Estrogen receptor 1 (ESR1) regulates VEGFA in adipose tissue.
Fatima, L A; Campello, R S; Santos, R de Souza; Freitas, H S; Frank, A P; Machado, U F; Clegg, D J
2017-12-01
Vascular endothelial growth factor A (VEGFA) is a key factor in the regulation of angiogenesis in adipose tissue. Poor vascularization during adipose tissue proliferation causes fibrosis and local inflammation, and is associated with insulin resistance. It is known that 17-beta estradiol (E2) regulates adipose tissue function and VEGFA expression in other tissues; however, the ability of E2 to regulate VEGFA in adipose tissue is currently unknown. In this study, we showed that, in 3T3-L1 cells, E2 and the estrogen receptor 1 (ESR1) agonist PPT induced VEGFA expression, while ESR1 antagonist (MPP), and selective knockdown of ESR1 using siRNA decreased VEGFA and prevented the ability of E2 to modulate its expression. Additionally, we found that E2 and PPT induced the binding of hypoxia inducible factor 1 alpha subunit (HIF1A) in the VEGFA gene promoter. We further found that VEGFA expression was lower in inguinal and gonadal white adipose tissues of ESR1 total body knockout female mice compared to wild type mice. In conclusion, our data provide evidence of an important role for E2/ESR1 in modulating adipose tissue VEGFA, which is potentially important to enhance angiogenesis, reduce inflammation and improve adipose tissue function.
HIF isoforms in the skin differentially regulate systemic arterial pressure
Cowburn, Andrew S.; Takeda, Norihiko; Boutin, Adam T.; Kim, Jung-Whan; Sterling, Jane C.; Nakasaki, Manando; Southwood, Mark; Goldrath, Ananda W.; Jamora, Colin; Nizet, Victor; Chilvers, Edwin R.; Johnson, Randall S.
2013-01-01
Vascular flow through tissues is regulated via a number of homeostatic mechanisms. Localized control of tissue blood flow, or autoregulation, is a key factor in regulating tissue perfusion and oxygenation. We show here that the net balance between two hypoxia-inducible factor (HIF) transcription factor isoforms, HIF-1α and HIF-2α, is an essential mechanism regulating both local and systemic blood flow in the skin of mice. We also show that balance of HIF isoforms in keratinocyte-specific mutant mice affects thermal adaptation, exercise capacity, and systemic arterial pressure. The two primary HIF isoforms achieve these effects in opposing ways that are associated with HIF isoform regulation of nitric oxide production. We also show that a correlation exists between altered levels of HIF isoforms in the skin and the degree of idiopathic hypertension in human subjects. Thus, the balance between HIF-1α and HIF-2α expression in keratinocytes is a control element of both tissue perfusion and systemic arterial pressure, with potential implications in human hypertension. PMID:24101470
Lyra-Leite, Davi M; Andres, Allen M; Petersen, Andrew P; Ariyasinghe, Nethika R; Cho, Nathan; Lee, Jezell A; Gottlieb, Roberta A; McCain, Megan L
2017-10-01
Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease. NEW & NOTEWORTHY A new methodology has been developed to measure O 2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix elasticity regulates basal mitochondrial function, whereas both matrix elasticity and tissue alignment regulate mitochondrial stress responses. Copyright © 2017 the American Physiological Society.
Fargali, Samira; Sadahiro, Masato; Jiang, Cheng; Frick, Amy L; Indall, Tricia; Cogliani, Valeria; Welagen, Jelle; Lin, Wei-Jye; Salton, Stephen R
2012-11-01
Members of the neurotrophin family, including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5, and other neurotrophic growth factors such as ciliary neurotrophic factor and artemin, regulate peripheral and central nervous system development and function. A subset of the neurotrophin-dependent pathways in the hypothalamus, brainstem, and spinal cord, and those that project via the sympathetic nervous system to peripheral metabolic tissues including brown and white adipose tissue, muscle and liver, regulate feeding, energy storage, and energy expenditure. We briefly review the role that neurotrophic growth factors play in energy balance, as regulators of neuronal survival and differentiation, neurogenesis, and circuit formation and function, and as inducers of critical gene products that control energy homeostasis.
Shaping eosinophil identity in the tissue contexts of development, homeostasis, and disease.
Abdala-Valencia, Hiam; Coden, Mackenzie E; Chiarella, Sergio E; Jacobsen, Elizabeth A; Bochner, Bruce S; Lee, James J; Berdnikovs, Sergejs
2018-04-14
Eosinophils play homeostatic roles in different tissues and are found in several organs at a homeostatic baseline, though their tissue numbers increase significantly in development and disease. The morphological, phenotypical, and functional plasticity of recruited eosinophils are influenced by the dynamic tissue microenvironment changes between homeostatic, morphogenetic, and disease states. Activity of the epithelial-mesenchymal interface, extracellular matrix, hormonal inputs, metabolic state of the environment, as well as epithelial and mesenchymal-derived innate cytokines and growth factors all have the potential to regulate the attraction, retention, in situ hematopoiesis, phenotype, and function of eosinophils. This review examines the reciprocal relationship between eosinophils and such tissue factors, specifically addressing: (1) tissue microenvironments associated with the presence and activity of eosinophils; (2) non-immune tissue ligands regulatory for eosinophil accumulation, hematopoiesis, phenotype, and function (with an emphasis on the extracellular matrix and epithelial-mesenchymal interface); (3) the contribution of eosinophils to regulating tissue biology; (4) eosinophil phenotypic heterogeneity in different tissue microenvironments, classifying eosinophils as progenitors, steady state eosinophils, and Type 1 and 2 activated phenotypes. An appreciation of eosinophil regulation by non-immune tissue factors is necessary for completing the picture of eosinophil immune activation and understanding the functional contribution of these cells to development, homeostasis, and disease. ©2018 Society for Leukocyte Biology.
The PPAR{gamma} coding region and its role in visceral obesity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boon Yin, Khoo; Institute for Research in Molecular Medicine; Najimudin, Nazalan
Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) is a ligand activated transcription factor, plays many essential roles of biological function in higher organisms. The PPAR{gamma} is mainly expressed in adipose tissue. It regulates the transcriptional activity of genes by binding with other transcription factor. The PPAR{gamma} coding region has been found to be closest to that of monkey in ours and other research groups. Thus, monkey is a more suitable animal model for future PPAR{gamma} studying, although mice and rat are frequently being used. The PPAR{gamma} is involved in regulating alterations of adipose tissue masses result from changes in mature adipocyte sizemore » and/or number through a complex interplay process called adipogenesis. However, the role of PPAR{gamma} in negatively regulating the process of adipogenesis remains unclear. This review may help we investigate the differential expression of key transcription factor in adipose tissue in response to visceral obesity-induced diet in vivo. The study may also provide valuable information to define a more appropriate physiological condition in adipogenesis which may help to prevent diseases cause by negative regulation of the transcription factors in adipose tissue.« less
Fargali, Samira; Sadahiro, Masato; Jiang, Cheng; Frick, Amy L.; Indall, Tricia; Cogliani, Valeria; Welagen, Jelle; Lin, Wei-jye; Salton, Stephen R.
2012-01-01
Members of the neurotrophin family, including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5), and other neurotrophic growth factors such as ciliary neurotrophic factor (CNTF) and artemin, regulate peripheral and central nervous system development and function. A subset of the neurotrophin-dependent pathways in the hypothalamus, brainstem, and spinal cord, and those that project via the sympathetic nervous system to peripheral metabolic tissues including brown and white adipose tissue (BAT and WAT), muscle and liver, regulate feeding, energy storage, and energy expenditure. We briefly review the role that neurotrophic growth factors play in energy balance, as regulators of neuronal survival and differentiation, neurogenesis, and circuit formation and function, and as inducers of critical gene products that control energy homeostasis. PMID:22581449
Cartilage tissue engineering: recent advances and perspectives from gene regulation/therapy.
Li, Kuei-Chang; Hu, Yu-Chen
2015-05-01
Diseases in articular cartilages affect millions of people. Despite the relatively simple biochemical and cellular composition of articular cartilages, the self-repair ability of cartilage is limited. Successful cartilage tissue engineering requires intricately coordinated interactions between matrerials, cells, biological factors, and phycial/mechanical factors, and still faces a multitude of challenges. This article presents an overview of the cartilage biology, current treatments, recent advances in the materials, biological factors, and cells used in cartilage tissue engineering/regeneration, with strong emphasis on the perspectives of gene regulation (e.g., microRNA) and gene therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Regulation of galactan synthase expression to modify galactan content in plants
None
2017-08-22
The disclosure provides methods of engineering plants to modulate galactan content. Specifically, the disclosure provides methods for engineering a plant to increase the galactan content in a plant tissue by inducing expression of beta-1,4-galactan synthase (GALS), modulated by a heterologous promoter. Further disclosed are the methods of modulating expression level of GALS under the regulation of a transcription factor, as well as overexpression of UDP-galactose epimerse in the same plant tissue. Tissue specific promoters and transcription factors can be used in the methods are also provided.
Distinct tissue-specific transcriptional regulation revealed by gene regulatory networks in maize.
Huang, Ji; Zheng, Juefei; Yuan, Hui; McGinnis, Karen
2018-06-07
Transcription factors (TFs) are proteins that can bind to DNA sequences and regulate gene expression. Many TFs are master regulators in cells that contribute to tissue-specific and cell-type-specific gene expression patterns in eukaryotes. Maize has been a model organism for over one hundred years, but little is known about its tissue-specific gene regulation through TFs. In this study, we used a network approach to elucidate gene regulatory networks (GRNs) in four tissues (leaf, root, SAM and seed) in maize. We utilized GENIE3, a machine-learning algorithm combined with large quantity of RNA-Seq expression data to construct four tissue-specific GRNs. Unlike some other techniques, this approach is not limited by high-quality Position Weighed Matrix (PWM), and can therefore predict GRNs for over 2000 TFs in maize. Although many TFs were expressed across multiple tissues, a multi-tiered analysis predicted tissue-specific regulatory functions for many transcription factors. Some well-studied TFs emerged within the four tissue-specific GRNs, and the GRN predictions matched expectations based upon published results for many of these examples. Our GRNs were also validated by ChIP-Seq datasets (KN1, FEA4 and O2). Key TFs were identified for each tissue and matched expectations for key regulators in each tissue, including GO enrichment and identity with known regulatory factors for that tissue. We also found functional modules in each network by clustering analysis with the MCL algorithm. By combining publicly available genome-wide expression data and network analysis, we can uncover GRNs at tissue-level resolution in maize. Since ChIP-Seq and PWMs are still limited in several model organisms, our study provides a uniform platform that can be adapted to any species with genome-wide expression data to construct GRNs. We also present a publicly available database, maize tissue-specific GRN (mGRN, https://www.bio.fsu.edu/mcginnislab/mgrn/ ), for easy querying. All source code and data are available at Github ( https://github.com/timedreamer/maize_tissue-specific_GRN ).
Orgeur, Mickael; Martens, Marvin; Leonte, Georgeta; Nassari, Sonya; Bonnin, Marie-Ange; Börno, Stefan T; Timmermann, Bernd; Hecht, Jochen; Duprez, Delphine; Stricker, Sigmar
2018-03-29
Connective tissues support organs and play crucial roles in development, homeostasis and fibrosis, yet our understanding of their formation is still limited. To gain insight into the molecular mechanisms of connective tissue specification, we selected five zinc-finger transcription factors - OSR1, OSR2, EGR1, KLF2 and KLF4 - based on their expression patterns and/or known involvement in connective tissue subtype differentiation. RNA-seq and ChIP-seq profiling of chick limb micromass cultures revealed a set of common genes regulated by all five transcription factors, which we describe as a connective tissue core expression set. This common core was enriched with genes associated with axon guidance and myofibroblast signature, including fibrosis-related genes. In addition, each transcription factor regulated a specific set of signalling molecules and extracellular matrix components. This suggests a concept whereby local molecular niches can be created by the expression of specific transcription factors impinging on the specification of local microenvironments. The regulatory network established here identifies common and distinct molecular signatures of limb connective tissue subtypes, provides novel insight into the signalling pathways governing connective tissue specification, and serves as a resource for connective tissue development. © 2018. Published by The Company of Biologists Ltd.
Tatullo, Marco; Marrelli, Massimo; Falisi, Giovanni; Rastelli, Claudio; Palmieri, Francesca; Gargari, Marco; Zavan, Barbara; Paduano, Francesco; Benagiano, Vincenzo
2016-03-01
Tissue engineering applications need a continuous development of new biomaterials able to generate an ideal cell-extracellular matrix interaction. The stem cell fate is regulated by several factors, such as growth factors or transcription factors. The most recent literature has reported several publications able to demonstrate that environmental factors also contribute to the regulation of stem cell behavior, leading to the opinion that the environment plays the major role in the cell differentiation.The interaction between mesenchymal stem cells (MSCs) and extracellular environment has been widely described, and it has a crucial role in regulating the cell phenotype. In our laboratory (Tecnologica Research Institute, Crotone, Italy), we have recently studied how several physical factors influence the distribution and the morphology of MSCs isolated from dental pulp, and how they are able to regulate stem cell differentiation. Mechanical and geometrical factors are only a small part of the environmental factors able to influence stem cell behavior, however, this influence should be properly known: in fact, this assumption must be clearly considered during those studies involving MSCs; furthermore, these interactions should be considered as an important bias that involves an high number of studies on the MSCs, since in worldwide laboratories the scientists mostly use tissue culture plates for their experiments. © The Author(s) 2015.
Connective tissue fibroblasts and Tcf4 regulate myogenesis
Mathew, Sam J.; Hansen, Jody M.; Merrell, Allyson J.; Murphy, Malea M.; Lawson, Jennifer A.; Hutcheson, David A.; Hansen, Mark S.; Angus-Hill, Melinda; Kardon, Gabrielle
2011-01-01
Muscle and its connective tissue are intimately linked in the embryo and in the adult, suggesting that interactions between these tissues are crucial for their development. However, the study of muscle connective tissue has been hindered by the lack of molecular markers and genetic reagents to label connective tissue fibroblasts. Here, we show that the transcription factor Tcf4 (transcription factor 7-like 2; Tcf7l2) is strongly expressed in connective tissue fibroblasts and that Tcf4GFPCre mice allow genetic manipulation of these fibroblasts. Using this new reagent, we find that connective tissue fibroblasts critically regulate two aspects of myogenesis: muscle fiber type development and maturation. Fibroblasts promote (via Tcf4-dependent signals) slow myogenesis by stimulating the expression of slow myosin heavy chain. Also, fibroblasts promote the switch from fetal to adult muscle by repressing (via Tcf4-dependent signals) the expression of developmental embryonic myosin and promoting (via a Tcf4-independent mechanism) the formation of large multinucleate myofibers. In addition, our analysis of Tcf4 function unexpectedly reveals a novel mechanism of intrinsic regulation of muscle fiber type development. Unlike other intrinsic regulators of fiber type, low levels of Tcf4 in myogenic cells promote both slow and fast myogenesis, thereby promoting overall maturation of muscle fiber type. Thus, we have identified novel extrinsic and intrinsic mechanisms regulating myogenesis. Most significantly, our data demonstrate for the first time that connective tissue is important not only for adult muscle structure and function, but is a vital component of the niche within which muscle progenitors reside and is a critical regulator of myogenesis. PMID:21177349
GENE REGULATION. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock.
Zhang, Yuxiang; Fang, Bin; Emmett, Matthew J; Damle, Manashree; Sun, Zheng; Feng, Dan; Armour, Sean M; Remsberg, Jarrett R; Jager, Jennifer; Soccio, Raymond E; Steger, David J; Lazar, Mitchell A
2015-06-26
Circadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erbα, a transcription factor (TF) that functions both as a core repressive component of the cell-autonomous clock and as a regulator of metabolic genes. Here, we show that Rev-erbα modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erbα to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erbα regulates metabolic genes primarily by recruiting the HDAC3 co-repressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erbα and ROR TFs provides a universal mechanism for self-sustained control of the molecular clock across all tissues, whereas Rev-erbα uses lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue. Copyright © 2015, American Association for the Advancement of Science.
Plasma and cellular fibronectin: distinct and independent functions during tissue repair
2011-01-01
Fibronectin (FN) is a ubiquitous extracellular matrix (ECM) glycoprotein that plays vital roles during tissue repair. The plasma form of FN circulates in the blood, and upon tissue injury, is incorporated into fibrin clots to exert effects on platelet function and to mediate hemostasis. Cellular FN is then synthesized and assembled by cells as they migrate into the clot to reconstitute damaged tissue. The assembly of FN into a complex three-dimensional matrix during physiological repair plays a key role not only as a structural scaffold, but also as a regulator of cell function during this stage of tissue repair. FN fibrillogenesis is a complex, stepwise process that is strictly regulated by a multitude of factors. During fibrosis, there is excessive deposition of ECM, of which FN is one of the major components. Aberrant FN-matrix assembly is a major contributing factor to the switch from normal tissue repair to misregulated fibrosis. Understanding the mechanisms involved in FN assembly and how these interplay with cellular, fibrotic and immune responses may reveal targets for the future development of therapies to regulate aberrant tissue-repair processes. PMID:21923916
Spatial regulation of controlled bioactive factor delivery for bone tissue engineering
Samorezov, Julia E.; Alsberg, Eben
2015-01-01
Limitations of current treatment options for critical size bone defects create a significant clinical need for tissue engineered bone strategies. This review describes how control over the spatiotemporal delivery of growth factors, nucleic acids, and drugs and small molecules may aid in recapitulating signals present in bone development and healing, regenerating interfaces of bone with other connective tissues, and enhancing vascularization of tissue engineered bone. State-of-the-art technologies used to create spatially controlled patterns of bioactive factors on the surfaces of materials, to build up 3D materials with patterns of signal presentation within their bulk, and to pattern bioactive factor delivery after scaffold fabrication are presented, highlighting their applications in bone tissue engineering. As these techniques improve in areas such as spatial resolution and speed of patterning, they will continue to grow in value as model systems for understanding cell responses to spatially regulated bioactive factor signal presentation in vitro, and as strategies to investigate the capacity of the defined spatial arrangement of these signals to drive bone regeneration in vivo. PMID:25445719
Fahlén, M; Zhang, H; Löfgren, L; Masironi, B; von Schoultz, E; von Schoultz, B; Sahlin, L
2017-05-01
Stromal factors have been identified as important for tumorigenesis and metastases of breast cancer. From 49 premenopausal women, samples were collected from benign or malignant tumors and the seemingly normal tissue adjacent to the tumor. The factors studied, with real-time polymerase chain reaction (PCR) and immunohistochemistry, were cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2), syndecan-1 (S-1) and connective tissue growth factor (CTGF). COX-1 and S-1 mRNA levels were higher in the malignant tumors than in normal and benign tissues. The COX-2 mRNA level was lower in the malignant tumor than in the normal tissue, while CTGF mRNA did not differ between the groups. COX-1 immunostaining was higher in stroma from malignant tumors than in benign tissues, whereas COX-2 immunostaining was higher in the malignant tissue. Glandular S-1 immunostaining was lower in malignant tumors compared to benign and normal tissues, and the opposite was found in stroma. Conclusively, mRNA levels of COX-1 and COX-2 were oppositely regulated, with COX-1 being increased in the malignant tumor while COX-2 was decreased. S-1 protein localization switched from glandular to stromal cells in malignant tissues. Thus, these markers are, in premenopausal women, localized and regulated differently in normal/benign breast tissue as compared to the malignant tumor.
Hormone-dependent control of developmental timing through regulation of chromatin accessibility
Uyehara, Christopher M.; Nystrom, Spencer L.; Niederhuber, Matthew J.; Leatham-Jensen, Mary; Ma, Yiqin; Buttitta, Laura A.
2017-01-01
Specification of tissue identity during development requires precise coordination of gene expression in both space and time. Spatially, master regulatory transcription factors are required to control tissue-specific gene expression programs. However, the mechanisms controlling how tissue-specific gene expression changes over time are less well understood. Here, we show that hormone-induced transcription factors control temporal gene expression by regulating the accessibility of DNA regulatory elements. Using the Drosophila wing, we demonstrate that temporal changes in gene expression are accompanied by genome-wide changes in chromatin accessibility at temporal-specific enhancers. We also uncover a temporal cascade of transcription factors following a pulse of the steroid hormone ecdysone such that different times in wing development can be defined by distinct combinations of hormone-induced transcription factors. Finally, we show that the ecdysone-induced transcription factor E93 controls temporal identity by directly regulating chromatin accessibility across the genome. Notably, we found that E93 controls enhancer activity through three different modalities, including promoting accessibility of late-acting enhancers and decreasing accessibility of early-acting enhancers. Together, this work supports a model in which an extrinsic signal triggers an intrinsic transcription factor cascade that drives development forward in time through regulation of chromatin accessibility. PMID:28536147
Research on growth factors in periodontology.
Smith, Patricio C; Martínez, Constanza; Cáceres, Mónica; Martínez, Jorge
2015-02-01
Growth factors play critical roles in periodontal repair through the regulation of cell behavior. Many of the cell responses regulated by these proteins include cell adhesion, migration, proliferation and differentiation. Periodontal regeneration involves an organized response of different cells, tissues and growth factors implicated in the coordination of these events. However, periodontal tissue reconstruction is an extremely difficult task. Multiple studies have been performed to understand the specific role of growth factors in periodontal wound healing. In the present review we analyze the evidence that supports the roles of growth factors in periodontal wound healing and regeneration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zhang, Jing; Tessier, Shannon N; Biggar, Kyle K; Wu, Cheng-Wei; Pifferi, Fabien; Perret, Martine; Storey, Kenneth B
2015-04-01
The gray mouse lemur (Microcebus murinus) is one of few primate species that is able to enter daily torpor or prolonged hibernation in response to environmental stresses. With an emerging significance to human health research, lemurs present an optimal model for exploring molecular adaptations that regulate primate hypometabolism. A fundamental challenge is how to effectively regulate energy expensive cellular processes (e.g., transcription and translation) during transitions to/from torpor without disrupting cellular homeostasis. One such regulatory mechanism is reversible posttranslational modification of selected protein targets that offers fine cellular control without the energetic burden. This study investigates the role of phosphorylation and/or acetylation in regulating key factors involved in energy homeostasis (AMP-activated protein kinase, or AMPK, signaling pathway), mRNA translation (eukaryotic initiation factor 2α or eIF2α, eukaryotic initiation factor 4E or eIF4E, and initiation factor 4E binding protein or 4EBP), and gene transcription (histone H3) in six tissues of torpid and aroused gray mouse lemurs. Our results indicated selective tissue-specific changes of these regulatory proteins. The relative level of Thr172-phosphorylated AMPKα was significantly elevated in the heart but reduced in brown adipose tissue during daily torpor, as compared to the aroused lemurs, implicating the regulation of AMPK activity during daily torpor in these tissues. Interestingly, the levels of the phosphorylated eIFs were largely unaltered between aroused and torpid animals. Phosphorylation and acetylation of histone H3 were examined as a marker for transcriptional regulation. Compared to the aroused lemurs, level of Ser10-phosphorylated histone H3 decreased significantly in white adipose tissue during torpor, suggesting global suppression of gene transcription. However, a significant increase in acetyl-histone H3 in the heart of torpid lemurs indicated a possible stimulation of transcriptional activity of this tissue. Overall, our study demonstrates that AMPK signaling and posttranslational regulation of selected proteins may play crucial roles in the control of transcription/translation during daily torpor in mouse lemurs. Copyright © 2015. Production and hosting by Elsevier Ltd.
Epigenetic regulation of the expression of genes involved in steroid hormone biosynthesis and action
Martinez-Arguelles, Daniel B.; Papadopoulos, Vassilios
2010-01-01
Steroid hormones participate in organ development, reproduction, body homeostasis, and stress responses. The steroid machinery is expressed in a development- and tissue-specific manner, with the expression of these factors being tightly regulated by an array of transcription factors (TFs). Epigenetics provides an additional layer of gene regulation through DNA methylation and histone tail modifications. Evidence of epigenetic regulation of key steroidogenic enzymes is increasing, though this does not seem to be a predominant regulatory pathway. Steroid hormones exert their action in target tissues through steroid nuclear receptors belonging to the NR3A and NR3C families. Nuclear receptor expression levels and post-translational modifications regulate their function and dictate their sensitivity to steroid ligands. Nuclear receptors and TFs are more likely to be epigenetically regulated than proteins involved in steroidogenesis and have secondary impact on the expression of these steroidogenic enzymes. Here we review evidence for epigenetic regulation of enzymes, transcription factors, and nuclear receptors related to steroid biogenesis and action. PMID:20156469
Porcine Tissue-Specific Regulatory Networks Derived from Meta-Analysis of the Transcriptome
Pérez-Montarelo, Dafne; Hudson, Nicholas J.; Fernández, Ana I.; Ramayo-Caldas, Yuliaxis; Dalrymple, Brian P.; Reverter, Antonio
2012-01-01
The processes that drive tissue identity and differentiation remain unclear for most tissue types. So are the gene networks and transcription factors (TF) responsible for the differential structure and function of each particular tissue, and this is particularly true for non model species with incomplete genomic resources. To better understand the regulation of genes responsible for tissue identity in pigs, we have inferred regulatory networks from a meta-analysis of 20 gene expression studies spanning 480 Porcine Affymetrix chips for 134 experimental conditions on 27 distinct tissues. We developed a mixed-model normalization approach with a covariance structure that accommodated the disparity in the origin of the individual studies, and obtained the normalized expression of 12,320 genes across the 27 tissues. Using this resource, we constructed a network, based on the co-expression patterns of 1,072 TF and 1,232 tissue specific genes. The resulting network is consistent with the known biology of tissue development. Within the network, genes clustered by tissue and tissues clustered by site of embryonic origin. These clusters were significantly enriched for genes annotated in key relevant biological processes and confirm gene functions and interactions from the literature. We implemented a Regulatory Impact Factor (RIF) metric to identify the key regulators in skeletal muscle and tissues from the central nervous systems. The normalization of the meta-analysis, the inference of the gene co-expression network and the RIF metric, operated synergistically towards a successful search for tissue-specific regulators. Novel among these findings are evidence suggesting a novel key role of ERCC3 as a muscle regulator. Together, our results recapitulate the known biology behind tissue specificity and provide new valuable insights in a less studied but valuable model species. PMID:23049964
Figueira, Marília I; Cardoso, Henrique J; Correia, Sara; Maia, Cláudio J; Socorro, Sílvia
2017-10-01
The tyrosine kinase receptor c-KIT and its ligand, the stem cell factor (SCF) are expressed in several tissues of male and female reproductive tract, playing an important role in the regulation of basic biological processes. The activation of c-KIT by SCF controls, cell survival and death, cell differentiation and migration. Also, the SCF/c-KIT system has been implicated in carcinogenesis of reproductive tissues due to its altered expression pattern or overactivation in consequence of gain-of-functions mutations. Over the years, it has also been shown that hormones, the primary regulators of reproductive function and causative agents in the case of hormone-dependent cancers, are also able to control the SCF/c-KIT tissue levels. Therefore, it is liable to suppose that disturbed SCF/c-KIT expression driven by (de)regulated hormone actions can be a relevant step towards carcinogenesis. The present review describes the SCF and c-KIT expression in cancers of reproductive tissues, discussing the implications of the hormonal regulation of the SCF/c-KIT system in cancer development. Understanding the relationship between hormonal imbalance and the SCF/c-KIT expression and activity would be relevant in the context of novel therapeutic approaches in reproductive cancers. Copyright © 2017 Elsevier B.V. All rights reserved.
Constitutive gene expression and specification of tissue identity in adult planarian biology
Reddien, Peter W.
2011-01-01
Planarians are flatworms that constitutively maintain adult tissues through cell turnover and can regenerate entire organisms from tiny body fragments. In addition to requiring new cells (from neoblasts), these feats require mechanisms that specify tissue identity in the adult. Critical roles for Wnt and BMP signaling in regeneration and maintenance of the body axes have been uncovered, among other regulatory factors. Available data indicate that genes involved in positional identity regulation at key embryonic stages in other animals display persisting regionalized expression in adult planarians. These expression patterns suggest that a constitutively active gene expression map exists for maintenance of the planarian body. Planarians therefore present a fertile ground for identification of factors regulating regionalization of the metazoan body plan and for study of the attributes of these factors that can lead to maintenance and regeneration of adult tissues. PMID:21680047
Song, Jiho; Shawky, Joseph H; Kim, YongTae; Hazar, Melis; LeDuc, Philip R; Sitti, Metin; Davidson, Lance A
2015-07-01
Cells in tissues encounter a range of physical cues as they migrate. Probing single cell and collective migratory responses to physically defined three-dimensional (3D) microenvironments and the factors that modulate those responses are critical to understanding how tissue migration is regulated during development, regeneration, and cancer. One key physical factor that regulates cell migration is topography. Most studies on surface topography and cell mechanics have been carried out with single migratory cells, yet little is known about the spreading and motility response of 3D complex multi-cellular tissues to topographical cues. Here, we examine the response to complex topographical cues of microsurgically isolated tissue explants composed of epithelial and mesenchymal cell layers from naturally 3D organized embryos of the aquatic frog Xenopus laevis. We control topography using fabricated micropost arrays (MPAs) and investigate the collective 3D migration of these multi-cellular systems in these MPAs. We find that the topography regulates both collective and individual cell migration and that dense MPAs reduce but do not eliminate tissue spreading. By modulating cell size through the cell cycle inhibitor Mitomycin C or the spacing of the MPAs we uncover how 3D topographical cues disrupt collective cell migration. We find surface topography can direct both single cell motility and tissue spreading, altering tissue-scale processes that enable efficient conversion of single cell motility into collective movement. Copyright © 2015 Elsevier Ltd. All rights reserved.
Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Wang, Xiao-Jing; Zhang, Bing; Chen, Hua
2016-10-23
BACKGROUND This study investigated the mechanism of miR-145 in targeting connective tissue growth factor (CTGF), which affects the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of ESCC cells. MATERIAL AND METHODS A total of 50 ESCC tissues and their corresponding normal adjacent esophageal tissue samples were collected. Then, miR-145 expression in both ESCC clinical specimens and cell lines was detected using quantitative real-time PCR. CTGF protein was detected using immunohistochemistry. Dual luciferase reporter gene assay was employed to assess the effect of miR-145 on the 3'UTR luciferase activity of CTGF. Eca109 cells were transfected with miR-145 mimics and CTGF siRNA, respectively, and changes in cellular proliferation, migration, and invasion were detected via MTT assay, wound-healing assay, and Transwell assay, respectively. Western blotting assay was used to detect the expression of marker genes related to EMT. RESULTS MiR-145 was significantly down-regulated in ESCC tissues and cell lines compared with normal tissues and cell lines (P<0.05). We found significantly more positively expressed CTGF protein in ESCC tissues was than in normal adjacent esophageal tissues (P<0.01). Dual luciferase reporter gene assay showed that miR-145 can specifically bind with the 3'UTR of CTGF and significantly inhibit the luciferase activity by 55% (P<0.01). Up-regulation of miR-145 or down-regulation of CTGF can suppress the proliferation, migration, invasion, and EMT process of ESCC cells. CONCLUSIONS MiR-145 was significantly down-regulated in ESCC tissues and cell lines, while the protein expression of CTGF exhibited the opposite trend. MiR-145 inhibited the proliferation, migration, invasiveness, and the EMT process of ESCC cells through targeted regulation of CTGF expression.
Discrete Functions of Nuclear Receptor Rev-erbα Couple Metabolism to the Clock
Zhang, Yuxiang; Fang, Bin; Emmett, Matthew J.; Damle, Manashree; Sun, Zheng; Feng, Dan; Armour, Sean M.; Remsberg, Jarrett R.; Jager, Jennifer; Soccio, Raymond E.; Steger, David J.; Lazar, Mitchell A.
2015-01-01
SUMMARY Circadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erbα, a transcription factor (TF) that functions both as a core repressive component of the cell autonomous clock and as a regulator of metabolic genes. Here we show that Rev-erbα modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erbα to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erbα regulates metabolic genes primarily by recruiting the HDAC3 corepressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erbα and ROR TFs provides a universal mechanism for self-sustained control of molecular clock across all tissues, whereas Rev-erbα utilizes lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue. PMID:26044300
Beattie, James; Al-Khafaji, Hasanain; Noer, Pernille R; Alkharobi, Hanaa Esa; Alhodhodi, Aishah; Meade, Josephine; El-Gendy, Reem; Oxvig, Claus
2018-01-01
The insulin-like growth factor (IGF) axis is required for the differentiation, development, and maintenance of bone tissue. Accordingly, dysregulation of this axis is associated with various skeletal pathologies including growth abnormalities and compromised bone structure. It is becoming increasingly apparent that the action of the IGF axis must be viewed holistically taking into account not just the actions of the growth factors and receptors, but also the influence of soluble high affinity IGF binding proteins (IGFBPs).There is a recognition that IGFBPs exert IGF-dependent and IGF-independent effects in bone and other tissues and that an understanding of the mechanisms of action of IGFBPs and their regulation in the pericellular environment impact critically on tissue physiology. In this respect, a group of IGFBP proteinases (which may be considered as ancillary members of the IGF axis) play a crucial role in regulating IGFBP function. In this model, cleavage of IGFBPs by specific proteinases into fragments with lower affinity for growth factor(s) regulates the partition of IGFs between IGFBPs and cell surface IGF receptors. In this review, we examine the importance of IGFBP function in bone tissue with special emphasis on the role of pregnancy associated plasma protein-A (PAPP-A). We examine the function of PAPP-A primarily as an IGFBP-4 proteinase and present evidence that PAPP-A induced cleavage of IGFBP-4 is potentially a key regulatory step in bone metabolism. We also highlight some recent findings with regard to IGFBP-2 and IGFBP-5 (also PAPP-A substrates) function in bone tissue and briefly discuss the actions of the other three IGFBPs (-1, -3, and -6) in this tissue. Although our main focus will be in bone we will allude to IGFBP activity in other cells and tissues where appropriate.
Smitka, Kvido; Marešová, Dana
2015-01-01
Adipose tissue is recognized as an active endocrine organ that produces a number of endocrine substances referred to as "adipokines" including leptin, adiponectin, adipolin, visfatin, omentin, tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), resistin, pigment epithelium-derived factor (PEDF), and progranulin (PGRN) which play an important role in the food intake regulation and significantly influence insulin sensitivity and in some cases directly affect insulin resistance in skeletal muscle, liver, and adipose tissue. The review summarizes current knowledge about adipose tissue-derived hormones and their influence on energy homeostasis regulation. The possible therapeutic potential of these adipokines in the treatment of insulin resistance, endothelial dysfunction, a pro-inflammatory response, obesity, eating disorders, progression of atherosclerosis, type 1 diabetes, and type 2 diabetes is discussed.
Role of Omentin, Vaspin, Cardiotrophin-1, TWEAK and NOV/CCN3 in Obesity and Diabetes Development
Escoté, Xavier; Gómez-Zorita, Saioa; López-Yoldi, Miguel; Fernández-Quintela, Alfredo; Moreno-Aliaga, María J.; Portillo, María P.
2017-01-01
Adipose tissue releases bioactive mediators called adipokines. This review focuses on the effects of omentin, vaspin, cardiotrophin-1, Tumor necrosis factor-like Weak Inducer of Apoptosis (TWEAK) and nephroblastoma overexpressed (NOV/CCN3) on obesity and diabetes. Omentin is produced by the stromal-vascular fraction of visceral adipose tissue. Obesity reduces omentin serum concentrations and adipose tissue secretion in adults and adolescents. This adipokine regulates insulin sensitivity, but its clinical relevance has to be confirmed. Vaspin is produced by visceral and subcutaneous adipose tissues. Vaspin levels are higher in obese subjects, as well as in subjects showing insulin resistance or type 2 diabetes. Cardiotrophin-1 is an adipokine with a similar structure as cytokines from interleukin-6 family. There is some controversy regarding the regulation of cardiotrophin-1 levels in obese -subjects, but gene expression levels of cardiotrophin-1 are down-regulated in white adipose tissue from diet-induced obese mice. It also shows anti-obesity and hypoglycemic properties. TWEAK is a potential regulator of the low-grade chronic inflammation characteristic of obesity. TWEAK levels seem not to be directly related to adiposity, and metabolic factors play a critical role in its regulation. Finally, a strong correlation has been found between plasma NOV/CCN3 concentration and fat mass. This adipokine improves insulin actions. PMID:28809783
Welch, David; Hassan, Hala; Blilou, Ikram; Immink, Richard; Heidstra, Renze; Scheres, Ben
2007-01-01
In the Arabidopsis root, the SHORT-ROOT transcription factor moves outward to the ground tissue from its site of transcription in the stele and is required for the specification of the endodermis and the stem cell organizing quiescent center cells. In addition, SHORT-ROOT and the downstream transcription factor SCARECROW control an oriented cell division in ground tissue stem cell daughters. Here, we show that the JACKDAW and MAGPIE genes, which encode members of a plant-specific family of zinc finger proteins, act in a SHR-dependent feed-forward loop to regulate the range of action of SHORT-ROOT and SCARECROW. JACKDAW expression is initiated independent of SHORT-ROOT and regulates the SCARECROW expression domain outside the stele, while MAGPIE expression depends on SHORT-ROOT and SCARECROW. We provide evidence that JACKDAW and MAGPIE regulate tissue boundaries and asymmetric cell division and can control SHORT-ROOT and SCARECROW activity in a transcriptional and protein interaction network. PMID:17785527
Growth factors in urologic tissues: detection, characterization, and clinical applications.
Mydlo, J H; Macchia, R J
1992-12-01
During the last two decades, enormous strides have been made in understanding cellular and molecular biology. The direction of treatment of many neoplasms and other diseases are starting at the microscopic level. Growth factors are polypeptides that play a part in the development and maintenance of living tissues. We, as well as others, have investigated the role that growth factors play particularly in urologic tissues, both benign and malignant. We review several well-known growth factors and their function in prostate, kidney, and bladder tissues, as well as their functions in other regulating processes of the human body, and also the use of growth factors as tumor markers, and antibodies to growth factors as possible treatment of disease.
Venables, Julian P.; Brosseau, Jean-Philippe; Gadea, Gilles; Klinck, Roscoe; Prinos, Panagiotis; Beaulieu, Jean-François; Lapointe, Elvy; Durand, Mathieu; Thibault, Philippe; Tremblay, Karine; Rousset, François; Tazi, Jamal; Abou Elela, Sherif
2013-01-01
Alternative splicing provides a critical and flexible layer of regulation intervening in many biological processes to regulate the diversity of proteins and impact cell phenotype. To identify alternative splicing differences that distinguish epithelial from mesenchymal tissues, we have investigated hundreds of cassette exons using a high-throughput reverse transcription-PCR (RT-PCR) platform. Extensive changes in splicing were noted between epithelial and mesenchymal tissues in both human colon and ovarian tissues, with many changes from mostly one splice variant to predominantly the other. Remarkably, many of the splicing differences that distinguish normal mesenchymal from normal epithelial tissues matched those that differentiate normal ovarian tissues from ovarian cancer. Furthermore, because splicing profiling could classify cancer cell lines according to their epithelial/mesenchymal characteristics, we used these cancer cell lines to identify regulators for these specific splicing signatures. By knocking down 78 potential splicing factors in five cell lines, we provide an extensive view of the complex regulatory landscape associated with the epithelial and mesenchymal states, thus revealing that RBFOX2 is an important driver of mesenchymal tissue-specific splicing. PMID:23149937
Intrinsic and Extrinsic Modifiers of the Regulative Capacity of the Developing Liver
Shin, Donghun; Weidinger, Gilbert; Moon, Randall T.; Stainier, Didier Y.R.
2012-01-01
Zebrafish wnt2bb mutants initially fail to form a liver, but surprisingly the liver eventually forms in a majority of these embryos which then develop into fertile adults. This unexpected result raised the possibility that identifying the mechanisms of liver formation in wnt2bb mutants could provide insights into the poorly understood yet general principle of regulative development, a process by which some cells can change fate in order to compensate for a deficiency. Here, we identify two factors that underlie the regulative capacity of endodermal tissues: an intrinsic factor, Sox32, a transcription factor of the SoxF subfamily, and an extrinsic factor, Fgf10a. sox32 is expressed in the extrahepatic duct primordium which is not affected in wnt2bb mutants. Blocking Sox32 function prevented liver formation in most wnt2bb mutants. fgf10a, which is expressed in the mesenchyme surrounding non-hepatic endodermal cells, negatively impacts the regulative capacity of endodermal tissues. In Wnt/β-catenin signaling deficient embryos, in which the liver completely fails to form, the repression of Fgf10a function allowed liver formation. Altogether, these studies reveal that there is more than one way to form a liver, and provide molecular insights into the phenomenon of tissue plasticity. PMID:22313811
Migliaccio, Silvia; Greco, Emanuela A; Wannenes, Francesca; Donini, Lorenzo M; Lenzi, Andrea
2014-01-01
The belief that obesity is protective against osteoporosis has recently been revised. In fact, the latest epidemiologic and clinical studies show that a high level of fat mass, but also reduced muscle mass, might be a risk factor for osteoporosis and fragility fractures. Furthermore, increasing evidence seems to indicate that different components such as myokines, adipokines and growth factors, released by both fat and muscle tissues, could play a key role in the regulation of skeletal health and in low bone mineral density and, thus, in osteoporosis development. This review considers old and recent data in the literature to further evaluate the relationship between fat, bone and muscle tissue.
Norambuena-Soto, Ignacio; Núñez-Soto, Constanza; Sanhueza-Olivares, Fernanda; Cancino-Arenas, Nicole; Mondaca-Ruff, David; Vivar, Raul; Díaz-Araya, Guillermo; Mellado, Rosemarie; Chiong, Mario
2017-05-23
Fibroblasts play several homeostatic roles, including electrical coupling, paracrine signaling and tissue repair after injury. Fibroblasts have low secretory activity. However, in response to injury, they differentiate to myofibroblasts. These cells have an increased extracellular matrix synthesis and secretion, including collagen fibers, providing stiffness to the tissue. In pathological conditions myofibroblasts became resistant to apoptosis, remaining in the tissue, causing excessive extracellular matrix secretion and deposition, which contributes to the progressive tissue remodeling. Therefore, increased myofibroblast content within damaged tissue is a characteristic hallmark of heart, lung, kidney and liver fibrosis. Recently, it was described that cardiac fibroblast to myofibroblast differentiation is triggered by the transforming growth factor β1 (TGF-β1) through a Smad-independent activation of Forkhead box O (FoxO). FoxO proteins are a transcription factor family that includes FoxO1, FoxO3, FoxO4 and FoxO6. In several cells types, they play an important role in cell cycle arrest, oxidative stress resistance, cell survival, energy metabolism, and cell death. Here, we review the role of FoxO family members on the regulation of cardiac fibroblast proliferation and differentiation.
Stow, Lisa R.; Jacobs, Mollie E.; Wingo, Charles S.; Cain, Brian D.
2011-01-01
Over two decades of research have demonstrated that the peptide hormone endothelin-1 (ET-1) plays multiple, complex roles in cardiovascular, neural, pulmonary, reproductive, and renal physiology. Differential and tissue-specific production of ET-1 must be tightly regulated in order to preserve these biologically diverse actions. The primary mechanism thought to control ET-1 bioavailability is the rate of transcription from the ET-1 gene (edn1). Studies conducted on a variety of cell types have identified key transcription factors that govern edn1 expression. With few exceptions, the cis-acting elements bound by these factors have been mapped in the edn1 regulatory region. Recent evidence has revealed new roles for some factors originally believed to regulate edn1 in a tissue or hormone-specific manner. In addition, other mechanisms involved in epigenetic regulation and mRNA stability have emerged as important processes for regulated edn1 expression. The goal of this review is to provide a comprehensive overview of the specific factors and signaling systems that govern edn1 activity at the molecular level.—Stow, L. R., Jacobs, M. E., Wingo, C. S., Cain, B. D. Endothelin-1 gene regulation. PMID:20837776
Research Resource: Aorta- and Liver-Specific ERα-Binding Patterns and Gene Regulation by Estrogen
Gordon, Francesca K.; Vallaster, Caroline S.; Westerling, Thomas; Iyer, Lakshmanan K.; Brown, Myles
2014-01-01
Estrogen has vascular protective effects in premenopausal women and in women younger than 60 years who are receiving hormone replacement therapy. However, estrogen also increases the risks of breast and uterine cancers and of venous thromboses linked to up-regulation of coagulation factors in the liver. In mouse models, the vasculoprotective effects of estrogen are mediated by the estrogen receptor α (ERα) transcription factor. Here, through next-generation sequencing approaches, we show that almost all of the genes regulated by 17β-estradiol (E2) differ between mouse aorta and mouse liver, ex vivo, and that this difference is associated with a distinct genomewide distribution of ERα on chromatin. Bioinformatic analysis of E2-regulated promoters and ERα binding site sequences identify several transcription factors that may determine the tissue specificity of ERα binding and E2-regulated genes, including the enrichment of NF-κB, AML1, and AP1 sites in the promoters of E2 down-regulated inflammatory genes in aorta but not liver. The possible vascular-specific functions of these factors suggest ways in which the protective effects of estrogen could be promoted in the vasculature without incurring negative effects in other tissues. PMID:24992180
Tissue-Specific Regulation of Chromatin Insulator Function
Matzat, Leah H.; Dale, Ryan K.; Moshkovich, Nellie; Lei, Elissa P.
2012-01-01
Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type–specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP–seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator. PMID:23209434
Development, regulation, metabolism and function of bone marrow adipose tissues.
Li, Ziru; Hardij, Julie; Bagchi, Devika P; Scheller, Erica L; MacDougald, Ormond A
2018-05-01
Most adipocytes exist in discrete depots throughout the body, notably in well-defined white and brown adipose tissues. However, adipocytes also reside within specialized niches, of which the most abundant is within bone marrow. Whereas bone marrow adipose tissue (BMAT) shares many properties in common with white adipose tissue, the distinct functions of BMAT are reflected by its development, regulation, protein secretion, and lipid composition. In addition to its potential role as a local energy reservoir, BMAT also secretes proteins, including adiponectin, RANK ligand, dipeptidyl peptidase-4, and stem cell factor, which contribute to local marrow niche functions and which may also influence global metabolism. The characteristics of BMAT are also distinct depending on whether marrow adipocytes are contained within yellow or red marrow, as these can be thought of as 'constitutive' and 'regulated', respectively. The rBMAT for instance can be expanded or depleted by myriad factors, including age, nutrition, endocrine status and pharmaceuticals. Herein we review the site specificity, age-related development, regulation and metabolic characteristics of BMAT under various metabolic conditions, including the functional interactions with bone and hematopoietic cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Andrew, Audra L; Perry, Blair W; Card, Daren C; Schield, Drew R; Ruggiero, Robert P; McGaugh, Suzanne E; Choudhary, Amit; Secor, Stephen M; Castoe, Todd A
2017-05-02
Previous studies examining post-feeding organ regeneration in the Burmese python (Python molurus bivittatus) have identified thousands of genes that are significantly differentially regulated during this process. However, substantial gaps remain in our understanding of coherent mechanisms and specific growth pathways that underlie these rapid and extensive shifts in organ form and function. Here we addressed these gaps by comparing gene expression in the Burmese python heart, liver, kidney, and small intestine across pre- and post-feeding time points (fasted, one day post-feeding, and four days post-feeding), and by conducting detailed analyses of molecular pathways and predictions of upstream regulatory molecules across these organ systems. Identified enriched canonical pathways and upstream regulators indicate that while downstream transcriptional responses are fairly tissue specific, a suite of core pathways and upstream regulator molecules are shared among responsive tissues. Pathways such as mTOR signaling, PPAR/LXR/RXR signaling, and NRF2-mediated oxidative stress response are significantly differentially regulated in multiple tissues, indicative of cell growth and proliferation along with coordinated cell-protective stress responses. Upstream regulatory molecule analyses identify multiple growth factors, kinase receptors, and transmembrane receptors, both within individual organs and across separate tissues. Downstream transcription factors MYC and SREBF are induced in all tissues. These results suggest that largely divergent patterns of post-feeding gene regulation across tissues are mediated by a core set of higher-level signaling molecules. Consistent enrichment of the NRF2-mediated oxidative stress response indicates this pathway may be particularly important in mediating cellular stress during such extreme regenerative growth.
Importance of dual delivery systems for bone tissue engineering.
Farokhi, Mehdi; Mottaghitalab, Fatemeh; Shokrgozar, Mohammad Ali; Ou, Keng-Liang; Mao, Chuanbin; Hosseinkhani, Hossein
2016-03-10
Bone formation is a complex process that requires concerted function of multiple growth factors. For this, it is essential to design a delivery system with the ability to load multiple growth factors in order to mimic the natural microenvironment for bone tissue formation. However, the short half-lives of growth factors, their relatively large size, slow tissue penetration, and high toxicity suggest that conventional routes of administration are unlikely to be effective. Therefore, it seems that using multiple bioactive factors in different delivery systems can develop new strategies for improving bone tissue regeneration. Combination of these factors along with biomaterials that permit tunable release profiles would help to achieve truly spatiotemporal regulation during delivery. This review summarizes the various dual-control release systems that are used for bone tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.
Regulation of macrophage development and function in peripheral tissues
Lavin, Yonit; Mortha, Arthur; Rahman, Adeeb; Merad, Miriam
2015-01-01
Macrophages are immune cells of haematopoietic origin that provide crucial innate immune defence and have tissue-specific functions in the regulation and maintenance of organ homeostasis. Recent studies of macrophage ontogeny, as well as transcriptional and epigenetic identity, have started to reveal the decisive role of the tissue stroma in the regulation of macrophage function. These findings suggest that most macrophages seed the tissues during embryonic development and functionally specialize in response to cytokines and metabolites that are released by the stroma and drive the expression of unique transcription factors. In this Review, we discuss how recent insights into macrophage ontogeny and macrophage–stroma interactions contribute to our understanding of the crosstalk that shapes macrophage function and the maintenance of organ integrity. PMID:26603899
Redundant role of tissue-selective TAF(II)105 in B lymphocytes.
Freiman, Richard N; Albright, Shane R; Chu, Leslie E; Zheng, Shuang; Liang, Hong-Erh; Sha, William C; Tjian, Robert
2002-09-01
Regulated gene expression is a complex process achieved through the function of multiple protein factors acting in concert at a given promoter. The transcription factor TFIID is a central component of the machinery regulating mRNA synthesis by RNA polymerase II. This large multiprotein complex is composed of the TATA box binding protein (TBP) and several TBP-associated factors (TAF(II)s). The recent discovery of multiple TBP-related factors and tissue-specific TAF(II)s suggests the existence of specialized TFIID complexes that likely play a critical role in regulating transcription in a gene- and tissue-specific manner. The tissue-selective factor TAF(II)105 was originally identified as a component of TFIID derived from a human B-cell line. In this report we demonstrate the specific induction of TAF(II)105 in cultured B cells in response to bacterial lipopolysaccharide (LPS). To examine the in vivo role of TAF(II)105, we have generated TAF(II)105-null mice by homologous recombination. Here we show that B-lymphocyte development is largely unaffected by the absence of TAF(II)105. TAF(II)105-null B cells can proliferate in response to LPS, produce relatively normal levels of resting antibodies, and can mount an immune response by producing antigen-specific antibodies in response to immunization. Taken together, we conclude that the function of TAF(II)105 in B cells is likely redundant with the function of other TAF(II)105-related cellular proteins.
Albert, Nick W; Lewis, David H; Zhang, Huaibi; Schwinn, Kathy E; Jameson, Paula E; Davies, Kevin M
2011-03-01
We present an investigation of anthocyanin regulation over the entire petunia plant, determining the mechanisms governing complex floral pigmentation patterning and environmentally induced vegetative anthocyanin synthesis. DEEP PURPLE (DPL) and PURPLE HAZE (PHZ) encode members of the R2R3-MYB transcription factor family that regulate anthocyanin synthesis in petunia, and control anthocyanin production in vegetative tissues and contribute to floral pigmentation. In addition to these two MYB factors, the basic helix-loop-helix (bHLH) factor ANTHOCYANIN1 (AN1) and WD-repeat protein AN11, are also essential for vegetative pigmentation. The induction of anthocyanins in vegetative tissues by high light was tightly correlated to the induction of transcripts for PHZ and AN1. Interestingly, transcripts for PhMYB27, a putative R2R3-MYB active repressor, were highly expressed during non-inductive shade conditions and repressed during high light. The competitive inhibitor PhMYBx (R3-MYB) was expressed under high light, which may provide feedback repression. In floral tissues DPL regulates vein-associated anthocyanin pigmentation in the flower tube, while PHZ determines light-induced anthocyanin accumulation on exposed petal surfaces (bud-blush). A model is presented suggesting how complex floral and vegetative pigmentation patterns are derived in petunia in terms of MYB, bHLH and WDR co-regulators. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Regulation of LPS-induced tissue factor expression in human monocytic THP-1 cells by curcumin
USDA-ARS?s Scientific Manuscript database
Tissue factor (TF) is a transmembrane receptor, which initiates thrombotic episodes associated with various diseases. In addition to membrane-bound TF, we have discovered an alternatively spliced form of human TF mRNA. It was later confirmed that this form of TF mRNA expresses a soluble protein circ...
SP and KLF Transcription Factors in Digestive Physiology and Diseases.
Kim, Chang-Kyung; He, Ping; Bialkowska, Agnieszka B; Yang, Vincent W
2017-06-01
Specificity proteins (SPs) and Krüppel-like factors (KLFs) belong to the family of transcription factors that contain conserved zinc finger domains involved in binding to target DNA sequences. Many of these proteins are expressed in different tissues and have distinct tissue-specific activities and functions. Studies have shown that SPs and KLFs regulate not only physiological processes such as growth, development, differentiation, proliferation, and embryogenesis, but pathogenesis of many diseases, including cancer and inflammatory disorders. Consistently, these proteins have been shown to regulate normal functions and pathobiology in the digestive system. We review recent findings on the tissue- and organ-specific functions of SPs and KLFs in the digestive system including the oral cavity, esophagus, stomach, small and large intestines, pancreas, and liver. We provide a list of agents under development to target these proteins. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Majeská Čudejková, Mária; Vojta, Petr; Valík, Josef; Galuszka, Petr
2016-09-25
The fungus Claviceps purpurea is a biotrophic phytopathogen widely used in the pharmaceutical industry for its ability to produce ergot alkaloids (EAs). The fungus attacks unfertilized ovaries of grasses and forms sclerotia, which represent the only type of tissue where the synthesis of EAs occurs. The biosynthetic pathway of EAs has been extensively studied; however, little is known concerning its regulation. Here, we present the quantitative transcriptome analysis of the sclerotial and mycelial tissues providing a comprehensive view of transcriptional differences between the tissues that produce EAs and those that do not produce EAs and the pathogenic and non-pathogenic lifestyle. The results indicate metabolic changes coupled with sclerotial differentiation, which are likely needed as initiation factors for EA biosynthesis. One of the promising factors seems to be oxidative stress. Here, we focus on the identification of putative transcription factors and regulators involved in sclerotial differentiation, which might be involved in EA biosynthesis. To shed more light on the regulation of EA composition, whole transcriptome analysis of four industrial strains differing in their alkaloid spectra was performed. The results support the hypothesis proposing the composition of the amino acid pool in sclerotia to be an important factor regulating the final structure of the ergopeptines produced by Claviceps purpurea. Copyright © 2016 Elsevier B.V. All rights reserved.
Tran, Cassie M; Shapiro, Irving M; Risbud, Makarand V
2013-08-08
Connective tissue growth factor (CCN2/CTGF) plays an important role in extracellular matrix synthesis, especially in skeletal tissues such as cartilage, bone, and the intervertebral disc. As a result there is a growing interest in examining the function and regulation of this important molecule in the disc. This review discusses the regulation of CCN2 by TGF-β and hypoxia, two critical determinants that characterize the disc microenvironment, and discusses known functions of CCN2 in the disc. The almost ubiquitous regulation of CCN2 by TGF-β, including that seen in the disc, emphasizes the importance of the TGF-β-CCN2 relationship, especially in terms of extracellular matrix synthesis. Likewise, the unique cross-talk between CCN2 and HIF-1 in the disc highlights the tissue and niche specific mode of regulation. Taken together the current literature supports an anabolic role for CCN2 in the disc and its involvement in the maintenance of tissue homeostasis during both health and disease. Further studies of CCN2 in this tissue may reveal valuable targets for the biological therapy of disc degeneration. © 2013 Elsevier B.V. All rights reserved.
Connective tissue growth factor (CTGF) and cancer progression.
Chu, Chia-Yu; Chang, Cheng-Chi; Prakash, Ekambaranellore; Kuo, Min-Liang
2008-11-01
Connective tissue growth factor (CTGF) is a member of the CCN family of secreted, matrix-associated proteins encoded by immediate early genes that play various roles in angiogenesis and tumor growth. CCN family proteins share uniform modular structure which mediates various cellular functions such as regulation of cell division, chemotaxis, apoptosis, adhesion, motility, angiogenesis, neoplastic transformation, and ion transport. Recently, CTGF expression has been shown to be associated with tumor development and progression. There is growing body of evidence that CTGF may regulate cancer cell migration, invasion, angiogenesis, and anoikis. In this review, we will highlight the influence of CTGF expression on the biological behavior and progression of various cancer cells, as well as its regulation on various types of protein signals and their mechanisms.
Tischner, Christin; Hofer, Annette; Wulff, Veronika; Stepek, Joanna; Dumitru, Iulia; Becker, Lore; Haack, Tobias; Kremer, Laura; Datta, Alexandre N.; Sperl, Wolfgang; Floss, Thomas; Wurst, Wolfgang; Chrzanowska-Lightowlers, Zofia; De Angelis, Martin Hrabe; Klopstock, Thomas; Prokisch, Holger; Wenz, Tina
2015-01-01
Mitochondrial diseases often exhibit tissue-specific pathologies, but this phenomenon is poorly understood. Here we present regulation of mitochondrial translation by the Mitochondrial Translation Optimization Factor 1, MTO1, as a novel player in this scenario. We demonstrate that MTO1 mediates tRNA modification and controls mitochondrial translation rate in a highly tissue-specific manner associated with tissue-specific OXPHOS defects. Activation of mitochondrial proteases, aberrant translation products, as well as defects in OXPHOS complex assembly observed in MTO1 deficient mice further imply that MTO1 impacts translation fidelity. In our mouse model, MTO1-related OXPHOS deficiency can be bypassed by feeding a ketogenic diet. This therapeutic intervention is independent of the MTO1-mediated tRNA modification and involves balancing of mitochondrial and cellular secondary stress responses. Our results thereby establish mammalian MTO1 as a novel factor in the tissue-specific regulation of OXPHOS and fine tuning of mitochondrial translation accuracy. PMID:25552653
Simm, Stefan; Paupière, Marine Josephine; Theres, Klaus; Bovy, Arnaud; Schleiff, Enrico; Scharf, Klaus-Dieter
2016-01-01
Male reproductive tissues are more sensitive to heat stress (HS) compared to vegetative tissues, but the basis of this phenomenon is poorly understood. Heat stress transcription factors (Hsfs) regulate the transcriptional changes required for protection from HS. In tomato (Solanum lycopersicum), HsfA2 acts as coactivator of HsfA1a and is one of the major Hsfs accumulating in response to elevated temperatures. The contribution of HsfA2 in heat stress response (HSR) and thermotolerance was investigated in different tissues of transgenic tomato plants with suppressed HsfA2 levels (A2AS). Global transcriptome analysis and immunodetection of two major Hsps in vegetative and reproductive tissues showed that HsfA2 regulates subsets of HS-induced genes in a tissue-specific manner. Accumulation of HsfA2 by a moderate HS treatment enhances the capacity of seedlings to cope with a subsequent severe HS, suggesting an important role for HsfA2 in regulating acquired thermotolerance. In pollen, HsfA2 is an important coactivator of HsfA1a during HSR. HsfA2 suppression reduces the viability and germination rate of pollen that received the stress during the stages of meiosis and microspore formation but had no effect on more advanced stages. In general, pollen meiocytes and microspores are characterized by increased susceptibility to HS due to their lower capacity to induce a strong HSR. This sensitivity is partially mitigated by the developmentally regulated expression of HsfA2 and several HS-responsive genes mediated by HsfA1a under nonstress conditions. Thereby, HsfA2 is an important factor for the priming process that sustains pollen thermotolerance during microsporogenesis. PMID:26917685
Effect of hypoxia on tissue factor pathway inhibitor expression in breast cancer.
Cui, X Y; Tinholt, M; Stavik, B; Dahm, A E A; Kanse, S; Jin, Y; Seidl, S; Sahlberg, K K; Iversen, N; Skretting, G; Sandset, P M
2016-02-01
ESSENTIALS: A hypoxic microenvironment is a common feature of tumors that may influence activation of coagulation. MCF-7 and SK-BR-3 breast cancer cells and breast cancer tissue samples were used. The results showed transcriptional repression of tissue factor pathway inhibitor expression in hypoxia. Hypoxia-inducible factor 1α may be a target for the therapy of cancer-related coagulation and thrombosis. Activation of coagulation is a common finding in patients with cancer, and is associated with an increased risk of venous thrombosis. As a hypoxic microenvironment is a common feature of solid tumors, we investigated the role of hypoxia in the regulation of tissue factor (TF) pathway inhibitor (TFPI) expression in breast cancer. To explore the transcriptional regulation of TFPI by hypoxia-inducible factor (HIF)-1α in breast cancer cells and their correlation in breast cancer tissues. MCF-7 and SK-BR-3 breast cancer cells were cultured in 1% oxygen or treated with cobalt chloride (CoCl2 ) to mimic hypoxia. Time-dependent and dose-dependent downregulation of TFPI mRNA (quantitative RT-PCR) and of free TFPI protein (ELISA) were observed in hypoxia. Western blotting showed parallel increases in the levels of HIF-1α protein and TF. HIF-1α inhibitor abolished or attenuated the hypoxia-induced downregulation of TFPI. Luciferase reporter assay showed that both hypoxia and HIF-1α overexpression caused strong repression of TFPI promoter activity. Subsequent chromatin immunoprecipitation and mutagenesis analysis demonstrated a functional hypoxia response element within the TFPI promoter, located at -1065 to -1060 relative to the transcriptional start point. In breast cancer tissue samples, gene expression analyses showed a positive correlation between the mRNA expression of TFPI and that of HIF-1α. This study demonstrates that HIF-1α is involved in the transcriptional regulation of the TFPI gene, and suggests that a hypoxic microenvironment inside a breast tumor may induce a procoagulant state in breast cancer patients. © 2015 International Society on Thrombosis and Haemostasis.
Cartilage Engineering from Mesenchymal Stem Cells
NASA Astrophysics Data System (ADS)
Goepfert, C.; Slobodianski, A.; Schilling, A. F.; Adamietz, P.; Pörtner, R.
Mesenchymal progenitor cells known as multipotent mesenchymal stromal cells or mesenchymal stem cells (MSC) have been isolated from various tissues. Since they are able to differentiate along the mesenchymal lineages of cartilage and bone, they are regarded as promising sources for the treatment of skeletal defects. Tissue regeneration in the adult organism and in vitro engineering of tissues is hypothesized to follow the principles of embryogenesis. The embryonic development of the skeleton has been studied extensively with respect to the regulatory mechanisms governing morphogenesis, differentiation, and tissue formation. Various concepts have been designed for engineering tissues in vitro based on these developmental principles, most of them involving regulatory molecules such as growth factors or cytokines known to be the key regulators in developmental processes. Growth factors most commonly used for in vitro cultivation of cartilage tissue belong to the fibroblast growth factor (FGF) family, the transforming growth factor-beta (TGF-β) super-family, and the insulin-like growth factor (IGF) family. In this chapter, in vivo actions of members of these growth factors described in the literature are compared with in vitro concepts of cartilage engineering making use of these growth factors.
Tissue mechanics and fibrosis.
Wells, Rebecca G
2013-07-01
Mechanical forces are essential to the development and progression of fibrosis, and are likely to be as important as soluble factors. These forces regulate the phenotype and proliferation of myofibroblasts and other cells in damaged tissues, the activation of growth factors, the structure and mechanics of the matrix, and, potentially, tissue patterning. Better understanding of the variety and magnitude of forces, the characteristics of those forces in biological tissues, and their impact on fibrosis in multiple tissues is needed and may lead to identification of important new therapeutic targets. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease. Copyright © 2013 Elsevier B.V. All rights reserved.
Tissue engineering in endodontics.
Saber, Shehab El-Din M
2009-12-01
Tissue engineering is the science of design and manufacture of new tissues to replace impaired or damaged ones. The key ingredients for tissue engineering are stem cells, the morphogens or growth factors that regulate their differentiation, and a scaffold of extracellular matrix that constitutes the microenvironment for their growth. Recently, there has been increasing interest in applying the concept of tissue engineering to endodontics. The aim of this study was to review the body of knowledge related to dental pulp stem cells, the most common growth factors, and the scaffolds used to control their differentiation, and a clinical technique for the management of immature non-vital teeth based on this novel concept.
Lynch, Lydia; Michelet, Xavier; Zhang, Sai; Brennan, Patrick J.; Moseman, Ashley; Lester, Chantel; Besra, Gurdyal; Vomhof-Dekrey, Emilie E.; Tighe, Mike; Koay, Hui-Fern; Godfrey, Dale I.; Leadbetter, Elizabeth A.; Sant’Angelo, Derek B.; von Andrian, Ulrich; Brenner, Michael B.
2015-01-01
iNKT cells are CD1d-restricted lipid-sensing innate T cells that express the transcription factor PLZF. iNKT cells accumulate in adipose tissue, where they are anti-inflammatory, but the factors that contribute to their anti-inflammatory nature, and their targets in adipose tissue are unknown. Here we report that adipose tissue iNKT cells have a unique transcriptional program and produce interleukin 2 (IL-2) and IL-10. Unlike other iNKT cells, they lack PLZF, but express the transcription factor E4BP4, which controls their IL-10 production. Adipose iNKT cells are a tissue resident population that induces an anti-inflammatory phenotype in macrophages and, through production of IL-2, controls the number, proliferation and suppressor function of adipose regulatory T (Treg) cells. Thus, adipose tissue iNKT cells are unique regulators of immune homeostasis in this tissue. PMID:25436972
Carson, S D
1996-04-01
Cultured fibroblasts treated with increasing concentrations of detergents expressed only encrypted levels of tissue factor activity (measured by fX activation in the presence of fVIIa), characteristic of undamaged cells, until each detergent reached a critical concentration at which the cryptic tissue factor activity was manifested. Beyond the narrow ranges of concentrations over which the detergents stimulated tissue factor activity, the detergents were inhibitory. Studies with Triton X-100 and octyl glucoside revealed that manifestation of tissue factor activity coincided with breakdown of the plasma membrane. The magnitude of the increased tissue factor activity differed among detergents, with octyl glucoside giving the largest response. The tissue factor that was active after Triton X-100 treatment remained mostly associated with the insoluble cell residue, whereas the concentration of octyl glucoside which stimulated activity released tissue factor activity into the supernatant. Radiolabeled antibody against human tissue factor was used to show that a small percentage of the total accessible tissue factor remained in the insoluble fraction after treatment with either non-ionic detergent. Chromatographic analysis of lipids extracted from cells treated with detergents and dansyl chloride showed dansyl-reactivity of phosphatidylserine on intact cells, and solubilization of membrane lipids at sublytic concentrations of detergents. These findings reveal that there is a critical level of detergent-induced membrane damage at which tissue factor activity is maximally expressed, in essentially an all-or-none manner. The results are consistent with a major role for phospholipid asymmetry in regulation of tissue factor specific activity, but require either maintenance of asymmetry during sublytic detergent perturbation of the plasma membrane or additional control mechanisms.
Cheung, Laurence C; Strickland, Deborah H; Howlett, Meegan; Ford, Jette; Charles, Adrian K; Lyons, Karen M; Brigstock, David R; Goldschmeding, Roel; Cole, Catherine H; Alexander, Warren S; Kees, Ursula R
2014-07-01
Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis. Copyright© Ferrata Storti Foundation.
Cheung, Laurence C.; Strickland, Deborah H.; Howlett, Meegan; Ford, Jette; Charles, Adrian K.; Lyons, Karen M.; Brigstock, David R.; Goldschmeding, Roel; Cole, Catherine H.; Alexander, Warren S.; Kees, Ursula R.
2014-01-01
Hematopoiesis occurs in a complex bone marrow microenvironment in which bone marrow stromal cells provide critical support to the process through direct cell contact and indirectly through the secretion of cytokines and growth factors. We report that connective tissue growth factor (Ctgf, also known as Ccn2) is highly expressed in murine bone marrow stromal cells. In contrast, connective tissue growth factor is barely detectable in unfractionated adult bone marrow cells. While connective tissue growth factor has been implicated in hematopoietic malignancies, and is known to play critical roles in skeletogenesis and regulation of bone marrow stromal cells, its role in hematopoiesis has not been described. Here we demonstrate that the absence of connective tissue growth factor in mice results in impaired hematopoiesis. Using a chimeric fetal liver transplantation model, we show that absence of connective tissue growth factor has an impact on B-cell development, in particular from pro-B to more mature stages, which is linked to a requirement for connective tissue growth factor in bone marrow stromal cells. Using in vitro culture systems, we demonstrate that connective tissue growth factor potentiates B-cell proliferation and promotes pro-B to pre-B differentiation in the presence of interleukin-7. This study provides a better understanding of the functions of connective tissue growth factor within the bone marrow, showing the dual regulatory role of the growth factor in skeletogenesis and in stage-specific B lymphopoiesis. PMID:24727816
Iwami, Daiki; Brinkman, C Colin; Bromberg, Jonathan S
2015-04-01
Circulation of leukocytes via blood, tissue and lymph is integral to adaptive immunity. Afferent lymphatics form CCL21 gradients to guide dendritic cells and T cells to lymphatics and then to draining lymph nodes (dLN). Vascular endothelial growth factor C and vascular endothelial growth factor receptor 3 (VEGFR-3) are the major lymphatic growth factor and receptor. We hypothesized these molecules also regulate chemokine gradients and lymphatic migration. CD4 T cells were injected into the foot pad or ear pinnae, and migration to afferent lymphatics and dLN quantified by flow cytometry or whole mount immunohistochemistry. Vascular endothelial growth factor receptor 3 or its signaling or downstream actions were modified with blocking monoclonal antibodies (mAbs) or other reagents. Anti-VEGFR-3 prevented migration of CD4 T cells into lymphatic lumen and significantly decreased the number that migrated to dLN. Anti-VEGFR-3 abolished CCL21 gradients around lymphatics, although CCL21 production was not inhibited. Heparan sulfate (HS), critical to establish CCL21 gradients, was down-regulated around lymphatics by anti-VEGFR-3 and this was dependent on heparanase-mediated degradation. Moreover, a Phosphoinositide 3-kinase (PI3K)α inhibitor disrupted HS and CCL21 gradients, whereas a PI3K activator prevented the effects of anti-VEGFR-3. During contact hypersensitivity, VEGFR-3, CCL21, and HS expression were all attenuated, and anti-heparanase or PI3K activator reversed these effects. Vascular endothelial growth factor C/VEGFR-3 signaling through PI3Kα regulates the activity of heparanase, which modifies HS and CCL21 gradients around lymphatics. The functional and physical linkages of these molecules regulate lymphatic migration from tissues to dLN. These represent new therapeutic targets to influence immunity and inflammation.
Kohlgruber, Ayano C; Gal-Oz, Shani T; LaMarche, Nelson M; Shimazaki, Moto; Duquette, Danielle; Nguyen, Hung N; Mina, Amir I; Paras, Tyler; Tavakkoli, Ali; von Andrian, Ulrich; Banks, Alexander S; Shay, Tal; Brenner, Michael B; Lynch, Lydia
2018-05-01
γδ T cells are situated at barrier sites and guard the body from infection and damage. However, little is known about their roles outside of host defense in nonbarrier tissues. Here, we characterize a highly enriched tissue-resident population of γδ T cells in adipose tissue that regulate age-dependent regulatory T cell (T reg ) expansion and control core body temperature in response to environmental fluctuations. Mechanistically, innate PLZF + γδ T cells produced tumor necrosis factor and interleukin (IL) 17 A and determined PDGFRα + and Pdpn + stromal-cell production of IL-33 in adipose tissue. Mice lacking γδ T cells or IL-17A exhibited decreases in both ST2 + T reg cells and IL-33 abundance in visceral adipose tissue. Remarkably, these mice also lacked the ability to regulate core body temperature at thermoneutrality and after cold challenge. Together, these findings uncover important physiological roles for resident γδ T cells in adipose tissue immune homeostasis and body-temperature control.
Puttabyatappa, Muraly; Al-Alem, Linah F; Zakerkish, Farnosh; Rosewell, Katherine L; Brännström, Mats; Curry, Thomas E
2017-01-01
Increased proteolytic activity is a key event that aids in breakdown of the follicular wall to permit oocyte release. How the protease activity is regulated is still unknown. We hypothesize that tissue factor pathway inhibitor 2 (TFPI2), a Kunitz-type serine protease inhibitor, plays a role in regulating periovulatory proteolytic activity as in other tissues. TFPI2 is secreted into the extracellular matrix (ECM) where it is postulated to regulate physiological ECM remodeling. The expression profile of TFPI2 during the periovulatory period was assessed utilizing a well-characterized human menstrual cycle model and a gonadotropin-primed rat model. Administration of an ovulatory dose of human chorionic gonadotropin (hCG) increased TFPI2 expression dramatically in human and rat granulosa and theca cells. This increase in Tfpi2 expression in rat granulosa cells required hCG-mediated epidermal growth factor, protein kinase A, mitogen-activated protein kinase (MAPK) 1/2, p38 MAPK and protease activated receptor 1-dependent cell signaling. A small interferingRNA-mediated knockdown of TFPI2 in rat granulosa cells resulted in increased plasmin activity in the granulosa cell conditioned media. Knockdown of TFPI2 also reduced expression of multiple genes including interleukin 6 (Il6) and amphiregulin (Areg). Overexpression of TFPI2 using an adenoviral vector partially restored the expression of Il6 and Areg in TFPI2 siRNA treated rat granulosa cells. These data support the hypothesis that TFPI2 is important for moderating plasmin activity and regulating granulosa cell gene expression during the periovulatory period. We, therefore, propose that through these actions, TFPI2 aids in the tissue remodeling taking place during follicular rupture and corpus luteum formation. Copyright © 2017 by the Endocrine Society.
Puttabyatappa, Muraly; Al-Alem, Linah F.; Zakerkish, Farnosh; Rosewell, Katherine L.; Brännström, Mats
2017-01-01
Increased proteolytic activity is a key event that aids in breakdown of the follicular wall to permit oocyte release. How the protease activity is regulated is still unknown. We hypothesize that tissue factor pathway inhibitor 2 (TFPI2), a Kunitz-type serine protease inhibitor, plays a role in regulating periovulatory proteolytic activity as in other tissues. TFPI2 is secreted into the extracellular matrix (ECM) where it is postulated to regulate physiological ECM remodeling. The expression profile of TFPI2 during the periovulatory period was assessed utilizing a well-characterized human menstrual cycle model and a gonadotropin-primed rat model. Administration of an ovulatory dose of human chorionic gonadotropin (hCG) increased TFPI2 expression dramatically in human and rat granulosa and theca cells. This increase in Tfpi2 expression in rat granulosa cells required hCG-mediated epidermal growth factor, protein kinase A, mitogen-activated protein kinase (MAPK) 1/2, p38 MAPK and protease activated receptor 1-dependent cell signaling. A small interferingRNA-mediated knockdown of TFPI2 in rat granulosa cells resulted in increased plasmin activity in the granulosa cell conditioned media. Knockdown of TFPI2 also reduced expression of multiple genes including interleukin 6 (Il6) and amphiregulin (Areg). Overexpression of TFPI2 using an adenoviral vector partially restored the expression of Il6 and Areg in TFPI2 siRNA treated rat granulosa cells. These data support the hypothesis that TFPI2 is important for moderating plasmin activity and regulating granulosa cell gene expression during the periovulatory period. We, therefore, propose that through these actions, TFPI2 aids in the tissue remodeling taking place during follicular rupture and corpus luteum formation. PMID:27813674
Amit, Ido; Winter, Deborah R; Jung, Steffen
2016-01-01
Macrophages provide a critical systemic network cells of the innate immune system. Emerging data suggest that in addition, they have important tissue-specific functions that range from clearance of surfactant from the lungs to neuronal pruning and establishment of gut homeostasis. The differentiation and tissue-specific activation of macrophages require precise regulation of gene expression, a process governed by epigenetic mechanisms such as DNA methylation, histone modification and chromatin structure. We argue that epigenetic regulation of macrophages is determined by lineage- and tissue-specific transcription factors controlled by the built-in programming of myeloid development in combination with signaling from the tissue environment. Perturbation of epigenetic mechanisms of tissue macrophage identity can affect normal macrophage tissue function and contribute to pathologies ranging from obesity and autoimmunity to neurodegenerative diseases.
Phagocytosis imprints heterogeneity in tissue-resident macrophages
A-Gonzalez, Noelia; Quintana, Juan A.; Mazariegos, Marina; González de la Aleja, Arturo; Nicolás-Ávila, José A.; Crainiciuc, Georgiana; Rothlin, Carla V.; Peinado, Héctor; Castrillo, Antonio
2017-01-01
Tissue-resident macrophages display varying phenotypic and functional properties that are largely specified by their local environment. One of these functions, phagocytosis, mediates the natural disposal of billions of cells, but its mechanisms and consequences within living tissues are poorly defined. Using a parabiosis-based strategy, we identified and isolated macrophages from multiple tissues as they phagocytosed blood-borne cellular material. Phagocytosis was circadianally regulated and mediated by distinct repertoires of receptors, opsonins, and transcription factors in macrophages from each tissue. Although the tissue of residence defined the core signature of macrophages, phagocytosis imprinted a distinct antiinflammatory profile. Phagocytic macrophages expressed CD206, displayed blunted expression of Il1b, and supported tissue homeostasis. Thus, phagocytosis is a source of macrophage heterogeneity that acts together with tissue-derived factors to preserve homeostasis. PMID:28432199
Transforming growth factor β as regulator of cancer stemness and metastasis
Bellomo, Claudia; Caja, Laia; Moustakas, Aristidis
2016-01-01
Key elements of cancer progression towards metastasis are the biological actions of cancer stem cells and stromal cells in the tumour microenvironment. Cross-communication between tumour and stromal cells is mediated by secreted cytokines, one of which, the transforming growth factor β (TGFβ), regulates essentially every cell within the malignant tissue. In this article, we focus on the actions of TGFβ on cancer stem cells, cancer-associated fibroblasts and immune cells that assist the overall process of metastatic dissemination. We aim at illustrating intricate connections made by various cells in the tumour tissue and which depend on the action of TGFβ. PMID:27537386
Lynch, Lydia; Michelet, Xavier; Zhang, Sai; Brennan, Patrick J; Moseman, Ashley; Lester, Chantel; Besra, Gurdyal; Vomhof-Dekrey, Emilie E; Tighe, Mike; Koay, Hui-Fern; Godfrey, Dale I; Leadbetter, Elizabeth A; Sant'Angelo, Derek B; von Andrian, Ulrich; Brenner, Michael B
2015-01-01
Invariant natural killer T cells (iNKT cells) are lipid-sensing innate T cells that are restricted by the antigen-presenting molecule CD1d and express the transcription factor PLZF. iNKT cells accumulate in adipose tissue, where they are anti-inflammatory, but the factors that contribute to their anti-inflammatory nature, as well as their targets in adipose tissue, are unknown. Here we found that iNKT cells in adipose tissue had a unique transcriptional program and produced interleukin 2 (IL-2) and IL-10. Unlike other iNKT cells, they lacked PLZF but expressed the transcription factor E4BP4, which controlled their IL-10 production. The adipose iNKT cells were a tissue-resident population that induced an anti-inflammatory phenotype in macrophages and, through the production of IL-2, controlled the number, proliferation and suppressor function of regulatory T cells (Treg cells) in adipose tissue. Thus, iNKT cells in adipose tissue are unique regulators of immunological homeostasis in this tissue.
Therapeutic modulation of growth factors and cytokines in regenerative medicine.
Ioannidou, Effie
2006-01-01
Regeneration that takes place in the human body is limited throughout life. Therefore, when organs are irreparably damaged, they are usually replaced with an artificial device or donor organ. The term "regenerative medicine" covers the restoration or replacement of cells, tissues, and organs. Stem cells play a major role in regenerative medicine by providing the way to repopulate organs damaged by disease. Stem cells have the ability to self renew and to regenerate cells of diverse lineages within the tissue in which they reside. Stem cells could originate from embryos or adult tissues. Growth factors are proteins that may act locally or systemically to affect the growth of cells in several ways. Various cell activities, including division, are influenced by growth factors. Cytokines are a family of low-molecular-weight proteins that are produced by numerous cell types and are responsible for regulating the immune response, inflammation, tissue remodeling and cellular differentiation. Target cells of growth factors and cytokines are mesenchymal, epithelial and endothelial cells. These molecules frequently have overlapping activities and can act in an autocrine or paracrine fashion. A complex network of growth factors and cytokines guides cellular differentiation and regeneration in all organs and tissues. The aim of this paper is to review the role of growth factors and cytokines in different organs or systems and explore their therapeutic application in regenerative medicine. The role of stem cells combined with growth factors and cytokines in the regeneration of vascular and hematopoietic, neural, skeletal, pancreatic, periodontal, and mucosal tissue is reviewed. There is evidence that supports the use of growth factors and cytokines in the treatment of neurological diseases, diabetes, cardiovascular disease, periodontal disease, cancer and its complication, oral mucositis. After solving the ethical issues and establishing clear and reasonable regulations, regenerative medicine through stem cell application combined with specific growth factors and cytokines will have great potential in curing a variety of human diseases.
Schnabl, Bernd; Valletta, Daniela; Kirovski, Georgi; Hellerbrand, Claus
2011-12-01
Zinc finger protein 267 (ZNF267) belongs to the family of Kruppel-like transcription factors, which regulates diverse biological processes that include development, proliferation, and differentiation. We have previously demonstrated that ZNF267 mRNA is up-regulated in liver cirrhosis, which is the main risk factor for hepatocellular carcinoma (HCC). Here, we analyzed the expression of ZNF267 in human HCC cells and tissue specimens and found a significant up-regulation compared to primary human hepatocytes and corresponding non-tumorous liver tissue. Over-expression of the transcription factor Ets-1 further enhanced ZNF267 expression, and reporter gene assays revealed that mutation of the Ets-1 binding site to the ZNF267 promotor markedly inhibited ZNF267 promotor activity. Hypoxic conditions induced Ets-1 in HCC cells via HIF1alpha activation, and hypoxia induced ZNF267 expression while HIF1alpha inhibition significantly reduced both hypoxia-induced as well as basal ZNF267 expression in HCC cells. It is known that hypoxic conditions in tumorous tissues induce the formation of reactive oxygen species (ROS), and ROS have been identified as important factor in the regulation of Ets-1 expression in tumor cells. Here, we found that ROS induction induced and ROS scavenging reduced ZNF267 expression in HCC cells, respectively. Loss and gain of function analysis applying siRNA directed against ZNF267 or transient transfection revealed that ZNF267 promotes proliferation and migration of HCC cells in vitro. These findings indicate Ets-1 and HIF1alpha as critical regulators of basal and hypoxia- or ROS-induced ZNF267 expression in HCC, and further suggest that the pro-tumorigenic effect of these factors is at least in part mediated via increased ZNF267 expression in HCC. Since ZNF267 is already elevated in cirrhosis, ZNF267 appears as promising target for both prevention as well as treatment of HCC in patients with chronic liver disease. Copyright © 2011 Elsevier Inc. All rights reserved.
Schnabl, Bernd; Valletta, Daniela; Kirovski, Georgi; Hellerbrand, Claus
2012-01-01
Zinc finger protein 267 (ZNF267) belongs to the family of Kruppel-like transcription factors, which regulates diverse biological processes that include development, proliferation, and differentiation. We have previously demonstrated that ZNF267 mRNA is up-regulated in liver cirrhosis, which is the main risk factor for hepatocellular carcinoma (HCC). Here, we analyzed the expression of ZNF267 in human HCC cells and tissue specimens and found a significant up-regulation compared to primary human hepatocytes and corresponding non-tumorous liver tissue. Over-expression of the transcription factor Ets-1 further enhanced ZNF267 expression, and reporter gene assays revealed that mutation of the Ets-1 binding site to the ZNF267 promotor markedly inhibited ZNF267 promotor activity. Hypoxic conditions induced Ets-1 in HCC cells via HIF1alpha activation, and hypoxia induced ZNF267 expression while HIF1alpha inhibition significantly reduced both hypoxia-induced as well as basal ZNF267 expression in HCC cells. It is known that hypoxic conditions in tumorous tissues induce the formation of reactive oxygen species (ROS), and ROS have been identified as important factor in the regulation of Ets-1 expression in tumor cells. Here, we found that ROS induction induced and ROS scavenging reduced ZNF267 expression in HCC cells, respectively. Loss and gain of function analysis applying siRNA directed against ZNF267 or transient transfection revealed that ZNF267 promotes proliferation and migration of HCC cells in vitro. These findings indicate Ets-1 and HIF1alpha as critical regulators of basal and hypoxia- or ROS-induced ZNF267 expression in HCC, and further suggest that the pro-tumorigenic effect of these factors is at least in part mediated via increased ZNF267 expression in HCC. Since ZNF267 is already elevated in cirrhosis, ZNF267 appears as promising target for both prevention as well as treatment of HCC in patients with chronic liver disease. PMID:21840307
Qiao, Huan; May, James M.
2011-01-01
The sodium-dependent vitamin C transporter (SVCT) 2 is crucial for ascorbate uptake in metabolically active and specialized tissues. The present study focused on the gene regulation of the SVCT2 exon 1b, which is ubiquitously expressed in human and mouse tissues. Although the human SVCT2 exon 1b promoter doesn’t contain a classical TATA-box, we found that it does contain a functional initiator (Inr) that binds YY1 and interacts with upstream Sp1/Sp3 elements in the proximal promoter region. These elements in turn play a critical role in regulating YY1-mediated transcription of the exon 1b gene. Formation of YY1/Sp complexes on the promoter is required for its optional function. YY1 with Sp1 or Sp3 synergistically enhanced exon 1b promoter activity as well as the endogenous SVCT2 protein expression. Further, in addition to Sp1/Sp3 both EGR-1 and -2 were detected in the protein complexes that bound the three GC boxes bearing overlapping binding sites for EGR/WT1 and Sp1/3. The EGR family factors, WT1 and MAZ were found to differentially regulate exon 1b promoter activity. These results show that differential occupancy of transcription factors on the GC-rich consensus sequences in SVCT2 exon 1b promoter contributes to the regulation of cell and tissue expression of SVCT2. PMID:21335086
Slocombe, S P; Piffanelli, P; Fairbairn, D; Bowra, S; Hatzopoulos, P; Tsiantis, M; Murphy, D J
1994-01-01
The nucleotide sequence of a Brassica napus stearoyl-acyl carrier protein desaturase gene (Bn10) is presented. This gene is one member of a family of four closely related genes expressed in oilseed rape. The expression of the promoter of this gene in transgenic tobacco was found to be temporally regulated in the developing seed tissues. However, the promoter was also particularly active in other oleogenic tissues such as the tapetum and pollen grains. This raises the interesting question of whether seed-expressed lipid synthesis genes are regulated by separate tissue-specific determinants or by a single factor common to all oleogenic tissues. Parts of the plants undergoing rapid development such as the components of immature flowers and seedlings also exhibited high levels of promoter activity. These tissues are likely to have an elevated requirement for membrane lipid synthesis. Stearoyl-acyl carrier protein desaturase transcript levels have previously been shown to be temporally regulated in the B. napus embryo (S.P. Slocombe, I. Cummins, R.P. Jarvis, D.J. Murphy [1992] Plant Mol Biol 20: 151-155). Evidence is presented demonstrating the induction of desaturase mRNA by abscisic acid in the embryo. PMID:8016261
Differential Expression of MicroRNA and Predicted Targets in Pulmonary Sarcoidosis
Crouser, Elliott D.; Julian, Mark W.; Crawford, Melissa; Shao, Guohong; Yu, Lianbo; Planck, Stephen R.; Rosenbaum, James T.; Nana-Sinkam, S. Patrick
2014-01-01
Background Recent studies show that various inflammatory diseases are regulated at the level of RNA translation by small non-coding RNAs, termed microRNAs (miRNAs). We sought to determine whether sarcoidosis tissues harbor a distinct pattern of miRNA expression and then considered their potential molecular targets. Methods and Results Genome-wide microarray analysis of miRNA expression in lung tissue and peripheral blood mononuclear cells (PBMCs) was performed and differentially expressed (DE)-miRNAs were then validated by real-time PCR. A distinct pattern of DE-miRNA expression was identified in both lung tissue and PBMCs of sarcoidosis patients. A subgroup of DE-miRNAs common to lung and lymph node tissues were predicted to target transforming growth factor (TGFβ)-regulated pathways. Likewise, the DE-miRNAs identified in PBMCs of sarcoidosis patients were predicted to target the TGFβ-regulated “wingless and integrase-1” (WNT) pathway. Conclusions This study is the first to profile miRNAs in sarcoidosis tissues and to consider their possible roles in disease pathogenesis. Our results suggest that miRNA regulate TGFβ and related WNT pathways in sarcoidosis tissues, pathways previously incriminated in the pathogenesis of sarcoidosis. PMID:22209793
Association and regulation of protein factors of field effect in prostate tissues
Gabriel, Kristin N.; Jones, Anna C.; Nguyen, Julie P.T.; Antillon, Kresta S.; Janos, Sara N.; Overton, Heidi N.; Jenkins, Shannon M.; Frisch, Emily H.; Trujillo, Kristina A.; Bisoffi, Marco
2016-01-01
Field effect or field cancerization denotes the presence of molecular aberrations in structurally intact cells residing in histologically normal tissues adjacent to solid tumors. Currently, the etiology of prostate field-effect formation is unknown and there is a prominent lack of knowledge of the underlying cellular and molecular pathways. We have previously identified an upregulated expression of several protein factors representative of prostate field effect, i.e., early growth response-1 (EGR-1), platelet-derived growth factor-A (PDGF-A), macrophage inhibitory cytokine-1 (MIC-1), and fatty acid synthase (FASN) in tissues at a distance of 1 cm from the visible margin of intracapsule prostate adenocarcinomas. We have hypothesized that the transcription factor EGR-1 could be a key regulator of prostate field-effect formation by controlling the expression of PDGF-A, MIC-1, and FASN. Taking advantage of our extensive quantitative immunofluorescence data specific for EGR-1, PDGF-A, MIC-1, and FASN generated in disease-free, tumor-adjacent, and cancerous human prostate tissues, we chose comprehensive correlation as our major approach to test this hypothesis. Despite the static nature and sample heterogeneity of association studies, we show here that sophisticated data generation, such as by spectral image acquisition, linear unmixing, and digital quantitative imaging, can provide meaningful indications of molecular regulations in a physiologically relevant in situ environment. Our data suggest that EGR-1 acts as a key regulator of prostate field effect through induction of pro-proliferative (PDGF-A and FASN), and suppression of pro-apoptotic (MIC-1) factors. These findings were corroborated by computational promoter analyses and cell transfection experiments in non-cancerous prostate epithelial cells with ectopically induced and suppressed EGR-1 expression. Among several clinical applications, a detailed knowledge of pathways of field effect may lead to the development of targeted intervention strategies preventing progression from pre-malignancy to cancer. PMID:27634112
Roles for Hedgehog signaling in adult organ homeostasis and repair
Petrova, Ralitsa; Joyner, Alexandra L.
2014-01-01
The hedgehog (HH) pathway is well known for its mitogenic and morphogenic functions during development, and HH signaling continues in discrete populations of cells within many adult mammalian tissues. Growing evidence indicates that HH regulates diverse quiescent stem cell populations, but the exact roles that HH signaling plays in adult organ homeostasis and regeneration remain poorly understood. Here, we review recently identified functions of HH in modulating the behavior of tissue-specific adult stem and progenitor cells during homeostasis, regeneration and disease. We conclude that HH signaling is a key factor in the regulation of adult tissue homeostasis and repair, acting via multiple different routes to regulate distinct cellular outcomes, including maintenance of plasticity, in a context-dependent manner. PMID:25183867
Wang, Xiao-Yin; Yin, Jun-Yi; Zhao, Ming-Ming; Liu, Shi-Yu; Nie, Shao-Ping; Xie, Ming-Yong
2018-04-15
The gastroprotective activity of Hericium erinaceus polysaccharide was investigated in rats. The antioxidant activities were also evaluated. Pre-treatment of polysaccharide could reduce ethanol-induced gastric mucosal lesion and pylorus ligation-induced gastric ulcer. The polysaccharide exhibited scavenging activities of 1, 1-diphenyl-2-picryl-hydrozyl and hydroxyl radicals, and ferrous ion-chelating ability. In the pylorus ligation-induced model, gastric secretions (volume of gastric juice, gastric acid, pepsin and mucus) of ulcer rats administrated with polysaccharide were regulated. Levels of tumor necrosis factor-α and interleukins-1β in serum, and myeloperoxidase activity of gastric tissue were reduced, while antioxidant status of gastric tissue was improved. Defensive factors (nitric oxide, prostaglandin E2, epidermal growth factor) in gastric tissue were increased. These results indicate that Hericium erinaceus polysaccharide possess gastroprotective activity, and the possible mechanisms are related to its regulations of gastric secretions, improvements of anti-inflammatory and antioxidant status, as well as increments of defensive factors releases. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tao; Li, Xiao-Na; Li, Xing-Guang
Highlights: • DNAJC6 is up-regulated in hepatocellular carcinoma tissues. • DNAJC6 promotes hepatocellular carcinoma cell proliferation and invasion. • DNAJC6 induces epithelial–mesenchymal transition by activating transforming growth factor β signaling. - Abstract: Epithelial–mesenchymal transition (EMT) is a developmental program, which is associated with hepatocellular carcinoma (HCC) development and progression. DNAJC6 (DNA/HSP40 homolog subfamily C member 6) encodes auxilin, which is responsible for juvenile Parkinsonism with phenotypic variability. However, the role of DNAJC6 in HCC development and progression is limited. Here, we report that DNAJC6 is up-regulated in HCC tissues and up-regulation of DNAJC6 expression predicts poor outcome in patients withmore » HCC. Furthermore, overexpression of DNAJC6 enhances the ability for acquisition of mesenchymal traits, enhanced cell proliferation and invasion. DNAJC6 positively regulated expression of EMT-related transcription factor, also activating transforming growth factor β (TGF-β) pathway to contribute to EMT. Our findings demonstrated an important function of DNAJC6 in the progression of HCC by induction of EMT, and they implicate DNAJC6 as a marker of poor outcome in HCC.« less
Sawada, Keigo; Takedachi, Masahide; Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki; Lee, Chun Man; Okura, Hanayuki; Matsuyama, Akifumi; Kitamura, Masahiro; Murakami, Shinya
2015-08-14
Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timper, Katharina; Seboek, Dalma; Eberhardt, Michael
2006-03-24
Mesenchymal stem cells (MSC) from mouse bone marrow were shown to adopt a pancreatic endocrine phenotype in vitro and to reverse diabetes in an animal model. MSC from human bone marrow and adipose tissue represent very similar cell populations with comparable phenotypes. Adipose tissue is abundant and easily accessible and could thus also harbor cells with the potential to differentiate in insulin producing cells. We isolated human adipose tissue-derived MSC from four healthy donors. During the proliferation period, the cells expressed the stem cell markers nestin, ABCG2, SCF, Thy-1 as well as the pancreatic endocrine transcription factor Isl-1. The cellsmore » were induced to differentiate into a pancreatic endocrine phenotype by defined culture conditions within 3 days. Using quantitative PCR a down-regulation of ABCG2 and up-regulation of pancreatic developmental transcription factors Isl-1, Ipf-1, and Ngn3 were observed together with induction of the islet hormones insulin, glucagon, and somatostatin.« less
The relationship of obesity to the metabolic syndrome.
Lebovitz, Harold E
2003-03-01
Obese patients with the metabolic syndrome generally have a visceral (apple-shaped) fat distribution and are at an increased risk of macrovascular disease, while those with peripheral (pear-shaped) obesity tend not to have metabolic abnormalities and are at less risk. This difference appears to be related to the differing metabolic functions (and secretory products) of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT), as well as the fact that VAT drains directly into the liver. Thus, it appears that increased VAT, but not SAT, is associated with both hepatic and peripheral biochemical abnormalities leading to insulin resistance and the associated metabolic syndrome. Insulin resistance is associated with VAT products, such as free fatty acids and their metabolites, as well as cytokines, such as tumour necrosis factor alpha (TNF-alpha). These factors may activate components of the inflammatory pathway such as nuclear factor kappa-B (NFkappaB), and inhibit insulin signalling. Insulin resistance is further associated with decreased levels of another tissue product, adiponectin. The incidence and prevalence of obesity is increasing at an unprecedented rate. The classic treatment of obesity is weight loss via lifestyle modification. However, prevention of obesity comorbidity can also be achieved by modifying the mechanisms by which obesity causes these comorbid conditions. For instance, it is now known that the peroxisome proliferator-activated receptor (PPAR) family of transcriptional regulators are crucial in regulating adipose tissue development and metabolism; this helps explain why compounds with PPARgamma agonist activity, e.g. thiazolidinediones, increase insulin action through their effects in regulating adipose tissue metabolism.
To, Alexandra; Joubès, Jérôme; Barthole, Guillaume; Lécureuil, Alain; Scagnelli, Aurélie; Jasinski, Sophie; Lepiniec, Loïc; Baud, Sébastien
2012-01-01
Acyl lipids are essential constituents of all cells, but acyl chain requirements vary greatly and depend on the cell type considered. This implies a tight regulation of fatty acid production so that supply fits demand. Isolation of the Arabidopsis thaliana WRINKLED1 (WRI1) transcription factor established the importance of transcriptional regulation for modulating the rate of acyl chain production. Here, we report the isolation of two additional regulators of the fatty acid biosynthetic pathway, WRI3 and WRI4, which are closely related to WRI1 and belong to the APETALA2–ethylene-responsive element binding protein family of transcription factors. These three WRIs define a family of regulators capable of triggering sustained rates of acyl chain synthesis. However, expression patterns of the three WRIs differ markedly. Whereas only WRI1 activates fatty acid biosynthesis in seeds for triacylglycerol production, the three WRIs are required in floral tissues to provide acyl chains for cutin biosynthesis and prevent adherence of these developing organs and subsequent semisterility. The targets of these WRIs encode enzymes providing precursors (acyl chain and glycerol backbones) for various lipid biosynthetic pathways, but not the subsequent lipid-assembling enzymes. These results provide insights into the developmental regulation of fatty acid production in plants. PMID:23243127
The ESR1 and GPX1 gene expression level in human malignant and non-malignant breast tissues.
Król, Magdalena B; Galicki, Michał; Grešner, Peter; Wieczorek, Edyta; Jabłońska, Ewa; Reszka, Edyta; Morawiec, Zbigniew; Wąsowicz, Wojciech; Gromadzińska, Jolanta
2018-01-01
The aim of this study was to establish whether the gene expression of estrogen receptor alpha (encoded by ESR1) correlates with the expression of glutathione peroxidase 1 (encoded by GPX1) in the tumor and adjacent tumor-free breast tissue, and whether this correlation is affected by breast cancer. Such relationships may give further insights into breast cancer pathology with respect to the status of estrogen receptor. We used the quantitative real-time PCR technique to analyze differences in the expression levels of the ESR1 and GPX1 genes in paired malignant and non-malignant tissues from breast cancer patients. ESR1 and GPX1 expression levels were found to be significantly down-regulated by 14.7% and 7.4% (respectively) in the tumorous breast tissue when compared to the non-malignant one. Down-regulation of these genes was independent of the tumor histopathology classification and clinicopathological factors, while the ESR1 mRNA level was reduced with increasing tumor grade (G1: 103% vs. G2: 85.8% vs. G3: 84.5%; p<0.05). In the non-malignant and malignant breast tissues, the expression levels of ESR1 and GPX1 were significantly correlated with each other (Rs=0.450 and Rs=0.360; respectively). Our data suggest that down-regulation of ESR1 and GPX1 was independent of clinicopathological factors. Down-regulation of ESR1 gene expression was enhanced by the development of the disease. Moreover, GPX1 and ESR1 gene expression was interdependent in the malignant breast tissue and further work is needed to determine the mechanism underlying this relationship.
USDA-ARS?s Scientific Manuscript database
Transforming growth factor beta (TGFB) superfamily members are important paracrine/autocrine regulators of ovarian development and steroidogenesis in mammals, but their reproductive role in fishes is not well understood. Our objectives were 3-fold: to determine if key TGFB superfamily transcripts a...
Myogenic transcription factors regulate pro-metastatic miR-182.
Dodd, R D; Sachdeva, M; Mito, J K; Eward, W C; Brigman, B E; Ma, Y; Dodd, L; Kim, Y; Lev, D; Kirsch, D G
2016-04-07
Approximately 30% of patients with soft-tissue sarcoma die from pulmonary metastases. The mechanisms that drive sarcoma metastasis are not well understood. Recently, we identified miR-182 as a driver of sarcoma metastasis in a primary mouse model of soft-tissue sarcoma. We also observed elevated miR-182 in a subset of primary human sarcomas that metastasized to the lungs. Here, we show that myogenic differentiation factors regulate miR-182 levels to contribute to metastasis in mouse models. We find that MyoD directly binds the miR-182 promoter to increase miR-182 expression. Furthermore, mechanistic studies revealed that Pax7 can promote sarcoma metastasis in vivo through MyoD-dependent regulation of pro-metastatic miR-182. Taken together, these results suggest that sarcoma metastasis can be partially controlled through Pax7/MyoD-dependent activation of miR-182 and provide insight into the role that myogenic transcription factors have in sarcoma progression.
Marsh, Erica E; Chibber, Shani; Wu, Ju; Siegersma, Kendra; Kim, Julie; Bulun, Serdar
2016-04-01
To determine the presence, differential expression, and regulation of epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) in uterine leiomyomas. Laboratory in vivo and in vitro study with the use of human leiomyoma and myometrial tissue and primary cells. Academic medical center. Leiomyoma and myometrial tissue samples and cultured cells. 5-Aza-2'-deoxycytidine (5-aza-dC) treatment. Fold-change difference between EFEMP1 and fibulin-3 expression in leiomyoma tissue and cells compared with matched myometrial samples, and fold-change difference in EFEMP1 expression with 5-Aza-dC treatment. In vivo, EFEMP1 expression was 3.19-fold higher in myometrial tissue than in leiomyoma tissue. EFEMP1 expression in vitro was 5.03-fold higher in myometrial cells than in leiomyoma cells. Western blot and immunohistochemistry staining of tissue and cells confirmed similar findings in protein expression. Treatment of leiomyoma cells with 5-Aza-dC resulted in increased expression of EFEMP1 in vitro. The EFEMP1 gene and its protein product, fibulin-3, are both significantly down-regulated in leiomyoma compared with myometrium when studied both in vivo and in vitro. The increase in EFEMP1 expression in leiomyoma cells with 5-Aza-dC treatment suggest that differential methylation is responsible, in part, for the differences seen in gene expression. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Chromatin Immunoprecipitation in Early Mouse Embryos.
García-González, Estela G; Roque-Ramirez, Bladimir; Palma-Flores, Carlos; Hernández-Hernández, J Manuel
2018-01-01
Epigenetic regulation is achieved at many levels by different factors such as tissue-specific transcription factors, members of the basal transcriptional apparatus, chromatin-binding proteins, and noncoding RNAs. Importantly, chromatin structure dictates the availability of a specific genomic locus for transcriptional activation as well as the efficiency with which transcription can occur. Chromatin immunoprecipitation (ChIP) is a method that allows elucidating gene regulation at the molecular level by assessing if chromatin modifications or proteins are present at a specific locus. Initially, the majority of ChIP experiments were performed on cultured cell lines and more recently this technique has been adapted to a variety of tissues in different model organisms. Using ChIP on mouse embryos, it is possible to document the presence or absence of specific proteins and chromatin modifications at genomic loci in vivo during mammalian development and to get biological meaning from observations made on tissue culture analyses. We describe here a ChIP protocol on freshly isolated mouse embryonic somites for in vivo analysis of muscle specific transcription factor binding on chromatin. This protocol has been easily adapted to other mouse embryonic tissues and has also been successfully scaled up to perform ChIP-Seq.
WFIKKN1 and WFIKKN2: "Companion" proteins regulating TGFB activity.
Monestier, Olivier; Blanquet, Véronique
2016-12-01
The WFIKKN (WAP, Follistatin/kazal, Immunoglobulin, Kunitz and Netrin domain-containing) protein family is composed of two multidomain proteins: WFIKKN1 and WFIKKN2. They were formed by domain shuffling and are likely present in deuterostoms. The WFIKKN (also called GASP) proteins are well known for their function in muscle and skeletal tissues, namely, inhibition of certain members of the transforming growth factor beta (TGFB) superfamily such as myostatin (MSTN) and growth and differentiation factor 11 (GDF11). However, the role of the WFIKKN proteins in other tissues is still poorly understood in spite of evidence suggesting possible action in the inner ear, brain and reproduction. Further, several recent studies based on next generation technologies revealed differential expression of WFIKKN1 and WFIKKN2 in various tissues suggesting that their function is not limited to MSTN and GDF11 inhibition in musculoskeletal tissue. In this review, we summarize current knowledge about the WFIKKN proteins and propose that they are "companion" proteins for various growth factors by providing localized and sustained presentation of TGFB proteins to their respective receptors, thus regulating the balance between the activation of Smad and non-Smad pathways by TGFB. Copyright © 2016 Elsevier Ltd. All rights reserved.
hCG-dependent regulation of angiogenic factors in human granulosa lutein cells.
Phan, B; Rakenius, A; Pietrowski, D; Bettendorf, H; Keck, C; Herr, D
2006-07-01
As prerequisite for development and maintenance of many diseases angiogenesis is of particular interest in medicine. Pathologic angiogenesis takes place in chronic arthritis, collagen diseases, arteriosclerosis, retinopathy associated with diabetes, and particularly in cancers. However, angiogenesis as a physiological process regularly occurs in the ovary. After ovulation the corpus luteum is formed by rapid vascularization of initially avascular granulosa lutein cell tissue. This process is regulated by gonadotropic hormones. In order to gain further insights in the regulatory mechanisms of angiogenesis in the ovary, we investigated these mechanisms in cell culture of human granulosa lutein cells. In particular, we determined the expression and production of several angiogenic factors including tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), Leptin, connective tissue growth factor (CTGF), meningioma-associated complimentary DNA (Mac25), basic fibroblast growth factor (bFGF), and Midkine. In addition, we showed that human chorionic gonadotropin (hCG) has distinct effects on their expression and production. hCG enhances the expression and production of TIMP-1, whereas it downregulates the expression of CTGF and Mac25. Furthermore it decreases the expression of Leptin. Our results provide evidence that hCG determines growth and development of the corpus luteum by mediating angiogenic pathways in human granulosa lutein cells. Hence we describe a further approach to understand the regulation of angiogenesis in the ovary.
Pax2 regulates a fadd-dependent molecular switch that drives tissue fusion during eye development.
Viringipurampeer, Ishaq A; Ferreira, Todd; DeMaria, Shannon; Yoon, Jookyung J; Shan, Xianghong; Moosajee, Mariya; Gregory-Evans, Kevin; Ngai, John; Gregory-Evans, Cheryl Y
2012-05-15
Tissue fusion is an essential morphogenetic mechanism in development, playing a fundamental role in developing neural tube, palate and the optic fissure. Disruption of genes associated with the tissue fusion can lead to congenital malformations, such as spina bifida, cleft lip/palate and ocular coloboma. For instance, the Pax2 transcription factor is required for optic fissure closure, although the mechanism of Pax2 action leading to tissue fusion remains elusive. This lack of information defining how transcription factors drive tissue morphogenesis at the cellular level is hampering new treatments options. Through loss- and gain-of-function analysis, we now establish that pax2 in combination with vax2 directly regulate the fas-associated death domain (fadd) gene. In the presence of fadd, cell proliferation is restricted in the developing eye through a caspase-dependent pathway. However, the loss of fadd results in a proliferation defect and concomitant activation of the necroptosis pathway through RIP1/RIP3 activity, leading to an abnormal open fissure. Inhibition of RIP1 with the small molecule drug necrostatin-1 rescues the pax2 eye fusion defect, thereby overcoming the underlying genetic defect. Thus, fadd has an essential physiological function in protecting the developing optic fissure neuroepithelium from RIP3-dependent necroptosis. This study demonstrates the molecular hierarchies that regulate a cellular switch between proliferation and the apoptotic and necroptotic cell death pathways, which in combination drive tissue morphogenesis. Furthermore, our data suggest that future therapeutic strategies may be based on small molecule drugs that can bypass the gene defects causing common congenital tissue fusion defects.
MAGP1, the extracellular matrix, and metabolism
Craft, Clarissa S
2014-01-01
Adipose tissue and the extracellular matrix were once considered passive players in regulating physiological processes. Now, both entities are acknowledged for their capacity to engage signal transduction pathways, and for their involvement in maintaining normal tissue homeostasis. We recently published a series of studies that identified a novel mechanism whereby an extracellular matrix molecule, MAGP1 (microfibril associated glycoprotein 1), can regulate energy metabolism in adipose tissue. MAGP1 is a component of extracellular microfibrils and plays a supportive role in maintaining thermoregulation by indirectly regulating expression of the thermogenic uncoupling proteins (UCPs). The focus of this commentary is to draw attention to the role of the extracellular matrix in regulating the bioavailability of signaling molecules, like transforming growth factor β (TGFβ), and exemplify that a better understanding of the extracellular matrix's biological properties could unveil a new source of therapeutic targets for metabolic diseases. PMID:26167404
MAGP1, the extracellular matrix, and metabolism.
Craft, Clarissa S
2015-01-01
Adipose tissue and the extracellular matrix were once considered passive players in regulating physiological processes. Now, both entities are acknowledged for their capacity to engage signal transduction pathways, and for their involvement in maintaining normal tissue homeostasis. We recently published a series of studies that identified a novel mechanism whereby an extracellular matrix molecule, MAGP1 (microfibril associated glycoprotein 1), can regulate energy metabolism in adipose tissue. MAGP1 is a component of extracellular microfibrils and plays a supportive role in maintaining thermoregulation by indirectly regulating expression of the thermogenic uncoupling proteins (UCPs). The focus of this commentary is to draw attention to the role of the extracellular matrix in regulating the bioavailability of signaling molecules, like transforming growth factor β (TGFβ), and exemplify that a better understanding of the extracellular matrix's biological properties could unveil a new source of therapeutic targets for metabolic diseases.
GPER Promoter Methylation Controls GPER Expression in Breast Cancer Patients.
Weissenborn, Christine; Ignatov, Tanja; Nass, Norbert; Kalinski, Thomas; Dan Costa, Serban; Zenclussen, Ana Claudia; Ignatov, Atanas
2017-02-07
Recently, we found that G-protein-coupled estrogen receptor (GPER) protein expression decreased during breast carcinogenesis, and that GPER promoter is methylated. Here we analyzed GPER promoter methylation in 260 primary breast cancer specimens by methylation-specific polymerized chain reaction. The results demonstrated that GPER protein down-regulation significantly correlated with GPER promoter hypermethylation (p < .001). Comparison of 108 tumors and matched normal breast tissues indicated a significant GPER down-regulation in cancer tissues correlating with GPER promoter hypermethylation (p < .001). The latter was an unfavorable factor for overall survival of patients with triple-negative breast cancer (p = .025). Thus GPER promoter hypermethylation might be used as a prognostic factor.
Xu, Fen; Burk, David; Gao, Zhanguo; Yin, Jun; Zhang, Xia
2012-01-01
The histone deacetylase sirtuin 1 (SIRT1) inhibits adipocyte differentiation and suppresses inflammation by targeting the transcription factors peroxisome proliferator-activated receptor γ and nuclear factor κB. Although this suggests that adiposity and inflammation should be enhanced when SIRT1 activity is inactivated in the body, this hypothesis has not been tested in SIRT1 null (SIRT1−/−) mice. In this study, we addressed this issue by investigating the adipose tissue in SIRT1−/− mice. Compared with their wild-type littermates, SIRT1 null mice exhibited a significant reduction in body weight. In adipose tissue, the average size of adipocytes was smaller, the content of extracellular matrix was lower, adiponectin and leptin were expressed at 60% of normal level, and adipocyte differentiation was reduced. All of these changes were observed with a 50% reduction in capillary density that was determined using a three-dimensional imaging technique. Except for vascular endothelial growth factor, the expression of several angiogenic factors (Pdgf, Hgf, endothelin, apelin, and Tgf-β) was reduced by about 50%. Macrophage infiltration and inflammatory cytokine expression were 70% less in the adipose tissue of null mice and macrophage differentiation was significantly inhibited in SIRT1−/− mouse embryonic fibroblasts in vitro. In wild-type mice, macrophage deletion led to a reduction in vascular density. These data suggest that SIRT1 controls adipose tissue function through regulation of angiogenesis, whose deficiency is associated with macrophage malfunction in SIRT1−/− mice. The study supports the concept that inflammation regulates angiogenesis in the adipose tissue. PMID:22315447
Fox, Rebecca M; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J
2013-05-01
FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.
Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA
Fox, Rebecca M.; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J.
2013-01-01
FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously. PMID:23578928
Millonigg, Sophia; Eckmann, Christian R.
2014-01-01
To avoid organ dysfunction as a consequence of tissue diminution or tumorous growth, a tight balance between cell proliferation and differentiation is maintained in metazoans. However, cell-intrinsic gene expression mechanisms controlling adult tissue homeostasis remain poorly understood. By focusing on the adult Caenorhabditis elegans reproductive tissue, we show that translational activation of mRNAs is a fundamental mechanism to maintain tissue homeostasis. Our genetic experiments identified the Trf4/5-type cytoplasmic poly(A) polymerase (cytoPAP) GLD-4 and its enzymatic activator GLS-1 to perform a dual role in regulating the size of the proliferative zone. Consistent with a ubiquitous expression of GLD-4 cytoPAP in proliferative germ cells, its genetic activity is required to maintain a robust proliferative adult germ cell pool, presumably by regulating many mRNA targets encoding proliferation-promoting factors. Based on translational reporters and endogenous protein expression analyses, we found that gld-4 activity promotes GLP-1/Notch receptor expression, an essential factor of continued germ cell proliferation. RNA-protein interaction assays documented also a physical association of the GLD-4/GLS-1 cytoPAP complex with glp-1 mRNA, and ribosomal fractionation studies established that GLD-4 cytoPAP activity facilitates translational efficiency of glp-1 mRNA. Moreover, we found that in proliferative cells the differentiation-promoting factor, GLD-2 cytoPAP, is translationally repressed by the stem cell factor and PUF-type RNA-binding protein, FBF. This suggests that cytoPAP-mediated translational activation of proliferation-promoting factors, paired with PUF-mediated translational repression of differentiation factors, forms a translational control circuit that expands the proliferative germ cell pool. Our additional genetic experiments uncovered that the GLD-4/GLS-1 cytoPAP complex promotes also differentiation, forming a redundant translational circuit with GLD-2 cytoPAP and the translational repressor GLD-1 to restrict proliferation. Together with previous findings, our combined data reveals two interconnected translational activation/repression circuitries of broadly conserved RNA regulators that maintain the balance between adult germ cell proliferation and differentiation. PMID:25254367
Furumatsu, Takayuki; Ozaki, Toshifumi
2017-01-01
The multifunctional growth factor CYR61/CTGF/NOV (CCN) 2, also known as connective tissue growth factor, regulates cellular proliferation, differentiation, and tissue regeneration. Recent literatures have described important roles of CCN2 in the meniscus metabolism. However, the mechanical stress-mediated transcriptional regulation of CCN2 in the meniscus remains unclear. The meniscus is a fibrocartilaginous tissue that controls complex biomechanics of the knee joint. Therefore, the injured unstable meniscus has a poor healing potential especially in the avascular inner region. In addition, dysfunction of the meniscus correlates with the progression of degenerative knee joint disorders and joint space narrowing. Here, we describe an experimental approach that investigates the distinct cellular behavior of inner and outer meniscus cells in response to mechanical stretch. Our experimental model can analyze the relationships between stretch-induced CCN2 expression and its functional role in the meniscus homeostasis.
Zhao, Haiyong; Xu, Canxin; Lee, Tae-Jin; Liu, Fang; Choi, Kyunghee
2017-04-01
The major goal in regenerative medicine is to repair and restore injured, diseased or aged tissue function, thereby promoting general health. As such, the field of regenerative medicine has great translational potential in undertaking many of the health concerns and needs that we currently face. In particular, hematopoietic and vascular systems supply oxygen and nutrients and thus play critical roles in tissue development and tissue regeneration. Additionally, tissue vasculature serves as a tissue stem cell niche and thus contributes to tissue homeostasis. Notably, hematopoietic and vascular systems are sensitive to injury and subject to regeneration. As such, successful hematopoietic and vascular regeneration is prerequisite for efficient tissue repair and organismal survival and health. Recent studies have established that the interplay among the ETS transcription factor ETV2, vascular endothelial growth factor, and its receptor VEGFR2/FLK1 is essential for hematopoietic and vascular development. Emerging studies also support the role of these three factors and possible interplay in hematopoietic and vascular regeneration. Comprehensive understanding of the molecular mechanisms involved in the regulation and function of these three factors may lead to more effective approaches in promoting tissue repair and regeneration. Developmental Dynamics 246:318-327, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Redox-dependent transcriptional regulation.
Liu, Hongjun; Colavitti, Renata; Rovira, Ilsa I; Finkel, Toren
2005-11-11
Reactive oxygen species contribute to the pathogenesis of a number of disparate disorders including tissue inflammation, heart failure, hypertension, and atherosclerosis. In response to oxidative stress, cells activate expression of a number of genes, including those required for the detoxification of reactive molecules as well as for the repair and maintenance of cellular homeostasis. In many cases, these induced genes are regulated by transcription factors whose structure, subcellular localization, or affinity for DNA is directly or indirectly regulated by the level of oxidative stress. This review summarizes the recent progress on how cellular redox status can regulate transcription-factor activity and the implications of this regulation for cardiovascular disease.
CSF-1 Receptor Signaling in Myeloid Cells
Stanley, E. Richard; Chitu, Violeta
2014-01-01
The CSF-1 receptor (CSF-1R) is activated by the homodimeric growth factors colony-stimulating factor-1 (CSF-1) and interleukin-34 (IL-34). It plays important roles in development and in innate immunity by regulating the development of most tissue macrophages and osteoclasts, of Langerhans cells of the skin, of Paneth cells of the small intestine, and of brain microglia. It also regulates the differentiation of neural progenitor cells and controls functions of oocytes and trophoblastic cells in the female reproductive tract. Owing to this broad tissue expression pattern, it plays a central role in neoplastic, inflammatory, and neurological diseases. In this review we summarize the evolution, structure, and regulation of expression of the CSF-1R gene. We review, the structures of CSF-1, IL-34, and the CSF-1R and the mechanism of ligand binding to and activation of the receptor. We further describe the pathways regulating macrophage survival, proliferation, differentiation, and chemotaxis downstream from the CSF-1R. PMID:24890514
Ruijtenberg, Suzan; van den Heuvel, Sander
2016-01-01
ABSTRACT Cell proliferation and differentiation show a remarkable inverse relationship. Precursor cells continue division before acquiring a fully differentiated state, while terminal differentiation usually coincides with proliferation arrest and permanent exit from the division cycle. Mechanistic insight in the temporal coordination between cell cycle exit and differentiation has come from studies of cells in culture and genetic animal models. As initially described for skeletal muscle differentiation, temporal coordination involves mutual antagonism between cyclin-dependent kinases that promote cell cycle entry and transcription factors that induce tissue-specific gene expression. Recent insights highlight the contribution of chromatin-regulating complexes that act in conjunction with the transcription factors and determine their activity. In particular SWI/SNF chromatin remodelers contribute to dual regulation of cell cycle and tissue-specific gene expression during terminal differentiation. We review the concerted regulation of the cell cycle and cell type-specific transcription, and discuss common mutations in human cancer that emphasize the clinical importance of proliferation versus differentiation control. PMID:26825227
Endocrinological control of growth.
Sizonenko, P C
1978-01-01
Many endocrinological factors control cellular growth of different tissues (cell multiplication and cell volume) and skeletal growth. The role of neuro-transmitters and of hypothalamic releasing and inhibiting factors of growth hormone secretion will be reviewed. The importance of the somatomedins on cartilage growth will be stressed. Thyroid hormones, androgens, and oestrogens have important stimulating actions on skeletal growth and maturation. Conversely, glucocorticoids have an important inhibitory effect on growth. The precise roles of these hormone factors in the regulation of growth hormone secretion, somatomedin production and tissue growth, particularly the cartilage, remain to be completely elucidated.
Lepiniec, L; Devic, M; Roscoe, T J; Bouyer, D; Zhou, D-X; Boulard, C; Baud, S; Dubreucq, B
2018-05-24
The LAFL (i.e. LEC1, ABI3, FUS3, and LEC2) master transcriptional regulators interact to form different complexes that induce embryo development and maturation, and inhibit seed germination and vegetative growth in Arabidopsis. Orthologous genes involved in similar regulatory processes have been described in various angiosperms including important crop species. Consistent with a prominent role of the LAFL regulators in triggering and maintaining embryonic cell fate, their expression appears finely tuned in different tissues during seed development and tightly repressed in vegetative tissues by a surprisingly high number of genetic and epigenetic factors. Partial functional redundancies and intricate feedback regulations of the LAFL have hampered the elucidation of the underpinning molecular mechanisms. Nevertheless, genetic, genomic, cellular, molecular, and biochemical analyses implemented during the last years have greatly improved our knowledge of the LALF network. Here we summarize and discuss recent progress, together with current issues required to gain a comprehensive insight into the network, including the emerging function of LEC1 and possibly LEC2 as pioneer transcription factors.
SOX2 regulates common and specific stem cell features in the CNS and endoderm derived organs.
Hagey, Daniel W; Klum, Susanne; Kurtsdotter, Idha; Zaouter, Cecile; Topcic, Danijal; Andersson, Olov; Bergsland, Maria; Muhr, Jonas
2018-02-01
Stem cells are defined by their capacities to self-renew and generate progeny of multiple lineages. The transcription factor SOX2 has key roles in the regulation of stem cell characteristics, but whether SOX2 achieves these functions through similar mechanisms in distinct stem cell populations is not known. To address this question, we performed RNA-seq and SOX2 ChIP-seq on embryonic mouse cortex, spinal cord, stomach and lung/esophagus. We demonstrate that, although SOX2 binds a similar motif in the different cell types, its target regions are primarily cell-type-specific and enriched for the distinct binding motifs of appropriately expressed interacting co-factors. Furthermore, cell-type-specific SOX2 binding in endodermal and neural cells is most often found around genes specifically expressed in the corresponding tissue. Consistent with this, we demonstrate that SOX2 target regions can act as cis-regulatory modules capable of directing reporter expression to appropriate tissues in a zebrafish reporter assay. In contrast, SOX2 binding sites found in both endodermal and neural tissues are associated with genes regulating general stem cell features, such as proliferation. Notably, we provide evidence that SOX2 regulates proliferation through conserved mechanisms and target genes in both germ layers examined. Together, these findings demonstrate how SOX2 simultaneously regulates cell-type-specific, as well as core transcriptional programs in neural and endodermal stem cells.
Berry Flesh and Skin Ripening Features in Vitis vinifera as Assessed by Transcriptional Profiling
Grimplet, Jérôme; Bravo, Gema; Flores, Pilar; Fenoll, José; Hellín, Pilar; Oliveros, Juan Carlos; Martínez-Zapater, José M.
2012-01-01
Background Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar ‘Muscat Hamburg’ to determine tissue-specific as well as common developmental programs. Methodology/Principal Findings Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. Conclusions/Significance A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are present from early stages prior to the ripening onset including tissue-specific regulators. Altogether, these findings provide key elements to understand berry ripening and its differential regulation in flesh and skin. PMID:22768087
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, Keigo; Takedachi, Masahide, E-mail: takedati@dent.osaka-u.ac.jp; Yamamoto, Satomi
Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response.more » ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.« less
Hypoxia as a target for tissue specific gene therapy.
Rhim, Taiyoun; Lee, Dong Yun; Lee, Minhyung
2013-12-10
Hypoxia is a hallmark of various ischemic diseases such as ischemic heart disease, ischemic limb, ischemic stroke, and solid tumors. Gene therapies for these diseases have been developed with various therapeutic genes including growth factors, anti-apoptotic genes, and toxins. However, non-specific expression of these therapeutic genes may induce dangerous side effects in the normal tissues. To avoid the side effects, gene expression should be tightly regulated in an oxygen concentration dependent manner. The hypoxia inducible promoters and enhancers have been evaluated as a transcriptional regulation tool for hypoxia inducible gene therapy. The hypoxia inducible UTRs were also used in gene therapy for spinal cord injury as a translational regulation strategy. In addition to transcriptional and translational regulations, post-translational regulation strategies have been developed using the HIF-1α ODD domain. Hypoxia inducible transcriptional, translational, and post-translational regulations are useful for tissue specific gene therapy of ischemic diseases. In this review, hypoxia inducible gene expression systems are discussed and their applications are introduced. Copyright © 2013 Elsevier B.V. All rights reserved.
Methylation status regulates lipoprotein lipase expression in chronic lymphocytic leukemia.
Abreu, Cecilia; Moreno, Pilar; Palacios, Florencia; Borge, Mercedes; Morande, Pablo; Landoni, Ana Inés; Gabus, Raul; Dighiero, Guillermo; Giordano, Mirta; Gamberale, Romina; Oppezzo, Pablo
2013-08-01
Among different prognostic factors in chronic lymphocytic leukemia (CLL), we previously demonstrated that lipoprotein lipase (LPL) is associated with an unmutated immunoglobulin profile and clinical poor outcome. Despite the usefulness of LPL for CLL prognosis, its functional role and the molecular mechanism regulating its expression are still open questions. Interaction of CLL B-cells with the tissue microenvironment favors disease progression by promoting malignant B-cell growth. Since tissue methylation can be altered by environmental factors, we investigated the methylation status of the LPL gene and the possibility that overexpression could be associated with microenvironment signals. Our results show that a demethylated state of the LPL gene is responsible for its anomalous expression in unmutated CLL cases and that this expression is dependent on microenvironment signals. Overall, this work proposes that an epigenetic mechanism, triggered by the microenvironment, regulates LPL expression in CLL disease.
Ferreyra, Gabriela A.; Elinoff, Jason M.; Demirkale, Cumhur Y.; Starost, Matthew F.; Buckley, Marilyn; Munson, Peter J.; Krakauer, Teresa; Danner, Robert L.
2014-01-01
Background Bacterial superantigens are virulence factors that cause toxic shock syndrome. Here, the genome-wide, temporal response of mice to lethal intranasal staphylococcal enterotoxin B (SEB) challenge was investigated in six tissues. Results The earliest responses and largest number of affected genes occurred in peripheral blood mononuclear cells (PBMC), spleen, and lung tissues with the highest content of both T-cells and monocyte/macrophages, the direct cellular targets of SEB. In contrast, the response of liver, kidney, and heart was delayed and involved fewer genes, but revealed a dominant genetic program that was seen in all 6 tissues. Many of the 85 uniquely annotated transcripts participating in this shared genomic response have not been previously linked to SEB. Nine of the 85 genes were subsequently confirmed by RT-PCR in every tissue/organ at 24 h. These 85 transcripts, up-regulated in all tissues, annotated to the interferon (IFN)/antiviral-response and included genes belonging to the DNA/RNA sensing system, DNA damage repair, the immunoproteasome, and the ER/metabolic stress-response and apoptosis pathways. Overall, this shared program was identified as a type I and II interferon (IFN)-response and the promoters of these genes were highly enriched for IFN regulatory matrices. Several genes whose secreted products induce the IFN pathway were up-regulated at early time points in PBMCs, spleen, and/or lung. Furthermore, IFN regulatory factors including Irf1, Irf7 and Irf8, and Zbp1, a DNA sensor/transcription factor that can directly elicit an IFN innate immune response, participated in this host-wide SEB signature. Conclusion Global gene-expression changes across multiple organs implicated a host-wide IFN-response in SEB-induced death. Therapies aimed at IFN-associated innate immunity may improve outcome in toxic shock syndromes. PMID:24551153
Yoshikawa, Mamoru; Kojima, Hiromi; Wada, Kota; Tsukidate, Toshiharu; Okada, Naoko; Saito, Hirohisa; Moriyama, Hiroshi
2006-07-01
To investigate the role of fibroblasts in the pathogenesis of cholesteatoma. Tissue specimens were obtained from our patients. Middle ear cholesteatoma-derived fibroblasts (MECFs) and postauricular skin-derived fibroblasts (SFs) as controls were then cultured for a few weeks. These fibroblasts were stimulated with interleukin (IL) 1alpha and/or IL-1beta before gene expression assays. We used the human genome U133A probe array (GeneChip) and real-time polymerase chain reaction to examine and compare the gene expression profiles of the MECFs and SFs. Six patients who had undergone tympanoplasty. The IL-1alpha-regulated genes were classified into 4 distinct clusters on the basis of profiles differentially regulated by SF and MECF using a hierarchical clustering analysis. The messenger RNA expressions of LARC (liver and activation-regulated chemokine), GMCSF (granulocyte-macrophage colony-stimulating factor), epiregulin, ICAM1 (intercellular adhesion molecule 1), and TGFA (transforming growth factor alpha) were more strongly up-regulated by IL-1alpha and/or IL-1beta in MECF than in SF, suggesting that these fibroblasts derived from different tissues retained their typical gene expression profiles. Fibroblasts may play a role in hyperkeratosis of middle ear cholesteatoma by releasing molecules involved in inflammation and epidermal growth. These fibroblasts may retain tissue-specific characteristics presumably controlled by epigenetic mechanisms.
Dellett, Margaret; Hu, Wanzhou; Papadaki, Vasiliki; Ohnuma, Shin-ichi
2012-04-01
The small leucine-rich repeat proteoglycan (SLRPs) family of proteins currently consists of five classes, based on their structural composition and chromosomal location. As biologically active components of the extracellular matrix (ECM), SLRPs were known to bind to various collagens, having a role in regulating fibril assembly, organization and degradation. More recently, as a function of their diverse proteins cores and glycosaminoglycan side chains, SLRPs have been shown to be able to bind various cell surface receptors, growth factors, cytokines and other ECM components resulting in the ability to influence various cellular functions. Their involvement in several signaling pathways such as Wnt, transforming growth factor-β and epidermal growth factor receptor also highlights their role as matricellular proteins. SLRP family members are expressed during neural development and in adult neural tissues, including ocular tissues. This review focuses on describing SLRP family members involvement in neural development with a brief summary of their role in non-neural ocular tissues and in response to neural injury. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.
Shaping Gene Expression by Landscaping Chromatin Architecture: Lessons from a Master.
Sartorelli, Vittorio; Puri, Pier Lorenzo
2018-05-19
Since its discovery as a skeletal muscle-specific transcription factor able to reprogram somatic cells into differentiated myofibers, MyoD has provided an instructive model to understand how transcription factors regulate gene expression. Reciprocally, studies of other transcriptional regulators have provided testable hypotheses to further understand how MyoD activates transcription. Using MyoD as a reference, in this review, we discuss the similarities and differences in the regulatory mechanisms employed by tissue-specific transcription factors to access DNA and regulate gene expression by cooperatively shaping the chromatin landscape within the context of cellular differentiation. Copyright © 2018 Elsevier Inc. All rights reserved.
Pleiotrophin as a potential biomarker in breast cancer patients.
Ma, Jiequn; Kong, Ying; Nan, Haocheng; Qu, Shengyang; Fu, Xiao; Jiang, Lili; Wang, Wenjuan; Guo, Hui; Zhao, Shounian; He, Jianjun; Nan, Kejun
2017-03-01
Pleiotrophin (PTN), a multifunctional growth factor, is up-regulated in many tumors. PTN is reported to play an important role in the regulation of several cellular processes. The objective of this study is to evaluate the clinical significance of PTN as a tumor marker in breast cancer (BC). Serum PTN levels were detected in 105 BC patients and 40 healthy volunteers using ELISA. In addition, PTN expression was examined in 80 BC tissues in a nested case-control study by immunohistochemistry. Serum PTN levels were elevated in BC patients compared to healthy controls. Area under receiver operating characteristic (ROC) curve was 0.878 (95% CI: 0.824-0.932). The sensitivity of serum PTN was superior to CEA and CA15-3. High serum PTN levels were associated with TNM stage, histology grade, and distant metastasis. Moreover, serum PTN levels decreased significantly after surgical treatment. In BC tissues, PTN expression was significantly higher in BC tissues relative to paired paracancerous tissues. Tissue PTN expression proved to be a prognostic factor for breast cancer according to multivariable logistic regression analysis. PTN could be considered as a potential biomarker for the presence of breast cancer. Copyright © 2016. Published by Elsevier B.V.
A dynamic cellular vertex model of growing epithelial tissues
NASA Astrophysics Data System (ADS)
Lin, Shao-Zhen; Li, Bo; Feng, Xi-Qiao
2017-04-01
Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.
Robischon, Marcel; Du, Juan; Miura, Eriko; Groover, Andrew
2011-03-01
The secondary growth of a woody stem requires the formation of a vascular cambium at an appropriate position and proper patterning of the vascular tissues derived from the cambium. Class III homeodomain-leucine zipper (HD ZIP) transcription factors have been implicated in polarity determination and patterning in lateral organs and primary vascular tissues and in the initiation and function of shoot apical meristems. We report here the functional characterization of a Populus class III HD ZIP gene, popREVOLUTA (PRE), that demonstrates another role for class III HD ZIPs in regulating the development of cambia and secondary vascular tissues. PRE is orthologous to Arabidopsis (Arabidopsis thaliana) REVOLUTA and is expressed in both the shoot apical meristem and in the cambial zone and secondary vascular tissues. Transgenic Populus expressing a microRNA-resistant form of PRE presents unstable phenotypic abnormalities affecting both primary and secondary growth. Surprisingly, phenotypic changes include abnormal formation of cambia within cortical parenchyma that can produce secondary vascular tissues in reverse polarity. Genes misexpressed in PRE mutants include transcription factors and auxin-related genes previously implicated in class III HD ZIP functions during primary growth. Together, these results suggest that PRE plays a fundamental role in the initiation of the cambium and in regulating the patterning of secondary vascular tissues.
Allele compensation in tip60+/- mice rescues white adipose tissue function in vivo.
Gao, Yuan; Hamers, Nicole; Rakhshandehroo, Maryam; Berger, Ruud; Lough, John; Kalkhoven, Eric
2014-01-01
Adipose tissue is a key regulator of energy homestasis. The amount of adipose tissue is largely determined by adipocyte differentiation (adipogenesis), a process that is regulated by the concerted actions of multiple transcription factors and cofactors. Based on in vitro studies in murine 3T3-L1 preadipocytes and human primary preadipocytes, the transcriptional cofactor and acetyltransferase Tip60 was recently identified as an essential adipogenic factor. We therefore investigated the role of Tip60 on adipocyte differentiation and function, and possible consequences on energy homeostasis, in vivo. Because homozygous inactivation results in early embryonic lethality, Tip60+/- mice were used. Heterozygous inactivation of Tip60 had no effect on body weight, despite slightly higher food intake by Tip60+/- mice. No major effects of heterozygous inactivation of Tip60 were observed on adipose tissue and liver, and Tip60+/- displayed normal glucose tolerance, both on a low fat and a high fat diet. While Tip60 mRNA was reduced to 50% in adipose tissue, the protein levels were unaltered, suggesting compensation by the intact allele. These findings indicate that the in vivo role of Tip60 in adipocyte differentiation and function cannot be properly addressed in Tip60+/- mice, but requires the generation of adipose tissue-specific knock out animals or specific knock-in mice.
Ryan, G R; Dai, X M; Dominguez, M G; Tong, W; Chuan, F; Chisholm, O; Russell, R G; Pollard, J W; Stanley, E R
2001-07-01
Colony-stimulating factor 1 (CSF-1) regulates the survival, proliferation, and differentiation of mononuclear phagocytes. It is expressed as a secreted glycoprotein or proteoglycan found in the circulation or as a biologically active cell-surface glycoprotein. To investigate tissue CSF-1 regulation, CSF-1-null Csf1(op)/Csf1(op) mice expressing transgenes encoding the full-length membrane-spanning CSF-1 precursor driven by 3.13 kilobases of the mouse CSF-1 promoter and first intron were characterized. Transgene expression corrected the gross osteopetrotic, neurologic, weight, tooth, and reproductive defects of Csf1(op)/Csf1(op) mice. Detailed analysis of one transgenic line revealed that circulating CSF-1, tissue macrophage numbers, hematopoietic tissue cellularity, and hematopoietic parameters were normalized. Tissue CSF-1 levels were normal except for elevations in 4 secretory tissues. Skin fibroblasts from the transgenic mice secreted normal amounts of CSF-1 but also expressed some cell-surface CSF-1. Also, lacZ driven by the same promoter/first intron revealed beta-galactosidase expression in hematopoietic, reproductive, and other tissue locations proximal to CSF-1 cellular targets, consistent with local regulation by CSF-1 at these sites. These studies indicate that the 3.13-kilobase promoter/first intron confers essentially normal CSF-1 expression. They also pinpoint new cellular sites of CSF-1 expression, including ovarian granulosa cells, mammary ductal epithelium, testicular Leydig cells, serous acinar cells of salivary gland, Paneth cells of the small intestine, as well as local sites in several other tissues.
A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants.
Vera-Sirera, Francisco; De Rybel, Bert; Úrbez, Cristina; Kouklas, Evangelos; Pesquera, Marta; Álvarez-Mahecha, Juan Camilo; Minguet, Eugenio G; Tuominen, Hannele; Carbonell, Juan; Borst, Jan Willem; Weijers, Dolf; Blázquez, Miguel A
2015-11-23
Control of tissue dimensions in multicellular organisms requires the precise quantitative regulation of mitotic activity. In plants, where cells are immobile, tissue size is achieved through control of both cell division orientation and mitotic rate. The bHLH transcription factor heterodimer formed by target of monopteros5 (TMO5) and lonesome highway (LHW) is a central regulator of vascular width-increasing divisions. An important unanswered question is how its activity is limited to specify vascular tissue dimensions. Here we identify a regulatory network that restricts TMO5/LHW activity. We show that thermospermine synthase ACAULIS5 antagonizes TMO5/LHW activity by promoting the accumulation of SAC51-LIKE (SACL) bHLH transcription factors. SACL proteins heterodimerize with LHW-therefore likely competing with TMO5/LHW interactions-prevent activation of TMO5/LHW target genes, and suppress the over-proliferation caused by excess TMO5/LHW activity. These findings connect two thus-far disparate pathways and provide a mechanistic understanding of the quantitative control of vascular tissue growth. Copyright © 2015 Elsevier Inc. All rights reserved.
Marshall, Lynne; Rideout, Elizabeth J; Grewal, Savraj S
2012-01-01
The nutrient/target-of-rapamycin (TOR) pathway has emerged as a key regulator of tissue and organismal growth in metazoans. The signalling components of the nutrient/TOR pathway are well defined; however, the downstream effectors are less understood. Here, we show that the control of RNA polymerase (Pol) III-dependent transcription is an essential target of TOR in Drosophila. We find that TOR activity controls Pol III in growing larvae via inhibition of the repressor Maf1 and, in part, via the transcription factor Drosophila Myc (dMyc). Moreover, we show that loss of the Pol III factor, Brf, leads to reduced tissue and organismal growth and prevents TOR-induced cellular growth. TOR activity in the larval fat body, a tissue equivalent to vertebrate fat or liver, couples nutrition to insulin release from the brain. Accordingly, we find that fat-specific loss of Brf phenocopies nutrient limitation and TOR inhibition, leading to decreased systemic insulin signalling and reduced organismal growth. Thus, stimulation of Pol III is a key downstream effector of TOR in the control of cellular and systemic growth. PMID:22367393
Coagulation factor VII is regulated by androgen receptor in breast cancer.
Naderi, Ali
2015-02-01
Androgen receptor (AR) is widely expressed in breast cancer; however, there is limited information on the key molecular functions and gene targets of AR in this disease. In this study, gene expression data from a cohort of 52 breast cancer cell lines was analyzed to identify a network of AR co-expressed genes. A total of 300 genes, which were significantly enriched for cell cycle and metabolic functions, showed absolute correlation coefficients (|CC|) of more than 0.5 with AR expression across the dataset. In this network, a subset of 35 "AR-signature" genes were highly co-expressed with AR (|CC|>0.6) that included transcriptional regulators PATZ1, NFATC4, and SPDEF. Furthermore, gene encoding coagulation factor VII (F7) demonstrated the closest expression pattern with AR (CC=0.716) in the dataset and factor VII protein expression was significantly associated to that of AR in a cohort of 209 breast tumors. Moreover, functional studies demonstrated that AR activation results in the induction of factor VII expression at both transcript and protein levels and AR directly binds to a proximal region of F7 promoter in breast cancer cells. Importantly, AR activation in breast cancer cells induced endogenous factor VII activity to convert factor X to Xa in conjunction with tissue factor. In summary, F7 is a novel AR target gene and AR activation regulates the ectopic expression and activity of factor VII in breast cancer cells. These findings have functional implications in the pathobiology of thromboembolic events and regulation of factor VII/tissue factor signaling in breast cancer. Copyright © 2014 Elsevier Inc. All rights reserved.
Implications of High Temperature and Elevated CO2 on Flowering Time in Plants
Jagadish, S. V. Krishna; Bahuguna, Rajeev N.; Djanaguiraman, Maduraimuthu; Gamuyao, Rico; Prasad, P. V. Vara; Craufurd, Peter Q.
2016-01-01
Flowering is a crucial determinant for plant reproductive success and seed-set. Increasing temperature and elevated carbon-dioxide (e[CO2]) are key climate change factors that could affect plant fitness and flowering related events. Addressing the effect of these environmental factors on flowering events such as time of day of anthesis (TOA) and flowering time (duration from germination till flowering) is critical to understand the adaptation of plants/crops to changing climate and is the major aim of this review. Increasing ambient temperature is the major climatic factor that advances flowering time in crops and other plants, with a modest effect of e[CO2].Integrated environmental stimuli such as photoperiod, temperature and e[CO2] regulating flowering time is discussed. The critical role of plant tissue temperature influencing TOA is highlighted and crop models need to substitute ambient air temperature with canopy or floral tissue temperature to improve predictions. A complex signaling network of flowering regulation with change in ambient temperature involving different transcription factors (PIF4, PIF5), flowering suppressors (HvODDSOC2, SVP, FLC) and autonomous pathway (FCA, FVE) genes, mainly from Arabidopsis, provides a promising avenue to improve our understanding of the dynamics of flowering time under changing climate. Elevated CO2 mediated changes in tissue sugar status and a direct [CO2]-driven regulatory pathway involving a key flowering gene, MOTHER OF FT AND TFL1 (MFT), are emerging evidence for the role of e[CO2] in flowering time regulation. PMID:27446143
Initiation of coagulation by tissue factor (TF) is a potentially powerful regulator of local inflammatory responses. We hypothesized that blockade of TF-factor VIIa (FVIIa) complex would decrease lung inflammation and proinflammatory cytokine release after tracheal instillation o...
[Epithelial mesenchymal transition in airway remodeling of asthma and its molecular regulation].
Zhu, Xiaohua; Li, Qiugen
2018-05-28
Asthma is a chronic inflammatory disease of the airway. Repeated inflammatory injury and tissue repair can lead to airway remodeling. The airway epithelial mesenchymal transformation (EMT) plays an important role in airway remodeling of asthma. Various cytokines and signaling pathways, such as transforming growth factor β (TGF-β), nuclear factor-kappa B (NF-κB) and bromodomain-containing protein 4 (BRD4), are involved in the molecular regulation of EMT.
Pharmacological effects and potential therapeutic targets of DT-13.
Khan, Ghulam Jilany; Rizwan, Mohsin; Abbas, Muhammad; Naveed, Muhammad; Boyang, Yu; Naeem, Muhammad Ahsan; Khan, Sara; Yuan, Shengtao; Baig, Mirza Muhammad Faran Ashraf; Sun, Li
2018-01-01
DT-13 is an isolated compound from Dwarf lillytruf tuber and currently among active research drugs by National Natural Science foundation of China for its several potential effects. The drug has been reported for its multiple pharmacological actions however no thorough review studies are available on it. Our present study is highlighting the pros and cons of DT-13 focusing on its potential pharmacological actions, therapeutic utilization and further exploration for novel targets. The drug possesses very low toxicity profile, quick onset and long duration of action with slow elimination that combinely makes it favorable for the clinical studies. In vivo and in vitro studies show that the drug regulates multiple cellular functions for its several pharmacological effects including, anti-adhesive effects via regulation of tissue factor and transforming growth factor; anti-migratory effects through indirect regulation of NM-IIA in the tumor microenvironment, Tissue factor, down-regulation of CCR5-CCL5 axis and MMP-2/9 inhibition; anti-metastatic effects via regulation of MMPs and tissue factor; pro-apoptotic effects by modulation of endocytosis of EGF receptor; anti-angiogenic effects via regulation of HIF-1α,ERK, Akt signalling and autophagy inducing characteristics by regulating PI3K/Akt/mTOR signalling pathway. In addition to anti-tumor activities, DT-13 has significant anti-inflammatory, cardioprotective, hepatoprotective and immunomodulating effects. Pharmaceutical dosage form and targeted drug delivery system for DT-13 has not been established yet. Moreover, DT-13, has not been studied for its action on brain, colorectal, hepatic, pancreatic, prostate and blood cancers. Similarly the effects of drug on carbohydrate and glucose metabolism is another niche yet to be explored. In some traditional therapies, crude drug from the plant is used against diabetic and neurological disorders that are not reported in scientific literature, however due to profound effects of DT-13 on blood and cerebral ischemic disorders, it is reasonable to hypothesize that there could be an association of DT-13 that require further exploration. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Popov, Ivan K; Kwon, Taejoon; Crossman, David K; Crowley, Michael R; Wallingford, John B; Chang, Chenbei
2017-06-15
During early vertebrate embryogenesis, cell fate specification is often coupled with cell acquisition of specific adhesive, polar and/or motile behaviors. In Xenopus gastrulae, tissues fated to form different axial structures display distinct motility. The cells in the early organizer move collectively and directionally toward the animal pole and contribute to anterior mesendoderm, whereas the dorsal and the ventral-posterior trunk tissues surrounding the blastopore of mid-gastrula embryos undergo convergent extension and convergent thickening movements, respectively. While factors regulating cell lineage specification have been described in some detail, the molecular machinery that controls cell motility is not understood in depth. To gain insight into the gene battery that regulates both cell fates and motility in particular embryonic tissues, we performed RNA sequencing (RNA-seq) to investigate differentially expressed genes in the early organizer, the dorsal and the ventral marginal zone of Xenopus gastrulae. We uncovered many known signaling and transcription factors that have been reported to play roles in embryonic patterning during gastrulation. We also identified many uncharacterized genes as well as genes that encoded extracellular matrix (ECM) proteins or potential regulators of actin cytoskeleton. Co-expression of a selected subset of the differentially expressed genes with activin in animal caps revealed that they had distinct ability to block activin-induced animal cap elongation. Most of these factors did not interfere with mesodermal induction by activin, but an ECM protein, EFEMP2, inhibited activin signaling and acted downstream of the activated type I receptor. By focusing on a secreted protein kinase PKDCC1, we showed with overexpression and knockdown experiments that PKDCC1 regulated gastrulation movements as well as anterior neural patterning during early Xenopus development. Overall, our studies identify many differentially expressed signaling and cytoskeleton regulators in different embryonic regions of Xenopus gastrulae and imply their functions in regulating cell fates and/or behaviors during gastrulation. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Ou; Liang, Guanxiang; McAllister, Tim A.; Plastow, Graham; Stanford, Kim; Selinger, Brent; Guan, Le Luo
2016-01-01
Super-shedder cattle are a major disseminator of E. coli O157:H7 into the environment, and the terminal rectum has been proposed as the primary E. coli O157:H7 colonization site. This study aimed to identify host factors that are associated with the super-shedding process by comparing transcriptomic profiles in rectal tissue collected from 5 super-shedder cattle and 4 non-shedder cattle using RNA-Seq. In total, 17,859 ± 354 genes and 399 ± 16 miRNAs were detected, and 11,773 genes were expressed in all animals. Fifty-eight differentially expressed (DE) genes (false discovery rate < 0.05) including 11 up-regulated and 47 down-regulated (log 2 (fold change) ranged from -5.5 to 4.2), and 2 up-regulated DE miRNAs (log 2 (fold change) = 2.1 and 2.5, respectively) were identified in super-shedders compared to non-shedders. Functional analysis of DE genes revealed that 31 down-regulated genes were potentially associated with reduced innate and adaptive immune functions in super-shedders, including 13 lymphocytes membrane receptors, 3 transcription factors and 5 cytokines, suggesting the decreased key host immune functions in the rectal tissue of super-shedders, including decreased quantity and migration of immune cells such as lymphocytes, neutrophils and dendritic cells. The up-regulation of bta-miR-29d-3p and the down regulation of its predicted target gene, regulator of G-protein signaling 13, suggested a potential regulatory role of this miRNA in decreased migration of lymphocytes in super-shedders. Based on these findings, the rectal tissue of super-shedders may inherently exhibit less effective innate and adaptive immune protection. Further study is required to confirm if such effect on host immunity is due to the nature of the host itself or due to actions mediated by E. coli O157:H7. PMID:26959367
Wang, Ou; Liang, Guanxiang; McAllister, Tim A; Plastow, Graham; Stanford, Kim; Selinger, Brent; Guan, Le Luo
2016-01-01
Super-shedder cattle are a major disseminator of E. coli O157:H7 into the environment, and the terminal rectum has been proposed as the primary E. coli O157:H7 colonization site. This study aimed to identify host factors that are associated with the super-shedding process by comparing transcriptomic profiles in rectal tissue collected from 5 super-shedder cattle and 4 non-shedder cattle using RNA-Seq. In total, 17,859 ± 354 genes and 399 ± 16 miRNAs were detected, and 11,773 genes were expressed in all animals. Fifty-eight differentially expressed (DE) genes (false discovery rate < 0.05) including 11 up-regulated and 47 down-regulated (log 2 (fold change) ranged from -5.5 to 4.2), and 2 up-regulated DE miRNAs (log 2 (fold change) = 2.1 and 2.5, respectively) were identified in super-shedders compared to non-shedders. Functional analysis of DE genes revealed that 31 down-regulated genes were potentially associated with reduced innate and adaptive immune functions in super-shedders, including 13 lymphocytes membrane receptors, 3 transcription factors and 5 cytokines, suggesting the decreased key host immune functions in the rectal tissue of super-shedders, including decreased quantity and migration of immune cells such as lymphocytes, neutrophils and dendritic cells. The up-regulation of bta-miR-29d-3p and the down regulation of its predicted target gene, regulator of G-protein signaling 13, suggested a potential regulatory role of this miRNA in decreased migration of lymphocytes in super-shedders. Based on these findings, the rectal tissue of super-shedders may inherently exhibit less effective innate and adaptive immune protection. Further study is required to confirm if such effect on host immunity is due to the nature of the host itself or due to actions mediated by E. coli O157:H7.
Molecular and physiological mechanisms regulating tissue reunion in incised plant tissues.
Asahina, Masashi; Satoh, Shinobu
2015-05-01
Interactions among the functionally specialized organs of higher plants ensure that the plant body develops and functions properly in response to changing environmental conditions. When an incision or grafting procedure interrupts the original organ or tissue connection, cell division is induced and tissue reunion occurs to restore physiological connections. Such activities have long been observed in grafting techniques, which are advantageous not only for agriculture and horticulture but also for basic research. To understand how this healing process is controlled and how this process is initiated and regulated at the molecular level, physiological and molecular analyses of tissue reunion have been performed using incised hypocotyls of cucumber (Cucumis sativus) and tomato (Solanum lycopersicum) and incised flowering stems of Arabidopsis thaliana. Our results suggest that leaf gibberellin and microelements from the roots are required for tissue reunion in the cortex of the cucumber and tomato incised hypocotyls. In addition, the wound-inducible hormones ethylene and jasmonic acid contribute to the regulation of the tissue reunion process in the upper and lower parts, respectively, of incised Arabidopsis stems. Ethylene and jasmonic acid modulate the expression of ANAC071 and RAP2.6L, respectively, and auxin signaling via ARF6/8 is essential for the expression of these transcription factors. In this report, we discuss recent findings regarding molecular and physiological mechanisms of the graft union and the tissue reunion process in wounded tissues of plants.
A cellular, molecular, and pharmacological basis for appendage regeneration in mice
Leung, Thomas H.; Snyder, Emily R.; Liu, Yinghua; Wang, Jing; Kim, Seung K.
2015-01-01
Regenerative medicine aims to restore normal tissue architecture and function. However, the basis of tissue regeneration in mammalian solid organs remains undefined. Remarkably, mice lacking p21 fully regenerate injured ears without discernable scarring. Here we show that, in wild-type mice following tissue injury, stromal-derived factor-1 (Sdf1) is up-regulated in the wound epidermis and recruits Cxcr4-expressing leukocytes to the injury site. In p21-deficient mice, Sdf1 up-regulation and the subsequent recruitment of Cxcr4-expressing leukocytes are significantly diminished, thereby permitting scarless appendage regeneration. Lineage tracing demonstrates that this regeneration derives from fate-restricted progenitor cells. Pharmacological or genetic disruption of Sdf1–Cxcr4 signaling enhances tissue repair, including full reconstitution of tissue architecture and all cell types. Our findings identify signaling and cellular mechanisms underlying appendage regeneration in mice and suggest new therapeutic approaches for regenerative medicine. PMID:26494786
NASA Astrophysics Data System (ADS)
Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.
1987-05-01
Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.
Keßler, Jacqueline; Rot, Swetlana; Bache, Matthias; Kappler, Matthias; Würl, Peter; Vordermark, Dirk; Taubert, Helge; Greither, Thomas
2016-01-01
Soft tissue sarcomas are a heterogeneous group of malignant neoplasms of mesenchymal origin. Partly due to hypoxia, an aggressive and radioresistant phenotype frequently develops, resulting in poorer patient outcome. microRNAs (miRNAs) are tiny, non-coding regulators of gene expression and in situations of cellular stress situations may predict clinical progression and patient outcome. In the present study, hypoxia-associated miR-199a-5p expression in 96 soft tissue sarcoma samples was analysed by reverse transcription-quantitative polymerase chain reaction and associations between miR-199a-5p expression and patient clinicopathological characteristics and survival were measured. Additionally, luciferase reporter assays analyzed the post-transcriptional regulation of hypoxia-associated genes hypoxia-inducible factor 1α (HIF-1α), oxidative stress induced growth inhibitor 2 (OSGIN2) and vascular endothelial growth factor (VEGF) by miR-199a-5p. Survival analyses indicated that low expression of miR-199a-5p was significantly correlated with poorer tumor-specific survival (univariate Cox's-Regression analyses; relative risk=1.92, P=0.029). Furthermore, it was demonstrated that the 3′UTR of HIF-1α and OSGIN2 genes were regulated by miR-199a-5p in-vitro, although the 3′UTR of VEGF was not. To the best of our knowledge, this is the first report demonstrating the regulation of the 3′untranslated region of the OSGIN2 gene by miR-199a-5p and a significant correlation between low miR-199a-5p expression and a poor outcome of patients with soft tissue sarcoma. PMID:28101243
LRP1 protects the vasculature by regulating levels of connective tissue growth factor and HtrA1.
Muratoglu, Selen C; Belgrave, Shani; Hampton, Brian; Migliorini, Mary; Coksaygan, Turhan; Chen, Ling; Mikhailenko, Irina; Strickland, Dudley K
2013-09-01
Low-density lipoprotein receptor-related protein 1 (LRP1) is a large endocytic and signaling receptor that is abundant in vascular smooth muscle cells. Mice in which the lrp1 gene is deleted in smooth muscle cells (smLRP1(-/-)) on a low-density lipoprotein receptor-deficient background display excessive platelet derived growth factor-signaling, smooth muscle cell proliferation, aneurysm formation, and increased susceptibility to atherosclerosis. The objectives of the current study were to examine the potential of LRP1 to modulate vascular physiology under nonatherogenic conditions. We found smLRP1(-/-) mice to have extensive in vivo aortic dilatation accompanied by disorganized and degraded elastic lamina along with medial thickening of the arterial vessels resulting from excess matrix deposition. Surprisingly, this was not attributable to excessive platelet derived growth factor-signaling. Rather, quantitative differential proteomic analysis revealed that smLRP1(-/-) vessels contain a 4-fold increase in protein levels of high-temperature requirement factor A1 (HtrA1), which is a secreted serine protease that is known to degrade matrix components and to impair elastogenesis, resulting in fragmentation of elastic fibers. Importantly, our study discovered that HtrA1 is a novel LRP1 ligand. Proteomics analysis also identified excessive accumulation of connective tissue growth factor, an LRP1 ligand and a key mediator of fibrosis. Our findings suggest a critical role for LRP1 in maintaining the integrity of vessels by regulating protease activity as well as matrix deposition by modulating HtrA1 and connective tissue growth factor protein levels. This study highlights 2 new molecules, connective tissue growth factor and HtrA1, which contribute to detrimental changes in the vasculature and, therefore, represent new target molecules for potential therapeutic intervention to maintain vessel wall homeostasis.
Multiple roles of the coagulation protease cascade during virus infection.
Antoniak, Silvio; Mackman, Nigel
2014-04-24
The coagulation cascade is activated during viral infections. This response may be part of the host defense system to limit spread of the pathogen. However, excessive activation of the coagulation cascade can be deleterious. In fact, inhibition of the tissue factor/factor VIIa complex reduced mortality in a monkey model of Ebola hemorrhagic fever. Other studies showed that incorporation of tissue factor into the envelope of herpes simplex virus increases infection of endothelial cells and mice. Furthermore, binding of factor X to adenovirus serotype 5 enhances infection of hepatocytes but also increases the activation of the innate immune response to the virus. Coagulation proteases activate protease-activated receptors (PARs). Interestingly, we and others found that PAR1 and PAR2 modulate the immune response to viral infection. For instance, PAR1 positively regulates TLR3-dependent expression of the antiviral protein interferon β, whereas PAR2 negatively regulates expression during coxsackievirus group B infection. These studies indicate that the coagulation cascade plays multiple roles during viral infections.
Lenis, Andrew T.; Kuang, Mei; Woo, Lynn L.; Hijaz, Adonis; Penn, Marc S.; Butler, Robert S.; Rackley, Raymond; Damaser, Margot S.; Wood, Hadley M.
2015-01-01
Purpose Human childbirth simulated by vaginal distention is known to increase the expression of chemokines and receptors involved in stem cell homing and tissue repair. We hypothesized that pregnancy and parturition in rats contributes to the expression of chemokines and receptors after vaginal distention. Materials and Methods We used 72 age matched female Lewis rats, including virgin rats with and without vaginal distention, and delivered rats with and without vaginal distention. Each rat was sacrificed immediately, or 3 or 7 days after vaginal distention and/or parturition, and the urethra was harvested. Relative expression of chemokines and receptors was determined by real-time polymerase chain reaction. Mixed models were used with the Bonferroni correction for multiple comparisons. Results Vaginal distention up-regulated urethral expression of CCL7 immediately after injury in virgin and postpartum rats. Hypoxia inducible factor-1α and vascular endothelial growth factor were up-regulated only in virgin rats immediately after vaginal distention. CD191 expression was immediately up-regulated in postpartum rats without vaginal distention compared to virgin rats without vaginal distention. CD195 was up-regulated in virgin rats 3 days after vaginal distention compared to virgin rats without vaginal distention. CD193 and CXCR4 showed delayed up-regulation in virgin rats 7 days after vaginal distention. CXCL12 was up-regulated in virgin rats 3 days after vaginal distention compared to immediately after vaginal distention. Interleukin-8 and CD192 showed no differential expression. Conclusions Vaginal distention results in up-regulation of the chemokines and receptors expressed during tissue injury, which may facilitate the spontaneous functional recovery previously noted. Pregnancy and delivery up-regulated CD191 and attenuated the expression of hypoxia inducible factor-1α and vascular endothelial growth factor in the setting of vaginal distention, likely by decreasing hypoxia. PMID:23022009
Targeting the Hippo Signaling Pathway for Tissue Regeneration and Cancer Therapy
Juan, Wen Chun; Hong, Wanjin
2016-01-01
The Hippo signaling pathway is a highly-conserved developmental pathway that plays an essential role in organ size control, tumor suppression, tissue regeneration and stem cell self-renewal. The YES-associated protein (YAP) and the transcriptional co-activator with PDZ-binding motif (TAZ) are two important transcriptional co-activators that are negatively regulated by the Hippo signaling pathway. By binding to transcription factors, especially the TEA domain transcription factors (TEADs), YAP and TAZ induce the expression of growth-promoting genes, which can promote organ regeneration after injury. Therefore, controlled activation of YAP and TAZ can be useful for regenerative medicine. However, aberrant activation of YAP and TAZ due to deregulation of the Hippo pathway or overexpression of YAP/TAZ and TEADs can promote cancer development. Hence, pharmacological inhibition of YAP and TAZ may be a useful approach to treat tumors with high YAP and/or TAZ activity. In this review, we present the mechanisms regulating the Hippo pathway, the role of the Hippo pathway in tissue repair and cancer, as well as a detailed analysis of the different strategies to target the Hippo signaling pathway and the genes regulated by YAP and TAZ for regenerative medicine and cancer therapy. PMID:27589805
Targeting the Hippo Signaling Pathway for Tissue Regeneration and Cancer Therapy.
Juan, Wen Chun; Hong, Wanjin
2016-08-30
The Hippo signaling pathway is a highly-conserved developmental pathway that plays an essential role in organ size control, tumor suppression, tissue regeneration and stem cell self-renewal. The YES-associated protein (YAP) and the transcriptional co-activator with PDZ-binding motif (TAZ) are two important transcriptional co-activators that are negatively regulated by the Hippo signaling pathway. By binding to transcription factors, especially the TEA domain transcription factors (TEADs), YAP and TAZ induce the expression of growth-promoting genes, which can promote organ regeneration after injury. Therefore, controlled activation of YAP and TAZ can be useful for regenerative medicine. However, aberrant activation of YAP and TAZ due to deregulation of the Hippo pathway or overexpression of YAP/TAZ and TEADs can promote cancer development. Hence, pharmacological inhibition of YAP and TAZ may be a useful approach to treat tumors with high YAP and/or TAZ activity. In this review, we present the mechanisms regulating the Hippo pathway, the role of the Hippo pathway in tissue repair and cancer, as well as a detailed analysis of the different strategies to target the Hippo signaling pathway and the genes regulated by YAP and TAZ for regenerative medicine and cancer therapy.
A novel role for drebrin in regulating progranulin bioactivity in bladder cancer.
Xu, Shi-Qiong; Buraschi, Simone; Morcavallo, Alaide; Genua, Marco; Shirao, Tomoaki; Peiper, Stephen C; Gomella, Leonard G; Birbe, Ruth; Belfiore, Antonino; Iozzo, Renato V; Morrione, Andrea
2015-05-10
We recently established a critical role for the growth factor progranulin in bladder cancer insofar as progranulin promotes urothelial cancer cell motility and contributes, as an autocrine growth factor, to the transformed phenotype by modulating invasion and anchorage-independent growth. In addition, progranulin expression is upregulated in invasive bladder cancer tissues compared to normal controls. However, the molecular mechanisms of progranulin action in bladder cancer have not been fully elucidated. In this study, we searched for novel progranulin-interacting proteins using pull-down assays with recombinant progranulin and proteomics. We discovered that drebrin, an F-actin binding protein, bound progranulin in urothelial cancer cells. We characterized drebrin function in urothelial cancer cell lines and showed that drebrin is critical for progranulin-dependent activation of the Akt and MAPK pathways and modulates motility, invasion and anchorage-independent growth. In addition, drebrin regulates tumor formation in vivo and its expression is upregulated in bladder cancer tissues compared to normal tissue controls. Our data are translationally relevant as indicate that drebrin exerts an essential functional role in the regulation of progranulin action and may constitute a novel target for therapeutic intervention in bladder tumors. In addition, drebrin may serve as novel biomarker for bladder cancer.
Etchells, J Peter; Provost, Claire M; Mishra, Laxmi; Turner, Simon R
2013-05-01
In plants, the cambium and procambium are meristems from which vascular tissue is derived. In contrast to most plant cells, stem cells within these tissues are thin and extremely long. They are particularly unusual as they divide down their long axis in a highly ordered manner, parallel to the tangential axis of the stem. CLAVATA3-LIKE/ESR-RELATED 41 (CLE41) and PHLOEM INTERCALATED WITH XYLEM (PXY) are a multifunctional ligand-receptor pair that regulate vascular cell division, vascular organisation and xylem differentiation in vascular tissue. A transcription factor gene, WUSCHEL HOMEOBOX RELATED 4 (WOX4) has been shown to act downstream of PXY. Here we show that WOX4 acts redundantly with WOX14 in the regulation of vascular cell division, but that these genes have no function in regulating vascular organisation. Furthermore, we identify an interaction between PXY and the receptor kinase ERECTA (ER) that affects the organisation of the vascular tissue but not the rate of cell division, suggesting that cell division and vascular organisation are genetically separable. Our observations also support a model whereby tissue organisation and cell division are integrated via PXY and ER signalling, which together coordinate development of different cell types that are essential for normal stem formation.
Ruszová, Ema; Cheel, José; Pávek, Stanislav; Moravcová, Martina; Hermannová, Martina; Matějková, Ilona; Spilková, Jiřina; Velebný, Vladimír; Kubala, Lukáš
2013-09-01
Stress-induced fibroblast senescence is thought to contribute to skin aging. Ultraviolet light (UV) radiation is the most potent environmental risk factor in these processes. An Epilobium angustifolium (EA) extract was evaluated for its capacity to reverse the senescent response of normal human dermal fibroblasts (NHDF) in vitro and to exhibit skin photo-protection in vivo. The HPLC-UV-MS analysis of the EA preparation identified three major polyphenol groups: tannins (oenothein B), phenolic acids (gallic and chlorogenic acids) and flavonoids. EA extract increased the cell viability of senescent NHDF induced by serum deprivation. It diminished connective tissue growth factor and fibronectin gene expressions in senescent NHDF. Down-regulation of the UV-induced release of both matrix metalloproteinase-1 and -3 and the tissue inhibitor of matrix metalloproteinases-1 and -2, and also down-regulation of the gene expression of hyaluronidase 2 were observed in repeatedly UV-irradiated NHDF after EA extract treatment. Interestingly, EA extract diminished the down-regulation of sirtuin 1 dampened by UV-irradiation. The application of EA extract using a sub-irritating dose protected skin against UV-induced erythema formation in vivo. In summary, EA extract diminished stress-induced effects on NHDF, particularly on connective tissue growth factor, fibronectin and matrix metalloproteinases. These results collectively suggest that EA extract may possess anti-aging properties and that the EA polyphenols might account for these benefits.
The molecular functions of hepatocyte nuclear factors - In and beyond the liver.
Lau, Hwee Hui; Ng, Natasha Hui Jin; Loo, Larry Sai Weng; Jasmen, Joanita Binte; Teo, Adrian Kee Keong
2018-05-01
The hepatocyte nuclear factors (HNFs) namely HNF1α/β, FOXA1/2/3, HNF4α/γ and ONECUT1/2 are expressed in a variety of tissues and organs, including the liver, pancreas and kidney. The spatial and temporal manner of HNF expression regulates embryonic development and subsequently the development of multiple tissues during adulthood. Though the HNFs were initially identified individually based on their roles in the liver, numerous studies have now revealed that the HNFs cross-regulate one another and exhibit synergistic relationships in the regulation of tissue development and function. The complex HNF transcriptional regulatory networks have largely been elucidated in rodent models, but less so in human biological systems. Several heterozygous mutations in these HNFs were found to cause diseases in humans but not in rodents, suggesting clear species-specific differences in mutational mechanisms that remain to be uncovered. In this review, we compare and contrast the expression patterns of the HNFs, the HNF cross-regulatory networks and how these liver-enriched transcription factors serve multiple functions in the liver and beyond, extending our focus to the pancreas and kidney. We also summarise the insights gained from both human and rodent studies of mutations in several HNFs that are known to lead to different disease conditions. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Sex- and Tissue-specific Functions of Drosophila Doublesex Transcription Factor Target Genes
Clough, Emily; Jimenez, Erin; Kim, Yoo-Ah; Whitworth, Cale; Neville, Megan C.; Hempel, Leonie; Pavlou, Hania J.; Chen, Zhen-Xia; Sturgill, David; Dale, Ryan; Smith, Harold E.; Przytycka, Teresa M.; Goodwin, Stephen F.; Van Doren, Mark; Oliver, Brian
2014-01-01
Primary sex determination “switches” evolve rapidly, but Doublesex (DSX) related transcription factors (DMRTs) act downstream of these switches to control sexual development in most animal species. Drosophila dsx encodes female- and male-specific isoforms (DSXF and DSXM), but little is known about how dsx controls sexual development, whether DSXF and DSXM bind different targets, or how DSX proteins direct different outcomes in diverse tissues. We undertook genome-wide analyses to identify DSX targets using in vivo occupancy, binding site prediction, and evolutionary conservation. We find that DSXF and DSXM bind thousands of the same targets in multiple tissues in both sexes, yet these targets have sex- and tissue-specific functions. Interestingly, DSX targets show considerable overlap with targets identified for mouse DMRT1. DSX targets include transcription factors and signaling pathway components providing for direct and indirect regulation of sex-biased expression. PMID:25535918
A generic strategy for pharmacological caging of growth factors for tissue engineering.
Karlsson, Maria; Lienemann, Philipp S; Sprossmann, Natallia; Heilmann, Katharina; Brummer, Tilman; Lutolf, Matthias P; Ehrbar, Martin; Weber, Wilfried
2013-07-07
The caging of small molecules has revolutionized biological research by providing a means to regulate a wide range of processes. Here we report on a generic pharmacological method to cage proteins in a similar fashion. The present approach is of value in both fundamental and applied research, e.g. in tissue engineering.
Izadifar, Mohammad; Haddadi, Azita; Chen, Xiongbiao; Kelly, Michael E
2015-01-09
Development of smart bioactive scaffolds is of importance in tissue engineering, where cell proliferation, differentiation and migration within scaffolds can be regulated by the interactions between cells and scaffold through the use of growth factors (GFs) and extra cellular matrix peptides. One challenge in this area is to spatiotemporally control the dose, sequence and profile of release of GFs so as to regulate cellular fates during tissue regeneration. This challenge would be addressed by rate-programming of nano-particulate delivery systems, where the release of GFs via polymeric nanoparticles is controlled by means of the methods of, such as externally-controlled and physicochemically/architecturally-modulated so as to mimic the profile of physiological GFs. Identifying and understanding such factors as the desired release profiles, mechanisms of release, physicochemical characteristics of polymeric nanoparticles, and externally-triggering stimuli are essential for designing and optimizing such delivery systems. This review surveys the recent studies on the desired release profiles of GFs in various tissue engineering applications, elucidates the major release mechanisms and critical factors affecting release profiles, and overviews the role played by the mathematical models for optimizing nano-particulate delivery systems. Potentials of stimuli responsive nanoparticles for spatiotemporal control of GF release are also presented, along with the recent advances in strategies for spatiotemporal control of GF delivery within tissue engineered scaffolds. The recommendation for the future studies to overcome challenges for developing sophisticated particulate delivery systems in tissue engineering is discussed prior to the presentation of conclusions drawn from this paper.
LIM Domain Only 2 Regulates Endothelial Proliferation, Angiogenesis, and Tissue Regeneration.
Meng, Shu; Matrone, Gianfranco; Lv, Jie; Chen, Kaifu; Wong, Wing Tak; Cooke, John P
2016-10-06
LIM domain only 2 (LMO2, human gene) is a key transcription factor that regulates hematopoiesis and vascular development. However, its role in adult endothelial function has been incompletely characterized. In vitro loss- and gain-of-function studies on LMO2 were performed in human umbilical vein endothelial cells with lentiviral overexpression or short hairpin RNA knockdown (KD) of LMO2, respectively. LMO2 KD significantly impaired endothelial proliferation. LMO2 controls endothelial G1/S transition through transcriptional regulation of cyclin-dependent kinase 2 and 4 as determined by reverse transcription polymerase chain reaction (PCR), western blot, and chromatin immunoprecipitation, and also influences the expression of Cyclin D1 and Cyclin A1. LMO2 KD also impaired angiogenesis by reducing transforming growth factor-β (TGF-β) expression, whereas supplementation of exogenous TGF-β restored defective network formation in LMO2 KD human umbilical vein endothelial cells. In a zebrafish model of caudal fin regeneration, RT-PCR revealed that the lmo2 (zebrafish gene) gene was upregulated at day 5 postresection. The KD of lmo2 by vivo-morpholino injections in adult Tg(fli1:egfp) y1 zebrafish reduced 5-bromo-2'-deoxyuridine incorporation in endothelial cells, impaired neoangiogenesis in the resected caudal fin, and substantially delayed fin regeneration. The transcriptional factor LMO2 regulates endothelial proliferation and angiogenesis in vitro. Furthermore, LMO2 is required for angiogenesis and tissue healing in vivo. Thus, LMO2 is a critical determinant of vascular and tissue regeneration. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Kotake, Shigeru; Yago, Toru; Kawamoto, Manabu; Nanke, Yuki
2012-01-01
Synovial tissues of patients with rheumatoid arthritis (RA) include factors regulating bone resorption, such as receptor activator NF-κB ligand (RANKL), TNF-α, IL-6, IL-17, and IFN-γ. However, in addition to these cytokines, other factors expressed in synovial tissues may play a role in regulating bone resorption. In 2009, we demonstrated that novel peptides from T-cell leukemia translocation-associated gene (TCTA) protein expressed in synovial tissues from patients with RA inhibit human osteoclastogenesis, preventing cellular fusion via the interaction between TCTA protein and a putative counterpart molecule. Only a few studies on the role of TCTA protein have been reported. Genomic Southern blots demonstrated a reduced TCTA signal in three of four small cell lung cancer cell lines, suggesting the loss of one of the two copies of the gene. In the current paper, we reviewed the roles of TCTA protein in lung cancer cell lines and human osteoclastogenesis. PMID:22174563
Regulation of Embryonic and Postnatal Development by the CSF-1 Receptor
Chitu, Violeta; Stanley, E. Richard
2017-01-01
Macrophages are found in all tissues and regulate tissue morphogenesis during development through trophic and scavenger functions. The colony stimulating factor-1 (CSF-1) receptor (CSF-1R) is the major regulator of tissue macrophage development and maintenance. In combination with receptor activator of nuclear factor κB (RANK), the CSF-1R also regulates the differentiation of the bone-resorbing osteoclast and controls bone remodeling during embryonic and early postnatal development. CSF-1R-regulated macrophages play trophic and remodeling roles in development. Outside the mononuclear phagocytic system, the CSF-1R directly regulates neuronal survival and differentiation, the development of intestinal Paneth cells and of preimplantation embryos, as well as trophoblast innate immune function. Consistent with the pleiotropic roles of the receptor during development, CSF-1R deficiency in most mouse strains causes embryonic or perinatal death and the surviving mice exhibit multiple developmental and functional deficits. The CSF-1R is activated by two dimeric glycoprotein ligands, CSF-1, and interleukin-34 (IL-34). Homozygous Csf1-null mutations phenocopy most of the deficits of Csf1r-null mice. In contrast, Il34-null mice have no gross phenotype, except for decreased numbers of Langerhans cells and microglia, indicating that CSF-1 plays the major developmental role. Homozygous inactivating mutations of the Csf1r or its ligands have not been reported in man. However, heterozygous inactivating mutations in the Csf1r lead to a dominantly inherited adult-onset progressive dementia, highlighting the importance of CSF-1R signaling in the brain. PMID:28236968
Regulation of Embryonic and Postnatal Development by the CSF-1 Receptor.
Chitu, Violeta; Stanley, E Richard
2017-01-01
Macrophages are found in all tissues and regulate tissue morphogenesis during development through trophic and scavenger functions. The colony stimulating factor-1 (CSF-1) receptor (CSF-1R) is the major regulator of tissue macrophage development and maintenance. In combination with receptor activator of nuclear factor κB (RANK), the CSF-1R also regulates the differentiation of the bone-resorbing osteoclast and controls bone remodeling during embryonic and early postnatal development. CSF-1R-regulated macrophages play trophic and remodeling roles in development. Outside the mononuclear phagocytic system, the CSF-1R directly regulates neuronal survival and differentiation, the development of intestinal Paneth cells and of preimplantation embryos, as well as trophoblast innate immune function. Consistent with the pleiotropic roles of the receptor during development, CSF-1R deficiency in most mouse strains causes embryonic or perinatal death and the surviving mice exhibit multiple developmental and functional deficits. The CSF-1R is activated by two dimeric glycoprotein ligands, CSF-1, and interleukin-34 (IL-34). Homozygous Csf1-null mutations phenocopy most of the deficits of Csf1r-null mice. In contrast, Il34-null mice have no gross phenotype, except for decreased numbers of Langerhans cells and microglia, indicating that CSF-1 plays the major developmental role. Homozygous inactivating mutations of the Csf1r or its ligands have not been reported in man. However, heterozygous inactivating mutations in the Csf1r lead to a dominantly inherited adult-onset progressive dementia, highlighting the importance of CSF-1R signaling in the brain. © 2017 Elsevier Inc. All rights reserved.
Tissue Factor-Factor VII Complex As a Key Regulator of Ovarian Cancer Phenotypes.
Koizume, Shiro; Miyagi, Yohei
2015-01-01
Tissue factor (TF) is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII) is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF-fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are chronically exposed to hypoxia. TF and fVII can be induced in response to hypoxia in ovarian cancer cells at the gene expression level, leading to the autonomous production of the TF-fVII complex. Here, we discuss the roles of the TF-fVII complex in the induction of malignant phenotypes in ovarian cancer cells. The hypoxic nature of ovarian cancer tissues and the roles of TF expression in endometriosis are discussed. Arguments will be extended to potential strategies to treat ovarian cancers based on our current knowledge of TF-fVII function.
Recent advances on the development and regulation of flower color in ornamental plants
Zhao, Daqiu; Tao, Jun
2015-01-01
Flower color is one of the most important features of ornamental plants. Its development and regulation are influenced by many internal and external factors. Therefore, understanding the mechanism of color development and its regulation provides an important theoretical basis and premise for the cultivation and improvement of new color varieties of ornamental plants. This paper outlines the functions of petal tissue structure, as well as the distribution and type of pigments, especially anthocyanins, in color development. The progress of research on flower color regulation with a focus on physical factors, chemical factors, and genetic engineering is introduced. The shortcomings of flower color research and the potential directions for future development are explored to provide a broad background for flower color improvements in ornamental plants. PMID:25964787
Innate Lymphoid Cells: A Promising New Regulator in Fibrotic Diseases.
Zhang, Yi; Tang, Jun; Tian, Zhiqiang; van Velkinburgh, Jennifer C; Song, Jianxun; Wu, Yuzhang; Ni, Bing
2016-09-02
Fibrosis is a consequence of chronic inflammation and the persistent accumulation of extracellular matrix, for which the cycle of tissue injury and repair becomes a predominant feature. Both the innate and adaptive immune systems play key roles in the progress of fibrosis. The recently identified subsets of innate lymphoid cells (ILCs), which are mainly localize to epithelial surfaces, have been characterized as regulators of chronic inflammation and tissue remodeling, representing a functional bridge between the innate and adaptive immunity. Moreover, recent research has implicated ILCs as potential contributing factors to several kinds of fibrosis diseases, such as hepatic fibrosis and pulmonary fibrosis. Here, we will summarize and discuss the key roles of ILCs and their related factors in fibrotic diseases and their potential for translation to the clinic.
Transcriptional control of stem cell fate by E2Fs and pocket proteins
Julian, Lisa M.; Blais, Alexandre
2015-01-01
E2F transcription factors and their regulatory partners, the pocket proteins (PPs), have emerged as essential regulators of stem cell fate control in a number of lineages. In mammals, this role extends from both pluripotent stem cells to those encompassing all embryonic germ layers, as well as extra-embryonic lineages. E2F/PP-mediated regulation of stem cell decisions is highly evolutionarily conserved, and is likely a pivotal biological mechanism underlying stem cell homeostasis. This has immense implications for organismal development, tissue maintenance, and regeneration. In this article, we discuss the roles of E2F factors and PPs in stem cell populations, focusing on mammalian systems. We discuss emerging findings that position the E2F and PP families as widespread and dynamic epigenetic regulators of cell fate decisions. Additionally, we focus on the ever expanding landscape of E2F/PP target genes, and explore the possibility that E2Fs are not simply regulators of general ‘multi-purpose’ cell fate genes but can execute tissue- and cell type-specific gene regulatory programs. PMID:25972892
Nadir, Yona; Brenner, Benjamin; Fux, Liat; Shafat, Itay; Attias, Judith; Vlodavsky, Israel
2010-11-01
Heparanase is an endo-β-D-glucuronidase dominantly involved in tumor metastasis and angiogenesis. Recently, we demonstrated that heparanase is involved in the regulation of the hemostatic system. Our hypothesis was that heparanase is directly involved in activation of the coagulation cascade. Activated factor X and thrombin were studied using chromogenic assays, immunoblotting and thromboelastography. Heparanase levels were measured by enzyme-linked immunosorbent assay. A potential direct interaction between tissue factor and heparanase was studied by co-immunoprecipitation and far-western assays. Interestingly, addition of heparanase to tissue factor and activated factor VII resulted in a 3- to 4-fold increase in activation of the coagulation cascade as shown by increased activated factor X and thrombin production. Culture medium of human embryonic kidney 293 cells over-expressing heparanase and its derivatives increased activated factor X levels in a non-enzymatic manner. When heparanase was added to pooled normal plasma, a 7- to 8-fold increase in activated factor X level was observed. Subsequently, we searched for clinical data supporting this newly identified role of heparanase. Plasma samples from 35 patients with acute leukemia at presentation and 20 healthy donors were studied for heparanase and activated factor X levels. A strong positive correlation was found between plasma heparanase and activated factor X levels (r=0.735, P=0.001). Unfractionated heparin and an inhibitor of activated factor X abolished the effect of heparanase, while tissue factor pathway inhibitor and tissue factor pathway inhibitor-2 only attenuated the procoagulant effect. Using co-immunoprecipitation and far-western analyses it was shown that heparanase interacts directly with tissue factor. Overall, our results support the notion that heparanase is a potential modulator of blood hemostasis, and suggest a novel mechanism by which heparanase increases the generation of activated factor X in the presence of tissue factor and activated factor VII.
Huh, Yun Hyun; Lee, Gyuseok; Lee, Keun-Bae; Koh, Jeong-Tae; Chun, Jang-Soo; Ryu, Je-Hwang
2015-10-29
Pannus formation and resulting cartilage destruction during rheumatoid arthritis (RA) depends on the migration of synoviocytes to cartilage tissue. Here, we focused on the role of hypoxia-inducible factor (HIF)-2α-induced chemokines by chondrocytes in the regulation of fibroblast-like synoviocyte (FLS) migration into the cartilage-pannus interface and cartilage erosion. Collagen-induced arthritis (CIA), K/BxN serum transfer, and tumor necrosis factor-α transgenic mice were used as experimental RA models. Expression patterns of HIF-2α and chemokines were determined via immunostaining, Western blotting and RT-PCR. FLS motility was evaluated using transwell migration and invasion assays. The specific role of HIF-2α was determined via local deletion of HIF-2α in joint tissues or using conditional knockout (KO) mice. Cartilage destruction, synovitis and pannus formation were assessed via histological analysis. HIF-2α and various chemokines were markedly upregulated in degenerating cartilage and pannus of RA joints. HIF-2α induced chemokine expression by chondrocytes in both primary culture and cartilage tissue. HIF-2α -induced chemokines by chondrocytes regulated the migration and invasion of FLS. Local deletion of HIF-2α in joint tissues inhibited pannus formation adjacent to cartilage tissue and cartilage destruction caused by K/BxN serum transfer. Furthermore, conditional knockout of HIF-2α in cartilage blocked pannus formation in adjacent cartilage but not bone tissue, along with inhibition of cartilage erosion caused by K/BxN serum transfer. Our findings suggest that chemokines induced by IL-1β or HIF-2α in chondrocytes regulate pannus expansion by stimulating FLS migration and invasion, leading to cartilage erosion during RA pathogenesis.
Ganeshan, Seedhabadee; Sharma, Pallavi; Young, Lester; Kumar, Ashwani; Fowler, D Brian; Chibbar, Ravindra N
2011-03-01
Low-temperature (LT) tolerance in winter wheat (Triticum aestivum L.) is an economically important but complex trait. Four selected wheat genotypes, a winter hardy cultivar, Norstar, a tender spring cultivar, Manitou and two near-isogenic lines with Vrn-A1 (spring Norstar) and vrn-A1 (winter Manitou) alleles of Manitou and Norstar were cold-acclimated at 6°C and crown and leaf tissues were collected at 0, 2, 14, 21, 35, 42, 56 and 70 days of cold acclimation. cDNA-AFLP profiling was used to determine temporal expression profiles of transcripts during cold-acclimation in crown and leaf tissues, separately to determine if LT regulatory circuitries in crown and leaf tissues could be delineated using this approach. Screening 64 primer combinations identified 4,074 and 2,757 differentially expressed transcript-derived fragments (TDFs) out of which 38 and 16% were up-regulated as compared to 3 and 6% that were down-regulated in crown and leaf tissues, respectively. DNA sequencing of TDFs revealed sequences common to both tissues including genes coding for DEAD-box RNA helicase, choline-phosphate cytidylyltransferase and delta-1-pyrroline carboxylate synthetase. TDF specific to crown tissues included genes coding for phospahtidylinositol kinase, auxin response factor protein and brassinosteroid insensitive 1-associated receptor kinase. In leaf, genes such as methylene tetrahydrofolate reductase, NADH-cytochrome b5 reductase and malate dehydrogenase were identified. However, 30 and 14% of the DNA sequences from the crown and leaf tissues, respectively, were hypothetical or unknown proteins. Cluster analysis of up-, down-regulated and unique TDFs, DNA sequence and real-time PCR validation, infer that mechanisms operating in crown and leaf tissue in response to LT are differently regulated and warrant further studies.
Simmons, Alan J.; Scurrah, Cherie’ R.; McKinley, Eliot T.; Herring, Charles A.; Irish, Jonathan M.; Washington, Mary K.; Coffey, Robert J.; Lau, Ken S.
2016-01-01
Cellular heterogeneity poses a significant challenge to understanding tissue level phenotypes and confounds conventional bulk analyses. To facilitate the analysis of signaling at the single-cell level in human tissues, we applied mass cytometry using CyTOF (Cytometry Time-of-Flight) to formalin-fixed paraffin-embedded (FFPE) normal and diseased intestinal specimens. We developed and validated a technique called FFPE-DISSECT (Disaggregation for Intracellular Signaling in Single Epithelial Cells from Tissue), a single-cell approach for characterizing native signaling states from embedded solid tissue samples. We applied FFPE-DISSECT coupled to mass cytometry and found differential signaling by tumor necrosis factor α (TNF-α) in intestinal enterocytes, goblet cells and enteroendocrine cells, implicating the role of the downstream RAS-RAF-MEK-ERK signaling pathway in dictating goblet cell identity. In addition, application of FFPE-DISSECT, mass cytometry, and data-driven computational analyses to human colon specimens confirmed reduced differentiation in colorectal cancer (CRC) compared to normal colon, and revealed quantitative increases in inter- and intra-tissue heterogeneity in CRC with regards to the modular regulation of signaling pathways. Specifically, modular co-regulation of the kinases P38 and ERK, the translation regulator 4EBP1, and the transcription factor CREB in the proliferative compartment of the normal colon was loss in CRC, as evidenced by their impaired coordination over samplings of single cells in tissue. Our data suggest that this single-cell approach, applied in conjunction with genomic annotation, such as microsatellite instability and mutations in KRAS and BRAF, allows rapid and detailed characterization of cellular heterogeneity from clinical repositories of embedded human tissues. FFPE-DISSECT coupled of mass cytometry can be used for deriving cellular landscapes from archived patient samples, beyond CRC, and as a high resolution tool for disease characterization and subtyping. PMID:27729552
Dow, Graham J; Berry, Joseph A; Bergmann, Dominique C
2017-10-01
Stomata are simultaneously tasked with permitting the uptake of carbon dioxide for photosynthesis while limiting water loss from the plant. This process is mainly regulated by guard cell control of the stomatal aperture, but recent advancements have highlighted the importance of several genes that control stomatal development. Using targeted genetic manipulations of the stomatal lineage and a combination of gas exchange and microscopy techniques, we show that changes in stomatal development of the epidermal layer lead to coupled changes in the underlying mesophyll tissues. This coordinated response tends to match leaf photosynthetic potential (V cmax ) with gas-exchange capacity (g smax ), and hence the uptake of carbon dioxide for water lost. We found that different genetic regulators systematically altered tissue coordination in separate ways: the transcription factor SPEECHLESS (SPCH) primarily affected leaf size and thickness, whereas peptides in the EPIDERMAL PATTERNING FACTOR (EPF) family altered cell density in the mesophyll. It was also determined that interlayer coordination required the cell-surface receptor TOO MANY MOUTHS (TMM). These results demonstrate that stomata-specific regulators can alter mesophyll properties, which provides insight into how molecular pathways can organize leaf tissues to coordinate gas exchange and suggests new strategies for improving plant water-use efficiency. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Reinhart, Brenda J.; Liu, Tie; Newell, Nicole R.; Magnani, Enrico; Huang, Tengbo; Kerstetter, Randall; Michaels, Scott; Barton, M. Kathryn
2013-01-01
The broadly conserved Class III HOMEODOMAIN LEUCINE ZIPPER (HD-ZIPIII) and KANADI transcription factors have opposing and transformational effects on polarity and growth in all tissues and stages of the plant's life. To obtain a comprehensive understanding of how these factors work, we have identified transcripts that change in response to induced HD-ZIPIII or KANADI function. Additional criteria used to identify high-confidence targets among this set were presence of an adjacent HD-ZIPIII binding site, expression enriched within a subdomain of the shoot apical meristem, mutant phenotype showing defect in polar leaf and/or meristem development, physical interaction between target gene product and HD-ZIPIII protein, opposite regulation by HD-ZIPIII and KANADI, and evolutionary conservation of the regulator–target relationship. We find that HD-ZIPIII and KANADI regulate tissue-specific transcription factors involved in subsidiary developmental decisions, nearly all major hormone pathways, and new actors (such as INDETERMINATE DOMAIN4) in the ad/abaxial regulatory network. Multiple feedback loops regulating HD-ZIPIII and KANADI are identified, as are mechanisms through which HD-ZIPIII and KANADI oppose each other. This work lays the foundation needed to understand the components, structure, and workings of the ad/abaxial regulatory network directing basic plant growth and development. PMID:24076978
Invited review: mesenchymal progenitor cells in intramuscular connective tissue development.
Miao, Z G; Zhang, L P; Fu, X; Yang, Q Y; Zhu, M J; Dodson, M V; Du, M
2016-01-01
The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.
Allele Compensation in Tip60+/− Mice Rescues White Adipose Tissue Function In Vivo
Gao, Yuan; Hamers, Nicole; Rakhshandehroo, Maryam; Berger, Ruud; Lough, John; Kalkhoven, Eric
2014-01-01
Adipose tissue is a key regulator of energy homestasis. The amount of adipose tissue is largely determined by adipocyte differentiation (adipogenesis), a process that is regulated by the concerted actions of multiple transcription factors and cofactors. Based on in vitro studies in murine 3T3-L1 preadipocytes and human primary preadipocytes, the transcriptional cofactor and acetyltransferase Tip60 was recently identified as an essential adipogenic factor. We therefore investigated the role of Tip60 on adipocyte differentiation and function, and possible consequences on energy homeostasis, in vivo. Because homozygous inactivation results in early embryonic lethality, Tip60+/− mice were used. Heterozygous inactivation of Tip60 had no effect on body weight, despite slightly higher food intake by Tip60+/− mice. No major effects of heterozygous inactivation of Tip60 were observed on adipose tissue and liver, and Tip60+/− displayed normal glucose tolerance, both on a low fat and a high fat diet. While Tip60 mRNA was reduced to 50% in adipose tissue, the protein levels were unaltered, suggesting compensation by the intact allele. These findings indicate that the in vivo role of Tip60 in adipocyte differentiation and function cannot be properly addressed in Tip60+/− mice, but requires the generation of adipose tissue-specific knock out animals or specific knock-in mice. PMID:24870614
Critical review on the physical and mechanical factors involved in tissue engineering of cartilage.
Gaut, Carrie; Sugaya, Kiminobu
2015-01-01
Articular cartilage defects often progress to osteoarthritis, which negatively impacts quality of life for millions of people worldwide and leads to high healthcare expenditures. Tissue engineering approaches to osteoarthritis have concentrated on proliferation and differentiation of stem cells by activation and suppression of signaling pathways, and by using a variety of scaffolding techniques. Recent studies indicate a key role of environmental factors in the differentiation of mesenchymal stem cells to mature cartilage-producing chondrocytes. Therapeutic approaches that consider environmental regulation could optimize chondrogenesis protocols for regeneration of articular cartilage. This review focuses on the effect of scaffold structure and composition, mechanical stress and hypoxia in modulating mesenchymal stem cell fate and the current use of these environmental factors in tissue engineering research.
Ghrelin: an emerging player in the regulation of reproduction in non-mammalian vertebrates.
Unniappan, Suraj
2010-07-01
The endocrine regulation of vertebrate reproduction is achieved by the coordinated actions of multiple endocrine factors mainly produced from the brain, pituitary, and gonads. In addition to these, several other tissues including the fat and gut produce factors that have reproductive effects. Ghrelin is one such gut/brain hormone with species-specific effects in the regulation of mammalian reproduction. Recent studies have shown that ghrelin and ghrelin receptor mRNAs, and protein are expressed in the ovary and testis of mammals, indicating a direct effect for ghrelin in the control of reproduction. Ghrelin regulates mammalian reproduction by modulating hormone secretion from the brain and pituitary, and by acting directly on the gonads to influence reproductive tissue development and steroid hormone release. Based on the studies reported so far, ghrelin seems to have a predominantly inhibitory role on mammalian reproduction. The presence of ghrelin and ghrelin receptor has been found in the brain, pituitary and gonads of several non-mammalian vertebrates. In contrast to mammals, ghrelin seems to have a stimulatory role in the regulation of non-mammalian reproduction. The main objective of this review is to do a perspective analysis of the comparative aspects of ghrelin regulation of reproduction. (c) 2009 Elsevier Inc. All rights reserved.
Liang, Yanbin; Li, Chen; Guzman, Victor M; Evinger, Albert J; Protzman, Charles E; Krauss, Achim H-P; Woodward, David F
2003-07-18
Connective tissue growth factor (CTGF) and Cyr61 (cysteine-rich angiogenic protein 61) are members of the CCN gene family that encode multifunctional, extracellular matrix-associated signaling proteins. Because the mechanism of action of certain anti-glaucoma drugs involves extracellular matrix remodeling of ocular ciliary muscle, with a resultant increase in drainage of aqueous humor from the eye, we compared the effects of three pharmacologically distinct ocular hypotensive agents on Cyr61 and CTGF gene expression. Thus, prostaglandin F2alpha (PGF2alpha) (FP receptor agonist), Butaprost (EP2 receptor agonist), and Bimatoprost (a prostamide) were compared. Using Affymetrix gene chip technology, we first identified that PGF2alpha dramatically up-regulated Cyr61 and CTGF mRNA expression in HEK 293/EBNA cells (hFP-HEK 293/EBNA). Northern blot further confirmed the Cyr61 and CTGF up-regulation is in a dose- and time-dependent manner. PGF2alpha-induced up-regulation of Cyr61 appeared to exclusively involve the Rho pathway, and up-regulation of CTGF was via multiple intracellular pathways. Because prostamide receptors are, to date, defined only at the pharmacological level, Bimatoprost effects on Cyr61 and CTGF were studied in the isolated feline iris sphincter preparation, a tissue highly responsive to prostamides. Both PGF2alpha and Bimatoprost up-regulated Cyr61 mRNA expression in the cat iris tissue. Only PGF2alpha up-regulated CTGF mRNA expression in the cat iris. Therefore, PGF2alpha and Bimatoprost appear to interact with different receptors populations in the cat iris, according to their markedly different effects on CTGF. Activation of prostaglandin EP2 receptors (Gs-coupled) also up-regulated Cyr61 but not CTGF mRNA expression in the isolated cat iris. Similar data were observed in human primary ciliary smooth muscle cells. Thus, despite quite different signal transduction pathways, FP receptor stimulation up-regulates CTGF and Cyr61. The prostamide analog Bimatoprost and an EP2-selective agonist affects only Cyr61.
Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy.
Kim, Hyun Ah; Rhim, Taiyoun; Lee, Minhyung
2011-07-18
Ischemic heart diseases are caused by narrowed coronary arteries that decrease the blood supply to the myocardium. In the ischemic myocardium, hypoxia-responsive genes are up-regulated by hypoxia-inducible factor-1 (HIF-1). Gene therapy for ischemic heart diseases uses genes encoding angiogenic growth factors and anti-apoptotic proteins as therapeutic genes. These genes increase blood supply into the myocardium by angiogenesis and protect cardiomyocytes from cell death. However, non-specific expression of these genes in normal tissues may be harmful, since growth factors and anti-apoptotic proteins may induce tumor growth. Therefore, tight gene regulation is required to limit gene expression to ischemic tissues, to avoid unwanted side effects. For this purpose, various gene expression strategies have been developed for ischemic-specific gene expression. Transcriptional, post-transcriptional, and post-translational regulatory strategies have been developed and evaluated in ischemic heart disease animal models. The regulatory systems can limit therapeutic gene expression to ischemic tissues and increase the efficiency of gene therapy. In this review, recent progresses in ischemic-specific gene expression systems are presented, and their applications to ischemic heart diseases are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Expression of ribosomopathy genes during Xenopus tropicalis embryogenesis.
Robson, Andrew; Owens, Nick D L; Baserga, Susan J; Khokha, Mustafa K; Griffin, John N
2016-10-26
Because ribosomes are ubiquitously required for protein production, it was long assumed that any inherited defect in ribosome manufacture would be embryonically lethal. However, several human congenital diseases have been found to be associated with mutations in ribosome biogenesis factors. Surprisingly, despite the global requirement for ribosomes, these "ribosomopathies" are characterized by distinct and tissue specific phenotypes. The reasons for such tissue proclivity in ribosomopathies remain mysterious but may include differential expression of ribosome biogenesis factors in distinct tissues. Here we use in situ hybridization of labeled antisense mRNA probes and ultra high temporal resolution RNA-Seq data to examine and compare expression of 13 disease associated ribosome biogenesis factors at six key stages in Xenopus tropicalis development. Rather than being ubiquitously expressed during development, mRNAs of all examined ribosome biogenesis factors were highly enriched in specific tissues, including the cranial neural crest and ventral blood islands. Interestingly, expression of ribosome biogenesis factors demonstrates clear differences in timing, transcript number and tissue localization. Ribosome biogenesis factor expression is more spatiotemporally regulated during embryonic development than previously expected and correlates closely with many of the common ribosomopathy phenotypes. Our findings provide information on the dynamic use of ribosome production machinery components during development and advance our understanding of their roles in disease.
Nakerakanti, Sashidhar S; Kapanadze, Bagrat; Yamasaki, Masaomi; Markiewicz, Margaret; Trojanowska, Maria
2006-09-01
CCN2 (connective tissue growth factor), an important regulator of angiogenesis, chondrogenesis, and wound healing, is overexpressed in a majority of fibrotic diseases and in various tumors. This study investigated regulation of CCN2 gene expression by Ets family of transcription factors, focusing on two members, Fli1 and Ets1, with deregulated expression during fibrosis and tumorigenesis. We show that Ets1 and Fli1 have opposite effects on CCN2 gene expression. Ets1 functions as an activator of CCN2 transcription, whereas Fli1 acts as a repressor. A functional Ets binding site was mapped at -114 within the CCN2 promoter. This site not only mediates stimulation by Ets factors, including Ets1, Ets2, and GABPalpha/beta, but is also required for the transforming growth factor (TGF)-beta response. The contrasting functions of Ets1 and Fli1 in regulation of the CCN2 gene were confirmed by suppressing their endogenous levels using adenoviral vectors expressing specific small interfering RNAs. Additional experiments using chromatin immunoprecipitation assays have revealed that in fibroblasts both Ets1 and Fli1 occupy the CCN2 promoter. TGF-beta stimulation resulted in displacement of Fli1 from the CCN2 promoter and a transient inhibition of Fli1 synthesis. Moreover, reduction of Fli1 expression resulted in up-regulation of COL1A1 and COL1A2 genes and down-regulation of the MMP1 gene. Thus, inhibition of Fli1 recapitulated some of the key effects of TGF-beta, suggesting that Fli1 suppression is involved in activation of the profibrotic gene program in fibroblasts. On the other hand, activation of the CCN2 gene downstream of Ets1 is consistent with its role in angiogenesis and extracellular matrix remodeling. This study strongly supports a critical role of Fli1 and Ets1 in the pathological extracellular matrix regulation during fibrosis and cancer.
Maes, Christa
2017-02-01
Endochondral ossification, the mechanism responsible for the development of the long bones, is dependent on an extremely stringent coordination between the processes of chondrocyte maturation in the growth plate, vascular expansion in the surrounding tissues, and osteoblast differentiation and osteogenesis in the perichondrium and the developing bone center. The synchronization of these processes occurring in adjacent tissues is regulated through vigorous crosstalk between chondrocytes, endothelial cells and osteoblast lineage cells. Our knowledge about the molecular constituents of these bidirectional communications is undoubtedly incomplete, but certainly some signaling pathways effective in cartilage have been recognized to play key roles in steering vascularization and osteogenesis in the perichondrial tissues. These include hypoxia-driven signaling pathways, governed by the hypoxia-inducible factors (HIFs) and vascular endothelial growth factor (VEGF), which are absolutely essential for the survival and functioning of chondrocytes in the avascular growth plate, at least in part by regulating the oxygenation of developing cartilage through the stimulation of angiogenesis in the surrounding tissues. A second coordinating signal emanating from cartilage and regulating developmental processes in the adjacent perichondrium is Indian Hedgehog (IHH). IHH, produced by pre-hypertrophic and early hypertrophic chondrocytes in the growth plate, induces the differentiation of adjacent perichondrial progenitor cells into osteoblasts, thereby harmonizing the site and time of bone formation with the developmental progression of chondrogenesis. Both signaling pathways represent vital mediators of the tightly organized conversion of avascular cartilage into vascularized and mineralized bone during endochondral ossification. Copyright © 2016. Published by Elsevier Ltd.
Yang, Shumin; Zhang, Wenlong; Zhen, Qianna; Gao, Rufei; Du, Tingting; Xiao, Xiaoqiu; Wang, Zhihong; Ge, Qian; Hu, Jinbo; Ye, Peng; Zhu, Qibo; Li, Qifu
2015-09-15
Chronic inflammation might be associated with hepatic lipid deposition independent of overnutrition. However, the mechanism is not fully understood. In this study, we investigate if impaired adipogenesis in adipose tissue is associated with hepatic lipid deposition induced by chronic inflammation in mice with chew diet. Casein injection in C57BL/6J mice was given every other day to induce chronic inflammation. All mice were sacrificed after 18weeks of injections. The serum, liver and adipose tissue were collected for analysis. Real-time polymerase chain reaction and western blotting were used to examine the gene and protein expressions of molecules involved in hepatic lipid metabolism and adipose adipogenesis. Casein injection elevated serum levels of insulin, free fatty acid (FFA) and proinflammatory factors. The gene expression of proinflammatory factors of adipose tissue and the liver also increased in the casein group as compared with the control group. Chronic inflammation up-regulated the hepatic expression of fatty acid translocase (CD36) and down-regulated microsomal triacylglycerol transfer protein (MTP), carnitine palmitoyltransferase 1a (CPT1a) and acyl-coenzyme a oxidase 1 (ACOX1). Meanwhile, chronic inflammation not only diminished the size of adipocytes, but also down-regulated the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding proteinα (C/EBPα), both indicating an impaired adipogenesis. Besides disturbed lipid metabolism in the liver per se, impaired adipogenesis in the adipose tissue might also be associated with hepatic lipid deposition induced by chronic inflammation in mice with chew diet. Copyright © 2015 Elsevier Inc. All rights reserved.
Hasegawa, Tomoya; Nakajima, Teruhiro; Ishida, Takashi; Kudo, Akira; Kawakami, Atsushi
2015-03-01
Multicellular organisms maintain body integrity by constantly regenerating tissues throughout their lives; however, the overall mechanism for regulating regeneration remains an open question. Studies of limb and fin regeneration in teleost fish and urodeles have shown the involvement of a number of locally activated signals at the wounded site during regeneration. Here, we demonstrate that a diffusible signal from a distance also play an essential role for regeneration. Among a number of zebrafish mutants, we found that the zebrafish cloche (clo) and tal1 mutants, which lack most hematopoietic tissues, displayed a unique regeneration defect accompanying apoptosis in primed regenerative tissue. Our analyses of the mutants showed that the cells in the primed regenerative tissue are susceptible to apoptosis, but their survival is normally supported by the presence of hematopoietic tissues, mainly the myeloid cells. We further showed that a diffusible factor in the wild-type body fluid mediates this signal. Thus, our study revealed a novel mechanism that the hematopoietic tissues regulate tissue regeneration through a diffusible signal. Copyright © 2014 Elsevier Inc. All rights reserved.
Tissue-Specific 5′ Heterogeneity of PPARα Transcripts and Their Differential Regulation by Leptin
Garratt, Emma S.; Vickers, Mark H.; Gluckman, Peter D.; Hanson, Mark A.
2013-01-01
The genes encoding nuclear receptors comprise multiple 5′untranslated exons, which give rise to several transcripts encoding the same protein, allowing tissue-specific regulation of expression. Both human and mouse peroxisome proliferator activated receptor (PPAR) α genes have multiple promoters, although their function is unknown. Here we have characterised the rat PPARα promoter region and have identified three alternative PPARα transcripts, which have different transcription start sites owing to the utilisation of distinct first exons. Moreover these alternative PPARα transcripts were differentially expressed between adipose tissue and liver. We show that while the major adipose (P1) and liver (P2) transcripts were both induced by dexamethasone, they were differentially regulated by the PPARα agonist, clofibric acid, and leptin. Leptin had no effect on the adipose-specific P1 transcript, but induced liver-specific P2 promoter activity via a STAT3/Sp1 mechanism. Moreover in Wistar rats, leptin treatment between postnatal day 3–13 led to an increase in P2 but not P1 transcription in adipose tissue which was sustained into adulthood. This suggests that the expression of the alternative PPARα transcripts are in part programmed by early life exposure to leptin leading to persistent change in adipose tissue fatty acid metabolism through specific activation of a quiescent PPARα promoter. Such complexity in the regulation of PPARα may allow the expression of PPARα to be finely regulated in response to environmental factors. PMID:23825665
Transcriptional regulation of hepatic lipogenesis.
Wang, Yuhui; Viscarra, Jose; Kim, Sun-Joong; Sul, Hei Sook
2015-11-01
Fatty acid and fat synthesis in the liver is a highly regulated metabolic pathway that is important for very low-density lipoprotein (VLDL) production and thus energy distribution to other tissues. Having common features at their promoter regions, lipogenic genes are coordinately regulated at the transcriptional level. Transcription factors, such as upstream stimulatory factors (USFs), sterol regulatory element-binding protein 1C (SREBP1C), liver X receptors (LXRs) and carbohydrate-responsive element-binding protein (ChREBP) have crucial roles in this process. Recently, insights have been gained into the signalling pathways that regulate these transcription factors. After feeding, high blood glucose and insulin levels activate lipogenic genes through several pathways, including the DNA-dependent protein kinase (DNA-PK), atypical protein kinase C (aPKC) and AKT-mTOR pathways. These pathways control the post-translational modifications of transcription factors and co-regulators, such as phosphorylation, acetylation or ubiquitylation, that affect their function, stability and/or localization. Dysregulation of lipogenesis can contribute to hepatosteatosis, which is associated with obesity and insulin resistance.
TGF-β Family Signaling in Embryonic and Somatic Stem Cell Renewal and Differentiation
Mullen, Alan C.; Wrana, Jeffrey L.
2017-01-01
Soon after the discovery of Transforming Growth Factor-beta (TGF-β), seminal work in vertebrate and invertebrate models revealed the TGF-β family to be central regulators of tissue morphogenesis. Members of the family direct some of the earliest cell fate decisions in animal development, coordinate complex organogenesis and contribute to tissue homeostasis in the adult. Here we focus on the role of the TGF-β family in mammalian stem cell biology and discuss its wide and varied activities both in the regulation of pluripotency and in cell fate commitment. PMID:28108485
USDA-ARS?s Scientific Manuscript database
Two experiments (Exp) were conducted to test if nesfatin-1 is part of the adipose tissue-hypothalamic loop regulating appetite and energy balance of the pig. In Exp 1, prepuberal gilts were adapted to a twice-daily feeding schedule (0800 and 1600 h) and received intracerebroventricular (i.c.v.) inje...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sassoli, Chiara; Nosi, Daniele; Tani, Alessia
Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the singlemore » muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7{sup +} satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration. - Highlights: • MSC-CM contains paracrine factors that up-regulate MMP expression and function in different skeletal muscle cells. • MSC-CM promotes myoblast and satellite cell migration, proliferation and differentiation. • MSC-CM negatively interferes with fibroblast-myoblast transition in primary skeletal fibroblasts. • Paracrine factors from MSCs modulate the fibrotic response and improve the endogenous mechanisms of muscle regeneration.« less
Haeusler, G; Walter, I; Helmreich, M; Egerbacher, M
2005-05-01
Numerous studies have focused on the expression, regulation, and biological significance of matrix metalloproteinases (MMPs) in the growth plate. Findings in mouse knockout models and in vitro data from various species indicate that MMPs not only degrade extracellular matrix components but may regulate the activity of local growth factors. In this study we investigated the presence, distribution, and activity of various MMPs and inhibitors, tissue transglutaminase (tTG or TG2) and vascular endothelial growth factor (VEGF) in the human child and adolescent growth plates by means of immunohistochemistry and gelatin zymography. Tissue was derived during orthopedic surgery (epiphysiodesis) in two prepubertal and four pubertal patients.MMP-2 and MMP-14 were present in reserve cell chondrocytes. MMP-14 was the most prominent MMP within all zones of the growth plate including proliferating chondrocytes. MMP-1 and MMP-13 (collagenases 1 and 3), MMP-9 (gelatinases B), MMP-10, and MMP-11 (stromelysins) and VEGF were positive in hypertrophic chondrocytes and osteoblasts. MMP-2 showed the same expression pattern but was negative in osteoblasts. Osteoclasts stained positive for MMP-9, MMP-2, and TG2. Tissue inhibitor of MMP (TIMP)-1 was present in all zones of the growth plate, osteoblasts, and osteoclasts; TIMP-2 was found in hypertrophic chondrocytes and osteoblasts. In summary, the presence of MMPs, TIMPs, TG2, and VEGF in our study indicated that the MMPs are relevant in growth plate physiology during the postnatal period in humans. The specific location of MMP expression within the growth plate may be the basis for further studies on the role of MMPs in the local regulation of chondrocyte differentiation, proliferation, and ossification at the chondroosseus junction.
Harnessing cell–biomaterial interactions for osteochondral tissue regeneration.
Kim, Kyobum; Yoon, Diana M; Mikos, Antonios; Kasper, F Kurtis
2012-01-01
Articular cartilage that is damaged or diseased often requires surgical intervention to repair the tissue; therefore, tissue engineering strategies have been developed to aid in cartilage regeneration. Tissue engineering approaches often require the integration of cells, biomaterials, and growth factors to direct and support tissue formation. A variety of cell types have been isolated from adipose, bone marrow, muscle, and skin tissue to promote cartilage regeneration. The interaction of cells with each other and with their surrounding environment has been shown to play a key role in cartilage engineering. In tissue engineering approaches, biomaterials are commonly used to provide an initial framework for cell recruitment and proliferation and tissue formation. Modifications of the properties of biomaterials, such as creating sites for cell binding, altering their physicochemical characteristics, and regulating the delivery of growth factors, can have a significant influence on chondrogenesis. Overall, the goal is to completely restore healthy cartilage within an articular cartilage defect. This chapter aims to provide information about the importance of cell–biomaterial interactions for the chondrogenic differentiation of various cell populations that can eventually produce functional cartilage matrix that is indicative of healthy cartilage tissue.
Signal transduction and oxidative processes in sinonasal polyposis.
Cannady, Steven B; Batra, Pete S; Leahy, Rachel; Citardi, Martin J; Janocha, Allison; Ricci, Kristin; Comhair, Suzy A A; Bodine, Melanie; Wang, Zeneng; Hazen, Stanley L; Erzurum, Serpil C
2007-12-01
Nasal polyposis is characterized by impaired regulation of nasal tissue growth and is associated with chronic inflammation, sinus infections, and low levels of nitric oxide (NO). Based on its critical role in mediating cell growth and antimicrobial function, decrease of NO levels has been implicated in the pathogenesis of nasal polyposis. We sought to evaluate mechanisms for the low NO level in polyposis, including factors regulating NO synthase (NOS) expression and activity and NO consumptive processes in nasal epithelial cells and nasal lavage fluid. Eighteen patients with nasal polyposis and 8 healthy control subjects were studied. Nasal brushings, nasal lavage fluid, and nasal biopsy specimens were collected and analyzed. NO metabolite levels (nitrite and nitrate) in nasal lavage fluid from patients with polyps were less than those in control subjects, but activation of signal transduction and inducer of transcription 1, which regulates inducible NOS gene expression and protein expression, was present at higher levels in polyp than in healthy control tissue. Levels of arginine, methylarginine, and endogenous NOS inhibitors were similar between polyp and control tissue. In contrast, superoxide dismutase activity of polyp tissues was lower than that seen in control tissue and associated with increased nitrotyrosine, a biomarker of oxidant consumptive products of NO. Taken together, these data suggest that the nasal polyp environment is characterized by abnormalities in NO metabolism that might predispose to altered regulation of tissue growth and infection. Identification of NO metabolic abnormalities might lead to novel treatments for sinonasal polyposis targeted against the pathways identified within this study.
Wu, Jie; Li, Lian; Sun, Yu; Huang, Shuai; Tang, Juan; Yu, Pan; Wang, Genlin
2015-01-01
Toll-like receptor 4 (TLR4) mediated activation of the nuclear transcription factor κB (NF-κB) signaling pathway by mastitis initiates expression of genes associated with inflammation and the innate immune response. In this study, the profile of mastitis-induced differential gene expression in the mammary tissue of Chinese Holstein cattle was investigated by Gene-Chip microarray and bioinformatics. The microarray results revealed that 79 genes associated with the TLR4/NF-κB signaling pathway were differentially expressed. Of these genes, 19 were up-regulated and 29 were down-regulated in mastitis tissue compared to normal, healthy tissue. Statistical analysis of transcript and protein level expression changes indicated that 10 genes, namely TLR4, MyD88, IL-6, and IL-10, were up-regulated, while, CD14, TNF-α, MD-2, IL-β, NF-κB, and IL-12 were significantly down-regulated in mastitis tissue in comparison with normal tissue. Analyses using bioinformatics database resources, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the Gene Ontology Consortium (GO) for term enrichment analysis, suggested that these differently expressed genes implicate different regulatory pathways for immune function in the mammary gland. In conclusion, our study provides new evidence for better understanding the differential expression and mechanisms of the TLR4 /NF-κB signaling pathway in Chinese Holstein cattle with mastitis. PMID:25706977
Wu, Jie; Li, Lian; Sun, Yu; Huang, Shuai; Tang, Juan; Yu, Pan; Wang, Genlin
2015-01-01
Toll-like receptor 4 (TLR4) mediated activation of the nuclear transcription factor κB (NF-κB) signaling pathway by mastitis initiates expression of genes associated with inflammation and the innate immune response. In this study, the profile of mastitis-induced differential gene expression in the mammary tissue of Chinese Holstein cattle was investigated by Gene-Chip microarray and bioinformatics. The microarray results revealed that 79 genes associated with the TLR4/NF-κB signaling pathway were differentially expressed. Of these genes, 19 were up-regulated and 29 were down-regulated in mastitis tissue compared to normal, healthy tissue. Statistical analysis of transcript and protein level expression changes indicated that 10 genes, namely TLR4, MyD88, IL-6, and IL-10, were up-regulated, while, CD14, TNF-α, MD-2, IL-β, NF-κB, and IL-12 were significantly down-regulated in mastitis tissue in comparison with normal tissue. Analyses using bioinformatics database resources, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the Gene Ontology Consortium (GO) for term enrichment analysis, suggested that these differently expressed genes implicate different regulatory pathways for immune function in the mammary gland. In conclusion, our study provides new evidence for better understanding the differential expression and mechanisms of the TLR4 /NF-κB signaling pathway in Chinese Holstein cattle with mastitis.
Three-dimensional organotypic culture: experimental models of mammalian biology and disease.
Shamir, Eliah R; Ewald, Andrew J
2014-10-01
Mammalian organs are challenging to study as they are fairly inaccessible to experimental manipulation and optical observation. Recent advances in three-dimensional (3D) culture techniques, coupled with the ability to independently manipulate genetic and microenvironmental factors, have enabled the real-time study of mammalian tissues. These systems have been used to visualize the cellular basis of epithelial morphogenesis, to test the roles of specific genes in regulating cell behaviours within epithelial tissues and to elucidate the contribution of microenvironmental factors to normal and disease processes. Collectively, these novel models can be used to answer fundamental biological questions and generate replacement human tissues, and they enable testing of novel therapeutic approaches, often using patient-derived cells.
Tissue Engineering Organs for Space Biology Research
NASA Technical Reports Server (NTRS)
Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.
1999-01-01
Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.
Fuentes, Eduardo; Fuentes, Francisco; Badimon, Lina; Palomo, Iván
2013-01-01
The metabolic syndrome is a cluster of cardiometabolic alterations that include the presence of arterial hypertension, insulin resistance, dyslipidemia, and abdominal obesity. Obesity is associated with a chronic inflammatory response, characterized by abnormal adipokine production, and the activation of proinflammatory signalling pathways resulting in the induction of several biological markers of inflammation. Macrophage and lymphocyte infiltration in adipose tissue may contribute to the pathogenesis of obesity-mediated metabolic disorders. Adiponectin can either act directly on macrophages to shift polarization and/or prime human monocytes into alternative M2-macrophages with anti-inflammatory properties. Meanwhile, the chronic inflammation in adipose tissue is regulated by a series of transcription factors, mainly PPARs and C/EBPs, that in conjunction regulate the expression of hundreds of proteins that participate in the metabolism and storage of lipids and, as such, the secretion by adipocytes. Therefore, the management of the metabolic syndrome requires the development of new therapeutic strategies aimed to alter the main genetic pathways involved in the regulation of adipose tissue metabolism. PMID:23843680
Badr, Eman; ElHefnawi, Mahmoud; Heath, Lenwood S
2016-01-01
Alternative splicing is a vital process for regulating gene expression and promoting proteomic diversity. It plays a key role in tissue-specific expressed genes. This specificity is mainly regulated by splicing factors that bind to specific sequences called splicing regulatory elements (SREs). Here, we report a genome-wide analysis to study alternative splicing on multiple tissues, including brain, heart, liver, and muscle. We propose a pipeline to identify differential exons across tissues and hence tissue-specific SREs. In our pipeline, we utilize the DEXSeq package along with our previously reported algorithms. Utilizing the publicly available RNA-Seq data set from the Human BodyMap project, we identified 28,100 differentially used exons across the four tissues. We identified tissue-specific exonic splicing enhancers that overlap with various previously published experimental and computational databases. A complicated exonic enhancer regulatory network was revealed, where multiple exonic enhancers were found across multiple tissues while some were found only in specific tissues. Putative combinatorial exonic enhancers and silencers were discovered as well, which may be responsible for exon inclusion or exclusion across tissues. Some of the exonic enhancers are found to be co-occurring with multiple exonic silencers and vice versa, which demonstrates a complicated relationship between tissue-specific exonic enhancers and silencers.
Juan Du; Eriko Miura; Marcel Robischon; Ciera Martinez; Andrew Groover
2011-01-01
The developmental mechanisms regulating cell differentiation and patterning during the secondary growth of woody tissues are poorly understood. Class III HD ZIP transcription factors are evolutionarily ancient and play fundamental roles in various aspects of plant development. Here we investigate the role of a Class III HD ZIP transcription factor, ...
Tissue damage negatively regulates LPS-induced macrophage necroptosis.
Li, Z; Scott, M J; Fan, E K; Li, Y; Liu, J; Xiao, G; Li, S; Billiar, T R; Wilson, M A; Jiang, Y; Fan, J
2016-09-01
Infection is a common clinical complication following tissue damage resulting from surgery and severe trauma. Studies have suggested that cell pre-activation by antecedent trauma/tissue damage profoundly impacts the response of innate immune cells to a secondary infectious stimulus. Cell necroptosis, a form of regulated inflammatory cell death, is one of the mechanisms that control cell release of inflammatory mediators from important innate immune executive cells such as macrophages (Mφ), which critically regulate the progress of inflammation. In this study, we investigated the mechanism and role of trauma/tissue damage in the regulation of LPS-induced Mφ necroptosis using a mouse model simulating long-bone fracture. We demonstrate that LPS acting through Toll-like receptor (TLR) 4 promotes Mφ necroptosis. However, necroptosis is ameliorated by high-mobility group box 1 (HMGB1) release from damaged tissue. We show that HMGB1 acting through cell surface receptor for advanced glycation end products (RAGE) upregulates caveolin-1 expression, which in turn induces caveolae-mediated TLR4 internalization and desensitization to decrease Mφ necroptosis. We further show that RAGE-MyD88 activation of Cdc42 and subsequent activation of transcription factor Sp1 serves as a mechanism underlying caveolin-1 transcriptional upregulation. These results reveal a previous unidentified protective role of damage-associated molecular pattern (DAMP) molecules in restricting inflammation in response to exogenous pathogen-associated molecular pattern molecules.
Tissue damage negatively regulates LPS-induced macrophage necroptosis
Li, Z; Scott, M J; Fan, E K; Li, Y; Liu, J; Xiao, G; Li, S; Billiar, T R; Wilson, M A; Jiang, Y; Fan, J
2016-01-01
Infection is a common clinical complication following tissue damage resulting from surgery and severe trauma. Studies have suggested that cell pre-activation by antecedent trauma/tissue damage profoundly impacts the response of innate immune cells to a secondary infectious stimulus. Cell necroptosis, a form of regulated inflammatory cell death, is one of the mechanisms that control cell release of inflammatory mediators from important innate immune executive cells such as macrophages (Mφ), which critically regulate the progress of inflammation. In this study, we investigated the mechanism and role of trauma/tissue damage in the regulation of LPS-induced Mφ necroptosis using a mouse model simulating long-bone fracture. We demonstrate that LPS acting through Toll-like receptor (TLR) 4 promotes Mφ necroptosis. However, necroptosis is ameliorated by high-mobility group box 1 (HMGB1) release from damaged tissue. We show that HMGB1 acting through cell surface receptor for advanced glycation end products (RAGE) upregulates caveolin-1 expression, which in turn induces caveolae-mediated TLR4 internalization and desensitization to decrease Mφ necroptosis. We further show that RAGE-MyD88 activation of Cdc42 and subsequent activation of transcription factor Sp1 serves as a mechanism underlying caveolin-1 transcriptional upregulation. These results reveal a previous unidentified protective role of damage-associated molecular pattern (DAMP) molecules in restricting inflammation in response to exogenous pathogen-associated molecular pattern molecules. PMID:26943325
Crossroads of Wnt and Hippo in epithelial tissues.
Bernascone, Ilenia; Martin-Belmonte, Fernando
2013-08-01
Epithelial tissues undergo constant growth and differentiation during embryonic development and to replace damaged tissue in adult organs. These processes are governed by different signaling pathways that ultimately control the expression of genes associated with cell proliferation, patterning, and death. One essential pathway is Wnt, which controls tubulogenesis in several epithelial organs. Recently, Wnt has been closely linked to other signaling pathways, such as Hippo, that orchestrate proliferation and apoptosis to control organ size. There is evidence that epithelial cell junctions may sequester the transcription factors that act downstream of these signaling pathways, which would represent an important aspect of their functional regulation and their influence on cell behavior. Here, we review the transcriptional control exerted by the Wnt and Hippo signaling pathways during epithelial growth, patterning, and differentiation and recent advances in understanding of the regulation and crosstalk of these pathways in epithelial tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tapia, Pablo; Fernández-Galilea, Marta; Robledo, Fermín; Mardones, Pablo; Galgani, José E; Cortés, Víctor A
2018-05-01
The discovery of metabolically active brown adipose tissue (BAT) in adult humans has fuelled the research of diverse aspects of this previously neglected tissue. BAT is solely present in mammals and its clearest physiological role is non-shivering thermogenesis, owing to the capacity of brown adipocytes to dissipate metabolic energy as heat. Recently, a number of other possible functions have been proposed, including direct regulation of glucose and lipid homeostasis and the secretion of a number of factors with diverse regulatory actions. Herein, we review recent advances in general biological knowledge of BAT and discuss the possible implications of this tissue in human metabolic health. In particular, we confront the claimed thermogenic potential of BAT for human energy balance and body mass regulation, mostly based on animal studies, with the most recent quantifications of human BAT. © 2017 Cambridge Philosophical Society.
Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival.
Schipani, E; Ryan, H E; Didrickson, S; Kobayashi, T; Knight, M; Johnson, R S
2001-11-01
Breakdown or absence of vascular oxygen delivery is a hallmark of many common human diseases, including cancer, myocardial infarction, and stroke. The chief mediator of hypoxic response in mammalian tissues is the transcription factor hypoxia-inducible factor 1 (HIF-1), and its oxygen-sensitive component HIF-1alpha. A key question surrounding HIF-1alpha and the hypoxic response is the role of this transcription factor in cells removed from a functional vascular bed; in this regard there is evidence indicating that it can act as either a survival factor or induce growth arrest and apoptosis. To study more closely how HIF-1alpha functions in hypoxia in vivo, we used tissue-specific targeting to delete HIF-1alpha in an avascular tissue: the cartilaginous growth plate of developing bone. We show here the first evidence that the developmental growth plate in mammals is hypoxic, and that this hypoxia occurs in its interior rather than at its periphery. As a result of this developmental hypoxia, cells that lack HIF-1alpha in the interior of the growth plate die. This is coupled to decreased expression of the CDK inhibitor p57, and increased levels of BrdU incorporation in HIF-1alpha null growth plates, indicating defects in HIF-1alpha-regulated growth arrest occurs in these animals. Furthermore, we find that VEGF expression in the growth plate is regulated through both HIF-1alpha-dependent and -independent mechanisms. In particular, we provide evidence that VEGF expression is up-regulated in a HIF-1alpha-independent manner in chondrocytes surrounding areas of cell death, and this in turn induces ectopic angiogenesis. Altogether, our findings have important implications for the role of hypoxic response and HIF-1alpha in development, and in cell survival in tissues challenged by interruption of vascular flow; they also illustrate the complexities of HIF-1alpha response in vivo, and they provide new insights into mechanisms of growth plate development.
Transcriptional regulation of cranial sensory placode development
Moody, Sally A.; LaMantia, Anthony-Samuel
2015-01-01
Cranial sensory placodes derive from discrete patches of the head ectoderm, and give rise to numerous sensory structures. During gastrulation, a specialized “neural border zone” forms around the neural plate in response to interactions between the neural and non-neural ectoderm and signals from adjacent mesodermal and/or endodermal tissues. This zone subsequently gives rise to two distinct precursor populations of the peripheral nervous system: the neural crest and the pre-placodal ectoderm (PPE). The PPE is a common field from which all cranial sensory placodes arise (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, otic). Members of the Six family of transcription factors are major regulators of PPE specification, in partnership with co-factor proteins such as Eya. Six gene activity also maintains tissue boundaries between the PPE, neural crest and epidermis by repressing genes that specify the fates of those adjacent ectodermally-derived domains. As the embryo acquires anterior-posterior identity, the PPE becomes transcriptionally regionalized, and it subsequently subdivides into specific placodes with distinct developmental fates in response to signaling from adjacent tissues. Each placode is characterized by a unique transcriptional program that leads to the differentiation of highly specialized cells, such as neurosecretory cells, somatic sensory receptor cells, chemosensory neurons, peripheral glia and supporting cells. In this review, we summarize the transcriptional and signaling factors that regulate key steps of placode development, influence subsequent sensory neuron specification, and discuss what is known about mutations in some of the essential PPE genes that underlie human congenital syndromes. PMID:25662264
IL-6 Overexpression in ERG-Positive Prostate Cancer Is Mediated by Prostaglandin Receptor EP2.
Merz, Constanze; von Mässenhausen, Anne; Queisser, Angela; Vogel, Wenzel; Andrén, Ove; Kirfel, Jutta; Duensing, Stefan; Perner, Sven; Nowak, Michael
2016-04-01
Prostate cancer is the most diagnosed cancer in men and multiple risk factors and genetic alterations have been described. The TMPRSS2-ERG fusion event and the overexpression of the transcription factor ERG are present in approximately 50% of all prostate cancer patients, however, the clinical outcome is still controversial. Prostate tumors produce various soluble factors, including the pleiotropic cytokine IL-6, regulating cellular processes such as proliferation and metastatic segregation. Here, we used prostatectomy samples in a tissue microarray format and analyzed the co-expression and the clinicopathologic data of ERG and IL-6 using immunohistochemical double staining and correlated the read-out with clinicopathologic data. Expression of ERG and IL-6 correlated strongly in prostate tissue samples. Forced expression of ERG in prostate tumor cell lines resulted in significantly increased secretion of IL-6, whereas the down-regulation of ERG decreased IL-6 secretion. By dissecting the underlying mechanism in prostate tumor cell lines we show the ERG-mediated up-regulation of the prostanoid receptors EP2 and EP3. The prostanoid receptor EP2 was overexpressed in human prostate cancer tissue. Furthermore, the proliferation rate and IL-6 secretion in DU145 cells was reduced after treatment with EP2-receptor antagonist. Collectively, our study shows that the expression of ERG in prostate cancer is linked to the expression of IL-6 mediated by the prostanoid receptor EP2. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Nociti, Francisco H.; Somerman, Martha J.
2014-01-01
Teeth are mineralized organs composed of three unique hard tissues, enamel, dentin, and cementum, and supported by the surrounding alveolar bone. Although odontogenesis differs from osteogenesis in several respects, tooth mineralization is susceptible to similar developmental failures as bone. Here we discuss conditions fitting under the umbrella of rickets, which traditionally referred to skeletal disease associated with vitamin D deficiency but has been more recently expanded to include newly identified factors involved in endocrine regulation of vitamin D, phosphate, and calcium, including phosphate-regulating endopeptidase homolog, X-linked, fibroblast growth factor 23, and dentin matrix protein 1. Systemic mineral metabolism intersects with local regulation of mineralization, and factors including tissue nonspecific alkaline phosphatase are necessary for proper mineralization, where rickets can result from loss of activity of tissue nonspecific alkaline phosphatase. Individuals suffering from rickets often bear the additional burden of a defective dentition, and transgenic mouse models have aided in understanding the nature and mechanisms involved in tooth defects, which may or may not parallel rachitic bone defects. This report reviews dental effects of the range of rachitic disorders, including discussion of etiologies of hereditary forms of rickets, a survey of resulting bone and tooth mineralization disorders, and a discussion of mechanisms, known and hypothesized, involved in the observed dental pathologies. Descriptions of human pathology are augmented by analysis of transgenic mouse models, and new interpretations are brought to bear on questions of how teeth are affected under conditions of rickets. In short, the rachitic tooth will be revealed. PMID:23939820
Koontz, Laura M; Liu-Chittenden, Yi; Yin, Feng; Zheng, Yonggang; Yu, Jianzhong; Huang, Bo; Chen, Qian; Wu, Shian; Pan, Duojia
2013-05-28
The Hippo tumor suppressor pathway restricts tissue growth by inactivating the transcriptional coactivator Yki. Although Sd has been implicated as a DNA-binding transcription factor partner for Yki and can genetically account for gain-of-function Yki phenotypes, how Yki regulates normal tissue growth remains a long-standing puzzle because Sd, unlike Yki, is dispensable for normal growth in most Drosophila tissues. Here we show that the yki mutant phenotypes in multiple developmental contexts are rescued by inactivation of Sd, suggesting that Sd functions as a default repressor and that Yki promotes normal tissue growth by relieving Sd-mediated default repression. We further identify Tgi as a cofactor involved in Sd's default repressor function and demonstrate that the mammalian ortholog of Tgi potently suppresses the YAP oncoprotein in transgenic mice. These findings fill a major gap in Hippo-mediated transcriptional regulation and open up possibilities for modulating the YAP oncoprotein in cancer and regenerative medicine. Copyright © 2013 Elsevier Inc. All rights reserved.
A cellular, molecular, and pharmacological basis for appendage regeneration in mice.
Leung, Thomas H; Snyder, Emily R; Liu, Yinghua; Wang, Jing; Kim, Seung K
2015-10-15
Regenerative medicine aims to restore normal tissue architecture and function. However, the basis of tissue regeneration in mammalian solid organs remains undefined. Remarkably, mice lacking p21 fully regenerate injured ears without discernable scarring. Here we show that, in wild-type mice following tissue injury, stromal-derived factor-1 (Sdf1) is up-regulated in the wound epidermis and recruits Cxcr4-expressing leukocytes to the injury site. In p21-deficient mice, Sdf1 up-regulation and the subsequent recruitment of Cxcr4-expressing leukocytes are significantly diminished, thereby permitting scarless appendage regeneration. Lineage tracing demonstrates that this regeneration derives from fate-restricted progenitor cells. Pharmacological or genetic disruption of Sdf1-Cxcr4 signaling enhances tissue repair, including full reconstitution of tissue architecture and all cell types. Our findings identify signaling and cellular mechanisms underlying appendage regeneration in mice and suggest new therapeutic approaches for regenerative medicine. © 2015 Leung et al.; Published by Cold Spring Harbor Laboratory Press.
Smith, Aaron G; Muscat, George E O
2005-10-01
Skeletal muscle is a major mass peripheral tissue that accounts for approximately 40% of the total body mass and a major player in energy balance. It accounts for >30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the patho-physiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidemia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease.
Kawakami-Schulz, Sharolyn V.; Verdoni, Angela M.; Sattler, Shannon G.; Jessen, Erik; Kao, Winston W.-Y.; Ikeda, Akihiro
2014-01-01
Increased angiogenesis, inflammation, and proliferation are hallmarks of diseased tissues, and in vivo models of these disease phenotypes can provide insight into disease pathology. Dstncorn1 mice, deficient for the actin depolymerizing factor destrin (DSTN), display an increase of serum response factor (SRF) that results in epithelial hyperproliferation, inflammation, and neovascularization in the cornea. Previous work demonstrated that conditional ablation of Srf from the corneal epithelium of Dstncorn1 mice returns the cornea to a wild-type (WT) like state. This result implicated SRF as a major regulator of genes that contributes to abnormal phenotypes in Dstncorn1 cornea. The purpose of this study is to identify gene networks that are affected by increased expression of Srf in the Dstncorn1 cornea. Microarray analysis led to characterization of gene expression changes that occur when conditional knockout of Srf rescues mutant phenotypes in the cornea of Dstncorn1 mice. Comparison of gene expression values from WT, Dstncorn1 mutant, and Dstncorn1 rescued cornea identified >400 differentially expressed genes that are downstream from SRF. Srf ablation had a significant effect on genes associated with epithelial cell-cell junctions and regulation of actin dynamics. The majority of genes affected by SRF are downregulated in the Dstncorn1 mutant cornea, suggesting that increased SRF negatively affects transcription of SRF gene targets. ChIP-seq analysis on Dstncorn1 mutant and WT tissue revealed that, despite being present in higher abundance, SRF binding is significantly decreased in the Dstncorn1 mutant cornea. This study uses a unique model combining genetic and genomic approaches to identify genes that are regulated by SRF. These findings expand current understanding of the role of SRF in both normal and abnormal tissue homeostasis. PMID:24550211
A novel role for drebrin in regulating progranulin bioactivity in bladder cancer
Morcavallo, Alaide; Genua, Marco; Shirao, Tomoaki; Peiper, Stephen C.; Gomella, Leonard G.; Birbe, Ruth; Belfiore, Antonino; Iozzo, Renato V.; Morrione, Andrea
2015-01-01
We recently established a critical role for the growth factor progranulin in bladder cancer insofar as progranulin promotes urothelial cancer cell motility and contributes, as an autocrine growth factor, to the transformed phenotype by modulating invasion and anchorage-independent growth. In addition, progranulin expression is upregulated in invasive bladder cancer tissues compared to normal controls. However, the molecular mechanisms of progranulin action in bladder cancer have not been fully elucidated. In this study, we searched for novel progranulin-interacting proteins using pull-down assays with recombinant progranulin and proteomics. We discovered that drebrin, an F-actin binding protein, bound progranulin in urothelial cancer cells. We characterized drebrin function in urothelial cancer cell lines and showed that drebrin is critical for progranulin-dependent activation of the Akt and MAPK pathways and modulates motility, invasion and anchorage-independent growth. In addition, drebrin regulates tumor formation in vivo and its expression is upregulated in bladder cancer tissues compared to normal tissue controls. Our data are translationally relevant as indicate that drebrin exerts an essential functional role in the regulation of progranulin action and may constitute a novel target for therapeutic intervention in bladder tumors. In addition, drebrin may serve as novel biomarker for bladder cancer. PMID:25839164
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morooka, Nobukatsu, E-mail: amorooka@gunma-u.ac.jp; Ueguri, Kei; Yee, Karen Kar Lye
Age-related decreases in sex hormones are closely related to chronic inflammation in obesity and metabolic diseases. Particularly, the molecular basis of androgen activity in regulating inflammation and controlling metabolism remains largely unknown. Obese adipocytes secrete monocyte chemoattractant protein-1 (MCP-1), a key chemokine that promotes the infiltration of monocytes/macrophages into adipose tissue, thereby leading to metabolic disorders. Here, we studied the role of androgen-androgen receptor (AR) action in regulating MCP-1 expression in adipose tissue. We observed the induction of Mcp-1 expression in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. Additionally, Mcp-1 expression was upregulated by culturing in conditioned medium derived from inflammatorymore » macrophages (M1-Mφ) containing tumor necrosis factor-alpha (TNF-α). We found that sex hormones downregulated TNF-α-induced Mcp-1 and interleukin (Il)-6 expression in 3T3-L1 adipocytes. Furthermore, luciferase-reporter analysis indicated that MCP-1 promoter activity was predominantly suppressed by dihydrotestosterone (DHT)-AR interactions through functional canonical nuclear factor-kappa B (NF-κB) sites, whereas non-canonical NF-κB site containing important flanking sequences exhibited minor contributions to DHT-AR transcriptional repression. These findings suggested that androgen-AR suppressed obesity-induced chronic inflammation in adipose tissue. - Highlights: • DHT, non-aromatizable androgen suppresses Mcp-1 expression in adipocytes. • Mcp-1 transcription was negatively regulated by DHT-AR action. • DHT-AR selectively regulates Mcp-1 transcription through distinct NF-κB sites.« less
Tanaka, Mitsuru; Yasuoka, Akihito; Yoshinuma, Haruka; Saito, Yoshikazu; Asakura, Tomiko; Tanabe, Soichi
2018-03-01
We fed rats noodle (N) -diet containing 30 wt.% instant noodle with a 26% fat-to-energy ratio for 30 days (N-group). Compared with rats that were fed the same amount of nutrients (C-group), the N-group showed lower liver triacylglycerol levels and higher fecal cholesterol levels. We then analyzed transcriptome of the hypothalamic-pituitary (HP), the liver and the white adipose tissue (WAT). Thyroid stimulating hormone (Tshb), and its partner, glycoprotein hormone genes were up-regulated in the HP of N-group. Sterol regulatory element binding transcription factors were activated in the liver of N-group, while an up-regulation of the angiogenic signal occurred in the WAT of N-group. N-group showed higher urine noradrenaline (NA) level suggesting that these tissue signals are regulated by NA and Tshb. The N-diet contains 0.326 wt.% glutamate, 0.00236 wt.% 6-shogaol and Maillard reaction products. Our results suggest that these ingredients may affect lipid homeostasis via the HP axis.
Larson, Nicholas B; McDonnell, Shannon K; Fogarty, Zach; Larson, Melissa C; Cheville, John; Riska, Shaun; Baheti, Saurabh; Weber, Alexandra M; Nair, Asha A; Wang, Liang; O'Brien, Daniel; Davila, Jaime; Schaid, Daniel J; Thibodeau, Stephen N
2017-10-17
Large-scale genome-wide association studies have identified multiple single-nucleotide polymorphisms associated with risk of prostate cancer. Many of these genetic variants are presumed to be regulatory in nature; however, follow-up expression quantitative trait loci (eQTL) association studies have to-date been restricted largely to cis -acting associations due to study limitations. While trans -eQTL scans suffer from high testing dimensionality, recent evidence indicates most trans -eQTL associations are mediated by cis -regulated genes, such as transcription factors. Leveraging a data-driven gene co-expression network, we conducted a comprehensive cis -mediator analysis using RNA-Seq data from 471 normal prostate tissue samples to identify downstream regulatory associations of previously identified prostate cancer risk variants. We discovered multiple trans -eQTL associations that were significantly mediated by cis -regulated transcripts, four of which involved risk locus 17q12, proximal transcription factor HNF1B , and target trans -genes with known HNF response elements ( MIA2 , SRC , SEMA6A , KIF12 ). We additionally identified evidence of cis -acting down-regulation of MSMB via rs10993994 corresponding to reduced co-expression of NDRG1 . The majority of these cis -mediator relationships demonstrated trans -eQTL replicability in 87 prostate tissue samples from the Gene-Tissue Expression Project. These findings provide further biological context to known risk loci and outline new hypotheses for investigation into the etiology of prostate cancer.
Wang, Luqiao; Nanayakkara, Gayani; Yang, Qian; Tan, Hongmei; Drummer, Charles; Sun, Yu; Shao, Ying; Fu, Hangfei; Cueto, Ramon; Shan, Huimin; Bottiglieri, Teodoro; Li, Ya-Feng; Johnson, Candice; Yang, William Y; Yang, Fan; Xu, Yanjie; Xi, Hang; Liu, Weiqing; Yu, Jun; Choi, Eric T; Cheng, Xiaoshu; Wang, Hong; Yang, Xiaofeng
2017-10-24
Nuclear receptors (NRs) can regulate gene expression; therefore, they are classified as transcription factors. Despite the extensive research carried out on NRs, still several issues including (1) the expression profile of NRs in human tissues, (2) how the NR expression is modulated during atherosclerosis and metabolic diseases, and (3) the overview of the role of NRs in inflammatory conditions are not fully understood. To determine whether and how the expression of NRs are regulated in physiological/pathological conditions, we took an experimental database analysis to determine expression of all 48 known NRs in 21 human and 17 murine tissues as well as in pathological conditions. We made the following significant findings: (1) NRs are differentially expressed in tissues, which may be under regulation by oxygen sensors, angiogenesis pathway, stem cell master regulators, inflammasomes, and tissue hypo-/hypermethylation indexes; (2) NR sequence mutations are associated with increased risks for development of cancers and metabolic, cardiovascular, and autoimmune diseases; (3) NRs have less tendency to be upregulated than downregulated in cancers, and autoimmune and metabolic diseases, which may be regulated by inflammation pathways and mitochondrial energy enzymes; and (4) the innate immune sensor inflammasome/caspase-1 pathway regulates the expression of most NRs. Based on our findings, we propose a new paradigm that most nuclear receptors are anti-inflammatory homeostasis-associated molecular pattern receptors (HAMPRs). Our results have provided a novel insight on NRs as therapeutic targets in metabolic diseases, inflammations, and malignancies.
Häggström, Jenny; Cipriano, Mariateresa; Forshell, Linus Plym; Persson, Emma; Hammarsten, Peter; Stella, Nephi; Fowler, Christopher J
2014-08-01
The endocannabinoid system regulates cancer cell proliferation, and in prostate cancer a high cannabinoid CB1 receptor expression is associated with a poor prognosis. Down-stream mediators of CB1 receptor signaling in prostate cancer are known, but information on potential upstream regulators is lacking. Data from a well-characterized tumor tissue microarray were used for a Bayesian network analysis using the max-min hill-climbing method. In non-malignant tissue samples, a directionality of pEGFR (the phosphorylated form of the epidermal growth factor receptor) → CB1 receptors were found regardless as to whether the endocannabinoid metabolizing enzyme fatty acid amide hydrolase (FAAH) was included as a parameter. A similar result was found in the tumor tissue, but only when FAAH was included in the analysis. A second regulatory pathway, from the growth factor receptor ErbB2 → FAAH was also identified in the tumor samples. Transfection of AT1 prostate cancer cells with CB1 receptors induced a sensitivity to the growth-inhibiting effects of the CB receptor agonist CP55,940. The sensitivity was not dependent upon the level of receptor expression. Thus a high CB1 receptor expression alone does not drive the cells towards a survival phenotype in the presence of a CB receptor agonist. The data identify two potential regulators of the endocannabinoid system in prostate cancer and allow the construction of a model of a dysregulated endocannabinoid signaling network in this tumor. Further studies should be designed to test the veracity of the predictions of the network analysis in prostate cancer and other solid tumors. © 2014 The Authors. The Prostate published by Wiley Periodicals, Inc.
Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding.
Germain, Stéphane; Monnot, Catherine; Muller, Laurent; Eichmann, Anne
2010-05-01
Angiogenesis is a highly coordinated tissue remodeling process leading to blood vessel formation. Hypoxia triggers angiogenesis via induction of expression of growth factors such as vascular endothelial growth factor (VEGF). VEGF instructs endothelial cells to form tip cells, which lead outgrowing capillary sprouts, whereas Notch signaling inhibits sprout formation. Basement membrane deposition and mechanical cues from the extracellular matrix (ECM) induced by hypoxia may participate to coordinated vessel sprouting in conjunction with the VEGF and Notch signaling pathways. Hypoxia regulates ECM composition, deposition, posttranslational modifications and rearrangement. In particular, hypoxia-driven vascular remodeling is dynamically regulated through modulation of ECM-modifying enzyme activities that eventually affect both matricellular proteins and growth factor availability. Better understanding of the complex interplay between endothelial cells and soluble growth factors and mechanical factors from the ECM will certainly have significant implications for understanding the regulation of developmental and pathological angiogenesis driven by hypoxia.
Cao, Weina; Huang, Hongtao; Xia, Tianyu; Liu, Chenlong; Muhammad, Saeed; Sun, Chao
2018-01-01
Lipopolysaccharide (LPS) induces rapid increase in systemic inflammatory factors. As adipose tissue is a key contributor to the inflammatory response to numerous metabolic stimuli, it is important to understand the mechanism behind the LPS-induced inflammation in white adipose tissue (WAT). Homeobox a5 (Hoxa5) is an important transcription factor, which is highly expressed in adipose tissue, and its mRNA expression is increased at cold exposure in mice. So far, the function of Hoxa5 in adipose tissue browning has been poorly understood. So, the objective of this study was conducted to determine the role of Hoxa5 in adipose inflammatory response and white adipose browning in mice. LPS-induced inflammatory and cold-induced browning model were conducted. We compared the coordinated role of Hoxa5 in inflammation and thermogenesis of mice adipose. Transcriptional and methylation regulation was determined by luciferase assay, electrophoretic mobility shift assay, and bisulfite conversion experiment. Hoxa5 and tenascin C (TNC) were involved in WAT inflammation and browning in mice with LPS injection. Furthermore, Hoxa5 inhibited the TNC-involved activation of Toll-like receptor (TLR) 4/nuclear factor kappa B (NF-κB) signal pathway and promoted WAT browning. Moreover, we found that a BMP4/Smad1 signal, closely related to browning, was activated by Hoxa5. Hoxa5 relieved adipocyte inflammation by decreasing TNC-mediated TLR4 transducer and activator of the NF-κB pathway. Interestingly, descended methylation level increased Hoxa5 expression in cold exposure. Our findings demonstrated that Hoxa5 alleviated inflammation and enhanced browning of adipose tissue via negative control of TNC/TLR4/NF-κB inflammatory signaling and activating BMP4/Smad1 pathway. These findings indicated a novel potential means for the regulation of inflammation in adipocytes to prevent obesity and other inflammatory diseases.
Heinemeier, K M; Olesen, J L; Haddad, F; Langberg, H; Kjaer, M; Baldwin, K M; Schjerling, P
2007-01-01
Acute exercise induces collagen synthesis in both tendon and muscle, indicating an adaptive response in the connective tissue of the muscle–tendon unit. However, the mechanisms of this adaptation, potentially involving collagen-inducing growth factors (such as transforming growth factor-β-1 (TGF-β-1)), as well as enzymes related to collagen processing, are not clear. Furthermore, possible differential effects of specific contraction types on collagen regulation have not been investigated. Female Sprague–Dawley rats were subjected to 4 days of concentric, eccentric or isometric training (n = 7–9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve. RNA was extracted from medial gastrocnemius and Achilles tendon tissue 24 h after the last training bout, and mRNA levels for collagens I and III, TGF-β-1, connective tissue growth factor (CTGF), lysyl oxidase (LOX), metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and 2) were measured by Northern blotting and/or real-time PCR. In tendon, expression of TGF-β-1 and collagens I and III (but not CTGF) increased in response to all types of training. Similarly, enzymes/factors involved in collagen processing were induced in tendon, especially LOX (up to 37-fold), which could indicate a loading-induced increase in cross-linking of tendon collagen. In skeletal muscle, a similar regulation of gene expression was observed, but in contrast to the tendon response, the effect of eccentric training was significantly greater than the effect of concentric training on the expression of several transcripts. In conclusion, the study supports an involvement of TGF-β-1 in loading-induced collagen synthesis in the muscle–tendon unit and importantly, it indicates that muscle tissue is more sensitive than tendon to the specific mechanical stimulus. PMID:17540706
Heinemeier, K M; Olesen, J L; Haddad, F; Langberg, H; Kjaer, M; Baldwin, K M; Schjerling, P
2007-08-01
Acute exercise induces collagen synthesis in both tendon and muscle, indicating an adaptive response in the connective tissue of the muscle-tendon unit. However, the mechanisms of this adaptation, potentially involving collagen-inducing growth factors (such as transforming growth factor-beta-1 (TGF-beta-1)), as well as enzymes related to collagen processing, are not clear. Furthermore, possible differential effects of specific contraction types on collagen regulation have not been investigated. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric or isometric training (n = 7-9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve. RNA was extracted from medial gastrocnemius and Achilles tendon tissue 24 h after the last training bout, and mRNA levels for collagens I and III, TGF-beta-1, connective tissue growth factor (CTGF), lysyl oxidase (LOX), metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and 2) were measured by Northern blotting and/or real-time PCR. In tendon, expression of TGF-beta-1 and collagens I and III (but not CTGF) increased in response to all types of training. Similarly, enzymes/factors involved in collagen processing were induced in tendon, especially LOX (up to 37-fold), which could indicate a loading-induced increase in cross-linking of tendon collagen. In skeletal muscle, a similar regulation of gene expression was observed, but in contrast to the tendon response, the effect of eccentric training was significantly greater than the effect of concentric training on the expression of several transcripts. In conclusion, the study supports an involvement of TGF-beta-1 in loading-induced collagen synthesis in the muscle-tendon unit and importantly, it indicates that muscle tissue is more sensitive than tendon to the specific mechanical stimulus.
Ahr function in lymphocytes: emerging concepts
Zhou, Liang
2015-01-01
The aryl hydrocarbon receptor (Ahr) is an important regulator of the development and function of both innate and adaptive immune cells through roles associated with Ahr's ability to respond to cellular and dietary ligands. Recent findings have revealed tissue and context-specific functions for Ahr in both homeostasis and in during an immune response. I review these findings here, and integrate them into the current understanding of the mechanisms that regulate Ahr transcription and function. I propose a conceptual framework in which Ahr function is determined by three factors: the amount of Ahr in any given cell, the abundance and potency of Ahr ligands within certain tissues, and the tissue microenvironment wherein Ahr+ cells reside. This complexity emphasizes the necessity cell-type specific genetic approaches towards the study of Ahr function. PMID:26700314
2013-01-01
Background The adipose tissue is an endocrine regulator and a risk factor for atherosclerosis and cardiovascular disease when by excessive accumulation induces obesity. Although the adipose tissue is also a reservoir for stem cells (ASC) their function and “stemcellness” has been questioned. Our aim was to investigate the mechanisms by which obesity affects subcutaneous white adipose tissue (WAT) stem cells. Results Transcriptomics, in silico analysis, real-time polymerase chain reaction (PCR) and western blots were performed on isolated stem cells from subcutaneous abdominal WAT of morbidly obese patients (ASCmo) and of non-obese individuals (ASCn). ASCmo and ASCn gene expression clustered separately from each other. ASCmo showed downregulation of “stemness” genes and upregulation of adipogenic and inflammatory genes with respect to ASCn. Moreover, the application of bioinformatics and Ingenuity Pathway Analysis (IPA) showed that the transcription factor Smad3 was tentatively affected in obese ASCmo. Validation of this target confirmed a significantly reduced Smad3 nuclear translocation in the isolated ASCmo. Conclusions The transcriptomic profile of the stem cells reservoir in obese subcutaneous WAT is highly modified with significant changes in genes regulating stemcellness, lineage commitment and inflammation. In addition to body mass index, cardiovascular risk factor clustering further affect the ASC transcriptomic profile inducing loss of multipotency and, hence, capacity for tissue repair. In summary, the stem cells in the subcutaneous WAT niche of obese patients are already committed to adipocyte differentiation and show an upregulated inflammatory gene expression associated to their loss of stemcellness. PMID:24040759
EZH2 regulates dental pulp inflammation by direct effect on inflammatory factors.
Hui, Tianqian; A, Peng; Zhao, Yuan; Yang, Jing; Ye, Ling; Wang, Chenglin
2018-01-01
Pulpitis is a multi-factorial disease that could be caused by complex interactions between genetics, epigenetics and environmental factors. We aimed to evaluate the role of Enhancer of Zeste Homolog 2 (EZH2) in the inflammatory response of human dental pulp cells (HDPCs) and dental pulp tissues. The expressions of inflammatory cytokines in HDPCs treated by EZH2 complex or EZH2 siRNA with or without rhTNF-α were examined by quantitative real-time polymerase chain reaction (q-PCR). The levels of secreted inflammatory cytokines including IL-6, IL-8, IL-15, CCL2 and CXCL12 in culture supernatants were measured by Luminex assay. In rat pulpitis model, the effects of EZH2 on dental pulp tissues were verified by histology. We invested the mechanisms of the effect of EZH2 on the inflammatory factors by ChIP assay. EZH2 down-regulation inhibited the expression of inflammatory factors, including IL-6, IL-8, IL-15, CCL2 and CXCL12 in HDPCs. EZH2 complex promoted the expression and secretion of these inflammatory factors in HDPCs, while EZH2 silencing could attenuate the promotion of inflammatory factors that were induced by rhTNF-α. In pulpitis models of rats, EZH2 down-regulation inhibited the inflammatory process of dental pulp while EZH2 complex showed no significant facilitation of pulpal inflammation. In addition, EZH2 could bind on the promoters of IL-6, IL-8 and CCL2, but not IL-15 and CXCL12, to affect the transcription of these proinflammatory cytokines. In HDPCs, EZH2 could induce inflammation, while EZH2 down-regulation could attenuate the inflammatory responses. EZH2 plays an important role in this inflammatory process of dental pulp. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dankbar, Berno; Fennen, Michelle; Brunert, Daniela; Hayer, Silvia; Frank, Svetlana; Wehmeyer, Corinna; Beckmann, Denise; Paruzel, Peter; Bertrand, Jessica; Redlich, Kurt; Koers-Wunrau, Christina; Stratis, Athanasios; Korb-Pap, Adelheid; Pap, Thomas
2015-09-01
Myostatin (also known as growth and differentiation factor 8) is a secreted member of the transforming growth factor-β (TGF-β) family that is mainly expressed in skeletal muscle, which is also its primary target tissue. Deletion of the myostatin gene (Mstn) in mice leads to muscle hypertrophy, and animal studies support the concept that myostatin is a negative regulator of muscle growth and regeneration. However, myostatin deficiency also increases bone formation, mainly through loading-associated effects on bone. Here we report a previously unknown direct role for myostatin in osteoclastogenesis and in the progressive loss of articular bone in rheumatoid arthritis (RA). We demonstrate that myostatin is highly expressed in the synovial tissues of RA subjects and of human tumor necrosis factor (TNF)-α transgenic (hTNFtg) mice, a model for human RA. Myostatin strongly accelerates receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast formation in vitro through transcription factor SMAD2-dependent regulation of nuclear factor of activated T-cells (NFATC1). Myostatin deficiency or antibody-mediated inhibition leads to an amelioration of arthritis severity in hTNFtg mice, chiefly reflected by less bone destruction. Consistent with these effects in hTNFtg mice, the lack of myostatin leads to increased grip strength and less bone erosion in the K/BxN serum-induced arthritis model in mice. The results strongly suggest that myostatin is a potent therapeutic target for interfering with osteoclast formation and joint destruction in RA.
Vu, Long T.; Keschrumrus, Vic; Zhang, Xi; Zhong, Jiang F.; Su, Qingning; Kabeer, Mustafa H.; Loudon, William G.; Li, Shengwen Calvin
2015-01-01
Background The tumor microenvironment consists of both physical and chemical factors. Tissue elasticity is one physical factor contributing to the microenvironment of tumor cells. To test the importance of tissue elasticity in cell culture, primitive neuroectodermal tumor (PNET) stem cells were cultured on soft polyacrylamide (PAA) hydrogel plates that mimics the elasticity of brain tissue compared with PNET on standard polystyrene (PS) plates. We report the molecular profiles of PNET grown on either PAA or PS. Methodology/Principal Findings A whole-genome microarray profile of transcriptional expression between the two culture conditions was performed as a way to probe effects of substrate on cell behavior in culture. The results showed more genes downregulated on PAA compared to PS. This led us to propose microRNA (miRNA) silencing as a potential mechanism for downregulation. Bioinformatic analysis predicted a greater number of miRNA binding sites from the 3' UTR of downregulated genes and identified as specific miRNA binding sites that were enriched when cells were grown on PAA—this supports the hypothesis that tissue elasticity plays a role in influencing miRNA expression. Thus, Dicer was examined to determine if miRNA processing was affected by tissue elasticity. Dicer genes were downregulated on PAA and had multiple predicted miRNA binding sites in its 3' UTR that matched the miRNA binding sites found enriched on PAA. Many differentially regulated genes were found to be present on PS but downregulated on PAA were mapped onto intron sequences. This suggests expression of alternative polyadenylation sites within intron regions that provide alternative 3' UTRs and alternative miRNA binding sites. This results in tissue specific transcriptional downregulation of mRNA in humans by miRNA. We propose a mechanism, driven by the physical characteristics of the microenvironment by which downregulation of genes occur. We found that tissue elasticity-mediated cytokines (TGFβ2 and TNFα) signaling affect expression of ECM proteins. Conclusions Our results suggest that tissue elasticity plays important roles in miRNA expression, which, in turn, regulate tumor growth or tumorigenicity. PMID:25774514
Voutilainen, R; Miller, W L
1987-01-01
Insulin-like growth factors (IGFs) are single-chain polypeptides important for cell proliferation and growth. IGFs are produced in several tissues, suggesting that they function in a paracrine or autocrine fashion as well as functioning as endocrine hormones. We studied the hormonal regulation of IGF-I and IGF-II mRNA in human steroidogenic tissues. In cultured human ovarian granulosa cells, follicle-stimulating hormone, human chorionic gonadotropin, and dibutyryl cAMP increased IGF-II mRNA, but corticotropin [adrenocorticotropic hormone (ACTH)], chorionic somatomammotropin, growth hormone, prolactin, dexamethasone, estradiol, and progesterone had no effect. In cultured human fetal adrenal cells, ACTH and dibutyryl cAMP increased IGF-II mRNA accumulation, but human chorionic gonadotropin and angiotensin II did not. The same five size species of IGF-II mRNA were detected in transfer blots of RNA from granulosa cells and fetal adrenal cells, and all of these increased after hormonal stimuli. Dibutyryl cAMP also increased IGF-II mRNA accumulation in cultured human placental cells. Accumulation of mRNA for the cholesterol side-chain-cleavage monooxygenase [P450scc [corrected]; cholesterol, reduced-adrenal-ferredoxin:oxygen oxidoreductase (side-chain-cleaving), EC 1.14.15.6] was regulated in parallel with IGF-II mRNA in all these steroidogenic tissues. IGF-I mRNA was not detected in transfer blots of these RNAs, and the minimal amounts detected in dot blots showed no detectable change after any of the hormonal stimuli studied. The data indicate that the IGF-II gene is expressed in human steroidogenic tissues and is regulated by cAMP. These data suggest that IGF-II may act in an autocrine or paracrine fashion to stimulate the adrenal and gonadal growth stimulated by ACTH and gonadotropins, respectively. Images PMID:3031644
Differential expression of THOC1 and ALY mRNP biogenesis/export factors in human cancers.
Domínguez-Sánchez, María S; Sáez, Carmen; Japón, Miguel A; Aguilera, Andrés; Luna, Rosa
2011-02-17
One key step in gene expression is the biogenesis of mRNA ribonucleoparticle complexes (mRNPs). Formation of the mRNP requires the participation of a number of conserved factors such as the THO complex. THO interacts physically and functionally with the Sub2/UAP56 RNA-dependent ATPase, and the Yra1/REF1/ALY RNA-binding protein linking transcription, mRNA export and genome integrity. Given the link between genome instability and cancer, we have performed a comparative analysis of the expression patterns of THOC1, a THO complex subunit, and ALY in tumor samples. The mRNA levels were measured by quantitative real-time PCR and hybridization of a tumor tissue cDNA array; and the protein levels and distribution by immunostaining of a custom tissue array containing a set of paraffin-embedded samples of different tumor and normal tissues followed by statistical analysis. We show that the expression of two mRNP factors, THOC1 and ALY are altered in several tumor tissues. THOC1 mRNA and protein levels are up-regulated in ovarian and lung tumors and down-regulated in those of testis and skin, whereas ALY is altered in a wide variety of tumors. In contrast to THOC1, ALY protein is highly detected in normal proliferative cells, but poorly in high-grade cancers. These results suggest a differential connection between tumorogenesis and the expression levels of human THO and ALY. This study opens the possibility of defining mRNP biogenesis factors as putative players in cell proliferation that could contribute to tumor development.
Cohesin regulates tissue-specific expression by stabilizing highly occupied cis-regulatory modules
Faure, Andre J.; Schmidt, Dominic; Watt, Stephen; Schwalie, Petra C.; Wilson, Michael D.; Xu, Huiling; Ramsay, Robert G.; Odom, Duncan T.; Flicek, Paul
2012-01-01
The cohesin protein complex contributes to transcriptional regulation in a CTCF-independent manner by colocalizing with master regulators at tissue-specific loci. The regulation of transcription involves the concerted action of multiple transcription factors (TFs) and cohesin's role in this context of combinatorial TF binding remains unexplored. To investigate cohesin-non-CTCF (CNC) binding events in vivo we mapped cohesin and CTCF, as well as a collection of tissue-specific and ubiquitous transcriptional regulators using ChIP-seq in primary mouse liver. We observe a positive correlation between the number of distinct TFs bound and the presence of CNC sites. In contrast to regions of the genome where cohesin and CTCF colocalize, CNC sites coincide with the binding of master regulators and enhancer-markers and are significantly associated with liver-specific expressed genes. We also show that cohesin presence partially explains the commonly observed discrepancy between TF motif score and ChIP signal. Evidence from these statistical analyses in wild-type cells, and comparisons to maps of TF binding in Rad21-cohesin haploinsufficient mouse liver, suggests that cohesin helps to stabilize large protein–DNA complexes. Finally, we observe that the presence of mirrored CTCF binding events at promoters and their nearby cohesin-bound enhancers is associated with elevated expression levels. PMID:22780989
Fork head controls the timing and tissue selectivity of steroid-induced developmental cell death
Cao, Chike; Liu, Yanling; Lehmann, Michael
2007-01-01
Cell death during Drosophila melanogaster metamorphosis is controlled by the steroid hormone 20-hydroxyecdysone (20E). Elements of the signaling pathway that triggers death are known, but it is not known why some tissues, and not others, die in response to a particular hormone pulse. We found that loss of the tissue-specific transcription factor Fork head (Fkh) is both required and sufficient to specify a death response to 20E in the larval salivary glands. Loss of fkh itself is a steroid-controlled event that is mediated by the 20E-induced BR-C gene, and that renders the key death regulators hid and reaper hormone responsive. These results implicate the D. melanogaster FOXA orthologue Fkh with a novel function as a competence factor for steroid-controlled cell death. They explain how a specific tissue is singled out for death, and why this tissue survives earlier hormone pulses. More generally, they suggest that cell identity factors like Fkh play a pivotal role in the normal control of developmental cell death. PMID:17339378
Lorda-Diez, C I; Montero, J A; Sanchez-Fernandez, C; Garcia-Porrero, J A; Chimal-Monroy, J; Hurle, J M
2018-04-01
Four and a half LIM domain 2 (FHL2) is a multifunctional scaffolding protein of well-known function regulating cell signalling cascades and gene transcription in cancer tissues. However, its function in embryonic systems is poorly characterized. Here, we show that Fhl2 is involved in the differentiation of connective tissues of developing limb autopod. We show that Fhl2 exhibits spatially restricted and temporally dynamic expression around the tendons of developing digits, interphalangeal joint capsules, and fibrous peridigital tissue. Immunolabelling analysis of the skeletal progenitors identified a predominant, but not exclusive, cytoplasmic distribution of FHL2 being associated with focal adhesions and actin cytoskeleton. In the course of chondrogenic differentiation of cultures of limb skeletal progenitors, the expression of Fhl2 is down-regulated. Furthermore, cultures of skeletal progenitors overexpressing Fhl2 take on a predominant fibrogenic appearance. Both gain-of-function and loss-of-function experiments in the micromass culture assays revealed a positive transcriptional influence of Fhl2 in the expression of fibrogenic markers including Scleraxis, Tenomodulin, Tenascin C, βig-h3, and Tgif1. We further show that the expression of Fhl2 is positively regulated by profibrogenic signals including Tgfβ2, all-trans-retinoic acid, and canonical Wnt signalling molecules and negatively regulated by prochondrogenic factors of the bone morphogenetic protein family. Expression of Fhl2 is also regulated negatively in immobilized limbs, but this influence appears to be mediated by other connective tissue markers, such as Tgfβs and Scleraxis. Copyright © 2018 John Wiley & Sons, Ltd.
Estrogen receptor β regulates endometriotic cell survival through SGK1 activation
Monsivais, Diana; Dyson, Matthew T.; Yin, Ping; Navarro, Antonia; Coon, John S; Pavone, Mary Ellen; Bulun, Serdar E.
2016-01-01
OBJECTIVE To determine the expression and biological roles of SGK1 in tissues and cells from patients with endometriosis and from healthy controls. DESIGN Case-control. SETTING University research setting. PATIENTS Premenopausal women. INTERVENTIONS Endometriotic tissues (E-Osis) were obtained from women with ovarian endometriosis and normal endometrial tissues (NoEM) were obtained from women undergoing hysterectomy for benign conditions. MAIN OUTCOMES MEASURES Expression levels of serum and glucocorticoid regulated kinase (SGK1), the role of SGK1 in E-Osis pathology, and the regulation of SGK1 by ERβ. RESULTS Transcript and protein levels of SGK1 were significantly higher in endometriotic tissues and cells compared to normal endometrium. SGK1 mRNA and protein levels were stimulated by estradiol, by the ERβ-selective agonist, diarylpropionitrile, and by prostaglandin E2. SGK1 was transcriptionally regulated by ERβ based on siRNA knockdown and chromatin immunoprecipitation of ERβ followed by quantitative PCR (ChIP-qPCR). SGK1 knockdown led to increased cleavage of PARP, and SGK1 activation was correlated with the phosphorylation of FOXO3a, a pro-apoptotic factor. CONCLUSIONS ERβ leads to SGK1 overexpression in endometriosis, which contributes to the survival of endometriotic lesions through inhibition of apoptosis. PMID:26827666
Reymond, Mathieu C.; Brunoud, Géraldine; Chauvet, Aurélie; Martínez-Garcia, Jaime F.; Martin-Magniette, Marie-Laure; Monéger, Françoise; Scutt, Charles P.
2012-01-01
A key innovation of flowering plants is the female reproductive organ, the carpel. Here, we show that a mechanism that regulates carpel margin development in the model flowering plant Arabidopsis thaliana was recruited from light-regulated processes. This recruitment followed the loss from the basic helix-loop-helix transcription factor SPATULA (SPT) of a domain previously responsible for its negative regulation by phytochrome. We propose that the loss of this domain was a prerequisite for the light-independent expression in female reproductive tissues of a genetic module that also promotes shade avoidance responses in vegetative organs. Striking evidence for this proposition is provided by the restoration of wild-type carpel development to spt mutants by low red/far-red light ratios, simulating vegetation shade, which we show to occur via phytochrome B, PHYTOCHROME INTERACTING FACTOR4 (PIF4), and PIF5. Our data illustrate the potential of modular evolutionary events to generate rapid morphological change and thereby provide a molecular basis for neo-Darwinian theories that describe this nongradualist phenomenon. Furthermore, the effects shown here of light quality perception on carpel development lead us to speculate on the potential role of light-regulated mechanisms in plant organs that, like the carpel, form within the shade of surrounding tissues. PMID:22851763
miR-133b Regulation of Connective Tissue Growth Factor
Gjymishka, Altin; Pi, Liya; Oh, Seh-Hoon; Jorgensen, Marda; Liu, Chen; Protopapadakis, Yianni; Patel, Ashnee; Petersen, Bryon E.
2017-01-01
miRNAs are involved in liver regeneration, and their expression is dysregulated in hepatocellular carcinoma (HCC). Connective tissue growth factor (CTGF), a direct target of miR-133b, is crucial in the ductular reaction (DR)/oval cell (OC) response for generating new hepatocyte lineages during liver injury in the context of hepatotoxin-inhibited hepatocyte proliferation. Herein, we investigate whether miR-133b regulation of CTGF influences HCC cell proliferation and migration, and DR/OC response. We analyzed miR-133b expression and found it to be down-regulated in HCC patient samples and induced in the rat DR/OC activation model of 2-acetylaminofluorene with partial hepatectomy. Furthermore, overexpression of miR-133b via adenoviral system in vitro led to decreased CTGF expression and reduced proliferation and Transwell migration of both HepG2 HCC cells and WBF-344 rat OCs. In vivo, overexpression of miR-133b in DR/OC activation models of 2-acetylaminofluorene with partial hepatectomy in rats, and 3,5-diethoxycarbonyl-1,4-dihydrocollidine in mice, led to down-regulation of CTGF expression and OC proliferation. Collectively, these results show that miR-133b regulation of CTGF is a novel mechanism critical for the proliferation and migration of HCC cells and OC response. PMID:26945106
2012-01-01
Background DOR/TP53INP2 acts both at the chromosomal level as a nuclear co-factor e.g. for the thyroid hormone receptor and at the extrachromosomal level as an organizing factor of the autophagosome. In a previous study, DOR was shown to be down-regulated in skeletal muscle of obese diabetic Zucker fa/fa rats. Methods To identify sites of differential DOR expression in metabolically active tissues, we measured differences in DOR expression in white adipose tissue (WAT), brown adipose tissue (BAT), skeletal muscle (SM) and heart muscle (HM) by qPCR. To assess whether DOR expression is influenced in the short term by nutritional factors, NMRI mice were fed different fat rich diets (fat diet, FD: 18% or high fat diet, HFD: 80% fat) for one week and DOR expression was compared to NMRI mice fed a control diet (normal diet, ND: 3.3% fat). Additionally, DOR expression was measured in young (45 days old) and adult (100 days old) genetically obese (DU6/DU6i) mice and compared to control (DUKs/DUKsi) animals. Results ANOVA results demonstrate a significant influence of diet, tissue type and sex on DOR expression in adipose and muscle tissues of FD and HFD mice. In SM, DOR expression was higher in HFD than in FD male mice. In WAT, DOR expression was increased compared to BAT in male FD and HFD mice. In contrast, expression levels in female mice were higher in BAT for both dietary conditions. DOR expression levels in all tissues of 100 days old genetically obese animals were mainly influenced by sex. In HM, DOR expression was higher in male than female animals. Conclusions DOR expression varies under the influence of dietary fat content, tissue type and sex. We identified target tissues for further studies to analyze the specific function of DOR in obesity. DOR might be part of a defense mechanism against fat storage in high fat diets or obesity. PMID:22995226
Fromm-Dornieden, Carolin; Lytovchenko, Oleksandr; von der Heyde, Silvia; Behnke, Nina; Hogl, Sebastian; Berghoff, Janina; Köpper, Frederik; Opitz, Lennart; Renne, Ulla; Hoeflich, Andreas; Beissbarth, Tim; Brenig, Bertram; Baumgartner, Bernhard G
2012-09-21
DOR/TP53INP2 acts both at the chromosomal level as a nuclear co-factor e.g. for the thyroid hormone receptor and at the extrachromosomal level as an organizing factor of the autophagosome. In a previous study, DOR was shown to be down-regulated in skeletal muscle of obese diabetic Zucker fa/fa rats. To identify sites of differential DOR expression in metabolically active tissues, we measured differences in DOR expression in white adipose tissue (WAT), brown adipose tissue (BAT), skeletal muscle (SM) and heart muscle (HM) by qPCR. To assess whether DOR expression is influenced in the short term by nutritional factors, NMRI mice were fed different fat rich diets (fat diet, FD: 18% or high fat diet, HFD: 80% fat) for one week and DOR expression was compared to NMRI mice fed a control diet (normal diet, ND: 3.3% fat). Additionally, DOR expression was measured in young (45 days old) and adult (100 days old) genetically obese (DU6/DU6i) mice and compared to control (DUKs/DUKsi) animals. ANOVA results demonstrate a significant influence of diet, tissue type and sex on DOR expression in adipose and muscle tissues of FD and HFD mice. In SM, DOR expression was higher in HFD than in FD male mice. In WAT, DOR expression was increased compared to BAT in male FD and HFD mice. In contrast, expression levels in female mice were higher in BAT for both dietary conditions.DOR expression levels in all tissues of 100 days old genetically obese animals were mainly influenced by sex. In HM, DOR expression was higher in male than female animals. DOR expression varies under the influence of dietary fat content, tissue type and sex. We identified target tissues for further studies to analyze the specific function of DOR in obesity. DOR might be part of a defense mechanism against fat storage in high fat diets or obesity.
Grote, Karsten; Salguero, Gustavo; Ballmaier, Matthias; Dangers, Marc; Drexler, Helmut; Schieffer, Bernhard
2007-08-01
Tissue regeneration involves the formation of new blood vessels regulated by angiogenic factors. We reported recently that the expression of the angiogenic factor CCN1 is up-regulated under various pathophysiologic conditions within the cardiovascular system. Because CD34+ progenitor cells participate in cardiovascular tissue regeneration, we investigated whether CCN1-detected for the first time in human plasma-promotes the recruitment of CD34+ progenitor cells to endothelial cells, thereby enhancing endothelial proliferation and neovascularization. In this study, we demonstrated that CCN1 and supernatants from CCN1-stimulated human CD34+ progenitor cells promoted proliferation of endothelial cells and angiogenesis in vitro and in vivo. In addition, CCN1 induced migration and transendothelial migration of CD34+ cells and the release of multiple growth factors, chemokines, and matrix metalloproteinase-9 (MMP-9) from these cells. Moreover, the CCN1-specific integrins alpha(M)beta(2) and alpha(V)beta(3) are expressed on CD34+ cells and CCN1 stimulated integrin-dependent signaling. Furthermore, integrin antagonists (RGD-peptides) suppressed both binding of CCN1 to CD34+ cells and CCN1-induced adhesion of CD34+ cells to endothelial cells. These data suggest that CCN1 promotes integrin-dependent recruitment of CD34+ progenitor cells to endothelial cells, which may contribute to paracrine effects on angiogenesis and tissue regeneration.
The Fibroblast Growth Factor signaling pathway
Ornitz, David M; Itoh, Nobuyuki
2015-01-01
The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc. PMID:25772309
Complement factor H: spatial and temporal expression and localization in the eye.
Mandal, Md Nawajes A; Ayyagari, Radha
2006-09-01
Complement factor H (CFH) is a component of the mammalian complement system, which regulates the alternative pathway of complement activation and protects the host cell from inappropriate complement activation. CFH is a key regulator of innate immunity, and CFH deficiency leads to membranoproliferative glomerulonephritis type II. A variation in human CFH, Y402H, has been shown to be associated with an increased risk for age-related macular degeneration. The authors describe studies on the spatial and temporal expression of the CFH gene and localization of this protein in ocular tissues to gain insight into its role in the eye. CFH expression in human and mouse tissues was studied by quantitative RT-PCR and Western blot analysis, and localization of CFH was studied by immunohistochemical analysis followed by fluorescence microscopy. In human and mouse, CFH expression was found to be similar to the highest level of expression in the liver. In ocular tissue, CFH was detected in the distalmost optic nerve (3 mm) cut from the scleral surface of the eyeball, sclera, RPE-choroid, retina, lens, and ciliary body. In mouse, Cfh expression was observed from early embryonic stages, and in the eye its expression increased with age. A significant level of CFH expression is maintained in different ocular tissues during development and aging. Sustained high levels of CFH expression in eye tissues suggest that this protein may play a role in protecting these tissues from indiscriminate complement activation and inflammatory insult.
The Human Cutaneous Chemokine System
McCully, Michelle L.; Moser, Bernhard
2011-01-01
Irrespective of the immune status, the vast majority of all lymphocytes reside in peripheral tissues whereas those present in blood only amount to a small fraction of the total. It has been estimated that T cells in healthy human skin outnumber those present in blood by at least a factor of two. How lymphocytes within these two compartments relate to each other is not well understood. However, mounting evidence suggest that the study of T cell subsets present in peripheral blood does not reflect the function of their counterparts at peripheral sites. This is especially true under steady-state conditions whereby long-lived memory T cells in healthy tissues, notably those in epithelial tissues at body surfaces, are thought to fulfill a critical immune surveillance function by contributing to the first line of defense against a series of local threats, including microbes, tumors, and toxins, and by participating in wound healing. The relative scarcity of information regarding peripheral T cells and the factors regulating their localization is primarily due to inherent difficulties in obtaining healthy tissue for the extraction and study of immune cells on a routine basis. This is most certainly true for humans. Here, we review our current understanding of T cell homing to human skin and compare it when possible with gut-selective homing. We also discuss candidate chemokines that may account for the tissue selectivity in this process and present a model whereby CCR8, and its ligand CCL1, selectively regulate the homeostatic migration of memory lymphocytes to skin tissue. PMID:22566823
Identification of transcriptional factors and key genes in primary osteoporosis by DNA microarray.
Xie, Wengui; Ji, Lixin; Zhao, Teng; Gao, Pengfei
2015-05-09
A number of genes have been identified to be related with primary osteoporosis while less is known about the comprehensive interactions between regulating genes and proteins. We aimed to identify the differentially expressed genes (DEGs) and regulatory effects of transcription factors (TFs) involved in primary osteoporosis. The gene expression profile GSE35958 was obtained from Gene Expression Omnibus database, including 5 primary osteoporosis and 4 normal bone tissues. The differentially expressed genes between primary osteoporosis and normal bone tissues were identified by the same package in R language. The TFs of these DEGs were predicted with the Essaghir A method. DAVID (The Database for Annotation, Visualization and Integrated Discovery) was applied to perform the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of DEGs. After analyzing regulatory effects, a regulatory network was built between TFs and the related DEGs. A total of 579 DEGs was screened, including 310 up-regulated genes and 269 down-regulated genes in primary osteoporosis samples. In GO terms, more up-regulated genes were enriched in transcription regulator activity, and secondly in transcription factor activity. A total 10 significant pathways were enriched in KEGG analysis, including colorectal cancer, Wnt signaling pathway, Focal adhesion, and MAPK signaling pathway. Moreover, total 7 TFs were enriched, of which CTNNB1, SP1, and TP53 regulated most up-regulated DEGs. The discovery of the enriched TFs might contribute to the understanding of the mechanism of primary osteoporosis. Further research on genes and TFs related to the WNT signaling pathway and MAPK pathway is urgent for clinical diagnosis and directing treatment of primary osteoporosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escalona-Nandez, Ivonne; Guerrero-Escalera, Dafne; Estanes-Hernández, Alma
2015-03-20
Liver steatosis is characterised by lipid droplet deposition in hepatocytes that can leads to an inflammatory and fibrotic phenotype. Peroxisome proliferator-activated receptors (PPARs) play key roles in energetic homeostasis by regulating lipid metabolism in hepatic tissue. In adipose tissue PPARγ regulates the adipocyte differentiation by promoting the expression of lipid-associated genes. Within the liver PPARγ is up-regulated under steatotic conditions; however, which transcription factors participate in its expression is not completely understood. Krüppel-like transcription factors (KLFs) regulate various cellular mechanisms, such as cell proliferation and differentiation. KLFs are key components of adipogenesis by regulating the expression of PPARγ and othermore » proteins such as the C-terminal enhancer binding protein (C/EBP). Here, we demonstrate that the transcript levels of Klf6, Klf9 and Pparγ are increased in response to a steatotic insult in vitro. Chromatin immunoprecipitation (ChIp) experiments showed that klf6 and klf9 are actively recruited to the Pparγ promoter region under these conditions. Accordingly, the loss-of-function experiments reduced cytoplasmic triglyceride accumulation. Here, we demonstrated that KLF6 and KLF9 proteins directly regulate PPARγ expression under steatotic conditions. - Highlights: • Palmitic acid promotes expression of KlF6 & KLF9 in HepG2 cells. • KLF6 and KLF9 promote the expression of PPARγ in response to palmitic acid. • Binding of KLF6 and KLF9 to the PPARγ promoter promotes steatosis in HepG2 cells. • KLF6 and KLF9 loss-of function diminishes the steatosis in HepG2 cells.« less
Quach, David H.; Oliveira-Fernandes, Michelle; Gruner, Katherine A.; Tourtellotte, Warren G.
2013-01-01
Egr3 is a nerve growth factor (NGF)-induced transcriptional regulator that is essential for normal sympathetic nervous system development. Mice lacking Egr3 in the germline have sympathetic target tissue innervation abnormalities and physiologic sympathetic dysfunction similar to humans with dysautonomia. However, since Egr3 is widely expressed and has pleiotropic function, it has not been clear whether it has a role within sympathetic neurons and if so, what target genes it regulates to facilitate target tissue innervation. Here, we show that Egr3 expression within sympathetic neurons is required for their normal innervation since isolated sympathetic neurons lacking Egr3 have neurite outgrowth abnormalities when treated with NGF and mice with sympathetic neuron-restricted Egr3 ablation have target tissue innervation abnormalities similar to mice lacking Egr3 in all tissues. Microarray analysis performed on sympathetic neurons identified many target genes deregulated in the absence of Egr3, with some of the most significantly deregulated genes having roles in axonogenesis, dendritogenesis, and axon guidance. Using a novel genetic technique to visualize axons and dendrites in a subpopulation of randomly labeled sympathetic neurons, we found that Egr3 has an essential role in regulating sympathetic neuron dendrite morphology and terminal axon branching, but not in regulating sympathetic axon guidance to their targets. Together, these results indicate that Egr3 has a sympathetic neuron autonomous role in sympathetic nervous system development that involves modulating downstream target genes affecting the outgrowth and branching of sympathetic neuron dendrites and axons. PMID:23467373
Qurrat-ul-Ain; Seemab, Umair; Nawaz, Sulaman; Rashid, Sajid
2011-01-01
In human, WNT gene clusters are highly conserved at specie level and associated with carcinogenesis. Among them, WNT-10A and WNT-6 genes clustered in chromosome 2q35 are homologous to WNT-10B and WNT-1 located in chromosome 12q13, respectively. In an attempt to study co-regulation, the coordinated expression of these genes was monitored in human breast cancer tissues. As compared to normal tissue, both WNT-10A and WNT-10B genes exhibited lower expression while WNT-6 and WNT-1 showed increased expression in breast cancer tissues. The co-expression pattern was elaborated by detailed phylogenetic and syntenic analyses. Moreover, the intergenic and intragenic regions for these gene clusters were analyzed for studying the transcriptional regulation. In this context, adequate conserved binding sites for SOX and TCF family of transcriptional factors were observed. We propose that SOX9 and TCF4 may compete for binding at the promoters of WNT family genes thus regulating the disease phenotype. PMID:22355234
Drzewiecka, Hanna; Gałęcki, Bartłomiej; Jarmołowska-Jurczyszyn, Donata; Kluk, Andrzej; Dyszkiewicz, Wojciech; Jagodziński, Paweł P
2016-09-01
Recent studies indicated undisputed contribution of connective tissue growth factor (CTGF) in the development of many cancers, including non-small cell lung cancer (NSCLC). However, the functional role and regulation of CTGF expression during tumorigenesis remain elusive. Our goal was to determine CTGF transcript and protein levels in tumoral and matched control tissues from 98 NSCLC patients, to correlate the results with clinicopathological features and to investigate whether the CTGF expression can be epigenetically regulated in NSCLC. We used quantitative PCR, Western blotting and immunohistochemistry to evaluate CTGF expression in lung cancerous and histopathologically unchanged tissues. We tested the impact of 5-Aza-2'-deoxycytidine (5-dAzaC) and trichostatin A (TSA) on CTGF transcript and protein levels in NSCLC cells (A549, Calu-1). DNA methylation status of the CTGF regulatory region was evaluated by bisulfite sequencing. The influence of 5-dAzaC and TSA on NSCLC cells viability and proliferation was monitored by the trypan blue assay. We found significantly decreased levels of CTGF mRNA and protein (both p < 0.0000001) in cancerous tissues of NSCLC patients. Down-regulation of CTGF occurred regardless of gender in all histological subtypes of NSCLC. Moreover, we showed that 5-dAzaC and TSA were able to restore CTGF mRNA and protein contents in NSCLC cells. However, no methylation within CTGF regulatory region was detected. Both compounds significantly reduced NSCLC cells proliferation. Decreased expression of CTGF is a common feature in NSCLC; however, it can be restored by the chromatin-modifying agents such as 5-dAzaC or TSA and consequently restrain cancer development.
Boo, Stellar; Dagnino, Lina
2013-06-01
Abnormal wound repair results from disorders in granulation tissue remodeling, and can lead to hypertrophic scarring and fibrosis. Excessive scarring can compromise tissue function and decrease tissue resistance to additional injuries. The development of potential therapies to minimize scarring is, thus, necessary to address an important clinical problem. It has been clearly established that multiple cytokines and growth factors participate in the regulation of cutaneous wound healing. More recently, it has become apparent that these factors do not necessarily activate isolated signaling pathways. Rather, in some cases, there is cross-modulation of several cellular pathways involved in this process. Two of the key pathways that modulate each other during wound healing are activated by transforming growth factor-β and by extracellular matrix proteins acting through integrins. The pathogenesis of excessive scarring upon wound healing is not fully understood, as a result of the complexity of this process. However, the fact that many pathways combine to produce fibrosis provides multiple potential therapeutic targets. Some of them have been identified, such as focal adhesion kinase and integrin-linked kinase. Currently, a major challenge is to develop pharmacological inhibitors of these proteins with therapeutic value to promote efficient wound repair. The ability to better understand how different pathways crosstalk during wound repair and to identify and pharmacologically modulate key factors that contribute to the regulation of multiple wound-healing pathways could potentially provide effective therapeutic targets to decrease or prevent excessive scar formation and/or development of fibrosis.
Heat Shock Factor 1 Deficiency Affects Systemic Body Temperature Regulation.
Ingenwerth, Marc; Noichl, Erik; Stahr, Anna; Korf, Horst-Werner; Reinke, Hans; von Gall, Charlotte
2016-01-01
Heat shock factor 1 (HSF1) is a ubiquitous heat-sensitive transcription factor that mediates heat shock protein transcription in response to cellular stress, such as increased temperature, in order to protect the organism against misfolded proteins. In this study, we analysed the effect of HSF1 deficiency on core body temperature regulation. Body temperature, locomotor activity, and food consumption of wild-type mice and HSF1-deficient mice were recorded. Prolactin and thyroid-stimulating hormone levels were measured by ELISA. Gene expression in brown adipose tissue was analysed by quantitative real-time PCR. Hypothalamic HSF1 and its co-localisation with tyrosine hydroxylase was analysed using confocal laser scanning microscopy. HSF1-deficient mice showed an increase in core body temperature (hyperthermia), decreased overall locomotor activity, and decreased levels of prolactin in pituitary and blood plasma reminiscent of cold adaptation. HSF1 could be detected in various hypothalamic regions involved in temperature regulation, suggesting a potential role of HSF1 in hypothalamic thermoregulation. Moreover, HSF1 co-localises with tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, suggesting a potential role of HSF1 in the hypothalamic control of prolactin release. In brown adipose tissue, levels of prolactin receptor and uncoupled protein 1 were increased in HSF1-deficient mice, consistent with an up-regulation of heat production. Our data suggest a role of HSF1 in systemic thermoregulation. © 2015 S. Karger AG, Basel.
Jang, Sun-Hee; Kang, Suk Nam; Jeon, Beong-Sam; Ko, Yeoung-Gyu; Kim, Hong-Duck; Won, Chung-Kil; Kim, Gon-Sup; Cho, Jae-Hyeon
2014-01-01
This study assessed the effects of Coprinus comatus cap (CCC) on adipogenesis in 3T3-L1 adipocytes and the effects of CCC on the development of diet-induced obesity in rats. Here, we showed that the CCC has an inhibitory effect on the adipocyte differentiation of 3T3-L1 cells, resulting in a significant decrease in lipid accumulation through the downregulation of several adipocyte specific-transcription factors, including CCAAT/enhancer binding protein β, C/EBPδ, and peroxisome proliferator-activated receptor gamma (PPARγ). Moreover, treatment with CCC during adipocyte differentiation induced a significant down-regulation of PPARγ and adipogenic target genes, including adipocyte protein 2, lipoprotein lipase, and adiponectin. Interestingly, the CCC treatment of the 3T3-L1 adipocytes suppressed the insulin-stimulated Akt and GSK3β phosphorylation, and these effects were stronger in the presence of an inhibitor of Akt phosphorylation, LY294002, suggesting that CCC inhibited adipocyte differentiation through the down-regulation of Akt signaling. In the animal study, CCC administration significantly reduced the body weight and adipose tissue weight of rats fed a high fat diet (HFD) and attenuated lipid accumulation in the adipose tissues of the HFD-induced obese rats. The size of the adipocyte in the epididymal fat of the CCC fed rats was significantly smaller than in the HFD rats. CCC treatment significantly reduced the total cholesterol and triglyceride levels in the serum of HFD rats. These results strongly indicated that the CCC-mediated decrease in body weight was due to a reduction in adipose tissue mass. The expression level of PPARγ and phospho-Akt was significantly lower in the CCC-treated HFD rats than that in the HFD obesity rats. These results suggested that CCC inhibited adipocyte differentiation by the down-regulation of major transcription factor involved in the adipogenesis pathway including PPARγ through the regulation of the Akt pathway in 3T3-L1 cells and HFD adipose tissue. PMID:25181477
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Jingjing; Xu, Chen; Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003
Abstracts: MicroRNAs (miRNAs) are important endogenous gene regulators that play key roles in prostate cancer development and metastasis. However, specific miRNA expression patterns in prostate cancer tissues from Chinese patients remain largely unknown. In this study, we compared miRNA expression patterns in 65 pairs of prostate cancer and para-cancer tissues by RNA sequencing and found that miR-182-5p was the most up-regulated miRNA in prostate cancer tissues. The result was validated using realtime PCR in 18 pairs of prostate cancer and para-cancer tissues. In in vitro analysis, it was confirmed that miR-182-5p promotes prostate cancer cell proliferation, invasion and migration and inhibitmore » apoptosis. In addition, the androgen receptor directly regulated the transcription of miR-182-5p, which could target to the 3′UTR of ARRDC3 mRNA and affect the expression of ARRDC3 and its downstream gene ITGB4. For the in vivo experiment, miR-182-5p overexpression also promoted the growth and progression of prostate cancer tumors. In this regard, we suggest that miR-182-5p may be a key androgen receptor-regulated factor that contributes to the development and metastasis of Chinese prostate cancers and may be a potential target for the early diagnosis and therapeutic studies of prostate cancer. -- Highlights: •miR-182-5p is the mostly up-regulated miRNA in Chinese prostate cancer. •miR-182-5p is regulated by androgen receptor. •miR-182-5p promotes prostate cancer progression. •miR-182-5p regulates ARRDC3/ITGB4 pathway.« less
Three-dimensional organotypic culture: experimental models of mammalian biology and disease
Shamir, Eliah R.; Ewald, Andrew J.
2015-01-01
Mammalian organs are challenging to study as they are fairly inaccessible to experimental manipulation and optical observation. Recent advances in three-dimensional (3D) culture techniques, coupled with the ability to independently manipulate genetic and microenvironmental factors, have enabled the real-time study of mammalian tissues. These systems have been used to visualize the cellular basis of epithelial morphogenesis, to test the roles of specific genes in regulating cell behaviours within epithelial tissues and to elucidate the contribution of microenvironmental factors to normal and disease processes. Collectively, these novel models can be used to answer fundamental biological questions and generate replacement human tissues, and they enable testing of novel therapeutic approaches, often using patient-derived cells. PMID:25237826
The Innate Lymphoid Cell Precursor.
Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert
2016-05-20
The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.
The solid state environment orchestrates embryonic development and tissue remodeling
NASA Technical Reports Server (NTRS)
Damsky, C. H.; Moursi, A.; Zhou, Y.; Fisher, S. J.; Globus, R. K.
1997-01-01
Cell interactions with extracellular matrix and with other cells play critical roles in morphogenesis during development and in tissue homeostasis and remodeling throughout life. Extracellular matrix is information-rich, not only because it is comprised of multifunctional structural ligands for cell surface adhesion receptors, but also because it contains peptide signaling factors, and proteinases and their inhibitors. The functions of these groups of molecules are extensively interrelated. In this review, three primary cell culture models are described that focus on adhesion receptors and their roles in complex aspects of morphogenesis and remodeling: the regulation of proteinase expression by fibronectin and integrins in synovial fibroblasts; the regulation of osteoblast differentiation and survival by fibronectin, and the regulation of trophoblast differentiation and invasion by integrins, cadherins and immunoglobulin family adhesion receptors.
Pink1 and Parkin regulate Drosophila intestinal stem cell proliferation during stress and aging.
Koehler, Christopher L; Perkins, Guy A; Ellisman, Mark H; Jones, D Leanne
2017-08-07
Intestinal stem cells (ISCs) maintain the midgut epithelium in Drosophila melanogaster Proper cellular turnover and tissue function rely on tightly regulated rates of ISC division and appropriate differentiation of daughter cells. However, aging and epithelial injury cause elevated ISC proliferation and decreased capacity for terminal differentiation of daughter enteroblasts (EBs). The mechanisms causing functional decline of stem cells with age remain elusive; however, recent findings suggest that stem cell metabolism plays an important role in the regulation of stem cell activity. Here, we investigate how alterations in mitochondrial homeostasis modulate stem cell behavior in vivo via RNA interference-mediated knockdown of factors involved in mitochondrial dynamics. ISC/EB-specific knockdown of the mitophagy-related genes Pink1 or Parkin suppresses the age-related loss of tissue homeostasis, despite dramatic changes in mitochondrial ultrastructure and mitochondrial damage in ISCs/EBs. Maintenance of tissue homeostasis upon reduction of Pink1 or Parkin appears to result from reduction of age- and stress-induced ISC proliferation, in part, through induction of ISC senescence. Our results indicate an uncoupling of cellular, tissue, and organismal aging through inhibition of ISC proliferation and provide insight into strategies used by stem cells to maintain tissue homeostasis despite severe damage to organelles. © 2017 Koehler et al.
Gene expression profile of the fibrotic response in the peritoneal cavity.
Le, S J; Gongora, M; Zhang, B; Grimmond, S; Campbell, G R; Campbell, J H; Rolfe, B E
2010-01-01
The cellular response to materials implanted in the peritoneal cavity has been utilised to produce tissue for grafting to hollow smooth muscle organs (blood vessels, bladder, uterus and vas deferens). To gain insight into the regulatory mechanisms involved in encapsulation of a foreign object, and subsequent differentiation of encapsulating cells, the present study used microarray technology and real-time RT-PCR to identify the temporal changes in gene expression associated with tissue development. Immunohistochemical analysis showed that 3-7 days post-implantation of foreign objects (cubes of boiled egg white) into rats, they were encapsulated by tissue comprised primarily of haemopoietic (CD45(+)) cells, mainly macrophages (CD68(+), CCR1(+)). By day 14, tissue capsule cells no longer expressed CD68, but were positive for myofibroblast markers alpha-smooth muscle (SM) actin and SM22. In accordance with these results, gene expression data showed that early capsule (days 3-7) development was dominated by the expression of monocyte/macrophage-specific genes (CD14, CSF-1, CSF-1R, MCP-1) and pro-inflammatory mediators such as transforming growth factor (TGF-beta). As tissue capsule development progressed (days 14-21), myofibroblast-associated and pro-fibrotic genes (associated with TGF-beta and Wnt/beta-catenin signalling pathways, including Wnt 4, TGFbetaRII, connective tissue growth factor (CTGF), SMADs-1, -2, -4 and collagen-1 subunits) were significantly up-regulated. The up-regulation of genes associated with Cardiovascular and Skeletal and Muscular System Development at later time-points suggests the capacity of cells within the tissue capsule for further differentiation to smooth muscle, and possibly other cell types. The identification of key regulatory pathways and molecules associated with the fibrotic response to implanted materials has important applications not only for optimising tissue engineering strategies, but also to control deleterious fibrotic responses.
Loss of pericyte smoothened activity in mice with genetic deficiency of leptin.
Xie, Guanhua; Swiderska-Syn, Marzena; Jewell, Mark L; Machado, Mariana Verdelho; Michelotti, Gregory A; Premont, Richard T; Diehl, Anna Mae
2017-04-20
Obesity is associated with multiple diseases, but it is unclear how obesity promotes progressive tissue damage. Recovery from injury requires repair, an energy-expensive process that is coupled to energy availability at the cellular level. The satiety factor, leptin, is a key component of the sensor that matches cellular energy utilization to available energy supplies. Leptin deficiency signals energy depletion, whereas activating the Hedgehog pathway drives energy-consuming activities. Tissue repair is impaired in mice that are obese due to genetic leptin deficiency. Tissue repair is also blocked and obesity enhanced by inhibiting Hedgehog activity. We evaluated the hypothesis that loss of leptin silences Hedgehog signaling in pericytes, multipotent leptin-target cells that regulate a variety of responses that are often defective in obesity, including tissue repair and adipocyte differentiation. We found that pericytes from liver and white adipose tissue require leptin to maintain expression of the Hedgehog co-receptor, Smoothened, which controls the activities of Hedgehog-regulated Gli transcription factors that orchestrate gene expression programs that dictate pericyte fate. Smoothened suppression prevents liver pericytes from being reprogrammed into myofibroblasts, but stimulates adipose-derived pericytes to become white adipocytes. Progressive Hedgehog pathway decay promotes senescence in leptin-deficient liver pericytes, which, in turn, generate paracrine signals that cause neighboring hepatocytes to become fatty and less proliferative, enhancing vulnerability to liver damage. Leptin-responsive pericytes evaluate energy availability to inform tissue construction by modulating Hedgehog pathway activity and thus, are at the root of progressive obesity-related tissue pathology. Leptin deficiency inhibits Hedgehog signaling in pericytes to trigger a pericytopathy that promotes both adiposity and obesity-related tissue damage.
Papachroni, Katerina K; Piperi, Christina; Levidou, Georgia; Korkolopoulou, Penelope; Pawelczyk, Leszek; Diamanti-Kandarakis, Evanthia; Papavassiliou, Athanasios G
2010-01-01
Abstract Connective tissue components – collagen types I, III and IV – surrounding the ovarian follicles undergo drastic changes during ovulation. Abnormal collagen synthesis and increased volume and density of ovarian stroma characterize the polycystic ovary syndrome (PCOS). During the ovulatory process, collagen synthesis is regulated by prolyl hydroxylase and lysyl oxidase (LOX) activity in ovarian follicles. LOX catalyzes collagen and elastin cross-linking and plays essential role in coordinating the control of ovarian extracellular matrix (ECM) during follicular development. We have recently shown accumulation of advanced glycation end products (AGEs), molecules that stimulate ECM production and abnormal collagen cross-linking, in ovarian tissue. However, the possible link between LOX and AGEs-induced signalling in collagen production and stroma formation in ovarian tissue from PCOS remains elusive. The present study investigates the hypothesis of AGE signalling pathway interaction with LOX gene activity in polycystic ovarian (PCO) tissue. We show an increased distribution and co-localization of LOX, collagen type IV and AGE molecules in the PCO tissue compared to control, as well as augmented expression of AGE signalling mediators/effectors, phospho(p)-ERK, phospho(p)-c-Jun and nuclear factor κB (NF-κB) in pathological tissue. Moreover, we demonstrate binding of AGE-induced transcription factors, NF-κB and activator protein-1 (AP-1) on LOX promoter, indicating a possible involvement of AGEs in LOX gene regulation, which may account for the documented increase in LOX mRNA and protein levels compared to control. These findings suggest that deposition of excess collagen in PCO tissue that induces cystogenesis may, in part, be due to AGE-mediated stimulation of LOX activity. PMID:19583806
Role of milk fat globule-epidermal growth factor 8 in osteoimmunology
Sinningen, Kathrin; Thiele, Sylvia; Hofbauer, Lorenz C; Rauner, Martina
2016-01-01
Milk fat globule-epidermal growth factor 8 (MFG-E8) is a glycoprotein that is abundantly expressed in various tissues and has a pivotal role in the phagocytic clearance of apoptotic cells. However, MFG-E8 has also gained significant attention because of its wide range of functions in autoimmunity, inflammation and tissue homeostasis. More recently, MFG-E8 has been identified as a critical regulator of bone homeostasis, being expressed in both, osteoblasts and osteoclasts. In addition, it was shown that MFG-E8 fulfils an active role in modulating inflammatory processes, suggesting an anti-inflammatory role of MFG-E8 and proposing it as a novel therapeutic target for inflammatory diseases. This concise review focusses on the expression and regulation of MFG-E8 in the context of inflammatory bone diseases, highlights its role in the pathophysiology of osteoimmune diseases and discusses the therapeutic potential of MFG-E8. PMID:27579162
Dynamic reciprocity in cell-scaffold interactions.
Mauney, Joshua R; Adam, Rosalyn M
2015-03-01
Tissue engineering in urology has shown considerable promise. However, there is still much to understand, particularly regarding the interactions between scaffolds and their host environment, how these interactions regulate regeneration and how they may be enhanced for optimal tissue repair. In this review, we discuss the concept of dynamic reciprocity as applied to tissue engineering, i.e. how bi-directional signaling between implanted scaffolds and host tissues such as the bladder drives the process of constructive remodeling to ensure successful graft integration and tissue repair. The impact of scaffold content and configuration, the contribution of endogenous and exogenous bioactive factors, the influence of the host immune response and the functional interaction with mechanical stimulation are all considered. In addition, the temporal relationships of host tissue ingrowth, bioactive factor mobilization, scaffold degradation and immune cell infiltration, as well as the reciprocal signaling between discrete cell types and scaffolds are discussed. Improved understanding of these aspects of tissue repair will identify opportunities for optimization of repair that could be exploited to enhance regenerative medicine strategies for urology in future studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Zhen-Yong; Guo, Xiao-Jiang; Chen, Zhong-Xu; Chen, Wei-Ying; Wang, Ji-Rui
2017-06-01
The binding sites of transcription factors (TFs) in upstream DNA regions are called transcription factor binding sites (TFBSs). TFBSs are important elements for regulating gene expression. To date, there have been few studies on the profiles of TFBSs in plants. In total, 4,873 sequences with 5' upstream regions from 8530 wheat fl-cDNA sequences were used to predict TFBSs. We found 4572 TFBSs for the MADS TF family, which was twice as many as for bHLH (1951), B3 (1951), HB superfamily (1914), ERF (1820), and AP2/ERF (1725) TFs, and was approximately four times higher than the remaining TFBS types. The percentage of TFBSs and TF members showed a distinct distribution in different tissues. Overall, the distribution of TFBSs in the upstream regions of wheat fl-cDNA sequences had significant difference. Meanwhile, high frequencies of some types of TFBSs were found in specific regions in the upstream sequences. Both TFs and fl-cDNA with TFBSs predicted in the same tissues exhibited specific distribution preferences for regulating gene expression. The tissue-specific analysis of TFs and fl-cDNA with TFBSs provides useful information for functional research, and can be used to identify relationships between tissue-specific TFs and fl-cDNA with TFBSs. Moreover, the positional distribution of TFBSs indicates that some types of wheat TFBS have different positional distribution preferences in the upstream regions of genes.
Stem Cell-based Tissue Engineering Approaches for Musculoskeletal Regeneration
Brown, Patrick T.; Handorf, Andrew M.; Jeon, Won Bae; Li, Wan-Ju
2014-01-01
The field of regenerative medicine and tissue engineering is an ever evolving field that holds promise in treating numerous musculoskeletal diseases and injuries. An important impetus in the development of the field was the discovery and implementation of stem cells. The utilization of mesenchymal stem cells, and later embryonic and induced pluripotent stem cells, opens new arenas for tissue engineering and presents the potential of developing stem cell-based therapies for disease treatment. Multipotent and pluripotent stem cells can produce various lineage tissues, and allow for derivation of a tissue that may be comprised of multiple cell types. As the field grows, the combination of biomaterial scaffolds and bioreactors provides methods to create an environment for stem cells that better represent their microenvironment for new tissue formation. As technologies for the fabrication of biomaterial scaffolds advance, the ability of scaffolds to modulate stem cell behavior advances as well. The composition of scaffolds could be of natural or synthetic materials and could be tailored to enhance cell self-renewal and/or direct cell fates. In addition to biomaterial scaffolds, studies of tissue development and cellular microenvironments have determined other factors, such as growth factors and oxygen tension, that are crucial to the regulation of stem cell activity. The overarching goal of stem cell-based tissue engineering research is to precisely control differentiation of stem cells in culture. In this article, we review current developments in tissue engineering, focusing on several stem cell sources, induction factors including growth factors, oxygen tension, biomaterials, and mechanical stimulation, and the internal and external regulatory mechanisms that govern proliferation and differentiation. PMID:23432679
Regulation of Energy Stores and Feeding by Neuronal and Peripheral CREB Activity in Drosophila
Iijima, Koichi; Zhao, LiJuan; Shenton, Christopher; Iijima-Ando, Kanae
2009-01-01
The cAMP-responsive transcription factor CREB functions in adipose tissue and liver to regulate glycogen and lipid metabolism in mammals. While Drosophila has a homolog of mammalian CREB, dCREB2, its role in energy metabolism is not fully understood. Using tissue-specific expression of a dominant-negative form of CREB (DN-CREB), we have examined the effect of blocking CREB activity in neurons and in the fat body, the primary energy storage depot with functions of adipose tissue and the liver in flies, on energy balance, stress resistance and feeding behavior. We found that disruption of CREB function in neurons reduced glycogen and lipid stores and increased sensitivity to starvation. Expression of DN-CREB in the fat body also reduced glycogen levels, while it did not affect starvation sensitivity, presumably due to increased lipid levels in these flies. Interestingly, blocking CREB activity in the fat body increased food intake. These flies did not show a significant change in overall body size, suggesting that disruption of CREB activity in the fat body caused an obese-like phenotype. Using a transgenic CRE-luciferase reporter, we further demonstrated that disruption of the adipokinetic hormone receptor, which is functionally related to mammalian glucagon and β-adrenergic signaling, in the fat body reduced CRE-mediated transcription in flies. This study demonstrates that CREB activity in either neuronal or peripheral tissues regulates energy balance in Drosophila, and that the key signaling pathway regulating CREB activity in peripheral tissue is evolutionarily conserved. PMID:20041126
Regulation of programmed cell death or apoptosis in atherosclerosis.
Geng, Y J
1997-01-01
Intimal thickening caused by accumulation of cells, lipids, and connective tissue characterizes atherosclerosis, an arterial disease that leads to cardiac and cerebral infarction. Apoptosis, or genetically programmed cell death, is important for the development and morphogenesis of organs and tissues. As in other tissues, cells of cardiovascular tissues can undergo apoptosis. Increased apoptosis has been found in both human and animal atherosclerotic lesions, mediating tissue turnover and lesion development. In addition to vascular cells, many activated immune cells, mainly macrophages and T cells, are present in atherosclerotic lesions, where these cells produce biologically active substances such as the proinflammatory cytokines tumor necrosis factor, interleukin-1 (IL-1), and interferon-gamma. Simultaneous exposure to these cytokines may trigger apoptosis of vascular smooth muscle cells. The products of death-regulating genes including Fas/Fas ligand, members of IL-1 beta cysteinyl protease (caspase) family, the tumor suppressive gene p53, and the protooncogene c-myc have been found in vascular cells and may participate in the regulation of vascular apoptosis during the development of atherosclerosis. Abnormal occurrence of apoptosis may take place in atherosclerotic lesions, including attenuation or acceleration of the apoptotic death process. The former may cause an increase in the cellularity of the lesions, and the latter can reduce cellular components important for maintaining the integrity and stability of the plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of patients with atherosclerosis and its major complications, heart attack and stroke.
Oxygen and tissue culture affect placental gene expression.
Brew, O; Sullivan, M H F
2017-07-01
Placental explant culture is an important model for studying placental development and functions. We investigated the differences in placental gene expression in response to tissue culture, atmospheric and physiologic oxygen concentrations. Placental explants were collected from normal term (38-39 weeks of gestation) placentae with no previous uterine contractile activity. Placental transcriptomic expressions were evaluated with GeneChip ® Human Genome U133 Plus 2.0 arrays (Affymetrix). We uncovered sub-sets of genes that regulate response to stress, induction of apoptosis programmed cell death, mis-regulation of cell growth, proliferation, cell morphogenesis, tissue viability, and protection from apoptosis in cultured placental explants. We also identified a sub-set of genes with highly unstable pattern of expression after exposure to tissue culture. Tissue culture irrespective of oxygen concentration induced dichotomous increase in significant gene expression and increased enrichment of significant pathways and transcription factor targets (TFTs) including HIF1A. The effect was exacerbated by culture at atmospheric oxygen concentration, where further up-regulation of TFTs including PPARA, CEBPD, HOXA9 and down-regulated TFTs such as JUND/FOS suggest intrinsic heightened key biological and metabolic mechanisms such as glucose use, lipid biosynthesis, protein metabolism; apoptosis, inflammatory responses; and diminished trophoblast proliferation, differentiation, invasion, regeneration, and viability. These findings demonstrate that gene expression patterns differ between pre-culture and cultured explants, and the gene expression of explants cultured at atmospheric oxygen concentration favours stressed, pro-inflammatory and increased apoptotic transcriptomic response. Copyright © 2017 Elsevier Ltd. All rights reserved.
YY1 Regulates Melanocyte Development and Function by Cooperating with MITF
Bell, Robert J. A.; Tran, Thanh-Nga T.; Haq, Rizwan; Liu, Huifei; Love, Kevin T.; Langer, Robert; Anderson, Daniel G.; Larue, Lionel; Fisher, David E.
2012-01-01
Studies of coat color mutants have greatly contributed to the discovery of genes that regulate melanocyte development and function. Here, we generated Yy1 conditional knockout mice in the melanocyte-lineage and observed profound melanocyte deficiency and premature gray hair, similar to the loss of melanocytes in human piebaldism and Waardenburg syndrome. Although YY1 is a ubiquitous transcription factor, YY1 interacts with M-MITF, the Waardenburg Syndrome IIA gene and a master transcriptional regulator of melanocytes. YY1 cooperates with M-MITF in regulating the expression of piebaldism gene KIT and multiple additional pigmentation genes. Moreover, ChIP–seq identified genome-wide YY1 targets in the melanocyte lineage. These studies mechanistically link genes implicated in human conditions of melanocyte deficiency and reveal how a ubiquitous factor (YY1) gains lineage-specific functions by co-regulating gene expression with a lineage-restricted factor (M-MITF)—a general mechanism which may confer tissue-specific gene expression in multiple lineages. PMID:22570637
Parakati, Rajini; DiMario, Joseph X
2013-05-10
FGFR1 gene expression regulates myoblast proliferation and differentiation, and its expression is controlled by Krüppel-like transcription factors. KLF10 interacts with the FGFR1 promoter, repressing its activity and cell proliferation. KLF10 represses FGFR1 promoter activity and thereby myoblast proliferation. A model of transcriptional control of chicken FGFR1 gene regulation during myogenesis is presented. Skeletal muscle development is controlled by regulation of myoblast proliferation and differentiation into muscle fibers. Growth factors such as fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate cell proliferation and differentiation in numerous tissues, including skeletal muscle. Transcriptional regulation of FGFR1 gene expression is developmentally regulated by the Sp1 transcription factor, a member of the Krüppel-like factor (KLF) family of transcriptional regulators. Here, we show that another KLF transcription factor, KLF10, also regulates myoblast proliferation and FGFR1 promoter activity. Expression of KLF10 reduced myoblast proliferation by 86%. KLF10 expression also significantly reduced FGFR1 promoter activity in myoblasts and Sp1-mediated FGFR1 promoter activity in Drosophila SL2 cells. Southwestern blot, electromobility shift, and chromatin immunoprecipitation assays demonstrated that KLF10 bound to the proximal Sp factor binding site of the FGFR1 promoter and reduced Sp1 complex formation with the FGFR1 promoter at that site. These results indicate that KLF10 is an effective repressor of myoblast proliferation and represses FGFR1 promoter activity in these cells via an Sp1 binding site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleisch, Markus C.; Maxwell, Christopher A.; Barcellos-Hoff,Mary-Helen
2006-01-13
Transforming growth factor beta (TGF-beta) is a ubiquitous cytokine that plays a critical role in numerous pathways regulating cellular and tissue homeostasis. TGF-beta is regulated by hormones and is a primary mediator of hormone response in uterus, prostate and mammary gland. This review will address the role of TGF-beta in regulating hormone dependent proliferation and morphogenesis. The subversion of TGF-beta regulation during the processes of carcinogenesis, with particular emphasis on its effects on genetic stability and epithelial to mesenchymal transition (EMT), will also be examined. An understanding of the multiple and complex mechanisms of TGF-beta regulation of epithelial function, andmore » the ultimate loss of TGF-beta function during carcinogenesis, will be critical in the design of novel therapeutic interventions for endocrine-related cancers.« less
Scandaglia, Marilyn; Benito, Eva; Morenilla-Palao, Cruz; Fiorenza, Anna; del Blanco, Beatriz; Coca, Yaiza; Herrera, Eloísa; Barco, Angel
2015-01-01
The stimulus-regulated transcription factor Serum Response Factor (SRF) plays an important role in diverse neurodevelopmental processes related to structural plasticity and motile functions, although its precise mechanism of action has not yet been established. To further define the role of SRF in neural development and distinguish between cell-autonomous and non cell-autonomous effects, we bidirectionally manipulated SRF activity through gene transduction assays that allow the visualization of individual neurons and their comparison with neighboring control cells. In vitro assays showed that SRF promotes survival and filopodia formation and is required for normal asymmetric neurite outgrowth, indicating that its activation favors dendrite enlargement versus branching. In turn, in vivo experiments demonstrated that SRF-dependent regulation of neuronal morphology has important consequences in the developing cortex and retina, affecting neuronal migration, dendritic and axonal arborization and cell positioning in these laminated tissues. Overall, our results show that the controlled and timely activation of SRF is essential for the coordinated growth of neuronal processes, suggesting that this event regulates the switch between neuronal growth and branching during developmental processes. PMID:26638868
Stromal cells in chronic inflammation and tertiary lymphoid organ formation.
Buckley, Christopher D; Barone, Francesca; Nayar, Saba; Bénézech, Cecile; Caamaño, Jorge
2015-01-01
Inflammation is an unstable state. It either resolves or persists. Why inflammation persists and the factors that define tissue tropism remain obscure. Increasing evidence suggests that tissue-resident stromal cells not only provide positional memory but also actively regulate the differential accumulation of inflammatory cells within inflamed tissues. Furthermore, at many sites of chronic inflammation, structures that mimic secondary lymphoid tissues are observed, suggesting that chronic inflammation and lymphoid tissue formation share common activation programs. Similarly, blood and lymphatic endothelial cells contribute to tissue homeostasis and disease persistence in chronic inflammation. This review highlights our increasing understanding of the role of stromal cells in inflammation and summarizes the novel immunological role that stromal cells exert in the persistence of inflammatory diseases.
Regulation of wound healing and fibrosis by hypoxia and hypoxia-inducible factor-1.
Ruthenborg, Robin J; Ban, Jae-Jun; Wazir, Anum; Takeda, Norihiko; Kim, Jung-Whan
2014-09-01
Wound healing is a complex multi-step process that requires spatial and temporal orchestration of cellular and non-cellular components. Hypoxia is one of the prominent microenvironmental factors in tissue injury and wound healing. Hypoxic responses, mainly mediated by a master transcription factor of oxygen homeostasis, hypoxia-inducible factor-1 (HIF-1), have been shown to be critically involved in virtually all processes of wound healing and remodeling. Yet, mechanisms underlying hypoxic regulation of wound healing are still poorly understood. Better understanding of how the wound healing process is regulated by the hypoxic microenvironment and HIF-1 signaling pathway will provide insight into the development of a novel therapeutic strategy for impaired wound healing conditions such as diabetic wound and fibrosis. In this review, we will discuss recent studies illuminating the roles of HIF-1 in physiologic and pathologic wound repair and further, the therapeutic potentials of HIF-1 stabilization or inhibition.
Responses of python gastrointestinal regulatory peptides to feeding
Secor, Stephen M.; Fehsenfeld, Drew; Diamond, Jared; Adrian, Thomas E.
2001-01-01
In the Burmese python (Python molurus), the rapid up-regulation of gastrointestinal (GI) function and morphology after feeding, and subsequent down-regulation on completing digestion, are expected to be mediated by GI hormones and neuropeptides. Hence, we examined postfeeding changes in plasma and tissue concentrations of 11 GI hormones and neuropeptides in the python. Circulating levels of cholecystokinin (CCK), glucose-dependent insulinotropic peptide (GIP), glucagon, and neurotensin increase by respective factors of 25-, 6-, 6-, and 3.3-fold within 24 h after feeding. In digesting pythons, the regulatory peptides neurotensin, somatostatin, motilin, and vasoactive intestinal peptide occur largely in the stomach, GIP and glucagon in the pancreas, and CCK and substance P in the small intestine. Tissue concentrations of CCK, GIP, and neurotensin decline with feeding. Tissue distributions and molecular forms (as determined by gel-permeation chromatography) of many python GI peptides are similar or identical to those of their mammalian counterparts. The postfeeding release of GI peptides from tissues, and their concurrent rise in plasma concentrations, suggests that they play a role in regulating python-digestive responses. These large postfeeding responses, and similarities of peptide structure with mammals, make pythons an attractive model for studying GI peptides. PMID:11707600
Expression and distribution of endocan in human tissues.
Zhang, S M; Zuo, L; Zhou, Q; Gui, S Y; Shi, R; Wu, Q; Wei, W; Wang, Y
2012-04-01
Endocan is a novel human endothelial cell specific molecule. Its expression is regulated by cytokines and vascular endothelial growth factor (VEGF). The distribution of endocan in normal human tissues, however, remains unclear. We examined the expression of endocan in normal human tissue using immunohistochemical stains. Endocan was expressed in actively proliferative or neogeneic tissues and cells such as glandular tissues, endothelium of neovasculature, bronchial epithelium, germinal centers of lymph nodes etc. Endocan was not present in silent or resting tissues or cells such as endothelium of great arteries and spleen etc. Our findings suggest that endocan may act as a marker for angiogenesis or oncogenesis and could be regarded as a candidate gene for inflammatory tissue, neoplasia, tumor development and metastasis. The expression level of endocan may assist early diagnosis and prognosis of some tumors.
Gauthier, Karine; Billon, Cyrielle; Bissler, Marie; Beylot, Michel; Lobaccaro, Jean-Marc; Vanacker, Jean-Marc; Samarut, Jacques
2010-01-01
Thyroid hormone (TR) and liver X (LXR) receptors are transcription factors involved in lipogenesis. Both receptors recognize the same consensus DNA-response element in vitro. It was previously shown that their signaling pathways interact in the control of cholesterol elimination in the liver. In the present study, carbohydrate-response element-binding protein (ChREBP), a major transcription factor controlling the activation of glucose-induced lipogenesis in liver, is characterized as a direct target of thyroid hormones (TH) in liver and white adipose tissue (WAT), the two main lipogenic tissues in mice. Using genetic and molecular approaches, ChREBP is shown to be specifically regulated by TRβ but not by TRα in vivo, even in WAT where both TR isoforms are expressed. However, this isotype specificity is not found in vitro. This TRβ specific regulation correlates with the loss of TH-induced lipogenesis in TRβ−/− mice. Fasting/refeeding experiments show that TRβ is not required for the activation of ChREBP expression particularly marked in WAT following refeeding. However, TH can stimulate ChREBP expression in WAT even under fasting conditions, suggesting completely independent pathways. Because ChREBP has been described as an LXR target, the interaction of LXR and TRβ in ChREBP regulation was assayed both in vitro and in vivo. Each receptor recognizes a different response element on the ChREBP promoter, located only 8 bp apart. There is a cross-talk between LXR and TRβ signaling on the ChREBP promoter in liver but not in WAT where LXR does not regulate ChREBP expression. The molecular basis for this cross-talk has been determined in in vitro systems. PMID:20615868
Liu, Jiaqi; Cai, Junjun; Wang, Rui; Yang, Shihai
2016-01-01
As one of the model medicinal plants for exploration of biochemical pathways and molecular biological questions on complex metabolic pathways, Catharanthus roseus synthesizes more than 100 terpenoid indole alkaloids (TIAs) used for clinical treatment of various diseases and for new drug discovery. Given that extensive studies have revealed the major metabolic pathways and the spatial-temporal biosynthesis of TIA in C. roseus plant, little is known about subcellular and inter-cellular trafficking or long-distance transport of TIA end products or intermediates, as well as their regulation. While these transport processes are indispensable for multi-organelle, -tissue and -cell biosynthesis, storage and their functions, great efforts have been made to explore these dynamic cellular processes. Progress has been made in past decades on transcriptional regulation of TIA biosynthesis by transcription factors as either activators or repressors; recent studies also revealed several transporters involved in subcellular and inter-cellular TIA trafficking. However, many details and the regulatory network for controlling the tissue-or cell-specific biosynthesis, transport and storage of serpentine and ajmalicine in root, catharanthine in leaf and root, vindoline specifically in leaf and vinblastine and vincristine only in green leaf and their biosynthetic intermediates remain to be determined. This review is to summarize the progress made in biosynthesis, transcriptional regulation and transport of TIAs. Based on analysis of organelle, tissue and cell-type specific biosynthesis and progresses in transport and trafficking of similar natural products, the transporters that might be involved in transport of TIAs and their synthetic intermediates are discussed; according to transcriptome analysis and bioinformatic approaches, the transcription factors that might be involved in TIA biosynthesis are analyzed. Further discussion is made on a broad context of transcriptional and transport regulation in order to guide our future research. PMID:28036025
Lewis type 1 antigen synthase (beta3Gal-T5) is transcriptionally regulated by homeoproteins.
Isshiki, Soichiro; Kudo, Takashi; Nishihara, Shoko; Ikehara, Yuzuru; Togayachi, Akira; Furuya, Akiko; Shitara, Kenya; Kubota, Tetsuro; Watanabe, Masahiko; Kitajima, Masaki; Narimatsu, Hisashi
2003-09-19
The type 1 carbohydrate chain, Galbeta1-3GlcNAc, is synthesized by UDP-galactose:beta-N-acetylglucosamine beta1,3-galactosyltransferase (beta3Gal-T). Among six beta3Gal-Ts cloned to date, beta3Gal-T5 is an essential enzyme for the synthesis of type 1 chain in epithelium of digestive tracts or pancreatic tissue. It forms the type 1 structure on glycoproteins produced from such tissues. In the present study, we found that the transcriptional regulation of the beta3Gal-T5 gene is controlled by homeoproteins, i.e. members of caudal-related homeobox protein (Cdx) and hepatocyte nuclear factor (HNF) families. We found an important region (-151 to -121 from the transcription initiation site), named the beta3Gal-T5 control element (GCE), for the promoter activity. GCE contained the consensus sequences for members of the Cdx and HNF families. Mutations introduced into this sequence abolished the transcriptional activity. Four factors, Cdx1, Cdx2, HNF1alpha, and HNF1beta, could bind to GCE and transcriptionally activate the beta3Gal-T5 gene. Transcriptional regulation of the beta3Gal-T5 gene was consistent with that of members of the Cdx and HNF1 families in two in vivo systems. 1) During in vitro differentiation of Caco-2 cells, transcriptional up-regulation of beta3Gal-T5 was observed in correlation with the increase in transcripts for Cdx2 and HNF1alpha. 2) Both transcript and protein levels of beta3Gal-T5 were determined to be significantly reduced in colon cancer. This down-regulation was correlated with the decrease of Cdx1 and HNF1beta expression in cancer tissue. This is the first finding that a glycosyltransferase gene is transcriptionally regulated under the control of homeoproteins in a tissue-specific manner. beta3Gal-T5, controlled by the intestinal homeoproteins, may play an important role in the specific function of intestinal cells by modifying the carbohydrate structure of glycoproteins.
NASA Astrophysics Data System (ADS)
Sawicki, Lisa A.
Late recurrence of breast cancer within distant metastatic tissue sites is often difficult to diagnose and treat, resulting in poor prognosis for patients. It is hypothesized that cells may go dormant by interactions with or lack of adhesion to the extracellular matrix (ECM) within these tissues, which differs from native breast tissue. The metastatic ECM is a complex microenvironment, containing a mixture of mechanical and chemical cues to which cells respond. To investigate how the ECM regulates cancer recurrence, two-dimensional (2D, plates) and three-dimensional (3D, naturally-derived scaffolds) in vitro culture models have been used. However, lack of complexity (2D), mechanical property control (2D, 3D), and chemical property control (3D) makes it challenging to identify key factors involved in regulating dormancy or activation in these systems. The development of synthetic polymer-based scaffolds in recent years provides an alternate route to investigating cellular response to the presentation of microenvironmental cues in 3D. Initially bioinert, these scaffolds may be modified with chemical ligands to permit cell-matrix interactions and their mechanical properties may be precisely tuned to mimic different tissue sites. The goal of this dissertation is to develop and characterize a novel synthetic material for cell culture applications and to examine how physical and chemical factors in this microenvironment regulate breast cancer activation. Specifically, we have developed a novel poly(ethylene glycol) (PEG)-based hydrogel scaffold for in vitro cell culture. PEG modified with thiols and peptides containing alloxycarbonyl-protected lysines (containing a reactive vinyl) react rapidly upon the application of light in the presence of a photoinitiator, lithium acylphosphinate ( minutes). Scaffold mechanical properties are tuned by varying macromer concentration to mimic soft metastatic site tissue ECMs (Young's modulus 600 - 6000 Pa). These properties remain stable during long-term culture ( weeks). We also demonstrate the covalent attachment and spatial presentation of peptides mimicking proteins found within metastatic tissue ECMs in these scaffolds. All cell lines remain viable (>70%) after encapsulation, with many at greater than 90% viability, indicating minimal negative effects of light and radicals on cell survival post-polymerization. While initially well-defined, the properties of synthetic hydrogel scaffolds change as cells secrete soluble factors that permit cell-cell signaling and synthesize new proteins that provide additional binding sites with which cells may interact. To investigate these chemical property changes, we developed a shotgun proteomics technique to isolate and identify large proteins secreted within synthetic, polymer-based hydrogel scaffolds. Metastatic niche cells (adult human mesenchymal stem cells, hMSCs) were cultured within hydrogel scaffolds and large proteins, including fibronectin and collagen VI were identified. Additionally, a bead-based multiplex assay identified several soluble factors secreted by hMSCs (VEGF, IL-8), which may play a role in regulating cell function and fate. Finally, the response and activation of estrogen receptor negative (MDA-MB-231) and estrogen receptor positive (T-47D) breast cancer cells cultured within synthetic hydrogels with discrete mechanical and chemical properties was determined. The highly aggressive MDA-MB-231 cells demonstrated the greatest levels of activation and spread within these synthetic matrices, while T-47D cells, which have been associated with a dormant phenotype, exhibited only minimal response and formed multicellular spheroids. Specifically, hydrogels with high stiffness and matrix density restricted cancer cell growth, resulting in decreased spreading and smaller cell cluster volume. Individual and mixtures of peptides (GFOGER, RGDS, IKVAV) mimicking ECM proteins found within metastatic tissue sites and targeting cell surface receptors were also shown to affect response. GFOGER and RGDS, targeting integrin ?1, among others, resulted in the highest levels of activation observed within microenvironments. Collectively, this work describes the development of a novel material scaffold with well-defined chemical and physical properties that may be used to identify critical factors in metastatic microenvironments that regulate breast cancer activation toward development of new treatments for recurrent cancers.
Manoochehri, Mehdi; Karbasi, Ashraf; Bandehpour, Mojgan; Kazemi, Bahram
2014-04-01
Carcinogenesis and resistance to chemotherapy could be as results of expression variations in apoptosis regulating genes. Changes in the expression of apoptosis interfering genes may contribute to colorectal carcinogenesis and resistance to 5-Flourouracil (5-FU) during treatment schedule period. The present study aimed to evaluate the expression of pro-apoptotic and anti-apoptotic genes in colorectal cancer tumor tissues, normal adjacent tissues, and tumor colorectal cancer cell line during acquiring resistance to 5-FU in HT-29 based on Bolus treatment protocol. The normal and tumor tissues were obtained from hospital after surgery and total RNA was extracted for expression analysis. The HT-29 colorectal cancer cell line was cultured and exposed with 5-FU in three stages based on Bolus protocol. The MTT assay and Real Time PCR were carried out to determine the sensitivity to the drug and expression of desired genes, respectively. The obtained data showed that Proapoptotic genes, BAX and BID, were down-regulated in resistant derivate cells compared to wild type HT-29 cells. On the other hand Antiapoptotic genes, CIAP1 and XIAP, showed upregulation in resistant cells compared to wild type ones. Furthermore, BAX and FAS genes showed down-regulation in tumor samples in comparison to normal adjacent tissues. In conclusion, the results of our study suggest that BAX down-regulation could contribute as an important factor during both colorectal carcinogenesis and cell resistance to 5-FU.
Bruner-Tran, Kaylon L; Eisenberg, Esther; Yeaman, Grant R; Anderson, Ted A; McBean, Judith; Osteen, Kevin G
2002-10-01
The cyclic expression of matrix metalloproteinases (MMPs) by human endometrium has been suggested to play a role in the invasive process necessary to establish endometriosis. The ability of progesterone exposure to inhibit endometrial MMP-3 and MMP-7 expression requires the local action of TGF beta and may also be linked to the local production of retinoic acid by stromal cells. A continuous expression of several MMPs in endometriotic lesions has been reported, indicating a failure of progesterone or locally produced factors to suppress these enzymes. To address cell-specific MMP regulation associated with endometriosis, we examined expression of MMP-3 and MMP-7 mRNA in eutopic endometrium and endometriotic lesions acquired during the secretory phase of the menstrual cycle. We examined the in vitro regulation of MMP-3 and MMP-7 protein in similar tissues. We also examined the in vitro regulation of MMP secretion by progesterone, retinoic acid, and TGF beta in endometriosis tissues relative to the establishment of experimental disease. Our studies indicate that either eutopic or ectopic tissue from women with endometriosis exhibit patterns of altered MMP regulation in vivo. A lack of responsiveness to progesterone was demonstrated in vitro, associated with a failure to suppress MMP expression and an enhanced ability of the tissue to establish experimental endometriosis. However, in vitro treatments with retinoic acid and TGF beta restored the ability of progesterone to suppress MMPs in vitro and prevented the establishment of experimental disease.
Molecular Regulation of Alternative Polyadenylation (APA) within the Drosophila Nervous System.
Vallejos Baier, Raul; Picao-Osorio, Joao; Alonso, Claudio R
2017-10-27
Alternative polyadenylation (APA) is a widespread gene regulatory mechanism that generates mRNAs with different 3'-ends, allowing them to interact with different sets of RNA regulators such as microRNAs and RNA-binding proteins. Recent studies have shown that during development, neural tissues produce mRNAs with particularly long 3'UTRs, suggesting that such extensions might be important for neural development and function. Despite this, the mechanisms underlying neural APA are not well understood. Here, we investigate this problem within the Drosophila nervous system, focusing on the roles played by general cleavage and polyadenylation factors (CPA factors). In particular, we examine the model that modulations in CPA factor concentration may affect APA during development. For this, we first analyse the expression of the Drosophila orthologues of all mammalian CPA factors and note that their expression decreases during embryogenesis. In contrast to this global developmental decrease in CPA factor expression, we see that cleavage factor I (CFI) expression is actually elevated in the late embryonic central nervous system, suggesting that CFI might play a special role in neural tissues. To test this, we use the UAS/Gal4 system to deplete CFI proteins from neural tissue and observe that in this condition, multiple genes switch their APA patterns, demonstrating a role of CFI in APA control during Drosophila neural development. Furthermore, analysis of genes with 3'UTR extensions of different length leads us to suggest a novel relation between 3'UTR length and sensitivity to CPA factor expression. Our work thus contributes to the understanding of the mechanisms of APA control within the developing central nervous system. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Manna, Prasenjit; Jain, Sushil K
2015-12-01
Obesity is gaining acceptance as a serious primary health burden that impairs the quality of life because of its associated complications, including diabetes, cardiovascular diseases, cancer, asthma, sleep disorders, hepatic dysfunction, renal dysfunction, and infertility. It is a complex metabolic disorder with a multifactorial origin. Growing evidence suggests that oxidative stress plays a role as the critical factor linking obesity with its associated complications. Obesity per se can induce systemic oxidative stress through various biochemical mechanisms, such as superoxide generation from NADPH oxidases, oxidative phosphorylation, glyceraldehyde auto-oxidation, protein kinase C activation, and polyol and hexosamine pathways. Other factors that also contribute to oxidative stress in obesity include hyperleptinemia, low antioxidant defense, chronic inflammation, and postprandial reactive oxygen species generation. In addition, recent studies suggest that adipose tissue plays a critical role in regulating the pathophysiological mechanisms of obesity and its related co-morbidities. To establish an adequate platform for the prevention of obesity and its associated health risks, understanding the factors that contribute to the cause of obesity is necessary. The most current list of obesity determinants includes genetic factors, dietary intake, physical activity, environmental and socioeconomic factors, eating disorders, and societal influences. On the basis of the currently identified predominant determinants of obesity, a broad range of strategies have been recommended to reduce the prevalence of obesity, such as regular physical activity, ad libitum food intake limiting to certain micronutrients, increased dietary intake of fruits and vegetables, and meal replacements. This review aims to highlight recent findings regarding the role of oxidative stress in the pathogenesis of obesity and its associated risk factors, the role of dysfunctional adipose tissue in development of these risk factors, and potential strategies to regulate body weight loss/gain for better health benefits.
Manna, Prasenjit
2015-01-01
Abstract Obesity is gaining acceptance as a serious primary health burden that impairs the quality of life because of its associated complications, including diabetes, cardiovascular diseases, cancer, asthma, sleep disorders, hepatic dysfunction, renal dysfunction, and infertility. It is a complex metabolic disorder with a multifactorial origin. Growing evidence suggests that oxidative stress plays a role as the critical factor linking obesity with its associated complications. Obesity per se can induce systemic oxidative stress through various biochemical mechanisms, such as superoxide generation from NADPH oxidases, oxidative phosphorylation, glyceraldehyde auto-oxidation, protein kinase C activation, and polyol and hexosamine pathways. Other factors that also contribute to oxidative stress in obesity include hyperleptinemia, low antioxidant defense, chronic inflammation, and postprandial reactive oxygen species generation. In addition, recent studies suggest that adipose tissue plays a critical role in regulating the pathophysiological mechanisms of obesity and its related co-morbidities. To establish an adequate platform for the prevention of obesity and its associated health risks, understanding the factors that contribute to the cause of obesity is necessary. The most current list of obesity determinants includes genetic factors, dietary intake, physical activity, environmental and socioeconomic factors, eating disorders, and societal influences. On the basis of the currently identified predominant determinants of obesity, a broad range of strategies have been recommended to reduce the prevalence of obesity, such as regular physical activity, ad libitum food intake limiting to certain micronutrients, increased dietary intake of fruits and vegetables, and meal replacements. This review aims to highlight recent findings regarding the role of oxidative stress in the pathogenesis of obesity and its associated risk factors, the role of dysfunctional adipose tissue in development of these risk factors, and potential strategies to regulate body weight loss/gain for better health benefits. PMID:26569333
Nallasamy, Shanmugasundaram; Yoshida, Kyoko; Akins, Meredith; Myers, Kristin; Iozzo, Renato
2017-01-01
The extracellular matrix (ECM) plays an active and dynamic role that both reflects and facilitates the functional requirements of a tissue. The mature ECM of the nonpregnant cervix is drastically reorganized during pregnancy to drive changes in tissue mechanics that ensure safe birth. In this study, our research on mice deficient in the proteoglycan decorin have led to the finding that progesterone and estrogen play distinct and complementary roles to orchestrate structural reorganization of both collagen and elastic fibers in the cervix during pregnancy. Abnormalities in collagen and elastic fiber structure and tissue mechanical function evident in the cervix of nonpregnant and early pregnant decorin-null mice transiently recover for the remainder of pregnancy only to return 1 month postpartum. Consistent with the hypothesis that pregnancy levels of progesterone and estrogen may regulate ECM organization and turnover, expressions of factors required for assembly and synthesis of collagen and elastic fibers are temporally regulated, and the ultrastructure of collagen fibrils and elastic fibers is markedly altered during pregnancy in wild-type mice. Finally, utilizing ovariectomized nonpregnant decorin-null mice, we demonstrate structural resolution of collagen and elastic fibers by progesterone or estrogen, respectively, and the potential for both ECM proteins to contribute to mechanical function. These investigations advance understanding of regulatory factors that drive specialized ECM organization and contribute to an understanding of the cervical remodeling process, which may provide insight into potential complications associated with preterm birth that impact 9.6% of live births in the United States. PMID:28204185
The Good the Bad and the Ugly of Glycosaminoglycans in Tissue Engineering Applications
Ayerst, Bethanie I.; Merry, Catherine L.R.; Day, Anthony J.
2017-01-01
High sulfation, low cost, and the status of heparin as an already FDA- and EMA- approved product, mean that its inclusion in tissue engineering (TE) strategies is becoming increasingly popular. However, the use of heparin may represent a naïve approach. This is because tissue formation is a highly orchestrated process, involving the temporal expression of numerous growth factors and complex signaling networks. While heparin may enhance the retention and activity of certain growth factors under particular conditions, its binding ‘promiscuity’ means that it may also inhibit other factors that, for example, play an important role in tissue maintenance and repair. Within this review we focus on articular cartilage, highlighting the complexities and highly regulated processes that are involved in its formation, and the challenges that exist in trying to effectively engineer this tissue. Here we discuss the opportunities that glycosaminoglycans (GAGs) may provide in advancing this important area of regenerative medicine, placing emphasis on the need to move away from the common use of heparin, and instead focus research towards the utility of specific GAG preparations that are able to modulate the activity of growth factors in a more controlled and defined manner, with less off-target effects. PMID:28608822
Tafaj, Olta; Hann, Steven; Ayturk, Ugur; Warman, Matthew L; Jüppner, Harald
2017-10-01
The murine Gnas (human GNAS) locus gives rise to Gαs and different splice variants thereof. The Gαs promoter is not methylated thus allowing biallelic expression in most tissues. In contrast, the alternative first Gnas/GNAS exons and their promoters undergo parent specific methylation, which limits transcription to the non-methylated allele. Pseudohypoparathyroidism type Ia (PHP1A) or type Ib (PHP1B) are caused by heterozygous maternal GNAS mutations suggesting that little or no Gαs is derived in some tissues from the non-mutated paternal GNAS thereby causing hormonal resistance. Previous data had indicated that Gαs is mainly derived from the maternal Gnas allele in brown adipose tissue (BAT) of newborn mice, yet it is biallelically expressed in adult BAT. This suggested that paternal Gαs expression is regulated by an unknown factor(s) that varies considerably with age. To extend these findings, we now used a strain-specific SNP in Gnas exon 11 (rs13460569) for evaluation of parent-specific Gαs expression through the densitometric quantification of BanII-digested RT-PCR products and digital droplet PCR (ddPCR). At all investigated ages, Gαs transcripts were derived in BAT predominantly from the maternal Gnas allele, while kidney and liver showed largely biallelic Gαs expression. Only low or undetectable levels of other paternally Gnas-derived transcripts were observed, making it unlikely that these are involved in regulating paternal Gαs expression. Our findings suggest that a cis-acting factor could be implicated in reducing paternal Gαs expression in BAT and presumably in proximal renal tubules, thereby causing PTH-resistance if the maternal GNAS/Gnas allele is mutated. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Kang-Jie; Tong, Hong-Fei; Wang, Zhao-Hong; Ni, Zhong-Lin; Liu, Hai-Bin; Guo, Hong-Chun; Liu, Dian-Lei
2012-01-01
Background Emodin has been showed to induce apoptosis of pancreatic cancer cells and inhibit tumor growth in our previous studies. This study was designed to investigate whether emodin could inhibit the angiogenesis of pancreatic cancer tissues and its mechanism. Methodology/Principal Finding In accordance with our previous study, emodin inhibited pancreatic cancer cell growth, induced apoptosis, and enhanced the anti-tumor effect of gemcitabine on pancreatic caner cells in vitro and in vivo by inhibiting the activity of NF-κB. Here, for the first time, we demonstrated that emodin inhibited tumor angiogenesis in vitro and in implanted pancreatic cancer tissues, decreased the expression of angiogenesis-associated factors (NF-κB and its regulated factors VEGF, MMP-2, MMP-9, and eNOS), and reduced eNOS phosphorylation, as evidenced by both immunohistochemistry and western blot analysis of implanted tumors. In addition, we found that emodin had no effect on VEGFR expression in vivo. Conclusions/Significance Our results suggested that emodin has potential anti-tumor effect on pancreatic cancer via its dual role in the promotion of apoptosis and suppression of angiogenesis, probably through regulating the expression of NF-κB and NF-κB-regulated angiogenesis-associated factors. PMID:22876305
Liu, Haizhou; Wang, Shaoyang; Ma, Weimin; Lu, Youguang
2015-12-01
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with a poor patient survival. Expression of TGF-β1 is up-regulated in HCC and is thought to play a crucial role in the occurrence and development of HCC. However, the mechanism of TGF-β1-mediated facilitation of malignant growth and invasion remains unclear, although some previous studies highlighted a potential involvement of the connective tissue growth factor (CTGF). Here we demonstrate that the in vitro migration of the HCC cell line SMMC-7721 is increased in the presence of recombinant TGF-β1, and that this effect is reversed by the specific inhibitor SB431542. Furthermore, TGF-β1 treatment up-regulated the expression of its own mRNA as well as the expression of CTGF mRNA. The TGF-β1-stimulated migration of SMMC-7721 cells was diminished by siRNA silencing of CTGF. These in vitro observations were validated in a murine xenograft model. In particular, silencing of CTFG diminished the TGF-β1-induced tumorigenesis in experimental animals. In conclusion, TGF-β1 plays a critical role in HCC migration and invasion, and this effect is dependent on CTGF.
CisMapper: predicting regulatory interactions from transcription factor ChIP-seq data
O'Connor, Timothy; Bodén, Mikael
2017-01-01
Abstract Identifying the genomic regions and regulatory factors that control the transcription of genes is an important, unsolved problem. The current method of choice predicts transcription factor (TF) binding sites using chromatin immunoprecipitation followed by sequencing (ChIP-seq), and then links the binding sites to putative target genes solely on the basis of the genomic distance between them. Evidence from chromatin conformation capture experiments shows that this approach is inadequate due to long-distance regulation via chromatin looping. We present CisMapper, which predicts the regulatory targets of a TF using the correlation between a histone mark at the TF's bound sites and the expression of each gene across a panel of tissues. Using both chromatin conformation capture and differential expression data, we show that CisMapper is more accurate at predicting the target genes of a TF than the distance-based approaches currently used, and is particularly advantageous for predicting the long-range regulatory interactions typical of tissue-specific gene expression. CisMapper also predicts which TF binding sites regulate a given gene more accurately than using genomic distance. Unlike distance-based methods, CisMapper can predict which transcription start site of a gene is regulated by a particular binding site of the TF. PMID:28204599
Evolution of Nova-Dependent Splicing Regulation in the Brain
Živin, Marko; Darnell, Robert B
2007-01-01
A large number of alternative exons are spliced with tissue-specific patterns, but little is known about how such patterns have evolved. Here, we study the conservation of the neuron-specific splicing factors Nova1 and Nova2 and of the alternatively spliced exons they regulate in mouse brain. Whereas Nova RNA binding domains are 94% identical across vertebrate species, Nova-dependent splicing silencer and enhancer elements (YCAY clusters) show much greater divergence, as less than 50% of mouse YCAY clusters are conserved at orthologous positions in the zebrafish genome. To study the relation between the evolution of tissue-specific splicing and YCAY clusters, we compared the brain-specific splicing of Nova-regulated exons in zebrafish, chicken, and mouse. The presence of YCAY clusters in lower vertebrates invariably predicted conservation of brain-specific splicing across species, whereas their absence in lower vertebrates correlated with a loss of alternative splicing. We hypothesize that evolution of Nova-regulated splicing in higher vertebrates proceeds mainly through changes in cis-acting elements, that tissue-specific splicing might in some cases evolve in a single step corresponding to evolution of a YCAY cluster, and that the conservation level of YCAY clusters relates to the functions encoded by the regulated RNAs. PMID:17937501
Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores.
Lass, Achim; Zimmermann, Robert; Oberer, Monika; Zechner, Rudolf
2011-01-01
Lipolysis is the biochemical pathway responsible for the catabolism of triacylglycerol (TAG) stored in cellular lipid droplets. The hydrolytic cleavage of TAG generates non-esterified fatty acids, which are subsequently used as energy substrates, essential precursors for lipid and membrane synthesis, or mediators in cell signaling processes. Consistent with its central importance in lipid and energy homeostasis, lipolysis occurs in essentially all tissues and cell types, it is most abundant, however, in white and brown adipose tissue. Over the last 5years, important enzymes and regulatory protein factors involved in lipolysis have been identified. These include an essential TAG hydrolase named adipose triglyceride lipase (ATGL) [annotated as patatin-like phospholipase domain-containing protein A2], the ATGL activator comparative gene identification-58 [annotated as α/β hydrolase containing protein 5], and the ATGL inhibitor G0/G1 switch gene 2. Together with the established hormone-sensitive lipase [annotated as lipase E] and monoglyceride lipase, these proteins constitute the basic "lipolytic machinery". Additionally, a large number of hormonal signaling pathways and lipid droplet-associated protein factors regulate substrate access and the activity of the "lipolysome". This review summarizes the current knowledge concerning the enzymes and regulatory processes governing lipolysis of fat stores in adipose and non-adipose tissues. Special emphasis will be given to ATGL, its regulation, and physiological function. Copyright © 2010 Elsevier Ltd. All rights reserved.
Yki/YAP, Sd/TEAD and Hth/MEIS Control Tissue Specification in the Drosophila Eye Disc Epithelium
Pignoni, Francesca
2011-01-01
During animal development, accurate control of tissue specification and growth are critical to generate organisms of reproducible shape and size. The eye-antennal disc epithelium of Drosophila is a powerful model system to identify the signaling pathway and transcription factors that mediate and coordinate these processes. We show here that the Yorkie (Yki) pathway plays a major role in tissue specification within the developing fly eye disc epithelium at a time when organ primordia and regional identity domains are specified. RNAi-mediated inactivation of Yki, or its partner Scalloped (Sd), or increased activity of the upstream negative regulators of Yki cause a dramatic reorganization of the eye disc fate map leading to specification of the entire disc epithelium into retina. On the contrary, constitutive expression of Yki suppresses eye formation in a Sd-dependent fashion. We also show that knockdown of the transcription factor Homothorax (Hth), known to partner Yki in some developmental contexts, also induces an ectopic retina domain, that Yki and Scalloped regulate Hth expression, and that the gain-of-function activity of Yki is partially dependent on Hth. Our results support a critical role for Yki- and its partners Sd and Hth - in shaping the fate map of the eye epithelium independently of its universal role as a regulator of proliferation and survival. PMID:21811580
Increased expression of zinc finger protein 267 in non-alcoholic fatty liver disease.
Schnabl, Bernd; Czech, Barbara; Valletta, Daniela; Weiss, Thomas S; Kirovski, Georgi; Hellerbrand, Claus
2011-01-01
Hepatocellular lipid accumulation is a hallmark of non-alcoholicfatty liver disease (NAFLD), which encompasses a spectrum ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and ultimately cirrhosis. Zinc finger protein 267 (ZNF267) belongs to the family of Kruppel-like transcription factors, which regulate diverse biological processes that include development, proliferation, and differentiation. We have previously demonstrated that ZNF267 expression is up-regulated in liver cirrhosis and is further increased in hepatocellular carcinoma (HCC). Here, we analyzed the expression of ZNF267 in tissue specimens of NAFLD patients and found a significant up-regulation compared to normal liver tissue. Noteworthy, ZNF267 mRNA was already significantly increased in steatotic liver tissue without inflammation. In line with this, incubation of primary human hepatocytes with palmitic acid induced a dose-dependent lipid accumulation and corresponding dose-dependent ZNF267 induction in vitro. Furthermore, hepatocellular lipid accumulation induced formation of reactive oxygen species (ROS), and also chemically induced ROS formation increased ZNF267 mRNA expression. In summary with previous findings, which revealed ZNF267 as pro-fibrogenic and pro-cancerogenic factor in chronic liver disease, the present study further suggests ZNF267 as promising therapeutic target particularly for NAFLD patients. In addition, it further indicates that hepatic steatosis per se has pathophysiological relevance and should not be considered as benign.
Increased expression of Zinc finger protein 267 in non-alcoholic fatty liver disease
Schnabl, Bernd; Czech, Barbara; Valletta, Daniela; Weiss, Thomas S; Kirovski, Georgi; Hellerbrand, Claus
2011-01-01
Hepatocellular lipid accumulation is a hallmark of non-alcoholic fatty liver disease (NAFLD), which encompasses a spectrum ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and ultimately cirrhosis. Zinc finger protein 267 (ZNF267) belongs to the family of Kruppel-like transcription factors, which regulate diverse biological processes that include development, proliferation, and differentiation. We have previously demonstrated that ZNF267 expression is up-regulated in liver cirrhosis and is further increased in hepatocellular carcinoma (HCC). Here, we analyzed the expression of ZNF267 in tissue specimens of NAFLD patients and found a significant up-regulation compared to normal liver tissue. Noteworthy, ZNF267 mRNA was already significantly increased in steatotic liver tissue without inflammation. In line with this, incubation of primary human hepatocytes with palmitic acid induced a dose-dependent lipid accumulation and corresponding dose-dependent ZNF267 induction in vitro. Furthermore, hepatocellular lipid accumulation induced formation of reactive oxygen species (ROS), and also chemically induced ROS formation increased ZNF267 mRNA expression. In summary with previous findings, which revealed ZNF267 as pro-fibrogenic and pro-cancerogenic factor in chronic liver disease, the present study further suggests ZNF267 as promising therapeutic target particularly for NAFLD patients. In addition, it further indicates that hepatic steatosis per se has pathophysiological relevance and should not be considered as benign. PMID:22076166
Li, Fang; Cui, Jinquan
2015-07-01
Human papillomavirus (HPV) infection induces chronic and precancerous lesions and results in invasive cervical cancer. Human telomerase as well as inflammatory and angiogenic factors such as telomerase reverse transcriptase (hTERT) or vascular endothelial growth factor (VEGF) could play a role in regulating HPV-induced cervical cancer. This study investigated underlying molecular events in HPV-induced HPV-positive cervical cancer through hTERT and VEGF in vitro. Expressions of hTERT, a rate-limiting subunit of telomerase, and VEGF mRNA and proteins were, respectively, assessed by qRT-PCR, ELISA, and TRAP-ELISA in HPV-positive tissue samples and cervical cancer cell lines. To assess hTERT and VEGF secretion, hTERT overexpression and knockdown were conducted in HPV-18-positive Hela cells by hTERT cDNA and shRNA transfection, respectively. Then, the effect of HPV E6 and E7 on VEGF expressions was assessed in HPV-negative cervical cancer cells. Data have shown that VEGF expression levels are associated with hTERT expressions and telomerase activity in HPV-positive cervical cancer tissues and cells. Knockdown of hTERT expression down-regulated VEGF expressions, whereas overexpression of hTERT up-regulated VEGF expressions in HPV-18-positive Hela cells. Furthermore, HPV E7 oncoprotein was necessary for hTERT to up-regulate VEGF expressions in HPV-negative cervical cancer cells. Data from this current study indicate that HPV oncoproteins up-regulated hTERT and telomerase activity and in turn promoted VEGF expressions, which could be a key mechanism for HPV-induced cervical cancer development and progression.
Alayli, Farah; Melis, Marta; Kabat, Juraj; Pomerenke, Anna; Altan-Bonnet, Nihal; Zamboni, Fausto; Emerson, Suzanne U.
2018-01-01
Entry of hepatitis C virus (HCV) into hepatocytes is a complex process that involves numerous cellular factors, including the scavenger receptor class B type 1 (SR-B1), the tetraspanin CD81, and the tight junction (TJ) proteins claudin-1 (CLDN1) and occludin (OCLN). Despite expression of all known HCV-entry factors, in vitro models based on hepatoma cell lines do not fully reproduce the in vivo susceptibility of liver cells to primary HCV isolates, implying the existence of additional host factors which are critical for HCV entry and/or replication. Likewise, HCV replication is severely impaired within hepatocellular carcinoma (HCC) tissue in vivo, but the mechanisms responsible for this restriction are presently unknown. Here, we identify tumor-associated calcium signal transducer 2 (TACSTD2), one of the most downregulated genes in primary HCC tissue, as a host factor that interacts with CLDN1 and OCLN and regulates their cellular localization. TACSTD2 gene silencing disrupts the typical linear distribution of CLDN1 and OCLN along the cellular membrane in both hepatoma cells and primary human hepatocytes, recapitulating the pattern observed in vivo in primary HCC tissue. Mechanistic studies suggest that TACSTD2 is involved in the phosphorylation of CLDN1 and OCLN, which is required for their proper cellular localization. Silencing of TACSTD2 dramatically inhibits HCV infection with a pan-genotype effect that occurs at the level of viral entry. Our study identifies TACSTD2 as a novel regulator of two major HCV-entry factors, CLDN1 and OCLN, which is strongly downregulated in malignant hepatocytes. These results provide new insights into the complex process of HCV entry into hepatocytes and may assist in the development of more efficient cellular systems for HCV propagation in vitro. PMID:29538454
An overview of transcriptional regulation in response to toxicological insult.
Jennings, Paul; Limonciel, Alice; Felice, Luca; Leonard, Martin O
2013-01-01
The completion of the human genome project and the subsequent advent of DNA microarray and high-throughput sequencing technologies have led to a renaissance in molecular toxicology. Toxicogenomic data sets, from both in vivo and in vitro studies, are growing exponentially, providing a wealth of information on regulation of stress pathways at the transcriptome level. Through such studies, we are now beginning to appreciate the diversity and complexity of biological responses to xenobiotics. In this review, we aim to consolidate and summarise the major toxicologically relevant transcription factor-governed molecular pathways. It is becoming clear that different chemical entities can cause oxidative, genotoxic and proteotoxic stress, which induce cellular responses in an effort to restore homoeostasis. Primary among the response pathways involved are NFE2L2 (Nrf2), NFE2L1 (Nrf1), p53, heat shock factor and the unfolded protein response. Additionally, more specific mechanisms exist where xenobiotics act as ligands, including the aryl hydrocarbon receptor, metal-responsive transcription factor-1 and the nuclear receptor family of transcription factors. Other pathways including the immunomodulatory transcription factors NF-κB and STAT together with the hypoxia-inducible transcription factor HIF are also implicated in cellular responses to xenobiotic exposure. A less specific but equally important aspect to cellular injury controlled by transcriptional activity is loss of tissue-specific gene expression, resulting in dedifferentiation of target cells and compromise of tissue function. Here, we review these pathways and the genes they regulate in order to provide an overview of this growing field of molecular toxicology.
Nfonsam, Landry E.; Cano, Carlos; Mudge, Joann; Schilkey, Faye D.; Curtiss, Jennifer
2012-01-01
Tissue-specific transcription factors are thought to cooperate with signaling pathways to promote patterned tissue specification, in part by co-regulating transcription. The Drosophila melanogaster Pax6 homolog Eyeless forms a complex, incompletely understood regulatory network with the Hedgehog, Decapentaplegic and Notch signaling pathways to control eye-specific gene expression. We report a combinatorial approach, including mRNAseq and microarray analyses, to identify targets co-regulated by Eyeless and Hedgehog, Decapentaplegic or Notch. Multiple analyses suggest that the transcriptomes resulting from co-misexpression of Eyeless+signaling factors provide a more complete picture of eye development compared to previous efforts involving Eyeless alone: (1) Principal components analysis and two-way hierarchical clustering revealed that the Eyeless+signaling factor transcriptomes are closer to the eye control transcriptome than when Eyeless is misexpressed alone; (2) more genes are upregulated at least three-fold in response to Eyeless+signaling factors compared to Eyeless alone; (3) based on gene ontology analysis, the genes upregulated in response to Eyeless+signaling factors had a greater diversity of functions compared to Eyeless alone. Through a secondary screen that utilized RNA interference, we show that the predicted gene CG4721 has a role in eye development. CG4721 encodes a neprilysin family metalloprotease that is highly up-regulated in response to Eyeless+Notch, confirming the validity of our approach. Given the similarity between D. melanogaster and vertebrate eye development, the large number of novel genes identified as potential targets of Ey+signaling factors will provide novel insights to our understanding of eye development in D. melanogaster and humans. PMID:22952997
Differential expression of THOC1 and ALY mRNP biogenesis/export factors in human cancers
2011-01-01
Background One key step in gene expression is the biogenesis of mRNA ribonucleoparticle complexes (mRNPs). Formation of the mRNP requires the participation of a number of conserved factors such as the THO complex. THO interacts physically and functionally with the Sub2/UAP56 RNA-dependent ATPase, and the Yra1/REF1/ALY RNA-binding protein linking transcription, mRNA export and genome integrity. Given the link between genome instability and cancer, we have performed a comparative analysis of the expression patterns of THOC1, a THO complex subunit, and ALY in tumor samples. Methods The mRNA levels were measured by quantitative real-time PCR and hybridization of a tumor tissue cDNA array; and the protein levels and distribution by immunostaining of a custom tissue array containing a set of paraffin-embedded samples of different tumor and normal tissues followed by statistical analysis. Results We show that the expression of two mRNP factors, THOC1 and ALY are altered in several tumor tissues. THOC1 mRNA and protein levels are up-regulated in ovarian and lung tumors and down-regulated in those of testis and skin, whereas ALY is altered in a wide variety of tumors. In contrast to THOC1, ALY protein is highly detected in normal proliferative cells, but poorly in high-grade cancers. Conclusions These results suggest a differential connection between tumorogenesis and the expression levels of human THO and ALY. This study opens the possibility of defining mRNP biogenesis factors as putative players in cell proliferation that could contribute to tumor development. PMID:21329510
[Fibroblast growth factors and their effects in pancreas organogenesis].
Gnatenko, D A; Kopantzev, E P; Sverdlov, E D
2017-05-01
Fibroblast growth factors (FGF) - growth factors that regulate many important biological processes, including proliferation and differentiation of embryonic cells during organogenesis. In this review, we will summarize current information about the involvement of FGFs in the pancreas organogenesis. Pancreas organogenesis is a complex process, which involves constant signaling from mesenchymal tissue. This orchestrates the activation of various regulator genes at specific stages, determining the specification of progenitor cells. Alterations in FGF/FGFR signaling pathway during this process lead to incorrect activation of the master genes, which leads to different pathologies during pancreas development. Understanding the full picture about role of FGF factors in pancreas development will make it possible to more accurately understand their role in other pathologies of this organ, including carcinogenesis.
Wang, Chao; Yin, Meng-Xin; Wu, Wei; Dong, Liang; Wang, Shimin; Lu, Yi; Xu, Jinjin; Wu, Wenqing; Li, Sheng; Zhao, Yun; Zhang, Lei
2016-01-01
The Hippo signaling pathway regulates tissue growth and organ size through controlling cell growth, proliferation and apoptosis. During these processes, the coactivator Yorkie partners with the transcription factor Scalloped to mediate Hippo pathway-regulated cellular functions. Here, we demonstrate that Taiman facilitates the activity of Yorkie. First, Taiman overexpression upregulates Hippo pathway-responsive genes and induces tissue overgrowth. Second, the loss of tai downregulates the expression of Hippo pathway target genes and reduces organ size as well as tissue overgrowth caused by Yorkie overexpression. Furthermore, we provide evidence that Taiman binds to Yorkie and facilitates the activity of Yorkie-Scalloped to activate the transcription of several Hippo pathway target genes. Moreover, we found that the C-terminus of Taiman is indispensable for the function of Taiman in Hippo signaling. Finally, we demonstrate that Taiman is also required in intestinal stem cell proliferation. Our findings suggest Taiman is an essential coactivator of Yorkie.
An alternative splicing program promotes adipose tissue thermogenesis
Vernia, Santiago; Edwards, Yvonne JK; Han, Myoung Sook; Cavanagh-Kyros, Julie; Barrett, Tamera; Kim, Jason K; Davis, Roger J
2016-01-01
Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia. DOI: http://dx.doi.org/10.7554/eLife.17672.001 PMID:27635635
Gao, Yuan; Min, Kyungji; Zhang, Yibing; Su, John; Greenwood, Matthew; Gronert, Karsten
2015-01-01
Immune-driven dry eye disease primarily affects women; the cause for this sex-specific prevalence is unknown. PMN have distinct phenotypes that drive inflammation but also regulate lymphocytes and are the rate-limiting cell for generating anti-inflammatory lipoxin A4 (LXA4). Estrogen regulates the LXA4 circuit to induce delayed female-specific wound healing in the cornea. However, the role of PMN in dry eye disease remains unexplored. We discovered a LXA4-producing tissue-PMN population in the corneal limbus, lacrimal glands and cervical lymph nodes of healthy male and female mice. These tissue-PMN, unlike inflammatory-PMN, expressed a highly amplified LXA4 circuit and were sex-specifically regulated during immune-driven dry eye disease. Desiccating stress in females, unlike in males, triggered a remarkable decrease in lymph node PMN and LXA4 formation that remained depressed during dry eye disease. Depressed lymph node PMN and LXA4 in females correlated with an increase in T effector cells (TH1 and TH17), a decrease in regulatory T cells (Treg) and increased dry eye pathogenesis. Antibody depletion of tissue-PMN abrogated LXA4 formation in lymph nodes, caused a marked increase in TH1 and TH17 and decrease in Treg cells. To establish an immune regulatory role for PMN-derived LXA4 in dry eye females were treated with LXA4. LXA4 treatment markedly inhibited TH1 and TH17 and amplified Treg cells in draining lymph nodes, while reducing dry eye pathogenesis. These results identify female-specific regulation of LXA4-producing tissue-PMN as a potential key factor in aberrant T effector cell activation and initiation of immune-driven dry eye disease. PMID:26324767
Habibian, Justine S; Jefic, Mitra; Bagchi, Rushita A; Lane, Robert H; McKnight, Robert A; McKinsey, Timothy A; Morrison, Ron F; Ferguson, Bradley S
2017-10-10
Adipose tissue inflammation is a central pathological element that regulates obesity-mediated insulin resistance and type II diabetes. Evidence demonstrates that extracellular signal-regulated kinase (ERK 1/2) activation (i.e. phosphorylation) links tumor necrosis factor α (TNFα) to pro-inflammatory gene expression in the nucleus. Dual specificity phosphatases (DUSPs) inactivate ERK 1/2 through dephosphorylation and can thus inhibit inflammatory gene expression. We report that DUSP5, an ERK1/2 phosphatase, was induced in epididymal white adipose tissue (WAT) in response to diet-induced obesity. Moreover, DUSP5 mRNA expression increased during obesity development concomitant to increases in TNFα expression. Consistent with in vivo findings, DUSP5 mRNA expression increased in adipocytes in response to TNFα, parallel with ERK1/2 dephosphorylation. Genetic loss of DUSP5 exacerbated TNFα-mediated ERK 1/2 signaling in 3T3-L1 adipocytes and in adipose tissue of mice. Furthermore, inhibition of ERK 1/2 and c-Jun N terminal kinase (JNK) signaling attenuated TNFα-induced DUSP5 expression. These data suggest that DUSP5 functions in the feedback inhibition of ERK1/2 signaling in response to TNFα, which resulted in increased inflammatory gene expression. Thus, DUSP5 potentially acts as an endogenous regulator of adipose tissue inflammation; although its role in obesity-mediated inflammation and insulin signaling remains unclear.
Connective tissue growth factor (CTGF) from basics to clinics.
Ramazani, Yasaman; Knops, Noël; Elmonem, Mohamed A; Nguyen, Tri Q; Arcolino, Fanny Oliveira; van den Heuvel, Lambert; Levtchenko, Elena; Kuypers, Dirk; Goldschmeding, Roel
2018-03-21
Connective tissue growth factor, also known as CCN2, is a cysteine-rich matricellular protein involved in the control of biological processes, such as cell proliferation, differentiation, adhesion and angiogenesis, as well as multiple pathologies, such as tumor development and tissue fibrosis. Here, we describe the molecular and biological characteristics of CTGF, its regulation and various functions in the spectrum of development and regeneration to fibrosis. We further outline the preclinical and clinical studies concerning compounds targeting CTGF in various pathologies with the focus on heart, lung, liver, kidney and solid organ transplantation. Finally, we address the advances and pitfalls of translational fibrosis research and provide suggestions to move towards a better management of fibrosis. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
Verzi, Michael P.; Shin, Hyunjin; San Roman, Adrianna K.
2013-01-01
Tissue-specific gene expression requires modulation of nucleosomes, allowing transcription factors to occupy cis elements that are accessible only in selected tissues. Master transcription factors control cell-specific genes and define cellular identities, but it is unclear if they possess special abilities to regulate cell-specific chromatin and if such abilities might underlie lineage determination and maintenance. One prevailing view is that several transcription factors enable chromatin access in combination. The homeodomain protein CDX2 specifies the embryonic intestinal epithelium, through unknown mechanisms, and partners with transcription factors such as HNF4A in the adult intestine. We examined enhancer chromatin and gene expression following Cdx2 or Hnf4a excision in mouse intestines. HNF4A loss did not affect CDX2 binding or chromatin, whereas CDX2 depletion modified chromatin significantly at CDX2-bound enhancers, disrupted HNF4A occupancy, and abrogated expression of neighboring genes. Thus, CDX2 maintains transcription-permissive chromatin, illustrating a powerful and dominant effect on enhancer configuration in an adult tissue. Similar, hierarchical control of cell-specific chromatin states is probably a general property of master transcription factors. PMID:23129810
USDA-ARS?s Scientific Manuscript database
Molecular mechanisms controlling rumen epithelial development at weaning remain largely unknown. To identify gene networks and regulatory factors responsive to concentrate versus forage feeding at weaning, Holstein bull calves (n = 18) were fed commercial milk replacer only (MRO) until 42 d of age. ...
Essential Role of Chromatin Remodeling Protein Bptf in Early Mouse Embryos and Embryonic Stem Cells
Landry, Joseph; Sharov, Alexei A.; Piao, Yulan; Sharova, Lioudmila V.; Xiao, Hua; Southon, Eileen; Matta, Jennifer; Tessarollo, Lino; Zhang, Ying E.; Ko, Minoru S. H.; Kuehn, Michael R.; Yamaguchi, Terry P.; Wu, Carl
2008-01-01
We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf−/− embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf−/− embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo. PMID:18974875
PHYSIOLOGICAL ACTIVITY OF THE BROWN ADIPOSE TISSUE.
Studies were performed to clarify the influence of various factors which might be involved in vascular regulation. Topical application of lidocain ...and treatment with reserpine effectively blocked, while denervation of brown fat, syrosingopine and atropine were ineffective to prevent the blood flow
Boo, Stellar; Dagnino, Lina
2013-01-01
Significance Abnormal wound repair results from disorders in granulation tissue remodeling, and can lead to hypertrophic scarring and fibrosis. Excessive scarring can compromise tissue function and decrease tissue resistance to additional injuries. The development of potential therapies to minimize scarring is, thus, necessary to address an important clinical problem. Recent Advances It has been clearly established that multiple cytokines and growth factors participate in the regulation of cutaneous wound healing. More recently, it has become apparent that these factors do not necessarily activate isolated signaling pathways. Rather, in some cases, there is cross-modulation of several cellular pathways involved in this process. Two of the key pathways that modulate each other during wound healing are activated by transforming growth factor-β and by extracellular matrix proteins acting through integrins. Critical Issues The pathogenesis of excessive scarring upon wound healing is not fully understood, as a result of the complexity of this process. However, the fact that many pathways combine to produce fibrosis provides multiple potential therapeutic targets. Some of them have been identified, such as focal adhesion kinase and integrin-linked kinase. Currently, a major challenge is to develop pharmacological inhibitors of these proteins with therapeutic value to promote efficient wound repair. Future Directions The ability to better understand how different pathways crosstalk during wound repair and to identify and pharmacologically modulate key factors that contribute to the regulation of multiple wound-healing pathways could potentially provide effective therapeutic targets to decrease or prevent excessive scar formation and/or development of fibrosis. PMID:24527345
Pan, Y; Cui, Y; Yu, S; Zhang, Q; Fan, J; Abdul Rasheed, B; Yang, K
2014-12-01
Growth factors play critical role in cell proliferation, regulate tissue differentiation and modulate organogenesis. Several growth factors have been identified in the testes of various mammalian species in last few years. In present investigation, the objective was to determine the expression of epidermal growth factor (EGF) and the epidermal growth factor receptor (EGFR) in yak testicular tissue by relative quantitative real time polymerase chain reaction (RT-PCR), Western blot (WB) and immunohistochemistry (IHC) from mRNA and protein levels. The testicular tissues were collected from male yak at 6 and 24 months old. Results of RT-PCR and WB showed that the expression quantity of EGF and EGFR at 24 months of age was higher than at 6 months, and the increase rate of EGFR on mRNA and protein levels was higher than the increase rate EGF during post-natal testes development. Positive staining for EGF and EGFR was very low and mainly localized to Leydig cells testes at 6 months of age with immunohistochemistry, and seminiferous tubules were not observed. At 24 month of age, both the EGF and EGFR could be detected in Leydig cells, peritubular myoid cells, sertoli cells and germ cells of the yak testes. However, EGF and EGFR were localized to preferential adluminal compartment and basal compartment in the seminiferous tubules, respectively. In conclusion, the findings in present studies suggest that EGF and EGFR as important paracrine and/or autocrine regulators in yak testes development and spermatogenesis. © 2014 Blackwell Verlag GmbH.
Novel mechanism of regulation of fibrosis in kidney tumor with tuberous sclerosis
2013-01-01
Background Deficiency in tuberin results in activation the mTOR pathway and leads to accumulation of cell matrix proteins. The mechanisms by which tuberin regulates fibrosis in kidney angiomyolipomas (AMLs) of tuberous sclerosis patients are not fully known. Method In the present study, we investigated the potential role of tuberin/mTOR pathway in the regulation of cell fibrosis in AML cells and kidney tumor tissue from tuberous sclerosis complex (TSC) patients. Results AML cells treated with rapamycin shows a significant decrease in mRNA and protein expression as well as in promoter transcriptional activity of alpha-smooth muscle actin (α-SMA) compared to untreated cells. In addition, cells treated with rapamycin significantly decreased the protein expression of the transcription factor YY1. Rapamycin treatment also results in the redistribution of YY1 from the nucleus to cytoplasm in AML cells. Moreover, cells treated with rapamycin resulted in a significant reduce of binding of YY1 to the αSMA promoter element in nuclear extracts of AML cells. Kidney angiomyolipoma tissues from TSC patients showed lower levels of tuberin and higher levels of phospho-p70S6K that resulted in higher levels of mRNA and protein of αSMA expression compared to control kidney tissues. In addition, most of the α-SMA staining was identified in the smooth muscle cells of AML tissues. YY1 was also significantly increased in tumor tissue of AMLs compared to control kidney tissue suggesting that YY1 plays a major role in the regulation of αSMA. Conclusions These data comprise the first report to provide one mechanism whereby rapamycin might inhibit the cell fibrosis in kidney tumor of TSC patients. PMID:23705901
Fujinaga, Daiki; Kohmura, Yusuke; Okamoto, Naoki; Kataoka, Hiroshi; Mizoguchi, Akira
2017-08-01
It is well established that ecdysteroids play pivotal roles in the regulation of insect molting and metamorphosis. However, the mechanisms by which ecdysteroids regulate the growth and development of adult organs after pupation are poorly understood. Recently, we have identified insulin-like growth factor (IGF)-like peptides (IGFLPs), which are secreted after pupation under the control of 20-hydroxyecdysone (20E). In the silkmoth, Bombyx mori, massive amounts of Bombyx-IGFLP (BIGFLP) are present in the hemolymph during pupal-adult development, suggesting its importance in the regulation of adult tissue growth. Thus, we hypothesized that the growth and development of adult tissues including imaginal disks are regulated by the combined effects of BIGFLP and 20E. In this study, we investigated the growth-promoting effects of BIGFLP and 20E using the male genital disks of B. mori cultured ex vivo, and further analyzed the cell signaling pathways mediating hormone actions. We demonstrate that 20E induces the elongation of genital disks, that both hormones stimulate protein synthesis in an additive manner, and that BIGFLP and 20E exert their effects through the insulin/IGF signaling pathway and mitogen-activated protein kinase pathway, respectively. These results show that the growth and development of the genital disk are coordinately regulated by both BIGFLP and 20E. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tsai, Chang-Ru; Anderson, Aimee E; Burra, Sirisha; Jo, Juyeon; Galko, Michael J
2017-07-01
Yorkie (Yki), the transcriptional co-activator of the Hippo signaling pathway, has well-characterized roles in balancing apoptosis and cell division during organ growth control. Yki is also required in diverse tissue regenerative contexts. In most cases this requirement reflects its well-characterized roles in balancing apoptosis and cell division. Whether Yki has repair functions outside of the control of cell proliferation, death, and growth is not clear. Here we show that Yki and Scalloped (Sd) are required for epidermal wound closure in the Drosophila larval epidermis. Using a GFP-tagged Yki transgene we show that Yki transiently translocates to some epidermal nuclei upon wounding. Genetic analysis strongly suggests that Yki interacts with the known wound healing pathway, Jun N-terminal kinase (JNK), but not with Platelet Derived Growth Factor/Vascular-Endothelial Growth Factor receptor (Pvr). Yki likely acts downstream of or parallel to JNK signaling and does not appear to regulate either proliferation or apoptosis in the larval epidermis during wound repair. Analysis of actin structures after wounding suggests that Yki and Sd promote wound closure through actin regulation. In sum, we found that Yki regulates an epithelial tissue repair process independently of its previously documented roles in balancing proliferation and apoptosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Sheldon, Claire A.; Kwon, Young Joon; Liu, Grant T.; McCormack, Shana E.
2015-01-01
Pseudotumor cerebri syndrome (PTCS) is defined by the presence of elevated intracranial pressure (ICP) in the setting of normal brain parenchyma and cerebrospinal fluid (CSF). Headache, vision changes, and papilledema are common presenting features. Up to 10% of appropriately treated patients may experience permanent visual loss. The mechanism(s) underlying PTCS is unknown. PTCS occurs in association with a variety of conditions, including kidney disease, obesity, and adrenal insufficiency, suggesting endocrine and/or metabolic derangements may occur. Recent studies suggest that fluid and electrolyte balance in renal epithelia is regulated by a complex interaction of metabolic and hormonal factors; these cells share many of the same features as the choroid plexus cells in the central nervous system (CNS) responsible for regulation of CSF dynamics. Thus, we posit that similar factors may influence CSF dynamics in both types of fluid-sensitive tissues. Specifically, we hypothesize that, in patients with PTCS, mitochondrial metabolites (glutamate, succinate) and steroid hormones (cortisol, aldosterone) regulate CSF production and/or absorption. In this integrated mechanism review, we consider the clinical and molecular evidence for each metabolite and hormone in turn. We illustrate how related intracellular signaling cascades may converge in the choroid plexus, drawing on evidence from functionally similar tissues. PMID:25420176
MicroRNAs and their roles in aging
Smith-Vikos, Thalyana; Slack, Frank J.
2012-01-01
MicroRNAs (miRNAs) are a class of short non-coding RNAs that bind mRNAs through partial base-pair complementarity with their target genes, resulting in post-transcriptional repression of gene expression. The role of miRNAs in controlling aging processes has been uncovered recently with the discovery of miRNAs that regulate lifespan in the nematode Caenorhabditis elegans through insulin and insulin-like growth factor-1 signaling and DNA damage checkpoint factors. Furthermore, numerous miRNAs are differentially expressed during aging in C. elegans, but the specific functions of many of these miRNAs are still unknown. Recently, various miRNAs have been identified that are up- or down-regulated during mammalian aging by comparing their tissue-specific expression in younger and older mice. In addition, many miRNAs have been implicated in governing senescence in a variety of human cell lines, and the precise functions of some of these miRNAs in regulating cellular senescence have helped to elucidate mechanisms underlying aging. In this Commentary, we review the various regulatory roles of miRNAs during aging processes. We highlight how certain miRNAs can regulate aging on the level of organism lifespan, tissue aging or cellular senescence. Finally, we discuss future approaches that might be used to investigate the mechanisms by which miRNAs govern aging processes. PMID:22294612
Kineman, Rhonda D; Del Rio-Moreno, Mercedes; Sarmento-Cabral, André
2018-07-01
It is clear that insulin-like growth factor-1 (IGF1) is important in supporting growth and regulating metabolism. The IGF1 found in the circulation is primarily produced by the liver hepatocytes, but healthy mature hepatocytes do not express appreciable levels of the IGF1 receptor (IGF1R). Therefore, the metabolic actions of IGF1 are thought to be mediated via extra-hepatocyte actions. Given the structural and functional homology between IGF1/IGF1R and insulin receptor (INSR) signaling, and the fact that IGF1, IGF1R and INSR are expressed in most tissues of the body, it is difficult to separate out the tissue-specific contributions of IGF1/IGF1R in maintaining whole body metabolic function. To circumvent this problem, over the last 20 years, investigators have taken advantage of the Cre/loxP system to manipulate IGF1/IGF1R in a tissue-dependent, and more recently, an age-dependent fashion. These studies have revealed that IGF1/IGF1R can alter extra-hepatocyte function to regulate hormonal inputs to the liver and/or alter tissue-specific carbohydrate and lipid metabolism to alter nutrient flux to liver, where these actions are not mutually exclusive, but serve to integrate the function of all tissues to support the metabolic needs of the organism. © 2018 Society for Endocrinology.
Juge, F; Audibert, A; Benoit, B; Simonelig, M
2000-01-01
The Suppressor of forked protein is the Drosophila homolog of the 77K subunit of human cleavage stimulation factor, a complex required for the first step of the mRNA 3'-end-processing reaction. We have shown previously that wild-type su(f) function is required for the accumulation of a truncated su(f) transcript polyadenylated in intron 4 of the gene. This led us to propose a model in which the Su(f) protein would negatively regulate its own accumulation by stimulating 3'-end formation of this truncated su(f) RNA. In this article, we demonstrate this model and show that su(f) autoregulation is tissue specific. The Su(f) protein accumulates at a high level in dividing tissues, but not in nondividing tissues. We show that this distribution of the Su(f) protein results from stimulation by Su(f) of the tissue-specific utilization of the su(f) intronic poly(A) site, leading to the accumulation of the truncated su(f) transcript in nondividing tissues. Utilization of this intronic poly(A) site is affected in a su(f) mutant and restored in the mutant with a transgene encoding wild-type Su(f) protein. These data provide an in vivo example of cell-type-specific regulation of a protein level by poly(A) site choice, and confirm the role of Su(f) in regulation of poly(A) site utilization. PMID:11105753
Tenascin-C and mechanotransduction in the development and diseases of cardiovascular system
Imanaka-Yoshida, Kyoko; Aoki, Hiroki
2014-01-01
Living tissue is composed of cells and extracellular matrix (ECM). In the heart and blood vessels, which are constantly subjected to mechanical stress, ECM molecules form well-developed fibrous frameworks to maintain tissue structure. ECM is also important for biological signaling, which influences various cellular functions in embryonic development, and physiological/pathological responses to extrinsic stimuli. Among ECM molecules, increased attention has been focused on matricellular proteins. Matricellular proteins are a growing group of non-structural ECM proteins highly up-regulated at active tissue remodeling, serving as biological mediators. Tenascin-C (TNC) is a typical matricellular protein, which is highly expressed during embryonic development, wound healing, inflammation, and cancer invasion. The expression is tightly regulated, dependent on the microenvironment, including various growth factors, cytokines, and mechanical stress. In the heart, TNC appears in a spatiotemporal-restricted manner during early stages of development, sparsely detected in normal adults, but transiently re-expressed at restricted sites associated with tissue injury and inflammation. Similarly, in the vascular system, TNC is strongly up-regulated during embryonic development and under pathological conditions with an increase in hemodynamic stress. Despite its intriguing expression pattern, cardiovascular system develops normally in TNC knockout mice. However, deletion of TNC causes acute aortic dissection (AAD) under strong mechanical and humoral stress. Accumulating reports suggest that TNC may modulate the inflammatory response and contribute to elasticity of the tissue, so that it may protect cardiovascular tissue from destructive stress responses. TNC may be a key molecule to control cellular activity during development, adaptation, or pathological tissue remodeling. PMID:25120494
YAP and TAZ: a nexus for Hippo signaling and beyond
Guan, Kun-Liang
2015-01-01
The Hippo pathway is a potent regulator of cellular proliferation, differentiation, and tissue homeostasis. Here we review the regulatory mechanisms of the Hippo pathway and discuss the function of Yes-associated protein (YAP)/transcriptional coactivator with a PDZ-binding domain (TAZ), the prime mediators of the Hippo pathway, in stem cell biology and tissue regeneration. We highlight their activities in both the nucleus and the cytoplasm and discuss their role as a signaling nexus and integrator of several other prominent signaling pathways such as the Wnt, G protein-coupled receptor (GPCR), epidermal growth factor (EGF), BMP/transforming growth factor beta (TGFβ), and Notch pathways. PMID:26045258
The Fibroblast Growth Factor signaling pathway.
Ornitz, David M; Itoh, Nobuyuki
2015-01-01
The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website. © 2015 The Authors. WIREs Developmental Biology published by Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinozuka, Eriko; Miyashita, Masao; Mizuguchi, Yoshiaki, E-mail: yoshi1224@gmail.com
2013-01-04
Highlights: Black-Right-Pointing-Pointer SnoN modulated miR-720, miR-1274A, and miR-1274B expression levels in TE-1 cells. Black-Right-Pointing-Pointer miR-720 and miR-1274A suppressed the expression of target proteins p63 and ADAM9. Black-Right-Pointing-Pointer Silencing of SnoN significantly upregulated cell proliferation in TE-1 cells. Black-Right-Pointing-Pointer Esophageal cancer tissues have lower SnoN expression levels than normal tissues. Black-Right-Pointing-Pointer Esophageal cancer tissues have higher miR-720 expression levels than normal tissues. -- Abstract: It is now evident that changes in microRNA are involved in cancer progression, but the mechanisms of transcriptional regulation of miRNAs remain unknown. Ski-related novel gene (SnoN/SKIL), a transcription co-factor, acts as a potential key regulator withinmore » a complex network of p53 transcriptional repressors. SnoN has pro- and anti-oncogenic functions in the regulation of cell proliferation, senescence, apoptosis, and differentiation. We characterized the roles of SnoN in miRNA transcriptional regulation and its effects on cell proliferation using esophageal squamous cell carcinoma (ESCC) cells. Silencing of SnoN altered a set of miRNA expression profiles in TE-1cells, and the expression levels of miR-720, miR-1274A, and miR-1274B were modulated by SnoN. The expression of these miRNAs resulted in changes to the target protein p63 and a disintegrin and metalloproteinase domain 9 (ADAM9). Furthermore, silencing of SnoN significantly upregulated cell proliferation in TE-1 cells, indicating a potential anti-oncogenic function. These results support our observation that cancer tissues have lower expression levels of SnoN, miR-720, and miR-1274A compared to adjacent normal tissues from ESCC patients. These data demonstrate a novel mechanism of miRNA regulation, leading to changes in cell proliferation.« less
Cold-Induced Changes in Gene Expression in Brown Adipose Tissue, White Adipose Tissue and Liver
Shore, Andrew M.; Karamitri, Angeliki; Kemp, Paul; Speakman, John R.; Graham, Neil S.; Lomax, Michael A.
2013-01-01
Cold exposure imposes a metabolic challenge to mammals that is met by a coordinated response in different tissues to prevent hypothermia. This study reports a transcriptomic analysis in brown adipose tissue (BAT), white adipose (WAT) and liver of mice in response to 24 h cold exposure at 8°C. Expression of 1895 genes were significantly (P<0.05) up- or down-regulated more than two fold by cold exposure in all tissues but only 5 of these genes were shared by all three tissues, and only 19, 14 and 134 genes were common between WAT and BAT, WAT and liver, and BAT and liver, respectively. We confirmed using qRT-PCR, the increased expression of a number of characteristic BAT genes during cold exposure. In both BAT and the liver, the most common direction of change in gene expression was suppression (496 genes in BAT and 590 genes in liver). Gene ontology analysis revealed for the first time significant (P<0.05) down regulation in response to cold, of genes involved in oxidoreductase activity, lipid metabolic processes and protease inhibitor activity, in both BAT and liver, but not WAT. The results reveal an unexpected importance of down regulation of cytochrome P450 gene expression and apolipoprotein, in both BAT and liver, but not WAT, in response to cold exposure. Pathway analysis suggests a model in which down regulation of the nuclear transcription factors HNF4α and PPARα in both BAT and liver may orchestrate the down regulation of genes involved in lipoprotein and steroid metabolism as well as Phase I enzymes belonging to the cytochrome P450 group in response to cold stress in mice. We propose that the response to cold stress involves decreased gene expression in a range of cellular processes in order to maximise pathways involved in heat production. PMID:23894377
Detrimental and protective fat: body fat distribution and its relation to metabolic disease.
Booth, Andrea; Magnuson, Aaron; Foster, Michelle
2014-01-01
Obesity is linked to numerous comorbidities that include, but are not limited to, glucose intolerance, insulin resistance, dyslipidemia, and cardiovascular disease. Current evidence suggests, however, obesity itself is not an exclusive predictor of metabolic dysregulation but rather adipose tissue distribution. Obesity-related adverse health consequences occur predominately in individuals with upper body fat accumulation, the detrimental distribution, commonly associated with visceral obesity. Increased lower body subcutaneous adipose tissue, however, is associated with a reduced risk of obesity-induced metabolic dysregulation and even enhanced insulin sensitivity, thus, storage in this region is considered protective. The proposed mechanisms that causally relate the differential outcomes of adipose tissue distribution are often attributed to location and/or adipocyte regulation. Visceral adipose tissue effluent to the portal vein drains into the liver where hepatocytes are directly exposed to its metabolites and secretory products, whereas the subcutaneous adipose tissue drains systemically. Adipose depots are also inherently different in numerous ways such as adipokine release, immunity response and regulation, lipid turnover, rate of cell growth and death, and response to stress and sex hormones. Proximal extrinsic factors also play a role in the differential drive between adipose tissue depots. This review focuses on the deleterious mechanisms postulated to drive the differential metabolic response between central and lower body adipose tissue distribution.
Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue
Salas, Anna; Noé, Véronique; Ciudad, Carlos J; Romero, M Mar; Remesar, Xavier; Esteve, Montserrat
2007-01-01
Background Short-term OE (oleoyl-estrone) treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Results Gene expression in adipose tissue from female treated rats (48 hours) was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL) were decreased by 52%, those of Fatty Acid Synthase (FAS) by 95%, those of Hormone Sensible Lipase (HSL) by 32%, those of Acetyl CoA Carboxylase (ACC) by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b) by 45%, and those of Fatty Acid Transport Protein 1 (FATP1) and Adipocyte Fatty Acid Binding Protein (FABP4) by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNFα) values showed overexpression (198%). Conclusion Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism. PMID:17725831
Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue.
Salas, Anna; Noé, Véronique; Ciudad, Carlos J; Romero, M Mar; Remesar, Xavier; Esteve, Montserrat
2007-08-28
Short-term OE (oleoyl-estrone) treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Gene expression in adipose tissue from female treated rats (48 hours) was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL) were decreased by 52%, those of Fatty Acid Synthase (FAS) by 95%, those of Hormone Sensible Lipase (HSL) by 32%, those of Acetyl CoA Carboxylase (ACC) by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b) by 45%, and those of Fatty Acid Transport Protein 1 (FATP1) and Adipocyte Fatty Acid Binding Protein (FABP4) by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNFalpha) values showed overexpression (198%). Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism.
Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal
2016-01-01
In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, free-standing electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on-demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function. PMID:26974408
Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules.
Yu, Shuizi Rachel; Burkhardt, Markus; Nowak, Matthias; Ries, Jonas; Petrásek, Zdenek; Scholpp, Steffen; Schwille, Petra; Brand, Michael
2009-09-24
It is widely accepted that tissue differentiation and morphogenesis in multicellular organisms are regulated by tightly controlled concentration gradients of morphogens. How exactly these gradients are formed, however, remains unclear. Here we show that Fgf8 morphogen gradients in living zebrafish embryos are established and maintained by two essential factors: fast, free diffusion of single molecules away from the source through extracellular space, and a sink function of the receiving cells, regulated by receptor-mediated endocytosis. Evidence is provided by directly examining single molecules of Fgf8 in living tissue by fluorescence correlation spectroscopy, quantifying their local mobility and concentration with high precision. By changing the degree of uptake of Fgf8 into its target cells, we are able to alter the shape of the Fgf8 gradient. Our results demonstrate that a freely diffusing morphogen can set up concentration gradients in a complex multicellular tissue by a simple source-sink mechanism.
Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal
2016-06-01
In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.
Identification of Regulatory Elements That Control PPARγ Expression in Adipocyte Progenitors
Chou, Wen-Ling; Galmozzi, Andrea; Partida, David; Kwan, Kevin; Yeung, Hui; Su, Andrew I.; Saez, Enrique
2013-01-01
Adipose tissue renewal and obesity-driven expansion of fat cell number are dependent on proliferation and differentiation of adipose progenitors that reside in the vasculature that develops in coordination with adipose depots. The transcriptional events that regulate commitment of progenitors to the adipose lineage are poorly understood. Because expression of the nuclear receptor PPARγ defines the adipose lineage, isolation of elements that control PPARγ expression in adipose precursors may lead to discovery of transcriptional regulators of early adipocyte determination. Here, we describe the identification and validation in transgenic mice of 5 highly conserved non-coding sequences from the PPARγ locus that can drive expression of a reporter gene in a manner that recapitulates the tissue-specific pattern of PPARγ expression. Surprisingly, these 5 elements appear to control PPARγ expression in adipocyte precursors that are associated with the vasculature of adipose depots, but not in mature adipocytes. Characterization of these five PPARγ regulatory sequences may enable isolation of the transcription factors that bind these cis elements and provide insight into the molecular regulation of adipose tissue expansion in normal and pathological states. PMID:24009687
Liu, Jinyan; Hu, Feng; Tang, Jintian; Tang, Shijie; Xia, Kun; Wu, Song; Yin, Chaoqi; Wang, Shaohua; He, Quanyong; Xie, Huiqing; Zhou, Jianda
2017-01-01
Vacuum sealing drainage (VSD) is an effective technique used to promote wound healing. However, recent studies have shown that it exerts positive pressure (PP) rather than negative pressure (NP) on skin. In this study, we created a homemade device that could maintain NP on the wound, and compared the therapeutic effects of VSD-induced PP to those of our home-made device which induced NP on wound healing. The NP induced by our device required less time for wound healing and decreased the wound area more efficiently than the PP induced by VSD. NP and PP both promoted the inflammatory response by upregulating neutrophil infiltration and interleukin (IL)-1β expression, and downregulating IL-10 expression. Higher levels of epidermal growth factor (EGF), transforming growth factor (TGF)-β and platelet-derived growth factor (PDGF), and lower levels of basic fibroblast growth factor (bFGF) were observed in the wound tissue treated with NP compared to the wound tissue exposed to PP. Proliferation in the wound tissue exposed to NP on day 10 was significantly higher than that in wound tissue exposed to PP. NP generated more fibroblasts, keratinized stratified epithelium, and less epithelia with stemness than PP. The levels of ccollagen I and III were both decreased in both the NP and PP groups. NP induced a statistically significant increase in the expression of fibronectin (FN) on days 3 and 10 compared to PP. Furthermore, the level of matrix metalloproteinase (MMP)-13 increased in the NP group, but decreased in the PP group on day 3. NP also induced a decrease in the levels of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 during the early stages of wound healing, which was significantly different from the increasing effect of PP on TIMP-1 and TIMP-2 levels at the corresponding time points. On the whole, our data indicate that our homemade device which induced NP, was more efficient than VSD-induced PP on wound healing by regulating inflammation, secretion, proliferation and the distribution of different cells in wound tissue. PMID:28290607
Banerjee, A; Udin, S; Krishna, A
2011-02-01
Factors regulating leptin synthesis during adipogenesis in wild species are not well known. Studies in the female Cynopterus sphinx bat have shown that it undergoes seasonal changes in its fat deposition and serum leptin and melatonin levels. The aim of the present study was to investigate the hormonal regulation of leptin synthesis by the white adipose tissue during the period of fat deposition in female C. sphinx. This study showed a significant correlation between the seasonal changes in serum melatonin level with the circulating leptin level (r = 0.78; P < 0.05) and with the changes in body fat mass (r = 0.88; P < 0.05) in C. sphinx. A significant correlation between circulating insulin and leptin levels (r = 0.65; P < 0.05) was also found in this species. This in vivo finding suggests that melatonin together with insulin may enhance leptin synthesis by increasing adipose tissue accumulation. The in vitro study showed that melatonin interacts synergistically with insulin in stimulating leptin synthesis by adipose tissue in C. sphinx. The study showed MT(2) receptors in adipose tissue and a stimulatory effect of melatonin on leptin synthesis, which was blocked by treatment with an MT(2) receptor antagonist, suggesting that the effect of melatonin on leptin synthesis by adipose tissue is mediated through the MT(2) receptor in C. sphinx. The in vitro study showed that the synthesis of leptin is directly proportional to the amount of glucose uptake by the adipose tissue. It further showed that melatonin together with insulin synergistically enhanced the leptin synthesis by adipose tissue through phosphorylation of mitogen-activated protein kinase in C. sphinx.
Achterman, Rebecca R; Moyes, David L; Thavaraj, Selvam; Smith, Adam R; Blair, Kris M; White, Theodore C; Naglik, Julian R
2015-04-01
Dermatophytes cause superficial and cutaneous fungal infections in immunocompetent hosts and invasive disease in immunocompromised hosts. However, the host mechanisms that regulate innate immune responses against these fungi are largely unknown. Here, we utilized commercially available epidermal tissues and primary keratinocytes to assess (i) damage induction by anthropophilic, geophilic, and zoophilic dermatophyte strains and (ii) the keratinocyte signaling pathways, transcription factors, and proinflammatory responses induced by a representative dermatophyte, Trichophyton equinum. Initially, five dermatophyte species were tested for their ability to invade, cause tissue damage, and induce cytokines, with Microsporum gypseum inducing the greatest level of damage and cytokine release. Using T. equinum as a representative dermatophyte, we found that the mitogen-activated protein kinase (MAPK) pathways were predominantly affected, with increased levels of phospho-p38 and phospho-Jun N-terminal protein kinase (JNK) but decreased levels of phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2). Notably, the NF-κB and PI3K pathways were largely unaffected. T. equinum also significantly increased expression of the AP-1-associated transcription factor, c-Fos, and the MAPK regulatory phosphatase, MKP1. Importantly, the ability of T. equinum to invade, cause tissue damage, activate signaling and transcription factors, and induce proinflammatory responses correlated with germination, indicating that germination may be important for dermatophyte virulence and host immune activation. Copyright © 2015, Achterman et al.
Mapping the microbiome of Ictalurid catfish: tissue and species-specific community composition
USDA-ARS?s Scientific Manuscript database
Host mucosal immunity is regulated by the complex interplay between environmental factors, host genetics, and commensal and pathogen dynamics. Microbial imbalances due to physiological stressors, changes in nutrition, and/or antibiotic application can potentiate over-exuberant host immune responses ...
Kim, Jun; Kang, Eun-Jin; Park, Mee-Na; Kim, Ji-Eun; Kim, Seung-Chul; Jeung, Eui-Bae; Lee, Geun-Shik; Hwang, Dae-Youn; An, Beum-Soo
2015-07-01
Alkylphenols such as 4-tert-octylphenol (OP), nonylphenol, and bisphenol A are classified as endocrine-disrupting chemicals (EDCs). Digestion and metabolism of food are controlled by many endocrine factors, including insulin, glucagon, and estrogen. These factors are differentially regulated during pregnancy. The alteration of nutritional intake and fat metabolism may affect the maintenance of pregnancy and supplementation of nutrients to the fetus, and therefore can cause severe metabolic diseases such as ketosis, marasmus and diabetes mellitus in pregnant individuals. In this study, we examined the effects of OP on fat metabolism in pregnant rats. Ethinyl estradiol (EE) was also administered as an estrogenic positive control. In our results, rats treated with OP showed significantly reduced body weights compared to the control group. In addition, histological analysis showed that the amount of fat deposited in adipocytes was reduced by OP treatment. To study the mechanism of action of OP in fat metabolism, we examined the expression levels of fat metabolism-associated genes in rat adipose tissue and liver by real-time PCR. OP and EE negatively regulated the expression of lipogenic enzymes, including FAS (fatty acid synthase), ACC-1 (acetyl-CoA carboxylase-1), and SCD-1 (stearoyl-CoA desaturase-1). The levels of lipogenic enzyme-associated transcription factors such as C/EBP-α (CAAT enhancer binding protein alpha) and SREBP-1c (sterol regulatory element binding protein-1c) were also reduced in both liver and adipose tissue. In summary, these findings suggest that OP has adverse effects on fat metabolism in pregnant rats and inhibits fat deposition via regulating lipogenic genes in the liver and adipose tissue. The altered fat metabolism by OP may affect the nutrition balance during pregnancy and can cause metabolism-related diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
3D Bioprinting and In Vitro Cardiovascular Tissue Modeling.
Jang, Jinah
2017-08-18
Numerous microfabrication approaches have been developed to recapitulate morphologically and functionally organized tissue microarchitectures in vitro; however, the technical and operational limitations remain to be overcome. 3D printing technology facilitates the building of a construct containing biomaterials and cells in desired organizations and shapes that have physiologically relevant geometry, complexity, and micro-environmental cues. The selection of biomaterials for 3D printing is considered one of the most critical factors to achieve tissue function. It has been reported that some printable biomaterials, having extracellular matrix-like intrinsic microenvironment factors, were capable of regulating stem cell fate and phenotype. In particular, this technology can control the spatial positions of cells, and provide topological, chemical, and complex cues, allowing neovascularization and maturation in the engineered cardiovascular tissues. This review will delineate the state-of-the-art 3D bioprinting techniques in the field of cardiovascular tissue engineering and their applications in translational medicine. In addition, this review will describe 3D printing-based pre-vascularization technologies correlated with implementing blood perfusion throughout the engineered tissue equivalent. The described engineering method may offer a unique approach that results in the physiological mimicry of human cardiovascular tissues to aid in drug development and therapeutic approaches.
3D Bioprinting and In Vitro Cardiovascular Tissue Modeling
Jang, Jinah
2017-01-01
Numerous microfabrication approaches have been developed to recapitulate morphologically and functionally organized tissue microarchitectures in vitro; however, the technical and operational limitations remain to be overcome. 3D printing technology facilitates the building of a construct containing biomaterials and cells in desired organizations and shapes that have physiologically relevant geometry, complexity, and micro-environmental cues. The selection of biomaterials for 3D printing is considered one of the most critical factors to achieve tissue function. It has been reported that some printable biomaterials, having extracellular matrix-like intrinsic microenvironment factors, were capable of regulating stem cell fate and phenotype. In particular, this technology can control the spatial positions of cells, and provide topological, chemical, and complex cues, allowing neovascularization and maturation in the engineered cardiovascular tissues. This review will delineate the state-of-the-art 3D bioprinting techniques in the field of cardiovascular tissue engineering and their applications in translational medicine. In addition, this review will describe 3D printing-based pre-vascularization technologies correlated with implementing blood perfusion throughout the engineered tissue equivalent. The described engineering method may offer a unique approach that results in the physiological mimicry of human cardiovascular tissues to aid in drug development and therapeutic approaches. PMID:28952550
Tissue Engineering Using Transfected Growth-Factor Genes
NASA Technical Reports Server (NTRS)
Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana
2005-01-01
A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.
Dworkin, Sebastian; Boglev, Yeliz; Owens, Harley; Goldie, Stephen J.
2016-01-01
Craniofacial defects (CFD) are a significant healthcare problem worldwide. Understanding both the morphogenetic movements which underpin normal facial development, as well as the molecular factors which regulate these processes, forms the cornerstone of future diagnostic, and ultimately, preventative therapies. The soluble morphogen Sonic hedgehog (Shh), a vertebrate orthologue of Drosophila hedgehog, is a key signalling factor in the regulation of craniofacial skeleton development in vertebrates, operating within numerous tissue types in the craniofacial primordia to spatiotemporally regulate the formation of the face and jaws. This review will provide an overview of normal craniofacial skeleton development, and focus specifically on the known roles of Shh in regulating the development and progression of the first pharyngeal arch, which in turn gives rise to both the upper jaw (maxilla) and lower jaw (mandible). PMID:29615588
Dworkin, Sebastian; Boglev, Yeliz; Owens, Harley; Goldie, Stephen J
2016-08-03
Craniofacial defects (CFD) are a significant healthcare problem worldwide. Understanding both the morphogenetic movements which underpin normal facial development, as well as the molecular factors which regulate these processes, forms the cornerstone of future diagnostic, and ultimately, preventative therapies. The soluble morphogen Sonic hedgehog ( Shh ), a vertebrate orthologue of Drosophila hedgehog , is a key signalling factor in the regulation of craniofacial skeleton development in vertebrates, operating within numerous tissue types in the craniofacial primordia to spatiotemporally regulate the formation of the face and jaws. This review will provide an overview of normal craniofacial skeleton development, and focus specifically on the known roles of Shh in regulating the development and progression of the first pharyngeal arch, which in turn gives rise to both the upper jaw (maxilla) and lower jaw (mandible).
Karalok, Hakan Mete; Aydin, Ebru; Saglam, Ozlen; Torun, Aysenur; Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D; Kristiansson, Helena; Duke, Cindy M P; Choe, Gina; Flannery, Clare; Kallen, Caleb B; Seli, Emre
2014-12-01
Cytokines and growth factors play important roles in endometrial function and the pathogenesis of endometriosis. mRNAs encoding cytokines and growth factors undergo rapid turnover; primarily mediated by adenosine- and uridine-rich elements (AREs) located in their 3'-untranslated regions. T-cell intracellular antigen (TIA-1), an mRNA-binding protein, binds to AREs in target transcripts, leading to decreased gene expression. The purpose of this article was to determine whether TIA-1 plays a role in the regulation of endometrial cytokine and growth factor expression during the normal menstrual cycle and whether TIA-1 expression is altered in women with endometriosis. Eutopic endometrial tissue obtained from women without endometriosis (n = 30) and eutopic and ectopic endometrial tissues from women with endometriosis (n = 17) were immunostained for TIA-1. Staining intensities were evaluated by histological scores (HSCOREs). The regulation of endometrial TIA-1 expression by immune factors and steroid hormones was studied by treating primary cultured human endometrial stromal cells (HESCs) with vehicle, lipopolysaccharide, TNF-α, IL-6, estradiol, or progesterone, followed by protein blot analyses. HESCs were engineered to over- or underexpress TIA-1 to test whether TIA-1 regulates IL-6 or TNF-α expression in these cells. We found that TIA-1 is expressed in endometrial stromal and glandular cells throughout the menstrual cycle and that this expression is significantly higher in the perimenstrual phase. In women with endometriosis, TIA-1 expression in eutopic and ectopic endometrium was reduced compared with TIA-1 expression in eutopic endometrium of unaffected control women. Lipopolysaccharide and TNF-α increased TIA-1 expression in HESCs in vitro, whereas IL-6 or steroid hormones had no effect. In HESCs, down-regulation of TIA-1 resulted in elevated IL-6 and TNF-α expression, whereas TIA-1 overexpression resulted in decreased IL-6 and TNF-α expression. Endometrial TIA-1 is regulated throughout the menstrual cycle, TIA-1 modulates the expression of immune factors in endometrial cells, and downregulation of TIA-1 may contribute to the pathogenesis of endometriosis.
Karalok, Hakan Mete; Aydin, Ebru; Saglam, Ozlen; Torun, Aysenur; Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D.; Kristiansson, Helena; Duke, Cindy M. P.; Choe, Gina; Flannery, Clare; Kallen, Caleb B.
2014-01-01
Background: Cytokines and growth factors play important roles in endometrial function and the pathogenesis of endometriosis. mRNAs encoding cytokines and growth factors undergo rapid turnover; primarily mediated by adenosine- and uridine-rich elements (AREs) located in their 3′-untranslated regions. T-cell intracellular antigen (TIA-1), an mRNA-binding protein, binds to AREs in target transcripts, leading to decreased gene expression. Objective: The purpose of this article was to determine whether TIA-1 plays a role in the regulation of endometrial cytokine and growth factor expression during the normal menstrual cycle and whether TIA-1 expression is altered in women with endometriosis. Methods: Eutopic endometrial tissue obtained from women without endometriosis (n = 30) and eutopic and ectopic endometrial tissues from women with endometriosis (n = 17) were immunostained for TIA-1. Staining intensities were evaluated by histological scores (HSCOREs). The regulation of endometrial TIA-1 expression by immune factors and steroid hormones was studied by treating primary cultured human endometrial stromal cells (HESCs) with vehicle, lipopolysaccharide, TNF-α, IL-6, estradiol, or progesterone, followed by protein blot analyses. HESCs were engineered to over- or underexpress TIA-1 to test whether TIA-1 regulates IL-6 or TNF-α expression in these cells. Results: We found that TIA-1 is expressed in endometrial stromal and glandular cells throughout the menstrual cycle and that this expression is significantly higher in the perimenstrual phase. In women with endometriosis, TIA-1 expression in eutopic and ectopic endometrium was reduced compared with TIA-1 expression in eutopic endometrium of unaffected control women. Lipopolysaccharide and TNF-α increased TIA-1 expression in HESCs in vitro, whereas IL-6 or steroid hormones had no effect. In HESCs, down-regulation of TIA-1 resulted in elevated IL-6 and TNF-α expression, whereas TIA-1 overexpression resulted in decreased IL-6 and TNF-α expression. Conclusions: Endometrial TIA-1 is regulated throughout the menstrual cycle, TIA-1 modulates the expression of immune factors in endometrial cells, and downregulation of TIA-1 may contribute to the pathogenesis of endometriosis. PMID:25140393
Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis
Xie, Ting; Liang, Jiurong; Liu, Ningshan; Huan, Caijuan; Zhang, Yanli; Liu, Weijia; Kumar, Maya; Xiao, Rui; D’Armiento, Jeanine; Metzger, Daniel; Chambon, Pierre; Papaioannou, Virginia E.; Stripp, Barry R.; Jiang, Dianhua
2016-01-01
Progressive tissue fibrosis is a major cause of the morbidity and mortality associated with repeated epithelial injuries and accumulation of myofibroblasts. Successful treatment options are limited by an incomplete understanding of the molecular mechanisms that regulate myofibroblast accumulation. Here, we employed in vivo lineage tracing and real-time gene expression transgenic reporting methods to analyze the early embryonic transcription factor T-box gene 4 (TBX4), and determined that TBX4-lineage mesenchymal progenitors are the predominant source of myofibroblasts in injured adult lung. In a murine model, ablation of TBX4-expressing cells or disruption of TBX4 signaling attenuated lung fibrosis after bleomycin-induced injury. Furthermore, TBX4 regulated hyaluronan synthase 2 production to enable fibroblast invasion of matrix both in murine models and in fibroblasts from patients with severe pulmonary fibrosis. These data identify TBX4 as a mesenchymal transcription factor that drives accumulation of myofibroblasts and the development of lung fibrosis. Targeting TBX4 and downstream factors that regulate fibroblast invasiveness could lead to therapeutic approaches in lung fibrosis. PMID:27400124
Control of lens development by Lhx2-regulated neuroretinal FGFs
Thein, Thuzar; de Melo, Jimmy; Zibetti, Cristina; Clark, Brian S.; Juarez, Felicia
2016-01-01
Fibroblast growth factor (FGF) signaling is an essential regulator of lens epithelial cell proliferation and survival, as well as lens fiber cell differentiation. However, the identities of these FGF factors, their source tissue and the genes that regulate their synthesis are unknown. We have found that Chx10-Cre;Lhx2lox/lox mice, which selectively lack Lhx2 expression in neuroretina from E10.5, showed an early arrest in lens fiber development along with severe microphthalmia. These mutant animals showed reduced expression of multiple neuroretina-expressed FGFs and canonical FGF-regulated genes in neuroretina. When FGF expression was genetically restored in Lhx2-deficient neuroretina of Chx10-Cre;Lhx2lox/lox mice, we observed a partial but nonetheless substantial rescue of the defects in lens cell proliferation, survival and fiber differentiation. These data demonstrate that neuroretinal expression of Lhx2 and neuroretina-derived FGF factors are crucial for lens fiber development in vivo. PMID:27633990
Idrovo Espín, Fabio Marcelo; Peraza-Echeverria, Santy; Fuentes, Gabriela; Santamaría, Jorge M
2012-05-01
The TGA transcription factors belong to the subfamily of bZIP group D that play a major role in disease resistance and development. Most of the TGA identified in Arabidopsis interact with the master regulator of SAR, NPR1 that controls the expression of PR genes. As a first approach to determine the possible involvement of these transcription factors in papaya defense, we characterized Arabidopsis TGA orthologs from the genome of Carica papaya cv. SunUp. Six orthologs CpTGA1 to CpTGA6, were identified. The predicted CpTGA proteins were highly similar to AtTGA sequences and probably share the same DNA binding properties and transcriptional regulation features. The protein sequences alignment evidenced the presence of conserved domains, characteristic of this group of transcription factors. The phylogeny showed that CpTGA evolved into three different subclades associated with defense and floral development. This is the first report of basal expression patterns assessed by RT-PCR, from the whole subfamily of CpTGA members in different tissues from papaya cv. Maradol mature plants. Overall, CpTGA1, CpTGA3 CpTGA6 and CpTGA4 showed a basal expression in all tissues tested; CpTGA2 expressed strongly in all tissues except in petioles while CpTGA5 expressed only in petals and to a lower extent in petioles. Although more detailed studies in anthers and other floral structures are required, we suggest that CpTGA5 might be tissue-specific, and it might be involved in papaya floral development. On the other hand, we report here for the first time, the expression of the whole family of CpTGA in response to salicylic acid (SA). The expression of CpTGA3, CpTGA4 and CpTGA6 increased in response to SA, what would suggest its involvement in the SAR response in papaya. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Son, Bo-Ra; Marquez-Curtis, Leah A; Kucia, Magda; Wysoczynski, Marcin; Turner, A Robert; Ratajczak, Janina; Ratajczak, Mariusz Z; Janowska-Wieczorek, Anna
2006-05-01
Human mesenchymal stem cells (MSCs) are increasingly being considered in cell-based therapeutic strategies for regeneration of various organs/tissues. However, the signals required for their homing and recruitment to injured sites are not yet fully understood. Because stromal-derived factor (SDF)-1 and hepatocyte growth factor (HGF) become up-regulated during tissue/organ damage, in this study we examined whether these factors chemoattract ex vivo-expanded MSCs derived from bone marrow (BM) and umbilical cord blood (CB). Specifically, we investigated the expression by MSCs of CXCR4 and c-met, the cognate receptors of SDF-1 and HGF, and their functionality after early and late passages of MSCs. We also determined whether MSCs express matrix metalloproteinases (MMPs), including membrane type 1 (MT1)-MMP, matrix-degrading enzymes that facilitate the trafficking of hematopoietic stem cells. We maintained expanded BM- or CB-derived MSCs for up to 15-18 passages with monitoring of the expression of 1) various tissue markers (cardiac and skeletal muscle, neural, liver, and endothelial cells), 2) functional CXCR4 and c-met, and 3) MMPs. We found that for up to 15-18 passages, both BM- and CB-derived MSCs 1) express mRNA for cardiac, muscle, neural, and liver markers, as well as the vascular endothelial (VE) marker VE-cadherin; 2) express CXCR4 and c-met receptors and are strongly attracted by SDF-1 and HGF gradients; 3) express MMP-2 and MT1-MMP transcripts and proteins; and 4) are chemo-invasive across the reconstituted basement membrane Matrigel. These in vitro results suggest that the SDF-1-CXCR4 and HGF-c-met axes, along with MMPs, may be involved in recruitment of expanded MSCs to damaged tissues.
Regulator of Calcineurin 1 in Periodontal Disease
Peters, Ulrike; Solominidou, Eleni; Korkmaz, Yüksel; Rüttermann, Stefan; Klocke, Astrid; Flemmig, Thomas Frank; Beikler, Thomas
2016-01-01
Nuclear factor of activated T-cells (NFAT) and NF-kB pathway associated processes are involved in the pathogenesis of various inflammatory disorders, for example, periodontal disease. The activation of these pathways is controlled by the regulator of calcineurin 1 (RCAN1). The aim of this study was to elucidate the role of RCAN1 in periodontal disease. Healthy and inflamed periodontal tissues were analyzed by immunohistochemistry and immunofluorescence using specific rabbit polyclonal anti-RCAN1 antibodies. For expression analysis human umbilical vein endothelial cells (HUVEC) were used. HUVEC were incubated for 2 h with Vascular Endothelial Growth Factor (VEGF) or with wild type and laboratory strains of Porphyromonas gingivalis (P. gingivalis). Expression analysis of rcan1 and cox2 was done by real time PCR using specific primers for rcan1.4 and cox2. The expression of rcan1 was found to be significantly suppressed in endothelial cells of chronically inflamed periodontal tissues compared to healthy controls. Rcan1 and cox2 were significantly induced by VEGF and wild type and laboratory P. gingivalis strains. Interestingly, the magnitude of the rcan1 and cox2 induction was strain dependent. The results of this study indicate that RCAN1 is suppressed in endothelial cells of chronically inflamed periodontal tissues. During an acute infection, however, rcan1 seems to be upregulated in endothelial cells, indicating a modulating role in immune homeostasis of periodontal tissues. PMID:27403036
Ganapathi, T. R.
2017-01-01
Lignin and polyphenols are important cellular components biosynthesized through phenylpropanoid pathway. Phenylpropanoid pathway in plants is regulated by some important transcription factors including R2R3 MYB transcription factors. In this study, we report the cloning and functional characterization of a banana R2R3-MYB transcription factor (MusaMYB31) by overexpression in transgenic banana plants and evaluated its potential role in regulating biosynthesis of lignin and polyphenols. Sequence analysis of MusaMYB31 indicated its clustering with members of subgroup 4 (Sg4) of R2R3MYB family which are well known for their role as repressors of lignin biosynthesis. Expression analysis indicated higher expression of MusaMYB31 in corm and root tissue, known for presence of highly lignified tissue than other organs of banana. Overexpression of MusaMYB31 in banana cultivar Rasthali was carried out and four transgenic lines were confirmed by GUS histochemical staining, PCR analysis and Southern blot. Histological and biochemical analysis suggested reduction of cell wall lignin in vascular elements of banana. Transgenic lines showed alteration in transcript levels of general phenylpropanoid pathway genes including lignin biosynthesis pathway genes. Reduction of total polyphenols content in transgenic lines was in line with the observation related to repression of general phenylpropanoid pathway genes. This study suggested the potential role of MusaMYB31 as repressor of lignin and polyphenols biosynthesis in banana. PMID:28234982
Papi, Alessio; Storci, Gianluca; Guarnieri, Tiziana; De Carolis, Sabrina; Bertoni, Sara; Avenia, Nicola; Sanguinetti, Alessandro; Sidoni, Angelo; Santini, Donatella; Ceccarelli, Claudio; Taffurelli, Mario; Orlandi, Marina; Bonafé, Massimiliano
2013-01-01
Aims Cancer stem cell biology is tightly connected to the regulation of the pro-inflammatory cytokine network. The concept of cancer stem cells “inflammatory addiction” leads to envisage the potential role of anti-inflammatory molecules as new anti-cancer targets. Here we report on the relationship between nuclear receptors activity and the modulation of the pro-inflammatory phenotype in breast cancer stem cells. Methods Breast cancer stem cells were expanded as mammospheres from normal and tumor human breast tissues and from tumorigenic (MCF7) and non tumorigenic (MCF10) human breast cell lines. Mammospheres were exposed to the supernatant of breast tumor and normal mammary gland tissue fibroblasts. Results In mammospheres exposed to the breast tumor fibroblasts supernatant, autocrine tumor necrosis factor-α signalling engenders the functional interplay between peroxisome proliferator activated receptor-α and hypoxia inducible factor-1α (PPARα/HIF1α). The two proteins promote mammospheres formation and enhance each other expression via miRNA130b/miRNA17-5p-dependent mechanism which is antagonized by PPARγ. Further, the PPARα/HIF1α interplay regulates the expression of the pro-inflammatory cytokine interleukin-6, the hypoxia survival factor carbonic anhydrase IX and the plasma lipid carrier apolipoprotein E. Conclusion Our data demonstrate the importance of exploring the role of nuclear receptors (PPARα/PPARγ) in the regulation of pro-inflammatory pathways, with the aim to thwart breast cancer stem cells functioning. PMID:23372804
FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure
Hino, Shinjiro; Sakamoto, Akihisa; Nagaoka, Katsuya; Anan, Kotaro; Wang, Yuqing; Mimasu, Shinya; Umehara, Takashi; Yokoyama, Shigeyuki; Kosai, Ken-ichiro; Nakao, Mitsuyoshi
2012-01-01
Environmental factors such as nutritional state may act on the epigenome that consequently contributes to the metabolic adaptation of cells and the organisms. The lysine-specific demethylase-1 (LSD1) is a unique nuclear protein that utilizes flavin adenosine dinucleotide (FAD) as a cofactor. Here we show that LSD1 epigenetically regulates energy-expenditure genes in adipocytes depending on the cellular FAD availability. We find that the loss of LSD1 function, either by short interfering RNA or by selective inhibitors in adipocytes, induces a number of regulators of energy expenditure and mitochondrial metabolism such as PPARγ coactivator-1α resulting in the activation of mitochondrial respiration. In the adipose tissues from mice on a high-fat diet, expression of LSD1-target genes is reduced, compared with that in tissues from mice on a normal diet, which can be reverted by suppressing LSD1 function. Our data suggest a novel mechanism where LSD1 regulates cellular energy balance through coupling with cellular FAD biosynthesis. PMID:22453831
FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure.
Hino, Shinjiro; Sakamoto, Akihisa; Nagaoka, Katsuya; Anan, Kotaro; Wang, Yuqing; Mimasu, Shinya; Umehara, Takashi; Yokoyama, Shigeyuki; Kosai, Ken-Ichiro; Nakao, Mitsuyoshi
2012-03-27
Environmental factors such as nutritional state may act on the epigenome that consequently contributes to the metabolic adaptation of cells and the organisms. The lysine-specific demethylase-1 (LSD1) is a unique nuclear protein that utilizes flavin adenosine dinucleotide (FAD) as a cofactor. Here we show that LSD1 epigenetically regulates energy-expenditure genes in adipocytes depending on the cellular FAD availability. We find that the loss of LSD1 function, either by short interfering RNA or by selective inhibitors in adipocytes, induces a number of regulators of energy expenditure and mitochondrial metabolism such as PPARγ coactivator-1α resulting in the activation of mitochondrial respiration. In the adipose tissues from mice on a high-fat diet, expression of LSD1-target genes is reduced, compared with that in tissues from mice on a normal diet, which can be reverted by suppressing LSD1 function. Our data suggest a novel mechanism where LSD1 regulates cellular energy balance through coupling with cellular FAD biosynthesis.
Cold exposure down-regulates immune response pathways in ferret aortic perivascular adipose tissue.
Reynés, Bàrbara; van Schothorst, Evert M; García-Ruiz, Estefanía; Keijer, Jaap; Palou, Andreu; Oliver, Paula
2017-05-03
Perivascular adipose tissue (PVAT) surrounds blood vessels and releases paracrine factors, such as cytokines, which regulate local inflammation. The inflammatory state of PVAT has an important role in vascular disease; a pro-inflammatory state has been related with atherosclerosis development, whereas an anti-inflammatory one is protective. Cold exposure beneficially affects immune responses and, could thus impact the pathogenesis of cardiovascular diseases. In this study, we investigated the effects of one-week of cold exposure at 4°C of ferrets on aortic PVAT (aPVAT) versus subcutaneous adipose tissue. Ferrets were used because of the similarity of their adipose tissues to those of humans. A ferret-specific Agilent microarray was designed to cover the complete ferret genome and global gene expression analysis was performed. The data showed that cold exposure altered gene expression mainly in aPVAT. Most of the regulated genes were associated with cell cycle, immune response and gene expression regulation, and were mainly down-regulated. Regarding the effects on immune response, cold acclimation decreased the expression of genes involved in antigen recognition and presentation, cytokine signalling and immune system maturation and activation. This immunosuppressive gene expression pattern was depot-specific, as it was not observed in the inguinal subcutaneous depot. Interestingly, this depression in immune response related genes was also evident in peripheral blood mononuclear cells (PBMC). In conclusion, these results reveal that cold acclimation produces an inhibition of immune response-related pathways in aPVAT, reflected in PBMC, indicative of an anti-inflammatory response, which can potentially be exploited for the enhancement or maintenance of cardiovascular health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verret, Valentin, E-mail: valentin.verret@archimmed.com; Namur, Julien; Ghegediban, Saieda Homayra
The potential mechanisms accounting for the hepatotoxicity of doxorubicin-loaded microspheres in chemoembolization were examined by combining histology and DNA-microarray techniques.The left hepatic arteries of two pigs were embolized with 1 mL of doxorubicin-loaded (25 mg; (DoxMS)) or non-loaded (BlandMS) microspheres. The histopathological effects of the embolization were analyzed at 1 week. RNAs extracted from both the embolized and control liver areas were hybridized onto Agilent porcine microarrays. Genes showing significantly different expression (p < 0.01; fold-change > 2) between two groups were classified by biological process. At 1 week after embolization, DoxMS caused arterial and parenchymal necrosis in 51 andmore » 38 % of embolized vessels, respectively. By contrast, BlandMS did not cause any tissue damage. Up-regulated genes following embolization with DoxMS (vs. BlandMS, n = 353) were mainly involved in cell death, apoptosis, and metabolism of doxorubicin. Down-regulated genes (n = 120) were mainly related to hepatic functions, including enzymes of lipid and carbohydrate metabolisms. Up-regulated genes included genes related to cell proliferation (growth factors and transcription factors), tissue remodeling (MMPs and several collagen types), inflammatory reaction (interleukins and chemokines), and angiogenesis (angiogenic factors and HIF1a pathway), all of which play an important role in liver healing and regeneration. DoxMS caused lesions to the liver, provoked cell death, and disturbed liver metabolism. An inflammatory repair process with cell proliferation, tissue remodeling, and angiogenesis was rapidly initiated during the first week after chemoembolization. This pilot study provides a comprehensive method to compare different types of DoxMS in healthy animals or tumor models.« less
Williams, Gregory M; Dills, Kristin J; Flores, Christian R; Stender, Michael E; Stewart, Kevin M; Nelson, Lauren M; Chen, Albert C; Masuda, Koichi; Hazelwood, Scott J; Klisch, Stephen M; Sah, Robert L
2010-09-17
Mechanisms of articular cartilage growth and maturation have been elucidated by studying composition-function dynamics during in vivo development and in vitro culture with stimuli such as insulin-like growth factor-1 (IGF-1) and transforming growth factor-beta 1 (TGF-beta1). This study tested the hypothesis that IGF-1 and TGF-beta1 regulate immature cartilage compressive moduli and Poisson's ratios in a manner consistent with known effects on tensile properties. Bovine calf articular cartilage from superficial-articular (S) and middle-growth (M) regions were analyzed fresh or following culture in medium with IGF-1 or TGF-beta1. Mechanical properties in confined (CC) and unconfined (UCC) compression, cartilage matrix composition, and explant size were assessed. Culture with IGF-1 resulted in softening in CC and UCC, increased Poisson's ratios, substantially increased tissue volume, and accumulation of glycosaminoglycan (GAG) and collagen (COL). Culture with TGF-beta1 promoted maturational changes in the S layer, including stiffening in CC and UCC and increased concentrations of GAG, COL, and pyridinoline crosslinks (PYR), but little growth. Culture of M layer explants with TGF-beta1 was nearly homeostatic. Across treatment groups, compressive moduli in CC and UCC were positively related to GAG, COL, and PYR concentrations, while Poisson's ratios were negatively related to concentrations of these matrix components. Thus, IGF-1 and TGF-beta1 differentially regulate the compressive mechanical properties and size of immature articular cartilage in vitro. Prescribing tissue growth, maturation, or homeostasis by controlling the in vitro biochemical environment with such growth factors may have applications in cartilage repair and tissue engineering.
Llauradó, Marta; Abal, Miguel; Castellví, Josep; Cabrera, Sílvia; Gil-Moreno, Antonio; Pérez-Benavente, Asumpció; Colás, Eva; Doll, Andreas; Dolcet, Xavier; Matias-Guiu, Xavier; Vazquez-Levin, Mónica; Reventós, Jaume; Ruiz, Anna
2012-04-01
Epithelial ovarian cancer is the most lethal gynecological malignancy and the fifth leading cause of cancer deaths in women in the Western world. ETS transcription factors are known to act as positive or negative regulators of the expression of genes that are involved in various biological processes, including those that control cellular proliferation, differentiation, apoptosis, tissue remodeling, angiogenesis and transformation. ETV5 belongs to the PEA3 subfamily. PEA3 subfamily members are able to activate the transcription of proteases, matrix metalloproteinases and tissue inhibitor of metalloproteases, which is central to both tumor invasion and angiogenesis. Here, we examined the role of the ETV5 transcription factor in epithelial ovarian cancer and we found ETV5 was upregulated in ovarian tumor samples compared to ovarian tissue controls. The in vitro inhibition of ETV5 decreased cell proliferation in serum-deprived conditions, induced EMT and cell migration and decreased cell adhesion to extracellular matrix components. ETV5 inhibition also decreased cell-cell adhesion and induced apoptosis in anchorage-independent conditions. Accordingly, upregulation of ETV5 induced the expression of cell adhesion molecules and enhanced cell survival in a spheroid model. Our findings suggest that the overexpression of ETV5 detected in ovarian cancer cells may contribute to ovarian tumor progression through the ability of ETV5 to enhance proliferation of ovarian cancer cells. In addition, upregulation of ETV5 would play a role in ovarian cancer cell dissemination and metastasis into the peritoneal cavity by protecting ovarian cancer cells from apoptosis and by increasing the adhesion of ovarian cancer cells to the peritoneal wall through the regulation of cell adhesion molecules. Copyright © 2011 UICC.
Collier, Mary E. W.; Ettelaie, Camille
2011-01-01
The mechanisms that regulate the incorporation and release of tissue factors (TFs) into cell-derived microparticles are as yet unidentified. In this study, we have explored the regulation of TF release into microparticles by the phosphorylation of serine residues within the cytoplasmic domain of TF. Wild-type and mutant forms of TF, containing alanine and aspartate substitutions at Ser253 and Ser258, were overexpressed in coronary artery and dermal microvascular endothelial cells and microparticle release stimulated with PAR2 agonist peptide (PAR2-AP). The release of TF antigen and activity was then monitored. In addition, the phosphorylation state of the two serine residues within the released microparticles and the cells was monitored for 150 min. The release of wild-type TF as procoagulant microparticles peaked at 90 min and declined thereafter in both cell types. The TF within these microparticles was phosphorylated at Ser253 but not at Ser258. Aspartate substitution of Ser253 resulted in rapid release of TF antigen but not activity, whereas TF release was reduced and delayed by alanine substitution of Ser253 or aspartate substitution of Ser258. Alanine substitution of Ser258 prolonged the release of TF following PAR2-AP activation. The release of TF was concurrent with phosphorylation of Ser253 and was followed by dephosphorylation at 120 min and phosphorylation of Ser258. We propose a sequential mechanism in which the phosphorylation of Ser253 through PAR2 activation results in the incorporation of TF into microparticles, simultaneously inducing Ser258 phosphorylation. Phosphorylation of Ser258 in turn promotes the dephosphorylation of Ser253 and suppresses the release of TF. PMID:21310953
Lung extracellular matrix and redox regulation
Watson, Walter H.; Ritzenthaler, Jeffrey D.; Roman, Jesse
2016-01-01
Pulmonary fibrosis affects millions worldwide and, even though there has been a significant investment in understanding the processes involved in wound healing and maladaptive repair, a complete understanding of the mechanisms responsible for lung fibrogenesis eludes us, and interventions capable of reversing or halting disease progression are not available. Pulmonary fibrosis is characterized by the excessive expression and uncontrolled deposition of extracellular matrix (ECM) proteins resulting in erosion of the tissue structure. Initially considered an ‘end-stage’ process elicited after injury, these events are now considered pathogenic and are believed to contribute to the course of the disease. By interacting with integrins capable of signal transduction and by influencing tissue mechanics, ECM proteins modulate processes ranging from cell adhesion and migration to differentiation and growth factor expression. In doing so, ECM proteins help orchestrate complex developmental processes and maintain tissue homeostasis. However, poorly controlled deposition of ECM proteins promotes inflammation, fibroproliferation, and aberrant differentiation of cells, and has been implicated in the pathogenesis of pulmonary fibrosis, atherosclerosis and cancer. Considering their vital functions, ECM proteins are the target of investigation, and oxidation–reduction (redox) reactions have emerged as important regulators of the ECM. Oxidative stress invariably accompanies lung disease and promotes ECM expression directly or through the overproduction of pro-fibrotic growth factors, while affecting integrin binding and activation. In vitro and in vivo investigations point to redox reactions as targets for intervention in pulmonary fibrosis and related disorders, but studies in humans have been disappointing probably due to the narrow impact of the interventions tested, and our poor understanding of the factors that regulate these complex reactions. This review is not meant to provide a comprehensive review of this field, but rather to highlight what has been learned and to raise interest in this area in need of much attention. PMID:26938939
Connective Tissue Growth Factor (CTGF) as a Regulator of Lactogenic Differentiation
2009-06-09
1 1.62 Myeloid leukemia factor 1, Mlf1 1.57 ADAMTS-l4 1.55 E2F transcription factor, E2F2 1.44 Tensin 4 -1.5 BCL2/adenovirus E1B interacting... Mlf1 1.57 ADAMTS-l4 1.55 Ras homolog gene family, member B, RhoB 1.48 Cell Differentiation-associated Wingless-type MMTV integration site family...B, relB 1.92 Myeloid leukemia factor 1, Mlf1 1.57 Growth Factor, Catalytic Activity-associated Dual specificity protein phosphatase 8, Dusp8
René, Céline; Taulan, Magali; Iral, Florence; Doudement, Julien; L'Honoré, Aurore; Gerbon, Catherine; Demaille, Jacques; Claustres, Mireille; Romey, Marie-Catherine
2005-01-01
CFTR expression is tightly controlled by a complex network of ubiquitous and tissue-specific cis-elements and trans-factors. To better understand mechanisms that regulate transcription of CFTR, we examined transcription factors that specifically bind a CFTR CArG-like motif we have previously shown to modulate CFTR expression. Gel mobility shift assays and chromatin immunoprecipitation analyses demonstrated the CFTR CArG-like motif binds serum response factor both in vitro and in vivo. Transient co-transfections with various SRF expression vector, including dominant-negative forms and small interfering RNA, demonstrated that SRF significantly increases CFTR transcriptional activity in bronchial epithelial cells. Mutagenesis studies suggested that in addition to SRF other co-factors, such as Yin Yang 1 (YY1) previously shown to bind the CFTR promoter, are potentially involved in the CFTR regulation. Here, we show that functional interplay between SRF and YY1 might provide interesting perspectives to further characterize the underlying molecular mechanism of the basal CFTR transcriptional activity. Furthermore, the identification of multiple CArG binding sites in highly conserved CFTR untranslated regions, which form specific SRF complexes, provides direct evidence for a considerable role of SRF in the CFTR transcriptional regulation into specialized epithelial lung cells. PMID:16170155
Choi, Wonseon; Wolber, Rainer; Gerwat, Wolfram; Mann, Tobias; Batzer, Jan; Smuda, Christoph; Liu, Hongfang; Kolbe, Ludger; Hearing, Vincent J.
2010-01-01
Interactions between melanocytes and neighboring cells in the skin are important in regulating skin color in humans. We recently demonstrated that the less pigmented and thicker skin on the palms and soles is regulated by underlying fibroblasts in those areas, specifically via a secreted factor (DKK1) that modulates Wnt signaling. In this study, we tested the hypothesis that dermal fibroblasts regulate the constitutive skin color of individuals ranging from very light to very dark. We used microarray analysis to compare gene expression patterns in fibroblasts derived from lighter skin types compared to darker skin types, with a focus on secreted proteins. We identified a number of genes that differ dramatically in expression and, among the expressed proteins, neuregulin-1, which is secreted by fibroblasts derived from dark skin, effectively increases the pigmentation of melanocytes in tissue culture and in an artificial skin model and regulates their growth, suggesting that it is one of the major factors determining human skin color. PMID:20736300
Chen, Fa-Ming; Shelton, Richard M; Jin, Yan; Chapple, Iain L C
2009-05-01
Difficulties associated with achieving predictable periodontal regeneration, means that novel techniques need to be developed in order to regenerate the extensive soft and hard tissue destruction that results from periodontitis. Localized delivery of growth factors to the periodontium is an emerging and versatile therapeutic approach, with the potential to become a powerful tool in future regenerative periodontal therapy. Optimized delivery regimes and well-defined release kinetics appear to be logical prerequisites for safe and efficacious clinical application of growth factors and to avoid unwanted side effects and toxicity. While adequate concentrations of growth factor(s) need to be appropriately localized, delivery vehicles are also expected to possess properties such as protein protection, precision in controlled release, biocompatibility and biodegradability, self-regulated therapeutic activity, potential for multiple delivery, and good cell/tissue penetration. Here, current knowledge, recent advances, and future possibilities of growth factor delivery strategies are outlined for periodontal regeneration. First, the role of those growth factors that have been implicated in the periodontal healing/regeneration process, general requirements for their delivery, and the different material types available are described. A detailed discussion follows of current strategies for the selection of devices for localized growth factor delivery, with particular emphasis placed upon their advantages and disadvantages and future prospects for ongoing studies in reconstructing the tooth supporting apparatus.
Samaniego, Rafael; Palacios, Blanca Soler; Domiguez-Soto, Ángeles; Vidal, Carlos; Salas, Azucena; Matsuyama, Takami; Sánchez-Torres, Carmen; de la Torre, Inmaculada; Miranda-Carús, Maria Eugenia; Sánchez-Mateos, Paloma; Puig-Kröger, Amaya
2014-05-01
Vitamin B9, commonly known as folate, is an essential cofactor for one-carbon metabolism that enters cells through three major specialized transporter molecules (RFC, FR, and PCFT), which differ in expression pattern, affinity for substrate, and ligand-binding pH dependency. We now report that the expression of the folate transporters differs between macrophage subtypes and explains the higher accumulation of 5-MTHF-the major folate form found in serum-in M2 macrophages in vitro and in vivo. M1 macrophages display a higher expression of RFC, whereas FRβ and PCFT are preferentially expressed by anti-inflammatory and homeostatic M2 macrophages. These differences are also seen in macrophages from normal tissues involved in folate transit (placenta, liver, colon) and inflamed tissues (ulcerative colitis, RA), as M2-like macrophages from normal tissues express FRβ and PCFT, whereas TNF-α-expressing M1 macrophages from inflamed tissues are RFC+. Besides, we provide evidences that activin A is a critical factor controlling the set of folate transporters in macrophages, as it down-regulates FRβ, up-regulates RFC expression, and modulates 5-MTHF uptake. All of these experiments support the notion that folate handling is dependent on the stage of macrophage polarization. © 2014 Society for Leukocyte Biology.
CIP2A down regulation enhances the sensitivity of pancreatic cancer cells to gemcitabine.
Xu, Peng; Yao, Jie; He, Jin; Zhao, Long; Wang, Xiaodong; Li, Zhennan; Qian, Jianjun
2016-03-22
Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein which participates in inhibiting tumor apoptosis in pancreatic cancer cells. Using immunohistochemical staining, we investigated the expression of CIP2A protein in 72 cases of human pancreatic ductal adenocarcinoma (PDAC) tissue and 27 cases of adjacent normal pancreatic tissue. The positive rate of CIP2A protein expression in pancreatic cancer tissue was70.83 %, which was significantly higher than that in adjacent non- cancerous pancreatic tissue (11.11%). The expression of CIP2A was found to be correlated with TNM stage, but not correlated with age, gender, tumor location, smoking status, alcohol consumption, diabetes, high blood pressure, BMI, tumor size, lymph node metastasis or distant metastases. Kaplan- Meier survival analysis showed that patients with positive CIP2A protein expression had a lower overall survival rate than patients without CIP2A expression. COX regression analysis indicated that expression of CIP2A was an independent prognostic factor for pancreatic ductal adenocarcinoma. In addition, down-regulation of CIP2A inhibited cell proliferation and increased sensitivity to gemcitabine in pancreatic cancer cells by decreasing AKT signaling pathway. Our results indicated that down-regulation of CIP2A could be a novel therapeutic strategy for pancreatic cancer.
Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing.
Piperigkou, Zoi; Götte, Martin; Theocharis, Achilleas D; Karamanos, Nikos K
2017-10-24
Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
FDA regulation of adult stem cell therapies as used in sports medicine.
Chirba, Mary Ann; Sweetapple, Berkley; Hannon, Charles P; Anderson, John A
2015-02-01
In sports medicine, adult stem cells are the subject of great interest. Several uses of stem cells are under investigation including cartilage repair, meniscal regeneration, anterior cruciate ligament reconstruction, and tendinopathy. Extensive clinical and basic science research is warranted as stem cell therapies become increasingly common in clinical practice. In the United States, the Food and Drug Administration (FDA) is responsible for regulating the use of stem cells through its "Human Cells, Tissues, and Cellular and Tissue-Based Products" regulations. This report provides a brief overview of FDA regulation of adult stem cells. Several common clinical case scenarios are then presented that highlight how stem cells are currently being used in sports medicine and how current FDA regulations are likely to affect the physicians who use them. In the process, it explains how a variety of factors in sourcing and handling these cells, particularly the extent of cell manipulation, will affect what a physician can and cannot do without first obtaining the FDA's express approval. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
ENA-78 is an important angiogenic factor in idiopathic pulmonary fibrosis.
Keane, M P; Belperio, J A; Burdick, M D; Lynch, J P; Fishbein, M C; Strieter, R M
2001-12-15
Idiopathic pulmonary fibrosis (IPF) is a chronic and often fatal disorder. Fibroplasia and deposition of extracellular matrix are dependent, in part, on angiogenesis and vascular remodeling. We obtained open lung biopsies from patients undergoing thoracic surgery for reasons other than interstitial lung disease (control) (n = 78) and from patients with IPF (n = 91). We found that levels of epithelial neutrophil-activating peptide 78 (ENA-78) were greater from tissue specimens of IPF patients, as compared with control subjects. When ENA-78 was depleted from IPF tissue specimens, tissue-derived angiogenic activity was markedly reduced. Immunolocalization of ENA-78 demonstrated that hyperplastic Type II pneumocytes and macrophages were the predominant cellular sources of ENA-78. These findings support the notion that ENA-78 may be an important additional factor that regulates angiogenic activity in IPF.
MicroRNAs and the metabolic hallmarks of aging.
Victoria, Berta; Nunez Lopez, Yury O; Masternak, Michal M
2017-11-05
Aging, the natural process of growing older, is characterized by a progressive deterioration of physiological homeostasis at the cellular, tissue, and organismal level. Metabolically, the aging process is characterized by extensive changes in body composition, multi-tissue/multi-organ insulin resistance, and physiological declines in multiple signaling pathways including growth hormone, insulin/insulin-like growth factor 1, and sex steroids regulation. With this review, we intend to consolidate published information about microRNAs that regulate critical metabolic processes relevant to aging. In certain occasions we uncover relationships likely relevant to aging, which has not been directly described before, such as the miR-451/AMPK axis. We have also included a provocative section highlighting the potential role in aging of a new designation of miRNAs, namely fecal miRNAs, recently discovered to regulate intestinal microbiota in mammals. Copyright © 2016. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Zhengyu; Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437; Yang, Qi
2014-03-28
Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depletedmore » of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.« less
The transcription factor AREB1 regulates primary metabolic pathways in tomato fruits
Bastías, Adriana; Osorio, Sonia; Casaretto, José A.
2014-01-01
Tomato fruit development is regulated both by the action of plant hormones and by tight genetic control. Recent studies suggest that abscisic acid (ABA) signalling may affect different aspects of fruit maturation. Previously, it was shown that SlAREB1, an ABA-regulated transcription factor involved in stress-induced responses, is expressed in seeds and in fruit tissues in tomato. Here, the role of SlAREB1 in regulating the expression of genes relevant for primary metabolic pathways and affecting the metabolic profile of the fruit was investigated using transgenic tomato lines. Metabolite profiling using gas chromatography–time of flight mass spectrometry (GC-TOF-MS) and non-targeted liquid chromatography–mass spectrometry (LC-MS) was performed on pericarp tissue from fruits harvested at three stages of fruit development. Principal component analysis of the data could distinguish the metabolite profiles of non-transgenic fruits from those that overexpress and down-regulate SlAREB1. Overexpression of SlAREB1 resulted in increased content of organic acids, hexoses, hexose-phosphates, and amino acids in immature green, mature green, and red ripe fruits, and these modifications correlated with the up-regulation of enzyme-encoding genes involved in primary carbohydrate and amino acid metabolism. A non-targeted LC-MS analysis indicated that the composition of secondary metabolites is also affected in transgenic lines. In addition, gene expression data revealed that some genes associated with fruit ripening are also up-regulated in SlAREB1-overexpressing lines compared with wild-type and antisense lines. Taken together, the results suggest that SlAREB1 participates in the regulation of the metabolic programming that takes place during fruit ripening and that may explain part of the role of ABA in fruit development in tomato. PMID:24659489
Weissinger, Daniel; Tagscherer, Katrin E; Macher-Göppinger, Stephan; Haferkamp, Axel; Wagener, Nina; Roth, Wilfried
2013-10-10
Overexpression of Decoy Receptor 3 (DcR3), a soluble member of the tumor necrosis factor receptor superfamily, is a common event in several types of cancer. In renal cell carcinoma (RCC), DcR3 overexpression is associated with lymph node and distant metastasis as well as a poor prognosis. However, the functional role and regulation of DcR3 expression in RCC is so far unknown. Modulation of DcR3 expression by siRNA and ectopic gene expression, respectively, was performed in ACHN and 769-P RCC cell lines. Functional effects of a modulated DcR3 expression were analyzed with regard to migration, invasion, adhesion, clonogenicity, and proliferation. Furthermore, quantitative RT-PCR and immunoblot analyses were performed to evaluate the expression of downstream mediators of DcR3. In further experiments, luciferase assays, quantitative RT-PCR and immunoblot analyses were applied to study the regulation of DcR3 expression in RCC. Additionally, an ex vivo tissue slice culture technique combined with immunohistochemistry was used to study the regulation of DcR3 expression in human RCC specimens. Here, we show that DcR3 promotes adhesion, migration and invasiveness of RCC cells. The DcR3-dependent increase in cellular invasiveness is accompanied with an up-regulation of integrin alpha 4, matrixmetalloproteinase 7 and urokinase plasminogen activator (uPA). Further, we identified a signaling pathway regulating DcR3 expression in RCC. Using in vitro experiments as well as an ex vivo RCC tissue slice culture model, we demonstrate that expression of DcR3 is regulated in a PI3K/AKT-dependent manner involving the transcription factor nuclear factor of activated T-cells (NFAT). Taken together, our results identify DcR3 as a key driver of tumor cell dissemination and suggest DcR3 as a promising target for rational therapy of RCC.
Haak, Andrew J.; Tsou, Pei-Suen; Amin, Mohammad A.; Ruth, Jeffrey H.; Campbell, Phillip; Fox, David A.; Khanna, Dinesh; Larsen, Scott D.
2014-01-01
Systemic sclerosis (SSc), or scleroderma, similar to many fibrotic disorders, lacks effective therapies. Current trials focus on anti-inflammatory drugs or targeted approaches aimed at one of the many receptor mechanisms initiating fibrosis. In light of evidence that a myocardin-related transcription factor (MRTF)–and serum response factor (SRF)–regulated gene transcriptional program induced by Rho GTPases is essential for myofibroblast activation, we explored the hypothesis that inhibitors of this pathway may represent novel antifibrotics. MRTF/SRF-regulated genes show spontaneously increased expression in primary dermal fibroblasts from patients with diffuse cutaneous SSc. A novel small-molecule inhibitor of MRTF/SRF-regulated transcription (CCG-203971) inhibits expression of connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), and collagen 1 (COL1A2) in both SSc fibroblasts and in lysophosphatidic acid (LPA)–and transforming growth factor β (TGFβ)–stimulated fibroblasts. In vivo treatment with CCG-203971 also prevented bleomycin-induced skin thickening and collagen deposition. Thus, targeting the MRTF/SRF gene transcription pathway could provide an efficacious new approach to therapy for SSc and other fibrotic disorders. PMID:24706986
An update on the regulation of adipogenesis
USDA-ARS?s Scientific Manuscript database
Obesity, a major risk factor for the development of type II diabetes, cardiovascular diseases, and cancer, is rising at an alarming rate worldwide. Obesity is caused by a chronic imbalance between energy expenditure and energy storage by adipose tissue. Adipogenesis is the process governing the form...
Sun, Zheng; Yang, Ping; Liang, Li-yuan; Zhang, Tong; Zhang, Wei-jian; Cao, Jie
2012-11-01
To investigate the expression of connective tissue growth factor (CTGF) in colorectal cancer(CRC) and its association with clinicopathologic parameters and overall survival rate. Fresh tumor tissues and matched distal normal colon tissues were collected from 92 patients diagnosed as CRC by surgical operation. The expression level of CTGF mRNA was quantified by quantitative reverse transcription PCR. Thirty out of 92 pairs of tissue specimens were selected randomly to detect CTGF protein by immunohistochemistry. All the cases were followed up to identify prognostic factors for survival. CTGF mRNA expression was up-regulated in CRC. The positive rate of CTGF protein expression tissues (73.3%) was significantly higher than that in the corresponding normal tissues (23.3%, P<0.01). CTGF expression was lower in patients with lymphatic metastasis or stage III/IIII disease (all P<0.05). A negative association was also observed between the CTGF protein positive rate and tumor infiltration depth (P<0.05). The relative expression of CTGF mRNA in tumor tissues was classified into high and low expression groups. The 5-year cumulative survival rate was lower in patients with low CTGF expression (29.3%) as compared to those with high CTGF expressions (68.3%) (P<0.01). Cox regression analysis revealed that the relative expression level of CTGF was independent factor of overall survival (RR=2.960, 95%CI:1.491-1.587, P<0.01). ROC curve analysis showed that sensitivity and specificity of CTGF mRNA expression for prediction of 5-year survival were 64.9% and 74.5%, respectively. The aberrant expression of CTGF is associated with the malignant biological behaviors of CRC. Low expression of CTGF is associated with worse prognosis of CRC.
Huang, Lulin; Cheng, Tingcai; Xu, Pingzhen; Fang, Ting; Xia, Qingyou
2012-01-01
Transcription factors are present in all living organisms, and play vital roles in a wide range of biological processes. Studies of transcription factors will help reveal the complex regulation mechanism of organisms. So far, hundreds of domains have been identified that show transcription factor activity. Here, 281 reported transcription factor domains were used as seeds to search the transcription factors in genomes of Bombyx mori L. (Lepidoptera: Bombycidae) and four other model insects. Overall, 666 transcription factors including 36 basal factors and 630 other factors were identified in B. mori genome, which accounted for 4.56% of its genome. The silkworm transcription factors' expression profiles were investigated in relation to multiple tissues, developmental stages, sexual dimorphism, and responses to oral infection by pathogens and direct bacterial injection. These all provided rich clues for revealing the transcriptional regulation mechanism of silkworm organ differentiation, growth and development, sexual dimorphism, and response to pathogen infection. PMID:22943524
The Effects of Different Factors on the Behavior of Neural Stem Cells
Huang, Lixiang
2017-01-01
The repair of central nervous system (CNS) injury has been a worldwide problem in the biomedical field. How to reduce the damage to the CNS and promote the reconstruction of the damaged nervous system structure and function recovery has always been the concern of nerve tissue engineering. Multiple differentiation potentials of neural stem cell (NSC) determine the application value for the repair of the CNS injury. Thus, how to regulate the behavior of NSCs becomes the key to treating the CNS injury. So far, a large number of researchers have devoted themselves to searching for a better way to regulate the behavior of NSCs. This paper summarizes the effects of different factors on the behavior of NSCs in the past 10 years, especially on the proliferation and differentiation of NSCs. The final purpose of this review is to provide a more detailed theoretical basis for the clinical repair of the CNS injury by nerve tissue engineering. PMID:29358957
The bHLH transcription factor Hand is regulated by Alk in the Drosophila embryonic gut
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varshney, Gaurav K.; Palmer, Ruth H.
2006-12-29
During embryonic development the midgut visceral muscle is formed by fusion of cells within the visceral mesoderm, a process initiated by the specification of a specialised cell type, the founder cell, within this tissue. Activation of the receptor tyrosine kinase Anaplastic lymphoma kinase (Alk) in the developing visceral muscle of Drosophila melanogaster initiates a signal transduction pathway required for muscle fusion. In this paper, we have investigated downstream components which are regulated by this novel signalling pathway. Here we show that Alk-mediated signal transduction drives the expression of the bHLH transcription factor Hand in vivo. Loss of Alk function resultsmore » in a complete lack of Hand expression in this tissue, whereas Alk gain of function results in an expansion of Hand expression. Finally, we have investigated the process of muscle fusion in the gut of Hand mutant animals and can find no obvious defects in this process, suggesting that Hand is not critical for visceral muscle fusion per se.« less
Vassilakos, George; Philippou, Anastassios; Koutsilieris, Michael
2017-02-01
Insulin-like growth factor-1 (IGF-1) is a pleiotropic factor expressed in various tissues and plays a critical role in skeletal muscle physiology. Alternative splicing of the IGF-1 gene gives rise to different precursor polypeptides (isoforms) which could undergo post-translational cleavage, generating the common mature IGF-1 peptide and different carboxyl terminal extension (E-) peptides, with the fate of the latter being, so far, unknown. The objective if this study was to identify the IGF-1Ec forms or processing product(s), other than mature IGF-1, generated in different human and rodent tissues and particularly in human skeletal muscle after exercise-induced damage. Protein lysates from a wide range of human and rodent tissues were immunoblotted with a rabbit anti-human Ec polyclonal antibody raised against the last 24 amino acids of the C-terminal of the Ec peptide. This antibody can recognize the Ec peptide, both as part of IGF-1Ec and alone, and also the corresponding rodent forms, due to the high homology that the human Ec shares with the rodent Eb. We were able to confirm, for the first time, that the human Ec peptide and its rodent homologous Eb peptide are produced simultaneously with their precursor protein (pro-IGF-1Ec/Eb) in vivo, in a wide range of tissues (e.g. muscle, liver, heart). Proprotein convertase furin digestion of human muscle and liver protein lysates confirmed that the higher molecular form, pro-IGF-1Ec, can be cleaved to produce the free Ec peptide. Furthermore, initial evidence is provided that Ec peptide is differentially regulated during the process of muscle regeneration after exercise-induced damage in humans. The findings of this study possibly imply that the post-translational modification of the IGF-1Ec pro-peptide may regulate the bioavailability and activity of the processing product(s). Copyright © 2016. Published by Elsevier Ltd.
Lai, Biao; Li, Xiao-Jing; Hu, Bing; Qin, Yong-Hua; Huang, Xu-Ming; Wang, Hui-Cong; Hu, Gui-Bing
2014-01-01
The red coloration of litchi fruit depends on the accumulation of anthocyanins. The anthocyanins level in litchi fruit varies widely among cultivars, developmental stages and environmental stimuli. Previous studies on various plant species demonstrate that anthocyanin biosynthesis is controlled at the transcriptional level. Here, we describe a litchi R2R3-MYB transcription factor gene, LcMYB1, which demonstrates a similar sequence as other known anthocyanin regulators. The transcription levels of the LcMYB1 and anthocyanin biosynthetic genes were investigated in samples with different anthocyanin levels. The expression of LcMYB1 was strongly associated with tissue anthocyanin content. LcMYB1 transcripts were only detected in anthocyanin-accumulating tissues and were positively correlated with anthocyanin accumulation in the pericarps of 12 genotypes. ABA and sunlight exposure promoted, whereas CPPU and bagging inhibited the expression of LcMYB1 and anthocyanin accumulation in the pericarp. Cis-elements associated with light responsiveness and abscisic acid responsiveness were identified in the promoter region of LcMYB1. Among the 6 structural genes tested, only LcUFGT was highly correlated with LcMYB1. These results suggest that LcMYB1 controls anthocyanin biosynthesis in litchi and LcUFGT might be the structural gene that is targeted and regulated by LcMYB1. Furthermore, the overexpression of LcMYB1 induced anthocyanin accumulation in all tissues in tobacco, confirming the function of LcMYB1 in the regulation of anthocyanin biosynthesis. The upregulation of NtAn1b in response to LcMYB1 overexpression seems to be essential for anthocyanin accumulation in the leaf and pedicel. In the reproductive tissues of transgenic tobacco, however, increased anthocyanin accumulation is independent of tobacco's endogenous MYB and bHLH transcriptional factors, but associated with the upregulation of specific structural genes. PMID:24466010
Neuroprotective effects of vagus nerve stimulation on traumatic brain injury
Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang
2014-01-01
Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue. PMID:25368644
Robb, Lorraine; Boyle, Kristy; Rakar, Steven; Hartley, Lynne; Lochland, Janelle; Roberts, Andrew W; Alexander, Warren S; Metcalf, Donald
2005-11-08
The suppressor of cytokine-signaling (SOCS) proteins act as negative-feedback inhibitors of cytokine and growth-factor-induced signal transduction. In vivo studies have implicated SOCS3 as a negative regulator of signaling downstream of gp130, the receptor subunit shared by IL-6-like cytokines. Mice lacking SOCS3 die at midgestation because of placental failure, and SOCS3 ablation in a cell-type-specific manner results in changes in the functional outcome of gp130 signaling in response to IL-6. In this study, we show that genetic reduction of leukemia-inhibitory factor (LIF) production by embryo-derived tissues is sufficient to prevent the placental defect. This establishes LIF signaling as a major physiological regulator of trophoblast differentiation in vivo. Mice deficient in both SOCS3 and LIF are born in predicted numbers and appear normal at birth but exhibit failure to thrive and high neonatal mortality. Adult SOCS3-null mice on a LIF-null background succumb to a spontaneous fatal inflammatory disease characterized by neutrophilia and inflammatory-cell tissue infiltrates. The disease spectrum mimics that seen in mice with a conditional deletion of SOCS3 in hematopoietic and endothelial cells, extending the evidence for a major role for SOCS3 in the homeostatic regulation of the inflammatory response and indicates that LIF is not required for this process.
Robb, Lorraine; Boyle, Kristy; Rakar, Steven; Hartley, Lynne; Lochland, Janelle; Roberts, Andrew W.; Alexander, Warren S.; Metcalf, Donald
2005-01-01
The suppressor of cytokine-signaling (SOCS) proteins act as negative-feedback inhibitors of cytokine and growth-factor-induced signal transduction. In vivo studies have implicated SOCS3 as a negative regulator of signaling downstream of gp130, the receptor subunit shared by IL-6-like cytokines. Mice lacking SOCS3 die at midgestation because of placental failure, and SOCS3 ablation in a cell-type-specific manner results in changes in the functional outcome of gp130 signaling in response to IL-6. In this study, we show that genetic reduction of leukemia-inhibitory factor (LIF) production by embryo-derived tissues is sufficient to prevent the placental defect. This establishes LIF signaling as a major physiological regulator of trophoblast differentiation in vivo. Mice deficient in both SOCS3 and LIF are born in predicted numbers and appear normal at birth but exhibit failure to thrive and high neonatal mortality. Adult SOCS3-null mice on a LIF-null background succumb to a spontaneous fatal inflammatory disease characterized by neutrophilia and inflammatory-cell tissue infiltrates. The disease spectrum mimics that seen in mice with a conditional deletion of SOCS3 in hematopoietic and endothelial cells, extending the evidence for a major role for SOCS3 in the homeostatic regulation of the inflammatory response and indicates that LIF is not required for this process. PMID:16258063
Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death
Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J.; Cheng, Qiang (Shawn); D’Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M.; Gonzalez Guzman, Michael J.; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K.; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G.; Ryan, Elizabeth P.; Colacci, Anna Maria; Hamid, Roslida A.; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K.; Woodrick, Jordan; Scovassi, A.Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H.; Lowe, Leroy; Park, Hyun Ho
2015-01-01
Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. PMID:26106145
Nuclear receptors and metabolism: from feast to famine.
Hong, Suk-Hyun; Ahmadian, Maryam; Yu, Ruth T; Atkins, Annette R; Downes, Michael; Evans, Ronald M
2014-05-01
The ability to adapt to cycles of feast and famine is critical for survival. Communication between multiple metabolic organs must be integrated to properly metabolise nutrients. By controlling networks of genes in major metabolic organs, nuclear hormone receptors (NHRs) play central roles in regulating metabolism in a tissue-specific manner. NHRs also establish daily rhythmicity by controlling the expression of core clock genes both centrally and peripherally. Recent findings show that many of the metabolic effects of NHRs are mediated through certain members of the fibroblast growth factor (FGF) family. This review focuses on the roles of NHRs in critical metabolic organs, including adipose tissue, liver and muscle, during the fed and fasted states, as well as their roles in circadian metabolism and downstream regulation of FGFs.
Macrophages in tissue repair, regeneration, and fibrosis
Wynn, Thomas A.; Vannella, Kevin M.
2016-01-01
Inflammatory monocytes and resident tissue macrophages are key regulators of tissue repair, regeneration, and fibrosis. Following tissue injury, monocytes and macrophages undergo marked phenotypic and functional changes to play critical roles during the initiation, maintenance, and resolution phases of tissue repair. Disturbances in macrophage function can lead to aberrant repair, with uncontrolled inflammatory mediator and growth factor production, deficient generation of anti-inflammatory macrophages, or failed communication between macrophages and epithelial cells, endothelial cells, fibroblasts, and stem or tissue progenitor cells all contributing to a state of persistent injury, which may lead to the development of pathological fibrosis. In this review, we discuss the mechanisms that instruct macrophages to adopt pro-inflammatory, pro-wound healing, pro-fibrotic, anti-inflammatory, anti-fibrotic, pro-resolving, and tissue regenerating phenotypes following injury, and highlight how some of these mechanisms and macrophage activation states could be exploited therapeutically. PMID:26982353
Gupta, P; Gupta, R K; Harjai, K
2013-01-01
Damage caused by an organism during infection is attributed to production of virulence factors. Different virulence factors produced by the organism contribute to its pathogenicity, individually. During infectious conditions, role of virulence factors produced by the pathogen is different, depending upon the site of involvement. Pseudomonas aeruginosa is an opportunistic nosocomial pathogen known to cause infections of the respiratory tract, burn wound, urinary tract and eye. Importance of virulence factors produced by P. Aeruginosa during infections such as keratitis, burn wound and respiratory tract is known. The present study was designed to understand the importance of different virulence factors of P. aeruginosa in urinary tract infection in vivo. An ascending urinary tract infection model was established in mice using standard parent strain PAO1 and its isogenic mutant, JP2. Mice were sacrificed at different time intervals and renal tissue homogenates were used for estimation of renal bacterial load and virulence factors. Both parent and mutant strains were able to reach the renal tissue. PAO 1 PAO1 was isolated from renal tissue till day 5 post-infection. However, the mutant strain was unable to colonise the renal tissue. Failure of mutant strain to colonise was attributed to its inability to produce protease, elastase and rhamnolipid. This study suggests that protease, elastase and rhamnolipid contribute to pathogenesis and survival of P. aeruginosa during urinary tract infection.
Luo, Shengzhan D.; Baker, Bruce S.
2015-01-01
“Regulatory evolution,” that is, changes in a gene’s expression pattern through changes at its regulatory sequence, rather than changes at the coding sequence of the gene or changes of the upstream transcription factors, has been increasingly recognized as a pervasive evolution mechanism. Many somatic sexually dimorphic features of Drosophila melanogaster are the results of gene expression regulated by the doublesex (dsx) gene, which encodes sex-specific transcription factors (DSXF in females and DSXM in males). Rapid changes in such sexually dimorphic features are likely a result of changes at the regulatory sequence of the target genes. We focused on the Flavin-containing monooxygenase-2 (Fmo-2) gene, a likely direct dsx target, to elucidate how sexually dimorphic expression and its evolution are brought about. We found that dsx is deployed to regulate the Fmo-2 transcription both in the midgut and in fat body cells of the spermatheca (a female-specific tissue), through a canonical DSX-binding site in the Fmo-2 regulatory sequence. In the melanogaster group, Fmo-2 transcription in the midgut has evolved rapidly, in contrast to the conserved spermathecal transcription. We identified two cis-regulatory modules (CRM-p and CRM-d) that direct sexually monomorphic or dimorphic Fmo-2 transcription, respectively, in the midguts of these species. Changes of Fmo-2 transcription in the midgut from sexually dimorphic to sexually monomorphic in some species are caused by the loss of CRM-d function, but not the loss of the canonical DSX-binding site. Thus, conferring transcriptional regulation on a CRM level allows the regulation to evolve rapidly in one tissue while evading evolutionary constraints posed by other tissues. PMID:25675536
Louie, Ke'ale W; Saera-Vila, Alfonso; Kish, Phillip E; Colacino, Justin A; Kahana, Alon
2017-11-09
Tissue regeneration requires a series of steps, beginning with generation of the necessary cell mass, followed by cell migration into damaged area, and ending with differentiation and integration with surrounding tissues. Temporal regulation of these steps lies at the heart of the regenerative process, yet its basis is not well understood. The ability of zebrafish to dedifferentiate mature "post-mitotic" myocytes into proliferating myoblasts that in turn regenerate lost muscle tissue provides an opportunity to probe the molecular mechanisms of regeneration. Following subtotal excision of adult zebrafish lateral rectus muscle, dedifferentiating residual myocytes were collected at two time points prior to cell cycle reentry and compared to uninjured muscles using RNA-seq. Functional annotation (GAGE or K-means clustering followed by GO enrichment) revealed a coordinated response encompassing epigenetic regulation of transcription, RNA processing, and DNA replication and repair, along with protein degradation and translation that would rewire the cellular proteome and metabolome. Selected candidate genes were phenotypically validated in vivo by morpholino knockdown. Rapidly induced gene products, such as the Polycomb group factors Ezh2 and Suz12a, were necessary for both efficient dedifferentiation (i.e. cell reprogramming leading to cell cycle reentry) and complete anatomic regeneration. In contrast, the late activated gene fibronectin was important for efficient anatomic muscle regeneration but not for the early step of myocyte cell cycle reentry. Reprogramming of a "post-mitotic" myocyte into a dedifferentiated myoblast requires a complex coordinated effort that reshapes the cellular proteome and rewires metabolic pathways mediated by heritable yet nuanced epigenetic alterations and molecular switches, including transcription factors and non-coding RNAs. Our studies show that temporal regulation of gene expression is programmatically linked to distinct steps in the regeneration process, with immediate early expression driving dedifferentiation and reprogramming, and later expression facilitating anatomical regeneration.
Decara, Juan; Arrabal, Sergio; Beiroa, Daniel; Rivera, Patricia; Vargas, Antonio; Serrano, Antonia; Pavón, Francisco Javier; Ballesteros, Joan; Dieguez, Carlos; Nogueiras, Rubén; Rodríguez de Fonseca, Fernando; Suárez, Juan
2016-11-12
To investigate the role of glucagon-like-peptide-1 receptor (GLP-1R) in peripheral lipid metabolism. Both lean and high-fat diet (HFD)-induced obesity (DIO) rats were used to compare the peripheral effects of the subcutaneous and repeated administration of the GLP-1R agonist liraglutide on the expression of key regulators involved in lipid metabolism, β-oxidation and thermogenesis in liver, abdominal muscle, and epididymal white adipose tissue (eWAT). We observed that liraglutide reduced caloric intake, body weight, and plasma levels of triglycerides and VLDL in a diet-independent manner. However, changes in liver fat content and the expression of lipid metabolism regulators were produced in a diet and tissue-dependent manner. In lean rats, liraglutide increased the gene/protein expression of elements involved in lipogenesis (ChREBP, Acaca/ACC, Fasn/FAS, Scd1/SCD1, PPARα/γ), β-oxidation (CPT1b), and thermogenesis (Cox4i1, Ucp1/UCP1) in eWAT and muscle, which suggest an increase in fatty-acid flux and utilization to activate energy expenditure. Regarding DIO rats, the specific reduction of liver lipid content by liraglutide was associated with a decreased expression of main elements involved in lipogenesis (phospho-ACC), peroxisomal β-oxidation (ACOX1), and lipid flux/storage (Pparγ/PPARγ) in liver, which suggest a recovery of lipid homeostasis. Interestingly, the muscle of DIO rats treated with liraglutide showed a decreased expression of PPARγ and the thermogenic factor UCP1. These results help us to better understand the peripheral mechanisms regulating lipid metabolism that underlay the effectiveness of GLP-1 analogues for the treatment of diabetes and obesity. © 2016 BioFactors, 42(6):600-611, 2016. © 2016 International Union of Biochemistry and Molecular Biology.
Li, Yong; Pan, Yiyuan; Gao, Lin; Lu, Guotao; Zhang, Jingzhu; Xie, Xiaochun; Tong, Zhihui; Li, Baiqiang; Li, Gang; Li, Weiqin
2018-01-22
Previous studies have shown that acute inflammation is associated with increased sympathetic activity, which in turn increases the inflammatory response and leads to organ damage. The present study aimed to investigate whether dexmedetomidine administration during acute pancreatitis (AP) lessens pancreatic pathological and functional injury and the inflammatory response, and to explore the underlying mechanisms. Mild pancreatitis was induced in mice with caerulein, and severe pancreatitis was induced with caerulein plus lipopolysaccharide (LPS). After pancreatitis induction, dexmedetomidine at 10 or 20 μg/kg was injected via the tail vein. Pancreatic pathological and functional injury was assessed by histology and serum levels of amylase and lipase, respectively. The inflammatory response was evaluated by determining serum levels of inflammatory factors. The expression of myeloperoxidase (MPO) was examined by immunohistochemistry. The expression of norepinephrine transporter (NET), NLRP3, pro-IL-1β, and interleukin (IL)-1β in pancreatic tissue was detected by Western blot and real-time PCR. Dexmedetomidine at 20 μg/kg significantly attenuated pancreatic pathological injury, reduced serum levels of amylase, lipase, IL-1β, IL-6, and tumor necrosis factor (TNF)-α, and decreased the expression of MPO in pancreatic tissue in both mouse models of pancreatitis. In addition, dexmedetomidine at 20 μg/kg significantly down-regulated the expression of NLRP3, pro-IL-1β, and IL-1β in pancreatic tissue, but up-regulated the expression of NET in both mouse models. Dexmedetomidine attenuates pancreatic injury and inflammatory response in mice with pancreatitis possibly by reducing NLRP3 activation and up-regulating NET expression. Copyright © 2018 Elsevier Inc. All rights reserved.
Klenkler, Bettina; Sheardown, Heather
2004-11-01
A number of growth factors and their associated receptors, including epidermal growth factor, transforming growth factor-beta, keratinocyte growth factor, hepatocyte growth factor, fibroblast growth factor and platelet-derived growth factor have been detected in the anterior segment of the eye. On binding to cellular receptors, these factors activate signalling cascades, which regulate functions including mitosis, differentiation, motility and apoptosis. Production of growth factors by corneal cells and their presence in the tear fluid and aqueous humour is essential for maintenance and renewal of normal tissue in the anterior eye and the prevention of undesirable immune or angiogenic reactions. Growth factors also play a vital role in corneal wound healing, mediating the proliferation of epithelial and stromal tissue and affecting the remodelling of the extracellular matrix (ECM). These functions depend on a complex interplay between growth factors of different types, the ECM, and regulatory mechanisms of the affected cells. Imbalances may lead to deficient wound healing and various ocular pathologies, including edema, neovascularization and glaucoma. Growth factors may be targeted in therapeutic ophthalmic applications, through exogenous application or selective inhibition, and may be used to elicit specific cellular responses to ophthalmic materials. A thorough understanding of the mechanism and function of growth factors and their actions in the complex environment of the anterior eye is required for these purposes. Growth factors, their function and mechanisms of action as well as the interplay between different growth factors based on recent in vitro and in vivo studies are presented.
Engert, Christoph G; Droste, Rita; van Oudenaarden, Alexander; Horvitz, H Robert
2018-04-01
To better understand the tissue-specific regulation of chromatin state in cell-fate determination and animal development, we defined the tissue-specific expression of all 36 C. elegans presumptive lysine methyltransferase (KMT) genes using single-molecule fluorescence in situ hybridization (smFISH). Most KMTs were expressed in only one or two tissues. The germline was the tissue with the broadest KMT expression. We found that the germline-expressed C. elegans protein SET-17, which has a SET domain similar to that of the PRDM9 and PRDM7 SET-domain proteins, promotes fertility by regulating gene expression in primary spermatocytes. SET-17 drives the transcription of spermatocyte-specific genes from four genomic clusters to promote spermatid development. SET-17 is concentrated in stable chromatin-associated nuclear foci at actively transcribed msp (major sperm protein) gene clusters, which we term msp locus bodies. Our results reveal the function of a PRDM9/7-family SET-domain protein in spermatocyte transcription. We propose that the spatial intranuclear organization of chromatin factors might be a conserved mechanism in tissue-specific control of transcription.
Acun, Aylin; Zorlutuna, Pinar
2017-08-01
Studying heart tissue is critical for understanding and developing treatments for cardiovascular diseases. In this work, we fabricated precisely controlled and biomimetic engineered model tissues to study how cell-cell and cell-matrix interactions influence myocardial cell survival upon exposure to pathological level oxidative stress. Specifically, the interactions of endothelial cells (ECs) and cardiomyocytes (CMs), and the role of hypoxia inducible factor-1α (HIF-1α), with its novel alternative regulator, HIF-1α antisense RNA1 (HIF1A-AS1), in these interactions were investigated. We encapsulated CMs in photo-crosslinkable, biomimetic hydrogels with or without ECs, then exposed to oxidative stress followed by normoxia. With precisely controlled microenvironment provided by the model tissues, cell-cell interactions were restricted to be solely through the secreted factors. CM survival after oxidative stress was significantly improved, in the presence of ECs, when cells were in the model tissues that were functionalized with cell attachment motifs. Importantly, the cardioprotective effect of ECs was reduced when HIF-1α expression was knocked down suggesting that HIF-1α is involved in cardioprotection from oxidative damage, provided through secreted factors conferred by the ECs. Using model tissues, we showed that cell survival increased with increased cell-cell communication and enhanced cell-matrix interactions. In addition, whole genome transcriptome analysis showed, for the first time to our knowledge, a possible role for HIF1A-AS1 in oxidative regulation of HIF-1α. We showed that although HIF1A-AS1 knockdown helps CM survival, its effect is overridden by CM-EC bidirectional interactions as we showed that the conditioned media taken from the CM-EC co-cultures improved CM survival, regardless of HIF1A-AS1 expression. Cardiovascular diseases, most of which are associated with oxidative stress, is the most common cause of death worldwide. Thus, understanding the molecular events as well as the role of intercellular communication under oxidative stress is upmost importance in its prevention. In this study we used 3D engineered tissue models to investigate the role of HIF-1α and its regulation in EC-mediated cardioprotection. We showed that EC-mediated protection is only possible when there is a bidirectional crosstalk between ECs and CMs even without physical cell-cell contact. In addition, this protective effect is at least partially related to cell-ECM interactions and HIF-1α, which is regulated by HIF1A-AS1 under oxidative stress. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis
Park, Byung Young; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Hong, Yeonhee; Lee, Hee Suk; Park, Eun Kyu; Hahm, Jong Cheon; Kim, Jin Woo; Shin, Soon Shik; Kim, Min-Young; Yoon, Michung
2015-01-01
It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS) prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP) activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9), whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors. PMID:26599360
David, Rachel; Ma, Liang; Ivetic, Aleksandar; Takesono, Aya; Ridley, Anne J.; Chai, Jian-Guo; Tybulewicz, Victor; Marelli-Berg, Federica M.
2016-01-01
Localization of primed T cells to antigenic tissue is essential for the development of effective immunity. Together with tissue-selective homing molecules, T-cell receptor (TCR)- and CD28-mediated signals have been shown to promote transendothelial migration of specific T cells into non-lymphoid antigen-rich tissue tissue. However, the cellular and molecular requirements for T-cell accumulation to target tissue following their recruitment are largely undefined. The guanine nucleotide exchange factor (GEF) Vav1 has an integral role in coupling TCR and CD28 to signalling pathways that regulate T cell activation and migration. Here, we have investigated the contribution of TCR- and CD28-induced Vav1 activity to the trafficking and localization of primed HY-specific CD4+ T cells to antigenic sites. Severe migratory defects displayed by Vav1-/- T cells in vitro were fully compensated by a combination of shear flow and chemokines, leading to normal recruitment of Vav1-/- T cells in vivo. In contrast, Vav1-/- T-cell retention into antigen-rich tissue was severely impaired, reflecting their inability to engage in sustained TCR- and CD28-mediated interactions with tissue-resident antigen-presenting cells (APCs). This novel function of APC-induced, TCR- and CD28-mediated Vav1 activity in the regulation of effector T-cell immunity highlights its potential as a therapeutic target in T-cell-mediated tissue damage. PMID:19060239
Robinson, Paulette M; Smith, Tyler S; Patel, Dilan; Dave, Meera; Lewin, Alfred S; Pi, Liya; Scott, Edward W; Tuli, Sonal S; Schultz, Gregory S
2012-12-13
Connective tissue growth factor (CTGF) is a fibrogenic cytokine that is up-regulated by TGF-β and mediates most key fibrotic actions of TGF-β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. This study addresses the role of proteolytic processing of CTGF in human corneal fibroblasts (HCF) stimulated with TGF-β, normal ocular tissues and wounded corneas. Proteolytic processing of CTGF in HCF cultures, normal animal eyes, and excimer laser wounded rat corneas were examined by Western blot. The identity of a 21-kDa band was determined by tandem mass spectrometry, and possible alternative splice variants of CTGF were assessed by 5' Rapid Amplification of cDNA Ends (RACE). HCF stimulated by TGF-β contained full length 38-kDa CTGF and fragments of 25, 21, 18, and 13 kDa, while conditioned medium contained full length 38- and a 21-kDa fragment of CTGF that contained the middle "hinge" region of CTGF. Fragmentation of recombinant CTGF incubated in HCF extracts was blocked by the aspartate protease inhibitor, pepstatin. Normal mouse, rat, and rabbit whole eyes and rabbit ocular tissues contained abundant amounts of C-terminal 25- and 21-kDa fragments and trace amounts of 38-kDa CTGF, although no alternative transcripts were detected. All forms of CTGF (38, 25, and 21 kDa) were detected during healing of excimer ablated rat corneas, peaking on day 11. Proteolytic processing of 38-kDa CTGF occurs during corneal wound healing, which may have important implications in regulation of corneal scar formation.
Gorin, Caroline; Rochefort, Gael Y; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Muller, Laurent; Chaussain, Catherine; Germain, Stéphane
2016-03-01
Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF. ©AlphaMed Press.
Background: Epidemiology studies have linked exposure to pollutant particles to
increased cardiovascular mortality and morbidity, but the mechanisms remain unknown.
Objectives: We tested the hypothesis that the ultrafine fraction of ambient pollutant
particle...
Shimba, Shigeki; Ishii, Norimasa; Ohta, Yuki; Ohno, Toshiharu; Watabe, Yuichi; Hayashi, Mitsuaki; Wada, Taira; Aoyagi, Toshinori; Tezuka, Masakatsu
2005-01-01
Brain and muscle Arnt-like protein-1 (BMAL1; also known as MOP3 or Arnt3) is a transcription factor known to regulate circadian rhythm. Here, we established its involvement in the control of adipogenesis and lipid metabolism activity in mature adipocytes. During adipose differentiation in 3T3-L1 cells, the level of BMAL1 mRNA began to increase 4 days after induction and was highly expressed in differentiated cells. In white adipose tissues isolated from C57BL/6J mice, BMAL1 was predominantly expressed in a fraction containing adipocytes, as compared with the stromal-vascular fraction. BMAL1 knockout mice embryonic fibroblast cells failed to be differentiated into adipocytes. Importantly, adding BMAL1 back by adenovirus gene transfer restored the ability of BMAL1 knockout mice embryonic fibroblast cells to differentiate. Knock-down of BMAL1 expression in 3T3-L1 cells by an RNA interference technique allowed the cells to accumulate only minimum amounts of lipid droplets in the cells. Adenovirus-mediated expression of BMAL1 in 3T3-L1 adipocytes resulted in induction of several factors involved in lipogenesis. The promoter activity of these genes was stimulated in a BMAL1-dependent manner. Interestingly, expression of these factors showed clear circadian rhythm in mice adipose tissue. Furthermore, overexpression of BMAL1 in adipocytes increased lipid synthesis activity. These results indicate that BMAL1, a master regulator of circadian rhythm, also plays important roles in the regulation of adipose differentiation and lipogenesis in mature adipocytes. PMID:16093318
Wang, Sainan; Mu, Jinquan; Fan, Zhipeng; Yu, Yan; Yan, Ming; Lei, Gang; Tang, Chunbo; Wang, Zilu; Zheng, Yangyu; Yu, Jinhua; Zhang, Guangdong
2012-05-01
Insulin-like growth factor 1 (IGF-1) plays an important role in the regulation of tooth root development, and stem cells from apical papilla (SCAPs) are responsible for the formation of root pulp and dentin. To date, it remains unclear whether IGF-1 can regulate the function of SCAPs. In this study, SCAPs were isolated and purified from human immature root apex, and stimulated by 100 ng/mL exogenous IGF-1. The effects of IGF-1 on the proliferation and differentiation of SCAPs were subsequently investigated. IGF-1 treated SCAPs presented the morphological and ultrastructural changes. Cell proliferation, alkaline phosphatase (ALP) activity and mineralization capacity of SCAPs were increased by IGF-1. Western blot and quantitative RT-PCR analyses further demonstrated that the expression of osteogenic-related proteins and genes (e.g., alkaline phosphatase, runt-related transcription factor 2, osterix, and osteocalcin) was significantly up-regulated in IGF-1 treated SCAPs, whereas the expression of odontoblast-specific markers (e.g., dentin sialoprotein and dentin sialophosphoprotein) was down-regulated by IGF-1. In vivo results revealed that IGF-1 treated SCAPs mostly gave birth to bone-like tissues while untreated SCAPs mainly generated dentin-pulp complex-like structures after transplantation. The present study revealed that IGF-1 can promote the osteogenic differentiation and osteogenesis capacity of SCAPs, but weaken their odontogenic differentiation and dentinogenesis capability, indicating that IGF-1 treated SCAPs can be used as a potential candidate for bone tissue engineering. Copyright © 2011 Elsevier B.V. All rights reserved.
Mathison, Angela; Escande, Carlos; Calvo, Ezequiel; Seo, Seungmae; White, Thomas; Salmonson, Ann; Faubion, William A.; Buttar, Navtej; Iovanna, Juan; Lomberk, Gwen; Chini, Eduardo N.
2015-01-01
We have previously shown that amino acid changes in the human Kruppel-Like Factor (KLF) 11 protein is associated with the development of maturity onset diabetes of the young VII, whereas complete inactivation of this pathway by the −331 human insulin mutation causes neonatal diabetes mellitus. Here, we report that Klf11−/− mice have decreased circulating insulin levels, alterations in the control of blood glucose and body weight, as well as serum dyslipidemia, but do not develop diabetes. Functional assays using ex vivo liver tissue sections demonstrate that Klf11−/− mice display increased insulin sensitivity. Genome-wide experiments validated by pathway-specific quantitative PCR arrays reveal that the Klf11−/− phenotype associates to alterations in the regulation of gene networks involved in lipid metabolism, in particular those regulated by peroxisome proliferator-activated receptor-γ. Combined, these results demonstrate that the major phenotype given by the whole-body deletion of Klf11 in mouse is not diabetes but increased insulin sensitivity, likely due to altered transcriptional regulation in target tissues. The absence of diabetes in the Klf11−/− mouse either indicates an interspecies difference for the role of this transcription factor in metabolic homeostasis between mouse and humans, or potentially highlights the fact that other molecular factors can compensate for its absence. Nevertheless, the data of this study, gathered at the whole-organism level, further support a role for KLF11 in metabolic processes like insulin sensitivity, which regulation is critical in several forms of diabetes. PMID:26248217
[The role of neurotrophic factors in regeneration of the nervous system].
Machaliński, Bogusław; Lażewski-Banaszak, Piotr; Dąbkowska, Elżbieta; Paczkowska, Edyta; Gołąb-Janowska, Monika; Nowacki, Przemysław
2012-01-01
Neurotrophic factors regulate survival, development, and function of nervous tissue. They act via two different classes of receptors and activation of various signaling pathways in the target cells. Illumination of their physiological role in the maintenance of central nervous system homeostasis as well as regeneration of damaged tissue have ignited expectations to heal neurodegenerative diseases, including amyotrophic late-ral sclerosis and Parkinson disease. Advances in pharmaco-therapy, gene therapy, and stem cell biology have enabled development of novel therapies with application of regenerating cell transplantation. In the foreseeable future, it may lead to the establishment of safe and effective ways of treatment of these severe and currently incurable diseases.
Rollenhagen, C; Asin, S N
2011-11-01
Knowledge about early innate immune responses at the mucosal surfaces of the female genital tract is important in understanding the pathogenesis of heterosexual transmission of human immunodeficiency virus type-1 (HIV-1). As estradiol decreases inflammatory responses, we postulated that an estradiol-deficient state such as post-menopause could enhance expression of inflammatory factors that stimulate HIV-1 replication. We compare HIV-1 integration, transcription, and viral p24 release levels among ectocervical tissues obtained from pre- and post-menopausal donors. We detected enhanced HIV-1 p24 release levels in post- compared with pre-menopausal tissues (P<0.0001), but saw no difference in HIV-1 integration. Overall, 100% of post-menopausal tissues exhibited levels of HIV-1 transcription above background compared with only 60% of pre-menopausal tissues. Increased HIV-1 transcription was associated with enhanced interleukin (IL)-1β, IL-6, monocyte chemotactic protein-1, growth-regulated oncogene-α, and interferon-γ-inducible protein-10 expression. Neutralization and nuclear factor-κB-targeting small-interfering RNA experiments both decreased HIV-1 transcription, suggesting that the early inflammatory response may facilitate HIV-1 replication in ex vivo ectocervical tissues from post-menopausal women.
Molecular regulation of effector and memory T cell differentiation
Chang, John T; Wherry, E John; Goldrath, Ananda W
2015-01-01
Immunological memory is a cardinal feature of adaptive immunity and an important goal of vaccination strategies. Here we highlight advances in the understanding of the diverse T lymphocyte subsets that provide acute and long-term protection from infection. These include new insights into the transcription factors, and the upstream ‘pioneering’ factors that regulate their accessibility to key sites of gene regulation, as well as metabolic regulators that contribute to the differentiation of effector and memory subsets; ontogeny and defining characteristics of tissue-resident memory lymphocytes; and origins of the remarkable heterogeneity exhibited by activated T cells. Collectively, these findings underscore progress in delineating the underlying pathways that control diversification in T cell responses but also reveal gaps in the knowledge, as well as the challenges that arise in the application of this knowledge to rationally elicit desired T cell responses through vaccination and immunotherapy. PMID:25396352
Regulation of the Hippo Pathway Transcription Factor TEAD.
Lin, Kimberly C; Park, Hyun Woo; Guan, Kun-Liang
2017-11-01
The TEAD transcription factor family is best known for transcriptional output of the Hippo signaling pathway and has been implicated in processes such as development, cell growth and proliferation, tissue homeostasis, and regeneration. Our understanding of the functional importance of TEADs has increased dramatically since its initial discovery three decades ago. The majority of our knowledge of TEADs is in the context of Hippo signaling as nuclear DNA-binding proteins passively activated by Yes-associated protein (YAP) and transcriptional activator with PDZ-binding domain (TAZ), transcription coactivators downstream of the Hippo pathway. However, recent studies suggest that TEAD itself is actively regulated. Here, we highlight evidence demonstrating Hippo-independent regulation of TEADs and the potential impacts these studies may have on new cancer therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Association of growth factors, HIF-1 and NF-κB expression with proteasomes in endometrial cancer.
Spirina, Ludmila V; Yunusova, Nataliya V; Kondakova, Irina V; Kolomiets, Larisa A; Koval, Valeriya D; Chernyshova, Alena L; Shpileva, Olga V
2012-09-01
Insulin-like growth factors (IGFs), vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 (HIF-1), and nuclear factor kappa-B (NF-κB) are known to play an important role in endometrial cancer pathogenesis. However, the proteolytic regulation of these factors is still poorly understood. We studied the correlation between chymotrypsin-like activity of proteasomes and IGF-I, IGF-II, VEGF, HIF-1, and NF-κB levels in endometrial cancer tissues. It was shown that the total activity of proteasomes and the activity of the 20S and 26S proteasomes in malignant tumors were significantly higher than those observed in the normal endometrium. Negative relationships between the proteasome activity and IGF-I, HIF-1, and NF-κB p50 expressions were found. High 20S proteasome activity was associated with increase of HIF-1 level. Positive relationships between IGF-I expression and two classic forms of NF-κB p50 and p65 in endometrial cancer were revealed. The data obtained indicate the possible proteasomal regulation of growth and transcription factors. The major pool of IGF-I is located in the extracellular space, and it is likely that extracellular proteasomes also take part in the regulation of the IGF-I content. The present data show the evidence of proteasome regulation of growth and nuclear factors that can play an important role in cancer pathogenesis.
de Dios Barajas-López, Juan; Serrato, Antonio Jesús; Olmedilla, Adela; Chueca, Ana; Sahrawy, Mariam
2007-11-01
Plant thioredoxins (TRXs) are involved in redox regulation of a wide variety processes and usually exhibit organ specificity. We report strong evidence that chloroplastic TRXs are localized in heterotrophic tissues and suggest some ways in which they might participate in several metabolic and developmental processes. The promoter regions of the chloroplastic f and m1 TRX genes were isolated from a pea (Pisum sativum) plant genomic bank. Histochemical staining for beta-glucuronidase (GUS) in transgenic homozygous Arabidopsis (Arabidopsis thaliana) plants showed preferential expression of the 444-bp PsTRXf1 promoter in early seedlings, stems, leaves, and roots, as well as in flowers, stigma, pollen grains, and filaments. GUS activity under the control of the 1,874-bp PsTRXm1 promoter was restricted to the leaves, roots, seeds, and flowers. To gain insight into the translational regulation of these genes, a series of deletions of 5' elements in both TRX promoters were analyzed. The results revealed that a 126-bp construct of the PsTRXf2 promoter was unable to reproduce the expression pattern observed with the full promoter. The differences in expression and tissue specificity between PsTRXm1 and the deleted promoters PsTRXm2 and PsTRXm3 suggest the existence of upstream positive or negative regulatory regions that affect tissue specificity, sucrose metabolism, and light regulation. PsTRXm1 expression is finely regulated by light and possibly by other metabolic factors. In situ hybridization experiments confirmed new localizations of these chloroplastic TRX transcripts in vascular tissues and flowers, and therefore suggest possible new functions in heterotrophic tissues related to cell division, germination, and plant reproduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Demin; Li, Hongji; Zhou, Bo
2012-06-15
Highlights: Black-Right-Pointing-Pointer Conjugated linoleic acid supplementation suppresses perilipin1 in epididymal fat. Black-Right-Pointing-Pointer Conjugated linoleic acid inhibits promoter activity of perilipin1 in 3T3-L1 cells. Black-Right-Pointing-Pointer Conjugated linoleic acids elevate basal but blunt hormone-stimulated lipolysis. -- Abstract: Perilipin1, a coat protein of lipid droplet, plays a key role in adipocyte lipolysis and fat formation of adipose tissues. However, it is not clear how the expression of perilipin1 is affected in the decreased white adipose tissues (WAT) of mice treated with dietary supplement of conjugated linoleic acids (CLA). Here we obtained lipodystrophic mice by dietary administration of CLA which exhibited reduced epididymal (EPI)more » WAT, aberrant adipocytes and decreased expression of leptin in this tissue. We found both transcription and translation of perilipin1 was suppressed significantly in EPI WAT of CLA-treated mice compared to that of control mice. The gene expression of negative regulator tumor necrosis factor {alpha} (TNF{alpha}) and the positive regulator Peroxisome Proliferator-Activated Receptor-{gamma} (PPAR{gamma}) of perilipin1 was up-regulated and down-regulated, respectively. In cultured 3T3-L1 cells the promoter activity of perilipin1 was dramatically inhibited in the presence of CLA. Using ex vivo experiment we found that the basal lipolysis was elevated but the hormone-stimulated lipolysis blunted in adipose explants of CLA-treated mice compared to that of control mice, suggesting that the reduction of perilipin1 in white adipose tissues may at least in part contribute to CLA-mediated alternation of lipolysis of WAT.« less
Keyhaninejad, Neda; Curry, Jeanne; Romero, Joslynn; O'Connell, Mary A
2014-02-01
Accumulation of capsaicinoids in the placental tissue of ripening chile (Capsicum spp.) fruit follows the coordinated expression of multiple biosynthetic enzymes producing the substrates for capsaicin synthase. Transcription factors are likely agents to regulate expression of these biosynthetic genes. Placental RNAs from habanero fruit (Capsicum chinense) were screened for expression of candidate transcription factors; with two candidate genes identified, both in the ERF family of transcription factors. Characterization of these transcription factors, Erf and Jerf, in nine chile cultivars with distinct capsaicinoid contents demonstrated a correlation of expression with pungency. Amino acid variants were observed in both ERF and JERF from different chile cultivars; none of these changes involved the DNA binding domains. Little to no transcription of Erf was detected in non-pungent Capsium annuum or C. chinense mutants. This correlation was characterized at an individual fruit level in a set of jalapeño (C. annuum) lines again with distinct and variable capsaicinoid contents. Both Erf and Jerf are expressed early in fruit development, 16-20 days post-anthesis, at times prior to the accumulation of capsaicinoids in the placental tissues. These data support the hypothesis that these two members of the complex ERF family participate in regulation of the pungency phenotype in chile. Copyright © 2013. Published by Elsevier Ireland Ltd.
Keyhaninejad, Neda; Curry, Jeanne; Romero, Joslynn; O’Connell, Mary A.
2013-01-01
Accumulation of capsaicinoids in the placental tissue of ripening chile (Capsicum spp.) fruit follows the coordinated expression of multiple biosynthetic enzymes producing the substrates for capsaicin synthase. Transcription factors are likely agents to regulate expression of these biosynthetic genes. Placental RNAs from habanero fruit (C. chinense) were screened for expression of candidate transcription factors; with two candidate genes identified, both in the ERF family of transcription factors. Characterization of these transcription factors, Erf and Jerf, in nine chile cultivars with distinct capsaicinoid contents demonstrated a correlation of expression with pungency. Amino acid variants were observed in both ERF and JERF from different chile cultivars; none of these changes involved the DNA binding domains. Little to no transcription of Erf was detected in non-pungent C. annuum or C. chinense mutants. This correlation was characterized at an individual fruit level in a set of jalapeño (C. annuum) lines again with distinct and variable capsaicinoid contents. Both Erf and Jerf are expressed early in fruit development, 16–20 days post-anthesis, at times prior to the accumulation of capsaicinoids in the placental tissues. These data support the hypothesis that these two members of the complex ERF family participate in regulation of the pungency phenotype in chile. PMID:24388515
Shelton, Dale; Stranne, Maria; Mikkelsen, Lisbeth; Pakseresht, Nima; Welham, Tracey; Hiraka, Hideki; Tabata, Satoshi; Sato, Shusei; Paquette, Suzanne; Wang, Trevor L.; Martin, Cathie; Bailey, Paul
2012-01-01
Isoflavonoids are a class of phenylpropanoids made by legumes, and consumption of dietary isoflavonoids confers benefits to human health. Our aim is to understand the regulation of isoflavonoid biosynthesis. Many studies have shown the importance of transcription factors in regulating the transcription of one or more genes encoding enzymes in phenylpropanoid metabolism. In this study, we coupled bioinformatics and coexpression analysis to identify candidate genes encoding transcription factors involved in regulating isoflavonoid biosynthesis in Lotus (Lotus japonicus). Genes encoding proteins belonging to 39 of the main transcription factor families were examined by microarray analysis of RNA from leaf tissue that had been elicited with glutathione. Phylogenetic analyses of each transcription factor family were used to identify subgroups of proteins that were specific to L. japonicus or closely related to known regulators of the phenylpropanoid pathway in other species. R2R3MYB subgroup 2 genes showed increased expression after treatment with glutathione. One member of this subgroup, LjMYB14, was constitutively overexpressed in L. japonicus and induced the expression of at least 12 genes that encoded enzymes in the general phenylpropanoid and isoflavonoid pathways. A distinct set of six R2R3MYB subgroup 2-like genes was identified. We suggest that these subgroup 2 sister group proteins and those belonging to the main subgroup 2 have roles in inducing isoflavonoid biosynthesis. The induction of isoflavonoid production in L. japonicus also involves the coordinated down-regulation of competing biosynthetic pathways by changing the expression of other transcription factors. PMID:22529285
Applications of Microscale Technologies for Regenerative Dentistry
Hacking, S.A.; Khademhosseini, A.
2009-01-01
While widespread advances in tissue engineering have occurred over the past decade, many challenges remain in the context of tissue engineering and regeneration of the tooth. For example, although tooth development is the result of repeated temporal and spatial interactions between cells of ectoderm and mesoderm origin, most current tooth engineering systems cannot recreate such developmental processes. In this regard, microscale approaches that spatially pattern and support the development of different cell types in close proximity can be used to regulate the cellular microenvironment and, as such, are promising approaches for tooth development. Microscale technologies also present alternatives to conventional tissue engineering approaches in terms of scaffolds and the ability to direct stem cells. Furthermore, microscale techniques can be used to miniaturize many in vitro techniques and to facilitate high-throughput experimentation. In this review, we discuss the emerging microscale technologies for the in vitro evaluation of dental cells, dental tissue engineering, and tooth regeneration. Abbreviations: AS, adult stem cell; BMP, bone morphogenic protein; ECM, extracellular matrix; ES, embryonic stem cell; HA, hydroxyapatite; FGF-2, fibroblast growth factor; iPS, inducible pleuripotent stem cell; IGF-1, insulin-like growth factor; PDGF, platelet-derived growth factor; PDMS, poly(dimethylsiloxane); PGA, polyglycolate; PGS, polyglycerol sebacate; PLGA, poly-L-lactate-co-glycolate; PLL, poly-L-lactate; RGD, Arg-Gly-Asp attachment site; TCP, tricalcium phosphate; TGF-β, transforming growth factor beta; and VEGF, vascular endothelial growth factor. PMID:19493883
ATP-binding cassette transporters in reproduction: a new frontier
Bloise, E.; Ortiga-Carvalho, T.M.; Reis, F.M.; Lye, S.J.; Gibb, W.; Matthews, S.G.
2016-01-01
BACKGROUND The transmembrane ATP-binding cassette (ABC) transporters actively efflux an array of clinically relevant compounds across biological barriers, and modulate biodistribution of many physiological and pharmacological factors. To date, over 48 ABC transporters have been identified and shown to be directly and indirectly involved in peri-implantation events and fetal/placental development. They efflux cholesterol, steroid hormones, vitamins, cytokines, chemokines, prostaglandins, diverse xenobiotics and environmental toxins, playing a critical role in regulating drug disposition, immunological responses and lipid trafficking, as well as preventing fetal accumulation of drugs and environmental toxins. METHODS This review examines ABC transporters as important mediators of placental barrier functions and key reproductive processes. Expression, localization and function of all identified ABC transporters were systematically reviewed using PubMed and Google Scholar websites to identify relevant studies examining ABC transporters in reproductive tissues in physiological and pathophysiological states. Only reports written in English were incorporated with no restriction on year of publication. While a major focus has been placed on the human, extensive evidence from animal studies is utilized to describe current understanding of the regulation and function of ABC transporters relevant to human reproduction. RESULTS ABC transporters are modulators of steroidogenesis, fertilization, implantation, nutrient transport and immunological responses, and function as ‘gatekeepers’ at various barrier sites (i.e. blood-testes barrier and placenta) against potentially harmful xenobiotic factors, including drugs and environmental toxins. These roles appear to be species dependent and change as a function of gestation and development. The best-described ABC transporters in reproductive tissues (primarily in the placenta) are the multidrug transporters p-glycoprotein and breast cancer-related protein, the multidrug resistance proteins 1 through 5 and the cholesterol transporters ABCA1 and ABCG1. CONCLUSIONS The ABC transporters have various roles across multiple reproductive tissues. Knowledge of efflux direction, tissue distribution, substrate specificity and regulation of the ABC transporters in the placenta and other reproductive tissues is rapidly expanding. This will allow better understanding of the disposition of specific substrates within reproductive tissues, and facilitate development of novel treatments for reproductive disorders as well as improved approaches to protecting the developing fetus. PMID:26545808
Substrate Stiffness Regulates the Development of Left-Right Asymmetry in Cell Orientation.
Bao, Yuanye; Huang, Yaozhun; Lam, Miu Ling; Xu, Ting; Zhu, Ninghao; Guo, Zhaobin; Cui, Xin; Lam, Raymond H W; Chen, Ting-Hsuan
2016-07-20
Left-right (LR) asymmetry of tissue/organ structure is a morphological feature essential for many tissue functions. The ability to incorporate the LR formation in constructing tissue/organ replacement is important for recapturing the inherent tissue structure and functions. However, how LR asymmetry is formed remains largely underdetermined, which creates significant hurdles to reproduce and regulate the formation of LR asymmetry in an engineering context. Here, we report substrate rigidity functioning as an effective switch that turns on the development of LR asymmetry. Using micropatterned cell-adherent stripes on rigid substrates, we found that cells collectively oriented at a LR-biased angle relative to the stripe boundary. This LR asymmetry was initiated by a LR-biased migration of cells at stripe boundary, which later generated a velocity gradient propagating from stripe boundary to the center. After a series of cell translocations and rotations, ultimately, an LR-biased cell orientation within the micropatterned stripe was formed. Importantly, this initiation and propagation of LR asymmetry was observed only on rigid but not on soft substrates, suggesting that the LR asymmetry was regulated by rigid substrate probably through the organization of actin cytoskeleton. Together, we demonstrated substrate rigidity as a determinant factor that mediates the self-organizing LR asymmetry being unfolded from single cells to multicellular organization. More broadly, we anticipate that our findings would pave the way for rebuilding artificial tissue constructs with inherent LR asymmetry in the future.
Assaf, S; Hazard, D; Pitel, F; Morisson, M; Alizadeh, M; Gondret, F; Diot, C; Vignal, A; Douaire, M; Lagarrigue, S
2003-01-01
Sterol regulatory element binding protein-1 and -2 (SREBP-1 and -2) are key transcription factors involved in the biosynthesis of cholesterol and fatty adds. The SREBP have mainly been studied in rodents in which lipogenesis is regulated in both liver and adipose tissue. There is, however, a paucity of information on birds, in which lipogenesis occurs essentially in the liver as in humans. As a prelude to the investigation of the role of SREBP in lipid metabolism regulation in chicken, we sequenced the cDNA, encoding the mature nuclear form of chicken SREBP-2 protein, mapped SREBP-1 and -2 genes and studied their tissue expressions. The predicted chicken SREBP-2 amino acid sequence shows a 77 to 79% identity with human, mouse, and hamster homologues, with a nearly perfect conservation in all the important functional motifs, basic, helix-loop-helix, and leucine zipper (bHLH-Zip) region as well as cleavage sites. As in the human genome, SREBP-1 and SREBP-2 chicken genes are located on two separate chromosomes, respectively microchromosome 14 and macrochromosome 1. Tissue expression data show that SREBP-1 and SREBP-2 are expressed in a wide variety of tissues in chicken. However, unlike SREBP-2, SREBP-1 is expressed preferentially in the liver and uropygial gland, suggesting an important role of SREBP-1 in the regulation of lipogenesis in avian species.
Fang, Qi; Yao, Shuang; Luo, Guanghua; Zhang, Xiaoying
2018-01-01
While tamoxifen (TAM) is used for treating estrogen receptor (ER)a-positive breast cancer patients, its anti-breast cancer mechanisms are not completely elucidated. This study aimed to examine effects of 4-hydroxyltamoxifen (4-OH-TAM) on ER-positive (ER+) breast cancer MCF-7 cell growth and gene expression profiles. MCF-7 cell growth was inhibited by 4-OH-TAM dose-dependently with IC50 of 29 μM. 332 genes were up-regulated while 320 genes were down-regulated. The mRNA levels of up-regulated genes including STAT1, STAT2, EIF2AK2, TGM2, DDX58, PARP9, SASH1, RBL2 and USP18 as well as down-regulated genes including CCDN1, S100A9, S100A8, ANXA1 and PGR were confirmed by quantitative real-time PCR (qRT-PCR). In human breast tumor tissues, mRNA levels of EIF2Ak2, USP18, DDX58, RBL2, STAT2, PGR, S1000A9, and CCND1 were significantly higher in ER+- than in ER--breast cancer tissues. The mRNA levels of EIF2AK2, TGM2, USP18, DDX58, PARP9, STAT2, STAT1, PGR and CCND1 were all significantly higher in ER+-tumor tissues than in their corresponding tumor-adjacent tissues. These genes, except PGR and CCND1 which were down-regulated, were also up-regulated in ER+ MCF-7 cells by 4-OH-TAM. Total 14 genes mentioned above are involved in regulation of cell proliferation, apoptosis, cell cycles, and estrogen and interferon signal pathways. Bioinformatics analysis also revealed other novel and important regulatory factors that are associated with these genes and involved in the mentioned functional processes. This study has paved a foundation for elucidating TAM anti-breast cancer mechanisms in E2/ER-dependent and independent pathways. PMID:29416786
Fang, Qi; Yao, Shuang; Luo, Guanghua; Zhang, Xiaoying
2018-01-05
While tamoxifen (TAM) is used for treating estrogen receptor (ER)a-positive breast cancer patients, its anti-breast cancer mechanisms are not completely elucidated. This study aimed to examine effects of 4-hydroxyltamoxifen (4-OH-TAM) on ER-positive (ER + ) breast cancer MCF-7 cell growth and gene expression profiles. MCF-7 cell growth was inhibited by 4-OH-TAM dose-dependently with IC 50 of 29 μM. 332 genes were up-regulated while 320 genes were down-regulated. The mRNA levels of up-regulated genes including STAT1, STAT2, EIF2AK2, TGM2, DDX58, PARP9, SASH1, RBL2 and USP18 as well as down-regulated genes including CCDN1, S100A9, S100A8, ANXA1 and PGR were confirmed by quantitative real-time PCR (qRT-PCR). In human breast tumor tissues, mRNA levels of EIF2Ak2, USP18, DDX58, RBL2, STAT2, PGR, S1000A9, and CCND1 were significantly higher in ER + - than in ER - -breast cancer tissues. The mRNA levels of EIF2AK2, TGM2, USP18, DDX58, PARP9, STAT2, STAT1, PGR and CCND1 were all significantly higher in ER + -tumor tissues than in their corresponding tumor-adjacent tissues. These genes, except PGR and CCND1 which were down-regulated, were also up-regulated in ER + MCF-7 cells by 4-OH-TAM. Total 14 genes mentioned above are involved in regulation of cell proliferation, apoptosis, cell cycles, and estrogen and interferon signal pathways. Bioinformatics analysis also revealed other novel and important regulatory factors that are associated with these genes and involved in the mentioned functional processes. This study has paved a foundation for elucidating TAM anti-breast cancer mechanisms in E2/ER-dependent and independent pathways.
Interplay between TGF-β signaling and receptor tyrosine kinases in tumor development.
Shi, Qiaoni; Chen, Ye-Guang
2017-10-01
Transforming growth factor-β (TGF-β) signaling regulates cell proliferation, differentiation, migration and death, and plays a critical role in embryogenesis and tissue homeostasis. Its deregulation results in various diseases including tumor formation. Receptor tyrosine kinases (RTKs), such as epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR), also play key roles in the development and progression of many types of tumors. It has been realized that TGF-β signaling and RTK pathways interact with each other and their interplay is important for cancer development. They are mutually regulated and cooperatively modulate cell survival and migration, epithelial-mesenchymal transition, and tumor microenvironment to accelerate tumorigenesis and tumor metastasis. RTKs can modulate Smad-dependent transcription or cooperate with TGF-β to potentiate its oncogenic activity, while TGF-β signaling can in turn control RTK signaling by regulating their activities or expression. This review summarizes current understandings of the interplay between TGF-β signaling and RTKs and its influence on tumor development.
The role of vascular endothelial growth factor-B in metabolic homoeostasis: current evidence.
Zafar, Mohammad Ishraq; Zheng, Juan; Kong, Wen; Ye, Xiaofeng; Gou, Luoning; Regmi, Anita; Chen, Lu-Lu
2017-08-31
It has been shown that adipose tissue and skeletal muscles in lean individuals respond to meal-induced hyperinsulinemia by increase in perfusion, the effect not observed in patients with metabolic syndrome. In conditions of hyperglycaemia and hypertriglyceridemia, this insufficient vascularization leads to the liberation of reactive oxygen species (ROS), and disruption of nitric oxide (NO) synthesis and endothelial signalling responsible for the uptake of circulating fatty acids (FAs), whose accumulation in skeletal muscles and adipose tissue is widely associated with the impairment of insulin signalling. While the angiogenic role of VEGF-A and its increased circulating concentrations in obesity have been widely confirmed, the data related to the metabolic role of VEGF-B are diverse. However, recent discoveries indicate that this growth factor may be a promising therapeutic agent in patients with metabolic syndrome. Preclinical studies agree over two crucial metabolic effects of VEGF-B: (i) regulation of FAs uptake and (ii) regulation of tissue perfusion via activation of VEGF-A/vascular endothelial growth factor receptor (VEGFR) 2 (VEGFR2) pathway. While in some preclinical high-fat diet studies, VEGF-B overexpression reverted glucose intolerance and stimulated fat burning, in others it further promoted accumulation of lipids and lipotoxicity. Data from clinical studies point out the changes in circulating or tissue expression levels of VEGF-B in obese compared with lean patients. Potentially beneficial effects of VEGF-B, achieved through enhanced blood flow (increased availability of insulin and glucose uptake in target organs) and decreased FAs uptake (prevention of lipotoxicity and improved insulin signalling), and its safety for clinical use, remain to be clarified through future translational research. © 2017 The Author(s).
Barau, Joan; Grandis, Adriana; Carvalho, Vinicius Miessler de Andrade; Teixeira, Gleidson Silva; Zaparoli, Gustavo Henrique Alcalá; do Rio, Maria Carolina Scatolin; Rincones, Johana; Buckeridge, Marcos Silveira; Pereira, Gonçalo Amarante Guimarães
2015-01-01
Witches’ broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant–fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation. PMID:25540440
Akirin1 (Mighty), a novel promyogenic factor regulates muscle regeneration and cell chemotaxis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salerno, Monica Senna; Dyer, Kelly; Bracegirdle, Jeremy
2009-07-15
Akirin1 (Mighty) is a downstream target gene of myostatin and has been shown to be a promyogenic factor. Although expressed in many tissues, akirin1 is negatively regulated by myostatin specifically in skeletal muscle tissue. In this manuscript we have characterized the possible function of akirin1 in postnatal muscle growth. Molecular and immunohistological analyses indicated that while low levels of akirin1 are associated with quiescent satellite cells (SC), higher levels of akirin1 are detected in activated proliferating SC indicating that akirin1 could be associated with satellite cell activation. In addition to SC, macrophages also express akirin1, and increased expression of akirin1more » resulted in more efficient chemotaxis of both macrophages and myoblasts. Akirin1 appears to regulate chemotaxis of both macrophages and myoblasts by reorganising actin cytoskeleton, leading to more efficient lamellipodia formation via a PI3 kinase dependent pathway. Expression analysis during muscle regeneration also indicated that akirin1 expression is detected very early (day 2) in regenerating muscle, and expression gradually peaks to coincide the nascent myotube formation stage of muscle regeneration. Based on these results we propose that akirin1 could be acting as a transducer of early signals of muscle regeneration. Thus, we speculate that myostatin regulates key steps of muscle regeneration including chemotaxis of inflammatory cells, SC activation and migration through akirin1.« less
2013-01-01
Background The ACVR1 gene encodes a type I receptor for bone morphogenetic proteins (BMPs). Mutations in the ACVR1 gene are associated with Fibrodysplasia Ossificans Progressiva (FOP), a rare and extremely disabling disorder characterized by congenital malformation of the great toes and progressive heterotopic endochondral ossification in muscles and other non-skeletal tissues. Several aspects of FOP pathophysiology are still poorly understood, including mechanisms regulating ACVR1 expression. This work aimed to identify regulatory elements that control ACVR1 gene transcription. Methods and results We first characterized the structure and composition of human ACVR1 gene transcripts by identifying the transcription start site, and then characterized a 2.9 kb upstream region. This region showed strong activating activity when tested by reporter gene assays in transfected cells. We identified specific elements within the 2.9 kb region that are important for transcription factor binding using deletion constructs, co-transfection experiments with plasmids expressing selected transcription factors, site-directed mutagenesis of consensus binding-site sequences, and by protein/DNA binding assays. We also characterized a GC-rich minimal promoter region containing binding sites for the Sp1 transcription factor. Conclusions Our results showed that several transcription factors such as Egr-1, Egr-2, ZBTB7A/LRF, and Hey1, regulate the ACVR1 promoter by binding to the -762/-308 region, which is essential to confer maximal transcriptional activity. The Sp1 transcription factor acts at the most proximal promoter segment upstream of the transcription start site. We observed significant differences in different cell types suggesting tissue specificity of transcriptional regulation. These findings provide novel insights into the molecular mechanisms that regulate expression of the ACVR1 gene and that could be targets of new strategies for future therapeutic treatments. PMID:24047559
Regulation of Innate Lymphoid Cells by Aryl Hydrocarbon Receptor
Li, Shiyang; Bostick, John W.; Zhou, Liang
2018-01-01
With striking similarity to their adaptive T helper cell counterparts, innate lymphoid cells (ILCs) represent an emerging family of cell types that express signature transcription factors, including T-bet+ Eomes+ natural killer cells, T-bet+ Eomes− group 1 ILCs, GATA3+ group 2 ILCs, RORγt+ group 3 ILCs, and newly identified Id3+ regulatory ILC. ILCs are abundantly present in barrier tissues of the host (e.g., the lung, gut, and skin) at the interface of host–environment interactions. Active research has been conducted to elucidate molecular mechanisms underlying the development and function of ILCs. The aryl hydrocarbon receptor (Ahr) is a ligand-dependent transcription factor, best known to mediate the effects of xenobiotic environmental toxins and endogenous microbial and dietary metabolites. Here, we review recent progresses regarding Ahr function in ILCs. We focus on the Ahr-mediated cross talk between ILCs and other immune/non-immune cells in host tissues especially in the gut. We discuss the molecular mechanisms of the action of Ahr expression and activity in regulation of ILCs in immunity and inflammation, and the interaction between Ahr and other pathways/transcription factors in ILC development and function with their implication in disease. PMID:29354125
Boyle, Kristy; Robb, Lorraine
2008-01-01
Cytokines are an integral part of the adaptive and innate immune responses. The signalling pathways triggered by receptor engagement translate exposure to cytokine into a coordinated biological response. To contain these responses, the initiation, duration and magnitude of the signal is controlled at multiple levels. SOCS (suppressor of cytokine signalling) proteins act in a negative feedback loop to inhibit signal transduction. Mice with a deletion of SOCS3 die at midgestion due to placental insufficiency. SOCS3-null placentae have increased numbers of mature trophoblast giant cells, disruption of the labyrinthine layer and a decrease in the spongiotrophoblast layer. Genetic crosses have revealed that the phenotype is due to dysregulation of signalling downstream of the leukaemia inhibitory factor (LIF) receptor alpha (LIFRα) and that the ligand responsible for this, LIF, is produced by embryonic tissues and acts in a paracrine fashion. These observations highlight the role of LIF as an extrinsic factor regulating trophoblast differentiation in vivo. The creation of mice with conditional deletion of SOCS3 in different tissues has also uncovered critical roles for SOCS3 in the regulation of IL-6, G-CSF and leptin signalling. PMID:17408753
Boyle, Kristy; Robb, Lorraine
2008-01-01
Cytokines are an integral part of the adaptive and innate immune responses. The signalling pathways triggered by receptor engagement translate exposure to cytokine into a coordinated biological response. To contain these responses, the initiation, duration and magnitude of the signal is controlled at multiple levels. Suppressor of cytokine signalling (SOCS) proteins act in a negative feedback loop to inhibit signal transduction. Mice with a deletion of SOCS3 die at midgestion due to placental insufficiency. SOCS3-null placentae have increased numbers of mature trophoblast giant cells, disruption of the labyrinthine layer and a decrease in the spongiotrophoblast layer. Genetic crosses have revealed that the phenotype is due to dysregulation of signalling downstream of the leukaemia inhibitory factor (LIF) receptor alpha (LIFRalpha) and that the ligand responsible for this, LIF, is produced by embryonic tissues and acts in a paracrine fashion. These observations highlight the role of LIF as an extrinsic factor regulating trophoblast differentiation in vivo. The creation of mice with conditional deletion of SOCS3 in different tissues has also uncovered critical roles for SOCS3 in the regulation of IL-6, G-CSF and leptin signalling.
Montastier, Emilie; Déjean, Sébastien; Le Gall, Caroline; Saris, Wim H M; Langin, Dominique; Viguerie, Nathalie
2014-01-01
Weight loss reduces risk factors associated with obesity. However, long-term metabolic improvement remains a challenge. We investigated quantitative gene expression of subcutaneous adipose tissue in obese individuals and its relationship with low calorie diet and long term weight maintenance induced changes in insulin resistance. Three hundred eleven overweight and obese individuals followed a dietary protocol consisting of an 8-week low calorie diet followed by a 6-month ad libitum weight-maintenance diet. Individuals were clustered according to insulin resistance trajectories assessed using homeostasis model assessment of insulin resistance (HOMA-IR) index. Adipose tissue mRNA levels of 267 genes selected for regulation according to obesity, metabolic status and response to dieting was assessed using high throughput RT-qPCR. A combination of discriminant analyses was used to identify genes with regulation according to insulin resistance trajectories. Partial correlation was used to control for change in body mass index. Three different HOMA-IR profile groups were determined. HOMA-IR improved during low calorie diet in the 3 groups. At the end of the 6-month follow-up, groups A and B had reduced HOMA-IR by 50%. In group C, HOMA-IR had returned to baseline values. Genes were differentially expressed in the adipose tissue of individuals according to groups but a single gene, CIDEA, was common to all phases of the dietary intervention. Changes in adipose tissue CIDEA mRNA levels paralleled variations in insulin sensitivity independently of change in body mass index. Overall, CIDEA was up-regulated in adipose tissue of individuals with successful long term insulin resistance relapse and not in adipose tissue of unsuccessful individuals. The concomitant change in adipose tissue CIDEA mRNA levels and insulin sensitivity suggests a beneficial role of adipose tissue CIDEA in long term glucose homeostasis, independently of weight variation. ClinicalTrials.gov NCT00390637.
The effect of serum on monocyte tissue factor generation.
Edwards, R L; Perla, D
1984-09-01
Human monocytes generate the procoagulant tissue factor (MTF) following exposure to a variety of immune stimuli in vitro. The generation of MTF is modified by T cells, lymphokines, and immunoregulatory lipoproteins, and recent studies have shown that MTF can be activated in an immune-specific manner following exposure to antigen. We have examined the role of serum factors in the regulation of MTF generation. Low concentrations (less than 1%) of heat-inactivated normal human serum greatly enhanced MTF generation in cultures of normal peripheral blood mononuclear cells. The stimulatory effect was observed in cultures of both unstimulated cells and cells exposed to bacterial lipopolysaccharide. Stimulation was not observed at high serum concentrations (greater than 10%) and could not be explained by endotoxin contamination or activation of the assay system. Stimulatory activity was present in plasma and BaSO4-adsorbed plasma as well as autologous and allogeneic serum, was not abolished by removal of serum lipoproteins, and did not require the presence of T cells for its expression. Sera from 28 different normal volunteers were screened for stimulatory activity and demonstrated a wide variation in potency. These results suggest that a potent factor is present in sera that enhances the expression of MTF activity in vitro. This factor is distinct from previously described lipoprotein regulators and may play a role in the initiation of coagulation in both normal hemostasis and pathologic states.
Ehashi, Tomo; Takemura, Taro; Hanagata, Nobutaka; Minowa, Takashi; Kobayashi, Hisatoshi; Ishihara, Kazuhiko; Yamaoka, Tetsuji
2014-01-01
To design scaffolds for tissue regeneration, details of the host body reaction to the scaffolds must be studied. Host body reactions have been investigated mainly by immunohistological observations for a long time. Despite of recent dramatic development in genetic analysis technologies, genetically comprehensive changes in host body reactions are hardly studied. There is no information about host body reactions that can predict successful tissue regeneration in the future. In the present study, porous polyethylene scaffolds were coated with bioactive collagen or bio-inert poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB) and were implanted subcutaneously and compared the host body reaction to those substrates by normalizing the result using control non-coat polyethylene scaffold. The comprehensive analyses of early host body reactions to the scaffolds were carried out using a DNA microarray assay. Within numerous genes which were expressed differently among these scaffolds, particular genes related to inflammation, wound healing, and angiogenesis were focused upon. Interleukin (IL)-1β and IL-10 are important cytokines in tissue responses to biomaterials because IL-1β promotes both inflammation and wound healing and IL-10 suppresses both of them. IL-1β was up-regulated in the collagen-coated scaffold. Collagen-specifically up-regulated genes contained both M1- and M2-macrophage-related genes. Marked vessel formation in the collagen-coated scaffold was occurred in accordance with the up-regulation of many angiogenesis-inducible factors. The DNA microarray assay provided global information regarding the host body reaction. Interestingly, several up-regulated genes were detected even on the very bio-inert PMB-coated surfaces and those genes include inflammation-suppressive and wound healing-suppressive IL-10, suggesting that not only active tissue response but also the inert response may relates to these genetic regulations. PMID:24454803
Mechanical forces and their second messengers in stimulating cell growth in vitro
NASA Technical Reports Server (NTRS)
Vandenburgh, Herman H.
1992-01-01
Mechanical forces play an important role in modulating the growth of a number of different tissues including skeletal muscle, smooth muscle, cardiac muscle, bone, endothelium, epithelium, and lung. As interest increases in the molecular mechanisms by which mechanical forces are transduced into growth alterations, model systems are being developed to study these processes in tissue culture. This paper reviews the current methods available for mechanically stimulating tissue cultured cells. It then outlines some of the putative 'mechanogenic' second messengers involved in altering cell growth. Not surprisingly, many mechanogenic second messengers are the same as those involved in growth factor-induced cell growth. It is hypothesized that from an evolutionary standpoint, some second messenger systems may have initially evolved for unicellular organisms to respond to physical forces such as gravity and mechanical perturbation in their environment. As multicellular organisms came into existence, they appropriated these mechanogenic second messenger cascades for cellular regulation by growth factors.
De Zoysa, Mahanama; Nikapitiya, Chamilani; Oh, Chulhong; Whang, Ilson; Lee, Jae-Seong; Jung, Sung-Ju; Choi, Cheol Young; Lee, Jehee
2010-01-01
The lipopolysaccharide-induced TNF-alpha factor (LITAF) and Rel family nuclear factor kappaB (Rel/NF-kB) are two important transcription factors which play major roles in the regulating inflammatory cytokine, apoptosis and immune related genes. Here, we report the discovery of disk abalone LITAF (AbLITAF) and Rel/NF-kB (AbRel/NF-kB) homologues and their immune responses. Full-length cDNA of AbLITAF consists of 441 bp open reading frame (ORF) that translates into putative peptide of 147 aa. Analysis of AbLITAF sequence showed it has characteristic LITAF (Zn(+2)) binding domain with two CXXC motifs. Phylogenetic analysis results further revealed that AbLITAF is a member of LITAF family. AbRel/NF-kB is 584 aa protein that contains several characteristic motifs including Rel homology domain (RHD), Rel protein signature, DNA binding motif, nuclear localization signal (NLS) and transcription factor immunoglobulin - like fold (TIG) similar to their invertebrate and vertebrate counterparts. Tissue specific analysis results showed that both AbLITAF and AbRel/NF-kB mRNA was expressed ubiquitously in all selected tissues in constitutive manner. However, constitutive expression of AbLITAF was higher than AbRel/NF-kB in all tissues except mantle. Upon immune challenge by bacteria (Vibrio alginolyticus, Vibrio parahemolyticus and Lysteria monocytogenes) and viral hemoragic septicemia virus (VHSV), AbLITAF showed the significant up-regulation in gills while AbRel/NF-kB transcription was not change significantly. Based on transcriptional response against immune challenge, we could suggest that regulation of TNF-alpha expression may have occurred mainly by LITAF activation rather than NF-kB in disk abalone. The cumulative data from other molluscs and our data with reference to TNF-alpha, LITAF and Rel/NF-kB from disk abalone provide strong evidence that LITAF and NF-kB are independent pathways likely to occur throughout the Phylum mollusca. 2010 Elsevier Ltd. All rights reserved.
Commercial considerations in tissue engineering
Mansbridge, Jonathan
2006-01-01
Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well. PMID:17005024
Commercial considerations in tissue engineering.
Mansbridge, Jonathan
2006-10-01
Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well.
Ochsner, Scott A; Watkins, Christopher M; LaGrone, Benjamin S; Steffen, David L; McKenna, Neil J
2010-10-01
Nuclear receptors (NRs) are ligand-regulated transcription factors that recruit coregulators and other transcription factors to gene promoters to effect regulation of tissue-specific transcriptomes. The prodigious rate at which the NR signaling field has generated high content gene expression and, more recently, genome-wide location analysis datasets has not been matched by a committed effort to archiving this information for routine access by bench and clinical scientists. As a first step towards this goal, we searched the MEDLINE database for studies, which referenced either expression microarray and/or genome-wide location analysis datasets in which a NR or NR ligand was an experimental variable. A total of 1122 studies encompassing 325 unique organs, tissues, primary cells, and cell lines, 35 NRs, and 91 NR ligands were retrieved and annotated. The data were incorporated into a new section of the Nuclear Receptor Signaling Atlas Molecule Pages, Transcriptomics and Cistromics, for which we designed an intuitive, freely accessible user interface to browse the studies. Each study links to an abstract, the MEDLINE record, and, where available, Gene Expression Omnibus and ArrayExpress records. The resource will be updated on a regular basis to provide a current and comprehensive entrez into the sum of transcriptomic and cistromic research in this field.
Osteen, K G; Rodgers, W H; Gaire, M; Hargrove, J T; Gorstein, F; Matrisian, L M
1994-01-01
The hallmark of the menstrual cycle is extensive steroid-dependent tissue turnover. Estrogen mediates endometrial cell growth and structural remodeling, whereas progesterone suppresses estrogen-dependent proliferation and promotes cellular differentiation. In nonfertile cycles, tissue degradation and menstruation occur as a consequence of steroidal deprivation as the ovarian corpus luteum fails. Stromal-epithelial interactions are recognized as a necessary component in mediating steroid-induced endometrial turnover. Specific mRNAs for metalloproteinases of the stromelysin family are expressed during endometrial growth and menstrual breakdown but are absent in the progestin-dominated secretory phase. This expression pattern suggests involvement of stromelysins in remodeling the extracellular matrix of the endometrium during tissue growth and breakdown and implicates progesterone in the suppression of these enzymes. We examined the regulation of endometrial stromelysins in explant cultures and found no acute effect of estradiol on their expression, whereas progesterone was a potent inhibitor of stromelysin expression. Progesterone also suppressed stromelysin expression in cultures of isolated stromal cells, but epithelial cells were progesterone insensitive. Coculture of recombined stromal and epithelial cells restored steroidal suppression of the epithelial-specific metalloproteinase. Our data confirm that progesterone inhibits endometrial stromelysins and further demonstrate the necessity for a stromal-derived factor(s) as a mediator of steroid suppression of an epithelial metalloproteinase. Images PMID:7937850
USDA-ARS?s Scientific Manuscript database
Insulin acts as the major regulator of the fasting-to-fed metabolic transition by altering substrate metabolism, promoting energy storage, and helping activate protein synthesis. In addition to its glucoregulatory and other metabolic properties, insulin can also act as a growth factor. The metabolic...
Anto Michel, Nathaly; Colberg, Christian; Buscher, Konrad; Sommer, Björn; Pramod, Akula Bala; Ehinger, Erik; Dufner, Bianca; Hoppe, Natalie; Pfeiffer, Katharina; Marchini, Timoteo; Willecke, Florian; Stachon, Peter; Hilgendorf, Ingo; Heidt, Timo; von Zur Muhlen, Constantin; von Elverfeldt, Dominik; Pfeifer, Dietmar; Schüle, Roland; Kintscher, Ulrich; Brachs, Sebastian; Ley, Klaus; Bode, Christoph; Zirlik, Andreas; Wolf, Dennis
2018-03-02
The coincidence of inflammation and metabolic derangements in obese adipose tissue has sparked the concept of met-inflammation. Previous observations, however, suggest that inflammatory pathways may not ultimately cause dysmetabolism. We have revisited the relationship between inflammation and metabolism by testing the role of TRAF (tumor necrosis receptor-associated factor)-1, an inhibitory adapter of inflammatory signaling of TNF (tumor necrosis factor)-α, IL (interleukin)-1β, and TLRs (toll-like receptors). Mice deficient for TRAF-1, which is expressed in obese adipocytes and adipose tissue lymphocytes, caused an expected hyperinflammatory phenotype in adipose tissue with enhanced adipokine and chemokine expression, increased leukocyte accumulation, and potentiated proinflammatory signaling in macrophages and adipocytes in a mouse model of diet-induced obesity. Unexpectedly, TRAF-1 -/- mice were protected from metabolic derangements and adipocyte growth, failed to gain weight, and showed improved insulin resistance-an effect caused by increased lipid breakdown in adipocytes and UCP (uncoupling protein)-1-enabled thermogenesis. TRAF-1-dependent catabolic and proinflammatory cues were synergistically driven by β3-adrenergic and inflammatory signaling and required the presence of both TRAF-1-deficient adipocytes and macrophages. In human obesity, TRAF-1-dependent genes were upregulated. Enhancing TRAF-1-dependent inflammatory pathways in a gain-of-function approach protected from metabolic derangements in diet-induced obesity. These findings identify TRAF-1 as a regulator of dysmetabolism in mice and humans and question the pathogenic role of chronic inflammation in metabolism. © 2018 American Heart Association, Inc.
Breast-feeding regulates immune system development via transforming growth factor-β in mice pups.
Sakaguchi, Keita; Koyanagi, Akemi; Kamachi, Fumitaka; Harauma, Akiko; Chiba, Asako; Hisata, Ken; Moriguchi, Toru; Shimizu, Toshiaki; Miyake, Sachiko
2018-03-01
Breast milk contains important nutrients and immunoregulatory factors that are essential for newborn infants. Recently, epidemiological studies suggested that breast-feeding prevents a wide range of infectious diseases and lowers the incidence of infant allergic diseases. To examine the effects of breast milk on immunological development in infancy, we established an artificial rearing system for hand-feeding mice and compared mouse pups fed with either breast milk or milk substitute. All mice were killed at 14 days of age and immune cells in the thymus, spleen, and small intestine were examined on flow cytometry. The number of thymocytes was higher whereas that of total immune cells of peripheral lymphoid tissues was lower in mice fed breast milk compared with milk substitute-fed mice. In peripheral lymphoid tissues, the proportion of B cells was higher and that of CD8 + T cells, macrophages, dendritic cells, and granulocytes was significantly lower in breast milk-fed mice. The same alteration in immune cells of the thymus and peripheral lymphoid tissues in milk substitute-fed mice was also observed in pups reared by mother mice treated with anti-transforming growth factor-β (anti-TGF-β) monoclonal antibody. Breast milk regulates the differentiation and expansion of innate and adaptive immune cells partly due to TGF-β. Hence, TGF-β in breast milk may be a new therapeutic target for innate immune system-mediated diseases of infancy. © 2017 Japan Pediatric Society.
Fazio, Elena N; Young, Claire C; Toma, Jelena; Levy, Michael; Berger, Kurt R; Johnson, Charis L; Mehmood, Rashid; Swan, Patrick; Chu, Alphonse; Cregan, Sean P; Dilworth, F Jeffrey; Howlett, Christopher J; Pin, Christopher L
2017-09-01
Pancreatitis is a debilitating disease of the exocrine pancreas that, under chronic conditions, is a major susceptibility factor for pancreatic ductal adenocarcinoma (PDAC). Although down-regulation of genes that promote the mature acinar cell fate is required to reduce injury associated with pancreatitis, the factors that promote this repression are unknown. Activating transcription factor 3 (ATF3) is a key mediator of the unfolded protein response, a pathway rapidly activated during pancreatic insult. Using chromatin immunoprecipitation followed by next-generation sequencing, we show that ATF3 is bound to the transcriptional regulatory regions of >30% of differentially expressed genes during the initiation of pancreatitis. Of importance, ATF3-dependent regulation of these genes was observed only upon induction of pancreatitis, with pathways involved in inflammation, acinar cell differentiation, and cell junctions being specifically targeted. Characterizing expression of transcription factors that affect acinar cell differentiation suggested that acinar cells lacking ATF3 maintain a mature cell phenotype during pancreatitis, a finding supported by maintenance of junctional proteins and polarity markers. As a result, Atf3 -/- pancreatic tissue displayed increased tissue damage and inflammatory cell infiltration at early time points during injury but, at later time points, showed reduced acinar-to-duct cell metaplasia. Thus our results reveal a critical role for ATF3 as a key regulator of the acinar cell transcriptional response during injury and may provide a link between chronic pancreatitis and PDAC. © 2017 Fazio et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Lim, Seol-Wa; Lee, Dong-Ryung; Choi, Bong-Keun; Kim, Hong-Suk; Yang, Seung Hwan; Suh, Joo-Won; Kim, Kyung Soo
2016-12-01
To evaluate the possible protective effect of Citrus aurantium peel extract (CAE) against apoptosis in cholestatic liver fibrosis induced by bile duct ligation in mice. Male ICR mice were divided to 5 groups: 1) Control group (Sham-operated mice), 2) Cholestatic liver injury group induced by bile duct ligation (BDL), 3) BDL mice treated with silymarin (200 mg/kg) for 4 weeks, 4) BDL mice treated with 50 mg/kg CAE for 4 weeks, 5) BDL mice treated with 200 mg/kg CAE for 4 weeks. Mice were sacrificed and liver fibrosis was evaluated by serum and hepatic tissue biochemistry tests and liver histopathological examination. Effects of CAE on inflammation and apoptosis gene regulation were investigated through real-time PCR. CAE effect on lipid metabolism related signaling was determined by western blot analysis. In BDL mice, administration of CAE for 4 weeks markedly attenuated liver fibrosis based on histopathological alteration. Serum and hepatic tissue biochemistry results revealed that CAE (50 and 200 mg/kg) decreased the levels of alanine transaminase, aspartate transaminase, gamma-glutamyl transferase, total bilirubin, nitric oxide, and thiobarbituric acid reactive substances. Real-time PCR and western blot analysis showed that CAE regulated inflammation, apoptosis, and lipid metabolism factors increased by BDL. Interleukin family, tumor necrosis factor α, and related apoptosis factors mRNA levels were increased by BDL treatment. However, these increases were suppressed by CAE administration. In addition, CAE effectively increased phosphorylation of AMP-activated protein kinase, nuclear factor E2-related factor 2, and related cytoprotective proteins. CAE can efficiently regulate BDL-induced liver injury with antioxidant, anti-inflammatory, and anti-apoptotic activities. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Song, Sang-Kee; Kwak, Su-Hwan; Chang, Soo Chul; Schiefelbein, John; Lee, Myeong Min
2015-11-06
In multicellular organisms, cell fates are specified through differential regulation of transcription. Epidermal cell fates in the Arabidopsis thaliana root are precisely specified by several transcription factors, with the GLABRA2 (GL2) homeodomain protein acting at the farthest downstream in this process. To better understand the regulation of GL2 expression, we ectopically expressed WEREWOLF (WER) and ENHANCER OF GLABRA3 (EGL3) in various tissues and examined GL2 expression. Here we show that WER expressed ubiquitously in the root induced GL2 expression only in the root epidermis, whereas co-expression of WER and EGL3 induced GL2 expression in the corresponding tissues. We also found that GL3 accumulated in the nucleus at the early meristematic region and EGL3 accumulated later in the nucleus of epidermal cells. We further found that ectopic expression of WER and EGL3 in ground tissues inhibited GL2 expression in the epidermis. Our results suggest that the co-expression of WER and EGL3 is sufficient for driving GL2 and CPC expression. Copyright © 2015 Elsevier Inc. All rights reserved.
Tujioka, Kazuyo; Lyou, Sunok; Sano, Atushi; Hayase, Kazutoshi; Yokogoshi, Hidehiko
2004-10-01
The purpose of present study was to determine whether the regulation of urea synthesis is mediated through changes in supply of amino acids by protein synthesis and whether the concentration of ammonia, or activities of amino acid catabolizing enzymes, regulate urea synthesis when the dietary protein quality is manipulated. Experiments were done on three groups of rats given diets containing 10 g gluten, 10 g casein or 10 g whole egg protein/100 g for 10 d. The urinary excretion of urea, and the liver concentrations of glutamate, serine and alanine increased with a decrease in quality of dietary protein. The fractional and absolute rates of protein synthesis in tissues declined with the decrease in quality of dietary protein quality. The ammonia concentration in plasma and liver, and activities of hepatic amino acid catabolizing enzymes was not related to urea excretion under these conditions. These results suggest that the lower protein synthesis seen in tissues of rats given the lower quality of protein is likely to be one of the factors to increasing the supply of amino acids and stimulating urea synthesis.
Vazquez-Hernandez, Maria; Romero, Irene; Escribano, M. I.; Merodio, Carmen; Sanchez-Ballesta, M. T.
2017-01-01
C-repeat/dehydration-responsive element binding factors (CBF/DREB) are transcription factors which play a role in improving plant cold stress resistance and recognize the DRE/CRT element in the promoter of a set of cold regulated genes. Dehydrins (DHNs) are proteins that accumulate in plants in response to cold stress, which present, in some cases, CBF/DREB recognition sequences in their promoters and are activated by members of this transcription factor family. The application of a 3-day gaseous treatment with 20 kPa CO2 at 0°C to table grapes cv. Autumn Royal maintained the quality of the bunches during postharvest storage at 0°C, reducing weight loss and rachis browning. In order to determine the role of CBF/DREB genes in the beneficial effect of the gaseous treatment by regulating DHNs, we have analyzed the gene expression pattern of three VviDREBA1s (VviDREBA1-1, VviDREBA1-6, and VviDREBA1-7) as well as three VviDHNs (VviDHN1a, VviDHN2, and VviDHN4), in both alternative splicing forms. Results showed that the differences in VviDREBA1s expression were tissue and atmosphere composition dependent, although the application of high levels of CO2 caused a greater increase of VviDREBA1-1 in the skin, VviDREBA1-6 in the pulp and VviDREBA1-7 in the skin and pulp. Likewise, the application of high levels of CO2 regulated the retention of introns in the transcripts of the dehydrins studied in the different tissues analyzed. The DHNs promoter analysis showed that VviDHN2 presented the cis-acting DRE and CRT elements, whereas VviDHN1a presented only the DRE motif. Our electrophoretic mobility shift assays (EMSA) showed that VviDREBA1-1 was the only transcription factor that had in vitro binding capacity to the CRT element of the VviDHN2 promoter region, indicating that the transcriptional regulation of VviDHN1a and VviDHN4 would be carried out by activating other independent routes of these transcription factors. Our results suggest that the application of high CO2 levels to maintain table grape quality during storage at 0°C, leads to an activation of CBF/DREBs transcription factors. Among these factors, VviDREBA1-1 seems to participate in the transcriptional activation of VviDHN2 via CRT binding, with the unspliced form of this DHN being activated by high CO2 levels in all the tissues analyzed. PMID:28970842
Co-ordinated spatial propagation of blood plasma clotting and fibrinolytic fronts
Zhalyalov, Ansar S.; Panteleev, Mikhail A.; Gracheva, Marina A.; Ataullakhanov, Fazoil I.
2017-01-01
Fibrinolysis is a cascade of proteolytic reactions occurring in blood and soft tissues, which functions to disintegrate fibrin clots when they are no more needed. In order to elucidate its regulation in space and time, fibrinolysis was investigated using an in vitro reaction-diffusion experimental model of blood clot formation and dissolution. Clotting was activated by a surface with immobilized tissue factor in a thin layer of recalcified blood plasma supplemented with tissue plasminogen activator (TPA), urokinase plasminogen activator or streptokinase. Formation and dissolution of fibrin clot was monitored by videomicroscopy. Computer systems biology model of clot formation and lysis was developed for data analysis and experimental planning. Fibrin clot front propagated in space from tissue factor, followed by a front of clot dissolution propagating from the same source. Velocity of lysis front propagation linearly depended on the velocity clotting front propagation (correlation r2 = 0.91). Computer model revealed that fibrin formation was indeed the rate-limiting step in the fibrinolysis front propagation. The phenomenon of two fronts which switched the state of blood plasma from liquid to solid and then back to liquid did not depend on the fibrinolysis activator. Interestingly, TPA at high concentrations began to increase lysis onset time and to decrease lysis propagation velocity, presumably due to plasminogen depletion. Spatially non-uniform lysis occurred simultaneously with clot formation and detached the clot from the procoagulant surface. These patterns of spatial fibrinolysis provide insights into its regulation and might explain clinical phenomena associated with thrombolytic therapy. PMID:28686711
Elgharably, Haytham; Ganesh, Kasturi; Dickerson, Jennifer; Khanna, Savita; Abas, Motaz; Ghatak, Piya Das; Dixit, Sriteja; Bergdall, Valerie; Roy, Sashwati; Sen, Chandan K
2014-01-01
We recently performed proteomic characterization of a modified collagen gel (MCG) dressing and reported promising effects of the gel in healing full-thickness excisional wounds. In this work, we test the translational relevance of our aforesaid findings by testing the dressing in a swine model of chronic ischemic wounds recently reported by our laboratory. Full-thickness excisional wounds were established in the center of bipedicle ischemic skin flaps on the backs of animals. Ischemia was verified by laser Doppler imaging, and MCG was applied to the test group of wounds. Seven days post wounding, macrophage recruitment to the wound was significantly higher in MCG-treated ischemic wounds. In vitro, MCG up-regulated expression of Mrc-1 (a reparative M2 macrophage marker) and induced the expression of anti-inflammatory cytokine interleukin (IL)-10 and of fibroblast growth factor-basic (β-FGF). An increased expression of CCR2, an M2 macrophage marker, was noted in the macrophages from MCG treated wounds. Furthermore, analyses of wound tissues 7 days post wounding showed up-regulation of transforming growth factor-β, vascular endothelial growth factor, von Willebrand's factor, and collagen type I expression in MCG-treated ischemic wounds. At 21 days post wounding, MCG-treated ischemic wounds displayed higher abundance of proliferating endothelial cells that formed mature vascular structures and increased blood flow to the wound. Fibroblast count was markedly higher in MCG-treated ischemic wound-edge tissue. In addition, MCG-treated wound-edge tissues displayed higher abundance of mature collagen with increased collagen type I : III deposition. Taken together, MCG helped mount a more robust inflammatory response that resolved in a timely manner, followed by an enhanced proliferative phase, angiogenic outcome, and postwound tissue remodeling. Findings of the current study warrant clinical testing of MCG in a setting of ischemic chronic wounds. © 2014 by the Wound Healing Society.
2011-01-01
Background The endometrium is a dynamic tissue whose changes are driven by the ovarian steroidal hormones. Its main function is to provide an adequate substrate for embryo implantation. Using microarray technology, several reports have provided the gene expression patterns of human endometrial tissue during the window of implantation. However it is required that biological connections be made across these genomic datasets to take full advantage of them. The objective of this work was to perform a research synthesis of available gene expression profiles related to acquisition of endometrial receptivity for embryo implantation, in order to gain insights into its molecular basis and regulation. Methods Gene expression datasets were intersected to determine a consensus endometrial receptivity transcript list (CERTL). For this cluster of genes we determined their functional annotations using available web-based databases. In addition, promoter sequences were analyzed to identify putative transcription factor binding sites using bioinformatics tools and determined over-represented features. Results We found 40 up- and 21 down-regulated transcripts in the CERTL. Those more consistently increased were C4BPA, SPP1, APOD, CD55, CFD, CLDN4, DKK1, ID4, IL15 and MAP3K5 whereas the more consistently decreased were OLFM1, CCNB1, CRABP2, EDN3, FGFR1, MSX1 and MSX2. Functional annotation of CERTL showed it was enriched with transcripts related to the immune response, complement activation and cell cycle regulation. Promoter sequence analysis of genes revealed that DNA binding sites for E47, E2F1 and SREBP1 transcription factors were the most consistently over-represented and in both up- and down-regulated genes during the window of implantation. Conclusions Our research synthesis allowed organizing and mining high throughput data to explore endometrial receptivity and focus future research efforts on specific genes and pathways. The discovery of possible new transcription factors orchestrating the CERTL opens new alternatives for understanding gene expression regulation in uterine function. PMID:21272326
Stromal regulation of vessel stability by MMP14 and TGFβ
Sounni, Nor E.; Dehne, Kerstin; van Kempen, Leon; Egeblad, Mikala; Affara, Nesrine I.; Cuevas, Ileana; Wiesen, Jane; Junankar, Simon; Korets, Lidiya; Lee, Jake; Shen, Jennifer; Morrison, Charlotte J.; Overall, Christopher M.; Krane, Stephen M.; Werb, Zena; Boudreau, Nancy; Coussens, Lisa M.
2010-01-01
Innate regulatory networks within organs maintain tissue homeostasis and facilitate rapid responses to damage. We identified a novel pathway regulating vessel stability in tissues that involves matrix metalloproteinase 14 (MMP14) and transforming growth factor beta 1 (TGFβ1). Whereas plasma proteins rapidly extravasate out of vasculature in wild-type mice following acute damage, short-term treatment of mice in vivo with a broad-spectrum metalloproteinase inhibitor, neutralizing antibodies to TGFβ1, or an activin-like kinase 5 (ALK5) inhibitor significantly enhanced vessel leakage. By contrast, in a mouse model of age-related dermal fibrosis, where MMP14 activity and TGFβ bioavailability are chronically elevated, or in mice that ectopically express TGFβ in the epidermis, cutaneous vessels are resistant to acute leakage. Characteristic responses to tissue damage are reinstated if the fibrotic mice are pretreated with metalloproteinase inhibitors or TGFβ signaling antagonists. Neoplastic tissues, however, are in a constant state of tissue damage and exhibit altered hemodynamics owing to hyperleaky angiogenic vasculature. In two distinct transgenic mouse tumor models, inhibition of ALK5 further enhanced vascular leakage into the interstitium and facilitated increased delivery of high molecular weight compounds into premalignant tissue and tumors. Taken together, these data define a central pathway involving MMP14 and TGFβ that mediates vessel stability and vascular response to tissue injury. Antagonists of this pathway could be therapeutically exploited to improve the delivery of therapeutics or molecular contrast agents into tissues where chronic damage or neoplastic disease limits their efficient delivery. PMID:20223936
Does the Host Contribute to Modulation of Mycotoxin Production by Fruit Pathogens?
Kumar, Dilip; Barad, Shiri; Sionov, Edward; Prusky, Dov B.
2017-01-01
Storage of freshly harvested fruit is a key factor in modulating their supply for several months after harvest; however, their quality can be reduced by pathogen attack. Fruit pathogens may infect their host through damaged surfaces, such as mechanical injuries occurring during growing, harvesting, and packing, leading to increased colonization as the fruit ripens. Of particular concern are fungal pathogens that not only macerate the host tissue but also secrete significant amounts of mycotoxins. Many studies have described the importance of physiological factors, including stage of fruit development, biochemical factors (ripening, C and N content), and environmental factors (humidity, temperature, water deficit) on the occurrence of mycotoxins. However, those factors usually show a correlative effect on fungal growth and mycotoxin accumulation. Recent reports have suggested that host factors can induce fungal metabolism, leading to the synthesis and accumulation of mycotoxins. This review describes the new vision of host-factor impact on the regulation of mycotoxin biosynthetic gene clusters underlying the complex regulation of mycotoxin accumulation in ripening fruit. PMID:28895896
Higashiyama, Hiroyuki; Billin, Andrew N; Okamoto, Yuji; Kinoshita, Mine; Asano, Satoshi
2007-05-01
Peroxisome proliferator-activated receptor-delta (PPAR-delta) is known as a transcription factor involved in the regulation of fatty acid oxidation and mitochondrial biogenesis in several tissues, such as skeletal muscle, liver and adipose tissues. In this study, to elucidate systemic physiological functions of PPAR-delta, we examined the tissue distribution and localization of PPAR-delta in adult mouse tissues using tissue microarray (TMA)-based immunohistochemistry. PPAR-delta positive signals were observed on variety of tissues/cells in multiple systems including cardiovascular, urinary, respiratory, digestive, endocrine, nervous, hematopoietic, immune, musculoskeletal, sensory and reproductive organ systems. In these organs, PPAR-delta immunoreactivity was generally localized on the nucleus, although cytoplasmic localization was observed on several cell types including neurons in the nervous system and cells of the islet of Langerhans. These expression profiling data implicate various physiological roles of PPAR-delta in multiple organ systems. TMA-based immunohistochemistry enables to profile comprehensive protein localization and distribution in a high-throughput manner.
Bodles-Brakhop, Angela M.; Yao-Borengasser, Aiwei; Zhu, Beibei; Starnes, Catherine P.; McGehee, Robert E.; Peterson, Charlotte A.; Kern, Philip A.
2012-01-01
Abstract Background This study investigated the regulation of peroxisome proliferator-activated receptor-γ (PPARγ), the histone deacetylase 3 (HDAC3)–nuclear receptor coreceptor (NCoR) complex (a corepressor of transcription used by PPARγ), and small ubiquitin-like modifier-1 (SUMO-1) (a posttranslational modifier of PPARγ) in human adipose tissue and both adipocyte and macrophage cell lines. The objective was to determine whether there were alterations in the human adipose tissue gene expression levels of PPARγ, HDAC3, NCoR, and SUMO-1 associated either with obesity or with treatment of impaired glucose tolerance (IGT) subjects with insulin-sensitizing medications. Methods We obtained subcutaneous adipose tissue biopsies from 86 subjects with a wide range of body mass index (BMI) and insulin sensitivity (SI). Additionally, adipose tissue biopsies were obtained from a randomized subgroup of IGT subjects before and after 10 weeks of treatment with either pioglitazone or metformin. Results The adipose mRNA levels of PPARγ, NCoR, HDAC3, and SUMO-1 correlated strongly with each other (P<0.0001); however, SUMO-1, NCoR, and HDAC3 gene expression were not significantly associated with BMI or SI. Pioglitazone increased SUMO-1 expression by 23% (P<0.002) in adipose tissue and an adipocyte cell line (P<0.05), but not in macrophages. Small interfering RNA (siRNA)-mediated knockdown of SUMO-1 decreased PPARγ, HDAC3, and NCoR in THP-1 cells and increased tumor necrosis factor-α (TNF-α) induction in response to lipopolysaccharide (LPS). Conclusions These results suggest that the coordinate regulation of SUMO-1, PPARγ1/2, HDAC3, and NCoR may be more tightly controlled in macrophages than in adipocytes in human adipose and that these modulators of PPARγ activity may be particularly important in the negative regulation of macrophage-mediated adipose inflammation by pioglitazone. PMID:22651256
Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease
Mitchelson, Keith Richard; Qin, Wen-Yan
2015-01-01
MicroRNAs are small non-coding RNAs that participate in different biological processes, providing subtle combinational regulation of cellular pathways, often by regulating components of signalling pathways. Aberrant expression of miRNAs is an important factor in the development and progression of disease. The canonical myomiRs (miR-1, -133 and -206) are central to the development and health of mammalian skeletal and cardiac muscles, but new findings show they have regulatory roles in the development of other mammalian non-muscle tissues, including nerve, brain structures, adipose and some specialised immunological cells. Moreover, the deregulation of myomiR expression is associated with a variety of different cancers, where typically they have tumor suppressor functions, although examples of an oncogenic role illustrate their diverse function in different cell environments. This review examines the involvement of the related myomiRs at the crossroads between cell development/tissue regeneration/tissue inflammation responses, and cancer development. PMID:26322174
Wang, Xiao-Yan; Li, Sheng-Nan; Zhu, Hui-Fang; Hu, Zhi-Yan; Zhong, Yan; Gu, Chuan-Sha; Chen, Shi-You; Liu, Teng-Fei; Li, Zu-Guo
2017-05-04
Response gene to complement 32 (RGC32) is a transcription factor that regulates the expression of multiple genes involved in cell growth, viability and tissue-specific differentiation. However, the role of RGC32 in tumorigenesis and tumor progression in colorectal cancer (CRC) has not been fully elucidated. Here, we showed that the expression of RGC32 was significantly up-regulated in human CRC tissues versus adjacent normal tissues. RGC32 expression was significantly correlated with invasive and aggressive characteristics of tumor cells, as well as poor survival of CRC patients. We also demonstrated that RGC32 overexpression promoted proliferation, migration and tumorigenic growth of human CRC cells in vitro and in vivo. Functionally, RGC32 facilitated epithelial-mesenchymal transition (EMT) in CRC via the Smad/Sip1 signaling pathway, as shown by decreasing E-cadherin expression and increasing vimentin expression. In conclusion, our findings suggested that overexpression of RGC32 facilitates EMT of CRC cells by activating Smad/Sip1 signaling.
Komar, Carolyn M
2005-01-01
The peroxisome proliferator-activated receptors (PPARs) are a family of transcription factors involved in varied and diverse processes such as steroidogenesis, angiogenesis, tissue remodeling, cell cycle, apoptosis, and lipid metabolism. These processes are critical for normal ovarian function, and all three PPAR family members – alpha, delta, and gamma, are expressed in the ovary. Most notably, the expression of PPARgamma is limited primarily to granulosa cells in developing follicles, and is regulated by luteinizing hormone (LH). Although much has been learned about the PPARs since their initial discovery, very little is known regarding their function in ovarian tissue. This review highlights what is known about the roles of PPARs in ovarian cells, and discusses potential mechanisms by which PPARs could influence ovarian function. Because PPARs are activated by drugs currently in clinical use (fibrates and thiazolidinediones), it is important to understand their role in the ovary, and how manipulation of their activity may impact ovarian physiology as well as ovarian pathology. PMID:16131403
Uncoupling apical constriction from tissue invagination
Chung, SeYeon; Kim, Sangjoon; Andrew, Deborah J
2017-01-01
Apical constriction is a widely utilized cell shape change linked to folding, bending and invagination of polarized epithelia. It remains unclear how apical constriction is regulated spatiotemporally during tissue invagination and how this cellular process contributes to tube formation in different developmental contexts. Using Drosophila salivary gland (SG) invagination as a model, we show that regulation of folded gastrulation expression by the Fork head transcription factor is required for apicomedial accumulation of Rho kinase and non-muscle myosin II, which coordinate apical constriction. We demonstrate that neither loss of spatially coordinated apical constriction nor its complete blockage prevent internalization and tube formation, although such manipulations affect the geometry of invagination. When apical constriction is disrupted, compressing force generated by a tissue-level myosin cable contributes to SG invagination. We demonstrate that fully elongated polarized SGs can form outside the embryo, suggesting that tube formation and elongation are intrinsic properties of the SG. DOI: http://dx.doi.org/10.7554/eLife.22235.001 PMID:28263180
Paracrine control of vascularization and neurogenesis by neurotrophins.
Emanueli, Costanza; Schratzberger, Peter; Kirchmair, Rudolf; Madeddu, Paolo
2003-10-01
The neuronal system plays a fundamental role in the maturation of primitive embryonic vascular network by providing a paracrine template for blood vessel branching and arterial differentiation. Furthermore, postnatal vascular and neural regeneration cooperate in the healing of damaged tissue. Neurogenesis continues in adulthood although confined to specific brain regions. Following ischaemic insult, neural staminal cells contribute towards the healing process through the stimulation of neurogenesis and vasculogenesis. Evidence indicates that nerves and blood vessels exert a reciprocal control of their own growth by paracrine mechanisms. For instance, guidance factors, including vascular endothelial growth factor A (VEGF-A) and semaphorins, which share the ability of binding neuropilin receptors, play a pivotal role in the tridimensional growth pattern of arterial vessels and nerves. Animal models and clinical studies have demonstrated a role of VEGF-A in the pathogenesis of ischaemic and diabetic neuropathies. Further, supplementation with VEGF-A ameliorates neuronal recovery by exerting protective effects on nerves and stimulating reparative neovascularization. Human tissue kallikrein, a recently discovered angiogenic and arteriogenic factor, accelerates neuronal recovery by stimulating the growth of vasa nervorum. Conversely, the neurotrophin nerve growth factor, known to regulate neuronal survival and differentiation, is now regarded as a stimulator of angiogenesis and arteriogenesis. These results indicate that angiogenesis and neurogenesis are paracrinally regulated by growth factors released by endothelial cells and neurons. Supplementation of these growth factors, alone or in combination, could benefit the treatment of ischaemic diseases and neuropathies.
Lin, Wei-Jye; Salton, Stephen R
2013-01-01
The regulated secretory pathway provides critical control of peptide, growth factor, and hormone release from neuroendocrine and endocrine cells, and neurons, maintaining physiological homeostasis. Propeptides and prohormones are packaged into dense core granules (DCGs), where they frequently undergo tissue-specific processing as the DCG matures. Proteins of the granin family are DCG components, and although their function is not fully understood, data suggest they are involved in DCG formation and regulated protein/peptide secretion, in addition to their role as precursors of bioactive peptides. Association of gene variation, including single nucleotide polymorphisms (SNPs), with neuropsychiatric, endocrine, and metabolic diseases, has implicated specific secreted proteins and peptides in disease pathogenesis. For example, a SNP at position 196 (G/A) of the human brain-derived neurotrophic factor gene dysregulates protein processing and secretion and leads to cognitive impairment. This suggests more generally that variants identified in genes encoding secreted growth factors, peptides, hormones, and proteins involved in DCG biogenesis, protein processing, and the secretory apparatus, could provide insight into the process of regulated secretion as well as disorders that result when it is impaired.
Lin, Wei-Jye; Salton, Stephen R.
2013-01-01
The regulated secretory pathway provides critical control of peptide, growth factor, and hormone release from neuroendocrine and endocrine cells, and neurons, maintaining physiological homeostasis. Propeptides and prohormones are packaged into dense core granules (DCGs), where they frequently undergo tissue-specific processing as the DCG matures. Proteins of the granin family are DCG components, and although their function is not fully understood, data suggest they are involved in DCG formation and regulated protein/peptide secretion, in addition to their role as precursors of bioactive peptides. Association of gene variation, including single nucleotide polymorphisms (SNPs), with neuropsychiatric, endocrine, and metabolic diseases, has implicated specific secreted proteins and peptides in disease pathogenesis. For example, a SNP at position 196 (G/A) of the human brain-derived neurotrophic factor gene dysregulates protein processing and secretion and leads to cognitive impairment. This suggests more generally that variants identified in genes encoding secreted growth factors, peptides, hormones, and proteins involved in DCG biogenesis, protein processing, and the secretory apparatus, could provide insight into the process of regulated secretion as well as disorders that result when it is impaired. PMID:23964269
2013-01-01
Background Ginger (Zingiber officinale) and turmeric (Curcuma longa) accumulate important pharmacologically active metabolites at high levels in their rhizomes. Despite their importance, relatively little is known regarding gene expression in the rhizomes of ginger and turmeric. Results In order to identify rhizome-enriched genes and genes encoding specialized metabolism enzymes and pathway regulators, we evaluated an assembled collection of expressed sequence tags (ESTs) from eight different ginger and turmeric tissues. Comparisons to publicly available sorghum rhizome ESTs revealed a total of 777 gene transcripts expressed in ginger/turmeric and sorghum rhizomes but apparently absent from other tissues. The list of rhizome-specific transcripts was enriched for genes associated with regulation of tissue growth, development, and transcription. In particular, transcripts for ethylene response factors and AUX/IAA proteins appeared to accumulate in patterns mirroring results from previous studies regarding rhizome growth responses to exogenous applications of auxin and ethylene. Thus, these genes may play important roles in defining rhizome growth and development. Additional associations were made for ginger and turmeric rhizome-enriched MADS box transcription factors, their putative rhizome-enriched homologs in sorghum, and rhizomatous QTLs in rice. Additionally, analysis of both primary and specialized metabolism genes indicates that ginger and turmeric rhizomes are primarily devoted to the utilization of leaf supplied sucrose for the production and/or storage of specialized metabolites associated with the phenylpropanoid pathway and putative type III polyketide synthase gene products. This finding reinforces earlier hypotheses predicting roles of this enzyme class in the production of curcuminoids and gingerols. Conclusion A significant set of genes were found to be exclusively or preferentially expressed in the rhizome of ginger and turmeric. Specific transcription factors and other regulatory genes were found that were common to the two species and that are excellent candidates for involvement in rhizome growth, differentiation and development. Large classes of enzymes involved in specialized metabolism were also found to have apparent tissue-specific expression, suggesting that gene expression itself may play an important role in regulating metabolite production in these plants. PMID:23410187
Hippo circuitry and the redox modulation of hippo components in cancer cell fate decisions.
Ashraf, Asma; Pervaiz, Shazib
2015-12-01
Meticulous and precise control of organ size is undoubtedly one of the most pivotal processes in mammalian development and regeneration along with cell differentiation, morphogenesis and programmed cell death. These processes are strictly regulated by complex and highly coordinated mechanisms to maintain a steady growth state. There are a number of extrinsic and intrinsic factors that dictate the total number and/or size of cells by influencing growth, proliferation, differentiation and cell death. Multiple pathways, such as those involved in promoting organ size and others that restrict disproportionate tissue growth act simultaneously to maintain cellular and tissue homeostasis. Aberrations at any level in these organ size-regulating processes can lead to various pathological states with cancers being the most formidable one (Yin and Zhang, 2011). Extensive research in the realm of growth control has led to the identification of the Hippo-signaling pathway as a critical network in modulating tissue growth via its effect on multiple signaling pathways and through intricate crosstalk with proteins that regulate cell polarity, adhesion and cell-cell interactions (Zhao et al., 2011b). The Hippo pathway controls cell number and organ size by transducing signals from the plasma membrane to the nucleus to regulate the expression of genes involved in cell fate determination (Shi et al., 2015). In this review, we summarize the recent discoveries concerning Hippo pathway, its diversiform regulation in mammals as well as its implications in cancers, and highlight the possible role of oxidative stress in Hippo pathway regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yoo, Seungyeul; Takikawa, Sachiko; Geraghty, Patrick; Argmann, Carmen; Campbell, Joshua; Lin, Luan; Huang, Tao; Tu, Zhidong; Foronjy, Robert F; Feronjy, Robert; Spira, Avrum; Schadt, Eric E; Powell, Charles A; Zhu, Jun
2015-01-01
Chronic Obstructive Pulmonary Disease (COPD) is a complex disease. Genetic, epigenetic, and environmental factors are known to contribute to COPD risk and disease progression. Therefore we developed a systematic approach to identify key regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD disease severity. EPAS1 is distinct in comparison with other key regulators in terms of methylation profile and downstream target genes. Genes predicted to be regulated by EPAS1 were enriched for biological processes including signaling, cell communications, and system development. We confirmed that EPAS1 protein levels are lower in human COPD lung tissue compared to non-disease controls and that Epas1 gene expression is reduced in mice chronically exposed to cigarette smoke. As EPAS1 downstream genes were significantly enriched for hypoxia responsive genes in endothelial cells, we tested EPAS1 function in human endothelial cells. EPAS1 knockdown by siRNA in endothelial cells impacted genes that significantly overlapped with EPAS1 downstream genes in lung tissue including hypoxia responsive genes, and genes associated with emphysema severity. Our first integrative analysis of genome-wide DNA methylation and gene expression profiles illustrates that not only does DNA methylation play a 'causal' role in the molecular pathophysiology of COPD, but it can be leveraged to directly identify novel key mediators of this pathophysiology.
NASA Technical Reports Server (NTRS)
Carra, Claudio; Wang, Minli; Huff, Janice L.; Hada, Megumi; ONeill, Peter; Cucinotta, Francis A.
2010-01-01
Signal transduction controls cellular and tissue responses to radiation. Transforming growth factor beta (TGFbeta) is an important regulator of cell growth and differentiation and tissue homeostasis, and is often dis-regulated in tumor formation. Mathematical models of signal transduction pathways can be used to elucidate how signal transduction varies with radiation quality, and dose and dose-rate. Furthermore, modeling of tissue specific responses can be considered through mechanistic based modeling. We developed a mathematical model of the negative feedback regulation by Smad7 in TGFbeta-Smad signaling and are exploring possible connections to the WNT/beta -catenin, and ATM/ATF2 signaling pathways. A pathway model of TGFbeta-Smad signaling that includes Smad7 kinetics based on data in the scientific literature is described. Kinetic terms included are TGFbeta/Smad transcriptional regulation of Smad7 through the Smad3-Smad4 complex, Smad7-Smurf1 translocation from nucleus to cytoplasm, and Smad7 negative feedback regulation of the TGFO receptor through direct binding to the TGFO receptor complex. The negative feedback controls operating in this pathway suggests non-linear responses in signal transduction, which are described mathematically. We then explored possibilities for cross-talk mediated by Smad7 between DNA damage responses mediated by ATM, and with the WNT pathway and consider the design of experiments to test model driven hypothesis. Numerical comparisons of the mathematical model to experiments and representative predictions are described.
Liu, Jinyan; Hu, Feng; Tang, Jintian; Tang, Shijie; Xia, Kun; Wu, Song; Yin, Chaoqi; Wang, Shaohua; He, Quanyong; Xie, Huiqing; Zhou, Jianda
2017-04-01
Vacuum sealing drainage (VSD) is an effective technique used to promote wound healing. However, recent studies have shown that it exerts positive pressure (PP) rather than negative pressure (NP) on skin. In this study, we created a homemade device that could maintain NP on the wound, and compared the therapeutic effects of VSD-induced PP to those of our homemade device which induced NP on wound healing. The NP induced by our device required less time for wound healing and decreased the wound area more efficiently than the PP induced by VSD. NP and PP both promoted the inflammatory response by upregulating neutrophil infiltration and interleukin (IL)‑1β expression, and downregulating IL‑10 expression. Higher levels of epidermal growth factor (EGF), transforming growth factor (TGF)‑β and platelet-derived growth factor (PDGF), and lower levels of basic fibroblast growth factor (bFGF) were observed in the wound tissue treated with NP compared to the wound tissue exposed to PP. Proliferation in the wound tissue exposed to NP on day 10 was significantly higher than that in wound tissue exposed to PP. NP generated more fibroblasts, keratinized stratified epithelium, and less epithelia with stemness than PP. The levels of ccollagen Ⅰ and Ⅲ were both decreased in both the NP and PP groups. NP induced a statistically significant increase in the expression of fibronectin (FN) on days 3 and 10 compared to PP. Furthermore, the level of matrix metalloproteinase (MMP)‑13 increased in the NP group, but decreased in the PP group on day 3. NP also induced a decrease in the levels of tissue inhibitor of metalloproteinase (TIMP)‑1 and TIMP‑2 during the early stages of wound healing, which was significantly different from the increasing effect of PP on TIMP‑1 and TIMP‑2 levels at the corresponding time points. On the whole, our data indicate that our homemade device which induced NP, was more efficient than VSD‑induced PP on wound healing by regulating inflammation, secretion, proliferation and the distribution of different cells in wound tissue.
Plants with modified lignin content and methods for production thereof
Zhao, Qiao; Chen, Fang; Dixon, Richard A.
2014-08-05
The invention provides methods for decreasing lignin content and for increasing the level of fermentable carbohydrates in plants by down-regulation of the NST transcription factor. Nucleic acid constructs for down-regulation of NST are described. Transgenic plants are provided that comprise reduced lignin content. Plants described herein may be used, for example, as improved biofuel feedstock and as highly digestible forage crops. Methods for processing plant tissue and for producing ethanol by utilizing such plants are also provided.
Houtz, Philip; Bonfini, Alessandro; Liu, Xi; Revah, Jonathan; Guillou, Aurélien; Poidevin, Mickael; Hens, Korneel; Huang, Hsin-Yi; Deplancke, Bart; Tsai, Yu-Chen; Buchon, Nicolas
2017-11-01
Cytokine signaling is responsible for coordinating conserved epithelial regeneration and immune responses in the digestive tract. In the Drosophila midgut, Upd3 is a major cytokine, which is induced in enterocytes (EC) and enteroblasts (EB) upon oral infection, and initiates intestinal stem cell (ISC) dependent tissue repair. To date, the genetic network directing upd3 transcription remains largely uncharacterized. Here, we have identified the key infection-responsive enhancers of the upd3 gene and show that distinct enhancers respond to various stresses. Furthermore, through functional genetic screening, bioinformatic analyses and yeast one-hybrid screening, we determined that the transcription factors Scalloped (Sd), Mothers against dpp (Mad), and D-Fos are principal regulators of upd3 expression. Our study demonstrates that upd3 transcription in the gut is regulated by the activation of multiple pathways, including the Hippo, TGF-β/Dpp, and Src, as well as p38-dependent MAPK pathways. Thus, these essential pathways, which are known to control ISC proliferation cell-autonomously, are also activated in ECs to promote tissue turnover the regulation of upd3 transcription.
Investigating the Control of Chlorophyll Degradation by Genomic Correlation Mining.
Ghandchi, Frederick P; Caetano-Anolles, Gustavo; Clough, Steven J; Ort, Donald R
2016-01-01
Chlorophyll degradation is an intricate process that is critical in a variety of plant tissues at different times during the plant life cycle. Many of the photoactive chlorophyll degradation intermediates are exceptionally cytotoxic necessitating that the pathway be carefully coordinated and regulated. The primary regulatory step in the chlorophyll degradation pathway involves the enzyme pheophorbide a oxygenase (PAO), which oxidizes the chlorophyll intermediate pheophorbide a, that is eventually converted to non-fluorescent chlorophyll catabolites. There is evidence that PAO is differentially regulated across different environmental and developmental conditions with both transcriptional and post-transcriptional components, but the involved regulatory elements are uncertain or unknown. We hypothesized that transcription factors modulate PAO expression across different environmental conditions, such as cold and drought, as well as during developmental transitions to leaf senescence and maturation of green seeds. To test these hypotheses, several sets of Arabidopsis genomic and bioinformatic experiments were investigated and re-analyzed using computational approaches. PAO expression was compared across varied environmental conditions in the three separate datasets using regression modeling and correlation mining to identify gene elements co-expressed with PAO. Their functions were investigated as candidate upstream transcription factors or other regulatory elements that may regulate PAO expression. PAO transcript expression was found to be significantly up-regulated in warm conditions, during leaf senescence, and in drought conditions, and in all three conditions significantly positively correlated with expression of transcription factor Arabidopsis thaliana activating factor 1 (ATAF1), suggesting that ATAF1 is triggered in the plant response to these processes or abiotic stresses and in result up-regulates PAO expression. The proposed regulatory network includes the freezing, senescence, and drought stresses modulating factor ATAF1 and various other transcription factors and pathways, which in turn act to regulate chlorophyll degradation by up-regulating PAO expression.
Larrainzar, Estíbaliz; Riely, Brendan K.; Kim, Sang Cheol; Carrasquilla-Garcia, Noelia; Yu, Hee-Ju; Hwang, Hyun-Ju; Oh, Mijin; Kim, Goon Bo; Surendrarao, Anandkumar K.; Chasman, Deborah; Siahpirani, Alireza F.; Penmetsa, Ramachandra V.; Lee, Gang-Seob; Kim, Namshin; Roy, Sushmita; Mun, Jeong-Hwan; Cook, Douglas R.
2015-01-01
The legume-rhizobium symbiosis is initiated through the activation of the Nodulation (Nod) factor-signaling cascade, leading to a rapid reprogramming of host cell developmental pathways. In this work, we combine transcriptome sequencing with molecular genetics and network analysis to quantify and categorize the transcriptional changes occurring in roots of Medicago truncatula from minutes to days after inoculation with Sinorhizobium medicae. To identify the nature of the inductive and regulatory cues, we employed mutants with absent or decreased Nod factor sensitivities (i.e. Nodulation factor perception and Lysine motif domain-containing receptor-like kinase3, respectively) and an ethylene (ET)-insensitive, Nod factor-hypersensitive mutant (sickle). This unique data set encompasses nine time points, allowing observation of the symbiotic regulation of diverse biological processes with high temporal resolution. Among the many outputs of the study is the early Nod factor-induced, ET-regulated expression of ET signaling and biosynthesis genes. Coupled with the observation of massive transcriptional derepression in the ET-insensitive background, these results suggest that Nod factor signaling activates ET production to attenuate its own signal. Promoter:β-glucuronidase fusions report ET biosynthesis both in root hairs responding to rhizobium as well as in meristematic tissue during nodule organogenesis and growth, indicating that ET signaling functions at multiple developmental stages during symbiosis. In addition, we identified thousands of novel candidate genes undergoing Nod factor-dependent, ET-regulated expression. We leveraged the power of this large data set to model Nod factor- and ET-regulated signaling networks using MERLIN, a regulatory network inference algorithm. These analyses predict key nodes regulating the biological process impacted by Nod factor perception. We have made these results available to the research community through a searchable online resource. PMID:26175514
Felsted, Jennifer A; Chien, Cheng-Hao; Wang, Dongqing; Panessiti, Micaella; Ameroso, Dominique; Greenberg, Andrew; Feng, Guoping; Kong, Dong; Rios, Maribel
2017-12-05
The central mechanisms controlling glucose and lipid homeostasis are inadequately understood. We show that α2δ-1 is an essential regulator of glucose and lipid balance, acting in steroidogenic factor-1 (SF1) neurons of the ventromedial hypothalamus (VMH). These effects are body weight independent and involve regulation of SF1 + neuronal activity and sympathetic output to metabolic tissues. Accordingly, mice with α2δ-1 deletion in SF1 neurons exhibit glucose intolerance, altered lipolysis, and decreased cholesterol content in adipose tissue despite normal energy balance regulation. Profound reductions in the firing rate of SF1 neurons, decreased sympathetic output, and elevated circulating levels of serotonin are associated with these alterations. Normal calcium currents but reduced excitatory postsynaptic currents in mutant SF1 neurons implicate α2δ-1 in the promotion of excitatory synaptogenesis separate from its canonical role as a calcium channel subunit. Collectively, these findings identify an essential mechanism that regulates VMH neuronal activity and glycemic and lipid control and may be a target for tackling metabolic disease. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Wouters, Kristiaan; Deleye, Yann; Hannou, Sarah A; Vanhoutte, Jonathan; Maréchal, Xavier; Coisne, Augustin; Tagzirt, Madjid; Derudas, Bruno; Bouchaert, Emmanuel; Duhem, Christian; Vallez, Emmanuelle; Schalkwijk, Casper G; Pattou, François; Montaigne, David; Staels, Bart; Paumelle, Réjane
2017-01-01
The genomic CDKN2A/B locus, encoding p16INK4a among others, is linked to an increased risk for cardiovascular disease and type 2 diabetes. Obesity is a risk factor for both cardiovascular disease and type 2 diabetes. p16INK4a is a cell cycle regulator and tumour suppressor. Whether it plays a role in adipose tissue formation is unknown. p16INK4a knock-down in 3T3/L1 preadipocytes or p16INK4a deficiency in mouse embryonic fibroblasts enhanced adipogenesis, suggesting a role for p16INK4a in adipose tissue formation. p16INK4a-deficient mice developed more epicardial adipose tissue in response to the adipogenic peroxisome proliferator activated receptor gamma agonist rosiglitazone. Additionally, adipose tissue around the aorta from p16INK4a-deficient mice displayed enhanced rosiglitazone-induced gene expression of adipogenic markers and stem cell antigen, a marker of bone marrow-derived precursor cells. Mice transplanted with p16INK4a-deficient bone marrow had more epicardial adipose tissue compared to controls when fed a high-fat diet. In humans, p16INK4a gene expression was enriched in epicardial adipose tissue compared to other adipose tissue depots. Moreover, epicardial adipose tissue from obese humans displayed increased expression of stem cell antigen compared to lean controls, supporting a bone marrow origin of epicardial adipose tissue. These results show that p16INK4a modulates epicardial adipose tissue development, providing a potential mechanistic link between the genetic association of the CDKN2A/B locus and cardiovascular disease risk. PMID:28868898
Cheng, Jung-Chien; Chang, Hsun-Ming; Leung, Peter C K
2017-10-17
Ovarian low-grade serous carcinoma (LGSC) is a rare disease and is now considered to be a distinct entity from high-grade serous carcinoma (HGSC), which is the most common and malignant form of epithelial ovarian cancer. Connective tissue growth factor (CTGF) is a secreted matricellular protein that has been shown to modulate many biological functions by interacting with multiple molecules in the microenvironment. Increasing evidence indicates that aberrant expression of CTGF is associated with cancer development and progression. Transforming growth factor-β1 (TGF-β1) is a well-known molecule that can strongly up-regulate CTGF expression in different types of normal and cancer cells. Our previous study demonstrated that TGF-β1 induces apoptosis of LGSC cells. However, the effect of TGF-β1 on CTGF expression in LGSC needs to be defined. In addition, whether CTGF mediates TGF-β1-induced LGSC cell apoptosis remains unknown. In the present study, we show that TGF-β1 treatment up-regulates CTGF expression by activating SMAD3 signaling in two human LGSC cell lines. Additionally, siRNA-mediated CTGF knockdown attenuates TGF-β1-induced cell apoptosis. Moreover, our results show that the inhibitory effect of the CTGF knockdown on TGF-β1-induced cell apoptosis is mediated by down-regulating SMAD3 expression. This study demonstrates an important role for CTGF in mediating the pro-apoptotic effects of TGF-β1 on LGCS.
CTCF knockout reveals an essential role for this protein during the zebrafish development.
Carmona-Aldana, Francisco; Zampedri, Cecilia; Suaste-Olmos, Fernando; Murillo-de-Ozores, Adrián; Guerrero, Georgina; Arzate-Mejía, Rodrigo; Maldonado, Ernesto; Navarro, Rosa; Chimal-Monroy, Jesús; Recillas-Targa, Félix
2018-05-01
Chromatin regulation and organization are essential processes that regulate gene activity. The CCCTC-binding factor (CTCF) is a protein with different and important molecular functions related with chromatin dynamics. It is conserved since invertebrates to vertebrates, posing it as a factor with an important role in the physiology. In this work, we aimed to understand the distribution and functional relevance of CTCF during the embryonic development of the zebrafish (Danio rerio). We generated a zebrafish specific anti-Ctcf antibody, and found this protein to be ubiquitous, through different stages and tissues. We used the CRISPR-Cas9 system to induce molecular alterations in the locus. This resulted in early lethality. We delayed the lethality performing knockdown morpholino experiments, and found an aberrant embryo morphology involving malformations in structures through all the length of the embryo. These phenotypes were rescued with human CTCF mRNA injections, showing the specificity of the morpholinos and a partial functional conservation between the fish and the human proteins. Lastly, we found that the pro-apoptotic genes p53 and bbc3/PUMA are deregulated in the ctcf morpholino-injected embryos. In conclusion, CTCF is a ubiquitous factor during the zebrafish development, which regulates the correct formation of different structures of the embryo, and its deregulation impacts on essential cell survival genes. Overall, this work provides a basis to look for the particular functions of CTCF in the different developing tissues and organs of the zebrafish. Copyright © 2018. Published by Elsevier B.V.
Wang, Rui; Chang, Yong-sheng; Fang, Fu-de
2009-12-01
Peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) family is highly expressed in tissues with high energy metabolism. They coactivate transcription factors in regulating genes engaged in processes such as gluconeogenesis, adipose beta-oxydation, lipoprotein synthesis and secretion, mitochondrial biogenesis, and oxidative metabolism. Protein conformation studies demonstrated that they lack DNA binding domains and act as coactivators through physical interaction with transcription factors. PGC1 activity is regulated at transcription level or by multiple covalent chemical modifications such as phosphorylation, methylation and acetylation/deacetylation. Abnormal expression of PGC1 coactivators usually is closely correlated with diseases such as diabetes, obesity, hyperglycemia, hyperlipemia, and arterial and brain neuron necrosis diseases.
Förander, P; Brené, S; Strömberg, I
2000-02-28
Cultured and transplanted adrenal medullary cells respond to ciliary neurotrophic factor (CNTF) with neurite formation and improved cell survival although the presence of the CNTF receptor-alpha (CNTFRalpha) has been unclear. This study show that CNTFRalpha mRNA was expressed in the postnatal day 1 as well as in the adult rat adrenal medulla. The highest CNTFRalpha mRNA signal was found in the ganglion cells of the adrenal medulla. After transplantation of adrenal medullary tissue the CNTFRalpha mRNA levels were down-regulated in the chromaffin cells. CNTF treatment of grafts did not normalize the receptor levels, but treatment with nerve growth factor (NGF) did. Thus, we demonstrate that CNTFRalpha mRNA is expressed in adrenal medulla, the levels becomes down-regulated after transplantation, but normalized after treatment with NGF.
Do, Duy N.; Dudemaine, Pier-Luc; Fomenky, Bridget E.
2018-01-01
A better understanding of the factors that regulate growth and immune response of the gastrointestinal tract (GIT) of calves will promote informed management practices in calf rearing. This study aimed to explore genomics (messenger RNA (mRNA)) and epigenomics (long non-coding RNA (lncRNA)) mechanisms regulating the development of the rumen and ileum in calves. Thirty-two calves (≈5-days-old) were reared for 96 days following standard procedures. Sixteen calves were humanely euthanized on experiment day 33 (D33) (pre-weaning) and another 16 on D96 (post-weaning) for collection of ileum and rumen tissues. RNA from tissues was subjected to next generation sequencing and 3310 and 4217 mRNAs were differentially expressed (DE) between D33 and D96 in ileum and rumen tissues, respectively. Gene ontology and pathways enrichment of DE genes confirmed their roles in developmental processes, immunity and lipid metabolism. A total of 1568 (63 known and 1505 novel) and 4243 (88 known and 4155 novel) lncRNAs were detected in ileum and rumen tissues, respectively. Cis target gene analysis identified BMPR1A, an important gene for a GIT disease (juvenile polyposis syndrome) in humans, as a candidate cis target gene for lncRNAs in both tissues. LncRNA cis target gene enrichment suggested that lncRNAs might regulate growth and development in both tissues as well as posttranscriptional gene silencing by RNA or microRNA processing in rumen, or disease resistance mechanisms in ileum. This study provides a catalog of bovine lncRNAs and set a baseline for exploring their functions in calf GIT development. PMID:29510583
Ibeagha-Awemu, Eveline M; Do, Duy N; Dudemaine, Pier-Luc; Fomenky, Bridget E; Bissonnette, Nathalie
2018-03-05
A better understanding of the factors that regulate growth and immune response of the gastrointestinal tract (GIT) of calves will promote informed management practices in calf rearing. This study aimed to explore genomics (messenger RNA (mRNA)) and epigenomics (long non-coding RNA (lncRNA)) mechanisms regulating the development of the rumen and ileum in calves. Thirty-two calves (≈5-days-old) were reared for 96 days following standard procedures. Sixteen calves were humanely euthanized on experiment day 33 (D33) (pre-weaning) and another 16 on D96 (post-weaning) for collection of ileum and rumen tissues. RNA from tissues was subjected to next generation sequencing and 3310 and 4217 mRNAs were differentially expressed (DE) between D33 and D96 in ileum and rumen tissues, respectively. Gene ontology and pathways enrichment of DE genes confirmed their roles in developmental processes, immunity and lipid metabolism. A total of 1568 (63 known and 1505 novel) and 4243 (88 known and 4155 novel) lncRNAs were detected in ileum and rumen tissues, respectively. Cis target gene analysis identified BMPR1A , an important gene for a GIT disease (juvenile polyposis syndrome) in humans, as a candidate cis target gene for lncRNAs in both tissues. LncRNA cis target gene enrichment suggested that lncRNAs might regulate growth and development in both tissues as well as posttranscriptional gene silencing by RNA or microRNA processing in rumen, or disease resistance mechanisms in ileum. This study provides a catalog of bovine lncRNAs and set a baseline for exploring their functions in calf GIT development.
Shin, Dong-Ho; Webb, Barbara M; Nakao, Miki; Smith, Sylvia L
2009-07-01
Complement factor I is a crucial regulator of mammalian complement activity. Very little is known of complement regulators in non-mammalian species. We isolated and sequenced four highly similar complement factor I cDNAs from the liver of the nurse shark (Ginglymostoma cirratum), designated as GcIf-1, GcIf-2, GcIf-3 and GcIf-4 (previously referred to as nsFI-a, -b, -c and -d) which encode 689, 673, 673 and 657 amino acid residues, respectively. They share 95% (
Shin, Dong-Ho; Webb, Barbara M.; Nakao, Miki; Smith, Sylvia L.
2009-01-01
Complement factor I is a crucial regulator of mammalian complement activity. Very little is known of complement regulators in non-mammalian species. We isolated and sequenced four highly similar complement factor I cDNAs from the liver of the nurse shark (Ginglymostoma cirratum), designated as GcIf-1, GcIf-2, GcIf-3 and GcIf-4 (previously referred to as nsFI-a, -b, -c and –d) which encode 689, 673, 673 and 657 amino acid residues, respectively. They share 95% (≤) amino acid identities with each other, 35.4 ~ 39.6% and 62.8 ~ 65.9% with factor I of mammals and banded houndshark (Triakis scyllium), respectively. The modular structure of the GcIf is similar to that of mammals with one notable exception, the presence of a novel shark-specific sequence between the leader peptide (LP) and the factor I membrane attack complex (FIMAC) domain. The cDNA sequences differ only in the size and composition of the shark-specific region (SSR). Sequence analysis of each SSR has identified within the region two novel short sequences (SS1 and SS2) and three repeat sequences (RS1, 2 and 3). Genomic analysis has revealed the existence of three introns between the leader peptide and the FIMAC domain, tentatively designated intron 1, intron 2, and intron 3 which span 4067, 2293 and 2082 bp, respectively. Southern blot analysis suggests the presence of a single gene copy for each cDNA type. Phylogenetic analysis suggests that complement factor I of cartilaginous fish diverged prior to the emergence of mammals. All four GcIf cDNA species are expressed in four different tissues and the liver is the main tissue in which expression level of all four is high. This suggests that the expression of GcIf isotypes is tissue-dependent. PMID:19423168
MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA
2010-01-01
This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue regeneration, and discussed new biomaterials that can be used to develop new regenerative technologies. PMID:17518671
Liu, Ming; Zhao, Shuangyun; Lin, Qingjie; Wang, Xiu-Ping
2015-04-01
Yes-associated protein (YAP) is a Hippo signaling transcriptional coactivator that plays pivotal roles in stem cell proliferation, organ size control, and tumor development. The downstream targets of YAP have been shown to be highly context dependent. In this study, we used the embryonic mouse tooth germ as a tool to search for the downstream targets of YAP in ectoderm-derived tissues. Yap deficiency in the dental epithelium resulted in a small tooth germ with reduced epithelial cell proliferation. We compared the gene expression profiles of embryonic day 14.5 (E14.5) Yap conditional knockout and YAP transgenic mouse tooth germs using transcriptome sequencing (RNA-Seq) and further confirmed the differentially expressed genes using real-time PCR and in situ hybridization. We found that YAP regulates the expression of Hoxa1 and Hoxc13 in oral and dental epithelial tissues as well as in the epidermis of skin during embryonic and adult stages. Sphere formation assay suggested that Hoxa1 and Hoxc13 are functionally involved in YAP-regulated epithelial progenitor cell proliferation, and chromatin immunoprecipitation (ChIP) assay implies that YAP may regulate Hoxa1 and Hoxc13 expression through TEAD transcription factors. These results provide mechanistic insights into abnormal YAP activities in mice and humans. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Hill, Eric M.; Petersen, Christian P.
2015-01-01
Mechanisms determining final organ size are poorly understood. Animals undergoing regeneration or ongoing adult growth are likely to require sustained and robust mechanisms to achieve and maintain appropriate sizes. Planarians, well known for their ability to undergo whole-body regeneration using pluripotent adult stem cells of the neoblast population, can reversibly scale body size over an order of magnitude by controlling cell number. Using quantitative analysis, we showed that after injury planarians perfectly restored brain:body proportion by increasing brain cell number through epimorphosis or decreasing brain cell number through tissue remodeling (morphallaxis), as appropriate. We identified a pathway controlling a brain size set-point that involves feedback inhibition between wnt11-6/wntA/wnt4a and notum, encoding conserved antagonistic signaling factors expressed at opposite brain poles. wnt11-6/wntA/wnt4a undergoes feedback inhibition through canonical Wnt signaling but is likely to regulate brain size in a non-canonical pathway independently of beta-catenin-1 and APC. Wnt/Notum signaling tunes numbers of differentiated brain cells in regenerative growth and tissue remodeling by influencing the abundance of brain progenitors descended from pluripotent stem cells, as opposed to regulating cell death. These results suggest that the attainment of final organ size might be accomplished by achieving a balance of positional signaling inputs that regulate the rates of tissue production. PMID:26525673
Yan, Li; Cao, Rui; Wang, Lianzhao; Liu, Yuanbo; Pan, Bo; Yin, Yanhua; Lv, Xiaoyan; Zhuang, Qiang; Sun, Xuejian; Xiao, Ran
2015-01-01
Keloid is a skin fibrotic disease with the characteristics of recurrence and invasion, its pathogenesis still remains unrevealed. The epithelial-mesenchymal transition (EMT) is critical for wound healing, fibrosis, recurrence, and invasion of cancer. We sought to investigate the EMT in keloid and the mechanism through which the EMT regulates keloid formation. In keloid tissues, the expressions of EMT-associated markers and transforming growth factor (TGF)-β1/Smad3 signaling were examined by immunohistochemistry. In the keloid epidermis and dermal tissue, the expressions of genes related to the regulation of skin homeostasis, fibroblast growth factor receptor 2 (FGFR2) and p63, were analyzed using quantitative real-time polymerase chain reaction. The results showed that accompanying the loss of the epithelial marker E-cadherin and the gain of the mesenchymal markers fibroblast-specific protein 1 (FSP1) and vimentin in epithelial cells from epidermis and skin appendages, and in endothelial cells from dermal microvessels, enhanced TGF-β1 expression and Smad3 phosphorylation were noted in keloid tissues. Moreover, alternative splicing of the FGFR2 gene switched the predominantly expressed isoform from FGFR2-IIIb to -IIIc, concomitant with the decreased expression of ΔNp63 and TAp63, which changes might partially account for abnormal epidermis and appendages in keloids. In addition, we found that TGF-β1-induced hair follicle outer root sheath keratinocytes (ORSKs) and normal skin epithelial cells underwent EMT in vitro with ORSKs exhibiting more obvious EMT changes and more similar expression profiles for EMT-associated and skin homeostasis-related genes as in keloid tissues, suggesting that ORSKs might play crucial roles in the EMT in keloids. Our study provided insights into the molecular mechanisms mediating the EMT pathogenesis of keloids. © 2015 by the Wound Healing Society.
Lee, Sang Yoon; Nam, Yoon Kwon
2016-11-01
A novel metallothionein (MT) gene from the Pacific abalone H. discus hannai was characterized and its mRNA expression patterns (tissue distribution, developmental expression and differential expression in responsive to various in vivo stimulatory treatments) were examined. Abalone MT shares conserved structural features with previously known gastropod orthologs at both genomic (i.e., tripartite organization) and amino acid (conserved Cys motifs) levels. The 5'-flanking regulatory region of abalone MT gene displayed various transcription factor binding motifs particularly including ones related with metal regulation and stress/immune responses. Tissue distribution and basal expression patterns of MT mRNAs indicated a potential association between ovarian MT expression and sexual maturation. Developmental expression pattern suggested the maternal contribution of MT mRNAs to embryonic and early larval developments. Abalone MT mRNAs could be significantly induced by various heavy metals in different tissues (gill, hepatopancreas, muscle and hemocyte) in a tissue- and/or metal-dependent fashion. In addition, the abalone MT gene was highly modulated in responsive to other non-metal, stimulatory treatments such as immune challenge (LPS, polyI:C and bacterial injections), hypoxia (decrease from normoxia 8 ppm-2 ppm), thermal elevation (increase from 20 °C to 30 °C), and xenobiotic exposure (250 ppb of 17α-ethynylestradiol and 0.25 ppb of 2,3,7,8-tetrachlorodibenzodioxin) where differential expression patterns were toward either up- or down-regulation depending on types of stimulations and tissues examined. Taken together, our results highlight that MT is a multifunctional effector playing in wide criteria of cellular pathways especially associated with development and stress responses in this abalone species. Copyright © 2016 Elsevier Ltd. All rights reserved.
MiR-214 regulates oral cancer KB cell apoptosis through targeting RASSF5.
Li, T K; Yin, K; Chen, Z; Bao, Y; Zhang, S X
2017-03-08
Ras association domain family member 5 (RASSF5), a member of the Ras association domain family, induces cell apoptosis by phosphorylating FOXO3a, which triggers target gene BIM (pro-apoptotic factor) activation. MiR-214 is overexpressed in oral cancer tissue, indicating its possible involvement in oral cancer pathogenesis. Bioinformatics analysis has revealed a complimentary sequence between miR-214 and the 3'-UTR of RASSF5 mRNA. However, whether miR-124 regulates RASSF5 in oral cancer remains poorly understood. We aimed to investigate the role of miR-214 in RASSF5 expression regulation in oral cancer. Tumor and paracarcinoma tissues were obtained from 48 oral cancer patients to examine miR-214 and RASSF5 expression. The relationship between miR-214 and RASSF5 was investigated by dual luciferase reporter gene assay. Oral cancer KB cells were cultured in vitro and divided into inhibitor NC, miR-214 inhibitor, Scramble-pMD18, RASSF5-pMD18, and miR-214 inhibitor + RASSF5-pMD18 groups. Caspase 3 activity, cell apoptosis, and total protein expression were measured by spectrophotometry, flow cytometry, and western blot, respectively. MiR-214 expression was significantly increased, while that of RASSF5 decreased in oral cancer tumor tissues compared to paracarcinoma tissues. Luciferase assay showed that miR-214 suppressed RASSF5 expression by targeting its 3'-UTR. Down-regulation of miR-214 and/or enhancement of RASSF5 expression markedly increased FOXO3a phosphorylation, BIM expression, caspase 3 activity, and apoptosis. In conclusion, miR-214 expression was elevated and RASSF5 was down-regulated in oral cancer. Moreover, miR-214 regulated KB cell apoptosis through targeted inhibition of RASSF5 expression, FOXO3a phosphorylation, and BIM expression, suggesting its possible application as a novel therapeutic oral cancer target.
Miao, Qingtang; Hao, Sibin; Li, Hongmei; Sun, Fang; Wang, Xueling
2015-01-01
Femoral head avascular necrosis (AVN) causes the damage of hip joint and related dysfunctions, thus consisting of a clinical challenge. Osteoprotegerin (OPG), receptor activator of nuclear factor κB (RANK) and its ligand (RANKL) all regulate the formation of bones via gene transcriptional regulation for the balance between osteoblasts and osteoclasts. This study thus investigated the expressional profiles of OPG, RANK and RANKL genes in AVN patients, and explored related molecular mediating pathways. Real-time qPCR was used to measure the gene expression of OPG, RANK and RANKL genes in AVN femoral head tissue samples from 42 patients, along with normal tissues. Western blotting analysis was performed to quantify protein levels of OPG and RANKL. There was a trend but not statistically significant elevation of mRNA levels of OPG in femoral head AVN tissues compared to normal tissues (P>0.05). The expression of RNAK and RNAKL, however, was significantly elevated in necrotic tissues (P<0.05). No significant difference in protein levels of OPG or RANKL between groups. The expression of OPG, RANK and RANKL genes exert a crucial role in the progression of AVN, suggesting their roles in mediating bone homeostasis and potential effects on bone destruction.
The primary role of zebrafish nanog is in extra-embryonic tissue.
Gagnon, James A; Obbad, Kamal; Schier, Alexander F
2018-01-09
The role of the zebrafish transcription factor Nanog has been controversial. It has been suggested that Nanog is primarily required for the proper formation of the extra-embryonic yolk syncytial layer (YSL) and only indirectly regulates gene expression in embryonic cells. In an alternative scenario, Nanog has been proposed to directly regulate transcription in embryonic cells during zygotic genome activation. To clarify the roles of Nanog, we performed a detailed analysis of zebrafish nanog mutants. Whereas zygotic nanog mutants survive to adulthood, maternal-zygotic (MZ nanog ) and maternal mutants exhibit developmental arrest at the blastula stage. In the absence of Nanog, YSL formation and epiboly are abnormal, embryonic tissue detaches from the yolk, and the expression of dozens of YSL and embryonic genes is reduced. Epiboly defects can be rescued by generating chimeric embryos of MZ nanog embryonic tissue with wild-type vegetal tissue that includes the YSL and yolk cell. Notably, cells lacking Nanog readily respond to Nodal signals and when transplanted into wild-type hosts proliferate and contribute to embryonic tissues and adult organs from all germ layers. These results indicate that zebrafish Nanog is necessary for proper YSL development but is not directly required for embryonic cell differentiation. © 2018. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Wang, Yongcui; Zhao, Weiling; Zhou, Xiaobo
2016-10-01
Accurate identification of coherent transcriptional modules (subnetworks) in adipose and muscle tissues is important for revealing the related mechanisms and co-regulated pathways involved in the development of aging-related diseases. Here, we proposed a systematically computational approach, called ICEGM, to Identify the Co-Expression Gene Modules through a novel mathematical framework of Higher-Order Generalized Singular Value Decomposition (HO-GSVD). ICEGM was applied on the adipose, and heart and skeletal muscle tissues in old and young female African green vervet monkeys. The genes associated with the development of inflammation, cardiovascular and skeletal disorder diseases, and cancer were revealed by the ICEGM. Meanwhile, genes in the ICEGM modules were also enriched in the adipocytes, smooth muscle cells, cardiac myocytes, and immune cells. Comprehensive disease annotation and canonical pathway analysis indicated that immune cells, adipocytes, cardiomyocytes, and smooth muscle cells played a synergistic role in cardiac and physical functions in the aged monkeys by regulation of the biological processes associated with metabolism, inflammation, and atherosclerosis. In conclusion, the ICEGM provides an efficiently systematic framework for decoding the co-expression gene modules in multiple tissues. Analysis of genes in the ICEGM module yielded important insights on the cooperative role of multiple tissues in the development of diseases.
Tsui, Jonathan H; Janebodin, Kajohnkiart; Ieronimakis, Nicholas; Yama, David M P; Yang, Hee Seok; Chavanachat, Rakchanok; Hays, Aislinn L; Lee, Haeshin; Reyes, Morayma; Kim, Deok-Ho
2017-12-26
Despite possessing substantial regenerative capacity, skeletal muscle can suffer from loss of function due to catastrophic traumatic injury or degenerative disease. In such cases, engineered tissue grafts hold the potential to restore function and improve patient quality of life. Requirements for successful integration of engineered tissue grafts with the host musculature include cell alignment that mimics host tissue architecture and directional functionality, as well as vascularization to ensure tissue survival. Here, we have developed biomimetic nanopatterned poly(lactic-co-glycolic acid) substrates conjugated with sphingosine-1-phosphate (S1P), a potent angiogenic and myogenic factor, to enhance myoblast and endothelial maturation. Primary muscle cells cultured on these functionalized S1P nanopatterned substrates developed a highly aligned and elongated morphology and exhibited higher expression levels of myosin heavy chain, in addition to genes characteristic of mature skeletal muscle. We also found that S1P enhanced angiogenic potential in these cultures, as evidenced by elevated expression of endothelial-related genes. Computational analyses of live-cell videos showed a significantly improved functionality of tissues cultured on S1P-functionalized nanopatterns as indicated by greater myotube contraction displacements and velocities. In summary, our study demonstrates that biomimetic nanotopography and S1P can be combined to synergistically regulate the maturation and vascularization of engineered skeletal muscles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, B.; Morgan, A.J.
The main purpose of the present study was to determine whether a positive Ca-Pb relationship exists in the tissues of L. terrestris. This species possesses well-developed Ca secretory/excretory glands and may thus be able to homeostatically regulate tissue (Ca). The worms were samples from six different stations across a heavily polluted disused Pb/Zn mine site, where the interstation (Ca) varied by as much as a factor of x 10. This heterogeneous site, therefore, offered a good opportunity to study additional aspects of Ca-Pb interactions in an earthworm population under field conditions.
NASA Astrophysics Data System (ADS)
Kristie, Thomas M.; Vogel, Jodi L.; Sears, Amy E.
1999-02-01
After a primary infection, herpes simplex virus is maintained in a latent state in neurons of sensory ganglia until complex stimuli reactivate viral lytic replication. Although the mechanisms governing reactivation from the latent state remain unknown, the regulated expression of the viral immediate early genes represents a critical point in this process. These genes are controlled by transcription enhancer complexes whose assembly requires and is coordinated by the cellular C1 factor (host cell factor). In contrast to other tissues, the C1 factor is not detected in the nuclei of sensory neurons. Experimental conditions that induce the reactivation of herpes simplex virus in mouse model systems result in rapid nuclear localization of the protein, indicating that the C1 factor is sequestered in these cells until reactivation signals induce a redistribution of the protein. The regulated localization suggests that C1 is a critical switch determinant of the viral lytic-latent cycle.
Human Endometrial DNA Methylome Is Cycle-Dependent and Is Associated With Gene Expression Regulation
Houshdaran, Sahar; Zelenko, Zara; Irwin, Juan C.
2014-01-01
Human endometrium undergoes major gene expression changes, resulting in altered cellular functions in response to cyclic variations in circulating estradiol and progesterone, largely mediated by transcription factors and nuclear receptors. In addition to classic modulators, epigenetic mechanisms regulate gene expression during development in response to environmental factors and in some diseases and have roles in steroid hormone action. Herein, we tested the hypothesis that DNA methylation plays a role in gene expression regulation in human endometrium in different hormonal milieux. High throughput, genome-wide DNA methylation profiling of endometrial samples in proliferative, early secretory, and midsecretory phases revealed dynamic DNA methylation patterns with segregation of proliferative from secretory phase samples by unsupervised cluster analysis of differentially methylated genes. Changes involved different frequencies of gain and loss of methylation within or outside CpG islands. Comparison of changes in transcriptomes and corresponding DNA methylomes from the same samples revealed association of DNA methylation and gene expression in a number of loci, some important in endometrial biology. Human endometrial stromal fibroblasts treated in vitro with estradiol and progesterone exhibited DNA methylation changes in several genes observed in proliferative and secretory phase tissues, respectively. Taken together, the data support the observation that epigenetic mechanisms are involved in gene expression regulation in human endometrium in different hormonal milieux, adding endometrium to a small number of normal adult tissues exhibiting dynamic DNA methylation. The data also raise the possibility that the interplay between steroid hormone and methylome dynamics regulates normal endometrial functions and, if abnormal, may result in endometrial dysfunction and associated disorders. PMID:24877562
Kandhare, Amit D; Ghosh, Pinaki; Bodhankar, Subhash L
2014-08-05
Chronic, unhealed diabetic foot ulcer (DFU) is one of the most severe complications of diabetes mellitus (DM). Naringin, a flavanone glycoside antioxidant, was reported to have antidiabetic and anti-apoptotic properties. In the present study DM was induced experimentally by streptozotocin (STZ, 55 mg/kg, i.p.). In surgically introduced wounds on the dorsal surface of the hind paw of rats, the healing potential of naringin was investigated. Rats were treated with naringin (20, 40 and 80 mg/kg, p.o.), insulin (10 IU/kg, s.c.) and tetrachlorodecaoxide (TCDO) (1 drop, twice a day, topically) for 16 days. The wound area was measured every second day, and on day 17 various biochemical parameters were determined in serum, wound tissue, and histopathological examination of the wound was performed. Naringin (40 and 80 mg/kg) significantly (P<0.05) improved wound area, serum glucose level, glycated Hb and serum insulin. Naringin treatment at 40 and 80 mg/kg resulted in significant (P<0.05) up-regulation of mRNA expression of growth factor (IFG-1, TGF-β and VEGF-c), Ang-1 and collagen-1 whereas mRNA expression of inflammatory mediators (TNF-α, IL-1β and IL-6) was down-regulated. Furthermore, naringin significantly (P<0.05) attenuated STZ-induced apoptosis and stimulated angiogenesis in the wound tissue. Further results suggest that angiogenesis was improved via naringin-mediated inhibition of hyperglycemia, oxidative stress, down-regulation of inflammatory mediator expression and up-regulation of growth factor expression, leading to improved wound healing of DFU. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Martinez-Moreno, Julio M; Herencia, Carmen; Montes de Oca, Addy; Muñoz-Castañeda, Juan R; Rodríguez-Ortiz, M Encarnación; Díaz-Tocados, Juan M; Peralbo-Santaella, Esther; Camargo, Antonio; Canalejo, Antonio; Rodriguez, Mariano; Velasco-Gimena, Francisco; Almaden, Yolanda
2016-03-01
Clinical and epidemiologic studies reveal an association between vitamin D deficiency and increased risk of cardiovascular disease. Because vascular smooth muscle cell (VSMC)-derived tissue factor (TF) is suggested to be critical for arterial thrombosis, we investigated whether the vitamin D molecules calcitriol and paricalcitol could reduce the expression of TF induced by the proinflammatory cytokine TNF-α in human aortic VSMCs. We found that, compared with controls, incubation with TNF-α increased TF expression and procoagulant activity in a NF-κB-dependent manner, as deduced from the increased nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells protein 65 (p65-NF-κB) and direct interaction of NF-κB to the TF promoter. This was accompanied by the up-regulation of TF signaling mediator protease-activated receptor 2 (PAR-2) expression and by the down-regulation of vitamin D receptor expression in a miR-346-dependent way. However, addition of calcitriol or paricalcitol blunted the TNF-α-induced TF expression and activity (2.01 ± 0.24 and 1.32 ± 0.14 vs. 3.02 ± 0.39 pmol/mg protein, P < 0.05), which was associated with down-regulation of NF-κB signaling and PAR-2 expression, as well as with restored levels of vitamin D receptor and enhanced expression of TF pathway inhibitor. Our data suggest that inflammation promotes a prothrombotic state through the up-regulation of TF function in VSMCs and that the beneficial cardiovascular effects of vitamin D may be partially due to decreases in TF expression and its activity in VSMCs. © FASEB.
Expression of forkhead box transcription factor genes Foxp1 and Foxp2 during jaw development.
Cesario, Jeffry M; Almaidhan, Asma A; Jeong, Juhee
2016-03-01
Development of the face is regulated by a large number of genes that are expressed in temporally and spatially specific patterns. While significant progress has been made on characterizing the genes that operate in the oral region of the face, those regulating development of the aboral (lateral) region remain largely unknown. Recently, we discovered that transcription factors LIM homeobox (LHX) 6 and LHX8, which are key regulators of oral development, repressed the expression of the genes encoding forkhead box transcription factors, Foxp1 and Foxp2, in the oral region. To gain insights into the potential role of the Foxp genes in region-specific development of the face, we examined their expression patterns in the first pharyngeal arch (primordium for the jaw) of mouse embryos at a high spatial and temporal resolution. Foxp1 and Foxp2 were preferentially expressed in the aboral and posterior parts of the first pharyngeal arch, including the developing temporomandibular joint. Through double immunofluorescence and double fluorescent RNA in situ hybridization, we found that Foxp1 was expressed in the progenitor cells for the muscle, bone, and connective tissue. Foxp2 was expressed in subsets of bone and connective tissue progenitors but not in the myoblasts. Neither gene was expressed in the dental mesenchyme nor in the oral half of the palatal shelf undergoing extensive growth and morphogenesis. Together, we demonstrated for the first time that Foxp1 and Foxp2 are expressed during craniofacial development. Our data suggest that the Foxp genes may regulate development of the aboral and posterior regions of the jaw. Copyright © 2016 Elsevier B.V. All rights reserved.
Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.
Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K
2011-10-01
Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.
Epidermal Growth Factor Increases LRF/Pokemon Expression in Human Prostate Cancer Cells
Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K.
2011-01-01
Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. PMID:21640721
Grimberg, Åsa; Carlsson, Anders S; Marttila, Salla; Bhalerao, Rishikesh; Hofvander, Per
2015-08-08
Carbon accumulation and remobilization are essential mechanisms in plants to ensure energy transfer between plant tissues with different functions or metabolic needs and to support new generations. Knowledge about the regulation of carbon allocation into oil (triacylglycerol) in plant storage tissue can be of great economic and environmental importance for developing new high-yielding oil crops. Here, the effect on global gene expression as well as on physiological changes in leaves transiently expressing five homologs of the transcription factor WRINKLED1 (WRI1) originating from diverse species and tissues; Arabidopsis thaliana and potato (Solanum tuberosum) seed embryo, poplar (Populus trichocarpa) stem cambium, oat (Avena sativa) grain endosperm, and nutsedge (Cyperus esculentus) tuber parenchyma, were studied by agroinfiltration in Nicotiana benthamiana. All WRI1 homologs induced oil accumulation when expressed in leaf tissue. Transcriptome sequencing revealed that all homologs induced the same general patterns with a drastic shift in gene expression profiles of leaves from that of a typical source tissue to a source-limited sink-like tissue: Transcripts encoding enzymes for plastid uptake and metabolism of phosphoenolpyruvate, fatty acid and oil biosynthesis were up-regulated, as were also transcripts encoding starch degradation. Transcripts encoding enzymes in photosynthesis and starch synthesis were instead down-regulated. Moreover, transcripts representing fatty acid degradation were up-regulated indicating that fatty acids might be degraded to feed the increased need to channel carbons into fatty acid synthesis creating a futile cycle. RT-qPCR analysis of leaves expressing Arabidopsis WRI1 showed the temporal trends of transcripts selected as 'markers' for key metabolic pathways one to five days after agroinfiltration. Chlorophyll fluorescence measurements of leaves expressing Arabidopsis WRI1 showed a significant decrease in photosynthesis, even though effect on starch content could not be observed. This data gives for the first time a general view on the transcriptional transitions in leaf tissue upon induction of oil synthesis by WRI1. This yields important information about what effects WRI1 may exert on global gene expression during seed and embryo development. The results suggest why high oil content in leaf tissue cannot be achieved by solely transcriptional activation by WRI1, which can be essential knowledge in the development of new high-yielding oil crops.
Sim, Jingwei; Cowburn, Andrew S; Palazon, Asis; Madhu, Basetti; Tyrakis, Petros A; Macías, David; Bargiela, David M; Pietsch, Sandra; Gralla, Michael; Evans, Colin E; Kittipassorn, Thaksaon; Chey, Yu C J; Branco, Cristina M; Rundqvist, Helene; Peet, Daniel J; Johnson, Randall S
2018-04-03
Animals require an immediate response to oxygen availability to allow rapid shifts between oxidative and glycolytic metabolism. These metabolic shifts are highly regulated by the HIF transcription factor. The factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that controls HIF transcriptional activity in an oxygen-dependent manner. We show here that FIH loss increases oxidative metabolism, while also increasing glycolytic capacity, and that this gives rise to an increase in oxygen consumption. We further show that the loss of FIH acts to accelerate the cellular metabolic response to hypoxia. Skeletal muscle expresses 50-fold higher levels of FIH than other tissues: we analyzed skeletal muscle FIH mutants and found a decreased metabolic efficiency, correlated with an increased oxidative rate and an increased rate of hypoxic response. We find that FIH, through its regulation of oxidation, acts in concert with the PHD/vHL pathway to accelerate HIF-mediated metabolic responses to hypoxia. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering.
Jayaraman, Praveena; Gandhimathi, Chinnasamy; Venugopal, Jayarama Reddy; Becker, David Laurence; Ramakrishna, Seeram; Srinivasan, Dinesh Kumar
2015-11-01
Generating porous topographic substrates, by mimicking the native extracellular matrix (ECM) to promote the regeneration of damaged bone tissues, is a challenging process. Generally, scaffolds developed for bone tissue regeneration support bone cell growth and induce bone-forming cells by natural proteins and growth factors. Limitations are often associated with these approaches such as improper scaffold stability, and insufficient cell adhesion, proliferation, differentiation, and mineralization with less growth factor expression. Therefore, the use of engineered nanoparticles has been rapidly increasing in bone tissue engineering (BTE) applications. The electrospray technique is advantageous over other conventional methods as it generates nanomaterials of particle sizes in the micro/nanoscale range. The size and charge of the particles are controlled by regulating the polymer solution flow rate and electric voltage. The unique properties of nanoparticles such as large surface area-to-volume ratio, small size, and higher reactivity make them promising candidates in the field of biomedical engineering. These nanomaterials are extensively used as therapeutic agents and for drug delivery, mimicking ECM, and restoring and improving the functions of damaged organs. The controlled and sustained release of encapsulated drugs, proteins, vaccines, growth factors, cells, and nucleotides from nanoparticles has been well developed in nanomedicine. This review provides an insight into the preparation of nanoparticles by electrospraying technique and illustrates the use of nanoparticles in drug delivery for promoting bone tissue regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.
Ghosh, Sujoy; Forney, Laura A.; Wanders, Desiree; Stone, Kirsten P.
2017-01-01
Dietary methionine restriction (MR) produces a coordinated series of transcriptional responses in peripheral tissues that limit fat accretion, remodel lipid metabolism in liver and adipose tissue, and improve overall insulin sensitivity. Hepatic sensing of reduced methionine leads to induction and release of fibroblast growth factor 21 (FGF21), which acts centrally to increase sympathetic tone and activate thermogenesis in adipose tissue. FGF21 also has direct effects in adipose to enhance glucose uptake and oxidation. However, an understanding of how the liver senses and translates reduced dietary methionine into these transcriptional programs remains elusive. A comprehensive systems biology approach integrating transcriptomic and metabolomic readouts in MR-treated mice confirmed that three interconnected mechanisms (fatty acid transport and oxidation, tricarboxylic acid cycle, and oxidative phosphorylation) were activated in MR-treated inguinal adipose tissue. In contrast, the effects of MR in liver involved up-regulation of anti-oxidant responses driven by the nuclear factor, erythroid 2 like 2 transcription factor, NFE2L2. Metabolomic analysis provided evidence for redox imbalance, stemming from large reductions in the master anti-oxidant molecule glutathione coupled with disproportionate increases in ophthalmate and its precursors, glutamate and 2-aminobutyrate. Thus, cysteine and its downstream product, glutathione, emerge as key early hepatic signaling molecules linking dietary MR to its metabolic phenotype. PMID:28520765
Zeng, Huijun; Yang, Zhao; Xu, Ningbo; Liu, Boyang; Fu, Zhao; Lian, Changlin; Guo, Hongbo
2017-06-15
Limited benefits and clinical utility of temozolomide (TMZ) for glioblastoma (GB) are frequently compromised by the development of acquired drug resistance. Overcoming TMZ resistance and uncovering the underlying mechanisms are challenges faced during GB chemotherapy. In this study, we reported that connective tissue growth factor (CTGF) was associated with GB chemoresistance and significantly upregulated in TMZ-treated GB cells. CTGF knockdown promoted TMZ-induced cell apoptosis and enhanced chemosensitivity, whereas its overexpression markedly conferred TMZ resistance in vitro and in vivo. Moreover, CTGF promoted TMZ resistance through stem-like properties acquisition and CD44 interference reversed the CTGF-induced TMZ resistance. Mechanistically, further investigation revealed that the TMZ-induced CTGF upregulation was tissue growth factor (TGF-β) dependent, and regulated by TGF-β1 activation through Smad and ERK1/2 signaling. Together, our results suggest a pivotal role of CTGF-mediated TMZ resistance through TGF-β1-dependent activation of Smad/ERK signaling pathways. These data provide us insights for identifying potential targets that are beneficial for overcoming TMZ resistance in GB.
Makeyev, Aleksandr V.; Enkhmandakh, Badam; Hong, Seung-Hyun; Joshi, Pujan; Shin, Dong-Guk; Bayarsaihan, Dashzeveg
2012-01-01
GTF2I and GTF2IRD1 encode a family of closely related transcription factors TFII-I and BEN critical in embryonic development. Both genes are deleted in Williams-Beuren syndrome, a complex genetic disorder associated with neurocognitive, craniofacial, dental and skeletal abnormalities. Although genome-wide promoter analysis has revealed the existence of multiple TFII-I binding sites in embryonic stem cells (ESCs), there was no correlation between TFII-I occupancy and gene expression. Surprisingly, TFII-I recognizes the promoter sequences enriched for H3K4me3/K27me3 bivalent domain, an epigenetic signature of developmentally important genes. Moreover, we discovered significant differences in the association between TFII-I and BEN with the cis-regulatory elements in ESCs and embryonic craniofacial tissues. Our data indicate that in embryonic tissues BEN, but not the highly homologous TFII-I, is primarily recruited to target gene promoters. We propose a “feed-forward model” of gene regulation to explain the specificity of promoter recognition by TFII-I factors in eukaryotic cells. PMID:22970219
Makeyev, Aleksandr V; Enkhmandakh, Badam; Hong, Seung-Hyun; Joshi, Pujan; Shin, Dong-Guk; Bayarsaihan, Dashzeveg
2012-01-01
GTF2I and GTF2IRD1 encode a family of closely related transcription factors TFII-I and BEN critical in embryonic development. Both genes are deleted in Williams-Beuren syndrome, a complex genetic disorder associated with neurocognitive, craniofacial, dental and skeletal abnormalities. Although genome-wide promoter analysis has revealed the existence of multiple TFII-I binding sites in embryonic stem cells (ESCs), there was no correlation between TFII-I occupancy and gene expression. Surprisingly, TFII-I recognizes the promoter sequences enriched for H3K4me3/K27me3 bivalent domain, an epigenetic signature of developmentally important genes. Moreover, we discovered significant differences in the association between TFII-I and BEN with the cis-regulatory elements in ESCs and embryonic craniofacial tissues. Our data indicate that in embryonic tissues BEN, but not the highly homologous TFII-I, is primarily recruited to target gene promoters. We propose a "feed-forward model" of gene regulation to explain the specificity of promoter recognition by TFII-I factors in eukaryotic cells.
Redox implications in adipose tissue (dys)function—A new look at old acquaintances
Jankovic, Aleksandra; Korac, Aleksandra; Buzadzic, Biljana; Otasevic, Vesna; Stancic, Ana; Daiber, Andreas; Korac, Bato
2015-01-01
Obesity is an energy balance disorder associated with dyslipidemia, insulin resistance and diabetes type 2, also summarized with the term metabolic syndrome or syndrome X. Increasing evidence points to “adipocyte dysfunction”, rather than fat mass accretion per se, as the key pathophysiological factor for metabolic complications in obesity. The dysfunctional fat tissue in obesity characterizes a failure to safely store metabolic substrates into existing hypertrophied adipocytes and/or into new preadipocytes recruited for differentiation. In this review we briefly summarize the potential of redox imbalance in fat tissue as an instigator of adipocyte dysfunction in obesity. We reveal the challenge of the adipose redox changes, insights in the regulation of healthy expansion of adipose tissue and its reduction, leading to glucose and lipids overflow. PMID:26177468
Sofer, Sigal; Eliraz, Abraham; Madar, Zecharia; Froy, Oren
2015-10-15
New evidance highlights the importance of food timing. Recently, we showed that a low-calorie diet with carbohydrates eaten mostly at dinner changed diurnal hormone secretion and led to greater weight loss and improved metabolic status in obese people. Herein, we set out to test whether concentrated-carbohydrates diet (CCD), in which carbohydrates are fed only before sleep, leads to an improved metabolic status in mouse hypothalamus and peripheral tissues. Diet-induced obese mice were given concentrated or distributed carbohydrate diet for 6 weeks. Obese mice fed CCD ate 8.3% less, were 9.3% leaner and had 39.7% less fat mass. Leptin, ghrelin and adiponectin displayed altered secretion. In addition, these mice exhibited an improved biochemical and inflammatory status. In the hypothalamus, anorexigenic signals were up-regulated and orexigenic signals were down-regulated. In peripheral tissues, CCD promoted adiponectin signaling, repressed gluconeogenesis, enhanced lipid oxidation and lowered inflammation, thus ameliorating the major risk factors of obesity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.
Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J; Cheng, Qiang Shawn; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M; Gonzalez Guzman, Michael J; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Ryan, Elizabeth P; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H; Lowe, Leroy; Park, Hyun Ho
2015-06-01
Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells.
García-Prat, Laura; Sousa-Victor, Pedro; Muñoz-Cánoves, Pura
2013-09-01
Aging of an organism is associated with the functional decline of tissues and organs, as well as a sharp decline in the regenerative capacity of stem cells. A prevailing view holds that the aging rate of an individual depends on the ratio of tissue attrition to tissue regeneration. Therefore, manipulations that favor the balance towards regeneration may prevent or delay aging. Skeletal muscle is a specialized tissue composed of postmitotic myofibers that contract to generate force. Satellite cells are the adult stem cells responsible for skeletal muscle regeneration. Recent studies on the biology of skeletal muscle and satellite cells in aging have uncovered the critical impact of systemic and niche factors on stem cell functionality and demonstrated the capacity of aged satellite cells to rejuvenate and increase their regenerative potential when exposed to a youthful environment. Here we review the current literature on the coordinated relationship between cell extrinsic and intrinsic factors that regulate the function of satellite cells, and ultimately determine tissue homeostasis and repair during aging, and which encourage the search for new anti-aging strategies. © 2013 The Authors Journal compilation © 2013 FEBS.
Smooth Muscle-Mediated Connective Tissue Remodeling in Pulmonary Hypertension
NASA Astrophysics Data System (ADS)
Mecham, Robert P.; Whitehouse, Loren A.; Wrenn, David S.; Parks, William C.; Griffin, Gail L.; Senior, Robert M.; Crouch, Edmond C.; Stenmark, Kurt R.; Voelkel, Norbert F.
1987-07-01
Abnormal accumulation of connective tissue in blood vessels contributes to alterations in vascular physiology associated with disease states such as hypertension and atherosclerosis. Elastin synthesis was studied in blood vessels from newborn calves with severe pulmonary hypertension induced by alveolar hypoxia in order to investigate the cellular stimuli that elicit changes in pulmonary arterial connective tissue production. A two- to fourfold increase in elastin production was observed in pulmonary artery tissue and medial smooth muscle cells from hypertensive calves. This stimulation of elastin production was accompanied by a corresponding increase in elastin messenger RNA consistent with regulation at the transcriptional level. Conditioned serum harvested from cultures of pulmonary artery smooth muscle cells isolated from hypertensive animals contained one or more low molecular weight elastogenic factors that stimulated the production of elastin in both fibroblasts and smooth muscle cells and altered the chemotactic responsiveness of fibroblasts to elastin peptides. These results suggest that connective tissue changes in the pulmonary vasculature in response to pulmonary hypertension are orchestrated by the medial smooth muscle cell through the generation of specific differentiation factors that alter both the secretory phenotype and responsive properties of surrounding cells.
USDA-ARS?s Scientific Manuscript database
The ascomycete Neofusicoccum parvum, one of the causal agents of Botryosphaeria dieback, is a destructive wood-infecting fungus and a serious threat to grape production worldwide. The capability of colonizing woody tissue combined with the secretion of phytotoxic compounds is thought to underlie its...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, Joong Won; Kim, Kwang Il; Kim, Hyun-Ah
2013-10-11
Highlights: •HIF-1α-regulated INPP4B enhances glycolysis. •INPP4B regulates aerobic glycolysis by inducing HK2 via Akt-mTOR pathway. •Blockage of INPP4B and HK2 sensitizes radioresistant laryngeal cancer cells to radiation and anticancer drug. •INPP4B is associated with HK2 in human laryngeal cancer tissues. -- Abstract: Inositol polyphosphate 4-phosphatase type II (INPP4B) was recently identified as a tumor resistance factor in laryngeal cancer cells. Herein, we show that INPP4B-mediated resistance is associated with increased glycolytic phenotype. INPP4B expression was induced by hypoxia and irradiation. Intriguingly, overexpression of INPP4B enhanced aerobic glycolysis. Of the glycolysis-regulatory genes, hexokinase 2 (HK2) was mainly regulated by INPP4B andmore » this regulation was mediated through the Akt-mTOR pathway. Notably, codepletion of INPP4B and HK2 markedly sensitized radioresistant laryngeal cancer cells to irradiation or anticancer drug. Moreover, INPP4B was significantly associated with HK2 in human laryngeal cancer tissues. Therefore, these results suggest that INPP4B modulates aerobic glycolysis via HK2 regulation in radioresistant laryngeal cancer cells.« less
ZNF750 is a p63 Target Gene that Induces KLF4 to Drive Terminal Epidermal Differentiation
Sen, George L.; Boxer, Lisa D.; Webster, Dan E.; Bussat, Rose T.; Qu, Kun; Zarnegar, Brian J.; Johnston, Danielle; Siprashvili, Zurab; Khavari, Paul A.
2012-01-01
SUMMARY Disrupted epidermal differentiation characterizes numerous diseases that impact >25% of the population. In a search for dominant mediators of differentiation, we defined a requirement for ZNF750 in terminal epidermal differentiation. ZNF750 controlled genes mutated in numerous human skin diseases, including FLG, LOR, LCE3B, ALOXE3, and SPINK5. ZNF750 induced progenitor differentiation via an evolutionarily conserved C2H2 zinc finger motif. The epidermal master regulator, p63, bound the ZNF750 promoter and was necessary for its induction. ZNF750 restored differentiation to p63-deficient tissue, suggesting it acts downstream of p63. A search for functionally important ZNF750 targets via analysis of ZNF750-regulated genes identified KLF4, a transcription factor that activates late epidermal differentiation. ZNF750 binds to KLF4 at multiple sites flanking the transcriptional start site and controls its expression. ZNF750 thus directly links a tissue-specifying factor, p63, to an effector of terminal differentiation, KLF4, and represents a potential future target for disorders of this process. PMID:22364861
Sun, Ruixin; Wu, Yi; Hou, Weihua; Sun, Zujun; Wang, Yuxiong; Wei, Huanhuan; Mo, Wei; Yu, Min
2017-01-01
Insulin resistance is a major metabolic abnormality in a large majority of patients with type II diabetes. Bromodomain-containing protein 2 (Brd2), a transcriptional co-activator/co-repressor with switch mating type/sucrose non-fermenting (SWI/SNF)-like functions that regulates chromatin, suppresses adipocyte differentiation and regulates pancreatic β-cell biology. However, the effects of Brd2 on insulin resistance remain unknown. Here, overexpression of Brd2 in white adipose tissue of wild-type (WT) mice led to insulin resistance. Brd2 overexpression induced the expression of nuclear Factor-κΒ (NF-κΒ) target genes, mainly involving proinflammatory and chemotactic factors, in adipocytes. Furthermore, it decreased the expression of DEP domain containing mTOR-interacting protein (Deptor) to enhance mechanistic target of rapamycin (mTOR) signaling, thus blocking insulin signaling. Collectively, these results provided evidence for a novel role of Brd2 in chronic inflammation and insulin resistance, suggesting its potential in improving insulin resistance and treating metabolic disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
Tissue-selective restriction of RNA editing of CaV1.3 by splicing factor SRSF9.
Huang, Hua; Kapeli, Katannya; Jin, Wenhao; Wong, Yuk Peng; Arumugam, Thiruma Valavan; Koh, Joanne Huifen; Srimasorn, Sumitra; Mallilankaraman, Karthik; Chua, John Jia En; Yeo, Gene W; Soong, Tuck Wah
2018-05-04
Adenosine DeAminases acting on RNA (ADAR) catalyzes adenosine-to-inosine (A-to-I) conversion within RNA duplex structures. While A-to-I editing is often dynamically regulated in a spatial-temporal manner, the mechanisms underlying its tissue-selective restriction remain elusive. We have previously reported that transcripts of voltage-gated calcium channel CaV1.3 are subject to brain-selective A-to-I RNA editing by ADAR2. Here, we show that editing of CaV1.3 mRNA is dependent on a 40 bp RNA duplex formed between exon 41 and an evolutionarily conserved editing site complementary sequence (ECS) located within the preceding intron. Heterologous expression of a mouse minigene that contained the ECS, intermediate intronic sequence and exon 41 with ADAR2 yielded robust editing. Interestingly, editing of CaV1.3 was potently inhibited by serine/arginine-rich splicing factor 9 (SRSF9). Mechanistically, the inhibitory effect of SRSF9 required direct RNA interaction. Selective down-regulation of SRSF9 in neurons provides a basis for the neuron-specific editing of CaV1.3 transcripts.
Ratajczak, Mariusz Z; Bartke, Andrzej; Darzynkiewicz, Zbigniew
2017-08-01
The dream of slowing down the aging process has always inspired mankind. Since stem cells are responsible for tissue and organ rejuvenation, it is logical that we should search for encoded mechanisms affecting life span in these cells. However, in adult life the hierarchy within the stem cell compartment is still not very well defined, and evidence has accumulated that adult tissues contain rare stem cells that possess a broad trans-germ layer differentiation potential. These most-primitive stem cells-those endowed with pluripotent or multipotent differentiation ability and that give rise to other cells more restricted in differentiation, known as tissue-committed stem cells (TCSCs) - are of particular interest. In this review we present the concept supported by accumulating evidence that a population of so-called very small embryonic-like stem cells (VSELs) residing in adult tissues positively impacts the overall survival of mammals, including humans. These unique cells are prevented in vertebrates from premature depletion by decreased sensitivity to growth hormone (GH), insulin (INS), and insulin-like growth factor (IGF) signaling, due to epigenetic changes in paternally imprinted genes that regulate their resistance to these factors. In this context, we can envision nutrient response GH/INS/IGF signaling pathway as a lethal factor for these most primitive stem cells and an important culprit in aging.
Effects of Structural Properties of Electrospun TiO2 Nano-fiber Meshes on their Osteogenic Potential
Wang, Xiaokun; Gittens, Rolando A.; Song, Rosemary; Tannenbaum, Rina; Olivares-Navarrete, Rene; Schwartz, Zvi; Chen, Haifeng; Boyan, Barbara D.
2011-01-01
Ideal outcomes in the field of tissue engineering and regenerative medicine involve biomaterials that can enhance cell differentiation and production of local factors for natural tissue regeneration without the use of systemic drugs. Biomaterials typically used in tissue engineering applications include polymeric scaffolds that mimic the 3-D structural environment of the native tissue, but these are often functionalized with proteins or small peptides to improve their biological performance. For bone applications, titanium (Ti) implants, or more appropriately the titania (TiO2) passive oxide layer formed on their surface, have been shown to enhance osteoblast differentiation in vitro and to promote osseointegration in vivo. In this study we evaluated the effect on osteoblast differentiation of pure TiO2 nano-fiber meshes with different surface micro-roughness and nano-fiber diameters, prepared by the electrospinning method. MG63 cells were seeded on TiO2 meshes, and cell number, differentiation markers and local factor production were analyzed. The results showed that cells grew throughout the entire surfaces and with similar morphology in all groups. Cell number was sensitive to surface micro-roughness, whereas cell differentiation and local factor production was regulated by both surface roughness and nano-fiber diameter. These results indicate that scaffold structural cues alone can be used to drive cell differentiation and create an osteogenic environment without the use of exogenous factors. PMID:22075122
Brown adipose tissue macrophages control tissue innervation and homeostatic energy expenditure
Cortese, Nina; Haimon, Zhana; Sar Shalom, Hadas; Kuperman, Yael; Kalchenko, Vyacheslav; Brandis, Alexander; David, Eyal; Segal-Hayoun, Yifat; Chappell-Maor, Louise; Yaron, Avraham; Jung, Steffen
2017-01-01
Tissue macrophages provide immune defense and contribute to establishment and maintenance of tissue homeostasis. Here we used constitutive and inducible mutagenesis to delete the nuclear transcription regulator methyl-CpG binding protein 2 (Mecp2) in defined tissue macrophages. Animals lacking the Rett syndrome-associated gene in macrophages did not show signs of neurodevelopmental disorder, but displayed spontaneous obesity, which could be linked to impaired brown adipose tissue (BAT) function. Specifically, mutagenesis of a BAT-resident CX3CR1+ macrophage subpopulation compromised homeostatic, though not acute cold-induced thermogenesis. Mechanistically, BAT malfunction of pre-obese mice harboring mutant macrophages was associated with decreased sympathetic innervation and local norepinephrine titers, resulting in reduced adipocyte expression of thermogenic factors. Mutant macrophages over-expressed PlexinA4, which might contribute to the phenotype by repulsion of Sema6A-expressing sympathetic axons. Collectively, we report a previously unappreciated homeostatic role of macrophages in the control of tissue innervation, disruption of which in BAT results in metabolic imbalance. PMID:28459435
Li, Baojun; Qiao, Liying; An, Lixia; Wang, Weiwei; Liu, Jianhua; Ren, Youshe; Pan, Yangyang; Jing, Jiongjie; Liu, Wenzhong
2018-05-08
The level of fat deposition in carcass is a crucial factor influencing meat quality. Guangling Large-Tailed (GLT) and Small-Tailed Han (STH) sheep are important local Chinese fat-tailed breeds that show distinct patterns of fat depots. To gain a better understanding of fat deposition, transcriptome profiles were determined by RNA-sequencing of perirenal, subcutaneous, and tail fat tissues from both the sheep breeds. The common highly expressed genes (co-genes) in all the six tissues, and the genes that were differentially expressed (DE genes) between these two breeds in the corresponding tissues were analyzed. Approximately 47 million clean reads were obtained for each sample, and a total of 17,267 genes were annotated. Of the 47 highly expressed co-genes, FABP4, ADIPOQ, FABP5, and CD36 were the four most highly transcribed genes among all the known genes related to adipose deposition. FHC, FHC-pseudogene, and ZC3H10 were also highly expressed genes and could, thus, have roles in fat deposition. A total of 2091, 4233, and 4131 DE genes were identified in the perirenal, subcutaneous, and tail fat tissues between the GLT and STH breeds, respectively. Gene Ontology (GO) analysis showed that some DE genes were associated with adipose metabolism. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that PPAR signaling pathway and ECM-receptor interaction were specifically enriched. Four genes, namely LOC101102230, PLTP, C1QTNF7, and OLR1 were up-regulated and two genes, SCD and UCP-1, were down-regulated in all the tested tissues of STH. Among the genes involved in ECM-receptor interaction, the genes encoding collagens, laminins, and integrins were quite different depending on the depots or the breeds. In STH, genes such as LAMB3, RELN, TNXB, and ITGA8, were identified to be up regulated and LAMB4 was observed to be down regulated. This study unravels the complex transcriptome profiles in sheep fat tissues, highlighting the candidate genes involved in fat deposition. Further studies are needed to investigate the roles of the candidate genes in fat deposition and in determining the meat quality of sheep.
Muscle and the physiology of locomotion. [in zero gravity
NASA Technical Reports Server (NTRS)
Rambaut, P. C.; Nicogossian, A. E.; Pool, S. L.
1983-01-01
NASA's past, current, and planned research on muscle deterioration at zero gravity and development of countermeasures are reviewed; Soviet studies are discussed as well. A definition of muscle mass and strength regulation factors, and improved measurement methods of muscle atrophy are needed. Investigations of tissue growth factors and their receptors, endogenous and exogenous anabolic protein synthesis stimulation, and a potential neurotropic factor are among the projects in progress or planned. At present, vigorous physical exercise during spaceflight is recommended as the most effective countermeasure against skeletal muscle atrophy.
Ansari, Sahar; Chen, Chider; Xu, Xingtian; Annabi, Nasim; Zadeh, Homayoun H; Wu, Benjamin M; Khademhosseini, Ali; Shi, Songtao; Moshaverinia, Alireza
2016-06-01
Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyzes revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (p < 0.05). Altogether, our findings confirmed that GMSCs encapsulated in RGD-modified alginate hydrogel with multiple growth factor delivery capacity is a promising candidate for muscle tissue engineering.
Hayatsu, Norihito; Miyao, Takahisa; Tachibana, Masashi; Murakami, Ryuichi; Kimura, Akihiko; Kato, Takako; Kawakami, Eiryo; Endo, Takaho A; Setoguchi, Ruka; Watarai, Hiroshi; Nishikawa, Takeshi; Yasuda, Takuwa; Yoshida, Hisahiro; Hori, Shohei
2017-08-15
Foxp3 controls the development and function of regulatory T (Treg) cells, but it remains elusive how Foxp3 functions in vivo. Here, we established mouse models harboring three unique missense Foxp3 mutations that were identified in patients with the autoimmune disease IPEX. The I363V and R397W mutations were loss-of-function mutations, causing multi-organ inflammation by globally compromising Treg cell physiology. By contrast, the A384T mutation induced a distinctive tissue-restricted inflammation by specifically impairing the ability of Treg cells to compete with pathogenic T cells in certain non-lymphoid tissues. Mechanistically, repressed BATF expression contributed to these A384T effects. At the molecular level, the A384T mutation altered Foxp3 interactions with its specific target genes including Batf by broadening its DNA-binding specificity. Our findings identify BATF as a critical regulator of tissue Treg cells and suggest that sequence-specific perturbations of Foxp3-DNA interactions can influence specific facets of Treg cell physiology and the immunopathologies they regulate. Copyright © 2017 Elsevier Inc. All rights reserved.
Morales, Angélica; Morimoto, Sumiko; Díaz, Lorenza; Robles, Guillermo; Díaz-Sánchez, Vicente
2008-05-01
Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an endothelial cell mitogen, expressed essentially in steroidogenic cells. Recently, the expression of EG-VEGF in normal human pancreas and pancreatic adenocarcinoma has been demonstrated. Epidemiologically, pancreatic carcinogenesis is more frequent in males than females, and given that androgen receptors and testosterone biotransformation have been described in pancreas, we hypothesized that testosterone could participate in the regulation of EG-VEGF expression. In this study, we investigated the regulation of EG-VEGF gene expression by testosterone in normal rat pancreatic tissue and rat insulinoma cells (RINm5F). Total RNA was extracted from rat pancreas and cultured cells. Gene expression was studied by real-time PCR and protein detection by immunohistochemistry. Serum testosterone was quantified by RIA. Results showed that EG-VEGF is expressed predominantly in pancreatic islets and vascular endothelium, as well as in RINm5F cells. EG-VEGF gene expression was lower in the pancreas of rats with higher testosterone serum levels. A similar effect that was reverted by flutamide was observed in testosterone-treated RINm5F cells. In summary, testosterone down-regulated EG-VEGF gene expression in rat pancreatic tissue and RINm5F cells. This effect could be mediated by the androgen receptor. To our knowledge, this is the first time that a direct effect of testosterone on EG-VEGF gene expression in rat pancreas and RINm5F cells is demonstrated.
Barau, Joan; Grandis, Adriana; Carvalho, Vinicius Miessler de Andrade; Teixeira, Gleidson Silva; Zaparoli, Gustavo Henrique Alcalá; do Rio, Maria Carolina Scatolin; Rincones, Johana; Buckeridge, Marcos Silveira; Pereira, Gonçalo Amarante Guimarães
2015-03-01
Witches' broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant-fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.