphoproliferation, nitric oxide (NO) production and cytokine responses] in treated Leishmania-infected hamsters and patients as well as prophylactic efficacy against Leishmania challenge in hamsters and the immune responses generated thereof. Significantly higher cellular responses were noticed against recombinant L. donovani S-adenosyl-L-homocysteine hydrolase (rLdAdoHcy) compared to soluble L. donovani antigen in treated samples. Moreover, stimulation of peripheral blood mononuclear cells with rLdAdoHcy up-regulated the levels of interferon (IFN)-γ, interleukin (IL)-12 and down-regulated IL-10. Furthermore, vaccination with rLdAdoHcy generated perceptible delayed-type hypersensitivity response and exerted considerably good prophylactic efficacy (∼70% inhibition) against L. donovani challenge. The efficacy was confirmed by the increased expression levels of inducible NO synthase and Th1-type cytokines, IFN-γ and IL-12 and down-regulation of IL-4, IL-10 and transforming growth factor (TGF)-β. The results indicate the potentiality of rLdAdoHcy protein as a suitable vaccine candidate against VL. © 2016 British Society for Immunology.

  14. An Organismal Model for Gene Regulatory Networks in the Gut-Associated Immune Response

    PubMed Central

    Buckley, Katherine M.; Rast, Jonathan P.

    2017-01-01

    The gut epithelium is an ancient site of complex communication between the animal immune system and the microbial world. While elements of self-non-self receptors and effector mechanisms differ greatly among animal phyla, some aspects of recognition, regulation, and response are broadly conserved. A gene regulatory network (GRN) approach provides a means to investigate the nature of this conservation and divergence even as more peripheral functional details remain incompletely understood. The sea urchin embryo is an unparalleled experimental model for detangling the GRNs that govern embryonic development. By applying this theoretical framework to the free swimming, feeding larval stage of the purple sea urchin, it is possible to delineate the conserved regulatory circuitry that regulates the gut-associated immune response. This model provides a morphologically simple system in which to efficiently unravel regulatory connections that are phylogenetically relevant to immunity in vertebrates. Here, we review the organism-wide cellular and transcriptional immune response of the sea urchin larva. A large set of transcription factors and signal systems, including epithelial expression of interleukin 17 (IL17), are important mediators in the activation of the early gut-associated response. Many of these have homologs that are active in vertebrate immunity, while others are ancient in animals but absent in vertebrates or specific to echinoderms. This larval model provides a means to experimentally characterize immune function encoded in the sea urchin genome and the regulatory interconnections that control immune response and resolution across the tissues of the organism. PMID:29109720

  15. The POU Transcription Factor Oct-1 Represses Virus-Induced Interferon A Gene Expression

    PubMed Central

    Mesplède, Thibault; Island, Marie-Laure; Christeff, Nicolas; Petek, Fahrettin; Doly, Janine; Navarro, Sébastien

    2005-01-01

    Alpha interferon (IFN-α) and IFN-β are able to interfere with viral infection. They exert a vast array of biologic functions, including growth arrest, cell differentiation, and immune system regulation. This regulation extends from innate immunity to cellular and humoral adaptive immune responses. A strict control of expression is needed to prevent detrimental effects of unregulated IFN. Multiple IFN-A subtypes are coordinately induced in human and mouse cells infected by virus and exhibit differences in expression of their individual mRNAs. We demonstrated that the weakly expressed IFN-A11 gene is negatively regulated after viral infection, due to a distal negative regulatory element, binding homeoprotein pituitary homeobox 1 (Pitx1). Here we show that the POU protein Oct-1 binds in vitro and in vivo to the IFN-A11 promoter and represses IFN-A expression upon interferon regulatory factor overexpression. Furthermore, we show that Oct-1-deficient MEFs exhibit increased in vivo IFN-A gene expression and increased antiviral activity. Finally, the IFN-A expression pattern is modified in Oct-1-deficient MEFs. The broad representation of effective and potent octamer-like sequences within IFN-A promoters suggests an important role for Oct-1 in IFN-A regulation. PMID:16166650

  16. Ligand-independent TLR signals generated by ectopic overexpression of MyD88 generate local and systemic anti-tumor immunity

    PubMed Central

    Hartman, Zachary C.; Osada, Takuya; Glass, Oliver; Yang, Xiao Y.; Lei, Gang-jun; Lyerly, H. Kim; Clay, Timothy M.

    2010-01-01

    Although critical for initiating and regulating immune responses, the therapeutic use of individual cytokines as anti-cancer immunotherapeutic agents has achieved only modest clinical success. Consequently, many current strategies have focused on the use of specific immunotherapeutic agonists that engage individual receptors of innate immune networks, such as the Toll Like-Receptor (TLR) system, each resulting in specific patterns of gene expression, cytokine production and inflammatory outcome. However, these immunotherapeutics are constrained by variable cellular TLR expression and responsiveness to particular TLR agonists, as well as the specific cellular context of different tumors. We hypothesized that overexpression of MyD88, a pivotal regulator of multiple TLR signaling pathways, could circumvent these constraints and mimic coordinated TLR signaling across all cell types in a ligand independent fashion. To explore this hypothesis, we generated an adenoviral vector expressing MyD88 and demonstrate that Ad-MyD88 infection elicits extensive Th1-specific transcriptional and secreted cytokine signatures in all murine and human cell types tested in vitro and in vivo. Importantly, in vivo intratumoral injection of Ad-MyD88 into established tumor masses enhanced adaptive immune responses and inhibited local tumor immunosuppression, resulting in significantly inhibited local and systemic growth of multiple tumor types. Finally, Ad-MyD88 infection of primary human dendritic cells, tumor associated fibroblasts, and colorectal carcinoma cells elicited significant Th1-type cytokine responses, resulting in enhanced tumor cell lysis and expansion of human tumor antigen-specific T-cells. Thus, Ad-MyD88 initiated robust anti-tumor activity in established murine tumor microenvironments and in human contexts, suggesting its potential effectiveness as a clinical immunotherapeutic strategy. PMID:20823152

  17. Reactive oxygen species are required for driving efficient and sustained aerobic glycolysis during CD4+ T cell activation.

    PubMed

    Previte, Dana M; O'Connor, Erin C; Novak, Elizabeth A; Martins, Christina P; Mollen, Kevin P; Piganelli, Jon D

    2017-01-01

    The immune system is necessary for protecting against various pathogens. However, under certain circumstances, self-reactive immune cells can drive autoimmunity, like that exhibited in type 1 diabetes (T1D). CD4+ T cells are major contributors to the immunopathology in T1D, and in order to drive optimal T cell activation, third signal reactive oxygen species (ROS) must be present. However, the role ROS play in mediating this process remains to be further understood. Recently, cellular metabolic programs have been shown to dictate the function and fate of immune cells, including CD4+ T cells. During activation, CD4+ T cells must transition metabolically from oxidative phosphorylation to aerobic glycolysis to support proliferation and effector function. As ROS are capable of modulating cellular metabolism in other models, we sought to understand if blocking ROS also regulates CD4+ T cell activation and effector function by modulating T cell metabolism. To do so, we utilized an ROS scavenging and potent antioxidant manganese metalloporphyrin (MnP). Our results demonstrate that redox modulation during activation regulates the mTOR/AMPK axis by maintaining AMPK activation, resulting in diminished mTOR activation and reduced transition to aerobic glycolysis in diabetogenic splenocytes. These results correlated with decreased Myc and Glut1 upregulation, reduced glucose uptake, and diminished lactate production. In an adoptive transfer model of T1D, animals treated with MnP demonstrated delayed diabetes progression, concurrent with reduced CD4+ T cell activation. Our results demonstrate that ROS are required for driving and sustaining T cell activation-induced metabolic reprogramming, and further support ROS as a target to minimize aberrant immune responses in autoimmunity.

  18. High-throughput transcriptome analysis of ISAV-infected Atlantic salmon Salmo salar unravels divergent immune responses associated to head-kidney, liver and gills tissues.

    PubMed

    Valenzuela-Miranda, Diego; Boltaña, Sebastian; Cabrejos, Maria E; Yáñez, José M; Gallardo-Escárate, Cristian

    2015-08-01

    Infectious salmon anaemia virus (ISAV) is an orthomyxovirus causing high mortality in farmed Atlantic salmon (Salmo salar). The collective data from the Atlantic salmon-ISAV interactions, performed "in vitro" using various salmon cell lines and "in vivo" fish infected with different ISAV isolates, have shown a strong regulation of immune related transcripts during the infection. Despite this strong defence response, the majority of fish succumb to infections with ISAV. The deficient protection of the host against ISAV is in part due to virulence factors of the virus, which allow evade the host-defence machinery. As such, the viral replication is uninhibited and viral loads quickly spread to several tissues causing massive cellular damage before the host can develop an effective cell-mediated and humoral outcome. To interrogate the correlation of the viral replication with the host defence response, we used fish that have been infected by cohabitation with ISAV-injected salmons. Whole gene expression patterns were measured with RNA-seq using RNA extracted from Head-kidney, Liver and Gills. The results show divergent mRNA abundance of functional modules related to interferon pathway, adaptive/innate immune response and cellular proliferation/differentiation. Furthermore, gene regulation in distinct tissues during the infection process was independently controlled within the each tissue and the observed mRNA expression suggests high modulation of the ISAV-segment transcription. Importantly this is the first time that strong correlations between functional modules containing significant immune process with protein-protein affinities and viral-segment transcription have been made between different tissues of ISAV-infected fish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Q fever in pregnant goats: humoral and cellular immune responses

    PubMed Central

    2013-01-01

    Q fever is a zoonosis caused by the intracellular bacterium Coxiella burnetii. Both humoral and cellular immunity are important in the host defence against intracellular bacteria. Little is known about the immune response to C. burnetii infections in domestic ruminants even though these species are the major source of Q fever in humans. To investigate the goat’s immune response we inoculated groups of pregnant goats via inhalation with a Dutch outbreak isolate of C. burnetii. All animals were successfully infected. Phase 1 and Phase 2 IgM- and IgG-specific antibodies were measured. Cellular immune responses were investigated by interferon-gamma, enzyme-linked immunosorbent spot test (IFN-γ Elispot), lymphocyte proliferation test (LPT) and systemic cytokines. After two weeks post inoculation (wpi), a strong anti-C. burnetii Phase 2 IgM and IgG antibody response was observed while the increase in IgM anti-Phase 1 antibodies was less pronounced. IgG anti-Phase 1 antibodies started to rise at 6 wpi. Cellular immune responses were observed after parturition. Our results demonstrated humoral and cellular immune responses to C. burnetii infection in pregnant goats. Cell-mediated immune responses did not differ enough to distinguish between Coxiella-infected and non-infected pregnant animals, whereas a strong-phase specific antibody response is detected after 2 wpi. This humoral immune response may be useful in the early detection of C. burnetii-infected pregnant goats. PMID:23915213

  20. Yellow Fever Virus Modulates the Expression of Key Proteins Related to the microRNA Pathway in the Human Hepatocarcinoma Cell Line HepG2.

    PubMed

    Holanda, Gustavo Moraes; Casseb, Samir Mansour Moraes; Mello, Karla Fabiane Lopes; Vasconcelos, Pedro Fernando Costa; Cruz, Ana Cecília Ribeiro

    2017-06-01

    Yellow fever is a zoonotic disease caused by the yellow fever virus (YFV) and transmitted by mosquitoes of the family Culicidae. It is well known that cellular and viral microRNAs (miRNAs) are involved in modulation of viral and cellular gene expression, as well as immune response, and are considered by the scientific community as possible targets for an effective therapy against viral infections. This regulation may be involved in different levels of infection and clinical symptomatology. We used viral titration techniques, viral kinetics from 24 to 96 hours postinfection (hpi), and analyzed the expression of key proteins related to the miRNA pathway by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). The expression of Dicer was different when compared over the course of infection by the distinct YFV genotypes. Drosha expression was similar during infection by YFV genotype 1 or 2, with a decrease in their expression over time and a slight increase in 96 hpi. Ago1, Ago2, and Ago4 showed different levels of expression between the viral genotypes: for YFV genotype 1 infection, Ago1 presented a positive expression, while for YFV genotype 2, it showed a negative expression, when compared with negative controls. We conclude that YFV infection modulates the proteins involved in miRNA biogenesis, which can regulate both viral replication and cellular immune response.

  1. The immunological capacity in the larvae of Pacific oyster Crassostrea gigas.

    PubMed

    Song, Xiaorui; Wang, Hao; Xin, Lusheng; Xu, Jiachao; Jia, Zhihao; Wang, Lingling; Song, Linsheng

    2016-02-01

    As the immune system has not fully developed during early developmental stages, bivalve larvae are more susceptible for pathogens, which frequently leads to the significant mortality in hatcheries. In the present study, the development of immune system and its response against bacteria challenge were investigated in order to characterize the repertoire of immunological capacity of Pacific oyster Crassostrea gigas during the ontogenesis. The phagocytosis was firstly observed in the early D-veliger larvae (17 hpf), especially in their velum site, which indicated the appearance of functional hemocytes during early D-veliger larvae stage. The whole-mount immunofluorescence assay of three pattern recognition receptors (integrin β-1, caspase-3 and C-type lectin 3) and one immune effector gene (IL17-5) was performed in blastula, early D-veliger and umbo larvae, suggested that velum and digestive gland were the potential sites of immune system in the larvae. The lowest activities of antioxidant enzymes (superoxide dismutase and catalase) and hydrolytic enzyme (lysozyme), as well as descended expression levels of 12 immune genes at the transition between embryogenesis and planktonic, indicated that the larvae at hatching (9 hpf) were in hypo-immunity. While the ascending activities of enzymes and expression levels of seven immune genes during the trochophore stage (15 hpf) suggested the initiation of immune system. The steadily increasing trend of all the 12 candidate genes at the early umbo larvae (120 h) hinted that the immune system was well developed at this stage. After bacterial challenge, some immune recognition (TLR4) and immune effector (IL17-5 and defh2) genes were activated in blastula stage (4 hpf), and other immune genes were up regulated in D-veliger larvae, indicating that the zygotic immune system could respond earlier against the bacterial challenge during its development. These results indicated that the cellular and humoral immune components appeared at trochophore stage, and the cellular immune system was activated with its occurrence, while the humoral immune system executed until the early umbo larval stage. The immune system emerged earlier to aid larvae in defending bacterial challenge during the early stages of oyster development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Induction of strong anti-HIV cellular immunity by a combination of Clostridium perfringens expressing HIV gag and virus like particles.

    PubMed

    Pegu, Poonam; Helmus, Ruth; Gupta, Phalguni; Tarwater, Patrick; Caruso, Lori; Shen, Chengli; Ross, Ted; Chen, Yue

    2011-12-01

    The lower gastrointestinal tract is a major mucosal site of HIV entry and initial infection. Thus, the induction of strong cellular immune responses at this mucosal site will be an important feature of an effective HIV vaccine. We have used a novel prime-boost vaccination approach to induce immune responses at mucosal sites. Orally delivered recombinant Clostridium perfringens expressing HIV-1 gag (Cp-Gag) was evaluated for induction of HIV-1 Gag specific T cell responses in a prime-boost model with intranasal inoculation of HIV-1 virus like particles (VLP). HIV-1 specific cellular immune responses in both the effector (Lamina propria) and inductive sites (Peyer's patches) of the gastrointestinal (GI) tract were significantly higher in mice immunized using Cp-Gag and VLPs in a prime-boost approach compared to mice immunized with either Cp-Gag or VLPs alone. Such cellular immune response was found to be mediated by both CD8(+) and CD4(+) T cells. Such a strong mucosal immune response could be very useful in developing a mucosal vaccine against HIV-1.

  3. Human Gut-Derived Prevotella histicola Suppresses Inflammatory Arthritis in Humanized Mice

    PubMed Central

    Marietta, Eric V; Murray, Joseph A; Luckey, David H; Jeraldo, Patricio R.; Lamba, Abhinav; Patel, Robin; Luthra, Harvinder S; Mangalam, Ashutosh; Taneja, Veena

    2016-01-01

    Objective The gut microbiome regulates host immune homeostasis. Rheumatoid arthritis (RA) is associated with intestinal dysbiosis. In this study we used a human gut-derived commensal to modulate immune response and treat arthritis in a humanized mouse model. Methods We have isolated a commensal bacterium, Prevotella histicola, native to the human gut that has systemic immune effects when administered enterally. Arthritis-susceptible HLA-DQ8 mice were immunized with type II collagen and treated with P. histicola; disease incidence, onset and severity were monitored. Changes in the gut epithelial proteins and immune response as well as systemic cellular and humoral immune responses were studied in treated mice. Results DQ8 mice when treated with P. histicola in prophylactic or therapeutic protocols exhibited significantly decreased incidence and severity of arthritis as compared to controls. The microbial mucosal modulation of arthritis was dependent on the regulation by CD103+ dendritic cells and myeloid suppressors, CD11b+Gr-1, and by generation of T regulatory cells, CD4+CD25+FoxP3+, in the gut, resulting in suppression of antigen-specific Th17 response and increased transcription of IL-10. Treatment with P. histicola led to reduced intestinal permeability by increasing expression of enzymes that produce antimicrobial peptides as well as tight junction proteins, Zo-1 and Occludin. However, the innate immune response via TLR4 and TLR9 were not affected in treated mice. Discussion Our results demonstrate that enteral exposure to P. histicola suppresses arthritis via mucosal regulation. P. histicola is a unique commensal that can be explored as a novel therapy for RA and may have low/no side effects. PMID:27337150

  4. Suppression of Inflammatory Arthritis by Human Gut-Derived Prevotella histicola in Humanized Mice.

    PubMed

    Marietta, Eric V; Murray, Joseph A; Luckey, David H; Jeraldo, Patricio R; Lamba, Abhinav; Patel, Robin; Luthra, Harvinder S; Mangalam, Ashutosh; Taneja, Veena

    2016-12-01

    The gut microbiome regulates host immune homeostasis. Rheumatoid arthritis (RA) is associated with intestinal dysbiosis. This study was undertaken to test the ability of a human gut-derived commensal to modulate immune response and treat arthritis in a humanized mouse model. We isolated a commensal bacterium, Prevotella histicola, that is native to the human gut and has systemic immune effects when administered enterally. Arthritis-susceptible HLA-DQ8 mice were immunized with type II collagen and treated with P histicola. Disease incidence, onset, and severity were monitored. Changes in gut epithelial proteins and immune response as well as systemic cellular and humoral immune responses were studied in treated mice. When treated with P histicola in prophylactic or therapeutic protocols, DQ8 mice exhibited significantly decreased incidence and severity of arthritis compared to controls. The microbial mucosal modulation of arthritis was dependent on regulation by CD103+ dendritic cells and myeloid suppressors (CD11b+Gr-1+ cells) and by generation of Treg cells (CD4+CD25+FoxP3+) in the gut, resulting in suppression of antigen-specific Th17 responses and increased transcription of interleukin-10. Treatment with P histicola led to reduced intestinal permeability by increasing expression of enzymes that produce antimicrobial peptides as well as tight junction proteins (zonula occludens 1 and occludin). However, the innate immune response via Toll-like receptor 4 (TLR-4) and TLR-9 was not affected in treated mice. Our results demonstrate that enteral exposure to P histicola suppresses arthritis via mucosal regulation. P histicola is a unique commensal that can be explored as a novel therapy for RA and may have few or no side effects. © 2016, American College of Rheumatology.

  5. RNA Editing, ADAR1, and the Innate Immune Response.

    PubMed

    Wang, Qingde; Li, Xiaoni; Qi, Ruofan; Billiar, Timothy

    2017-01-18

    RNA editing, particularly A-to-I RNA editing, has been shown to play an essential role in mammalian embryonic development and tissue homeostasis, and is implicated in the pathogenesis of many diseases including skin pigmentation disorder, autoimmune and inflammatory tissue injury, neuron degeneration, and various malignancies. A-to-I RNA editing is carried out by a small group of enzymes, the adenosine deaminase acting on RNAs (ADARs). Only three members of this protein family, ADAR1-3, exist in mammalian cells. ADAR3 is a catalytically null enzyme and the most significant function of ADAR2 was found to be in editing on the neuron receptor GluR-B mRNA. ADAR1, however, has been shown to play more significant roles in biological and pathological conditions. Although there remains much that is not known about how ADAR1 regulates cellular function, recent findings point to regulation of the innate immune response as an important function of ADAR1. Without appropriate RNA editing by ADAR1, endogenous RNA transcripts stimulate cytosolic RNA sensing receptors and therefore activate the IFN-inducing signaling pathways. Overactivation of innate immune pathways can lead to tissue injury and dysfunction. However, obvious gaps in our knowledge persist as to how ADAR1 regulates innate immune responses through RNA editing. Here, we review critical findings from ADAR1 mechanistic studies focusing on its regulatory function in innate immune responses and identify some of the important unanswered questions in the field.

  6. Early growth response 2 and Egr3 are unique regulators in immune system.

    PubMed

    Taefehshokr, Sina; Key, Yashar Azari; Khakpour, Mansour; Dadebighlu, Pourya; Oveisi, Amin

    2017-01-01

    The immune system is evolved to defend the body against pathogens and is composed of thousands of complicated and intertwined pathways, which are highly controlled by processes such as transcription and repression of cellular genes. Sometimes the immune system malfunctions and a break down in self-tolerance occurs. This lead to the inability to distinguish between self and non-self and cause attacks on host tissues, a condition also known as autoimmunity, which can result in chronic debilitating diseases. Early growth response genes are family of transcription factors comprising of four members, Egr1, Egr2, Egr3 and Egr4. All of which contain three cyc2-His2 zinc fingers. Initially, Egr2 function was identified in the regulation of peripheral nerve myelination, hindbrain segmentation. Egr3, on the other hand, is highly expressed in muscle spindle development. Egr2 and Egr3 are induced due to the antigen stimulation and this signaling is implemented through the B and T cell receptors in the adaptive immunity. T cell receptor signaling plays a key role in Egr 2 and 3 expressions via their interaction with NFAT molecules. Egr 2 and 3 play a crucial role in regulation of the immune system and their involvement in B and T cell activation, anergy induction and preventing the autoimmune disease has been investigated. The deficiency of these transcription factors has been associated to deficient Cbl-b expression, a resistant to anergy phenotype, and expression of effector and activated T cells.

  7. Uncovering iron regulation with species-specific transcriptome patterns in Atlantic and coho salmon during a Caligus rogercresseyi infestation.

    PubMed

    Valenzuela-Muñoz, V; Boltaña, S; Gallardo-Escárate, C

    2017-09-01

    Salmon species cultured in Chile evidence different levels of susceptibility to the sea louse Caligus rogercresseyi. These differences have mainly been associated with specific immune responses. Moreover, iron regulation seems to be an important mechanism to confer immunity during the host infestation. This response called nutritional immunity has been described in bacterial infections, despite that no comprehensive studies involving in marine ectoparasites infestation have been reported. With this aim, we analysed the transcriptome profiles of Atlantic and coho salmon infected with C. rogercresseyi to evidence modulation of the iron metabolism as a proxy of nutritional immune responses. Whole transcriptome sequencing was performed in samples of skin and head kidney from Atlantic and coho salmon infected with sea lice. RNA-seq analyses revealed significant upregulation of transcripts in both salmon species at 7 and 14 dpi in skin and head kidney, respectively. However, iron regulation transcripts were differentially modulated, evidencing species-specific expression profiles. Genes related to heme degradation and iron transport such as hepcidin, transferrin and haptoglobin were primary upregulated in Atlantic salmon; meanwhile, in coho salmon, genes associated with heme biosynthesis were strongly transcribed. In summary, Atlantic salmon, which are more susceptible to infestation, presented molecular mechanisms to deplete cellular iron availability, suggesting putative mechanisms of nutritional immunity. In contrast, resistant coho salmon were less affected by sea lice, mainly activating pro-inflammatory mechanisms to cope with infestation. © 2017 John Wiley & Sons Ltd.

  8. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection.

    PubMed

    Piedade, Diogo; Azevedo-Pereira, José Miguel

    2016-06-02

    MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein-Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis.

  9. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection

    PubMed Central

    Piedade, Diogo; Azevedo-Pereira, José Miguel

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer. Given the importance of microRNAs to cell homeostasis, it is no surprise that viruses have evolved to take advantage of this cellular pathway. Viruses have been reported to be able to encode and express functional viral microRNAs that target both viral and cellular transcripts. Moreover, viral inhibition of key proteins from the microRNA pathway and important changes in cellular microRNA pool have been reported upon viral infection. In addition, viruses have developed multiple mechanisms to avoid being targeted by cellular microRNAs. This complex interaction between host and viruses to control the microRNA pathway usually favors viral infection and persistence by either reducing immune detection, avoiding apoptosis, promoting cell growth, or promoting lytic or latent infection. One of the best examples of this virus-host-microRNA interplay emanates from members of the Herperviridae family, namely the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2), human cytomegalovirus (HCMV), human herpesvirus 8 (HHV-8), and the Epstein–Barr virus (EBV). In this review, we will focus on the general functions of microRNAs and the interactions between herpesviruses, human hosts, and microRNAs and will delve into the related mechanisms that contribute to infection and pathogenesis. PMID:27271654

  10. RNA-Binding Proteins in Female Reproductive Pathologies.

    PubMed

    Khalaj, Kasra; Miller, Jessica E; Fenn, Christian R; Ahn, SooHyun; Luna, Rayana L; Symons, Lindsey; Monsanto, Stephany P; Koti, Madhuri; Tayade, Chandrakant

    2017-06-01

    RNA-binding proteins are key regulatory molecules involved primarily in post-transcriptional gene regulation of RNAs. Post-transcriptional gene regulation is critical for adequate cellular growth and survival. Recent reports have shown key interactions between these RNA-binding proteins and other regulatory elements, such as miRNAs and long noncoding RNAs, either enhancing or diminishing their response to RNA stabilization. Many RNA-binding proteins have been reported to play a functional role in mediation of cytokines involved in inflammation and immune dysfunction, and some have been classified as global post-transcriptional regulators of inflammation. The ubiquitous expression of RNA-binding proteins in a wide variety of cell types and their unique mechanisms of degradative action provide evidence that they are involved in reproductive tract pathologies. Aberrant inflammation and immune dysfunction are major contributors to the pathogenesis and disease pathophysiology of many reproductive pathologies, including ovarian and endometrial cancers in the female reproductive tract. Herein, we discuss various RNA-binding proteins and their unique contributions to female reproductive pathologies with a focus on those mediated by aberrant inflammation and immune dysfunction. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. MicroRNA Profiling of Sendai Virus-Infected A549 Cells Identifies miR-203 as an Interferon-Inducible Regulator of IFIT1/ISG56

    PubMed Central

    Buggele, William A.

    2013-01-01

    The mammalian type I interferon (IFN) response is a primary barrier for virus infection and is essential for complete innate and adaptive immunity. Both IFN production and IFN-mediated antiviral signaling are the result of differential cellular gene expression, a process that is tightly controlled at transcriptional and translational levels. To determine the potential for microRNA (miRNA)-mediated regulation of the antiviral response, small-RNA profiling was used to analyze the miRNA content of human A549 cells at steady state and following infection with the Cantell strain of Sendai virus, a potent inducer of IFN and cellular antiviral responses. While the miRNA content of the cells was largely unaltered by infection, specific changes in miRNA abundance were identified during Sendai virus infection. One miRNA, miR-203, was found to accumulate in infected cells and in response to IFN treatment. Results indicate that miR-203 is an IFN-inducible miRNA that can negatively regulate a number of cellular mRNAs, including an IFN-stimulated gene target, IFIT1/ISG56, by destabilizing its mRNA transcript. PMID:23785202

  12. Toll-like receptor signaling: a perspective to develop vaccine against leishmaniasis.

    PubMed

    Singh, Rakesh K; Srivastava, Ankita; Singh, Nisha

    2012-09-06

    The toll-like receptors (TLRs) are the sentinel factor of the innate immunity, which are essential for host defense. These receptors detect the presence of conserved molecular patterns of potentially pathogenic microorganisms and contribute in both, cellular as well as humoral immune responses. Leishmania is an intracellular pathogen that silently invades host immune system. After phagocytosis, it divides and proliferates in the harmful environment of host macrophages by down-regulating its vital effector functions. In leishmaniasis, the outcome of the infection basically relies on the skewed balance between Th1/Th2 immune responses. Lots of work have been done and on progress but still characterization of either preventive or prophylactic candidate antigen/s is far from satisfactory. How does Leishmania regulate host innate immune system? Still it is unanswered. TLRs play very important role during inflammatory process of various diseases such as cancer, bacterial and viral infections but TLR signaling is comparatively less explained in leishmanial infection. In the context to Th1/Th2 dichotomy, identification of leishmanial antigens that modulate toll-like receptor signaling will certainly help in the development of future vaccine. This review will initially describe global properties of TLRs, and later will discuss their role in the pathogenesis of leishmaniasis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. The Arabidopsis Cysteine-Rich Receptor-Like Kinase CRK36 Regulates Immunity through Interaction with the Cytoplasmic Kinase BIK1

    PubMed Central

    Lee, Dong Sook; Kim, Young Cheon; Kwon, Sun Jae; Ryu, Choong-Min; Park, Ohkmae K.

    2017-01-01

    Receptor-like kinases are important signaling components that regulate a variety of cellular processes. In this study, an Arabidopsis cDNA microarray analysis led to the identification of the cysteine-rich receptor-like kinase CRK36 responsive to the necrotrophic fungal pathogen, Alternaria brassicicola. To determine the function of CRK36 in plant immunity, T-DNA-insertion knockdown (crk36) and overexpressing (CRK36OE) plants were prepared. CRK36OE plants exhibited increased hypersensitive cell death and ROS burst in response to avirulent pathogens. Treatment with a typical pathogen-associated molecular pattern, flg22, markedly induced pattern-triggered immune responses, notably stomatal defense, in CRK36OE plants. The immune responses were weakened in crk36 plants. Protein-protein interaction assays revealed the in vivo association of CRK36, FLS2, and BIK1. CRK36 enhanced flg22-triggered BIK1 phosphorylation, which showed defects with Cys mutations in the DUF26 motifs of CRK36. Disruption of BIK1 and RbohD/RbohF genes further impaired CRK36-mediated stomatal defense. We propose that CRK36, together with BIK1 and NADPH oxidases, may form a positive activation loop that enhances ROS burst and leads to the promotion of stomatal immunity. PMID:29163585

  14. [Mechanisms of retroviral immunosuppressive domain-induced immune modulation].

    PubMed

    Blinov, V M; Krasnov, G S; Shargunov, A V; Shurdov, M A; Zverev, V V

    2013-01-01

    Immunosuppressive domains (ISD) of viral envelope glycoproteins provide highly pathogenic phenotypes of various retroviruses. ISD interaction with immune cells leads to an inhibition of a response. In the 1980s it was shown that the fragment of ISD comprising of 17 amino acids (named CKS-17) is carrying out such immune modulation. However the underlying mechanisms were not known. The years of thorough research allowed to identify the regulation of Ras-Raf-MEK-MAPK and PI3K-AKT-mTOR cellular pathways as a result of ISD interaction with immune cells. By the way, this leads to decrease of secretion of stimulatory cytokines (e.g., IL-12) and increase of inhibitory, anti-inflammatory ones (e.g., IL-10). One of the receptor tyrosine kinases inducing signal in these pathways acts as the primary target of ISD while other key regulators--cAMP and diacylglycerol (DAG), act as secondary messengers of signal transduction. Immunosuppressive-like domains can be found not only in retroviruses; the presence of ISD within Ebola viral envelope glycoproteins caused extremely hard clinical course of virus-induced hemorrhagic fever. A number of retroviral-origin fragments encoding ISD can be found in the human genome. These regions are expressed in the placenta within genes of syncytins providing a tolerance of mother's immune system to an embryo. The present review is devoted to molecular aspects of retroviral ISD-induced modulation of host immune system.

  15. Immune response

    MedlinePlus

    Innate immunity; Humoral immunity; Cellular immunity; Immunity; Inflammatory response; Acquired (adaptive) immunity ... normal and usually does not react against them. INNATE IMMUNITY Innate, or nonspecific, immunity is the defense ...

  16. A sestrin-dependent Erk/Jnk/p38 MAPK activation complex inhibits immunity during ageing

    PubMed Central

    Lanna, Alessio; Gomes, Daniel C O; Muller-Durovic, Bojana; McDonnell, Thomas; Escors, David; Gilroy, Derek W; Lee, Jun Hee; Karin, Michael; Akbar, Arne N

    2016-01-01

    Mitogen activated protein kinases (MAPKs) including Erk, Jnk and p38 regulate diverse cellular functions, and are thought to be controlled by independent upstream activation cascades. Here we show that the sestrins bind to and co-ordinate simultaneous Erk, Jnk and p38 MAPK activation in T lymphocytes within a new immune-inhibitory complex (sestrin-MAPK Activation Complex; sMAC). Whereas sestrin ablation resulted in broad reconstitution of immune function in stressed T cells, inhibition of individual MAPKs only allowed partial functional recovery. T cells from old humans and mice were more likely to form the sMAC, and disruption of this complex restored antigen-specific functional responses in these cells. Correspondingly, sestrin deficiency or simultaneous inhibition of all three MAPKs enhanced vaccine responsiveness in old mice. Thus, disruption of sMAC provides a foundation for rejuvenating immunity during ageing. PMID:28114291

  17. Exploiting single-cell variability to infer the dynamics of immune responses

    NASA Astrophysics Data System (ADS)

    Höfer, Thomas

    Cell division, differentiation, migration and death determine the dynamics of immune responses. These processes are regulated by a multitude of biochemical signals which, at present, cannot faithfully be reconstituted outside the living organism. However, quantitative measurements in living organisms have been limited. In recent years experimental techniques for the ``fate mapping'' of single immune cells have been developed that allow performing parallel single-cell experiments in an experimental animal. The resulting data are more informative about underlying biological processes than traditional measurements. I will show how the theory of stochastic dynamical systems can be used to infer the topology and dynamics of cell differentiation pathways from such data. The focus will be on joint theoretical and experimental work addressing: (i) the development of immune cells during hematopoiesis, and (ii) T cell responses to diverse pathogens. I will discuss questions on the nature of cellular variability that are posed by these new findings.

  18. Receptor Complex Mediated Regulation of Symplastic Traffic.

    PubMed

    Stahl, Yvonne; Faulkner, Christine

    2016-05-01

    Plant receptor kinases (RKs) and receptor proteins (RPs) are involved in a plethora of cellular processes, including developmental decisions and immune responses. There is increasing evidence that plasmodesmata (PD)-localized RKs and RPs act as nexuses that perceive extracellular signals and convey them into intra- and intercellular responses by regulating the exchange of molecules through PD. How RK/RP complexes regulate the specific and nonspecific traffic of molecules through PD, and how these receptors are specifically targeted to PD, have been elusive but underpin comprehensive understanding of the function and regulation of the symplast. In this review we gather the current knowledge of RK/RP complex function at PD and how they might regulate intercellular traffic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Transcriptional networks in plant immunity.

    PubMed

    Tsuda, Kenichi; Somssich, Imre E

    2015-05-01

    Next to numerous abiotic stresses, plants are constantly exposed to a variety of pathogens within their environment. Thus, their ability to survive and prosper during the course of evolution was strongly dependent on adapting efficient strategies to perceive and to respond to such potential threats. It is therefore not surprising that modern plants have a highly sophisticated immune repertoire consisting of diverse signal perception and intracellular signaling pathways. This signaling network is intricate and deeply interconnected, probably reflecting the diverse lifestyles and infection strategies used by the multitude of invading phytopathogens. Moreover it allows signal communication between developmental and defense programs thereby ensuring that plant growth and fitness are not significantly retarded. How plants integrate and prioritize the incoming signals and how this information is transduced to enable appropriate immune responses is currently a major research area. An important finding has been that pathogen-triggered cellular responses involve massive transcriptional reprogramming within the host. Additional key observations emerging from such studies are that transcription factors (TFs) are often sites of signal convergence and that signal-regulated TFs act in concert with other context-specific TFs and transcriptional co-regulators to establish sensory transcription regulatory networks required for plant immunity. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. NF-κB/Rel Proteins and the Humoral Immune Responses of Drosophila melanogaster

    PubMed Central

    Ganesan, Sandhya; Aggarwal, Kamna; Paquette, Nicholas; Silverman, Neal

    2011-01-01

    Nuclear Factor-κB (NF-κB)/Rel transcription factors form an integral part of innate immune defenses and are conserved throughout the animal kingdom. Studying the function, mechanism of activation and regulation of these factors is crucial for understanding host responses to microbial infections. The fruit fly Drosophila melanogaster has proved to be a valuable model system to study these evolutionarily conserved NF-κB mediated immune responses. Drosophila combats pathogens through humoral and cellular immune responses. These humoral responses are well characterized and are marked by the robust production of a battery of anti-microbial peptides. Two NF-κB signaling pathways, the Toll and the IMD pathways, are responsible for the induction of these antimicrobial peptides. Signal transduction in these pathways is strikingly similar to that in mammalian TLR pathways. In this chapter, we discuss in detail the molecular mechanisms of microbial recognition, signal transduction and NF-κB regulation, in both the Toll and the IMD pathways. Similarities and differences relative to their mammalian counterparts are discussed, and recent advances in our understanding of the intricate regulatory networks in these NF-κB signaling pathways are also highlighted. PMID:20852987

  1. RNA sensor LGP2 inhibits TRAF ubiquitin ligase to negatively regulate innate immune signaling.

    PubMed

    Parisien, Jean-Patrick; Lenoir, Jessica J; Mandhana, Roli; Rodriguez, Kenny R; Qian, Kenin; Bruns, Annie M; Horvath, Curt M

    2018-06-01

    The production of type I interferon (IFN) is essential for cellular barrier functions and innate and adaptive antiviral immunity. In response to virus infections, RNA receptors RIG-I and MDA5 stimulate a mitochondria-localized signaling apparatus that uses TRAF family ubiquitin ligase proteins to activate master transcription regulators IRF3 and NFκB, driving IFN and antiviral target gene expression. Data indicate that a third RNA receptor, LGP2, acts as a negative regulator of antiviral signaling by interfering with TRAF family proteins. Disruption of LGP2 expression in cells results in earlier and overactive transcriptional responses to virus or dsRNA LGP2 associates with the C-terminus of TRAF2, TRAF3, TRAF5, and TRAF6 and interferes with TRAF ubiquitin ligase activity. TRAF interference is independent of LGP2 ATP hydrolysis, RNA binding, or its C-terminal domain, and LGP2 can regulate TRAF-mediated signaling pathways in trans , including IL-1β, TNFα, and cGAMP These findings provide a unique mechanism for LGP2 negative regulation through TRAF suppression and extend the potential impact of LGP2 negative regulation beyond the IFN antiviral response. © 2018 The Authors.

  2. RNase H As Gene Modifier, Driver of Evolution and Antiviral Defense.

    PubMed

    Moelling, Karin; Broecker, Felix; Russo, Giancarlo; Sunagawa, Shinichi

    2017-01-01

    Retroviral infections are 'mini-symbiotic' events supplying recipient cells with sequences for viral replication, including the reverse transcriptase (RT) and ribonuclease H (RNase H). These proteins and other viral or cellular sequences can provide novel cellular functions including immune defense mechanisms. Their high error rate renders RT-RNases H drivers of evolutionary innovation. Integrated retroviruses and the related transposable elements (TEs) have existed for at least 150 million years, constitute up to 80% of eukaryotic genomes and are also present in prokaryotes. Endogenous retroviruses regulate host genes, have provided novel genes including the syncytins that mediate maternal-fetal immune tolerance and can be experimentally rendered infectious again. The RT and the RNase H are among the most ancient and abundant protein folds. RNases H may have evolved from ribozymes, related to viroids, early in the RNA world, forming ribosomes, RNA replicases and polymerases. Basic RNA-binding peptides enhance ribozyme catalysis. RT and ribozymes or RNases H are present today in bacterial group II introns, the precedents of TEs. Thousands of unique RTs and RNases H are present in eukaryotes, bacteria, and viruses. These enzymes mediate viral and cellular replication and antiviral defense in eukaryotes and prokaryotes, splicing, R-loop resolvation, DNA repair. RNase H-like activities are also required for the activity of small regulatory RNAs. The retroviral replication components share striking similarities with the RNA-induced silencing complex (RISC), the prokaryotic CRISPR-Cas machinery, eukaryotic V(D)J recombination and interferon systems. Viruses supply antiviral defense tools to cellular organisms. TEs are the evolutionary origin of siRNA and miRNA genes that, through RISC, counteract detrimental activities of TEs and chromosomal instability. Moreover, piRNAs, implicated in transgenerational inheritance, suppress TEs in germ cells. Thus, virtually all known immune defense mechanisms against viruses, phages, TEs, and extracellular pathogens require RNase H-like enzymes. Analogous to the prokaryotic CRISPR-Cas anti-phage defense possibly originating from TEs termed casposons, endogenized retroviruses ERVs and amplified TEs can be regarded as related forms of inheritable immunity in eukaryotes. This survey suggests that RNase H-like activities of retroviruses, TEs, and phages, have built up innate and adaptive immune systems throughout all domains of life.

  3. Retinoic Acid as a Modulator of T Cell Immunity

    PubMed Central

    Bono, Maria Rosa; Tejon, Gabriela; Flores-Santibañez, Felipe; Fernandez, Dominique; Rosemblatt, Mario; Sauma, Daniela

    2016-01-01

    Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity. PMID:27304965

  4. Roles of microRNA in the immature immune system of neonates.

    PubMed

    Yu, Hong-Ren; Huang, Lien-Hung; Li, Sung-Chou

    2018-06-13

    Neonates have an immature immune system; therefore, their immune activities are different from the activities of adult immune systems. Such differences between neonates and adults are reflected by cell population constitutions, immune responses, cytokine production, and the expression of cellular/humoral molecules, which contribute to the specific neonatal microbial susceptibility and atopic properties. MicroRNAs (miRNAs) have been discovered to modulate many aspects of immune responses. Herein, we summarize the distinct manifestations of the neonatal immune system, including cellular and non-cellular components. We also review the current findings on the modulatory effects of miRNAs on the neonatal immune system. These findings suggest that miRNAs have the potential to be useful therapeutic targets for certain infection or inflammatory conditions by modulating the neonatal immune system. In the future, we need a more comprehensive understanding in regard to miRNAs and how they modulate specific immune cells in neonates. Copyright © 2018. Published by Elsevier B.V.

  5. Inflammatory Flt3L is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection

    PubMed Central

    Guermonprez, Pierre; Helft, Julie; Claser, Carla; Deroubaix, Stephanie; Karanje, Henry; Gazumyan, Anna; Darrasse-Jeze, Guillaume; Telerman, Stephanie B.; Breton, Gaëlle; Schreiber, Heidi A.; Frias-Staheli, Natalia; Billerbeck, Eva; Dorner, Marcus; Rice, Charles M.; Ploss, Alexander; Klein, Florian; Swiecki, Melissa; Colonna, Marco; Kamphorst, Alice O.; Meredith, Matthew; Niec, Rachel; Takacs, Constantin; Mikhail, Fadi; Hari, Aswin; Bosque, David; Eisenreich, Tom; Merad, Miriam; Shi, Yan; Ginhoux, Florent; Rénia, Laurent; Urban, Britta C.; Nussenzweig, Michel C.

    2014-01-01

    Summary Innate sensing mechanisms trigger a variety of humoral and cellular events that are essential to adaptive immune responses. Here we describe an innate sensing pathway triggered by Plasmodium infection that regulates dendritic cell (DC) homeostasis and adaptive immunity via Flt3L release. Plasmodium-induced Flt3L release requires toll-like receptor activation and type I interferon production. We find that type I interferon supports the up-regulation of xanthine dehydrogenase, which metabolizes the xanthine accumulating in infected erythrocytes to uric acid. Uric acid crystals trigger mast cells to release soluble Flt3L from a pre-synthesized membrane-associated precursor. During infection Flt3L preferentially stimulates expansion of the CD8α+/CD103+ DC subset or its BDCA3+ human DC equivalent and has a significant impact on the magnitude of T cell activation, mostly in the CD8+ compartment. Our findings highlight a new mechanism that regulates DC homeostasis and T cell responses to infection. PMID:23685841

  6. Autophagy in Drosophila melanogaster.

    PubMed

    McPhee, Christina K; Baehrecke, Eric H

    2009-09-01

    Macroautophagy (autophagy) is a bulk cytoplasmic degradation process that is conserved from yeast to mammals. Autophagy is an important cellular response to starvation and stress, and plays critical roles in development, cell death, aging, immunity, and cancer. The fruit fly Drosophila melanogaster provides an excellent model system to study autophagy in vivo, in the context of a developing organism. Autophagy (atg) genes and their regulators are conserved in Drosophila, and autophagy is induced in response to nutrient starvation and hormones during development. In this review we provide an overview of how Drosophila research has contributed to our understanding of the role and regulation of autophagy in cell survival, growth, nutrient utilization, and cell death. Recent Drosophila research has also provided important mechanistic information about the role of autophagy in protein aggregation disorders, neurodegeneration, aging, and innate immunity. Differences in the role of autophagy in specific contexts and/or cell types suggest that there may be cell-context-specific regulators of autophagy, and studies in Drosophila are well-suited to yield discoveries about this specificity.

  7. The NOTCH1-autophagy interaction: Regulating self-eating for survival.

    PubMed

    Sarin, Apurva; Marcel, Nimi

    2017-02-01

    T-cell subsets in the mammalian immune system use varied mechanisms for survival, a demand imposed by the diverse and dynamic niches that they function in. In a recent study, we showed that survival of natural T-regulatory cells (Tregs) was determined by spatially regulated NOTCH1 activity signaling leading to the activation of macroautophagy/autophagy. While this interaction was revealed in experimental conditions of limited nutrient availability in vitro, the consequences of this interaction were confirmed in the context of immune physiology. Consistently, disrupting NOTCH signaling or the autophagy cascade was deleterious to Tregs. At the molecular level, ligand-activated NOTCH1, which is enriched outside the nucleus in Tregs, was detected in complexes that included specific molecular intermediates controlling the progression of autophagy. Mitochondria were a prominent cellular target, with organelle remodeling and function dependent on NOTCH1 signaling to autophagy. It is tempting to speculate that the link between autophagy and the developmental regulator NOTCH1 identified in this work may be conserved in other biological contexts.

  8. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important?.

    PubMed

    Fausther-Bovendo, Hugues; Kobinger, Gary P

    2014-01-01

    Pre-existing immunity against human adenovirus (HAd) serotype 5 derived vector in the human population is widespread, thus hampering its clinical use. Various components of the immune system, including neutralizing antibodies (nAbs), Ad specific T cells and type I IFN activated NK cells, contribute to dampening the efficacy of Ad vectors in individuals with pre-existing Ad immunity. In order to circumvent pre-existing immunity to adenovirus, numerous strategies, such as developing alternative Ad serotypes, varying immunization routes and utilizing prime-boost regimens, are under pre-clinical or clinical phases of development. However, these strategies mainly focus on one arm of pre-existing immunity. Selection of alternative serotypes has been largely driven by the absence in the human population of nAbs against them with little attention paid to cross-reactive Ad specific T cells. Conversely, varying the route of immunization appears to mainly rely on avoiding Ad specific tissue-resident T cells. Finally, prime-boost regimens do not actually circumvent pre-existing immunity but instead generate immune responses of sufficient magnitude to confer protection despite pre-existing immunity. Combining the above strategies and thus taking into account all components regulating pre-existing Ad immunity will help further improve the development of Ad vectors for animal and human use.

  9. Immune modulation of i.v. immunoglobulin in women with reproductive failure.

    PubMed

    Han, Ae R; Lee, Sung K

    2018-04-01

    The mechanism of maternal immune tolerance of the semi-allogenic fetus has been explored extensively. The immune reaction to defend from invasion by pathogenic microorganisms should be maintained during pregnancy. An imbalance between the immune tolerance to the fetus and immune activation to the pathogenic organisms is associated with poor pregnancy outcomes. This emphasizes that the immune mechanism of successful reproduction is not just immune suppression, but adequate immune modulation. In this review, the action of i.v. immunoglobulin G (IVIg) on the immune system and its efficacy in reproductive failure (RF) was summarized. Also suggested is the indication of IVIg therapy for women with RF. Based on the mechanism of the immune regulation of IVIg and following confirmation of the immune modulation effects of it in various aberrant immune parameters in patients with RF, it is obvious that IVIg is effective in recurrent pregnancy losses and repeated implantation failures with immunologic disturbances. The authors recommend IVIg therapy in patients with RF with aberrant cellular immunologic parameters, including a high natural killer cell proportion and its cytotoxicity or elevated T helper 1 to T helper 2 ratio, based on each clinic's cut-off values. Further clinical studies about the safety of IVIg in the fetus and its efficacy in other immunologic abnormalities of RF are needed.

  10. VPS9a Activates the Rab5 GTPase ARA7 to Confer Distinct Pre- and Postinvasive Plant Innate Immunity.

    PubMed

    Nielsen, Mads E; Jürgens, Gerd; Thordal-Christensen, Hans

    2017-08-01

    Plant innate immunity can effectively prevent the proliferation of filamentous pathogens. Papilla formation at the site of attack is essential for preinvasive immunity; in postinvasive immunity, the encasement of pathogen structures inside host cells can hamper disease. Whereas papillae are highly dependent on transcytosis of premade material, little is known about encasement formation. Here, we show that endosome-associated VPS9a, the conserved guanine-nucleotide exchange factor activating Rab5 GTPases, is required for both pre- and postinvasive immunity against a nonadapted powdery mildew fungus ( Blumeria graminis f. sp hordei ) in Arabidopsis thaliana Surprisingly, VPS9a acts in addition to two previously well-described innate immunity components and thus represents an additional step in the regulation of how plants resist pathogens. We found VPS9a to be important for delivering membrane material to the encasement and VPS9a also plays a predominant role in postinvasive immunity. GTP-bound Rab5 GTPases accumulate in the encasement, but not the papillae, suggesting that two independent pathways form these defense structures. VPS9a also mediates defense to an adapted powdery mildew fungus, thus regulating a durable type of defense that works in both host and nonhost resistance. We propose that VPS9a plays a conserved role in organizing cellular endomembrane trafficking, required for delivery of defense components in response to powdery mildew fungi. © 2017 American Society of Plant Biologists. All rights reserved.

  11. VPS9a Activates the Rab5 GTPase ARA7 to Confer Distinct Pre- and Postinvasive Plant Innate Immunity[OPEN

    PubMed Central

    2017-01-01

    Plant innate immunity can effectively prevent the proliferation of filamentous pathogens. Papilla formation at the site of attack is essential for preinvasive immunity; in postinvasive immunity, the encasement of pathogen structures inside host cells can hamper disease. Whereas papillae are highly dependent on transcytosis of premade material, little is known about encasement formation. Here, we show that endosome-associated VPS9a, the conserved guanine-nucleotide exchange factor activating Rab5 GTPases, is required for both pre- and postinvasive immunity against a nonadapted powdery mildew fungus (Blumeria graminis f. sp hordei) in Arabidopsis thaliana. Surprisingly, VPS9a acts in addition to two previously well-described innate immunity components and thus represents an additional step in the regulation of how plants resist pathogens. We found VPS9a to be important for delivering membrane material to the encasement and VPS9a also plays a predominant role in postinvasive immunity. GTP-bound Rab5 GTPases accumulate in the encasement, but not the papillae, suggesting that two independent pathways form these defense structures. VPS9a also mediates defense to an adapted powdery mildew fungus, thus regulating a durable type of defense that works in both host and nonhost resistance. We propose that VPS9a plays a conserved role in organizing cellular endomembrane trafficking, required for delivery of defense components in response to powdery mildew fungi. PMID:28808134

  12. Cellular dynamics in the muscle satellite cell niche

    PubMed Central

    Bentzinger, C Florian; Wang, Yu Xin; Dumont, Nicolas A; Rudnicki, Michael A

    2013-01-01

    Satellite cells, the quintessential skeletal muscle stem cells, reside in a specialized local environment whose anatomy changes dynamically during tissue regeneration. The plasticity of this niche is attributable to regulation by the stem cells themselves and to a multitude of functionally diverse cell types. In particular, immune cells, fibrogenic cells, vessel-associated cells and committed and differentiated cells of the myogenic lineage have emerged as important constituents of the satellite cell niche. Here, we discuss the cellular dynamics during muscle regeneration and how disease can lead to perturbation of these mechanisms. To define the role of cellular components in the muscle stem cell niche is imperative for the development of cell-based therapies, as well as to better understand the pathobiology of degenerative conditions of the skeletal musculature. PMID:24232182

  13. pH-Responsive Micelle-Based Cytoplasmic Delivery System for Induction of Cellular Immunity.

    PubMed

    Yuba, Eiji; Sakaguchi, Naoki; Kanda, Yuhei; Miyazaki, Maiko; Koiwai, Kazunori

    2017-11-04

    (1) Background: Cytoplasmic delivery of antigens is crucial for the induction of cellular immunity, which is an important immune response for the treatment of cancer and infectious diseases. To date, fusogenic protein-incorporated liposomes and pH-responsive polymer-modified liposomes have been used to achieve cytoplasmic delivery of antigen via membrane rupture or fusion with endosomes. However, a more versatile cytoplasmic delivery system is desired for practical use. For this study, we developed pH-responsive micelles composed of dilauroyl phosphatidylcholine (DLPC) and deoxycholic acid and investigated their cytoplasmic delivery performance and immunity-inducing capability. (2) Methods: Interaction of micelles with fluorescence dye-loaded liposomes, intracellular distribution of micelles, and antigenic proteins were observed. Finally, antigen-specific cellular immune response was evaluated in vivo using ELIspot assay. (3) Results: Micelles induced leakage of contents from liposomes via lipid mixing at low pH. Micelles were taken up by dendritic cells mainly via macropinocytosis and delivered ovalbumin (OVA) into the cytosol. After intradermal injection of micelles and OVA, OVA-specific cellular immunity was induced in the spleen. (4) Conclusions: pH-responsive micelles composed of DLPC and deoxycholic acid are promising as enhancers of cytosol delivery of antigens and the induction capability of cellular immunity for the treatment of cancer immunotherapy and infectious diseases.

  14. More to NAD+ than meets the eye: A regulator of metabolic pools and gene expression in Arabidopsis.

    PubMed

    Gakière, Bertrand; Fernie, Alisdair R; Pétriacq, Pierre

    2018-01-05

    Since its discovery more than a century ago, nicotinamide adenine dinucleotide (NAD + ) is recognised as a fascinating cornerstone of cellular metabolism. This ubiquitous energy cofactor plays vital roles in metabolic pathways and regulatory processes, a fact emphasised by the essentiality of a balanced NAD + metabolism for normal plant growth and development. Research on the role of NAD in plants has been predominantly carried out in the model plant Arabidopsis thaliana (Arabidopsis) with emphasis on the redox properties and cellular signalling functions of the metabolite. This review examines the current state of knowledge concerning how NAD can regulate both metabolic pools and gene expression in Arabidopsis. Particular focus is placed on recent studies highlighting the complexity of metabolic regulations involving NAD, more particularly in the mitochondrial compartment, and of signalling roles with respect to interactions with environmental fluctuations most specifically those involving plant immunity. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. [Effect of cellular immune supportive treatment on immunity of esophageal carcinoma patients after modern two-field lymph node dissection].

    PubMed

    Wang, Jun-Ye; Ma, Guo-Wei; Dai, Shu-Qin; Rong, Tie-Hua; Wang, Xin; Lin, Peng; Ye, Wen-Feng; Zhang, Lan-Jun; Li, Xiao-Dong; Zhang, Xu; Yao, Guang-Yu

    2007-07-01

    Cellular immunity suppression is marked in patients with esophageal carcinoma, which may be resulted temporarily from surgical injury. This study was to evaluate the effect of cellular immune supportive treatment on cellular immunity of patients with esophageal carcinoma. A total of 60 patients with thoracic esophageal carcinoma, received two-field dissection, were randomized into control group and trial (immune supportive treatment) group. The patients in trial group were injected with Shenqi injection after operation; the patients in control group received no immune supportive treatment. Peripheral blood samples were obtained before operation, and 3 and 9 days after operation. AgNOR (argyrophilic nucleolar organizer regions) activity in peripheral blood T lymphocytes was measured by tumor immune microphotometry. T cell subsets were measured by flow cytometry. The proportions of CD3+CD4+ and CD4+/CD8+ cells were significantly higher in trial group than in control group at 3 days after operation (P < 0.05). The amount of AgNOR and proportions of CD3+, CD3+CD4+, CD4+/CD8+, and CD4+CD25+ cells were significantly higher in trial group than in control group at 9 days after operation (P < 0.05). There was no significant difference in 1-year survival rate between the 2 groups (P > 0.05). Shenqi injection could obviously improve cellular immunity of the esophageal carcinoma patients after modern two-field dissection.

  16. Targeting pH regulating proteins for cancer therapy-Progress and limitations.

    PubMed

    Parks, Scott K; Pouysségur, Jacques

    2017-04-01

    Tumour acidity induced by metabolic alterations and incomplete vascularisation sets cancer cells apart from normal cellular physiology. This distinguishing tumour characteristic has been an area of intense study, as cellular pH (pH i ) disturbances disrupt protein function and therefore multiple cellular processes. Tumour cells effectively utilise pH i regulating machinery present in normal cells with enhancements provided by additional oncogenic or hypoxia induced protein modifications. This overall improvement of pH regulation enables maintenance of an alkaline pH i in the continued presence of external acidification (pH e ). Considerable experimentation has revealed targets that successfully disrupt tumour pH i regulation in efforts to develop novel means to weaken or kill tumour cells. However, redundancy in these pH-regulating proteins, which include Na + /H + exchangers (NHEs), carbonic anhydrases (CAs), Na + /HCO 3 - co-transporters (NBCs) and monocarboxylate transporters (MCTs) has prevented effective disruption of tumour pH i when individual protein targeting is performed. Here we synthesise recent advances in understanding both normoxic and hypoxic pH regulating mechanisms in tumour cells with an ultimate focus on the disruption of tumour growth, survival and metastasis. Interactions between tumour acidity and other cell types are also proving to be important in understanding therapeutic applications such as immune therapy. Promising therapeutic developments regarding pH manipulation along with current limitations are highlighted to provide a framework for future research directives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Respiratory syncytial virus induced type I IFN production by pDC is regulated by RSV-infected airway epithelial cells, RSV-exposed monocytes and virus specific antibodies.

    PubMed

    Schijf, Marcel A; Lukens, Michael V; Kruijsen, Debby; van Uden, Nathalie O P; Garssen, Johan; Coenjaerts, Frank E J; Van't Land, Belinda; van Bleek, Grada M

    2013-01-01

    Innate immune responses elicited upon virus exposure are crucial for the effective eradication of viruses, the onset of adaptive immune responses and for establishing proper immune memory. Respiratory syncytial virus (RSV) is responsible for a high disease burden in neonates and immune compromised individuals, causing severe lower respiratory tract infections. During primary infections exuberant innate immune responses may contribute to disease severity. Furthermore, immune memory is often insufficient to protect during RSV re-exposure, which results in frequent symptomatic reinfections. Therefore, identifying the cell types and pattern recognition receptors (PRRs) involved in RSV-specific innate immune responses is necessary to understand incomplete immunity against RSV. We investigated the innate cellular response triggered upon infection of epithelial cells and peripheral blood mononuclear cells. We show that CD14(+) myeloid cells and epithelial cells are the major source of IL-8 and inflammatory cytokines, IL-6 and TNF-α, when exposed to live RSV Three routes of RSV-induced IFN-α production can be distinguished that depend on the cross-talk of different cell types and the presence or absence of virus specific antibodies, whereby pDC are the ultimate source of IFN-α. RSV-specific antibodies facilitate direct TLR7 access into endosomal compartments, while in the absence of antibodies, infection of monocytes or epithelial cells is necessary to provide an early source of type I interferons, required to engage the IFN-α,β receptor (IFNAR)-mediated pathway of IFN-α production by pDC. However, at high pDC density infection with RSV causes IFN-α production without the need for a second party cell. Our study shows that cellular context and immune status are factors affecting innate immune responses to RSV. These issues should therefore be addressed during the process of vaccine development and other interventions for RSV disease.

  18. Respiratory Syncytial Virus Induced Type I IFN Production by pDC Is Regulated by RSV-Infected Airway Epithelial Cells, RSV-Exposed Monocytes and Virus Specific Antibodies

    PubMed Central

    Schijf, Marcel A.; Lukens, Michael V.; Kruijsen, Debby; van Uden, Nathalie O. P.; Garssen, Johan; Coenjaerts, Frank E. J.; van’t Land, Belinda; van Bleek, Grada M.

    2013-01-01

    Innate immune responses elicited upon virus exposure are crucial for the effective eradication of viruses, the onset of adaptive immune responses and for establishing proper immune memory. Respiratory syncytial virus (RSV) is responsible for a high disease burden in neonates and immune compromised individuals, causing severe lower respiratory tract infections. During primary infections exuberant innate immune responses may contribute to disease severity. Furthermore, immune memory is often insufficient to protect during RSV re-exposure, which results in frequent symptomatic reinfections. Therefore, identifying the cell types and pattern recognition receptors (PRRs) involved in RSV-specific innate immune responses is necessary to understand incomplete immunity against RSV. We investigated the innate cellular response triggered upon infection of epithelial cells and peripheral blood mononuclear cells. We show that CD14+ myeloid cells and epithelial cells are the major source of IL-8 and inflammatory cytokines, IL-6 and TNF-α, when exposed to live RSV Three routes of RSV-induced IFN-α production can be distinguished that depend on the cross-talk of different cell types and the presence or absence of virus specific antibodies, whereby pDC are the ultimate source of IFN-α. RSV-specific antibodies facilitate direct TLR7 access into endosomal compartments, while in the absence of antibodies, infection of monocytes or epithelial cells is necessary to provide an early source of type I interferons, required to engage the IFN-α,β receptor (IFNAR)-mediated pathway of IFN-α production by pDC. However, at high pDC density infection with RSV causes IFN-α production without the need for a second party cell. Our study shows that cellular context and immune status are factors affecting innate immune responses to RSV. These issues should therefore be addressed during the process of vaccine development and other interventions for RSV disease. PMID:24303065

  19. Porcine circovirus type 2 (PCV2): pathogenesis and interaction with the immune system.

    PubMed

    Meng, Xiang-Jin

    2013-01-01

    Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated disease (PCVAD). The virus preferentially targets the lymphoid tissues, which leads to lymphoid depletion and immunosuppression in pigs. The disease is exacerbated by immunostimulation or concurrent infections with other pathogens. PCV2 resides in certain immune cells, such as macrophage and dendritic cells, and modulates their functions. Upregulation of IL-10 and proinflammatory cytokines in infected pigs may contribute to pathogenesis. Pig genetics influence host susceptibility to PCV2, but the viral genetic determinants for virulence remain unknown. PCV2 DNA and proteins interact with various cellular genes that control immune responses to regulate virus replication and pathogenesis. Both neutralizing antibodies and cell-mediated immunity are important immunological correlates of protection. Despite the availability of effective vaccines, variant strains of PCV2 continue to emerge. Although tremendous progress has been made toward understanding PCV2 pathogenesis and immune interactions, many important questions remain.

  20. Dendritic cell targeted vaccines: Recent progresses and challenges

    PubMed Central

    Chen, Pengfei; Liu, Xinsheng; Sun, Yuefeng; Zhou, Peng; Wang, Yonglu; Zhang, Yongguang

    2016-01-01

    ABSTRACT Dendritic cells (DCs) are known to be a set of morphology, structure and function of heterogeneous professional antigen presenting cells (APCs), as well as the strongest functional antigen presenting cells, which can absorb, process and present antigens. As the key regulators of innate and adaptive immune responses, DCs are at the center of the immune system and capable of interacting with both B cells and T cells, thereby manipulating the humoral and cellular immune responses. DCs provide an essential link between the innate and adaptive immunity, and the strong immune activation function of DCs and their properties of natural adjuvants, make them a valuable target for antigen delivery. Targeting antigens to DC-specific endocytic receptors in combination with the relevant antibodies or ligands along with immunostimulatory adjuvants has been recently recognized as a promising strategy for designing an effective vaccine that elicits a strong and durable T cell response against intracellular pathogens and cancer. This opinion article provides a brief summary of the rationales, superiorities and challenges of existing DC-targeting approaches. PMID:26513200

  1. Tuning B cell responses to antigens by cell polarity and membrane trafficking.

    PubMed

    Del Valle Batalla, Felipe; Lennon-Dumenil, Ana-María; Yuseff, María-Isabel

    2018-06-20

    The capacity of B lymphocytes to produce specific antibodies, particularly broadly neutralizing antibodies that provide immunity to viral pathogens has positioned them as valuable therapeutic targets for immunomodulation. To become competent as antibody secreting cells, B cells undergo a series of activation steps, which are triggered by the recognition of antigens frequently displayed on the surface of other presenting cells. Such antigens elicit the formation of an immune synapse (IS), where local cytoskeleton rearrangements coupled to mechanical forces and membrane trafficking orchestrate the extraction and processing of antigens in B cells. In this review, we discuss the molecular mechanisms that regulate polarized membrane trafficking and mechanical properties of the immune synapse, as well as the potential extracellular cues from the environment, which may impact the ability of B cells to sense and acquire antigens at the immune synapse. An integrated view of the diverse cellular mechanisms that shape the immune synapse will provide a better understanding on how B cells are efficiently activated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Collective synchronization of self/non-self discrimination in T cell activation, across multiple spatio-temporal scales

    NASA Astrophysics Data System (ADS)

    Altan-Bonnet, Gregoire

    The immune system is a collection of cells whose function is to eradicate pathogenic infections and malignant tumors while protecting healthy tissues. Recent work has delineated key molecular and cellular mechanisms associated with the ability to discriminate self from non-self agents. For example, structural studies have quantified the biophysical characteristics of antigenic molecules (those prone to trigger lymphocyte activation and a subsequent immune response). However, such molecular mechanisms were found to be highly unreliable at the individual cellular level. We will present recent efforts to build experimentally validated computational models of the immune responses at the collective cell level. Such models have become critical to delineate how higher-level integration through nonlinear amplification in signal transduction, dynamic feedback in lymphocyte differentiation and cell-to-cell communication allows the immune system to enforce reliable self/non-self discrimination at the organism level. In particular, we will present recent results demonstrating how T cells tune their antigen discrimination according to cytokine cues, and how competition for cytokine within polyclonal populations of cells shape the repertoire of responding clones. Additionally, we will present recent theoretical and experimental results demonstrating how competition between diffusion and consumption of cytokines determine the range of cell-cell communications within lymphoid organs. Finally, we will discuss how biochemically explicit models, combined with quantitative experimental validation, unravel the relevance of new feedbacks for immune regulations across multiple spatial and temporal scales.

  3. The nociception genes painless and Piezo are required for the cellular immune response of Drosophila larvae to wasp parasitization.

    PubMed

    Tokusumi, Yumiko; Tokusumi, Tsuyoshi; Schulz, Robert A

    2017-05-13

    In vertebrates, interaction between the nervous system and immune system is important to protect a challenged host from stress inputs from external sources. In this study, we demonstrate that sensory neurons are involved in the cellular immune response elicited by wasp infestation of Drosophila larvae. Multidendritic class IV neurons sense contacts from external stimuli and induce avoidance behaviors for host defense. Our findings show that inactivation of these sensory neurons impairs the cellular response against wasp parasitization. We also demonstrate that the nociception genes encoding the mechanosensory receptors Painless and Piezo, both expressed in class IV neurons, are essential for the normal cellular immune response to parasite challenge. Copyright © 2017. Published by Elsevier Inc.

  4. Impaired cellular immune response to tetanus toxoid but not to cytomegalovirus in effectively HAART-treated HIV-infected children.

    PubMed

    Alsina, Laia; Noguera-Julian, Antoni; Fortuny, Clàudia

    2013-05-07

    Despite of highly active antiretroviral therapy, the response to vaccines in HIV-infected children is poor and short-lived, probably due to a defect in cellular immune responses. We compared the cellular immune response (assessed in terms of IFN-γ production) to tetanus toxoid and to cytomegalovirus in a series of 13 HIV-perinatally-infected children and adolescents with optimal immunovirological response to first line antiretroviral therapy, implemented during chronic infection. A stronger cellular response to cytomegalovirus (11 out of 13 patients) was observed, as compared to tetanus toxoid (1 out of 13; p=0.003). These results suggest that the repeated exposition to CMV, as opposed to the past exposition to TT, is able to maintain an effective antigen-specific immune response in stable HIV-infected pediatric patients and strengthen current recommendations on immunization practices in these children. Copyright © 2013. Published by Elsevier Ltd.

  5. Association of genetic variants of membrane receptors related to recognition and induction of immune response with Helicobacter pylori infection in Ecuadorian individuals.

    PubMed

    Cabrera-Andrade, A; López-Cortés, A; Muñoz, M J; Jaramillo-Koupermann, G; Rodriguez, O; Leone, P E; Paz-y-Miño, C

    2014-08-01

    Helicobacter pylori (Hp) has a worldwide distribution showing its higher prevalence of infection in developing countries. Toll-like receptors (TLRs) and C-type lectin receptors (CLRs) are proteins that recognize pathogen-associated molecular patterns (PAMPs) and initiate an innate immune response by promoting growth and differentiation of specialized hematopoietic cells for host defense. Gastric infections led by Hp induce a Th-1 cellular immune response, regulated mainly by the expression of IFN-γ. In this retrospective case-control study, we evaluated the TLR1 1805T/G, TLR2 2029C/T, TLR4 896A/G, CD209 -336A/G and IFNGR1 -56C/T polymorphisms and their relationship with susceptibility to Hp infection. TLR1 1805T/G showed statistical differences when the control (Hp-) and infected (Hp+) groups (P = 0.041*) were compared; the TLR1 1805G allele had a protective effect towards infection (OR = 0.1; 95% CI = 0.01-0.88, P = 0.033*). Similarly, the IFNGR1 -56C/T polymorphism showed statistical differences between Hp+ and Hp- (P = 0.018*), and the IFNGR1 -56TT genotype exhibited significant risk to Hp infection (OR = 2.9, 95% CI = 1.27-6.54, P = 0.018*). In conclusion, the pro-inflammatory TLR1 1805T and IFNGR1 -56T alleles are related with susceptibility to Hp infection in Ecuadorian individuals. The presence of these polymorphisms in individuals with chronic infection increases the risk of cellular damage and diminishes the cellular immune response efficiency towards colonizing agents. © 2014 John Wiley & Sons Ltd.

  6. Inducible indoleamine 2,3-dioxygenase 1 and programmed death ligand 1 expression as the potency marker for mesenchymal stromal cells.

    PubMed

    Guan, Qingdong; Li, Yun; Shpiruk, Tanner; Bhagwat, Swaroop; Wall, Donna A

    2018-05-01

    Establishment of a potency assay in the manufacturing of clinical-grade mesenchymal stromal cells (MSCs) has been a challenge due to issues of relevance to function, timeline and variability of responder cells. In this study, we attempted to develop a potency assay for MSCs. Clinical-grade bone marrow-derived MSCs were manufactured. The phenotype and immunosuppressive functions of the MSCs were evaluated based on the International Society for Cellular Therapy guidelines. Resting MSCs licensed by interferon (IFN)-γ exposure overnight were evaluated for changes in immune suppression and immune-relevant proteins. The relationship of immune-relevant protein expression with immunosuppression of MSCs was analyzed. MSC supressed third-party T-lymphocyte proliferation with high inter-donor and inter-test variability. The suppression of T-lymphocyte proliferation by IFN-γ-licensed MSCs correlated with that by resting MSCs. Many cellular proteins were up-regulated after IFN-γ exposure, including indoleamine 2,3-dioxygenase 1 (IDO-1), programmed death ligand 1 (PD-L1), vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1) and bone marrow stromal antigen 2 (BST-2). The expression levels of IDO-1 and PD-L1 on licensed MSCs, not VCAM-1, ICAM-1 or BST-2 on licensed MSCs, correlated with MSC suppression of third-party T-cell proliferation. A flow cytometry-based assay of MSCs post-IFN-γ exposure measuring expression of intracellular protein IDO-1 and cell surface protein PD-L1 captures two mechanisms of suppression and offers the potential of a relevant, rapid assay for MSC-mediated immune suppression that would fit with the manufacturing process. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  7. Effect of compound glycyrrhizin injection on liver function and cellular immunity of children with infectious mononucleosis complicated liver impairment.

    PubMed

    Cao, Zong-xin; Zhao, Zhong-fang; Zhao, Xiu-fen

    2006-12-01

    To investigate the effects of Compound Glycyrrhizin Injection (CGI) on liver function and cellular immunity of children with infectious mononucleosis complicated liver impairment (IM-LI) and to explore its clinical therapeutic effect. Forty-two patients with IM-LI were randomly assigned, according to the randomizing number table, to two groups, 20 in the control group and 22 in the treated group. All the patients were treated with conventional treatment, but to those in the treated group, CGI was given additionally once a day, at the dosage of 10 ml for children aged below 2 years, 20 ml for 2-4 years old, 30 ml for 5-7 years old and 40 ml for 8- 12 years old, in 100-200 ml of 5% glucose solution by intravenous dripping. The treatment lasted for 2 weeks. T lymphocyte subsets and serum levels of alanine transaminase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBil) were detected before and after treatment. Besides, a normal control group consisting of 20 healthy children was also set up. Baseline of the percentage of CD3 + , CD8 + lymphocyte and serum levels of ALT, AST, TBiL in the children with IM-LI were markedly higher, while the percentage of CD4 + lymphocyte and the CD4 + /CD8 + ratio was markedly lower in IM-LI children as compared with the corresponding indices in the healthy children ( P<0.01). These indices were improved after treatment in both groups of patients, but the improvement in the treated group was better than that in the control group (P<0.01). Cellular immunity dysfunction often occurs in patients with IM-LI, and CGI treatment can not only obviously promote the recovery of liver function, but also regulate the immune function in organism.

  8. Multiplexed Nanoplasmonic Temporal Profiling of T-Cell Response under Immunomodulatory Agent Exposure

    PubMed Central

    2016-01-01

    Immunomodulatory drugs—agents regulating the immune response—are commonly used for treating immune system disorders and minimizing graft versus host disease in persons receiving organ transplants. At the cellular level, immunosuppressant drugs are used to inhibit pro-inflammatory or tissue-damaging responses of cells. However, few studies have so far precisely characterized the cellular-level effect of immunomodulatory treatment. The primary challenge arises due to the rapid and transient nature of T-cell immune responses to such treatment. T-cell responses involve a highly interactive network of different types of cytokines, which makes precise monitoring of drug-modulated T-cell response difficult. Here, we present a nanoplasmonic biosensing approach to quantitatively characterize cytokine secretion behaviors of T cells with a fine time-resolution (every 10 min) that are altered by an immunosuppressive drug used in the treatment of T-cell-mediated diseases. With a microfluidic platform integrating antibody-conjugated gold nanorod (AuNR) arrays, the technique enables simultaneous multi-time-point measurements of pro-inflammatory (IL-2, IFN-γ, and TNF-α) and anti-inflammatory (IL-10) cytokines secreted by T cells. The integrated nanoplasmonic biosensors achieve precise measurements with low operating sample volume (1 μL), short assay time (∼30 min), heightened sensitivity (∼20–30 pg/mL), and negligible sensor crosstalk. Data obtained from the multicytokine secretion profiles with high practicality resulting from all of these sensing capabilities provide a comprehensive picture of the time-varying cellular functional state during pharmacologic immunosuppression. The capability to monitor cellular functional response demonstrated in this study has great potential to ultimately permit personalized immunomodulatory treatment. PMID:27478873

  9. Comprehensive Survey of miRNA-mRNA Interactions Reveals That Ccr7 and Cd247 (CD3 zeta) are Posttranscriptionally Controlled in Pancreas Infiltrating T Lymphocytes of Non-Obese Diabetic (NOD) Mice.

    PubMed

    Fornari, Thais A; Donate, Paula B; Assis, Amanda F; Macedo, Claudia; Sakamoto-Hojo, Elza T; Donadi, Eduardo A; Passos, Geraldo A

    2015-01-01

    In autoimmune type 1 diabetes mellitus (T1D), auto-reactive clones of CD4+ and CD8+ T lymphocytes in the periphery evolve into pancreas-infiltrating T lymphocytes (PILs), which destroy insulin-producing beta-cells through inflammatory insulitis. Previously, we demonstrated that, during the development of T1D in non-obese diabetic (NOD) mice, a set of immune/inflammatory reactivity genes were differentially expressed in T lymphocytes. However, the posttranscriptional control involving miRNA interactions that occur during the evolution of thymocytes into PILs remains unknown. In this study, we postulated that miRNAs are differentially expressed during this period and that these miRNAs can interact with mRNAs involved in auto-reactivity during the progression of insulitis. To test this hypothesis, we used NOD mice to perform, for the first time, a comprehensive survey of miRNA and mRNA expression as thymocytes mature into peripheral CD3+ T lymphocytes and, subsequently, into PILs. Reconstruction of miRNA-mRNA interaction networks for target prediction revealed the participation of a large set of miRNAs that regulate mRNA targets related to apoptosis, cell adhesion, cellular regulation, cellular component organization, cellular processes, development and the immune system, among others. The interactions between miR-202-3p and the Ccr7 chemokine receptor mRNA or Cd247 (Cd3 zeta chain) mRNA found in PILs are highlighted because these interactions can contribute to a better understanding of how the lack of immune homeostasis and the emergence of autoimmunity (e.g., T1D) can be associated with the decreased activity of Ccr7 or Cd247, as previously observed in NOD mice. We demonstrate that these mRNAs are controlled at the posttranscriptional level in PILs.

  10. Comprehensive Survey of miRNA-mRNA Interactions Reveals That Ccr7 and Cd247 (CD3 zeta) are Posttranscriptionally Controlled in Pancreas Infiltrating T Lymphocytes of Non-Obese Diabetic (NOD) Mice

    PubMed Central

    Macedo, Claudia; Sakamoto-Hojo, Elza T.; Donadi, Eduardo A.; Passos, Geraldo A.

    2015-01-01

    In autoimmune type 1 diabetes mellitus (T1D), auto-reactive clones of CD4+ and CD8+ T lymphocytes in the periphery evolve into pancreas-infiltrating T lymphocytes (PILs), which destroy insulin-producing beta-cells through inflammatory insulitis. Previously, we demonstrated that, during the development of T1D in non-obese diabetic (NOD) mice, a set of immune/inflammatory reactivity genes were differentially expressed in T lymphocytes. However, the posttranscriptional control involving miRNA interactions that occur during the evolution of thymocytes into PILs remains unknown. In this study, we postulated that miRNAs are differentially expressed during this period and that these miRNAs can interact with mRNAs involved in auto-reactivity during the progression of insulitis. To test this hypothesis, we used NOD mice to perform, for the first time, a comprehensive survey of miRNA and mRNA expression as thymocytes mature into peripheral CD3+ T lymphocytes and, subsequently, into PILs. Reconstruction of miRNA-mRNA interaction networks for target prediction revealed the participation of a large set of miRNAs that regulate mRNA targets related to apoptosis, cell adhesion, cellular regulation, cellular component organization, cellular processes, development and the immune system, among others. The interactions between miR-202-3p and the Ccr7 chemokine receptor mRNA or Cd247 (Cd3 zeta chain) mRNA found in PILs are highlighted because these interactions can contribute to a better understanding of how the lack of immune homeostasis and the emergence of autoimmunity (e.g., T1D) can be associated with the decreased activity of Ccr7 or Cd247, as previously observed in NOD mice. We demonstrate that these mRNAs are controlled at the posttranscriptional level in PILs. PMID:26606254

  11. Overexpression of feline tripartite motif-containing 25 interferes with the late stage of feline leukemia virus replication.

    PubMed

    Koba, Ryota; Oguma, Keisuke; Sentsui, Hiroshi

    2015-06-02

    Tripartite motif-containing 25 (TRIM25) regulates various cellular processes through E3 ubiquitin ligase activity. Previous studies have revealed that the expression of TRIM25 is induced by type I interferon and that TRIM25 is involved in the host cellular innate immune response against retroviral infection. Although retroviral infection is prevalent in domestic cats, the roles of feline TRIM25 in the immune response against these viral infections are poorly understood. Because feline TRIM25 is expected to modulate the infection of feline leukemia virus (FeLV), we investigated its effects on early- and late-stage FeLV replication. This study revealed that ectopic expression of feline TRIM25 in HEK293T cells reduced viral protein levels leading to the inhibition of FeLV release. Our findings show that feline TRIM25 has a potent antiviral activity and implicate an antiviral mechanism whereby feline TRIM25 interferes with late-stage FeLV replication. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Effects of Macrophage Depletion on Sleep in Mice

    PubMed Central

    Ames, Conner; Boland, Erin; Szentirmai, Éva

    2016-01-01

    The reciprocal interaction between the immune system and sleep regulation has been widely acknowledged but the cellular mechanisms that underpin this interaction are not completely understood. In the present study, we investigated the role of macrophages in sleep loss- and cold exposure-induced sleep and body temperature responses. Macrophage apoptosis was induced in mice by systemic injection of clodronate-containing liposomes (CCL). We report that CCL treatment induced an immediate and transient increase in non-rapid-eye movement sleep (NREMS) and fever accompanied by decrease in rapid-eye movement sleep, motor activity and NREMS delta power. Chronically macrophage-depleted mice had attenuated NREMS rebound after sleep deprivation compared to normal mice. Cold-induced increase in wakefulness and decrease in NREMS, rapid-eye movement sleep and body temperature were significantly enhanced in macrophage-depleted mice indicating increased cold sensitivity. These findings provide further evidence for the reciprocal interaction among the immune system, sleep and metabolism, and identify macrophages as one of the key cellular elements in this interplay. PMID:27442442

  13. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection.

    PubMed

    Chan, John; Mehta, Simren; Bharrhan, Sushma; Chen, Yong; Achkar, Jacqueline M; Casadevall, Arturo; Flynn, JoAnne

    2014-12-01

    Mycobacterium tuberculosis remains a major public health burden. It is generally thought that while B cell- and antibody-mediated immunity plays an important role in host defense against extracellular pathogens, the primary control of intracellular microbes derives from cellular immune mechanisms. Studies on the immune regulatory mechanisms during infection with M. tuberculosis, a facultative intracellular organism, has established the importance of cell-mediated immunity in host defense during tuberculous infection. Emerging evidence suggest a role for B cell and humoral immunity in the control of intracellular pathogens, including obligatory species, through interactions with the cell-mediated immune compartment. Recent studies have shown that B cells and antibodies can significantly impact on the development of immune responses to the tubercle bacillus. In this review, we present experimental evidence supporting the notion that the importance of humoral and cellular immunity in host defense may not be entirely determined by the niche of the pathogen. A comprehensive approach that examines both humoral and cellular immunity could lead to better understanding of the immune response to M. tuberculosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection

    PubMed Central

    Chan, John; Mehta, Simren; Bharrhan, Sushma; Chen, Yong; Achkar, Jacqueline M.; Casadevall, Arturo; Flynn, JoAnne

    2014-01-01

    Mycobacterium tuberculosis remains a major public health burden. It is generally thought that while B cell- and antibody-mediated immunity plays an important role in host defense against extracellular pathogens, the primary control of intracellular microbes derives from cellular immune mechanisms. Studies on the immune regulatory mechanisms during infection with M. tuberculosis, a facultative intracellular organism, has established the importance of cell-mediated immunity in host defense during tuberculous infection. Emerging evidence suggest a role for B cell and humoral immunity in the control of intracellular pathogens, including obligatory species, through interactions with the cell-mediated immune compartment. Recent studies have shown that B cells and antibodies can significantly impact on the development of immune responses to the tubercle bacillus. In this review, we present experimental evidence supporting the notion that the importance of humoral and cellular immunity in host defense may not be entirely determined by the niche of the pathogen. A comprehensive approach that examines both humoral and cellular immunity could lead to better understanding of the immune response to M. tuberculosis. PMID:25458990

  15. T Cell LEGO: Identifying the Master Builders and What They Do.

    PubMed

    Li, Jasmine; Turner, Stephen J

    2018-02-20

    Understanding how cell fate decisions are made during cellular differentiation and the mechanisms that drive them is a holy grail of cell biology. In this issue of Immunity, Hu et al. (2018) and Johnson et al. (2018) demonstrate that key transcriptional regulators and global changes in nuclear architecture underlie differentiation decisions during T cell development. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Anti-RAGE antibody ameliorates severe thermal injury in rats through regulating cellular immune function

    PubMed Central

    Zhu, Xiao-mei; Yao, Yong-ming; Zhang, Li-tian; Dong, Ning; Yu, Yan; Sheng, Zhi-yong

    2014-01-01

    Aim: The receptor of advanced glycation end products (RAGE) participates in a variety of pathophysiological processes and inflammatory responses. The aim of this study was to investigate the therapeutic potential of an anti-RAGE neutralizing antibody for severe thermal injury in rats, and to determine whether the treatment worked via modulating cellular immune function. Methods: Full-thickness scald injury was induced in Wistar rats, which were treated with the anti-RAGE antibody (1 mg/kg, iv) at 6 h and 24 h after the injury. The rats were sacrificed on d 1, 3, 5, and 7. Blood and spleen samples were harvested to monitor organ function and to analyze dendritic cell (DC) and T cell cytokine profiles. The survival rate was analyzed up to d 7 after the injury. Results: Administration of the antibody significantly increased the 7 d survival rate in thermally injured rats (6.67% in the model group; 33.33% in anti-RAGE group). Treatment with the antibody also attenuated the multiple organ dysfunction syndrome (MODS) following the thermal injury, as shown by significant decreases in the organ dysfunction markers, including serum ALT, AST, blood urea nitrogen, creatinine and CK-MB. Moreover, treatment with the antibody significantly promoted DC maturation and T cell activation in the spleens of thermally injured rats. Conclusion: Blockade of the RAGE axis by the antibody effectively ameliorated MODS and improved the survival rate in thermally injured rats, which may be due to modulation of cellular immune function. PMID:25152026

  17. From filaments to function: The role of the plant actin cytoskeleton in pathogen perception, signaling and immunity.

    PubMed

    Porter, Katie; Day, Brad

    2016-04-01

    The eukaryotic actin cytoskeleton is required for numerous cellular processes, including cell shape, development and movement, gene expression and signal transduction, and response to biotic and abiotic stress. In recent years, research in both plants and animal systems have described a function for actin as the ideal surveillance platform, linking the function and activity of primary physiological processes to the immune system. In this review, we will highlight recent advances that have defined the regulation and breadth of function of the actin cytoskeleton as a network required for defense signaling following pathogen infection. Coupled with an overview of recent work demonstrating specific targeting of the plant actin cytoskeleton by a diversity of pathogens, including bacteria, fungi and viruses, we will highlight the importance of actin as a key signaling hub in plants, one that mediates surveillance of cellular homeostasis and the activation of specific signaling responses following pathogen perception. Based on the studies highlighted herein, we propose a working model that posits changes in actin filament organization is in and of itself a highly specific signal, which induces, regulates and physically directs stimulus-specific signaling processes, most importantly, those associated with response to pathogens. © 2015 Institute of Botany, Chinese Academy of Sciences.

  18. Molecular and Cellular Profiling of Scalp Psoriasis Reveals Differences and Similarities Compared to Skin Psoriasis

    PubMed Central

    Ruano, Juan; Suárez-Fariñas, Mayte; Shemer, Avner; Oliva, Margeaux

    2016-01-01

    Scalp psoriasis shows a variable clinical spectrum and in many cases poses a great therapeutic challenge. However, it remains unknown whether the immune response of scalp psoriasis differs from understood pathomechanisms of psoriasis in other skin areas. We sought to determine the cellular and molecular phenotype of scalp psoriasis by performing a comparative analysis of scalp and skin using lesional and nonlesional samples from 20 Caucasian subjects with untreated moderate to severe psoriasis and significant scalp involvement and 10 control subjects without psoriasis. Our results suggest that even in the scalp, psoriasis is a disease of the inter-follicular skin. The immune mechanisms that mediate scalp psoriasis were found to be similar to those involved in skin psoriasis. However, the magnitude of dysregulation, number of differentially expressed genes, and enrichment of the psoriatic genomic fingerprint were more prominent in skin lesions. Furthermore, the scalp transcriptome showed increased modulation of several gene-sets, particularly those induced by interferon-gamma, compared with that of skin psoriasis, which was mainly associated with activation of TNFα/L-17/IL-22-induced keratinocyte response genes. We also detected differences in expression of gene-sets involving negative regulation, epigenetic regulation, epidermal differentiation, and dendritic cell or Th1/Th17/Th22-related T-cell processes. PMID:26849645

  19. The use of microRNA by human viruses: lessons from NK cells and HCMV infection.

    PubMed

    Goldberger, Tal; Mandelboim, Ofer

    2014-11-01

    Depending on ethnicity and on social conditions, between 40 and 90 % of the population is infected with human cytomegalovirus (HCMV). In immunocompetent patients, the virus may cause an acute disease and then revert to a state of latency, which enables its coexistence with the human host. However, in cases of immunosuppression or in neonatal infections, HCMV can cause serious long-lasting illnesses. HCMV has developed multiple mechanisms in order to escape its elimination by the immune system, specifically by two killer cell types of the adaptive and the innate immune systems; cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, respectively. Another fascinating aspect of HCMV is that like other highly developed herpesviruses, it expresses its own unique set of microRNAs. Here, we initially describe how the activity of NK cells is regulated under normal conditions and during infection. Then, we discuss what is currently known about HCMV microRNA-mediated interactions, with special emphasis on immune modulation and NK cell evasion. We further illustrate the significant modulation of cellular microRNAs during HCMV infection. Although, the full target spectrum of HCMV microRNAs is far from being completely elucidated, it can already be concluded that HCMV uses its "multitasking" microRNAs to globally affect its own life cycle, as well as important cellular and immune-related pathways.

  20. Aeromonas salmonicida Infection Only Moderately Regulates Expression of Factors Contributing to Toll-Like Receptor Signaling but Massively Activates the Cellular and Humoral Branches of Innate Immunity in Rainbow Trout (Oncorhynchus mykiss)

    PubMed Central

    Brietzke, Andreas; Korytář, Tomáš; Jaros, Joanna; Köllner, Bernd; Goldammer, Tom; Seyfert, Hans-Martin; Rebl, Alexander

    2015-01-01

    Toll-like receptors (TLRs) are known to detect a defined spectrum of microbial structures. However, the knowledge about the specificity of teleost Tlr factors for distinct pathogens is limited so far. We measured baseline expression profiles of 18 tlr genes and associated signaling factors in four immune-relevant tissues of rainbow trout Oncorhynchus mykiss. Intraperitoneal injection of a lethal dose of Aeromonas salmonicida subsp. salmonicida induced highly increased levels of cytokine mRNAs during a 72-hour postinfection (hpi) period. In contrast, only the fish-specific tlr22a2 and the downstream factor irak1 featured clearly increased transcript levels, while the mRNA concentrations of many other tlr genes decreased. Flow cytometry quantified cell trafficking after infection indicating a dramatic influx of myeloid cells into the peritoneum and a belated low level immigration of lymphoid cells. T and B lymphocytes were differentiated with RT-qPCR revealing that B lymphocytes emigrated from and T lymphocytes immigrated into head kidney. In conclusion, no specific TLR can be singled out as a dominant receptor for A. salmonicida. The recruitment of cellular factors of innate immunity rather than induced expression of pathogen receptors is hence of key importance for mounting a first immune defense against invading A. salmonicida. PMID:26266270

  1. Transcriptome analysis of Pacific white shrimp (Litopenaeus vannamei) challenged by Vibrio parahaemolyticus reveals unique immune-related genes.

    PubMed

    Qin, Zhendong; Babu, V Sarath; Wan, Quanyuan; Zhou, Meng; Liang, Risheng; Muhammad, Asim; Zhao, Lijuan; Li, Jun; Lan, Jiangfeng; Lin, Li

    2018-06-01

    Pacific white shrimp (Litopenaeus vannamei) is an important cultural species worldwide. However, Vibrio spp. infections have caused a great economic loss in Pacific white shrimp culture industry. The immune responses of Pacific white shrimp to the Vibrio spp. is not fully characterized. In this study, the transcriptomic profiles of L. vannamei hemocytes were explored by injecting with or without Vibrio parahaemolyticus. Totally, 42,632 high-quality unigenes were obtained from RNAseq data. Comparative genome analysis showed 2258 differentially expressed genes (DEGs) following the Vibrio challenge, including 1017 up-regulated and 1241 down-regulated genes. Eight DEGs were randomly selected for further validation by quantitative real-time RT-PCR (qRT-PCR) and the results showed that are consistent with the RNA-seq data. Due to the lack of predictable adaptive immunity, shrimps rely on an innate immune system to defend themselves against invading microbes by recognizing and clearing them through humoral and cellular immune responses. Here we focused our studies on the humoral immunity, five genes (SR, MNK, CTL3, GILT, and ALFP) were selected from the transcriptomic data, which were significantly up-regulated by V. parahaemolyticus infection. These genes were widely expressed in six different tissues and were up-regulated by both Gram negative bacteria (V. parahaemolyticus) and Gram positive bacteria (Staphylococcus aureus). To further extend our studies, we knock-down those five genes by dsRNA in L. vannamei and analyzed the functions of specific genes against V. parahaemolyticus and S. aureus by bacterial clearance analysis. We found that the ability of L. vannamei was significantly reduced in bacterial clearance when treated with those specific dsRNA. These results indicate that those five genes play essential roles in antibacterial immunity and have its specific functions against different types of pathogens. The obtained data will shed a new light on the immunity of L. vannamei and pave a new way for fighting against the bacterial infection in Pacific white shrimp. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Immune-related zinc finger gene ZFAT is an essential transcriptional regulator for hematopoietic differentiation in blood islands

    PubMed Central

    Tsunoda, Toshiyuki; Takashima, Yasuo; Tanaka, Yoko; Fujimoto, Takahiro; Doi, Keiko; Hirose, Yumiko; Koyanagi, Midori; Yoshida, Yasuhiro; Okamura, Tadashi; Kuroki, Masahide; Sasazuki, Takehiko; Shirasawa, Senji

    2010-01-01

    TAL1 plays pivotal roles in vascular and hematopoietic developments through the complex with LMO2 and GATA1. Hemangioblasts, which have a differentiation potential for both endothelial and hematopoietic lineages, arise in the primitive streak and migrate into the yolk sac to form blood islands, where primitive hematopoiesis occurs. ZFAT (a zinc-finger gene in autoimmune thyroid disease susceptibility region / an immune-related transcriptional regulator containing 18 C2H2-type zinc-finger domains and one AT-hook) was originally identified as an immune-related transcriptional regulator containing 18 C2H2-type zinc-finger domains and one AT-hook, and is highly conserved among species. ZFAT is thought to be a critical transcription factor involved in immune-regulation and apoptosis; however, developmental roles for ZFAT remain unknown. Here we show that Zfat-deficient (Zfat−/−) mice are embryonic-lethal, with impaired differentiation of hematopoietic progenitor cells in blood islands, where ZFAT is exactly expressed. Expression levels of Tal1, Lmo2, and Gata1 in Zfat−/− yolk sacs are much reduced compared with those of wild-type mice, and ChIP-PCR analysis revealed that ZFAT binds promoter regions for these genes in vivo. Furthermore, profound reduction in TAL1, LMO2, and GATA1 protein expressions are observed in Zfat−/− blood islands. Taken together, these results suggest that ZFAT is indispensable for mouse embryonic development and functions as a critical transcription factor for primitive hematopoiesis through direct-regulation of Tal1, Lmo2, and Gata1. Elucidation of ZFAT functions in hematopoiesis might lead to a better understanding of transcriptional networks in differentiation and cellular programs of hematopoietic lineage and provide useful information for applied medicine in stem cell therapy. PMID:20660741

  3. Action mechanisms of Liver X Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabbi, Chiara; Warner, Margaret; Gustafsson, Jan-Åke, E-mail: jgustafs@central.uh.edu

    2014-04-11

    Highlights: • LXRα and LXRβ are ligand-activated nuclear receptors. • They share oxysterol ligands and the same heterodimerization partner, RXR. • LXRs regulate lipid and glucose metabolism, CNS and immune functions, and water transport. - Abstract: The two Liver X Receptors, LXRα and LXRβ, are nuclear receptors belonging to the superfamily of ligand-activated transcription factors. They share more than 78% homology in amino acid sequence, a common profile of oxysterol ligands and the same heterodimerization partner, Retinoid X Receptor. LXRs play crucial roles in several metabolic pathways: lipid metabolism, in particular in preventing cellular cholesterol accumulation; glucose homeostasis; inflammation; centralmore » nervous system functions and water transport. As with all nuclear receptors, the transcriptional activity of LXR is the result of an orchestration of numerous cellular factors including ligand bioavailability, presence of corepressors and coactivators and cellular context i.e., what other pathways are activated in the cell at the time the receptor recognizes its ligand. In this mini-review we summarize the factors regulating the transcriptional activity and the mechanisms of action of these two receptors.« less

  4. Positive and Negative Regulatory Mechanisms for Fine-Tuning Cellularity and Functions of Medullary Thymic Epithelial Cells.

    PubMed

    Akiyama, Taishin; Tateishi, Ryosuke; Akiyama, Nobuko; Yoshinaga, Riko; Kobayashi, Tetsuya J

    2015-01-01

    Self-tolerant T cells and regulatory T cells develop in the thymus. A wide variety of cell-cell interactions in the thymus is required for the differentiation, proliferation, and repertoire selection of T cells. Various secreted and cell surface molecules expressed in thymic epithelial cells (TECs) mediate these processes. Moreover, cytokines expressed by cells of hematopoietic origin regulate the cellularity of TECs. Tumor necrosis factor (TNF) family RANK ligand, lymphotoxin, and CD40 ligand, expressed in T cells and innate lymphoid cells (ILCs), promote the differentiation and proliferation of medullary TECs (mTECs) that play critical roles in the induction of immune tolerance. A recent study suggests that interleukin-22 (IL-22) produced by ILCs promotes regeneration of TECs after irradiation. Intriguingly, tumor growth factor-β and osteoprotegerin limit cellularity of mTECs, thereby attenuating regulatory T cell generation. We will review recent insights into the molecular basis for cell-cell interactions regulating differentiation and proliferation of mTECs and also discuss about a perspective on use of mathematical models for understanding this complicated system.

  5. A central role for S-nitrosothiols in plant disease resistance

    PubMed Central

    Feechan, Angela; Kwon, Eunjung; Yun, Byung-Wook; Wang, Yiqin; Pallas, Jacqueline A.; Loake, Gary J.

    2005-01-01

    Animal S-nitrosoglutathione reductase (GSNOR) governs the extent of cellular S-nitrosylation, a key redox-based posttranslational modification. Mutations in AtGSNOR1, an Arabidopsis thaliana GSNOR, modulate the extent of cellular S-nitrosothiol (SNO) formation in this model plant species. Loss of AtGSNOR1 function increased SNO levels, disabling plant defense responses conferred by distinct resistance (R) gene subclasses. Furthermore, in the absence of AtGSNOR1, both basal and nonhost disease resistance are also compromised. Conversely, increased AtGSNOR1 activity reduced SNO formation, enhancing protection against ordinarily virulent microbial pathogens. Here we demonstrate that AtGSNOR1 positively regulates the signaling network controlled by the plant immune system activator, salicylic acid. This contrasts with the function of this enzyme in mice during endotoxic shock, where GSNOR antagonizes inflammatory responses. Our data imply SNO formation and turnover regulate multiple modes of plant disease resistance. PMID:15911759

  6. Thioredoxin and redox signaling: Roles of the thioredoxin system in control of cell fate.

    PubMed

    Matsuzawa, Atsushi

    2017-03-01

    Reactive oxygen species (ROS) are not only cytotoxic products from external and internal environment, but also important mediators of redox signaling. Therefore, thioredoxin (Trx) as an antioxidant maintains the balance of the thiol-related redox status, and also plays pivotal roles in the regulation of redox signaling. Trx senses and responds to environmental oxidative stress and ROS generated by cellular respiration, metabolism, and immune response, and then modulates the redox status, function, and activity of its target signaling proteins. Dysregulation of such the Trx system affects various cellular functions and cell fate such as survival and cell death, leading to human diseases including cancer and inflammation. This review focuses on Trx and its target proteins involved in redox signaling, which are critical for the control of cell fate such as cell survival and apoptosis, and addresses how Trx regulates those effector proteins and redox signaling. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Targeting genes in insulin-associated signalling pathway, DNA damage, cell proliferation and cell differentiation pathways by tocotrienol-rich fraction in preventing cellular senescence of human diploid fibroblasts.

    PubMed

    Durani, L W; Jaafar, F; Tan, J K; Tajul Arifin, K; Mohd Yusof, Y A; Wan Ngah, W Z; Makpol, S

    2015-01-01

    Tocotrienols have been known for their antioxidant properties besides their roles in cellular signalling, gene expression, immune response and apoptosis. This study aimed to determine the molecular mechanism of tocotrienol-rich fraction (TRF) in preventing cellular senescence of human diploid fibroblasts (HDFs) by targeting the genes in senescence-associated signalling pathways. Real time quantitative PCR (qRT-PCR) was utilized to evaluate the expression of genes involved in these pathways. Our findings showed that SOD1 and CCS-1 were significantly down-regulated in pre-senescent cells while CCS-1 and PRDX6 were up-regulated in senescent cells (p<0.05). Treatment with TRF significantly down-regulated SOD1 in pre-senescent and senescent HDFs, up-regulated SOD2 in senescent cells, CAT in young HDFs, GPX1 in young and pre-senescent HDFs, and CCS-1 in young, pre-senescent and senescent HDFs (p<0.05). TRF treatment also caused up-regulation of FOXO3A in all age groups of cells (p<0.05). The expression of TP53, PAK2 and CDKN2A was significantly increased in senescent HDFs and treatment with TRF significantly down-regulated TP53 in senescent cells (p<0.05). MAPK14 was significantly up-regulated (p<0.05) in senescent HDFs while no changes was observed on the expression of JUN. TRF treatment, however, down-regulated MAPK14 in young and senescent cells and up-regulated JUN in young and pre-senescent HDFs (p<0.05). TRF modulated the expression of genes involved in senescence-associated signalling pathways during replicative senescence of HDFs.

  8. Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination.

    PubMed

    Mahan, Alison E; Jennewein, Madeleine F; Suscovich, Todd; Dionne, Kendall; Tedesco, Jacquelynne; Chung, Amy W; Streeck, Hendrik; Pau, Maria; Schuitemaker, Hanneke; Francis, Don; Fast, Patricia; Laufer, Dagna; Walker, Bruce D; Baden, Lindsey; Barouch, Dan H; Alter, Galit

    2016-03-01

    Antibody effector functions, such as antibody-dependent cellular cytotoxicity, complement deposition, and antibody-dependent phagocytosis, play a critical role in immunity against multiple pathogens, particularly in the absence of neutralizing activity. Two modifications to the IgG constant domain (Fc domain) regulate antibody functionality: changes in antibody subclass and changes in a single N-linked glycan located in the CH2 domain of the IgG Fc. Together, these modifications provide a specific set of instructions to the innate immune system to direct the elimination of antibody-bound antigens. While it is clear that subclass selection is actively regulated during the course of natural infection, it is unclear whether antibody glycosylation can be tuned, in a signal-specific or pathogen-specific manner. Here, we show that antibody glycosylation is determined in an antigen- and pathogen-specific manner during HIV infection. Moreover, while dramatic differences exist in bulk IgG glycosylation among individuals in distinct geographical locations, immunization is able to overcome these differences and elicit antigen-specific antibodies with similar antibody glycosylation patterns. Additionally, distinct vaccine regimens induced different antigen-specific IgG glycosylation profiles, suggesting that antibody glycosylation is not only programmable but can be manipulated via the delivery of distinct inflammatory signals during B cell priming. These data strongly suggest that the immune system naturally drives antibody glycosylation in an antigen-specific manner and highlights a promising means by which next-generation therapeutics and vaccines can harness the antiviral activity of the innate immune system via directed alterations in antibody glycosylation in vivo.  .

  9. Distinct pathways of humoral and cellular immunity induced with the mucosal administration of a nanoemulsion adjuvant.

    PubMed

    Bielinska, Anna U; Makidon, Paul E; Janczak, Katarzyna W; Blanco, Luz P; Swanson, Benjamin; Smith, Douglas M; Pham, Tiffany; Szabo, Zsuzsanna; Kukowska-Latallo, Jolanta F; Baker, James R

    2014-03-15

    Nasal administration of an oil-in-water nanoemulsion (NE) adjuvant W805EC produces potent systemic and mucosal, Th-1- and Th-17-balanced cellular responses. However, its molecular mechanism of action has not been fully characterized and is of particular interest because NE does not contain specific ligands for innate immune receptors. In these studies, we demonstrate that W805EC NE adjuvant activates innate immunity, induces specific gene transcription, and modulates NF-κB activity via TLR2 and TLR4 by a mechanism that appears to be distinct from typical TLR agonists. Nasal immunization with NE-based vaccine showed that the TLR2, TLR4, and MyD88 pathways and IL-12 and IL-12Rβ1 expression are not required for an Ab response, but they are essential for the induction of balanced Th-1 polarization and Th-17 cellular immunity. NE adjuvant induces MHC class II, CD80, and CD86 costimulatory molecule expression and dendritic cell maturation. Further, upon immunization with NE, adjuvant mice deficient in the CD86 receptor had normal Ab responses but significantly reduced Th-1 cellular responses, whereas animals deficient in both CD80 and CD86 or lacking CD40 failed to produce either humoral or cellular immunity. Overall, our data show that intranasal administration of Ag with NE induces TLR2 and TLR4 activation along with a MyD88-independent Ab response and a MyD88-dependent Th-1 and Th-17 cell-mediated immune response. These findings suggest that the unique properties of NE adjuvant may offer novel opportunities for understanding previously unrecognized mechanisms of immune activation important for generating effective mucosal and systemic immune responses.

  10. Cross-reactivity of anti-HIV-1 T cell immune responses among the major HIV-1 clades in HIV-1-positive individuals from 4 continents.

    PubMed

    Coplan, Paul M; Gupta, Swati B; Dubey, Sheri A; Pitisuttithum, Punnee; Nikas, Alex; Mbewe, Bernard; Vardas, Efthyia; Schechter, Mauro; Kallas, Esper G; Freed, Dan C; Fu, Tong-Ming; Mast, Christopher T; Puthavathana, Pilaipan; Kublin, James; Brown Collins, Kelly; Chisi, John; Pendame, Richard; Thaler, Scott J; Gray, Glenda; Mcintyre, James; Straus, Walter L; Condra, Jon H; Mehrotra, Devan V; Guess, Harry A; Emini, Emilio A; Shiver, John W

    2005-05-01

    The genetic diversity of human immunodeficiency virus type 1 (HIV-1) raises the question of whether vaccines that include a component to elicit antiviral T cell immunity based on a single viral genetic clade could provide cellular immune protection against divergent HIV-1 clades. Therefore, we quantified the cross-clade reactivity, among unvaccinated individuals, of anti-HIV-1 T cell responses to the infecting HIV-1 clade relative to other major circulating clades. Cellular immune responses to HIV-1 clades A, B, and C were compared by standardized interferon- gamma enzyme-linked immunospot assays among 250 unvaccinated individuals, infected with diverse HIV-1 clades, from Brazil, Malawi, South Africa, Thailand, and the United States. Cross-clade reactivity was evaluated by use of the ratio of responses to heterologous versus homologous (infecting) clades of HIV-1. Cellular immune responses were predominantly focused on viral Gag and Nef proteins. Cross-clade reactivity of cellular immune responses to HIV-1 clade A, B, and C proteins was substantial for Nef proteins (ratio, 0.97 [95% confidence interval, 0.89-1.05]) and lower for Gag proteins (ratio, 0.67 [95% confidence interval, 0.62-0.73]). The difference in cross-clade reactivity to Nef and Gag proteins was significant (P<.0001). Cross-clade reactivity of cellular immune responses can be substantial but varies by viral protein.

  11. Biaryl amide compounds reduce the inflammatory response in macrophages by regulating Dectin-1.

    PubMed

    Hyung, Kyeong Eun; Lee, Mi Ji; Lee, Yun-Jung; Lee, Do Ik; Min, Hye Young; Park, So-Young; Min, Kyung Hoon; Hwang, Kwang Woo

    2016-03-01

    Macrophages are archetypal innate immune cells that play crucial roles in the recognition and phagocytosis of invading pathogens, which they identify using pattern recognition receptors (PRRs). Dectin-1 is essential for antifungal immune responses, recognizing the fungal cellular component β-glucan, and its role as a PRR has been of increasing interest. Previously, we discovered and characterized a novel biaryl amide compound, MPS 03, capable of inhibiting macrophage phagocytosis of zymosan. Therefore, in this study we aimed to identify other biaryl amide compounds with greater effectiveness than MPS 03, and elucidate their cellular mechanisms. Several MPS 03 derivatives were screened, four of which reduced zymosan phagocytosis in a similar manner to MPS 03. To establish whether such phagocytosis inhibition influenced the production of inflammatory mediators, pro-inflammatory cytokine and nitric oxide (NO) levels were measured. The production of TNF-α, IL-6, IL-12, and NO was significantly reduced in a dose-dependent manner. Moreover, the inflammation-associated MAPK signaling pathway was also affected by biaryl amide compounds. To investigate the underlying cellular mechanism, PRR expression was measured. MPS 03 and its derivatives were found to inhibit zymosan phagocytosis by decreasing Dectin-1 expression. Furthermore, when macrophages were stimulated by zymosan after pretreatment with biaryl amide compounds, downstream transcription factors such as NFAT, AP-1, and NF-κB were downregulated. In conclusion, biaryl amide compounds reduce zymosan-induced inflammatory responses by downregulating Dectin-1 expression. Therefore, such compounds could be used to inhibit Dectin-1 in immunological experiments and possibly regulate excessive inflammatory responses. Copyright © 2016. Published by Elsevier B.V.

  12. Polyomavirus-Specific Cellular Immunity: From BK-Virus-Specific Cellular Immunity to BK-Virus-Associated Nephropathy?

    PubMed Central

    Dekeyser, Manon; François, Hélène; Beaudreuil, Séverine; Durrbach, Antoine

    2015-01-01

    In renal transplantation, BK-virus (BKV)-associated nephropathy has emerged as a major complication, with a prevalence of 1–10% and graft loss in >50% of cases. BKV is a member of the polyomavirus family and rarely induces apparent clinical disease in the general population. However, replication of polyomaviruses, associated with significant organ disease, is observed in patients with acquired immunosuppression. Monitoring of specific immunity combined with viral load could be used to individually assess the risk of viral reactivation and virus control. We review the current knowledge on BKV-specific cellular immunity and, more specifically, in immunocompromised patients. In the future, immune-based therapies could allow us to treat and prevent BKV-associated nephropathy. PMID:26136745

  13. Rapid Assay of Cellular Immunity in Q Fever.

    DTIC Science & Technology

    1995-10-01

    Integrated Diagnostics for activity by re-incubation with L929 cells and no infectious material was detected. This antigen was tested for the ability to...UNCLASSIFIED •%E L E• M1 lt*’E••l DEC 1 119954 F A CONTRACT NUMBER: DAND17-95-C-5057 TITLE: Rapid Assay of Cellular Immunity in Q Fever PRINCIPAL INVESTIGATOR...SUBTITLE 5. FUNDING NUMBERS Rapid Assay of Cellular Immunity in Q Fever DAMDI7-95-C-5057 6. AUTHOR(S) Marjorie Wier, Ph.D. 7. PERFORMING ORGANIZATION

  14. Distinctive roles of age, sex, and genetics in shaping transcriptional variation of human immune responses to microbial challenges.

    PubMed

    Piasecka, Barbara; Duffy, Darragh; Urrutia, Alejandra; Quach, Hélène; Patin, Etienne; Posseme, Céline; Bergstedt, Jacob; Charbit, Bruno; Rouilly, Vincent; MacPherson, Cameron R; Hasan, Milena; Albaud, Benoit; Gentien, David; Fellay, Jacques; Albert, Matthew L; Quintana-Murci, Lluis

    2018-01-16

    The contribution of host genetic and nongenetic factors to immunological differences in humans remains largely undefined. Here, we generated bacterial-, fungal-, and viral-induced immune transcriptional profiles in an age- and sex-balanced cohort of 1,000 healthy individuals and searched for the determinants of immune response variation. We found that age and sex affected the transcriptional response of most immune-related genes, with age effects being more stimulus-specific relative to sex effects, which were largely shared across conditions. Although specific cell populations mediated the effects of age and sex on gene expression, including CD8 + T cells for age and CD4 + T cells and monocytes for sex, we detected a direct effect of these intrinsic factors for the majority of immune genes. The mapping of expression quantitative trait loci (eQTLs) revealed that genetic factors had a stronger effect on immune gene regulation than age and sex, yet they affected a smaller number of genes. Importantly, we identified numerous genetic variants that manifested their regulatory effects exclusively on immune stimulation, including a Candida albicans -specific master regulator at the CR1 locus. These response eQTLs were enriched in disease-associated variants, particularly for autoimmune and inflammatory disorders, indicating that differences in disease risk may result from regulatory variants exerting their effects only in the presence of immune stress. Together, this study quantifies the respective effects of age, sex, genetics, and cellular heterogeneity on the interindividual variability of immune responses and constitutes a valuable resource for further exploration in the context of different infection risks or disease outcomes. Copyright © 2018 the Author(s). Published by PNAS.

  15. Toll immune signal activates cellular immune response via eicosanoids.

    PubMed

    Shafeeq, Tahir; Ahmed, Shabbir; Kim, Yonggyun

    2018-07-01

    Upon immune challenge, insects recognize nonself. The recognition signal will propagate to nearby immune effectors. It is well-known that Toll signal pathway induces antimicrobial peptide (AMP) gene expression. Eicosanoids play crucial roles in mediating the recognition signal to immune effectors by enhancing humoral immune response through activation of AMP synthesis as well as cellular immune responses, suggesting a functional cross-talk between Toll and eicosanoid signals. This study tested a cross-talk between these two signals. Two signal transducing factors (MyD88 and Pelle) of Toll immune pathway were identified in Spodoptera exigua. RNA interference (RNAi) of either SeMyD88 or SePelle expression interfered with the expression of AMP genes under Toll signal pathway. Bacterial challenge induced PLA 2 enzyme activity. However, RNAi of these two immune factors significantly suppressed the induction of PLA 2 enzyme activity. Furthermore, RNAi treatment prevented gene expression of cellular PLA 2 . Inhibition of PLA 2 activity reduced phenoloxidase activity and subsequent suppression in cellular immune response measured by hemocyte nodule formation. However, immunosuppression induced by RNAi of Toll signal molecules was significantly reversed by addition of arachidonic acid (AA), a catalytic product of PLA 2 . The addition also significantly reduced the enhanced fungal susceptibility of S. exigua treated by RNAi against two Toll signal molecules. These results indicate that there is a cross-talk between Toll and eicosanoid signals in insect immunity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Tetraspanin CD37 contributes to the initiation of cellular immunity by promoting dendritic cell migration.

    PubMed

    Gartlan, Kate H; Wee, Janet L; Demaria, Maria C; Nastovska, Roza; Chang, Tsz Man; Jones, Eleanor L; Apostolopoulos, Vasso; Pietersz, Geoffrey A; Hickey, Michael J; van Spriel, Annemiek B; Wright, Mark D

    2013-05-01

    Previous studies on the role of the tetraspanin CD37 in cellular immunity appear contradictory. In vitro approaches indicate a negative regulatory role, whereas in vivo studies suggest that CD37 is necessary for optimal cellular responses. To resolve this discrepancy, we studied the adaptive cellular immune responses of CD37(-/-) mice to intradermal challenge with either tumors or model antigens and found that CD37 is essential for optimal cell-mediated immunity. We provide evidence that an increased susceptibility to tumors observed in CD37(-/-) mice coincides with a striking failure to induce antigen-specific IFN-γ-secreting T cells. We also show that CD37 ablation impairs several aspects of DC function including: in vivo migration from skin to draining lymph nodes; chemo-tactic migration; integrin-mediated adhesion under flow; the ability to spread and form actin protrusions and in vivo priming of adoptively transferred naïve T cells. In addition, multiphoton microscopy-based assessment of dermal DC migration demonstrated a reduced rate of migration and increased randomness of DC migration in CD37(-/-) mice. Together, these studies are consistent with a model in which the cellular defect that underlies poor cellular immune induction in CD37(-/-) mice is impaired DC migration. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Oxidative and nitrosative stress defences of Helicobacter and Campylobacter species that counteract mammalian immunity

    PubMed Central

    Flint, Annika; Stintzi, Alain; Saraiva, Lígia M.

    2016-01-01

    Helicobacter and Campylobacter species are Gram-negative microaerophilic host-associated heterotrophic bacteria that invade the digestive tract of humans and animals. Campylobacter jejuni is the major worldwide cause of foodborne gastroenteritis in humans, while Helicobacter pylori is ubiquitous in over half of the world's population causing gastric and duodenal ulcers. The colonisation of the gastrointestinal system by Helicobacter and Campylobacter relies on numerous cellular defences to sense the host environment and respond to adverse conditions, including those imposed by the host immunity. An important antimicrobial tool of the mammalian innate immune system is the generation of harmful oxidative and nitrosative stresses to which pathogens are exposed during phagocytosis. This review summarises the regulators, detoxifying enzymes and subversion mechanisms of Helicobacter and Campylobacter that ultimately promote the successful infection of humans. PMID:28201757

  18. RING-Domain E3 Ligase-Mediated Host–Virus Interactions: Orchestrating Immune Responses by the Host and Antagonizing Immune Defense by Viruses

    PubMed Central

    Zhang, Yuexiu; Li, Lian-Feng; Munir, Muhammad; Qiu, Hua-Ji

    2018-01-01

    The RING-domain E3 ligases (RING E3s), a group of E3 ligases containing one or two RING finger domains, are involved in various cellular processes such as cell proliferation, immune regulation, apoptosis, among others. In the host, a substantial number of the RING E3s have been implicated to inhibit viral replication through regulating immune responses, including activation and inhibition of retinoic acid-inducible gene I-like receptors, toll-like receptors, and DNA receptor signaling pathways, modulation of cell-surface expression of major histocompatibility complex, and co-stimulatory molecules. During the course of evolution and adaptation, viruses encode RING E3s to antagonize host immune defense, such as the infected cell protein 0 of herpes simplex virus type 1, the non-structural protein 1 of rotavirus, and the K3 and K5 of Kaposi’s sarcoma-associated herpesvirus. In addition, recent studies suggest that viruses can hijack the host RING E3s to facilitate viral replication. Based on emerging and interesting discoveries, the RING E3s present novel links among the host and viruses. Herein, we focus on the latest research progresses in the RING E3s-mediated host–virus interactions and discuss the outlooks of the RING E3s for future research. PMID:29872431

  19. Caspase-1 inhibitor regulates humoral responses in experimental autoimmune myasthenia gravis via IL-6- dependent inhibiton of STAT3.

    PubMed

    Wang, Cong-Cong; Zhang, Min; Li, Heng; Li, Xiao-Li; Yue, Long-Tao; Zhang, Peng; Liu, Ru-Tao; Chen, Hui; Li, Yan-Bin; Duan, Rui-Sheng

    2017-08-24

    We have previously demonstrated that Cysteinyl aspartate-specific proteinase-1 (caspase-1) inhibitor ameliorates experimental autoimmune myasthenia gravis (EAMG) by inhibited cellular immune response, via suppressing DC IL-1 β, CD4 + T and γdT cells IL-17 pathways. In this study, we investigated the effect of caspase-1 inhibitor on humoral immune response of EAMG and further explore the underlying mechanisms. An animal model of MG was induced by region 97-116 of the rat AChR α subunit (R97-116 peptide) in Lewis rats. Rats were treated with caspase-1 inhibitor Ac-YVAD-cmk intraperitoneally (i.p.) every second day from day 13 after the first immunization. Flow cytometry, western blot, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the neuroprotective effect of caspase-1 inhibitor on humoral immune response of EAMG. The results showed that caspase-1 inhibitor reduced the relative affinity of anti-R97-116 IgG, suppressed germinal center response, decreased follicular helper T cells, and increased follicular regulatory T cells and regulatory B cells. In addition, we found that caspase-1 inhibitor inhibited humoral immunity response in EAMG rats via suppressing IL-6-STAT3-Bcl-6 pathways. These results suggest that caspase-1 inhibitor ameliorates EAMG by regulating humoral immune response, thus providing new insights into the development of myasthenia gravis and other autoimmune diseases therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Lipopolysaccharide and Concanavalin A Differentially Induce the Expression of Immune Response Genes in Caprine Monocyte Derived Macrophages.

    PubMed

    Walia, Vishakh; Kumar, Rohit; Mitra, Abhijit

    2015-01-01

    Monocyte derived macrophages (MDMs), as an in vitro model in pathogen challenge studies, are generally induced with lipopolysaccharide (LPS) and concanavalin A (ConA) to assay cellular immunity. General immune responses to LPS and ConA have been studied in a wide range of species, but similar studies are limited to goats. In the present study, caprine MDMs were induced with LPS and ConA and the expression profile of immune response (IR) genes, namely, Tumor Necrosis Factor Alpha (TNFA), Interferon Gamma (IFNG), Interleukin 2 (IL2), Granulocyte Macrophage Colony Stimulating Factor (GMCSF), Interleukin 10 (IL10), Transforming Growth Factor Beta (TGFB), Natural Resistance-Associated Macrophage Protein-1 (NRAMP1), inducible nitric oxide synthase (NOS2), and caspase1 (CASP1) were studied to compare the potential of LPS and ConA in initiating immune responses in goat macrophages. Real Time quantitative PCR (RT-qPCR) analysis revealed that both LPS and ConA caused an upregulation (p < 0.05) of GMCSF, TGFB1, IL10, and IFNG and down-regulation of NRAMP1. TNFA and IL2, and NOS2 were upregulated (p < 0.05) by ConA and LPS, respectively. Whereas, the expression of CASP1 remain unaltered. Comparatively, the effect of ConA was more pronounced (p < 0.05) in regulating the expression of IR genes suggesting its suitability for studying the general immune responses in caprine MDM.

  1. The immunological contribution of NF-κB within the tumor microenvironment: A potential protective role of zinc as an anti-tumor agent

    PubMed Central

    Bao, Bin; Thakur, Archana; Li, Yiwei; Ahmad, Aamir; Azmi, Asfar S.; Banerjee, Sanjeev; Kong, Dejuan; Ali, Shadan; Lum, Lawrence G.; Sarkar, Fazlul H.

    2013-01-01

    Over decades, cancer treatment has been mainly focused on targeting cancer cells and not much attention to host tumor microenvironment. Recent advances suggest that the tumor microenvironment requires in-depth investigation for understanding the interactions between tumor cell biology and immunobiology in order to optimize therapeutic approaches. Tumor microenvironment consists of cancer cells and tumor associated reactive fibroblasts, infiltrating non-cancer cells, secreted soluble factors or molecules, and non-cellular support materials. Tumor associated host immune cells such as Th1, Th2, Th17, regulatory cells, dendritic cells, macrophages, and myeloid-derived suppressor cells are major components of the tumor microenvironment. Accumulating evidence suggests that these tumor associated immune cells may play important roles in cancer development and progression. However, the exact functions of these cells in the tumor microenvironment are poorly understood. In the tumor microenvironment, NF-κB plays an important role in cancer development and progression because this is a major transcription factor which regulates immune functions within the tumor microenvironment. In this review, we will focus our discussion on the immunological contribution of NF-κB in tumor associated host immune cells within the tumor microenvironment. We will also discuss the potential protective role of zinc, a well-known immune response mediator, in the regulation of these immune cells and cancer cells in the tumor microenvironment especially because zinc could be useful for conditioning the tumor microenvironment toward innovative cancer therapy. PMID:22155217

  2. The modulation of Dicer regulates tumor immunogenicity in melanoma

    PubMed Central

    Hoffend, Nicholas C.; Magner, William J.; Tomasi, Thomas B.

    2016-01-01

    MicroRNAs (miRs) are small non-coding RNAs that regulate most cellular protein networks by targeting mRNAs for translational inhibition or degradation. Dicer, a type III endoribonuclease, is a critical component in microRNA biogenesis and is required for mature microRNA production. Abnormal Dicer expression occurs in numerous cancer types and correlates with poor patient prognosis. For example, increased Dicer expression in melanoma is associated with more aggressive tumors (higher tumor mitotic index and depth of invasion) and poor patient prognosis. However, the role that Dicer plays in melanoma development and immune evasion remains unclear. Here, we report on a newly discovered relationship between Dicer expression and tumor immunogenicity. To investigate Dicer's role in regulating melanoma immunogenicity, Dicer knockdown studies were performed. We found that B16F0-Dicer deficient cells exhibited decreased tumor growth compared to control cells and were capable of inducing anti-tumor immunity. The decrease in tumor growth was abrogated in immunodeficient NSG mice and was shown to be dependent upon CD8+ T cells. Dicer knockdown also induced a more responsive immune gene profile in melanoma cells. Further studies demonstrated that CD8+ T cells preferentially killed Dicer knockdown tumor cells compared to control cells. Taken together, we present evidence which links Dicer expression to tumor immunogenicity in melanoma. PMID:27356752

  3. The modulation of Dicer regulates tumor immunogenicity in melanoma.

    PubMed

    Hoffend, Nicholas C; Magner, William J; Tomasi, Thomas B

    2016-07-26

    MicroRNAs (miRs) are small non-coding RNAs that regulate most cellular protein networks by targeting mRNAs for translational inhibition or degradation. Dicer, a type III endoribonuclease, is a critical component in microRNA biogenesis and is required for mature microRNA production. Abnormal Dicer expression occurs in numerous cancer types and correlates with poor patient prognosis. For example, increased Dicer expression in melanoma is associated with more aggressive tumors (higher tumor mitotic index and depth of invasion) and poor patient prognosis. However, the role that Dicer plays in melanoma development and immune evasion remains unclear. Here, we report on a newly discovered relationship between Dicer expression and tumor immunogenicity. To investigate Dicer's role in regulating melanoma immunogenicity, Dicer knockdown studies were performed. We found that B16F0-Dicer deficient cells exhibited decreased tumor growth compared to control cells and were capable of inducing anti-tumor immunity. The decrease in tumor growth was abrogated in immunodeficient NSG mice and was shown to be dependent upon CD8+ T cells. Dicer knockdown also induced a more responsive immune gene profile in melanoma cells. Further studies demonstrated that CD8+ T cells preferentially killed Dicer knockdown tumor cells compared to control cells. Taken together, we present evidence which links Dicer expression to tumor immunogenicity in melanoma.

  4. Opposite Expression of SPARC between the Liver and Pancreas in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Aseer, Kanikkai Raja; Kim, Sang Woo; Choi, Myung-Sook; Yun, Jong Won

    2015-01-01

    Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that regulates several cellular events, including inflammation and tissue remodelling. In this study, we investigated the tissue-specific expression of SPARC in streptozotocin (STZ)-induced diabetes, and found that SPARC was significantly up-regulated in the liver while down-regulated in the pancreas of STZ-induced diabetic rats. Chronic inflammation occurred in the diabetic pancreas accompanied by up-regulation of CCAAT/enhancer-binding protein beta (C/EBPβ) and its targets (TNFα, Il6, CRP, and Fn1) as well as myeloperoxidase (Mpo) and C-X-C chemokine receptor type 2 (Cxcr2). Diabetic liver showed significant up-regulation of Tgfb1 as well as moderately less up-regulated TNFα and reduced Fn1, resulting in elevated fibrogenesis. PARP-1 was not up-regulated during CD95-mediated apoptosis, resulting in restoration of high ATP levels in the diabetic liver. On the contrary, CD95-dependent apoptosis was not observed in the diabetic pancreas due to up-regulation of PARP-1 and ATP depletion, resulting in necrosis. The cytoprotective machinery was damaged by pancreatic inflammation, whereas adequate antioxidant capacity indicates low oxidative stress in the diabetic liver. High and low cellular insulin content was found in the diabetic liver and pancreas, respectively. Furthermore, we identified six novel interacting partner proteins of SPARC by co-immunoprecipitation in the diabetic liver and pancreas, and their interactions with SPARC were predicted by bioinformatics tools. Taken together, opposite expression of SPARC in the diabetic liver and pancreas may be related to inflammation and immune cell infiltration, degrees of apoptosis and fibrosis, cytoprotective machinery, and cellular insulin levels. PMID:26110898

  5. Regulation of CD4+ T-Cell Function by Membrane Cholesterol

    DTIC Science & Technology

    2012-03-13

    hypercholesterolemia in mice was associated with an increased number of 97 splenic CD4 T-cells [65]. In contrast, Atorvastatin -induced inhibition of HMG...Mauri C, Ehrenstein MR (2006) Atorvastatin restores Lck expression and lipid raft-associated signaling in T cells from patients with systemic lupus...J, Rehm C, et al. (2011) High dose atorvastatin decreases cellular markers of immune activation without affecting HIV-1 RNA levels: results of a

  6. Neural reflex pathways in intestinal inflammation: hypotheses to viable therapy.

    PubMed

    Willemze, Rose A; Luyer, Misha D; Buurman, Wim A; de Jonge, Wouter J

    2015-06-01

    Studies in neuroscience and immunology have clarified much of the anatomical and cellular basis for bidirectional interactions between the nervous and immune systems. As with other organs, intestinal immune responses and the development of immunity seems to be modulated by neural reflexes. Sympathetic immune modulation and reflexes are well described, and in the past decade the parasympathetic efferent vagus nerve has been added to this immune-regulation network. This system, designated 'the inflammatory reflex', comprises an afferent arm that senses inflammation and an efferent arm that inhibits innate immune responses. Intervention in this system as an innovative principle is currently being tested in pioneering trials of vagus nerve stimulation using implantable devices to treat IBD. Patients benefit from this treatment, but some of the working mechanisms remain to be established, for instance, treatment is effective despite the vagus nerve not always directly innervating the inflamed tissue. In this Review, we will focus on the direct neuronal regulatory mechanisms of immunity in the intestine, taking into account current advances regarding the innervation of the spleen and lymphoid organs, with a focus on the potential for treatment in IBD and other gastrointestinal pathologies.

  7. Spiroplasma and host immunity: activation of humoral immune responses increases endosymbiont load and susceptibility to certain Gram-negative bacterial pathogens in Drosophila melanogaster.

    PubMed

    Herren, Jeremy K; Lemaitre, Bruno

    2011-09-01

    Spiroplasma poulsonii and its relatives are facultative, vertically transmitted endosymbionts harboured by several Drosophila species. Their long-term survival requires not only evasion of host immunity, but also that Spiroplasma does not have a net detrimental effect on host fitness. These requirements provide the central framework for interactions between host and endosymbiont. We use Drosophila melaogaster as a model to unravel aspects of the mechanistic basis of endosymbiont-host immune interactions. Here we show that Spiroplasma does not activate an immune response in Drosophila and is not susceptible to either the cellular or humoral arms of the Drosophila immune system. We gain unexpected insight into host factors that can promote Spiroplasma growth by showing that activation of Toll and Imd immune pathways actually increases Sprioplasma titre. Spiroplasma-mediated protection is not observed for variety of fungal and bacterial pathogens and Spiroplasma actually increases susceptibility of Drosophila to certain Gram-negative pathogens. Finally, we show that the growth of endosymbiotic Spiroplasma is apparently self-regulated, as suggested by the unhindered proliferation of non-endosymbiotic Spiroplasma citri in fly haemolymph. © 2011 Blackwell Publishing Ltd.

  8. Location and cellular stages of NK cell development

    PubMed Central

    Yu, Jianhua; Freud, Aharon G.; Caligiuri, Michael A

    2013-01-01

    The identification of distinct tissue-specific natural killer (NK) cell populations that apparently mature from local precursor populations has brought new insight into the diversity and developmental regulation of this important lymphoid subset. NK cells provide a necessary link between the early (innate) and late (adaptive) immune responses to infection. Gaining a better understanding of the processes that govern NK cell development should allow us to better harness NK cell functions in multiple clinical settings as well as to gain further insight into how these cells undergo malignant transformation. In this review, we summarize recent advances in understanding sites and cellular stages of NK cell development in humans and mice. PMID:24055329

  9. Immune Privilege and Eye-Derived T-Regulatory Cells.

    PubMed

    Keino, Hiroshi; Horie, Shintaro; Sugita, Sunao

    2018-01-01

    Certain cellular components of the eye, such as neural retina, are unable to regenerate and replicate after destructive inflammation. Ocular immune privilege provides the eye with immune protection against intraocular inflammation in order to minimize the risk to vision integrity. The eye and immune system use strategies to maintain the ocular immune privilege by regulating the innate and adaptive immune response, which includes immunological ignorance, peripheral tolerance to eye-derived antigens, and intraocular immunosuppressive microenvironment. In this review, we summarize current knowledge regarding the molecular mechanism responsible for the development and maintenance of ocular immune privilege via regulatory T cells (Tregs), which are generated by the anterior chamber-associated immune deviation (ACAID), and ocular resident cells including corneal endothelial (CE) cells, ocular pigment epithelial (PE) cells, and aqueous humor. Furthermore, we examined the therapeutic potential of Tregs generated by RPE cells that express transforming growth factor beta (TGF- β ), cytotoxic T lymphocyte-associated antigen-2 alpha (CTLA-2 α ), and retinoic acid for autoimmune uveoretinitis and evaluated a new strategy using human RPE-induced Tregs for clinical application in inflammatory ocular disease. We believe that a better understanding of the ocular immune privilege associated with Tregs might offer a new approach with regard to therapeutic interventions for ocular autoimmunity.

  10. Immunostimulatory activity of water-extractable polysaccharides from Cistanche deserticola as a plant adjuvant in vitro and in vivo

    PubMed Central

    Yang, Xiumei; Yang, Yu; Zhao, Gan; Wang, Bin; Wu, Daocheng

    2018-01-01

    A safe and effective vaccine adjuvant is important in modern vaccines. Various Chinese herbal polysaccharides can activate the immune system. Cistanche deserticola (CD) is a traditional Chinese herb and an adjuvant candidate. Here, we confirmed that water-extractable polysaccharides of CD (WPCD) could modulate immune responses in vitro and in vivo. In a dose-dependent manner, WPCD significantly promoted the maturation and function of murine marrow-derived dendritic cells (BM-DCs) through up-regulating the expression levels of MHC-II, CD86, CD80, and CD40, allogenic T cell proliferation, and the yields of IL-12 and TNF-α via toll-like receptor4 (TLR4), as indicated by in vitro experiments. In addition, its immunomodulatory activity was also observed in mice. WPCD effectively improved the titers of IgG, IgG1 and IgG2a and markedly enhanced the proliferation of T and B cells, the production of IFN-γ and IL-4 in CD4+ T cells and the expression level of IFN-γ in CD8+ T cells better than Alum. Furthermore, WPCD could markedly up-regulate the expression levels of CD40 and CD80 on DCs in spleen and down-regulate the Treg frequency. The study suggests that polysaccharides of Cistanche deserticola are a safe and effective vaccine adjuvant for eliciting both humoral immunity and cellular immunity by activating DCs via TLR4 signaling pathway. PMID:29360858

  11. Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells

    PubMed Central

    Mortha, Arthur; Burrows, Kyle

    2018-01-01

    Innate lymphoid cells (ILCs) are an essential component of the innate immune system in vertebrates. They are developmentally rooted in the lymphoid lineage and can diverge into at least three transcriptionally distinct lineages. ILCs seed both lymphoid and non-lymphoid tissues and are locally self-maintained in tissue-resident pools. Tissue-resident ILCs execute important effector functions making them key regulator in tissue homeostasis, repair, remodeling, microbial defense, and anti-tumor immunity. Similar to T lymphocytes, ILCs possess only few sensory elements for the recognition of non-self and thus depend on extrinsic cellular sensory elements residing within the tissue. Myeloid cells, including mononuclear phagocytes (MNPs), are key sentinels of the tissue and are able to translate environmental cues into an effector profile that instructs lymphocyte responses. The adaptation of myeloid cells to the tissue state thus influences the effector program of ILCs and serves as an example of how environmental signals are integrated into the function of ILCs via a tissue-resident immune cell cross talks. This review summarizes our current knowledge on the role of myeloid cells in regulating ILC functions and discusses how feedback communication between ILCs and myeloid cells contribute to stabilize immune homeostasis in order to maintain the healthy state of an organ. PMID:29467768

  12. Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells.

    PubMed

    Mortha, Arthur; Burrows, Kyle

    2018-01-01

    Innate lymphoid cells (ILCs) are an essential component of the innate immune system in vertebrates. They are developmentally rooted in the lymphoid lineage and can diverge into at least three transcriptionally distinct lineages. ILCs seed both lymphoid and non-lymphoid tissues and are locally self-maintained in tissue-resident pools. Tissue-resident ILCs execute important effector functions making them key regulator in tissue homeostasis, repair, remodeling, microbial defense, and anti-tumor immunity. Similar to T lymphocytes, ILCs possess only few sensory elements for the recognition of non-self and thus depend on extrinsic cellular sensory elements residing within the tissue. Myeloid cells, including mononuclear phagocytes (MNPs), are key sentinels of the tissue and are able to translate environmental cues into an effector profile that instructs lymphocyte responses. The adaptation of myeloid cells to the tissue state thus influences the effector program of ILCs and serves as an example of how environmental signals are integrated into the function of ILCs via a tissue-resident immune cell cross talks. This review summarizes our current knowledge on the role of myeloid cells in regulating ILC functions and discusses how feedback communication between ILCs and myeloid cells contribute to stabilize immune homeostasis in order to maintain the healthy state of an organ.

  13. Redox proteomics of tomato in response to Pseudomonas syringae infection

    PubMed Central

    Balmant, Kelly Mayrink; Parker, Jennifer; Yoo, Mi-Jeong; Zhu, Ning; Dufresne, Craig; Chen, Sixue

    2015-01-01

    Unlike mammals with adaptive immunity, plants rely on their innate immunity based on pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) for pathogen defense. Reactive oxygen species, known to play crucial roles in PTI and ETI, can perturb cellular redox homeostasis and lead to changes of redox-sensitive proteins through modification of cysteine sulfhydryl groups. Although redox regulation of protein functions has emerged as an important mechanism in several biological processes, little is known about redox proteins and how they function in PTI and ETI. In this study, cysTMT proteomics technology was used to identify similarities and differences of protein redox modifications in tomato resistant (PtoR) and susceptible (prf3) genotypes in response to Pseudomonas syringae pv tomato (Pst) infection. In addition, the results of the redox changes were compared and corrected with the protein level changes. A total of 90 potential redox-regulated proteins were identified with functions in carbohydrate and energy metabolism, biosynthesis of cysteine, sucrose and brassinosteroid, cell wall biogenesis, polysaccharide/starch biosynthesis, cuticle development, lipid metabolism, proteolysis, tricarboxylic acid cycle, protein targeting to vacuole, and oxidation–reduction. This inventory of previously unknown protein redox switches in tomato pathogen defense lays a foundation for future research toward understanding the biological significance of protein redox modifications in plant defense responses. PMID:26504582

  14. Genetics of Vitiligo

    PubMed Central

    Spritz, Richard; Andersen, Genevieve

    2016-01-01

    Synopsis Vitiligo is “complex disorder” (also termed polygenic and multifactorial), reflecting simultaneous contributions of multiple genetic risk factors and environmental triggers. Large-scale genome-wide association studies, principally in European-derived whites and in Chinese, have discovered approximately 50 different genetic loci that contribute to vitiligo risk, some of which also contribute to other autoimmune diseases that are epidemiologically associated with vitiligo. At many of these vitiligo susceptibility loci the corresponding relevant genes have now been identified, and for some of these genes the specific DNA sequence variants that contribute to vitiligo risk are also now known. A large fraction of these genes encode proteins involved in immune regulation, a number of others play roles in cellular apoptosis, and still others are involved in regulating functions of melanocytes. For this last group, there appears to be an opposite relationship between susceptibility to vitiligo and susceptibility to melanoma, suggesting that vitiligo may engage a normal mechanism of immune surveillance for melanoma. While many of the specific biologic mechanisms through which these genetic factors operate to cause vitiligo remain to be elucidated, it is now clear that vitiligo is an autoimmune disease involving a complex relationship between programming and function of the immune system, aspects of the melanocyte autoimmune target, and dysregulation of the immune response. PMID:28317533

  15. Current topics in HIV pathogenesis, part 2: Inflammation drives a Warburg-like effect on the metabolism of HIV-infected subjects.

    PubMed

    Aounallah, Mouna; Dagenais-Lussier, Xavier; El-Far, Mohamed; Mehraj, Vikram; Jenabian, Mohammad-Ali; Routy, Jean-Pierre; van Grevenynghe, Julien

    2016-04-01

    HIV-1 infection leads to a depletion of CD4 T-cells associated with a persistent immune inflammation and changes in cellular metabolism. Most effort of managing HIV infection with combination of antiretroviral therapies (ART) has been focused on CD4 T-cell recovery, while control of persistent immune inflammation and metabolism were relatively underappreciated in the past. Recent discoveries on the interplay between innate immunity, inflammation (especially the inflammasome) and metabolic changes in the context of cancer and autoimmunity provide an emerging field for chronic viral infections including HIV-1. In a previous review, we described the deregulated metabolism contributing to immune dysfunctions such as alteration of memory T-cell responses, mucosal protection, and dendritic cell-related antigen presentation. Here, we summarize the latest knowledge on the detrimental influence of long-lasting inflammation and inflammasome activation induced by HIV-1, gut dysbiosis, and bacterial translocation, on metabolism during the course of viral infection. We also report on the inability of ART to fully counteract inflammation, resulting in partial metabolic improvement and leading to an insufficient decrease in the risk of non-AIDS events. Further advances in our understanding of the relationship between inflammation, altered metabolism, and long-term ART is warranted. Additionally, there is a critical need for developing new strategies to regulate the pro-inflammatory signals to enhance cellular metabolism and immune functions in order to improve the quality of life of individuals living with HIV-1. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  16. γδ T cell and other immune cells crosstalk in cellular immunity.

    PubMed

    He, Ying; Wu, Kangni; Hu, Yongxian; Sheng, Lixia; Tie, Ruxiu; Wang, Binsheng; Huang, He

    2014-01-01

    γδ T cells have been recognized as effectors with immunomodulatory functions in cellular immunity. These abilities enable them to interact with other immune cells, thus having the potential for treatment of various immune-mediated diseases with adoptive cell therapy. So far, the interactions between γδ T cell and other immune cells have not been well defined. Here we will discuss the interactivities among them and the perspective on γδ T cells for their use in immunotherapy could be imagined. The understanding of the crosstalk among the immune cells in immunopathology might be beneficial for the clinical application of γδ T cell.

  17. Persistence at one year of age of antigen-induced cellular immune responses in preterm infants vaccinated against whooping cough: comparison of three different vaccines and effect of a booster dose.

    PubMed

    Vermeulen, Françoise; Dirix, Violette; Verscheure, Virginie; Damis, Eliane; Vermeylen, Danièle; Locht, Camille; Mascart, Françoise

    2013-04-08

    Due to their high risk of developing severe Bordetella pertussis (Bp) infections, it is recommended to immunize preterm infants at their chronological age. However, little is known about the persistence of their specific immune responses, especially of the cellular responses recognized to play a role in protection. We compared here the cellular immune responses to two major antigens of Bp between three groups of one year-old children born prematurely, who received for their primary vaccination respectively the whole cell vaccine Tetracoq(®) (TC), the acellular vaccine Tetravac(®) (TV), or the acellular vaccine Infanrix-hexa(®) (IR). Whereas most children had still detectable IFN-γ responses at one year of age, they were lower in the IR-vaccinated children compared to the two other groups. In contrast, both the TV- and the IR-vaccinated children displayed higher Th2-type immune responses, resulting in higher antigen-specific IFN-γ/IL-5 ratios in TC- than in TV- or IR-vaccinated children. The IFN-γ/IL-5 ratio of mitogen-induced cytokines was also lower in IR- compared to TC- or TV-vaccinated children. No major differences in the immune responses were noted after the booster compared to the pre-booster responses for each vaccine. The IR-vaccinated children had a persistently low specific Th1-type immune response associated with high specific Th2-type immune responses, resulting in lower antigen-specific IFN-γ/IL-5 ratios compared to the two other groups. We conclude that antigen-specific cellular immune responses persisted in one year-old children born prematurely and vaccinated during infancy at their chronological age, that a booster dose did not significantly boost the cellular immune responses, and that the Th1/Th2 balance of the immune responses is modulated by the different vaccines. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Generation of anti-porcine CD69 monoclonal antibodies and their usefulness to evaluate early activation of cellular immunity by flow cytometric analysis.

    PubMed

    Hayashi, Yumiko; Okutani, Mie; Ogawa, Shohei; Tsukahara, Takamitsu; Inoue, Ryo

    2018-05-01

    T cell-mediated cellular immunity and humoral immunity are equally important for the prevention of diseases. To assess activation of human and mouse cellular immunity, early activation markers of lymphocytes are often used in flow cytometry targeting expression of CD69 molecules. Response of humoral immunity against infection or vaccination has been well investigated in pigs, but that of cellular immunity has been largely neglected due to lack of direct evaluation tools. Thus, in pig research a proper assay of antibody reacted with porcine CD69 is still unavailable. In the present study, two anti-porcine CD69 mAb-producing mouse hybridomas, 01-14-22-51 (IgG2b-κ) and 01-22-44-102 (IgG2a-κ), both showing fine reactivity with phorbol 12-myristate 13-acetate (PMA) and ionomycin-stimulated porcine peripheral blood lymphocytes in flow cytometry, were established. When porcine peripheral blood lymphocytes were activated with PMA and ionomycin and analyzed by flow cytometry, it was found that both mAbs generated in this study stained about 70% of lymphocytes. In contrast, after an identical procedure, only 5% and 13.5% of lymphocytes were stained with anti-interferon-γ mAb and anti-tumor necrosis factor-α mAb, respectively. These results indicate that evaluation of cellular immunity activation turns more sensitive after using our newly generated mAbs. © 2018 Japanese Society of Animal Science.

  19. Epstein-Barr Virus Latent Membrane Protein 1 Regulates the Function of Interferon Regulatory Factor 7 by Inducing Its Sumoylation

    PubMed Central

    Bentz, Gretchen L.; Shackelford, Julia

    2012-01-01

    Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) induces multiple signal transduction pathways during latent EBV infection via its C-terminal activating region 1 (CTAR1), CTAR2, and the less-studied CTAR3. One mechanism by which LMP1 regulates cellular activation is through the induction of protein posttranslational modifications, including phosphorylation and ubiquitination. We recently documented that LMP1 induces a third major protein modification by physically interacting with the SUMO-conjugating enzyme Ubc9 through CTAR3 and inducing the sumoylation of cellular proteins in latently infected cells. We have now identified a specific target of LMP1-induced sumoylation, interferon regulatory factor 7 (IRF7). We hypothesize that during EBV latency, LMP1 induces the sumoylation of IRF7, limiting its transcriptional activity and modulating the activation of innate immune responses. Our data show that endogenously sumoylated IRF7 is detected in latently infected EBV lymphoblastoid cell lines. LMP1 expression coincided with increased sumoylation of IRF7 in a CTAR3-dependent manner. Additional experiments show that LMP1 CTAR3-induced sumoylation regulates the expression and function of IRF7 by decreasing its turnover, increasing its nuclear retention, decreasing its DNA binding, and limiting its transcriptional activation. Finally, we identified that IRF7 is sumoylated at lysine 452. These data demonstrate that LMP1 CTAR3 does in fact function in intracellular signaling, leading to biologic effects. We propose that CTAR3 is an important signaling region of LMP1 that regulates protein function by sumoylation. We have shown specifically that LMP1 CTAR3, in cooperation with CTAR2, can limit the ability of IRF7 to induce innate immune responses by inducing the sumoylation of IRF7. PMID:22951831

  20. High Dose Atorvastatin Decreases Cellular Markers of Immune Activation Without Affecting HIV-1 RNA Levels: Results of a Double-Blind Randomized Placebo Controlled Clinical Trial

    DTIC Science & Technology

    2011-02-15

    M A J O R A R T I C L E High Dose Atorvastatin Decreases Cellular Markers of Immune Activation without Affecting HIV-1 RNA Levels: Results of a... atorvastatin on HIV-1 RNA (primary objective) and cellular markers of immune activation (secondary objective). HIV-infected individuals not receiving...antiretroviral therapy were randomized to receive either 8 weeks of atorvastatin (80 mg) or placebo daily. After a 4–6 week washout phase, participants

  1. Short day length enhances physiological resilience of the immune system against 2-deoxy-d-glucose-induced metabolic stress in a tropical seasonal breeder Funambulus pennanti.

    PubMed

    Gupta, Sameer; Haldar, Chandana

    2017-03-01

    Studies demonstrate the importance of metabolic resources in the regulation of reproduction and immune functions in seasonal breeders. In this regard, the restricted energy availability can be considered as an environmental variable that may act as a seasonal stressor and can lead to compromised immune functions. The present study explored the effect of photoperiodic variation in the regulation of immune function under metabolic stress condition. The T-cell-dependent immune response in a tropical seasonal breeder Funambulus pennanti was studied following the inhibition of cellular glucose utilization with 2-deoxy-d-glucose (2-DG). 2-DG treatment resulted in the suppression of general (e.g., proliferative response of lymphocytes) and antigen-specific [anti-keyhole limpet hemocyanin IgG titer and delayed-type hypersensitivity response] T-cell responses with an activation of the hypothalamic-pituitary-adrenal axis, which was evident from the increased levels of plasma corticosterone. 2-DG administration increased the production of inflammatory cytokines [interleukin (IL)-1β and tumor necrosis factor (TNF)-α] and decreased the autocrine T-cell growth factor IL-2. The immunocompromising effect of 2-DG administration was retarded in animals exposed to short photoperiods compared with the control and long photoperiod-exposed groups. This finding suggested that short photoperiodic conditions enhanced the resilience of the immune system, possibly by diverting metabolic resources from the reproductive organs toward the immune system. In addition, melatonin may have facilitated the energy "trade-off" between reproductive and immune mechanisms, thereby providing an advantage to the seasonal breeders for their survival during stressful environmental conditions. Copyright © 2017. Published by Elsevier Inc.

  2. Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism.

    PubMed

    Hasan, Maroof; Gonugunta, Vijay K; Dobbs, Nicole; Ali, Aktar; Palchik, Guillermo; Calvaruso, Maria A; DeBerardinis, Ralph J; Yan, Nan

    2017-01-24

    Three-prime repair exonuclease 1 knockout (Trex1 -/- ) mice suffer from systemic inflammation caused largely by chronic activation of the cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase-interferon regulatory factor 3 (cGAS-STING-TBK1-IRF3) signaling pathway. We showed previously that Trex1-deficient cells have reduced mammalian target of rapamycin complex 1 (mTORC1) activity, although the underlying mechanism is unclear. Here, we performed detailed metabolic analysis in Trex1 -/- mice and cells that revealed both cellular and systemic metabolic defects, including reduced mitochondrial respiration and increased glycolysis, energy expenditure, and fat metabolism. We also genetically separated the inflammatory and metabolic phenotypes by showing that Sting deficiency rescued both inflammatory and metabolic phenotypes, whereas Irf3 deficiency only rescued inflammation on the Trex1 -/- background, and many metabolic defects persist in Trex1 -/- Irf3 -/- cells and mice. We also showed that Leptin deficiency (ob/ob) increased lipogenesis and prolonged survival of Trex1 -/- mice without dampening inflammation. Mechanistically, we identified TBK1 as a key regulator of mTORC1 activity in Trex1 -/- cells. Together, our data demonstrate that chronic innate immune activation of TBK1 suppresses mTORC1 activity, leading to dysregulated cellular metabolism.

  3. Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis.

    PubMed

    Domínguez-Andrés, Jorge; Arts, Rob J W; Ter Horst, Rob; Gresnigt, Mark S; Smeekens, Sanne P; Ratter, Jacqueline M; Lachmandas, Ekta; Boutens, Lily; van de Veerdonk, Frank L; Joosten, Leo A B; Notebaart, Richard A; Ardavín, Carlos; Netea, Mihai G

    2017-09-01

    Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases.

  4. Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis

    PubMed Central

    Smeekens, Sanne P.; Lachmandas, Ekta; Boutens, Lily; van de Veerdonk, Frank L.; Joosten, Leo A. B.; Ardavín, Carlos; Netea, Mihai G.

    2017-01-01

    Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases. PMID:28922415

  5. Tumor-related interleukins: old validated targets for new anti-cancer drug development.

    PubMed

    Setrerrahmane, Sarra; Xu, Hanmei

    2017-09-19

    In-depth knowledge of cancer molecular and cellular mechanisms have revealed a strong regulation of cancer development and progression by the inflammation which orchestrates the tumor microenvironment. Immune cells, residents or recruited, in the inflammation milieu can have rather contrasting effects during cancer development. Accumulated clinical and experimental data support the notion that acute inflammation could exert an immunoprotective effect leading to tumor eradication. However, chronic immune response promotes tumor growth and invasion. These reactions are mediated by soluble mediators or cytokines produced by either host immune cells or tumor cells themselves. Herein, we provide an overview of the current understanding of the role of the best-validated cytokines involved in tumor progression, IL-1, IL-4 and IL-6; in addition to IL-2 cytokines family, which is known to promote tumor eradication by immune cells. Furthermore, we summarize the clinical attempts to block or bolster the effect of these tumor-related interleukins in anti-cancer therapy development.

  6. Cellular immune responses to HIV

    NASA Astrophysics Data System (ADS)

    McMichael, Andrew J.; Rowland-Jones, Sarah L.

    2001-04-01

    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

  7. The cellular immunity and oxidative stress markers in early pregnancy loss.

    PubMed

    Daglar, Korkut; Biberoglu, Ebru; Kirbas, Ayse; Dirican, Aylin Onder; Genc, Metin; Avci, Aslihan; Biberoglu, Kutay

    2016-01-01

    We investigated whether changes in cellular immunity and oxidative stress in pregnancy have any association with spontaneous miscarriage. Circulating adenosine deaminase (ADA) activity as a marker of cellular immunity and malondialdehyde (MDA) and catalase (CAT), glutathione peroxidase (GPx) as markers of T lymphocyte activation and parameters of oxidative stress and antioxidant defense were compared between 40 women with early pregnancy loss and another 40 women with ungoing healthy pregnancy. Women with miscarriage had higher serum ADA and GPx levels when compared with women with normal pregnancy (p = 0.034 and p < 0.001, respectively). Although serum MDA level was slightly higher in women with miscarriage, the difference was not significant (p = 0.083). CAT levels were alike in both groups. We have demonstrated an increased cellular immunity and perhaps a compensated oxidative stress related to increased antioxidant activation in women with early spontaneous pregnancy loss.

  8. Subacute ruminal acidosis (SARA) challenge, ruminal condition and cellular immunity in cattle.

    PubMed

    Sato, Shigeru

    2015-02-01

    Subacute ruminal acidosis (SARA) is characterized by repeated bouts of low ruminal pH. Cows with SARA often develop complications or other diseases, and associate physiologically with immunosuppression and inflammation. Ruminal free lipopolysaccharide (LPS) increases during SARA and translocates into the blood circulation activating an inflammatory response. Ruminal fermentation and cellular immunity are encouraged by supplementing hay with calf starter during weaning. SARA calves given a 5-day repeated administration of a bacteria-based probiotic had stable ruminal pH levels (6.6-6.8). The repeated administration of probiotics enhance cellular immune function and encourage recovery from diarrhea in pre-weaning calves. Furthermore, the ruminal fermentation could guard against acute and short-term feeding changes, and changes in the rumen microbial composition of SARA cattle might occur following changes in ruminal pH. The repeated bouts of low ruminal pH in SARA cattle might be associated with depression of cellular immunity.

  9. [Molecular aspects of human papillomaviruses and their relation to uterine cervix cancer].

    PubMed

    García-Carrancá, A; Gariglio, P V

    1993-01-01

    Papillomaviruses (wart viruses) are responsible for the development of benign and malignant epithelial lesions in mammals. More than 60 different types of human papillomaviruses (HPVs) have been isolated to date. Some of them are major candidates as etiologic agents in cervical cancer. DNA from HPV types 16, 18 and 33 is usually found integrated in about 90 percent of genital carcinomas. Integration of the viral DNA into the cellular genome may be an important step towards the development of malignancy. Two early genes of HPVs (E6 y E7) are involved in cellular transformation. Another early gene (E2) participates in gene control by directly binding to conserved DNA motifs in the viral genome. Several protein factors of viral and cellular origin interact with the regulatory region of HPVs and participate in the regulation transcription of oncogenes E6 and E7. Cellular factors, such as immune system and oncogene and anti-oncogene alterations, seem to play an important role in papillomavirus-associated cervical carcinogenesis.

  10. RNA sequencing demonstrates large-scale temporal dysregulation of gene expression in stimulated macrophages derived from MHC-defined chicken haplotypes.

    PubMed

    Irizarry, Kristopher J L; Downs, Eileen; Bryden, Randall; Clark, Jory; Griggs, Lisa; Kopulos, Renee; Boettger, Cynthia M; Carr, Thomas J; Keeler, Calvin L; Collisson, Ellen; Drechsler, Yvonne

    2017-01-01

    Discovering genetic biomarkers associated with disease resistance and enhanced immunity is critical to developing advanced strategies for controlling viral and bacterial infections in different species. Macrophages, important cells of innate immunity, are directly involved in cellular interactions with pathogens, the release of cytokines activating other immune cells and antigen presentation to cells of the adaptive immune response. IFNγ is a potent activator of macrophages and increased production has been associated with disease resistance in several species. This study characterizes the molecular basis for dramatically different nitric oxide production and immune function between the B2 and the B19 haplotype chicken macrophages.A large-scale RNA sequencing approach was employed to sequence the RNA of purified macrophages from each haplotype group (B2 vs. B19) during differentiation and after stimulation. Our results demonstrate that a large number of genes exhibit divergent expression between B2 and B19 haplotype cells both prior and after stimulation. These differences in gene expression appear to be regulated by complex epigenetic mechanisms that need further investigation.

  11. CC Chemokine Receptor 5: The Interface of Host Immunity and Cancer

    PubMed Central

    de Oliveira, Carlos Eduardo Coral; Oda, Julie Massayo Maeda; Losi Guembarovski, Roberta; de Oliveira, Karen Brajão; Ariza, Carolina Batista; Neto, Jamil Soni; Banin Hirata, Bruna Karina; Watanabe, Maria Angelica Ehara

    2014-01-01

    Solid tumors are embedded in a stromal microenvironment consisting of immune cells, such as macrophages and lymphocytes, as well as nonimmune cells, such as endothelial cells and fibroblasts. Chemokines are a type of small secreted chemotactic cytokine and together with their receptors play key roles in the immune defense. Critically, they regulate cancer cellular migration and also contribute to their proliferation and survival. The CCR5 chemokine receptor is involved in leucocytes chemotaxis to sites of inflammation and plays an important role in the macrophages, T cells, and monocytes recruitment. Additionally, CCR5 may have an indirect effect on cancer progression by controlling the antitumor immune response, since it has been demonstrated that its expression could promote tumor growth and contribute to tumor metastasis, in different types of malignant tumors. Furthermore, it was demonstrated that a CCR5 antagonist may inhibit tumor growth, consisting of a possible therapeutic target. In this context, the present review focuses on the establishment of CCR5 within the interface of host immunity, tumor microenvironment, and its potential as a targeting to immunotherapy. PMID:24591756

  12. The plant cell nucleus: a true arena for the fight between plants and pathogens.

    PubMed

    Deslandes, Laurent; Rivas, Susana

    2011-01-01

    Communication between the cytoplasm and the nucleus is a fundamental feature shared by both plant and animal cells. Cellular factors involved in the transport of macromolecules through the nuclear envelope, including nucleoporins, importins and Ran-GTP related components, are conserved among a variety of eukaryotic systems. Interestingly, mutations in these nuclear components compromise resistance signalling, illustrating the importance of nucleocytoplasmic trafficking in plant innate immunity. Indeed, spatial restriction of defence regulators by the nuclear envelope and stimulus-induced nuclear translocation constitute an important level of defence-associated gene regulation in plants. A significant number of effectors from different microbial pathogens are targeted to the plant cell nucleus. In addition, key host factors, including resistance proteins, immunity components, transcription factors and transcriptional regulators shuttle between the cytoplasm and the nucleus, and their level of nuclear accumulation determines the output of the defence response, further confirming the crucial role played by the nucleus during the interaction between plants and pathogens. Here, we discuss recent findings that situate the nucleus at the frontline of the mutual recognition between plants and invading microbes.

  13. RIOK3 Is an Adaptor Protein Required for IRF3-Mediated Antiviral Type I Interferon Production

    PubMed Central

    Feng, Jun; De Jesus, Paul D.; Su, Victoria; Han, Stephanie; Gong, Danyang; Wu, Nicholas C.; Tian, Yuan; Li, Xudong; Wu, Ting-Ting; Chanda, Sumit K.

    2014-01-01

    ABSTRACT Detection of cytosolic nucleic acids by pattern recognition receptors leads to the induction of type I interferons (IFNs) and elicits the innate immune response. We report here the identification of RIOK3 as a novel adaptor protein that is essential for the cytosolic nucleic acid-induced type I IFN production and for the antiviral response to gammaherpesvirus through two independent kinome-wide RNA interference screens. RIOK3 knockdown blocks both cytosolic double-stranded B-form DNA and double-stranded RNA-induced IRF3 activation and IFN-β production. In contrast, the overexpression of RIOK3 activates IRF3 and induces IFN-β. RIOK3 functions downstream of TBK1 and upstream of IRF3 activation. Furthermore, RIOK3 physically interacts with both IRF3 and TBK1 and is necessary for the interaction between TBK1 and IRF3. In addition, global transcriptome analysis shows that the expression of many gene involved antiviral responses is dependent on RIOK3. Thus, knockdown of RIOK3 inhibits cellular antiviral responses against both DNA and RNA viruses (herpesvirus and influenza A virus). Our data suggest that RIOK3 plays a critical role in the antiviral type I IFN pathway by bridging TBK1 and IRF3. IMPORTANCE The innate immune response, such as the production of type I interferons, acts as the first line of defense, limiting infectious pathogens directly and shaping the adaptive immune response. In this study, we identified RIOK3 as a novel regulator of the antiviral type I interferon pathway. Specifically, we found that RIOK3 physically interacts with TBK1 and IRF3 and bridges the functions between TBK1 and IRF3 in the activation of type I interferon pathway. The identification of a cellular kinase that plays a role the type I interferon pathway adds another level of complexity in the regulation of innate immunity and will have implications for developing novel strategies to combat viral infection. PMID:24807708

  14. Regulation of Mouse NK Cell Development and Function by Cytokines

    PubMed Central

    Marçais, Antoine; Viel, Sébastien; Grau, Morgan; Henry, Thomas; Marvel, Jacqueline; Walzer, Thierry

    2013-01-01

    Natural Killer (NK) cells are innate lymphocytes with an important role in the early defense against intracellular pathogens and against tumors. Like other immune cells, almost every aspects of their biology are regulated by cytokines. Interleukin (IL)-15 is pivotal for their development, homeostasis, and activation. Moreover, numerous other activating or inhibitory cytokines such as IL-2, IL-4, IL-7, IL-10, IL-12, IL-18, IL-21, Transforming growth factor-β (TGFβ) and type I interferons regulate their activation and their effector functions at different stages of the immune response. In this review we summarize the current understanding on the effect of these different cytokines on NK cell development, homeostasis, and functions during steady-state or upon infection by different pathogens. We try to delineate the cellular sources of these cytokines, the intracellular pathways they trigger and the transcription factors they regulate. We describe the known synergies or antagonisms between different cytokines and highlight outstanding questions in this field of investigation. Finally, we discuss how a better knowledge of cytokine action on NK cells could help improve strategies to manipulate NK cells in different clinical situations. PMID:24376448

  15. RNase H As Gene Modifier, Driver of Evolution and Antiviral Defense

    PubMed Central

    Moelling, Karin; Broecker, Felix; Russo, Giancarlo; Sunagawa, Shinichi

    2017-01-01

    Retroviral infections are ‘mini-symbiotic’ events supplying recipient cells with sequences for viral replication, including the reverse transcriptase (RT) and ribonuclease H (RNase H). These proteins and other viral or cellular sequences can provide novel cellular functions including immune defense mechanisms. Their high error rate renders RT-RNases H drivers of evolutionary innovation. Integrated retroviruses and the related transposable elements (TEs) have existed for at least 150 million years, constitute up to 80% of eukaryotic genomes and are also present in prokaryotes. Endogenous retroviruses regulate host genes, have provided novel genes including the syncytins that mediate maternal-fetal immune tolerance and can be experimentally rendered infectious again. The RT and the RNase H are among the most ancient and abundant protein folds. RNases H may have evolved from ribozymes, related to viroids, early in the RNA world, forming ribosomes, RNA replicases and polymerases. Basic RNA-binding peptides enhance ribozyme catalysis. RT and ribozymes or RNases H are present today in bacterial group II introns, the precedents of TEs. Thousands of unique RTs and RNases H are present in eukaryotes, bacteria, and viruses. These enzymes mediate viral and cellular replication and antiviral defense in eukaryotes and prokaryotes, splicing, R-loop resolvation, DNA repair. RNase H-like activities are also required for the activity of small regulatory RNAs. The retroviral replication components share striking similarities with the RNA-induced silencing complex (RISC), the prokaryotic CRISPR-Cas machinery, eukaryotic V(D)J recombination and interferon systems. Viruses supply antiviral defense tools to cellular organisms. TEs are the evolutionary origin of siRNA and miRNA genes that, through RISC, counteract detrimental activities of TEs and chromosomal instability. Moreover, piRNAs, implicated in transgenerational inheritance, suppress TEs in germ cells. Thus, virtually all known immune defense mechanisms against viruses, phages, TEs, and extracellular pathogens require RNase H-like enzymes. Analogous to the prokaryotic CRISPR-Cas anti-phage defense possibly originating from TEs termed casposons, endogenized retroviruses ERVs and amplified TEs can be regarded as related forms of inheritable immunity in eukaryotes. This survey suggests that RNase H-like activities of retroviruses, TEs, and phages, have built up innate and adaptive immune systems throughout all domains of life. PMID:28959243

  16. Mechanisms of physiological and pathological cardiac hypertrophy.

    PubMed

    Nakamura, Michinari; Sadoshima, Junichi

    2018-04-19

    Cardiomyocytes exit the cell cycle and become terminally differentiated soon after birth. Therefore, in the adult heart, instead of an increase in cardiomyocyte number, individual cardiomyocytes increase in size, and the heart develops hypertrophy to reduce ventricular wall stress and maintain function and efficiency in response to an increased workload. There are two types of hypertrophy: physiological and pathological. Hypertrophy initially develops as an adaptive response to physiological and pathological stimuli, but pathological hypertrophy generally progresses to heart failure. Each form of hypertrophy is regulated by distinct cellular signalling pathways. In the past decade, a growing number of studies have suggested that previously unrecognized mechanisms, including cellular metabolism, proliferation, non-coding RNAs, immune responses, translational regulation, and epigenetic modifications, positively or negatively regulate cardiac hypertrophy. In this Review, we summarize the underlying molecular mechanisms of physiological and pathological hypertrophy, with a particular emphasis on the role of metabolic remodelling in both forms of cardiac hypertrophy, and we discuss how the current knowledge on cardiac hypertrophy can be applied to develop novel therapeutic strategies to prevent or reverse pathological hypertrophy.

  17. Quantitative analysis of the TNF-α-induced phosphoproteome reveals AEG-1/MTDH/LYRIC as an IKKβ substrate

    PubMed Central

    Krishnan, Ramesh K.; Nolte, Hendrik; Sun, Tianliang; Kaur, Harmandeep; Sreenivasan, Krishnamoorthy; Looso, Mario; Offermanns, Stefan; Krüger, Marcus; Swiercz, Jakub M.

    2015-01-01

    The inhibitor of the nuclear factor-κB (IκB) kinase (IKK) complex is a key regulator of the canonical NF-κB signalling cascade and is crucial for fundamental cellular functions, including stress and immune responses. The majority of IKK complex functions are attributed to NF-κB activation; however, there is increasing evidence for NF-κB pathway-independent signalling. Here we combine quantitative mass spectrometry with random forest bioinformatics to dissect the TNF-α-IKKβ-induced phosphoproteome in MCF-7 breast cancer cells. In total, we identify over 20,000 phosphorylation sites, of which ∼1% are regulated up on TNF-α stimulation. We identify various potential novel IKKβ substrates including kinases and regulators of cellular trafficking. Moreover, we show that one of the candidates, AEG-1/MTDH/LYRIC, is directly phosphorylated by IKKβ on serine 298. We provide evidence that IKKβ-mediated AEG-1 phosphorylation is essential for IκBα degradation as well as NF-κB-dependent gene expression and cell proliferation, which correlate with cancer patient survival in vivo. PMID:25849741

  18. Cancer prevention and therapy through the modulation of the tumor microenvironment

    PubMed Central

    Casey, Stephanie C.; Amedei, Amedeo; Aquilano, Katia; Benencia, Fabian; Bhakta, Dipita; Boosani, Chandra S.; Chen, Sophie; Ciriolo, Maria Rosa; Crawford, Sarah; Fujii, Hiromasa; Georgakilas, Alexandros G.; Guha, Gunjan; Halicka, Dorota; Helferich, William G.; Heneberg, Petr; Honoki, Kanya; Kerkar, Sid P.; Mohammed, Sulma I.; Niccolai, Elena; Nowsheen, Somaira; Rupasinghe, H. P. Vasantha; Samadi, Abbas; Singh, Neetu; Talib, Wamidh H.; Venkateswaran, Vasundara; Whelan, Richard; Yang, Xujuan; Felsher, Dean W.

    2015-01-01

    Cancer arises in the context of an in vivo tumor microenvironment. This microenvironment is both a cause and consequence of tumorigenesis. Tumor and host cells co-evolve dynamically through indirect and direct cellular interactions, eliciting multiscale effects on many biological programs, including cellular proliferation, growth, and metabolism, as well as angiogenesis and hypoxia and innate and adapative immunity. Here we highlight specific biological processes that could be exploited as targets for the prevention and therapy of cancer. Specifically, we describe how inhibition of targets such as cholesterol synthesis and metabolites, reactive oxygen species and hypoxia, macrophage activation and conversion, indoleamine 2, 3-dioxygenase regulation of dendritic cells, vascular endothelial growth factor regulation of angiogenesis, fibrosis inhibition, endoglin, and Janus kinase signaling emerge as examples of important potential nexuses in the regulation of tumorigenesis and the tumor microenvironment that can be targeted. We have also identified therapeutic agents as approaches, in particular natural products such as berberine, resveratrol, onionin A, epigallocatechin gallate, genistein, curcumin, naringenin, desoxyrhapontigenin, piperine, and zerumbone, that may warrant further investigation to target the tumor microenvironment for the treatment and/or prevention of cancer. PMID:25865775

  19. Initiation-promotion skin carcinogenesis and immunological competence.

    PubMed

    Curtis, G L; Stenbäck, F; Ryan, W L

    1975-10-01

    The immune competence of mice during initiation-promotion skin carcinogenesis was determined by skin allograft rejection and lymphocyte mitogenesis. The carcinogen 7, 12-dimethylbenzanthracene inhibited the cellular immune competence of mice while lymphocytes from croton oil treated mice had enhanced PWM response. Chlorphenesin, a stimulator of cellular immunity, was found to inhibit tumorigenesis in initiation-promotion skin carcinogenesis when injected during promotion.

  20. Waning and aging of cellular immunity to Bordetella pertussis.

    PubMed

    van Twillert, Inonge; Han, Wanda G H; van Els, Cécile A C M

    2015-11-01

    While it is clear that the maintenance of Bordetella pertussis-specific immunity evoked both after vaccination and infection is insufficient, it is unknown at which pace waning occurs and which threshold levels of sustained functional memory B and T cells are required to provide long-term protection. Longevity of human cellular immunity to B. pertussis has been studied less extensively than serology, but is suggested to be key for the observed differences between the duration of protection induced by acellular vaccination and whole cell vaccination or infection. The induction and maintenance of levels of protective memory B and T cells may alter with age, associated with changes of the immune system throughout life and with accumulating exposures to circulating B. pertussis or vaccine doses. This is relevant since pertussis affects all age groups. This review summarizes current knowledge on the waning patterns of human cellular immune responses to B. pertussis as addressed in diverse vaccination and infection settings and in various age groups. Knowledge on the effectiveness and flaws in human B. pertussis-specific cellular immunity ultimately will advance the improvement of pertussis vaccination strategies. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Enhancing immune responses to inactivated porcine parvovirus oil emulsion vaccine by co-inoculating porcine transfer factor in mice.

    PubMed

    Wang, Rui-ning; Wang, Ya-bin; Geng, Jing-wei; Guo, Dong-hui; Liu, Fang; Chen, Hong-ying; Zhang, Hong-ying; Cui, Bao-an; Wei, Zhan-yong

    2012-07-27

    Inactivated porcine parvovirus (PPV) vaccines are available commercially and widely used in the breeding herds. However, inactivated PPV vaccines have deficiencies in induction of specific cellular immune response. Transfer factor (TF) is a material that obtained from the leukocytes, and is a novel immune-stimulatory reagent that as a modulator of the immune system. In this study, the immunogenicity of PPV oil emulsion vaccine and the immuno-regulatory activities of TF were investigated. The inactivated PPV oil emulsion vaccines with or without TF were inoculated into BALB/c mice by subcutaneous injection. Then humoral and cellular immune responses were evaluated by indirect enzyme-linked immunosorbent assays (ELISA), fluorescence-activated cell sorter analyses (FACS). The results showed that the PPV specific immune responses could be evoked in mice by inoculating with PPV oil emulsion vaccine alone or by co-inoculation with TF. The cellular immune response levels in the co-inoculation groups were higher than those groups receiving the PPV oil emulsion vaccine alone, with the phenomena of higher level of IFN-γ, a little IL-6 and a trace of IL-4 in serum, and a vigorous T-cell response. However, there was no significant difference in antibody titers between TF synergy inactivated vaccine and the inactivated vaccine group (P>0.05). In conclusion, these results suggest that TF possess better cellular immune-enhancing capability and would be exploited into an effective immune-adjuvant for inactivated vaccines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Facilitative glucose transporter gene expression in human lymphocytes, monocytes, and macrophages: a role for GLUT isoforms 1, 3, and 5 in the immune response and foam cell formation.

    PubMed

    Fu, Yuchang; Maianu, Lidia; Melbert, Barry R; Garvey, W Timothy

    2004-01-01

    Cellular glucose uptake is mediated by a family of facilitative glucose transporters (GLUT) exhibiting differences in kinetics, substrate specificity, and tissue-specific expression. GLUT isoform expression has not been comprehensively studied in human leukocytes, which participate in immune and inflammatory responses and are critical for host defense. Therefore, we studied the regulated expression of GLUT 1-5 mRNA and protein in isolated human lymphocytes and monocytes and in human THP-1 macrophages and foam cells. Lymphocytes expressed GLUT 1 and GLUT 3 proteins, and cellular levels of both isoforms were augmented 3.5- to 6-fold following activation by phytohemagglutinin (PHA). Monocytes expressed 8.4-fold more GLUT 3 protein and 88% less GLUT 1 than lymphocytes, and activation by lipopolysaccharide (LPS) led to a 1.9-fold increase in GLUT 1. At the level of mRNA expression, GLUT 3 mRNA was the most prevalent GLUT mRNA species in monocytes, while lymphocytes expressed equal numbers of GLUT 1 and GLUT 3 transcripts. Differentiation of THP-1 monocytes into macrophages was associated with marked induction of GLUT 3 and GLUT 5 protein expression, and high levels of GLUT 1, GLUT 3, and GLUT 5 were maintained after transformation to foam cells. GLUT 5 mRNA was expressed in 2-fold greater abundance in macrophages and foam cells than that observed for GLUT 1 mRNA, while the level of GLUT 3 mRNA was intermediate. This facilitative glucose transporters are differentially expressed and regulated in human leukocytes in a pattern that could facilitate cellular functions. Speculatively, high GLUT 1 and GLUT 3 expression could provide cellular fuel for the immune response, and high levels of high-affinity GLUT 3 in macrophages might allow the cell to compete with pathogens for hexoses, even in the presence of low interstitial glucose concentrations. Ample expression of GLUT 1 and GLUT 3 in foam cells could also provide hexose substrates and promote lipid loading. The role for high levels of the fructose transporter GLUT 5 in macrophages and foam cells is unknown since interstitial and circulating fructose concentrations are low in these cells.

  3. Mucosal immunization: a review of strategies and challenges.

    PubMed

    Patel, Hinal; Yewale, Chetan; Rathi, Mohan N; Misra, Ambikanandan

    2014-01-01

    The vast majority of pathogens enter the human body via the mucosal surfaces of the gastrointestinal, respiratory, and urogenital tracts, where they initiate mucosal infections that lead to systemic infections. Despite strong evidence that a good mucosal immune response can effectively prevent systemic infection too, only a few mucosal vaccines are available due to their low efficiency. Most current immunization techniques involve systemic injection, but they are ineffective to induce immunization at a mucosal site. It is a great challenge to target a mucosal compartment that can induce protective immunity at mucosal sites as well as systemic sites. A better understanding of cellular and molecular factors involved in the regulation of mucosal immunity will aid in the design of safer mucosal vaccines that elicit the desired protective immunity against infectious diseases such as HIV. The development of mucosal vaccines, whether for prevention of infectious diseases or for immunotherapy, requires antigen delivery and adjuvant systems that can effectively present vaccine or immunotherapeutic antigens to the mucosal sites. In this review, we examine the mechanism of mucosal protection, induction of mucosal immune response, types of vaccines, current status of marketed vaccines, and novel strategies for protection against infections and for treatment of inflammatory disorders. Additionally, we offer perspectives on future challenges and research directions.

  4. Iron Biology, Immunology, Aging, and Obesity: Four Fields Connected by the Small Peptide Hormone Hepcidin12

    PubMed Central

    Dao, Maria Carlota; Meydani, Simin Nikbin

    2013-01-01

    Iron status and immune response become impaired in situations that involve chronic inflammation, such as obesity or aging. Little is known, however, about the additional burden that obesity may place on the iron status and immune response in the elderly. This question is relevant given the rising numbers of elderly obese (BMI >30 kg/m2) individuals and the high prevalence of iron deficiency worldwide. Iron is necessary for proper function of both the innate and adaptive immune system. Hepcidin, a peptide hormone that regulates cellular iron export, is essential for the maintenance of iron homeostasis. Therefore, since immune cells require iron for proper function hepcidin may also play an important role in immune response. In this review, we summarize the evidence for hepcidin as a link between the fields of gerontology, obesity, iron biology, and immunology. We also identify several gaps in knowledge and unanswered questions pertaining to iron homeostasis and immunity in obese populations. Finally, we review studies that have shown the impact of weight loss, focusing on calorie restriction, iron homeostasis, and immunity. These studies are important both in elucidating mechanistic links between obesity and health impairments and identifying possible approaches to target immune impairment and iron deficiency as comorbidities of obesity. PMID:24228190

  5. Combinatorial contextualization of peptidic epitopes for enhanced cellular immunity.

    PubMed

    Ito, Masaki; Hayashi, Kazumi; Adachi, Eru; Minamisawa, Tamiko; Homma, Sadamu; Koido, Shigeo; Shiba, Kiyotaka

    2014-01-01

    Invocation of cellular immunity by epitopic peptides remains largely dependent on empirically developed protocols, such as interfusion of aluminum salts or emulsification using terpenoids and surfactants. To explore novel vaccine formulation, epitopic peptide motifs were co-programmed with structural motifs to produce artificial antigens using our "motif-programming" approach. As a proof of concept, we used an ovalbumin (OVA) system and prepared an artificial protein library by combinatorially polymerizing MHC class I and II sequences from OVA along with a sequence that tends to form secondary structures. The purified endotoxin-free proteins were then examined for their ability to activate OVA-specific T-cell hybridoma cells after being processed within dendritic cells. One clone, F37A (containing three MHC I and two MHC II OVA epitopes), possessed a greater ability to evoke cellular immunity than the native OVA or the other artificial antigens. The sensitivity profiles of drugs that interfered with the F37A uptake differed from those of the other artificial proteins and OVA, suggesting that alteration of the cross-presentation pathway is responsible for the enhanced immunogenicity. Moreover, F37A, but not an epitopic peptide, invoked cellular immunity when injected together with monophosphoryl lipid A (MPL), and retarded tumor growth in mice. Thus, an artificially synthesized protein antigen induced cellular immunity in vivo in the absence of incomplete Freund's adjuvant or aluminum salts. The method described here could be potentially used for developing vaccines for such intractable ailments as AIDS, malaria and cancer, ailments in which cellular immunity likely play a crucial role in prevention and treatment.

  6. The effects of IL-1β, IL-8, G-CSF and TNF-α as molecular adjuvant on the immune response to an E. tarda subunit vaccine in flounder (Paralichthys olivaceus).

    PubMed

    Guo, Ming; Tang, Xiaoqian; Sheng, Xiuzhen; Xing, Jing; Zhan, Wenbin

    2018-06-01

    Cytokines play vital roles in mounting immune responses and activating host defense network. In this study, the expression plasmid pcDNA3.1 (pcN3) encoding four flounder (Paralichthys olivaceus) cytokines including IL-1β, TNF-α, IL-8 or G-CSF (pcIL-1β, pcTNF-α, pcIL-8 and pcG-CSF) were successfully constructed, and their adjuvant potential on an Edwardsiella tarda (E. tarda) subunit vaccine OmpV (rOmpV) were comparatively analyzed in vaccinated flounder model. Results revealed that flounder vaccinated with rOmpV plus pcIL-1β, pcIL-8 or pcG-CSF produced the relative percent survivals (RPS) of 71%, 65% and 49% respectively, which were higher than that in flounder vaccinated with rOmpV plus pcTNF-α (39%) or pcN3 (36%, the control group). Immunological analysis showed that: (1) except pcTNF-α, higher levels of anti-E. tarda serum antibodies and sIg + lymphocytes in spleen, head kidney and peripheral blood were significantly enhanced by pcIL-1β, pcIL-8 or pcG-CSF, however, pcIL-8 and pcIL-1β enhanced higher levels of sIg + lymphocytes and anti-E. tarda antibodies than pcG-CSF; (2) pcTNF-α could promote the up-regulation of genes participated in cellular immunity (MHCIα, IFN-γ, CD8α and CD8β), pcIL-1β could enhance the expression of genes related to humoral immunity (CD4-1, CD4-2, MHCIIα and IgM), and all the detected genes were augmented by pcIL-8 and pcG-CSF; Among the four cytokines, pcIL-8 and pcIL-1β could strengthen the highest levels of genes participated in cellular immunity and humoral immunity, respectively. These results demonstrated that pcIL-8 and pcIL-1β could enhance stronger cellular and/or humoral immunity induced by rOmpV than pcG-CSF and pcTNF-α, and evoked higher RPS against E. tarda challenge in flounder, which indicated that pcIL-8 and pcIL-1β are promising adjuvants of vaccines in controlling E. tarda infection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Interactions between immunotoxicants and parasite stress: Implications for host health.

    PubMed

    Booton, Ross D; Yamaguchi, Ryo; Marshall, James A R; Childs, Dylan Z; Iwasa, Yoh

    2018-05-14

    Many organisms face a wide variety of biotic and abiotic stressors which reduce individual survival, interacting to further reduce fitness. Here we studied the effects of two such interacting stressors: immunotoxicant exposure and parasite infection. We model the dynamics of a within-host infection and the associated immune response of an individual. We consider both the indirect sub-lethal effects on immunosuppression and the direct effects on health and mortality of individuals exposed to toxicants. We demonstrate that sub-lethal exposure to toxicants can promote infection through the suppression of the immune system. This happens through the depletion of the immune response which causes rapid proliferation in parasite load. We predict that the within-host parasite density is maximised by an intermediate toxicant exposure, rather than continuing to increase with toxicant exposure. In addition, high toxicant exposure can alter cellular regulation and cause the breakdown of normal healthy tissue, from which we infer higher mortality risk of the host. We classify this breakdown into three phases of increasing toxicant stress, and demonstrate the range of conditions under which toxicant exposure causes failure at the within-host level. These phases are determined by the relationship between the immunity status, overall cellular health and the level of toxicant exposure. We discuss the implications of our model in the context of individual bee health. Our model provides an assessment of how pesticide stress and infection interact to cause the breakdown of the within-host dynamics of individual bees. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family.

    PubMed

    Cayrol, Corinne; Girard, Jean-Philippe

    2018-01-01

    Interleukin-33 (IL-33) is a tissue-derived nuclear cytokine from the IL-1 family abundantly expressed in endothelial cells, epithelial cells and fibroblast-like cells, both during homeostasis and inflammation. It functions as an alarm signal (alarmin) released upon cell injury or tissue damage to alert immune cells expressing the ST2 receptor (IL-1RL1). The major targets of IL-33 in vivo are tissue-resident immune cells such as mast cells, group 2 innate lymphoid cells (ILC2s) and regulatory T cells (Tregs). Other cellular targets include T helper 2 (Th2) cells, eosinophils, basophils, dendritic cells, Th1 cells, CD8 + T cells, NK cells, iNKT cells, B cells, neutrophils and macrophages. IL-33 is thus emerging as a crucial immune modulator with pleiotropic activities in type-2, type-1 and regulatory immune responses, and important roles in allergic, fibrotic, infectious, and chronic inflammatory diseases. The critical function of IL-33/ST2 signaling in allergic inflammation is illustrated by the fact that IL33 and IL1RL1 are among the most highly replicated susceptibility loci for asthma. In this review, we highlight 15 years of discoveries on IL-33 protein, including its molecular characteristics, nuclear localization, bioactive forms, cellular sources, mechanisms of release and regulation by proteases. Importantly, we emphasize data that have been validated using IL-33-deficient cells. © 2017 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.

  9. The influence of antigen targeting to sub-cellular compartments on the anti-allergic potential of a DNA vaccine.

    PubMed

    Weinberger, Esther E; Isakovic, Almedina; Scheiblhofer, Sandra; Ramsauer, Christina; Reiter, Katrin; Hauser-Kronberger, Cornelia; Thalhamer, Josef; Weiss, Richard

    2013-12-09

    Gene vaccines offer attractive rationales for prophylactic as well as therapeutic treatments of type I allergies. DNA and mRNA vaccines have been shown to prevent from allergic sensitization and to counterbalance established allergic immune reactions. Recent advances in gene vaccine manipulation offer additional opportunities for modulation of T helper cell profiles by specific targeting of cellular compartments. DNA vaccines encoding the major birch pollen allergen Bet v 1.0101 were equipped with different leader sequences to shuttle the antigen to lysosomes (LIMP-II), to trigger cellular secretion (hTPA), or to induce proteasomal degradation via forced ubiquitination (ubi). Mice were pre-vaccinated with these constructs and the protective efficacy was tested by subcutaneous Th2-promoting challenges, followed by allergen inhalation. IgG antibody subclass distribution and allergen-specific IgE as well as cytokine profiles from re-stimulated splenocytes and from BALFs were assessed. The cellular composition of BALFs, and lung resistance and compliance were determined. Immunization with all targeting variants protected from allergic sensitization, i.e. IgE induction, airway hyperresponsiveness, lung inflammation, and systemic and local Th2 cytokine expression. Surprisingly, protection did not clearly correlate with the induction of a systemic Th1 cytokine profile, but rather with proliferating CD4+ CD25+ FoxP3+ T regulatory cells in splenocyte cultures. Targeting the allergen to proteasomal or lysosomal degradation severely down-regulated antibody induction after vaccination, while T cell responses remained unaffected. Although secretion of antigen promoted the highest numbers of Th1 cells, this vaccine type was the least efficient in suppressing the establishment of an allergic immune response. This comparative analysis highlights the modulatory effect of antigen targeting on the resulting immune response, with a special emphasis on prophylactic anti-allergy DNA vaccination. Targeting the antigen to proteasomal or lysosomal degradation reduces the availability of native allergen, thereby rendering the vaccine hypoallergenic without compromising efficacy, an important feature for a therapeutic setting. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. GDSL lipases modulate immunity through lipid homeostasis in rice

    PubMed Central

    Lam, Sin Man; Tong, Xiaohong; Liu, Jiyun; Wang, Xin; Shui, Guanghou

    2017-01-01

    Lipids and lipid metabolites play important roles in plant-microbe interactions. Despite the extensive studies of lipases in lipid homeostasis and seed oil biosynthesis, the involvement of lipases in plant immunity remains largely unknown. In particular, GDSL esterases/lipases, characterized by the conserved GDSL motif, are a subfamily of lipolytic enzymes with broad substrate specificity. Here, we functionally identified two GDSL lipases, OsGLIP1 and OsGLIP2, in rice immune responses. Expression of OsGLIP1 and OsGLIP2 was suppressed by pathogen infection and salicylic acid (SA) treatment. OsGLIP1 was mainly expressed in leaf and leaf sheath, while OsGLIP2 showed high expression in elongating internodes. Biochemical assay demonstrated that OsGLIP1 and OsGLIP2 are functional lipases that could hydrolyze lipid substrates. Simultaneous down-regulation of OsGLIP1 and OsGLIP2 increased plant resistance to both bacterial and fungal pathogens, whereas disease resistance in OsGLIP1 and OsGLIP2 overexpression plants was significantly compromised, suggesting that both genes act as negative regulators of disease resistance. OsGLIP1 and OsGLIP2 proteins mainly localize to lipid droplets and the endoplasmic reticulum (ER) membrane. The proper cellular localization of OsGLIP proteins is indispensable for their functions in immunity. Comprehensive lipid profiling analysis indicated that the alteration of OsGLIP gene expression was associated with substantial changes of the levels of lipid species including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). We show that MGDG and DGDG feeding could attenuate disease resistance. Taken together, our study indicates that OsGLIP1 and OsGLIP2 negatively regulate rice defense by modulating lipid metabolism, thus providing new insights into the function of lipids in plant immunity. PMID:29131851

  11. Adrenergic Receptor Stimulation Prevents Radiation-Induced DNA Strand Breaks, Apoptosis and Gene Expression in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Moreno-Villanueva, Maria; Krieger, Stephanie; Feiveson, Alan; Kovach, Annie Marie; Buerkle, Alexander; Wu, Honglu

    2017-01-01

    Under Earth gravity conditions cellular damage can be counteracted by activation of the physiological defense mechanisms or through medical interventions. The mode of action of both, physiological response and medical interventions can be affected by microgravity leading to failure in repairing the damage. There are many studies reporting the effects of microgravity and/or radiation on cellular functions. However, little is known about the synergistic effects on cellular response to radiation when other endogenous cellular stress-response pathways are previously activated. Here, we investigated whether previous stimulation of the adrenergic receptor, which modulates immune response, affects radiation-induced apoptosis in immune cells under simulated microgravity conditions. Peripheral blood mononuclear cells (PBMCs) were stimulated with isoproterenol (a sympathomimetic drug) and exposed to 0.8 or 2Gy gamma-radiation in simulated microgravity versus Earth gravity. Expression of genes involved in adrenergic receptor pathways, DNA repair and apoptosis as well as the number of apoptotic cells and DNA strand breaks were determined. Our results showed that, under simulated microgravity conditions, previous treatment with isoproterenol prevented radiation-induced i) gene down regulation, ii) DNA strand breaks formation and iii) apoptosis induction. Interestedly, we found a radiation-induced increase of adrenergic receptor gene expression, which was also abolished in simulated microgravity. Understanding the mechanisms of isoproterenol-mediated radioprotection in simulated microgravity can help to develop countermeasures for space-associated health risks as well as radio-sensitizers for cancer therapy.

  12. [Effect of Acanthopanax senticosus injection on the activities of human tumor necrosis factor and natural killer cell in blood in the patients with lung cancer].

    PubMed

    Huang, De-Bin; Ran, Rui-Zhi; Yu, Zhao-Fen

    2005-04-01

    To study the effect of Acanthopanax senticosus injection (ASI) on the activities of human tumor necrosis factor (TNF) and natural killer cell (NKC) in the patients with lung cancer and the underlying mechanism. 73 cases with lung cancer were randomly divided into two groups, namely, the treatment group (n = 39) and observation group (n = 34); 61 cases with or without other diseases were respectively divided into control A (n = 30) and B (n = 31) groups. The patients in treatment group were injected with ASI for 21 days. The activities of human TNF and NKC and the levels of IgG, IgA and IgM were detected respectively. After injection with ASI the activity of TNF-alpha in treatment group was comparable with that in the two control groups and was significant lower that that in observation group. The activity of TNF-beta and the levels of IgA, IgG and IgM were significantly higher than those in observation group and two control groups (P < 0.01). The activity of NKC was also remarkably higher than observation and two control groups. ASI can regulate the cellular immunity and factor, indicating that ASI can be used as an assistant drug to regulate the function of cellular immunity in the patients with lung cancer.

  13. Influenza A Virus Infection of Human Respiratory Cells Induces Primary MicroRNA Expression*

    PubMed Central

    Buggele, William A.; Johnson, Karen E.; Horvath, Curt M.

    2012-01-01

    The cellular response to virus infection is initiated by recognition of the invading pathogen and subsequent changes in gene expression mediated by both transcriptional and translational mechanisms. In addition to well established means of regulating antiviral gene expression, it has been demonstrated that RNA interference (RNAi) can play an important role in antiviral responses. Virus-derived small interfering RNA (siRNA) is a primary antiviral response exploited by plants and invertebrate animals, and host-encoded microRNA (miRNA) species have been clearly implicated in the regulation of innate and adaptive immune responses in mammals and other vertebrates. Examination of miRNA abundance in human lung cell lines revealed endogenous miRNAs, including miR-7, miR-132, miR-146a, miR-187, miR-200c, and miR-1275, to specifically accumulate in response to infection with two influenza A virus strains, A/Udorn/72 and A/WSN/33. Known antiviral response pathways, including Toll-like receptor, RIG-I-like receptor, and direct interferon or cytokine stimulation did not alter the abundance of the tested miRNAs to the extent of influenza A virus infection, which initiates primary miRNA transcription via a secondary response pathway. Gene expression profiling identified 26 cellular mRNAs targeted by these miRNAs, including IRAK1, MAPK3, and other components of innate immune signaling systems. PMID:22822053

  14. Whole transcriptome profiling reveals major cell types in the cellular immune response against acute and chronic active Epstein-Barr virus infection.

    PubMed

    Zhong, Huaqing; Hu, Xinran; Janowski, Andrew B; Storch, Gregory A; Su, Liyun; Cao, Lingfeng; Yu, Jinsheng; Xu, Jin

    2017-12-19

    Epstein-Barr virus (EBV) is a common human pathogen that infects over 95% of the population worldwide. In the present study, the whole transcriptome microarray data were generated from peripheral blood mononuclear cells from Chinese children with acute infectious mononucleosis (AIM) and chronic active EBV infection (CAEBV) that were also compared with a publicly available microarray dataset from a study of American college students with AIM. Our study characterized for the first time a broad spectrum of molecular signatures in AIM and CAEBV. The key findings from the transcriptome profiling were validated with qPCR and flow cytometry assays. The most important finding in our study is the discovery of predominant γδ TCR expression and γδ T cell expansion in AIM. This finding, in combination with the striking up-regulation of CD3, CD8 and CD94, suggests that CD8+ T cells and CD94+ NK cells may play a major role in AIM. Moreover, the unique up-regulation of CD64A/B and its significant correlation with the monocyte marker CD14 was observed in CAEBV and that implies an important role of monocytes in CAEBV. In conclusion, our study reveals major cell types (particularly γδ T cells) in the host cellular immune response against AIM and CAEBV.

  15. Contribution of autophagy to antiviral immunity.

    PubMed

    Rey-Jurado, Emma; Riedel, Claudia A; González, Pablo A; Bueno, Susan M; Kalergis, Alexis M

    2015-11-14

    Although identified in the 1960's, interest in autophagy has significantly increased in the past decade with notable research efforts oriented at understanding as to how this multi-protein complex operates and is regulated. Autophagy is commonly defined as a "self-eating" process evolved by eukaryotic cells to recycle senescent organelles and expired proteins, which is significantly increased during cellular stress responses. In addition, autophagy can also play important roles during human diseases, such as cancer, neurodegenerative and autoimmune disorders. Furthermore, novel findings suggest that autophagy contributes to the host defense against microbial infections. In this article, we review the role of macroautophagy in antiviral immune responses and discuss molecular mechanisms evolved by viral pathogens to evade this process. A role for autophagy as an effector mechanism used both, by innate and adaptive immunity is also discussed. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Host-Parasite Relationship in Cystic Echinococcosis: An Evolving Story

    PubMed Central

    Siracusano, Alessandra; Delunardo, Federica; Teggi, Antonella; Ortona, Elena

    2012-01-01

    The larval stage of Echinococcus granulosus causes cystic echinococcosis, a neglected infectious disease that constitutes a major public health problem in developing countries. Despite being under constant barrage by the immune system, E. granulosus modulates antiparasite immune responses and persists in the human hosts with detectable humoral and cellular responses against the parasite. In vitro and in vivo immunological approaches, together with molecular biology and immunoproteomic technologies, provided us exciting insights into the mechanisms involved in the initiation of E. granulosus infection and the consequent induction and regulation of the immune response. Although the last decade has clarified many aspects of host-parasite relationship in human cystic echinococcosis, establishing the full mechanisms that cause the disease requires more studies. Here, we review some of the recent developments and discuss new avenues in this evolving story of E. granulosus infection in man. PMID:22110535

  17. MicroRNAs as mediators of insect host-pathogen interactions and immunity.

    PubMed

    Hussain, Mazhar; Asgari, Sassan

    2014-11-01

    Insects are the most successful group of animals on earth, owing this partly to their very effective immune responses to microbial invasion. These responses mainly include cellular and humoral responses as well as RNA interference (RNAi). Small non-coding RNAs (snRNAs) produced through RNAi are important molecules in the regulation of gene expression in almost all living organisms; contributing to important processes such as development, differentiation, immunity as well as host-microorganism interactions. The main snRNAs produced by the RNAi response include short interfering RNAs, microRNAs and piwi-interacting RNAs. In addition to the host snRNAs, some microorganisms encode snRNAs that affect the dynamics of host-pathogen interactions. In this review, we will discuss the latest developments in regards to the role of microRNA in insect host-pathogen interactions and provide some insights into this rapidly developing area of research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Immunoregulation by Mesenchymal Stem Cells: Biological Aspects and Clinical Applications

    PubMed Central

    Castro-Manrreza, Marta E.; Montesinos, Juan J.

    2015-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiation into mesenchymal lineages and that can be isolated from various tissues and easily cultivated in vitro. Currently, MSCs are of considerable interest because of the biological characteristics that confer high potential applicability in the clinical treatment of many diseases. Specifically, because of their high immunoregulatory capacity, MSCs are used as tools in cellular therapies for clinical protocols involving immune system alterations. In this review, we discuss the current knowledge about the capacity of MSCs for the immunoregulation of immunocompetent cells and emphasize the effects of MSCs on T cells, principal effectors of the immune response, and the immunosuppressive effects mediated by the secretion of soluble factors and membrane molecules. We also describe the mechanisms of MSC immunoregulatory modulation and the participation of MSCs as immune response regulators in several autoimmune diseases, and we emphasize the clinical application in graft versus host disease (GVHD). PMID:25961059

  19. Noncoding RNAs and immune checkpoints-clinical implications as cancer therapeutics.

    PubMed

    Smolle, Maria A; Calin, Horatiu N; Pichler, Martin; Calin, George A

    2017-07-01

    A major mechanism of tumor development and progression is silencing of the patient's immune response to cancer-specific antigens. Defects in the so-called cancer immunity cycle may occur at any stage of tumor development. Within the tumor microenvironment, aberrant expression of immune checkpoint molecules with activating or inhibitory effects on T lymphocytes induces immune tolerance and cellular immune escape. Targeting immune checkpoint molecules such as programmed cell death protein 1 (PD-1) and its ligand PD-L1 with specific antibodies has proven to be a major advance in the treatment of several types of cancer. Another way to therapeutically influence the tumor microenvironment is by modulating the levels of microRNAs (miRNAs), small noncoding RNAs that shuttle bidirectionally between malignant and tumor microenvironmental cells. These small RNA transcripts have two features: (a) their expression is quite specific to distinct tumors, and (b) they are involved in early regulation of immune responses. Consequently, miRNAs may be ideal molecules for use in cancer therapy. Many miRNAs are aberrantly expressed in human cancer cells, opening new opportunities for cancer therapy, but the exact functions of these miRNAs and their interactions with immune checkpoint molecules have yet to be investigated. This review summarizes recently reported findings about miRNAs as modulators of immune checkpoint molecules and their potential application as cancer therapeutics in clinical practice. © 2017 Federation of European Biochemical Societies.

  20. Immune function trade-offs in response to parasite threats.

    PubMed

    Kirschman, Lucas J; Quade, Adam H; Zera, Anthony J; Warne, Robin W

    2017-04-01

    Immune function is often involved in physiological trade-offs because of the energetic costs of maintaining constitutive immunity and mounting responses to infection. However, immune function is a collection of discrete immunity factors and animals should allocate towards factors that combat the parasite threat with the highest fitness cost. For example, animals on dispersal fronts of expanding population may be released from density-dependent diseases. The costs of immunity, however, and life history trade-offs in general, are often context dependent. Trade-offs are often most apparent under conditions of unusually limited resources or when animals are particularly stressed, because the stress response can shift priorities. In this study we tested how humoral and cellular immune factors vary between phenotypes of a wing dimorphic cricket and how physiological stress influences these immune factors. We measured constitutive lysozyme activity, a humoral immune factor, and encapsulation response, a cellular immune factor. We also stressed the crickets with a sham predator in a full factorial design. We found that immune strategy could be explained by the selective pressures encountered by each morph and that stress decreased encapsulation, but not lysozyme activity. These results suggest a possible trade-off between humoral and cellular immunity. Given limited resources and the expense of immune factors, parasite pressures could play a key factor in maintaining insect polyphenism via disruptive selection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Gestational food restriction decreases placental interleukin-10 expression and markers of autophagy and endoplasmic reticulum stress in murine intrauterine growth restriction.

    PubMed

    Chu, Alison; Thamotharan, Shanthie; Ganguly, Amit; Wadehra, Madhuri; Pellegrini, Matteo; Devaskar, Sherin U

    2016-10-01

    Intrauterine growth restriction (IUGR) affects up to 10% of pregnancies and often results in short- and long-term sequelae for offspring. The mechanisms underlying IUGR are poorly understood, but it is known that healthy placentation is essential for nutrient provision to fuel fetal growth, and is regulated by immunologic inputs. We hypothesized that in pregnancy, maternal food restriction (FR) resulting in IUGR would decrease the overall immunotolerant milieu in the placenta, leading to increased cellular stress and death. Our specific objectives were to evaluate (1) key cytokines (eg, IL-10) that regulate maternal-fetal tolerance, (2) cellular processes (autophagy and endoplasmic reticulum [ER] stress) that are immunologically mediated and important for cellular survival and functioning, and (3) the resulting IUGR phenotype and placental histopathology in this animal model. After subjecting pregnant mice to mild and moderate FR from gestational day 10 to 19, we collected placentas and embryos at gestational day 19. We examined RNA sequencing data to identify immunologic pathways affected in IUGR-associated placentas and validated messenger RNA expression changes of genes important in cellular integrity. We also evaluated histopathologic changes in vascular and trophoblastic structures as well as protein expression changes in autophagy, ER stress, and apoptosis in the mouse placentas. Several differentially expressed genes were identified in FR compared with control mice, including a considerable subset that regulates immune tolerance, inflammation, and cellular integrity. In summary, maternal FR decreases the anti-inflammatory effect of IL-10 and suppresses placental autophagic and ER stress responses, despite evidence of dysregulated vascular and trophoblast structures leading to IUGR. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Cellular therapies supplement: strategies for improving transplant efficiency in the context of cellular therapeutics.

    PubMed

    Jimenez, Antonio; Fung, Henry C; Christopherson, Kent W

    2011-11-01

    The field of hematopoietic stem cell transplantation (HSCT) has overcome many obstacles that have led to our current clinical ability to utilize cells collected from marrow, mobilized peripheral blood, or umbilical cord blood for the treatment of malignant and nonmalignant hematologic diseases. It is in this context that it becomes evident that future progress will lie in our development of an understanding of the biology by which the process of HSCT is regulated. By understanding the cellular components and the mechanisms by which HSCT is either enhanced or suppressed it will then be possible to design therapeutic strategies to improve rates of engraftment that will have a positive impact on immune reconstitution post-HSCT. In this review we focus primarily on allogeneic hematopoietic stem cell transplantation (allo-HSCT), the current challenges associated with allo-HSCT, and some developing strategies to improve engraftment in this setting. © 2011 American Association of Blood Banks.

  3. Insight into bacterial virulence mechanisms against host immune response via the Yersinia pestis-human protein-protein interaction network.

    PubMed

    Yang, Huiying; Ke, Yuehua; Wang, Jian; Tan, Yafang; Myeni, Sebenzile K; Li, Dong; Shi, Qinghai; Yan, Yanfeng; Chen, Hui; Guo, Zhaobiao; Yuan, Yanzhi; Yang, Xiaoming; Yang, Ruifu; Du, Zongmin

    2011-11-01

    A Yersinia pestis-human protein interaction network is reported here to improve our understanding of its pathogenesis. Up to 204 interactions between 66 Y. pestis bait proteins and 109 human proteins were identified by yeast two-hybrid assay and then combined with 23 previously published interactions to construct a protein-protein interaction network. Topological analysis of the interaction network revealed that human proteins targeted by Y. pestis were significantly enriched in the proteins that are central in the human protein-protein interaction network. Analysis of this network showed that signaling pathways important for host immune responses were preferentially targeted by Y. pestis, including the pathways involved in focal adhesion, regulation of cytoskeleton, leukocyte transendoepithelial migration, and Toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) signaling. Cellular pathways targeted by Y. pestis are highly relevant to its pathogenesis. Interactions with host proteins involved in focal adhesion and cytoskeketon regulation pathways could account for resistance of Y. pestis to phagocytosis. Interference with TLR and MAPK signaling pathways by Y. pestis reflects common characteristics of pathogen-host interaction that bacterial pathogens have evolved to evade host innate immune response by interacting with proteins in those signaling pathways. Interestingly, a large portion of human proteins interacting with Y. pestis (16/109) also interacted with viral proteins (Epstein-Barr virus [EBV] and hepatitis C virus [HCV]), suggesting that viral and bacterial pathogens attack common cellular functions to facilitate infections. In addition, we identified vasodilator-stimulated phosphoprotein (VASP) as a novel interaction partner of YpkA and showed that YpkA could inhibit in vitro actin assembly mediated by VASP.

  4. Applications of nanomaterials as vaccine adjuvants

    PubMed Central

    Zhu, Motao; Wang, Rongfu; Nie, Guangjun

    2014-01-01

    Vaccine adjuvants are applied to amplify the recipient's specific immune responses against pathogen infection or malignancy. A new generation of adjuvants is being developed to meet the demands for more potent antigen-specific responses, specific types of immune responses, and a high margin of safety. Nanotechnology provides a multifunctional stage for the integration of desired adjuvant activities performed by the building blocks of tailor-designed nanoparticles. Using nanomaterials for antigen delivery can provide high bioavailability, sustained and controlled release profiles, and targeting and imaging properties resulting from manipulation of the nanomaterials’ physicochemical properties. Moreover, the inherent immune-regulating activity of particular nanomaterials can further promote and shape the cellular and humoral immune responses toward desired types. The combination of both the delivery function and immunomodulatory effect of nanomaterials as adjuvants is thought to largely benefit the immune outcomes of vaccination. In this review, we will address the current achievements of nanotechnology in the development of novel adjuvants. The potential mechanisms by which nanomaterials impact the immune responses to a vaccine and how physicochemical properties, including size, surface charge and surface modification, impact their resulting immunological outcomes will be discussed. This review aims to provide concentrated information to promote new insights for the development of novel vaccine adjuvants. PMID:25483497

  5. Novel function of Trim44 promotes an antiviral response by stabilizing VISA.

    PubMed

    Yang, Bo; Wang, Jie; Wang, Yanming; Zhou, Haiyan; Wu, Xiaodong; Tian, Zhigang; Sun, Bing

    2013-04-01

    Virus-induced signaling adaptor (VISA) functions as a critical adaptor in the regulation of both the production of type I IFNs and the subsequent control of the innate antiviral response. In this study, we demonstrate that tripartite motif (Trim)44 interacts with VISA and promotes VISA-mediated antiviral responses. The overexpression of Trim44 enhances the cellular response to viral infection, whereas Trim44 knockdown yields the opposite effect. Trim44 stabilizes VISA by preventing VISA ubiquitination and degradation. These findings suggest that Trim44 functions as a positive regulator of the virus-triggered immune response by enhancing the stability of VISA.

  6. Novel Role for Protein Inhibitor of Activated STAT 4 (PIAS4) in the Restriction of Herpes Simplex Virus 1 by the Cellular Intrinsic Antiviral Immune Response.

    PubMed

    Conn, Kristen L; Wasson, Peter; McFarlane, Steven; Tong, Lily; Brown, James R; Grant, Kyle G; Domingues, Patricia; Boutell, Chris

    2016-05-01

    Small ubiquitin-like modifier (SUMO) is used by the intrinsic antiviral immune response to restrict viral pathogens, such as herpes simplex virus 1 (HSV-1). Despite characterization of the host factors that rely on SUMOylation to exert their antiviral effects, the enzymes that mediate these SUMOylation events remain to be defined. We show that unconjugated SUMO levels are largely maintained throughout infection regardless of the presence of ICP0, the HSV-1 SUMO-targeted ubiquitin ligase. Moreover, in the absence of ICP0, high-molecular-weight SUMO-conjugated proteins do not accumulate if HSV-1 DNA does not replicate. These data highlight the continued importance for SUMO signaling throughout infection. We show that the SUMO ligase protein inhibitor of activated STAT 4 (PIAS4) is upregulated during HSV-1 infection and localizes to nuclear domains that contain viral DNA. PIAS4 is recruited to sites associated with HSV-1 genome entry through SUMO interaction motif (SIM)-dependent mechanisms that are destabilized by ICP0. In contrast, PIAS4 accumulates in replication compartments through SIM-independent mechanisms irrespective of ICP0 expression. Depletion of PIAS4 enhances the replication of ICP0-null mutant HSV-1, which is susceptible to restriction by the intrinsic antiviral immune response. The mechanisms of PIAS4-mediated restriction are synergistic with the restriction mechanisms of a characterized intrinsic antiviral factor, promyelocytic leukemia protein, and are antagonized by ICP0. We provide the first evidence that PIAS4 is an intrinsic antiviral factor. This novel role for PIAS4 in intrinsic antiviral immunity contrasts with the known roles of PIAS proteins as suppressors of innate immunity. Posttranslational modifications with small ubiquitin-like modifier (SUMO) proteins regulate multiple aspects of host immunity and viral replication. The protein inhibitor of activated STAT (PIAS) family of SUMO ligases is predominantly associated with the suppression of innate immune signaling. We now identify a unique and contrasting role for PIAS proteins as positive regulators of the intrinsic antiviral immune response to herpes simplex virus 1 (HSV-1) infection. We show that PIAS4 relocalizes to nuclear domains that contain viral DNA throughout infection. Depletion of PIAS4, either alone or in combination with the intrinsic antiviral factor promyelocytic leukemia protein, significantly impairs the intrinsic antiviral immune response to HSV-1 infection. Our data reveal a novel and dynamic role for PIAS4 in the cellular-mediated restriction of herpesviruses and establish a new functional role for the PIAS family of SUMO ligases in the intrinsic antiviral immune response to DNA virus infection. Copyright © 2016 Conn et al.

  7. Novel Role for Protein Inhibitor of Activated STAT 4 (PIAS4) in the Restriction of Herpes Simplex Virus 1 by the Cellular Intrinsic Antiviral Immune Response

    PubMed Central

    Conn, Kristen L.; Wasson, Peter; McFarlane, Steven; Tong, Lily; Brown, James R.; Grant, Kyle G.; Domingues, Patricia

    2016-01-01

    ABSTRACT Small ubiquitin-like modifier (SUMO) is used by the intrinsic antiviral immune response to restrict viral pathogens, such as herpes simplex virus 1 (HSV-1). Despite characterization of the host factors that rely on SUMOylation to exert their antiviral effects, the enzymes that mediate these SUMOylation events remain to be defined. We show that unconjugated SUMO levels are largely maintained throughout infection regardless of the presence of ICP0, the HSV-1 SUMO-targeted ubiquitin ligase. Moreover, in the absence of ICP0, high-molecular-weight SUMO-conjugated proteins do not accumulate if HSV-1 DNA does not replicate. These data highlight the continued importance for SUMO signaling throughout infection. We show that the SUMO ligase protein inhibitor of activated STAT 4 (PIAS4) is upregulated during HSV-1 infection and localizes to nuclear domains that contain viral DNA. PIAS4 is recruited to sites associated with HSV-1 genome entry through SUMO interaction motif (SIM)-dependent mechanisms that are destabilized by ICP0. In contrast, PIAS4 accumulates in replication compartments through SIM-independent mechanisms irrespective of ICP0 expression. Depletion of PIAS4 enhances the replication of ICP0-null mutant HSV-1, which is susceptible to restriction by the intrinsic antiviral immune response. The mechanisms of PIAS4-mediated restriction are synergistic with the restriction mechanisms of a characterized intrinsic antiviral factor, promyelocytic leukemia protein, and are antagonized by ICP0. We provide the first evidence that PIAS4 is an intrinsic antiviral factor. This novel role for PIAS4 in intrinsic antiviral immunity contrasts with the known roles of PIAS proteins as suppressors of innate immunity. IMPORTANCE Posttranslational modifications with small ubiquitin-like modifier (SUMO) proteins regulate multiple aspects of host immunity and viral replication. The protein inhibitor of activated STAT (PIAS) family of SUMO ligases is predominantly associated with the suppression of innate immune signaling. We now identify a unique and contrasting role for PIAS proteins as positive regulators of the intrinsic antiviral immune response to herpes simplex virus 1 (HSV-1) infection. We show that PIAS4 relocalizes to nuclear domains that contain viral DNA throughout infection. Depletion of PIAS4, either alone or in combination with the intrinsic antiviral factor promyelocytic leukemia protein, significantly impairs the intrinsic antiviral immune response to HSV-1 infection. Our data reveal a novel and dynamic role for PIAS4 in the cellular-mediated restriction of herpesviruses and establish a new functional role for the PIAS family of SUMO ligases in the intrinsic antiviral immune response to DNA virus infection. PMID:26937035

  8. Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses

    PubMed Central

    Yang, Yanyan; Yu, Tao; Sung, Gi-Ho; Yoo, Byong Chul

    2014-01-01

    Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases. PMID:24771982

  9. Nutrition and inflammatory events: highly unsaturated fatty acids (omega-3 vs omega-6) in surgical injury.

    PubMed

    Blackburn, G L

    1992-06-01

    Given the poor prognosis and high cost of care for patients with acute inflammatory responses (often leading to organ failure and/or allograft rejection), immunomodulation of this hyperresponse represents an important priority for research in nutritional medicine. The primary goal of nutritional support in inflammatory disease is to provide adequate energy, particularly through use of novel lipids (to alter eicosanoid pathway toward a more regulated inflammatory state), and protein to meet endogenous requirements for tissue repair IL-1 production, and restored cellular function, thus preventing secondary infection (52). Manipulation of macrophage eicosanoid production by use of omega-3 PUFA may reduce the cellular immune response (by competing with arachidonic acid, which produces inflammatory eicosanoids of the 2- and 4-series), whereas inclusion of MCT found in coconut oil may lower the arachidonic acid content of membrane phospholipids. As more data are obtained on the use of such tailored therapies in critically ill patients, a new generation of parenteral and enteral diets will be developed to reduce inflammation and immune dysfunction.

  10. Chemiluminometric Immuno-Analysis of Innate Immune Response against Repetitive Bacterial Stimulations for the Same Mammalian Cells

    PubMed Central

    Jeon, Jin-Woo; Cho, Il-Hoon; Ha, Un-Hwan; Seo, Sung-Kyu; Paek, Se-Hwan

    2014-01-01

    For monitoring of human cellular response to repetitive bacterial stimulations (e.g., Pseudomonas aeruginosa in a lysate form), we devised a chemiluminescent immuno-analytical system for toll-like receptor 1 (TLR1) as marker present on cell surfaces (e.g., A549). Upon stimulation, TLR1 recognizes pathogen-associated molecular patterns of the infectious agent and are then up-regulated via activation of the nuclear factor-κB (NF-κB) pathway. In this study, the receptor density was quantified by employing an antibody specific to the target receptor and by producing a chemiluminometric signal from an enzyme labeled to the binder. The activated status was then switched back to normal down-regulated stage, by changing the culture medium to one containing animal serum. The major factors affecting activation were the stimulation dose of the bacterial lysate, stimulation timing during starvation, and up- and down-regulation time intervals. Reiterative TLR regulation switching up to three times was not affected by either antibody remained after immunoassay or enzyme substrate (e.g., hydrogen peroxide) in solution. This immuno-analysis for TLRs could be unique to acquire accumulated response of the human cells to repeated stimulations and, therefore, can eventually apply to persistency testing of the cellular regulation in screening of anti-inflammatory substances. PMID:25109895

  11. MHC class I chain-related A: Polymorphism, regulation and therapeutic value in cancer.

    PubMed

    Yang, Xi; Kuang, Shuzhen; Wang, Liangjiang; Wei, Yanzhang

    2018-07-01

    MICA and MICB are stress-induced molecules recognized by NKG2D, one of major activation receptors of natural killer (NK) cells. Upon binding to NKG2D, NKG2D-mediated cytolytic immune response of immune effector cells will be activated against virally infected and tumor cells expressing MICA. In the early oncogenic development, membrane-bound MICA serves as a key signal to recruit anti-tumor immune effectors. Nevertheless, both MICA polymorphic features and its dysregulated expression in evolving tumors have resulted in tumor evasion in various cancer types. Therefore, in order to reconstitute tumor immunosurveilance, it is of great significance that we understand MICA genetics, polymorphisms, mechanisms of MICA-associated tumor escape and molecular/cellular modulation of MICA. In this review, the MICA-associated co-expression networks involving microRNAs (miRNAs) and novel candidate long non-coding RNAs (lncRNAs) were also discussed. Given the current importance in the study of MICA gene, this review paper focuses on the role of MICA in different cancer types, and strategies that we manipulate MICA regulation against tumor proliferation. Copyright © 2018. Published by Elsevier Masson SAS.

  12. ENHANCED DISEASE RESISTANCE4 Associates with CLATHRIN HEAVY CHAIN2 and Modulates Plant Immunity by Regulating Relocation of EDR1 in Arabidopsis

    PubMed Central

    Wu, Guangheng; Liu, Simu; Zhao, Yaofei; Wang, Wei; Kong, Zhaosheng; Tang, Dingzhong

    2015-01-01

    Obligate biotrophs, such as the powdery mildew pathogens, deliver effectors to the host cell and obtain nutrients from the infection site. The interface between the plant host and the biotrophic pathogen thus represents a major battleground for plant-pathogen interactions. Increasing evidence shows that cellular trafficking plays an important role in plant immunity. Here, we report that Arabidopsis thaliana ENHANCED DISEASE RESISTANCE4 (EDR4) plays a negative role in resistance to powdery mildew and that the enhanced disease resistance in edr4 mutants requires salicylic acid signaling. EDR4 mainly localizes to the plasma membrane and endosomal compartments. Genetic analyses show that EDR4 and EDR1 function in the same genetic pathway. EDR1 and EDR4 accumulate at the penetration site of powdery mildew infection, and EDR4 physically interacts with EDR1, recruiting EDR1 to the fungal penetration site. In addition, EDR4 interacts with CLATHRIN HEAVY CHAIN2 (CHC2), and edr4 mutants show reduced endocytosis rates. Taken together, our data indicate that EDR4 associates with CHC2 and modulates plant immunity by regulating the relocation of EDR1 in Arabidopsis. PMID:25747881

  13. Reduced toll-like receptor 4 and substance P gene expression is associated with airway bacterial colonization in children.

    PubMed

    Grissell, Terry V; Chang, Anne B; Gibson, Peter G

    2007-04-01

    Neuro-immune interactions are increasingly relevant to human health and disease. The neuropeptide Substance P also has antibacterial activity and bears similarities to the innate immune antibacterial defensins. This suggests possible co-regulation of neuropeptide and innate immune mediators. In this study, non-bronchoscopic bronchoalveolar lavage (BAL) was performed on 69 children. BAL was examined for cellular profile, microbiology (bacteria, virus) and gene expression for TLRs 2, 3, 4; chemokine receptors (CCR3, CCR5, CXCR1); neurotrophins and neurokinin genes (TAC1, TAC3, CGRP, NGF). In children with bacterial colonization (n=10) there was an airway inflammatory response with increased BAL neutrophils, IL-8 protein, and CXCR1 expression. Substance P (TAC1) and TLR4 RNA expression were reduced in children with bacterial colonization. TLR3 mRNA was increased in 7.2% (n=5) children with rhinovirus, and there was a non-significant trend to increased TLR2. There is evidence for co-regulation of neurokinin (TAC1) and TLR4 gene expression in airway cells from children with airway bacterial colonization and their reduced expression may be associated with an impaired bacterial clearance. (c) 2007 Wiley-Liss, Inc.

  14. Autophagy and its implication in human oral diseases.

    PubMed

    Tan, Ya-Qin; Zhang, Jing; Zhou, Gang

    2017-02-01

    Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis.

  15. Autophagy and its implication in human oral diseases

    PubMed Central

    Tan, Ya-Qin; Zhang, Jing; Zhou, Gang

    2017-01-01

    ABSTRACT Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis. PMID:27764582

  16. Comparative immune responses against Psoroptes ovis in two cattle breeds with different susceptibility to mange.

    PubMed

    Sarre, Charlotte; González-Hernández, Ana; Van Coppernolle, Stefanie; Grit, Rika; Grauwet, Korneel; Van Meulder, Frederik; Chiers, Koen; Van den Broeck, Wim; Geldhof, Peter; Claerebout, Edwin

    2015-11-19

    The sheep scab mite, Psoroptes ovis, is a major problem in the beef cattle industry, especially in Belgian Blue (BB) cattle. This breed is naturally more predisposed to psoroptic mange but reasons for this high susceptibility remain unknown. Different immune responses could be a potential cause; thus in this study, the cutaneous immune response and in vitro cellular immune response after antigen re-stimulation were examined in naturally infested BB. Cytokine production in the skin and in circulating re-stimulated peripheral blood mononuclear cells (PBMC) demonstrated a mixed pro-inflammatory Th2/Th17 profile, with transcription of IL-4, IL-13, IL-6 and IL-17. Strong IL-17 up-regulation in the skin of BB was associated with an influx of eosinophils and other immune cells, potentially leading towards more severe symptoms. Virtually no changes in cutaneous IFN-γ transcription were detected, while there was substantial IFN-γ up-regulation in re-stimulated PBMC from infested and uninfested animals, potentially indicating a role of this pro-inflammatory cytokine in the innate immune response. In Holstein-Friesian (HF) cattle, generally more resistant to P. ovis infection, a largely similar immunologic response was observed. Differences between HF and BB were the lack of cutaneous IL-17 response in infested HF and low transcription levels of IFN-γ and high IL-10 transcription in re-stimulated PBMC from both infested and uninfested animals. Further research is needed to identify potential cell sources and biological functions for these cytokines and to fully unravel the basis of this different breed susceptibility to P. ovis.

  17. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems.

    PubMed

    Okamoto, Kazuo; Nakashima, Tomoki; Shinohara, Masahiro; Negishi-Koga, Takako; Komatsu, Noriko; Terashima, Asuka; Sawa, Shinichiro; Nitta, Takeshi; Takayanagi, Hiroshi

    2017-10-01

    The immune and skeletal systems share a variety of molecules, including cytokines, chemokines, hormones, receptors, and transcription factors. Bone cells interact with immune cells under physiological and pathological conditions. Osteoimmunology was created as a new interdisciplinary field in large part to highlight the shared molecules and reciprocal interactions between the two systems in both heath and disease. Receptor activator of NF-κB ligand (RANKL) plays an essential role not only in the development of immune organs and bones, but also in autoimmune diseases affecting bone, thus effectively comprising the molecule that links the two systems. Here we review the function, gene regulation, and signal transduction of osteoimmune molecules, including RANKL, in the context of osteoclastogenesis as well as multiple other regulatory functions. Osteoimmunology has become indispensable for understanding the pathogenesis of a number of diseases such as rheumatoid arthritis (RA). We review the various osteoimmune pathologies, including the bone destruction in RA, in which pathogenic helper T cell subsets [such as IL-17-expressing helper T (Th17) cells] induce bone erosion through aberrant RANKL expression. We also focus on cellular interactions and the identification of the communication factors in the bone marrow, discussing the contribution of bone cells to the maintenance and regulation of hematopoietic stem and progenitors cells. Thus the time has come for a basic reappraisal of the framework for understanding both the immune and bone systems. The concept of a unified osteoimmune system will be absolutely indispensable for basic and translational approaches to diseases related to bone and/or the immune system. Copyright © 2017 the American Physiological Society.

  18. Comparative Anatomy of Phagocytic and Immunological Synapses

    PubMed Central

    Niedergang, Florence; Di Bartolo, Vincenzo; Alcover, Andrés

    2016-01-01

    The generation of phagocytic cups and immunological synapses are crucial events of the innate and adaptive immune responses, respectively. They are triggered by distinct immune receptors and performed by different cell types. However, growing experimental evidence shows that a very close series of molecular and cellular events control these two processes. Thus, the tight and dynamic interplay between receptor signaling, actin and microtubule cytoskeleton, and targeted vesicle traffic are all critical features to build functional phagosomes and immunological synapses. Interestingly, both phagocytic cups and immunological synapses display particular spatial and temporal patterns of receptors and signaling molecules, leading to the notion of “phagocytic synapse.” Here, we discuss both types of structures, their organization, and the mechanisms by which they are generated and regulated. PMID:26858721

  19. Bacterial and cellular RNAs at work during Listeria infection.

    PubMed

    Sesto, Nina; Koutero, Mikael; Cossart, Pascale

    2014-01-01

    Listeria monocytogenes is an intracellular pathogen that can enter and invade host cells. In the course of its infection, RNA-mediated regulatory mechanisms provide a fast and versatile response for both the bacterium and the host. They regulate a variety of processes, such as environment sensing and virulence in pathogenic bacteria, as well as development, cellular differentiation, metabolism and immune responses in eukaryotic cells. The aim of this article is to summarize first the RNA-mediated regulatory mechanisms that play a role in the Listeria lifestyle and in its virulence, and then the host miRNA responses to Listeria infection. Finally, we discuss the potential cross-talk between bacterial RNAs and host RNA regulatory mechanisms as new mechanisms of bacterial virulence.

  20. The New Cellular Immunology

    ERIC Educational Resources Information Center

    Claman, Henry N.

    1973-01-01

    Discusses the nature of the immune response and traces many of the discoveries that have led to the present state of knowledge in immunology. The new cellular immunology is directing its efforts toward improving health by proper manipulation of the immune mechanisms of the body. (JR)

  1. Cellular immune responses against CT7 (MAGE-C1) and humoral responses against other cancer-testis antigens in multiple myeloma patients

    PubMed Central

    Lendvai, Nikoletta; Gnjatic, Sacha; Ritter, Erika; Mangone, Michael; Austin, Wayne; Reyner, Karina; Jayabalan, David; Niesvizky, Ruben; Jagannath, Sundar; Bhardwaj, Nina; Chen-Kiang, Selina; Old, Lloyd J.

    2010-01-01

    The type I melanoma antigen gene (MAGE) proteins CT7 (MAGE-C1) and MAGE-A3 are commonly expressed in multiple myeloma (MM), and their expression correlates with increased plasma cell proliferation and poor clinical outcome. They belong to the cancer-testis antigen (CTAg) group of tumor-associated proteins, some of which elicit spontaneous immune responses in cancer patients. CT7 and MAGE-A3 are promising antigenic targets for therapeutic tumor vaccines in myeloma; therefore, it is critical to determine if they are immunogenic in MM patients. We analyzed cellular and humoral immune responses against CTAgs in patients with plasma cell dyscrasias: MM, monoclonal gammopathy of undetermined significance (MGUS), and Waldenström's macroglobulinemia (WM). Bone marrow lymphocytes from two of four untreated MM patients exhibited CT7-specific cellular immune responses as measured by an autologous cellular immunity assay, the first such immune response to CT7 to be reported in cancer patients. Sera from 24 patients were screened by ELISA for humoral immune responses to CTAgs. Two patients with MM demonstrated positive titers, one for MAGE-A1 and the other for SSX1. These data demonstrate that CTAgs, particularly CT7, are immunogenic in MM patients and merit further exploration as targets of immunological therapy in MM. PMID:20108890

  2. Cellular immune responses against CT7 (MAGE-C1) and humoral responses against other cancer-testis antigens in multiple myeloma patients.

    PubMed

    Lendvai, Nikoletta; Gnjatic, Sacha; Ritter, Erika; Mangone, Michael; Austin, Wayne; Reyner, Karina; Jayabalan, David; Niesvizky, Ruben; Jagannath, Sundar; Bhardwaj, Nina; Chen-Kiang, Selina; Old, Lloyd J; Cho, Hearn Jay

    2010-01-29

    The type I melanoma antigen gene (MAGE) proteins CT7 (MAGE-C1) and MAGE-A3 are commonly expressed in multiple myeloma (MM), and their expression correlates with increased plasma cell proliferation and poor clinical outcome. They belong to the cancer-testis antigen (CTAg) group of tumor-associated proteins, some of which elicit spontaneous immune responses in cancer patients. CT7 and MAGE-A3 are promising antigenic targets for therapeutic tumor vaccines in myeloma; therefore, it is critical to determine if they are immunogenic in MM patients. We analyzed cellular and humoral immune responses against CTAgs in patients with plasma cell dyscrasias: MM, monoclonal gammopathy of undetermined significance (MGUS), and Waldenström's macroglobulinemia (WM). Bone marrow lymphocytes from two of four untreated MM patients exhibited CT7-specific cellular immune responses as measured by an autologous cellular immunity assay, the first such immune response to CT7 to be reported in cancer patients. Sera from 24 patients were screened by ELISA for humoral immune responses to CTAgs. Two patients with MM demonstrated positive titers, one for MAGE-A1 and the other for SSX1. These data demonstrate that CTAgs, particularly CT7, are immunogenic in MM patients and merit further exploration as targets of immunological therapy in MM.

  3. The modulation of extracellular superoxide dismutase in the specifically enhanced cellular immune response against secondary challenge of Vibrio splendidus in Pacific oyster (Crassostrea gigas).

    PubMed

    Liu, Conghui; Zhang, Tao; Wang, Lingling; Wang, Mengqiang; Wang, Weilin; Jia, Zhihao; Jiang, Shuai; Song, Linsheng

    2016-10-01

    Extracellular superoxide dismutase (EcSOD) is a copper-containing glycoprotein playing an important role in antioxidant defense of living cells exposed to oxidative stress, and also participating in microorganism internalization and cell adhesion in invertebrates. EcSOD from oyster (designated CgEcSOD) had been previously reported to bind lipopolysaccharides (LPS) and act as a bridge molecule in Vibrio splendidus internalization. Its mRNA expression pattern, PAMP binding spectrum and microorganism binding capability were examined in the present study. The mRNA expression of CgEcSOD in hemocytes was significantly up-regulated at the initial phase and decreased sharply at 48 h post V. splendidus stimulation. The recombinant CgEcSOD protein (rCgEcSOD) could bind LPS, PGN and poly (I:C), as well as various microorganisms including Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Vibrio anguillarum, V. splendidus, Pastoris pastoris and Yarrowia lipolytica at the presence of divalent metal ions Cu(2+). After the secondary V. splendidus stimulation, the mRNA and protein of CgEcSOD were both down-regulated significantly. The results collectively indicated that CgEcSOD could not only function in the immune recognition, but also might contribute to the immune priming of oyster by inhibiting the foreign microbe invasion through a specific down-regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Noncoding RNA danger motifs bridge innate and adaptive immunity and are potent adjuvants for vaccination

    PubMed Central

    Wang, Lilin; Smith, Dan; Bot, Simona; Dellamary, Luis; Bloom, Amy; Bot, Adrian

    2002-01-01

    The adaptive immune response is triggered by recognition of T and B cell epitopes and is influenced by “danger” motifs that act via innate immune receptors. This study shows that motifs associated with noncoding RNA are essential features in the immune response reminiscent of viral infection, mediating rapid induction of proinflammatory chemokine expression, recruitment and activation of antigen-presenting cells, modulation of regulatory cytokines, subsequent differentiation of Th1 cells, isotype switching, and stimulation of cross-priming. The heterogeneity of RNA-associated motifs results in differential binding to cellular receptors, and specifically impacts the immune profile. Naturally occurring double-stranded RNA (dsRNA) triggered activation of dendritic cells and enhancement of specific immunity, similar to selected synthetic dsRNA motifs. Based on the ability of specific RNA motifs to block tolerance induction and effectively organize the immune defense during viral infection, we conclude that such RNA species are potent danger motifs. We also demonstrate the feasibility of using selected RNA motifs as adjuvants in the context of novel aerosol carriers for optimizing the immune response to subunit vaccines. In conclusion, RNA-associated motifs produced during viral infection bridge the early response with the late adaptive phase, regulating the activation and differentiation of antigen-specific B and T cells, in addition to a short-term impact on innate immunity. PMID:12393853

  5. Estimating genetic and phenotypic parameters of cellular immune-associated traits in dairy cows.

    PubMed

    Denholm, Scott J; McNeilly, Tom N; Banos, Georgios; Coffey, Mike P; Russell, George C; Bagnall, Ainsley; Mitchell, Mairi C; Wall, Eileen

    2017-04-01

    Data collected from an experimental Holstein-Friesian research herd were used to determine genetic and phenotypic parameters of innate and adaptive cellular immune-associated traits. Relationships between immune-associated traits and production, health, and fertility traits were also investigated. Repeated blood leukocyte records were analyzed in 546 cows for 9 cellular immune-associated traits, including percent T cell subsets, B cells, NK cells, and granulocytes. Variance components were estimated by univariate analysis. Heritability estimates were obtained for all 9 traits, the highest of which were observed in the T cell subsets percent CD4 + , percent CD8 + , CD4 + :CD8 + ratio, and percent NKp46 + cells (0.46, 0.41, 0.43 and 0.42, respectively), with between-individual variation accounting for 59 to 81% of total phenotypic variance. Associations between immune-associated traits and production, health, and fertility traits were investigated with bivariate analyses. Strong genetic correlations were observed between percent NKp46 + and stillbirth rate (0.61), and lameness episodes and percent CD8 + (-0.51). Regarding production traits, the strongest relationships were between CD4 + :CD8 + ratio and weight phenotypes (-0.52 for live weight; -0.51 for empty body weight). Associations between feed conversion traits and immune-associated traits were also observed. Our results provide evidence that cellular immune-associated traits are heritable and repeatable, and the noticeable variation between animals would permit selection for altered trait values, particularly in the case of the T cell subsets. The associations we observed between immune-associated, health, fertility, and production traits suggest that genetic selection for cellular immune-associated traits could provide a useful tool in improving animal health, fitness, and fertility. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY 2.0 license (http://creativecommons.org/licenses/by/2.0/).

  6. Mina: A Th2 response regulator meets TGFβ

    PubMed Central

    Pillai, Meenu R.; Lian, Shangli; Bix, Mark

    2014-01-01

    The JmjC protein Mina is an important immune response regulator. Classical forward genetics first discovered its immune role in 2009 in connection with the development of T helper 2 (Th2) cells. This prompted investigation into Mina’s role in the two best-studied contexts where Th2 responses are essential: atopic asthma and helminth expulsion. In work focused on a mouse model of atopic asthma, Mina deficiency was found to ameliorate airway hyper-resistance and pulmonary inflammation. And, in a case-control study genetic variation at the human MINA locus was found to be associated with the development of childhood atopic asthma. Although the underlying cellular and molecular mechanism of Mina’s involvement in pulmonary inflammation remains unknown, our recent work on parasitic helminth expulsion suggests the possibility that, rather than T cells, epithelial cells responding to TGFβ may play the dominant role. Here we review the growing body of literature on the emerging Mina pathway in T cells and epithelial cells and attempt to set these into a broader context. PMID:25282476

  7. Spleen Tyrosine Kinase as a Target Therapy for Pseudomonas aeruginosa Infection.

    PubMed

    Alhazmi, Alaa

    2018-06-20

    Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase which associates directly with extracellular receptors, and is critically involved in signal transduction pathways in a variety of cell types for the regulation of cellular responses. SYK is expressed ubiquitously in immune and nonimmune cells, and has a much wider biological role than previously recognized. Several studies have highlighted SYK as a key player in the pathogenesis of a multitude of diseases. Pseudomonas aeruginosa is an opportunistic gram-negative pathogen, which is responsible for systemic infections in immunocompromised individuals, accounting for a major cause of severe chronic lung infection in cystic fibrosis patients and subsequently resulting in a progressive deterioration of lung function. Inhibition of SYK activity has been explored as a therapeutic option in several allergic disorders, autoimmune diseases, and hematological malignancies. This review focuses on SYK as a therapeutic target, and describes the possibility of how current knowledge could be translated for therapeutic purposes to regulate the immune response to the opportunistic pathogen P. aeruginosa. © 2018 S. Karger AG, Basel.

  8. PKACs attenuate innate antiviral response by phosphorylating VISA and priming it for MARCH5-mediated degradation

    PubMed Central

    Yan, Bing-Ru; Zhou, Lu; Hu, Ming-Ming; Li, Mi; Lin, Heng; Yang, Yan; Wang, Yan-Yi

    2017-01-01

    Sensing of viral RNA by RIG-I-like receptors initiates innate antiviral response, which is mediated by the central adaptor VISA. How the RIG-I-VISA-mediated antiviral response is terminated at the late phase of infection is enigmatic. Here we identified the protein kinase A catalytic (PKAC) subunits α and β as negative regulators of RNA virus-triggered signaling in a redundant manner. Viral infection up-regulated cellular cAMP levels and activated PKACs, which then phosphorylated VISA at T54. This phosphorylation abrogated virus-induced aggregation of VISA and primed it for K48-linked polyubiquitination and degradation by the E3 ligase MARCH5, leading to attenuation of virus-triggered induction of downstream antiviral genes. PKACs-deficiency or inactivation by the inhibitor H89 potentiated innate immunity to RNA viruses in cells and mice. Our findings reveal a critical mechanism of attenuating innate immune response to avoid host damage at the late phase of viral infection by the house-keeping PKA kinase. PMID:28934360

  9. PKACs attenuate innate antiviral response by phosphorylating VISA and priming it for MARCH5-mediated degradation.

    PubMed

    Yan, Bing-Ru; Zhou, Lu; Hu, Ming-Ming; Li, Mi; Lin, Heng; Yang, Yan; Wang, Yan-Yi; Shu, Hong-Bing

    2017-09-01

    Sensing of viral RNA by RIG-I-like receptors initiates innate antiviral response, which is mediated by the central adaptor VISA. How the RIG-I-VISA-mediated antiviral response is terminated at the late phase of infection is enigmatic. Here we identified the protein kinase A catalytic (PKAC) subunits α and β as negative regulators of RNA virus-triggered signaling in a redundant manner. Viral infection up-regulated cellular cAMP levels and activated PKACs, which then phosphorylated VISA at T54. This phosphorylation abrogated virus-induced aggregation of VISA and primed it for K48-linked polyubiquitination and degradation by the E3 ligase MARCH5, leading to attenuation of virus-triggered induction of downstream antiviral genes. PKACs-deficiency or inactivation by the inhibitor H89 potentiated innate immunity to RNA viruses in cells and mice. Our findings reveal a critical mechanism of attenuating innate immune response to avoid host damage at the late phase of viral infection by the house-keeping PKA kinase.

  10. Vitamin D and Colorectal Cancer: Molecular, Epidemiological, and Clinical Evidence

    PubMed Central

    Dou, Ruoxu; Ng, Kimmie; Giovannucci, Edward L.; Manson, JoAnn E.; Qian, Zhi Rong; Ogino, Shuji

    2016-01-01

    In many cells throughout the body, vitamin D is converted into its active form calcitriol, and binds to vitamin D receptor (VDR), which functions as a transcription factor to regulate various biological processes including cellular differentiation and immune response. Vitamin D metabolizing enzymes (including CYP24A1 and CYP27B1) and VDR play major roles in exerting and regulating effects of vitamin D. Preclinical and epidemiological studies provide evidence for anticancer effects of vitamin D (in particular, against colorectal cancer), though clinical trials have yet to prove its benefit. Additionally, molecular pathological epidemiology research can provide insights into the interaction of vitamin D with tumour molecular and immunity status. Other future research directions include genome-wide research on VDR transcriptional targets, gene-environment interaction analyses, and clinical trials on vitamin D efficacy in colorectal cancer patients. Here we review the literature on vitamin D and colorectal cancer from both mechanistic and population studies, and discuss the links and controversies within and between the two parts of evidence. PMID:27245104

  11. The Clinical Application of MicroRNAs in Infectious Disease

    PubMed Central

    Drury, Ruth E.; O’Connor, Daniel; Pollard, Andrew J.

    2017-01-01

    MicroRNAs (miRNAs) are short single-stranded non-coding RNA sequences that posttranscriptionally regulate up to 60% of protein encoding genes. Evidence is emerging that miRNAs are key mediators of the host response to infection, predominantly by regulating proteins involved in innate and adaptive immune pathways. miRNAs can govern the cellular tropism of some viruses, are implicated in the resistance of some individuals to infections like HIV, and are associated with impaired vaccine response in older people. Not surprisingly, pathogens have evolved ways to undermine the effects of miRNAs on immunity. Recognition of this has led to new experimental treatments, RG-101 and Miravirsen—hepatitis C treatments which target host miRNA. miRNAs are being investigated as novel infection biomarkers, and they are being used to design attenuated vaccines, e.g., against Dengue virus. This comprehensive review synthesizes current knowledge of miRNA in host response to infection with emphasis on potential clinical applications, along with an evaluation of the challenges still to be overcome. PMID:28993774

  12. The Clinical Application of MicroRNAs in Infectious Disease.

    PubMed

    Drury, Ruth E; O'Connor, Daniel; Pollard, Andrew J

    2017-01-01

    MicroRNAs (miRNAs) are short single-stranded non-coding RNA sequences that posttranscriptionally regulate up to 60% of protein encoding genes. Evidence is emerging that miRNAs are key mediators of the host response to infection, predominantly by regulating proteins involved in innate and adaptive immune pathways. miRNAs can govern the cellular tropism of some viruses, are implicated in the resistance of some individuals to infections like HIV, and are associated with impaired vaccine response in older people. Not surprisingly, pathogens have evolved ways to undermine the effects of miRNAs on immunity. Recognition of this has led to new experimental treatments, RG-101 and Miravirsen-hepatitis C treatments which target host miRNA. miRNAs are being investigated as novel infection biomarkers, and they are being used to design attenuated vaccines, e.g., against Dengue virus. This comprehensive review synthesizes current knowledge of miRNA in host response to infection with emphasis on potential clinical applications, along with an evaluation of the challenges still to be overcome.

  13. TLR7 imidazoquinoline ligand 3M-019 is a potent adjuvant for pure protein prototype vaccines.

    PubMed

    Johnston, Dean; Zaidi, Bushra; Bystryn, Jean-Claude

    2007-08-01

    Cancer vaccines, while theoretically attractive, present difficult challenges that must be overcome to be effective. Cancer vaccines are often poorly immunogenic and may require augmentation of immunogenicity through the use of adjuvants and/or immune response modifiers. Toll-like receptor (TLR) ligands are a relatively new class of immune response modifiers that may have great potential in inducing and augmenting both cellular and humoral immunity to vaccines. TLR7 ligands produce strong cellular responses and specific IgG2a and IgG2b antibody responses to protein immunogens. This study shows that a new TLR7 ligand, 3M-019, in combination with liposomes produces very strong immune responses to a pure protein prototype vaccine in mice. Female C57BL/6 mice were immunized subcutaneously with ovalbumin (OVA, 0.1 mg/dose) weekly 4x. Some groups were immunized to OVA plus 3M-019 or to OVA plus 3M-019 encapsulated in liposomes. Both antibody and cellular immune responses against OVA were measured after either two or four immunizations. Anti-OVA IgG antibody responses were significantly increased after two immunizations and were substantially higher after four immunizations in mice immunized with OVA combined with 3M-019. Encapsulation in liposomes further augmented antibody responses. IgM responses, on the other hand, were lowered by 3M-019. OVA-specific IgG2a levels were increased 625-fold by 3M-019 in liposomes compared to OVA alone, while anti-OVA IgG2b levels were over 3,000 times higher. In both cases encapsulation of 3M-019 in liposomes was stronger than either liposomes alone or 3M-019 without liposomes. Cellular immune responses were likewise increased by 3M-019 but further enhanced when it was encapsulated in liposomes. The lack of toxicity also indicates that this combination may by safe, effective method to boost immune response to cancer vaccines.

  14. Dendritic Cells: A Spot on Sialic Acid

    PubMed Central

    Crespo, Hélio J.; Lau, Joseph T. Y.; Videira, Paula A.

    2013-01-01

    Glycans decorating cell surface and secreted proteins and lipids occupy the juncture where critical host–host and host-pathogen interactions occur. The role of glycan epitopes in cell–cell and cell-pathogen adhesive events is already well-established, and cell surface glycan structures change rapidly in response to stimulus and inflammatory cues. Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how glycans and their changes contribute to the overall immune response remains poorly defined. Sialic acids are unique sugars that usually occupy the terminal position of the glycan chains and may be modified by external factors, such as pathogens, or upon specific physiological cellular events. At cell surface, sialic acid-modified structures form the key fundamental determinants for a number of receptors with known involvement in cellular adhesiveness and cell trafficking, such as the Selectins and the Siglec families of carbohydrate recognizing receptors. Dendritic cells (DCs) preside over the transition from innate to the adaptive immune repertoires, and no other cell has such relevant role in antigen screening, uptake, and its presentation to lymphocytes, ultimately triggering the adaptive immune response. Interestingly, sialic acid-modified structures are involved in all DC functions, such as antigen uptake, DC migration, and capacity to prime T cell responses. Sialic acid content changes along DC differentiation and activation and, while, not yet fully understood, these changes have important implications in DC functions. This review focuses on the developmental regulation of DC surface sialic acids and how manipulation of DC surface sialic acids can affect immune-critical DC functions by altering antigen endocytosis, pathogen and tumor cell recognition, cell recruitment, and capacity for T cell priming. The existing evidence points to a potential of DC surface sialylation as a therapeutic target to improve and diversify DC-based therapies. PMID:24409183

  15. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation

    PubMed Central

    Wong, Carmen P.; Rinaldi, Nicole A.; Ho, Emily

    2015-01-01

    Scope Zinc deficiency results in immune dysfunction and promotes systemic inflammation. The objective of this study was to examine the effects of zinc deficiency on cellular immune activation and epigenetic mechanisms that promote inflammation. This work is potentially relevant to the aging population given that age-related immune defects, including chronic inflammation, coincide with declining zinc status. Methods and results An in vitro cell culture system and the aged mouse model were used to characterize immune activation and DNA methylation profiles that may contribute to the enhanced proinflammatory response mediated by zinc deficiency. Zinc deficiency up-regulated cell activation markers ICAM1, MHC class II, and CD86 in THP1 cells, that coincided with increased IL1β and IL6 responses following LPS stimulation. A decreased zinc status in aged mice was similarly associated with increased ICAM1 and IL6 gene expression. Reduced IL6 promoter methylation was observed in zinc deficient THP1 cells, as well as in aged mice and human lymphoblastoid cell lines derived from aged individuals. Conclusion Zinc deficiency induced inflammatory response in part by eliciting aberrant immune cell activation and altered promoter methylation. Our results suggested potential interactions between zinc status, epigenetics, and immune function, and how their dysregulation could contribute to chronic inflammation. PMID:25656040

  16. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration

    PubMed Central

    Castiglioni, Alessandra; Basso, Veronica; Vezzoli, Michela; Monno, Antonella; Almada, Albert E.; Mondino, Anna; Wagers, Amy J.; Manfredi, Angelo A.; Rovere-Querini, Patrizia

    2015-01-01

    Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue. PMID:26039259

  17. Redox and the circadian clock in plant immunity: A balancing act.

    PubMed

    Karapetyan, Sargis; Dong, Xinnian

    2018-05-01

    Plants' reliance on sunlight for energy makes their light-driven circadian clock a critical regulator in balancing the energy needs for vital activities such as growth and defense. Recent studies show that the circadian clock acts as a strategic planner to prime active defense responses towards the morning or daytime when conditions, such as the opening of stomata required for photosynthesis, are favorable for attackers. Execution of the defense response, on the other hand, is determined according to the cellular redox state and is regulated in part by the production of reactive oxygen and nitrogen species upon pathogen challenge. The interplay between redox and the circadian clock further gates the onset of defense response to a specific time of the day to avoid conflict with growth-related activities. In this review, we focus on discussing the roles of the circadian clock as a robust overseer and the cellular redox as a dynamic executor of plant defense. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Variation in Macro and Trace Elements in Progression of Type 2 Diabetes

    PubMed Central

    2014-01-01

    Macro elements are the minerals of which the body needs more amounts and are more important than any other elements. Trace elements constitute a minute part of the living tissues and have various metabolic characteristics and functions. Trace elements participate in tissue and cellular and subcellular functions; these include immune regulation by humoral and cellular mechanisms, nerve conduction, muscle contractions, membrane potential regulations, and mitochondrial activity and enzyme reactions. The status of micronutrients such as iron and vanadium is higher in type 2 diabetes. The calcium, magnesium, sodium, chromium, cobalt, iodine, iron, selenium, manganese, and zinc seem to be low in type 2 diabetes while elements such as potassium and copper have no effect. In this review, we emphasized the status of macro and trace elements in type 2 diabetes and its advantages or disadvantages; this helps to understand the mechanism, progression, and prevention of type 2 diabetes due to the lack and deficiency of different macro and trace elements. PMID:25162051

  19. Connexin 43 and ATP-sensitive potassium channels crosstalk: a missing link in hypoxia/ischemia stress.

    PubMed

    Ahmad Waza, Ajaz; Ahmad Bhat, Shabir; Ul Hussain, Mahboob; Ganai, Bashir A

    2018-02-01

    Connexin 43 (Cx43) is a gap junction protein expressed in various tissues and organs of vertebrates. Besides functioning as a gap junction, Cx43 also regulates diverse cellular processes like cell growth and differentiation, cell migration, cell survival, etc. Cx43 is critical for normal cardiac functioning and is therefore abundantly expressed in cardiomyocytes. On the other hand, ATP-sensitive potassium (K ATP ) channels are metabolic sensors converting metabolic changes into electrical activity. These channels are important in maintaining the neurotransmitter release, smooth muscle relaxation, cardiac action potential repolarization, normal physiology of cellular repolarization, insulin secretion and immune function. Cx43 and K ATP channels are part of the same signaling pathway, regulating cell survival during stress conditions and ischemia/hypoxia preconditioning. However, the underlying molecular mechanism for their combined role in ischemia/hypoxia preconditioning is largely unknown. The current review focuses on understanding the molecular mechanism responsible for the coordinated role of Cx43 and K ATP channel protein in protecting cardiomyocytes against ischemia/hypoxia stress.

  20. Epithelialization in Wound Healing: A Comprehensive Review

    PubMed Central

    Pastar, Irena; Stojadinovic, Olivera; Yin, Natalie C.; Ramirez, Horacio; Nusbaum, Aron G.; Sawaya, Andrew; Patel, Shailee B.; Khalid, Laiqua; Isseroff, Rivkah R.; Tomic-Canic, Marjana

    2014-01-01

    Significance: Keratinocytes, a major cellular component of the epidermis, are responsible for restoring the epidermis after injury through a process termed epithelialization. This review will focus on the pivotal role of keratinocytes in epithelialization, including cellular processes and mechanisms of their regulation during re-epithelialization, and their cross talk with other cell types participating in wound healing. Recent Advances: Discoveries in epidermal stem cells, keratinocyte immune function, and the role of the epidermis as an independent neuroendocrine organ will be reviewed. Novel mechanisms of gene expression regulation important for re-epithelialization, including microRNAs and histone modifications, will also be discussed. Critical Issues: Epithelialization is an essential component of wound healing used as a defining parameter of a successful wound closure. A wound cannot be considered healed in the absence of re-epithelialization. The epithelialization process is impaired in all types of chronic wounds. Future Directions: A comprehensive understanding of the epithelialization process will ultimately lead to the development of novel therapeutic approaches to promote wound closure. PMID:25032064

  1. Incubation period and immune function: A comparative field study among coexisting birds

    USGS Publications Warehouse

    Palacios, M.G.; Martin, T.E.

    2006-01-01

    Developmental periods are integral components of life history strategies that can have important fitness consequences and vary enormously among organisms. However, the selection pressures and mechanisms causing variation in length of developmental periods are poorly understood. Particularly puzzling are prolonged developmental periods, because their selective advantage is unclear. Here we tested the hypotheses that immune function is stronger in species that are attacked at a higher rate by parasites and that prolonged embryonic development allows the development of this stronger immune system. Through a comparative field study among 12 coexisting passerine bird species, we show that species with higher blood parasite prevalence mounted stronger cellular immune responses than species with lower prevalence. These results provide support for the hypothesis that species facing greater selection pressure from parasites invest more in immune function. However, species with longer incubation periods mounted weaker cellular immune responses than species with shorter periods. Therefore, cellular immune responses do not support the hypothesis that longer development time enhances immunocompentence. Future studies should assess other components of the immune system and test alternative causes of variation in incubation periods among bird species. ?? Springer-Verlag 2005.

  2. Pig immune response to general stimulus and to porcine reproductive and respiratory syndrome virus infection: a meta-analysis approach

    PubMed Central

    2013-01-01

    Background The availability of gene expression data that corresponds to pig immune response challenges provides compelling material for the understanding of the host immune system. Meta-analysis offers the opportunity to confirm and expand our knowledge by combining and studying at one time a vast set of independent studies creating large datasets with increased statistical power. In this study, we performed two meta-analyses of porcine transcriptomic data: i) scrutinized the global immune response to different challenges, and ii) determined the specific response to Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection. To gain an in-depth knowledge of the pig response to PRRSV infection, we used an original approach comparing and eliminating the common genes from both meta-analyses in order to identify genes and pathways specifically involved in the PRRSV immune response. The software Pointillist was used to cope with the highly disparate data, circumventing the biases generated by the specific responses linked to single studies. Next, we used the Ingenuity Pathways Analysis (IPA) software to survey the canonical pathways, biological functions and transcription factors found to be significantly involved in the pig immune response. We used 779 chips corresponding to 29 datasets for the pig global immune response and 279 chips obtained from 6 datasets for the pig response to PRRSV infection, respectively. Results The pig global immune response analysis showed interconnected canonical pathways involved in the regulation of translation and mitochondrial energy metabolism. Biological functions revealed in this meta-analysis were centred around translation regulation, which included protein synthesis, RNA-post transcriptional gene expression and cellular growth and proliferation. Furthermore, the oxidative phosphorylation and mitochondria dysfunctions, associated with stress signalling, were highly regulated. Transcription factors such as MYCN, MYC and NFE2L2 were found in this analysis to be potentially involved in the regulation of the immune response. The host specific response to PRRSV infection engendered the activation of well-defined canonical pathways in response to pathogen challenge such as TREM1, toll-like receptor and hyper-cytokinemia/ hyper-chemokinemia signalling. Furthermore, this analysis brought forth the central role of the crosstalk between innate and adaptive immune response and the regulation of anti-inflammatory response. The most significant transcription factor potentially involved in this analysis was HMGB1, which is required for the innate recognition of viral nucleic acids. Other transcription factors like interferon regulatory factors IRF1, IRF3, IRF5 and IRF8 were also involved in the pig specific response to PRRSV infection. Conclusions This work reveals key genes, canonical pathways and biological functions involved in the pig global immune response to diverse challenges, including PRRSV infection. The powerful statistical approach led us to consolidate previous findings as well as to gain new insights into the pig immune response either to common stimuli or specifically to PRRSV infection. PMID:23552196

  3. Cell Surface Changes Associated with Cellular Immune Reactions in Drosophila

    NASA Astrophysics Data System (ADS)

    Nappi, Anthony J.; Silvers, Michael

    1984-09-01

    In Drosophila melanogaster a temperature-induced change in immune competence accompanies cell surface alterations that cause its blood cells to adhere and to encapsulate a parasite. At 29 degrees C the blood cells of the tumorous-lethal (Tuml) mutant show a high degree of immune competence and encapsulate the eggs of the parasitic wasp Leptopilina heterotoma. At 21 degrees C the blood cells are essentially immune incompetent. High percentages of lectin binding cells were found under conditions which potentiated cellular encapsulation responses. Some immune reactive blood cells did not bind lectin. The low percentages of lectin binding cells in susceptible hosts suggest that developing parasites alter the cell surface of the blood cells of immune reactive hosts.

  4. Subcutaneous administration CpG-ODNs acts as a potent adjuvant for an HIV-1-tat-based vaccine candidate to elicit cellular immunity in BALB/c mice.

    PubMed

    Panahi, Zeinab; Abdoli, Asghar; Mosayebi, Ghasem; Mahdavi, Mehdi; Bahrami, Fariborz

    2018-03-01

    To evaluate the combined effects of CpG oligodeoxynucleotides (CpG-ODNs) adjuvant and subcutaneous injection route on efficacy of a HIV-1-tat DNA vaccine candidate using BALB/c mice as an animal model. Evaluation of cellular and humoral immunity of mice injected subcutaneously with HIV-1-tat gene cloned into a pcDNA3.1 vector indicated that significant levels of IFN-γ cytokine secretion (900 pg/ml), lymphocyte proliferation (2.5 stimulation index) and IgG 2a (1.45 absorbance 450 nm) production could be achieved. These indicators of stimulated cellular immunity were elicited 2 weeks after the last injection (P < 0.05). Formulation of HIV-1-tat DNA vaccine candidate with CpG-ODNs as an adjuvant while administrated subcutaneously are a promising approach to induce effective cellular immunity responses against HIV-1 infection.

  5. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease.

    PubMed

    Kidd, Parris

    2003-08-01

    One theory of immune regulation involves homeostasis between T-helper 1 (Th1) and T-helper 2 (Th2) activity. The Th1/Th2 hypothesis arose from 1986 research suggesting mouse T-helper cells expressed differing cytokine patterns. This hypothesis was adapted to human immunity, with Th1- and Th2-helper cells directing different immune response pathways. Th1 cells drive the type-1 pathway ("cellular immunity") to fight viruses and other intracellular pathogens, eliminate cancerous cells, and stimulate delayed-type hypersensitivity (DTH) skin reactions. Th2 cells drive the type-2 pathway ("humoral immunity") and up-regulate antibody production to fight extracellular organisms; type 2 dominance is credited with tolerance of xenografts and of the fetus during pregnancy. Overactivation of either pattern can cause disease, and either pathway can down-regulate the other. But the hypothesis has major inconsistencies; human cytokine activities rarely fall into exclusive pro-Th1 or -Th2 patterns. The non-helper regulatory T cells, or the antigen-presenting cells (APC), likely influence immunity in a manner comparable to Th1 and Th2 cells. Many diseases previously classified as Th1 or Th2 dominant fail to meet the set criteria. Experimentally, Th1 polarization is readily transformed to Th2 dominance through depletion of intracellular glutathione, and vice versa. Mercury depletes glutathione and polarizes toward Th2 dominance. Several nutrients and hormones measurably influence Th1/Th2 balance, including plant sterols/sterolins, melatonin, probiotics, progesterone, and the minerals selenium and zinc. The long-chain omega-3 fatty acids EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) significantly benefit diverse inflammatory and autoimmune conditions without any specific Th1/Th2 effect. Th1/Th2-based immunotherapies, e.g., T-cell receptor (TCR) peptides and interleukin-4 (IL-4) injections, have produced mixed results to date.

  6. JAK/STAT signaling in Drosophila muscles controls the cellular immune response against parasitoid infection.

    PubMed

    Yang, Hairu; Kronhamn, Jesper; Ekström, Jens-Ola; Korkut, Gül Gizem; Hultmark, Dan

    2015-12-01

    The role of JAK/STAT signaling in the cellular immune response of Drosophila is not well understood. Here, we show that parasitoid wasp infection activates JAK/STAT signaling in somatic muscles of the Drosophila larva, triggered by secretion of the cytokines Upd2 and Upd3 from circulating hemocytes. Deletion of upd2 or upd3, but not the related os (upd1) gene, reduced the cellular immune response, and suppression of the JAK/STAT pathway in muscle cells reduced the encapsulation of wasp eggs and the number of circulating lamellocyte effector cells. These results suggest that JAK/STAT signaling in muscles participates in a systemic immune defense against wasp infection. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  7. Generation of effector CD8+ T cells and their conversion to memory T cells

    PubMed Central

    Cui, Weiguo; Kaech, Susan M.

    2015-01-01

    Summary Immunological memory is a cardinal feature of adaptive immunity. We are now beginning to elucidate the mechanisms that govern the formation of memory T cells and their ability to acquire longevity, survive the effector-to-memory transition, and mature into multipotent, functional memory T cells that self-renew. Here, we discuss the recent findings in this area and highlight extrinsic and intrinsic factors that regulate the cellular fate of activated CD8+ T cells. PMID:20636815

  8. CD40 AND THE IMUNE RESPONSE TO PARASITIC INFECTIONS

    PubMed Central

    Subauste, Carlos S.

    2009-01-01

    The interaction between CD40 and CD154 regulates many aspects of cellular and humoral immunity. The CD40 — CD154 pathway is important for resistance against a variety of parasites. Studies done with these pathogens have provided important insight into the various mechanisms by which this pathway enhances host protection, mechanisms by which pathogens subvert CD40 signaling, conditions in which the CD40 — CD154 pathway promotes disease and on modulation of this pathway for immunotherapy. PMID:19616968

  9. The catalytic A1 domains of cholera toxin and heat-labile enterotoxin are potent DNA adjuvants that evoke mixed Th1/Th17 cellular immune responses

    PubMed Central

    Bagley, Kenneth; Xu, Rong; Ota-Setlik, Ayuko; Egan, Michael; Schwartz, Jennifer; Fouts, Timothy

    2015-01-01

    DNA encoded adjuvants are well known for increasing the magnitude of cellular and/or humoral immune responses directed against vaccine antigens. DNA adjuvants can also tune immune responses directed against vaccine antigens to better protect against infection of the target organism. Two potent DNA adjuvants that have unique abilities to tune immune responses are the catalytic A1 domains of Cholera Toxin (CTA1) and Heat-Labile Enterotoxin (LTA1). Here, we have characterized the adjuvant activities of CTA1 and LTA1 using HIV and SIV genes as model antigens. Both of these adjuvants enhanced the magnitude of antigen-specific cellular immune responses on par with those induced by the well-characterized cytokine adjuvants IL-12 and GM-CSF. CTA1 and LTA1 preferentially enhanced cellular responses to the intracellular antigen SIVmac239-gag over those for the secreted HIVBaL-gp120 antigen. IL-12, GM-CSF and electroporation did the opposite suggesting differences in the mechanisms of actions of these diverse adjuvants. Combinations of CTA1 or LTA1 with IL-12 or GM-CSF generated additive and better balanced cellular responses to both of these antigens. Consistent with observations made with the holotoxin and the CTA1-DD adjuvant, CTA1 and LTA1 evoked mixed Th1/Th17 cellular immune responses. Together, these results show that CTA1 and LTA1 are potent DNA vaccine adjuvants that favor the intracellular antigen gag over the secreted antigen gp120 and evoke mixed Th1/Th17 responses against both of these antigens. The results also indicate that achieving a balanced immune response to multiple intracellular and extracellular antigens delivered via DNA vaccination may require combining adjuvants that have different and complementary mechanisms of action. PMID:26042527

  10. Insight into the messenger role of reactive oxygen intermediates in immunostimulated hemocytes from the scallop Argopecten purpuratus.

    PubMed

    Oyanedel, Daniel; Gonzalez, Roxana; Brokordt, Katherina; Schmitt, Paulina; Mercado, Luis

    2016-12-01

    Reactive oxygen intermediates (ROI) are metabolites produced by aerobic cells which have been linked to oxidative stress. Evidence reported in vertebrates indicates that ROI can also act as messengers in a variety of cellular signaling pathways, including those involved in innate immunity. In a recent study, an inhibitor of NF-kB transcription factors was identified in the scallop Argopecten purpuratus, and its functional characterization suggested that it may regulate the expression of the big defensin antimicrobial peptide ApBD1. In order to give new insights into the messenger role of ROI in the immune response of bivalve mollusks, the effect of ROI production on gene transcription of ApBD1 was assessed in A. purpuratus. The results showed that 48 h-cultured hemocytes were able to display phagocytic activity and ROI production in response to the β-glucan zymosan. The immune stimulation also induced the transcription of ApBD1, which was upregulated in cultured hemocytes. After neutralizing the ROI produced by the stimulated hemocytes with the antioxidant trolox, the transcription of ApBD1 was reduced near to base levels. The results suggest a potential messenger role of intracellular ROI on the regulation of ApBD1 transcription during the immune response of scallops. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. SOCS-1 localizes to the microtubule organizing complex-associated 20S proteasome.

    PubMed

    Vuong, Bao Q; Arenzana, Teresita L; Showalter, Brian M; Losman, Julie; Chen, X Peter; Mostecki, Justin; Banks, Alexander S; Limnander, Andre; Fernandez, Neil; Rothman, Paul B

    2004-10-01

    The regulation of cytokine signaling is critical for controlling cellular proliferation and activation during an immune response. SOCS-1 is a potent inhibitor of Jak kinase activity and of signaling initiated by several cytokines. SOCS-1 protein levels are tightly regulated, and recent data suggest that SOCS-1 may regulate the protein levels of some signaling proteins by the ubiquitin proteasome pathway; however, the cellular mechanism by which SOCS-1 directs proteins for degradation is unknown. In this report, SOCS-1 is found to colocalize and biochemically copurify with the microtubule organizing complex (MTOC) and its associated 20S proteasome. The SOCS-1 SH2 domain is required for the localization of SOCS-1 to the MTOC. Overexpression of SOCS-1 targets Jak1 in an SH2-dependent manner to a perinuclear distribution resembling the MTOC-associated 20S proteasome. Analysis of MTOCs fractionated from SOCS-1-deficient cells demonstrates that SOCS-1 may function redundantly to regulate the localization of Jak1 to the MTOC. Nocodazole inhibits the protein turnover of SOCS-1, demonstrating that the minus-end transport of SOCS-1 to the MTOC-associated 20S proteasome is required to regulate SOCS-1 protein levels. These data link SOCS-1 directly with the proteasome pathway and suggest another function for the SH2 domain of SOCS-1 in the regulation of Jak/STAT signaling.

  12. Functions and Mechanisms of Sleep

    PubMed Central

    Zielinski, Mark R.; McKenna, James T.; McCarley, Robert W.

    2017-01-01

    Sleep is a complex physiological process that is regulated globally, regionally, and locally by both cellular and molecular mechanisms. It occurs to some extent in all animals, although sleep expression in lower animals may be co-extensive with rest. Sleep regulation plays an intrinsic part in many behavioral and physiological functions. Currently, all researchers agree there is no single physiological role sleep serves. Nevertheless, it is quite evident that sleep is essential for many vital functions including development, energy conservation, brain waste clearance, modulation of immune responses, cognition, performance, vigilance, disease, and psychological state. This review details the physiological processes involved in sleep regulation and the possible functions that sleep may serve. This description of the brain circuitry, cell types, and molecules involved in sleep regulation is intended to further the reader’s understanding of the functions of sleep. PMID:28413828

  13. The entomopathogenic fungus Nomuraea rileyi impairs cellular immunity of its host Helicoverpa armigera.

    PubMed

    Zhong, Ke; Liu, Zhan-Chi; Wang, Jia-Lin; Liu, Xu-Sheng

    2017-09-01

    In this study, we investigated the effect of the entomopathogenic fungus Nomuraea rileyi on Helicoverpa armigera cellular immune responses. Nomuraea rileyi infection had no effect on total hemocyte count (THC), but impaired hemocyte-mediated phagocytosis, nodulation, and encapsulation responses. Nomuraea rileyi infection led to a significant reduction in hemocyte spreading. An in vitro assay revealed that plasma from N. rileyi infected H. armigera larvae suppressed the spreading ability of hemocytes from naïve larvae. We infer that N. rileyi suppresses the cellular immune response of its host, possibly by secreting exogenous, cytotoxic compounds into the host's hemolymph. © 2017 Wiley Periodicals, Inc.

  14. Altered cellular and humoral immunity to varicella-zoster virus in patients with autoimmune diseases.

    PubMed

    Rondaan, Christien; de Haan, Aalzen; Horst, Gerda; Hempel, J Cordelia; van Leer, Coretta; Bos, Nicolaas A; van Assen, Sander; Bijl, Marc; Westra, Johanna

    2014-11-01

    Patients with autoimmune diseases such as systemic lupus erythematosus (SLE) and granulomatosis with polyangiitis (Wegener's) (GPA) have a 3-20-fold increased risk of herpes zoster compared to the general population. The aim of this study was to evaluate if susceptibility is due to decreased levels of cellular and/or humoral immunity to the varicella-zoster virus (VZV). A cross-sectional study of VZV-specific immunity was performed in 38 SLE patients, 33 GPA patients, and 51 healthy controls. Levels of IgG and IgM antibodies to VZV were measured using an in-house glycoprotein enzyme-linked immunosorbent assay (ELISA). Cellular responses to VZV were determined by interferon-γ (IFNγ) enzyme-linked immunospot (ELISpot) assay and carboxyfluorescein succinimidyl ester (CFSE) dye dilution proliferation assay. Levels of IgG antibodies to VZV were increased in SLE patients as compared to healthy controls, but levels of IgM antibodies to VZV were not. Antibody levels in GPA patients did not differ significantly from levels in healthy controls. In response to stimulation with VZV, decreased numbers of IFNγ spot-forming cells were found among SLE patients (although not GPA patients) as compared to healthy controls. Proliferation of CD4+ T cells in response to stimulation with VZV was decreased in SLE patients but not GPA patients. SLE patients have increased levels of IgG antibodies against VZV, while cellular immunity is decreased. In GPA patients, antibody levels as well as cellular responses to VZV were comparable to those in healthy controls. These data suggest that increased prevalence of herpes zoster in SLE patients is due to a poor cellular response. Vaccination strategies should aim to boost cellular immunity against VZV. Copyright © 2014 by the American College of Rheumatology.

  15. Assessment of Different Strategies to Determine MAP-specific Cellular Immune Responses in Cattle

    USDA-ARS?s Scientific Manuscript database

    Assessment of cellular immunity in cattle against Mycobacterium avium ssp. paratuberculosis (MAP) by established methods remains unsatisfactory for diagnostic purposes. Recent studies conclude that analysis of T-cell subset responsiveness may improve diagnostic outcome. Aim of this study was to iden...

  16. Shenfu injection for improving cellular immunity and clinical outcome in patients with sepsis or septic shock.

    PubMed

    Zhang, Ning; Liu, Jianhua; Qiu, Zeliang; Ye, Yiping; Zhang, Jian; Lou, Tianzheng

    2017-01-01

    To assess the efficacy of Shenfu injection (SFI) for enhancing cellular immunity and improving the clinical outcomes of patients with septic shock. Patients with sepsis were randomly assigned to receive either SFI at a dose of 100mL every 24hours for 7 consecutive days or a placebo in addition to conventional therapy. The immunologic parameters were collected on days 1, 3, and 7 after the above treatments, and the clinical outcomes were updated for 28days. Of these160 patients, 3 were excluded from the analysis due to protocol violation and withdrawal of consent; thus, 157 completed the study (78 in the SFI group and 79 in the placebo group). We found that SFI increased both CD4 + and CD8 + T cells in peripheral blood and up-regulated HLA-DR expression in monocytes (P<.05). Furthermore, SFI was also found to restore ex vivo monocytic tumor necrosis factor α and interleukin 6 proinflammatory cytokine release in response to the endotoxin (P<.05). Importantly, the SFI group showed better clinical outcomes than did the placebo group in terms of the duration of vasopressor use (P=.008), Acute Physiology and Chronic Health Evaluation II score (P=.034), Marshall score (P=.01), and length of intensive care unit stay (10.5±3.2 vs 12.2±2.8days; P=.012). However, the 28-day mortality rate was not significantly different between the SFI (20.5%; 16/78) and placebo groups (27.8%; -22/79; P=.28). These findings suggest that SFI can enhance the cellular immunity of patients with septic shock and could be a promising adjunctive treatment for patients with septic shock. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Endocannabinod Signal Dysregulation in Autism Spectrum Disorders: A Correlation Link between Inflammatory State and Neuro-Immune Alterations

    PubMed Central

    Brigida, Anna Lisa; Schultz, Stephen; Cascone, Mariana; Antonucci, Nicola; Siniscalco, Dario

    2017-01-01

    Several studies highlight a key involvement of endocannabinoid (EC) system in autism pathophysiology. The EC system is a complex network of lipid signaling pathways comprised of arachidonic acid-derived compounds (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), their G-protein-coupled receptors (cannabinoid receptors CB1 and CB2) and the associated enzymes. In addition to autism, the EC system is also involved in several other psychiatric disorders (i.e., anxiety, major depression, bipolar disorder and schizophrenia). This system is a key regulator of metabolic and cellular pathways involved in autism, such as food intake, energy metabolism and immune system control. Early studies in autism animal models have demonstrated alterations in the brain’s EC system. Autism is also characterized by immune system dysregulation. This alteration includes differential monocyte and macrophage responses, and abnormal cytokine and T cell levels. EC system dysfunction in a monocyte and macrophagic cellular model of autism has been demonstrated by showing that the mRNA and protein for CB2 receptor and EC enzymes were significantly dysregulated, further indicating the involvement of the EC system in autism-associated immunological disruptions. Taken together, these new findings offer a novel perspective in autism research and indicate that the EC system could represent a novel target option for autism pharmacotherapy. PMID:28671614

  18. Complement activation by carbon nanotubes and its influence on the phagocytosis and cytokine response by macrophages.

    PubMed

    Pondman, Kirsten M; Sobik, Martin; Nayak, Annapurna; Tsolaki, Anthony G; Jäkel, Anne; Flahaut, Emmanuel; Hampel, Silke; Ten Haken, Bennie; Sim, Robert B; Kishore, Uday

    2014-08-01

    Carbon nanotubes (CNTs) have promised a range of applications in biomedicine. Although influenced by the dispersants used, CNTs are recognized by the innate immune system, predominantly by the classical pathway of the complement system. Here, we confirm that complement activation by the CNT used continues up to C3 and C5, indicating that the entire complement system is activated including the formation of membrane-attack complexes. Using recombinant forms of the globular regions of human C1q (gC1q) as inhibitors of CNT-mediated classical pathway activation, we show that C1q, the first recognition subcomponent of the classical pathway, binds CNTs via the gC1q domain. Complement opsonisation of CNTs significantly enhances their uptake by U937 cells, with concomitant downregulation of pro-inflammatory cytokines and up-regulation of anti-inflammatory cytokines in both U937 cells and human monocytes. We propose that CNT-mediated complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. This study highlights the importance of the complement system in response to carbon nanontube administration, suggesting that the ensuing complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Nitric oxide and S-nitrosoglutathione function additively during plant immunity.

    PubMed

    Yun, Byung-Wook; Skelly, Michael J; Yin, Minghui; Yu, Manda; Mun, Bong-Gyu; Lee, Sang-Uk; Hussain, Adil; Spoel, Steven H; Loake, Gary J

    2016-07-01

    Nitric oxide (NO) is emerging as a key regulator of diverse plant cellular processes. A major route for the transfer of NO bioactivity is S-nitrosylation, the addition of an NO moiety to a protein cysteine thiol forming an S-nitrosothiol (SNO). Total cellular levels of protein S-nitrosylation are controlled predominantly by S-nitrosoglutathione reductase 1 (GSNOR1) which turns over the natural NO donor, S-nitrosoglutathione (GSNO). In the absence of GSNOR1 function, GSNO accumulates, leading to dysregulation of total cellular S-nitrosylation. Here we show that endogenous NO accumulation in Arabidopsis, resulting from loss-of-function mutations in NO Overexpression 1 (NOX1), led to disabled Resistance (R) gene-mediated protection, basal resistance and defence against nonadapted pathogens. In nox1 plants both salicylic acid (SA) synthesis and signalling were suppressed, reducing SA-dependent defence gene expression. Significantly, expression of a GSNOR1 transgene complemented the SNO-dependent phenotypes of paraquat resistant 2-1 (par2-1) plants but not the NO-related characters of the nox1-1 line. Furthermore, atgsnor1-3 nox1-1 double mutants supported greater bacterial titres than either of the corresponding single mutants. Our findings imply that GSNO and NO, two pivotal redox signalling molecules, exhibit additive functions and, by extension, may have distinct or overlapping molecular targets during both immunity and development. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Dynamic changes in global microRNAome and transcriptome reveal complex miRNA-mRNA regulated host response to Japanese Encephalitis Virus in microglial cells

    PubMed Central

    Kumari, Bharti; Jain, Pratistha; Das, Shaoli; Ghosal, Suman; Hazra, Bibhabasu; Trivedi, Ashish Chandra; Basu, Anirban; Chakrabarti, Jayprokas; Vrati, Sudhanshu; Banerjee, Arup

    2016-01-01

    Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation. PMID:26838068

  1. Dynamic changes in global microRNAome and transcriptome reveal complex miRNA-mRNA regulated host response to Japanese Encephalitis Virus in microglial cells.

    PubMed

    Kumari, Bharti; Jain, Pratistha; Das, Shaoli; Ghosal, Suman; Hazra, Bibhabasu; Trivedi, Ashish Chandra; Basu, Anirban; Chakrabarti, Jayprokas; Vrati, Sudhanshu; Banerjee, Arup

    2016-02-03

    Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation.

  2. Immune regulation of systemic hypertension, pulmonary arterial hypertension, and preeclampsia: shared disease mechanisms and translational opportunities.

    PubMed

    Jafri, Salema; Ormiston, Mark L

    2017-12-01

    Systemic hypertension, preeclampsia, and pulmonary arterial hypertension (PAH) are diseases of high blood pressure in the systemic or pulmonary circulation. Beyond the well-defined contribution of more traditional pathophysiological mechanisms, such as changes in the renin-angiotensin-aldosterone system, to the development of these hypertensive disorders, there is substantial clinical evidence supporting an important role for inflammation and immunity in the pathogenesis of each of these three conditions. Over the last decade, work in small animal models, bearing targeted deficiencies in specific cytokines or immune cell subsets, has begun to clarify the immune-mediated mechanisms that drive changes in vascular structure and tone in hypertensive disease. By summarizing the clinical and experimental evidence supporting a contribution of the immune system to systemic hypertension, preeclampsia, and PAH, the current review highlights the cellular and molecular pathways that are common to all three hypertensive disorders. These mechanisms are centered on an imbalance in CD4 + helper T cell populations, defined by excessive Th17 responses and impaired T reg activity, as well as the excessive activation or impairment of additional immune cell types, including macrophages, dendritic cells, CD8 + T cells, B cells, and natural killer cells. The identification of common immune mechanisms in systemic hypertension, preeclampsia, and PAH raises the possibility of new therapeutic strategies that target the immune component of hypertension across multiple disorders. Copyright © 2017 the American Physiological Society.

  3. Evaluation of the immune response in Shitou geese (Anser anser domesticus) following immunization with GPV-VP1 DNA-based and live attenuated vaccines.

    PubMed

    Deng, Shu-xuan; Cai, Ming-sheng; Cui, Wei; Huang, Jin-lu; Li, Mei-li

    2014-01-01

    Goose parvovirus (GPV) is a highly contagious and deadly disease for goslings and Muscovy ducklings. To compare the differences in immune response of geese immunized with GPV-VP1 DNA-based and live attenuated vaccines. Shitou geese were immunized once with either 20 μg pcDNA-GPV-VP1 DNA gene vaccine by gene gun bombardment via intramuscular injection, or 300 μg by i.m. injection, or 300 μL live attenuated vaccine by i.m. injection, whereas 300 μg pcDNA3.1 (+) i.m. or 300 μL saline i.m. were used as positive and negative controls, respectively. Each group comprised 28 animals. Peripheral blood samples were collected from 2-210 days after immunization and the proliferation of T lymphocytes, the number of CD4(+) and CD8(+) T cells and the level of IgG assessed. Statistical analysis was performed using a one-way analysis of variance with group multiple comparisons via Tukey's test. The pcDNA-GPV-VP1 DNA and attenuated vaccine induced cellular and humoral responses, and there were no differences between the 20 and 300 μg group in the responses of proliferation of T lymphocyte and the CD8(+) T-cell. However, as to CD4(+) T-cell response and humoral immunity, the 20 μg group performed better than the 300 μg group, which induced better cellular and humoral immunity than live attenuated vaccine. This study showed that it is possible to induce both cellular and humoral response using DNA-based vaccines and that the pcDNA-GPV-VP1 DNA gene vaccine induced better cellular and humoral immunity than live attenuated vaccine.

  4. Photodamage: all signs lead to actinic keratosis and early squamous cell carcinoma.

    PubMed

    Wei, Jerry; Kok, Lai Fong; Byrne, Scott N; Halliday, Gary M

    2015-01-01

    Ultraviolet (UV) radiation is likely to drive the initiation and progression of skin cancer from actinic keratosis to squamous cell carcinoma. Signs of photodamage occur at multiple steps. UV radiation damages many cellular constituents, including lipids, proteins and DNA, all of which are likely to contribute to UV-induced skin cancer. Two biological events culminating from photodamage are mutations in the genes critical to the control of cell division, differentiation and invasion and immunosuppression. DNA photodamage, if unrepaired prior to cell division, can result in the incorporation of an incorrect nucleotide into newly synthesised DNA. Mutations in critical genes contribute to carcinogenesis. Photodamage to proteins such as those involved in DNA repair or proteins or lipids involved in cellular signalling can interfere with this repair process and contribute to mutagenesis. Mutations in key genes, including TP53, BRM, PTCH1, and HRAS, contribute to skin carcinogenesis. UV also damages immunity. Photodamage to DNA and signalling lipids as well as other molecular changes are detrimental to the key cells that regulate immunity. Photodamaged dendritic cells and altered responses by mast cells lead to the activation of T and B regulatory cells that suppress immunity to the protein products of UV-mutated genes. This stops the immune response from its protective function of destroying mutated cells, enabling the transformed cells to progress to skin cancer. UV appears to play a pivotal role at each of these steps, and therefore, signs of photodamage point to the development of skin cancer. © 2015 S. Karger AG, Basel.

  5. Spatial and temporal in vivo analysis of circulating and sessile immune cells in mosquitoes: hemocyte mitosis following infection

    PubMed Central

    2013-01-01

    Background Mosquitoes respond to infection by mounting immune responses. The primary regulators of these immune responses are cells called hemocytes, which kill pathogens via phagocytosis and via the production of soluble antimicrobial factors. Mosquito hemocytes are circulated throughout the hemocoel (body cavity) by the swift flow of hemolymph (blood), and data show that some hemocytes also exist as sessile cells that are attached to tissues. The purpose of this study was to create a quantitative physical map of hemocyte distribution in the mosquito, Anopheles gambiae, and to describe the cellular immune response in an organismal context. Results Using correlative imaging methods we found that the number of hemocytes in a mosquito decreases with age, but that regardless of age, approximately 75% of the hemocytes occur in circulation and 25% occur as sessile cells. Infection induces an increase in the number of hemocytes, and tubulin and nuclear staining showed that this increase is primarily due to mitosis and, more specifically, autonomous cell division, by circulating granulocytes. The majority of sessile hemocytes are present on the abdominal wall, although significant numbers of hemocytes are also present in the thorax, head, and several of the appendages. Within the abdominal wall, the areas of highest hemocyte density are the periostial regions (regions surrounding the valves of the heart, or ostia), which are ideal locations for pathogen capture as these are areas of high hemolymph flow. Conclusions These data describe the spatial and temporal distribution of mosquito hemocytes, and map the cellular response to infection throughout the hemocoel. PMID:23631603

  6. Innate immunity, insulin resistance and type 2 diabetes.

    PubMed

    Fernández-Real, José Manuel; Pickup, John C

    2008-01-01

    Recent evidence has disclosed previously unrecognized links among insulin resistance, obesity, circulating immune markers, immunogenetic susceptibility, macrophage function and chronic infection. Genetic variations leading to altered production or function of circulating innate immune proteins, cellular pattern-recognition receptors and inflammatory cytokines have been linked with insulin resistance, type 2 diabetes, obesity and atherosclerosis. Cellular innate immune associations with obesity and insulin resistance include increased white blood cell count and adipose tissue macrophage numbers. The innate immune response is modulated possibly by both predisposition (genetic or fetal programming), perhaps owing to evolutionary pressures caused by acute infections at the population level (pandemics), and chronic low exposure to environmental products or infectious agents. The common characteristics shared among innate immunity activation, obesity and insulin resistance are summarized.

  7. CELLULAR CONTROL OF CONNECTIVE TISSUE MATRIX TENSION†

    PubMed Central

    Langevin, Helene M.; Nedergaard, Maiken; Howe, Alan

    2013-01-01

    The biomechanical behavior of connective tissue in response to stretching is generally attributed to the molecular composition and organization of its extracellular matrix. It also is becoming apparent that fibroblasts play an active role in regulating connective tissue tension. In response to static stretching of the tissue, fibroblasts expand within minutes by actively remodeling their cytoskeleton. This dynamic change in fibroblast shape contributes to the drop in tissue tension that occurs during viscoelastic relaxation. We propose that this response of fibroblasts plays a role in regulating extracellular fluid flow into the tissue, and protects against swelling when the matrix is stretched. This article reviews the evidence supporting possible mechanisms underlying this response including autocrine purinergic signaling. We also discuss fibroblast regulation of connective tissue tension with respect to lymphatic flow, immune function and cancer. PMID:23444198

  8. Discrimination of Dysplastic Nevi from Common Melanocytic Nevi by Cellular and Molecular Criteria.

    PubMed

    Mitsui, Hiroshi; Kiecker, Felix; Shemer, Avner; Cannizzaro, Maria Vittoria; Wang, Claire Q F; Gulati, Nicholas; Ohmatsu, Hanako; Shah, Kejal R; Gilleaudeau, Patricia; Sullivan-Whalen, Mary; Cueto, Inna; McNutt, Neil Scott; Suárez-Fariñas, Mayte; Krueger, James G

    2016-10-01

    Dysplastic nevi (DNs), also known as Clark's nevi or atypical moles, are distinguished from common melanocytic nevi by variegation in pigmentation and clinical appearance, as well as differences in tissue patterning. However, cellular and molecular differences between DNs and common melanocytic nevi are not completely understood. Using cDNA microarray, quantitative RT-PCR, and immunohistochemistry, we molecularly characterized DNs and analyzed the difference between DNs and common melanocytic nevi. A total of 111 probesets (91 annotated genes, fold change > 2.0 and false discovery rate < 0.25) were differentially expressed between the two lesions. An unexpected finding in DNs was altered differentiation and activation of epidermal keratinocytes with increased expression of hair follicle-related molecules (keratin 25, trichohyalin, ribonuclease, RNase A family, 7) and inflammation-related molecules (S100A7, S100A8) at both genomic and protein levels. The immune microenvironment of DNs was characterized by an increase of T helper type 1 (IFNγ) and T helper type 2 (IL13) cytokines as well as an upregulation of oncostatin M and CXCL1. DUSP3, which regulates cellular senescence, was identified as one of the disease discriminative genes between DNs and common melanocytic nevi by three independent statistical approaches and its altered expression was confirmed by immunohistochemistry. The molecular and cellular changes in which the epidermal-melanin unit undergoes follicular differentiation as well as upregulation of defined cytokines could drive complex immune, epidermal, and pigmentary alterations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Transcriptomic Response of Porcine PBMCs to Vaccination with Tetanus Toxoid as a Model Antigen

    PubMed Central

    Adler, Marcel; Murani, Eduard; Brunner, Ronald; Ponsuksili, Siriluck; Wimmers, Klaus

    2013-01-01

    The aim of the present study was to characterize in vivo genome-wide transcriptional responses to immune stimulation in order to get insight into the resulting changes of allocation of resources. Vaccination with tetanus toxoid was used as a model for a mixed Th1 and Th2 immune response in pig. Expression profiles of PBMCs (peripheral blood mononuclear cells) before and at 12 time points over a period of four weeks after initial and booster vaccination at day 14 were studied by use of Affymetrix GeneChip microarrays and Ingenuity Pathway Analysis (IPA). The transcriptome data in total comprised more than 5000 genes with different transcript abundances (DE-genes). Within the single time stages the numbers of DE-genes were between several hundred and more than 1000. Ingenuity Pathway Analysis mainly revealed canonical pathways of cellular immune response and cytokine signaling as well as a broad range of processes in cellular and organismal growth, proliferation and development, cell signaling, biosynthesis and metabolism. Significant changes in the expression profiles of PBMCs already occurred very early after immune stimulation. At two hours after the first vaccination 679 DE-genes corresponding to 110 canonical pathways of cytokine signaling, cellular immune response and other multiple cellular functions were found. Immune competence and global disease resistance are heritable but difficult to measure and to address by breeding. Besides QTL mapping of immune traits gene expression profiling facilitates the detection of functional gene networks and thus functional candidate genes. PMID:23536793

  10. Transcriptomic response of porcine PBMCs to vaccination with tetanus toxoid as a model antigen.

    PubMed

    Adler, Marcel; Murani, Eduard; Brunner, Ronald; Ponsuksili, Siriluck; Wimmers, Klaus

    2013-01-01

    The aim of the present study was to characterize in vivo genome-wide transcriptional responses to immune stimulation in order to get insight into the resulting changes of allocation of resources. Vaccination with tetanus toxoid was used as a model for a mixed Th1 and Th2 immune response in pig. Expression profiles of PBMCs (peripheral blood mononuclear cells) before and at 12 time points over a period of four weeks after initial and booster vaccination at day 14 were studied by use of Affymetrix GeneChip microarrays and Ingenuity Pathway Analysis (IPA). The transcriptome data in total comprised more than 5000 genes with different transcript abundances (DE-genes). Within the single time stages the numbers of DE-genes were between several hundred and more than 1000. Ingenuity Pathway Analysis mainly revealed canonical pathways of cellular immune response and cytokine signaling as well as a broad range of processes in cellular and organismal growth, proliferation and development, cell signaling, biosynthesis and metabolism. Significant changes in the expression profiles of PBMCs already occurred very early after immune stimulation. At two hours after the first vaccination 679 DE-genes corresponding to 110 canonical pathways of cytokine signaling, cellular immune response and other multiple cellular functions were found. Immune competence and global disease resistance are heritable but difficult to measure and to address by breeding. Besides QTL mapping of immune traits gene expression profiling facilitates the detection of functional gene networks and thus functional candidate genes.

  11. Sustained IFN-I Expression during Established Persistent Viral Infection: A “Bad Seed” for Protective Immunity

    PubMed Central

    Murira, Armstrong; Laulhé, Xavier; Stäger, Simona; Lamarre, Alain; van Grevenynghe, Julien

    2017-01-01

    Type I interferons (IFN-I) are one of the primary immune defenses against viruses. Similar to all other molecular mechanisms that are central to eliciting protective immune responses, IFN-I expression is subject to homeostatic controls that regulate cytokine levels upon clearing the infection. However, in the case of established persistent viral infection, sustained elevation of IFN-I expression bears deleterious effects to the host and is today considered as the major driver of inflammation and immunosuppression. In fact, numerous emerging studies place sustained IFN-I expression as a common nexus in the pathogenesis of multiple chronic diseases including persistent infections with the human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), as well as the rodent-borne lymphocytic choriomeningitis virus clone 13 (LCMV clone 13). In this review, we highlight recent studies illustrating the molecular dysregulation and resultant cellular dysfunction in both innate and adaptive immune responses driven by sustained IFN-I expression. Here, we place particular emphasis on the efficacy of IFN-I receptor (IFNR) blockade towards improving immune responses against viral infections given the emerging therapeutic approach of blocking IFNR using neutralizing antibodies (Abs) in chronically infected patients. PMID:29301196

  12. Glucose Metabolism in T Cells and Monocytes: New Perspectives in HIV Pathogenesis

    PubMed Central

    Palmer, Clovis S.; Cherry, Catherine L.; Sada-Ovalle, Isabel; Singh, Amit; Crowe, Suzanne M.

    2016-01-01

    Activation of the immune system occurs in response to the recognition of foreign antigens and receipt of optimal stimulatory signals by immune cells, a process that requires energy. Energy is also needed to support cellular growth, differentiation, proliferation, and effector functions of immune cells. In HIV-infected individuals, persistent viral replication, together with inflammatory stimuli contributes to chronic immune activation and oxidative stress. These conditions remain even in subjects with sustained virologic suppression on antiretroviral therapy. Here we highlight recent studies demonstrating the importance of metabolic pathways, particularly those involving glucose metabolism, in differentiation and maintenance of the activation states of T cells and monocytes. We also discuss how changes in the metabolic status of these cells may contribute to ongoing immune activation and inflammation in HIV- infected persons and how this may contribute to disease progression, establishment and persistence of the HIV reservoir, and the development of co-morbidities. We provide evidence that other viruses such as Epstein–Barr and Flu virus also disrupt the metabolic machinery of their host cells. Finally, we discuss how redox signaling mediated by oxidative stress may regulate metabolic responses in T cells and monocytes during HIV infection. PMID:27211546

  13. Effect of vernolide-A, a sesquiterpene lactone from Vernonia cinerea L., on cell-mediated immune response in B16F-10 metastatic melanoma-bearing mice.

    PubMed

    Pratheeshkumar, P; Kuttan, Girija

    2011-09-01

    One of the major reasons for the rapid progression of cancers is the ability of tumor cells to escape from the immune surveillance mechanism of the body. Modulation of immune responses is highly relevant in tumor cell destruction. Effect of vernolide-A on the cell-mediated immune (CMI) response in metastatic condition was studied using C57BL/6 mice model. Administration of vernolide-A enhanced natural killer (NK) cell activity, antibody-dependent cellular cytotoxicity (ADCC), and antibody-dependent complement-mediated cytotoxicity (ACC) and the activity was observed in treated group much earlier compared with the metastatic tumor-bearing control. Administration of vernolide-A significantly enhanced the production of interleukin (IL)-2 and interferon-gamma (IFN-γ) in metastatic tumor-bearing animals. In addition, vernolide-A significantly down-regulated the serum levels of proinflammatory cytokines such as IL-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and granulocyte-macrophage colony-stimulating factor (GM-CSF) during metastasis. All these results demonstrate that vernolide-A could enhance the immune response against metastatic progression of B16F-10 melanoma cells in mice.

  14. Effective tumor immunotherapy: start the engine, release the brakes, step on the gas pedal,...and get ready to face autoimmunity.

    PubMed

    Tirapu, Iñigo; Mazzolini, Guillermo; Rodriguez-Calvillo, Mercedes; Arina, Ainhoa; Palencia, Belen; Gabari, Izaskun; Melero, Ignacio

    2002-01-01

    Cellular immune responses can destroy cancer cells, achieving the cure of experimental malignancies. An expanding wealth of knowledge on the molecular basis of how to prime and amplify a T cell response has fueled a number of strategies successful at treating established tumors (rather than merely preventing tumor grafting). The most efficacious approaches operate at different stages, including: 1) priming the immune response using tumor antigen-expressing dendritic cells or tumor cells transfected with genes that render them immunogenic, 2) sustaining and amplifying immunity using agonistic monoclonal antibodies against costimulatory molecules or immune-potentiating cytokines, and 3) eliminating mechanisms that self-regulate the strength of the immune response, such as inhibitory receptors or regulatory T cells. A rational combination of such approaches holds great hope for cumulative and synergistic effects, but there is also evidence that they can open the flood-gates for unwanted inflammatory reactions. The next decade can be envisioned as the time when the first reproducibly efficacious combination regimes for cancer immunotherapy will become available and widely used in the clinic, as clinicians learn the best strategies and try to harness their potentially damaging effects.

  15. Humoral and cellular immunity in chromium picolinate-supplemented lambs.

    PubMed

    Dallago, B S L; McManus, C M; Caldeira, D F; Campeche, A; Burtet, R T; Paim, T P; Gomes, E F; Branquinho, R P; Braz, S V; Louvandini, H

    2013-08-01

    The effects of oral supplementation of chromium picolinate (CrPic) on humoral and cellular immunity in sheep were investigated. Twenty-four male lambs divided into four treatments and received different dosages of CrPic: placebo (0), 0.250, 0.375, and 0.500 mg of chromium/animal/day during 84 days. The base ration was Panicum maximum cv Massai hay and concentrate. Blood samples were collected fortnightly for total and differential leukocyte counts. On days 28 and 56, the lambs were challenged with chicken ovalbumin I.M. Serum samples were collected on days 46 and 74 and subjected to an indirect enzyme-linked immunosorbent assay to measure IgG anti-ovalbumin. The cell-mediated immune response was determined by a delay-type hypersensitivity test using phytohemagglutinin. CrPic did not significantly affect humoral immunity in lambs but there was a negative effect on cellular immunity (P < 0.05) as Cr supplementation increased. Therefore, the level of Cr supplementation for lambs must be better studied to address its effect on stressed animals or the possible toxic effects of Cr on the animal itself or its immune system.

  16. Transcriptome modification of white blood cells after dietary administration of curcumin and non-steroidal anti-inflammatory drug in osteoarthritic affected dogs.

    PubMed

    Colitti, M; Gaspardo, B; Della Pria, A; Scaini, C; Stefanon, Bruno

    2012-06-30

    The dietary effect of non-steroidal anti-inflammatory drug (NSAID) or curcumin on the gene expression of peripheral white blood cells in osteoarthritis (OA) affected dogs was investigated using a 44K oligo microarray. Two groups of OA dogs and one group of healthy dogs (6 dogs each) were clinically evaluated and blood was sampled before (T0) and after 20days (T20) of dietary administration of NSAID (NSAID group) or curcumin (CURCUMIN group). Differentially expressed genes (P<0.05) in comparison to the control group were identified with MeV software and were functional annotated and monitored for signaling pathways and candidate biomarkers using the Ingenuity Pathways Analysis (IPA). After 20days of treatment, the differentially expressed transcripts significantly (P<0.05) decreased from 475 to 173 in NSAID group and from 498 to 141 in CURCUMIN group. Genes involved in "inflammatory response" and in "connective tissue development and function" dramatically decreased at T20. Other genes, included in "cellular movement", "cellular compromise" and "immune cell trafficking", were differentially expressed at T0 but not at T20 in both groups. Specific molecular targets of CURCUMIN, not observed for NSAID, were the IkB up regulation in the "TNRF1 signaling pathway" and IL18 down regulation in the "role of cytokines in mediating communication between immune cells". The activity of CURCUMIN was also evidenced from the inhibition of macrophages proliferation (HBEGF), related to a strong down regulation of TNFα and to activation of fibrinolysis (SERPINE1). The results would suggest that curcumin offers a complementary antinflammatory support for OA treatment in dogs. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Non-coding RNAs—Novel targets in neurotoxicity

    PubMed Central

    Tal, Tamara L.; Tanguay, Robert L.

    2012-01-01

    Over the past ten years non-coding RNAs (ncRNAs) have emerged as pivotal players in fundamental physiological and cellular processes and have been increasingly implicated in cancer, immune disorders, and cardiovascular, neurodegenerative, and metabolic diseases. MicroRNAs (miRNAs) represent a class of ncRNA molecules that function as negative regulators of post-transcriptional gene expression. miRNAs are predicted to regulate 60% of all human protein-coding genes and as such, play key roles in cellular and developmental processes, human health, and disease. Relative to counterparts that lack bindings sites for miRNAs, genes encoding proteins that are post-transcriptionally regulated by miRNAs are twice as likely to be sensitive to environmental chemical exposure. Not surprisingly, miRNAs have been recognized as targets or effectors of nervous system, developmental, hepatic, and carcinogenic toxicants, and have been identified as putative regulators of phase I xenobiotic-metabolizing enzymes. In this review, we give an overview of the types of ncRNAs and highlight their roles in neurodevelopment, neurological disease, activity-dependent signaling, and drug metabolism. We then delve into specific examples that illustrate their importance as mediators, effectors, or adaptive agents of neurotoxicants or neuroactive pharmaceutical compounds. Finally, we identify a number of outstanding questions regarding ncRNAs and neurotoxicity. PMID:22394481

  18. Rig-I regulates NF-κB activity through binding to Nf-κb1 3′-UTR mRNA

    PubMed Central

    Zhang, Hong-Xin; Liu, Zi-Xing; Sun, Yue-Ping; Lu, Shun-Yuan; Liu, Xue-Song; Huang, Qiu-Hua; Xie, Yin-Yin; Dang, Su-Ying; Zheng, Guang-Yong; Li, Yi-Xue; Kuang, Ying; Fei, Jian; Chen, Zhu; Wang, Zhu-Gang

    2013-01-01

    Retinoic acid inducible gene I (RIG-I) senses viral RNAs and triggers innate antiviral responses through induction of type I IFNs and inflammatory cytokines. However, whether RIG-I interacts with host cellular RNA remains undetermined. Here we report that Rig-I interacts with multiple cellular mRNAs, especially Nf-κb1. Rig-I is required for NF-κB activity via regulating Nf-κb1 expression at posttranscriptional levels. It interacts with the multiple binding sites within 3′-UTR of Nf-κb1 mRNA. Further analyses reveal that three distinct tandem motifs enriched in the 3′-UTR fragments can be recognized by Rig-I. The 3′-UTR binding with Rig-I plays a critical role in normal translation of Nf-κb1 by recruiting the ribosomal proteins [ribosomal protein L13 (Rpl13) and Rpl8] and rRNAs (18S and 28S). Down-regulation of Rig-I or Rpl13 significantly reduces Nf-κb1 and 3′-UTR–mediated luciferase expression levels. These findings indicate that Rig-I functions as a positive regulator for NF-κB signaling and is involved in multiple biological processes in addition to host antivirus immunity. PMID:23553835

  19. Identification of cellular microRNA-136 as a dual regulator of RIG-I-mediated innate immunity that antagonizes H5N1 IAV replication in A549 cells.

    PubMed

    Zhao, Lianzhong; Zhu, Jiping; Zhou, Hongbo; Zhao, Zongzheng; Zou, Zhong; Liu, Xiaokun; Lin, Xian; Zhang, Xue; Deng, Xuexia; Wang, Ruifang; Chen, Huanchun; Jin, Meilin

    2015-10-09

    H5N1 influenza A virus (IAV) causes severe respiratory diseases and high mortality rates in animals and humans. MicroRNAs are being increasingly studied to evaluate their potential as therapeutic entities to combat viral infection. However, mechanistic studies delineating the roles of microRNAs in regulating host-H5N1 virus interactions remain scarce. Here, we performed microRNA microarray analysis using A549 human lung epithelial cells infected with a highly pathogenic avian influenza virus. The microRNA expression profile of infected cells identified a small number of microRNAs being dysregulated upon H5N1 influenza A virus infection. Of the differentially expressed microRNAs, miR-136 was up-regulated 5-fold and exhibited potent antiviral activity in vitro against H5N1 influenza A virus, as well as vesicular stomatitis virus. On the one hand, 3'-untranslated region (UTR) reporter analysis revealed a miR-136 binding site in the 3' UTR of IL-6. However, on the other hand, we subsequently determined that miR-136 meanwhile acts as an immune agonist of retinoic acid-inducible gene 1 (RIG-I), thereby causing IL-6 and IFN-β accumulation in A549 cells. Overall, this study implicates the dual role of miRNA-136 in the regulation of host antiviral innate immunity and suggests an important role for the microRNA-activated pathway in viral infection via pattern recognition receptors.

  20. Modulation of Human Macrophage Responses to Mycobacterium tuberculosis by Silver Nanoparticles of Different Size and Surface Modification

    PubMed Central

    Sarkar, Srijata; Leo, Bey Fen; Carranza, Claudia; Chen, Shu; Rivas-Santiago, Cesar; Porter, Alexandra E.; Ryan, Mary P.; Gow, Andrew; Chung, Kian Fan; Tetley, Teresa D.; Zhang, Junfeng (Jim); Georgopoulos, Panos G.; Ohman-Strickland, Pamela A.; Schwander, Stephan

    2015-01-01

    Exposure to silver nanoparticles (AgNP) used in consumer products carries potential health risks including increased susceptibility to infectious pathogens. Systematic assessments of antimicrobial macrophage immune responses in the context of AgNP exposure are important because uptake of AgNP by macrophages may lead to alterations of innate immune cell functions. In this study we examined the effects of exposure to AgNP with different particle sizes (20 and 110 nm diameters) and surface chemistry (citrate or polyvinlypyrrolidone capping) on cellular toxicity and innate immune responses against Mycobacterium tuberculosis (M.tb) by human monocyte-derived macrophages (MDM). Exposures of MDM to AgNP significantly reduced cellular viability, increased IL8 and decreased IL10 mRNA expression. Exposure of M.tb-infected MDM to AgNP suppressed M.tb-induced expression of IL1B, IL10, and TNFA mRNA. Furthermore, M.tb-induced IL-1β, a cytokine critical for host resistance to M.tb, was inhibited by AgNP but not by carbon black particles indicating that the observed immunosuppressive effects of AgNP are particle specific. Suppressive effects of AgNP on the M.tb-induced host immune responses were in part due to AgNP-mediated interferences with the TLR signaling pathways that culminate in the activation of the transcription factor NF-κB. AgNP exposure suppressed M.tb-induced expression of a subset of NF-κB mediated genes (CSF2, CSF3, IFNG, IL1A, IL1B, IL6, IL10, TNFA, NFKB1A). In addition, AgNP exposure increased the expression of HSPA1A mRNA and the corresponding stress-induced Hsp72 protein. Up-regulation of Hsp72 by AgNP can suppress M.tb-induced NF-κB activation and host immune responses. The observed ability of AgNP to modulate infectious pathogen-induced immune responses has important public health implications. PMID:26580078

  1. Anti-idiotype antibody induced cellular immunity in mice transgenic for human carcinoembryonic antigen.

    PubMed

    Saha, Asim; Chatterjee, Sunil K; Foon, Kenneth A; Bhattacharya-Chatterjee, Malaya

    2006-08-01

    In the present study, we have analysed the detailed cellular immune mechanisms involved in tumour rejection in carcinoembryonic antigen (CEA) transgenic mice after immunization with dendritic cells (DC) pulsed with an anti-idiotype (Id) antibody, 3H1, which mimics CEA. 3H1-pulsed DC vaccinations resulted in induction of CEA specific cytotoxic T lymphocyte (CTL) responses in vitro and the rejection of CEA-transfected MC-38 murine colon carcinoma cells, C15, in vivo (Saha et al.,Cancer Res 2004; 64: 4995-5003). These CTL mediated major histocompatibility complex (MHC) class I-restricted tumour cell lysis, production of interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha), and expression of Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL) in response to C15 cells. CTL used perforin-, FasL-, and TRAIL-mediated death pathways to lyse C15 cells, although perforin-mediated killing was the predominant lytic mechanism in vitro. The cytokines IFN-gamma and TNF-alpha synergistically enhanced surface expression of Fas, TRAIL receptor, MHC class I and class II on C15 cells that increased the sensitivity of tumour cells to CTL lysis. CTL activity generated in 3H1-pulsed DC immunized mice was directed against an epitope defined by the idio-peptide LCD-2, derived from 3H1. In vivo lymphocyte depletion experiments demonstrated that induction of CTL response and antitumour immunity was dependent on both CD4+ and CD8+ T cells. The analysis of splenocytes of immunized mice that had rejected C15 tumour growth revealed up-regulated surface expression of memory phenotype Ly-6C and CD44 on both CD4+ and CD8+ T cells. The adoptive transfer experiments also suggested the role of both CD4+ and CD8+ T cells in this model system. Furthermore, mice that had rejected C15 tumour growth, developed tumour-specific immunological memory.

  2. Modulation of Human Macrophage Responses to Mycobacterium tuberculosis by Silver Nanoparticles of Different Size and Surface Modification.

    PubMed

    Sarkar, Srijata; Leo, Bey Fen; Carranza, Claudia; Chen, Shu; Rivas-Santiago, Cesar; Porter, Alexandra E; Ryan, Mary P; Gow, Andrew; Chung, Kian Fan; Tetley, Teresa D; Zhang, Junfeng Jim; Georgopoulos, Panos G; Ohman-Strickland, Pamela A; Schwander, Stephan

    2015-01-01

    Exposure to silver nanoparticles (AgNP) used in consumer products carries potential health risks including increased susceptibility to infectious pathogens. Systematic assessments of antimicrobial macrophage immune responses in the context of AgNP exposure are important because uptake of AgNP by macrophages may lead to alterations of innate immune cell functions. In this study we examined the effects of exposure to AgNP with different particle sizes (20 and 110 nm diameters) and surface chemistry (citrate or polyvinlypyrrolidone capping) on cellular toxicity and innate immune responses against Mycobacterium tuberculosis (M.tb) by human monocyte-derived macrophages (MDM). Exposures of MDM to AgNP significantly reduced cellular viability, increased IL8 and decreased IL10 mRNA expression. Exposure of M.tb-infected MDM to AgNP suppressed M.tb-induced expression of IL1B, IL10, and TNFA mRNA. Furthermore, M.tb-induced IL-1β, a cytokine critical for host resistance to M.tb, was inhibited by AgNP but not by carbon black particles indicating that the observed immunosuppressive effects of AgNP are particle specific. Suppressive effects of AgNP on the M.tb-induced host immune responses were in part due to AgNP-mediated interferences with the TLR signaling pathways that culminate in the activation of the transcription factor NF-κB. AgNP exposure suppressed M.tb-induced expression of a subset of NF-κB mediated genes (CSF2, CSF3, IFNG, IL1A, IL1B, IL6, IL10, TNFA, NFKB1A). In addition, AgNP exposure increased the expression of HSPA1A mRNA and the corresponding stress-induced Hsp72 protein. Up-regulation of Hsp72 by AgNP can suppress M.tb-induced NF-κB activation and host immune responses. The observed ability of AgNP to modulate infectious pathogen-induced immune responses has important public health implications.

  3. Deletion of the Fcγ Receptor IIb in Thymic Stromal Lymphopoietin Transgenic Mice Aggravates Membranoproliferative Glomerulonephritis

    PubMed Central

    Mühlfeld, Anja S.; Segerer, Stephan; Hudkins, Kelly; Carling, Matthew D.; Wen, Min; Farr, Andrew G.; Ravetch, Jeffrey V.; Alpers, Charles E.

    2003-01-01

    Engagement of immunoglobulin-binding receptors (FcγR) on leukocytes and other cell types is one means by which immunoglobulins and immune complexes activate effector cells. One of these FcγRs, FcγRIIb, is thought to contribute to protection from autoimmune disease by down-regulation of B-cell responsiveness and myeloid cell activation. We assessed the role of FcγRIIb in a mouse model of cryoglobulin-associated membranoproliferative glomerulonephritis induced by overexpression of thymic stromal lymphopoietin (TSLP). TSLP transgenic mice were crossbred with animals deficient for FcγRIIb on the same genetic background (C57BL/6). Renal pathology was assessed in female and male animals (wild-type, FcγRIIb−/−, TSLP transgenic, and combined TSLP transgenic/FcγRIIb−/− mice) after 50 and 120 days, respectively. FcγRIIb−/− mice had no significant renal pathology, whereas overexpression of TSLP induced a membranoproliferative glomerulonephritis, as previously established. TSLP transgenic FcγRIIb−/− mice appeared sick with increased mortality. Kidney function was significantly impaired in male mice corresponding to aggravated glomerular pathology with increases in glomerular matrix and cellularity. This resulted from both a large influx of infiltrating macrophages and increased cellular proliferation. These results emphasize the important role of FcγRIIb in regulating immune responses and suggest that modulation of Fcγ receptor activation or expression may be a useful therapeutic approach for treating glomerular diseases. PMID:12937154

  4. The nanoscale organization of signaling domains at the plasma membrane.

    PubMed

    Griffié, Juliette; Burn, Garth; Owen, Dylan M

    2015-01-01

    In this chapter, we present an overview of the role of the nanoscale organization of signaling domains in regulating key cellular processes. In particular, we illustrate the importance of protein and lipid nanodomains as triggers and mediators of cell signaling. As particular examples, we summarize the state of the art of understanding the role of nanodomains in the mounting of an immune response, cellular adhesion, intercellular communication, and cell proliferation. Thus, this chapter underlines the essential role the nanoscale organization of key signaling proteins and lipid domains. We will also see how nanodomains play an important role in the lifecycle of many pathogens relevant to human disease and therefore illustrate how these structures may become future therapeutic targets. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Caveolin-1 and Caveolin-2 Can Be Antagonistic Partners in Inflammation and Beyond

    PubMed Central

    de Almeida, Cecília Jacques Gonçalves

    2017-01-01

    Caveolins, encoded by the CAV gene family, are the main protein components of caveolae. In most tissues, caveolin-1 (Cav-1) and caveolin-2 (Cav-2) are co-expressed, and Cav-2 targeting to caveolae depends on the formation of heterooligomers with Cav-1. Notwithstanding, Cav-2 has unpredictable activities, opposing Cav-1 in the regulation of some cellular processes. While the major roles of Cav-1 as a modulator of cell signaling in inflammatory processes and in immune responses have been extensively discussed elsewhere, the aim of this review is to focus on data revealing the distinct activity of Cav-1 and Cav-2, which suggest that these proteins act antagonistically to fine-tune a variety of cellular processes relevant to inflammation. PMID:29250058

  6. Enterovirus Control of Translation and RNA Granule Stress Responses.

    PubMed

    Lloyd, Richard E

    2016-03-30

    Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation.

  7. Proteomic approaches to understanding the role of the cytoskeleton in host-defense mechanisms

    PubMed Central

    Radulovic, Marko; Godovac-Zimmermann, Jasminka

    2014-01-01

    The cytoskeleton is a cellular scaffolding system whose functions include maintenance of cellular shape, enabling cellular migration, division, intracellular transport, signaling and membrane organization. In addition, in immune cells, the cytoskeleton is essential for phagocytosis. Following the advances in proteomics technology over the past two decades, cytoskeleton proteome analysis in resting and activated immune cells has emerged as a possible powerful approach to expand our understanding of cytoskeletal composition and function. However, so far there have only been a handful of studies of the cytoskeleton proteome in immune cells. This article considers promising proteomics strategies that could augment our understanding of the role of the cytoskeleton in host-defense mechanisms. PMID:21329431

  8. Characteristics of Infection Immunity Regulated by Toxoplasma gondii to Maintain Chronic Infection in the Brain

    PubMed Central

    Hwang, Young Sang; Shin, Ji-Hun; Yang, Jung-Pyo; Jung, Bong-Kwang; Lee, Sang Hyung; Shin, Eun-Hee

    2018-01-01

    To examine the immune environment of chronic Toxoplasma gondii infection in the brain, the characteristics of infection-immunity (premunition) in infection with T. gondii strain ME49 were investigated for 12 weeks postinfection (PI). The results showed that neuronal cell death, microglia infiltration and activation, inflammatory and anti-inflammatory cytokine expression, Stat1 phosphorylation, and microglia activation and inflammatory gene transcripts related to M1 polarization in the brain were increased during the acute infection (AI) stage (within 6 weeks PI), suggesting that innate and cellular inflammatory response activation and neurodegeneration contributed to excessive inflammatory responses. However, these immune responses decreased during the chronic infection (CI) stage (over 6 weeks PI) with reductions in phosphorylated STAT1 (pSTAT1) and eosinophilic neurons. Notably, increases were observed in transcripts of T-cell exhaustion markers (TIM3, LAG3, KLRG1, etc.), suppressor of cytokines signaling 1 protein (SOCS1), inhibitory checkpoint molecules (PD-1 and PD-L1), and Arg1 from the AI stage (3 weeks PI), implying active immune intervention under the immune environment of M1 polarization of microglia and increases in inflammatory cytokine levels. However, when BV-2 microglia were stimulated with T. gondii lysate antigens (strain RH or ME49) in vitro, nitrite production increased and urea production decreased. Furthermore, when BV-2 cells were infected by T. gondii tachyzoites (strain RH or ME49) in vitro, nitric oxide synthase and COX-2 levels decreased, whereas Arg1 levels significantly increased. Moreover, Arg1 expression was higher in ME49 infection than in RH infection, whereas nitrite production was lower in ME49 infection than in RH infection. Accordingly, these results strongly suggest that immune triggering of T. gondii antigens induces M1 polarization and activation of microglia as well as increase NO production, whereas T. gondii infection induces the inhibition of harmful inflammatory responses, even with M1 polarization and activation of microglia and Th1 inflammatory responses, suggesting a host–parasite relationship through immune regulation during CI. This is a characteristic of infection immunity in infection with T. gondii in the central nervous system, and SOCS1, a negative regulator of toxoplasmic encephalitis, may play a role in the increase in Arg1 levels to suppress NO production. PMID:29459868

  9. Impaired SNX9 Expression in Immune Cells during Chronic Inflammation: Prognostic and Diagnostic Implications.

    PubMed

    Ish-Shalom, Eliran; Meirow, Yaron; Sade-Feldman, Moshe; Kanterman, Julia; Wang, Lynn; Mizrahi, Olga; Klieger, Yair; Baniyash, Michal

    2016-01-01

    Chronic inflammation is associated with immunosuppression and downregulated expression of the TCR CD247. In searching for new biomarkers that could validate the impaired host immune status under chronic inflammatory conditions, we discovered that sorting nexin 9 (SNX9), a protein that participates in early stages of clathrin-mediated endocytosis, is downregulated as well under such conditions. SNX9 expression was affected earlier than CD247 by the generated harmful environment, suggesting that it is a potential marker sensing the generated immunosuppressive condition. We found that myeloid-derived suppressor cells, which are elevated in the course of chronic inflammation, are responsible for the observed SNX9 reduced expression. Moreover, SNX9 downregulation is reversible, as its expression levels return to normal and immune functions are restored when the inflammatory response and/or myeloid-derived suppressor cells are neutralized. SNX9 downregulation was detected in numerous mouse models for pathologies characterized by chronic inflammation such as chronic infection (Leishmania donovani), cancer (melanoma and colorectal carcinoma), and an autoimmune disease (rheumatoid arthritis). Interestingly, reduced levels of SNX9 were also observed in blood samples from colorectal cancer patients, emphasizing the feasibility of its use as a diagnostic and prognostic biomarker sensing the host's immune status and inflammatory stage. Our new discovery of SNX9 as being regulated by chronic inflammation and its association with immunosuppression, in addition to the CD247 regulation under such conditions, show the global impact of chronic inflammation and the generated immune environment on different cellular pathways in a diverse spectrum of diseases. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. Humoral and Cellular Immunity Changed after Traumatic Brain Injury in Human Patients.

    PubMed

    Wang, Jia-Wei; Li, Jin-Ping; Song, Ying-Lun; Zhao, Qi-Huang

    2017-01-01

    Previous studies have suggested that there is a disproportionally higher risk of infection following traumatic brain injury (TBI). This predisposition to infection may be driven by a poorly understood, brain-specific response in the immune system after TBI. However, there is a lack of studies that have fully characterized TBI patients to understand the relationship between TBI and peripheral immune function. In the present study, markers for humoral immunity and cellular immunity were measured for up to 2 weeks in the peripheral blood of 37 patients with TBI in order to elucidate the time course and the type of the peripheral immune response following TBI. 12 relatively healthy individuals without TBI and other neurological diseases were enrolled into the control group. Our data indicated that TBI could induce significant changes in humoral immunity characterized by a decrease in IgG and IgM levels and an increase in the complements C3 and C4 levels in comparison with the control group. Moreover, compared with the control group, a significant reduction in peripheral blood CD3 + and CD3 + CD4 + lymphocyte counts occurred early (days 1-3) following the onset of trauma. These results provide evidence that TBI is associated with substantial changes in humoral immunity and cellular immunity, which may explain the high incidence of infection encountered in these patients. © 2017 by the Association of Clinical Scientists, Inc.

  11. Influenza A viruses suppress cyclooxygenase-2 expression by affecting its mRNA stability.

    PubMed

    Dudek, Sabine Eva; Nitzsche, Katja; Ludwig, Stephan; Ehrhardt, Christina

    2016-06-06

    Infection with influenza A viruses (IAV) provokes activation of cellular defence mechanisms contributing to the innate immune and inflammatory response. In this process the cyclooxygenase-2 (COX-2) plays an important role in the induction of prostaglandin-dependent inflammation. While it has been reported that COX-2 is induced upon IAV infection, in the present study we observed a down-regulation at later stages of infection suggesting a tight regulation of COX-2 by IAV. Our data indicate the pattern-recognition receptor RIG-I as mediator of the initial IAV-induced COX-2 synthesis. Nonetheless, during on-going IAV replication substantial suppression of COX-2 mRNA and protein synthesis could be detected, accompanied by a decrease in mRNA half-life. Interestingly, COX-2 mRNA stability was not only imbalanced by IAV replication but also by stimulation of cells with viral RNA. Our results reveal tristetraprolin (TTP), which is known to bind COX-2 mRNA and promote its rapid degradation, as regulator of COX-2 expression in IAV infection. During IAV replication and viral RNA accumulation TTP mRNA synthesis was induced, resulting in reduced COX-2 levels. Accordingly, the down-regulation of TTP resulted in increased COX-2 protein expression after IAV infection. These findings indicate a novel IAV-regulated cellular mechanism, contributing to the repression of host defence and therefore facilitating viral replication.

  12. Cellular immune response experiment MA-031

    NASA Technical Reports Server (NTRS)

    Criswell, B. S.

    1976-01-01

    Significant changes in phytohemagglutinin (PHA) lymphocytic responsiveness occurred in the cellular immune response of three astronauts during the 9 day flight of the Apollo Soyuz Test Project. Parameters studied were white blood cell concentrations, lymphocyte numbers, B- and T-lymphocyte distributions in peripheral blood, and lymphocyte responsiveness to PHA, pokeweed mitogen, Concanavalin A, and influenza virus antigen.

  13. Quillaja brasiliensis saponins induce robust humoral and cellular responses in a bovine viral diarrhea virus vaccine in mice.

    PubMed

    Cibulski, Samuel Paulo; Silveira, Fernando; Mourglia-Ettlin, Gustavo; Teixeira, Thais Fumaco; dos Santos, Helton Fernandes; Yendo, Anna Carolina; de Costa, Fernanda; Fett-Neto, Arthur Germano; Gosmann, Grace; Roehe, Paulo Michel

    2016-04-01

    A saponin fraction extracted from Quillaja brasiliensis leaves (QB-90) and a semi-purified aqueous extract (AE) were evaluated as adjuvants in a bovine viral diarrhea virus (BVDV) vaccine in mice. Animals were immunized on days 0 and 14 with antigen plus either QB-90 or AE or an oil-adjuvanted vaccine. Two-weeks after boosting, antibodies were measured by ELISA; cellular immunity was evaluated by DTH, lymphoproliferation, cytokine release and single cell IFN-γ production. Serum anti-BVDV IgG, IgG1 and IgG2b were significantly increased in QB-90- and AE-adjuvanted vaccines. A robust DTH response, increased splenocyte proliferation, Th1-type cytokines and enhanced production of IFN-γ by CD4(+) and CD8(+) T lymphocytes were detected in mice that received QB-90-adjuvanted vaccine. The AE-adjuvanted preparation stimulated humoral responses but not cellular immune responses. These findings reveal that QB-90 is capable of stimulating both cellular and humoral immune responses when used as adjuvant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Long-lasting memory of cellular immunity in a chronic myeloid leukemia patient maintains molecular response 5 after cessation of dasatinib

    PubMed Central

    Jo, Tatsuro; Noguchi, Kazuhiro; Hayashi, Shizuka; Irie, Sadaharu; Hayase, Risa; Shioya, Haruna; Kaneko, Youhei; Horio, Kensuke; Taguchi, Jun

    2018-01-01

    Tyrosine kinase inhibitors (TKIs), including imatinib, dasatinib and nilotinib are primarily used in the initial treatment of chronic phase (CP)-chronic myeloid leukemia (CML), as CMLs harbor the BCR-ABL fusion product. An increased number of lymphocytes and large granular lymphocytes (LGLs) have been observed in patients treated with dasatinib, but not other TKIs. The LGLs have been reported to be primarily natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). In the present study, a CP-CML patient who has maintained molecular response 5 for >2.4 years after stopping dasatinib was reported. Memory and effector CTLs and NK cells, were observed after 2.4 years of treatment-free remission, despite the fact that lymphocyte counts are not elevated in the patient. These results suggest that dasatinib may induce cellular immunity, including NK cells and CTLs and this cellular immunity may be maintained for a long period following cessation of dasatinib. The results suggest that this cellular immunity may provide a long-term cure without the need for continued TKI treatment. PMID:29435021

  15. Genome-wide gene expression analysis of 45 days pregnant fetal cotyledons vis-a-vis non-pregnant caruncles in buffalo (Bubalus bubalis).

    PubMed

    Lotfan, Masoud; Ali, Syed Azmal; Yadav, Munna Lal; Choudhary, Suman; Jena, Manoj Kumar; Kumar, Sudarshan; Mohanty, Ashok Kumar

    2018-05-15

    The crosstalk between fetus and mother starts with the onset of placental attachment to the uterus. The cotyledons and caruncles are the two anatomically distinct structures that play a crucial role in this physiological communication. Using Agilent Gene Chip Genome microarray, we measured the expression profile of pregnancy cotyledons in comparison to caruncular reminiscence of the uteri in non-pregnant buffalo (Bubalus bubalis) for the detection of the early post-pregnancy rapid changes in cellular expression of mRNA transcripts. We identified a total of 497 up- and 578 down-regulated genes with <0.05 the FDR corrected p-values using 4 replicates in each group (cotyledons and caruncles) and their role in pregnancy. Deep bioinformatics analysis of data revealed the cluster of genes involved at the placentome level for various functions such as fetus attachment, transport of nutrition, and immune response. Importantly, the pathways like Hedgehog/Calcium/Wnt signalling, cell cycle regulation and immune responses regulatory functions were highly enriched by the differentially identified genes. A very highly up-regulated IL-2 specific gene showed the role of interleukin-2 signalling in the attachment of the embryo. It was observed that the genes responsible for immune response were downregulated, suggesting an immune suppressive environment which is required to adopt the semiallogeneic fetus for a successful pregnancy. To further evaluate and validate the data, we have performed qRT-PCR analysis of twenty-one genes. The present study highlights the repertoire of active transcripts in the junction of cotyledons and caruncles, which are essential for a successful onset and completion of pregnancy. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. The Superimposed Deubiquitination Effect of OTULIN and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Nsp11 Promotes Multiplication of PRRSV.

    PubMed

    Su, Yanxin; Shi, Peidian; Zhang, Lilin; Lu, Dong; Zhao, Chengxue; Li, Ruiqiao; Zhang, Lei; Huang, Jinhai

    2018-05-01

    Linear ubiquitination plays an important role in the regulation of the immune response by regulating nuclear factor κB (NF-κB). The linear ubiquitination-specific deubiquitinase ovarian tumor domain deubiquitinase with linear linkage specificity (OTULIN) can control the immune signaling transduction pathway by restricting the Met1-linked ubiquitination process. In our study, the porcine OTLLIN gene was cloned and deubiquitin functions were detected in a porcine reproductive and respiratory syndrome virus (PRRSV)-infected-cell model. PRRSV infection promotes the expression of the OTULIN gene; in turn, overexpression of OTULIN contributes to PRRSV proliferation. There is negative regulation of innate immunity with OTULIN during viral infection. The cooperative effects of swine OTULIN and PRRSV Nsp11 potentiate the ability to reduce levels of cellular protein ubiquitin associated with innate immunity. Importantly, PRRSV Nsp11 recruits OTULIN through a nonenzymatic combination to enhance its ability to remove linear ubiquitination targeting NEMO, resulting in a superimposed effect that inhibits the production of type I interferons (IFNs). Our report presents a new model of virus utilization of the ubiquitin-protease system in vivo from the perspective of the viral proteins that interact with cell deubiquitination enzymes, providing new ideas for prevention and control of PRRSV. IMPORTANCE Deubiquitination effects of swine OTULIN were identified. The interaction between porcine OTULIN and PRRSV Nsp11 is dependent on the OTU domain. PRRSV Nsp11 recruits OTULIN through a nonenzymatic combination to promote removal of linear ubiquitination targeting NEMO, resulting in a superimposed effect that inhibits the production of type I IFNs. Copyright © 2018 American Society for Microbiology.

  17. Purinergic signaling modulates the cerebral inflammatory response in experimentally infected fish with Streptococcus agalactiae: an attempt to improve the immune response.

    PubMed

    Souza, Carine F; Baldissera, Matheus D; Bottari, Nathiele B; Moreira, Karen L S; da Rocha, Maria Izabel U M; da Veiga, Marcelo L; Santos, Roberto C V; Baldisserotto, Bernardo

    2018-06-01

    Appropriate control of the immune response is a critical determinant of fish health, and the purinergic cascade has an important role in the immune and inflammatory responses. This cascade regulates the levels of adenosine triphosphate (ATP), adenosine diphosphate, adenosine monophosphate and adenosine (Ado), molecules involved in physiological or pathological events as inflammatory and anti-inflammatory mediators. Thus, the aim of this study was to evaluate whether purinergic signaling, through the activities of nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase, and adenosine deaminase (ADA), is capable of modulating the cerebral immune and inflammatory responses in silver catfish that is experimentally infected with Streptococcus agalactiae. Cerebral NTPDase (with ATP as substrate) and 5'-nucleotidase activities increased, while ADA activity decreased in silver catfish that is experimentally infected with S. agalactiae, compared to the control group. Moreover, the cerebral levels of ATP and Ado increased in infected animals compared to the uninfected control group. Brain histopathology in infected animals revealed inflammatory demyelination (the presence of occasional bubbly collections), increased cellular density in the area near to pia-mater and intercellular edema. Based on this evidence, the modulation of the purinergic cascade by the enzymes NTPDase, 5'-nucleotidase, and ADA exerts an anti-inflammatory profile due to the regulation of ATP and Ado levels. This suggests involvement of purinergic enzymes on streptococcosis pathogenesis, through regulating cerebral ATP and Ado levels, molecules known to participate in physiological or pathological events as inflammatory and anti-inflammatory mediators, respectively. In summary, the modulation of the cerebral purinergic cascade exerts an anti-inflammatory profile in an attempt to reduce inflammatory damage.

  18. Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners

    PubMed Central

    Toruño, Tania Y.; Stergiopoulos, Ioannis; Coaker, Gitta

    2017-01-01

    Plants possess large arsenals of immune receptors capable of recognizing all pathogen classes. To cause disease, pathogenic organisms must be able to overcome physical barriers, suppress or evade immune perception, and derive nutrients from host tissues. Consequently, to facilitate some of these processes, pathogens secrete effector proteins that promote colonization. This review covers recent advances in the field of effector biology, focusing on conserved cellular processes targeted by effectors from diverse pathogens. The ability of effectors to facilitate pathogen entry into the host interior, suppress plant immune perception, and alter host physiology for pathogen benefit is discussed. Pathogens also deploy effectors in a spatial and temporal manner, depending on infection stage. Recent advances have also enhanced our understanding of effectors acting in specific plant organs and tissues. Effectors are excellent cellular probes that facilitate insight into biological processes as well as key points of vulnerability in plant immune signaling networks. PMID:27359369

  19. Doyne lecture 2016: intraocular health and the many faces of inflammation

    PubMed Central

    Dick, A D

    2017-01-01

    Dogma for reasons of immune privilege including sequestration (sic) of ocular antigen, lack of lymphatic and immune competent cells in the vital tissues of the eye has long evaporated. Maintaining tissue and cellular health to preserve vision requires active immune responses to prevent damage and respond to danger. A priori the eye must contain immune competent cells, undergo immune surveillance to ensure homoeostasis as well as an ability to promote inflammation. By interrogating immune responses in non-infectious uveitis and compare with age-related macular degeneration (AMD), new concepts of intraocular immune health emerge. The role of macrophage polarisation in the two disorders is a tractable start. TNF-alpha regulation of macrophage responses in uveitis has a pivotal role, supported via experimental evidence and validated by recent trial data. Contrast this with the slow, insidious degeneration in atrophic AMD or in neovasular AMD, with the compelling genetic association with innate immunity and complement, highlights an ability to attenuate pathogenic immune responses and despite known inflammasome activation. Yolk sac-derived microglia maintains tissue immune health. The result of immune cell activation is environmentally dependent, for example, on retinal cell bioenergetics status, autophagy and oxidative stress, and alterations that skew interaction between macrophages and retinal pigment epithelium (RPE). For example, dead RPE eliciting macrophage VEGF secretion but exogenous IL-4 liberates an anti-angiogenic macrophage sFLT-1 response. Impaired autophagy or oxidative stress drives inflammasome activation, increases cytotoxicity, and accentuation of neovascular responses, yet exogenous inflammasome-derived cytokines, such as IL-18 and IL-33, attenuate responses. PMID:27636226

  20. Immune subversion by chromatin manipulation: a 'new face' of host-bacterial pathogen interaction.

    PubMed

    Arbibe, Laurence

    2008-08-01

    Bacterial pathogens have evolved various strategies to avoid immune surveillance, depending of their in vivo'lifestyle'. The identification of few bacterial effectors capable to enter the nucleus and modifying chromatin structure in host raises the fascinating questions of how pathogens modulate chromatin structure and why. Chromatin is a dynamic structure that maintains the stability and accessibility of the host DNA genome to the transcription machinery. This review describes the various strategies used by pathogens to interface with host chromatin. In some cases, chromatin injury can be a strategy to take control of major cellular functions, such as the cell cycle. In other cases, manipulation of chromatin structure at specific genomic locations by modulating epigenetic information provides a way for the pathogen to impose its own transcriptional signature onto host cells. This emerging field should strongly influence our understanding of chromatin regulation at interphase nucleus and may provide invaluable openings to the control of immune gene expression in inflammatory and infectious diseases.

Top