Science.gov

Sample records for regulating tomato flower

  1. SINGLE FLOWER TRUSS regulates the transition and maintenance of flowering in tomato.

    PubMed

    Molinero-Rosales, Nuria; Latorre, Antonio; Jamilena, Manuel; Lozano, Rafael

    2004-01-01

    The characterisation of the single flower truss ( sft) mutant phenotype of tomato ( Lycopersicon esculentum Mill.), as well as its genetic interactions with other mutations affecting FALSIFLORA ( FA) and SELF PRUNING ( SP) genes, has revealed that SFT is a key gene in the control of floral transition and floral meristem identity. The single sft mutation produces a late-flowering phenotype in both long-day and short-day conditions. In combination with fa, a mutation affecting the tomato gene orthologous to LFY, sft completely blocks the transition to flowering in this species. Thus, the phenotype of the sft fa double mutants indicates that SFT and FA participate in two parallel pathways that regulate the switch from vegetative to reproductive phase in tomato, and that both genes are indispensable for flowering. On the other hand, the replacement of flowers by vegetative shoots observed in the sft inflorescence suggests that SFT regulates flower meristem identity during inflorescence development of tomato. In addition to these two main functions, SFT is involved in the development of both flowers and sympodial shoots of tomato. First, the mutation produces a partial conversion of sepals into leaves in the first floral whorl, and a reduction in the number of floral organs, particularly carpels. Secondly, the sympodial development in the mutant plants is altered, which can be related to the interaction between SFT and SP, a gene controlling the number of nodes in sympodial shoots. In fact, we have found that the sft phenotype is epistatic to that of sp, and that the level of SP mRNA in the apical buds of sft around flowering is reduced. SFT can therefore co-ordinate the regulation of two simultaneous developmental processes in the tomato apical shoot, the promotion of flowering in one sympodial segment and the vegetative development of the next segment.

  2. Four Tomato FLOWERING LOCUS T-Like Proteins Act Antagonistically to Regulate Floral Initiation.

    PubMed

    Cao, Kai; Cui, Lirong; Zhou, Xiaoting; Ye, Lin; Zou, Zhirong; Deng, Shulin

    2015-01-01

    The transition from vegetative growth to floral meristems in higher plants is regulated through the integration of internal cues and environmental signals. We were interested to examine the molecular mechanism of flowering in the day-neutral plant tomato (Solanum lycopersicum L.) and the effect of environmental conditions on tomato flowering. Analysis of the tomato genome uncovered 13 PEBP (phosphatidylethanolamine-binding protein) genes, and found six of them were FT-like genes which named as SlSP3D, SlSP6A, SlSP5G, SlSP5G1, SlSP5G2, and SlSP5G3. Six FT-like genes were analyzed to clarify their functional roles in flowering using transgenic and expression analyses. We found that SlSP5G, SlSP5G2, and SlSP5G3 proteins were floral inhibitors whereas only SlSP3D/SFT (SINGLE FLOWER TRUSS) was a floral inducer. SlSP5G was expressed at higher levels in long day (LD) conditions compared to short day (SD) conditions while SlSP5G2 and SlSP5G3 showed the opposite expression patterns. The silencing of SlSP5G by VIGS (Virus induced gene silencing) resulted in tomato plants that flowered early under LD conditions and the silencing of SlSP5G2 and SlSP5G3 led to early flowering under SD conditions. The higher expression levels of SlSP5G under LD conditions were not seen in phyB1 mutants, and the expression levels of SlSP5G2 and SlSP5G3 were increased in phyB1 mutants under both SD and LD conditions compared to wild type plants. These data suggest that SlSP5G, SlSP5G2, and SlSP5G3 are controlled by photoperiod, and the different expression patterns of FT-like genes under different photoperiod may contribute to tomato being a day neutral plant. In addition, PHYB1 mediate the expression of SlSP5G, SlSP5G2, and SlSP5G3 to regulate flowering in tomato.

  3. Four Tomato FLOWERING LOCUS T-Like Proteins Act Antagonistically to Regulate Floral Initiation.

    PubMed

    Cao, Kai; Cui, Lirong; Zhou, Xiaoting; Ye, Lin; Zou, Zhirong; Deng, Shulin

    2015-01-01

    The transition from vegetative growth to floral meristems in higher plants is regulated through the integration of internal cues and environmental signals. We were interested to examine the molecular mechanism of flowering in the day-neutral plant tomato (Solanum lycopersicum L.) and the effect of environmental conditions on tomato flowering. Analysis of the tomato genome uncovered 13 PEBP (phosphatidylethanolamine-binding protein) genes, and found six of them were FT-like genes which named as SlSP3D, SlSP6A, SlSP5G, SlSP5G1, SlSP5G2, and SlSP5G3. Six FT-like genes were analyzed to clarify their functional roles in flowering using transgenic and expression analyses. We found that SlSP5G, SlSP5G2, and SlSP5G3 proteins were floral inhibitors whereas only SlSP3D/SFT (SINGLE FLOWER TRUSS) was a floral inducer. SlSP5G was expressed at higher levels in long day (LD) conditions compared to short day (SD) conditions while SlSP5G2 and SlSP5G3 showed the opposite expression patterns. The silencing of SlSP5G by VIGS (Virus induced gene silencing) resulted in tomato plants that flowered early under LD conditions and the silencing of SlSP5G2 and SlSP5G3 led to early flowering under SD conditions. The higher expression levels of SlSP5G under LD conditions were not seen in phyB1 mutants, and the expression levels of SlSP5G2 and SlSP5G3 were increased in phyB1 mutants under both SD and LD conditions compared to wild type plants. These data suggest that SlSP5G, SlSP5G2, and SlSP5G3 are controlled by photoperiod, and the different expression patterns of FT-like genes under different photoperiod may contribute to tomato being a day neutral plant. In addition, PHYB1 mediate the expression of SlSP5G, SlSP5G2, and SlSP5G3 to regulate flowering in tomato. PMID:26793202

  4. Four Tomato FLOWERING LOCUS T-Like Proteins Act Antagonistically to Regulate Floral Initiation

    PubMed Central

    Cao, Kai; Cui, Lirong; Zhou, Xiaoting; Ye, Lin; Zou, Zhirong; Deng, Shulin

    2016-01-01

    The transition from vegetative growth to floral meristems in higher plants is regulated through the integration of internal cues and environmental signals. We were interested to examine the molecular mechanism of flowering in the day-neutral plant tomato (Solanum lycopersicum L.) and the effect of environmental conditions on tomato flowering. Analysis of the tomato genome uncovered 13 PEBP (phosphatidylethanolamine-binding protein) genes, and found six of them were FT-like genes which named as SlSP3D, SlSP6A, SlSP5G, SlSP5G1, SlSP5G2, and SlSP5G3. Six FT-like genes were analyzed to clarify their functional roles in flowering using transgenic and expression analyses. We found that SlSP5G, SlSP5G2, and SlSP5G3 proteins were floral inhibitors whereas only SlSP3D/SFT (SINGLE FLOWER TRUSS) was a floral inducer. SlSP5G was expressed at higher levels in long day (LD) conditions compared to short day (SD) conditions while SlSP5G2 and SlSP5G3 showed the opposite expression patterns. The silencing of SlSP5G by VIGS (Virus induced gene silencing) resulted in tomato plants that flowered early under LD conditions and the silencing of SlSP5G2 and SlSP5G3 led to early flowering under SD conditions. The higher expression levels of SlSP5G under LD conditions were not seen in phyB1 mutants, and the expression levels of SlSP5G2 and SlSP5G3 were increased in phyB1 mutants under both SD and LD conditions compared to wild type plants. These data suggest that SlSP5G, SlSP5G2, and SlSP5G3 are controlled by photoperiod, and the different expression patterns of FT-like genes under different photoperiod may contribute to tomato being a day neutral plant. In addition, PHYB1 mediate the expression of SlSP5G, SlSP5G2, and SlSP5G3 to regulate flowering in tomato. PMID:26793202

  5. Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato.

    PubMed

    Lifschitz, Eliezer; Eshed, Yuval

    2006-01-01

    The transition from vegetative to floral meristems in higher plants is programmed by the coincidence of internal and environmental signals. Classic grafting experiments have shown that leaves, in response to changing photoperiods, emit systemic signals, dubbed 'florigen', which induce flowering at the shoot apex. The florigen paradigm was conceived in photoperiod-sensitive plants: nevertheless it implies that although activated by different stimuli in different flowering systems, the signal is common to all plants. Tomato is a day-neutral, perennial plant, with sympodial and modular organization of its shoots and thus with reiterative regular vegetative/reproductive transitions. SINGLE FLOWER TRUSS a regulator of flowering-time and shoot architecture encodes the tomato orthologue of FT, a major flowering integrator gene in Arabidopsis. SFT generates graft-transmissible signals which complement the morphogenetic defects in sft plants, substitute for light dose stimulus in tomato and for contrasting day-length requirements in Arabidopsis and MARYLAND MAMMOTH tobacco. It is discussed how systemic signals initiated by SFT interact with the SELF PRUNING gene to regulate vegetative to reproductive (V/R) transitions in the context of two flowering systems, one for primary apices and the other for sympodial shoots.

  6. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli.

    PubMed

    Lifschitz, Eliezer; Eviatar, Tamar; Rozman, Alexander; Shalit, Akiva; Goldshmidt, Alexander; Amsellem, Ziva; Alvarez, John Paul; Eshed, Yuval

    2006-04-18

    The systemic model for floral induction, dubbed florigen, was conceived in photoperiod-sensitive plants but implies, in its ultimate form, a graft-transmissible signal that, although activated by different stimuli in different flowering systems, is common to all plants. We show that SFT (SINGLE-FLOWER TRUSS), the tomato ortholog of FLOWERING LOCUS T (FT), induces flowering in day-neutral tomato and tobacco plants and is encoded by SFT. sft tomato mutant plants are late-flowering, with altered architecture and flower morphology. SFT-dependent graft-transmissible signals complement all developmental defects in sft plants and substitute for long-day stimuli in Arabidopsis, short-day stimuli in Maryland Mammoth tobacco, and light-dose requirements in tomato uniflora mutant plants. The absence of donor SFT RNA from flowering receptor shoots and the localization of the protein in leaf nuclei implicate florigen-like messages in tomato as a downstream pathway triggered by cell-autonomous SFT RNA transcripts. Flowering in tomato is synonymous with termination of the shoot apical meristems, and systemic SFT messages attenuate the growth of apical meristems before and independent of floral production. Floral enhancement by systemic SFT signals is therefore one pleiotropic effect of FT orthologs.

  7. Quantitative genetic analysis of flowering time in tomato.

    PubMed

    Jiménez-Gómez, José M; Alonso-Blanco, Carlos; Borja, Alicia; Anastasio, Germán; Angosto, Trinidad; Lozano, Rafael; Martínez-Zapater, José M

    2007-03-01

    Artificial selection of cultivated tomato (Solanum lycopersicum L.) has resulted in the generation of early-flowering, day-length-insensitive cultivars, despite its close relationship to other Solanum species that need more time and specific photoperiods to flower. To investigate the genetic mechanisms controlling flowering time in tomato and related species, we performed a quantitative trait locus (QTL) analysis for flowering time in an F2 mapping population derived from S. lycopersicum and its late-flowering wild relative S. chmielewskii. Flowering time was scored as the number of days from sowing to the opening of the first flower (days to flowering), and as the number of leaves under the first inflorescence (leaf number). QTL analyses detected 2 QTLs affecting days to flowering, which explained 55.3% of the total phenotypic variance, and 6 QTLs for leaf number, accounting for 66.7% of the corresponding phenotypic variance. Four of the leaf number QTLs had not previously been detected for this trait in tomato. Colocation of some QTLs with flowering-time genes included in the genetic map suggests PHYB2, FALSIFLORA, and a tomato FLC-like sequence as candidate genes that might have been targets of selection during the domestication of tomato.

  8. Chloroplast retrograde signal regulates flowering.

    PubMed

    Feng, Peiqiang; Guo, Hailong; Chi, Wei; Chai, Xin; Sun, Xuwu; Xu, Xiumei; Ma, Jinfang; Rochaix, Jean-David; Leister, Dario; Wang, Haiyang; Lu, Congming; Zhang, Lixin

    2016-09-20

    Light is a major environmental factor regulating flowering time, thus ensuring reproductive success of higher plants. In contrast to our detailed understanding of light quality and photoperiod mechanisms involved, the molecular basis underlying high light-promoted flowering remains elusive. Here we show that, in Arabidopsis, a chloroplast-derived signal is critical for high light-regulated flowering mediated by the FLOWERING LOCUS C (FLC). We also demonstrate that PTM, a PHD transcription factor involved in chloroplast retrograde signaling, perceives such a signal and mediates transcriptional repression of FLC through recruitment of FVE, a component of the histone deacetylase complex. Thus, our data suggest that chloroplasts function as essential sensors of high light to regulate flowering and adaptive responses by triggering nuclear transcriptional changes at the chromatin level. PMID:27601637

  9. Characterization of tomato (Solanum lycopersicum L.) mutants affected in their flowering time and in the morphogenesis of their reproductive structure.

    PubMed

    Quinet, Muriel; Dubois, Céline; Goffin, Marie-Christine; Chao, Jaime; Dielen, Vincent; Batoko, Henri; Boutry, Marc; Kinet, Jean-Marie

    2006-01-01

    The impact of the season on flowering time and the organization and morphogenesis of the reproductive structures are described in three tomato mutants: compound inflorescence (s), single flower truss (sft), and jointless (j), respectively, compared with their wild-type cultivars Ailsa Craig (AC), Platense (Pl), and Heinz (Hz). In all environmental conditions, the sft mutant flowered significantly later than its corresponding Pl cultivar while flowering time in j was only marginally, but consistently, delayed compared with Hz. The SFT gene and, to a lesser extent, the J gene thus appear to be constitutive flowering promoters. Flowering in s was delayed in winter but not in summer compared with the AC cultivar, suggesting the existence of an environmentally regulated pathway for the control of floral transition. The reproductive structure of tomato is a raceme-like inflorescence and genes regulating its morphogenesis may thus be divided into inflorescence and floral meristem identity genes as in Arabidopsis. The s mutant developed highly branched inflorescences bearing up to 200 flowers due to the conversion of floral meristems into inflorescence meristems. The S gene appears to be a floral meristem identity gene. Both sft and j mutants formed reproductive structures containing flowers and leaves and reverting to a vegetative sympodial growth. The SFT gene appears to regulate the identity of the inflorescence meristem of tomato and is also involved, along with the J gene, in the maintenance of this identity, preventing reversion to a vegetative identity. These results are discussed in relation to knowledge accumulated in Arabidopsis and to domestication processes.

  10. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato.

    PubMed

    Krieger, Uri; Lippman, Zachary B; Zamir, Dani

    2010-05-01

    Intercrossing different varieties of plants frequently produces hybrid offspring with superior vigor and increased yields, in a poorly understood phenomenon known as heterosis. One classical unproven model for heterosis is overdominance, which posits in its simplest form that improved vigor can result from a single heterozygous gene. Here we report that heterozygosity for tomato loss-of-function alleles of SINGLE FLOWER TRUSS (SFT), which is the genetic originator of the flowering hormone florigen, increases yield by up to 60%. Yield overdominance from SFT heterozygosity is robust, occurring in distinct genetic backgrounds and environments. We show that several traits integrate pleiotropically to drive heterosis in a multiplicative manner, and these effects derive from a suppression of growth termination mediated by SELF PRUNING (SP), an antagonist of SFT. Our findings provide the first example of a single overdominant gene for yield and suggest that single heterozygous mutations may improve productivity in other agricultural organisms.

  11. Development and regulation of pedicel abscission in tomato

    PubMed Central

    Ito, Yasuhiro; Nakano, Toshitsugu

    2015-01-01

    To shed unfertilized flowers or ripe fruits, many plant species develop a pedicel abscission zone (AZ), a specialized tissue that develops between the organ and the main body of the plant. Regulation of pedicel abscission is an important agricultural concern because pre-harvest abscission can reduce yields of fruit or grain crops, such as apples, rice, wheat, etc. Tomato has been studied as a model system for abscission, as tomato plants develop a distinct AZ at the midpoint of the pedicel and several tomato mutants, such as jointless, have pedicels that lack an AZ. This mini-review focuses on recent advances in research on the mechanisms regulating tomato pedicel abscission. Molecular genetic studies revealed that three MADS-box transcription factors interactively play a central role in pedicel AZ development. Transcriptome analyses identified activities involved in abscission and also found novel transcription factors that may regulate AZ activities. Another study identified transcription factors mediating abscission pathways from induction signals to activation of cell wall hydrolysis. These recent findings in tomato will enable significant advances in understanding the regulation of abscission in other key agronomic species. PMID:26124769

  12. Effects of Red Light Night Break Treatment on Growth and Flowering of Tomato Plants.

    PubMed

    Cao, Kai; Cui, Lirong; Ye, Lin; Zhou, Xiaoting; Bao, Encai; Zhao, Hailiang; Zou, Zhirong

    2016-01-01

    Compact and healthy young plants increase crop production and improve vegetable quality. Adverse climatic conditions and shading can cause young plants to become elongated and spindly. We investigated the effects of night break (NB) treatments on tomato plants using red light (RL) with an intensity of 20 μmol·m(2)·s(-1). Tomato plants were subjected to NB treatments with different frequencies ranging from every 1, 2, 3, and 4 h, and plant growth, flowering, and yield were monitored. The results showed that with the increase of RL NB frequency, plant height decreased, stem diameter increased, and flower initiation delayed, the content of indole-3-acetic acid (IAA) and gibberellin 3 (GA3) in the leaf and stem declined. When the RL NB frequency was every 1 h, the heights of tomato plant decreased by 32.73% compared with the control, the diameter of tomato plants increased by 27.09% compared with the control, the number of leaves produced before flowering increased to 11, compared with 8 in the control, the contents of IAA and GA3 in the leaf decreased by 33.3 and 41.29% respectively compared with the control, the contents of IAA and GA3 in the stem decreased by 56.04 and 57.14% respectively compared with the control. After RL NB treatments, tomato plants were transplanted into a solar greenhouse to evaluate tomato yield. When tomato plants pre-treated with RL NB, per tomato fresh weight of the first spica increased with the increase of RL NB frequencies. These results indicate that more compact and healthier tomato plants could be gotten by RL NB treatments and improve tomato early yield. PMID:27148344

  13. Flower development in normal tomato and a gibberellin-deficient (ga-2) mutant

    SciTech Connect

    Vester, J.E.; Zeevaart, J.A.D. )

    1988-01-01

    Flower buds of a tomato (Lycopersicon esculentum Mill.) gibberellin-deficient mutant (ga-2/ga-2) were initiated, but did not develop to maturity and eventually aborted. If GA{sub 1} was applied to a developing inflorescence or stem tip, completion of flower bud development and fruit set occurred. In development of the ga-2 flowers, the corolla and stamens did not elongate and the style was misshapen or extended past the tip of the anthers. Light microscope observation indicated that meiosis of both microsporocytes and megasporocytes did not occur. Cells of the sporogenous layer were initiated, but growth was arrested and they eventually degenerated. The ovary was normal in appearance. However, the megasporocytes degenerated, giving rise to a cavity in the ovule. Thus, although GA is not required for flower initiation in tomato, it is essential for meiosis of the microsporocytes and megasporocytes and elongation of the corolla and stamens.

  14. Regulation of carotenoid metabolism in tomato.

    PubMed

    Liu, Lihong; Shao, Zhiyong; Zhang, Min; Wang, Qiaomei

    2015-01-01

    Carotenoids serve diverse functions in vastly different organisms that both produce and consume them. Enhanced carotenoid accumulation is of great importance in the visual and functional properties of fruits and vegetables. Significant progress has been achieved in recent years in our understanding of carotenoid biosynthesis in tomato (Solanum lycopersicum) using biochemical and genetics approaches. The carotenoid metabolic network is temporally and spatially controlled, and plants have evolved strategic tactics to regulate carotenoid metabolism in response to various developmental and environmental factors. In this review, we summarize the current status of studies on transcription factors and phytohormones that regulate carotenoid biosynthesis, catabolism, and storage capacity in plastids, as well as the responses of carotenoid metabolism to environmental cues in tomato fruits. Transcription factors function either in cooperation with or independently of phytohormone signaling to regulate carotenoid metabolism, providing novel approaches for metabolic engineering of carotenoid composition and content in tomato. PMID:25578270

  15. The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato

    PubMed Central

    Nakano, Toshitsugu; Fujisawa, Masaki; Shima, Yoko; Ito, Yasuhiro

    2014-01-01

    In plants, abscission removes senescent, injured, infected, or dispensable organs. Induced by auxin depletion and an ethylene burst, abscission requires pronounced changes in gene expression, including genes for cell separation enzymes and regulators of signal transduction and transcription. However, the understanding of the molecular basis of this regulation remains incomplete. To examine gene regulation in abscission, this study examined an ERF family transcription factor, tomato (Solanum lycopersicum) ETHYLENE-RESPONSIVE FACTOR 52 (SlERF52). SlERF52 is specifically expressed in pedicel abscission zones (AZs) and SlERF52 expression is suppressed in plants with impaired function of MACROCALYX and JOINTLESS, which regulate pedicel AZ development. RNA interference was used to knock down SlERF52 expression to show that SlERF52 functions in flower pedicel abscission. When treated with an abscission-inducing stimulus, the SlERF52-suppressed plants showed a significant delay in flower abscission compared with wild type. They also showed reduced upregulation of the genes for the abscission-associated enzymes cellulase and polygalacturonase. SlERF52 suppression also affected gene expression before the abscission stimulus, inhibiting the expression of pedicel AZ-specific transcription factor genes, such as the tomato WUSCHEL homologue, GOBLET, and Lateral suppressor, which may regulate meristematic activities in pedicel AZs. These results suggest that SlERF52 plays a pivotal role in transcriptional regulation in pedicel AZs at both pre-abscission and abscission stages. PMID:24744429

  16. Identification of defense-related genes newly-associated with tomato flower abscission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current abscission model suggests the formation of a post-abscission trans-differentiation of a protective layer as the last step of the process. The present report expands the repertoire of genes activated in the tomato flower abscission zone (AZ), which are likely to be involved in defense res...

  17. Photoperiodic flowering regulation in Arabidopsis thaliana

    PubMed Central

    Golembeski, Greg S.; Kinmonth-Schultz, Hannah A.; Song, Young Hun; Imaizumi, Takato

    2015-01-01

    Photoperiod, or the duration of light in a given day, is a critical cue that flowering plants utilize to effectively assess seasonal information and coordinate their reproductive development in synchrony with the external environment. The use of the model plant, Arabidopsis thaliana, has greatly improved our understanding of the molecular mechanisms that determine how plants process and utilize photoperiodic information to coordinate a flowering response. This mechanism is typified by the transcriptional activation of FLOWERING LOCUS T (FT) gene by the transcription factor CONSTANS (CO) under inductive long-day conditions in Arabidopsis. FT protein then moves from the leaves to the shoot apex, where floral meristem development can be initiated. As a point of integration from a variety of environmental factors in the context of a larger system of regulatory pathways that affect flowering, the importance of photoreceptors and the circadian clock in CO regulation throughout the day has been a key feature of the photoperiodic flowering pathway. In addition to these established mechanisms, the recent discovery of a photosynthate derivative trehalose-6-phosphate as an activator of FT in leaves has interesting implications for the involvement of photosynthesis in the photoperiodic flowering response that were suggested from previous physiological experiments in flowering induction. PMID:25684830

  18. The pineapple AcMADS1 promoter confers high level expression in tomato and Arabidopsis flowering and fruiting tissues, but AcMADS1 does not complement the tomato LeMADS-RIN (rin) mutant.

    PubMed

    Moyle, Richard L; Koia, Jonni H; Vrebalov, Julia; Giovannoni, James; Botella, Jose R

    2014-11-01

    A previous EST study identified a MADS box transcription factor coding sequence, AcMADS1, that is strongly induced during non-climacteric pineapple fruit ripening. Phylogenetic analyses place the AcMADS1 protein in the same superclade as LeMADS-RIN, a master regulator of fruit ripening upstream of ethylene in climacteric tomato. LeMADS-RIN has been proposed to be a global ripening regulator shared among climacteric and non-climacteric species, although few functional homologs of LeMADS-RIN have been identified in non-climacteric species. AcMADS1 shares 67 % protein sequence similarity and a similar expression pattern in ripening fruits as LeMADS-RIN. However, in this study AcMADS1 was not able to complement the tomato rin mutant phenotype, indicating AcMADS1 may not be a functionally conserved homolog of LeMADS-RIN or has sufficiently diverged to be unable to act in the context of the tomato network of interacting proteins. The AcMADS1 promoter directed strong expression of the GUS reporter gene to fruits and developing floral organs in tomato and Arabidopsis thaliana, suggesting AcMADS1 may play a role in flower development as well as fruitlet ripening. The AcMADS1 promoter provides a useful molecular tool for directing transgene expression, particularly where up-regulation in developing flowers and fruits is desirable.

  19. The AOC promoter of tomato is regulated by developmental and environmental stimuli.

    PubMed

    Stenzel, Irene; Hause, Bettina; Proels, Reinhard; Miersch, Otto; Oka, Mariko; Roitsch, Thomas; Wasternack, Claus

    2008-06-01

    The allene oxide cyclase (AOC) catalyzes the formation of cis-(+)-12-oxophytodienoic acid, an intermediate in jasmonate biosynthesis and is encoded by a single copy gene in tomato. The full length AOC promoter isolated by genome walk contains 3600 bp. Transgenic tomato lines carrying a 1000 bp promoter fragment and the full length promoter, respectively, in front of the beta-glucuronidase (GUS)-encoding uidA gene and several tobacco lines carrying the full length tomato AOC promoter before GUS were used to record organ- and tissue-specific promoter activities during development and in response to various stimuli. High promoter activities corresponding to immunocytochemically detected occurrence of the AOC protein were found in seeds and young seedlings and were confined to the root tip, hypocotyl and cotyledons of 3-d-old seedlings. In 10-d-old seedlings promoter activity appeared preferentially in the elongation zone. Fully developed tomato leaves were free of AOC promoter activity, but showed high activity upon wounding locally and systemically or upon treatment with JA, systemin or glucose. Tomato flowers showed high AOC promoter activities in ovules, sepals, anthers and pollen. Most of the promoter activity patterns found in tomato with the 1000 bp promoter fragment were also detected with the full length tomato AOC promoter in tobacco during development or in response to various stimuli. The data support a spatial and temporal regulation of JA biosynthesis during development and in response to environmental stimuli. PMID:18445500

  20. Epigenetic regulation of rice flowering and reproduction

    PubMed Central

    Shi, Jinlei; Dong, Aiwu; Shen, Wen-Hui

    2015-01-01

    Current understanding of the epigenetic regulator roles in plant growth and development has largely derived from studies in the dicotyledonous model plant Arabidopsis thaliana. Rice (Oryza sativa) is one of the most important food crops in the world and has more recently becoming a monocotyledonous model plant in functional genomics research. During the past few years, an increasing number of studies have reported the impact of DNA methylation, non-coding RNAs and histone modifications on transcription regulation, flowering time control, and reproduction in rice. Here, we review these studies to provide an updated complete view about chromatin modifiers characterized in rice and in particular on their roles in epigenetic regulation of flowering time, reproduction, and seed development. PMID:25674094

  1. Western flower thrips can transmit Tomato spotted wilt virus from infected tomato fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato spotted wilt virus (TSWV) has long been known to spread via plant propagation materials including transplants. Global dissemination of TSWV has also been linked to transport of thrips-infested and virus-infected horticultural and floricultural products through trade and commerce. However, th...

  2. Cultivation of Tomato Tissues Capable of Forming Flowers and Fruits in Vitro

    NASA Technical Reports Server (NTRS)

    Galston, Arthur W.

    1998-01-01

    The final phase of this research project was designed to develop a practical method for producing a steady supply of fresh cherry tomato fruits over a period of several months, for possible use as a fresh vegetable supplement to a standard diet of astronauts on extended missions. This effort was successful. We were able to excise immature flowers from Pixie tomato plants grown in a controlled condition room, implant them on artificial media under aseptic conditions, and get them to develop into edible fruits in a little over a month. The medium (Murashige-Skoog) was purchased from Sigma, supplemented with sugar plus a synthetic analog of the plant hormone cytokinin, and adjusted to pH 5.8. A temperature of at least 25 C and visible light helped to produce ripe red fruits within 7 weeks. To ensure a steady supply of such tomatoes, we found it possible to store the explanted flower buds in MS medium at 5 C for at least 6 weeks without significant loss of ability to develop into fruits. This means that many containers could be prepared before launch and put into a refrigerator; a convenient number could then be removed periodically to guarantee a succession of harvests during the life of an extended mission. Details are found in the attached reprints. Subsequent applications for funds for flight or continued research were denied, and the project was terminated.

  3. 7 CFR 980.212 - Import regulations; tomatoes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... § 980.212 Import regulations; tomatoes. (a) Findings and determinations with respect to fresh tomatoes...-674), it is hereby found that: (i) Grade, size, quality and maturity regulations have been issued from... certification of fresh fruits, vegetables and other products (7 CFR part 51). Each lot shall be made...

  4. 7 CFR 980.212 - Import regulations; tomatoes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... § 980.212 Import regulations; tomatoes. (a) Findings and determinations with respect to fresh tomatoes...-674), it is hereby found that: (i) Grade, size, quality and maturity regulations have been issued from... certification of fresh fruits, vegetables and other products (7 CFR part 51). Each lot shall be made...

  5. 7 CFR 980.212 - Import regulations; tomatoes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... § 980.212 Import regulations; tomatoes. (a) Findings and determinations with respect to fresh tomatoes...-674), it is hereby found that: (i) Grade, size, quality and maturity regulations have been issued from... certification of fresh fruits, vegetables and other products (7 CFR part 51). Each lot shall be made...

  6. 7 CFR 980.212 - Import regulations; tomatoes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... § 980.212 Import regulations; tomatoes. (a) Findings and determinations with respect to fresh tomatoes...-674), it is hereby found that: (i) Grade, size, quality and maturity regulations have been issued from... certification of fresh fruits, vegetables and other products (7 CFR part 51). Each lot shall be made...

  7. The flowering hormone florigen functions as a general systemic regulator of growth and termination.

    PubMed

    Shalit, Akiva; Rozman, Alexander; Goldshmidt, Alexander; Alvarez, John P; Bowman, John L; Eshed, Yuval; Lifschitz, Eliezer

    2009-05-19

    The florigen paradigm implies a universal flowering-inducing hormone that is common to all flowering plants. Recent work identified FT orthologues as originators of florigen and their polypeptides as the likely systemic agent. However, the developmental processes targeted by florigen remained unknown. Here we identify local balances between SINGLE FLOWER TRUSS (SFT), the tomato precursor of florigen, and SELF-PRUNING (SP), a potent SFT-dependent SFT inhibitor as prime targets of mobile florigen. The graft-transmissible impacts of florigen on organ-specific traits in perennial tomato show that in addition to import by shoot apical meristems, florigen is imported by organs in which SFT is already expressed. By modulating local SFT/SP balances, florigen confers differential flowering responses of primary and secondary apical meristems, regulates the reiterative growth and termination cycles typical of perennial plants, accelerates leaf maturation, and influences the complexity of compound leaves, the growth of stems and the formation of abscission zones. Florigen is thus established as a plant protein functioning as a general growth hormone. Developmental interactions and a phylogenetic analysis suggest that the SFT/SP regulatory hierarchy is a recent evolutionary innovation unique to flowering plants.

  8. [Effects of cold-shock on the growth and flower bud differentiation of tomato seedlings under high temperature stress].

    PubMed

    Li, Sheng-li; Xia, Ya-zhen; Sun, Zhi-qiang

    2016-02-01

    In order to explore the effects of cold-shock on the growth and flower bud differentiation of tomato seedlings under high temperature, tomato seedlings were subjected to cold-shock treat- ments every day with 10 °C for 10 minutes in. an artificial climate chamber. Tomato seedlings were treated with cold-shock at the first true leaf stage and the treatment lasted for 15 days. Tomato seed- lings without cold-shock were used as control. At the fourth true leaf period of tomato seedlings, five plants were randomly sampled and the growth characteristics and the ultrastructure changes of meso- phyll cell of tomato seedlings were examined. The flower bud differentiation process of tomato seed- lings was observed at the periods of the second, fourth and sixth true leaves respectively. Flowering and fruiting of tomato seedlings were also investigated after transplanting. The results showed that the stem diameter and health index of tomato seedlings with cold-shock were enhanced by 7.2% and 55.5% compared with seedlings without cold-shock. Mesophyll cells of the seedlings with cold-shock arranged loosely and various organelles such as chloroplasts and mitochondria were morphologically integrated, while chloroplasts and mitochondria of seedlings mesophyll cells without cold-shock swelled up and thylakoids vacuolized apparently. The flower bud differentiation process of seedlings with cold-shock could be advanced significantly at the early seedling stage compared with the control and the advancement was weakened with the seedling growing. Fruit set number and percentage on the first and second inflorescence of tomato plants transplanted by seedlings with cold-shock were enhanced significantly compared with those of the control. These results indicated that the injury of membrane structure of various organelles, especially chloroplast and mitochondria could be allevia- ted by cold-shock treatment under high temperature tress. Cold-shock treatment could not only im- prove the

  9. [Effects of cold-shock on the growth and flower bud differentiation of tomato seedlings under high temperature stress].

    PubMed

    Li, Sheng-li; Xia, Ya-zhen; Sun, Zhi-qiang

    2016-02-01

    In order to explore the effects of cold-shock on the growth and flower bud differentiation of tomato seedlings under high temperature, tomato seedlings were subjected to cold-shock treat- ments every day with 10 °C for 10 minutes in. an artificial climate chamber. Tomato seedlings were treated with cold-shock at the first true leaf stage and the treatment lasted for 15 days. Tomato seed- lings without cold-shock were used as control. At the fourth true leaf period of tomato seedlings, five plants were randomly sampled and the growth characteristics and the ultrastructure changes of meso- phyll cell of tomato seedlings were examined. The flower bud differentiation process of tomato seed- lings was observed at the periods of the second, fourth and sixth true leaves respectively. Flowering and fruiting of tomato seedlings were also investigated after transplanting. The results showed that the stem diameter and health index of tomato seedlings with cold-shock were enhanced by 7.2% and 55.5% compared with seedlings without cold-shock. Mesophyll cells of the seedlings with cold-shock arranged loosely and various organelles such as chloroplasts and mitochondria were morphologically integrated, while chloroplasts and mitochondria of seedlings mesophyll cells without cold-shock swelled up and thylakoids vacuolized apparently. The flower bud differentiation process of seedlings with cold-shock could be advanced significantly at the early seedling stage compared with the control and the advancement was weakened with the seedling growing. Fruit set number and percentage on the first and second inflorescence of tomato plants transplanted by seedlings with cold-shock were enhanced significantly compared with those of the control. These results indicated that the injury of membrane structure of various organelles, especially chloroplast and mitochondria could be allevia- ted by cold-shock treatment under high temperature tress. Cold-shock treatment could not only im- prove the

  10. Microarray Analysis of the Abscission-Related Transcriptome in the Tomato Flower Abscission Zone in Response to Auxin Depletion1[C][W][OA

    PubMed Central

    Meir, Shimon; Philosoph-Hadas, Sonia; Sundaresan, Srivignesh; Selvaraj, K.S. Vijay; Burd, Shaul; Ophir, Ron; Kochanek, Bettina; Reid, Michael S.; Jiang, Cai-Zhong; Lers, Amnon

    2010-01-01

    The abscission process is initiated by changes in the auxin gradient across the abscission zone (AZ) and is triggered by ethylene. Although changes in gene expression have been correlated with the ethylene-mediated execution of abscission, there is almost no information on the molecular and biochemical basis of the increased AZ sensitivity to ethylene. We examined transcriptome changes in the tomato (Solanum lycopersicum ‘Shiran 1335’) flower AZ during the rapid acquisition of ethylene sensitivity following flower removal, which depletes the AZ from auxin, with or without preexposure to 1-methylcyclopropene or application of indole-3-acetic acid after flower removal. Microarray analysis using the Affymetrix Tomato GeneChip revealed changes in expression, occurring prior to and during pedicel abscission, of many genes with possible regulatory functions. They included a range of auxin- and ethylene-related transcription factors, other transcription factors and regulatory genes that are transiently induced early, 2 h after flower removal, and a set of novel AZ-specific genes. All gene expressions initiated by flower removal and leading to pedicel abscission were inhibited by indole-3-acetic acid application, while 1-methylcyclopropene pretreatment inhibited only the ethylene-induced expressions, including those induced by wound-associated ethylene signals. These results confirm our hypothesis that acquisition of ethylene sensitivity in the AZ is associated with altered expression of auxin-regulated genes resulting from auxin depletion. Our results shed light on the regulatory control of abscission at the molecular level and further expand our knowledge of auxin-ethylene cross talk during the initial controlling stages of the process. PMID:20947671

  11. Gene regulation in parthenocarpic tomato fruit.

    PubMed

    Martinelli, Federico; Uratsu, Sandra L; Reagan, Russell L; Chen, Ying; Tricoli, David; Fiehn, Oliver; Rocke, David M; Gasser, Charles S; Dandekar, Abhaya M

    2009-01-01

    Parthenocarpy is potentially a desirable trait for many commercially grown fruits if undesirable changes to structure, flavour, or nutrition can be avoided. Parthenocarpic transgenic tomato plants (cv MicroTom) were obtained by the regulation of genes for auxin synthesis (iaaM) or responsiveness (rolB) driven by DefH9 or the INNER NO OUTER (INO) promoter from Arabidopsis thaliana. Fruits at a breaker stage were analysed at a transcriptomic and metabolomic level using microarrays, real-time reverse transcription-polymerase chain reaction (RT-PCR) and a Pegasus III TOF (time of flight) mass spectrometer. Although differences were observed in the shape of fully ripe fruits, no clear correlation could be made between the number of seeds, transgene, and fruit size. Expression of auxin synthesis or responsiveness genes by both of these promoters produced seedless parthenocarpic fruits. Eighty-three percent of the genes measured showed no significant differences in expression due to parthenocarpy. The remaining 17% with significant variation (P <0.05) (1748 genes) were studied by assigning a predicted function (when known) based on BLAST to the TAIR database. Among them several genes belong to cell wall, hormone metabolism and response (auxin in particular), and metabolism of sugars and lipids. Up-regulation of lipid transfer proteins and differential expression of several indole-3-acetic acid (IAA)- and ethylene-associated genes were observed in transgenic parthenocarpic fruits. Despite differences in several fatty acids, amino acids, and other metabolites, the fundamental metabolic profile remains unchanged. This work showed that parthenocarpy with ovule-specific alteration of auxin synthesis or response driven by the INO promoter could be effectively applied where such changes are commercially desirable. PMID:19700496

  12. Flowering regulation by tissue specific functions of photoreceptors

    PubMed Central

    Endo, Motomu

    2008-01-01

    Flowering is one of the most important steps in a plant life cycle. Plants utilize light as an informational source to determine the timing of flowering. In Arabidopsis, phytochrome A (phyA), phyB and cryptochrome2 (cry2) are major photoreceptors that regulate flowering. These photoreceptors perceive light stimuli by leaves for the regulation of flowering. A leaf is an organ consisting of different tissues such as epidermis, mesophyll and vascular bundles. In the present study, we examined in which tissue the light signals are perceived and how those signals are integrated within a leaf to regulate flowering. For this purpose, we established transgenic Arabidopsis lines that expressed a phyB-green fluorescent protein (GFP) fusion protein or a cry2-GFP fusion protein in organ/tissue-specific manners. Consequently, phyB was shown to perceive light stimuli in mesophyll. By contrast, cry2 functioned only in vascular bundles. We further confirmed that both phyB-GFP and cry2-GFP regulated flowering by altering the expression of a key flowering gene, FT, in vascular bundles. In summary, perception sites for different spectra of light are spatially separated within a leaf and the signals are integrated through the inter-tissue communication. PMID:19704768

  13. CRYPTOCHROME2 in Vascular Bundles Regulates Flowering in Arabidopsis

    PubMed Central

    Endo, Motomu; Mochizuki, Nobuyoshi; Suzuki, Tomomi; Nagatani, Akira

    2007-01-01

    Plants make full use of light signals to determine the timing of flowering. In Arabidopsis thaliana, a blue/UV-A photoreceptor, CRYPTOCHROME 2 (cry2), and a red/far-red photoreceptor, PHYTOCHROME B (phyB), are two major photoreceptors that control flowering. The light stimuli for the regulation of flowering are perceived by leaves. We have recently shown that phyB expression in mesophyll but not in vascular bundles suppresses the expression of a key flowering regulator, FLOWERING LOCUS T (FT), in vascular bundles. In this study, we asked where in the leaf cry2 perceives light stimuli to regulate flowering. To answer this question, we established transgenic Arabidopsis lines in which the cry2–green fluorescent protein (GFP) fusion was expressed under the control of organ/tissue-specific promoters in a cry2-deficient mutant background. Analysis of these lines revealed that expression of cry2-GFP in vascular bundles, but not in epidermis or mesophyll, rescued the late flowering phenotype. We further confirmed that cry2-GFP expressed in vascular bundles increased FT expression only in vascular bundles. Hence, in striking contrast with phyB, cry2 most likely regulates FT expression in a cell-autonomous manner. PMID:17259260

  14. A knotted1-like homeobox protein regulates abscission in tomato by modulating the auxin pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    KD1, a gene encoding a KNOTTED1-LIKE HOMEOBOX transcription factor is known to be involved, in tomato, in ontogeny of the compound leaf. KD1 is also highly expressed in both leaf and flower abscission zones. Reducing abundance of transcripts of this gene in tomato, using both virus induced gene sile...

  15. CONSTANS is a photoperiod regulated activator of flowering in sorghum

    PubMed Central

    2014-01-01

    Background Sorghum genotypes used for grain production in temperate regions are photoperiod insensitive and flower early avoiding adverse environments during the reproductive phase. In contrast, energy sorghum hybrids are highly photoperiod sensitive with extended vegetative phases in long days, resulting in enhanced biomass accumulation. SbPRR37 and SbGHD7 contribute to photoperiod sensitivity in sorghum by repressing expression of SbEHD1 and FT-like genes, thereby delaying flowering in long days with minimal influence in short days (PNAS_108:16469-16474, 2011; Plant Genome_in press, 2014). The GIGANTEA (GI)-CONSTANS (CO)-FLOWERING LOCUS T (FT) pathway regulates flowering time in Arabidopsis and the grasses (J Exp Bot_62:2453-2463, 2011). In long day flowering plants, such as Arabidopsis and barley, CONSTANS activates FT expression and flowering in long days. In rice, a short day flowering plant, Hd1, the ortholog of CONSTANS, activates flowering in short days and represses flowering in long days. Results Quantitative trait loci (QTL) that modify flowering time in sorghum were identified by screening Recombinant Inbred Lines (RILs) derived from BTx642 and Tx7000 in long days, short days, and under field conditions. Analysis of the flowering time QTL on SBI-10 revealed that BTx642 encodes a recessive CONSTANS allele containing a His106Tyr substitution in B-box 2 known to inactivate CONSTANS in Arabidopsis thaliana. Genetic analysis characterized sorghum CONSTANS as a floral activator that promotes flowering by inducing the expression of EARLY HEADING DATE 1 (SbEHD1) and sorghum orthologs of the maize FT genes ZCN8 (SbCN8) and ZCN12 (SbCN12). The floral repressor PSEUDORESPONSE REGULATOR PROTEIN 37 (PRR37) inhibits sorghum CONSTANS activity and flowering in long days. Conclusion Sorghum CONSTANS is an activator of flowering that is repressed post-transcriptionally in long days by the floral inhibitor PRR37, contributing to photoperiod sensitive flowering in Sorghum

  16. MACROCALYX and JOINTLESS Interact in the Transcriptional Regulation of Tomato Fruit Abscission Zone Development1[C][W

    PubMed Central

    Nakano, Toshitsugu; Kimbara, Junji; Fujisawa, Masaki; Kitagawa, Mamiko; Ihashi, Nao; Maeda, Hideo; Kasumi, Takafumi; Ito, Yasuhiro

    2012-01-01

    Abscission in plants is a crucial process used to shed organs such as leaves, flowers, and fruits when they are senescent, damaged, or mature. Abscission occurs at predetermined positions called abscission zones (AZs). Although the regulation of fruit abscission is essential for agriculture, the developmental mechanisms remain unclear. Here, we describe a novel transcription factor regulating the development of tomato (Solanum lycopersicum) pedicel AZs. We found that the development of tomato pedicel AZs requires the gene MACROCALYX (MC), which was previously identified as a sepal size regulator and encodes a MADS-box transcription factor. MC has significant sequence similarity to Arabidopsis (Arabidopsis thaliana) FRUITFULL, which is involved in the regulation of fruit dehiscent zone development. The MC protein interacted physically with another MADS-box protein, JOINTLESS, which is known as a regulator of fruit abscission; the resulting heterodimer acquired a specific DNA-binding activity. Transcriptome analyses of pedicels at the preabscission stage revealed that the expression of the genes involved in phytohormone-related functions, cell wall modifications, fatty acid metabolism, and transcription factors is regulated by MC and JOINTLESS. The regulated genes include homologs of Arabidopsis WUSCHEL, REGULATOR OF AXILLARY MERISTEMS, CUP-SHAPED COTYLEDON, and LATERAL SUPPRESSOR. These Arabidopsis genes encode well-characterized transcription factors regulating meristem maintenance, axillary meristem development, and boundary formation in plant tissues. The tomato homologs were specifically expressed in AZs but not in other pedicel tissues, suggesting that these transcription factors may play key roles in pedicel AZ development. PMID:22106095

  17. ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription

    PubMed Central

    Shu, Kai; Chen, Qian; Wu, Yaorong; Liu, Ruijun; Zhang, Huawei; Wang, Shengfu; Tang, Sanyuan; Yang, Wenyu; Xie, Qi

    2016-01-01

    During the life cycle of a plant, one of the major biological processes is the transition from the vegetative to the reproductive stage. In Arabidopsis, flowering time is precisely controlled by extensive environmental and internal cues. Gibberellins (GAs) promote flowering, while abscisic acid (ABA) is considered as a flowering suppressor. However, the detailed mechanism through which ABA inhibits the floral transition is poorly understood. Here, we report that ABSCISIC ACID-INSENSITIVE 4 (ABI4), a key component in the ABA signalling pathway, negatively regulates floral transition by directly promoting FLOWERING LOCUS C (FLC) transcription. The abi4 mutant showed the early flowering phenotype whereas ABI4-overexpressing (OE-ABI4) plants had delayed floral transition. Consistently, quantitative reverse transcription–PCR (qRT–PCR) assay revealed that the FLC transcription level was down-regulated in abi4, but up-regulated in OE-ABI4. The change in FT level was consistent with the pattern of FLC expression. Chromatin immunoprecipitation-qPCR (ChIP-qPCR), electrophoretic mobility shift assay (EMSA), and tobacco transient expression analysis showed that ABI4 promotes FLC expression by directly binding to its promoter. Genetic analysis demonstrated that OE-ABI4::flc-3 could not alter the flc-3 phenotype. OE-FLC::abi4 showed a markedly delayed flowering phenotype, which mimicked OE-FLC::WT, and suggested that ABI4 acts upstream of FLC in the same genetic pathway. Taken together, these findings suggest that ABA inhibits the floral transition by activating FLC transcription through ABI4. PMID:26507894

  18. The Quest for Molecular Regulation Underlying Unisexual Flower Development.

    PubMed

    Sobral, Rómulo; Silva, Helena G; Morais-Cecílio, Leonor; Costa, Maria M R

    2016-01-01

    The understanding of the molecular mechanisms responsible for the making of a unisexual flower has been a long-standing quest in plant biology. Plants with male and female flowers can be divided mainly into two categories: dioecious and monoecious, and both sexual systems co-exist in nature in ca of 10% of the angiosperms. The establishment of male and female traits has been extensively described in a hermaphroditic flower and requires the interplay of networks, directly and indirectly related to the floral organ identity genes including hormonal regulators, transcription factors, microRNAs, and chromatin-modifying proteins. Recent transcriptomic studies have been uncovering the molecular processes underlying the establishment of unisexual flowers and there are many parallelisms between monoecious, dioecious, and hermaphroditic individuals. Here, we review the paper entitled "Comparative transcriptomic analysis of male and female flowers of monoecious Quercus suber" published in 2014 in the Frontiers of Plant Science (volume 5 |Article 599) and discussed it in the context of recent studies with other dioecious and monoecious plants that utilized high-throughput platforms to obtain transcriptomic profiles of male and female unisexual flowers. In some unisexual flowers, the developmental programs that control organ initiation fail and male or female organs do not form, whereas in other species, organ initiation and development occur but they abort or arrest during different species-specific stages of differentiation. Therefore, a direct comparison of the pathways responsible for the establishment of unisexual flowers in different species are likely to reveal conserved modules of gene regulatory hubs involved in stamen or carpel development, as well as differences that reflect the different stages of development in which male and/or female organ arrest or loss-of-function occurs. PMID:26925078

  19. The Quest for Molecular Regulation Underlying Unisexual Flower Development

    PubMed Central

    Sobral, Rómulo; Silva, Helena G.; Morais-Cecílio, Leonor; Costa, Maria M. R.

    2016-01-01

    The understanding of the molecular mechanisms responsible for the making of a unisexual flower has been a long-standing quest in plant biology. Plants with male and female flowers can be divided mainly into two categories: dioecious and monoecious, and both sexual systems co-exist in nature in ca of 10% of the angiosperms. The establishment of male and female traits has been extensively described in a hermaphroditic flower and requires the interplay of networks, directly and indirectly related to the floral organ identity genes including hormonal regulators, transcription factors, microRNAs, and chromatin-modifying proteins. Recent transcriptomic studies have been uncovering the molecular processes underlying the establishment of unisexual flowers and there are many parallelisms between monoecious, dioecious, and hermaphroditic individuals. Here, we review the paper entitled “Comparative transcriptomic analysis of male and female flowers of monoecious Quercus suber” published in 2014 in the Frontiers of Plant Science (volume 5 |Article 599) and discussed it in the context of recent studies with other dioecious and monoecious plants that utilized high-throughput platforms to obtain transcriptomic profiles of male and female unisexual flowers. In some unisexual flowers, the developmental programs that control organ initiation fail and male or female organs do not form, whereas in other species, organ initiation and development occur but they abort or arrest during different species-specific stages of differentiation. Therefore, a direct comparison of the pathways responsible for the establishment of unisexual flowers in different species are likely to reveal conserved modules of gene regulatory hubs involved in stamen or carpel development, as well as differences that reflect the different stages of development in which male and/or female organ arrest or loss-of-function occurs. PMID:26925078

  20. 77 FR 25060 - Flower Garden Banks National Marine Sanctuary Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... designated Flower Garden Banks National Marine Sanctuary (FGBNMS or sanctuary) on December 5, 1991 (56 FR... Garden Banks (56 FR 63634). Congress later added Stetson Bank in 1996 (Pub. L. 104-283). These three... published on December 5, 1991 (56 FR 63634). Those regulations became effective on January 18, 1994 (58...

  1. Regulation of volatile benzenoid biosynthesis in petunia flowers.

    PubMed

    Schuurink, Robert C; Haring, Michel A; Clark, David G

    2006-01-01

    The petunia flower has served as a model for the study of several physiological processes including floral development, self-incompatibility, anthocyanin biosynthesis and ethylene signalling during senescence. More recently, Petunia hybrida 'Mitchell' has been used to understand the complex regulation of volatile benzenoid biosynthesis, which occurs predominantly in flower petal tissues. Benzenoid biosynthesis is temporally and circadian controlled and is tightly down-regulated by ethylene during floral senescence. Using targeted transcriptomics and gene knockouts, both biosynthetic genes and a transcription factor regulating benzenoid synthesis have been recently discovered and characterized. It appears that benzenoid production is regulated predominantly by transcriptional control of the shikimate pathway, benzenoid biosynthesis genes and S-adenosyl-methionine cycle genes.

  2. Opening of Iris flowers is regulated by endogenous auxins.

    PubMed

    van Doorn, Wouter G; Dole, Isabelle; Celikel, Fisun G; Harkema, Harmannus

    2013-01-15

    Flower opening in Iris (Iris×hollandica) requires elongation of the pedicel and ovary. This moves the floral bud upwards, thereby allowing the tepals to move laterally. Flower opening is requires with elongation of the pedicel and ovary. In cv. Blue Magic, we investigated the possible role of hormones other than ethylene in pedicel and ovary elongation and flower opening. Exogenous salicylic acid (SA) and the cytokinins benzyladenine (N6-benzyladenine, BA) and zeatin did not affect opening. Jasmonic acid (JA) and abscisic acid (ABA) were slightly inhibitory, but an inhibitor of ABA synthesis (norflurazon) was without effect. Flower opening was promoted by gibberellic acid (GA(3)), but two inhibitors of gibberellin synthesis (4-hydroxy-5-isopropyl-2-methylphenyltrimethyl ammonium chloride-1-piperidine carboxylate, AMO-1618; ancymidol) did not change opening. The auxins indoleacetic acid (IAA) and naphthaleneacetic acid (NAA) strongly promoted elongation and opening. An inhibitor of auxin transport (2,3,5-triodobenzoic acid, TIBA) and an inhibitor of auxin effects [α-(p-chlorophenoxy)-isobutyric acid; PCIB] inhibited elongation and opening. The data suggest that endogenous auxins are among the regulators of the pedicel and ovary elongation and thus of flower opening in Iris. PMID:23218543

  3. Tomato FRUITFULL homologs regulate fruit ripening via ethylene biosynthesis.

    PubMed

    Shima, Yoko; Fujisawa, Masaki; Kitagawa, Mamiko; Nakano, Toshitsugu; Kimbara, Junji; Nakamura, Nobutaka; Shiina, Takeo; Sugiyama, Junichi; Nakamura, Toshihide; Kasumi, Takafumi; Ito, Yasuhiro

    2014-01-01

    Certain MADS-box transcription factors play central roles in regulating fruit ripening. RIPENING INHIBITOR (RIN), a tomato MADS-domain protein, acts as a global regulator of ripening, affecting the climacteric rise of ethylene, pigmentation changes, and fruit softening. Previously, we showed that two MADS-domain proteins, the FRUITFULL homologs FUL1 and FUL2, form complexes with RIN. Here, we characterized the FUL1/FUL2 loss-of-function phenotype in co-suppressed plants. The transgenic plants produced ripening-defective fruits accumulating little or no lycopene. Unlike a previous study on FUL1/FUL2 suppressed tomatoes, our transgenic fruits showed very low levels of ethylene production, and this was associated with suppression of the genes for 1-aminocyclopropane-1-carboxylic acid synthase, a rate-limiting enzyme in ethylene synthesis. FUL1/FUL2 suppression also caused the fruit to soften in a manner independent of ripening, possibly due to reduced cuticle thickness in the peel of the suppressed tomatoes.

  4. Characterization of the Tomato ARF Gene Family Uncovers a Multi-Levels Post-Transcriptional Regulation Including Alternative Splicing

    PubMed Central

    Chateigner-Boutin, Anne-Laure; Mila, Isabelle; Frasse, Pierre; Wang, Hua; Audran, Corinne; Roustan, Jean-Paul; Bouzayen, Mondher

    2014-01-01

    Background The phytohormone auxin is involved in a wide range of developmental processes and auxin signaling is known to modulate the expression of target genes via two types of transcriptional regulators, namely, Aux/IAA and Auxin Response Factors (ARF). ARFs play a major role in transcriptional activation or repression through direct binding to the promoter of auxin-responsive genes. The present study aims at gaining better insight on distinctive structural and functional features among ARF proteins. Results Building on the most updated tomato (Solanum lycopersicon) reference genome sequence, a comprehensive set of ARF genes was identified, extending the total number of family members to 22. Upon correction of structural annotation inconsistencies, renaming the tomato ARF family members provided a consensus nomenclature for all ARF genes across plant species. In silico search predicted the presence of putative target site for small interfering RNAs within twelve Sl-ARFs while sequence analysis of the 5′-leader sequences revealed the presence of potential small uORF regulatory elements. Functional characterization carried out by transactivation assay partitioned tomato ARFs into repressors and activators of auxin-dependent gene transcription. Expression studies identified tomato ARFs potentially involved in the fruit set process. Genome-wide expression profiling using RNA-seq revealed that at least one third of the gene family members display alternative splicing mode of regulation during the flower to fruit transition. Moreover, the regulation of several tomato ARF genes by both ethylene and auxin, suggests their potential contribution to the convergence mechanism between the signaling pathways of these two hormones. Conclusion All together, the data bring new insight on the complexity of the expression control of Sl-ARF genes at the transcriptional and post-transcriptional levels supporting the hypothesis that these transcriptional mediators might represent

  5. Roles and regulation of cytokinins in tomato fruit development.

    PubMed

    Matsuo, Satoshi; Kikuchi, Kaori; Fukuda, Machiko; Honda, Ichiro; Imanishi, Shunsuke

    2012-09-01

    Cytokinins (CKs) are thought to play important roles in fruit development, especially cell division. However, the mechanisms and regulation of CK activity have not been well investigated. This study analysed CK concentrations and expression of genes involved in CK metabolism in developing tomato (Solanum lycopersicum) ovaries. The concentrations of CK ribosides and isopentenyladenine and the transcript levels of the CK biosynthetic genes SlIPT3, SlIPT4, SlLOG6, and SlLOG8 were high at anthesis and decreased immediately afterward. In contrast, trans-zeatin concentration and the transcript levels of the CK biosynthetic genes SlIPT1, SlIPT2, SlCYP735A1, SlCYP735A2, and SlLOG2 increased after anthesis. The expression of type-A response regulator genes was high in tomato ovaries from pre-anthesis to early post-anthesis stages. These results suggest that the CK signal transduction pathway is active in the cell division phase of fruit development. This study also investigated the effect of CK application on fruit set and development. Application of a synthetic CK, N-(2-chloro-pyridin-4-yl)-N'-phenylurea (CPPU), to unpollinated tomato ovaries induced parthenocarpic fruit development. The CPPU-induced parthenocarpic fruits were smaller than pollinated fruits, because of reduction of pericarp cell size rather than reduced cell number. Thus, CPPU-induced parthenocarpy was attributable to the promotion of cell division, not cell expansion. Overall, the results provide evidence that CKs are involved in cell division during development of tomato fruit. PMID:22865911

  6. Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato.

    PubMed

    Yuste-Lisbona, Fernando J; Quinet, Muriel; Fernández-Lozano, Antonia; Pineda, Benito; Moreno, Vicente; Angosto, Trinidad; Lozano, Rafael

    2016-01-01

    Inflorescence development is a key factor of plant productivity, as it determines flower number. Therefore, understanding the mechanisms that regulate inflorescence architecture is critical for reproductive success and crop yield. In this study, a new mutant, vegetative inflorescence (mc-vin), was isolated from the screening of a tomato (Solanum lycopersicum L.) T-DNA mutant collection. The mc-vin mutant developed inflorescences that reverted to vegetative growth after forming two to three flowers, indicating that the mutated gene is essential for the maintenance of inflorescence meristem identity. The T-DNA was inserted into the promoter region of the MACROCALYX (MC) gene; this result together with complementation test and expression analyses proved that mc-vin is a new knock-out allele of MC. Double combinations between mc-vin and jointless (j) and single flower truss (sft) inflorescence mutants showed that MC has pleiotropic effects on the reproductive phase, and that it interacts with SFT and J to control floral transition and inflorescence fate in tomato. In addition, MC expression was mis-regulated in j and sft mutants whereas J and SFT were significantly up-regulated in the mc-vin mutant. Together, these results provide new evidences about MC function as part of the genetic network regulating the development of tomato inflorescence meristem. PMID:26727224

  7. Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato.

    PubMed

    Yuste-Lisbona, Fernando J; Quinet, Muriel; Fernández-Lozano, Antonia; Pineda, Benito; Moreno, Vicente; Angosto, Trinidad; Lozano, Rafael

    2016-01-04

    Inflorescence development is a key factor of plant productivity, as it determines flower number. Therefore, understanding the mechanisms that regulate inflorescence architecture is critical for reproductive success and crop yield. In this study, a new mutant, vegetative inflorescence (mc-vin), was isolated from the screening of a tomato (Solanum lycopersicum L.) T-DNA mutant collection. The mc-vin mutant developed inflorescences that reverted to vegetative growth after forming two to three flowers, indicating that the mutated gene is essential for the maintenance of inflorescence meristem identity. The T-DNA was inserted into the promoter region of the MACROCALYX (MC) gene; this result together with complementation test and expression analyses proved that mc-vin is a new knock-out allele of MC. Double combinations between mc-vin and jointless (j) and single flower truss (sft) inflorescence mutants showed that MC has pleiotropic effects on the reproductive phase, and that it interacts with SFT and J to control floral transition and inflorescence fate in tomato. In addition, MC expression was mis-regulated in j and sft mutants whereas J and SFT were significantly up-regulated in the mc-vin mutant. Together, these results provide new evidences about MC function as part of the genetic network regulating the development of tomato inflorescence meristem.

  8. Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato

    PubMed Central

    Yuste-Lisbona, Fernando J.; Quinet, Muriel; Fernández-Lozano, Antonia; Pineda, Benito; Moreno, Vicente; Angosto, Trinidad; Lozano, Rafael

    2016-01-01

    Inflorescence development is a key factor of plant productivity, as it determines flower number. Therefore, understanding the mechanisms that regulate inflorescence architecture is critical for reproductive success and crop yield. In this study, a new mutant, vegetative inflorescence (mc-vin), was isolated from the screening of a tomato (Solanum lycopersicum L.) T-DNA mutant collection. The mc-vin mutant developed inflorescences that reverted to vegetative growth after forming two to three flowers, indicating that the mutated gene is essential for the maintenance of inflorescence meristem identity. The T-DNA was inserted into the promoter region of the MACROCALYX (MC) gene; this result together with complementation test and expression analyses proved that mc-vin is a new knock-out allele of MC. Double combinations between mc-vin and jointless (j) and single flower truss (sft) inflorescence mutants showed that MC has pleiotropic effects on the reproductive phase, and that it interacts with SFT and J to control floral transition and inflorescence fate in tomato. In addition, MC expression was mis-regulated in j and sft mutants whereas J and SFT were significantly up-regulated in the mc-vin mutant. Together, these results provide new evidences about MC function as part of the genetic network regulating the development of tomato inflorescence meristem. PMID:26727224

  9. Tomato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome mapping and marker assisted selection are increasingly being adopted for tomato improvement. Vast amounts of technical and basic genomic information such as DNA and EST sequences, DNA markers, comparative linkage maps, introgression lines, mutant stocks, bioinformatics resources are availabl...

  10. Endogenous ethylene does not regulate opening of unstressed Iris flowers but strongly inhibits it in water-stressed flowers.

    PubMed

    Çelikel, Fisun G; van Doorn, Wouter G

    2012-09-15

    The floral buds of Iris flowers (Iris x hollandica) are enclosed by two sheath leaves. Flower opening depends on lifting the flower up to a position whereby the tepals can move laterally. This upward movement is carried out by elongation of the subtending pedicel and ovary. In the pedicels and ovaries of unstressed control flowers, the concentration of ACC (1-aminocyclopropane-1-carboxylic acid) and the rate of ethylene production increased during d 0-1 of flower opening, and then decreased. Exposure to ≥200 nL L(-1) ethylene for 24 h at 20°C inhibited elongation of the pedicel+ovary, and inhibited flower opening. However, pulsing of unstressed flowers with solutions containing inhibitors of ethylene synthesis (AOA, AVG), or an inhibitor of ethylene action (STS), did not affect pedicel+ovary elongation or flower opening. When the flowers were dehydrated for 2 d at 20°C and 60% RH, they did not open when subsequently placed in water, and showed inhibited elongation in the pedicel+ovary. This dehydration treatment resulted in elevated pedicel+ovary ACC levels and in increased ethylene production. Treatment with STS prevented the increase in ACC levels and ethylene production, overcame the effect of dehydration on elongation of the pedicel+ovary, and resulted in full flower opening. It is concluded that flower opening in unstressed Iris flowers is not regulated by endogenous ethylene. An increase in endogenous ethylene above normal levels during stress, by contrast, strongly inhibited flower opening, due to its inhibitory effect on elongation of the pedicel+ovary.

  11. Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering.

    PubMed

    Yuan, Shu; Zhang, Zhong-Wei; Zheng, Chong; Zhao, Zhong-Yi; Wang, Yu; Feng, Ling-Yang; Niu, Guoqi; Wang, Chang-Quan; Wang, Jian-Hui; Feng, Hong; Xu, Fei; Bao, Fang; Hu, Yong; Cao, Ying; Ma, Ligeng; Wang, Haiyang; Kong, Dong-Dong; Xiao, Wei; Lin, Hong-Hui; He, Yikun

    2016-07-01

    The phenomenon of delayed flowering after the application of nitrogen (N) fertilizer has long been known in agriculture, but the detailed molecular basis for this phenomenon is largely unclear. Here we used a modified method of suppression-subtractive hybridization to identify two key factors involved in N-regulated flowering time control in Arabidopsis thaliana, namely ferredoxin-NADP(+)-oxidoreductase and the blue-light receptor cryptochrome 1 (CRY1). The expression of both genes is induced by low N levels, and their loss-of-function mutants are insensitive to altered N concentration. Low-N conditions increase both NADPH/NADP(+) and ATP/AMP ratios, which in turn affect adenosine monophosphate-activated protein kinase (AMPK) activity. Moreover, our results show that the AMPK activity and nuclear localization are rhythmic and inversely correlated with nuclear CRY1 protein abundance. Low-N conditions increase but high-N conditions decrease the expression of several key components of the central oscillator (e.g., CCA1, LHY, and TOC1) and the flowering output genes (e.g., GI and CO). Taken together, our results suggest that N signaling functions as a modulator of nuclear CRY1 protein abundance, as well as the input signal for the central circadian clock to interfere with the normal flowering process. PMID:27325772

  12. ODORANT1 Regulates Fragrance Biosynthesis in Petunia FlowersW⃞

    PubMed Central

    Verdonk, Julian C.; Haring, Michel A.; van Tunen, Arjen J.; Schuurink, Robert C.

    2005-01-01

    Floral scent is important to plant reproduction because it attracts pollinators to the sexual organs. Therefore, volatile emission is usually tuned to the foraging activity of the pollinators. In Petunia hybrida, volatile benzenoids determine the floral aroma. Although the pathways for benzenoid biosynthesis have been characterized, the enzymes involved are less well understood. How production and emission are regulated is unknown. By targeted transcriptome analyses, we identified ODORANT1 (ODO1), a member of the R2R3-type MYB family, as a candidate for the regulation of volatile benzenoids in Petunia hybrida cv W115 (Mitchell) flowers. These flowers are only fragrant in the evening and at night. Transcript levels of ODO1 increased before the onset of volatile emission and decreased when volatile emission declined. Downregulation of ODO1 in transgenic P. hybrida Mitchell plants strongly reduced volatile benzenoid levels through decreased synthesis of precursors from the shikimate pathway. The transcript levels of several genes in this pathway were reduced by suppression of ODO1 expression. Moreover, ODO1 could activate the promoter of the 5-enol-pyruvylshikimate-3-phosphate synthase gene. Flower pigmentation, which is furnished from the same shikimate precursors, was not influenced because color and scent biosynthesis occur at different developmental stages. Our studies identify ODO1 as a key regulator of floral scent biosynthesis. PMID:15805488

  13. Regulation of flower development in Arabidopsis by SCF complexes.

    PubMed

    Ni, Weimin; Xie, Daoxin; Hobbie, Lawrence; Feng, Baomin; Zhao, Dazhong; Akkara, Joseph; Ma, Hong

    2004-04-01

    SCF complexes are the largest and best studied family of E3 ubiquitin protein ligases that facilitate the ubiquitylation of proteins targeted for degradation. The SCF core components Skp1, Cul1, and Rbx1 serve in multiple SCF complexes involving different substrate-specific F-box proteins that are involved in diverse processes including cell cycle and development. In Arabidopsis, mutations in the F-box gene UNUSUAL FLORAL ORGANS (UFO) result in a number of defects in flower development. However, functions of the core components Cul1 and Rbx1 in flower development are poorly understood. In this study we analyzed floral phenotypes caused by altering function of Cul1 or Rbx1, as well as the effects of mutations in ASK1 and ASK2. Plants homozygous for a point mutation in the AtCUL1 gene showed reduced floral organ number and several defects in each of the four whorls. Similarly, plants with reduced AtRbx1 expression due to RNA interference also exhibited floral morphological defects. In addition, compared to the ask1 mutant, plants homozygous for ask1 and heterozygous for ask2 displayed enhanced reduction of B function, as well as other novel defects of flower development, including carpelloid sepals and an inhibition of petal development. Genetic analyses demonstrate that AGAMOUS (AG) is required for the novel phenotypes observed in the first and second whorls. Furthermore, the genetic interaction between UFO and AtCUL1 supports the idea that UFO regulates multiple aspects of flower development as a part of SCF complexes. These results suggest that SCF complexes regulate several aspects of floral development in Arabidopsis. PMID:15047903

  14. Regulation of flower development in Arabidopsis by SCF complexes.

    PubMed

    Ni, Weimin; Xie, Daoxin; Hobbie, Lawrence; Feng, Baomin; Zhao, Dazhong; Akkara, Joseph; Ma, Hong

    2004-04-01

    SCF complexes are the largest and best studied family of E3 ubiquitin protein ligases that facilitate the ubiquitylation of proteins targeted for degradation. The SCF core components Skp1, Cul1, and Rbx1 serve in multiple SCF complexes involving different substrate-specific F-box proteins that are involved in diverse processes including cell cycle and development. In Arabidopsis, mutations in the F-box gene UNUSUAL FLORAL ORGANS (UFO) result in a number of defects in flower development. However, functions of the core components Cul1 and Rbx1 in flower development are poorly understood. In this study we analyzed floral phenotypes caused by altering function of Cul1 or Rbx1, as well as the effects of mutations in ASK1 and ASK2. Plants homozygous for a point mutation in the AtCUL1 gene showed reduced floral organ number and several defects in each of the four whorls. Similarly, plants with reduced AtRbx1 expression due to RNA interference also exhibited floral morphological defects. In addition, compared to the ask1 mutant, plants homozygous for ask1 and heterozygous for ask2 displayed enhanced reduction of B function, as well as other novel defects of flower development, including carpelloid sepals and an inhibition of petal development. Genetic analyses demonstrate that AGAMOUS (AG) is required for the novel phenotypes observed in the first and second whorls. Furthermore, the genetic interaction between UFO and AtCUL1 supports the idea that UFO regulates multiple aspects of flower development as a part of SCF complexes. These results suggest that SCF complexes regulate several aspects of floral development in Arabidopsis.

  15. Flowers & Weeds.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1996-01-01

    Describes the topics and teaching strategies employed in an Issues in Biology course. Discusses flowers, plant breeding, potatoes and tomatoes, the chocolate tree, weeds, Arabidopis, gene transfers, and plant genes/human genes. Contains 22 references. (JRH)

  16. Western flower thrips and tospoviruses emerging as serious threats to tomato in central and southern Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks of Tomato chlorotic spot virus and/or Groundnut ringspot virus have occurred in every season since their introduction into south Florida, and with each subsequent season disease severity has increased. In addition, these emerging viruses are widely present in southeast and southwest Florid...

  17. Regulation of tomato Prf by Pto-like protein kinases.

    PubMed

    Mucyn, Tatiana S; Wu, Ai-Jiuan; Balmuth, Alexi L; Arasteh, Julia Maryam; Rathjen, John P

    2009-04-01

    Tomato Prf encodes a nucleotide-binding domain shared by Apaf-1, certain R proteins, and CED-4 fused to C-terminal leucine-rich repeats (NBARC-LRR) protein that is required for bacterial immunity to Pseudomonas syringae and sensitivity to the organophosphate fenthion. The signaling pathways involve two highly related protein kinases. Pto kinase mediates direct recognition of the bacterial effector proteins AvrPto or AvrPtoB. Fen kinase is required for fenthion sensitivity and recognition of bacterial effectors related to AvrPtoB. The role of Pto and its association with Prf has been characterized but Fen is poorly described. We show that, similar to Pto, Fen requires N-myristoylation and kinase activity for signaling and interacts with the N-terminal domain of Prf. Thus, the mechanisms of activation of Prf by the respective protein kinases are similar. Prf-Fen interaction is underlined by coregulatory mechanisms in which Prf negatively regulates Fen, most likely by controlling kinase activity. We further characterized negative regulation of Prf by Pto, and show that regulation is mediated by the previously described negative regulatory patch. Remarkably, the effectors released negative regulation of Prf in a manner dependent on Pto kinase activity. The data suggest a model in which Prf associates generally with Pto-like kinases in tightly regulated complexes, which are activated by effector-mediated disruption of negative regulation. Release of negative regulation may be a general feature of activation of NBARC-LRR proteins by cognate effectors.

  18. Role and regulation of autophagy in heat stress responses of tomato plants.

    PubMed

    Zhou, Jie; Wang, Jian; Yu, Jing-Quan; Chen, Zhixiang

    2014-01-01

    As sessile organisms, plants are constantly exposed to a wide spectrum of stress conditions such as high temperature, which causes protein misfolding. Misfolded proteins are highly toxic and must be efficiently removed to reduce cellular proteotoxic stress if restoration of native conformations is unsuccessful. Although selective autophagy is known to function in protein quality control by targeting degradation of misfolded and potentially toxic proteins, its role and regulation in heat stress responses have not been analyzed in crop plants. In the present study, we found that heat stress induced expression of autophagy-related (ATG) genes and accumulation of autophagosomes in tomato plants. Virus-induced gene silencing (VIGS) of tomato ATG5 and ATG7 genes resulted in increased sensitivity of tomato plants to heat stress based on both increased development of heat stress symptoms and compromised photosynthetic parameters of heat-stressed leaf tissues. Silencing of tomato homologs for the selective autophagy receptor NBR1, which targets ubiquitinated protein aggregates, also compromised tomato heat tolerance. To better understand the regulation of heat-induced autophagy, we found that silencing of tomato ATG5, ATG7, or NBR1 compromised heat-induced expression of not only the targeted genes but also other autophagy-related genes. Furthermore, we identified two tomato genes encoding proteins highly homologous to Arabidopsis WRKY33 transcription factor, which has been previously shown to interact physically with an autophagy protein. Silencing of tomato WRKY33 genes compromised tomato heat tolerance and reduced heat-induced ATG gene expression and autophagosome accumulation. Based on these results, we propose that heat-induced autophagy in tomato is subject to cooperative regulation by both WRKY33 and ATG proteins and plays a critical role in tomato heat tolerance, mostly likely through selective removal of heat-induced protein aggregates.

  19. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity

    PubMed Central

    Albacete, Alfonso; Cantero-Navarro, Elena; Balibrea, María E.; Großkinsky, Dominik K.; de la Cruz González, María; Martínez-Andújar, Cristina; Smigocki, Ann C.; Roitsch, Thomas; Pérez-Alfocea, Francisco

    2014-01-01

    Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors on tomato fruit sink activity, growth, and yield: (i) exogenous hormones were applied to plants, and (ii) transgenic plants overexpressing the cell wall invertase (cwInv) gene CIN1 in the fruits and de novo cytokinin (CK) biosynthesis gene IPT in the roots were constructed. Although salinity reduces fruit growth, sink activity, and trans-zeatin (tZ) concentrations, it increases the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) during the actively growing period (25 days after anthesis). Indeed, exogenous application of the CK analogue kinetin to salinized actively growing fruits recovered sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT in the root (up to 30%), owing to an increase in the fruit number (lower flower abortion) and in fruit weight. This is possibly related to a recovery of sink activity in reproductive tissues due to both (i) increase in sucrolytic activities (cwInv, sucrose synthase, and vacuolar and cytoplasmic invertases) and tZ concentration, and (ii) a decrease in the ACC levels and the activity of the invertase inhibitor. This study provides new functional evidences about the role of

  20. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity.

    PubMed

    Albacete, Alfonso; Cantero-Navarro, Elena; Balibrea, María E; Großkinsky, Dominik K; de la Cruz González, María; Martínez-Andújar, Cristina; Smigocki, Ann C; Roitsch, Thomas; Pérez-Alfocea, Francisco

    2014-11-01

    Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors on tomato fruit sink activity, growth, and yield: (i) exogenous hormones were applied to plants, and (ii) transgenic plants overexpressing the cell wall invertase (cwInv) gene CIN1 in the fruits and de novo cytokinin (CK) biosynthesis gene IPT in the roots were constructed. Although salinity reduces fruit growth, sink activity, and trans-zeatin (tZ) concentrations, it increases the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) during the actively growing period (25 days after anthesis). Indeed, exogenous application of the CK analogue kinetin to salinized actively growing fruits recovered sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT in the root (up to 30%), owing to an increase in the fruit number (lower flower abortion) and in fruit weight. This is possibly related to a recovery of sink activity in reproductive tissues due to both (i) increase in sucrolytic activities (cwInv, sucrose synthase, and vacuolar and cytoplasmic invertases) and tZ concentration, and (ii) a decrease in the ACC levels and the activity of the invertase inhibitor. This study provides new functional evidences about the role of

  1. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity.

    PubMed

    Albacete, Alfonso; Cantero-Navarro, Elena; Balibrea, María E; Großkinsky, Dominik K; de la Cruz González, María; Martínez-Andújar, Cristina; Smigocki, Ann C; Roitsch, Thomas; Pérez-Alfocea, Francisco

    2014-11-01

    Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors on tomato fruit sink activity, growth, and yield: (i) exogenous hormones were applied to plants, and (ii) transgenic plants overexpressing the cell wall invertase (cwInv) gene CIN1 in the fruits and de novo cytokinin (CK) biosynthesis gene IPT in the roots were constructed. Although salinity reduces fruit growth, sink activity, and trans-zeatin (tZ) concentrations, it increases the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) during the actively growing period (25 days after anthesis). Indeed, exogenous application of the CK analogue kinetin to salinized actively growing fruits recovered sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT in the root (up to 30%), owing to an increase in the fruit number (lower flower abortion) and in fruit weight. This is possibly related to a recovery of sink activity in reproductive tissues due to both (i) increase in sucrolytic activities (cwInv, sucrose synthase, and vacuolar and cytoplasmic invertases) and tZ concentration, and (ii) a decrease in the ACC levels and the activity of the invertase inhibitor. This study provides new functional evidences about the role of

  2. CaBLIND regulates axillary meristem initiation and transition to flowering in pepper.

    PubMed

    Jeifetz, Dar; David-Schwartz, Rakefet; Borovsky, Yelena; Paran, Ilan

    2011-12-01

    Plant architecture is a major motif in plant diversity. The shape of the plant is regulated by genes that have been found to have similar or related functions in different species. However, changes in gene regulation or their recruitment to additional developmental pathways contribute to the wide range of plant patterns. Our aim was to unravel the genetic mechanisms governing the unique architecture of pepper (Capsicum annuum) and to determine whether these genetic factors have conserved functions in other plant species. We describe the pepper CaBLIND (CaBL) gene that is orthologous to the tomato (Solanum lycopersicum) BLIND (BL) and to the Arabidopsis thaliana REGULATOR OF AXILLARY MERISTEMS (RAX). We identified two allelic Cabl mutants that show dramatic reduction in axillary meristem initiation. In addition, Cabl exhibits late flowering and ectopic vegetative growth during the reproductive phase. Double-mutant and expression analyses suggest that CaBL functions independently of FASCICULATE, the pepper ortholog of SELF PRUNING in regulating sympodial growth, but is epistatic to FASCICULATE in controlling axillary meristem formation. Furthermore, CaBL operates independently of CaREVOLUTA and CaLATERAL SUPPRESSOR in regulating axillary branching. Our results provide evidence of CaBL's conserved function with BL and RAX genes in regulating axillary meristem initiation early in development. In addition, similar to BL but opposite to RAX, CaBL acts to promote the transition from vegetative to reproductive phase. However, in contrast to BL and RAX, CaBL is co-opted to play a role in suppressing vegetative growth during the reproductive phase in pepper. PMID:21773792

  3. Nature and regulation of pistil-expressed genes in tomato.

    PubMed

    Milligan, S B; Gasser, C S

    1995-07-01

    The specialized reproductive functions of angiosperm pistils are dependent in part upon the regulated activation of numerous genes expressed predominantly in this organ system. To better understand the nature of these pistil-predominant gene products we have analyzed seven cDNA clones isolated from tomato pistils through differential hybridization screening. Six of the seven cDNAs represent sequences previously undescribed in tomato, each having a unique pistil- and/or floral-predominant expression pattern. The putative protein products encoded by six of the cDNAs have been identified by their similarity to sequences in the database of previously sequenced genes, with a seventh sequence having no significant similarity with any previously reported sequence. Three of the putative proteins appear to be targeted to the endomembrane system and include an endo-beta-1,4-glucanase which is expressed exclusively in pistils at early stages of development, and proteins similar in sequence to gamma-thionin and miraculin which are expressed in immature pistils and stamens, and in either sepals or petals, respectively. Two other clones, similar in sequence to each other, were expressed primarily in immature pistils and stamens and encode distinct proteins with similarity to leucine aminopeptidases. An additional clone, which encodes a protein similar in sequence to the enzyme hyoscyamine 6-beta-hydroxylase and to other members of the family of Fe2+/ascorbate-dependent oxidases, was expressed at high levels in pistils, stamens and sepals, and at detectable levels in some vegetative organs. Together, these observations provide new insight into the nature and possible functional roles of genes expressed during reproductive development. PMID:7647301

  4. 7 CFR 980.212 - Import regulations; tomatoes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... amended; (ii) The marketing of fresh tomatoes from Florida covered by Marketing Order No. 966, as amended... direct competition with the marketing of fresh tomatoes produced in Florida covered by Marketing Order No... does not exceed 60 pounds may be imported without regard to the provisions of this section. (d)...

  5. Co-ordination of Flower Development Through Epigenetic Regulation in Two Model Species: Rice and Arabidopsis.

    PubMed

    Guo, Siyi; Sun, Bo; Looi, Liang-Sheng; Xu, Yifeng; Gan, Eng-Seng; Huang, Jiangbo; Ito, Toshiro

    2015-05-01

    Angiosperms produce flowers for reproduction. Flower development is a multistep developmental process, beginning with the initiation of the floral meristems, followed by floral meristem identity specification and maintenance, organ primordia initiation, floral organ identity specification, floral stem cell termination and finally floral organ maturation. During flower development, each of a large number of genes is expressed in a spatiotemporally regulated manner. Underlying these molecular and phenotypic events are various genetic and epigenetic pathways, consisting of diverse transcription factors, chromatin-remodeling factors and signaling molecules. Over the past 30 years, genetic, biochemical and genomic assays have revealed the underlying genetic frameworks that control flower development. Here, we will review the transcriptional regulation of flower development in two model species: Arabidopsis thaliana and rice (Oryza sativa). We focus on epigenetic regulation that functions to co-ordinate transcription pathways in flower development.

  6. Salicylic acid is involved in the regulation of starvation stress-induced flowering in Lemna paucicostata.

    PubMed

    Shimakawa, Aya; Shiraya, Takeshi; Ishizuka, Yuta; Wada, Kaede C; Mitsui, Toshiaki; Takeno, Kiyotoshi

    2012-07-01

    The short-day plant, Lemna paucicostata (synonym Lemna aequinoctialis), was induced to flower when cultured in tap water without any additional nutrition under non-inductive long-day conditions. Flowering occurred in all three of the tested strains, and strain 6746 was the most sensitive to the starvation stress conditions. For each strain, the stress-induced flowering response was weaker than that induced by short-day treatment, and the stress-induced flowering of strain 6746 was completely inhibited by aminooxyacetic acid and l-2-aminooxy-3-phenylpropionic acid, which are inhibitors of phenylalanine ammonia-lyase. Significantly higher amounts of endogenous salicylic acid (SA) were detected in the fronds that flowered under the poor-nutrition conditions than in the vegetative fronds cultured under nutrition conditions, and exogenously applied SA promoted the flowering response. The results indicate that endogenous SA plays a role in the regulation of stress-induced flowering.

  7. The Solanum lycopersicum Zinc Finger2 Cysteine-2/Histidine-2 Repressor-Like Transcription Factor Regulates Development and Tolerance to Salinity in Tomato and Arabidopsis1[W

    PubMed Central

    Hichri, Imène; Muhovski, Yordan; Žižková, Eva; Dobrev, Petre I.; Franco-Zorrilla, Jose Manuel; Solano, Roberto; Lopez-Vidriero, Irene; Motyka, Vaclav; Lutts, Stanley

    2014-01-01

    The zinc finger superfamily includes transcription factors that regulate multiple aspects of plant development and were recently shown to regulate abiotic stress tolerance. Cultivated tomato (Solanum lycopersicum Zinc Finger2 [SIZF2]) is a cysteine-2/histidine-2-type zinc finger transcription factor bearing an ERF-associated amphiphilic repression domain and binding to the ACGTCAGTG sequence containing two AGT core motifs. SlZF2 is ubiquitously expressed during plant development, and is rapidly induced by sodium chloride, drought, and potassium chloride treatments. Its ectopic expression in Arabidopsis (Arabidopsis thaliana) and tomato impaired development and influenced leaf and flower shape, while causing a general stress visible by anthocyanin and malonyldialdehyde accumulation. SlZF2 enhanced salt sensitivity in Arabidopsis, whereas SlZF2 delayed senescence and improved tomato salt tolerance, particularly by maintaining photosynthesis and increasing polyamine biosynthesis, in salt-treated hydroponic cultures (125 mm sodium chloride, 20 d). SlZF2 may be involved in abscisic acid (ABA) biosynthesis/signaling, because SlZF2 is rapidly induced by ABA treatment and 35S::SlZF2 tomatoes accumulate more ABA than wild-type plants. Transcriptome analysis of 35S::SlZF2 revealed that SlZF2 both increased and reduced expression of a comparable number of genes involved in various physiological processes such as photosynthesis, polyamine biosynthesis, and hormone (notably ABA) biosynthesis/signaling. Involvement of these different metabolic pathways in salt stress tolerance is discussed. PMID:24567191

  8. A KNOTTED1-LIKE HOMEOBOX Protein Regulates Abscission in Tomato by Modulating the Auxin Pathway1[OPEN

    PubMed Central

    Ma, Chao; Meir, Shimon; Xiao, Langtao; Tong, Jianhua; Liu, Qing; Reid, Michael S.; Jiang, Cai-Zhong

    2015-01-01

    A gene encoding a KNOTTED1-LIKE HOMEOBOX PROTEIN1 (KD1) is highly expressed in both leaf and flower abscission zones. Reducing the abundance of transcripts of this gene in tomato (Solanum lycopersicum) by both virus-induced gene silencing and stable transformation with a silencing construct driven by an abscission-specific promoter resulted in a striking retardation of pedicel and petiole abscission. In contrast, Petroselinum, a semidominant KD1 mutant, showed accelerated pedicel and petiole abscission. Complementary DNA microarray and quantitative reverse transcription-polymerase chain reaction analysis indicated that regulation of abscission by KD1 was associated with changed abundance of genes related to auxin transporters and signaling components. Measurement of auxin content and activity of a DR5::β-glucuronidase auxin reporter assay showed that changes in KD1 expression modulated the auxin concentration and response gradient in the abscission zone. PMID:25560879

  9. Effectiveness of imidacloprid (ProAgro 100 SL) in the control of glasshouse whitefly (Trialeurodes vaporariorum) and western flower thrips (Frankliniella occidentalis) on tomato under cover.

    PubMed

    Narkiewicz Jodki, J; Nawrocka, B; Swietosławski, J

    2004-01-01

    In 2002 a glasshouse experiments were carried out on the effectiveness of ProAgro 100 SL in the control of glasshouse whitefly and western flower thrips on tomato cv. Perkoz. Strict observation of the basic prophylactic rules such as introducing in to glasshouse only healthy seedlings, uninfected by whitefly and thrips as well as isolation of tomato plants, especially the seedlings from ornamental plants are important to the limit of the pest population. During the vegetation period the population of whitefly and thrips may be limited by the insecticide application. The glasshouse experiments on the performance of ProAgro 100 SL in the control of mentioned above pest species were carried out at the Research Institute of Vegetable Crops in Skierniewice. The ProAgro 100 SL was applied in the concentration of 0,1%. The standard treatment was Juventox 040 SL (acetamiprid) in the concentration of 0.05%. The obtained results allow to find that ProAgro 100 SL in the rates of 0.1% performed well in the limiting population of whitefly and western flower thrips on glasshouse tomato.

  10. Identification of the carotenoid modifying gene PALE YELLOW PETAL 1 as an essential factor in xanthophyll esterification and yellow flower pigmentation in tomato (Solanum lycopersicum).

    PubMed

    Ariizumi, Tohru; Kishimoto, Sanae; Kakami, Ryo; Maoka, Takashi; Hirakawa, Hideki; Suzuki, Yutaka; Ozeki, Yuko; Shirasawa, Kenta; Bernillon, Stephane; Okabe, Yoshihiro; Moing, Annick; Asamizu, Erika; Rothan, Christophe; Ohmiya, Akemi; Ezura, Hiroshi

    2014-08-01

    Xanthophylls, the pigments responsible for yellow to red coloration, are naturally occurring carotenoid compounds in many colored tissues of plants. These pigments are esterified within the chromoplast; however, little is known about the mechanisms underlying their accumulation in flower organs. In this study, we characterized two allelic tomato (Solanum lycopersicum L.) mutants, pale yellow petal (pyp) 1-1 and pyp1-2, that have reduced yellow color intensity in the petals and anthers due to loss-of-function mutations. Carotenoid analyses showed that the yellow flower organs of wild-type tomato contained high levels of xanthophylls that largely consisted of neoxanthin and violaxanthin esterified with myristic and/or palmitic acids. Functional disruption of PYP1 resulted in loss of xanthophyll esters, which was associated with a reduction in the total carotenoid content and disruption of normal chromoplast development. These findings suggest that xanthophyll esterification promotes the sequestration of carotenoids in the chromoplast and that accumulation of these esters is important for normal chromoplast development. Next-generation sequencing coupled with map-based positional cloning identified the mutant alleles responsible for the pyp1 phenotype. PYP1 most likely encodes a carotenoid modifying protein that plays a vital role in the production of xanthophyll esters in tomato anthers and petals. Our results provide insight into the molecular mechanism underlying the production of xanthophyll esters in higher plants, thereby shedding light on a longstanding mystery. PMID:24888879

  11. CRYPTIC PRECOCIOUS/MED12 is a Novel Flowering Regulator with Multiple Target Steps in Arabidopsis

    PubMed Central

    Imura, Yuri; Kobayashi, Yasushi; Yamamoto, Sumiko; Furutani, Masahiko; Tasaka, Masao; Abe, Mitsutomo; Araki, Takashi

    2012-01-01

    The proper timing of flowering is of crucial importance for reproductive success of plants. Regulation of flowering is orchestrated by inputs from both environmental and endogenous signals such as daylength, light quality, temperature and hormones, and key flowering regulators construct several parallel and interactive genetic pathways. This integrative regulatory network has been proposed to create robustness as well as plasticity of the regulation. Although knowledge of key genes and their regulation has been accumulated, there still remains much to learn about how they are organized into an integrative regulatory network. Here, we have analyzed the CRYPTIC PRECOCIOUS (CRP) gene for the Arabidopsis counterpart of the MED12 subunit of the Mediator. A novel dominant mutant, crp-1D, which causes up-regulation of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), FRUITFULL (FUL) and APETALA1 (AP1) expression in a FLOWERING LOCUS T (FT)-dependent manner, was identified in an enhancer screen of the early-flowering phenotype of 35S::FT. Genetic and molecular analysis of both crp-1D and crp loss-of-function alleles showed that MED12/CRP is required not only for proper regulation of SOC1, FUL and AP1, but also for up-regulation of FT, TWIN SISTER OF FT (TSF) and FD, and down-regulation of FLOWERING LOCUS C (FLC). These observations suggest that MED12/CRP is a novel flowering regulator with multiple regulatory target steps both upstream and downstream of the key flowering regulators including FT florigen. Our work, taken together with recent studies of other Mediator subunit genes, supports an emerging view that the Mediator plays multiple roles in the regulation of flowering. PMID:22247249

  12. LeMYC2 acts as a negative regulator of blue light mediated photomorphogenic growth, and promotes the growth of adult tomato plants

    PubMed Central

    2014-01-01

    Background Arabidopsis ZBF1/MYC2bHLH transcription factor is a repressor of photomorphogenesis, and acts as a point of cross talk in light, abscisic acid (ABA) and jasmonic acid (JA) signaling pathways. MYC2 also functions as a positive regulator of lateral root development and flowering time under long day conditions. However, the function of MYC2 in growth and development remains unknown in crop plants. Results Here, we report the functional analyses of LeMYC2 in tomato (Lycopersicon esculentum). The amino acid sequence of LeMYC2 showed extensive homology with Arabidopsis MYC2, containing the conserved bHLH domain. To study the function of LeMYC2 in tomato, overexpression and RNA interference (RNAi) LeMYC2 tomato transgenic plants were generated. Examination of seedling morphology, physiological responses and light regulated gene expression has revealed that LeMYC2 works as a negative regulator of blue light mediated photomorphogenesis. Furthermore, LeMYC2 specifically binds to the G-box of LeRBCS-3A promoter. Overexpression of LeMYC2 has led to increased root length with more number of lateral roots. The tomato plants overexpressing LeMYC2 have reduced internode distance with more branches, and display the opposite morphology to RNAi transgenic lines. Furthermore, this study shows that LeMYC2 promotes ABA and JA responsiveness. Conclusions Collectively, this study highlights that working in light, ABA and JA signaling pathways LeMYC2 works as an important regulator for growth and development in tomato plants. PMID:24483714

  13. Potential new insecticides for the control of western flower thrips (Thysanoptera: Thripidae) on sweet pepper, tomato, and lettuce.

    PubMed

    Broughton, S; Herron, G A

    2009-04-01

    New pesticides are required to maintain effective resistance management strategies for control of western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). We tested the efficacy of acetamiprid, and thiamethoxam, two neonicotinoids that represent a newer class of insecticides for the control of thrips. We also tested chlorfenapyr, a pyrrol compound, and a lower than registered rate of the biopesticide spinosad. Laboratory bioassays were used to predict the relative efficacy of insecticides against F. occidentalis and to forecast likely field rates. Two doses within the calculated LC99.99 range were used to predict field rates and trial rates of 0.5 g and 1.0 active ingredient (AI)/liter acetamiprid, 0.025 and 0.05 g (AI)/liter chlorfenapyr, 0.3 and 0.6 g (AI)/liter thiamethoxam, and 0.01 g (AI)/ liter spinosad were tested in the greenhouse against pepper, lettuce, and tomato. With the exception of acetamiprid, field trial doses predicted from laboratory bioassay translated to effective field efficacy. All products controlled F. occidentalis at the rates trialed and so have potential to augment current chemical controls. Increasing mortality correlated with increasing acetamiprid concentration in a greenhouse lettuce trial, suggesting that the higher trial rate (1.0 g [AI]/liter) may be required in some lettuce crops. The lower than registered (0.01 g [AI]/liter) rate of spinosad also significantly reduced F. occidentalis numbers and is a viable control option that may be useful in specific integrated pest management programs. The implications of introducing neonicotinoids into existing insecticide resistance management strategies for F. occidentalis are discussed. PMID:19449645

  14. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development.

    PubMed

    Kumar, Rahul; Tyagi, Akhilesh K; Sharma, Arun K

    2011-03-01

    Auxin response transcription factors have been widely implicated in auxin-mediated responses during various developmental processes ranging from root and shoot development to flower and fruit development in plants. In order to use them for improvement of agronomic traits related to fruit, we need to have better understanding of their role during fruit development. In this study, 17 SlARF genes have been identified from tomato (Solanum lycopersicum), using various publically available tomato EST databases. Phylogenetic analysis of the 23 AtARF and 17 SlARF proteins results in formation of three major classes and a total of 14 sister pairs, including seven SlARF-AtARF, four SlARF-SlARF and three AtARF-AtARF sister pairs, providing insights into various orthologous relationships between AtARFs and SlARFs. Further, search for orthologs of these SlARFs resulted in identification of nine, ten, four and three ARF genes from potato, tobacco, N. benthemiana and pepper, respectively. A phylogenetic analysis of these genes, along with their orthologs from Solanaceae species, suggests the presence of a common set of the ARF genes in this family. Comparison of the expression of these SlARF genes in wild type and rin mutant provides an insight into their role during different stages of flower and fruit development. This study suggests that ARF genes may play diverse role during flower and fruit development. Comprehensive data generated here will provide a platform for identification of ARF genes and elucidation of their function during reproductive development stages in Solanaceae in general and fruit development in tomato, in particular.

  15. Cloning and characterisation of two CTR1-like genes in Cucurbita pepo: regulation of their expression during male and female flower development.

    PubMed

    Manzano, Susana; Martínez, Cecilia; Gómez, Pedro; Garrido, Dolores; Jamilena, Manuel

    2010-12-01

    Ethylene is an essential regulator of flower development in Cucurbita pepo, controlling the sexual expression, and the differentiation and maturation of floral organs. To study the action mechanism of ethylene during the male and female flower development, we have identified two CTR1 homologues from C. pepo, CpCTR1 and CpCTR2, and analysed their expressions during female and male flower development and in response to external treatments with ethylene. CpCTR1 and CpCTR2 share a high homology with plant CTR1-like kinases, but differ from other related kinases such as the Arabidopsis EDR1 and the tomato LeCTR2. The C-terminal ends of both CpCTR1 and CpCTR2 have all the conserved motifs of Ser/Thr kinase domains, including the ATP-binding signature and the protein kinase active site consensus sequence, which suggests that CpCTR1 and CpCTR2 could have the same function as CTR1 in ethylene signalling. The transcripts of both genes were detected in different organs of the plant, including roots, leaves and shoots, but were mostly accumulated in mature flowers. During the development of male and female flowers, CpCTR1 and CpCTR2 expressions were concomitant with ethylene production, which indicates that both genes could be upregulated by ethylene, at least in flowers. Moreover, external treatments with ethylene, although did not alter the expression of these two genes in seedlings and leaves, were able to upregulate their expression in flowers. In the earlier stages of flower development, when ethylene production is very low, the expression of CpCTR1 and CpCTR2 is higher in male floral organs, which agrees with the role of these genes as negative regulators of ethylene signalling, and explain the lower ethylene sensitivity of male flowers in comparison with female flowers. The function of the upregulation of these two genes in later stages of female flower development, when the production of ethylene is also increased, is discussed.

  16. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variation in flowering time was essential during widespread crop domestication and optimal timing of reproduction remains critical to modern agriculture. Ma1, the major repressor of flowering in sorghum in long days, was identified as the pseudo-response regulator protein PRR37. Three prr37 allele...

  17. DAY NEUTRAL FLOWERING does not act through GIGANTEA and FKF1 to regulate CONSTANS expression and flowering time.

    PubMed

    Morris, Karl; Jackson, Stephen P

    2010-09-01

    The regulation of CONSTANS (CO) gene expression and protein levels is the critical factor in determining a plant's response to photoperiod, flowering is induced when high levels of CO protein are present in the light. The regulation of CO transcription is mediated in part by GIGANTEA (GI), FKF1 and the CYCLING DOF FACTORS (CDFs) and factors affecting the levels of these proteins will also affect CO expression. The DAY NEUTRAL FLOWERING (DNF) protein is an E3 ligase involved in repressing CO expression in the early part of the day. In this article we present evidence to support the argument that DNF is not acting through the GI/FKF1/CDF regulatory mechanism to repress CO expression, but that it acts on another transcriptional activator of CO.

  18. Transcriptional programs regulated by both LEAFY and APETALA1 at the time of flower formation.

    PubMed

    Winter, Cara M; Yamaguchi, Nobutoshi; Wu, Miin-Feng; Wagner, Doris

    2015-09-01

    Two key regulators of the switch to flower formation and of flower patterning in Arabidopsis are the plant-specific helix-turn-helix transcription factor LEAFY (LFY) and the MADS box transcription factor APETALA1 (AP1). The interactions between these two transcriptional regulators are complex. AP1 is both a direct target of LFY and can act in parallel with LFY. Available genetic and molecular evidence suggests that LFY and AP1 together orchestrate the switch to flower formation and early events during flower morphogenesis by altering transcriptional programs. However, very little is known about target genes regulated by both transcription factors. Here, we performed a meta-analysis of public datasets to identify genes that are likely to be regulated by both LFY and AP1. Our analyses uncovered known and novel direct LFY and AP1 targets with a role in the control of onset of flower formation. It also identified additional families of proteins and regulatory pathways that may be under transcriptional control by both transcription factors. In particular, several of these genes are linked to response to hormones, to transport and to development. Finally, we show that the gibberellin catabolism enzyme ELA1, which was recently shown to be important for the timing of the switch to flower formation, is positively feedback-regulated by AP1. Our study contributes to the elucidation of the regulatory network that leads to formation of a vital plant organ system, the flower.

  19. DELLA proteins physically interact with CONSTANS to regulate flowering under long days in Arabidopsis.

    PubMed

    Xu, Feng; Li, Ting; Xu, Peng-Bo; Li, Ling; Du, Sha-Sha; Lian, Hong-Li; Yang, Hong-Quan

    2016-02-01

    Proper timing of flowering is essential for reproduction of plants. Although it is well known that both light and gibberellin (GA) signaling play critical roles in promoting flowering in Arabidopsis thaliana, whether and how they are integrated to regulate flowering remain largely unknown. Here, we show through biochemical studies that DELLA proteins physically interact with CONSTANS (CO). Furthermore, the interaction of CO with NF-YB2 is inhibited by the DELLA protein, RGA. Our findings suggest that regulation of flowering by GA signaling in leaves under long days is mediated, at least in part, through repression of DELLA proteins on CO, providing a molecular link between DELLA proteins, key components in GA signaling pathway, and CO, a critical flowering activator in photoperiod signaling pathway.

  20. Genetic analysis of reproductive development in tomato.

    PubMed

    Lozano, Rafael; Giménez, Estela; Cara, Beatriz; Capel, Juan; Angosto, Trinidad

    2009-01-01

    Besides being an important commercial crop, tomato (Solanum lycopersicum L.) constitutes a model species for the study of plant developmental processes. Current research tends to combine classic disciplines such as physiology and genetics with modern approaches coming from molecular biology and genomics with a view to elucidating the biological mechanisms underlying plant architecture, floral transition and development of flowers and fruits. Comparative and functional analyses of tomato regulatory genes such as LATERAL SUPPRESSOR (LS), SELF PRUNING (SP), SINGLE FLOWER TRUSS (SFT) and FALSIFLORA (FA) have revealed mechanisms involved in shoot development and flowering time which are conserved among Arabidopsis, tomato and other plant species. Furthermore, several regulatory genes encoding transcription factors have been characterized as responsible for singular features of vegetative and reproductive development of tomato. Thus, the sympodial growth habit seems to require a specific control of the developmental fate followed by shoot meristems. In this process, novel genetic and molecular interactions involving SP, SFT and FA genes would be essential. Also this latter, but mainly ANANTHA (AN) and COMPOUND INFLORESCENCE (S) have recently been found to regulate the inflorescence architecture of the tomato. Concerning fruit development, genetic and molecular analyses of new genes such as fw2.2, FASCIATED, OVATE and SUN have proved their contribution to the domestication process and most importantly, their function as key regulators of fruit size and shape variation. Tomato ripening is also being elucidated thanks to the characterization of regulatory genes such as RIPENING INHIBITOR (RIN), NON-RIPENING (NOR), TDR4 and COLORLESS NON-RIPENING (CNR), which have been found to control early stages of fruit development and maturation. At the same time, much research is dedicated to isolating the targets of the ripening regulators, as well as the key genes promoting the

  1. Members of the tomato FRUITFULL MADS-box family regulate style abscission and fruit ripening

    PubMed Central

    Wang, Shufen; Lu, Gang; Hou, Zheng; Luo, Zhidan; Wang, Taotao; Li, Hanxia; Zhang, Junhong; Ye, Zhibiao

    2014-01-01

    The tomato (Solanum lycopersicum) protein MADS-RIN plays important roles in fruit ripening. In this study, the functions of two homologous tomato proteins, FUL1 and FUL2, which contain conserved MIKC domains that typify plant MADS-box proteins, and which interact with MADS-RIN, were analysed. Transgenic functional analysis showed that FUL1 and FUL2 function redundantly in fruit ripening regulation, but exhibit distinct roles in the regulation of cellular differentiation and expansion. Over-expression of FUL2 in tomato resulted in a pointed tip at the blossom end of the fruit, together with a thinner pericarp, reduced stem diameter, and smaller leaves, but no obvious phenotypes resulted from FUL1 over-expression. Dual suppression of FUL1 and FUL2 substantially inhibited fruit ripening by blocking ethylene biosynthesis and decreasing carotenoid accumulation. In addition, the levels of transcript corresponding to ACC SYNTHASE2 (ACS2), which plays a key role in ethylene biosynthesis, were significantly decreased in the FUL1/FUL2 knock-down tomato fruits. Overall, our results suggest that FUL proteins can regulate tomato fruit ripening through fine-tuning ethylene biosynthesis and the expression of ripening-related genes. PMID:24723399

  2. Members of the tomato FRUITFULL MADS-box family regulate style abscission and fruit ripening.

    PubMed

    Wang, Shufen; Lu, Gang; Hou, Zheng; Luo, Zhidan; Wang, Taotao; Li, Hanxia; Zhang, Junhong; Ye, Zhibiao

    2014-07-01

    The tomato (Solanum lycopersicum) protein MADS-RIN plays important roles in fruit ripening. In this study, the functions of two homologous tomato proteins, FUL1 and FUL2, which contain conserved MIKC domains that typify plant MADS-box proteins, and which interact with MADS-RIN, were analysed. Transgenic functional analysis showed that FUL1 and FUL2 function redundantly in fruit ripening regulation, but exhibit distinct roles in the regulation of cellular differentiation and expansion. Over-expression of FUL2 in tomato resulted in a pointed tip at the blossom end of the fruit, together with a thinner pericarp, reduced stem diameter, and smaller leaves, but no obvious phenotypes resulted from FUL1 over-expression. Dual suppression of FUL1 and FUL2 substantially inhibited fruit ripening by blocking ethylene biosynthesis and decreasing carotenoid accumulation. In addition, the levels of transcript corresponding to ACC SYNTHASE2 (ACS2), which plays a key role in ethylene biosynthesis, were significantly decreased in the FUL1/FUL2 knock-down tomato fruits. Overall, our results suggest that FUL proteins can regulate tomato fruit ripening through fine-tuning ethylene biosynthesis and the expression of ripening-related genes.

  3. Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato.

    PubMed

    Liu, Ning; Wu, Shan; Van Houten, Jason; Wang, Ying; Ding, Biao; Fei, Zhangjun; Clarke, Thomas H; Reed, Jason W; van der Knaap, Esther

    2014-06-01

    Auxin regulates the expression of diverse genes that affect plant growth and development. This regulation requires AUXIN RESPONSE FACTORS (ARFs) that bind to the promoter regions of these genes. ARF6 and ARF8 in Arabidopsis thaliana are required to promote inflorescence stem elongation and late stages of petal, stamen, and gynoecium development. All seed plants studied thus far have ARF6 and ARF8 orthologues as well as the microRNA miR167, which targets ARF6 and ARF8. Whether these genes have broadly conserved roles in flower development is not known. To address this question, the effects of down-regulation of ARF6 and ARF8 were investigated through transgenic expression of Arabidopsis MIR167a in tomato, which diverged from Arabidopsis before the radiation of dicotyledonous plants approximately 90-112 million years ago. The transgenic tomato plants overexpressing MIR167a exhibited reductions in leaf size and internode length as well as shortened petals, stamens, and styles. More significantly, the transgenic plants were female-sterile as a result of failure of wild-type pollen to germinate on the stigma surface and/or to grow through the style. RNA-Seq analysis identified many genes with significantly altered expression patterns, including those encoding products with functions in 'transcription regulation', 'cell wall' and 'lipid metabolism' categories. Putative orthologues of a subset of these genes were also differentially expressed in Arabidopsis arf6 arf8 mutant flowers. These results thus suggest that ARF6 and ARF8 have conserved roles in controlling growth and development of vegetative and flower organs in dicots.

  4. Gibberellins regulate the transcription of the continuous flowering regulator, RoKSN, a rose TFL1 homologue

    PubMed Central

    Foucher, Fabrice

    2012-01-01

    The role of gibberellins (GAs) during floral induction has been widely studied in the annual plant Arabidopsis thaliana. Less is known about this control in perennials. It is thought that GA is a major regulator of flowering in rose. In spring, low GA content may be necessary for floral initiation. GA inhibited flowering in once-flowering roses, whereas GA did not block blooming in continuous-flowering roses. Recently, RoKSN, a homologue of TFL1, was shown to control continuous flowering. The loss of RoKSN function led to continuous flowering behaviour. The objective of this study was to understand the molecular control of flowering by GA and the involvement of RoKSN in this inhibition. In once-flowering rose, the exogenous application of GA3 in spring inhibited floral initiation. Application of GA3 during a short period of 1 month, corresponding to the floral transition, was sufficient to inhibit flowering. At the molecular level, RoKSN transcripts were accumulated after GA3 treatment. In spring, this accumulation is correlated with floral inhibition. Other floral genes such as RoFT, RoSOC1, and RoAP1 were repressed in a RoKSN-dependent pathway, whereas RoLFY and RoFD repression was RoKSN independent. The RoKSN promoter contained GA-responsive cis-elements, whose deletion suppressed the response to GA in a heterologous system. In summer, once-flowering roses did not flower even after exogenous application of a GA synthesis inhibitor that failed to repress RoKSN. A model is presented for the GA inhibition of flowering in spring mediated by the induction of RoKSN. In summer, factors other than GA may control RoKSN. PMID:23175671

  5. Recent advances on the development and regulation of flower color in ornamental plants

    PubMed Central

    Zhao, Daqiu; Tao, Jun

    2015-01-01

    Flower color is one of the most important features of ornamental plants. Its development and regulation are influenced by many internal and external factors. Therefore, understanding the mechanism of color development and its regulation provides an important theoretical basis and premise for the cultivation and improvement of new color varieties of ornamental plants. This paper outlines the functions of petal tissue structure, as well as the distribution and type of pigments, especially anthocyanins, in color development. The progress of research on flower color regulation with a focus on physical factors, chemical factors, and genetic engineering is introduced. The shortcomings of flower color research and the potential directions for future development are explored to provide a broad background for flower color improvements in ornamental plants. PMID:25964787

  6. QTL analysis for sugar-regulated leaf senescence supports flowering-dependent and -independent senescence pathways.

    PubMed

    Wingler, Astrid; Purdy, Sarah Jane; Edwards, Sally-Anne; Chardon, Fabien; Masclaux-Daubresse, Céline

    2010-01-01

    *The aim of this work was to determine the genetic basis of sugar-regulated senescence and to explore the relationship with other traits, including flowering and nitrogen-use efficiency. *Quantitative trait loci (QTLs) for senescence were mapped in the Arabidopsis Bay-0 x Shahdara recombinant-inbred line (RIL) population after growth on glucose-containing medium, which accelerates senescence. The extent of whole-rosette senescence was determined by imaging the maximum quantum yield of photosystem II (F(v)/F(m)). *A major QTL on the top of chromosome 4 colocalized with FRI, a major determinant of flowering. This QTL interacted epistatically with a QTL on chromosome 5, where the floral repressor FLC localizes. Vernalization accelerated senescence in late-flowering lines with functional FRI and FLC alleles. Comparison with previous results using the Bay-0 x Shahdara population showed that rapid rosette senescence on glucose-containing medium was correlated with early flowering and high sugar content in compost-grown plants. In addition, correlation was found between the expression of flowering and senescence-associated genes in Arabidopsis accessions. However, an additional QTL on chromosome 3 was not linked to flowering, but to nitrogen-use efficiency. *The results show that whole-rosette senescence is genetically linked to the vernalization-dependent control of flowering, but is also controlled by flowering-independent pathways.

  7. Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato

    PubMed Central

    Liu, Ning; Clarke, Thomas H.; van der Knaap, Esther

    2014-01-01

    Auxin regulates the expression of diverse genes that affect plant growth and development. This regulation requires AUXIN RESPONSE FACTORS (ARFs) that bind to the promoter regions of these genes. ARF6 and ARF8 in Arabidopsis thaliana are required to promote inflorescence stem elongation and late stages of petal, stamen, and gynoecium development. All seed plants studied thus far have ARF6 and ARF8 orthologues as well as the microRNA miR167, which targets ARF6 and ARF8. Whether these genes have broadly conserved roles in flower development is not known. To address this question, the effects of down-regulation of ARF6 and ARF8 were investigated through transgenic expression of Arabidopsis MIR167a in tomato, which diverged from Arabidopsis before the radiation of dicotyledonous plants approximately 90–112 million years ago. The transgenic tomato plants overexpressing MIR167a exhibited reductions in leaf size and internode length as well as shortened petals, stamens, and styles. More significantly, the transgenic plants were female-sterile as a result of failure of wild-type pollen to germinate on the stigma surface and/or to grow through the style. RNA-Seq analysis identified many genes with significantly altered expression patterns, including those encoding products with functions in ‘transcription regulation’, ‘cell wall’ and ‘lipid metabolism’ categories. Putative orthologues of a subset of these genes were also differentially expressed in Arabidopsis arf6 arf8 mutant flowers. These results thus suggest that ARF6 and ARF8 have conserved roles in controlling growth and development of vegetative and flower organs in dicots. PMID:24723401

  8. 76 FR 71271 - Common Crop Insurance Regulations; Fresh Market Tomato (Dollar Plan) Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-17

    ... information is contained in the Common Crop Insurance Policy Basic Provisions (Basic Provisions). Therefore...; ] DEPARTMENT OF AGRICULTURE Federal Crop Insurance Corporation 7 CFR Part 457 RIN 0563-AC32 Common Crop... amend the Common Crop Insurance Regulations, Fresh Market Tomato (Dollar Plan) Crop Provisions....

  9. Nonfunctional alleles of long‐day suppressor genes independently regulate flowering time

    PubMed Central

    Zheng, Xiao‐Ming; Feng, Li; Wang, Junrui; Qiao, Weihua; Zhang, Lifang; Cheng, Yunlian

    2015-01-01

    Abstract Due to the remarkable adaptability to various environments, rice varieties with diverse flowering times have been domesticated or improved from Oryza rufipogon. Detailed knowledge of the genetic factors controlling flowering time will facilitate understanding the adaptation mechanism in cultivated rice and enable breeders to design appropriate genotypes for distinct preferences. In this study, four genes (Hd1, DTH8, Ghd7 and OsPRR37) in a rice long‐day suppression pathway were collected and sequenced in 154, 74, 69 and 62 varieties of cultivated rice (Oryza sativa) respectively. Under long‐day conditions, varieties with nonfunctional alleles flowered significantly earlier than those with functional alleles. However, the four genes have different genetic effects in the regulation of flowering time: Hd1 and OsPRR37 are major genes that generally regulate rice flowering time for all varieties, while DTH8 and Ghd7 only regulate regional rice varieties. Geographic analysis and network studies suggested that the nonfunctional alleles of these suppression loci with regional adaptability were derived recently and independently. Alleles with regional adaptability should be taken into consideration for genetic improvement. The rich genetic variations in these four genes, which adapt rice to different environments, provide the flexibility needed for breeding rice varieties with diverse flowering times. PMID:26220807

  10. Circadian Regulation of the PhCCD1 Carotenoid Cleavage Dioxygenase Controls Emission of β-Ionone, a Fragrance Volatile of Petunia Flowers1

    PubMed Central

    Simkin, Andrew J.; Underwood, Beverly A.; Auldridge, Michele; Loucas, Holly M.; Shibuya, Kenichi; Schmelz, Eric; Clark, David G.; Klee, Harry J.

    2004-01-01

    Carotenoids are thought to be the precursors of terpenoid volatile compounds that contribute to flavor and aroma. One such volatile, β-ionone, is important to fragrance in many flowers, including petunia (Petunia hybrida). However, little is known about the factors regulating its synthesis in vivo. The petunia genome contains a gene encoding a 9,10(9′,10′) carotenoid cleavage dioxygenase, PhCCD1. The PhCCD1 is 94% identical to LeCCD1A, an enzyme responsible for formation of β-ionone in tomato (Lycopersicon esculentum; Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ [2004] Plant J [in press]). Reduction of PhCCD1 transcript levels in transgenic plants led to a 58% to 76% decrease in β-ionone synthesis in the corollas of selected petunia lines, indicating a significant role for this enzyme in volatile synthesis. Quantitative reverse transcription-PCR analysis revealed that PhCCD1 is highly expressed in corollas and leaves, where it constitutes approximately 0.04% and 0.02% of total RNA, respectively. PhCCD1 is light-inducible and exhibits a circadian rhythm in both leaves and flowers. β-Ionone emission by flowers occurred principally during daylight hours, paralleling PhCCD1 expression in corollas. The results indicate that PhCCD1 activity and β-ionone emission are likely regulated at the level of transcript. PMID:15516502

  11. Comprehensive RNA-Seq Analysis on the Regulation of Tomato Ripening by Exogenous Auxin

    PubMed Central

    Li, Li; Mao, Linchun; Luo, Zisheng; Khan, Zia Ullah; Ying, Tiejin

    2016-01-01

    Auxin has been shown to modulate the fruit ripening process. However, the molecular mechanisms underlying auxin regulation of fruit ripening are still not clear. Illumina RNA sequencing was performed on mature green cherry tomato fruit 1 and 7 days after auxin treatment, with untreated fruit as a control. The results showed that exogenous auxin maintained system 1 ethylene synthesis and delayed the onset of system 2 ethylene synthesis and the ripening process. At the molecular level, genes associated with stress resistance were significantly up-regulated, but genes related to carotenoid metabolism, cell degradation and energy metabolism were strongly down-regulated by exogenous auxin. Furthermore, genes encoding DNA demethylases were inhibited by auxin, whereas genes encoding cytosine-5 DNA methyltransferases were induced, which contributed to the maintenance of high methylation levels in the nucleus and thus inhibited the ripening process. Additionally, exogenous auxin altered the expression patterns of ethylene and auxin signaling-related genes that were induced or repressed in the normal ripening process, suggesting significant crosstalk between these two hormones during tomato ripening. The present work is the first comprehensive transcriptome analysis of auxin-treated tomato fruit during ripening. Our results provide comprehensive insights into the effects of auxin on the tomato ripening process and the mechanism of crosstalk between auxin and ethylene. PMID:27228127

  12. Comprehensive RNA-Seq Analysis on the Regulation of Tomato Ripening by Exogenous Auxin.

    PubMed

    Li, Jiayin; Tao, Xiaoya; Li, Li; Mao, Linchun; Luo, Zisheng; Khan, Zia Ullah; Ying, Tiejin

    2016-01-01

    Auxin has been shown to modulate the fruit ripening process. However, the molecular mechanisms underlying auxin regulation of fruit ripening are still not clear. Illumina RNA sequencing was performed on mature green cherry tomato fruit 1 and 7 days after auxin treatment, with untreated fruit as a control. The results showed that exogenous auxin maintained system 1 ethylene synthesis and delayed the onset of system 2 ethylene synthesis and the ripening process. At the molecular level, genes associated with stress resistance were significantly up-regulated, but genes related to carotenoid metabolism, cell degradation and energy metabolism were strongly down-regulated by exogenous auxin. Furthermore, genes encoding DNA demethylases were inhibited by auxin, whereas genes encoding cytosine-5 DNA methyltransferases were induced, which contributed to the maintenance of high methylation levels in the nucleus and thus inhibited the ripening process. Additionally, exogenous auxin altered the expression patterns of ethylene and auxin signaling-related genes that were induced or repressed in the normal ripening process, suggesting significant crosstalk between these two hormones during tomato ripening. The present work is the first comprehensive transcriptome analysis of auxin-treated tomato fruit during ripening. Our results provide comprehensive insights into the effects of auxin on the tomato ripening process and the mechanism of crosstalk between auxin and ethylene. PMID:27228127

  13. The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation.

    PubMed

    Huang, Jian-Zhi; Lin, Chih-Peng; Cheng, Ting-Chi; Huang, Ya-Wen; Tsai, Yi-Jung; Cheng, Shu-Yun; Chen, Yi-Wen; Lee, Chueh-Pai; Chung, Wan-Chia; Chang, Bill Chia-Han; Chin, Shih-Wen; Lee, Chen-Yu; Chen, Fure-Chyi

    2016-01-01

    The Phalaenopsis orchid is an important potted flower of high economic value around the world. We report the 3.1 Gb draft genome assembly of an important winter flowering Phalaenopsis 'KHM190' cultivar. We generated 89.5 Gb RNA-seq and 113 million sRNA-seq reads to use these data to identify 41,153 protein-coding genes and 188 miRNA families. We also generated a draft genome for Phalaenopsis pulcherrima 'B8802,' a summer flowering species, via resequencing. Comparison of genome data between the two Phalaenopsis cultivars allowed the identification of 691,532 single-nucleotide polymorphisms. In this study, we reveal that the key role of PhAGL6b in the regulation of labellum organ development involves alternative splicing in the big lip mutant. Petal or sepal overexpressing PhAGL6b leads to the conversion into a lip-like structure. We also discovered that the gibberellin pathway that regulates the expression of flowering time genes during the reproductive phase change is induced by cool temperature. Our work thus depicted a valuable resource for the flowering control, flower architecture development, and breeding of the Phalaenopsis orchids. PMID:27190718

  14. The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation

    PubMed Central

    Cheng, Ting-Chi; Huang, Ya-Wen; Tsai, Yi-Jung; Chen, Yi-Wen; Lee, Chueh-Pai; Chung, Wan-Chia

    2016-01-01

    The Phalaenopsis orchid is an important potted flower of high economic value around the world. We report the 3.1 Gb draft genome assembly of an important winter flowering Phalaenopsis ‘KHM190’ cultivar. We generated 89.5 Gb RNA-seq and 113 million sRNA-seq reads to use these data to identify 41,153 protein-coding genes and 188 miRNA families. We also generated a draft genome for Phalaenopsis pulcherrima ‘B8802,’ a summer flowering species, via resequencing. Comparison of genome data between the two Phalaenopsis cultivars allowed the identification of 691,532 single-nucleotide polymorphisms. In this study, we reveal that the key role of PhAGL6b in the regulation of labellum organ development involves alternative splicing in the big lip mutant. Petal or sepal overexpressing PhAGL6b leads to the conversion into a lip-like structure. We also discovered that the gibberellin pathway that regulates the expression of flowering time genes during the reproductive phase change is induced by cool temperature. Our work thus depicted a valuable resource for the flowering control, flower architecture development, and breeding of the Phalaenopsis orchids. PMID:27190718

  15. Flowering Time-Regulated Genes in Maize Include the Transcription Factor ZmMADS11[OPEN

    PubMed Central

    Alter, Philipp; Bircheneder, Susanne; Schlüter, Urte; Gahrtz, Manfred

    2016-01-01

    Flowering time (FTi) control is well examined in the long-day plant Arabidopsis (Arabidopsis thaliana), and increasing knowledge is available for the short-day plant rice (Oryza sativa). In contrast, little is known in the day-neutral and agronomically important crop plant maize (Zea mays). To learn more about FTi and to identify novel regulators in this species, we first compared the time points of floral transition of almost 30 maize inbred lines and show that tropical lines exhibit a delay in flowering transition of more than 3 weeks under long-day conditions compared with European flint lines adapted to temperate climate zones. We further analyzed the leaf transcriptomes of four lines that exhibit strong differences in flowering transition to identify new key players of the flowering control network in maize. We found strong differences among regulated genes between these lines and thus assume that the regulation of FTi is very complex in maize. Especially genes encoding MADS box transcriptional regulators are up-regulated in leaves during the meristem transition. ZmMADS1 was selected for functional studies. We demonstrate that it represents a functional ortholog of the central FTi integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) of Arabidopsis. RNA interference-mediated down-regulation of ZmMADS1 resulted in a delay of FTi in maize, while strong overexpression caused an early-flowering phenotype, indicating its role as a flowering activator. Taken together, we report that ZmMADS1 represents a positive FTi regulator that shares an evolutionarily conserved function with SOC1 and may now serve as an ideal stating point to study the integration and variation of FTi pathways also in maize. PMID:27457125

  16. Flowering Time-Regulated Genes in Maize Include the Transcription Factor ZmMADS1.

    PubMed

    Alter, Philipp; Bircheneder, Susanne; Zhou, Liang-Zi; Schlüter, Urte; Gahrtz, Manfred; Sonnewald, Uwe; Dresselhaus, Thomas

    2016-09-01

    Flowering time (FTi) control is well examined in the long-day plant Arabidopsis (Arabidopsis thaliana), and increasing knowledge is available for the short-day plant rice (Oryza sativa). In contrast, little is known in the day-neutral and agronomically important crop plant maize (Zea mays). To learn more about FTi and to identify novel regulators in this species, we first compared the time points of floral transition of almost 30 maize inbred lines and show that tropical lines exhibit a delay in flowering transition of more than 3 weeks under long-day conditions compared with European flint lines adapted to temperate climate zones. We further analyzed the leaf transcriptomes of four lines that exhibit strong differences in flowering transition to identify new key players of the flowering control network in maize. We found strong differences among regulated genes between these lines and thus assume that the regulation of FTi is very complex in maize. Especially genes encoding MADS box transcriptional regulators are up-regulated in leaves during the meristem transition. ZmMADS1 was selected for functional studies. We demonstrate that it represents a functional ortholog of the central FTi integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) of Arabidopsis. RNA interference-mediated down-regulation of ZmMADS1 resulted in a delay of FTi in maize, while strong overexpression caused an early-flowering phenotype, indicating its role as a flowering activator. Taken together, we report that ZmMADS1 represents a positive FTi regulator that shares an evolutionarily conserved function with SOC1 and may now serve as an ideal stating point to study the integration and variation of FTi pathways also in maize. PMID:27457125

  17. WEREWOLF, a regulator of root hair pattern formation, controls flowering time through the regulation of FT mRNA stability.

    PubMed

    Seo, Eunjoo; Yu, Jihyeon; Ryu, Kook Hui; Lee, Myeong Min; Lee, Ilha

    2011-08-01

    A key floral activator, FT, integrates stimuli from long-day, vernalization, and autonomous pathways and triggers flowering by directly regulating floral meristem identity genes in Arabidopsis (Arabidopsis thaliana). Since a small amount of FT transcript is sufficient for flowering, the FT level is strictly regulated by diverse genes. In this study, we show that WEREWOLF (WER), a MYB transcription factor regulating root hair pattern, is another regulator of FT. The mutant wer flowers late in long days but normal in short days and shows a weak sensitivity to vernalization, which indicates that WER controls flowering time through the photoperiod pathway. The expression and double mutant analyses showed that WER modulates FT transcript level independent of CONSTANS and FLOWERING LOCUS C. The histological analysis of WER shows that it is expressed in the epidermis of leaves, where FT is not expressed. Consistently, WER regulates not the transcription but the stability of FT mRNA. Our results reveal a novel regulatory mechanism of FT that is non cell autonomous.

  18. Regulation of FLOWERING LOCUS T by a MicroRNA in Brachypodium distachyon[C][W

    PubMed Central

    Wu, Liang; Liu, Dongfeng; Wu, Jiajie; Zhang, Rongzhi; Qin, Zhengrui; Liu, Danmei; Li, Aili; Fu, Daolin; Zhai, Wenxue; Mao, Long

    2013-01-01

    The highly conserved florigen gene FLOWERING LOCUS T (FT) functions at the core of the flowering pathways. Extensive studies have examined the transcriptional regulation of FT; however, other layers of FT regulation remain unclear. Here, we identified miR5200 a Pooideae-specific microRNA that is expressed in leaves and targets Brachypodium distachyon FT orthologs for mRNA cleavage. miR5200 was abundantly expressed in plants grown under short-day (SD) conditions but was dramatically repressed in plants transferred to long-day (LD) conditions. We also found that the epigenetic chromatin status, specifically the levels of histone methylation marks, at miR5200 precursor loci changed in response to daylength. Moreover, artificial interruption of miR5200 activity by target mimicry in B. distachyon altered flowering time in SD but not in LD conditions, suggesting that miR5200 functions in photoperiod-mediated flowering time regulation. Together, these findings illustrate a posttranscriptional regulation mechanism of FT and provide insights into understanding of the multiple concerted pathways for flowering time control in plants. PMID:24285787

  19. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum

    PubMed Central

    Murphy, Rebecca L.; Klein, Robert R.; Morishige, Daryl T.; Brady, Jeff A.; Rooney, William L.; Miller, Frederick R.; Dugas, Diana V.; Klein, Patricia E.; Mullet, John E.

    2011-01-01

    Optimal flowering time is critical to the success of modern agriculture. Sorghum is a short-day tropical species that exhibits substantial photoperiod sensitivity and delayed flowering in long days. Genotypes with reduced photoperiod sensitivity enabled sorghum's utilization as a grain crop in temperate zones worldwide. In the present study, Ma1, the major repressor of sorghum flowering in long days, was identified as the pseudoresponse regulator protein 37 (PRR37) through positional cloning and analysis of SbPRR37 alleles that modulate flowering time in grain and energy sorghum. Several allelic variants of SbPRR37 were identified in early flowering grain sorghum germplasm that contain unique loss-of-function mutations. We show that in long days SbPRR37 activates expression of the floral inhibitor CONSTANS and represses expression of the floral activators Early Heading Date 1, FLOWERING LOCUS T, Zea mays CENTRORADIALIS 8, and floral induction. Expression of SbPRR37 is light dependent and regulated by the circadian clock, with peaks of RNA abundance in the morning and evening in long days. In short days, the evening-phase expression of SbPRR37 does not occur due to darkness, allowing sorghum to flower in this photoperiod. This study provides insight into an external coincidence mechanism of photoperiodic regulation of flowering time mediated by PRR37 in the short-day grass sorghum and identifies important alleles of SbPRR37 that are critical for the utilization of this tropical grass in temperate zone grain and bioenergy production. PMID:21930910

  20. Methylation of microRNA genes regulates gene expression in bisexual flower development in andromonoecious poplar.

    PubMed

    Song, Yuepeng; Tian, Min; Ci, Dong; Zhang, Deqiang

    2015-04-01

    Previous studies showed sex-specific DNA methylation and expression of candidate genes in bisexual flowers of andromonoecious poplar, but the regulatory relationship between methylation and microRNAs (miRNAs) remains unclear. To investigate whether the methylation of miRNA genes regulates gene expression in bisexual flower development, the methylome, microRNA, and transcriptome were examined in female and male flowers of andromonoecious poplar. 27 636 methylated coding genes and 113 methylated miRNA genes were identified. In the coding genes, 64.5% of the methylated reads mapped to the gene body region; by contrast, 60.7% of methylated reads in miRNA genes mainly mapped in the 5' and 3' flanking regions. CHH methylation showed the highest methylation levels and CHG showed the lowest methylation levels. Correlation analysis showed a significant, negative, strand-specific correlation of methylation and miRNA gene expression (r=0.79, P <0.05). The methylated miRNA genes included eight long miRNAs (lmiRNAs) of 24 nucleotides and 11 miRNAs related to flower development. miRNA172b might play an important role in the regulation of bisexual flower development-related gene expression in andromonoecious poplar, via modification of methylation. Gynomonoecious, female, and male poplars were used to validate the methylation patterns of the miRNA172b gene, implying that hyper-methylation in andromonoecious and gynomonoecious poplar might function as an important regulator in bisexual flower development. Our data provide a useful resource for the study of flower development in poplar and improve our understanding of the effect of epigenetic regulation on genes other than protein-coding genes.

  1. Methylation of microRNA genes regulates gene expression in bisexual flower development in andromonoecious poplar

    PubMed Central

    Song, Yuepeng; Tian, Min; Ci, Dong; Zhang, Deqiang

    2015-01-01

    Previous studies showed sex-specific DNA methylation and expression of candidate genes in bisexual flowers of andromonoecious poplar, but the regulatory relationship between methylation and microRNAs (miRNAs) remains unclear. To investigate whether the methylation of miRNA genes regulates gene expression in bisexual flower development, the methylome, microRNA, and transcriptome were examined in female and male flowers of andromonoecious poplar. 27 636 methylated coding genes and 113 methylated miRNA genes were identified. In the coding genes, 64.5% of the methylated reads mapped to the gene body region; by contrast, 60.7% of methylated reads in miRNA genes mainly mapped in the 5′ and 3′ flanking regions. CHH methylation showed the highest methylation levels and CHG showed the lowest methylation levels. Correlation analysis showed a significant, negative, strand-specific correlation of methylation and miRNA gene expression (r=0.79, P <0.05). The methylated miRNA genes included eight long miRNAs (lmiRNAs) of 24 nucleotides and 11 miRNAs related to flower development. miRNA172b might play an important role in the regulation of bisexual flower development-related gene expression in andromonoecious poplar, via modification of methylation. Gynomonoecious, female, and male poplars were used to validate the methylation patterns of the miRNA172b gene, implying that hyper-methylation in andromonoecious and gynomonoecious poplar might function as an important regulator in bisexual flower development. Our data provide a useful resource for the study of flower development in poplar and improve our understanding of the effect of epigenetic regulation on genes other than protein-coding genes. PMID:25617468

  2. The Zinc Finger Transcription Factor SlZFP2 Negatively Regulates Abscisic Acid Biosynthesis and Fruit Ripening in Tomato1

    PubMed Central

    Weng, Lin; Zhao, Fangfang; Li, Rong; Xu, Changjie; Chen, Kunsong

    2015-01-01

    Abscisic acid (ABA) regulates plant development and adaptation to environmental conditions. Although the ABA biosynthesis pathway in plants has been thoroughly elucidated, how ABA biosynthetic genes are regulated at the molecular level during plant development is less well understood. Here, we show that the tomato (Solanum lycopersicum) zinc finger transcription factor SlZFP2 is involved in the regulation of ABA biosynthesis during fruit development. Overexpression of SlZFP2 resulted in multiple phenotypic changes, including more branches, early flowering, delayed fruit ripening, lighter seeds, and faster seed germination, whereas down-regulation of its expression caused problematic fruit set, accelerated ripening, and inhibited seed germination. SlZFP2 represses ABA biosynthesis during fruit development through direct suppression of the ABA biosynthetic genes NOTABILIS, SITIENS, and FLACCA and the aldehyde oxidase SlAO1. We also show that SlZFP2 regulates fruit ripening through transcriptional suppression of the ripening regulator COLORLESS NON-RIPENING. Using bacterial one-hybrid screening and a selected amplification and binding assay, we identified the (A/T)(G/C)TT motif as the core binding sequence of SlZFP2. Furthermore, by RNA sequencing profiling, we found that 193 genes containing the SlZFP2-binding motifs in their promoters were differentially expressed in 2 d post anthesis fruits between the SlZFP2 RNA interference line and its nontransgenic sibling. We propose that SlZFP2 functions as a repressor to fine-tune ABA biosynthesis during fruit development and provides a potentially valuable tool for dissecting the role of ABA in fruit ripening. PMID:25637453

  3. The zinc finger transcription factor SlZFP2 negatively regulates abscisic acid biosynthesis and fruit ripening in tomato.

    PubMed

    Weng, Lin; Zhao, Fangfang; Li, Rong; Xu, Changjie; Chen, Kunsong; Xiao, Han

    2015-03-01

    Abscisic acid (ABA) regulates plant development and adaptation to environmental conditions. Although the ABA biosynthesis pathway in plants has been thoroughly elucidated, how ABA biosynthetic genes are regulated at the molecular level during plant development is less well understood. Here, we show that the tomato (Solanum lycopersicum) zinc finger transcription factor SlZFP2 is involved in the regulation of ABA biosynthesis during fruit development. Overexpression of SlZFP2 resulted in multiple phenotypic changes, including more branches, early flowering, delayed fruit ripening, lighter seeds, and faster seed germination, whereas down-regulation of its expression caused problematic fruit set, accelerated ripening, and inhibited seed germination. SlZFP2 represses ABA biosynthesis during fruit development through direct suppression of the ABA biosynthetic genes NOTABILIS, SITIENS, and FLACCA and the aldehyde oxidase SlAO1. We also show that SlZFP2 regulates fruit ripening through transcriptional suppression of the ripening regulator COLORLESS NON-RIPENING. Using bacterial one-hybrid screening and a selected amplification and binding assay, we identified the (A/T)(G/C)TT motif as the core binding sequence of SlZFP2. Furthermore, by RNA sequencing profiling, we found that 193 genes containing the SlZFP2-binding motifs in their promoters were differentially expressed in 2 d post anthesis fruits between the SlZFP2 RNA interference line and its nontransgenic sibling. We propose that SlZFP2 functions as a repressor to fine-tune ABA biosynthesis during fruit development and provides a potentially valuable tool for dissecting the role of ABA in fruit ripening.

  4. The Medicago FLOWERING LOCUS T Homolog, MtFTa1, Is a Key Regulator of Flowering Time1[C][W][OA

    PubMed Central

    Laurie, Rebecca E.; Diwadkar, Payal; Jaudal, Mauren; Zhang, Lulu; Hecht, Valérie; Wen, Jiangqi; Tadege, Million; Mysore, Kirankumar S.; Putterill, Joanna; Weller, James L.; Macknight, Richard C.

    2011-01-01

    FLOWERING LOCUS T (FT) genes encode proteins that function as the mobile floral signal, florigen. In this study, we characterized five FT-like genes from the model legume, Medicago (Medicago truncatula). The different FT genes showed distinct patterns of expression and responses to environmental cues. Three of the FT genes (MtFTa1, MtFTb1, and MtFTc) were able to complement the Arabidopsis (Arabidopsis thaliana) ft-1 mutant, suggesting that they are capable of functioning as florigen. MtFTa1 is the only one of the FT genes that is up-regulated by both long days (LDs) and vernalization, conditions that promote Medicago flowering, and transgenic Medicago plants overexpressing the MtFTa1 gene flowered very rapidly. The key role MtFTa1 plays in regulating flowering was demonstrated by the identification of fta1 mutants that flowered significantly later in all conditions examined. fta1 mutants do not respond to vernalization but are still responsive to LDs, indicating that the induction of flowering by prolonged cold acts solely through MtFTa1, whereas photoperiodic induction of flowering involves other genes, possibly MtFTb1, which is only expressed in leaves under LD conditions and therefore might contribute to the photoperiodic regulation of flowering. The role of the MtFTc gene is unclear, as the ftc mutants did not have any obvious flowering-time or other phenotypes. Overall, this work reveals the diversity of the regulation and function of the Medicago FT family. PMID:21685176

  5. The transcription factor AREB1 regulates primary metabolic pathways in tomato fruits

    PubMed Central

    Bastías, Adriana; Osorio, Sonia; Casaretto, José A.

    2014-01-01

    Tomato fruit development is regulated both by the action of plant hormones and by tight genetic control. Recent studies suggest that abscisic acid (ABA) signalling may affect different aspects of fruit maturation. Previously, it was shown that SlAREB1, an ABA-regulated transcription factor involved in stress-induced responses, is expressed in seeds and in fruit tissues in tomato. Here, the role of SlAREB1 in regulating the expression of genes relevant for primary metabolic pathways and affecting the metabolic profile of the fruit was investigated using transgenic tomato lines. Metabolite profiling using gas chromatography–time of flight mass spectrometry (GC-TOF-MS) and non-targeted liquid chromatography–mass spectrometry (LC-MS) was performed on pericarp tissue from fruits harvested at three stages of fruit development. Principal component analysis of the data could distinguish the metabolite profiles of non-transgenic fruits from those that overexpress and down-regulate SlAREB1. Overexpression of SlAREB1 resulted in increased content of organic acids, hexoses, hexose-phosphates, and amino acids in immature green, mature green, and red ripe fruits, and these modifications correlated with the up-regulation of enzyme-encoding genes involved in primary carbohydrate and amino acid metabolism. A non-targeted LC-MS analysis indicated that the composition of secondary metabolites is also affected in transgenic lines. In addition, gene expression data revealed that some genes associated with fruit ripening are also up-regulated in SlAREB1-overexpressing lines compared with wild-type and antisense lines. Taken together, the results suggest that SlAREB1 participates in the regulation of the metabolic programming that takes place during fruit ripening and that may explain part of the role of ABA in fruit development in tomato. PMID:24659489

  6. The transcription factor AREB1 regulates primary metabolic pathways in tomato fruits.

    PubMed

    Bastías, Adriana; Yañez, Mónica; Osorio, Sonia; Arbona, Vicent; Gómez-Cadenas, Aurelio; Fernie, Alisdair R; Casaretto, José A

    2014-06-01

    Tomato fruit development is regulated both by the action of plant hormones and by tight genetic control. Recent studies suggest that abscisic acid (ABA) signalling may affect different aspects of fruit maturation. Previously, it was shown that SlAREB1, an ABA-regulated transcription factor involved in stress-induced responses, is expressed in seeds and in fruit tissues in tomato. Here, the role of SlAREB1 in regulating the expression of genes relevant for primary metabolic pathways and affecting the metabolic profile of the fruit was investigated using transgenic tomato lines. Metabolite profiling using gas chromatography-time of flight mass spectrometry (GC-TOF-MS) and non-targeted liquid chromatography-mass spectrometry (LC-MS) was performed on pericarp tissue from fruits harvested at three stages of fruit development. Principal component analysis of the data could distinguish the metabolite profiles of non-transgenic fruits from those that overexpress and down-regulate SlAREB1. Overexpression of SlAREB1 resulted in increased content of organic acids, hexoses, hexose-phosphates, and amino acids in immature green, mature green, and red ripe fruits, and these modifications correlated with the up-regulation of enzyme-encoding genes involved in primary carbohydrate and amino acid metabolism. A non-targeted LC-MS analysis indicated that the composition of secondary metabolites is also affected in transgenic lines. In addition, gene expression data revealed that some genes associated with fruit ripening are also up-regulated in SlAREB1-overexpressing lines compared with wild-type and antisense lines. Taken together, the results suggest that SlAREB1 participates in the regulation of the metabolic programming that takes place during fruit ripening and that may explain part of the role of ABA in fruit development in tomato.

  7. Tomato thymidine kinase is subject to inefficient TTP feedback regulation.

    PubMed

    Larsen, N B; Munch-Petersen, B; Piškur, J

    2014-01-01

    A promising suicide gene therapy system to treat gliomas has been reported: the thymidine kinase 1 from tomato (toTK1) combined with the nucleoside analog pro-drug zidovudine (azidothymidine, AZT), which is known to penetrate the blood-brain barrier. Transduction with toTK1 has been found to efficiently increase the sensitivity of human glioblastoma cells to AZT, and nude rats with intracranial glioblastoma grafts have shown significantly improved survival when treated with the toTK1/AZT system. We show in our paper that the strong suicidal effect of AZT together with toTK1 may be explained by reduced TTP-mediated feedback inhibition of the AZT phosphorylation. PMID:24940681

  8. Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato.

    PubMed

    Sahu, Pranav Pankaj; Sharma, Namisha; Puranik, Swati; Chakraborty, Supriya; Prasad, Manoj

    2016-01-01

    Involvement of 26S proteasomal subunits in plant pathogen-interactions, and the roles of each subunit in independently modulating the activity of many intra- and inter-cellular regulators controlling physiological and defense responses of a plant were well reported. In this regard, we aimed to functionally characterize a Solanum lycopersicum 26S proteasomal subunit RPT4a (SlRPT4) gene, which was differentially expressed after Tomato leaf curl New Delhi virus (ToLCNDV) infection in tolerant cultivar H-88-78-1. Molecular analysis revealed that SlRPT4 protein has an active ATPase activity. SlRPT4 could specifically bind to the stem-loop structure of intergenic region (IR), present in both DNA-A and DNA-B molecule of the bipartite viral genome. Lack of secondary structure in replication-associated gene fragment prevented formation of DNA-protein complex suggesting that binding of SlRPT4 with DNA is secondary structure specific. Interestingly, binding of SlRPT4 to IR inhibited the function of RNA Pol-II and subsequently reduced the bi-directional transcription of ToLCNDV genome. Virus-induced gene silencing of SlRPT4 gene incited conversion of tolerant attributes of cultivar H-88-78-1 into susceptibility. Furthermore, transient overexpression of SlRPT4 resulted in activation of programmed cell death and antioxidant enzymes system. Overall, present study highlights non-proteolytic function of SlRPT4 and their participation in defense pathway against virus infection in tomato. PMID:27252084

  9. Tomato 26S Proteasome subunit RPT4a regulates ToLCNDV transcription and activates hypersensitive response in tomato

    PubMed Central

    Sahu, Pranav Pankaj; Sharma, Namisha; Puranik, Swati; Chakraborty, Supriya; Prasad, Manoj

    2016-01-01

    Involvement of 26S proteasomal subunits in plant pathogen-interactions, and the roles of each subunit in independently modulating the activity of many intra- and inter-cellular regulators controlling physiological and defense responses of a plant were well reported. In this regard, we aimed to functionally characterize a Solanum lycopersicum 26S proteasomal subunit RPT4a (SlRPT4) gene, which was differentially expressed after Tomato leaf curl New Delhi virus (ToLCNDV) infection in tolerant cultivar H-88-78-1. Molecular analysis revealed that SlRPT4 protein has an active ATPase activity. SlRPT4 could specifically bind to the stem-loop structure of intergenic region (IR), present in both DNA-A and DNA-B molecule of the bipartite viral genome. Lack of secondary structure in replication-associated gene fragment prevented formation of DNA-protein complex suggesting that binding of SlRPT4 with DNA is secondary structure specific. Interestingly, binding of SlRPT4 to IR inhibited the function of RNA Pol-II and subsequently reduced the bi-directional transcription of ToLCNDV genome. Virus-induced gene silencing of SlRPT4 gene incited conversion of tolerant attributes of cultivar H-88-78-1 into susceptibility. Furthermore, transient overexpression of SlRPT4 resulted in activation of programmed cell death and antioxidant enzymes system. Overall, present study highlights non-proteolytic function of SlRPT4 and their participation in defense pathway against virus infection in tomato. PMID:27252084

  10. The phytochrome-interacting vascular plant one-zinc finger1 and VOZ2 redundantly regulate flowering in Arabidopsis.

    PubMed

    Yasui, Yukiko; Mukougawa, Keiko; Uemoto, Mitsuhiro; Yokofuji, Akira; Suzuri, Ryota; Nishitani, Aiko; Kohchi, Takayuki

    2012-08-01

    The timing of the transition to flowering in plants is regulated by various environmental factors, including daylength and light quality. Although the red/far-red photoreceptor phytochrome B (phyB) represses flowering by indirectly regulating the expression of a key flowering regulator, FLOWERING LOCUS T (FT), the mechanism of phyB signaling for flowering is largely unknown. Here, we identified two Arabidopsis thaliana genes, VASCULAR PLANT ONE-ZINC FINGER1 (VOZ1) and VOZ2, which are highly conserved throughout land plant evolution, as phyB-interacting factors. voz1 voz2 double mutants, but neither single mutant, showed a late-flowering phenotype under long-day conditions, which indicated that VOZ1 and VOZ2 redundantly promote flowering. voz1 voz2 mutations suppressed the early-flowering phenotype of the phyB mutant, and FT expression was repressed in the voz1 voz2 mutant. Green fluorescent protein-VOZ2 signal was observed in the cytoplasm, and interaction of VOZ proteins with phyB was indicated to occur in the cytoplasm under far-red light. However, VOZ2 protein modified to localize constitutively in the nucleus promoted flowering. In addition, the stability of VOZ2 proteins in the nucleus was modulated by light quality in a phytochrome-dependent manner. We propose that partial translocation of VOZ proteins from the cytoplasm to the nucleus mediates the initial step of the phyB signal transduction pathway that regulates flowering.

  11. Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins.

    PubMed

    Fujisawa, Masaki; Shima, Yoko; Nakagawa, Hiroyuki; Kitagawa, Mamiko; Kimbara, Junji; Nakano, Toshitsugu; Kasumi, Takafumi; Ito, Yasuhiro

    2014-01-01

    The tomato (Solanum lycopersicum) MADS box FRUITFULL homologs FUL1 and FUL2 act as key ripening regulators and interact with the master regulator MADS box protein RIPENING INHIBITOR (RIN). Here, we report the large-scale identification of direct targets of FUL1 and FUL2 by transcriptome analysis of FUL1/FUL2 suppressed fruits and chromatin immunoprecipitation coupled with microarray analysis (ChIP-chip) targeting tomato gene promoters. The ChIP-chip and transcriptome analysis identified FUL1/FUL2 target genes that contain at least one genomic region bound by FUL1 or FUL2 (regions that occur mainly in their promoters) and exhibit FUL1/FUL2-dependent expression during ripening. These analyses identified 860 direct FUL1 targets and 878 direct FUL2 targets; this set of genes includes both direct targets of RIN and nontargets of RIN. Functional classification of the FUL1/FUL2 targets revealed that these FUL homologs function in many biological processes via the regulation of ripening-related gene expression, both in cooperation with and independent of RIN. Our in vitro assay showed that the FUL homologs, RIN, and tomato AGAMOUS-LIKE1 form DNA binding complexes, suggesting that tetramer complexes of these MADS box proteins are mainly responsible for the regulation of ripening.

  12. eQTL Regulating Transcript Levels Associated with Diverse Biological Processes in Tomato.

    PubMed

    Ranjan, Aashish; Budke, Jessica M; Rowland, Steven D; Chitwood, Daniel H; Kumar, Ravi; Carriedo, Leonela; Ichihashi, Yasunori; Zumstein, Kristina; Maloof, Julin N; Sinha, Neelima R

    2016-09-01

    Variation in gene expression, in addition to sequence polymorphisms, is known to influence developmental, physiological, and metabolic traits in plants. Genetic mapping populations have facilitated identification of expression quantitative trait loci (eQTL), the genetic determinants of variation in gene expression patterns. We used an introgression population developed from the wild desert-adapted Solanum pennellii and domesticated tomato (Solanum lycopersicum) to identify the genetic basis of transcript level variation. We established the effect of each introgression on the transcriptome and identified approximately 7,200 eQTL regulating the steady-state transcript levels of 5,300 genes. Barnes-Hut t-distributed stochastic neighbor embedding clustering identified 42 modules revealing novel associations between transcript level patterns and biological processes. The results showed a complex genetic architecture of global transcript abundance pattern in tomato. Several genetic hot spots regulating a large number of transcript level patterns relating to diverse biological processes such as plant defense and photosynthesis were identified. Important eQTL regulating transcript level patterns were related to leaf number and complexity as well as hypocotyl length. Genes associated with leaf development showed an inverse correlation with photosynthetic gene expression, but eQTL regulating genes associated with leaf development and photosynthesis were dispersed across the genome. This comprehensive eQTL analysis details the influence of these loci on plant phenotypes and will be a valuable community resource for investigations on the genetic effects of eQTL on phenotypic traits in tomato. PMID:27418589

  13. eQTL Regulating Transcript Levels Associated with Diverse Biological Processes in Tomato1[OPEN

    PubMed Central

    Budke, Jessica M.; Rowland, Steven D.; Kumar, Ravi; Ichihashi, Yasunori

    2016-01-01

    Variation in gene expression, in addition to sequence polymorphisms, is known to influence developmental, physiological, and metabolic traits in plants. Genetic mapping populations have facilitated identification of expression quantitative trait loci (eQTL), the genetic determinants of variation in gene expression patterns. We used an introgression population developed from the wild desert-adapted Solanum pennellii and domesticated tomato (Solanum lycopersicum) to identify the genetic basis of transcript level variation. We established the effect of each introgression on the transcriptome and identified approximately 7,200 eQTL regulating the steady-state transcript levels of 5,300 genes. Barnes-Hut t-distributed stochastic neighbor embedding clustering identified 42 modules revealing novel associations between transcript level patterns and biological processes. The results showed a complex genetic architecture of global transcript abundance pattern in tomato. Several genetic hot spots regulating a large number of transcript level patterns relating to diverse biological processes such as plant defense and photosynthesis were identified. Important eQTL regulating transcript level patterns were related to leaf number and complexity as well as hypocotyl length. Genes associated with leaf development showed an inverse correlation with photosynthetic gene expression, but eQTL regulating genes associated with leaf development and photosynthesis were dispersed across the genome. This comprehensive eQTL analysis details the influence of these loci on plant phenotypes and will be a valuable community resource for investigations on the genetic effects of eQTL on phenotypic traits in tomato. PMID:27418589

  14. Complex and shifting interactions of phytochromes regulate fruit development in tomato.

    PubMed

    Gupta, Suresh Kumar; Sharma, Sulabha; Santisree, Parankusam; Kilambi, Himabindu Vasuki; Appenroth, Klaus; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2014-07-01

    Tomato fruit ripening is a complex metabolic process regulated by a genetical hierarchy. A subset of this process is also modulated by light signalling, as mutants encoding negative regulators of phytochrome signal transduction show higher accumulation of carotenoids. In tomato, phytochromes are encoded by a multi-gene family, namely PHYA, PHYB1, PHYB2, PHYE and PHYF; however, their contribution to fruit development and ripening has not been examined. Using single phytochrome mutants phyA, phyB1 and phyB2 and multiple mutants phyAB1, phyB1B2 and phyAB1B2, we compared the on-vine transitory phases of ripening until fruit abscission. The phyAB1B2 mutant showed accelerated transitions during ripening, with shortest time to fruit abscission. Comparison of transition intervals in mutants indicated a phase-specific influence of different phytochrome species either singly or in combination on the ripening process. Examination of off-vine ripened fruits indicated that ripening-specific carotenoid accumulation was not obligatorily dependent upon light and even dark-incubated fruits accumulated carotenoids. The accumulation of transcripts and carotenoids in off-vine and on-vine ripened mutant fruits indicated a complex and shifting phase-dependent modulation by phytochromes. Our results indicate that, in addition to regulating carotenoid levels in tomato fruits, phytochromes also regulate the time required for phase transitions during ripening.

  15. Tomato Glutamate Decarboxylase Genes SlGAD2 and SlGAD3 Play Key Roles in Regulating γ-Aminobutyric Acid Levels in Tomato (Solanum lycopersicum).

    PubMed

    Takayama, Mariko; Koike, Satoshi; Kusano, Miyako; Matsukura, Chiaki; Saito, Kazuki; Ariizumi, Tohru; Ezura, Hiroshi

    2015-08-01

    Tomato (Solanum lycopersicum) can accumulate relatively high levels of γ-aminobutyric acid (GABA) during fruit development. However, the molecular mechanism underlying GABA accumulation and its physiological function in tomato fruits remain elusive. We previously identified three tomato genes (SlGAD1, SlGAD2 and SlGAD3) encoding glutamate decarboxylase (GAD), likely the key enzyme for GABA biosynthesis in tomato fruits. In this study, we generated transgenic tomato plants in which each SlGAD was suppressed and those in which all three SlGADs were simultaneously suppressed. A significant decrease in GABA levels, i.e. 50-81% compared with wild-type (WT) levels, was observed in mature green (MG) fruits of the SlGAD2-suppressed lines, while a more drastic reduction (up to <10% of WT levels) was observed in the SlGAD3- and triple SlGAD-suppressed lines. These findings suggest that both SlGAD2 and SlGAD3 expression are crucial for GABA biosynthesis in tomato fruits. The importance of SlGAD3 expression was also confirmed by generating transgenic tomato plants that over-expressed SlGAD3. The MG and red fruits of the over-expressing transgenic lines contained higher levels of GABA (2.7- to 5.2-fold) than those of the WT. We also determined that strong down-regulation of the SlGADs had little effect on overall plant growth, fruit development or primary fruit metabolism under normal growth conditions.

  16. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community.

    PubMed

    Khodakovskaya, Mariya V; Kim, Bong-Soo; Kim, Jong Nam; Alimohammadi, Mohammad; Dervishi, Enkeleda; Mustafa, Thikra; Cernigla, Carl E

    2013-01-14

    Multi-walled carbon nanotubes (CNTs) can affect plant phenotype and the composition of soil microbiota. Tomato plants grown in soil supplemented with CNTs produce two times more flowers and fruit compared to plants grown in control soil. The effect of carbon nanotubes on microbial community of CNT-treated soil is determined by denaturing gradient gel electrophoresis and pyrosequencing analysis. Phylogenetic analysis indicates that Proteobacteria and Bacteroidetes are the most dominant groups in the microbial community of soil. The relative abundances of Bacteroidetes and Firmicutes are found to increase, whereas Proteobacteria and Verrucomicorbia decrease with increasing concentration of CNTs. The results of comparing diversity indices and species level phylotypes (OTUs) between samples showed that there is not a significant affect on bacterial diversity.

  17. Arabidopsis RNA-binding Protein FCA Regulates MicroRNA172 Processing in Thermosensory Flowering*

    PubMed Central

    Jung, Jae-Hoon; Seo, Pil Joon; Ahn, Ji Hoon; Park, Chung-Mo

    2012-01-01

    Ambient temperature fluctuates diurnally and seasonally. It profoundly influences the timing of flowering in plants. The floral integrator FLOWERING LOCUS T (FT) mediates ambient temperature signals via the thermosensory pathway in Arabidopsis flowering. microRNA172 (miR172), which promotes flowering by inducing FT, also responds to changes in ambient temperature. However, it is largely unknown how miR172 integrates ambient temperature signals into the flowering genetic network. Here, we show that Arabidopsis RNA-binding protein FCA promotes the processing of primary microRNA172 transcripts (pri-miR172) in response to changes in ambient temperature. Ambient temperature regulates miR172 biogenesis primarily at the pri-miR172 processing step. miR172 abundance is elevated at 23 °C but not at 16 °C. miR172 accumulation at 23 °C requires functional FCA. FCA binds to the flanking sequences of the stem-loop within the pri-miR172 transcripts via the RNA recognition motif. FCA also binds to the primary transcripts of other temperature-responsive miRNAs, such as miR398 and miR399. Notably, levels of FCA mRNAs and proteins increase at 23 °C but remain low at 16 °C, supporting the role of FCA in temperature perception. Our data show that FCA regulation of miR172 processing is an early event in the thermosensory flowering pathway. We propose that the FCA-miR172 regulon provides an adaptive strategy that fine tunes the onset of flowering under fluctuating ambient temperature conditions. PMID:22431732

  18. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers.

    PubMed

    Sagawa, Janelle M; Stanley, Lauren E; LaFountain, Amy M; Frank, Harry A; Liu, Chang; Yuan, Yao-Wu

    2016-02-01

    Carotenoids are yellow, orange, and red pigments that contribute to the beautiful colors and nutritive value of many flowers and fruits. The structural genes in the highly conserved carotenoid biosynthetic pathway have been well characterized in multiple plant systems, but little is known about the transcription factors that control the expression of these structural genes. By analyzing a chemically induced mutant of Mimulus lewisii through bulk segregant analysis and transgenic experiments, we have identified an R2R3-MYB, Reduced Carotenoid Pigmentation 1 (RCP1), as the first transcription factor that positively regulates carotenoid biosynthesis during flower development. Loss-of-function mutations in RCP1 lead to down-regulation of all carotenoid biosynthetic genes and reduced carotenoid content in M. lewisii flowers, a phenotype recapitulated by RNA interference in the wild-type background. Overexpression of this gene in the rcp1 mutant background restores carotenoid production and, unexpectedly, results in simultaneous decrease of anthocyanin production in some transgenic lines by down-regulating the expression of an activator of anthocyanin biosynthesis. Identification of transcriptional regulators of carotenoid biosynthesis provides the 'toolbox' genes for understanding the molecular basis of flower color diversification in nature and for potential enhancement of carotenoid production in crop plants via genetic engineering. PMID:26377817

  19. The Oryza sativa Regulator HDR1 Associates with the Kinase OsK4 to Control Photoperiodic Flowering

    PubMed Central

    Cui, Xuean; Feng, Dan; Wang, Kai; Xu, Ming; Zhou, Li; Han, Xiao; Gu, Xiaofeng; Lu, Tiegang

    2016-01-01

    Rice is a facultative short-day plant (SDP), and the regulatory pathways for flowering time are conserved, but functionally modified, in Arabidopsis and rice. Heading date 1 (Hd1), an ortholog of Arabidopsis CONSTANS (CO), is a key regulator that suppresses flowering under long-day conditions (LDs), but promotes flowering under short-day conditions (SDs) by influencing the expression of the florigen gene Heading date 3a (Hd3a). Another key regulator, Early heading date 1 (Ehd1), is an evolutionarily unique gene with no orthologs in Arabidopsis, which acts as a flowering activator under both SD and LD by promoting the rice florigen genes Hd3a and RICE FLOWERING LOCUST 1 (RFT1). Here, we report the isolation and characterization of the flowering regulator Heading Date Repressor1 (HDR1) in rice. The hdr1 mutant exhibits an early flowering phenotype under natural LD in a paddy field in Beijing, China (39°54'N, 116°23'E), as well as under LD but not SD in a growth chamber, indicating that HDR1 may functionally regulate flowering time via the photoperiod-dependent pathway. HDR1 encodes a nuclear protein that is most active in leaves and floral organs and exhibits a typical diurnal expression pattern. We determined that HDR1 is a novel suppressor of flowering that upregulates Hd1 and downregulates Ehd1, leading to the downregulation of Hd3a and RFT1 under LDs. We have further identified an HDR1-interacting kinase, OsK4, another suppressor of rice flowering under LDs. OsK4 acts similarly to HDR1, suppressing flowering by upregulating Hd1 and downregulating Ehd1 under LDs, and OsK4 can phosphorylate HD1 with HDR1 presents. These results collectively reveal the transcriptional regulators of Hd1 for the day-length-dependent control of flowering time in rice. PMID:26954091

  20. Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice.

    PubMed

    Gao, He; Zheng, Xiao-Ming; Fei, Guilin; Chen, Jun; Jin, Mingna; Ren, Yulong; Wu, Weixun; Zhou, Kunneng; Sheng, Peike; Zhou, Feng; Jiang, Ling; Wang, Jie; Zhang, Xin; Guo, Xiuping; Wang, Jiu-Lin; Cheng, Zhijun; Wu, Chuanyin; Wang, Haiyang; Wan, Jian-Min

    2013-01-01

    Land plants have evolved increasingly complex regulatory modes of their flowering time (or heading date in crops). Rice (Oryza sativa L.) is a short-day plant that flowers more rapidly in short-day but delays under long-day conditions. Previous studies have shown that the CO-FT module initially identified in long-day plants (Arabidopsis) is evolutionary conserved in short-day plants (Hd1-Hd3a in rice). However, in rice, there is a unique Ehd1-dependent flowering pathway that is Hd1-independent. Here, we report isolation and characterization of a positive regulator of Ehd1, Early heading date 4 (Ehd4). ehd4 mutants showed a never flowering phenotype under natural long-day conditions. Map-based cloning revealed that Ehd4 encodes a novel CCCH-type zinc finger protein, which is localized to the nucleus and is able to bind to nucleic acids in vitro and transactivate transcription in yeast, suggesting that it likely functions as a transcriptional regulator. Ehd4 expression is most active in young leaves with a diurnal expression pattern similar to that of Ehd1 under both short-day and long-day conditions. We show that Ehd4 up-regulates the expression of the "florigen" genes Hd3a and RFT1 through Ehd1, but it acts independently of other known Ehd1 regulators. Strikingly, Ehd4 is highly conserved in the Oryza genus including wild and cultivated rice, but has no homologs in other species, suggesting that Ehd4 is originated along with the diversification of the Oryza genus from the grass family during evolution. We conclude that Ehd4 is a novel Oryza-genus-specific regulator of Ehd1, and it plays an essential role in photoperiodic control of flowering time in rice.

  1. Arabidopsis STERILE APETALA, a multifunctional gene regulating inflorescence, flower, and ovule development

    PubMed Central

    Byzova, Marina V.; Franken, John; Aarts, Mark G.M.; de Almeida-Engler, Janice; Engler, Gilbert; Mariani, Celestina; Van Lookeren Campagne, Michiel M.; Angenent, Gerco C.

    1999-01-01

    A recessive mutation in the Arabidopsis STERILE APETALA (SAP) causes severe aberrations in inflorescence and flower and ovule development. In sap flowers, sepals are carpelloid, petals are short and narrow or absent, and anthers are degenerated. Megasporogenesis, the process of meiotic divisions preceding the female gametophyte formation, is arrested in sap ovules during or just after the first meiotic division. More severe aberrations were observed in double mutants between sap and mutant alleles of the floral homeotic gene APETALA2 (AP2) suggesting that both genes are involved in the initiation of female gametophyte development. Together with the organ identity gene AGAMOUS (AG) SAP is required for the maintenance of floral identity acting in a manner similar to APETALA1. In contrast to the outer two floral organs in sap mutant flowers, normal sepals and petals develop in ag/sap double mutants, indicating that SAP negatively regulates AG expression in the perianth whorls. This supposed cadastral function of SAP is supported by in situ hybridization experiments showing ectopic expression of AG in the sap mutant. We have cloned the SAP gene by transposon tagging and revealed that it encodes a novel protein with sequence motifs, that are also present in plant and animal transcription regulators. Consistent with the mutant phenotype, SAP is expressed in inflorescence and floral meristems, floral organ primordia, and ovules. Taken together, we propose that SAP belongs to a new class of transcription regulators essential for a number of processes in Arabidopsis flower development. PMID:10215627

  2. FLC, a repressor of flowering, is regulated by genes in different inductive pathways.

    PubMed

    Rouse, Dean T; Sheldon, Candice C; Bagnall, David J; Peacock, W James; Dennis, Elizabeth S

    2002-01-01

    The MADS-box protein encoded by FLOWERING LOCUS C (FLC) is a repressor of flowering. Loci in the autonomous flowering pathway control FLC levels. We show the epistatic groupings of autonomous pathway mutants fca/fy and fve/fpa, based on their effects on flowering time, are consistent with their effects on FLC transcript and protein levels. We demonstrate that synergistic increases in FLC mRNA and protein expression occur in response to interactions between the autonomous pathway mutants fca and fpa and mutants in other pathways (fe, ft, fha) that do not regulate FLC when present as single mutants. These changes in FLC levels provide the molecular basis of the interactions previously shown in genetic analyses. The interactions between genes of multiple pathways emphasize the central position of FLC in the control of floral initiation. FLC protein levels match those of its mRNA for a range of genetic, developmental and environmental variables, indicating that control of FLC is at the level of transcription or transcript stability. The autonomous and photoperiod pathways also interact at the level of SOC1. FLC acts as a repressor of SOC1, and SOC1 levels are low when FLC levels are high. In C24 plants which have moderately high FLC levels, flowering occurs without a decrease in FLC level, but the SOC1 level does increase. Thus SOC1 levels can be upregulated through the activities of other pathways, despite the repression by FLC.

  3. Ethylene-dependent/ethylene-independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi.

    PubMed

    Martín-Rodríguez, José Ángel; León-Morcillo, Rafael; Vierheilig, Horst; Ocampo, Juan Antonio; Ludwig-Müller, Jutta; García-Garrido, José Manuel

    2011-04-01

    We investigated the relationship between ABA and ethylene regulating the formation of the arbuscular mycorrhiza (AM) symbiosis in tomato (Solanum lycopersicum) plants and tried to define the specific roles played by each of these phytohormones in the mycorrhization process. We analysed the impact of ABA biosynthesis inhibition on mycorrhization by Glomus intraradices in transgenic tomato plants with an altered ethylene pathway. We also studied the effects on mycorrhization in sitiens plants treated with the aminoethoxyvinyl glycine hydrochloride (AVG) ethylene biosynthesis inhibitor and supplemented with ABA. In addition, the expression of plant and fungal genes involved in the mycorrhization process was studied. ABA biosynthesis inhibition qualitatively altered the parameters of mycorrhization in accordance with the plant's ethylene perception and ethylene biosynthesis abilities. Inhibition of ABA biosynthesis in wild-type plants negatively affected all the mycorrhization parameters studied, while tomato mutants impaired in ethylene synthesis only showed a reduced arbuscular abundance in mycorrhizal roots. Inhibition of ethylene synthesis in ABA-deficient sitiens plants increased the intensity of mycorrhiza development, while ABA application rescued arbuscule abundance in the root's mycorrhizal zones. The results of our study show an antagonistic interaction between ABA and ethylene, and different roles of each of the two hormones during AM formation. This suggests that a dual ethylene-dependent/ethylene-independent mechanism is involved in ABA regulation of AM formation.

  4. Ripening-associated ethylene biosynthesis in tomato fruit is autocatalytically and developmentally regulated

    PubMed Central

    Yokotani, Naoki; Nakano, Ryohei; Imanishi, Shunsuke; Nagata, Masayasu; Inaba, Akitsugu; Kubo, Yasutaka

    2009-01-01

    To investigate the regulatory mechanism(s) of ethylene biosynthesis in fruit, transgenic tomatoes with all known LeEIL genes suppressed were produced by RNA interference engineering. The transgenic tomato exhibited ethylene insensitivity phenotypes such as non-ripening and the lack of the triple response and petiole epinasty of seedlings even in the presence of exogenous ethylene. Transgenic fruit exhibited a low but consistent increase in ethylene production beyond 40 days after anthesis (DAA), with limited LeACS2 and LeACS4 expression. 1-Methylcyclopropene (1-MCP), a potent inhibitor of ethylene perception, failed to inhibit the limited increase in ethylene production and expression of the two 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) genes in the transgenic fruit. These results suggest that ripening-associated ethylene (system 2) in wild-type tomato fruit consists of two parts: a small part regulated by a developmental factor through the ethylene-independent expression of LeACS2 and LeACS4 and a large part regulated by an autocatalytic system due to the ethylene-dependent expression of the same genes. The results further suggest that basal ethylene (system 1) is less likely to be involved in the transition to system 2. Even if the effect of system 1 ethylene is eliminated, fruit can show a small increase in ethylene production due to unknown developmental factors. This increase would be enough for the stimulation of autocatalytic ethylene production, leading to fruit ripening. PMID:19605457

  5. De novo transcriptome sequencing and customized abscission zone-specific microarray as a new molecular tool for analysis of tomato organ abscission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abscission, which is the process of organ separation, is a highly regulated process occurring as a final stage of organ development. In the tomato (Solanum lycopersicum) system, flower and leaf abscission was induced by flower removal or leaf deblading, leading to auxin depletion which results in in...

  6. SlbHLH068 interacts with FER to regulate the iron-deficiency response in tomato

    PubMed Central

    Du, Juan; Huang, Zongan; Wang, Biao; Sun, Hua; Chen, Chunlin; Ling, Hong-Qing; Wu, Huilan

    2015-01-01

    Background and Aims Iron is an essential micronutrient for all organisms and its uptake, translocation, distribution and utilization are regulated in a complex manner in plants. FER, isolated from tomato (Solanum lycopersicum), was the first transcription factor involved in the iron homeostasis of higher plants to be identified. A FER defect in the T3238fer mutant drastically downregulates the expression of iron uptake genes, such as ferric-chelate reductase 1 (LeFRO1) and iron-regulated transporter 1 (LeIRT1); however, the molecular mechanism by which FER regulates genes downstream remains unknown. The aim of this work was therefore to identify the gene that interacts with FER to regulate the iron-deficiency response in tomato. Methods The homologue of the Arabidopsis Ib subgroup of the basic helix–loop–helix (bHLH) proteins, SlbHLH068, was identified by using the program BLASTP against the AtbHLH39 amino acid sequence in the tomato genome. The interaction between SlbHLH068 and FER was detected using yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. In addition, virus-induced gene silencing (VIGS) was used to generate tomato plants in which SlbHLH068 expression was downregulated. The expression of genes was analysed using northern blot hybridization and multiple RT-PCR analysis. Seedlings of wild-type and mutant plants were grown under conditions of different nutrient deficiency. Key Results SlbHLH068 is highly upregulated in roots, leaves and stems in response to iron deficiency. An interaction between SlbHLH068 and FER was demonstrated using yeast two-hybrid and BiFC assays. The heterodimer formed by FER with SlbHLH068 directly bound to the promoter of LeFRO1 and activated the expression of its reporter gene in the yeast assay. The downregulation of SlbHLH068 expression by VIGS resulted in a reduction of LeFRO1 and LeIRT1 expression and iron accumulation in leaves and roots. Conclusions The results indicate that SlbHLH068, as a

  7. 75 FR 65256 - Flower Garden Banks National Marine Sanctuary Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... these animals. The intent is to prevent human interaction with rays and whale sharks in such a manner that the animals change direction, dive away from human interaction, shudder, or have any other adverse... regulations) in the Federal Register in 1991 (56 FR 63634, Dec. 5, 1991). The sanctuary was...

  8. Flowering-Related RING Protein 1 (FRRP1) Regulates Flowering Time and Yield Potential by Affecting Histone H2B Monoubiquitination in Rice (Oryza Sativa).

    PubMed

    Du, Yiwei; He, Wei; Deng, Changwang; Chen, Xi; Gou, Lanming; Zhu, Fugui; Guo, Wei; Zhang, Jianfu; Wang, Tao

    2016-01-01

    Flowering time is a critical trait for crops cultivated under various temperature/photoperiod conditions around the world. To understand better the flowering time of rice, we used the vector pTCK303 to produce several lines of RNAi knockdown transgenic rice and investigated their flowering times and other agronomic traits. Among them, the heading date of FRRP1-RNAi knockdown transgenic rice was 23-26 days earlier than that of wild-type plants. FRRP1 is a novel rice gene that encodes a C3HC4-type Really Interesting Novel Gene (RING) finger domain protein. In addition to the early flowering time, FRRP1-RNAi knockdown transgenic rice caused changes on an array of agronomic traits, including plant height, panicle length and grain length. We analyzed the expression of some key genes associated with the flowering time and other agronomic traits in the FRRP1-RNAi knockdown lines and compared with that in wild-type lines. The expression of Hd3a increased significantly, which was the key factor in the early flowering time. Further experiments showed that the level of histone H2B monoubiquitination (H2Bub1) was noticeably reduced in the FRRP1-RNAi knockdown transgenic rice lines compared with wild-type plants and MBP-FRRP1-F1 was capable of self-ubiquitination. The results indicate that Flowering Related RING Protein 1 (FRRP1) is involved in histone H2B monoubiquitination and suggest that FRRP1 functions as an E3 ligase in vivo and in vitro. In conclusion, FRRP1 probably regulates flowering time and yield potential in rice by affecting histone H2B monoubiquitination, which leads to changes in gene expression in multiple processes.

  9. Shoot bending promotes flower bud formation by miRNA-mediated regulation in apple (Malus domestica Borkh.).

    PubMed

    Xing, Libo; Zhang, Dong; Zhao, Caiping; Li, Youmei; Ma, Juanjuan; An, Na; Han, Mingyu

    2016-02-01

    Flower induction in apple (Malus domestica Borkh.) trees plays an important life cycle role, but young trees produce fewer and inferior quality flower buds. Therefore, shoot bending has become an important cultural practice, significantly promoting the capacity to develop more flower buds during the growing seasons. Additionally, microRNAs (miRNAs) play essential roles in plant growth, flower induction and stress responses. In this study, we identified miRNAs potentially involved in the regulation of bud growth, and flower induction and development, as well as in the response to shoot bending. Of the 195 miRNAs identified, 137 were novel miRNAs. The miRNA expression profiles revealed that the expression levels of 68 and 27 known miRNAs were down-regulated and up-regulated, respectively, in response to shoot bending, and that the 31 differentially expressed novel miRNAs between them formed five major clusters. Additionally, a complex regulatory network associated with auxin, cytokinin, abscisic acid (ABA) and gibberellic acid (GA) plays important roles in cell division, bud growth and flower induction, in which related miRNAs and targets mediated regulation. Among them, miR396, 160, 393, and their targets associated with AUX, miR159, 319, 164, and their targets associated with ABA and GA, and flowering-related miRNAs and genes, regulate bud growth and flower bud formation in response to shoot bending. Meanwhile, the flowering genes had significantly higher expression levels during shoot bending, suggesting that they are involved in this regulatory process. This study provides a framework for the future analysis of miRNAs associated with multiple hormones and their roles in the regulation of bud growth, and flower induction and formation in response to shoot bending in apple trees.

  10. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening.

    PubMed

    Ito, Yasuhiro; Nishizawa-Yokoi, Ayako; Endo, Masaki; Mikami, Masafumi; Toki, Seiichi

    2015-11-01

    Site-directed mutagenesis using genetic approaches can provide a wealth of resources for crop breeding as well as for biological research. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 endonuclease (CRISPR/Cas9) system is a novel strategy used to induce mutations in a specific genome region; the system functions in a variety of organisms, including plants. Here, we report application of the CRISPR/Cas9 system to efficient mutagenesis of the tomato genome. In this study, we targeted the tomato RIN gene, which encodes a MADS-box transcription factor regulating fruit ripening. Three regions within the gene were targeted and mutations consisting either of a single base insertion or deletion of more than three bases were found at the Cas9 cleavage sites in T0 regenerated plants. The RIN-protein-defective mutants produced incomplete-ripening fruits in which red color pigmentation was significantly lower than that of wild type, while heterologous mutants expressing the remaining wild-type gene reached full-ripening red color, confirming the important role of RIN in ripening. Several mutations that were generated at three independent target sites were inherited in the T1 progeny, confirming the applicability of this mutagenesis system in tomato.

  11. Regulation of root hair cell differentiation by R3 MYB transcription factors in tomato and Arabidopsis

    PubMed Central

    Tominaga-Wada, Rumi; Wada, Takuji

    2014-01-01

    CAPRICE (CPC) encodes a small protein with an R3 MYB motif and regulates root hair and trichome cell differentiation in Arabidopsis thaliana. Six additional CPC-like MYB proteins including TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC1 (ETC1), ENHANCER OF TRY AND CPC2 (ETC2), ENHANCER OF TRY AND CPC3/CPC-LIKE MYB3 (ETC3/CPL3), TRICHOMELESS1 (TCL1), and TRICHOMELESS2/CPC-LIKE MYB4 (TCL2/CPL4) also have the ability to regulate root hair and/or trichome cell differentiation in Arabidopsis. In this review, we describe our latest findings on how CPC-like MYB transcription factors regulate root hair cell differentiation. Recently, we identified the tomato SlTRY gene as an ortholog of the Arabidopsis TRY gene. Transgenic Arabidopsis plants harboring SlTRY produced more root hairs, a phenotype similar to that of 35S::CPC transgenic plants. CPC is also known to be involved in anthocyanin biosynthesis. Anthocyanin accumulation was repressed in the SlTRY transgenic plants, suggesting that SlTRY can also influence anthocyanin biosynthesis. We concluded that tomato and Arabidopsis partially use similar transcription factors for root hair cell differentiation, and that a CPC-like R3 MYB may be a key common regulator of plant root-hair development. PMID:24659995

  12. The E3 ubiquitin ligase HOS1 regulates low ambient temperature-responsive flowering in Arabidopsis thaliana.

    PubMed

    Lee, Jeong Hwan; Kim, Jae Joon; Kim, Soo Hyun; Cho, Hyun Jung; Kim, Joonki; Ahn, Ji Hoon

    2012-10-01

    Ubiquitin-dependent proteolysis regulates multiple aspects of plant growth and development, but little is known about its role in ambient temperature-responsive flowering. In addition to being regulated by daylength, the onset of flowering in many plants can also be delayed by low ambient temperatures. Here, we show that HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1), which encodes an E3 ubiquitin ligase, controls flowering time in response to ambient temperatures (16 and 23°C) and intermittent cold. hos1 mutants flowered early, and were insensitive to ambient temperature, but responded normally to vernalization and gibberellic acid. Genetic analyses suggested that this ambient temperature-insensitive flowering was independent of FLOWERING LOCUS C (FLC). Also, FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) expression was up-regulated in hos1 mutants at both temperatures. The ft tsf mutation almost completely suppressed the early flowering of hos1 mutants at different temperatures, suggesting that FT and TSF are downstream of HOS1 in the ambient temperature response. A lesion in CONSTANS (CO) did not affect the ambient temperature-insensitive flowering phenotype of hos1-3 mutants. In silico analysis showed that FVE was spatiotemporally co-expressed with HOS1. A HOS1-green fluorescent protein (GFP) fusion co-localized with FVE-GFP in the nucleus at both 16 and 23°C. HOS1 physically interacted with FVE and FLK in yeast two-hybrid and co-immunoprecipitation assays. Moreover, hos1 mutants were insensitive to intermittent cold. Collectively, our results suggest that HOS1 acts as a common regulator in the signaling pathways that control flowering time in response to low ambient temperature.

  13. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transition of fleshy fruit maturation to ripening is regulated by exogenous and endogenous signals which coordinate the transition of the fruit to a final state of attractiveness to seed dispersing organisms. Tomato is a model for biology and genetics regulating specific ripening pathways includ...

  14. Differential expression of calcium-regulated SlSRs in response to abiotic and biotic stresses in tomato fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium has been shown to increase stress tolerance, enhance fruit firmness and reduce decay. Previously we reported that seven tomato SlSRs encode calcium/calmodulin-regulated proteins, and that their expressions are developmentally regulated during fruit development and ripening, and are also resp...

  15. Regulation of Flowering in Brachypodium distachyon (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Amasino, Rick

    2013-03-01

    Rick Amasino of the University of Wisconsin on "Regulation of Flowering in Brachypodium distachyon" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  16. microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development.

    PubMed

    Ferreira e Silva, Geraldo Felipe; Silva, Eder Marques; Azevedo, Mariana da Silva; Guivin, Mike Anderson Corazon; Ramiro, Daniel Alves; Figueiredo, Cassia Regina; Carrer, Helaine; Peres, Lázaro Eustáquio Pereira; Nogueira, Fabio Tebaldi Silveira

    2014-05-01

    Fruit ripening in tomato (Solanum lycopersicum L.) is well understood at the molecular level. However, information regarding genetic pathways associated with tomato ovary and early fruit development is still lacking. Here, we investigate the possible role(s) of the microRNA156/SQUAMOSA promoter-binding protein-like (SPL or SBP box) module (miR156 node) in tomato ovary development. miR156-targeted S. lycopersicum SBP genes were dynamically expressed in developing flowers and ovaries, and miR156 was mainly expressed in meristematic tissues of the ovary, including placenta and ovules. Transgenic tomato cv. Micro-Tom plants over-expressing the AtMIR156b precursor exhibited abnormal flower and fruit morphology, with fruits characterized by growth of extra carpels and ectopic structures. Scanning electron microscopy and histological analyses showed the presence of meristem-like structures inside the ovaries, which are probably responsible for the ectopic organs. Interestingly, expression of genes associated with meristem maintenance and formation of new organs, such as LeT6/TKN2 (a KNOX-like class I gene) and GOBLET (a NAM/CUC-like gene), was induced in developing ovaries of transgenic plants as well as in the ovaries of the natural mutant Mouse ear (Me), which also displays fruits with extra carpels. Conversely, expression of the MADS box genes MACROCALYX (MC) and FUL1/TDR4, and the LEAFY ortholog FALSIFLORA, was repressed in the developing ovaries of miR156 over-expressors, suggesting similarities with Arabidopsis at this point of the miR156/SPL pathway but with distinct functional consequences in reproductive development. Altogether, these observations suggest that the miR156 node is involved in maintenance of the meristematic state of ovary tissues, thereby controlling initial steps of fleshy fruit development and determinacy.

  17. [Regulation of different calcium forms on the photosynthesis of tomato leaves under heat stress].

    PubMed

    Qi, Hong-yan; Wang, Dan; Qi, Ming-fang; Liu, Yu-feng; He, Yu; Li, Tian-lai

    2014-12-01

    The regulation of different calcium forms, namely CaCl2, Nano-calcium and Manntiol-calcuim, on the gas exchange and fluorescence of tomato leaves under heat stress was investigated. The results showed that all forms of calcium alleviated the decrease of chlorophyll a and carotenoid contents in leaves of tomato seedlings under heat stress, enhanced the net photosynthesis rate (Pn), transpiration rate (Tr) and stomatal conductance (g(s)) to varying degrees, reduced the quantum yield of non-regulated energy dissipation [Y(NO)] of PSII and quantum yield of non-photochemical energy dissipation in PSI due to acceptor side limitation [Y(NA)], promoted the regulated energy dissipation [Y(NPQ)] and quantum yield of non-photochemical energy dissipation in PSI due to donor side limitation [Y(ND)], and increased the calcium content in leaves. Generally, manntiol-calcium and nano-calcium were more effective than CaCl2, and more suitable to enhance the photosynthesis of leaves oftomato seedlings under heat stress.

  18. Transcriptional and posttranscriptional regulation of the tomato leaf mould disease resistance gene Cf-9.

    PubMed

    Li, Wen; Xu, You-Ping; Cai, Xin-Zhong

    2016-01-29

    Plant disease resistance (R) genes confer effector-triggered immunity (ETI) to pathogens carrying complementary effector/avirulence (Avr) genes. They are traditionally recognized to function at translational and/or posttranslational levels. In this study, however, transcriptional and posttranscriptional regulation of Cf-9, a tomato R gene conferring resistance to leaf mould fungal pathogen carrying Avr9, was demonstrated. Expression of the Cf-9 gene was 10.8-54.7 folds higher in the Cf-9/Avr9 tomato lines than in the Cf-9 lines depending on the seedling age, indicating that the Cf-9 gene expression was strongly induced by Avr9. Moreover, expression of the Cf-9 gene in the 5-day-old Cf-9/Avr9 seedlings at 33 °C was approximately 80 folds lower than that at 25 °C, and was enhanced by 23.4 folds at only 4 h post temperature shift from 33 °C to 25 °C, demonstrating that the Avr9-mediated induction of the Cf-9 gene expression is reversibly repressed by high temperature. Expression of the Cf-9 gene in the Cf-9 seedlings was similarly affected by temperature as in the Cf-9/Avr9 seedlings, implying that the genetic control of temperature sensitivity of the Cf-9 gene expression is epistasis to its Avr9-mediated induction. Additionally, a miRNA sly-miR6022, TGGAAGGGAGAATATCCAGGA, targeting the leucine-rich repeat (LRR) domain spanning LRR13-LRR14 of the Cf-9 gene transcript was predicted. Over-expression of this miRNA resulted in over 88% reduction of the Cf-9 gene transcripts in both Nicotiana benthamiana and tomato, and thus verifying the function of sly-miR6022 in degrading the Cf-9 gene transcripts. Collectively, our results reveal that the tomato R gene Cf-9 is strongly regulated at transcriptional level by pathogen Avr9 in a temperature-sensitive manner and is also regulated at posttranscriptional level by a miRNA sly-miR6022. PMID:26768363

  19. A cytochrome P450 regulates a domestication trait in cultivated tomato.

    PubMed

    Chakrabarti, Manohar; Zhang, Na; Sauvage, Christopher; Muños, Stéphane; Blanca, Jose; Cañizares, Joaquin; Diez, Maria Jose; Schneider, Rhiannon; Mazourek, Michael; McClead, Jammi; Causse, Mathilde; van der Knaap, Esther

    2013-10-15

    Domestication of crop plants had effects on human lifestyle and agriculture. However, little is known about the underlying molecular mechanisms accompanying the changes in fruit appearance as a consequence of selection by early farmers. We report the fine mapping and cloning of a tomato (Solanum lycopersicum) fruit mass gene encoding the ortholog of KLUH, SlKLUH, a P450 enzyme of the CYP78A subfamily. The increase in fruit mass is predominantly the result of enlarged pericarp and septum tissues caused by increased cell number in the large fruited lines. SlKLUH also modulates plant architecture by regulating number and length of the side shoots, and ripening time, and these effects are particularly strong in plants that transgenically down-regulate SlKLUH expression carrying fruits of a dramatically reduced mass. Association mapping followed by segregation analyses revealed that a single nucleotide polymorphism in the promoter of the gene is highly associated with fruit mass. This single polymorphism may potentially underlie a regulatory mutation resulting in increased SlKLUH expression concomitant with increased fruit mass. Our findings suggest that the allele giving rise to large fruit arose in the early domesticates of tomato and becoming progressively more abundant upon further selections. We also detected association of fruit weight with CaKLUH in chile pepper (Capsicum annuum) suggesting that selection of the orthologous gene may have occurred independently in a separate domestication event. Altogether, our findings shed light on the molecular basis of fruit mass, a key domestication trait in tomato and other fruit and vegetable crops.

  20. The Aux/IAA, Sl-IAA17 regulates quality parameters over tomato fruit development.

    PubMed

    Su, L Y; Audran, C; Bouzayen, M; Roustan, J P; Chervin, C

    2015-01-01

    Auxin is known to be involved in all the stages of fruit development. Aux/IAAs are regulators of the auxin signaling at the transcription level. In a recent study, using RNAi strategy to limit the expression Sl-IAA17, it was shown that this tomato AuxIAA regulates fruit size mainly through altering the ploidy level of pericarp cells. Indeed, Sl-IAA17 down-regulated lines showed fruit with larger diameter, bigger volume and heavier weight than wild-type. The increase in fruit size was associated with thicker pericarp rather than larger locular spaces. The thicker pericarp was linked to larger cells harboring higher ploidy level, probably due to more active endoreduplication at the beginning of fruit development. The present report describes some additional phenotypes, not described in the initial article, among which are soluble solid content, juice pH, firmness, seed weight and fruit morphology.

  1. Flowers under pressure: ins and outs of turgor regulation in development

    PubMed Central

    Beauzamy, Léna; Nakayama, Naomi; Boudaoud, Arezki

    2014-01-01

    Background Turgor pressure is an essential feature of plants; however, whereas its physiological importance is unequivocally recognized, its relevance to development is often reduced to a role in cell elongation. Scope This review surveys the roles of turgor in development, the molecular mechanisms of turgor regulation and the methods used to measure turgor and related quantities, while also covering the basic concepts associated with water potential and water flow in plants. Three key processes in flower development are then considered more specifically: flower opening, anther dehiscence and pollen tube growth. Conclusions Many molecular determinants of turgor and its regulation have been characterized, while a number of methods are now available to quantify water potential, turgor and hydraulic conductivity. Data on flower opening, anther dehiscence and lateral root emergence suggest that turgor needs to be finely tuned during development, both spatially and temporally. It is anticipated that a combination of biological experiments and physical measurements will reinforce the existing data and reveal unexpected roles of turgor in development. PMID:25288632

  2. Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus.

    PubMed

    Chen, Tianzi; Lv, Yuanda; Zhao, Tongming; Li, Nan; Yang, Yuwen; Yu, Wengui; He, Xin; Liu, Tingli; Zhang, Baolong

    2013-01-01

    Tomato yellow leaf curl virus (TYLCV) threatens tomato production worldwide by causing leaf yellowing, leaf curling, plant stunting and flower abscission. The current understanding of the host plant defense response to this virus is very limited. Using whole transcriptome sequencing, we analyzed the differential gene expression in response to TYLCV infection in the TYLCV-resistant tomato breeding line CLN2777A (R) and TYLCV-susceptible tomato breeding line TMXA48-4-0 (S). The mixed inoculated samples from 3, 5 and 7 day post inoculation (dpi) were compared to non-inoculated samples at 0 dpi. Of the total of 34831 mapped transcripts, 209 and 809 genes were differentially expressed in the R and S tomato line, respectively. The proportion of up-regulated differentially expressed genes (DEGs) in the R tomato line (58.37%) was higher than that in the S line (9.17%). Gene ontology (GO) analyses revealed that similar GO terms existed in both DEGs of R and S lines; however, some sets of defense related genes and their expression levels were not similar between the two tomato lines. Genes encoding for WRKY transcriptional factors, R genes, protein kinases and receptor (-like) kinases which were identified as down-regulated DEGs in the S line were up-regulated or not differentially expressed in the R line. The up-regulated DEGs in the R tomato line revealed the defense response of tomato to TYLCV infection was characterized by the induction and regulation of a series of genes involved in cell wall reorganization, transcriptional regulation, defense response, ubiquitination, metabolite synthesis and so on. The present study provides insights into various reactions underlining the successful establishment of resistance to TYLCV in the R tomato line, and helps in the identification of important defense-related genes in tomato for TYLCV disease management. PMID:24260487

  3. Fleshy Fruit Expansion and Ripening Are Regulated by the Tomato SHATTERPROOF Gene TAGL1[W][OA

    PubMed Central

    Vrebalov, Julia; Pan, Irvin L.; Arroyo, Antonio Javier Matas; McQuinn, Ryan; Chung, MiYoung; Poole, Mervin; Rose, Jocelyn; Seymour, Graham; Grandillo, Silvana; Giovannoni, James; Irish, Vivian F.

    2009-01-01

    The maturation and ripening of fleshy fruits is a developmental program that synchronizes seed maturation with metabolism, rendering fruit tissues desirable to seed dispersing organisms. Through RNA interference repression, we show that Tomato AGAMOUS-LIKE1 (TAGL1), the tomato (Solanum lycopersicum) ortholog of the duplicated SHATTERPROOF (SHP) MADS box genes of Arabidopsis thaliana, is necessary for fruit ripening. Tomato plants with reduced TAGL1 mRNA produced yellow-orange fruit with reduced carotenoids and thin pericarps. These fruit are also decreased in ethylene, indicating a comprehensive inhibition of maturation mediated through reduced ACC Synthase 2 expression. Furthermore, ectopic expression of TAGL1 in tomato resulted in expansion of sepals and accumulation of lycopene, supporting the role of TAGL1 in ripening. In Arabidopsis, the duplicate SHP1 and SHP2 MADS box genes regulate the development of separation layers essential for pod shatter. Expression of TAGL1 in Arabidopsis failed to completely rescue the shp1 shp2 mutant phenotypes, indicating that TAGL1 has evolved distinct molecular functions compared with its Arabidopsis counterparts. These analyses demonstrate that TAGL1 plays an important role in regulating both fleshy fruit expansion and the ripening process that together are necessary to promote seed dispersal of fleshy fruit. From this broad perspective, SHP1/2 and TAGL1, while distinct in molecular function, regulate similar activities via their necessity for seed dispersal in Arabidopsis and tomato, respectively. PMID:19880793

  4. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development

    PubMed Central

    2014-01-01

    Background Development of eukaryotic organisms is controlled by transcription factors that trigger specific and global changes in gene expression programs. In plants, MADS-domain transcription factors act as master regulators of developmental switches and organ specification. However, the mechanisms by which these factors dynamically regulate the expression of their target genes at different developmental stages are still poorly understood. Results We characterized the relationship of chromatin accessibility, gene expression, and DNA binding of two MADS-domain proteins at different stages of Arabidopsis flower development. Dynamic changes in APETALA1 and SEPALLATA3 DNA binding correlated with changes in gene expression, and many of the target genes could be associated with the developmental stage in which they are transcriptionally controlled. We also observe dynamic changes in chromatin accessibility during flower development. Remarkably, DNA binding of APETALA1 and SEPALLATA3 is largely independent of the accessibility status of their binding regions and it can precede increases in DNA accessibility. These results suggest that APETALA1 and SEPALLATA3 may modulate chromatin accessibility, thereby facilitating access of other transcriptional regulators to their target genes. Conclusions Our findings indicate that different homeotic factors regulate partly overlapping, yet also distinctive sets of target genes in a partly stage-specific fashion. By combining the information from DNA-binding and gene expression data, we are able to propose models of stage-specific regulatory interactions, thereby addressing dynamics of regulatory networks throughout flower development. Furthermore, MADS-domain TFs may regulate gene expression by alternative strategies, one of which is modulation of chromatin accessibility. PMID:24581456

  5. The Arabidopsis E3 Ubiquitin Ligase HOS1 Negatively Regulates CONSTANS Abundance in the Photoperiodic Control of Flowering[W

    PubMed Central

    Lazaro, Ana; Valverde, Federico; Piñeiro, Manuel; Jarillo, Jose A.

    2012-01-01

    The Arabidopsis thaliana early in short days6 (esd6) mutant was isolated in a screen for mutations that accelerate flowering time. Among other developmental alterations, esd6 displays early flowering in both long- and short-day conditions. Fine mapping of the mutation showed that the esd6 phenotype is caused by a lesion in the HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1) locus, which encodes a RING finger–containing E3 ubiquitin ligase. The esd6/hos1 mutation causes decreased FLOWERING LOCUS C expression and requires CONSTANS (CO) protein for its early flowering phenotype under long days. Moreover, CO and HOS1 physically interact in vitro and in planta, and HOS1 regulates CO abundance, particularly during the daylight period. Accordingly, hos1 causes a shift in the regular long-day pattern of expression of FLOWERING LOCUS T (FT) transcript, starting to rise 4 h after dawn in the mutant. In addition, HOS1 interacts synergistically with CONSTITUTIVE PHOTOMORPHOGENIC1, another regulator of CO protein stability, in the regulation of flowering time. Taken together, these results indicate that HOS1 is involved in the control of CO abundance, ensuring that CO activation of FT occurs only when the light period reaches a certain length and preventing precocious flowering in Arabidopsis. PMID:22408073

  6. The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering.

    PubMed

    Lazaro, Ana; Valverde, Federico; Piñeiro, Manuel; Jarillo, Jose A

    2012-03-01

    The Arabidopsis thaliana early in short days6 (esd6) mutant was isolated in a screen for mutations that accelerate flowering time. Among other developmental alterations, esd6 displays early flowering in both long- and short-day conditions. Fine mapping of the mutation showed that the esd6 phenotype is caused by a lesion in the high expression of osmotically responsive genes1 (HOS1) locus, which encodes a RING finger-containing E3 ubiquitin ligase. The esd6/hos1 mutation causes decreased flowering locus C expression and requires CONSTANS (CO) protein for its early flowering phenotype under long days. Moreover, CO and HOS1 physically interact in vitro and in planta, and HOS1 regulates CO abundance, particularly during the daylight period. Accordingly, hos1 causes a shift in the regular long-day pattern of expression of flowering locus T (FT) transcript, starting to rise 4 h after dawn in the mutant. In addition, HOS1 interacts synergistically with constitutive photomorphogenic1, another regulator of CO protein stability, in the regulation of flowering time. Taken together, these results indicate that HOS1 is involved in the control of CO abundance, ensuring that CO activation of FT occurs only when the light period reaches a certain length and preventing precocious flowering in Arabidopsis.

  7. Deciphering the Role of POLYCOMB REPRESSIVE COMPLEX1 Variants in Regulating the Acquisition of Flowering Competence in Arabidopsis1

    PubMed Central

    Picó, Sara; Ortiz-Marchena, M. Isabel; Merini, Wiam; Calonje, Myriam

    2015-01-01

    Polycomb group (PcG) proteins play important roles in regulating developmental phase transitions in plants; however, little is known about the role of the PcG machinery in regulating the transition from juvenile to adult phase. Here, we show that Arabidopsis (Arabidopsis thaliana) B lymphoma Moloney murine leukemia virus insertion region1 homolog (BMI1) POLYCOMB REPRESSIVE COMPLEX1 (PRC1) components participate in the repression of microRNA156 (miR156). Loss of AtBMI1 function leads to the up-regulation of the primary transcript of MIR156A and MIR156C at the time the levels of miR156 should decline, resulting in an extended juvenile phase and delayed flowering. Conversely, the PRC1 component EMBRYONIC FLOWER (EMF1) participates in the regulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE and MIR172 genes. Accordingly, plants impaired in EMF1 function displayed misexpression of these genes early in development, which contributes to a CONSTANS-independent up-regulation of FLOWERING LOCUS T (FT) leading to the earliest flowering phenotype described in Arabidopsis. Our findings show how the different regulatory roles of two functional PRC1 variants coordinate the acquisition of flowering competence and help to reach the threshold of FT necessary to flower. Furthermore, we show how two central regulatory mechanisms, such as PcG and microRNA, assemble to achieve a developmental outcome. PMID:25897002

  8. Deciphering the Role of POLYCOMB REPRESSIVE COMPLEX1 Variants in Regulating the Acquisition of Flowering Competence in Arabidopsis.

    PubMed

    Picó, Sara; Ortiz-Marchena, M Isabel; Merini, Wiam; Calonje, Myriam

    2015-08-01

    Polycomb group (PcG) proteins play important roles in regulating developmental phase transitions in plants; however, little is known about the role of the PcG machinery in regulating the transition from juvenile to adult phase. Here, we show that Arabidopsis (Arabidopsis thaliana) B lymphoma Moloney murine leukemia virus insertion region1 homolog (BMI1) POLYCOMB REPRESSIVE COMPLEX1 (PRC1) components participate in the repression of microRNA156 (miR156). Loss of AtBMI1 function leads to the up-regulation of the primary transcript of MIR156A and MIR156C at the time the levels of miR156 should decline, resulting in an extended juvenile phase and delayed flowering. Conversely, the PRC1 component EMBRYONIC FLOWER (EMF1) participates in the regulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE and MIR172 genes. Accordingly, plants impaired in EMF1 function displayed misexpression of these genes early in development, which contributes to a CONSTANS-independent up-regulation of FLOWERING LOCUS T (FT) leading to the earliest flowering phenotype described in Arabidopsis. Our findings show how the different regulatory roles of two functional PRC1 variants coordinate the acquisition of flowering competence and help to reach the threshold of FT necessary to flower. Furthermore, we show how two central regulatory mechanisms, such as PcG and microRNA, assemble to achieve a developmental outcome.

  9. Deciphering the Role of POLYCOMB REPRESSIVE COMPLEX1 Variants in Regulating the Acquisition of Flowering Competence in Arabidopsis.

    PubMed

    Picó, Sara; Ortiz-Marchena, M Isabel; Merini, Wiam; Calonje, Myriam

    2015-08-01

    Polycomb group (PcG) proteins play important roles in regulating developmental phase transitions in plants; however, little is known about the role of the PcG machinery in regulating the transition from juvenile to adult phase. Here, we show that Arabidopsis (Arabidopsis thaliana) B lymphoma Moloney murine leukemia virus insertion region1 homolog (BMI1) POLYCOMB REPRESSIVE COMPLEX1 (PRC1) components participate in the repression of microRNA156 (miR156). Loss of AtBMI1 function leads to the up-regulation of the primary transcript of MIR156A and MIR156C at the time the levels of miR156 should decline, resulting in an extended juvenile phase and delayed flowering. Conversely, the PRC1 component EMBRYONIC FLOWER (EMF1) participates in the regulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE and MIR172 genes. Accordingly, plants impaired in EMF1 function displayed misexpression of these genes early in development, which contributes to a CONSTANS-independent up-regulation of FLOWERING LOCUS T (FT) leading to the earliest flowering phenotype described in Arabidopsis. Our findings show how the different regulatory roles of two functional PRC1 variants coordinate the acquisition of flowering competence and help to reach the threshold of FT necessary to flower. Furthermore, we show how two central regulatory mechanisms, such as PcG and microRNA, assemble to achieve a developmental outcome. PMID:25897002

  10. A Kunitz-type protease inhibitor regulates programmed cell death during flower development in Arabidopsis thaliana.

    PubMed

    Boex-Fontvieille, Edouard; Rustgi, Sachin; Reinbothe, Steffen; Reinbothe, Christiane

    2015-10-01

    Flower development and fertilization are tightly controlled in Arabidopsis thaliana. In order to permit the fertilization of a maximum amount of ovules as well as proper embryo and seed development, a subtle balance between pollen tube growth inside the transmitting tract and pollen tube exit from the septum is needed. Both processes depend on a type of programmed cell death that is still poorly understood. Here, it is shown that a Kunitz protease inhibitor related to water-soluble chlorophyll proteins of Brassicaceae (AtWSCP, encoded by At1g72290) is involved in controlling cell death during flower development in A. thaliana. Genetic, biochemical, and cell biology approaches revealed that WSCP physically interacts with RD21 (RESPONSIVE TO DESICCATION) and that this interaction in turn inhibits the activity of RD21 as a pro-death protein. The regulatory circuit identified depends on the restricted expression of WSCP in the transmitting tract and the septum epidermis. In a respective Atwscp knock-out mutant, flowers exhibited precocious cell death in the transmitting tract and unnatural death of septum epidermis cells. As a consequence, apical-basal pollen tube growth, fertilization of ovules, as well as embryo development and seed formation were perturbed. Together, the data identify a unique mechanism of cell death regulation that fine-tunes pollen tube growth.

  11. Shoot Branching and Leaf Dissection in Tomato Are Regulated by Homologous Gene Modules[W

    PubMed Central

    Busch, Bernhard L.; Schmitz, Gregor; Rossmann, Susanne; Piron, Florence; Ding, Jia; Bendahmane, Abdelhafid; Theres, Klaus

    2011-01-01

    Aerial plant architecture is predominantly determined by shoot branching and leaf morphology, which are governed by apparently unrelated developmental processes, axillary meristem formation, and leaf dissection. Here, we show that in tomato (Solanum lycopersicum), these processes share essential functions in boundary establishment. Potato leaf (C), a key regulator of leaf dissection, was identified to be the closest paralog of the shoot branching regulator Blind (Bl). Comparative genomics revealed that these two R2R3 MYB genes are orthologs of the Arabidopsis thaliana branching regulator REGULATOR OF AXILLARY MERISTEMS1 (RAX1). Expression studies and complementation analyses indicate that these genes have undergone sub- or neofunctionalization due to promoter differentiation. C acts in a pathway independent of other identified leaf dissection regulators. Furthermore, the known leaf complexity regulator Goblet (Gob) is crucial for axillary meristem initiation and acts in parallel to C and Bl. Finally, RNA in situ hybridization revealed that the branching regulator Lateral suppressor (Ls) is also expressed in leaves. All four boundary genes, C, Bl, Gob, and Ls, may act by suppressing growth, as indicated by gain-of-function plants. Thus, leaf architecture and shoot architecture rely on a conserved mechanism of boundary formation preceding the initiation of leaflets and axillary meristems. PMID:22039213

  12. Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development.

    PubMed

    Carrera, Esther; Ruiz-Rivero, Omar; Peres, Lazaro Eustaquio Pereira; Atares, Alejandro; Garcia-Martinez, Jose Luis

    2012-11-01

    procera (pro) is a tall tomato (Solanum lycopersicum) mutant carrying a point mutation in the GRAS region of the gene encoding SlDELLA, a repressor in the gibberellin (GA) signaling pathway. Consistent with the SlDELLA loss of function, pro plants display a GA-constitutive response phenotype, mimicking wild-type plants treated with GA₃. The ovaries from both nonemasculated and emasculated pro flowers had very strong parthenocarpic capacity, associated with enhanced growth of preanthesis ovaries due to more and larger cells. pro parthenocarpy is facultative because seeded fruits were obtained by manual pollination. Most pro pistils had exserted stigmas, thus preventing self-pollination, similar to wild-type pistils treated with GA₃ or auxins. However, Style2.1, a gene responsible for long styles in noncultivated tomato, may not control the enhanced style elongation of pro pistils, because its expression was not higher in pro styles and did not increase upon GA₃ application. Interestingly, a high percentage of pro flowers had meristic alterations, with one additional petal, sepal, stamen, and carpel at each of the four whorls, respectively, thus unveiling a role of SlDELLA in flower organ development. Microarray analysis showed significant changes in the transcriptome of preanthesis pro ovaries compared with the wild type, indicating that the molecular mechanism underlying the parthenocarpic capacity of pro is complex and that it is mainly associated with changes in the expression of genes involved in GA and auxin pathways. Interestingly, it was found that GA activity modulates the expression of cell division and expansion genes and an auxin signaling gene (tomato AUXIN RESPONSE FACTOR7) during fruit-set. PMID:22942390

  13. Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis.

    PubMed

    Cui, Xia; Lu, Falong; Li, Yue; Xue, Yongming; Kang, Yanyuan; Zhang, Shuaibin; Qiu, Qi; Cui, Xiekui; Zheng, Shuzhi; Liu, Bin; Xu, Xiaodong; Cao, Xiaofeng

    2013-06-01

    Protein ubiquitination is involved in most cellular processes. In Arabidopsis (Arabidopsis thaliana), ubiquitin-mediated protein degradation regulates the stability of key components of the circadian clock feedback loops and the photoperiodic flowering pathway. Here, we identified two ubiquitin-specific proteases, UBP12 and UBP13, involved in circadian clock and photoperiodic flowering regulation. Double mutants of ubp12 and ubp13 display pleiotropic phenotypes, including early flowering and short periodicity of circadian rhythms. In ubp12 ubp13 double mutants, CONSTANS (CO) transcript rises earlier than that of wild-type plants during the day, which leads to increased expression of FLOWERING LOCUS T. This, and analysis of ubp12 co mutants, indicates that UBP12 and UBP13 regulate photoperiodic flowering through a CO-dependent pathway. In addition, UBP12 and UBP13 regulate the circadian rhythm of clock genes, including LATE ELONGATED HYPOCOTYL, CIRCADIAN CLOCK ASSOCIATED1, and TIMING OF CAB EXPRESSION1. Furthermore, UBP12 and UBP13 are circadian controlled. Therefore, our work reveals a role for two deubiquitinases, UBP12 and UBP13, in the control of the circadian clock and photoperiodic flowering, which extends our understanding of ubiquitin in daylength measurement in higher plants.

  14. The Tomato Hoffman's Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures.

    PubMed

    Qiu, Zhengkun; Wang, Xiaoxuan; Gao, Jianchang; Guo, Yanmei; Huang, Zejun; Du, Yongchen

    2016-01-01

    Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF) gene, which corresponds to the ah (Hoffman's anthocyaninless) locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses. PMID:26943362

  15. The Tomato Hoffman’s Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures

    PubMed Central

    Gao, Jianchang; Guo, Yanmei; Huang, Zejun; Du, Yongchen

    2016-01-01

    Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF) gene, which corresponds to the ah (Hoffman's anthocyaninless) locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses. PMID:26943362

  16. Overexpression of a grapevine R2R3-MYB factor in tomato affects vegetative development, flower morphology and flavonoid and terpenoid metabolism.

    PubMed

    Mahjoub, Ali; Hernould, Michel; Joubès, Jérôme; Decendit, Alain; Mars, Mohamed; Barrieu, François; Hamdi, Saïd; Delrot, Serge

    2009-07-01

    Although the terpenoid pathway constitutes, with the phenylpropanoid metabolism, the major pathway of secondary metabolism in plants, little is known about its regulation. Overexpression of a Vitis vinifera R2R3-MYB transcription factor (VvMYB5b) in tomato induced pleiotropic changes including dwarfism, modified leaf structure, alterations of floral morphology, pigmented and glossy fruits at the "green-mature" stage and impaired seed germination. Two main branches of secondary metabolism, which profoundly influence the organoleptic properties of the fruit, were affected in the opposite way by VvMYB5b overexpression. Phenylpropanoid metabolism was down regulated whereas the amount of beta-carotene was up regulated. This is the first example of the independent regulation of phenylpropanoid and carotenoid metabolism. The strongest modification concerns a decrease in beta-amyrin, the precursor of the oleanolic acid, which is the major component of grape waxes. Scanning electron microscopy analysis of fruits and leaves confirms the alteration of wax metabolism and a modification of cell size and shape. This may potentially impact resistance/tolerance to biotic and abiotic stresses. The results are compared with a similar approach using heterologous expression of VvMYB5b in tobacco. PMID:19375343

  17. PUB13, a U-box/ARM E3 ligase, regulates plant defense, cell death, and flowering time.

    PubMed

    Li, Wei; Dai, Liangying; Wang, Guo-Liang

    2012-08-01

    The ubiquitination pathway is involved in a variety of cellular processes in plant growth, development, and immune responses. However, the function of this pathway in connecting plant development and innate immunity is still largely unknown. Recently, we characterized the U-box/ARM E3 ubiquitin ligase PUB13, which regulates both immune responses and flowering time in Arabidopsis. Here, we show that the rice Spl11 gene can complement the cell death and flowering functions of PUB13 in the pub13 mutant. In addition, HFR1, which functions mainly in photomorphogenesis, was identified as one of the PUB13-interacting proteins through yeast two-hybrid screening and pull-down assays. Because the flowering phenotype of pub13 depends on photoperiod, we propose that PUB13 may regulate HFR1 to fine-tune photomorphogenesis and flowering time in Arabidopsis.

  18. The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning.

    PubMed

    Shi, Jian Xin; Adato, Avital; Alkan, Noam; He, Yonghua; Lashbrooke, Justin; Matas, Antonio J; Meir, Sagit; Malitsky, Sergey; Isaacson, Tal; Prusky, Dov; Leshkowitz, Dena; Schreiber, Lukas; Granell, Antonio R; Widemann, Emilie; Grausem, Bernard; Pinot, Franck; Rose, Jocelyn K C; Rogachev, Ilana; Rothan, Christophe; Aharoni, Asaph

    2013-01-01

    Fleshy tomato fruit typically lacks stomata; therefore, a proper cuticle is particularly vital for fruit development and interaction with the surroundings. Here, we characterized the tomato SlSHINE3 (SlSHN3) transcription factor to extend our limited knowledge regarding the regulation of cuticle formation in fleshy fruits. We created SlSHN3 overexpressing and silenced plants, and used them for detailed analysis of cuticular lipid compositions, phenotypic characterization, and the study on the mode of SlSHN3 action. Heterologous expression of SlSHN3 in Arabidopsis phenocopied overexpression of the Arabidopsis SHNs. Silencing of SlSHN3 results in profound morphological alterations of the fruit epidermis and significant reduction in cuticular lipids. We demonstrated that SlSHN3 activity is mediated by control of genes associated with cutin metabolism and epidermal cell patterning. As with SlSHN3 RNAi lines, mutation in the SlSHN3 target gene, SlCYP86A69, resulted in severe cutin deficiency and altered fruit surface architecture. In vitro activity assays demonstrated that SlCYP86A69 possesses NADPH-dependent ω-hydroxylation activity, particularly of C18:1 fatty acid to the 18-hydroxyoleic acid cutin monomer. This study provided insights into transcriptional mechanisms mediating fleshy fruit cuticle formation and highlighted the link between cutin metabolism and the process of fruit epidermal cell patterning.

  19. Sequence evolution and expression regulation of stress-responsive genes in natural populations of wild tomato.

    PubMed

    Fischer, Iris; Steige, Kim A; Stephan, Wolfgang; Mboup, Mamadou

    2013-01-01

    The wild tomato species Solanum chilense and S. peruvianum are a valuable non-model system for studying plant adaptation since they grow in diverse environments facing many abiotic constraints. Here we investigate the sequence evolution of regulatory regions of drought and cold responsive genes and their expression regulation. The coding regions of these genes were previously shown to exhibit signatures of positive selection. Expression profiles and sequence evolution of regulatory regions of members of the Asr (ABA/water stress/ripening induced) gene family and the dehydrin gene pLC30-15 were analyzed in wild tomato populations from contrasting environments. For S. chilense, we found that Asr4 and pLC30-15 appear to respond much faster to drought conditions in accessions from very dry environments than accessions from more mesic locations. Sequence analysis suggests that the promoter of Asr2 and the downstream region of pLC30-15 are under positive selection in some local populations of S. chilense. By investigating gene expression differences at the population level we provide further support of our previous conclusions that Asr2, Asr4, and pLC30-15 are promising candidates for functional studies of adaptation. Our analysis also demonstrates the power of the candidate gene approach in evolutionary biology research and highlights the importance of wild Solanum species as a genetic resource for their cultivated relatives.

  20. Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate.

    PubMed

    Wu, Miin-Feng; Yamaguchi, Nobutoshi; Xiao, Jun; Bargmann, Bastiaan; Estelle, Mark; Sang, Yi; Wagner, Doris

    2015-01-01

    Reprogramming of cell identities during development frequently requires changes in the chromatin state that need to be restricted to the correct cell populations. Here we identify an auxin hormone-regulated chromatin state switch that directs reprogramming from transit amplifying to primordium founder cell fate in Arabidopsis inflorescences. Upon auxin sensing, the MONOPTEROS transcription factor recruits SWI/SNF chromatin remodeling ATPases to increase accessibility of the DNA for induction of key regulators of flower primordium initiation. In the absence of the hormonal cue, auxin sensitive Aux/IAA proteins bound to MONOPTEROS block recruitment of the SWI/SNF chromatin remodeling ATPases in addition to recruiting a co-repressor/histone deacetylase complex. This simple and elegant hormone-mediated chromatin state switch is ideally suited for iterative flower primordium initiation and orchestrates additional auxin-regulated cell fate transitions. Our findings establish a new paradigm for nuclear response to auxin. They also provide an explanation for how this small molecule can direct diverse plant responses. PMID:26460543

  1. Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate.

    PubMed

    Wu, Miin-Feng; Yamaguchi, Nobutoshi; Xiao, Jun; Bargmann, Bastiaan; Estelle, Mark; Sang, Yi; Wagner, Doris

    2015-10-13

    Reprogramming of cell identities during development frequently requires changes in the chromatin state that need to be restricted to the correct cell populations. Here we identify an auxin hormone-regulated chromatin state switch that directs reprogramming from transit amplifying to primordium founder cell fate in Arabidopsis inflorescences. Upon auxin sensing, the MONOPTEROS transcription factor recruits SWI/SNF chromatin remodeling ATPases to increase accessibility of the DNA for induction of key regulators of flower primordium initiation. In the absence of the hormonal cue, auxin sensitive Aux/IAA proteins bound to MONOPTEROS block recruitment of the SWI/SNF chromatin remodeling ATPases in addition to recruiting a co-repressor/histone deacetylase complex. This simple and elegant hormone-mediated chromatin state switch is ideally suited for iterative flower primordium initiation and orchestrates additional auxin-regulated cell fate transitions. Our findings establish a new paradigm for nuclear response to auxin. They also provide an explanation for how this small molecule can direct diverse plant responses.

  2. Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate

    PubMed Central

    Wu, Miin-Feng; Yamaguchi, Nobutoshi; Xiao, Jun; Bargmann, Bastiaan; Estelle, Mark; Sang, Yi; Wagner, Doris

    2015-01-01

    Reprogramming of cell identities during development frequently requires changes in the chromatin state that need to be restricted to the correct cell populations. Here we identify an auxin hormone-regulated chromatin state switch that directs reprogramming from transit amplifying to primordium founder cell fate in Arabidopsis inflorescences. Upon auxin sensing, the MONOPTEROS transcription factor recruits SWI/SNF chromatin remodeling ATPases to increase accessibility of the DNA for induction of key regulators of flower primordium initiation. In the absence of the hormonal cue, auxin sensitive Aux/IAA proteins bound to MONOPTEROS block recruitment of the SWI/SNF chromatin remodeling ATPases in addition to recruiting a co-repressor/histone deacetylase complex. This simple and elegant hormone-mediated chromatin state switch is ideally suited for iterative flower primordium initiation and orchestrates additional auxin-regulated cell fate transitions. Our findings establish a new paradigm for nuclear response to auxin. They also provide an explanation for how this small molecule can direct diverse plant responses. DOI: http://dx.doi.org/10.7554/eLife.09269.001 PMID:26460543

  3. Tomato 14-3-3 protein 7 (TFT7) positively regulates immunity-associated programmed cell death by enhancing accumulation and signaling ability of MAPKKKalpha

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Programmed cell death (PCD) is triggered when Pto, a serine-threonine protein kinase recognizes either the AvrPto or AvrPtoB effector from Pseudomonas syringae pv. tomato. This PCD requires MAPKKKalpha as a positive regulator in tomato and Nicotiana benthamiana. To examine how PCD-eliciting activi...

  4. Flower-bud formation in explants of photoperiodic and day-neutral Nicotiana biotypes and its bearing on the regulation of flower formation

    SciTech Connect

    Rajeevan, M.S.; Lang, A. )

    1993-05-15

    The capacity to form flower buds in thin-layer explants was studied in Nicotiana of several species, cultivars, and lines of differing in their response to photoperiod. This capacity was found in all biotypes examined and could extend into sepals and corolla. It varied depending on genotype, source tissue and its developmental state, and composition of the culture medium, particularly the levels of glucose, auxin, and cytokinin. It was greatest in the two day-neutral plants examined, Samsun tobacco and Nicotiana rustica, where it extended from the inflorescence region down the vegetative stem, in a basipetally decreasing gradient; it was least in the two qualitative photoperiodic plants studied, the long-day plant Nicotiana silvestris and the short-day plant Maryland Mammoth tobacco, the quantitative long-day plant Nicotiana alata and the quantitative short-day plant Nicotiana otophora line 38-G-81, where it was limited to the pedicels (and, in some cases, the sepals). Regardless of the photoperiodic response of the source plants, the response was the same in explants cultured under long and short days. The capacity to form flow buds in explants is present in all Nicotiana biotypes studied supports the idea that it is regulated by the same mechanism(s), regardless of the plant's photoperiodic character. However, flower formation in the explants is not identical with de novo flower formation in a hitherto vegetative plant: it is rather the expression of a floral state already established in the plant, although it can vary widely in extent and spatial distribution. Culture conditions that permit flower-bud formation in an explant are conditions that maintain the floral state and encourage its expression; conditions under which no flower buds are formed reduce this state and/or prevent its expression. 14 refs., 5 figs., 3 tabs.

  5. The U-Box/ARM E3 ligase PUB13 regulates cell death, defense, and flowering time in Arabidopsis.

    PubMed

    Li, Wei; Ahn, Il-Pyung; Ning, Yuese; Park, Chan-Ho; Zeng, Lirong; Whitehill, Justin G A; Lu, Haibin; Zhao, Qingzhen; Ding, Bo; Xie, Qi; Zhou, Jian-Min; Dai, Liangying; Wang, Guo-Liang

    2012-05-01

    The components in plant signal transduction pathways are intertwined and affect each other to coordinate plant growth, development, and defenses to stresses. The role of ubiquitination in connecting these pathways, particularly plant innate immunity and flowering, is largely unknown. Here, we report the dual roles for the Arabidopsis (Arabidopsis thaliana) Plant U-box protein13 (PUB13) in defense and flowering time control. In vitro ubiquitination assays indicated that PUB13 is an active E3 ubiquitin ligase and that the intact U-box domain is required for the E3 ligase activity. Disruption of the PUB13 gene by T-DNA insertion results in spontaneous cell death, the accumulation of hydrogen peroxide and salicylic acid (SA), and elevated resistance to biotrophic pathogens but increased susceptibility to necrotrophic pathogens. The cell death, hydrogen peroxide accumulation, and resistance to necrotrophic pathogens in pub13 are enhanced when plants are pretreated with high humidity. Importantly, pub13 also shows early flowering under middle- and long-day conditions, in which the expression of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 and FLOWERING LOCUS T is induced while FLOWERING LOCUS C expression is suppressed. Finally, we found that two components involved in the SA-mediated signaling pathway, SID2 and PAD4, are required for the defense and flowering-time phenotypes caused by the loss of function of PUB13. Taken together, our data demonstrate that PUB13 acts as an important node connecting SA-dependent defense signaling and flowering time regulation in Arabidopsis.

  6. Florigen and anti-florigen - a systemic mechanism for coordinating growth and termination in flowering plants.

    PubMed

    Lifschitz, Eliezer; Ayre, Brian G; Eshed, Yuval

    2014-01-01

    Genetic studies in Arabidopsis established FLOWERING LOCUS T (FT) as a key flower-promoting gene in photoperiodic systems. Grafting experiments established unequivocal one-to-one relations between SINGLE FLOWER TRUSS (SFT), a tomato homolog of FT, and the hypothetical florigen, in all flowering plants. Additional studies of SFT and SELF PRUNING (SP, homolog of TFL1), two antagonistic genes regulating the architecture of the sympodial shoot system, have suggested that transition to flowering in the day-neutral and perennial tomato is synonymous with "termination." Dosage manipulation of its endogenous and mobile, graft-transmissible levels demonstrated that florigen regulates termination and transition to flowering in an SP-dependent manner and, by the same token, that high florigen levels induce growth arrest and termination in meristems across the tomato shoot system. It was thus proposed that growth balances, and consequently the patterning of the shoot systems in all plants, are mediated by endogenous, meristem-specific dynamic SFT/SP ratios and that shifts to termination by changing SFT/SP ratios are triggered by the imported florigen, the mobile form of SFT. Florigen is a universal plant growth hormone inherently checked by a complementary antagonistic systemic system. Thus, an examination of the endogenous functions of FT-like genes, or of the systemic roles of the mobile florigen in any plant species, that fails to pay careful attention to the balancing antagonistic systems, or to consider its functions in day-neutral or perennial plants, would be incomplete.

  7. Crystal Structure of the SPOC Domain of the Arabidopsis Flowering Regulator FPA.

    PubMed

    Zhang, Yinglu; Rataj, Katarzyna; Simpson, Gordon G; Tong, Liang

    2016-01-01

    The Arabidopsis protein FPA controls flowering time by regulating the alternative 3'-end processing of the FLOWERING LOCUS (FLC) antisense RNA. FPA belongs to the split ends (SPEN) family of proteins, which contain N-terminal RNA recognition motifs (RRMs) and a SPEN paralog and ortholog C-terminal (SPOC) domain. The SPOC domain is highly conserved among FPA homologs in plants, but the conservation with the domain in other SPEN proteins is much lower. We have determined the crystal structure of Arabidopsis thaliana FPA SPOC domain at 2.7 Å resolution. The overall structure is similar to that of the SPOC domain in human SMRT/HDAC1 Associated Repressor Protein (SHARP), although there are also substantial conformational differences between them. Structural and sequence analyses identify a surface patch that is conserved among plant FPA homologs. Mutations of two residues in this surface patch did not disrupt FPA functions, suggesting that either the SPOC domain is not required for the role of FPA in regulating RNA 3'-end formation or the functions of the FPA SPOC domain cannot be disrupted by the combination of mutations, in contrast to observations with the SHARP SPOC domain. PMID:27513867

  8. OsMADS32 interacts with PI-like proteins and regulates rice flower development.

    PubMed

    Wang, Huanhuan; Zhang, Liang; Cai, Qiang; Hu, Yun; Jin, Zhenming; Zhao, Xiangxiang; Fan, Wei; Huang, Qianming; Luo, Zhijing; Chen, Mingjiao; Zhang, Dabing; Yuan, Zheng

    2015-05-01

    OsMADS32 is a monocot specific MIKC(c) type MADS-box gene that plays an important role in regulating rice floral meristem and organs identity, a crucial process for reproductive success and rice yield. However, its underlying mechanism of action remains to be clarified. Here, we characterized a hypomorphic mutant allele of OsMADS32/CFO1, cfo1-3 and identified its function in controlling rice flower development by bioinformatics and protein-protein interaction analysis. The cfo1-3 mutant produces defective flowers, including loss of lodicule identity, formation of ectopic lodicule or hull-like organs and decreased stamen number, mimicking phenotypes related to the mutation of B class genes. Molecular characterization indicated that mis-splicing of OsMADS32 transcripts in the cfo1-3 mutant resulted in an extra eight amino acids in the K-domain of OsMADS32 protein. By yeast two hybrid and bimolecular fluorescence complementation assays, we revealed that the insertion of eight amino acids or deletion of the internal region in the K1 subdomain of OsMADS32 affects the interaction between OsMADS32 with PISTILLATA (PI)-like proteins OsMADS2 and OsMADS4. This work provides new insight into the mechanism by which OsMADS32 regulates rice lodicule and stamen identity, by interaction with two PI-like proteins via its K domain. PMID:25081486

  9. Crystal Structure of the SPOC Domain of the Arabidopsis Flowering Regulator FPA

    PubMed Central

    Zhang, Yinglu; Rataj, Katarzyna; Simpson, Gordon G.; Tong, Liang

    2016-01-01

    The Arabidopsis protein FPA controls flowering time by regulating the alternative 3′-end processing of the FLOWERING LOCUS (FLC) antisense RNA. FPA belongs to the split ends (SPEN) family of proteins, which contain N-terminal RNA recognition motifs (RRMs) and a SPEN paralog and ortholog C-terminal (SPOC) domain. The SPOC domain is highly conserved among FPA homologs in plants, but the conservation with the domain in other SPEN proteins is much lower. We have determined the crystal structure of Arabidopsis thaliana FPA SPOC domain at 2.7 Å resolution. The overall structure is similar to that of the SPOC domain in human SMRT/HDAC1 Associated Repressor Protein (SHARP), although there are also substantial conformational differences between them. Structural and sequence analyses identify a surface patch that is conserved among plant FPA homologs. Mutations of two residues in this surface patch did not disrupt FPA functions, suggesting that either the SPOC domain is not required for the role of FPA in regulating RNA 3′-end formation or the functions of the FPA SPOC domain cannot be disrupted by the combination of mutations, in contrast to observations with the SHARP SPOC domain. PMID:27513867

  10. Regulation and tissue-specific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggests an important function in establishing and maintaining sink metabolism.

    PubMed Central

    Godt, D E; Roitsch, T

    1997-01-01

    The aim of the present study was to gain insight into the contribution of extracellular invertases for sink metabolism in tomato (Lycopersicon esculentum L.). The present study shows that extracellular invertase isoenzymes are encoded by a gene family comprising four members: Lin5, Lin6, Lin7, and Lin8. The regulation of mRNA levels by internal and external signals and the distribution in sink and source tissues has been determined and compared with mRNA levels of the intracellular sucrose (Suc)-cleaving enzymes Suc synthase and vacuolar invertase. The specific regulation of Lin5, Lin6, and Lin7 suggests an important function of apoplastic cleavage of Suc by cell wall-bound invertase in establishing and maintaining sink metabolism. Lin6 is expressed under conditions that require a high carbohydrate supply. The corresponding mRNA shows a sink tissue-specific distribution and the concentration is elevated by stress-related stimuli, by the growth-promoting phytohormone zeatin, and in response to the induction of heterotrophic metabolism. The expression of Lin5 and Lin7 in gynoecia and stamens, respectively, suggests an important function in supplying carbohydrates to these flower organs, whereas the Lin7 mRNA was found to be present exclusively in this specific sink organ. PMID:9306701

  11. FLOWERING LOCUS C -dependent and -independent regulation of the circadian clock by the autonomous and vernalization pathways

    PubMed Central

    Salathia, Neeraj; Davis, Seth J; Lynn, James R; Michaels, Scott D; Amasino, Richard M; Millar, Andrew J

    2006-01-01

    Background The circadian system drives pervasive biological rhythms in plants. Circadian clocks integrate endogenous timing information with environmental signals, in order to match rhythmic outputs to the local day/night cycle. Multiple signaling pathways affect the circadian system, in ways that are likely to be adaptively significant. Our previous studies of natural genetic variation in Arabidopsis thaliana accessions implicated FLOWERING LOCUS C (FLC) as a circadian-clock regulator. The MADS-box transcription factor FLC is best known as a regulator of flowering time. Its activity is regulated by many regulatory genes in the "autonomous" and vernalization-dependent flowering pathways. We tested whether these same pathways affect the circadian system. Results Genes in the autonomous flowering pathway, including FLC, were found to regulate circadian period in Arabidopsis. The mechanisms involved are similar, but not identical, to the control of flowering time. By mutant analyses, we demonstrate a graded effect of FLC expression upon circadian period. Related MADS-box genes had less effect on clock function. We also reveal an unexpected vernalization-dependent alteration of periodicity. Conclusion This study has aided in the understanding of FLC's role in the clock, as it reveals that the network affecting circadian timing is partially overlapping with the floral-regulatory network. We also show a link between vernalization and circadian period. This finding may be of ecological relevance for developmental programing in other plant species. PMID:16737527

  12. Transcriptome and Metabolite Profiling Show That APETALA2a Is a Major Regulator of Tomato Fruit Ripening[C][W

    PubMed Central

    Karlova, Rumyana; Rosin, Faye M.; Busscher-Lange, Jacqueline; Parapunova, Violeta; Do, Phuc T.; Fernie, Alisdair R.; Fraser, Paul D.; Baxter, Charles; Angenent, Gerco C.; de Maagd, Ruud A.

    2011-01-01

    Fruit ripening in tomato (Solanum lycopersicum) requires the coordination of both developmental cues as well as the plant hormone ethylene. Although the role of ethylene in mediating climacteric ripening has been established, knowledge regarding the developmental regulators that modulate the involvement of ethylene in tomato fruit ripening is still lacking. Here, we show that the tomato APETALA2a (AP2a) transcription factor regulates fruit ripening via regulation of ethylene biosynthesis and signaling. RNA interference (RNAi)-mediated repression of AP2a resulted in alterations in fruit shape, orange ripe fruits, and altered carotenoid accumulation. Microarray expression analyses of the ripe AP2 RNAi fruits showed altered expression of genes involved in various metabolic pathways, such as the phenylpropanoid and carotenoid pathways, as well as in hormone synthesis and perception. Genes involved in chromoplast differentiation and other ripening-associated processes were also differentially expressed, but softening and ethylene biosynthesis occurred in the transgenic plants. Ripening regulators RIPENING-INHIBITOR, NON-RIPENING, and COLORLESS NON-RIPENING (CNR) function upstream of AP2a and positively regulate its expression. In the pericarp of AP2 RNAi fruits, mRNA levels of CNR were elevated, indicating that AP2a and CNR are part of a negative feedback loop in the regulation of ripening. Moreover, we demonstrated that CNR binds to the promoter of AP2a in vitro. PMID:21398570

  13. A developmentally regulated lipocalin-like gene is overexpressed in Tomato yellow leaf curl virus-resistant tomato plants upon virus inoculation, and its silencing abolishes resistance.

    PubMed

    Sade, Dagan; Eybishtz, Assaf; Gorovits, Rena; Sobol, Iris; Czosnek, Henryk

    2012-10-01

    To discover genes involved in tomato resistance to Tomato yellow leaf curl virus (TYLCV), we previously compared cDNA libraries from susceptible (S) and resistant (R) tomato lines. Among the genes preferentially expressed in R plants and upregulated by TYLCV infection was a gene encoding a lipocalin-like protein. This gene was termed Solanum lycopersicum virus resistant/susceptible lipocalin (SlVRSLip). The SlVRSLip structural gene sequence of R and S plants was identical. SlVRSLip was expressed in leaves during a 15-day window starting about 40 days after sowing (20 days after planting). SlVRSLip was upregulated by Bemisia tabaci (the TYLCV vector) feeding on R plant leaves, and even more strongly upregulated following whitefly-mediated TYLCV inoculation. Silencing of SlVRSLip in R plants led to the collapse of resistance upon TYLCV inoculation and to a necrotic response along the stem and petioles accompanied by ROS production. Contrary to previously identified tomato lipocalin gene DQ222981, SlVRSLip was not regulated by cold, nor was it regulated by heat or salt. The expression of SlVRSLip was inhibited in R plants in which the hexose transporter gene LeHT1 was silenced. In contrast, the expression of LeHT1 was not inhibited in SlVRSLip-silenced R plants. Hence, in the hierarchy of the gene network conferring TYLCV resistance, SlVRSLip is downstream of LeHT1. Silencing of another gene involved in resistance, a Permease-I like protein, did not affect the expression of SlVRSLip and LeHT1; expression of the Permease was not affected by silencing SlVRSLip or LeHT1, suggesting that it does not belong to the same network. The triple co-silencing of SlVRSLip, LeHT1 and Permease provoked an immediate cessation of growth of R plants upon infection and the accumulation of large amounts of virus. SlVRSLip is the first lipocalin-like gene shown to be involved in resistance to a plant virus. PMID:22843056

  14. A developmentally regulated lipocalin-like gene is overexpressed in Tomato yellow leaf curl virus-resistant tomato plants upon virus inoculation, and its silencing abolishes resistance.

    PubMed

    Sade, Dagan; Eybishtz, Assaf; Gorovits, Rena; Sobol, Iris; Czosnek, Henryk

    2012-10-01

    To discover genes involved in tomato resistance to Tomato yellow leaf curl virus (TYLCV), we previously compared cDNA libraries from susceptible (S) and resistant (R) tomato lines. Among the genes preferentially expressed in R plants and upregulated by TYLCV infection was a gene encoding a lipocalin-like protein. This gene was termed Solanum lycopersicum virus resistant/susceptible lipocalin (SlVRSLip). The SlVRSLip structural gene sequence of R and S plants was identical. SlVRSLip was expressed in leaves during a 15-day window starting about 40 days after sowing (20 days after planting). SlVRSLip was upregulated by Bemisia tabaci (the TYLCV vector) feeding on R plant leaves, and even more strongly upregulated following whitefly-mediated TYLCV inoculation. Silencing of SlVRSLip in R plants led to the collapse of resistance upon TYLCV inoculation and to a necrotic response along the stem and petioles accompanied by ROS production. Contrary to previously identified tomato lipocalin gene DQ222981, SlVRSLip was not regulated by cold, nor was it regulated by heat or salt. The expression of SlVRSLip was inhibited in R plants in which the hexose transporter gene LeHT1 was silenced. In contrast, the expression of LeHT1 was not inhibited in SlVRSLip-silenced R plants. Hence, in the hierarchy of the gene network conferring TYLCV resistance, SlVRSLip is downstream of LeHT1. Silencing of another gene involved in resistance, a Permease-I like protein, did not affect the expression of SlVRSLip and LeHT1; expression of the Permease was not affected by silencing SlVRSLip or LeHT1, suggesting that it does not belong to the same network. The triple co-silencing of SlVRSLip, LeHT1 and Permease provoked an immediate cessation of growth of R plants upon infection and the accumulation of large amounts of virus. SlVRSLip is the first lipocalin-like gene shown to be involved in resistance to a plant virus.

  15. Regulation of secondary metabolite production in the fungal tomato pathogen Cladosporium fulvum.

    PubMed

    Griffiths, Scott; Saccomanno, Benedetta; de Wit, Pierre J G M; Collemare, Jérôme

    2015-11-01

    Cladosporium fulvum is a non-obligate biotrophic fungal tomato pathogen for which fifteen secondary metabolite (SM) gene clusters were previously identified in its genome. However, most of these SM biosynthetic pathways remain cryptic during growth in planta and in different in vitro conditions. The sole SM produced in vitro is the pigment cladofulvin. In this study, we attempted to activate cryptic pathways in order to identify new compounds produced by C. fulvum. For this purpose, we manipulated orthologues of the global regulators VeA, LaeA and HdaA known to regulate SM biosynthesis in other fungal species. In C. fulvum, deleting or over-expressing these regulators yielded no new detectable SMs. Yet, quantification of cladofulvin revealed that CfHdaA is an activator whilst CfVeA and CfLaeA seemed to act as repressors of cladofulvin production. In the wild type strain, cladofulvin biosynthesis was affected by the carbon source, with highest production under carbon limitation and traces only in presence of saccharose. Repression of cladofulvin production by saccharose was dependent on both CfVeA and CfLaeA. Deletion of CfVeA or CfLaeA caused production of sterile mycelia, whilst Δcfhdaa deletion mutants sporulated, suggesting that cladofulvin production is not linked to asexual reproduction. Profiling the transcription of these regulators showed that CfHdaA-mediated regulation of cladofulvin production is independent of both CfVeA and CfLaeA. Our data suggest CfLaeA directly affects cladofulvin production whilst the effect of CfVeA is indirect, suggesting a role for CfLaeA outside of the Velvet complex. In conclusion, our results showed that regulation of SM production in C. fulvum is different from other fungi and indicate that manipulation of global regulators is not a universal tool to discover new fungal natural products. PMID:26415644

  16. Regulation of secondary metabolite production in the fungal tomato pathogen Cladosporium fulvum.

    PubMed

    Griffiths, Scott; Saccomanno, Benedetta; de Wit, Pierre J G M; Collemare, Jérôme

    2015-11-01

    Cladosporium fulvum is a non-obligate biotrophic fungal tomato pathogen for which fifteen secondary metabolite (SM) gene clusters were previously identified in its genome. However, most of these SM biosynthetic pathways remain cryptic during growth in planta and in different in vitro conditions. The sole SM produced in vitro is the pigment cladofulvin. In this study, we attempted to activate cryptic pathways in order to identify new compounds produced by C. fulvum. For this purpose, we manipulated orthologues of the global regulators VeA, LaeA and HdaA known to regulate SM biosynthesis in other fungal species. In C. fulvum, deleting or over-expressing these regulators yielded no new detectable SMs. Yet, quantification of cladofulvin revealed that CfHdaA is an activator whilst CfVeA and CfLaeA seemed to act as repressors of cladofulvin production. In the wild type strain, cladofulvin biosynthesis was affected by the carbon source, with highest production under carbon limitation and traces only in presence of saccharose. Repression of cladofulvin production by saccharose was dependent on both CfVeA and CfLaeA. Deletion of CfVeA or CfLaeA caused production of sterile mycelia, whilst Δcfhdaa deletion mutants sporulated, suggesting that cladofulvin production is not linked to asexual reproduction. Profiling the transcription of these regulators showed that CfHdaA-mediated regulation of cladofulvin production is independent of both CfVeA and CfLaeA. Our data suggest CfLaeA directly affects cladofulvin production whilst the effect of CfVeA is indirect, suggesting a role for CfLaeA outside of the Velvet complex. In conclusion, our results showed that regulation of SM production in C. fulvum is different from other fungi and indicate that manipulation of global regulators is not a universal tool to discover new fungal natural products.

  17. DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways

    PubMed Central

    Huo, Heqiang; Wei, Shouhui; Bradford, Kent J.

    2016-01-01

    Seed germination and flowering, two critical developmental transitions in plant life cycles, are coordinately regulated by genetic and environmental factors to match plant establishment and reproduction to seasonal cues. The DELAY OF GERMINATION1 (DOG1) gene is involved in regulating seed dormancy in response to temperature and has also been associated genetically with pleiotropic flowering phenotypes across diverse Arabidopsis thaliana accessions and locations. Here we show that DOG1 can regulate seed dormancy and flowering times in lettuce (Lactuca sativa, Ls) and Arabidopsis through an influence on levels of microRNAs (miRNAs) miR156 and miR172. In lettuce, suppression of LsDOG1 expression enabled seed germination at high temperature and promoted early flowering in association with reduced miR156 and increased miR172 levels. In Arabidopsis, higher miR156 levels resulting from overexpression of the MIR156 gene enhanced seed dormancy and delayed flowering. These phenotypic effects, as well as conversion of MIR156 transcripts to miR156, were compromised in DOG1 loss-of-function mutant plants, especially in seeds. Overexpression of MIR172 reduced seed dormancy and promoted early flowering in Arabidopsis, and the effect on flowering required functional DOG1. Transcript levels of several genes associated with miRNA processing were consistently lower in dry seeds of Arabidopsis and lettuce when DOG1 was mutated or its expression was reduced; in contrast, transcript levels of these genes were elevated in a DOG1 gain-of-function mutant. Our results reveal a previously unknown linkage between two critical developmental phase transitions in the plant life cycle through a DOG1–miR156–miR172 interaction. PMID:27035986

  18. DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways.

    PubMed

    Huo, Heqiang; Wei, Shouhui; Bradford, Kent J

    2016-04-12

    Seed germination and flowering, two critical developmental transitions in plant life cycles, are coordinately regulated by genetic and environmental factors to match plant establishment and reproduction to seasonal cues. The DELAY OF GERMINATION1 (DOG1) gene is involved in regulating seed dormancy in response to temperature and has also been associated genetically with pleiotropic flowering phenotypes across diverse Arabidopsis thaliana accessions and locations. Here we show that DOG1 can regulate seed dormancy and flowering times in lettuce (Lactuca sativa, Ls) and Arabidopsis through an influence on levels of microRNAs (miRNAs) miR156 and miR172. In lettuce, suppression of LsDOG1 expression enabled seed germination at high temperature and promoted early flowering in association with reduced miR156 and increased miR172 levels. In Arabidopsis, higher miR156 levels resulting from overexpression of the MIR156 gene enhanced seed dormancy and delayed flowering. These phenotypic effects, as well as conversion of MIR156 transcripts to miR156, were compromised in DOG1 loss-of-function mutant plants, especially in seeds. Overexpression of MIR172 reduced seed dormancy and promoted early flowering in Arabidopsis, and the effect on flowering required functional DOG1 Transcript levels of several genes associated with miRNA processing were consistently lower in dry seeds of Arabidopsis and lettuce when DOG1 was mutated or its expression was reduced; in contrast, transcript levels of these genes were elevated in a DOG1 gain-of-function mutant. Our results reveal a previously unknown linkage between two critical developmental phase transitions in the plant life cycle through a DOG1-miR156-miR172 interaction. PMID:27035986

  19. Nectar minerals as regulators of flower visitation in stingless bees and nectar hoarding wasps.

    PubMed

    Afik, Ohad; Delaplane, Keith S; Shafir, Sharoni; Moo-Valle, Humberto; Quezada-Euán, J Javier G

    2014-05-01

    Various nectar components have a repellent effect on flower visitors, and their adaptive advantages for the plant are not well understood. Persea americana (avocado) is an example of a plant that secretes nectar with repellent components. It was demonstrated that the mineral constituents of this nectar, mainly potassium and phosphate, are concentrated enough to repel honey bees, Apis mellifera, a pollinator often used for commercial avocado pollination. Honey bees, however, are not the natural pollinator of P. americana, a plant native to Central America. In order to understand the role of nectar minerals in plant-pollinator relationships, it is important to focus on the plant's interactions with its natural pollinators. Two species of stingless bees and one species of social wasp, all native to the Yucatan Peninsula, Mexico, part of the natural range of P. americana, were tested for their sensitivity to sugar solutions enriched with potassium and phosphate, and compared with the sensitivity of honey bees. In choice tests between control and mineral-enriched solutions, all three native species were indifferent for mineral concentrations lower than those naturally occurring in P. americana nectar. Repellence was expressed at concentrations near or exceeding natural concentrations. The threshold point at which native pollinators showed repellence to increasing levels of minerals was higher than that detected for honey bees. The results do not support the hypothesis that high mineral content is attractive for native Hymenopteran pollinators; nevertheless, nectar mineral composition may still have a role in regulating flower visitors through different levels of repellency. PMID:24888745

  20. Nectar minerals as regulators of flower visitation in stingless bees and nectar hoarding wasps.

    PubMed

    Afik, Ohad; Delaplane, Keith S; Shafir, Sharoni; Moo-Valle, Humberto; Quezada-Euán, J Javier G

    2014-05-01

    Various nectar components have a repellent effect on flower visitors, and their adaptive advantages for the plant are not well understood. Persea americana (avocado) is an example of a plant that secretes nectar with repellent components. It was demonstrated that the mineral constituents of this nectar, mainly potassium and phosphate, are concentrated enough to repel honey bees, Apis mellifera, a pollinator often used for commercial avocado pollination. Honey bees, however, are not the natural pollinator of P. americana, a plant native to Central America. In order to understand the role of nectar minerals in plant-pollinator relationships, it is important to focus on the plant's interactions with its natural pollinators. Two species of stingless bees and one species of social wasp, all native to the Yucatan Peninsula, Mexico, part of the natural range of P. americana, were tested for their sensitivity to sugar solutions enriched with potassium and phosphate, and compared with the sensitivity of honey bees. In choice tests between control and mineral-enriched solutions, all three native species were indifferent for mineral concentrations lower than those naturally occurring in P. americana nectar. Repellence was expressed at concentrations near or exceeding natural concentrations. The threshold point at which native pollinators showed repellence to increasing levels of minerals was higher than that detected for honey bees. The results do not support the hypothesis that high mineral content is attractive for native Hymenopteran pollinators; nevertheless, nectar mineral composition may still have a role in regulating flower visitors through different levels of repellency.

  1. Evolution of CONSTANS Regulation and Function after Gene Duplication Produced a Photoperiodic Flowering Switch in the Brassicaceae

    PubMed Central

    Simon, Samson; Rühl, Mark; de Montaigu, Amaury; Wötzel, Stefan; Coupland, George

    2015-01-01

    Environmental control of flowering allows plant reproduction to occur under optimal conditions and facilitates adaptation to different locations. At high latitude, flowering of many plants is controlled by seasonal changes in day length. The photoperiodic flowering pathway confers this response in the Brassicaceae, which colonized temperate latitudes after divergence from the Cleomaceae, their subtropical sister family. The CONSTANS (CO) transcription factor of Arabidopsis thaliana, a member of the Brassicaceae, is central to the photoperiodic flowering response and shows characteristic patterns of transcription required for day-length sensing. CO is believed to be widely conserved among flowering plants; however, we show that it arose after gene duplication at the root of the Brassicaceae followed by divergence of transcriptional regulation and protein function. CO has two close homologs, CONSTANS-LIKE1 (COL1) and COL2, which are related to CO by tandem duplication and whole-genome duplication, respectively. The single CO homolog present in the Cleomaceae shows transcriptional and functional features similar to those of COL1 and COL2, suggesting that these were ancestral. We detect cis-regulatory and codon changes characteristic of CO and use transgenic assays to demonstrate their significance in the day-length-dependent activation of the CO target gene FLOWERING LOCUS T. Thus, the function of CO as a potent photoperiodic flowering switch evolved in the Brassicaceae after gene duplication. The origin of CO may have contributed to the range expansion of the Brassicaceae and suggests that in other families CO genes involved in photoperiodic flowering arose by convergent evolution. PMID:25972346

  2. Stress-induced flowering: the third category of flowering response.

    PubMed

    Takeno, Kiyotoshi

    2016-09-01

    The switch from vegetative growth to reproductive growth, i.e. flowering, is the critical event in a plant's life. Flowering is regulated either autonomously or by environmental factors; photoperiodic flowering, which is regulated by the duration of the day and night periods, and vernalization, which is regulated by low temperature, have been well studied. Additionally, it has become clear that stress also regulates flowering. Diverse stress factors can induce or accelerate flowering, or inhibit or delay it, in a wide range of plant species. This article focuses on the positive regulation of flowering via stress, i.e. the induction or acceleration of flowering in response to stress that is known as stress-induced flowering - a new category of flowering response. This review aims to clarify the concept of stress-induced flowering and to summarize the full range of characteristics of stress-induced flowering from a predominately physiological perspective. PMID:27382113

  3. Transcriptional and hormonal regulation of petal and stamen development by STAMENLESS, the tomato (Solanum lycopersicum L.) orthologue to the B-class APETALA3 gene

    PubMed Central

    Quinet, Muriel; Gómez, Pedro

    2014-01-01

    Four B-class MADS box genes specify petal and stamen organ identities in tomato. Several homeotic mutants affected in petal and stamen development were described in this model species, although the causal mutations have not been identified for most of them. In this study we characterized a strong stamenless mutant in the tomato Primabel cultivar (sl-Pr), which exhibited homeotic conversion of petals into sepals and stamens into carpels and we compared it with the stamenless mutant in the LA0269 accession (sl-LA0269). Genetic complementation analysis proved that both sl mutants were allelic. Sequencing revealed point mutations in the coding sequence of the Tomato APETALA3 (TAP3) gene of the sl-Pr genome, which lead to a truncated protein, whereas a chromosomal rearrangement in the TAP3 promoter was detected in the sl-LA0269 allele. Moreover, the floral phenotype of TAP3 antisense plants exhibited identical homeotic changes to sl mutants. These results demonstrate that SL is the tomato AP3 orthologue and that the mutant phenotype correlated to the SL silencing level. Expression analyses showed that the sl-Pr mutation does not affect the expression of other tomato B-class genes, although SL may repress the A-class gene MACROCALYX. A partial reversion of the sl phenotype by gibberellins, gene expression analysis, and hormone quantification in sl flowers revealed a role of phytohormones in flower development downstream of the SL gene. Together, our results indicated that petal and stamen identity in tomato depends on gene–hormone interactions, as mediated by the SL gene. PMID:24659487

  4. Role of the Tomato Non-Ripening Mutation in Regulating Fruit Quality Elucidated Using iTRAQ Protein Profile Analysis

    PubMed Central

    Yuan, Xin-Yu; Wang, Rui-Heng; Zhao, Xiao-Dan; Luo, Yun-Bo; Fu, Da-Qi

    2016-01-01

    Natural mutants of the Non-ripening (Nor) gene repress the normal ripening of tomato fruit. The molecular mechanism of fruit ripening regulation by the Nor gene is unclear. To elucidate how the Nor gene can affect ripening and fruit quality at the protein level, we used the fruits of Nor mutants and wild-type Ailsa Craig (AC) to perform iTRAQ (isobaric tags for relative and absolute quantitation) analysis. The Nor mutation altered tomato fruit ripening and affected quality in various respects, including ethylene biosynthesis by down-regulating the abundance of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), pigment biosynthesis by repressing phytoene synthase 1 (PSY1), ζ-carotene isomerase (Z-ISO), chalcone synthase 1 (CHS1) and other proteins, enhancing fruit firmness by increasing the abundance of cellulose synthase protein, while reducing those of polygalacturonase 2 (PG2) and pectate lyase (PL), altering biosynthesis of nutrients such as carbohydrates, amino acids, and anthocyanins. Conversely, Nor mutation also enhanced the fruit’s resistance to some pathogens by up-regulating the expression of several genes associated with stress and defense. Therefore, the Nor gene is involved in the regulation of fruit ripening and quality. It is useful in the future as a means to improve fruit quality in tomato. PMID:27732677

  5. AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening

    PubMed Central

    Meir, Sagit; Panizel, Irina; Puig, Clara Pons; Hao, Yanwei; Yifhar, Tamar; Yasuor, Hagai; Zouine, Mohamed; Bouzayen, Mondher; Granell Richart, Antonio; Rogachev, Ilana; Aharoni, Asaph

    2016-01-01

    The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process. PMID:26959229

  6. AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening.

    PubMed

    Breitel, Dario A; Chappell-Maor, Louise; Meir, Sagit; Panizel, Irina; Puig, Clara Pons; Hao, Yanwei; Yifhar, Tamar; Yasuor, Hagai; Zouine, Mohamed; Bouzayen, Mondher; Granell Richart, Antonio; Rogachev, Ilana; Aharoni, Asaph

    2016-03-01

    The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process. PMID:26959229

  7. AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening.

    PubMed

    Breitel, Dario A; Chappell-Maor, Louise; Meir, Sagit; Panizel, Irina; Puig, Clara Pons; Hao, Yanwei; Yifhar, Tamar; Yasuor, Hagai; Zouine, Mohamed; Bouzayen, Mondher; Granell Richart, Antonio; Rogachev, Ilana; Aharoni, Asaph

    2016-03-01

    The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process.

  8. Ethylene-regulated expression of a carnation cysteine proteinase during flower petal senescence.

    PubMed

    Jones, M L; Larsen, P B; Woodson, W R

    1995-06-01

    The senescence of carnation (Dianthus caryophyllus L.) flower petals is regulated by the phytohormone ethylene and is associated with considerable catabolic activity including the loss of protein. In this paper we present the molecular cloning of a cysteine proteinase and show that its expression is regulated by ethylene and associated with petal senescence. A 1600 bp cDNA was amplified by polymerase chain reaction using a 5'-specific primer and 3'-nonspecific primer designed to amplify a 1-aminocyclopropane-1-carboxylate synthase cDNA from reverse-transcribed stylar RNA. The nucleotide sequence of the cloned product (pDCCP1) was found to share significant homology to several cysteine proteinases rather than ACC synthase. A single open reading frame of 428 amino acids was shown to share significant homology with other plant cysteine proteinases including greater than 70% identity with a cysteine proteinase from Arabidopsis thaliana. Amino acids in the active site of cysteine proteinases were conserved in the pDCCP1 peptide. RNA gel blot analysis revealed that the expression of pDCCP1 increased substantially with the onset of ethylene production and senescence of petals. Increased pDCCP1 expression was also associated with ethylene production in other senescing floral organs including ovaries and styles. The pDCCP1 transcript accumulated in petals treated with exogenous ethylene within 3 h and treatment of flowers with 2,5-norbornadiene, an inhibitor of ethylene action, prevented the increase in pDCCP1 expression in petals. The temporal and spatial patterns of pDCCP1 expression suggests a role for cysteine proteinase in the loss of protein during floral senescence.

  9. Type B Heterotrimeric G Protein γ-Subunit Regulates Auxin and ABA Signaling in Tomato[OPEN

    PubMed Central

    Subramaniam, Gayathery; Trusov, Yuri; Hayashi, Satomi; Batley, Jacqueline

    2016-01-01

    Heterotrimeric G proteins composed of α, β, and γ subunits are central signal transducers mediating the cellular response to multiple stimuli in most eukaryotes. Gγ subunits provide proper cellular localization and functional specificity to the heterotrimer complex. Plant Gγ subunits, divided into three structurally distinct types, are more diverse than their animal counterparts. Type B Gγ subunits, lacking a carboxyl-terminal isoprenylation motif, are found only in flowering plants. We present the functional characterization of type B Gγ subunit (SlGGB1) in tomato (Solanum lycopersicum). We show that SlGGB1 is the most abundant Gγ subunit in tomato and strongly interacts with the Gβ subunit. Importantly, the green fluorescent protein-SlGGB1 fusion protein as well as the carboxyl-terminal yellow fluorescent protein-SlGGB1/amino-terminal yellow fluorescent protein-Gβ heterodimer were localized in the plasma membrane, nucleus, and cytoplasm. RNA interference-mediated silencing of SlGGB1 resulted in smaller seeds, higher number of lateral roots, and pointy fruits. The silenced lines were hypersensitive to exogenous auxin, while levels of endogenous auxins were lower or similar to those of the wild type. SlGGB1-silenced plants also showed strong hyposensitivity to abscisic acid (ABA) during seed germination but not in other related assays. Transcriptome analysis of the transgenic seeds revealed abnormal expression of genes involved in ABA sensing, signaling, and response. We conclude that the type B Gγ subunit SlGGB1 mediates auxin and ABA signaling in tomato. PMID:26668332

  10. 7 CFR 966.5 - Tomatoes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Tomatoes. 966.5 Section 966.5 Agriculture Regulations... ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE TOMATOES GROWN IN FLORIDA Order Regulating Handling Definitions § 966.5 Tomatoes. Tomatoes means all varieties of the edible fruit...

  11. 7 CFR 966.5 - Tomatoes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Tomatoes. 966.5 Section 966.5 Agriculture Regulations... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE TOMATOES GROWN IN FLORIDA Order Regulating Handling Definitions § 966.5 Tomatoes. Tomatoes means all varieties of the edible fruit...

  12. 7 CFR 966.5 - Tomatoes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Tomatoes. 966.5 Section 966.5 Agriculture Regulations... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE TOMATOES GROWN IN FLORIDA Order Regulating Handling Definitions § 966.5 Tomatoes. Tomatoes means all varieties of the edible fruit...

  13. 7 CFR 966.5 - Tomatoes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Tomatoes. 966.5 Section 966.5 Agriculture Regulations... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE TOMATOES GROWN IN FLORIDA Order Regulating Handling Definitions § 966.5 Tomatoes. Tomatoes means all varieties of the edible fruit...

  14. 7 CFR 966.5 - Tomatoes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Tomatoes. 966.5 Section 966.5 Agriculture Regulations... ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE TOMATOES GROWN IN FLORIDA Order Regulating Handling Definitions § 966.5 Tomatoes. Tomatoes means all varieties of the edible fruit...

  15. A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature.

    PubMed

    Strasser, Bárbara; Alvarez, Mariano J; Califano, Andrea; Cerdán, Pablo D

    2009-05-01

    Plants regulate their time to flowering by gathering information from the environment. Photoperiod and temperature are among the most important environmental variables. Sub-optimal, but not near-freezing, temperatures regulate flowering through the thermosensory pathway, which overlaps with the autonomous pathway. Here we show that ambient temperature regulates flowering by two genetically distinguishable pathways, one requiring TFL1 and another requiring ELF3. The delay in flowering time observed at lower temperatures was partially suppressed in single elf3 and tfl1 mutants, whereas double elf3 tfl1 mutants were insensitive to temperature. tfl1 mutations abolished the temperature response in cryptochrome mutants that are deficient in photoperiod perception, but not in phyB mutants, which have a constitutive photoperiodic response. In contrast to tfl1, elf3 mutations were able to suppress the temperature response in phyB mutants, but not in cryptochrome mutants. Gene expression profiles revealed that the tfl1 and elf3 effects are due to the activation of different sets of genes, and identified CCA1 and SOC1/AGL20 as being important cross-talk points. Finally, genome-wide gene expression analysis strongly suggests a general and complementary role for ELF3 and TFL1 in temperature signalling.

  16. Tomato Phosphate Transporter Genes Are Differentially Regulated in Plant Tissues by Phosphorus1

    PubMed Central

    Liu, Chunming; Muchhal, Umesh S.; Uthappa, Mukatira; Kononowicz, Andrzej K.; Raghothama, Kaschandra G.

    1998-01-01

    Phosphorus is a major nutrient acquired by roots via high-affinity inorganic phosphate (Pi) transporters. In this paper, we describe the tissue-specific regulation of tomato (Lycopersicon esculentum L.) Pi-transporter genes by Pi. The encoded peptides of the LePT1 and LePT2 genes belong to a family of 12 membrane-spanning domain proteins and show a high degree of sequence identity to known high-affinity Pi transporters. Both genes are highly expressed in roots, although there is some expression of LePT1 in leaves. Their expression is markedly induced by Pi starvation but not by starvation of nitrogen, potassium, or iron. The transcripts are primarily localized in root epidermis under Pi starvation. Accumulation of LePT1 message was also observed in palisade parenchyma cells of Pi-starved leaves. Our data suggest that the epidermally localized Pi transporters may play a significant role in acquiring the nutrient under natural conditions. Divided root-system studies support the hypothesis that signal(s) for the Pi-starvation response may arise internally because of the changes in cellular concentration of phosphorus. PMID:9449838

  17. A Pollen-Specific RALF from Tomato That Regulates Pollen Tube Elongation12[W][OA

    PubMed Central

    Covey, Paul A.; Subbaiah, Chalivendra C.; Parsons, Ronald L.; Pearce, Gregory; Lay, Fung T.; Anderson, Marilyn A.; Ryan, Clarence A.; Bedinger, Patricia A.

    2010-01-01

    Rapid Alkalinization Factors (RALFs) are plant peptides that rapidly increase the pH of plant suspension cell culture medium and inhibit root growth. A pollen-specific tomato (Solanum lycopersicum) RALF (SlPRALF) has been identified. The SlPRALF gene encodes a preproprotein that appears to be processed and released from the pollen tube as an active peptide. A synthetic SlPRALF peptide based on the putative active peptide did not affect pollen hydration or viability but inhibited the elongation of normal pollen tubes in an in vitro growth system. Inhibitory effects of SlPRALF were detectable at concentrations as low as 10 nm, and complete inhibition was observed at 1 μm peptide. At least 10-fold higher levels of alkSlPRALF, which lacks disulfide bonds, were required to see similar effects. A greater effect of peptide was observed in low-pH-buffered medium. Inhibition of pollen tube elongation was reversible if peptide was removed within 15 min of exposure. Addition of 100 nm SlPRALF to actively growing pollen tubes inhibited further elongation until tubes were 40 to 60 μm in length, after which pollen tubes became resistant to the peptide. The onset of resistance correlated with the timing of the exit of the male germ unit from the pollen grain into the tube. Thus, exogenous SlPRALF acts as a negative regulator of pollen tube elongation within a specific developmental window. PMID:20388667

  18. Tomato polyphenol oxidase B is spatially and temporally regulated during development and in response to ethylene.

    PubMed

    Newman, Sally M; Tantasawat, Piyada; Steffens, John C

    2011-01-01

    Plant polyphenol oxidases (PPOs) are ubiquitous plastid-localized enzymes. A precise analysis of PPO function in plants has been complicated by the presence of several family members with immunological cross reactivity. Previously we reported the isolation of genomic clones coding for the seven members of the tomato (Solanum lycopersicum) PPO family (A, A', B, C, D, E, and F). Here we report the complex spatial and temporal expression of one of the members, PPO B. The PPO B promoter was sequenced and subjected to homology analysis. Sequence similarities were found to nucleotide sequences of genes encoding enzymes/proteins active in the following systems: phenylpropanoid biosynthesis, signal transduction and responsiveness to hormones and stresses, fruit and seed proteins/enzymes, and photosynthesis. Chimeric gene fusions were constructed linking PPO B 5' flanking regions to the reporter gene, b-glucuronidase (GUS). The resultant transgenic plants were histochemically analyzed for GUS activity in various vegetative and reproductive tissues, and evaluated for PPO B responsiveness to ethylene induction. It was shown that PPO B expression was tissue specific, developmentally regulated, ethylene induced, and localized predominantly to mitotic or apoptotic tissues. PMID:21224781

  19. Phosphate-Regulated Induction of Intracellular Ribonucleases in Cultured Tomato (Lycopersicon esculentum) Cells 1

    PubMed Central

    Löffler, Andreas; Abel, Steffen; Jost, Wolfgang; Beintema, Jaap J.; Glund, Konrad

    1992-01-01

    Four intracellular RNases were found to be induced in cultured tomato (Lycopersicon esculentum) cells upon phosphate starvation. Localization studies revealed three (RNases LV 1-3) in the vacuoles and one (RNase LX) outside these organelles. All of these RNases were purified to homogeneity and were shown to be type I RNases on the basis of type of splitting, substrate, and base specificity at the cleavage site, molecular weight, isoelectric point, and pH optimum. Moreover, RNase LV 3 was shown by fingerprinting of tryptic digests on reversed-phase high-performance liquid chromatography and sequencing the N terminus and two tryptic peptides to be structurally very similar to a recently characterized extracellular RNase LE which is also phosphate regulated (Nürnberger et al. [1990] Plant Physiol 92: 970-976; Jost et al. [1991] Eur J Biochem 198: 1-6). Expression of the four intracellular RNases is induced by depleting the cells of phosphate and repressed by adding phosphate. Our studies indicate that higher plants, in addition to secreting enzymes for scavanging phosphate under starvation conditions, also induce intracellularly emergency rescue systems. ImagesFigure 1Figure 2Figure 3Figure 4 PMID:16668816

  20. Flowering pathway is regulated by bulb size in Lilium longiflorum (Easter lily).

    PubMed

    Lazare, S; Zaccai, M

    2016-07-01

    Lilium longiflorum (Easter lily) vegetative propagation occurs through production of underground bulbs containing apical and axillary meristems. In addition, sexual reproduction is achieved by flowering of elongated shoots above the bulb. It is generally accepted that L. longiflorum has an obligatory requirement for vernalisation and that long day (LD) regime hastens flowering. However, the effect of bulb size and origin, with respect to axillary or apical meristems on flowering, as well as the interactions between these meristems are largely unknown. The aim of this study was to explore the effect of bulb size, vernalisation and photoperiod on L. longiflorum flowering. To this end, we applied vernalisation and photoperiod treatments to the different bulb sizes and used a system of constant ambient temperature of 25 °C, above vernalisation spectrum, to avoid cold-dependent floral induction during plant growth. Vernalisation and LD hasten flowering in all bulbs. Large, non-vernalised bulbs invariably remained at a vegetative stage. However, small non-vernalised bulbs flowered under LD conditions. These results demonstrate for the first time that cold exposure is not an obligatory prerequisite for L. longiflorum flowering, and that an alternative flowering pathway can bypass vernalisation in small bulbs. We suggest that apical dominance interactions determine the distinct flowering pathways of the apical and axillary meristems. Similar floral induction is achieved in propagated bulblets from scaling. These innovative findings in the field of geophyte floral induction represent valuable applicative knowledge for lily production. PMID:26833779

  1. Flowering pathway is regulated by bulb size in Lilium longiflorum (Easter lily).

    PubMed

    Lazare, S; Zaccai, M

    2016-07-01

    Lilium longiflorum (Easter lily) vegetative propagation occurs through production of underground bulbs containing apical and axillary meristems. In addition, sexual reproduction is achieved by flowering of elongated shoots above the bulb. It is generally accepted that L. longiflorum has an obligatory requirement for vernalisation and that long day (LD) regime hastens flowering. However, the effect of bulb size and origin, with respect to axillary or apical meristems on flowering, as well as the interactions between these meristems are largely unknown. The aim of this study was to explore the effect of bulb size, vernalisation and photoperiod on L. longiflorum flowering. To this end, we applied vernalisation and photoperiod treatments to the different bulb sizes and used a system of constant ambient temperature of 25 °C, above vernalisation spectrum, to avoid cold-dependent floral induction during plant growth. Vernalisation and LD hasten flowering in all bulbs. Large, non-vernalised bulbs invariably remained at a vegetative stage. However, small non-vernalised bulbs flowered under LD conditions. These results demonstrate for the first time that cold exposure is not an obligatory prerequisite for L. longiflorum flowering, and that an alternative flowering pathway can bypass vernalisation in small bulbs. We suggest that apical dominance interactions determine the distinct flowering pathways of the apical and axillary meristems. Similar floral induction is achieved in propagated bulblets from scaling. These innovative findings in the field of geophyte floral induction represent valuable applicative knowledge for lily production.

  2. Genetic regulation of carotene biosynthesis in selected tomato strains: aspects of beta-carotene biosynthesis and B gene specificity.

    PubMed

    Premachandra, B R

    1986-01-01

    A comparative qualitative and quantitative study of the carotene compositions of a high beta-carotene type mutant Priya Darshini-1 (PD-1), high lycopene type, Pusa Ruby (PR) and the F1 hybrid of these two strains was carried out. Increased amounts of beta-zeacarotene and gamma-carotene were realized in the PD-1 parent and in the F1 hybrid. This correlates the increased beta-zeacarotene and gamma-carotene synthesis with increased beta-carotene synthesis. Introduction of gene B (the gene that regulates beta-carotene biosynthesis) to a system lacking it induces considerable amount of beta-carotene synthesis at the expense of lycopene in the hybrid. Based on these observations a 'three point control' for the beta-carotene biosynthesis in tomato fruits is suggested with the gene B capable of promoting two different pathways in the high beta-carotene types. The probable sites of action of the modifier mOB (the gene that regulates expression of B gene) are indicated. Beta-carotene and xanthophyll contents of different parts of tomato plants of a PD-1 type and the PR type F2 segregates of the F1 hybrid (PR X PD-1)F1 have been studied. Results indicate that the action of gene B is highly specific and exclusively oriented towards the fruit and not expressed in any other parts of the tomato plant.

  3. EFO1 and EFO2, encoding putative WD-domain proteins, have overlapping and distinct roles in the regulation of vegetative development and flowering of Arabidopsis.

    PubMed

    Wang, Wuyi; Yang, Dennis; Feldmann, Kenneth A

    2011-01-01

    From screening a population of Arabidopsis overexpression lines, two Arabidopsis genes were identified, EFO1 (early flowering by overexpression 1) and EFO2, that confer early flowering when overexpressed. The two genes encode putative WD-domain proteins which share high sequence similarity and constitute a small subfamily. Interestingly, the efo2-1 loss-of-function mutant also flowered earlier in short days and slightly earlier in long days than the wild type, while no flowering-time or morphological differences were observed in efo1-1 relative to the wild type. In addition, the efo2-1 mutation perturbed hypocotyl elongation, leaf expansion and formation, and stem elongation. EFO1 and EFO2 are both regulated by the circadian clock. Expression and genetic analyses revealed that EFO2 suppresses flowering largely through the action of CONSTANS (CO) and flowering locus T (FT), suggesting that EFO2 is a negative regulator of photoperiodic flowering. The growth defects in efo2-1 were augmented in efo1 efo2, but the induction of FT in the double mutant was comparable to that in efo2-1. Thus, while EFO2 acts as a floral repressor, EFO1 may not be directly involved in flowering, but the two genes do have overlapping roles in regulating other developmental processes. EFO1 and EFO2 may function collectively to serve as one of the converging points where the signals of growth and flowering intersect. PMID:21242318

  4. Late activation of the 9-oxylipin pathway during arbuscular mycorrhiza formation in tomato and its regulation by jasmonate signalling

    PubMed Central

    León-Morcillo, Rafael Jorge; Ángel, José; Martín-Rodríguez; Vierheilig, Horst; Ocampo, Juan Antonio; García-Garrido, José Manuel

    2012-01-01

    The establishment of an arbuscular mycorrhizal (AM) symbiotic interaction is a successful strategy for the promotion of substantial plant growth, development, and fitness. Numerous studies have supported the hypothesis that plant hormones play an important role in the establishment of functional AM symbiosis. Particular attention has been devoted to jasmonic acid (JA) and its derivates, which are believed to play a major role in AM symbiosis. Jasmonates belong to a diverse class of lipid metabolites known as oxylipins that include other biologically active molecules. Recent transcriptional analyses revealed up-regulation of the oxylipin pathway during AM symbiosis in mycorrhizal tomato roots and indicate a key regulatory role for oxylipins during AM symbiosis in tomato, particularly those derived from the action of 9-lipoxygenases (9-LOXs). Continuing with the tomato as a model, the spatial and temporal expression pattern of genes involved in the 9-LOX pathway during the different stages of AM formation in tomato was analysed. The effects of JA signalling pathway changes on AM fungal colonization were assessed and correlated with the modifications in the transcriptional profiles of 9-LOX genes. The up-regulation of the 9-LOX oxylipin pathway in mycorrhizal wild-type roots seems to depend on a particular degree of AM fungal colonization and is restricted to the colonized part of the roots, suggesting that these genes could play a role in controlling fungal spread in roots. In addition, the results suggest that this strategy of the plant to control AM fungi development within the roots is at least partly dependent on JA pathway activation. PMID:22442425

  5. Late activation of the 9-oxylipin pathway during arbuscular mycorrhiza formation in tomato and its regulation by jasmonate signalling.

    PubMed

    León-Morcillo, Rafael Jorge; Angel, José; Martín-Rodríguez; Vierheilig, Horst; Ocampo, Juan Antonio; García-Garrido, José Manuel

    2012-06-01

    The establishment of an arbuscular mycorrhizal (AM) symbiotic interaction is a successful strategy for the promotion of substantial plant growth, development, and fitness. Numerous studies have supported the hypothesis that plant hormones play an important role in the establishment of functional AM symbiosis. Particular attention has been devoted to jasmonic acid (JA) and its derivates, which are believed to play a major role in AM symbiosis. Jasmonates belong to a diverse class of lipid metabolites known as oxylipins that include other biologically active molecules. Recent transcriptional analyses revealed up-regulation of the oxylipin pathway during AM symbiosis in mycorrhizal tomato roots and indicate a key regulatory role for oxylipins during AM symbiosis in tomato, particularly those derived from the action of 9-lipoxygenases (9-LOXs). Continuing with the tomato as a model, the spatial and temporal expression pattern of genes involved in the 9-LOX pathway during the different stages of AM formation in tomato was analysed. The effects of JA signalling pathway changes on AM fungal colonization were assessed and correlated with the modifications in the transcriptional profiles of 9-LOX genes. The up-regulation of the 9-LOX oxylipin pathway in mycorrhizal wild-type roots seems to depend on a particular degree of AM fungal colonization and is restricted to the colonized part of the roots, suggesting that these genes could play a role in controlling fungal spread in roots. In addition, the results suggest that this strategy of the plant to control AM fungi development within the roots is at least partly dependent on JA pathway activation.

  6. Flowers, Beautiful Flowers

    ERIC Educational Resources Information Center

    School Arts: The Art Education Magazine for Teachers, 2005

    2005-01-01

    In the lesson described, the middle school students had been studying the artist Georgia O'Keeffe and the history of her work. Students enhanced their flower portraits by adding a matching border and connecting the lesson to other subject areas. Students dissected a flower and drew a small diagram of the flower and labeled the parts. This is an…

  7. JACALIN-LECTIN LIKE1 Regulates the Nuclear Accumulation of GLYCINE-RICH RNA-BINDING PROTEIN7, Influencing the RNA Processing of FLOWERING LOCUS C Antisense Transcripts and Flowering Time in Arabidopsis1[OPEN

    PubMed Central

    Xiao, Jun; Li, Chunhua; Xu, Shujuan; Xing, Lijing; Xu, Yunyuan; Chong, Kang

    2015-01-01

    Lectins selectively recognize sugars or glycans for defense in living cells, but less is known about their roles in the development process and the functional network with other factors. Here, we show that Arabidopsis (Arabidopsis thaliana) JACALIN-LECTIN LIKE1 (AtJAC1) functions in flowering time control. Loss of function of AtJAC1 leads to precocious flowering, whereas overexpression of AtJAC1 causes delayed flowering. AtJAC1 influences flowering through regulation of the key flowering repressor gene FLOWERING LOCUS C (FLC). Genetic analysis revealed that AtJAC1’s function is mostly dependent on GLYCINE-RICH RNA-BINDING PROTEIN7 (GRP7), an upstream regulator of FLC. Biochemical and cell biological data indicated that AtJAC1 interacted physically with GRP7 specifically in the cytoplasm. AtJAC1 influences the nucleocytoplasmic distribution of GRP7, with predominant nuclear localization of GRP7 when AtJAC1 function is lost but retention of GRP7 in the cytoplasm when AtJAC1 is overexpressed. A temporal inducible assay suggested that AtJAC1’s regulation of flowering could be compromised by the nuclear accumulation of GRP7. In addition, GRP7 binds to the antisense precursor messenger RNA of FLC through a conserved RNA motif. Loss of GRP7 function leads to the elevation of total FLC antisense transcripts and reduced proximal-distal polyadenylation ratio, as well as histone methylation changes in the FLC gene body region and increased total functional sense FLC transcript. Attenuating the direct binding of GRP7 with competing artificial RNAs leads to changes of FLC antisense precursor messenger RNA processing and flowering transition. Taken together, our study indicates that AtJAC1 coordinates with GRP7 in shaping plant development through the regulation of RNA processing in Arabidopsis. PMID:26392261

  8. Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin

    PubMed Central

    Muñoz-Fambuena, Natalia; Mesejo, Carlos; Carmen González-Mas, M.; Primo-Millo, Eduardo; Agustí, Manuel; Iglesias, Domingo J.

    2011-01-01

    Background and Aims The presence of fruit has been widely reported to act as an inhibitor of flowering in fruit trees. This study is an investigation into the effect of fruit load on flowering of ‘Moncada’ mandarin and on the expression of putative orthologues of genes involved in flowering pathways to provide insight into the molecular mechanisms underlying alternate bearing in citrus. Methods The relationship between fruit load and flowering intensity was examined first. Defruiting experiments were further conducted to demonstrate the causal effect of fruit removal upon flowering. Finally, the activity of flowering-related genes was investigated to determine the extent to which their seasonal expression is affected by fruit yield. Key Results First observations and defruiting experiments indicated a significant inverse relationship between preceding fruit load and flowering intensity. Moreover, data indicated that when fruit remained on the tree from November onwards, a dramatic inhibition of flowering occurred the following spring. The study of the expression pattern of flowering-genes of on (fully loaded) and off (without fruits) trees revealed that homologues of FLOWERING LOCUS T (FT), SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), APETALA1 (AP1) and LEAFY (LFY) were negatively affected by fruit load. Thus, CiFT expression showed a progressive increase in leaves from off trees through the study period, the highest differences found from December onwards (10-fold). Whereas differences in the relative expression of SOC1 only reached significance from September to mid-December, CsAP1 expression was constantly higher in those trees through the whole study period. Significant variations in CsLFY expression only were found in late February (close to 20 %). On the other hand, the expression of the homologues of TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS C (FLC) did not appear to be related to fruit load. Conclusions These results suggest for the first time

  9. Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers.

    PubMed

    Giorno, Filomena; Wolters-Arts, Mieke; Grillo, Stefania; Scharf, Klaus-Dieter; Vriezen, Wim H; Mariani, Celestina

    2010-01-01

    The high sensitivity of male reproductive cells to high temperatures may be due to an inadequate heat stress response. The results of a comprehensive expression analysis of HsfA2 and Hsp17-CII, two important members of the heat stress system, in the developing anthers of a heat-tolerant tomato genotype are reported here. A transcriptional analysis at different developmental anther/pollen stages was performed using semi-quantitative and real-time PCR. The messengers were localized using in situ RNA hybridization, and protein accumulation was monitored using immunoblot analysis. Based on the analysis of the gene and protein expression profiles, HsfA2 and Hsp17-CII are finely regulated during anther development and are further induced under both short and prolonged heat stress conditions. These data suggest that HsfA2 may be directly involved in the activation of protection mechanisms in the tomato anther during heat stress and, thereby, may contribute to tomato fruit set under adverse temperatures. PMID:19854799

  10. Characterization of an ethylene-regulated flower senescence-related gene from carnation.

    PubMed

    Raghothama, K G; Lawton, K A; Goldsbrough, P B; Woodson, W R

    1991-07-01

    The programmed senescence of carnation (Dianthus caryophyllus L.) petals requires active gene expression and is associated with the expression of several senescence-related mRNAs. Expression of the mRNA represented by the cDNA clone pSR12 has previously been shown to be transcriptionally activated by ethylene specifically in senescing flowers. We report in this paper the structural analysis of this cDNA and its corresponding gene. One cloned genomic DNA fragment, SR12-B, contained the entire transcription unit in 17 exons, interrupted by 16 introns. A second gene, SR12-A, was highly homologous to SR12-B with several nucleotide substitutions and a 489 bp deletion in the 5' flanking DNA sequence. The SR12 transcript has an open reading frame of 2193 bp sufficient to encode a protein of 82.8 kDa. No significant homology at the DNA or protein levels was found with other known genes. We have identified a DNA-binding factor which specifically interacts with two upstream fragments (-149 to -337 and -688 to -1055) of SR12-B. Both fragments apparently compete for the same binding factor. The DNA-binding activity was present in nuclear extracts from both presenescent and senescing carnation petals. The upstream DNA fragments that bind this factor have sequence homology with promoter sequences of other ethylene-regulated genes.

  11. Different cucumber CsYUC genes regulate response to abiotic stresses and flower development

    PubMed Central

    Yan, Shuangshuang; Che, Gen; Ding, Lian; Chen, Zijing; Liu, Xiaofeng; Wang, Hongyin; Zhao, Wensheng; Ning, Kang; Zhao, Jianyu; Tesfamichael, Kiflom; Wang, Qian; Zhang, Xiaolan

    2016-01-01

    The phytohormone auxin is essential for plant growth and development, and YUCCA (YUC) proteins catalyze a rate-limiting step for endogenous auxin biosynthesis. Despite YUC family genes have been isolated from several species, systematic expression analyses of YUCs in response to abiotic stress are lacking, and little is known about the function of YUC homologs in agricultural crops. Cucumber (Cucumis sativus L.) is a world cultivated vegetable crop with great economical and nutritional value. In this study, we isolated 10 YUC family genes (CsYUCs) from cucumber and explored their expression pattern under four types of stress treatments. Our data showed that CsYUC8 and CsYUC9 were specifically upregulated to elevate the auxin level under high temperature. CsYUC10b was dramatically increased but CsYUC4 was repressed in response to low temperature. CsYUC10a and CsYUC11 act against the upregulation of CsYUC10b under salinity stress, suggesting that distinct YUC members participate in different stress response, and may even antagonize each other to maintain the proper auxin levels in cucumber. Further, CsYUC11 was specifically expressed in the male flower in cucumber, and enhanced tolerance to salinity stress and regulated pedicel and stamen development through auxin biosynthesis in Arabidopsis. PMID:26857463

  12. Cool night-time temperatures induce the expression of CONSTANS and FLOWERING LOCUS T to regulate flowering in Arabidopsis.

    PubMed

    Kinmonth-Schultz, Hannah A; Tong, Xinran; Lee, Jae; Song, Young Hun; Ito, Shogo; Kim, Soo-Hyung; Imaizumi, Takato

    2016-07-01

    Day length and ambient temperature are major stimuli controlling flowering time. To understand flowering mechanisms in more natural conditions, we explored the effect of daily light and temperature changes on Arabidopsis thaliana. Seedlings were exposed to different day/night temperature and day-length treatments to assess expression changes in flowering genes. Cooler temperature treatments increased CONSTANS (CO) transcript levels at night. Night-time CO induction was diminished in flowering bhlh (fbh)-quadruple mutants. FLOWERING LOCUS T (FT) transcript levels were reduced at dusk, but increased at the end of cooler nights. The dusk suppression, which was alleviated in short vegetative phase (svp) mutants, occurred particularly in younger seedlings, whereas the increase during the night continued over 2 wk. Cooler temperature treatments altered the levels of FLOWERING LOCUS M-β (FLM-β) and FLM-δ splice variants. FT levels correlated strongly with flowering time across treatments. Day/night temperature changes modulate photoperiodic flowering by changing FT accumulation patterns. Cooler night-time temperatures enhance FLOWERING BHLH (FBH)-dependent induction of CO and consequently increase CO protein. When plants are young, cooler temperatures suppress FT at dusk through SHORT VEGETATIVE PHASE (SVP) function, perhaps to suppress precocious flowering. Our results suggest day length and diurnal temperature changes combine to modulate FT and flowering time.

  13. Comprehensive Profiling of Ethylene Response Factor Expression Identifies Ripening-Associated ERF Genes and Their Link to Key Regulators of Fruit Ripening in Tomato1[OPEN

    PubMed Central

    Gomes, Bruna Lima; Mila, Isabelle; Frasse, Pierre; Zouine, Mohamed; Bouzayen, Mondher

    2016-01-01

    Our knowledge of the factors mediating ethylene-dependent ripening of climacteric fruit remains limited. The transcription of ethylene-regulated genes is mediated by ethylene response factors (ERFs), but mutants providing information on the specific role of the ERFs in fruit ripening are still lacking, likely due to functional redundancy among this large multigene family of transcription factors. We present here a comprehensive expression profiling of tomato (Solanum lycopersicum) ERFs in wild-type and tomato ripening-impaired tomato mutants (Never-ripe [Nr], ripening-inhibitor [rin], and non-ripening [nor]), indicating that out of the 77 ERFs present in the tomato genome, 27 show enhanced expression at the onset of ripening while 28 display a ripening-associated decrease in expression, suggesting that different ERFs may have contrasting roles in fruit ripening. Among the 19 ERFs exhibiting the most consistent up-regulation during ripening, the expression of 11 ERFs is strongly down-regulated in rin, nor, and Nr tomato ripening mutants, while only three are consistently up-regulated. Members of subclass E, SlERF.E1, SlERF.E2, and SlERF.E4, show dramatic down-regulation in the ripening mutants, suggesting that their expression might be instrumental in fruit ripening. This study illustrates the high complexity of the regulatory network connecting RIN and ERFs and identifies subclass E members as the most active ERFs in ethylene- and RIN/NOR-dependent ripening. PMID:26739234

  14. Comprehensive Profiling of Ethylene Response Factor Expression Identifies Ripening-Associated ERF Genes and Their Link to Key Regulators of Fruit Ripening in Tomato.

    PubMed

    Liu, Mingchun; Gomes, Bruna Lima; Mila, Isabelle; Purgatto, Eduardo; Peres, Lázaro E P; Frasse, Pierre; Maza, Elie; Zouine, Mohamed; Roustan, Jean-Paul; Bouzayen, Mondher; Pirrello, Julien

    2016-03-01

    Our knowledge of the factors mediating ethylene-dependent ripening of climacteric fruit remains limited. The transcription of ethylene-regulated genes is mediated by ethylene response factors (ERFs), but mutants providing information on the specific role of the ERFs in fruit ripening are still lacking, likely due to functional redundancy among this large multigene family of transcription factors. We present here a comprehensive expression profiling of tomato (Solanum lycopersicum) ERFs in wild-type and tomato ripening-impaired tomato mutants (Never-ripe [Nr], ripening-inhibitor [rin], and non-ripening [nor]), indicating that out of the 77 ERFs present in the tomato genome, 27 show enhanced expression at the onset of ripening while 28 display a ripening-associated decrease in expression, suggesting that different ERFs may have contrasting roles in fruit ripening. Among the 19 ERFs exhibiting the most consistent up-regulation during ripening, the expression of 11 ERFs is strongly down-regulated in rin, nor, and Nr tomato ripening mutants, while only three are consistently up-regulated. Members of subclass E, SlERF.E1, SlERF.E2, and SlERF.E4, show dramatic down-regulation in the ripening mutants, suggesting that their expression might be instrumental in fruit ripening. This study illustrates the high complexity of the regulatory network connecting RIN and ERFs and identifies subclass E members as the most active ERFs in ethylene- and RIN/NOR-dependent ripening.

  15. Regulation of tomato fruit pericarp development by an interplay between CDKB and CDKA1 cell cycle genes

    PubMed Central

    Czerednik, Anna; Busscher, Marco; Bielen, Bram A.M.; Wolters-Arts, Mieke; de Maagd, Ruud A.; Angenent, Gerco C.

    2012-01-01

    Growth of tomato fruits is determined by cell division and cell expansion, which are tightly controlled by factors that drive the core cell cycle. The cyclin-dependent kinases (CDKs) and their interacting partners, the cyclins, play a key role in the progression of the cell cycle. In this study the role of CDKA1, CDKB1, and CDKB2 in fruit development was characterized by fruit-specific overexpression and down-regulation. CDKA1 is expressed in the pericarp throughout development, but is strongly up-regulated in the outer pericarp cell layers at the end of the growth period, when CDKB gene expression has ceased. Overexpression of the CDKB genes at later stages of development and the down-regulation of CDKA1 result in a very similar fruit phenotype, showing a reduction in the number of cell layers in the pericarp and alterations in the desiccation of the fruits. Expression studies revealed that CDKA1 is down-regulated by the expression of CDKB1/2 in CDKB1 and CDKB2 overexpression mutants, suggesting opposite roles for these types of CDK proteins in tomato pericarp development. PMID:22282536

  16. Distinct roles of FKF1, Gigantea, and Zeitlupe proteins in the regulation of Constans stability in Arabidopsis photoperiodic flowering.

    PubMed

    Song, Young Hun; Estrada, Daniel A; Johnson, Richard S; Kim, Somi K; Lee, Sang Yeol; MacCoss, Michael J; Imaizumi, Takato

    2014-12-01

    Many plants measure changes in day length to synchronize their flowering time with appropriate seasons for maximum reproductive success. In Arabidopsis, the day-length-dependent regulation of Constans (CO) protein stability is crucial to induce flowering locus T (FT) expression for flowering in long days. The flavin-binding, KELCH repeat, F-box1 (FKF1) protein binds to CO protein specifically in the long-day afternoon and stabilizes it, although the mechanism remains unknown. Here we demonstrated that the FKF1-interacting proteins Gigantea (GI) and Zeitlupe (ZTL) are involved in CO stability regulation. First, our immunoprecipitation-mass spectrometry analysis of FKF1 revealed that FKF1 forms an S-phase kinase-associated protein 1 (Skp1)/Cullin(CUL)/F-box complex through interactions with Arabidopsis Skp1-like 1 (ASK1), ASK2, and CUL1 proteins and mainly interacts with GI protein in vivo. GI interacts with CO directly and indirectly through FKF1. Unexpectedly, the gi mutation increases the CO protein levels in the morning in long days. This gi-dependent destabilization of CO protein was cancelled by the fkf1 mutation. These results suggest that there are other factors likely influenced by both gi and fkf1 mutations that also control CO stability. We found that ZTL, which interacts with GI and FKF1, may be one such factor. ZTL also interacts with CO in vivo. The CO protein profile in the ztl mutant resembles that in the gi mutant, indicating that ZTL activity also may be changed in the gi mutant. Our findings suggest the presence of balanced regulation among FKF1, GI, and ZTL on CO stability regulation for the precise control of flowering time.

  17. A role for APETALA1/fruitfull transcription factors in tomato leaf development.

    PubMed

    Burko, Yogev; Shleizer-Burko, Sharona; Yanai, Osnat; Shwartz, Ido; Zelnik, Iris Daphne; Jacob-Hirsch, Jasmine; Kela, Itai; Eshed-Williams, Leor; Ori, Naomi

    2013-06-01

    Flexible maturation rates underlie part of the diversity of leaf shape, and tomato (Solanum lycopersicum) leaves are compound due to prolonged organogenic activity of the leaf margin. The CINCINNATA-teosinte branched1, cycloidea, PCF (CIN-TCP) transcription factor lanceolate (LA) restricts this organogenic activity and promotes maturation. Here, we show that tomato APETALA1/fruitfull (AP1/FUL) MADS box genes are involved in tomato leaf development and are repressed by LA. AP1/FUL expression is correlated negatively with LA activity and positively with the organogenic activity of the leaf margin. LA binds to the promoters of the AP1/FUL genes MBP20 and TM4. Overexpression of MBP20 suppressed the simple-leaf phenotype resulting from upregulation of LA activity or from downregulation of class I knotted like homeobox (KNOXI) activity. Overexpression of a dominant-negative form of MBP20 led to leaf simplification and partly suppressed the increased leaf complexity of plants with reduced LA activity or increased KNOXI activity. Tomato plants overexpressing miR319, a negative regulator of several CIN-TCP genes including LA, flower with fewer leaves via an SFT-dependent pathway, suggesting that miR319-sensitive CIN-TCPs delay flowering in tomato. These results identify a role for AP1/FUL genes in vegetative development and show that leaf and plant maturation are regulated via partially independent mechanisms.

  18. Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper.

    PubMed

    Paran, Ilan; van der Knaap, Esther

    2007-01-01

    Tomato and pepper are two Solanaceous fruit crops that display an enormous diversity in fruit morphology. In this review, we will present an overview of the history of tomato and pepper and discuss key plant traits that were specifically selected during domestication of the two species. The traits discussed are fruit weight, shape, colour, ripening, pungency and plant architecture. We will review these characteristics as well as the genetic loci or genes that control these features, questioning whether mutations at orthologous loci occurred independently in these two species or whether unique plant and fruit features resulted in selection at different genes. PMID:18037678

  19. Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis.

    PubMed

    Olimpieri, Irene; Siligato, Francesca; Caccia, Riccardo; Mariotti, Lorenzo; Ceccarelli, Nello; Soressi, Gian Piero; Mazzucato, Andrea

    2007-09-01

    We investigated the role of gibberellins (GAs) in the phenotype of parthenocarpic fruit (pat), a recessive mutation conferring parthenocarpy in tomato (Solanum lycopersicum L.). Novel phenotypes that parallel those reported in plants repeatedly treated with gibberellic acid or having a GA-constitutive response indicate that the pat mutant probably expresses high levels of GA. The retained sensitivity to the GA-biosynthesis inhibitor paclobutrazol reveals that this condition is dependent on GA biosynthesis. Expression analysis of genes encoding key enzymes involved in GA biosynthesis shows that in normal tomato ovaries, the GA20ox1 transcript is in low copy number before anthesis and only pollination and fertilization increase its transcription levels and, thus, GA biosynthesis. In the unpollinated ovaries of the pat mutant, this mechanism is de-regulated and GA20ox1 is constitutively expressed, indicating that a high GA concentration could play a part in the parthenocarpic phenotype. The levels of endogenous GAs measured in the floral organs of the pat mutant support such a hypothesis. Collectively, the data indicate that transcriptional regulation of GA20ox1 mediates pollination-induced fruit set in tomato and that parthenocarpy in pat results from the mis-regulation of this mechanism. As genes involved in the control of GA synthesis (LeT6, LeT12 and LeCUC2) and response (SPY) are also altered in the pat ovary, it is suggested that the pat mutation affects a regulatory gene located upstream of the control of fruit set exerted by GAs. PMID:17503074

  20. Fruit-Surface Flavonoid Accumulation in Tomato Is Controlled by a SlMYB12-Regulated Transcriptional Network

    PubMed Central

    Mintz-Oron, Shira; Venger, Ilya; Levy, Dorit; Yativ, Merav; Domínguez, Eva; Wang, Zhonghua; De Vos, Ric C. H.; Jetter, Reinhard; Schreiber, Lukas; Heredia, Antonio; Rogachev, Ilana; Aharoni, Asaph

    2009-01-01

    The cuticle covering plants' aerial surfaces is a unique structure that plays a key role in organ development and protection against diverse stress conditions. A detailed analysis of the tomato colorless-peel y mutant was carried out in the framework of studying the outer surface of reproductive organs. The y mutant peel lacks the yellow flavonoid pigment naringenin chalcone, which has been suggested to influence the characteristics and function of the cuticular layer. Large-scale metabolic and transcript profiling revealed broad effects on both primary and secondary metabolism, related mostly to the biosynthesis of phenylpropanoids, particularly flavonoids. These were not restricted to the fruit or to a specific stage of its development and indicated that the y mutant phenotype is due to a mutation in a regulatory gene. Indeed, expression analyses specified three R2R3-MYB–type transcription factors that were significantly down-regulated in the y mutant fruit peel. One of these, SlMYB12, was mapped to the genomic region on tomato chromosome 1 previously shown to harbor the y mutation. Identification of an additional mutant allele that co-segregates with the colorless-peel trait, specific down-regulation of SlMYB12 and rescue of the y phenotype by overexpression of SlMYB12 on the mutant background, confirmed that a lesion in this regulator underlies the y phenotype. Hence, this work provides novel insight to the study of fleshy fruit cuticular structure and paves the way for the elucidation of the regulatory network that controls flavonoid accumulation in tomato fruit cuticle. PMID:20019811

  1. Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.)

    PubMed Central

    Alagna, Fiammetta; Cirilli, Marco; Galla, Giulio; Carbone, Fabrizio; Daddiego, Loretta; Facella, Paolo; Lopez, Loredana; Colao, Chiara; Mariotti, Roberto; Cultrera, Nicolò; Rossi, Martina; Barcaccia, Gianni; Baldoni, Luciana; Muleo, Rosario; Perrotta, Gaetano

    2016-01-01

    The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided. PMID:27077738

  2. Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.).

    PubMed

    Alagna, Fiammetta; Cirilli, Marco; Galla, Giulio; Carbone, Fabrizio; Daddiego, Loretta; Facella, Paolo; Lopez, Loredana; Colao, Chiara; Mariotti, Roberto; Cultrera, Nicolò; Rossi, Martina; Barcaccia, Gianni; Baldoni, Luciana; Muleo, Rosario; Perrotta, Gaetano

    2016-01-01

    The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided.

  3. Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.).

    PubMed

    Alagna, Fiammetta; Cirilli, Marco; Galla, Giulio; Carbone, Fabrizio; Daddiego, Loretta; Facella, Paolo; Lopez, Loredana; Colao, Chiara; Mariotti, Roberto; Cultrera, Nicolò; Rossi, Martina; Barcaccia, Gianni; Baldoni, Luciana; Muleo, Rosario; Perrotta, Gaetano

    2016-01-01

    The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided. PMID:27077738

  4. Detection of Potato spindle tuber viroid sequence variants derived from PSTVd-infected Phelipanche ramosa in flower organs of tomato plants

    PubMed Central

    Vachev, Tihomir; Ivanova, Desislava; Yahubyan, Galina; Naimov, Samir; Minkov, Ivan; Gozmanova, Mariyana

    2014-01-01

    Potato spindle tuber viroid (PSTVd) is an infectious small, circular, non-coding single-stranded RNA that induces disease on many crop species, ornamental plants, weeds and parasitic plants. PSTVd propagate in their host as a population of closely related but non-identical RNA variants referred to as quasispecies. Recently, we have described three de novo arising PSTVd variants in the parasitic plant Phelipanche ramosa after mechanical inoculation with the PSTVd KF440-2 isolate. These P. ramosa derived mutants were designated as G241-C, C208-U and C227-U PSTVd variants. Each of these variants carries a single-nucleotide substitution compared to the PSTVd KF440-2 sequence from which they are considered to have evolved. Here we complement our previous studies on these mutants by exploring their potential to infect the floral organs of tomato plants. We found that the PSTVd G241-C and C208-U variants were able to replicate in systemic leaves and floral organs of tomato plants, while the PSTVd C227-U variant did not develop systemic infection. Furthermore, we analysed the progeny of these PSTVd variants in sepals and petals of tomato plants for retention of the specific mutations. PMID:26019526

  5. Identification of a previously uncharacterized global regulator in Pseudomonas syringae pv. tomato DC3000

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas syringae pv. tomato DC3000 (Pst) is used as a model system to understand the dynamics behind molecular plant-microbe interactions. Identification of conserved genes necessary for survival of bacterial plant pathogens in the apoplast could lead to new management methods. We have identifie...

  6. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) crop productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproduc...

  7. Structural characterization of highly glucosylated crocins and regulation of their biosynthesis during flower development in Crocus

    PubMed Central

    Ahrazem, Oussama; Rubio-Moraga, Angela; Jimeno, Maria L.; Gómez-Gómez, Lourdes

    2015-01-01

    Crocin biosynthesis in Crocus has been proposed to proceed through a zeaxanthin cleavage pathway catalyzed by carotenoid cleavage dioxygenase 2 (CCD2), and followed by glucosylation reactions catalyzed by CsGT2 (UGT74AD1). In Crocus ancyrensis flowers, crocins with eight (crocin-1), seven (crocin-2), and six glucose (crocin-3) moieties accumulated both in stigma and tepals. We have characterized the structure of these highly glucosylated crocins and follow up their accumulation by high-resolution liquid chromatography coupled with diode array detector along the development of both tissues, and coupled to the isolation and analysis of the expression of eighteen genes (PSY-I, PSY-II, PDS-(I-V), ISO-ZDS, ZDS, CtrISO, LYC-I and II, BCH, CaCCD2, UGT74AD2-5) related with the apocarotenoid metabolism in C. ancyrensis tepals and stigmas. Structure elucidation of crocin-1 and crocin-2 was done by the combined use of 1D and 2D [1H, 1H] (gCOSY and TOCSY and ROESY) and [1H-13C] NMR experiments, revealing that for crocin-1 was all-trans-crocetin O-[β-D- Glucopyranosyl)-(1→4)-(β-D-glucopyranosyl)-(1→2)]-O-[β-D-glucopyranosyl-(1→6)]-β-D-glucopyranosyl diester, while crocin-2 showed an identical structure except for the absence of one glucose residue in one end of the molecule. Crocins accumulation was not synchronically regulated in stigma and tepals, although in both cases crocins accumulation parallels tissue development, decreasing at anthesis. The expression of the carotenogenic genes PSY, ZDS-V, BCH, and LCY-II was correlated with crocins accumulation. In addition, CaCCD2 and only one of the four glucosyltransferase encoding genes, UGT74AD2, were highly expressed, and the expression was correlated with high levels of crocins accumulation in stigma and tepals. PMID:26582258

  8. A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening.

    PubMed

    Dong, Tingting; Hu, Zongli; Deng, Lei; Wang, Yi; Zhu, Mingku; Zhang, Jianling; Chen, Guoping

    2013-10-01

    MADS-box genes encode a highly conserved gene family of transcriptional factors that regulate numerous developmental processes in plants. In this study, a tomato (Solanum lycopersicum) MADS-box gene, SlMADS1, was cloned and its tissue-specific expression profile was analyzed. The real-time polymerase chain reaction results showed that SlMADS1 was highly expressed in sepals and fruits; its expression level was increased with the development of sepals, while the transcript of SlMADS1 decreased significantly in accordance with fruit ripening. To further explore the function of SlMADS1, an RNA interference (RNAi) expression vector targeting SlMADS1 was constructed and transformed into tomato plants. Shorter ripening time of fruit was observed in SlMADS1-silenced tomatoes. The accumulation of carotenoid and the expression of PHYTOENE SYNTHETASE1 were enhanced in RNAi fruits. Besides, ethylene biosynthetic genes, including 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE1A, 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE6, 1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE1, and 1-AMINOCYCLOPROPANE-1-CARBOXYLATE OXIDASE3, and the ethylene-responsive genes E4 and E8, which were involved in fruit ripening, were also up-regulated in silenced plants. SlMADS1 RNAi fruits showed approximately 2- to 4-fold increases in ethylene production compared with the wild type. Furthermore, SlMADS1-silenced seedlings displayed shorter hypocotyls and were more sensitive to 1-aminocyclopropane-1-carboxylate than the wild type. Additionally, a yeast two-hybrid assay revealed a clear interaction between SlMADS1 and SlMADS-RIN. These results suggest that SlMADS1 plays an important role in fruit ripening as a repressive modulator.

  9. Over-expression of sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant.

    PubMed

    Zhang, Xiaohui; Zou, Zhe; Zhang, Junhong; Zhang, Yuyang; Han, Qinqin; Hu, Tixu; Xu, Xiaoguang; Liu, Hui; Li, Hanxia; Ye, Zhibiao

    2011-01-21

    Plant microRNAs (miRNAs) are vital components of the translation control system that regulates plant development and reproduction. The biological function of sly-miR156 was investigated by over-expression in tomato plants. Transgenic tomato plants exhibited a drastically altered phenotype, with reduced height, smaller but more numerous leaves, and smaller fruit. The inflorescence structure of sly-miR156 over-expressing plants phenocopied the sft mutant. The putative targets of sly-miR156 were identified by data base search and included six SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box transcription factor genes. Their expression patterns were then determined in 35S-miR156a and wild type tomato plants. These target genes, as well as the tomato FLOWERING LOCUS T (FT) ortholog SFT, were significantly down-regulated in sly-miR156 over-expressing plants. These studies reveal novel phenotypes regulated by miR156.

  10. Improving agronomic water use efficiency in tomato by rootstock-mediated hormonal regulation of leaf biomass.

    PubMed

    Cantero-Navarro, Elena; Romero-Aranda, Remedios; Fernández-Muñoz, Rafael; Martínez-Andújar, Cristina; Pérez-Alfocea, Francisco; Albacete, Alfonso

    2016-10-01

    Water availability is the most important factor limiting food production, thus developing new scientific strategies to allow crops to more efficiently use water could be crucial in a world with a growing population. Tomato is a highly water consuming crop and improving its water use efficiency (WUE) implies positive economic and environmental effects. This work aimed to study and exploit root-derived hormonal traits to improve WUE in tomato by grafting on selected rootstocks. Firstly, root-related hormonal parameters associated to WUE were identified in a population of recombinant inbred lines (RILs) derived from the wild tomato species Solanum pimpinellifolium. A principal component analysis (PCA) revealed that some hormonal traits were associated with productivity (plant biomass and photosynthesis) and WUE in the RIL population. Leaf ABA concentration was associated to the first component (PC1) of the PCA, which explained a 60% of the variance in WUE, while the ethylene precursor ACC and the ratio ACC/ABA were also associated to PC1 but in the opposite direction. Secondly, we selected RILs according to their extreme biomass (high, B, low, b) and water use (high, W, low, w), and studied the differential effect of shoot and root on WUE by reciprocal grafting. In absence of any imposed stress, there were no rootstock effects on vegetative shoot growth and water relations. Finally, we exploited the previously identified root-related hormonal traits by grafting a commercial tomato variety onto the selected RILs to improve WUE. Interestingly, rootstocks that induced low biomass and water use, 'bw', improved fruit yield and WUE (defined as fruit yield/water use) by up to 40% compared to self-grafted plants. Although other hormonal factors appear implicated in this response, xylem ACC concentration seems an important root-derived trait that inhibits leaf growth but does not limit fruit yield. Thus tomato WUE can be improved exploiting rootstock-derived hormonal signals

  11. Improving agronomic water use efficiency in tomato by rootstock-mediated hormonal regulation of leaf biomass.

    PubMed

    Cantero-Navarro, Elena; Romero-Aranda, Remedios; Fernández-Muñoz, Rafael; Martínez-Andújar, Cristina; Pérez-Alfocea, Francisco; Albacete, Alfonso

    2016-10-01

    Water availability is the most important factor limiting food production, thus developing new scientific strategies to allow crops to more efficiently use water could be crucial in a world with a growing population. Tomato is a highly water consuming crop and improving its water use efficiency (WUE) implies positive economic and environmental effects. This work aimed to study and exploit root-derived hormonal traits to improve WUE in tomato by grafting on selected rootstocks. Firstly, root-related hormonal parameters associated to WUE were identified in a population of recombinant inbred lines (RILs) derived from the wild tomato species Solanum pimpinellifolium. A principal component analysis (PCA) revealed that some hormonal traits were associated with productivity (plant biomass and photosynthesis) and WUE in the RIL population. Leaf ABA concentration was associated to the first component (PC1) of the PCA, which explained a 60% of the variance in WUE, while the ethylene precursor ACC and the ratio ACC/ABA were also associated to PC1 but in the opposite direction. Secondly, we selected RILs according to their extreme biomass (high, B, low, b) and water use (high, W, low, w), and studied the differential effect of shoot and root on WUE by reciprocal grafting. In absence of any imposed stress, there were no rootstock effects on vegetative shoot growth and water relations. Finally, we exploited the previously identified root-related hormonal traits by grafting a commercial tomato variety onto the selected RILs to improve WUE. Interestingly, rootstocks that induced low biomass and water use, 'bw', improved fruit yield and WUE (defined as fruit yield/water use) by up to 40% compared to self-grafted plants. Although other hormonal factors appear implicated in this response, xylem ACC concentration seems an important root-derived trait that inhibits leaf growth but does not limit fruit yield. Thus tomato WUE can be improved exploiting rootstock-derived hormonal signals

  12. Jasmonates in flower and seed development.

    PubMed

    Wasternack, Claus; Forner, Susanne; Strnad, Miroslav; Hause, Bettina

    2013-01-01

    Jasmonates are ubiquitously occurring lipid-derived signaling compounds active in plant development and plant responses to biotic and abiotic stresses. Upon environmental stimuli jasmonates are formed and accumulate transiently. During flower and seed development, jasmonic acid (JA) and a remarkable number of different metabolites accumulate organ- and tissue specifically. The accumulation is accompanied with expression of jasmonate-inducible genes. Among these genes there are defense genes and developmentally regulated genes. The profile of jasmonate compounds in flowers and seeds covers active signaling molecules such as JA, its precursor 12-oxophytodienoic acid (OPDA) and amino acid conjugates such as JA-Ile, but also inactive signaling molecules occur such as 12-hydroxy-JA and its sulfated derivative. These latter compounds can occur at several orders of magnitude higher level than JA. Metabolic conversion of JA and JA-Ile to hydroxylated compounds seems to inactivate JA signaling, but also specific functions of jasmonates in flower and seed development were detected. In tomato OPDA is involved in embryo development. Occurrence of jasmonates, expression of JA-inducible genes and JA-dependent processes in flower and seed development will be discussed. PMID:22705387

  13. Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus.

    PubMed

    Li, Qing; Shao, Jianhua; Tang, Shaohua; Shen, Qingwen; Wang, Tiehu; Chen, Wenling; Hong, Yueyun

    2015-01-01

    Wrinkled1 (WRI1) belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid (FA) synthesis and lipid assembly. The overexpression (OE) of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, FA synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide, and oil [triacylglycerol (TAG)] in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus. PMID:26635841

  14. Red Light-Mediated Degradation of CONSTANS by the E3 Ubiquitin Ligase HOS1 Regulates Photoperiodic Flowering in Arabidopsis.

    PubMed

    Lazaro, Ana; Mouriz, Alfonso; Piñeiro, Manuel; Jarillo, José A

    2015-09-01

    The regulation of CONSTANS (CO) gene expression is crucial to accurately measure changes in daylength, which influences flowering time in Arabidopsis thaliana. CO expression is under both transcriptional and posttranslational control mechanisms. We previously showed that the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1) physically interacts with CO in Arabidopsis. This interaction is required to precisely modulate the timing of CO accumulation and, consequently, to maintain low levels of FLOWERING LOCUS T expression during the first part of the day. The data presented here demonstrate that HOS1 is involved in the red light-mediated degradation of CO that takes place in the early stages of the daylight period. Our results show that phytochrome B (phyB) is able to regulate flowering time, acting in the phloem companion cells, as previously described for CO and HOS1. Moreover, we reveal that phyB physically interacts with HOS1 and CO, indicating that the three proteins may be present in a complex in planta that is required to coordinate a correct photoperiodic response in Arabidopsis.

  15. Red Light-Mediated Degradation of CONSTANS by the E3 Ubiquitin Ligase HOS1 Regulates Photoperiodic Flowering in Arabidopsis

    PubMed Central

    Lazaro, Ana; Mouriz, Alfonso; Piñeiro, Manuel; Jarillo, José A.

    2015-01-01

    The regulation of CONSTANS (CO) gene expression is crucial to accurately measure changes in daylength, which influences flowering time in Arabidopsis thaliana. CO expression is under both transcriptional and posttranslational control mechanisms. We previously showed that the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1) physically interacts with CO in Arabidopsis. This interaction is required to precisely modulate the timing of CO accumulation and, consequently, to maintain low levels of FLOWERING LOCUS T expression during the first part of the day. The data presented here demonstrate that HOS1 is involved in the red light-mediated degradation of CO that takes place in the early stages of the daylight period. Our results show that phytochrome B (phyB) is able to regulate flowering time, acting in the phloem companion cells, as previously described for CO and HOS1. Moreover, we reveal that phyB physically interacts with HOS1 and CO, indicating that the three proteins may be present in a complex in planta that is required to coordinate a correct photoperiodic response in Arabidopsis. PMID:26373454

  16. Level of glutathione is regulated by ATP-dependent ligation of glutamate and cysteine through photosynthesis in Arabidopsis thaliana: mechanism of strong interaction of light intensity with flowering.

    PubMed

    Ogawa, Ken'ichi; Hatano-Iwasaki, Aya; Yanagida, Mototsugu; Iwabuchi, Masaki

    2004-01-01

    Glutathione (GSH) is associated with flowering in Arabidopsis thaliana, but how GSH biosynthesis is regulated to control the transition to flowering remains to be elucidated. Since the key reaction of GSH synthesis is catalyzed by gamma-glutamylcysteine synthetase (gamma-ECS) and all the gamma-ECS cDNAs examined contained extra sequences for plastid targeting, we investigated the relationships among GSH levels, photosynthesis and flowering. The GSH level in Arabidopsis increased with the light intensity. The ch1 mutants defective in a light-harvesting antenna in photosystem II showed reduced GSH levels with accumulation of the GSH precursor cysteine, and introduction of the gamma-ECS gene GSH1 under the control of the cauliflower mosaic virus 35S promoter (35S-GSH1) into the ch1 mutant altered the GSH level in response to the gamma-ECS mRNA level. These indicate that photosynthesis limits the gamma-ECS reaction to regulate GSH biosynthesis. Like the glutathione-biosynthesis-defective cad2-1 mutant, the ch1 mutants flowered late under weak-light conditions, and this late-flowering phenotype was rescued by supplementation of GSH. Introduction of the 35S-GSH1 construct into the ch1 mutant altered flowering in response to the gamma-ECS mRNA and GSH levels. These findings indicate that flowering in A. thaliana is regulated by the gamma-ECS reaction of GSH synthesis that is coupled with photosynthesis.

  17. Nitric oxide in plants and its role in regulating flower development.

    PubMed

    Zhou, Kun; Zhang, Jinjin

    2014-07-01

    Nitric oxide (NO) is an essential signaling molecule, which is involved in many aspects of plant growth and development. There is increasing evidence that NO plays a vital role in the process of flower development, which, however, has not been comprehensively reviewed for a long time. In this review, we provide an overview of the multiplicity of NO production in plants, and discuss the potential repression mechanism of NO in flower transition and the role of NO in pollen germination and pollen tube elongation.

  18. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor.

    PubMed

    Jia, Haifeng; Jiu, Songtao; Zhang, Cheng; Wang, Chen; Tariq, Pervaiz; Liu, Zhongjie; Wang, Baoju; Cui, Liwen; Fang, Jinggui

    2016-10-01

    Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA-stress-ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress- and ripening-induced proteins and water-deficit stress-induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole-3-acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening-related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross-signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development. PMID:27005823

  19. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor.

    PubMed

    Jia, Haifeng; Jiu, Songtao; Zhang, Cheng; Wang, Chen; Tariq, Pervaiz; Liu, Zhongjie; Wang, Baoju; Cui, Liwen; Fang, Jinggui

    2016-10-01

    Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA-stress-ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress- and ripening-induced proteins and water-deficit stress-induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole-3-acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening-related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross-signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development.

  20. FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-Binding Factors by Activating an Ethylene-Responsive Factor to Control Arabidopsis Floral Organ Senescence and Abscission.

    PubMed

    Chen, Wei-Han; Li, Pei-Fang; Chen, Ming-Kun; Lee, Yung-I; Yang, Chang-Hsien

    2015-08-01

    In this study of Arabidopsis (Arabidopsis thaliana), we investigated the relationship between FOREVER YOUNG FLOWER (FYF) and Ethylene Response DNA-binding Factors (EDFs) and functionally analyzed a key FYF target, an Ethylene-Responsive Factor (ERF), that controls flower senescence/abscission. Ectopic expression of EDF1/2/3/4 caused promotion of flower senescence/abscission and the activation of the senescence-associated genes. The presence of a repressor domain in EDFs and the enhancement of the promotion of senescence/abscission in EDF1/2/3/4+SRDX (converting EDFs to strong repressors by fusion with the ERF-associated amphiphilic repression motif repression domain SRDX) transgenic plants suggested that EDFs act as repressors. The significant reduction of β-glucuronidase (GUS) expression by 35S:FYF in EDF1/2/3/4:GUS plants indicates that EDF1/2/3/4 functions downstream of FYF in regulating flower senescence/abscission. In this study, we also characterized an ERF gene, FOREVER YOUNG FLOWER UP-REGULATING FACTOR1 (FUF1), which is up-regulated by FYF during flower development. Ectopic expression of FUF1 caused similar delayed flower senescence/abscission as seen in 35S:FYF plants. This phenotype was correlated with deficient abscission zone formation, ethylene insensitivity, and down-regulation of EDF1/2/3/4 and abscission-associated genes in 35S:FUF1 flowers. In contrast, significant promotion of flower senescence/abscission and up-regulation of EDF1/2/3/4 were observed in 35S:FUF1+SRDX transgenic dominant-negative plants, in which FUF1 is converted to a potent repressor by fusion to an SRDX-suppressing motif. Thus, FUF1 acts as an activator in suppressing EDF1/2/3/4 function and senescence/abscission of the flowers. Our results reveal that FYF regulates flower senescence/abscission by negatively regulating EDF1/2/3/4, which is the downstream gene in the ethylene response, by activating FUF1 in Arabidopsis.

  1. FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-Binding Factors by Activating an Ethylene-Responsive Factor to Control Arabidopsis Floral Organ Senescence and Abscission1

    PubMed Central

    Chen, Wei-Han; Li, Pei-Fang; Chen, Ming-Kun; Lee, Yung-I; Yang, Chang-Hsien

    2015-01-01

    In this study of Arabidopsis (Arabidopsis thaliana), we investigated the relationship between FOREVER YOUNG FLOWER (FYF) and Ethylene Response DNA-binding Factors (EDFs) and functionally analyzed a key FYF target, an Ethylene-Responsive Factor (ERF), that controls flower senescence/abscission. Ectopic expression of EDF1/2/3/4 caused promotion of flower senescence/abscission and the activation of the senescence-associated genes. The presence of a repressor domain in EDFs and the enhancement of the promotion of senescence/abscission in EDF1/2/3/4+SRDX (converting EDFs to strong repressors by fusion with the ERF-associated amphiphilic repression motif repression domain SRDX) transgenic plants suggested that EDFs act as repressors. The significant reduction of β-glucuronidase (GUS) expression by 35S:FYF in EDF1/2/3/4:GUS plants indicates that EDF1/2/3/4 functions downstream of FYF in regulating flower senescence/abscission. In this study, we also characterized an ERF gene, FOREVER YOUNG FLOWER UP-REGULATING FACTOR1 (FUF1), which is up-regulated by FYF during flower development. Ectopic expression of FUF1 caused similar delayed flower senescence/abscission as seen in 35S:FYF plants. This phenotype was correlated with deficient abscission zone formation, ethylene insensitivity, and down-regulation of EDF1/2/3/4 and abscission-associated genes in 35S:FUF1 flowers. In contrast, significant promotion of flower senescence/abscission and up-regulation of EDF1/2/3/4 were observed in 35S:FUF1+SRDX transgenic dominant-negative plants, in which FUF1 is converted to a potent repressor by fusion to an SRDX-suppressing motif. Thus, FUF1 acts as an activator in suppressing EDF1/2/3/4 function and senescence/abscission of the flowers. Our results reveal that FYF regulates flower senescence/abscission by negatively regulating EDF1/2/3/4, which is the downstream gene in the ethylene response, by activating FUF1 in Arabidopsis. PMID:26063506

  2. Light regulates motility, attachment and virulence in the plant pathogen Pseudomonas syringae pv tomato DC3000.

    PubMed

    Río-Álvarez, Isabel; Rodríguez-Herva, José Juan; Martínez, Pedro Manuel; González-Melendi, Pablo; García-Casado, Gloria; Rodríguez-Palenzuela, Pablo; López-Solanilla, Emilia

    2014-07-01

    Pseudomonas syringae pv tomato DC3000 (Pto) is the causal agent of the bacterial speck of tomato, which leads to significant economic losses in this crop. Pto inhabits the tomato phyllosphere, where the pathogen is highly exposed to light, among other environmental factors. Light represents a stressful condition and acts as a source of information associated with different plant defence levels. Here, we analysed the presence of both blue and red light photoreceptors in a group of Pseudomonas. In addition, we studied the effect of white, blue and red light on Pto features related to epiphytic fitness. While white and blue light inhibit motility, bacterial attachment to plant leaves is promoted. Moreover, these phenotypes are altered in a blue-light receptor mutant. These light-controlled changes during the epiphytic stage cause a reduction in virulence, highlighting the relevance of motility during the entry process to the plant apoplast. This study demonstrated the key role of light perception in the Pto phenotype switching and its effect on virulence.

  3. New methods for regulating flowering time in short-day strawberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Higher percentages of transplants of short-day cultivars 'Chandler', 'Carmine', 'Strawberry Festival', and 'Sweet Charlie' from runner tips plugged in early July rather than the standard time (early August) bloomed in the fall. Nearly 100% of the transplants produced in early July flowered in the f...

  4. Oil palm EgCBF3 conferred stress tolerance in transgenic tomato plants through modulation of the ethylene signaling pathway.

    PubMed

    Ebrahimi, Mortaza; Abdullah, Siti Nor Akmar; Abdul Aziz, Maheran; Namasivayam, Parameswari

    2016-09-01

    CBF/DREB1 is a group of transcription factors that are mainly involved in abiotic stress tolerance in plants. They belong to the AP2/ERF superfamily of plant-specific transcription factors. A gene encoding a new member of this group was isolated from ripening oil palm fruit and designated as EgCBF3. The oil palm fruit demonstrates the characteristics of a climacteric fruit like tomato, in which ethylene has a major impact on the ripening process. A transgenic approach was used for functional characterization of the EgCBF3, using tomato as the model plant. The effects of ectopic expression of EgCBF3 were analyzed based on expression profiling of the ethylene biosynthesis-related genes, anti-freeze proteins (AFPs), abiotic stress tolerance and plant growth and development. The EgCBF3 tomatoes demonstrated altered phenotypes compared to the wild type tomatoes. Delayed leaf senescence and flowering, increased chlorophyll content and abnormal flowering were the consequences of overexpression of EgCBF3 in the transgenic tomatoes. The EgCBF3 tomatoes demonstrated enhanced abiotic stress tolerance under in vitro conditions. Further, transcript levels of ethylene biosynthesis-related genes, including three SlACSs and two SlACOs, were altered in the transgenic plants' leaves and roots compared to that in the wild type tomato plant. Among the eight AFPs studied in the wounded leaves of the EgCBF3 tomato plants, transcript levels of SlOSM-L, SlNP24, SlPR5L and SlTSRF1 decreased, while expression of the other four, SlCHI3, SlPR1, SlPR-P2 and SlLAP2, were up-regulated. These findings indicate the possible functions of EgCBF3 in plant growth and development as a regulator of ethylene biosynthesis-related and AFP genes, and as a stimulator of abiotic stress tolerance. PMID:27513726

  5. Oil palm EgCBF3 conferred stress tolerance in transgenic tomato plants through modulation of the ethylene signaling pathway.

    PubMed

    Ebrahimi, Mortaza; Abdullah, Siti Nor Akmar; Abdul Aziz, Maheran; Namasivayam, Parameswari

    2016-09-01

    CBF/DREB1 is a group of transcription factors that are mainly involved in abiotic stress tolerance in plants. They belong to the AP2/ERF superfamily of plant-specific transcription factors. A gene encoding a new member of this group was isolated from ripening oil palm fruit and designated as EgCBF3. The oil palm fruit demonstrates the characteristics of a climacteric fruit like tomato, in which ethylene has a major impact on the ripening process. A transgenic approach was used for functional characterization of the EgCBF3, using tomato as the model plant. The effects of ectopic expression of EgCBF3 were analyzed based on expression profiling of the ethylene biosynthesis-related genes, anti-freeze proteins (AFPs), abiotic stress tolerance and plant growth and development. The EgCBF3 tomatoes demonstrated altered phenotypes compared to the wild type tomatoes. Delayed leaf senescence and flowering, increased chlorophyll content and abnormal flowering were the consequences of overexpression of EgCBF3 in the transgenic tomatoes. The EgCBF3 tomatoes demonstrated enhanced abiotic stress tolerance under in vitro conditions. Further, transcript levels of ethylene biosynthesis-related genes, including three SlACSs and two SlACOs, were altered in the transgenic plants' leaves and roots compared to that in the wild type tomato plant. Among the eight AFPs studied in the wounded leaves of the EgCBF3 tomato plants, transcript levels of SlOSM-L, SlNP24, SlPR5L and SlTSRF1 decreased, while expression of the other four, SlCHI3, SlPR1, SlPR-P2 and SlLAP2, were up-regulated. These findings indicate the possible functions of EgCBF3 in plant growth and development as a regulator of ethylene biosynthesis-related and AFP genes, and as a stimulator of abiotic stress tolerance.

  6. Resolving Distinct Genetic Regulators of Tomato Leaf Shape within a Heteroblastic and Ontogenetic Context[W][OPEN

    PubMed Central

    Ranjan, Aashish; Kumar, Ravi; Ichihashi, Yasunori; Zumstein, Kristina; Headland, Lauren R.; Ostria-Gallardo, Enrique; Aguilar-Martínez, José A.; Bush, Susan; Carriedo, Leonela; Fulop, Daniel; Martinez, Ciera C.; Peng, Jie; Maloof, Julin N.; Sinha, Neelima R.

    2014-01-01

    Leaf shape is mutable, changing in ways modulated by both development and environment within genotypes. A complete model of leaf phenotype would incorporate the changes in leaf shape during juvenile-to-adult phase transitions and the ontogeny of each leaf. Here, we provide a morphometric description of >33,000 leaflets from a set of tomato (Solanum spp) introgression lines grown under controlled environment conditions. We first compare the shape of these leaves, arising during vegetative development, with >11,000 previously published leaflets from a field setting and >11,000 leaflets from wild tomato relatives. We then quantify the changes in shape, across ontogeny, for successive leaves in the heteroblastic series. Using principal component analysis, we then separate genetic effects modulating (1) the overall shape of all leaves versus (2) the shape of specific leaves in the series, finding the former more heritable than the latter and comparing quantitative trait loci regulating each. Our results demonstrate that phenotype is highly contextual and that unbiased assessments of phenotype, for quantitative genetic or other purposes, would ideally sample the many developmental and environmental factors that modulate it. PMID:25271240

  7. Multi-residue determination of plant growth regulators in apples and tomatoes by liquid chromatography/tandem mass spectrometry.

    PubMed

    Xue, Jiaying; Wang, Suli; You, Xiangwei; Dong, Jiannan; Han, Lijun; Liu, Fengmao

    2011-11-15

    A sensitive and rapid multi-residue analytical method for plant growth regulators (PGRs) (i.e., chlormequat, mepiquat, paclobutrazol, uniconazole, ethephon and flumetralin) in apples and tomatoes was developed using high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS). A homogenised sample was extracted with a mixture of methanol/water (90:10, v/v) and adjusted to pH <3 with formic acid. Primary secondary amine (PSA) adsorbent was used to clean up the sample. The determination was performed using electrospray ionisation (ESI) and a triple quadrupole (QqQ) analyser. Under the optimised method, the results showed that, except for ethephon, the recoveries were 81.8-98.1% in apples and tomatoes at the spiked concentrations of 0.005 to 2 mg/kg, with relative standard deviations (RSDs) of less than 11.7%. The limits of quantification (LOQs) were lower than their maximum residue limits (MRLs). The procedure was concluded as a practical method to determine the PGR residues in fruit and vegetables and is also suitable for the simultaneous analysis of the amounts of samples for routine monitoring. The analytical method described herein demonstrates a strong potential for its application in the field of PGR multi-residue analysis to help assure food safety.

  8. Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-regulated transcription factor.

    PubMed

    Bastías, Adriana; López-Climent, María; Valcárcel, Mercedes; Rosello, Salvador; Gómez-Cadenas, Aurelio; Casaretto, José A

    2011-03-01

    Growing evidence suggests that the phytohormone abscisic acid (ABA) plays a role in fruit development. ABA signaling components of developmental programs and responses to stress conditions include the group of basic leucine zipper transcriptional activators known as ABA-response element binding factors (AREBs/ABFs). AREB transcription factors mediate ABA-regulated gene expression involved in desiccation tolerance and are expressed mainly in seeds and in vegetative tissues under stress; however, they are also expressed in some fruits such as tomato. In order to get an insight into the role of ABA signaling in fruit development, the expression of two AREB-like factors were investigated during different developmental stages. In addition, tomato transgenic lines that overexpress and downregulate one AREB-like transcription factor, SlAREB1, were used to determine its effect on the levels of some metabolites determining fruit quality. Higher levels of citric acid, malic acid, glutamic acid, glucose and fructose were observed in SlAREB1-overexpressing lines compared with those in antisense suppression lines in red mature fruit pericarp. The higher hexose concentration correlated with increased expression of genes encoding a vacuolar invertase (EC 3.2.1.26) and a sucrose synthase (EC 2.4.1.13). No significant changes were found in ethylene content which agrees with the normal ripening phenotype observed in transgenic fruits. These results suggest that an AREB-mediated ABA signal affects the metabolism of these compounds during the fruit developmental program.

  9. Application of wide selected-ion monitoring data-independent acquisition to identify tomato fruit proteins regulated by the CUTIN DEFICIENT2 transcription factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe here the use of label-free wide selected-ion monitoring data-independent acquisition (WiSIM-DIA) to identify proteins that are involved in the formation of tomato (Solanum lycopersicum) fruit cuticles and that are regulated by the transcription factor CUTIN DEFICIENT2 (CD2). A spectral l...

  10. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening.

    PubMed

    Bemer, Marian; Karlova, Rumyana; Ballester, Ana Rosa; Tikunov, Yury M; Bovy, Arnaud G; Wolters-Arts, Mieke; Rossetto, Priscilla de Barros; Angenent, Gerco C; de Maagd, Ruud A

    2012-11-01

    Tomato (Solanum lycopersicum) contains two close homologs of the Arabidopsis thaliana MADS domain transcription factor FRUITFULL (FUL), FUL1 (previously called TDR4) and FUL2 (previously MBP7). Both proteins interact with the ripening regulator RIPENING INHIBITOR (RIN) and are expressed during fruit ripening. To elucidate their function in tomato, we characterized single and double FUL1 and FUL2 knockdown lines. Whereas the single lines only showed very mild alterations in fruit pigmentation, the double silenced lines exhibited an orange-ripe fruit phenotype due to highly reduced lycopene levels, suggesting that FUL1 and FUL2 have a redundant function in fruit ripening. More detailed analyses of the phenotype, transcriptome, and metabolome of the fruits silenced for both FUL1 and FUL2 suggest that the genes are involved in cell wall modification, the production of cuticle components and volatiles, and glutamic acid (Glu) accumulation. Glu is responsible for the characteristic umami taste of the present-day cultivated tomato fruit. In contrast with previously identified ripening regulators, FUL1 and FUL2 do not regulate ethylene biosynthesis but influence ripening in an ethylene-independent manner. Our data combined with those of others suggest that FUL1/2 and TOMATO AGAMOUS-LIKE1 regulate different subsets of the known RIN targets, probably in a protein complex with the latter.

  11. The Tomato FRUITFULL Homologs TDR4/FUL1 and MBP7/FUL2 Regulate Ethylene-Independent Aspects of Fruit Ripening[W

    PubMed Central

    Bemer, Marian; Karlova, Rumyana; Ballester, Ana Rosa; Tikunov, Yury M.; Bovy, Arnaud G.; Wolters-Arts, Mieke; Rossetto, Priscilla de Barros; Angenent, Gerco C.; de Maagd, Ruud A.

    2012-01-01

    Tomato (Solanum lycopersicum) contains two close homologs of the Arabidopsis thaliana MADS domain transcription factor FRUITFULL (FUL), FUL1 (previously called TDR4) and FUL2 (previously MBP7). Both proteins interact with the ripening regulator RIPENING INHIBITOR (RIN) and are expressed during fruit ripening. To elucidate their function in tomato, we characterized single and double FUL1 and FUL2 knockdown lines. Whereas the single lines only showed very mild alterations in fruit pigmentation, the double silenced lines exhibited an orange-ripe fruit phenotype due to highly reduced lycopene levels, suggesting that FUL1 and FUL2 have a redundant function in fruit ripening. More detailed analyses of the phenotype, transcriptome, and metabolome of the fruits silenced for both FUL1 and FUL2 suggest that the genes are involved in cell wall modification, the production of cuticle components and volatiles, and glutamic acid (Glu) accumulation. Glu is responsible for the characteristic umami taste of the present-day cultivated tomato fruit. In contrast with previously identified ripening regulators, FUL1 and FUL2 do not regulate ethylene biosynthesis but influence ripening in an ethylene-independent manner. Our data combined with those of others suggest that FUL1/2 and TOMATO AGAMOUS-LIKE1 regulate different subsets of the known RIN targets, probably in a protein complex with the latter. PMID:23136376

  12. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening.

    PubMed

    Bemer, Marian; Karlova, Rumyana; Ballester, Ana Rosa; Tikunov, Yury M; Bovy, Arnaud G; Wolters-Arts, Mieke; Rossetto, Priscilla de Barros; Angenent, Gerco C; de Maagd, Ruud A

    2012-11-01

    Tomato (Solanum lycopersicum) contains two close homologs of the Arabidopsis thaliana MADS domain transcription factor FRUITFULL (FUL), FUL1 (previously called TDR4) and FUL2 (previously MBP7). Both proteins interact with the ripening regulator RIPENING INHIBITOR (RIN) and are expressed during fruit ripening. To elucidate their function in tomato, we characterized single and double FUL1 and FUL2 knockdown lines. Whereas the single lines only showed very mild alterations in fruit pigmentation, the double silenced lines exhibited an orange-ripe fruit phenotype due to highly reduced lycopene levels, suggesting that FUL1 and FUL2 have a redundant function in fruit ripening. More detailed analyses of the phenotype, transcriptome, and metabolome of the fruits silenced for both FUL1 and FUL2 suggest that the genes are involved in cell wall modification, the production of cuticle components and volatiles, and glutamic acid (Glu) accumulation. Glu is responsible for the characteristic umami taste of the present-day cultivated tomato fruit. In contrast with previously identified ripening regulators, FUL1 and FUL2 do not regulate ethylene biosynthesis but influence ripening in an ethylene-independent manner. Our data combined with those of others suggest that FUL1/2 and TOMATO AGAMOUS-LIKE1 regulate different subsets of the known RIN targets, probably in a protein complex with the latter. PMID:23136376

  13. Identification of Novel Loci Regulating Interspecific Variation in Root Morphology and Cellular Development in Tomato1[W][OA

    PubMed Central

    Ron, Mily; Dorrity, Michael W.; de Lucas, Miguel; Toal, Ted; Hernandez, R. Ivan; Little, Stefan A.; Maloof, Julin N.; Kliebenstein, Daniel J.; Brady, Siobhan M.

    2013-01-01

    While the Arabidopsis (Arabidopsis thaliana) root has been elegantly characterized with respect to specification of cell identity, its development is missing a number of cellular features present in other species. We have characterized the root development of a wild and a domesticated tomato species, Solanum pennellii and Solanum lycopersicum ‘M82.’ We found extensive differences between these species for root morphology and cellular development including root length, a novel gravity set point angle, differences in cortical cell layer patterning, stem cell niche structure, and radial cell division. Using an introgression line population between these two species, we identified numerous loci that regulate these distinct aspects of development. Specifically we comprehensively identified loci that regulate (1) root length by distinct mechanisms including regulation of cell production within the meristem and the balance between cell division and expansion, (2) the gravity set point angle, and (3) radial cell division or expansion either in specific cell types or generally across multiple cell types. Our findings provide a novel perspective on the regulation of root growth and development between species. These loci have exciting implications with respect to regulation of drought resistance or salinity tolerance and regulation of root development in a family that has undergone domestication. PMID:23575417

  14. Multiple Roles of WIN3 in Regulating Disease Resistance, Cell Death, and Flowering Time in Arabidopsis1[C][W][OA

    PubMed Central

    Wang, Guan-Feng; Seabolt, Savanna; Hamdoun, Safae; Ng, Gina; Park, Jin; Lu, Hua

    2011-01-01

    The salicylic acid (SA) regulatory gene HOPW1-1-INTERACTING3 (WIN3) was previously shown to confer resistance to the biotrophic pathogen Pseudomonas syringae. Here, we report that WIN3 controls broad-spectrum disease resistance to the necrotrophic pathogen Botrytis cinerea and contributes to basal defense induced by flg22, a 22-amino acid peptide derived from the conserved region of bacterial flagellin proteins. Genetic analysis indicates that WIN3 acts additively with several known SA regulators, including PHYTOALEXIN DEFICIENT4, NONEXPRESSOR OF PR GENES1 (NPR1), and SA INDUCTION-DEFICIENT2, in regulating SA accumulation, cell death, and/or disease resistance in the Arabidopsis (Arabidopsis thaliana) mutant acd6-1. Interestingly, expression of WIN3 is also dependent on these SA regulators and can be activated by cell death, suggesting that WIN3-mediated signaling is interconnected with those derived from other SA regulators and cell death. Surprisingly, we found that WIN3 and NPR1 synergistically affect flowering time via influencing the expression of flowering regulatory genes FLOWERING LOCUS C and FLOWERING LOCUS T. Taken together, our data reveal that WIN3 represents a novel node in the SA signaling networks to regulate plant defense and flowering time. They also highlight that plant innate immunity and development are closely connected processes, precise regulation of which should be important for the fitness of plants. PMID:21543726

  15. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (Nelumbo Adans.).

    PubMed

    Sun, Shan-Shan; Gugger, Paul F; Wang, Qing-Feng; Chen, Jin-Ming

    2016-01-01

    The lotus (Nelumbonaceae: Nelumbo Adans.) is a highly desired ornamental plant, comprising only two extant species, the sacred lotus (N. nucifera Gaerten.) with red flowers and the American lotus (N. lutea Willd.) with yellow flowers. Flower color is the most obvious difference of two species. To better understand the mechanism of flower color differentiation, the content of anthocyanins and the expression levels of four key structural genes (e.g., DFR, ANS, UFGT and GST) were analyzed in two species. Our results revealed that anthocyanins were detected in red flowers, not yellow flowers. Expression analysis showed that no transcripts of GST gene and low expression level of three UFGT genes were detected in yellow flowers. In addition, three regulatory genes (NnMYB5, NnbHLH1 and NnTTG1) were isolated from red flowers and showed a high similarity to corresponding regulatory genes of other species. Sequence analysis of MYB5, bHLH1 and TTG1 in two species revealed striking differences in coding region and promoter region of MYB5 gene. Population analysis identified three MYB5 variants in Nelumbo: a functional allele existed in red flowers and two inactive forms existed in yellow flowers. This result revealed that there was an association between allelic variation in MYB5 gene and flower color difference. Yeast two-hybrid experiments showed that NnMYB5 interacts with NnbHLH1, NlbHLH1 and NnTTG1, and NnTTG1 also interacts with NnbHLH1 and NlbHLH1. The over-expression of NnMYB5 led to anthocyanin accumulation in immature seeds and flower stalks and up-regulation of expression of TT19 in Arabidopsis. Therefore, NnMYB5 is a transcription activator of anthocyanin synthesis. This study helps to elucidate the function of NnMYB5 and will contribute to clarify the mechanism of flower coloration and genetic engineering of flower color in lotus.

  16. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (Nelumbo Adans.)

    PubMed Central

    Sun, Shan-Shan

    2016-01-01

    The lotus (Nelumbonaceae: Nelumbo Adans.) is a highly desired ornamental plant, comprising only two extant species, the sacred lotus (N. nucifera Gaerten.) with red flowers and the American lotus (N. lutea Willd.) with yellow flowers. Flower color is the most obvious difference of two species. To better understand the mechanism of flower color differentiation, the content of anthocyanins and the expression levels of four key structural genes (e.g., DFR, ANS, UFGT and GST) were analyzed in two species. Our results revealed that anthocyanins were detected in red flowers, not yellow flowers. Expression analysis showed that no transcripts of GST gene and low expression level of three UFGT genes were detected in yellow flowers. In addition, three regulatory genes (NnMYB5, NnbHLH1 and NnTTG1) were isolated from red flowers and showed a high similarity to corresponding regulatory genes of other species. Sequence analysis of MYB5, bHLH1 and TTG1 in two species revealed striking differences in coding region and promoter region of MYB5 gene. Population analysis identified three MYB5 variants in Nelumbo: a functional allele existed in red flowers and two inactive forms existed in yellow flowers. This result revealed that there was an association between allelic variation in MYB5 gene and flower color difference. Yeast two-hybrid experiments showed that NnMYB5 interacts with NnbHLH1, NlbHLH1 and NnTTG1, and NnTTG1 also interacts with NnbHLH1 and NlbHLH1. The over-expression of NnMYB5 led to anthocyanin accumulation in immature seeds and flower stalks and up-regulation of expression of TT19 in Arabidopsis. Therefore, NnMYB5 is a transcription activator of anthocyanin synthesis. This study helps to elucidate the function of NnMYB5 and will contribute to clarify the mechanism of flower coloration and genetic engineering of flower color in lotus. PMID:27635336

  17. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (Nelumbo Adans.)

    PubMed Central

    Sun, Shan-Shan

    2016-01-01

    The lotus (Nelumbonaceae: Nelumbo Adans.) is a highly desired ornamental plant, comprising only two extant species, the sacred lotus (N. nucifera Gaerten.) with red flowers and the American lotus (N. lutea Willd.) with yellow flowers. Flower color is the most obvious difference of two species. To better understand the mechanism of flower color differentiation, the content of anthocyanins and the expression levels of four key structural genes (e.g., DFR, ANS, UFGT and GST) were analyzed in two species. Our results revealed that anthocyanins were detected in red flowers, not yellow flowers. Expression analysis showed that no transcripts of GST gene and low expression level of three UFGT genes were detected in yellow flowers. In addition, three regulatory genes (NnMYB5, NnbHLH1 and NnTTG1) were isolated from red flowers and showed a high similarity to corresponding regulatory genes of other species. Sequence analysis of MYB5, bHLH1 and TTG1 in two species revealed striking differences in coding region and promoter region of MYB5 gene. Population analysis identified three MYB5 variants in Nelumbo: a functional allele existed in red flowers and two inactive forms existed in yellow flowers. This result revealed that there was an association between allelic variation in MYB5 gene and flower color difference. Yeast two-hybrid experiments showed that NnMYB5 interacts with NnbHLH1, NlbHLH1 and NnTTG1, and NnTTG1 also interacts with NnbHLH1 and NlbHLH1. The over-expression of NnMYB5 led to anthocyanin accumulation in immature seeds and flower stalks and up-regulation of expression of TT19 in Arabidopsis. Therefore, NnMYB5 is a transcription activator of anthocyanin synthesis. This study helps to elucidate the function of NnMYB5 and will contribute to clarify the mechanism of flower coloration and genetic engineering of flower color in lotus.

  18. Identification of a R2R3-MYB gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (Nelumbo Adans.).

    PubMed

    Sun, Shan-Shan; Gugger, Paul F; Wang, Qing-Feng; Chen, Jin-Ming

    2016-01-01

    The lotus (Nelumbonaceae: Nelumbo Adans.) is a highly desired ornamental plant, comprising only two extant species, the sacred lotus (N. nucifera Gaerten.) with red flowers and the American lotus (N. lutea Willd.) with yellow flowers. Flower color is the most obvious difference of two species. To better understand the mechanism of flower color differentiation, the content of anthocyanins and the expression levels of four key structural genes (e.g., DFR, ANS, UFGT and GST) were analyzed in two species. Our results revealed that anthocyanins were detected in red flowers, not yellow flowers. Expression analysis showed that no transcripts of GST gene and low expression level of three UFGT genes were detected in yellow flowers. In addition, three regulatory genes (NnMYB5, NnbHLH1 and NnTTG1) were isolated from red flowers and showed a high similarity to corresponding regulatory genes of other species. Sequence analysis of MYB5, bHLH1 and TTG1 in two species revealed striking differences in coding region and promoter region of MYB5 gene. Population analysis identified three MYB5 variants in Nelumbo: a functional allele existed in red flowers and two inactive forms existed in yellow flowers. This result revealed that there was an association between allelic variation in MYB5 gene and flower color difference. Yeast two-hybrid experiments showed that NnMYB5 interacts with NnbHLH1, NlbHLH1 and NnTTG1, and NnTTG1 also interacts with NnbHLH1 and NlbHLH1. The over-expression of NnMYB5 led to anthocyanin accumulation in immature seeds and flower stalks and up-regulation of expression of TT19 in Arabidopsis. Therefore, NnMYB5 is a transcription activator of anthocyanin synthesis. This study helps to elucidate the function of NnMYB5 and will contribute to clarify the mechanism of flower coloration and genetic engineering of flower color in lotus. PMID:27635336

  19. Antioxidant compounds and their bioaccessibility in tomato fruit and puree obtained from a DETIOLATED-1 (DET-1) down-regulated genetically modified genotype.

    PubMed

    Talens, P; Mora, L; Bramley, Peter M; Fraser, Paul D

    2016-12-15

    The economic value, the ease of cultivation and processing, and the well-known health-promoting properties of tomato fruit, make the tomato an important target for genetic manipulation to increase its nutritional content. A transgenic variety, down-regulated in the DETIOLATED-1 (DET-1) gene, has been studied in comparison with the parental line, for antioxidant levels in fresh and hot break fruit, as well as the bioaccessibility of antioxidants from puree. Differences in the concentrations of antioxidants between the wild-type and the genetically modified raw tomatoes were confirmed, but antioxidant levels were maintained to a greater extent in the GM puree than in the parent. The bioaccessibility of the compounds, tested using an in vitro digestion model, showed an increase in the genetically modified samples.

  20. Antioxidant compounds and their bioaccessibility in tomato fruit and puree obtained from a DETIOLATED-1 (DET-1) down-regulated genetically modified genotype.

    PubMed

    Talens, P; Mora, L; Bramley, Peter M; Fraser, Paul D

    2016-12-15

    The economic value, the ease of cultivation and processing, and the well-known health-promoting properties of tomato fruit, make the tomato an important target for genetic manipulation to increase its nutritional content. A transgenic variety, down-regulated in the DETIOLATED-1 (DET-1) gene, has been studied in comparison with the parental line, for antioxidant levels in fresh and hot break fruit, as well as the bioaccessibility of antioxidants from puree. Differences in the concentrations of antioxidants between the wild-type and the genetically modified raw tomatoes were confirmed, but antioxidant levels were maintained to a greater extent in the GM puree than in the parent. The bioaccessibility of the compounds, tested using an in vitro digestion model, showed an increase in the genetically modified samples. PMID:27451242

  1. Multiple R2R3-MYB Transcription Factors Involved in the Regulation of Anthocyanin Accumulation in Peach Flower

    PubMed Central

    Zhou, Hui; Peng, Qian; Zhao, Jianbo; Owiti, Albert; Ren, Fei; Liao, Liao; Wang, Lu; Deng, Xianbao; Jiang, Quan; Han, Yuepeng

    2016-01-01

    Anthocyanin accumulation is responsible for flower coloration in peach. Here, we report the identification and functional characterization of eight flavonoid-related R2R3-MYB transcription factors, designated PpMYB10.2, PpMYB9, PpMYBPA1, Peace, PpMYB17, PpMYB18, PpMYB19, and PpMYB20, respectively, in peach flower transcriptome. PpMYB10.2 and PpMYB9 are able to activate transcription of anthocyanin biosynthetic genes, whilst PpMYBPA1 and Peace have a strong activation on the promoters of proanthocyanin (PA) biosynthetic genes. PpMYB17-20 show a strong repressive effect on transcription of flavonoid pathway genes such as dihydroflavonol 4-reductase. These results indicate that anthocyanin accumulation in peach flower is coordinately regulated by a set of R2R3-MYB genes. In addition, PpMYB9 and PpMYB10.2 are closely related but separated into two groups, designated MYB9 and MYB10, respectively. PpMYB9 shows a strong activation on the PpUGT78A2 promoter, but with no effect on the promoter of PpUGT78B (commonly called PpUFGT in previous studies). In contrast, PpMYB10.2 is able to activate the PpUFGT promoter, but not for the PpUGT78A2 promoter. Unlike the MYB10 gene that is universally present in plants, the MYB9 gene is lost in most dicot species. Therefore, the PpMYB9 gene represents a novel group of anthocyanin-related MYB activators, which may have diverged in function from the MYB10 genes. Our study will aid in understanding the complex mechanism regulating floral pigmentation in peach and functional divergence of the R2R3-MYB gene family in plants.

  2. Over-Expression of GmGIa-Regulated Soybean miR172a Confers Early Flowering in Transgenic Arabidopsis thaliana

    PubMed Central

    Wang, Tao; Sun, Ming-Yang; Wang, Xue-Song; Li, Wen-Bin; Li, Yong-Guang

    2016-01-01

    Flowering is a pivotal event in the life cycle of plants. miR172 has been widely confirmed to play critical roles in flowering time control by regulating its target gene expression in Arabidopsis. However, the role of its counterpart in soybean remains largely unclear. In the present study, we found that the gma-miR172a was regulated by a GIGANTEA ortholog, GmGIa, in soybean through miRNA metabolism. The expression analysis revealed that gma-miR172a has a pattern of diurnal rhythm expression and its abundance increased rapidly as plants grew until the initiation of flowering phase in soybean. One target gene of gma-miR172a, Glyma03g33470, was predicted and verified using a modified RLM 5′-RACE (RNA ligase-mediated rapid amplification of 5′ cDNA ends) assay. Overexpression of gma-miR172a exhibited an early flowering phenotype and the expression of FT, AP1 and LFY were simultaneously increased in gma-miR172a-transgenic Arabidopsis plants, suggesting that the early flowering phenotype was associated with up-regulation of these genes. The overexpression of the gma-miR172a-resistant version of Glyma03g33470 weakened early flowering phenotype in the toe1 mutant of Arabidopsis. Taken together, our results suggested that gma-miR172a played an important role in GmGIa-mediated flowering by repressing Glyma03g33470, which in turn increased the expression of FT, AP1 and LFY to promote flowering in soybean. PMID:27136537

  3. Is a cysteine proteinase inhibitor involved in the regulation of petal wilting in senescing carnation (Dianthus caryophyllus L.) flowers?

    PubMed

    Sugawara, Hiroaki; Shibuya, Kenichi; Yoshioka, Toshihito; Hashiba, Teruyoshi; Satoh, Shigeru

    2002-03-01

    Senescence of carnation petals is accompanied by autocatalytic ethylene production and wilting of the petals; the former is caused by the expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase genes and the latter is related to the expression of a cysteine proteinase (CPase) gene. CPase is probably responsible for the degradation of proteins, leading to the decomposition of cell components and resultant cell death during the senescence of petals. The carnation plant also has a gene for the CPase inhibitor (DC-CPIn) that is expressed abundantly in petals at the full opening stage of flowers. In the present study, DC-CPIn cDNA was cloned and expressed in E. coli. The recombinant DC-CPIn protein completely inhibited the activities of a proteinase (CPase) extracted from carnation petals and papain. Northern blot analysis showed that the mRNA for CPase (DC-CP1) accumulated in large amounts, whereas that for DC-CPIn disappeared, corresponding to the onset of petal wilting in flowers undergoing natural senescence and exogenous ethylene-induced senescence. Based on these findings, a role of DC-CPIn in the regulation of petal wilting is suggested; DC-CPIn acts as a suppressor of petal wilting, which probably functions to fine-tune petal wilting in contrast to coarse tuning, the up-regulation of CPase activity by gene expression.

  4. Up-regulation of a cysteine protease accompanies the ethylene-insensitive senescence of daylily (Hemerocallis) flowers.

    PubMed

    Valpuesta, V; Lange, N E; Guerrero, C; Reid, M S

    1995-06-01

    The flowers of daylily (Hemerocallis x hybrida cv. Cradle Song) open at midnight, start to senesce 12 h later, and are completely senescent by the following midnight. Differential screening of a cDNA library constructed from tepals of flowers showing incipient senescence revealed 25 clones that were strongly up-regulated in senescent tepals. Re-screening and interactive Southern analysis of these clones revealed 3 families of up-regulated clones. Transcripts of one clone, SEN10, were not detectable at midnight, but increased dramatically as senescence proceeded. The derived amino acid sequence of the full-length cDNA (SEN102) has strong homology with cysteine proteases that have been reported from other plant tissues. The sequence contains a secretory signal peptide and a probable prosequence upstream of the mature protein. Amino acids critical to the active site and structure of cysteine proteases are conserved, and the C-terminus of the polypeptide has a unique putative endoplasmic reticulum retention signal -RDEL. PMID:7632925

  5. Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development

    PubMed Central

    de Jong, Maaike; Wolters-Arts, Mieke; Schimmel, Bernardus C. J.; Stultiens, Catharina L. M.; de Groot, Peter F. M.; Powers, Stephen J.; Tikunov, Yury M.; Bovy, Arnoud G.; Mariani, Celestina; Vriezen, Wim H.; Rieu, Ivo

    2015-01-01

    The transformation of the ovary into a fruit after successful completion of pollination and fertilization has been associated with many changes at transcriptomic level. These changes are part of a dynamic and complex regulatory network that is controlled by phytohormones, with a major role for auxin. One of the auxin-related genes differentially expressed upon fruit set and early fruit development in tomato is Solanum lycopersicum AUXIN RESPONSE FACTOR 9 (SlARF9). Here, the functional analysis of this ARF is described. SlARF9 expression was found to be auxin-responsive and SlARF9 mRNA levels were high in the ovules, placenta, and pericarp of pollinated ovaries, but also in other plant tissues with high cell division activity, such as the axillary meristems and root meristems. Transgenic plants with increased SlARF9 mRNA levels formed fruits that were smaller than wild-type fruits because of reduced cell division activity, whereas transgenic lines in which SlARF9 mRNA levels were reduced showed the opposite phenotype. The expression analysis, together with the phenotype of the transgenic lines, suggests that, in tomato, ARF9 negatively controls cell division during early fruit development. PMID:25883382

  6. Mechanisms of hormonal regulation of endosperm cap-specific gene expression in tomato seeds.

    PubMed

    Martínez-Andújar, Cristina; Pluskota, Wioletta E; Bassel, George W; Asahina, Masashi; Pupel, Piotr; Nguyen, Theresa T; Takeda-Kamiya, Noriko; Toubiana, David; Bai, Bing; Górecki, Ryszard J; Fait, Aaron; Yamaguchi, Shinjiro; Nonogaki, Hiroyuki

    2012-08-01

    The micropylar region of endosperm in a seed, which is adjacent to the radicle tip, is called the 'endosperm cap', and is specifically activated before radicle emergence. This activation of the endosperm cap is a widespread phenomenon among species and is a prerequisite for the completion of germination. To understand the mechanisms of endosperm cap-specific gene expression in tomato seeds, GeneChip analysis was performed. The major groups of endosperm cap-enriched genes were pathogenesis-, cell wall-, and hormone-associated genes. The promoter regions of endosperm cap-enriched genes contained DNA motifs recognized by ethylene response factors (ERFs). The tomato ERF1 (TERF1) and its experimentally verified targets were enriched in the endosperm cap, suggesting an involvement of the ethylene response cascade in this process. The known endosperm cap enzyme endo-β-mannanase is induced by gibberellin (GA), which is thought to be the major hormone inducing endosperm cap-specific genes. The mechanism of endo-β-mannanase induction by GA was also investigated using isolated, embryoless seeds. Results suggested that GA might act indirectly on the endosperm cap. We propose that endosperm cap activation is caused by the ethylene response of this tissue, as a consequence of mechanosensing of the increase in embryonic growth potential by GA action.

  7. Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development.

    PubMed

    de Jong, Maaike; Wolters-Arts, Mieke; Schimmel, Bernardus C J; Stultiens, Catharina L M; de Groot, Peter F M; Powers, Stephen J; Tikunov, Yury M; Bovy, Arnoud G; Mariani, Celestina; Vriezen, Wim H; Rieu, Ivo

    2015-06-01

    The transformation of the ovary into a fruit after successful completion of pollination and fertilization has been associated with many changes at transcriptomic level. These changes are part of a dynamic and complex regulatory network that is controlled by phytohormones, with a major role for auxin. One of the auxin-related genes differentially expressed upon fruit set and early fruit development in tomato is Solanum lycopersicum AUXIN RESPONSE FACTOR 9 (SlARF9). Here, the functional analysis of this ARF is described. SlARF9 expression was found to be auxin-responsive and SlARF9 mRNA levels were high in the ovules, placenta, and pericarp of pollinated ovaries, but also in other plant tissues with high cell division activity, such as the axillary meristems and root meristems. Transgenic plants with increased SlARF9 mRNA levels formed fruits that were smaller than wild-type fruits because of reduced cell division activity, whereas transgenic lines in which SlARF9 mRNA levels were reduced showed the opposite phenotype. The expression analysis, together with the phenotype of the transgenic lines, suggests that, in tomato, ARF9 negatively controls cell division during early fruit development.

  8. KNOX genes influence a gradient of fruit chloroplast development through regulation of GOLDEN2-LIKE expression in tomato.

    PubMed

    Nadakuduti, Satya Swathi; Holdsworth, William L; Klein, Chelsey L; Barry, Cornelius S

    2014-06-01

    The chlorophyll content of unripe fleshy fruits is positively correlated with the nutrient content and flavor of ripe fruit. In tomato (Solanum lycopersicum) fruit, the uniform ripening (u) locus, which encodes a GOLDEN 2-LIKE transcription factor (SlGLK2), influences a gradient of chloroplast development that extends from the stem end of the fruit surrounding the calyx to the base of the fruit. With the exception of the u locus, the factors that influence the formation of this developmental gradient are unknown. In this study, characterization and positional cloning of the uniform gray-green (ug) locus of tomato reveals a thus far unknown role for the Class I KNOTTED1-LIKE HOMEOBOX (KNOX) gene, TKN4, in specifying the formation of this chloroplast gradient. The involvement of KNOX in fruit chloroplast development was confirmed through characterization of the Curl (Cu) mutant, a dominant gain-of-function mutation of TKN2, which displays ectopic fruit chloroplast development that resembles SlGLK2 over-expression. TKN2 and TKN4 act upstream of SlGLK2 and the related gene ARABIDOPSIS PSEUDO RESPONSE REGULATOR 2-LIKE (SlAPRR2-LIKE) to establish their latitudinal gradient of expression across developing fruit that leads to a gradient of chloroplast development. Class I KNOX genes typically influence plant morphology through maintenance of meristem activity, but this study identifies a role for TKN2 and TKN4 in specifically influencing chloroplast development in fruit but not leaves, suggesting that this fundamental process is differentially regulated in these two organs.

  9. KNOX genes influence a gradient of fruit chloroplast development through regulation of GOLDEN2-LIKE expression in tomato.

    PubMed

    Nadakuduti, Satya Swathi; Holdsworth, William L; Klein, Chelsey L; Barry, Cornelius S

    2014-06-01

    The chlorophyll content of unripe fleshy fruits is positively correlated with the nutrient content and flavor of ripe fruit. In tomato (Solanum lycopersicum) fruit, the uniform ripening (u) locus, which encodes a GOLDEN 2-LIKE transcription factor (SlGLK2), influences a gradient of chloroplast development that extends from the stem end of the fruit surrounding the calyx to the base of the fruit. With the exception of the u locus, the factors that influence the formation of this developmental gradient are unknown. In this study, characterization and positional cloning of the uniform gray-green (ug) locus of tomato reveals a thus far unknown role for the Class I KNOTTED1-LIKE HOMEOBOX (KNOX) gene, TKN4, in specifying the formation of this chloroplast gradient. The involvement of KNOX in fruit chloroplast development was confirmed through characterization of the Curl (Cu) mutant, a dominant gain-of-function mutation of TKN2, which displays ectopic fruit chloroplast development that resembles SlGLK2 over-expression. TKN2 and TKN4 act upstream of SlGLK2 and the related gene ARABIDOPSIS PSEUDO RESPONSE REGULATOR 2-LIKE (SlAPRR2-LIKE) to establish their latitudinal gradient of expression across developing fruit that leads to a gradient of chloroplast development. Class I KNOX genes typically influence plant morphology through maintenance of meristem activity, but this study identifies a role for TKN2 and TKN4 in specifically influencing chloroplast development in fruit but not leaves, suggesting that this fundamental process is differentially regulated in these two organs. PMID:24689783

  10. OsHAL3, a Blue Light-Responsive Protein, Interacts with the Floral Regulator Hd1 to Activate Flowering in Rice.

    PubMed

    Su, Lei; Shan, Jun-Xiang; Gao, Ji-Ping; Lin, Hong-Xuan

    2016-02-01

    In flowering plants, photoperiodic flowering is controlled by a complicated network. Light is one of the most important environmental stimuli that control the timing of the transition from vegetative growth to reproductive development. Several photoreceptors, including PHYA, PHYB, CRY2, and FKF1 in Arabidopsis and their homologs (OsPHYA, OsPHYB, OsPHYC, and OsCRY2) in rice, have been identified to be related to flowering. Our previous study suggests that OsHAL3, a flavin mononucleotide-binding protein, may function as a blue-light sensor. Here, we report the identification of OsHAL3 as a positive regulator of flowering in rice. OsHAL3 overexpression lines exhibited an early flowering phenotype, whereas downregulation of OsHAL3 expression by RNA interference delayed flowering under an inductive photoperiod (short-day conditions). The change in flowering time was not accompanied by altered Hd1 expression but rather by reduced accumulation of Hd3a and MADS14 transcripts. OsHAL3 and Hd1 colocalized in the nucleus and physically interacted in vivo under the dark, whereas their interaction was inhibited by white or blue light. Moreover, OsHAL3 directly bound to the promoter of Hd3a, especially before dawn. We conclude that OsHAL3, a novel light-responsive protein, plays an essential role in photoperiodic control of flowering time in rice, which is probably mediated by forming a complex with Hd1. Our findings open up new perspectives on the photoperiodic flowering pathway.

  11. Patterning of inflorescences and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia.

    PubMed

    Souer, Erik; Rebocho, Alexandra B; Bliek, Mattijs; Kusters, Elske; de Bruin, Robert A M; Koes, Ronald

    2008-08-01

    Angiosperms display a wide variety of inflorescence architectures differing in the positions where flowers or branches arise. The expression of floral meristem identity (FMI) genes determines when and where flowers are formed. In Arabidopsis thaliana, this is regulated via transcription of LEAFY (LFY), which encodes a transcription factor that promotes FMI. We found that this is regulated in petunia (Petunia hybrida) via transcription of a distinct gene, DOUBLE TOP (DOT), a homolog of UNUSUAL FLORAL ORGANS (UFO) from Arabidopsis. Mutation of DOT or its tomato (Solanum lycopersicum) homolog ANANTHA abolishes FMI. Ubiquitous expression of DOT or UFO in petunia causes very early flowering and transforms the inflorescence into a solitary flower and leaves into petals. Ectopic expression of DOT or UFO together with LFY or its homolog ABERRANT LEAF AND FLOWER (ALF) in petunia seedlings activates genes required for identity or outgrowth of organ primordia. DOT interacts physically with ALF, suggesting that it activates ALF by a posttranslational mechanism. Our findings suggest a wider role than previously thought for DOT and UFO in the patterning of flowers and indicate that the different roles of LFY and UFO homologs in the spatiotemporal control of floral identity in distinct species result from their divergent expression patterns. PMID:18713949

  12. Patterning of inflorescences and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia.

    PubMed

    Souer, Erik; Rebocho, Alexandra B; Bliek, Mattijs; Kusters, Elske; de Bruin, Robert A M; Koes, Ronald

    2008-08-01

    Angiosperms display a wide variety of inflorescence architectures differing in the positions where flowers or branches arise. The expression of floral meristem identity (FMI) genes determines when and where flowers are formed. In Arabidopsis thaliana, this is regulated via transcription of LEAFY (LFY), which encodes a transcription factor that promotes FMI. We found that this is regulated in petunia (Petunia hybrida) via transcription of a distinct gene, DOUBLE TOP (DOT), a homolog of UNUSUAL FLORAL ORGANS (UFO) from Arabidopsis. Mutation of DOT or its tomato (Solanum lycopersicum) homolog ANANTHA abolishes FMI. Ubiquitous expression of DOT or UFO in petunia causes very early flowering and transforms the inflorescence into a solitary flower and leaves into petals. Ectopic expression of DOT or UFO together with LFY or its homolog ABERRANT LEAF AND FLOWER (ALF) in petunia seedlings activates genes required for identity or outgrowth of organ primordia. DOT interacts physically with ALF, suggesting that it activates ALF by a posttranslational mechanism. Our findings suggest a wider role than previously thought for DOT and UFO in the patterning of flowers and indicate that the different roles of LFY and UFO homologs in the spatiotemporal control of floral identity in distinct species result from their divergent expression patterns.

  13. GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation.

    PubMed

    Martin-Tryon, Ellen L; Kreps, Joel A; Harmer, Stacey L

    2007-01-01

    Circadian clocks are widespread in nature. In higher plants, they confer a selective advantage, providing information regarding not only time of day but also time of year. Forward genetic screens in Arabidopsis (Arabidopsis thaliana) have led to the identification of many clock components, but the functions of most of these genes remain obscure. To identify both new constituents of the circadian clock and new alleles of known clock-associated genes, we performed a mutant screen. Using a clock-regulated luciferase reporter, we isolated new alleles of ZEITLUPE, LATE ELONGATED HYPOCOTYL, and GIGANTEA (GI). GI has previously been reported to function in red light signaling, central clock function, and flowering time regulation. Characterization of this and other GI alleles has helped us to further define GI function in the circadian system. We found that GI acts in photomorphogenic and circadian blue light signaling pathways and is differentially required for clock function in constant red versus blue light. Gene expression and epistasis analyses show that TIMING OF CHLOROPHYLL A/B BINDING PROTEIN1 (TOC1) expression is not solely dependent upon GI and that GI expression is only indirectly affected by TOC1, suggesting that GI acts both in series with and in parallel to TOC1 within the central circadian oscillator. Finally, we found that the GI-dependent promotion of CONSTANS expression and flowering is intact in a gi mutant with altered circadian regulation. Thus GI function in the regulation of a clock output can be biochemically separated from its role within the circadian clock.

  14. Abscission of flowers and floral organs is closely associated with alkalization of the cytosol in abscission zone cells

    PubMed Central

    Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Riov, Joseph; Belausov, Eduard; Kochanek, Betina; Tucker, Mark L.; Meir, Shimon

    2015-01-01

    In vivo changes in the cytosolic pH of abscission zone (AZ) cells were visualized using confocal microscopic detection of the fluorescent pH-sensitive and intracellularly trapped dye, 2’,7’-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF), driven by its acetoxymethyl ester. A specific and gradual increase in the cytosolic pH of AZ cells was observed during natural abscission of flower organs in Arabidopsis thaliana and wild rocket (Diplotaxis tenuifolia), and during flower pedicel abscission induced by flower removal in tomato (Solanum lycopersicum Mill). The alkalization pattern in the first two species paralleled the acceleration or inhibition of flower organ abscission induced by ethylene or its inhibitor 1-methylcyclopropene (1-MCP), respectively. Similarly, 1-MCP pre-treatment of tomato inflorescence explants abolished the pH increase in AZ cells and pedicel abscission induced by flower removal. Examination of the pH changes in the AZ cells of Arabidopsis mutants defective in both ethylene-induced (ctr1, ein2, eto4) and ethylene-independent (ida, nev7, dab5) abscission pathways confirmed these results. The data indicate that the pH changes in the AZ cells are part of both the ethylene-sensitive and -insensitive abscission pathways, and occur concomitantly with the execution of organ abscission. pH can affect enzymatic activities and/or act as a signal for gene expression. Changes in pH during abscission could occur via regulation of transporters in AZ cells, which might affect cytosolic pH. Indeed, four genes associated with pH regulation, vacuolar H+-ATPase, putative high-affinity nitrate transporter, and two GTP-binding proteins, were specifically up-regulated in tomato flower AZ following abscission induction, and 1-MCP reduced or abolished the increased expression. PMID:25504336

  15. Abscission of flowers and floral organs is closely associated with alkalization of the cytosol in abscission zone cells.

    PubMed

    Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Riov, Joseph; Belausov, Eduard; Kochanek, Betina; Tucker, Mark L; Meir, Shimon

    2015-03-01

    In vivo changes in the cytosolic pH of abscission zone (AZ) cells were visualized using confocal microscopic detection of the fluorescent pH-sensitive and intracellularly trapped dye, 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF), driven by its acetoxymethyl ester. A specific and gradual increase in the cytosolic pH of AZ cells was observed during natural abscission of flower organs in Arabidopsis thaliana and wild rocket (Diplotaxis tenuifolia), and during flower pedicel abscission induced by flower removal in tomato (Solanum lycopersicum Mill). The alkalization pattern in the first two species paralleled the acceleration or inhibition of flower organ abscission induced by ethylene or its inhibitor 1-methylcyclopropene (1-MCP), respectively. Similarly, 1-MCP pre-treatment of tomato inflorescence explants abolished the pH increase in AZ cells and pedicel abscission induced by flower removal. Examination of the pH changes in the AZ cells of Arabidopsis mutants defective in both ethylene-induced (ctr1, ein2, eto4) and ethylene-independent (ida, nev7, dab5) abscission pathways confirmed these results. The data indicate that the pH changes in the AZ cells are part of both the ethylene-sensitive and -insensitive abscission pathways, and occur concomitantly with the execution of organ abscission. pH can affect enzymatic activities and/or act as a signal for gene expression. Changes in pH during abscission could occur via regulation of transporters in AZ cells, which might affect cytosolic pH. Indeed, four genes associated with pH regulation, vacuolar H(+)-ATPase, putative high-affinity nitrate transporter, and two GTP-binding proteins, were specifically up-regulated in tomato flower AZ following abscission induction, and 1-MCP reduced or abolished the increased expression.

  16. Down-regulation of tomato beta-galactosidase 4 results in decreased fruit softening.

    PubMed

    Smith, David L; Abbott, Judith A; Gross, Kenneth C

    2002-08-01

    Transcript abundance of the gene encoding beta-galactosidase II, a beta-galactosidase/exo-galactanase (EC 3.2.1.23) present during tomato (Lycopersicon esculentum) fruit ripening, was suppressed by expression of an antisense tomato beta-galactosidase 4 (TBG4) cDNA driven by the cauliflower mosaic virus 35S promoter. RNA gel-blot analysis was used to evaluate TBG4 mRNA levels in transgenic fruit. All of the antisense lines had attenuated TBG4 mRNA levels in turning stage fruit; however, TBG4 mRNA suppression was unstable, and mRNA levels varied in red-ripe fruit among the lines. Suppression of TBG4 mRNA levels in antisense fruit was correlated with a reduction in extractable exo-galactanase activity against a lupin galactan. All of the antisense lines had reduced free galactose levels at mature green stage 4, but levels comparable with controls during ripening. Total cell wall galactosyl contents in the antisense fruit were not significantly different from control fruit. Whole-fruit firmness was measured using a texture analyzer and the means of the peak force measurements for four of six antisense lines were significantly higher than control fruit. One antisense line had red-ripe fruit that were 40% firmer than controls. Fruit from this antisense line also had the lowest TBG4 mRNA and exo-galactanase levels and the highest wall galactosyl content during the early stages of ripening, implicating an involvement of this gene product in cell wall modification leading to fruit softening.

  17. Regulation of Methylbenzoate Emission after Pollination in Snapdragon and Petunia Flowers

    PubMed Central

    Negre, Florence; Kish, Christine M.; Boatright, Jennifer; Underwood, Beverly; Shibuya, Kenichi; Wagner, Conrad; Clark, David G.; Dudareva, Natalia

    2003-01-01

    The molecular mechanisms responsible for postpollination changes in floral scent emission were investigated in snapdragon cv Maryland True Pink and petunia cv Mitchell flowers using a volatile ester, methylbenzoate, one of the major scent compounds emitted by these flowers, as an example. In both species, a 70 to 75% pollination-induced decrease in methylbenzoate emission begins only after pollen tubes reach the ovary, a process that takes between 35 and 40 h in snapdragon and ∼32 h in petunia. This postpollination decrease in emission is not triggered by pollen deposition on the stigma. Petunia and snapdragon both synthesize methylbenzoate from benzoic acid and S-adenosyl-l-methionine (SAM); however, they use different mechanisms to downregulate its production after pollination. In petunia, expression of the gene responsible for methylbenzoate synthesis is suppressed by ethylene. In snapdragon, the decrease in methylbenzoate emission is the result of a decrease in both S-adenosyl-l-methionine:benzoic acid carboxyl methyltransferase (BAMT) activity and the ratio of SAM to S-adenosyl-l-homocysteine (“methylation index”) after pollination, although the BAMT gene also is sensitive to ethylene. PMID:14630969

  18. Melatonin regulates carbohydrate metabolism and defenses against Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis thaliana.

    PubMed

    Zhao, Hongbo; Xu, Lingfei; Su, Tao; Jiang, Yang; Hu, Lingyu; Ma, Fengwang

    2015-08-01

    Melatonin has been reported to promote plant growth and development. Our experiments with Arabidopsis thaliana showed that exogenous applications of this molecule mediated invertase inhibitor (C/VIF)-regulated invertase activity and enhanced sucrose metabolism. Hexoses were accumulated in response to elevated activities by cell wall invertase (CWI) and vacuolar invertase (VI). Analyses of sugar metabolism-related genes revealed differential expression during plant development that was modulated by melatonin. In particular, C/VIF1 and C/VIF2 were strongly down-regulated by exogenous feeding. We also found the elevated CWI activity in melatonin-treated Arabidopsis improved the factors (cellulose, xylose, and galactose) for cell wall reinforcement and callose deposition during Pseudomonas syringae pv. tomato DC3000 infection, therefore, partially induced the pathogen resistance. However, CWI did not involve in salicylic acid (SA)-regulated defense pathway. Taken together, this study reveals that melatonin plays an important role in invertase-related carbohydrate metabolism, plant growth, and pathogen defense.

  19. Melatonin regulates carbohydrate metabolism and defenses against Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis thaliana.

    PubMed

    Zhao, Hongbo; Xu, Lingfei; Su, Tao; Jiang, Yang; Hu, Lingyu; Ma, Fengwang

    2015-08-01

    Melatonin has been reported to promote plant growth and development. Our experiments with Arabidopsis thaliana showed that exogenous applications of this molecule mediated invertase inhibitor (C/VIF)-regulated invertase activity and enhanced sucrose metabolism. Hexoses were accumulated in response to elevated activities by cell wall invertase (CWI) and vacuolar invertase (VI). Analyses of sugar metabolism-related genes revealed differential expression during plant development that was modulated by melatonin. In particular, C/VIF1 and C/VIF2 were strongly down-regulated by exogenous feeding. We also found the elevated CWI activity in melatonin-treated Arabidopsis improved the factors (cellulose, xylose, and galactose) for cell wall reinforcement and callose deposition during Pseudomonas syringae pv. tomato DC3000 infection, therefore, partially induced the pathogen resistance. However, CWI did not involve in salicylic acid (SA)-regulated defense pathway. Taken together, this study reveals that melatonin plays an important role in invertase-related carbohydrate metabolism, plant growth, and pathogen defense. PMID:25958775

  20. Eugenol confers resistance to Tomato yellow leaf curl virus (TYLCV) by regulating the expression of SlPer1 in tomato plants.

    PubMed

    Sun, Wei-Jie; Lv, Wen-Jing; Li, Li-Na; Yin, Gan; Hang, Xiaofang; Xue, Yanfeng; Chen, Jian; Shi, Zhiqi

    2016-05-25

    Tomato yellow leaf curl virus (TYLCV) is one of the most devastating plant diseases, and poses a significant agricultural concern because of the lack of an efficient control method. Eugenol is a plant-derived natural compound that has been widely used as a food additive and in medicine. In the present study, we demonstrated the potential of eugenol to enhance the resistance of tomato plants to TYLCV. The anti-TYLCV efficiency of eugenol was significantly higher than that of moroxydine hydrochloride (MH), a widely used commercial antiviral agent. Eugenol application stimulated the production of endogenous nitric oxide (NO) and salicylic acid (SA) in tomato plants. The full-length cDNA of SlPer1, which has been suggested to be a host R gene specific to TYLCV, was isolated from tomato plants. A sequence analysis suggested that SlPer1 might be a nucleobase-ascorbate transporter (NAT) belonging to the permease family. The transcript levels of SlPer1 increased markedly in response to treatment with eugenol or TYLCV inoculation. The results of this study also showed that SlPer1 expression was strongly induced by SA, MeJA (jasmonic acid methyl ester), and NO. Thus, we propose that the increased transcription of SlPer1 contributed to the high anti-TYLCV efficiency of eugenol, which might involve in the generation of endogenous SA and NO. Such findings provide the basis for the development of eugenol as an environmental-friendly agricultural antiviral agent. PMID:26776605

  1. A Large-Scale Identification of Direct Targets of the Tomato MADS Box Transcription Factor RIPENING INHIBITOR Reveals the Regulation of Fruit Ripening[W

    PubMed Central

    Fujisawa, Masaki; Nakano, Toshitsugu; Shima, Yoko; Ito, Yasuhiro

    2013-01-01

    The fruit ripening developmental program is specific to plants bearing fleshy fruits and dramatically changes fruit characteristics, including color, aroma, and texture. The tomato (Solanum lycopersicum) MADS box transcription factor RIPENING INHIBITOR (RIN), one of the earliest acting ripening regulators, is required for both ethylene-dependent and -independent ripening regulatory pathways. Recent studies have identified two dozen direct RIN targets, but many more RIN targets remain to be identified. Here, we report the large-scale identification of direct RIN targets by chromatin immunoprecipitation coupled with DNA microarray analysis (ChIP-chip) targeting the predicted promoters of tomato genes. Our combined ChIP-chip and transcriptome analysis identified 241 direct RIN target genes that contain a RIN binding site and exhibit RIN-dependent positive or negative regulation during fruit ripening, suggesting that RIN has both activator and repressor roles. Examination of the predicted functions of RIN targets revealed that RIN participates in the regulation of lycopene accumulation, ethylene production, chlorophyll degradation, and many other physiological processes. Analysis of the effect of ethylene using 1-methylcyclopropene revealed that the positively regulated subset of RIN targets includes ethylene-sensitive and -insensitive transcription factors. Intriguingly, ethylene is involved in the upregulation of RIN expression during ripening. These results suggest that tomato fruit ripening is regulated by the interaction between RIN and ethylene signaling. PMID:23386264

  2. A large-scale identification of direct targets of the tomato MADS box transcription factor RIPENING INHIBITOR reveals the regulation of fruit ripening.

    PubMed

    Fujisawa, Masaki; Nakano, Toshitsugu; Shima, Yoko; Ito, Yasuhiro

    2013-02-01

    The fruit ripening developmental program is specific to plants bearing fleshy fruits and dramatically changes fruit characteristics, including color, aroma, and texture. The tomato (Solanum lycopersicum) MADS box transcription factor RIPENING INHIBITOR (RIN), one of the earliest acting ripening regulators, is required for both ethylene-dependent and -independent ripening regulatory pathways. Recent studies have identified two dozen direct RIN targets, but many more RIN targets remain to be identified. Here, we report the large-scale identification of direct RIN targets by chromatin immunoprecipitation coupled with DNA microarray analysis (ChIP-chip) targeting the predicted promoters of tomato genes. Our combined ChIP-chip and transcriptome analysis identified 241 direct RIN target genes that contain a RIN binding site and exhibit RIN-dependent positive or negative regulation during fruit ripening, suggesting that RIN has both activator and repressor roles. Examination of the predicted functions of RIN targets revealed that RIN participates in the regulation of lycopene accumulation, ethylene production, chlorophyll degradation, and many other physiological processes. Analysis of the effect of ethylene using 1-methylcyclopropene revealed that the positively regulated subset of RIN targets includes ethylene-sensitive and -insensitive transcription factors. Intriguingly, ethylene is involved in the upregulation of RIN expression during ripening. These results suggest that tomato fruit ripening is regulated by the interaction between RIN and ethylene signaling.

  3. Differential expression analyses of host genes involved in systemic infection of Tomato leaf curl New Delhi virus (ToLCNDV).

    PubMed

    Naqvi, Afsar Raza; Sarwat, Maryam; Pradhan, Bhubaneswar; Choudhury, Nirupam Roy; Haq, Qazi Mohd Rizwanul; Mukherjee, Sunil Kumar

    2011-09-01

    Tomato leaf curl viruses (ToLCV) infect tomato plants and eventually cause several phenotypic defects, notably in the leaves in the form of upward curling. The entry of virus triggers plants' basal defense responses which eventually introduce temporal changes in the transcriptome to evade the pathogen attack. In this study, we have identified about 20 tomato ESTs using subtractive hybridization that were induced in tomato leaves upon agro-infection with the constructs bearing the dimers of Tomato leaf curl New Delhi virus (ToLCNDV) DNA-A and DNA-B components. The induced ESTs belonged to the class of genes that play crucial roles in innate immunity, plants metabolism and ethylene signaling. The expression of few of these ESTs was validated by northern blot analysis and two out of six selected genes expressed exclusively in the infected leaf tissues. Besides leaves, the expression status of selected genes was checked in a wide variety of tissues (flower, fruit, stem and root) of both healthy and infected plants by RT-PCR. These results suggest that the flower and fruit tissues, similar to leaves, exhibited induction of most of the genes while the stem and root tissues suffered from down-regulation. Overall, these results indicate that the hosts' transcriptome undergoes considerable changes in response to viral infection. PMID:21600246

  4. Phosphothreonine 218 is required for the function of SR45.1 in regulating flower petal development in Arabidopsis

    PubMed Central

    Zhang, Xiao-Ning; Mo, Cecilia; Garrett, Wesley M; Cooper, Bret

    2014-01-01

    RNA splicing is crucial to the production of mature mRNAs (mRNA). In Arabidopsis thaliana, the protein Arginine/Serine-rich 45 (SR45) acts as an RNA splicing activator and initiates the spliceosome assembly. SR45 is alternatively spliced into 2 isoforms. Isoform 1 (SR45.1) plays an important role in the flower petal development whereas isoform 2 (SR45.2) is important for root growth. In this study, we used immunoprecipitation to isolate an SR45.1-GFP fusion protein from transgenic plants complementing a null mutant, sr45–1. Mass spectrometry suggested a single phosphorylation event in a peptide from the alternatively spliced region unique to SR45.1. Substituting alanine for threonine 218, a candidate site for phosphorylation, did not complement the sr45–1 mutant with narrow flower petals whereas substituting aspartic acid or glutamic acid for threonine 218 did complement the sr45–1 mutant. Mass spectrometry also revealed that other proteins involved in the spliceosome co-precipitated with SR45.1, and RT-qPCR revealed that phosphorylation of threonine 218 promotes the function of SR45.1 in promoting the constitutive splicing of SR30 mRNA. This is the first demonstration of a specific phosphorylation site that differentially regulates the function of a plant splicing activator in physiologically and morphologically distinct plant tissues. PMID:25763493

  5. Phosphothreonine 218 is required for the function of SR45.1 in regulating flower petal development in Arabidopsis.

    PubMed

    Zhang, Xiao-Ning; Mo, Cecilia; Garrett, Wesley M; Cooper, Bret

    2014-05-15

    RNA splicing is crucial to the production of mature mRNAs (mRNA). In Arabidopsis thaliana, the protein Arginine/Serine-rich 45 (SR45) acts as an RNA splicing activator and initiates the spliceosome assembly. SR45 is alternatively spliced into two isoforms. Isoform 1 (SR45.1) plays an important role in the flower petal development whereas isoform 2 (SR45.2) is important for root growth. In this study, we used immunoprecipitation to isolate an SR45.1-GFP fusion protein from transgenic plants complementing a null mutant, sr45-1. Mass spectrometry suggested a single phosphorylation event in a peptide from the alternatively spliced region unique to SR45.1. Substituting alanine for threonine 218, a candidate site for phosphorylation, did not complement the sr45-1 mutant with narrow flower petals whereas substituting aspartic acid or glutamic acid for threonine 218 did complement the sr45-1 mutant. Mass spectrometry also revealed that other proteins involved in the spliceosome co-precipitated with SR45.1, and RT-qPCR revealed that phosphorylation of threonine 218 promotes the function of SR45.1 in promoting the constitutive splicing of SR30 mRNA. This is the first demonstration of a specific phosphorylation site that differentially regulates the function of a plant splicing activator in physiologically and morphologically distinct plant tissues. PMID:24832081

  6. Phosphothreonine 218 is required for the function of SR45.1 in regulating flower petal development in Arabidopsis.

    PubMed

    Zhang, Xiao-Ning; Mo, Cecilia; Garrett, Wesley M; Cooper, Bret

    2014-01-01

    RNA splicing is crucial to the production of mature mRNAs (mRNA). In Arabidopsis thaliana, the protein Arginine/Serine-rich 45 (SR45) acts as an RNA splicing activator and initiates the spliceosome assembly. SR45 is alternatively spliced into 2 isoforms. Isoform 1 (SR45.1) plays an important role in the flower petal development whereas isoform 2 (SR45.2) is important for root growth. In this study, we used immunoprecipitation to isolate an SR45.1-GFP fusion protein from transgenic plants complementing a null mutant, sr45-1. Mass spectrometry suggested a single phosphorylation event in a peptide from the alternatively spliced region unique to SR45.1. Substituting alanine for threonine 218, a candidate site for phosphorylation, did not complement the sr45-1 mutant with narrow flower petals whereas substituting aspartic acid or glutamic acid for threonine 218 did complement the sr45-1 mutant. Mass spectrometry also revealed that other proteins involved in the spliceosome co-precipitated with SR45.1, and RT-qPCR revealed that phosphorylation of threonine 218 promotes the function of SR45.1 in promoting the constitutive splicing of SR30 mRNA. This is the first demonstration of a specific phosphorylation site that differentially regulates the function of a plant splicing activator in physiologically and morphologically distinct plant tissues. PMID:25763493

  7. Proteomics of red and white corolla limbs in petunia reveals a novel function of the anthocyanin regulator ANTHOCYANIN1 in determining flower longevity.

    PubMed

    Prinsi, Bhakti; Negri, Alfredo S; Quattrocchio, Francesca M; Koes, Ronald E; Espen, Luca

    2016-01-10

    The Petunia hybrida ANTHOCYANIN1 (AN1) gene encodes a transcription factor that regulates both the expression of genes involved in anthocyanin synthesis and the acidification of the vacuolar lumen in corolla epidermal cells. In this work, the comparison between the red flowers of the R27 line with the white flowers of the isogenic an1 mutant line W225 showed that the AN1 gene has further pleiotropic effects on flavonoid biosynthesis as well as on distant physiological traits. The proteomic profiling showed that the an1 mutation was associated to changes in accumulation of several proteins, affecting both anthocyanin synthesis and primary metabolism. The flavonoid composition study confirmed that the an1 mutation provoked a broad attenuation of the entire flavonoid pathway, probably by indirect biochemical events. Moreover, proteomic changes and variation of biochemical parameters revealed that the an1 mutation induced a delay in the onset of flower senescence in W225, as supported by the enhanced longevity of the W225 flowers in planta and the loss of sensitivity of cut flowers to sugar. This study suggests that AN1 is possibly involved in the perception and/or transduction of ethylene signal during flower senescence.

  8. Proteomics of red and white corolla limbs in petunia reveals a novel function of the anthocyanin regulator ANTHOCYANIN1 in determining flower longevity.

    PubMed

    Prinsi, Bhakti; Negri, Alfredo S; Quattrocchio, Francesca M; Koes, Ronald E; Espen, Luca

    2016-01-10

    The Petunia hybrida ANTHOCYANIN1 (AN1) gene encodes a transcription factor that regulates both the expression of genes involved in anthocyanin synthesis and the acidification of the vacuolar lumen in corolla epidermal cells. In this work, the comparison between the red flowers of the R27 line with the white flowers of the isogenic an1 mutant line W225 showed that the AN1 gene has further pleiotropic effects on flavonoid biosynthesis as well as on distant physiological traits. The proteomic profiling showed that the an1 mutation was associated to changes in accumulation of several proteins, affecting both anthocyanin synthesis and primary metabolism. The flavonoid composition study confirmed that the an1 mutation provoked a broad attenuation of the entire flavonoid pathway, probably by indirect biochemical events. Moreover, proteomic changes and variation of biochemical parameters revealed that the an1 mutation induced a delay in the onset of flower senescence in W225, as supported by the enhanced longevity of the W225 flowers in planta and the loss of sensitivity of cut flowers to sugar. This study suggests that AN1 is possibly involved in the perception and/or transduction of ethylene signal during flower senescence. PMID:26459403

  9. Expression profiles of differentially regulated genes during the early stages of apple flower infection with Erwinia amylovora.

    PubMed

    Sarowar, Sujon; Zhao, Youfu; Soria-Guerra, Ruth Elena; Ali, Shahjahan; Zheng, Danman; Wang, Dongping; Korban, Schuyler S

    2011-10-01

    To identify genes involved in the response to the fire blight pathogen Erwinia amylovora in apple (Malus×domestica), expression profiles were investigated using an apple oligo (70-mer) array representing 40, 000 genes. Blossoms of a fire blight-susceptible apple cultivar Gala were collected from trees growing in the orchard, placed on a tray in the laboratory, and spray-inoculated with a suspension of E. amylovora at a concentration of 10(8) cfu ml(-1). Uninoculated detached flowers served as controls at each time point. Expression profiles were captured at three different time points post-inoculation at 2, 8, and 24 h, together with those at 0 h (uninoculated). A total of about 3500 genes were found to be significantly modulated in response to at least one of the three time points. Among those, a total of 770, 855, and 1002 genes were up-regulated, by 2-fold, at 2, 8, and 24 h following inoculation, respectively; while, 748, 1024, and 1455 genes were down-regulated, by 2-fold, at 2, 8, and 24 h following inoculation, respectively. Over the three time points post-inoculation, 365 genes were commonly up-regulated and 374 genes were commonly down-regulated. Both sets of genes were classified based on their functional categories. The majority of up-regulated genes were involved in metabolism, signal transduction, signalling, transport, and stress response. A number of transcripts encoding proteins/enzymes known to be up-regulated under particular biotic and abiotic stress were also up-regulated following E. amylovora treatment. Those up- or down-regulated genes encode transcription factors, signaling components, defense-related, transporter, and metabolism, all of which have been associated with disease responses in Arabidopsis and rice, suggesting similar response pathways are involved in apple blossoms.

  10. Preparation of Polyclonal Antibody and Expression Analysis of GR in Tomato

    NASA Astrophysics Data System (ADS)

    Xie, Yuanhong; Zhu, Benzhong; Luo, Yunbo; Chen, Xiangning; Zhang, Hongxing

    The fruit ripening of Green-ripe (Gr) mutant tomato was inhibited dramatically. To determine the expression patterns of Gr in tomato, we first produced the polyclonal antibody of Gr protein. RT-PCR was used to amplify the Gr gene from green ripe tomato fruit. And the PCR product was subcloned into prokaryotic protein expression vectors pET-30a to generate recombinant plasmid. The Gr protein was induced by IPTG in BL21 (DE3) and purified by Ni-NTA agarose column. The anti-Gr serum was produced by immunizing rabbits, and the titer of the anti-Gr serum was above 5000 by ELISA analysis. Purified by the DEAE-52 ion-column, the high purification level of anti-Gr polyclonal antibody was obtained. Furthermore, RT-CPR was used in the RNA level to demonstrate that the expression of Gr gene was specialized in some cultures of tomato. For example, the expressions of Gr were higher in seed, flower and green ripe fruit than others, and the expression level were reduced by exogenous ethylene treatment in the flower and green ripe fruit. Moreover, Polyclonal antibody of Gr was used to investigate the expression pattern of Gr in protein level by the Western blotting. Our results show that the expression level of Gr in protein level was complied with the expressions in RNA. So, we suggested that the regulation of Gr was transcriptional.

  11. Characterization of the procera Tomato Mutant Shows Novel Functions of the SlDELLA Protein in the Control of Flower Morphology, Cell Division and Expansion, and the Auxin-Signaling Pathway during Fruit-Set and Development1[C][W

    PubMed Central

    Carrera, Esther; Ruiz-Rivero, Omar; Peres, Lazaro Eustaquio Pereira; Atares, Alejandro; Garcia-Martinez, Jose Luis

    2012-01-01

    procera (pro) is a tall tomato (Solanum lycopersicum) mutant carrying a point mutation in the GRAS region of the gene encoding SlDELLA, a repressor in the gibberellin (GA) signaling pathway. Consistent with the SlDELLA loss of function, pro plants display a GA-constitutive response phenotype, mimicking wild-type plants treated with GA3. The ovaries from both nonemasculated and emasculated pro flowers had very strong parthenocarpic capacity, associated with enhanced growth of preanthesis ovaries due to more and larger cells. pro parthenocarpy is facultative because seeded fruits were obtained by manual pollination. Most pro pistils had exserted stigmas, thus preventing self-pollination, similar to wild-type pistils treated with GA3 or auxins. However, Style2.1, a gene responsible for long styles in noncultivated tomato, may not control the enhanced style elongation of pro pistils, because its expression was not higher in pro styles and did not increase upon GA3 application. Interestingly, a high percentage of pro flowers had meristic alterations, with one additional petal, sepal, stamen, and carpel at each of the four whorls, respectively, thus unveiling a role of SlDELLA in flower organ development. Microarray analysis showed significant changes in the transcriptome of preanthesis pro ovaries compared with the wild type, indicating that the molecular mechanism underlying the parthenocarpic capacity of pro is complex and that it is mainly associated with changes in the expression of genes involved in GA and auxin pathways. Interestingly, it was found that GA activity modulates the expression of cell division and expansion genes and an auxin signaling gene (tomato AUXIN RESPONSE FACTOR7) during fruit-set. PMID:22942390

  12. Florigen and anti-florigen – a systemic mechanism for coordinating growth and termination in flowering plants

    PubMed Central

    Lifschitz, Eliezer; Ayre, Brian G.; Eshed, Yuval

    2014-01-01

    Genetic studies in Arabidopsis established FLOWERING LOCUS T (FT) as a key flower-promoting gene in photoperiodic systems. Grafting experiments established unequivocal one-to-one relations between SINGLE FLOWER TRUSS (SFT), a tomato homolog of FT, and the hypothetical florigen, in all flowering plants. Additional studies of SFT and SELF PRUNING (SP, homolog of TFL1), two antagonistic genes regulating the architecture of the sympodial shoot system, have suggested that transition to flowering in the day-neutral and perennial tomato is synonymous with “termination.” Dosage manipulation of its endogenous and mobile, graft-transmissible levels demonstrated that florigen regulates termination and transition to flowering in an SP-dependent manner and, by the same token, that high florigen levels induce growth arrest and termination in meristems across the tomato shoot system. It was thus proposed that growth balances, and consequently the patterning of the shoot systems in all plants, are mediated by endogenous, meristem-specific dynamic SFT/SP ratios and that shifts to termination by changing SFT/SP ratios are triggered by the imported florigen, the mobile form of SFT. Florigen is a universal plant growth hormone inherently checked by a complementary antagonistic systemic system. Thus, an examination of the endogenous functions of FT-like genes, or of the systemic roles of the mobile florigen in any plant species, that fails to pay careful attention to the balancing antagonistic systems, or to consider its functions in day-neutral or perennial plants, would be incomplete. PMID:25278944

  13. A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia

    PubMed Central

    Yin, Jing; Chang, Xiaoxiao; Kasuga, Takao; Bui, Mai; Reid, Michael S; Jiang, Cai-Zhong

    2015-01-01

    The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in regulating multiple biological processes in plants. However, there are few reports about the function of bHLHs in flower senescence. In this study, a bHLH TF, PhFBH4, was found to be dramatically upregulated during flower senescence. Transcription of PhFBH4 is induced by plant hormones and abiotic stress treatments. Silencing of PhFBH4 using virus-induced gene silencing or an antisense approach extended flower longevity, while transgenic petunia flowers with an overexpression construct showed a reduction in flower lifespan. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was significantly changed in petunia PhFBH4 transgenic flowers. Furthermore, silencing or overexpression of PhFBH4 reduced or increased, respectively, transcript abundances of important ethylene biosynthesis-related genes, ACS1 and ACO1, thereby influencing ethylene production. An electrophoretic mobility shift assay showed that the PhFBH4 protein physically interacted with the G-box cis-element in the promoter of ACS1, suggesting that ACS1 was a direct target of the PhFBH4 protein. In addition, ectopic expression of this gene altered plant development including plant height, internode length, and size of leaves and flowers, accompanied by alteration of transcript abundance of the gibberellin biosynthesis-related gene GA2OX3. Our results indicate that PhFBH4 plays an important role in regulating plant growth and development through modulating the ethylene biosynthesis pathway. PMID:26715989

  14. Multi-layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem.

    PubMed

    Hyun, Youbong; Richter, René; Vincent, Coral; Martinez-Gallegos, Rafael; Porri, Aimone; Coupland, George

    2016-05-01

    Flowering is initiated in response to environmental and internal cues that are integrated at the shoot apical meristem (SAM). We show that SPL15 coordinates the basal floral promotion pathways required for flowering of Arabidopsis in non-inductive environments. SPL15 directly activates transcription of the floral regulators FUL and miR172b in the SAM during floral induction, whereas its paralog SPL9 is expressed later on the flanks of the SAM. The capacity of SPL15 to promote flowering is regulated by age through miR156, which targets SPL15 mRNA, and gibberellin (GA), which releases SPL15 from DELLAs. Furthermore, SPL15 and the MADS-box protein SOC1 cooperate to promote transcription of their target genes. SPL15 recruits RNAPII and MED18, a Mediator complex component, in a GA-dependent manner, while SOC1 facilitates active chromatin formation with the histone demethylase REF6. Thus, we present a molecular basis for assimilation of flowering signals and transcriptional control at the SAM during flowering.

  15. Genome-wide analyses of the transcriptomes of salicylic acid-deficient versus wild-type plants uncover Pathogen and Circadian Controlled 1 (PCC1) as a regulator of flowering time in Arabidopsis.

    PubMed

    Segarra, Silvia; Mir, Ricardo; Martínez, Cristina; León, José

    2010-01-01

    Salicylic acid (SA) has been characterized as an activator of pathogen-triggered resistance of plants. SA also regulates developmental processes such as thermogenesis in floral organs and stress-induced flowering. To deepen our knowledge of the mechanism underlying SA regulation of flowering time in Arabidopsis, we compared the transcriptomes of SA-deficient late flowering genotypes with wild-type plants. Down- or up-regulated genes in SA-deficient plants were screened for responsiveness to ultraviolet (UV)-C light, which accelerates flowering in Arabidopsis. Among them, only Pathogen and Circadian Controlled 1 (PCC1) was up-regulated by UV-C light through a SA-dependent process. Moreover, UV-C light-activated expression of PCC1 was also dependent on the flowering activator CONSTANS (CO). PCC1 gene has a circadian-regulated developmental pattern of expression with low transcript levels after germination that increased abruptly by day 10. RNAi plants with very low expression of PCC1 gene were late flowering, defective in UV-C light acceleration of flowering and contained FLOWERING LOCUS T (FT) transcript levels below 5% of that detected in wild-type plants. Although PCC1 seems to function between CO and FT in the photoperiod-dependent flowering pathway, transgenic plants overexpressing a Glucocorticoid Receptor (GR)-fused version of CO strongly activated FT but not PCC1 after dexamethasone treatment.

  16. A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in regulating multiple biological processes in plants. However, there are few reports about the function of bHLHs in flower senescence. In this study, a bHLH TF, PhFBH4, was found to be dramatically upregulated during...

  17. The pineapple AcMADS1 promoter confers high level expression in tomato and arabidopsis flowering and fruiting tissues, but AcMADS1 does not complement the tomato LeMADS-RIN (rin) mutant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A previous EST study identified a MADS box transcription factor coding sequence, AcMADS1, that is strongly induced during non-climacteric pineapple fruit ripening. Phylogenetic analyses place the AcMADS1 protein in the same superclade as LeMADS-RIN, a master regulator of fruit ripening upstream of e...

  18. The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks

    PubMed Central

    Xiao, Dong; Zhao, Jian J.; Bonnema, Guusje

    2013-01-01

    The role of many genes and interactions among genes involved in flowering time have been studied extensively in Arabidopsis, and the purpose of this study was to investigate how effectively results obtained with the model species Arabidopsis can be applied to the Brassicacea with often larger and more complex genomes. Brassica rapa represents a very close relative, with its triplicated genome, with subgenomes having evolved by genome fractionation. The question of whether this genome fractionation is a random process, or whether specific genes are preferentially retained, such as flowering time (Ft) genes that play a role in the extreme morphological variation within the B. rapa species (displayed by the diverse morphotypes), is addressed. Data are presented showing that indeed Ft genes are preferentially retained, so the next intriguing question is whether these different orthologues of Arabidopsis Ft genes play similar roles compared with Arabidopsis, and what is the role of these different orthologues in B. rapa. Using a genetical–genomics approach, co-location of flowering quantitative trait loci (QTLs) and expression QTLs (eQTLs) resulted in identification of candidate genes for flowering QTLs and visualization of co-expression networks of Ft genes and flowering time. A major flowering QTL on A02 at the BrFLC2 locus co-localized with cis eQTLs for BrFLC2, BrSSR1, and BrTCP11, and trans eQTLs for the photoperiod gene BrCO and two paralogues of the floral integrator genes BrSOC1 and BrFT. It is concluded that the BrFLC2 Ft gene is a major regulator of flowering time in the studied doubled haploid population. PMID:24078668

  19. The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks.

    PubMed

    Xiao, Dong; Zhao, Jian J; Hou, Xi L; Basnet, Ram K; Carpio, Dunia P D; Zhang, Ning W; Bucher, Johan; Lin, Ke; Cheng, Feng; Wang, Xiao W; Bonnema, Guusje

    2013-11-01

    The role of many genes and interactions among genes involved in flowering time have been studied extensively in Arabidopsis, and the purpose of this study was to investigate how effectively results obtained with the model species Arabidopsis can be applied to the Brassicacea with often larger and more complex genomes. Brassica rapa represents a very close relative, with its triplicated genome, with subgenomes having evolved by genome fractionation. The question of whether this genome fractionation is a random process, or whether specific genes are preferentially retained, such as flowering time (Ft) genes that play a role in the extreme morphological variation within the B. rapa species (displayed by the diverse morphotypes), is addressed. Data are presented showing that indeed Ft genes are preferentially retained, so the next intriguing question is whether these different orthologues of Arabidopsis Ft genes play similar roles compared with Arabidopsis, and what is the role of these different orthologues in B. rapa. Using a genetical-genomics approach, co-location of flowering quantitative trait loci (QTLs) and expression QTLs (eQTLs) resulted in identification of candidate genes for flowering QTLs and visualization of co-expression networks of Ft genes and flowering time. A major flowering QTL on A02 at the BrFLC2 locus co-localized with cis eQTLs for BrFLC2, BrSSR1, and BrTCP11, and trans eQTLs for the photoperiod gene BrCO and two paralogues of the floral integrator genes BrSOC1 and BrFT. It is concluded that the BrFLC2 Ft gene is a major regulator of flowering time in the studied doubled haploid population.

  20. Blob Flowers.

    ERIC Educational Resources Information Center

    Canfield, Elaine

    2003-01-01

    Describes an art project called blob flowers in which fifth-grade students created pictures of flowers using watercolor and markers. Explains that the lesson incorporates ideas from art and science. Discusses in detail how the students created their flowers. (CMK)

  1. The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity.

    PubMed

    Mucyn, Tatiana S; Clemente, Alfonso; Andriotis, Vasilios M E; Balmuth, Alexi L; Oldroyd, Giles E D; Staskawicz, Brian J; Rathjen, John P

    2006-10-01

    Immunity in tomato (Solanum lycopersicum) to Pseudomonas syringae bacteria expressing the effector proteins AvrPto and AvrPtoB requires both Pto kinase and the NBARC-LRR (for nucleotide binding domain shared by Apaf-1, certain R gene products, and CED-4 fused to C-terminal leucine-rich repeats) protein Prf. Pto plays a direct role in effector recognition within the host cytoplasm, but the role of Prf is unknown. We show that Pto and Prf are coincident in the signal transduction pathway that controls ligand-independent signaling. Pto and Prf associate in a coregulatory interaction that requires Pto kinase activity and N-myristoylation for signaling. Pto interacts with a unique Prf N-terminal domain outside of the NBARC-LRR domain and resides in a high molecular weight recognition complex dependent on the presence of Prf. In this complex, both Pto and Prf contribute to specific recognition of AvrPtoB. The data suggest that the role of Pto is confined to the regulation of Prf and that the bacterial effectors have evolved to target this coregulatory molecular switch.

  2. Non-hydraulic regulation of fruit growth in tomato plants (Lycopersicon esculentum cv. Solairo) growing in drying soil.

    PubMed

    Mingo, Darren M; Bacon, Mark A; Davies, William J

    2003-04-01

    Tomato (Lycopersicon esculentum cv. Solairo) fruit growth, fruit mesocarp and leaf epidermal cell turgor, and fruit and leaf sub-epidermal apoplastic pH were monitored as plants were allowed to dry the soil in which they were rooted. Soil drying regimes involved splitting the root system of plants between two halves of a single pot separated by a solid impervious membrane to form a split-root system. Plants were then allowed to dry the soil in both halves of the pot (a soil-drying (SD) treatment) or water was supplied to one-half of the pot (a partial root-drying (PRD) treatment), allowing only one-half of the root system to dry the soil. A well-watered control treatment watered the soil on both halves of the pot. The rate of fruit growth was highly correlated with the soil water content of both sides of the SD treatment and the dry side of the PRD treatment. Soil drying caused a significant restriction in fruit growth rate, which was independent of any changes in the turgor of expanding fruit mesocarp cells in the PRD treatment. By supplying water to half of the root system, the turgors of mesocarp cells were maintained at values above those recorded in well-watered controls. The turgor of leaf epidermal cells exhibited a similar response. The pH of the sub-epidermal apoplastic compartment in leaves and fruit increased with soil drying. The dynamics of this increase in leaves and fruit were identical, suggesting free transport of this signal from shoot to fruit. Fruit growth rate and sub-epidermal pH within the fruit showed a strong correlation. The similarity of fruit growth response in the SD and PRD treatment, suggests that tomato plants respond to a discrete measure of soil water status and do not integrate measures to determine total soil water availability. The results of this study are not consistent with Lockhartian models of growth regulation in expanding fruit of a higher plant. A non-hydraulic, chemical-based signalling control of fruit growth in plants

  3. CONSTANS and the CCAAT Box Binding Complex Share a Functionally Important Domain and Interact to Regulate Flowering of Arabidopsis[W][OA

    PubMed Central

    Wenkel, Stephan; Turck, Franziska; Singer, Kamy; Gissot, Lionel; Gourrierec, José Le; Samach, Alon; Coupland, George

    2006-01-01

    The CCT (for CONSTANS, CONSTANS-LIKE, TOC1) domain is found in 45 Arabidopsis thaliana proteins involved in processes such as photoperiodic flowering, light signaling, and regulation of circadian rhythms. We show that this domain exhibits similarities to yeast HEME ACTIVATOR PROTEIN2 (HAP2), which is a subunit of the HAP2/HAP3/HAP5 trimeric complex that binds to CCAAT boxes in eukaryotic promoters. Moreover, we demonstrate that CONSTANS (CO), which promotes Arabidopsis flowering, interacts with At HAP3 and At HAP5 in yeast, in vitro, and in planta. Mutations in CO that delay flowering affect residues highly conserved between CCT and the DNA binding domain of HAP2. Taken together, these data suggest that CO might replace At HAP2 in the HAP complex to form a trimeric CO/At HAP3/At HAP5 complex. Flowering was delayed by overexpression of At HAP2 or At HAP3 throughout the plant or in phloem companion cells, where CO is expressed. This phenotype was correlated with reduced abundance of FLOWERING LOCUS T (FT) mRNA and no change in CO mRNA levels. At HAP2 or At HAP3 overexpression may therefore impair formation of a CO/At HAP3/At HAP5 complex leading to reduced expression of FT. During plant evolution, the number of genes encoding HAP proteins was greatly amplified, and these proteins may have acquired novel functions, such as mediating the effect of CCT domain proteins on gene expression. PMID:17138697

  4. Gene Mapping of a Mutant Mungbean (Vigna radiata L.) Using New Molecular Markers Suggests a Gene Encoding a YUC4-like Protein Regulates the Chasmogamous Flower Trait

    PubMed Central

    Chen, Jingbin; Somta, Prakit; Chen, Xin; Cui, Xiaoyan; Yuan, Xingxing; Srinives, Peerasak

    2016-01-01

    Mungbean (Vigna radiata L.) is a cleistogamous plant in which flowers are pollinated before they open, which prevents yield improvements through heterosis. We previously generated a chasmogamous mutant (CM) mungbean in which open flowers are pollinated. In this study, we developed insertion/deletion (indel) markers based on the transcriptome differences between CM and Sulu-1 (i.e., normal flowering) plants. An F2 population derived from a cross between CM and Sulu-1 was used for gene mapping. Segregation analyses revealed that a single recessive gene regulates the production of chasmogamous flowers. Using newly developed indel and simple sequence repeat markers, the cha gene responsible for the chasmogamous flower trait was mapped to a 277.1-kb segment on chromosome 6. Twelve candidate genes were detected in this segment, including Vradi06g12650, which encodes a YUCCA family protein associated with floral development. A single base pair deletion producing a frame-shift mutation and a premature stop codon in Vradi06g12650 was detected only in CM plants. This suggested that Vradi06g12650 is a cha candidate gene. Our results provide important information for the molecular breeding of chasmogamous mungbean lines, which may serve as new genetic resources for hybrid cultivar development. PMID:27375671

  5. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco.

    PubMed

    Zhang, Zhijin; Zhang, Haiwen; Quan, Ruidan; Wang, Xue-Chen; Huang, Rongfeng

    2009-05-01

    Fine-tuning of ethylene production plays an important role in developmental processes and in plant responses to stress, but very little is known about the regulation of ethylene response factor (ERF) proteins in ethylene biosynthesis genes and ethylene production. Identifying cis-acting elements and transcription factors that play a role in this process, therefore, is important. Previously, a tomato (Solanum lycopersicum [f. sp. Lycopersicon esculentum]) ERF protein, LeERF2, an allele of TERF2, was reported to confer ethylene triple response on plants. This paper reports the transcriptional modulation of LeERF2/TERF2 in ethylene biosynthesis in tomato and tobacco (Nicotiana tabacum). Using overexpressing and antisense LeERF2/TERF2 transgenic tomato, we found that LeERF2/TERF2 is an important regulator in the expression of ethylene biosynthesis genes and the production of ethylene. Expression analysis revealed that LeERF2/TERF2 is ethylene inducible, and ethylene production stimulated by ethylene was suppressed in antisense LeERF2/TERF2 transgenic tomato, indicating LeERF2/TERF2 to be a positive regulator in the feedback loop of ethylene induction. Further research showed that LeERF2/TERF2 conservatively modulates ethylene biosynthesis in tobacco and that such regulation in tobacco is associated with the elongation of the hypocotyl and insensitivity to abscisic acid and glucose during germination and seedling development. The effects on ethylene synthesis were similar to those of another ERF protein, TERF1, because TERF1 and LeERF2/TERF2 have overlapping roles in the transcriptional regulation of ethylene biosynthesis in tobacco. Biochemical analysis showed that LeERF2/TERF2 interacted with GCC box in the promoter of NtACS3 and with dehydration-responsive element in the promoter of LeACO3, resulting in transcriptional activation of the genes for ethylene biosynthesis in tomato and tobacco, which is a novel regulatory function of ERF proteins in plant ethylene

  6. An AGAMOUS-Related MADS-Box Gene, XAL1 (AGL12), Regulates Root Meristem Cell Proliferation and Flowering Transition in Arabidopsis1[W][OA

    PubMed Central

    Tapia-López, Rosalinda; García-Ponce, Berenice; Dubrovsky, Joseph G.; Garay-Arroyo, Adriana; Pérez-Ruíz, Rigoberto V.; Kim, Sun-Hyung; Acevedo, Francisca; Pelaz, Soraya; Alvarez-Buylla, Elena R.

    2008-01-01

    MADS-box genes are key components of the networks that control the transition to flowering and flower development, but their role in vegetative development is poorly understood. This article shows that the sister gene of the AGAMOUS (AG) clade, AGL12, has an important role in root development as well as in flowering transition. We isolated three mutant alleles for AGL12, which is renamed here as XAANTAL1 (XAL1): Two alleles, xal1-1 and xal1-2, are in Columbia ecotype and xal1-3 is in Landsberg erecta ecotype. All alleles have a short-root phenotype with a smaller meristem, lower rate of cell production, and abnormal root apical meristem organization. Interestingly, we also encountered a significantly longer cell cycle in the strongest xal1 alleles with respect to wild-type plants. Expression analyses confirmed the presence of XAL1 transcripts in roots, particularly in the phloem. Moreover, XAL1∷β-glucuronidase expression was specifically up-regulated by auxins in this tissue. In addition, mRNA in situ hybridization showed that XAL1 transcripts were also found in leaves and floral meristems of wild-type plants. This expression correlates with the late-flowering phenotypes of the xal1 mutants grown under long days. Transcript expression analysis suggests that XAL1 is an upstream regulator of SOC, FLOWERING LOCUS T, and LFY. We propose that XAL1 may have similar roles in both root and aerial meristems that could explain the xal1 late-flowering phenotype. PMID:18203871

  7. Application of wide selected-ion monitoring data-independent acquisition to identify tomato fruit proteins regulated by the CUTIN DEFICIENT2 transcription factor.

    PubMed

    Martin, Laetitia B B; Sherwood, Robert W; Nicklay, Joshua J; Yang, Yong; Muratore-Schroeder, Tara L; Anderson, Elizabeth T; Thannhauser, Theodore W; Rose, Jocelyn K C; Zhang, Sheng

    2016-08-01

    We describe here the use of label-free wide selected-ion monitoring data-independent acquisition (WiSIM-DIA) to identify proteins that are involved in the formation of tomato (Solanum lycopersicum) fruit cuticles and that are regulated by the transcription factor CUTIN DEFICIENT2 (CD2). A spectral library consisting of 11 753 unique peptides, corresponding to 2338 tomato protein groups, was used and the DIA analysis was performed at the MS1 level utilizing narrow mass windows for extraction with Skyline 2.6 software. We identified a total of 1140 proteins, 67 of which had expression levels that differed significantly between the cd2 tomato mutant and the wild-type cultivar M82. Differentially expressed proteins including a key protein involved in cutin biosynthesis, were selected for validation by target SRM/MRM and by Western blot analysis. In addition to confirming a role for CD2 in regulating cuticle formation, the results also revealed that CD2 influences pathways associated with cell wall biology, anthocyanin biosynthesis, plant development, and responses to stress, which complements findings of earlier RNA-Seq experiments. Our results provide new insights into molecular processes and aspects of fruit biology associated with CD2 function, and demonstrate that the WiSIM-DIA is an effective quantitative approach for global protein identifications. PMID:27089858

  8. Application of wide selected-ion monitoring data-independent acquisition to identify tomato fruit proteins regulated by the CUTIN DEFICIENT2 transcription factor.

    PubMed

    Martin, Laetitia B B; Sherwood, Robert W; Nicklay, Joshua J; Yang, Yong; Muratore-Schroeder, Tara L; Anderson, Elizabeth T; Thannhauser, Theodore W; Rose, Jocelyn K C; Zhang, Sheng

    2016-08-01

    We describe here the use of label-free wide selected-ion monitoring data-independent acquisition (WiSIM-DIA) to identify proteins that are involved in the formation of tomato (Solanum lycopersicum) fruit cuticles and that are regulated by the transcription factor CUTIN DEFICIENT2 (CD2). A spectral library consisting of 11 753 unique peptides, corresponding to 2338 tomato protein groups, was used and the DIA analysis was performed at the MS1 level utilizing narrow mass windows for extraction with Skyline 2.6 software. We identified a total of 1140 proteins, 67 of which had expression levels that differed significantly between the cd2 tomato mutant and the wild-type cultivar M82. Differentially expressed proteins including a key protein involved in cutin biosynthesis, were selected for validation by target SRM/MRM and by Western blot analysis. In addition to confirming a role for CD2 in regulating cuticle formation, the results also revealed that CD2 influences pathways associated with cell wall biology, anthocyanin biosynthesis, plant development, and responses to stress, which complements findings of earlier RNA-Seq experiments. Our results provide new insights into molecular processes and aspects of fruit biology associated with CD2 function, and demonstrate that the WiSIM-DIA is an effective quantitative approach for global protein identifications.

  9. Tomato Preserves.

    ERIC Educational Resources Information Center

    Stevens, Wendy Tessman

    1996-01-01

    Describes a project in which students selected seeds from two heirloom varieties of tomatoes, sowed the seeds, harvested the tomatoes, and fermented the seeds. Details are provided for each step of the project and the school address is included so that other students can begin similar projects. (DDR)

  10. Salicylic Acid, Yersiniabactin, and Pyoverdin Production by the Model Phytopathogen Pseudomonas syringae pv. tomato DC3000: Synthesis, Regulation, and Impact on Tomato and Arabidopsis Host Plants▿ †

    PubMed Central

    Jones, Alexander M.; Lindow, Steven E.; Wildermuth, Mary C.

    2007-01-01

    A genetically tractable model plant pathosystem, Pseudomonas syringae pv. tomato DC3000 on tomato and Arabidopsis thaliana hosts, was used to investigate the role of salicylic acid (SA) and iron acquisition via siderophores in bacterial virulence. Pathogen-induced SA accumulation mediates defense in these plants, and DC3000 contains the genes required for the synthesis of SA, the SA-incorporated siderophore yersiniabactin (Ybt), and the fluorescent siderophore pyoverdin (Pvd). We found that DC3000 synthesizes SA, Ybt, and Pvd under iron-limiting conditions in culture. Synthesis of SA and Ybt by DC3000 requires pchA, an isochorismate synthase gene in the Ybt genomic cluster, and exogenous SA can restore Ybt production by the pchA mutant. Ybt was also produced by DC3000 in planta, suggesting that Ybt plays a role in DC3000 pathogenesis. However, the pchA mutant did not exhibit any growth defect or altered virulence in plants. This lack of phenotype was not attributable to plant-produced SA restoring Ybt production, as the pchA mutant grew similarly to DC3000 in an Arabidopsis SA biosynthetic mutant, and in planta Ybt was not detected in pchA-infected wild-type plants. In culture, no growth defect was observed for the pchA mutant versus DC3000 for any condition tested. Instead, enhanced growth of the pchA mutant was observed under stringent iron limitation and additional stresses. This suggests that SA and Ybt production by DC3000 is costly and that Pvd is sufficient for iron acquisition. Further exploration of the comparative synthesis and utility of Ybt versus Pvd production by DC3000 found siderophore-dependent amplification of ybt gene expression to be absent, suggesting that Ybt may play a yet unknown role in DC3000 pathogenesis. PMID:17660289

  11. Abscisic Acid and Gibberellin Differentially Regulate Expression of Genes of the SNF1-Related Kinase Complex in Tomato Seeds1

    PubMed Central

    Bradford, Kent J.; Downie, A. Bruce; Gee, Oliver H.; Alvarado, Veria; Yang, Hong; Dahal, Peetambar

    2003-01-01

    The SNF1/AMP-activated protein kinase subfamily plays central roles in metabolic and transcriptional responses to nutritional or environmental stresses. In yeast (Saccharomyces cerevisiae) and mammals, activating and anchoring subunits associate with and regulate the activity, substrate specificity, and cellular localization of the kinase subunit in response to changing nutrient sources or energy demands, and homologous SNF1-related kinase (SnRK1) proteins are present in plants. We isolated cDNAs corresponding to the kinase (LeSNF1), regulatory (LeSNF4), and localization (LeSIP1 and LeGAL83) subunits of the SnRK1 complex from tomato (Lycopersicon esculentum Mill.). LeSNF1 and LeSNF4 complemented yeast snf1 and snf4 mutants and physically interacted with each other and with LeSIP1 in a glucose-dependent manner in yeast two-hybrid assays. LeSNF4 mRNA became abundant at maximum dry weight accumulation during seed development and remained high when radicle protrusion was blocked by abscisic acid (ABA), water stress, far-red light, or dormancy, but was low or undetected in seeds that had completed germination or in gibberellin (GA)-deficient seeds stimulated to germinate by GA. In leaves, LeSNF4 was induced in response to ABA or dehydration. In contrast, LeSNF1 and LeGAL83 genes were essentially constitutively expressed in both seeds and leaves regardless of the developmental, hormonal, or environmental conditions. Regulation of LeSNF4 expression by ABA and GA provides a potential link between hormonal and sugar-sensing pathways controlling seed development, dormancy, and germination. PMID:12857836

  12. Functional alleles of the flowering time regulator FRIGIDA in the Brassica oleracea genome

    PubMed Central

    2012-01-01

    Background Plants adopt different reproductive strategies as an adaptation to growth in a range of climates. In Arabidopsis thaliana FRIGIDA (FRI) confers a vernalization requirement and thus winter annual habit by increasing the expression of the MADS box transcriptional repressor FLOWERING LOCUS C (FLC). Variation at FRI plays a major role in A. thaliana life history strategy, as independent loss-of-function alleles that result in a rapid-cycling habit in different accessions, appear to have evolved many times. The aim of this study was to identify and characterize orthologues of FRI in Brassica oleracea. Results We describe the characterization of FRI from Brassica oleracea and identify the two B. oleracea FRI orthologues (BolC.FRI.a and BolC.FRI.b). These show extensive amino acid conservation in the central and C-terminal regions to FRI from other Brassicaceae, including A. thaliana, but have a diverged N-terminus. The genes map to two of the three regions of B. oleracea chromosomes syntenic to part of A. thaliana chromosome 5 suggesting that one of the FRI copies has been lost since the ancient triplication event that formed the B. oleracea genome. This genomic position is not syntenic with FRI in A. thaliana and comparative analysis revealed a recombination event within the A. thaliana FRI promoter. This relocated A. thaliana FRI to chromosome 4, very close to the nucleolar organizer region, leaving a fragment of FRI in the syntenic location on A. thaliana chromosome 5. Our data show this rearrangement occurred after the divergence from A. lyrata. We explored the allelic variation at BolC.FRI.a within cultivated B. oleracea germplasm and identified two major alleles, which appear equally functional both to each other and A. thaliana FRI, when expressed as fusions in A. thaliana. Conclusions We identify the two Brassica oleracea FRI genes, one of which we show through A. thaliana complementation experiments is functional, and show their genomic location is

  13. Flower synchrony, growth and yield enhancement of small type bitter gourd (Momordica charantia L.) through plant growth regulators and NPK fertilization.

    PubMed

    Mia, Baset M A; Islam, Md Serajul; Miah, Md Yunus; Das, M R; Khan, H I

    2014-02-01

    Assessment of growth regulator and NPK fertilization effects are important tools for flower stimulation and yield improvement in cucurbits. This investigation demonstrates the comparative male-female flower induction and fruit yield of small sized bitter gourd treated with NPK fertilizers and plant growth regulators. Namely, two experiments having three replicates were conducted in a Randomized Complete Block Design (RCBD) with NPK fertilization and plant growth regulators-GA3, NAA and Ethophon application on small sized bitter gourd-genotype BG5 at the research field of the Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU). In experiment 1, different doses of NPK fertilizers comprised of 10 treatments and in that of experiment 2, different levels of plant growth regulators indicated 10 treatments. The results indicated that application of different doses of NPK fertilizer and plant growth regulators significantly (< or = 0.05) influenced over the flower initiation and fruit setting. The application of N90-P45-K60 fertilizer along with Ethophon spraying resulted in the better yield of small sized bitter gourd.

  14. Flower synchrony, growth and yield enhancement of small type bitter gourd (Momordica charantia L.) through plant growth regulators and NPK fertilization.

    PubMed

    Mia, Baset M A; Islam, Md Serajul; Miah, Md Yunus; Das, M R; Khan, H I

    2014-02-01

    Assessment of growth regulator and NPK fertilization effects are important tools for flower stimulation and yield improvement in cucurbits. This investigation demonstrates the comparative male-female flower induction and fruit yield of small sized bitter gourd treated with NPK fertilizers and plant growth regulators. Namely, two experiments having three replicates were conducted in a Randomized Complete Block Design (RCBD) with NPK fertilization and plant growth regulators-GA3, NAA and Ethophon application on small sized bitter gourd-genotype BG5 at the research field of the Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU). In experiment 1, different doses of NPK fertilizers comprised of 10 treatments and in that of experiment 2, different levels of plant growth regulators indicated 10 treatments. The results indicated that application of different doses of NPK fertilizer and plant growth regulators significantly (< or = 0.05) influenced over the flower initiation and fruit setting. The application of N90-P45-K60 fertilizer along with Ethophon spraying resulted in the better yield of small sized bitter gourd. PMID:24897796

  15. A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato.

    PubMed

    Luo, Zhidan; Zhang, Junhong; Li, Jinhua; Yang, Changxian; Wang, Taotao; Ouyang, Bo; Li, Hanxia; Giovannoni, James; Ye, Zhibiao

    2013-04-01

    As a primary source of lycopene in the human diet, fleshy fruits synthesize this compound both de novo and via chlorophyll metabolism during ripening. SlSGR1 encodes a STAY-GREEN protein that plays a critical role in the regulation of chlorophyll degradation in tomato leaves and fruits. We report that SlSGR1 can regulate tomato (Solanum lycopersicum) lycopene accumulation through direct interaction with a key carotenoid synthetic enzyme SlPSY1, and can inhibit its activity. This interaction with SlSGR1 mediates lycopene accumulation during tomato fruit maturation. We confirmed this inhibitory activity in bacteria engineered to produce lycopene, where the introduction of SlSGR1 reduced dramatically lycopene biosynthesis. The repression of SlSGR1 in transgenic tomato fruits resulted in altered accumulation patterns of phytoene and lycopene, whilst simultaneously elevating SlPSY1 mRNA accumulation and plastid conversion at the early stages of fruit ripening, resulting in increased lycopene and β-carotene (four- and nine-fold, respectively) in red ripe fruits. SlSGR1 influences ethylene signal transduction via the altered expression of ethylene receptor genes and ethylene-induced genes. Fruit shelf-life is extended significantly in SlSGR1-repressed tomatoes. Our results indicate that SlSGR1 plays a pivotal regulatory role in color formation and fruit ripening regulation in tomato, and further suggest that SlSGR1 activity is mediated through direct interaction with PSY1.

  16. Ectopic expression of an apple apomixis-related gene MhFIE induces co-suppression and results in abnormal vegetative and reproductive development in tomato.

    PubMed

    Liu, Dan-Dan; Dong, Qing-Long; Fang, Mou-Jing; Chen, Ke-Qin; Hao, Yu-Jin

    2012-12-15

    It has been well documented that FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) plays important regulatory roles in diverse developmental processes in model plant Arabidopsis thaliana. However, it is largely unknown how FIE genes function in economically important crops. In this study, MhFIE gene, which was previously isolated from apomictic tea crabapple (Malus hupehensis Redh. var. pingyiensis), was introduced into tomato. The hemizygous transgenic tomato lines produced curly leaves and decreased in seed germination. In addition, the co-suppression of the transgenic MhFIE and endogenous (SlFIE) genes occurred in homozygous transgenic tomatoes. As a result, FIE silencing brought about abnormal phenotypes during reproductive development in tomato, such as increased sepal and petal numbers in flower, a fused ovule and pistil and parthenocarpic fruit formation. A yeast two-hybrid assay and bimolecular fluorescence complementation (BiFC) demonstrated that MhFIE interacted with a tomato protein, EZ2 (SlEZ2). Its ectopic expression and SlFIE co-suppression notably influenced the expression of genes associated with leaf, flower, and fruit development. Therefore, together with other PcG proteins, FIE was involved in the regulation of vegetative and reproductive development by modulating the expression of related genes in plants.

  17. Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha.

    PubMed

    Ma, Nan; Tan, Hui; Liu, Xiaohui; Xue, Jingqi; Li, Yunhui; Gao, Junping

    2006-01-01

    In this work, the effect of ethylene on flower opening of cut rose (Rosa hybrida) cv. Samantha was studied. However, although ethylene hastened the process of flower opening, 1-MCP (1-methylcyclopropene), an ethylene action inhibitor, impeded it. Ethylene promoted ethylene production in petals, but 1-MCP did not inhibit this process. Of the four ethylene biosynthetic genes tested, Rh-ACS1 and Rh-ACS2 were undetectable; Rh-ACS3 and Rh-ACO1 expression was enhanced by ethylene slightly and greatly, respectively. However, their mRNA amounts were not inhibited by 1-MCP compared with controls. Expression of seven signalling component genes was also studied, including three ethylene receptors (Rh-ETR1, Rh-ETR3, and Rh-ETR5), two CTRs (Rh-CTR1 and Rh-CTR2), and two transcription factors (Rh-EIN3-1 and Rh-EIN3-2). Transcripts of Rh-ETR5, Rh-EIN3-1, and Rh-EIN3-2 were accumulated in a constitutive manner and had no or little response to ethylene or 1-MCP, while transcript levels of Rh-ETR1 and Rh-CTR1 were substantially elevated by ethylene, and those of Rh-ETR3 and Rh-CTR2 were greatly enhanced by ethylene; 1-MCP reduced all the four genes to levels much less than those in control flowers. These results show that ethylene triggers physiological responses related to flower opening in cut rose cv. Samantha, and that continued ethylene perception results in flower opening. Ethylene may regulate flower opening mainly through expression of two ethylene receptor genes (Rh-ETR1 and Rh-ETR3) and two CTR (Rh-CTR1 and Rh-CTR2) genes.

  18. 77 FR 22467 - Common Crop Insurance Regulations; Fresh Market Tomato (Dollar Plan) Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... Federal Crop Insurance Corporation 7 CFR Part 457 RIN 0563-AC32 Common Crop Insurance Regulations; Fresh...: Final rule. SUMMARY: The Federal Crop Insurance Corporation (FCIC) finalizes the Common Crop Insurance... provide policy changes and clarify existing policy provisions to better meet the needs of...

  19. Nitric oxide and reactive oxygen species regulate the accumulation of heat shock proteins in tomato leaves in response to heat shock and pathogen infection.

    PubMed

    Piterková, Jana; Luhová, Lenka; Mieslerová, Barbora; Lebeda, Aleš; Petřivalský, Marek

    2013-06-01

    Heat shock proteins (HSP) are produced in response to various stress stimuli to prevent cell damage. We evaluated the involvement of nitric oxide (NO) and reactive oxygen species (ROS) in the accumulation of Hsp70 proteins in tomato leaves induced by abiotic and biotic stress stimuli. A model system of leaf discs was used with two tomato genotypes, Solanum lycopersicum cv. Amateur and Solanum chmielewskii, differing in their resistance to fungal pathogen Oidium neolycopersici. Leaf discs were exposed to stress factors as heat shock and pathogen infection alone or in a combination, and treated with substances modulating endogenous NO and ROS levels. Two proteins of Hsp70 family were detected in stressed tomato leaf discs: a heat-inducible 72 kDa protein and a constitutive 75 kDa protein. The pathogenesis and mechanical stress influenced Hsp75 accumulation, whereas heat stress induced mainly Hsp72 production. Treatment with NO donor and NO scavenger significantly modulated the level of Hsp70 in variable manner related to the genotype resistance. Hsp70 accumulation correlated with endogenous NO level in S. lycopersicum and ROS levels in S. chmielewskii. We conclude NO and ROS are involved in the regulation of Hsp70 production and accumulation under abiotic and biotic stresses in dependence on plant ability to trigger its defence mechanisms. PMID:23602099

  20. Down-regulation of tomato PHYTOL KINASE strongly impairs tocopherol biosynthesis and affects prenyllipid metabolism in an organ-specific manner.

    PubMed

    Almeida, Juliana; Azevedo, Mariana da Silva; Spicher, Livia; Glauser, Gaétan; vom Dorp, Katharina; Guyer, Luzia; del Valle Carranza, Andrea; Asis, Ramón; de Souza, Amanda Pereira; Buckeridge, Marcos; Demarco, Diego; Bres, Cécile; Rothan, Christophe; Peres, Lázaro Eustáquio Pereira; Hörtensteiner, Stefan; Kessler, Félix; Dörmann, Peter; Carrari, Fernando; Rossi, Magdalena

    2016-02-01

    Tocopherol, a compound with vitamin E (VTE) activity, is a conserved constituent of the plastidial antioxidant network in photosynthetic organisms. The synthesis of tocopherol involves the condensation of an aromatic head group with an isoprenoid prenyl side chain. The latter, phytyl diphosphate, can be derived from chlorophyll phytol tail recycling, which depends on phytol kinase (VTE5) activity. How plants co-ordinate isoprenoid precursor distribution for supplying biosynthesis of tocopherol and other prenyllipids in different organs is poorly understood. Here, Solanum lycopersicum plants impaired in the expression of two VTE5-like genes identified by phylogenetic analyses, named SlVTE5 and SlFOLK, were characterized. Our data show that while SlFOLK does not affect tocopherol content, the production of this metabolite is >80% dependent on SlVTE5 in tomato, in both leaves and fruits. VTE5 deficiency greatly impacted lipid metabolism, including prenylquinones, carotenoids, and fatty acid phytyl esters. However, the prenyllipid profile greatly differed between source and sink organs, revealing organ-specific metabolic adjustments in tomato. Additionally, VTE5-deficient plants displayed starch accumulation and lower CO2 assimilation in leaves associated with mild yield penalty. Taken together, our results provide valuable insights into the distinct regulation of isoprenoid metabolism in leaves and fruits and also expose the interaction between lipid and carbon metabolism, which results in carbohydrate export blockage in the VTE5-deficient plants, affecting tomato fruit quality.

  1. Down-regulation of tomato PHYTOL KINASE strongly impairs tocopherol biosynthesis and affects prenyllipid metabolism in an organ-specific manner

    PubMed Central

    Almeida, Juliana; Azevedo, Mariana da Silva; Spicher, Livia; Glauser, Gaétan; vom Dorp, Katharina; Guyer, Luzia; del Valle Carranza, Andrea; Asis, Ramón; de Souza, Amanda Pereira; Buckeridge, Marcos; Demarco, Diego; Bres, Cécile; Rothan, Christophe; Peres, Lázaro Eustáquio Pereira; Hörtensteiner, Stefan; Kessler, Félix; Dörmann, Peter; Carrari, Fernando; Rossi, Magdalena

    2016-01-01

    Tocopherol, a compound with vitamin E (VTE) activity, is a conserved constituent of the plastidial antioxidant network in photosynthetic organisms. The synthesis of tocopherol involves the condensation of an aromatic head group with an isoprenoid prenyl side chain. The latter, phytyl diphosphate, can be derived from chlorophyll phytol tail recycling, which depends on phytol kinase (VTE5) activity. How plants co-ordinate isoprenoid precursor distribution for supplying biosynthesis of tocopherol and other prenyllipids in different organs is poorly understood. Here, Solanum lycopersicum plants impaired in the expression of two VTE5-like genes identified by phylogenetic analyses, named SlVTE5 and SlFOLK, were characterized. Our data show that while SlFOLK does not affect tocopherol content, the production of this metabolite is >80% dependent on SlVTE5 in tomato, in both leaves and fruits. VTE5 deficiency greatly impacted lipid metabolism, including prenylquinones, carotenoids, and fatty acid phytyl esters. However, the prenyllipid profile greatly differed between source and sink organs, revealing organ-specific metabolic adjustments in tomato. Additionally, VTE5-deficient plants displayed starch accumulation and lower CO2 assimilation in leaves associated with mild yield penalty. Taken together, our results provide valuable insights into the distinct regulation of isoprenoid metabolism in leaves and fruits and also expose the interaction between lipid and carbon metabolism, which results in carbohydrate export blockage in the VTE5-deficient plants, affecting tomato fruit quality. PMID:26596763

  2. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season.

    PubMed

    Zhang, Dalong; Zhang, Zhongdian; Li, Jianming; Chang, Yibo; Du, Qingjie; Pan, Tonghua

    2015-01-01

    The role of a proposed micro-fog system in regulating greenhouse environments and enhancing tomato (Solanum lycopersicum L.) productivity during summer season was studied. Experiments were carried out in a multi-span glass greenhouse, which was divided into two identical compartments involving different environments: (1) without environment control and (2) with a micro-fog system operating when the air vapor pressure deficit (VPD) of greenhouse was higher than 0.5 KPa. The micro-fog system effectively alleviated heat stress and evaporative demand in the greenhouse during summer season. The physiologically favourable environment maintained by micro-fog treatment significantly enhanced elongation of leaf and stem, which contributed to a substantial elevation of final leaf area and shoot biomass. These improvements in physiological and morphological traits resulted in around 12.3% increase of marketable tomato yield per plant. Relative growth rate (RGR) of micro-fog treatment was also significantly higher than control plants, which was mainly determined by the substantial elevation in net assimilation rate (NAR), and to a lesser extent caused by leaf area ratio (LAR). Measurement of leaf gas exchange parameters also demonstrated that micro-fog treatment significantly enhanced leaf photosynthesis capacity. Taken together, manipulation of VPD in greenhouses by micro-fog systems effectively enhanced tomato growth and productivity via improving photosynthesis during summer season. PMID:26221726

  3. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season.

    PubMed

    Zhang, Dalong; Zhang, Zhongdian; Li, Jianming; Chang, Yibo; Du, Qingjie; Pan, Tonghua

    2015-01-01

    The role of a proposed micro-fog system in regulating greenhouse environments and enhancing tomato (Solanum lycopersicum L.) productivity during summer season was studied. Experiments were carried out in a multi-span glass greenhouse, which was divided into two identical compartments involving different environments: (1) without environment control and (2) with a micro-fog system operating when the air vapor pressure deficit (VPD) of greenhouse was higher than 0.5 KPa. The micro-fog system effectively alleviated heat stress and evaporative demand in the greenhouse during summer season. The physiologically favourable environment maintained by micro-fog treatment significantly enhanced elongation of leaf and stem, which contributed to a substantial elevation of final leaf area and shoot biomass. These improvements in physiological and morphological traits resulted in around 12.3% increase of marketable tomato yield per plant. Relative growth rate (RGR) of micro-fog treatment was also significantly higher than control plants, which was mainly determined by the substantial elevation in net assimilation rate (NAR), and to a lesser extent caused by leaf area ratio (LAR). Measurement of leaf gas exchange parameters also demonstrated that micro-fog treatment significantly enhanced leaf photosynthesis capacity. Taken together, manipulation of VPD in greenhouses by micro-fog systems effectively enhanced tomato growth and productivity via improving photosynthesis during summer season.

  4. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season

    PubMed Central

    Zhang, Dalong; Zhang, Zhongdian; Li, Jianming; Chang, Yibo; Du, Qingjie; Pan, Tonghua

    2015-01-01

    The role of a proposed micro-fog system in regulating greenhouse environments and enhancing tomato (Solanum lycopersicum L.) productivity during summer season was studied. Experiments were carried out in a multi-span glass greenhouse, which was divided into two identical compartments involving different environments: (1) without environment control and (2) with a micro-fog system operating when the air vapor pressure deficit (VPD) of greenhouse was higher than 0.5 KPa. The micro-fog system effectively alleviated heat stress and evaporative demand in the greenhouse during summer season. The physiologically favourable environment maintained by micro-fog treatment significantly enhanced elongation of leaf and stem, which contributed to a substantial elevation of final leaf area and shoot biomass. These improvements in physiological and morphological traits resulted in around 12.3% increase of marketable tomato yield per plant. Relative growth rate (RGR) of micro-fog treatment was also significantly higher than control plants, which was mainly determined by the substantial elevation in net assimilation rate (NAR), and to a lesser extent caused by leaf area ratio (LAR). Measurement of leaf gas exchange parameters also demonstrated that micro-fog treatment significantly enhanced leaf photosynthesis capacity. Taken together, manipulation of VPD in greenhouses by micro-fog systems effectively enhanced tomato growth and productivity via improving photosynthesis during summer season. PMID:26221726

  5. Genetic and genome-wide transcriptomic analyses identify co-regulation of oxidative response and hormone transcript abundance with vitamin C content in tomato fruit

    PubMed Central

    2012-01-01

    Background L-ascorbic acid (AsA; vitamin C) is essential for all living plants where it functions as the main hydrosoluble antioxidant. It has diverse roles in the regulation of plant cell growth and expansion, photosynthesis, and hormone-regulated processes. AsA is also an essential component of the human diet, being tomato fruit one of the main sources of this vitamin. To identify genes responsible for AsA content in tomato fruit, transcriptomic studies followed by clustering analysis were applied to two groups of fruits with contrasting AsA content. These fruits were identified after AsA profiling of an F8 Recombinant Inbred Line (RIL) population generated from a cross between the domesticated species Solanum lycopersicum and the wild relative Solanum pimpinellifollium. Results We found large variability in AsA content within the RIL population with individual RILs with up to 4-fold difference in AsA content. Transcriptomic analysis identified genes whose expression correlated either positively (PVC genes) or negatively (NVC genes) with the AsA content of the fruits. Cluster analysis using SOTA allowed the identification of subsets of co-regulated genes mainly involved in hormones signaling, such as ethylene, ABA, gibberellin and auxin, rather than any of the known AsA biosynthetic genes. Data mining of the corresponding PVC and NVC orthologs in Arabidopis databases identified flagellin and other ROS-producing processes as cues resulting in differential regulation of a high percentage of the genes from both groups of co-regulated genes; more specifically, 26.6% of the orthologous PVC genes, and 15.5% of the orthologous NVC genes were induced and repressed, respectively, under flagellin22 treatment in Arabidopsis thaliana. Conclusion Results here reported indicate that the content of AsA in red tomato fruit from our selected RILs are not correlated with the expression of genes involved in its biosynthesis. On the contrary, the data presented here supports that As

  6. Detoxification strategies and regulation of oxygen production and flowering of Platanus acerifolia under lead (Pb) stress by transcriptome analysis.

    PubMed

    Wang, Limin; Yang, Haijiao; Liu, Rongning; Fan, Guoqiang

    2015-08-01

    Toxic metal pollution is a major environmental problem that has received wide attention. Platanus acerifolia (London plane tree) is an important greening tree species that can adapt to environmental pollution. The genetic basis and molecular mechanisms associated with the ability of P. acerifolia to respond lead (Pb) stress have not been reported so far. In this study, 16,246 unigenes differentially expressed unigenes that were obtained from P. acerifolia under Pb stress using next-generation sequencing. Essential pathways such as photosynthesis, and gibberellins and glutathione metabolism were enriched among the differentially expressed unigenes. Furthermore, many important unigenes, including antioxidant enzymes, plants chelate compounds, and metal transporters involved in defense and detoxification mechanisms, were differentially expressed in response to Pb stress. The unigenes encoding the oxygen-evolving enhancer Psb and OEE protein families were downregulated in Pb-stressed plants, implying that oxygen production might decrease in plants under Pb stress. The relationship between gibberellin and P. acerifolia flowering is also discussed. The information and new insights obtained in this study will contribute to further investigations into the molecular regulation mechanisms of Pb accumulation and tolerance in greening tree species. PMID:25913316

  7. Detoxification strategies and regulation of oxygen production and flowering of Platanus acerifolia under lead (Pb) stress by transcriptome analysis.

    PubMed

    Wang, Limin; Yang, Haijiao; Liu, Rongning; Fan, Guoqiang

    2015-08-01

    Toxic metal pollution is a major environmental problem that has received wide attention. Platanus acerifolia (London plane tree) is an important greening tree species that can adapt to environmental pollution. The genetic basis and molecular mechanisms associated with the ability of P. acerifolia to respond lead (Pb) stress have not been reported so far. In this study, 16,246 unigenes differentially expressed unigenes that were obtained from P. acerifolia under Pb stress using next-generation sequencing. Essential pathways such as photosynthesis, and gibberellins and glutathione metabolism were enriched among the differentially expressed unigenes. Furthermore, many important unigenes, including antioxidant enzymes, plants chelate compounds, and metal transporters involved in defense and detoxification mechanisms, were differentially expressed in response to Pb stress. The unigenes encoding the oxygen-evolving enhancer Psb and OEE protein families were downregulated in Pb-stressed plants, implying that oxygen production might decrease in plants under Pb stress. The relationship between gibberellin and P. acerifolia flowering is also discussed. The information and new insights obtained in this study will contribute to further investigations into the molecular regulation mechanisms of Pb accumulation and tolerance in greening tree species.

  8. Deficiency in a Very-Long-Chain Fatty Acid β-Ketoacyl-Coenzyme A Synthase of Tomato Impairs Microgametogenesis and Causes Floral Organ Fusion1[W

    PubMed Central

    Smirnova, Anna; Leide, Jana; Riederer, Markus

    2013-01-01

    Previously, it was shown that β-ketoacyl-coenzyme A synthase ECERIFERUM6 (CER6) is necessary for the biosynthesis of very-long-chain fatty acids with chain lengths beyond C28 in tomato (Solanum lycopersicum) fruits and C26 in Arabidopsis (Arabidopsis thaliana) leaves and the pollen coat. CER6 loss of function in Arabidopsis resulted in conditional male sterility, since pollen coat lipids are responsible for contact-mediated pollen hydration. In tomato, on the contrary, pollen hydration does not rely on pollen coat lipids. Nevertheless, mutation in SlCER6 impairs fertility and floral morphology. Here, the contribution of SlCER6 to the sexual reproduction and flower development of tomato was addressed. Cytological analysis and cross-pollination experiments revealed that the slcer6 mutant has male sterility caused by (1) hampered pollen dispersal and (2) abnormal tapetum development. SlCER6 loss of function provokes a decrease of n- and iso-alkanes with chain lengths of C27 or greater and of anteiso-alkanes with chain lengths of C28 or greater in flower cuticular waxes, but it has no impact on flower cuticle ultrastructure and cutin content. Expression analysis confirmed high transcription levels of SlCER6 in the anther and the petal, preferentially in sites subject to epidermal fusion. Hence, wax deficiency was proposed to be the primary reason for the flower fusion phenomenon in tomato. The SlCER6 substrate specificity was revisited. It might be involved in elongation of not only linear but also branched very-long-chain fatty acids, leading to production of the corresponding alkanes. SlCER6 implements a function in the sexual reproduction of tomato that is different from the one in Arabidopsis: SlCER6 is essential for the regulation of timely tapetum degradation and, consequently, microgametogenesis. PMID:23144186

  9. SlDEAD31, a Putative DEAD-Box RNA Helicase Gene, Regulates Salt and Drought Tolerance and Stress-Related Genes in Tomato.

    PubMed

    Zhu, Mingku; Chen, Guoping; Dong, Tingting; Wang, Lingling; Zhang, Jianling; Zhao, Zhiping; Hu, Zongli

    2015-01-01

    The DEAD-box RNA helicases are involved in almost every aspect of RNA metabolism, associated with diverse cellular functions including plant growth and development, and their importance in response to biotic and abiotic stresses is only beginning to emerge. However, none of DEAD-box genes was well characterized in tomato so far. In this study, we reported on the identification and characterization of two putative DEAD-box RNA helicase genes, SlDEAD30 and SlDEAD31 from tomato, which were classified into stress-related DEAD-box proteins by phylogenetic analysis. Expression analysis indicated that SlDEAD30 was highly expressed in roots and mature leaves, while SlDEAD31 was constantly expressed in various tissues. Furthermore, the expression of both genes was induced mainly in roots under NaCl stress, and SlDEAD31 mRNA was also increased by heat, cold, and dehydration. In stress assays, transgenic tomato plants overexpressing SlDEAD31 exhibited dramatically enhanced salt tolerance and slightly improved drought resistance, which were simultaneously demonstrated by significantly enhanced expression of multiple biotic and abiotic stress-related genes, higher survival rate, relative water content (RWC) and chlorophyll content, and lower water loss rate and malondialdehyde (MDA) production compared to wild-type plants. Collectively, these results provide a preliminary characterization of SlDEAD30 and SlDEAD31 genes in tomato, and suggest that stress-responsive SlDEAD31 is essential for salt and drought tolerance and stress-related gene regulation in plants. PMID:26241658

  10. SlDEAD31, a Putative DEAD-Box RNA Helicase Gene, Regulates Salt and Drought Tolerance and Stress-Related Genes in Tomato

    PubMed Central

    Zhu, Mingku; Chen, Guoping; Dong, Tingting; Wang, Lingling; Zhang, Jianling; Zhao, Zhiping; Hu, Zongli

    2015-01-01

    The DEAD-box RNA helicases are involved in almost every aspect of RNA metabolism, associated with diverse cellular functions including plant growth and development, and their importance in response to biotic and abiotic stresses is only beginning to emerge. However, none of DEAD-box genes was well characterized in tomato so far. In this study, we reported on the identification and characterization of two putative DEAD-box RNA helicase genes, SlDEAD30 and SlDEAD31 from tomato, which were classified into stress-related DEAD-box proteins by phylogenetic analysis. Expression analysis indicated that SlDEAD30 was highly expressed in roots and mature leaves, while SlDEAD31 was constantly expressed in various tissues. Furthermore, the expression of both genes was induced mainly in roots under NaCl stress, and SlDEAD31 mRNA was also increased by heat, cold, and dehydration. In stress assays, transgenic tomato plants overexpressing SlDEAD31 exhibited dramatically enhanced salt tolerance and slightly improved drought resistance, which were simultaneously demonstrated by significantly enhanced expression of multiple biotic and abiotic stress-related genes, higher survival rate, relative water content (RWC) and chlorophyll content, and lower water loss rate and malondialdehyde (MDA) production compared to wild-type plants. Collectively, these results provide a preliminary characterization of SlDEAD30 and SlDEAD31 genes in tomato, and suggest that stress-responsive SlDEAD31 is essential for salt and drought tolerance and stress-related gene regulation in plants. PMID:26241658

  11. Down-regulation of an Auxin Response Factor in the tomato induces modification of fine pectin structure and tissue architecture.

    PubMed

    Guillon, Fabienne; Philippe, Sully; Bouchet, Brigitte; Devaux, Marie-Françoise; Frasse, Pierre; Jones, Brian; Bouzayen, Mondher; Lahaye, Marc

    2008-01-01

    It has previously been shown that down-regulation of an auxin response factor gene (DR12) results in pleiotropic phenotypes including enhanced fruit firmness in antisense transgenic tomato (AS-DR12). To uncover the nature of the ripening-associated modifications affecting fruit texture, comparative analyses were performed of pectin composition and structure in cell wall pericarp tissue of wild-type and AS-DR12 fruit at mature green (MG) and red-ripe (RR) stages. Throughout ripening, pectin showed a decrease in methyl esterification and in the content of galactan side chains in both genotypes. At mature green stage, pectin content in methyl ester groups was slightly higher in AS-DR12 fruit than in wild type, but this ratio was reversed at the red-ripe stage. The amount of water- and oxalate-soluble pectins increased at the red-ripe stage in the wild type, but decreased in AS-DR12. The distribution of methyl ester groups on the homogalaturonan backbone differed between the two genotypes. There was no evidence of more calcium cross-linked homogalacturan involved in cell-to-cell adhesion in AS-DR12 compared with wild-type fruit. Furthermore, the outer pericarp contains higher proportion of small cells in AS-DR12 fruit than in wild type and higher occurrence of (1-->5) alpha-L-arabinan epitope at the RR stage. It is concluded that the increased firmness of transgenic fruit does not result from a major impairment of ripening-related pectin metabolism, but rather involves differences in pectin fine structure associated with changes in tissue architecture.

  12. Targeted systems biology profiling of tomato fruit reveals coordination of the Yang cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening.

    PubMed

    Van de Poel, Bram; Bulens, Inge; Markoula, Aikaterina; Hertog, Maarten L A T M; Dreesen, Rozemarijn; Wirtz, Markus; Vandoninck, Sandy; Oppermann, Yasmin; Keulemans, Johan; Hell, Ruediger; Waelkens, Etienne; De Proft, Maurice P; Sauter, Margret; Nicolai, Bart M; Geeraerd, Annemie H

    2012-11-01

    The concept of system 1 and system 2 ethylene biosynthesis during climacteric fruit ripening was initially described four decades ago. Although much is known about fruit development and climacteric ripening, little information is available about how ethylene biosynthesis is regulated during the postclimacteric phase. A targeted systems biology approach revealed a novel regulatory mechanism of ethylene biosynthesis of tomato (Solanum lycopersicum) when fruit have reached their maximal ethylene production level and which is characterized by a decline in ethylene biosynthesis. Ethylene production is shut down at the level of 1-aminocyclopropane-1-carboxylic acid oxidase. At the same time, 1-aminocyclopropane-1-carboxylic acid synthase activity increases. Analysis of the Yang cycle showed that the Yang cycle genes are regulated in a coordinated way and are highly expressed during postclimacteric ripening. Postclimacteric red tomatoes on the plant showed only a moderate regulation of 1-aminocyclopropane-1-carboxylic acid synthase and Yang cycle genes compared with the regulation in detached fruit. Treatment of red fruit with 1-methylcyclopropane and ethephon revealed that the shut-down mechanism in ethylene biosynthesis is developmentally programmed and only moderately ethylene sensitive. We propose that the termination of autocatalytic ethylene biosynthesis of system 2 in ripe fruit delays senescence and preserves the fruit until seed dispersal.

  13. Polycomb-group protein SlMSI1 represses the expression of fruit-ripening genes to prolong shelf life in tomato.

    PubMed

    Liu, Dan-Dan; Zhou, Li-Jie; Fang, Mou-Jing; Dong, Qing-Long; An, Xiu-Hong; You, Chun-Xiang; Hao, Yu-Jin

    2016-01-01

    Polycomb-group (PcG) protein MULTICOPY SUPPRESSOR OF IRA1 (MSI1) protein is an evolutionarily conserved developmental suppressor and plays a crucial role in regulating epigenetic modulations. However, the potential role and function of MSI1 in fleshy fruits remain unknown. In this study, SlMSI1 was cloned and transformed into tomato to explore its function. The quantitative real-time PCR results showed that SlMSI1 was highly expressed in flowers and fruits and that its transcript and protein levels were significantly decreased in fruits after the breaker stage. Additionally, SlMSI1-overexpressing transgenic tomatoes displayed abnormal non-ripening fruit formation, whereas its suppression promoted fruit ripening in transgenic tomatoes. Quantitative real-time PCR assays also showed that RIN and its regulons were decreased in SlMSI1 overexpression transgenic tomato fruits. Furthermore, RNA-seq analysis demonstrated that SlMSI1 inhibits fruit ripening by negatively regulating a large set of fruit-ripening genes in addition to RIN and its regulons. Finally, genetic manipulation of SlMSI1 and RIN successfully prolonged the fruit shelf life by regulating the fruit-ripening genes in tomato. Our findings reveal a novel regulatory function of SlMSI1 in fruit ripening and provide a new regulator that may be useful for genetic engineering and modification of fruit shelf life. PMID:27558543

  14. Polycomb-group protein SlMSI1 represses the expression of fruit-ripening genes to prolong shelf life in tomato

    PubMed Central

    Liu, Dan-Dan; Zhou, Li-Jie; Fang, Mou-Jing; Dong, Qing-Long; An, Xiu-Hong; You, Chun-Xiang; Hao, Yu-Jin

    2016-01-01

    Polycomb-group (PcG) protein MULTICOPY SUPPRESSOR OF IRA1 (MSI1) protein is an evolutionarily conserved developmental suppressor and plays a crucial role in regulating epigenetic modulations. However, the potential role and function of MSI1 in fleshy fruits remain unknown. In this study, SlMSI1 was cloned and transformed into tomato to explore its function. The quantitative real-time PCR results showed that SlMSI1 was highly expressed in flowers and fruits and that its transcript and protein levels were significantly decreased in fruits after the breaker stage. Additionally, SlMSI1-overexpressing transgenic tomatoes displayed abnormal non-ripening fruit formation, whereas its suppression promoted fruit ripening in transgenic tomatoes. Quantitative real-time PCR assays also showed that RIN and its regulons were decreased in SlMSI1 overexpression transgenic tomato fruits. Furthermore, RNA-seq analysis demonstrated that SlMSI1 inhibits fruit ripening by negatively regulating a large set of fruit-ripening genes in addition to RIN and its regulons. Finally, genetic manipulation of SlMSI1 and RIN successfully prolonged the fruit shelf life by regulating the fruit-ripening genes in tomato. Our findings reveal a novel regulatory function of SlMSI1 in fruit ripening and provide a new regulator that may be useful for genetic engineering and modification of fruit shelf life. PMID:27558543

  15. Polycomb-group protein SlMSI1 represses the expression of fruit-ripening genes to prolong shelf life in tomato.

    PubMed

    Liu, Dan-Dan; Zhou, Li-Jie; Fang, Mou-Jing; Dong, Qing-Long; An, Xiu-Hong; You, Chun-Xiang; Hao, Yu-Jin

    2016-08-25

    Polycomb-group (PcG) protein MULTICOPY SUPPRESSOR OF IRA1 (MSI1) protein is an evolutionarily conserved developmental suppressor and plays a crucial role in regulating epigenetic modulations. However, the potential role and function of MSI1 in fleshy fruits remain unknown. In this study, SlMSI1 was cloned and transformed into tomato to explore its function. The quantitative real-time PCR results showed that SlMSI1 was highly expressed in flowers and fruits and that its transcript and protein levels were significantly decreased in fruits after the breaker stage. Additionally, SlMSI1-overexpressing transgenic tomatoes displayed abnormal non-ripening fruit formation, whereas its suppression promoted fruit ripening in transgenic tomatoes. Quantitative real-time PCR assays also showed that RIN and its regulons were decreased in SlMSI1 overexpression transgenic tomato fruits. Furthermore, RNA-seq analysis demonstrated that SlMSI1 inhibits fruit ripening by negatively regulating a large set of fruit-ripening genes in addition to RIN and its regulons. Finally, genetic manipulation of SlMSI1 and RIN successfully prolonged the fruit shelf life by regulating the fruit-ripening genes in tomato. Our findings reveal a novel regulatory function of SlMSI1 in fruit ripening and provide a new regulator that may be useful for genetic engineering and modification of fruit shelf life.

  16. Transcriptional regulation of three EIN3-like genes of carnation (Dianthus caryophyllus L. cv. Improved White Sim) during flower development and upon wounding, pollination, and ethylene exposure.

    PubMed

    Iordachescu, Mihaela; Verlinden, Sven

    2005-08-01

    Using a combination of approaches, three EIN3-like (EIL) genes DC-EIL1/2 (AY728191), DC-EIL3 (AY728192), and DC-EIL4 (AY728193) were isolated from carnation (Dianthus caryophyllus) petals. DC-EIL1/2 deduced amino acid sequence shares 98% identity with the previously cloned and characterized carnation DC-EIL1 (AF261654), 62% identity with DC-EIL3, and 60% identity with DC-EIL4. DC-EIL3 deduced amino acid sequence shares 100% identity with a previously cloned carnation gene fragment, Dc106 (CF259543), 61% identity with Dianthus caryophyllus DC-EIL1 (AF261654), and 59% identity with DC-EIL4. DC-EIL4 shared 60% identity with DC-EIL1 (AF261654). Expression analyses performed on vegetative and flower tissues (petals, ovaries, and styles) during growth and development and senescence (natural and ethylene-induced) indicated that the mRNA accumulation of the DC-EIL family of genes in carnation is regulated developmentally and by ethylene. DC-EIL3 mRNA showed significant accumulation upon ethylene exposure, during flower development, and upon pollination in petals and styles. Interestingly, decreasing levels of DC-EIL3 mRNA were found in wounded leaves and ovaries of senescing flowers whenever ethylene levels increased. Flowers treated with sucrose showed a 2 d delay in the accumulation of DC-EIL3 transcripts when compared with control flowers. These observations suggest an important role for DC-EIL3 during growth and development. Changes in DC-EIL1/2 and DC-EIL4 mRNA levels during flower development, and upon ethylene exposure and pollination were very similar. mRNA levels of the DC-EILs in styles of pollinated flowers showed a positive correlation with ethylene production after pollination. The cloning and characterization of the EIN3-like genes in the present study showed their transcriptional regulation not previously observed for EILs.

  17. A Collection of Conserved Noncoding Sequences to Study Gene Regulation in Flowering Plants.

    PubMed

    Van de Velde, Jan; Van Bel, Michiel; Vaneechoutte, Dries; Vandepoele, Klaas

    2016-08-01

    Transcription factors (TFs) regulate gene expression by binding cis-regulatory elements, of which the identification remains an ongoing challenge owing to the prevalence of large numbers of nonfunctional TF binding sites. Powerful comparative genomics methods, such as phylogenetic footprinting, can be used for the detection of conserved noncoding sequences (CNSs), which are functionally constrained and can greatly help in reducing the number of false-positive elements. In this study, we applied a phylogenetic footprinting approach for the identification of CNSs in 10 dicot plants, yielding 1,032,291 CNSs associated with 243,187 genes. To annotate CNSs with TF binding sites, we made use of binding site information for 642 TFs originating from 35 TF families in Arabidopsis (Arabidopsis thaliana). In three species, the identified CNSs were evaluated using TF chromatin immunoprecipitation sequencing data, resulting in significant overlap for the majority of data sets. To identify ultraconserved CNSs, we included genomes of additional plant families and identified 715 binding sites for 501 genes conserved in dicots, monocots, mosses, and green algae. Additionally, we found that genes that are part of conserved mini-regulons have a higher coherence in their expression profile than other divergent gene pairs. All identified CNSs were integrated in the PLAZA 3.0 Dicots comparative genomics platform (http://bioinformatics.psb.ugent.be/plaza/versions/plaza_v3_dicots/) together with new functionalities facilitating the exploration of conserved cis-regulatory elements and their associated genes. The availability of this data set in a user-friendly platform enables the exploration of functional noncoding DNA to study gene regulation in a variety of plant species, including crops. PMID:27261064

  18. A Collection of Conserved Noncoding Sequences to Study Gene Regulation in Flowering Plants1[OPEN

    PubMed Central

    2016-01-01

    Transcription factors (TFs) regulate gene expression by binding cis-regulatory elements, of which the identification remains an ongoing challenge owing to the prevalence of large numbers of nonfunctional TF binding sites. Powerful comparative genomics methods, such as phylogenetic footprinting, can be used for the detection of conserved noncoding sequences (CNSs), which are functionally constrained and can greatly help in reducing the number of false-positive elements. In this study, we applied a phylogenetic footprinting approach for the identification of CNSs in 10 dicot plants, yielding 1,032,291 CNSs associated with 243,187 genes. To annotate CNSs with TF binding sites, we made use of binding site information for 642 TFs originating from 35 TF families in Arabidopsis (Arabidopsis thaliana). In three species, the identified CNSs were evaluated using TF chromatin immunoprecipitation sequencing data, resulting in significant overlap for the majority of data sets. To identify ultraconserved CNSs, we included genomes of additional plant families and identified 715 binding sites for 501 genes conserved in dicots, monocots, mosses, and green algae. Additionally, we found that genes that are part of conserved mini-regulons have a higher coherence in their expression profile than other divergent gene pairs. All identified CNSs were integrated in the PLAZA 3.0 Dicots comparative genomics platform (http://bioinformatics.psb.ugent.be/plaza/versions/plaza_v3_dicots/) together with new functionalities facilitating the exploration of conserved cis-regulatory elements and their associated genes. The availability of this data set in a user-friendly platform enables the exploration of functional noncoding DNA to study gene regulation in a variety of plant species, including crops. PMID:27261064

  19. Arabidopsis CULLIN4-Damaged DNA Binding Protein 1 Interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA Complexes to Regulate Photomorphogenesis and Flowering Time[C][W

    PubMed Central

    Chen, Haodong; Huang, Xi; Gusmaroli, Giuliana; Terzaghi, William; Lau, On Sun; Yanagawa, Yuki; Zhang, Yu; Li, Jigang; Lee, Jae-Hoon; Zhu, Danmeng; Deng, Xing Wang

    2010-01-01

    CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) possesses E3 ligase activity and promotes degradation of key factors involved in the light regulation of plant development. The finding that CULLIN4 (CUL4)-Damaged DNA Binding Protein1 (DDB1) interacts with DDB1 binding WD40 (DWD) proteins to act as E3 ligases implied that CUL4-DDB1 may associate with COP1-SUPPRESSOR OF PHYA (SPA) protein complexes, since COP1 and SPAs are DWD proteins. Here, we demonstrate that CUL4-DDB1 physically associates with COP1-SPA complexes in vitro and in vivo, likely via direct interaction of DDB1 with COP1 and SPAs. The interactions between DDB1 and COP1, SPA1, and SPA3 were disrupted by mutations in the WDXR motifs of MBP-COP1, His-SPA1, and His-SPA3. CUL4 cosuppression mutants enhanced weak cop1 photomorphogenesis and flowered early under short days. Early flowering of short day–grown cul4 mutants correlated with increased FLOWERING LOCUS T transcript levels, whereas CONSTANS transcript levels were not altered. De-etiolated1 and COP1 can bind DDB1 and may work with CUL4-DDB1 in distinct complexes, but they mediate photomorphogenesis in concert. Thus, a series of CUL4-DDB1-COP1-SPA E3 ligase complexes may mediate the repression of photomorphogenesis and, possibly, of flowering time. PMID:20061554

  20. Hsp90 is involved in the regulation of cytosolic precursor protein abundance in tomato.

    PubMed

    Tillmann, Bodo; Röth, Sascha; Bublak, Daniela; Sommer, Manuel; Stelzer, Ernst H K; Scharf, Klaus-Dieter; Schleiff, Enrico

    2015-02-01

    Cytosolic chaperones are involved in the regulation of cellular protein homeostasis in general. Members of the families of heat stress proteins 70 (Hsp70) and 90 (Hsp90) assist the transport of preproteins to organelles such as chloroplasts or mitochondria. In addition, Hsp70 was described to be involved in the degradation of chloroplast preproteins that accumulate in the cytosol. Because a similar function has not been established for Hsp90, we analyzed the influences of Hsp90 and Hsp70 on the protein abundance in the cellular context using an in vivo system based on mesophyll protoplasts. We observed a differential behavior of preproteins with respect to the cytosolic chaperone-dependent regulation. Some preproteins such as pOE33 show a high dependence on Hsp90, whereas the abundance of preproteins such as pSSU is more strongly dependent on Hsp70. The E3 ligase, C-terminus of Hsp70-interacting protein (Chip), appears to have a more general role in the control of cytosolic protein abundance. We discuss why the different reaction modes are comparable with the cytosolic unfolded protein response. PMID:25619681

  1. Transcriptional and post-translational regulation of S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase (SAMT) during Stephanotis floribunda flower development.

    PubMed

    Pott, Marcella B; Effmert, Uta; Piechulla, Birgit

    2003-06-01

    Methyl salicylate (MeSA) and a number of other volatiles are primarily emitted in the evening/night by Stephanotis floribunda leading to attraction of night active pollinators. A second minor emission peak for MeSA occurs in the morning/day. To understand these emission patterns, we have studied in detail the temporal regulation of the last step of the biosynthetic pathway of MeSA, the convertion of salicylic acid (SA) to MeSA catalysed by S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase (SAMT). We observed that in young flowers a maximum in SAMT activity occurs in the night, and that in flowers which were open longer than 4 days, two SAMT activity maxima occurred per day. These maxima correlated well with dawn and dusk and the previously detected MeSA emission peaks. The SAMT mRNA levels, however, have a broad maximum during the dark phase, while the SAMT protein levels continuously increase during floral development without showing daily rhythms. Furthermore, under continuous illumination (LL) the SAMT mRNA levels and activity patterns oscillate, suggesting the involvement of a circadian clock in the regulation network. Taken together, this analysis clearly demonstrates that regulation of MeSA emission occurs both at the transcriptional and post-translational levels, indicating that control at more than one level is necessary to guarantee the precise timing of volatile emission in flowers of S. floribunda. PMID:12872485

  2. A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis.

    PubMed

    Sun, Peiguang; Miao, Hongxia; Yu, Xiaomeng; Jia, Caihong; Liu, Juhua; Zhang, Jianbin; Wang, Jingyi; Wang, Zhuo; Wang, Anbang; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The abscisic acid (ABA)-, stress-, and ripening-induced (ASR) protein is a plant-specific hydrophilic transcriptional factor involved in fruit ripening and the abiotic stress response. To date, there have been no studies on the role of ASR genes in delayed flowering time. Here, we found that the ASR from banana, designated as MaASR, was preferentially expressed in the banana female flowers from the eighth, fourth, and first cluster of the inflorescence. MaASR transgenic lines (L14 and L38) had a clear delayed-flowering phenotype. The number of rosette leaves, sepals, and pedicel trichomes in L14 and L38 was greater than in the wild type (WT) under long day (LD) conditions. The period of buds, mid-flowers, and full bloom of L14 and L38 appeared later than the WT. cDNA microarray and quantitative real-time PCR (qRT-PCR) analyses revealed that overexpression of MaASR delays flowering through reduced expression of several genes, including photoperiod pathway genes, vernalization pathway genes, gibberellic acid pathway genes, and floral integrator genes, under short days (SD) for 28 d (from vegetative to reproductive transition stage); however, the expression of the autonomous pathway genes was not affected. This study provides the first evidence of a role for ASR genes in delayed flowering time in plants. PMID:27486844

  3. A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis

    PubMed Central

    Yu, Xiaomeng; Jia, Caihong; Liu, Juhua; Zhang, Jianbin; Wang, Jingyi; Wang, Zhuo; Wang, Anbang; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The abscisic acid (ABA)-, stress-, and ripening-induced (ASR) protein is a plant-specific hydrophilic transcriptional factor involved in fruit ripening and the abiotic stress response. To date, there have been no studies on the role of ASR genes in delayed flowering time. Here, we found that the ASR from banana, designated as MaASR, was preferentially expressed in the banana female flowers from the eighth, fourth, and first cluster of the inflorescence. MaASR transgenic lines (L14 and L38) had a clear delayed-flowering phenotype. The number of rosette leaves, sepals, and pedicel trichomes in L14 and L38 was greater than in the wild type (WT) under long day (LD) conditions. The period of buds, mid-flowers, and full bloom of L14 and L38 appeared later than the WT. cDNA microarray and quantitative real-time PCR (qRT-PCR) analyses revealed that overexpression of MaASR delays flowering through reduced expression of several genes, including photoperiod pathway genes, vernalization pathway genes, gibberellic acid pathway genes, and floral integrator genes, under short days (SD) for 28 d (from vegetative to reproductive transition stage); however, the expression of the autonomous pathway genes was not affected. This study provides the first evidence of a role for ASR genes in delayed flowering time in plants. PMID:27486844

  4. Flower Development

    PubMed Central

    Alvarez-Buylla, Elena R.; Benítez, Mariana; Corvera-Poiré, Adriana; Chaos Cador, Álvaro; de Folter, Stefan; Gamboa de Buen, Alicia; Garay-Arroyo, Adriana; García-Ponce, Berenice; Jaimes-Miranda, Fabiola; Pérez-Ruiz, Rigoberto V.; Piñeyro-Nelson, Alma; Sánchez-Corrales, Yara E.

    2010-01-01

    Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies. PMID:22303253

  5. Flower development.

    PubMed

    Alvarez-Buylla, Elena R; Benítez, Mariana; Corvera-Poiré, Adriana; Chaos Cador, Alvaro; de Folter, Stefan; Gamboa de Buen, Alicia; Garay-Arroyo, Adriana; García-Ponce, Berenice; Jaimes-Miranda, Fabiola; Pérez-Ruiz, Rigoberto V; Piñeyro-Nelson, Alma; Sánchez-Corrales, Yara E

    2010-01-01

    Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies. PMID:22303253

  6. Alleviation of salt stress by enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants.

    PubMed

    Kim, Kangmin; Jang, Ye-Jin; Lee, Sang-Myeong; Oh, Byung-Taek; Chae, Jong-Chan; Lee, Kui-Jae

    2014-02-01

    Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways.

  7. Tomato LeTHIC is an Fe-requiring HMP-P synthase involved in thiamine synthesis and regulated by multiple factors.

    PubMed

    Zhao, Weina; Cheng, Xudong; Huang, Zongan; Fan, Huajie; Wu, Huilan; Ling, Hong-Qing

    2011-06-01

    Thiamine is a key primary metabolite which is necessary for the viability of all organisms. It is a dietary requirement for mammals because only prokaryotes, fungi and plants are thiamine prototrophs. In contrast to the well documented biosynthetic mechanism in bacteria, much remains to be deciphered in plants. In this work, a tomato thiamine-auxotrophic (thiamineless, tl) mutant was characterized. The tl mutant occurs due to inactivation of LeTHIC transcription as a result of insertion of a large unknown DNA fragment in its 5'-untranslated region. Expression of wild-type LeTHIC in tl plants was able to complement the mutant to wild type. LeTHIC possessed the same function as E.cTHIC [an Escherichia coli 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P) synthase involved in synthesis of the pyrimidine moiety of thiamine] because expression of LeTHIC rescued THIC-deficient strains of E. coli under culture conditions without thiamine supplementation, suggesting that plants employ a bacteria-like route of pyrimidine moiety synthesis. LeTHIC is an Fe-S cluster protein localized in chloroplasts, and Fe is required for maintenance of its enzyme activity because Fe deficiency resulted in a significant reduction of thiamine content in tomato leaves. Further, we also showed that the expression of LeTHIC is tightly regulated at the transcriptional and post-transcriptional level by multiple factors, such as light, Fe status and thiamine pyrophosphate (TPP)-riboswitch. The results clearly demonstrated that a feedback regulation mechanism is involved in synthesis of the pyrimidine moiety for controlling thiamine synthesis in tomato. Our results provide a new insight into understanding the molecular mechanism of thiamine biosynthesis in plants. PMID:21511719

  8. Alleviation of Salt Stress by Enterobacter sp. EJ01 in Tomato and Arabidopsis Is Accompanied by Up-Regulation of Conserved Salinity Responsive Factors in Plants

    PubMed Central

    Kim, Kangmin; Jang, Ye-Jin; Lee, Sang-Myeong; Oh, Byung-Taek; Chae, Jong-Chan; Lee, Kui-Jae

    2014-01-01

    Microbiota in the niches of the rhizosphere zones can affect plant growth and responses to environmental stress conditions via mutualistic interactions with host plants. Specifically, some beneficial bacteria, collectively referred to as Plant Growth Promoting Rhizobacteria (PGPRs), increase plant biomass and innate immunity potential. Here, we report that Enterobacter sp. EJ01, a bacterium isolated from sea china pink (Dianthus japonicus thunb) in reclaimed land of Gyehwa-do in Korea, improved the vegetative growth and alleviated salt stress in tomato and Arabidopsis. EJ01 was capable of producing 1-aminocy-clopropane-1-carboxylate (ACC) deaminase and also exhibited indole-3-acetic acid (IAA) production. The isolate EJ01 conferred increases in fresh weight, dry weight, and plant height of tomato and Arabidopsis under both normal and high salinity conditions. At the molecular level, short-term treatment with EJ01 increased the expression of salt stress responsive genes such as DREB2b, RD29A, RD29B, and RAB18 in Arabidopsis. The expression of proline biosynthetic genes (i.e. P5CS1 and P5CS2) and of genes related to priming processes (i.e. MPK3 and MPK6) were also up-regulated. In addition, reactive oxygen species scavenging activities were enhanced in tomatoes treated with EJ01 in stressed conditions. GFP-tagged EJ01 displayed colonization in the rhizosphere and endosphere in the roots of Arabidopsis. In conclusion, the newly isolated Enterobacter sp. EJ01 is a likely PGPR and alleviates salt stress in host plants through multiple mechanisms, including the rapid up-regulation of conserved plant salt stress responsive signaling pathways. PMID:24598995

  9. De novo Transcriptome Sequencing and Development of Abscission Zone-Specific Microarray as a New Molecular Tool for Analysis of Tomato Organ Abscission

    PubMed Central

    Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Riov, Joseph; Mugasimangalam, Raja; Kuravadi, Nagesh A.; Kochanek, Bettina; Salim, Shoshana; Tucker, Mark L.; Meir, Shimon

    2016-01-01

    Abscission of flower pedicels and leaf petioles of tomato (Solanum lycopersicum) can be induced by flower removal or leaf deblading, respectively, which leads to auxin depletion, resulting in increased sensitivity of the abscission zone (AZ) to ethylene. However, the molecular mechanisms that drive the acquisition of abscission competence and its modulation by auxin gradients are not yet known. We used RNA-Sequencing (RNA-Seq) to obtain a comprehensive transcriptome of tomato flower AZ (FAZ) and leaf AZ (LAZ) during abscission. RNA-Seq was performed on a pool of total RNA extracted from tomato FAZ and LAZ, at different abscission stages, followed by de novo assembly. The assembled clusters contained transcripts that are already known in the Solanaceae (SOL) genomics and NCBI databases, and over 8823 identified novel tomato transcripts of varying sizes. An AZ-specific microarray, encompassing the novel transcripts identified in this study and all known transcripts from the SOL genomics and NCBI databases, was constructed to study the abscission process. Multiple probes for longer genes and key AZ-specific genes, including antisense probes for all transcripts, make this array a unique tool for studying abscission with a comprehensive set of transcripts, and for mining for naturally occurring antisense transcripts. We focused on comparing the global transcriptomes generated from the FAZ and the LAZ to establish the divergences and similarities in their transcriptional networks, and particularly to characterize the processes and transcriptional regulators enriched in gene clusters that are differentially regulated in these two AZs. This study is the first attempt to analyze the global gene expression in different AZs in tomato by combining the RNA-Seq technique with oligonucleotide microarrays. Our AZ-specific microarray chip provides a cost-effective approach for expression profiling and robust analysis of multiple samples in a rapid succession. PMID:26834766

  10. Evolution of the Plant Reproduction Master Regulators LFY and the MADS Transcription Factors: The Role of Protein Structure in the Evolutionary Development of the Flower

    PubMed Central

    Silva, Catarina S.; Puranik, Sriharsha; Round, Adam; Brennich, Martha; Jourdain, Agnès; Parcy, François; Hugouvieux, Veronique; Zubieta, Chloe

    2016-01-01

    Understanding the evolutionary leap from non-flowering (gymnosperms) to flowering (angiosperms) plants and the origin and vast diversification of the floral form has been one of the focuses of plant evolutionary developmental biology. The evolving diversity and increasing complexity of organisms is often due to relatively small changes in genes that direct development. These “developmental control genes” and the transcription factors (TFs) they encode, are at the origin of most morphological changes. TFs such as LEAFY (LFY) and the MADS-domain TFs act as central regulators in key developmental processes of plant reproduction including the floral transition in angiosperms and the specification of the male and female organs in both gymnosperms and angiosperms. In addition to advances in genome wide profiling and forward and reverse genetic screening, structural techniques are becoming important tools in unraveling TF function by providing atomic and molecular level information that was lacking in purely genetic approaches. Here, we summarize previous structural work and present additional biophysical and biochemical studies of the key master regulators of plant reproduction – LEAFY and the MADS-domain TFs SEPALLATA3 and AGAMOUS. We discuss the impact of structural biology on our understanding of the complex evolutionary process leading to the development of the bisexual flower. PMID:26779227

  11. Tomato 14-3-3 protein TFT7 interacts with a MAP kinase kinase to regulate immunity-associated programmed cell death mediated by diverse disease resistance proteins.

    PubMed

    Oh, Chang-Sik; Martin, Gregory B

    2011-04-22

    Programmed cell death (PCD) associated with immunity is triggered when a plant disease resistance (R) protein recognizes a corresponding pathogen virulence protein. In tomato, detection by the host Pto kinase of the Pseudomonas syringae proteins AvrPto or AvrPtoB causes localized PCD. Previously, we reported that both MAPKKKα (mitogen-activated protein kinase kinase kinase) and the tomato 14-3-3 protein 7 (TFT7) positively regulate Pto-mediated PCD in tomato and Nicotiana benthamiana. In addition, in contrast to MAPKKKα, TFT7 is required for PCD mediated by four other R proteins. Here we investigate why TFT7 is required for PCD induced by diverse R proteins in plants. We discovered that a MAPKK, SlMKK2, which acts downstream of SlMAPKKKα, also interacts with TFT7 in plant cells. Gene silencing experiments revealed that the orthologous genes of both SlMKK2 and TFT7 in N. benthamiana are required for PCD mediated by the same set of R proteins. SlMKK2 and its orthologs contain a 14-3-3 binding site in their N terminus, and Thr(33) in this site is required for interaction with TFT7 in vivo. Like the structurally similar human 14-3-3ε protein, TFT7 forms a homodimer in vivo. Because TFT7 interacts with both SlMAPKKKα and SlMKK2 and also forms a homodimer, we propose that TFT7 may coordinately recruit these client proteins for efficient signal transfer, leading to PCD induction. PMID:21378171

  12. Class I chitinase and beta-1,3-glucanase are differentially regulated by wounding, methyl jasmonate, ethylene, and gibberellin in tomato seeds and leaves.

    PubMed

    Wu, Chun-Ta; Bradford, Kent J

    2003-09-01

    Class I chitinase (Chi9) and beta-1,3-glucanase (GluB) genes are expressed in the micropylar endosperm cap of tomato (Lycopersicon esculentum) seeds just before radicle emergence through this tissue to complete germination. In gibberellin (GA)-deficient mutant (gib-1) seeds, expression of Chi9 and GluB mRNA and protein is dependent upon GA. However, as expression occurs relatively late in the germination process, we investigated whether the genes are induced indirectly in response to tissue wounding associated with endosperm cap weakening and radicle protrusion. Wounding and methyl jasmonate (MeJA) induced Chi9 expression, whereas ethylene, abscisic acid, sodium salicylate, fusicoccin, or beta-aminobutyric acid were without effect. Chi9 expression occurred only in the micropylar tissues when seeds were exposed to MeJA or were wounded at the chalazal end of the seed. Expression of Chi9, but not GluB, mRNA was reduced in germinating seeds of the jasmonate-deficient defenseless1 tomato mutant and could be restored by MeJA treatment. Chi9 expression during germination may be associated with "wounding" from cell wall hydrolysis and weakening in the endosperm cap leading to radicle protrusion, and jasmonate is involved in the signaling pathway for this response. Among these treatments and chemicals (other than GA), only MeJA and wounding induced a low level of GluB expression in gib-1 seeds. However, MeJA, wounding, and particularly ethylene induced both genes in leaves, whereas GA induced only Chi9 in leaves. Although normally expressed simultaneously during tomato seed germination, Chi9 and GluB genes are regulated distinctly and tissue specifically by hormones and wounding.

  13. Philadelphia and the Tomato.

    ERIC Educational Resources Information Center

    Smith, Andrew F.; Kling, Tatiana

    This booklet describes for elementary students the many contributions of people, traveling many places, over many years to bring the tomato to Philadelphia. The booklet includes the following: (1) "Introduction to the Tomato"; (2) "Where Does the Tomato Come From?"; (3) "The Spanish Tomato"; (4) "The Philadelphia Tomato"; (5) "Growing Tomato…

  14. HsfA2 Controls the Activity of Developmentally and Stress-Regulated Heat Stress Protection Mechanisms in Tomato Male Reproductive Tissues1[OPEN

    PubMed Central

    Simm, Stefan; Paupière, Marine Josephine; Theres, Klaus; Bovy, Arnaud; Schleiff, Enrico; Scharf, Klaus-Dieter

    2016-01-01

    Male reproductive tissues are more sensitive to heat stress (HS) compared to vegetative tissues, but the basis of this phenomenon is poorly understood. Heat stress transcription factors (Hsfs) regulate the transcriptional changes required for protection from HS. In tomato (Solanum lycopersicum), HsfA2 acts as coactivator of HsfA1a and is one of the major Hsfs accumulating in response to elevated temperatures. The contribution of HsfA2 in heat stress response (HSR) and thermotolerance was investigated in different tissues of transgenic tomato plants with suppressed HsfA2 levels (A2AS). Global transcriptome analysis and immunodetection of two major Hsps in vegetative and reproductive tissues showed that HsfA2 regulates subsets of HS-induced genes in a tissue-specific manner. Accumulation of HsfA2 by a moderate HS treatment enhances the capacity of seedlings to cope with a subsequent severe HS, suggesting an important role for HsfA2 in regulating acquired thermotolerance. In pollen, HsfA2 is an important coactivator of HsfA1a during HSR. HsfA2 suppression reduces the viability and germination rate of pollen that received the stress during the stages of meiosis and microspore formation but had no effect on more advanced stages. In general, pollen meiocytes and microspores are characterized by increased susceptibility to HS due to their lower capacity to induce a strong HSR. This sensitivity is partially mitigated by the developmentally regulated expression of HsfA2 and several HS-responsive genes mediated by HsfA1a under nonstress conditions. Thereby, HsfA2 is an important factor for the priming process that sustains pollen thermotolerance during microsporogenesis. PMID:26917685

  15. HsfA2 Controls the Activity of Developmentally and Stress-Regulated Heat Stress Protection Mechanisms in Tomato Male Reproductive Tissues.

    PubMed

    Fragkostefanakis, Sotirios; Mesihovic, Anida; Simm, Stefan; Paupière, Marine Josephine; Hu, Yangjie; Paul, Puneet; Mishra, Shravan Kumar; Tschiersch, Bettina; Theres, Klaus; Bovy, Arnaud; Schleiff, Enrico; Scharf, Klaus-Dieter

    2016-04-01

    Male reproductive tissues are more sensitive to heat stress (HS) compared to vegetative tissues, but the basis of this phenomenon is poorly understood. Heat stress transcription factors (Hsfs) regulate the transcriptional changes required for protection from HS In tomato (Solanum lycopersicum), HsfA2 acts as coactivator of HsfA1a and is one of the major Hsfs accumulating in response to elevated temperatures. The contribution of HsfA2 in heat stress response (HSR) and thermotolerance was investigated in different tissues of transgenic tomato plants with suppressed HsfA2 levels (A2AS). Global transcriptome analysis and immunodetection of two major Hsps in vegetative and reproductive tissues showed that HsfA2 regulates subsets of HS-induced genes in a tissue-specific manner. Accumulation of HsfA2 by a moderate HS treatment enhances the capacity of seedlings to cope with a subsequent severe HS, suggesting an important role for HsfA2 in regulating acquired thermotolerance. In pollen, HsfA2 is an important coactivator of HsfA1a during HSR HsfA2 suppression reduces the viability and germination rate of pollen that received the stress during the stages of meiosis and microspore formation but had no effect on more advanced stages. In general, pollen meiocytes and microspores are characterized by increased susceptibility to HS due to their lower capacity to induce a strong HSR This sensitivity is partially mitigated by the developmentally regulated expression of HsfA2 and several HS-responsive genes mediated by HsfA1a under nonstress conditions. Thereby, HsfA2 is an important factor for the priming process that sustains pollen thermotolerance during microsporogenesis.

  16. Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid.

    PubMed

    Csiszár, Jolán; Horváth, Edit; Váry, Zsolt; Gallé, Ágnes; Bela, Krisztina; Brunner, Szilvia; Tari, Irma

    2014-05-01

    A family tree of the multifunctional proteins, glutathione transferases (GSTs, EC 2.5.1.18) was created in Solanum lycopersicum based on homology to known Arabidopsis GSTs. The involvement of selected SlGSTs was studied in salt stress response of tomato primed with salicylic acid (SA) or in un-primed plants by real-time qPCR. Selected tau GSTs (SlGSTU23, SlGSTU26) were up-regulated in the leaves, while GSTs from lambda, theta, dehydroascorbate reductase and zeta classes (SlGSTL3, SlGSTT2, SlDHAR5, SlGSTZ2) in the root tissues under salt stress. Priming with SA exhibited a concentration dependency; SA mitigated the salt stress injury and caused characteristic changes in the expression pattern of SlGSTs only at 10(-4) M concentration. SlGSTF4 displayed a significant up-regulation in the leaves, while the abundance of SlGSTL3, SlGSTT2 and SlGSTZ2 transcripts were enhanced in the roots of plants primed with high SA concentration. Unexpectedly, under high salinity the SlDHAR2 expression decreased in primed roots as compared to the salt-stressed plants, however, the up-regulation of SlDHAR5 isoenzyme contributed to the maintenance of DHAR activity in roots primed with high SA. The members of lambda, theta and zeta class GSTs have a specific role in salt stress acclimation of tomato, while SlGSTU26 and SlGSTF4, the enzymes with high glutathione conjugating activity, characterize a successful priming in both roots and leaves. In contrast to low concentration, high SA concentration induced those GSTs in primed roots, which were up-regulated under salt stress. Our data indicate that induction of GSTs provide a flexible tool in maintaining redox homeostasis during unfavourable conditions.

  17. Functional Analysis of the Arlequin Mutant Corroborates the Essential Role of the ARLEQUIN/TAGL1 Gene during Reproductive Development of Tomato

    PubMed Central

    Capel, Juan; Antón, María Teresa; Atarés, Alejandro; Pérez-Martín, Fernando; García-Sogo, Begoña; Angosto, Trinidad; Moreno, Vicente; Lozano, Rafael

    2010-01-01

    Reproductive development of higher plants comprises successive events of organ differentiation and growth which finally lead to the formation of a mature fruit. However, most of the genetic and molecular mechanisms which coordinate such developmental events are yet to be identified and characterized. Arlequin (Alq), a semi-dominant T-DNA tomato mutant showed developmental changes affecting flower and fruit ripening. Sepals were converted into fleshy organs which ripened as normal fruit organs and fruits displayed altered ripening features. Molecular characterization of the tagged gene demonstrated that it corresponded to the previously reported TOMATO AGAMOUS-LIKE 1 (TAGL1) gene, the tomato ortholog of SHATTERPROOF MADS-box genes of Arabidopsis thaliana, and that the Alq mutation promoted a gain-of-function phenotype caused by the ectopic expression of TAGL1. Ectopic overexpression of TAGL1 resulted in homeotic alterations affecting floral organ identity that were similar to but stronger than those observed in Alq mutant plants. Interestingly, TAGL1 RNAi plants yielded tomato fruits which were unable to ripen. They displayed a yellow-orange color and stiffness appearance which are in accordance with reduced lycopene and ethylene levels, respectively. Moreover, pericarp cells of TAGL1 RNAi fruits showed altered cellular and structural properties which correlated to both decreased expression of genes regulating cell division and lignin biosynthesis. Over-expression of TAGL1 is able to rescue the non-ripening phenotype of rin and nor mutants, which is mediated by the transcriptional activation of several ripening genes. Our results demonstrated that TAGL1 participates in the genetic control of flower and fruit development of tomato plants. Furthermore, gene silencing and over-expression experiments demonstrated that the fruit ripening process requires the regulatory activity of TAGL1. Therefore, TAGL1 could act as a linking factor connecting successive stages of

  18. Molecular evolution and phylogenetic analysis of eight COL superfamily genes in group I related to photoperiodic regulation of flowering time in wild and domesticated cotton (Gossypium) species.

    PubMed

    Zhang, Rui; Ding, Jian; Liu, Chunxiao; Cai, Caiping; Zhou, Baoliang; Zhang, Tianzhen; Guo, Wangzhen

    2015-01-01

    Flowering time is an important ecological trait that determines the transition from vegetative to reproductive growth. Flowering time in cotton is controlled by short-day photoperiods, with strict photoperiod sensitivity. As the CO-FT (CONSTANS-FLOWER LOCUS T) module regulates photoperiodic flowering in several plants, we selected eight CONSTANS genes (COL) in group I to detect their expression patterns in long-day and short-day conditions. Further, we individually cloned and sequenced their homologs from 25 different cotton accessions and one outgroup. Finally, we studied their structures, phylogenetic relationship, and molecular evolution in both coding region and three characteristic domains. All the eight COLs in group I show diurnal expression. In the orthologous and homeologous loci, each gene structure in different cotton species is highly conserved, while length variation has occurred due to insertions/deletions in intron and/or exon regions. Six genes, COL2 to COL5, COL7 and COL8, exhibit higher nucleotide diversity in the D-subgenome than in the A-subgenome. The Ks values of 98.37% in all allotetraploid cotton species examined were higher in the A-D and At-Dt comparison than in the A-At and D-Dt comparisons, and the Pearson's correlation coefficient (r) of Ks between A vs. D and At vs. Dt also showed positive, high correlations, with a correlation coefficient of at least 0.797. The nucleotide polymorphism in wild species is significantly higher compared to G. hirsutum and G. barbadense, indicating a genetic bottleneck associated with the domesticated cotton species. Three characteristic domains in eight COLs exhibit different evolutionary rates, with the CCT domain highly conserved, while the B-box and Var domain much more variable in allotetraploid species. Taken together, COL1, COL2 and COL8 endured greater selective pressures during the domestication process. The study improves our understanding of the domestication-related genes/traits during cotton

  19. Polyamine spermidine is an upstream negator of ethylene-regulated pathogenesis of botrytis cinerea in tomato leaf

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyamines are biogenic polycationic compounds implicated in a number of processes including plant cell division, cell elongation, flowering, fruit set and development, fruit ripening, senescence and responses to abiotic stresses. Comparatively, little is known about their role in plant-microbe int...

  20. Transcriptional Activity of the MADS Box ARLEQUIN/TOMATO AGAMOUS-LIKE1 Gene Is Required for Cuticle Development of Tomato Fruit1

    PubMed Central

    Giménez, Estela; Dominguez, Eva; Pineda, Benito; Heredia, Antonio; Moreno, Vicente; Angosto, Trinidad

    2015-01-01

    Fruit development and ripening entail key biological and agronomic events, which ensure the appropriate formation and dispersal of seeds and determine productivity and yield quality traits. The MADS box gene ARLEQUIN/TOMATO AGAMOUS-LIKE1 (hereafter referred to as TAGL1) was reported as a key regulator of tomato (Solanum lycopersicum) reproductive development, mainly involved in flower development, early fruit development, and ripening. It is shown here that silencing of the TAGL1 gene (RNA interference lines) promotes significant changes affecting cuticle development, mainly a reduction of thickness and stiffness, as well as a significant decrease in the content of cuticle components (cutin, waxes, polysaccharides, and phenolic compounds). Accordingly, overexpression of TAGL1 significantly increased the amount of cuticle and most of its components while rendering a mechanically weak cuticle. Expression of the genes involved in cuticle biosynthesis agreed with the biochemical and biomechanical features of cuticles isolated from transgenic fruits; it also indicated that TAGL1 participates in the transcriptional control of cuticle development mediating the biosynthesis of cuticle components. Furthermore, cell morphology and the arrangement of epidermal cell layers, on whose activity cuticle formation depends, were altered when TAGL1 was either silenced or constitutively expressed, indicating that this transcription factor regulates cuticle development, probably through the biosynthetic activity of epidermal cells. Our results also support cuticle development as an integrated event in the fruit expansion and ripening processes that characterize fleshy-fruited species such as tomato. PMID:26019301

  1. Transcriptional Activity of the MADS Box ARLEQUIN/TOMATO AGAMOUS-LIKE1 Gene Is Required for Cuticle Development of Tomato Fruit.

    PubMed

    Giménez, Estela; Dominguez, Eva; Pineda, Benito; Heredia, Antonio; Moreno, Vicente; Lozano, Rafael; Angosto, Trinidad

    2015-07-01

    Fruit development and ripening entail key biological and agronomic events, which ensure the appropriate formation and dispersal of seeds and determine productivity and yield quality traits. The MADS box gene Arlequin/tomato Agamous-like1 (hereafter referred to as TAGL1) was reported as a key regulator of tomato (Solanum lycopersicum) reproductive development, mainly involved in flower development, early fruit development, and ripening. It is shown here that silencing of the TAGL1 gene (RNA interference lines) promotes significant changes affecting cuticle development, mainly a reduction of thickness and stiffness, as well as a significant decrease in the content of cuticle components (cutin, waxes, polysaccharides, and phenolic compounds). Accordingly, overexpression of TAGL1 significantly increased the amount of cuticle and most of its components while rendering a mechanically weak cuticle. Expression of the genes involved in cuticle biosynthesis agreed with the biochemical and biomechanical features of cuticles isolated from transgenic fruits; it also indicated that TAGL1 participates in the transcriptional control of cuticle development mediating the biosynthesis of cuticle components. Furthermore, cell morphology and the arrangement of epidermal cell layers, on whose activity cuticle formation depends, were altered when TAGL1 was either silenced or constitutively expressed, indicating that this transcription factor regulates cuticle development, probably through the biosynthetic activity of epidermal cells. Our results also support cuticle development as an integrated event in the fruit expansion and ripening processes that characterize fleshy-fruited species such as tomato.

  2. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation.

    PubMed

    Zhu, Mingku; Chen, Guoping; Zhou, Shuang; Tu, Yun; Wang, Yi; Dong, Tingting; Hu, Zongli

    2014-01-01

    Fruit ripening in tomato (Solanum lycopersicum) is a complicated development process affected by both endogenous hormonal and genetic regulators and external signals. Although the role of NOR, a member of the NAC domain family, in mediating tomato fruit ripening has been established, its underlying molecular mechanisms remain unclear. To explore further the role of NAC transcription factors in fruit ripening, we characterized a new tomato NAC domain protein, named SlNAC4, which shows high accumulation in sepal and at the onset of fruit ripening. Various stress treatments including wounding, NaCl, dehydration and low temperature significantly increased the expression of SlNAC4. Reduced expression of SlNAC4 by RNA interference (RNAi) in tomato resulted in delayed fruit ripening, suppressed Chl breakdown and decreased ethylene synthesis mediated mainly through reduced expression of ethylene biosynthesis genes of system-2, and reduced carotenoids by alteration of the carotenoid pathway flux. Transgenic tomato fruits also displayed significant down-regulation of multiple ripening-associated genes, indicating that SlNAC4 functions as a positive regulator of fruit ripening by affecting ethylene synthesis and carotenoid accumulation. Moreover, we also noted that SlNAC4 could not be induced by ethylene and may function upstream of the ripening regulator RIN and positively regulate its expression. Yeast two-hybrid assay further revealed that SlNAC4 could interact with both RIN and NOR protein. These results suggested that ethylene-dependent and -independent processes are regulated by SlNAC4 in the fruit ripening regulatory network.

  3. Regulation of biosynthesis and emission of volatile phenylpropanoids/benzenoids in petunia× hybrida flowers by multi-factors of circadian clock, light, and temperature.

    PubMed

    Cheng, Sihua; Fu, Xiumin; Mei, Xin; Zhou, Ying; Du, Bing; Watanabe, Naoharu; Yang, Ziyin

    2016-10-01

    Floral volatile phenylpropanoids and benzenoids (VPBs) play important ecological functions and have potential economic applications. Little is known about how multi-factors in integration regulate the formation and emission of floral VPBs. In the present study, we investigated effects of multi factors including endogenous circadian clock, light, and temperature on the formation and emission of VPBs, which are major volatiles in flowers of Petunia× hybrida cv. 'Mitchell Diploid'. Endogenous circadian clock was proposed as the most important factor regulating rhythmic emission of VPBs and expressions of structural genes involved in the upstream biosynthetic pathway of VPBs, but did not affect expression levels of structural genes involved in the downstream pathway and VPBs-related regulators. In contrast to light, temperature was a more constant factor affecting emission of VPBs. VPBs emission could be inhibited within a short time by increasing temperature. The information will contribute to our understanding of emission mechanism of floral volatiles. PMID:27235646

  4. cDNAs for the synthesis of cyclic carotenoids in petals of Gentiana lutea and their regulation during flower development.

    PubMed

    Zhu, Changfu; Yamamura, Saburo; Nishihara, Masashiro; Koiwa, Hiroyuki; Sandmann, Gerhard

    2003-02-20

    cDNAs encoding lycopene epsilon -cyclase, lycopene beta-cyclase, beta-carotene hydroxylase and zeaxanthin epoxidase were isolated from a Gentiana lutea petal cDNA library. The function of all cDNAs was analyzed by complementation in Escherichia coli. Transcript levels during different stages of flower development of G. lutea were determined and compared to the carotenoid composition. Expression of all genes increased by a factor of up to 2, with the exception of the lycopene epsilon -cyclase gene. The transcript amount of the latter was strongly decreased. These results indicate that during flower development, carotenoid formation is enhanced. Moreover, metabolites are shifted away from the biosynthetic branch to lutein and are channeled into beta-carotene and derivatives.

  5. A CONSTANS-like transcriptional activator, OsCOL13, functions as a negative regulator of flowering downstream of OsphyB and upstream of Ehd1 in rice.

    PubMed

    Sheng, Peike; Wu, Fuqing; Tan, Junjie; Zhang, Huan; Ma, Weiwei; Chen, Liping; Wang, Jiachang; Wang, Jie; Zhu, Shanshan; Guo, Xiuping; Wang, Jiulin; Zhang, Xin; Cheng, Zhijun; Bao, Yiqun; Wu, Chuanyin; Liu, Xuanming; Wan, Jianmin

    2016-09-01

    Flowering time determines the adaptability of crop plants to different local environments, thus being one of the most important agronomic traits targeted in breeding programs. Photoperiod is one of the key factors that control flowering in plant. A number of genes that participate in the photoperiod pathway have been characterized in long-day plants such as Arabidopsis, as well as in short-day plants such as Oryza sativa. Of those, CONSTANS (CO) as a floral integrator promotes flowering in Arabidopsis under long day conditions. In rice, Heading date1 (Hd1), a homologue of CO, functions in an opposite way, which inhibits flowering under long day conditions and induces flowering under short day conditions. Here, we show that another CONSTANS-like (COL) gene, OsCOL13, negatively regulates flowering in rice under both long and short day conditions. Overexpression of OsCOL13 delays flowering regardless of day length. We also demonstrated that OsCOL13 has a constitutive and rhythmic expression pattern, and that OsCOL13 is localized to the nucleus. OsCOL13 displays transcriptional activation activity in the yeast assays and likely forms homodimers in vivo. OsCOL13 suppresses the florigen genes Hd3a and RFT1 by repressing Ehd1, but has no relationship with other known Ehd1 regulators as determined by using mutants or near isogenic lines. In addition, the transcriptional level of OsCOL13 significantly decreased in the osphyb mutant, but remained unchanged in the osphya and osphyc mutants. Thus, we conclude that OsCOL13 functions as a negative regulator downstream of OsphyB and upstream of Ehd1 in the photoperiodic flowering in rice. PMID:27405463

  6. The tomato HD-Zip I transcription factor SlHZ24 modulates ascorbate accumulation through positive regulation of the D-mannose/L-galactose pathway.

    PubMed

    Hu, Tixu; Ye, Jie; Tao, Peiwen; Li, Hanxia; Zhang, Junhong; Zhang, Yuyang; Ye, Zhibiao

    2016-01-01

    Ascorbate (AsA) is an antioxidant that can scavenge the reactive oxygen species (ROS) produced when plants encounter stressful conditions. Here, it was revealed by a yeast one-hybrid assay that a tomato (Solanum lycopersicum) HD-Zip I family transcription factor, SlHZ24, binds to the promoter of an AsA biosynthetic gene encoding GDP-D-mannose pyrophosphorylase 3 (SlGMP3). Both the transient expression system and electrophoretic mobility shift assay (EMSA) showed that SlHZ24 binds to a regulatory cis-element in the SlGMP3 promoter, and further overexpression of SlHZ24 in transgenic tomato lines resulted in increased AsA levels. In contrast, suppressing expression of the gene using RNA interference (RNAi) had the opposite effect. These data suggest that SlHZ24 can positively regulate the accumulation of AsA, and in support of this it was shown that SlGMP3 expression increased in the SlHZ24-overexpressing lines and declined in SlHZ24-RNAi lines. SlHZ24 also affected the expression of other genes in the D-mannose/L-galactose pathway, such as genes encoding GDP-mannose-3',5'-epimerase 2 (SlGME2), GDP-L-galactose phosphorylase (SlGGP) and SlGMP4. The EMSA indicated that SlHZ24 bound to the promoters of SlGME2 and SlGGP, suggesting multi-targeted regulation of AsA biosynthesis. Finally, SlHZ24-overexpressing plants showed less sensitivity to oxidative stress; we therefore conclude that SlHZ24 promotes AsA biosynthesis, which in turn enhances oxidative stress tolerance. PMID:26610866

  7. Characterization of SOC1's central role in flowering by the identification of its upstream and downstream regulators.

    PubMed

    Immink, Richard G H; Posé, David; Ferrario, Silvia; Ott, Felix; Kaufmann, Kerstin; Valentim, Felipe Leal; de Folter, Stefan; van der Wal, Froukje; van Dijk, Aalt D J; Schmid, Markus; Angenent, Gerco C

    2012-09-01

    The transition from vegetative to reproductive development is one of the most important phase changes in the plant life cycle. This step is controlled by various environmental signals that are integrated at the molecular level by so-called floral integrators. One such floral integrator in Arabidopsis (Arabidopsis thaliana) is the MADS domain transcription factor SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). Despite extensive genetic studies, little is known about the transcriptional control of SOC1, and we are just starting to explore the network of genes under the direct control of SOC1 transcription factor complexes. Here, we show that several MADS domain proteins, including SOC1 heterodimers, are able to bind SOC1 regulatory sequences. Genome-wide target gene analysis by ChIP-seq confirmed the binding of SOC1 to its own locus and shows that it also binds to a plethora of flowering-time regulatory and floral homeotic genes. In turn, the encoded floral homeotic MADS domain proteins appear to bind SOC1 regulatory sequences. Subsequent in planta analyses revealed SOC1 repression by several floral homeotic MADS domain proteins, and we show that, mechanistically, this depends on the presence of the SOC1 protein. Together, our data show that SOC1 constitutes a major hub in the regulatory networks underlying floral timing and flower development and that these networks are composed of many positive and negative autoregulatory and feedback loops. The latter seems to be crucial for the generation of a robust flower-inducing signal, followed shortly after by repression of the SOC1 floral integrator. PMID:22791302

  8. Exogenous ethylene influences flower opening of cut roses (Rosa hybrida) by regulating the genes encoding ethylene biosynthesis enzymes.

    PubMed

    Ma, Nan; Cai, Lei; Lu, Wangjin; Tan, Hui; Gao, Junping

    2005-10-01

    The purpose of this paper is to investigate the differential responses of flower opening to ethylene in two cut rose cultivars, 'Samantha', whose opening process is promoted, and 'Kardinal', whose opening process is inhibited by ethylene. Ethylene production and 1-aminocyclopropane-1-carboxylate (ACC) synthase and oxidase activities were determined first. After ethylene treatment, ethylene production, ACC synthase (ACS) and ACC oxidase (ACO) activities in petals increased and peaked at the earlier stage (stage 3) in 'Samantha', and they were much more dramatically enhanced and peaked at the later stage (stage 4) in 'Kardinal' than control during vasing. cDNA fragments of three Rh-ACSs and one Rh-ACO genes were cloned and designated as Rh-ACS1, Rh-ACS2, Rh-ACS3 and Rh-ACO1 respectively. Northern blotting analysis revealed that, among three genes of ACS, ethylene-in- duced expression patterns of Rh-ACS3 gene corresponded to ACS activity and ethylene production in both cultivars. A more dramatic accumulation of Rh-ACS3 mRNA was induced by ethylene in 'Kardinal' than that of 'Samantha'. As an ethylene action inhibitor, STS at concentration of 0.2 mmol/L generally inhibited the expression of Rh-ACSs and Rh-ACO in both cultivars, although it induced the expression of Rh-ACS3 transiently in 'Kardinal'. Our results suggests that 'Kardinal' is more sensitive to ethylene than 'Samantha'; and the changes of Rh-ACS3 expression caused by ethylene might be related to the acceleration of flower opening in 'Samantha' and the inhibition in 'Kardinal'. Additional results indicated that three Rh-ACSs genes were differentially associated with flower opening and senescence as well as wounding

  9. Transcriptional regulation of two RTE-like genes of carnation during flower senescence and upon ethylene exposure, wounding treatment and sucrose supply.

    PubMed

    Yu, Y; Wang, H; Liu, J; Fu, Z; Wang, J; Liu, J

    2011-09-01

    RTE1 (REVERSION-TO-ETHYLENE SENSITIVITY1) was identified as a positive regulator of ETR1 (ethylene resistant1) function in Arabidopsis; RTEs are a small gene family. Ethylene plays a crucial role in the senescence of carnation (Dianthus caryophyllus L.) flowers. Two cDNA clones encoding putative RTE-like protein (DCRTE1 and DCRTH1) were obtained from total RNA isolated from senescing carnation petals using RT-PCR and RACE techniques. The predicted proteins of DCRTE1 and DCRTH1 consist of 228 and 233 amino acids, respectively. Interestingly, the deduced DCRTE1 protein, like most other RTEs, includes two putative transmembrane domains, while the deduced DCRTH1 protein includes five putative transmembrane domains, according to the TMHMM database. Northern blots showed that the level of DCRTE1 mRNA in petals first decreased then increased remarkably after ethylene production started, and DCRTE1 expression showed an increasing trend in ovaries during natural flower senescence. The amount of DCRTH1 transcripts increased gradually in both petals and ovaries during natural senescence. Exogenous ethylene increased transcript abundance of DCRTE1 and DCRTH1 to various degrees in both petals and ovaries. STS treatment decreased the level of DCRTH1 mRNA in petals and ovaries compared with the control. DCRTE1 and DCRTH1 showed a rapid increase and then a decrease in mRNA accumulation in leaves after wounding. These results suggest that both DCRTE1 and DCRTH1 could play important roles in flower senescence-related signalling. Sucrose treatment did not remarkably affect the amount of DCRTE1 and DCRTH1 mRNAs.

  10. Expression of FcFT1, a FLOWERING LOCUS T-like gene, is regulated by light and associated with inflorescence differentiation in fig (Ficus carica L.)

    PubMed Central

    2013-01-01

    Background Because the floral induction occurs in many plants when specific environmental conditions are satisfied, most plants bloom and bear fruit during the same season each year. In fig, by contrast, the time interval during which inflorescence (flower bud, fruit) differentiation occurs corresponds to the shoot elongation period. Fig trees thus differ from many species in their reproductive growth characteristics. To date, however, the molecular mechanisms underlying this unorthodox physiology of floral induction and fruit setting in fig trees have not been elucidated. Results We isolated a FLOWERING LOCUS T (FT)-like gene from fig and examined its function, characteristics, and expression patterns. The isolated gene, F. carica FT (FcFT1), is single copy in fig and shows the highest similarity at the amino acid level (93.1%) to apple MdFT2. We sequenced its upstream region (1,644 bp) and identified many light-responsive elements. FcFT1 was mainly expressed in leaves and induced early flowering in transgenic tobacco, suggesting that FcFT1 is a fig FT ortholog. Real-time reverse-transcription PCR analysis revealed that FcFT1 mRNA expression occurred only in leaves at the lower nodes, the early fruit setting positions. mRNA levels remained a constant for approximately 5 months from spring to autumn, corresponding almost exactly to the inflorescence differentiation season. Diurnal variation analysis revealed that FcFT1 mRNA expression increased under relative long-day and short-day conditions, but not under continuous darkness. Conclusion These results suggest that FcFT1 activation is regulated by light conditions and may contribute to fig’s unique fruit-setting characteristics. PMID:24341499

  11. Effect of cytokinins on delaying petunia flower senescence: a transcriptome study approach.

    PubMed

    Trivellini, Alice; Cocetta, Giacomo; Vernieri, Paolo; Mensuali-Sodi, Anna; Ferrante, Antonio

    2015-01-01

    Flower senescence is a fascinating natural process that represents the final developmental stage in the life of a flower. Plant hormones play an important role in regulating the timing of flower senescence. Ethylene is a trigger and usually accelerates the senescence rate, while cytokinins are known to delay it. The aim of this work was to study the effect of 6-benzylaminopurine (BA) on petal senescence by transcript profile comparison after 3 or 6 h using a cross-species method by hybridizing petunia samples to a 4 × 44 K Agilent tomato array. The relative content of ethylene, abscisic acid, anthocyanins, total carotenoids and total phenols that determine the physiological behaviours of the petal tissue were measured. BA treatment prolonged the flower life and increased the concentrations of phenols and anthocyanins, while total carotenoids did not increase and were lower than the control. The ethylene biosynthetic and perception gene expressions were studied immediately after treatment until 24 h and all genes were repressed, while ethylene production was strongly induced after 4 days. The microarray analyses highlighted that BA strongly affected gene regulation after 3 h, but only 14% of genes remained differentially expressed after 6 h. The most affected pathways and genes were those related to stress, such as heat shock proteins, abscisic acid (ABA) catabolism and its signalling pathway, lipid metabolism and antioxidant defence systems. A gene annotation enrichment analysis using DAVID showed that the most important gene clusters were involved in energy generation and conservation processes. In addition to the ethylene pathway, cytokinins seem to be strongly involved the regulation of the ABA response in flower tissues. PMID:25425166

  12. Expression of genes for the biosynthesis of compatible solutes during pollen development under heat stress in tomato (Solanum lycopersicum).

    PubMed

    Sangu, E; Tibazarwa, F I; Nyomora, A; Symonds, R C

    2015-04-15

    Accumulation of compatible solutes is considered a key adaptation mechanism in many plants in response to abiotic stress. The expression of four genes, involved in sucrose metabolism (SPS and SuSy), biosynthesis of galactinol (GoLS1) and proline accumulation (P5CS) was compared: at meiosis (MM), vacuolated and mature stages of pollen development in heat tolerant and heat sensitive tomato genotypes. The results showed differences in gene expression across tomato genotypes and stages of pollen development. Three genes (P5CS, SPS and SuSy) were up regulated in heat tolerant genotype CLN1621L at the mature stage and one gene (P5CS) in genotype CLN5915-93D at the MM stage. Two genes (SPS and GoLS1) were down regulated in heat sensitive genotype CA4 and one gene (GoLS1) in genotype CLN2498E at the MM stage. Additionally, the continuous exposure of tomato genotypes to temperatures of 35 °C/28 °C day/night completely impaired flower development in genotypes CA4 and CLN2498E but not in genotypes CLN1621L and CLN5915-93D. Tomato genotypes CLN1621L and CLN5915-93D produced fully developed flowers containing mixture of non viable pollens and very few viable pollens grains. Membrane permeability was affected at all stages of development under heat stress with heat tolerant genotypes CL5915-93D4, CLN2498E and CLN1621L showing varying degrees of heat acclimation. Significant increases in total chlorophyll were seen in all genotypes in response to heat stress. The expression of compatible solute genes at MM is more critical than at mature stage for the development of viable pollen grain.

  13. Effect of salt stress in the regulation of anthocyanins and color of hibiscus flowers by digital image analysis.

    PubMed

    Trivellini, Alice; Gordillo, Belén; Rodríguez-Pulido, Francisco J; Borghesi, Eva; Ferrante, Antonio; Vernieri, Paolo; Quijada-Morín, Natalia; González-Miret, M Lourdes; Heredia, Francisco J

    2014-07-23

    The effect of salt stress (200 mM NaCl for 28 days) on physiological characteristics of Hibiscus rosa-sinensis, such as abscisic acid (ABA) content, electrolyte leakage, and photochemical efficiency in leaves, and its influence on biomass production, anthocyanin composition, and color expression of flowers were evaluated. Salinity significantly increased electrolyte leakage and ABA content in leaves and reduced the flower fresh weight. Chlorophyll fluorescence parameters were lower in salt stress condition, compared to control. Moreover, salt stress negatively affected the content of anthocyanins (mainly cyanidin-3-sophoroside), which resulted in a visually perceptible loss of color. The detailed anthocyanin composition monitored by HPLC-DAD-MS and the color variations by digital image analysis due to salt stress showed that the effect was more noticeable at the basal portion of petals. A forward stepwise multiple regression was performed for predicting the content of anthocyanins from appearance characteristics obtained by image analysis, reaching R-square values up to 0.90. PMID:25005605

  14. Glutathione-mediated regulation of nitric oxide, S-nitrosothiol and redox homeostasis confers cadmium tolerance by inducing transcription factors and stress response genes in tomato.

    PubMed

    Hasan, Md Kamrul; Liu, Congcong; Wang, Fanan; Ahammed, Golam Jalal; Zhou, Jie; Xu, Ming-Xing; Yu, Jing-Quan; Xia, Xiao-Jian

    2016-10-01

    Glutathione (GSH) plays a critical role in plant growth, development and responses to stress. However, the mechanism by which GSH regulates tolerance to cadmium (Cd) stress still remains unclear. Here we show that inhibition of GSH biosynthesis by buthionine sulfoximine (BSO) aggravated Cd toxicity by increasing accumulation of reactive oxygen species (ROS) and reducing contents of nitric oxide (NO) and S-nitrosothiol (SNO) in tomato roots. In contrast, exogenous GSH alleviated Cd toxicity by substantially minimizing ROS accumulation and increasing contents of NO and SNO, and activities of antioxidant enzymes that eventually reduced oxidative stress. GSH-induced enhancement in Cd tolerance was closely associated with the upregulation of transcripts of several transcription factors such as ETHYLENE RESPONSIVE TRANSCRIPTION FACTOR 1 (ERF1), ERF2, MYB1 TRANSCRIPTION FACTOR- AIM1 and R2R3-MYB TRANSCRIPTION FACTOR- AN2, and some stress response genes. In addition, GSH modulated the cellular redox balance through maintaining increased GSH: GSSG and AsA: DHA ratios, and also increased phytochelatins contents. Nonetheless, GSH-induced alleviation of Cd phytotoxicity was also associated with increased sequestration of Cd into cell walls and vacuoles but not with Cd accumulation. Under Cd stress, while treatment with BSO slightly decreased vacuolar fraction of Cd, combined treatment with BSO and GSH noticeably increased that fraction. Our results suggest that GSH increases tomato tolerance to Cd stress not only by promoting the chelation and sequestration of Cd but also by stimulating NO, SNO and the antioxidant system through a redox-dependent mechanism. PMID:27472435

  15. Down-regulation of SlIAA15 in tomato altered stem xylem development and production of volatile compounds in leaf exudates.

    PubMed

    Deng, Wei; Yan, Fang; Liu, Minchun; Wang, Xinyu; Li, Zhengguo

    2012-08-01

    The Aux/IAA family genes encode short-lived nuclear proteins that function as transcriptional regulators in auxin signal transduction. Aux/IAA genes have been reported to control many processes of plant development. Our recent study showed that down-regulation of SlIAA15 in tomato reduced apical dominance, altered pattern of axillary shoot development, increased lateral root formation and leaves thickness. The SlIAA15 suppressed lines display strong reduction of trichome density, suggesting that SlIAA15 is involved in trichome formation. Here, we reported that SlIAA15-suppressed transgenic lines display increased number of xylem cells compared to wild-type plants. Moreover, the monoterpene content in trichome exudates are significantly reduced in SlIAA15 down-regulated leaves. The results provide the roles of SlIAA15 in production of volatile compounds in leaf exudates and xylem development, clearly indicating that members of the Aux/IAA gene family can play distinct and specific functions.  PMID:22836503

  16. Molecular Evolution and Phylogenetic Analysis of Eight COL Superfamily Genes in Group I Related to Photoperiodic Regulation of Flowering Time in Wild and Domesticated Cotton (Gossypium) Species

    PubMed Central

    Zhang, Rui; Ding, Jian; Liu, Chunxiao; Cai, Caiping; Zhou, Baoliang; Zhang, Tianzhen; Guo, Wangzhen

    2015-01-01

    Flowering time is an important ecological trait that determines the transition from vegetative to reproductive growth. Flowering time in cotton is controlled by short-day photoperiods, with strict photoperiod sensitivity. As the CO-FT (CONSTANS-FLOWER LOCUS T) module regulates photoperiodic flowering in several plants, we selected eight CONSTANS genes (COL) in group I to detect their expression patterns in long-day and short-day conditions. Further, we individually cloned and sequenced their homologs from 25 different cotton accessions and one outgroup. Finally, we studied their structures, phylogenetic relationship, and molecular evolution in both coding region and three characteristic domains. All the eight COLs in group I show diurnal expression. In the orthologous and homeologous loci, each gene structure in different cotton species is highly conserved, while length variation has occurred due to insertions/deletions in intron and/or exon regions. Six genes, COL2 to COL5, COL7 and COL8, exhibit higher nucleotide diversity in the D-subgenome than in the A-subgenome. The Ks values of 98.37% in all allotetraploid cotton species examined were higher in the A-D and At-Dt comparison than in the A-At and D-Dt comparisons, and the Pearson’s correlation coefficient (r) of Ks between A vs. D and At vs. Dt also showed positive, high correlations, with a correlation coefficient of at least 0.797. The nucleotide polymorphism in wild species is significantly higher compared to G. hirsutum and G. barbadense, indicating a genetic bottleneck associated with the domesticated cotton species. Three characteristic domains in eight COLs exhibit different evolutionary rates, with the CCT domain highly conserved, while the B-box and Var domain much more variable in allotetraploid species. Taken together, COL1, COL2 and COL8 endured greater selective pressures during the domestication process. The study improves our understanding of the domestication-related genes/traits during cotton

  17. The homeodomain transcription factor TaHDZipI-2 from wheat regulates frost tolerance, flowering time and spike development in transgenic barley.

    PubMed

    Kovalchuk, Nataliya; Chew, William; Sornaraj, Pradeep; Borisjuk, Nikolai; Yang, Nannan; Singh, Rohan; Bazanova, Natalia; Shavrukov, Yuri; Guendel, Andre; Munz, Eberhard; Borisjuk, Ljudmilla; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2016-07-01

    Homeodomain leucine zipper class I (HD-Zip I) transcription factors (TFs) play key roles in the regulation of plant growth and development under stresses. Functions of the TaHDZipI-2 gene isolated from the endosperm of developing wheat grain were revealed. Molecular characterization of TaHDZipI-2 protein included studies of its dimerisation, protein-DNA interactions and gene activation properties using pull-down assays, in-yeast methods and transient expression assays in wheat cells. The analysis of TaHDZipI-2 gene functions was performed using transgenic barley plants. It included comparison of developmental phenotypes, yield components, grain quality, frost tolerance and the levels of expression of potential target genes in transgenic and control plants. Transgenic TaHDZipI-2 lines showed characteristic phenotypic features that included reduced growth rates, reduced biomass, early flowering, light-coloured leaves and narrowly elongated spikes. Transgenic lines produced 25-40% more seeds per spike than control plants, but with 50-60% smaller grain size. In vivo lipid imaging exposed changes in the distribution of lipids between the embryo and endosperm in transgenic seeds. Transgenic lines were significantly more tolerant to frost than control plants. Our data suggest the role of TaHDZipI-2 in controlling several key processes underlying frost tolerance, transition to flowering and spike development.

  18. The Cytosolic Iron-Sulfur Cluster Assembly Protein MMS19 Regulates Transcriptional Gene Silencing, DNA Repair, and Flowering Time in Arabidopsis.

    PubMed

    Han, Yong-Feng; Huang, Huan-Wei; Li, Lin; Cai, Tao; Chen, She; He, Xin-Jian

    2015-01-01

    MMS19 is an essential component of the cytoplasmic iron-sulfur (Fe-S) cluster assembly complex in fungi and mammals; the mms19 null mutant alleles are lethal. Our study demonstrates that MMS19/MET18 in Arabidopsis thaliana interacts with the cytoplasmic Fe-S cluster assembly complex but is not an essential component of the complex. We find that MMS19 also interacts with the catalytic subunits of DNA polymerases, which have been demonstrated to be involved in transcriptional gene silencing (TGS), DNA repair, and flowering time regulation. Our results indicate that MMS19 has a similar biological function, suggesting a functional link between MMS19 and DNA polymerases. In the mms19 null mutant, the assembly of Fe-S clusters on the catalytic subunit of DNA polymerase α is reduced but not blocked, which is consistent with the viability of the mutant. Our study suggests that MMS19 assists the assembly of Fe-S clusters on DNA polymerases in the cytosol, thereby facilitating transcriptional gene silencing, DNA repair, and flowering time control.

  19. Expression of alternative oxidase in tomato

    SciTech Connect

    Kakefuda, M.; McIntosh, L. )

    1990-05-01

    Tomato fruit ripening is characterized by an increase in ethylene biosynthesis, a burst in respiration (i.e. the climacteric), fruit softening and pigmentation. As whole tomatoes ripened from mature green to red, there was an increase in the alternative oxidase capacity. Aging pink tomato slices for 24 and 48 hrs also showed an increase of alternative oxidase and cytochrome oxidase capacities. Monoclonal antibodies prepared to the Sauromatum guttatum alternative oxidase were used to follow the appearance of alternative oxidase in tomato fruits. There is a corresponding increase in a 36kDa protein with an increase in alternative oxidase capacity. Effects of ethylene and norbornadiene on alternative oxidase capacity were also studied. We are using an alternative oxidase cDNA clone from potato to study the expression of mRNA in ripening and wounded tomatoes to determine if the gene is transcriptionally regulated.

  20. Compact tomato seedlings and plants upon overexpression of a tomato chromatin remodelling ATPase gene.

    PubMed

    Folta, Adam; Bargsten, Joachim W; Bisseling, Ton; Nap, Jan-Peter; Mlynarova, Ludmila

    2016-02-01

    Control of plant growth is an important aspect of crop productivity and yield in agriculture. Overexpression of the AtCHR12/23 genes in Arabidopsis thaliana reduced growth habit without other morphological changes. These two genes encode Snf2 chromatin remodelling ATPases. Here, we translate this approach to the horticultural crop tomato (Solanum lycopersicum). We identified and cloned the single tomato ortholog of the two Arabidopsis Snf2 genes, designated SlCHR1. Transgenic tomato plants (cv. Micro-Tom) that constitutively overexpress the coding sequence of SlCHR1 show reduced growth in all developmental stages of tomato. This confirms that SlCHR1 combines the functions of both Arabidopsis genes in tomato. Compared to the wild type, the transgenic seedlings of tomato have significantly shorter roots, hypocotyls and reduced cotyledon size. Transgenic plants have a much more compact growth habit with markedly reduced plant height, severely compacted reproductive structures with smaller flowers and smaller fruits. The results indicate that either GMO-based or non-GMO-based approaches to modulate the expression of chromatin remodelling ATPase genes could develop into methods to control plant growth, for example to replace the use of chemical growth retardants. This approach is likely to be applicable and attractive for any crop for which growth habit reduction has added value.

  1. Physiological screening for drought tolerance in Mediterranean long-storage tomato.

    PubMed

    Patanè, Cristina; Scordia, Danilo; Testa, Giorgio; Cosentino, Salvatore L

    2016-08-01

    Long-storage tomato is a drought-tolerant plant traditionally cultivated under no water supply in semi-arid areas of Italy. In 2009, physiological traits of ten "long-storage" tomato lines cultivated under no irrigation were screened for low soil water tolerance. Leaf relative water content (RWC), proline content and leaf transpiration (E) were measured throughout the growing season. Instantaneous leaf water use efficiency was also calculated on a single date, as the ratio between net photosynthesis (A) and E. Close relationships were observed among the physiological parameters, positive for E vs. RWC and inverse for RWC and E vs. proline. Results indicate that the increase in proline concentration involves a water stress tolerance, and genotypes more sensitive to soil water deficit respond to drought stress through less proline in leaves. Close significant linear relationships (positive with RWC and E, negative with proline) were also found between fruit yield and all the physiological parameters examined. Among them, the most reliable indicator for yield prediction under water restriction was leaf transpiration rate as measured at the flowering stage. The study made it possible to understand the complex relationships between physiological processes, drought tolerance, and plant productivity in long-storage tomato, and to identify those traits that regulate plant physiology under low water availability. PMID:27297987

  2. Supplemental photosynthetic lighting for greenhouse tomato production

    SciTech Connect

    Godfriaux, B.L.; Wittman, W.K. ); Janes, H.W.; McAvoy, R.J.; Putman, J.; Logendra, S. . Dept. of Horticulture and Forestry); Mears, D.R.; Giacommelli, G.; Giniger, M. . Dept. of Biological and Agricultural Engineering)

    1989-12-01

    The influence of supplemental light on the growth and productivity of greenhouse tomatoes grown to a single cluster on movable benches is examined, and the economic feasibility of such a system is evaluated. Experiments were conducted to quantify the tomato plants' response to various levels of supplemental light in terms of growth rate and yield at various stages in their development (e.g., seedling, flowering plant, etc.). The 1984--85 experiments showed that supplemental photosynthetic lighting nearly doubled tomato yields, from 0.48 to 0.86 lbs/plant. Subsequent experiments in 1985--86 identified the best tomato varieties for this treatment and further increased yields to 1.3 lbs/plant. In addition, the use of supplemental lighting was found to hasten tomato crop maturity. An economic analysis was performed on the 1985--86 empirical data using the tax rates and provisions then in force. It indicated that a 10-acre greenhouse could provide an after-tax internal rate of return of 10% to 12% using only equity financing. This return could likely be increased to 15--18% with the use of combined debt/equity financing. Using supplemental lighting on 10,000 acres of greenhouse production would require an estimated 7.5 billion kWh of additional electricity per year and, at 4.7 cents/kWh, generate an estimated $350 million in additional utility revenues. 48 refs., 34 figs., 24 tabs.

  3. Flowers in Their Variety.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2002-01-01

    Describes the diversity of flowers with regard to the flower paintings of Pierre-Joseph Redoute, books about flowers, and research in genetic studies. Discusses gardening flowers and flowering strategies and criticizes the fact that biology education has moved steadily away from plants. (KHR)

  4. Tomato QM-Like Protein Protects Saccharomyces cerevisiae Cells against Oxidative Stress by Regulating Intracellular Proline Levels

    PubMed Central

    Chen, Changbin; Wanduragala, Srimevan; Becker, Donald F.; Dickman, Martin B.

    2006-01-01

    Exogenous proline can protect cells of Saccharomyces cerevisiae from oxidative stress. We altered intracellular proline levels by overexpressing the proline dehydrogenase gene (PUT1) of S. cerevisiae. Put1p performs the first enzymatic step of proline degradation in S. cerevisiae. Overexpression of Put1p results in low proline levels and hypersensitivity to oxidants, such as hydrogen peroxide and paraquat. A put1-disrupted yeast mutant deficient in Put1p activity has increased protection from oxidative stress and increased proline levels. Following a conditional life/death screen in yeast, we identified a tomato (Lycopersicon esculentum) gene encoding a QM-like protein (tQM) and found that stable expression of tQM in the Put1p-overexpressing strain conferred protection against oxidative damage from H2O2, paraquat, and heat. This protection was correlated with reactive oxygen species (ROS) reduction and increased proline accumulation. A yeast two-hybrid system assay was used to show that tQM physically interacts with Put1p in yeast, suggesting that tQM is directly involved in modulating proline levels. tQM also can rescue yeast from the lethality mediated by the mammalian proapoptotic protein Bax, through the inhibition of ROS generation. Our results suggest that tQM is a component of various stress response pathways and may function in proline-mediated stress tolerance in plants. PMID:16751508

  5. Development of synchronized, autonomous, and self-regulated oscillations in transpiration rate of a whole tomato plant under water stress.

    PubMed

    Wallach, Rony; Da-Costa, Noam; Raviv, Michael; Moshelion, Menachem

    2010-07-01

    Plants respond to many environmental changes by rapidly adjusting their hydraulic conductivity and transpiration rate, thereby optimizing water-use efficiency and preventing damage due to low water potential. A multiple-load-cell apparatus, time-series analysis of the measured data, and residual low-pass filtering methods were used to monitor continuously and analyse transpiration of potted tomato plants (Solanum lycopersicum cv. Ailsa Craig) grown in a temperature-controlled greenhouse during well-irrigated and drought periods. A time derivative of the filtered residual time series yielded oscillatory behaviour of the whole plant's transpiration (WPT) rate. A subsequent cross-correlation analysis between the WPT oscillatory pattern and wet-wick evaporation rates (vertical cotton fabric, 0.14 m(2) partly submerged in water in a container placed on an adjacent load cell) revealed that autonomous oscillations in WPT rate develop under a continuous increase in water stress, whereas these oscillations correspond with the fluctuations in evaporation rate when water is fully available. The relative amplitude of these autonomous oscillations increased with water stress as transpiration rate decreased. These results support the recent finding that an increase in xylem tension triggers hydraulic signals that spread instantaneously via the plant vascular system and control leaf conductance. The regulatory role of synchronized oscillations in WPT rate in eliminating critical xylem tension points and preventing embolism is discussed.

  6. Tomato plants overexpressing cryptochrome 2 reveal altered expression of energy and stress-related gene products in response to diurnal cues.

    PubMed

    Lopez, Loredana; Carbone, Fabrizio; Bianco, Linda; Giuliano, Giovanni; Facella, Paolo; Perrotta, Gaetano

    2012-05-01

    In order to sense and respond to the fluctuating light conditions, higher plants possess several families of photoreceptors, such as phytochromes (PHYs), cryptochromes (CRYs) and phototropins. CRYs are responsible for photomorphogenesis and play a role in circadian, developmental and adaptive growth regulation of plants. In tomato (Solanum lycopersicum), CRY2 controls vegetative development, flowering time, fruit antioxidant content as well as the diurnal transcription of several other photoreceptor genes. We applied large-scale molecular approaches to identify altered transcripts and proteins in tomato wild-type (WT) versus a CRY2 overexpressing transgenic genotype, under a diurnal rhythm. Our results showed that tomato CRY2 profoundly affects both gene and protein expression in response to daily light cycle. Particularly altered molecular pathways are related to biotic/abiotic stress, photosynthesis, including components of the light and dark reactions and of starch and sucrose biosynthesis, as well as to secondary metabolism, such as phenylpropanoid, phenolic and flavonoid/anthocyanin biosynthesis pathways. One of the most interesting results is the coordinated up-regulation, in the transgenic genotype, of a consistent number of transcripts and proteins involved in photorespiration and photosynthesis. It is conceivable that light modulates the energetic metabolism of tomato through a fine CRY2-mediated transcriptional control.

  7. 77 FR 3433 - Notice of Request for Extension of Approval of an Information Collection; Importation of Tomatoes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... Approval of an Information Collection; Importation of Tomatoes From Certain Central American Countries... an information collection associated with regulations for the importation of tomatoes from certain... coming. FOR FURTHER INFORMATION CONTACT: For information on regulations for the importation of...

  8. Iron-regulated metabolites produced by Pseudomonas fluorescens WCS374r are not required for eliciting induced systemic resistance against Pseudomonas syringae pv. tomato in Arabidopsis

    PubMed Central

    Djavaheri, Mohammad; Mercado-Blanco, Jesús; Versluis, C; Meyer, J-M; Loon, L C; Bakker, Peter A H M

    2012-01-01

    The plant growth-promoting rhizobacterium Pseudomonas fluorescens WCS374r produces several iron-regulated metabolites, including the fluorescent siderophore pseudobactin (Psb374), salicylic acid (SA), and pseudomonine (Psm), a siderophore that contains a SA moiety. After purification of Psb374 from culture supernatant of WCS374r, its structure was determined following isoelectrofocusing and tandem mass spectrometry, and found to be identical to the fluorescent siderophore produced by P. fluorescens ATCC 13525. To study the role of SA and Psm production in colonization of Arabidopsis thaliana roots and in induced systemic resistance (ISR) against Pseudomonas syringae pv. tomato (Pst) by strain WCS374r, mutants disrupted in the production of these metabolites were obtained by homologous recombination. These mutants were further subjected to transposon Tn5 mutagenesis to generate mutants also deficient in Psb374 production. The mutants behaved similar to the wild type in both their Arabidopsis rhizosphere-colonizing capacity and their ability to elicit ISR against Pst. We conclude that Psb374, SA, and Psm production by P. fluorescens WCS374r are not required for eliciting ISR in Arabidopsis. PMID:23170230

  9. A tomato phloem-mobile protein regulates the shoot-to-root ratio by mediating the auxin response in distant organs.

    PubMed

    Spiegelman, Ziv; Ham, Byung-Kook; Zhang, Zhaoliang; Toal, Ted W; Brady, Siobhan M; Zheng, Yi; Fei, Zhangjun; Lucas, William J; Wolf, Shmuel

    2015-09-01

    The plant vascular system serves as a conduit for delivery of both nutrients and signaling molecules to various distantly located organs. The anucleate sieve tube system of the angiosperm phloem delivers sugars and amino acids to developing organs, and has recently been shown to contain a unique population of RNA and proteins. Grafting studies have established that a number of these macromolecules are capable of moving long distances between tissues, thus providing support for operation of a phloem-mediated inter-organ communication network. Currently, our knowledge of the roles played by such phloem-borne macromolecules is in its infancy. Here, we show that, in tomato, translocation of a phloem-mobile cyclophilin, SlCyp1, from a wild-type scion into a mutant rootstock results in restoration of vascular development and lateral root initiation. This process occurs through reactivation of auxin response pathways and reprogramming of the root transcriptome. Moreover, we show that long-distance trafficking of SlCyp1 is associated with regulation of the shoot-to-root ratio in response to changing light intensities, by modulating root growth. We conclude that long-distance trafficking of SlCyp1 acts as a rheostat to control the shoot-to-root ratio, by mediating root development to integrate photosynthesis and light intensity with requirements for access to water and mineral nutrients. PMID:26173789

  10. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato.

    PubMed

    Liu, Hui; Yu, Chuying; Li, Hanxia; Ouyang, Bo; Wang, Taotao; Zhang, Junhong; Wang, Xin; Ye, Zhibiao

    2015-02-01

    Dehydrins (DHNs) play important roles in plant adaptation to abiotic stress. In this study, a cold-induced SK3-type DHN gene (ShDHN) isolated from wild tomato species Solanum habrochaites was characterized for its function in abiotic stress tolerance. ShDHN was constitutively expressed in root, leaf, stem, flower and fruit. ShDHN was continuously up-regulated during cold stress and showed higher expression level in the cold-tolerant S. habrochaites than in the susceptible S. lycopersicum. Moreover, ShDHN expression was also regulated by drought, salt, osmotic stress, and exogenous signaling molecules. Overexpression of ShDHN in cultivated tomato increased tolerance to cold and drought stresses and improved seedling growth under salt and osmotic stresses. Compared with the wild-type, the transgenic plants accumulated more proline, maintained higher enzymatic activities of superoxide dismutase and catalase, and suffered less membrane damage under cold and drought stresses. Moreover, the transgenic plants accumulated lower levels of H2O2 and O2(-) under cold stress, and had higher relative water contents and lower water loss rates under dehydration conditions. Furthermore, overexpression of ShDHN in tomato led to the up- or down-regulated expression of several genes involved in ROS scavenging and JA signaling pathway, including SOD1, GST, POD, LOX, PR1 and PR2. Taken together, these results indicate that ShDHN has pleiotropic effects on improving plant adaptation to abiotic stresses and that it possesses potential usefulness in genetic improvement of stress tolerance in tomato. PMID:25576005

  11. CrcZ and CrcX regulate carbon utilization in Pseudomonas syringae pathovar tomato strain DC3000

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small non-coding RNAs (ncRNAs) are important components of many regulatory pathways in bacteria and play key roles in regulating factors important for virulence. Carbon catabolite repression control is modulated by small RNAs (crcZ or crcZ and crcY) in Pseudomonas aeruginosa and Pseudomonas putida. ...

  12. Using a Mousy, Little Flower to Understand the Flamboyant Ones.

    ERIC Educational Resources Information Center

    Gillis, Anna Maria

    1995-01-01

    Discusses major leaps in knowledge about the production of flowers that have come from studying genes that regulate the flowers of mouse ear cress (Arabidopsis thaliana). Examines the ABC model of flower morphogenesis, commonality of genes, evolution of angiosperms, and agricultural and horticultural potential. (LZ)

  13. 7 CFR 457.139 - Fresh market tomato (dollar plan) crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Fresh market tomato (dollar plan) crop insurance...) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.139 Fresh market tomato (dollar plan) crop insurance provisions. The fresh market tomato (dollar plan)...

  14. An ATL78-Like RING-H2 Finger Protein Confers Abiotic Stress Tolerance through Interacting with RAV2 and CSN5B in Tomato

    PubMed Central

    Song, Jianwen; Xing, Yali; Munir, Shoaib; Yu, Chuying; Song, Lulu; Li, Hanxia; Wang, Taotao; Ye, Zhibiao

    2016-01-01

    RING finger proteins play an important role in plant adaptation to abiotic stresses. In the present study, a wild tomato (Solanum habrochaites) cold-induced RING-H2 finger gene, ShATL78L, was isolated, which has been identified as an abiotic stress responsive gene in tomato. The results showed that ShATL78L was constitutively expressed in various tissues such as root, leaf, petiole, stem, flower, and fruit. Cold stress up-regulated ShATL78L in the cold-tolerant S. habrochaites compared to the susceptible cultivated tomato (S. lycopersicum). Furthermore, ShATL78L expression was also regulated under different stresses such as drought, salt, heat, wound, osmotic stress, and exogenous hormones. Functional characterization showed that cultivated tomato overexpressing ShATL78L had improved tolerance to cold, drought and oxidative stresses compared to the wild-type and the knockdown lines. To understand the underlying molecular mechanism of ShATL78L regulating abiotic stress responses, we performed yeast one-hybrid and two-hybrid assays and found that RAV2 could bind to the promoter of ShATL78L and activates/alters its transcription, and CSN5B could interact with ShATL78L to regulate abiotic stress responses. Taken together, these results show that ShATL78L plays an important role in regulating plant adaptation to abiotic stresses through bound by RAV2 and interacting with CSN5B. Highlight: RAV2 binds to the promoter of ShATL78L to activates/alters its transcription to adapt the environmental conditions; furthermore, ShATL78L interacts with CSN5B to regulate the stress tolerance.

  15. An ATL78-Like RING-H2 Finger Protein Confers Abiotic Stress Tolerance through Interacting with RAV2 and CSN5B in Tomato

    PubMed Central

    Song, Jianwen; Xing, Yali; Munir, Shoaib; Yu, Chuying; Song, Lulu; Li, Hanxia; Wang, Taotao; Ye, Zhibiao

    2016-01-01

    RING finger proteins play an important role in plant adaptation to abiotic stresses. In the present study, a wild tomato (Solanum habrochaites) cold-induced RING-H2 finger gene, ShATL78L, was isolated, which has been identified as an abiotic stress responsive gene in tomato. The results showed that ShATL78L was constitutively expressed in various tissues such as root, leaf, petiole, stem, flower, and fruit. Cold stress up-regulated ShATL78L in the cold-tolerant S. habrochaites compared to the susceptible cultivated tomato (S. lycopersicum). Furthermore, ShATL78L expression was also regulated under different stresses such as drought, salt, heat, wound, osmotic stress, and exogenous hormones. Functional characterization showed that cultivated tomato overexpressing ShATL78L had improved tolerance to cold, drought and oxidative stresses compared to the wild-type and the knockdown lines. To understand the underlying molecular mechanism of ShATL78L regulating abiotic stress responses, we performed yeast one-hybrid and two-hybrid assays and found that RAV2 could bind to the promoter of ShATL78L and activates/alters its transcription, and CSN5B could interact with ShATL78L to regulate abiotic stress responses. Taken together, these results show that ShATL78L plays an important role in regulating plant adaptation to abiotic stresses through bound by RAV2 and interacting with CSN5B. Highlight: RAV2 binds to the promoter of ShATL78L to activates/alters its transcription to adapt the environmental conditions; furthermore, ShATL78L interacts with CSN5B to regulate the stress tolerance. PMID:27621744

  16. An ATL78-Like RING-H2 Finger Protein Confers Abiotic Stress Tolerance through Interacting with RAV2 and CSN5B in Tomato.

    PubMed

    Song, Jianwen; Xing, Yali; Munir, Shoaib; Yu, Chuying; Song, Lulu; Li, Hanxia; Wang, Taotao; Ye, Zhibiao

    2016-01-01

    RING finger proteins play an important role in plant adaptation to abiotic stresses. In the present study, a wild tomato (Solanum habrochaites) cold-induced RING-H2 finger gene, ShATL78L, was isolated, which has been identified as an abiotic stress responsive gene in tomato. The results showed that ShATL78L was constitutively expressed in various tissues such as root, leaf, petiole, stem, flower, and fruit. Cold stress up-regulated ShATL78L in the cold-tolerant S. habrochaites compared to the susceptible cultivated tomato (S. lycopersicum). Furthermore, ShATL78L expression was also regulated under different stresses such as drought, salt, heat, wound, osmotic stress, and exogenous hormones. Functional characterization showed that cultivated tomato overexpressing ShATL78L had improved tolerance to cold, drought and oxidative stresses compared to the wild-type and the knockdown lines. To understand the underlying molecular mechanism of ShATL78L regulating abiotic stress responses, we performed yeast one-hybrid and two-hybrid assays and found that RAV2 could bind to the promoter of ShATL78L and activates/alters its transcription, and CSN5B could interact with ShATL78L to regulate abiotic stress responses. Taken together, these results show that ShATL78L plays an important role in regulating plant adaptation to abiotic stresses through bound by RAV2 and interacting with CSN5B. Highlight: RAV2 binds to the promoter of ShATL78L to activates/alters its transcription to adapt the environmental conditions; furthermore, ShATL78L interacts with CSN5B to regulate the stress tolerance. PMID:27621744

  17. Arabidopsis AtERF014 acts as a dual regulator that differentially modulates immunity against Pseudomonas syringae pv. tomato and Botrytis cinerea.

    PubMed

    Zhang, Huijuan; Hong, Yongbo; Huang, Lei; Li, Dayong; Song, Fengming

    2016-01-01

    ERF transcription factors play critical roles in plant immune responses. Here, we report the function of AtERF014, a nucleus-localized transcriptional activator, in Arabidopsis immunity. Expression of AtERF014 was induced by Pseudomonas syringae pv. tomato (Pst) and Botrytis cinerea (Bc). AtERF014-overexpressing (OE) plants displayed increased Pst resistance but decreased Bc resistance, whereas AtERF014-RNAi plants exhibited decreased Pst resistance but increased Bc resistance. After Pst infection, expression of salicylic acid (SA)-responsive genes AtPR1 and AtPR5 in AtERF014-OE plants and of a jasmonic acid/ethylene-responsive gene AtPDF1.2 in AtERF014-RNAi plants was intensified but expression of AtPDF1.2 in AtERF014-OE plants and of AtPR1 and AtPR5 in AtERF014-RNAi plants was weakened. After Bc infection, expression of AtPR1 and AtPR5 in AtERF014-OE plants was attenuated but expression of AtPR1, AtPR5 and AtPDF1.2 in AtERF014-RNAi plants was strengthened. Pathogen- and flg22-induced ROS burst, expression of PTI genes and SA-induced defense were partially suppressed in AtERF014-RNAi plants, whereas pathogen-induced ROS and flg22-induced immune response were strengthened in AtER014-OE plants. Altered expression of AtERR014 affected expression of pectin biosynthetic genes and pectin content in AtERF014-RNAi plants was decreased. These data demonstrate that AtERF014 acts as a dual regulator that differentially modulates immunity against Pst and Bc in Arabidopsis. PMID:27445230

  18. Arabidopsis AtERF014 acts as a dual regulator that differentially modulates immunity against Pseudomonas syringae pv. tomato and Botrytis cinerea

    PubMed Central

    Zhang, Huijuan; Hong, Yongbo; Huang, Lei; Li, Dayong; Song, Fengming

    2016-01-01

    ERF transcription factors play critical roles in plant immune responses. Here, we report the function of AtERF014, a nucleus-localized transcriptional activator, in Arabidopsis immunity. Expression of AtERF014 was induced by Pseudomonas syringae pv. tomato (Pst) and Botrytis cinerea (Bc). AtERF014-overexpressing (OE) plants displayed increased Pst resistance but decreased Bc resistance, whereas AtERF014-RNAi plants exhibited decreased Pst resistance but increased Bc resistance. After Pst infection, expression of salicylic acid (SA)-responsive genes AtPR1 and AtPR5 in AtERF014-OE plants and of a jasmonic acid/ethylene-responsive gene AtPDF1.2 in AtERF014-RNAi plants was intensified but expression of AtPDF1.2 in AtERF014-OE plants and of AtPR1 and AtPR5 in AtERF014-RNAi plants was weakened. After Bc infection, expression of AtPR1 and AtPR5 in AtERF014-OE plants was attenuated but expression of AtPR1, AtPR5 and AtPDF1.2 in AtERF014-RNAi plants was strengthened. Pathogen- and flg22-induced ROS burst, expression of PTI genes and SA-induced defense were partially suppressed in AtERF014-RNAi plants, whereas pathogen-induced ROS and flg22-induced immune response were strengthened in AtER014-OE plants. Altered expression of AtERR014 affected expression of pectin biosynthetic genes and pectin content in AtERF014-RNAi plants was decreased. These data demonstrate that AtERF014 acts as a dual regulator that differentially modulates immunity against Pst and Bc in Arabidopsis. PMID:27445230

  19. Chemical and sensory comparison of tomatoes pollinated by bees and by a pollination wand.

    PubMed

    Hogendoorn, Katja; Bartholomaeus, Faerlie; Keller, Michael A

    2010-08-01

    Tomato flowers (Solanum lycopersicum L.) in greenhouses require assisted pollination. Compared with pollination using a vibration wand, pollination by buzz pollinating bees results in improved seed set and consequently, higher fruit weight. We investigated whether there are further chemical and sensory differences between bee- and wand-pollinated cherry tomatoes, Solanum lycopersicum variety Conchita. The pollination method did not result in significant differences in concentration of soluble solids and titratable acidity. However, the concentration of soluble solids was significantly positively correlated with seed number. We suggest that an increase in the amount of soluble solids in the locular area, due to increased seed numbers, is counteracted by the effects of seed numbers on the growth of the walls, which occurs through cell elongation. In the sensory part of this study, a large, untrained panel significantly preferred bee-pollinated over wand-pollinated tomatoes and classified bee-pollinated tomatoes as having more depth of flavor than wand-pollinated tomatoes. Thus, bee-pollinated tomatoes taste better than wand-pollinated tomatoes, and it is likely that the sensory differences between the two groups of tomatoes are mediated through effects of pollination treatment on seed numbers. Future chemical and sensory studies of fresh tomatoes should take into account the effects of seed numbers and their possible effect on the distribution of chemical compounds within tomatoes. PMID:20857738

  20. Persistence and growth of different Salmonella serovars on pre- and postharvest tomatoes.

    PubMed

    Shi, X; Namvar, A; Kostrzynska, M; Hora, R; Warriner, K

    2007-12-01

    The interaction of a range of Salmonella serovars with pre- and postharvest tomatoes was evaluated. Serovars were selected on the basis of previous association in tomato-linked outbreaks of salmonellosis (Salmonella Javiana, Salmonella Montevideo, and Salmonella Newport) or those typically isolated from animal or clinical infections (Salmonella Dublin, Salmonella Enteritidis, Salmonella Hadar, Salmonella Infantis, Salmonella Typhimurium, and Salmonella Senftenberg). Salmonella serovars introduced onto the flowers of growing plants were recovered on and within the developing tomato fruit. Of all the Salmonella serovars tested, Montevideo appeared to be more adapted to survival within tomatoes and was recovered from 90% of the fruit screened. All of the Salmonella serovars could persist and grow when introduced onto unripened (green) tomato fruit. In general, growth (internal and external) was promoted at the high incubation temperature (25 degrees C) and high relative humidity (95%), although this was serovar dependent. The growth and persistence of Salmonella introduced on and into ripened (red) tomatoes was serovar dependent. Salmonella serovars Enteritidis, Typhimurium, and Dublin were less adapted to grow in or on intact red tomatoes than were serovars Hadar, Montevideo, or Newport. The results illustrated that a diverse range of Salmonella serovars can become established within and/or on preharvest tomatoes. The majority of Salmonella can grow and become established both on and within unripened tomatoes, but growth on ripened fruit was serovar dependent. The results provide a possible explanation why only a narrow range of Salmonella serovars are associated with foodborne illness outbreaks linked to tomatoes. PMID:18095423

  1. Persistence and growth of different Salmonella serovars on pre- and postharvest tomatoes.

    PubMed

    Shi, X; Namvar, A; Kostrzynska, M; Hora, R; Warriner, K

    2007-12-01

    The interaction of a range of Salmonella serovars with pre- and postharvest tomatoes was evaluated. Serovars were selected on the basis of previous association in tomato-linked outbreaks of salmonellosis (Salmonella Javiana, Salmonella Montevideo, and Salmonella Newport) or those typically isolated from animal or clinical infections (Salmonella Dublin, Salmonella Enteritidis, Salmonella Hadar, Salmonella Infantis, Salmonella Typhimurium, and Salmonella Senftenberg). Salmonella serovars introduced onto the flowers of growing plants were recovered on and within the developing tomato fruit. Of all the Salmonella serovars tested, Montevideo appeared to be more adapted to survival within tomatoes and was recovered from 90% of the fruit screened. All of the Salmonella serovars could persist and grow when introduced onto unripened (green) tomato fruit. In general, growth (internal and external) was promoted at the high incubation temperature (25 degrees C) and high relative humidity (95%), although this was serovar dependent. The growth and persistence of Salmonella introduced on and into ripened (red) tomatoes was serovar dependent. Salmonella serovars Enteritidis, Typhimurium, and Dublin were less adapted to grow in or on intact red tomatoes than were serovars Hadar, Montevideo, or Newport. The results illustrated that a diverse range of Salmonella serovars can become established within and/or on preharvest tomatoes. The majority of Salmonella can grow and become established both on and within unripened tomatoes, but growth on ripened fruit was serovar dependent. The results provide a possible explanation why only a narrow range of Salmonella serovars are associated with foodborne illness outbreaks linked to tomatoes.

  2. Toward a longer shelf life of tomato fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shelf life of ripe tomato fruit is economically very important, from production to the marketing chain, since it determines the cash returns to the grower and the grocer/processor. Shelf life of horticultural edible produce, including tomato, is regulated through myriad physiological, biochemical an...

  3. 78 FR 28120 - Tomatoes Grown in Florida; Decreased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Agricultural Marketing Service 7 CFR Part 966 Tomatoes Grown in Florida; Decreased Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION: Affirmation of interim rule as final rule. SUMMARY: The... locally administers the marketing order which regulates the handling of tomatoes grown in Florida....

  4. Tomato Male sterile 1035 is essential for pollen development and meiosis in anthers.

    PubMed

    Jeong, Hee-Jin; Kang, Jin-Ho; Zhao, Meiai; Kwon, Jin-Kyung; Choi, Hak-Soon; Bae, Jung Hwan; Lee, Hyun-Ah; Joung, Young-Hee; Choi, Doil; Kang, Byoung-Cheorl

    2014-12-01

    Male fertility in flowering plants depends on proper cellular differentiation in anthers. Meiosis and tapetum development are particularly important processes in pollen production. In this study, we showed that the tomato male sterile (ms10(35)) mutant of cultivated tomato (Solanum lycopersicum) exhibited dysfunctional meiosis and an abnormal tapetum during anther development, resulting in no pollen production. We demonstrated that Ms10(35) encodes a basic helix-loop-helix transcription factor that is specifically expressed in meiocyte and tapetal tissue from pre-meiotic to tetrad stages. Transgenic expression of the Ms10(35) gene from its native promoter complemented the male sterility of the ms10(35) mutant. In addition, RNA-sequencing-based transcriptome analysis revealed that Ms10(35) regulates 246 genes involved in anther development processes such as meiosis, tapetum development, cell-wall degradation, pollen wall formation, transport, and lipid metabolism. Our results indicate that Ms10(35) plays key roles in regulating both meiosis and programmed cell death of the tapetum during microsporogenesis.

  5. Ubiquitination in the control of photoperiodic flowering.

    PubMed

    Piñeiro, Manuel; Jarillo, José A

    2013-01-01

    Triggering flowering at the appropriate time is a key factor for the successful reproduction of plants. Daylength perception allows plants to synchronize flowering with seasonal changes, a process systematically analyzed in the model species Arabidopsis thaliana. Characterization of molecular components that participate in the photoperiodic control of floral induction has revealed that photoreceptors and the circadian oscillator interact in a complex manner to modulate the floral transition in response to daylength and in fact, photoperiodic flowering can be regarded as an output pathway of the circadian oscillator. Recent observations indicate that besides transcriptional regulation, the promotion of flowering in response to photoperiod appears to be also regulated by modulation of protein stability and degradation. Therefore, the ubiquitin/26S proteasome system for targeted protein degradation has emerged as a key element in photoperiodic flowering regulation. Different E3 ubiquitin ligases are involved in the proteolysis of a variety of photoperiod-regulated pathway components including photoreceptors, clock elements and flowering time proteins, all of which participate in the control of this developmental process. Given the large variety of plant ubiquitin ligase complexes, it is likely that new factors involved in mechanisms of protein-targeted degradation will soon be ascribed to various aspects of flowering time control.

  6. Ectopic Expression of the Coleus R2R3 MYB-Type Proanthocyanidin Regulator Gene SsMYB3 Alters the Flower Color in Transgenic Tobacco.

    PubMed

    Zhu, Qinlong; Sui, Shunzhao; Lei, Xinghua; Yang, Zhongfang; Lu, Kun; Liu, Guangde; Liu, Yao-Guang; Li, Mingyang

    2015-01-01

    Proanthocyanidins (PAs) play an important role in plant disease defense and have beneficial effects on human health. We isolated and characterized a novel R2R3 MYB-type PA-regulator SsMYB3 from a well-known ornamental plant, coleus (Solenostemon scutellarioides), to study the molecular regulation of PAs and to engineer PAs biosynthesis. The expression level of SsMYB3 was correlated with condensed tannins contents in various coleus tissues and was induced by wounding and light. A complementation test in the Arabidopsis tt2 mutant showed that SsMYB3 could restore the PA-deficient seed coat phenotype and activated expression of the PA-specific gene ANR and two related genes, DFR and ANS. In yeast two-hybrid assays, SsMYB3 interacted with the Arabidopsis AtTT8 and AtTTG1 to reform the ternary transcriptional complex, and also interacted with two tobacco bHLH proteins (NtAn1a and NtJAF13-1) and a WD40 protein, NtAn11-1. Ectopic overexpression of SsMYB3 in transgenic tobacco led to almost-white flowers by greatly reducing anthocyanin levels and enhancing accumulation of condensed tannins. This overexpression of SsMYB3 upregulated the key PA genes (NtLAR and NtANR) and late anthocyanin structural genes (NtDFR and NtANS), but downregulated the expression of the final anthocyanin gene NtUFGT. The formative SsMYB3-complex represses anthocyanin accumulation by directly suppressing the expression of the final anthocyanin structural gene NtUFGT, through competitive inhibition or destabilization of the endogenous NtAn2-complex formation. These results suggested that SsMYB3 may form a transcription activation complex to regulate PA biosynthesis in the Arabidopsis tt2 mutant and transgenic tobacco. Our findings suggest that SsMYB3 is involved in the regulation of PA biosynthesis in coleus and has the potential as a molecular tool for manipulating biosynthesis of PAs in fruits and other crops using metabolic engineering. PMID:26448466

  7. Ectopic Expression of the Coleus R2R3 MYB-Type Proanthocyanidin Regulator Gene SsMYB3 Alters the Flower Color in Transgenic Tobacco

    PubMed Central

    Zhu, Qinlong; Sui, Shunzhao; Lei, Xinghua; Yang, Zhongfang; Lu, Kun; Liu, Guangde; Liu, Yao-Guang; Li, Mingyang

    2015-01-01

    Proanthocyanidins (PAs) play an important role in plant disease defense and have beneficial effects on human health. We isolated and characterized a novel R2R3 MYB-type PA-regulator SsMYB3 from a well-known ornamental plant, coleus (Solenostemon scutellarioides), to study the molecular regulation of PAs and to engineer PAs biosynthesis. The expression level of SsMYB3 was correlated with condensed tannins contents in various coleus tissues and was induced by wounding and light. A complementation test in the Arabidopsis tt2 mutant showed that SsMYB3 could restore the PA-deficient seed coat phenotype and activated expression of the PA-specific gene ANR and two related genes, DFR and ANS. In yeast two-hybrid assays, SsMYB3 interacted with the Arabidopsis AtTT8 and AtTTG1 to reform the ternary transcriptional complex, and also interacted with two tobacco bHLH proteins (NtAn1a and NtJAF13-1) and a WD40 protein, NtAn11-1. Ectopic overexpression of SsMYB3 in transgenic tobacco led to almost-white flowers by greatly reducing anthocyanin levels and enhancing accumulation of condensed tannins. This overexpression of SsMYB3 upregulated the key PA genes (NtLAR and NtANR) and late anthocyanin structural genes (NtDFR and NtANS), but downregulated the expression of the final anthocyanin gene NtUFGT. The formative SsMYB3-complex represses anthocyanin accumulation by directly suppressing the expression of the final anthocyanin structural gene NtUFGT, through competitive inhibition or destabilization of the endogenous NtAn2-complex formation. These results suggested that SsMYB3 may form a transcription activation complex to regulate PA biosynthesis in the Arabidopsis tt2 mutant and transgenic tobacco. Our findings suggest that SsMYB3 is involved in the regulation of PA biosynthesis in coleus and has the potential as a molecular tool for manipulating biosynthesis of PAs in fruits and other crops using metabolic engineering. PMID:26448466

  8. Phloem unloading in tomato fruit

    SciTech Connect

    Damon, S.; Hewitt, J.; Bennett, A.B.

    1986-04-01

    To begin to identify those processes that contribute to the regulation of photosynthate partitioning in tomato fruit the path of phloem unloading in this tissue has been characterized. Assymetrically labelled sucrose (/sup 3/H-fructosyl sucrose) was applied to source leaves. Following translocation to the fruit the apoplast was sampled. The appearance of assymetric sucrose and /sup 3/H-fructose in the apoplast indicates that phloem unloading is apoplastic and that extracellular invertase is active. Estimation of sucrose, glucose, and fructose concentrations in the apoplast were 1 mM, 40 mM, and 40 mM, respectively. Rates of uptake of sucrose, 1-fluorosucrose, glucose, and fructose across the plasma membrane were similar and non-saturating at physiological concentrations. These results suggest that, although extracellular invertase is present, sucrose hydrolysis is not required for uptake into tomato fruit pericarp cells. 1-fluorosucrose is used to investigate the role of sucrose synthase in hydrolysis of imported photosynthate.

  9. Mineral and metabolic profiles in tea leaves and flowers during flower development.

    PubMed

    Jia, Sisi; Wang, Yu; Hu, Jianhui; Ding, Zhaotang; Liang, Qing; Zhang, Yinfei; Wang, Hui

    2016-09-01

    Tea [Camellia sinensis (L.) O. Kuntze] is one of the most popular non-alcoholic beverage crops in the world, and the physiological processes and gene regulations involved in development in tea plants have been well characterized. However, relatively little is known about the metabolic changes combined with mineral distributions that occur during flower development. Here we detected the contents of 11 elements in tea leaves and flowers and found that, some of them, especially phosphorus, sulfur and copper, showed significant changes during tea flowering. We also detected 122 metabolites in tea leaves and flowers and found that, 72 of them showed significant differences between flowers and leaves, of which sugars, organic acids, and flavonoids dominated. The sugars, such as trehalose and galactose, all accumulated in tea flowers, and the organic acids, such as malic acid, citric acid and fumaric acid involved in TCA cycle. The flavonoids, like epicatechin, catechin gallate and epigallocatechin, were more abundant in leaves. Furthermore, we found that the contents of 33 metabolites changed during the development of flowers. Especially, citric acid, phenylalanine and most flavonoids decreased while fructose and galactose increased during flowering stages in flowers. We also analyzed the correlations between the ions and metabolites and found that, some mineral nutrients including phosphorus, sulfur, manganese and zinc had close relations to organic acids, flavonoids, sugars and several amino acids during flowering. We mapped the metabolic pathway according to the KEGG database. This work will serve as the foundation for a systems biology approach to the understanding of mineral metabolism.

  10. The Whitefly Bemisia tabaci Knottin-1 Gene Is Implicated in Regulating the Quantity of Tomato Yellow Leaf Curl Virus Ingested and Transmitted by the Insect

    PubMed Central

    Hariton Shalev, Aliza; Sobol, Iris; Ghanim, Murad; Liu, Shu-Sheng; Czosnek, Henryk

    2016-01-01

    The whitefly Bemisia tabaci is a major pest to agricultural crops. It transmits begomoviruses, such as Tomato yellow leaf curl virus (TYLCV), in a circular, persistent fashion. Transcriptome analyses revealed that B. tabaci knottin genes were responsive to various stresses. Upon ingestion of tomato begomoviruses, two of the four knottin genes were upregulated, knot-1 (with the highest expression) and knot-3. In this study, we examined the involvement of B. tabaci knottin genes in relation to TYLCV circulative transmission. Knottins were silenced by feeding whiteflies with knottin dsRNA via detached tomato leaves. Large amounts of knot-1 transcripts were present in the abdomen of whiteflies, an obligatory transit site of begomoviruses in their circulative transmission pathway; knot-1 silencing significantly depleted the abdomen from knot-1 transcripts. Knot-1 silencing led to an increase in the amounts of TYLCV ingested by the insects and transmitted to tomato test plants by several orders of magnitude. This effect was not observed following knot-3 silencing. Hence, knot-1 plays a role in restricting the quantity of virions an insect may acquire and transmit. We suggest that knot-1 protects B. tabaci against deleterious effects caused by TYLCV by limiting the amount of virus associated with the whitefly vector. PMID:27455309

  11. Down-regulation of Arabidopsis DND1 orthologs in potato and tomato leads to broad-spectrum resistance to late blight and powdery mildew.

    PubMed

    Sun, Kaile; Wolters, Anne-Marie A; Loonen, Annelies E H M; Huibers, Robin P; van der Vlugt, René; Goverse, Aska; Jacobsen, Evert; Visser, Richard G F; Bai, Yuling

    2016-04-01

    Multiple susceptibility genes (S), identified in Arabidopsis, have been shown to be functionally conserved in crop plants. Mutations in these S genes result in resistance to different pathogens, opening a new way to achieve plant disease resistance. The aim of this study was to investigate the role of Defense No Death 1 (DND1) in susceptibility of tomato and potato to late blight (Phytophthora infestans). In Arabidopsis, the dnd1 mutant has broad-spectrum resistance against several fungal, bacterial, and viral pathogens. However this mutation is also associated with a dwarfed phenotype. Using an RNAi approach, we silenced AtDND1 orthologs in potato and tomato. Our results showed that silencing of the DND1 ortholog in both crops resulted in resistance to the pathogenic oomycete P. infestans and to two powdery mildew species, Oidium neolycopersici and Golovinomyces orontii. The resistance to P. infestans in potato was effective to four different isolates although the level of resistance (complete or partial) was dependent on the aggressiveness of the isolate. In tomato, DND1-silenced plants showed a severe dwarf phenotype and autonecrosis, whereas DND1-silenced potato plants were not dwarfed and showed a less pronounced autonecrosis. Our results indicate that S gene function of DND1 is conserved in tomato and potato. We discuss the possibilities of using RNAi silencing or loss-of-function mutations of DND1 orthologs, as well as additional S gene orthologs from Arabidopsis, to breed for resistance to pathogens in crop plants. PMID:26577903

  12. The Whitefly Bemisia tabaci Knottin-1 Gene Is Implicated in Regulating the Quantity of Tomato Yellow Leaf Curl Virus Ingested and Transmitted by the Insect.

    PubMed

    Hariton Shalev, Aliza; Sobol, Iris; Ghanim, Murad; Liu, Shu-Sheng; Czosnek, Henryk

    2016-01-01

    The whitefly Bemisia tabaci is a major pest to agricultural crops. It transmits begomoviruses, such as Tomato yellow leaf curl virus (TYLCV), in a circular, persistent fashion. Transcriptome analyses revealed that B. tabaci knottin genes were responsive to various stresses. Upon ingestion of tomato begomoviruses, two of the four knottin genes were upregulated, knot-1 (with the highest expression) and knot-3. In this study, we examined the involvement of B. tabaci knottin genes in relation to TYLCV circulative transmission. Knottins were silenced by feeding whiteflies with knottin dsRNA via detached tomato leaves. Large amounts of knot-1 transcripts were present in the abdomen of whiteflies, an obligatory transit site of begomoviruses in their circulative transmission pathway; knot-1 silencing significantly depleted the abdomen from knot-1 transcripts. Knot-1 silencing led to an increase in the amounts of TYLCV ingested by the insects and transmitted to tomato test plants by several orders of magnitude. This effect was not observed following knot-3 silencing. Hence, knot-1 plays a role in restricting the quantity of virions an insect may acquire and transmit. We suggest that knot-1 protects B. tabaci against deleterious effects caused by TYLCV by limiting the amount of virus associated with the whitefly vector. PMID:27455309

  13. Flower opening and closure: an update.

    PubMed

    van Doorn, Wouter G; Kamdee, Chanattika

    2014-11-01

    This review is an update of a 2003 review (Journal of Experimental Botany 54,1801-1812) by the same corresponding author. Many examples of flower opening have been recorded using time-lapse photography, showing its velocity and the required elongation growth. Ethylene regulates flower opening, together with at least gibberellins and auxin. Ethylene and gibberellic acid often promote and inhibit, respectively, the expression of DELLA genes and the stability of DELLA proteins. DELLA results in growth inhibition. Both hormones also inhibited and promoted, respectively, the expression of aquaporin genes required for cell elongation. Arabidopsis miRNA319a mutants exhibited narrow and short petals, whereby miRNA319a indirectly regulates auxin effects. Flower opening in roses was controlled by a NAC transcription factor, acting through miRNA164. The regulatory role of light and temperature, in interaction with the circadian clock, has been further elucidated. The end of the life span in many flowers is determined by floral closure. In some species pollination resulted in earlier closure of turgid flowers, compared with unpollinated flowers. It is hypothesized that this pollination-induced effect is only found in flowers in which closure is regulated by ethylene.

  14. Flower opening and closure: an update.

    PubMed

    van Doorn, Wouter G; Kamdee, Chanattika

    2014-11-01

    This review is an update of a 2003 review (Journal of Experimental Botany 54,1801-1812) by the same corresponding author. Many examples of flower opening have been recorded using time-lapse photography, showing its velocity and the required elongation growth. Ethylene regulates flower opening, together with at least gibberellins and auxin. Ethylene and gibberellic acid often promote and inhibit, respectively, the expression of DELLA genes and the stability of DELLA proteins. DELLA results in growth inhibition. Both hormones also inhibited and promoted, respectively, the expression of aquaporin genes required for cell elongation. Arabidopsis miRNA319a mutants exhibited narrow and short petals, whereby miRNA319a indirectly regulates auxin effects. Flower opening in roses was controlled by a NAC transcription factor, acting through miRNA164. The regulatory role of light and temperature, in interaction with the circadian clock, has been further elucidated. The end of the life span in many flowers is determined by floral closure. In some species pollination resulted in earlier closure of turgid flowers, compared with unpollinated flowers. It is hypothesized that this pollination-induced effect is only found in flowers in which closure is regulated by ethylene. PMID:25135521

  15. MORF-RELATED GENE702, a Reader Protein of Trimethylated Histone H3 Lysine 4 and Histone H3 Lysine 36, Is Involved in Brassinosteroid-Regulated Growth and Flowering Time Control in Rice.

    PubMed

    Jin, Jing; Shi, Jinlei; Liu, Bing; Liu, Yanchao; Huang, Ying; Yu, Yu; Dong, Aiwu

    2015-08-01

    The methylation of histone H3 lysine 36 (H3K36) plays critical roles in brassinosteroid (BR)-related processes and is involved in controlling flowering time in rice (Oryza sativa). Although enzymes that catalyze this methylation reaction have been described, little is known about the recognition mechanisms to decipher H3K36 methylation information in rice. In this study, biochemical characterizations showed that MORF-RELATED GENE702 (MRG702) binds to trimethylated H3K4 and H3K36 (H3K4me3 and H3K36me3) in vitro. Similar to the loss-of-function mutants of the rice H3K36 methyltransferase gene SET DOMAIN GROUP725 (SDG725), the MRG702 knockdown mutants displayed typical BR-deficient mutant and late-flowering phenotypes. Gene transcription analyses showed that MRG702 knockdown resulted in the down-regulation of BR-related genes, including DWARF11, BRASSINOSTEROD INSENSITIVE1, and BRASSINOSTEROID UPREGULATED1, and several flowering genes, including Early heading date1 (Ehd1), Ehd2, Ehd3, OsMADS50, Heading date 3a, and RICE FLOWERING LOCUS T1. A binding analysis showed that MRG702 directly binds to the chromatin at target gene loci. This binding is dependent on the level of trimethylated H3K36, which is mediated by SDG725. Together, our results demonstrate that MRG702 acts as a reader protein of H3K4me3 and H3K36me3 and deciphers the H3K36 methylation information set by SDG725. Therefore, the role of MRG702 in the BR pathway and in controlling flowering time in rice is to function as a reader protein to decipher methylation information. PMID:25855537

  16. MORF-RELATED GENE702, a Reader Protein of Trimethylated Histone H3 Lysine 4 and Histone H3 Lysine 36, Is Involved in Brassinosteroid-Regulated Growth and Flowering Time Control in Rice.

    PubMed

    Jin, Jing; Shi, Jinlei; Liu, Bing; Liu, Yanchao; Huang, Ying; Yu, Yu; Dong, Aiwu

    2015-08-01

    The methylation of histone H3 lysine 36 (H3K36) plays critical roles in brassinosteroid (BR)-related processes and is involved in controlling flowering time in rice (Oryza sativa). Although enzymes that catalyze this methylation reaction have been described, little is known about the recognition mechanisms to decipher H3K36 methylation information in rice. In this study, biochemical characterizations showed that MORF-RELATED GENE702 (MRG702) binds to trimethylated H3K4 and H3K36 (H3K4me3 and H3K36me3) in vitro. Similar to the loss-of-function mutants of the rice H3K36 methyltransferase gene SET DOMAIN GROUP725 (SDG725), the MRG702 knockdown mutants displayed typical BR-deficient mutant and late-flowering phenotypes. Gene transcription analyses showed that MRG702 knockdown resulted in the down-regulation of BR-related genes, including DWARF11, BRASSINOSTEROD INSENSITIVE1, and BRASSINOSTEROID UPREGULATED1, and several flowering genes, including Early heading date1 (Ehd1), Ehd2, Ehd3, OsMADS50, Heading date 3a, and RICE FLOWERING LOCUS T1. A binding analysis showed that MRG702 directly binds to the chromatin at target gene loci. This binding is dependent on the level of trimethylated H3K36, which is mediated by SDG725. Together, our results demonstrate that MRG702 acts as a reader protein of H3K4me3 and H3K36me3 and deciphers the H3K36 methylation information set by SDG725. Therefore, the role of MRG702 in the BR pathway and in controlling flowering time in rice is to function as a reader protein to decipher methylation information.

  17. MORF-RELATED GENE702, a Reader Protein of Trimethylated Histone H3 Lysine 4 and Histone H3 Lysine 36, Is Involved in Brassinosteroid-Regulated Growth and Flowering Time Control in Rice1[OPEN

    PubMed Central

    Jin, Jing; Shi, Jinlei; Liu, Bing; Liu, Yanchao; Huang, Ying; Yu, Yu; Dong, Aiwu

    2015-01-01

    The methylation of histone H3 lysine 36 (H3K36) plays critical roles in brassinosteroid (BR)-related processes and is involved in controlling flowering time in rice (Oryza sativa). Although enzymes that catalyze this methylation reaction have been described, little is known about the recognition mechanisms to decipher H3K36 methylation information in rice. In this study, biochemical characterizations showed that MORF-RELATED GENE702 (MRG702) binds to trimethylated H3K4 and H3K36 (H3K4me3 and H3K36me3) in vitro. Similar to the loss-of-function mutants of the rice H3K36 methyltransferase gene SET DOMAIN GROUP725 (SDG725), the MRG702 knockdown mutants displayed typical BR-deficient mutant and late-flowering phenotypes. Gene transcription analyses showed that MRG702 knockdown resulted in the down-regulation of BR-related genes, including DWARF11, BRASSINOSTEROD INSENSITIVE1, and BRASSINOSTEROID UPREGULATED1, and several flowering genes, including Early heading date1 (Ehd1), Ehd2, Ehd3, OsMADS50, Heading date 3a, and RICE FLOWERING LOCUS T1. A binding analysis showed that MRG702 directly binds to the chromatin at target gene loci. This binding is dependent on the level of trimethylated H3K36, which is mediated by SDG725. Together, our results demonstrate that MRG702 acts as a reader protein of H3K4me3 and H3K36me3 and deciphers the H3K36 methylation information set by SDG725. Therefore, the role of MRG702 in the BR pathway and in controlling flowering time in rice is to function as a reader protein to decipher methylation information. PMID:25855537

  18. Flower development: initiation, differentiation, and diversification.

    PubMed

    Zik, Moriyah; Irish, Vivian F

    2003-01-01

    Flowering is one of the most intensively studied processes in plant development. Despite the wide diversity in floral forms, flowers have a simple stereotypical architecture. Flowers develop from florally determined meristems. These small populations of cells proliferate to form the floral organs, including the sterile outer organs, the sepals and petals, and the inner reproductive organs, the stamens and carpels. In the past decade, analyses of key flowering genes have been carried out primarily in Arabidopsis and have provided a foundation for understanding the underlying molecular genetic mechanisms controlling different aspects of floral development. Such studies have illuminated the transcriptional cascades responsible for the regulation of these key genes, as well as how these genes effect their functions. In turn, these studies have resulted in the refinement of the original ideas of how flowers develop and have indicated the gaps in our knowledge that need to be addressed.

  19. The Arabidopsis repressor of light signaling SPA1 acts in the phloem to regulate seedling de-etiolation, leaf expansion and flowering time.

    PubMed

    Ranjan, Aashish; Fiene, Gabriele; Fackendahl, Petra; Hoecker, Ute

    2011-05-01

    Plants adjust their growth and development in response to the ambient light environment. These light responses involve systemic signals that coordinate differentiation of different tissues and organs. Here, we have investigated the function of the key repressor of photomorphogenesis SPA1 in different tissues of the plant by expressing GUS-SPA1 under the control of tissue-specific promoters in a spa mutant background. We show that SPA1 expression in the phloem vasculature is sufficient to rescue the spa1 mutant phenotype in dark-grown spa mutant seedlings. Expression of SPA1 in mesophyll, epidermis or root tissues of the seedling, by contrast, has no or only slight effects. In the leaf, SPA1 expression in both the phloem and the mesophyll is required for full complementation of the defect in leaf expansion. SPA1 in phloem and mesophyll tissues affected division and expansion of cells in the epidermal layer, indicating that SPA1 induces non-cell-autonomous responses also in the leaf. Photoperiodic flowering is exclusively controlled by SPA1 expression in the phloem, which is consistent with previous results showing that the direct substrate of the COP1/SPA complex, CONSTANS, also acts in the phloem. Taken together, our results highlight the importance of phloem vascular tissue in coordinating growth and development. Because the SPA1 protein itself is incapable of moving from cell to cell, we suggest that SPA1 regulates the activity of downstream component(s) of light signaling that subsequently act in a non-cell-autonomous manner. SPA1 action in the phloem may also result in mechanical stimuli that affect cell elongation and cell division in other tissues.

  20. Hahb-10, a sunflower homeobox-leucine zipper gene, is regulated by light quality and quantity, and promotes early flowering when expressed in Arabidopsis.

    PubMed

    Rueda, Eva C; Dezar, Carlos A; Gonzalez, Daniel H; Chan, Raquel L

    2005-12-01

    Homeodomain-leucine zipper proteins constitute a family of transcription factors found only in plants. Expression patterns of the sunflower homeobox-leucine zipper gene Hahb-10 (Helianthus annuus homeobox-10), that belongs to the HD-Zip II subfamily, were analysed. Northern blots showed that Hahb-10 is expressed primarily in mature leaves, although expression is clearly detectable in younger leaves and also in stems. Considerably higher expression levels were detected in etiolated seedlings compared with light-grown seedlings. Induction of Hahb-10 expression was observed when seedlings were subjected to treatment with gibberellins. Transgenic Arabidopsis thaliana plants that express Hahb-10 under the 35S cauliflower mosaic virus promoter show special phenotypic characteristics such as darker cotyledons and planar leaves. A reduction in the life cycle of about 25% allowing earlier seed collection was also observed, and this phenomenon is clearly related to a shortened flowering time. When the number of plants per pot increased, the difference in developmental rate between transgenic and non-transformed individuals became larger. After gibberellin treatment, the relative difference in life cycle duration was considerably reduced. Several light-regulated genes have been tested as possible target genes of Hahb-10. One of them, PsbS, shows a different response to illumination conditions in transgenic plants compared with the response in wild-type plants while the other genes behave similarly in both genotypes. We propose that Hahb-10 functions in a signalling cascade(s) that control(s) plant responses to light quality and quantity, and may also be involved in gibberellin transduction pathways. PMID:16215272

  1. Design a Hummingbird Flower.

    ERIC Educational Resources Information Center

    Bailey, Kim

    2002-01-01

    Presents an activity that engages students in designing and making an artificial flower adapted for pollination by hummingbirds. Students work in teams to design flowers that maximize the benefit from attracting hummingbirds. Examines characteristics of real flowers adapted to pollination by hummingbirds. (DLH)

  2. Mutation in TERMINAL FLOWER1 reverses the photoperiodic requirement for flowering in the wild strawberry Fragaria vesca.

    PubMed

    Koskela, Elli A; Mouhu, Katriina; Albani, Maria C; Kurokura, Takeshi; Rantanen, Marja; Sargent, Daniel J; Battey, Nicholas H; Coupland, George; Elomaa, Paula; Hytönen, Timo

    2012-07-01

    Photoperiodic flowering has been extensively studied in the annual short-day and long-day plants rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), whereas less is known about the control of flowering in perennials. In the perennial wild strawberry, Fragaria vesca (Rosaceae), short-day and perpetual flowering long-day accessions occur. Genetic analyses showed that differences in their flowering responses are caused by a single gene, SEASONAL FLOWERING LOCUS, which may encode the F. vesca homolog of TERMINAL FLOWER1 (FvTFL1). We show through high-resolution mapping and transgenic approaches that FvTFL1 is the basis of this change in flowering behavior and demonstrate that FvTFL1 acts as a photoperiodically regulated repressor. In short-day F. vesca, long photoperiods activate FvTFL1 mRNA expression and short days suppress it, promoting flower induction. These seasonal cycles in FvTFL1 mRNA level confer seasonal cycling of vegetative and reproductive development. Mutations in FvTFL1 prevent long-day suppression of flowering, and the early flowering that then occurs under long days is dependent on the F. vesca homolog of FLOWERING LOCUS T. This photoperiodic response mechanism differs from those described in model annual plants. We suggest that this mechanism controls flowering within the perennial growth cycle in F. vesca and demonstrate that a change in a single gene reverses the photoperiodic requirements for flowering.

  3. Optimization of crop productivity in tomato using induced mutations in the florigen pathway.

    PubMed

    Park, Soon Ju; Jiang, Ke; Tal, Lior; Yichie, Yoav; Gar, Oron; Zamir, Dani; Eshed, Yuval; Lippman, Zachary B

    2014-12-01

    Naturally occurring genetic variation in the universal florigen flowering pathway has produced major advancements in crop domestication. However, variants that can maximize crop yields may not exist in natural populations. Here we show that tomato productivity can be fine-tuned and optimized by exploiting combinations of selected mutations in multiple florigen pathway components. By screening for chemically induced mutations that suppress the bushy, determinate growth habit of field tomatoes, we isolated a new weak allele of the florigen gene SINGLE FLOWER TRUSS (SFT) and two mutations affecting a bZIP transcription factor component of the 'florigen activation complex' (ref. 11). By combining heterozygous mutations, we pinpointed an optimal balance of flowering signals, resulting in a new partially determinate architecture that translated to maximum yields. We propose that harnessing mutations in the florigen pathway to customize plant architecture and flower production offers a broad toolkit to boost crop productivity.

  4. The role of COP1 in repression of photoperiodic flowering.

    PubMed

    Xu, Dongqing; Zhu, Danmeng; Deng, Xing Wang

    2016-01-01

    Plants use the circadian clock as a timekeeping mechanism to regulate photoperiodic flowering in response to the seasonal changes. CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), initially identified as a central repressor of seedling photomorphogenesis, was recently shown to be involved in the regulation of light input to the circadian clock, modulating the circadian rhythm and flowering. COP1 encodes a RING-finger E3 ubiquitin ligase and works in concert with SUPPRESSOR of phyA-105 (SPA) proteins to repress photoperiodic flowering by regulating proteasome-mediated degradation of CONSTANS (CO), a central regulator of photoperiodic flowering. In addition, COP1 and EARLY FLOWERING 3 (ELF3) indirectly modulate CO expression via the degradation of GIGANTEA (GI). Here, we summarize the current understanding of the molecular mechanisms underlying COP1's role in controlling of photoperiodic flowering. PMID:26949521

  5. Knockdown of a JmjC domain-containing gene JMJ524 confers altered gibberellin responses by transcriptional regulation of GRAS protein lacking the DELLA domain genes in tomato

    PubMed Central

    Li, Jinhua; Yu, Chuying; Wu, Hua; Luo, Zhidan; Ouyang, Bo; Cui, Long; Zhang, Junhong; Ye, Zhibiao

    2015-01-01

    Plants integrate responses to independent hormonal and environmental signals to survive adversity. In particular, the phytohormone gibberellin (GA) regulates a variety of developmental processes and stress responses. In this study, the Jumonji-C (JmjC) domain-containing gene JMJ524 was characterized in tomato. JMJ524 responded to circadian rhythms and was upregulated by GA treatment. Knockdown of JMJ524 by RNAi caused a GA-insensitive dwarf phenotype with shrunken leaves and shortened internodes. However, in these transgenic plants, higher levels of endogenous GAs were detected. A genome-wide gene expression analysis by RNA-seq indicated that the expression levels of two DELLA-like genes, SlGLD1 (‘GRAS protein Lacking the DELLA domain’) and SlGLD2, were increased in JMJ524-RNAi transgenic plants. Nevertheless, only the overexpression of SlGLD1 in tomato resulted in a GA-insensitive dwarf phenotype, suggesting that SlGLD1 acts as a repressor of GA signalling. This study proposes that JMJ524 is required for stem elongation by altering GA responses, at least partially by regulating SlGLD1. PMID:25680796

  6. Differential Expression and Turnover of the Tomato Polyphenol Oxidase Gene Family during Vegetative and Reproductive Development.

    PubMed Central

    Thipyapong, P.; Joel, D. M.; Steffens, J. C.

    1997-01-01

    Polyphenol oxidases (PPOs) are encoded by a highly conserved, seven-member gene family clustered within a 165-kb locus on chromosome 8 of tomato (Lycopersicon esculentum). Using gene-specific probes capable of differentiating between PPO A/C, PPO B, PPO D, and PPO E/F, we examined the spatial and temporal expression of this gene family during vegetative and reproductive development. RNA blots and in situ hybridization using these probes showed that although PPO expression is primarily confined to early stages of development, the steady-state mRNA levels of these genes are subject to complex patterns of spatial and temporal regulation in vegetative and reproductive organs. Young tomato leaves and flowers possess the most abundant PPO transcripts. PPO B is the most abundant in young leaves, whereas in the inflorescence PPO B and E/F transcripts are dominant. Differential expression of PPOs is also observed in various trichome types. PPO A/C are specifically expressed in type I and type IV trichomes. In contrast, PPO D is only expressed in type VI trichomes. Type I, IV, and VI trichomes possess PPO E/F transcripts. Immunolocalization verified the translational activity of PPOs identified by in situ hybridization and suggested cell-type-specific, developmentally programmed PPO turnover. In addition, immunolocalization demonstrated the accumulation of PPO in specific idioblast cells of stems, leaves, and fruits. PMID:12223637

  7. Capsicum annuum S (CaS) promotes reproductive transition and is required for flower formation in pepper (Capsicum annuum).

    PubMed

    Cohen, Oded; Borovsky, Yelena; David-Schwartz, Rakefet; Paran, Ilan

    2014-05-01

    The genetic control of the transition to flowering has mainly been studied in model species, while few data are available in crop species such as pepper (Capsicum spp.). To elucidate the genetic control of the transition to flowering in pepper, mutants that lack flowers were isolated and characterized. Genetic mapping and sequencing allowed the identification of the gene disrupted in the mutants. Double mutants and expression analyses were used to characterize the relationships between the mutated gene and other genes controlling the transition to flowering and flower differentiation. The mutants were characterized by a delay in the initiation of sympodial growth, a delay in the termination of sympodial meristems and complete inhibition of flower formation. Capsicum annuum S (CaS), the pepper (Capsicum annuum) ortholog of tomato (Solanum lycopersicum) COMPOUND INFLORESCENCE and petunia (Petunia hybrida) EVERGREEN, was found to govern the mutant phenotype. CaS is required for the activity of the flower meristem identity gene Ca-ANANTHA and does not affect the expression of CaLEAFY. CaS is epistatic over other genes controlling the transition to flowering with respect to flower formation. Comparative homologous mutants in the Solanaceae indicate that CaS has uniquely evolved to have a critical role in flower formation, while its role in meristem maturation is conserved in pepper, tomato and petunia.

  8. The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress.

    PubMed

    Shu, Sheng; Tang, Yuanyuan; Yuan, Yinghui; Sun, Jin; Zhong, Min; Guo, Shirong

    2016-10-01

    In the present study, we aimed to investigate the effects of exogenous 24-epibrassinolide (EBR) on growth, photosynthetic characteristics, chlorophyll fluorescence imaging, and nitrogen metabolism of tomato leaves under low temperature and weak light conditions. The results showed that foliar application of EBR significantly alleviated the inhibition of plant growth, and increased the fresh and dry weights of tomato plants under a combined low temperature and weak light stress. Moreover, EBR also increased the net photosynthetic rate (Pn), light saturation point (LSP), maximal quantum yield of PSII photochemistry (Fv/Fm), actual photochemical efficiency of PSII (ФPSII), and photochemical quenching coefficient (qP), but decreased the intercellular CO2 concentration (Ci), light compensation point (LCP) and apparent quantum efficiency (AQE) under low temperature and weak light conditions. In addition, application of EBR to tomato leaves significantly enhanced the activities of nitrate reductase (NR), glutamate dehydrogenase (GDH), glutamine synthetase (GS), and glutamate synthase (GOGAT), but decreased the ammonium content and nitrite reductase (NiR) activity. We observed that EBR remarkably increased the contents of aspartic acid, threonine, serine, glycine, and phenylalanine, while decreasing the accumulation of cysteine, methionine, arginine, and proline under a combined low temperature and light stress. These results suggest that EBR could alleviate the combined stress-induced harmful effects on photosynthesis and nitrogen metabolism, thus leading to improved plant growth. PMID:27362298

  9. The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress.

    PubMed

    Shu, Sheng; Tang, Yuanyuan; Yuan, Yinghui; Sun, Jin; Zhong, Min; Guo, Shirong

    2016-10-01

    In the present study, we aimed to investigate the effects of exogenous 24-epibrassinolide (EBR) on growth, photosynthetic characteristics, chlorophyll fluorescence imaging, and nitrogen metabolism of tomato leaves under low temperature and weak light conditions. The results showed that foliar application of EBR significantly alleviated the inhibition of plant growth, and increased the fresh and dry weights of tomato plants under a combined low temperature and weak light stress. Moreover, EBR also increased the net photosynthetic rate (Pn), light saturation point (LSP), maximal quantum yield of PSII photochemistry (Fv/Fm), actual photochemical efficiency of PSII (ФPSII), and photochemical quenching coefficient (qP), but decreased the intercellular CO2 concentration (Ci), light compensation point (LCP) and apparent quantum efficiency (AQE) under low temperature and weak light conditions. In addition, application of EBR to tomato leaves significantly enhanced the activities of nitrate reductase (NR), glutamate dehydrogenase (GDH), glutamine synthetase (GS), and glutamate synthase (GOGAT), but decreased the ammonium content and nitrite reductase (NiR) activity. We observed that EBR remarkably increased the contents of aspartic acid, threonine, serine, glycine, and phenylalanine, while decreasing the accumulation of cysteine, methionine, arginine, and proline under a combined low temperature and light stress. These results suggest that EBR could alleviate the combined stress-induced harmful effects on photosynthesis and nitrogen metabolism, thus leading to improved plant growth.

  10. 76 FR 28949 - Notice of Request for Extension of Approval of an Information Collection; Importation of Tomatoes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... Collection; Importation of Tomatoes From Spain, Chile, France, Morocco, and Western Sahara AGENCY: Animal and... information collection associated with regulations governing the importation of tomatoes from Spain, Chile... Tomatoes From Spain, Chile, France, Morocco, and Western Sahara. OMB Number: 0579-0131. Type of...

  11. 78 FR 61323 - Notice of Request for Extension of Approval of an Information Collection; Importation of Tomatoes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... Collection; Importation of Tomatoes With Stems From the Republic of Korea AGENCY: Animal and Plant Health... collection associated with the regulations for the importation of tomatoes with stems from the Republic of... tomatoes with stems from the Republic of Korea, contact Mr. Andrew Wilds, Trade Director, PPQ, APHIS,...

  12. Role of cis-12-oxo-phytodienoic acid in tomato embryo development.

    PubMed

    Goetz, Stephan; Hellwege, Anja; Stenzel, Irene; Kutter, Claudia; Hauptmann, Valeska; Forner, Susanne; McCaig, Bonnie; Hause, Gerd; Miersch, Otto; Wasternack, Claus; Hause, Bettina

    2012-04-01

    Oxylipins including jasmonates are signaling compounds in plant growth, development, and responses to biotic and abiotic stresses. In Arabidopsis (Arabidopsis thaliana) most mutants affected in jasmonic acid (JA) biosynthesis and signaling are male sterile, whereas the JA-insensitive tomato (Solanum lycopersicum) mutant jai1 is female sterile. The diminished seed formation in jai1 together with the ovule-specific accumulation of the JA biosynthesis enzyme allene oxide cyclase (AOC), which correlates with elevated levels of JAs, suggest a role of oxylipins in tomato flower/seed development. Here, we show that 35S::SlAOC-RNAi lines with strongly reduced AOC in ovules exhibited reduced seed set similarly to the jai1 plants. Investigation of embryo development of wild-type tomato plants showed preferential occurrence of AOC promoter activity and AOC protein accumulation in the developing seed coat and the embryo, whereas 12-oxo-phytodienoic acid (OPDA) was the dominant oxylipin occurring nearly exclusively in the seed coat tissues. The OPDA- and JA-deficient mutant spr2 was delayed in embryo development and showed an increased programmed cell death in the developing seed coat and endosperm. In contrast, the mutant acx1a, which accumulates preferentially OPDA and residual amount of JA, developed embryos similar to the wild type, suggesting a role of OPDA in embryo development. Activity of the residual amount of JA in the acx1a mutant is highly improbable since the known reproductive phenotype of the JA-insensitive mutant jai1 could be rescued by wound-induced formation of OPDA. These data suggest a role of OPDA or an OPDA-related compound for proper embryo development possibly by regulating carbohydrate supply and detoxification. PMID:22337921

  13. Monopodial and sympodial branching architecture in cotton is differentially regulated by the Gossypium hirsutum SINGLE FLOWER TRUSS and SELF-PRUNING orthologs.

    PubMed

    McGarry, Roisin C; Prewitt, Sarah F; Culpepper, Samantha; Eshed, Yuval; Lifschitz, Eliezer; Ayre, Brian G

    2016-10-01

    Domestication of upland cotton (Gossypium hirsutum) converted it from a lanky photoperiodic perennial to a day-neutral annual row-crop. Residual perennial traits, however, complicate irrigation and crop management, and more determinate architectures are desired. Cotton simultaneously maintains robust monopodial indeterminate shoots and sympodial determinate shoots. We questioned if and how the FLOWERING LOCUS T/SINGLE FLOWER TRUSS (SFT)-like and TERMINAL FLOWER1/SELF-PRUNING (SP)-like genes control the balance of monopodial and sympodial growth in a woody perennial with complex growth habit. Virus-based manipulation of GhSP and GhSFT expression enabled unprecedented functional analysis of cotton development. GhSP maintains growth in all apices; in its absence, both monopodial and sympodial branch systems terminate precociously. GhSFT encodes a florigenic signal stimulating rapid onset of sympodial branching and flowering in side shoots of wild photoperiodic and modern day-neutral accessions. High florigen concentrations did not alter monopodial apices, implying that once a cotton apex is SP-determined, it cannot be reset by florigen. GhSP is also essential to establish and maintain cambial activity. Dynamic changes in GhSFT and GhSP levels navigate meristems between monopodial and sympodial programs in a single plant. SFT and SP influenced cotton domestication and are ideal targets for further agricultural optimization. PMID:27292411

  14. Monopodial and sympodial branching architecture in cotton is differentially regulated by the Gossypium hirsutum SINGLE FLOWER TRUSS and SELF-PRUNING orthologs.

    PubMed

    McGarry, Roisin C; Prewitt, Sarah F; Culpepper, Samantha; Eshed, Yuval; Lifschitz, Eliezer; Ayre, Brian G

    2016-10-01

    Domestication of upland cotton (Gossypium hirsutum) converted it from a lanky photoperiodic perennial to a day-neutral annual row-crop. Residual perennial traits, however, complicate irrigation and crop management, and more determinate architectures are desired. Cotton simultaneously maintains robust monopodial indeterminate shoots and sympodial determinate shoots. We questioned if and how the FLOWERING LOCUS T/SINGLE FLOWER TRUSS (SFT)-like and TERMINAL FLOWER1/SELF-PRUNING (SP)-like genes control the balance of monopodial and sympodial growth in a woody perennial with complex growth habit. Virus-based manipulation of GhSP and GhSFT expression enabled unprecedented functional analysis of cotton development. GhSP maintains growth in all apices; in its absence, both monopodial and sympodial branch systems terminate precociously. GhSFT encodes a florigenic signal stimulating rapid onset of sympodial branching and flowering in side shoots of wild photoperiodic and modern day-neutral accessions. High florigen concentrations did not alter monopodial apices, implying that once a cotton apex is SP-determined, it cannot be reset by florigen. GhSP is also essential to establish and maintain cambial activity. Dynamic changes in GhSFT and GhSP levels navigate meristems between monopodial and sympodial programs in a single plant. SFT and SP influenced cotton domestication and are ideal targets for further agricultural optimization.

  15. Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress

    PubMed Central

    Sun, Liang; Wang, Yan-Ping; Chen, Pei; Ren, Jie; Ji, Kai; Li, Qian; Li, Ping; Dai, Sheng-Jie; Leng, Ping

    2011-01-01

    In order to characterize the potential transcriptional regulation of core components of abscisic acid (ABA) signal transduction in tomato fruit development and drought stress, eight SlPYL (ABA receptor), seven SlPP2C (type 2C protein phosphatase), and eight SlSnRK2 (subfamily 2 of SNF1-related kinases) full-length cDNA sequences were isolated from the tomato nucleotide database of NCBI GenBank. All SlPYL, SlPP2C, and SlSnRK2 genes obtained are homologous to Arabidopsis AtPYL, AtPP2C, and AtSnRK2 genes, respectively. Based on phylogenetic analysis, SlPYLs and SlSnRK2s were clustered into three subfamilies/subclasses, and all SlPP2Cs belonged to PP2C group A. Within the SlPYL gene family, SlPYL1, SlPYL2, SlPYL3, and SlPYL6 were the major genes involved in the regulation of fruit development. Among them, SlPYL1 and SlPYL2 were expressed at high levels throughout the process of fruit development and ripening; SlPYL3 was strongly expressed at the immature green (IM) and mature green (MG) stages, while SlPYL6 was expressed strongly at the IM and red ripe (RR) stages. Within the SlPP2C gene family, the expression of SlPP2C, SlPP2C3, and SlPP2C4 increased after the MG stage; SlPP2C1 and SlPP2C5 peaked at the B3 stage, while SlPP2C2 and SlPP2C6 changed little during fruit development. Within the SlSnRK2 gene family, the expression of SlSnRK2.2, SlSnRK2.3, SlSnRK2.4, and SlSnRK2C was higher than that of other members during fruit development. Additionally, most SlPYL genes were down-regulated, while most SlPP2C and SlSnRK2 genes were up-regulated by dehydration in tomato leaf. PMID:21873532

  16. Genes that influence yield in tomato

    PubMed Central

    Ariizumi, Tohru; Shinozaki, Yoshihito; Ezura, Hiroshi

    2013-01-01

    Yield is the most important breeding trait of crops. For fruit-bearing plants such as Solanum lycopersicum (tomato), fruit formation directly affects yield. The final fruit size depends on the number and volume of cell layers in the pericarp of the fruit, which is determined by the degree of cell division and expansion in the fertilized ovaries. Thus, fruit yield in tomato is predominantly determined by the efficiency of fruit set and the final cell number and size of the fruits. Through domestication, tomato fruit yield has been markedly increased as a result of mutations associated with fruit size and genetic studies have identified the genes that influence the cell cycle, carpel number and fruit set. Additionally, several lines of evidence have demonstrated that plant hormones control fruit set and size through the delicate regulation of genes that trigger physiological responses associated with fruit expansion. In this review, we introduce the key genes involved in tomato breeding and describe how they affect the physiological processes that contribute to tomato yield. PMID:23641176

  17. Genes that influence yield in tomato.

    PubMed

    Ariizumi, Tohru; Shinozaki, Yoshihito; Ezura, Hiroshi

    2013-03-01

    Yield is the most important breeding trait of crops. For fruit-bearing plants such as Solanum lycopersicum (tomato), fruit formation directly affects yield. The final fruit size depends on the number and volume of cell layers in the pericarp of the fruit, which is determined by the degree of cell division and expansion in the fertilized ovaries. Thus, fruit yield in tomato is predominantly determined by the efficiency of fruit set and the final cell number and size of the fruits. Through domestication, tomato fruit yield has been markedly increased as a result of mutations associated with fruit size and genetic studies have identified the genes that influence the cell cycle, carpel number and fruit set. Additionally, several lines of evidence have demonstrated that plant hormones control fruit set and size through the delicate regulation of genes that trigger physiological responses associated with fruit expansion. In this review, we introduce the key genes involved in tomato breeding and describe how they affect the physiological processes that contribute to tomato yield. PMID:23641176

  18. The Phenotypic and Genetic Underpinnings of Flower Size in Polemoniaceae.

    PubMed

    Landis, Jacob B; O'Toole, Rebecca D; Ventura, Kayla L; Gitzendanner, Matthew A; Oppenheimer, David G; Soltis, Douglas E; Soltis, Pamela S

    2015-01-01

    Corolla length is a labile flower feature and has strong implications for pollinator success. However, the phenotypic and genetic bases of corolla elongation are not well known, largely due to a lack of good candidate genes for potential genetic exploration and functional work. We investigate both the cellular phenotypic differences in corolla length, as well as the genetic control of this trait, in Saltugilia (Polemoniaceae). Taxa in this clade exhibit a large range of flower sizes and differ dramatically in pollinator guilds. Flowers of each species were collected from multiple individuals during four stages of flower development to ascertain if cell number or cell size is more important in determining flower size. In Saltugilia, increased flower size during development appears to be driven more by cell size than cell number. Differences in flower size between species are governed by both cell size and cell number, with the large-flowered S. splendens subsp. grantii having nearly twice as many cells as the small-flowered species. Fully mature flowers of all taxa contain jigsaw cells similar to cells seen in sepals and leaves; however, these cells are not typically found in the developing flowers of most species. The proportion of this cell type in mature flowers appears to have substantial implications, comprising 17-68% of the overall flower size. To identify candidate genes responsible for differences in cell area and cell type, transcriptomes were generated for two individuals of the species with the smallest (S. australis) and largest (S. splendens subsp. grantii) flowers across the same four developmental stages visualized with confocal microscopy. Analyses identified genes associated with cell wall formation that are up-regulated in the mature flower stage compared to mid-stage flowers (75% of mature size). This developmental change is associated with the origin of jigsaw cells in the corolla tube of mature flowers. Further comparisons between mature

  19. The Phenotypic and Genetic Underpinnings of Flower Size in Polemoniaceae

    PubMed Central

    Landis, Jacob B.; O'Toole, Rebecca D.; Ventura, Kayla L.; Gitzendanner, Matthew A.; Oppenheimer, David G.; Soltis, Douglas E.; Soltis, Pamela S.

    2016-01-01

    Corolla length is a labile flower feature and has strong implications for pollinator success. However, the phenotypic and genetic bases of corolla elongation are not well known, largely due to a lack of good candidate genes for potential genetic exploration and functional work. We investigate both the cellular phenotypic differences in corolla length, as well as the genetic control of this trait, in Saltugilia (Polemoniaceae). Taxa in this clade exhibit a large range of flower sizes and differ dramatically in pollinator guilds. Flowers of each species were collected from multiple individuals during four stages of flower development to ascertain if cell number or cell size is more important in determining flower size. In Saltugilia, increased flower size during development appears to be driven more by cell size than cell number. Differences in flower size between species are governed by both cell size and cell number, with the large-flowered S. splendens subsp. grantii having nearly twice as many cells as the small-flowered species. Fully mature flowers of all taxa contain jigsaw cells similar to cells seen in sepals and leaves; however, these cells are not typically found in the developing flowers of most species. The proportion of this cell type in mature flowers appears to have substantial implications, comprising 17–68% of the overall flower size. To identify candidate genes responsible for differences in cell area and cell type, transcriptomes were generated for two individuals of the species with the smallest (S. australis) and largest (S. splendens subsp. grantii) flowers across the same four developmental stages visualized with confocal microscopy. Analyses identified genes associated with cell wall formation that are up-regulated in the mature flower stage compared to mid-stage flowers (75% of mature size). This developmental change is associated with the origin of jigsaw cells in the corolla tube of mature flowers. Further comparisons between mature

  20. Tomato Whole Genome Transcriptional Response to Tetranychus urticae Identifies Divergence of Spider Mite-Induced Responses Between Tomato and Arabidopsis.

    PubMed

    Martel, Catherine; Zhurov, Vladimir; Navarro, Marie; Martinez, Manuel; Cazaux, Marc; Auger, Philippe; Migeon, Alain; Santamaria, M Estrella; Wybouw, Nicky; Diaz, Isabel; Van Leeuwen, Thomas; Navajas, Maria; Grbic, Miodrag; Grbic, Vojislava

    2015-03-01

    The two-spotted spider mite Tetranychus urticae is one of the most significant mite pests in agriculture, feeding on more than 1,100 plant hosts, including model plants Arabidopsis thaliana and tomato, Solanum lycopersicum. Here, we describe timecourse tomato transcriptional responses to spider mite feeding and compare them with Arabidopsis in order to determine conserved and divergent defense responses to this pest. To refine the involvement of jasmonic acid (JA) in mite-induced responses and to improve tomato Gene Ontology annotations, we analyzed transcriptional changes in the tomato JA-signaling mutant defenseless1 (def-1) upon JA treatment and spider mite herbivory. Overlay of differentially expressed genes (DEG) identified in def-1 onto those from the timecourse experiment established that JA controls expression of the majority of genes differentially regulated by herbivory. Comparison of defense responses between tomato and Arabidopsis highlighted 96 orthologous genes (of 2,133 DEG) that were recruited for defense against spider mites in both species. These genes, involved in biosynthesis of JA, phenylpropanoids, flavonoids, and terpenoids, represent the conserved core of induced defenses. The remaining tomato DEG support the establishment of tomato-specific defenses, indicating profound divergence of spider mite-induced responses between tomato and Arabidopsis.

  1. Characterization of LeMir, a root-knot nematode-induced gene in tomato with an encoded product secreted from the root.

    PubMed

    Brenner, E D; Lambert, K N; Kaloshian, I; Williamson, V M

    1998-09-01

    A tomato gene that is induced early after infection of tomato (Lycopersicon esculentum Mill.) with root-knot nematodes (Meloidogyne javanica) encodes a protein with 54% amino acid identity to miraculin, a flavorless protein that causes sour substances to be perceived as sweet. This gene was therefore named LeMir (L. esculentum miraculin). Sequence similarity places the encoded protein in the soybean trypsin-inhibitor family (Kunitz). LeMir mRNA is found in root, hypocotyl, and flower tissues, with the highest expression in the root. Rapid induction of expression upon nematode infection is localized to root tips. In situ hybridization shows that LeMir is expressed constitutively in the root-cap and root-tip epidermis. The LeMir protein product (LeMir) was produced in the yeast Pichia pastoris for generation of antibodies. Western-blot analysis showed that LeMir expression is up-regulated by nematode infection and by wounding. LeMir is also expressed in tomato callus tissue. Immunoprint analysis revealed that LeMir is expressed throughout the seedling root, but that levels are highest at the root/shoot junction. Analysis of seedling root exudates revealed that LeMir is secreted from the root into the surrounding environment, suggesting that it may interact with soil-borne microorganisms. PMID:9733543

  2. DAY NEUTRAL FLOWERING represses CONSTANS to prevent Arabidopsis flowering early in short days.

    PubMed

    Morris, Karl; Thornber, Sarah; Codrai, Lesley; Richardson, Christine; Craig, Adam; Sadanandom, Ari; Thomas, Brian; Jackson, Stephen

    2010-04-01

    The photoperiodic response in Arabidopsis thaliana requires the precise regulation of CONSTANS (CO) expression in relation to the light period during the day. In short days (SDs) levels of CO expression are normally low during the light period, and this results in delayed flowering compared with long days (LDs) when CO expression rises to high levels before the end of the light period. We identified a novel flowering time gene called DAY NEUTRAL FLOWERING (DNF) that acts in the same flowering pathway as CO. DNF is a membrane-bound E3 ligase that represses CO expression and plays an important role in maintaining low levels of CO expression in SDs. The effect of DNF on the rhythm of CO expression is essential for the photoperiodic response of Arabidopsis, enabling it to have a different flowering response in LDs and SDs.

  3. Differential Expression and Internal Feedback Regulation of 1-Aminocyclopropane-1-Carboxylate Synthase, 1-Aminocyclopropane-1-Carboxylate Oxidase, and Ethylene Receptor Genes in Tomato Fruit during Development and Ripening1

    PubMed Central

    Nakatsuka, Akira; Murachi, Shiho; Okunishi, Hironori; Shiomi, Shinjiro; Nakano, Ryohei; Kubo, Yasutaka; Inaba, Akitsugu

    1998-01-01

    We investigated the feedback regulation of ethylene biosynthesis in tomato (Lycopersicon esculentum) fruit with respect to the transition from system 1 to system 2 ethylene production. The abundance of LE-ACS2, LE-ACS4, and NR mRNAs increased in the ripening fruit concomitant with a burst in ethylene production. These increases in mRNAs with ripening were prevented to a large extent by treatment with 1-methylcyclopropene (MCP), an ethylene action inhibitor. Transcripts for the LE-ACS6 gene, which accumulated in preclimacteric fruit but not in untreated ripening fruit, did accumulate in ripening fruit treated with MCP. Treatment of young fruit with propylene prevented the accumulation of transcripts for this gene. LE-ACS1A, LE-ACS3, and TAE1 genes were expressed constitutively in the fruit throughout development and ripening irrespective of whether the fruit was treated with MCP or propylene. The transcripts for LE-ACO1 and LE-ACO4 genes already existed in preclimacteric fruit and increased greatly when ripening commenced. These increases in LE-ACO mRNA with ripening were also prevented by treatment with MCP. The results suggest that in tomato fruit the preclimacteric system 1 ethylene is possibly mediated via constitutively expressed LE-ACS1A and LE-ACS3 and negatively feedback-regulated LE-ACS6 genes with preexisting LE-ACO1 and LE-ACO4 mRNAs. At the onset of the climacteric stage, it shifts to system 2 ethylene, with a large accumulation of LE-ACS2, LE-ACS4, LE-ACO1, and LE-ACO4 mRNAs as a result of a positive feedback regulation. This transition from system 1 to system 2 ethylene production might be related to the accumulated level of NR mRNA. PMID:9847103

  4. Enhancement of growth and yield of tomato by Rhodopseudomonas sp. under greenhouse conditions.

    PubMed

    Lee, Kang-Hyeong; Koh, Rae-Hyun; Song, Hong-Gyu

    2008-12-01

    A greenhouse test was carried out to examine the effects on tomato growth of application of purple non-sulfur bacterium Rhodopseudomonas sp. which had enhanced germination and growth of tomato seed under axenic conditions. The shoot length of tomato plant inoculated by Rhodopseudomonas sp. KL9 increased by 34.6% compared to that of control in 8 weeks of cultivation. During the same period, this strain increased 120.6 and 78.6% of dry weight of shoot and root of tomato plants, respectively. The formation ratio of tomato fruit from flower was also raised by inoculation of KL9. In addition, Rhodopseudomonas sp. KL9 treatment enhanced the fresh weight and lycopene content in the harvested tomato fruits by 98.3 and 48.3%, respectively compared to those of the uninoculated control. When the effect on the indigenous bacterial community and fate of the inoculated Rhodopseudomonas sp. KL9 were monitored by denaturing gradient gel electrophoresis analysis, its application did not affect the native bacterial community in tomato rhizosphere soil, but should be repeated to maintain its population size. This bacterial capability may be applied as an environment-friendly biofertilizer to cultivation of high quality tomato and other crops including lycopene-containing vegetables and fruits. PMID:19107392

  5. A functional pectin methylesterase inhibitor protein (SolyPMEI) is expressed during tomato fruit ripening and interacts with PME-1.

    PubMed

    Reca, Ida Barbara; Lionetti, Vincenzo; Camardella, Laura; D'Avino, Rossana; Giardina, Thierry; Cervone, Felice; Bellincampi, Daniela

    2012-07-01

    A pectin methylesterase inhibitor (SolyPMEI) from tomato has been identified and characterised by a functional genomics approach. SolyPMEI is a cell wall protein sharing high similarity with Actinidia deliciosa PMEI (AdPMEI), the best characterised inhibitor from kiwi. It typically affects the activity of plant pectin methylesterases (PMEs) and is inactive against a microbial PME. SolyPMEI transcripts were mainly expressed in flower, pollen and ripe fruit where the protein accumulated at breaker and turning stages of ripening. The expression of SolyPMEI correlated during ripening with that of PME-1, the major fruit specific PME isoform. The interaction of SolyPMEI with PME-1 was demonstrated in ripe fruit by gel filtration and by immunoaffinity chromatography. The analysis of the zonal distribution of PME activity and the co-localization of SolyPMEI with high esterified pectins suggest that SolyPMEI regulates the spatial patterning of distribution of esterified pectins in fruit.

  6. Tomato handling practices in restaurants.

    PubMed

    Kirkland, Elizabeth; Green, Laura R; Stone, Carmily; Reimann, Dave; Nicholas, Dave; Mason, Ryan; Frick, Roberta; Coleman, Sandra; Bushnell, Lisa; Blade, Henry; Radke, Vincent; Selman, Carol

    2009-08-01

    In recent years, multiple outbreaks of Salmonella infection have been associated with fresh tomatoes. Investigations have indicated that tomato contamination likely occurred early in the farm-to-consumer chain, although tomato consumption occurred mostly in restaurants. Researchers have hypothesized that tomato handling practices in restaurants may contribute to these outbreaks. However, few empirical data exist on how restaurant workers handle tomatoes. This study was conducted to examine tomato handling practices in restaurants. Members of the Environmental Health Specialists Network (EHS-Net) observed tomato handling practices in 449 restaurants. The data indicated that handling tomatoes appropriately posed a challenge to many restaurants. Produce-only cutting boards were not used on 49% of tomato cutting observations, and gloves were not worn in 36% of tomato cutting observations. Although tomatoes were washed under running water as recommended in most (82%) of the washing observations, tomatoes were soaked in standing water, a practice not recommended by the U.S. Food and Drug Administration (FDA), in 18% of observations, and the temperature differential between the wash water and tomatoes did not meet FDA guidelines in 21% of observations. About half of all batches of cut tomatoes in holding areas were above 41 degrees F (5 degrees C), the temperature recommended by the FDA. The maximum holding time for most (73%) of the cut tomatoes held above 41 degrees F exceeded the FDA recommended holding time of 4 h for unrefrigerated tomatoes (i.e., tomatoes held above 41 degrees F). The information provided by this study can be used to inform efforts to develop interventions and thus prevent tomato-associated illness outbreaks.

  7. Guidelines to use tomato in experiments with a controlled environment

    PubMed Central

    Schwarz, Dietmar; Thompson, Andrew J.; Kläring, Hans-Peter

    2014-01-01

    Domesticated tomato (Solanum lycopersicum) is the most important horticultural crop worldwide. Low polymorphism at the DNA level conflicts with the wealth of morphological variation. Fruits vary widely in size, shape, and color. In contrast, genetic variation between the 16 wild relatives is tremendous. Several large seed banks provide tomato germplasm for both domesticated and wild accessions of tomato. Recently, the genomes of the inbred cultivar “Heinz 1706” (≈900 Mb), and S. pimpinellifolium (739 Mb) were sequenced. Genomic markers and genome re-sequencing data are available for >150 cultivars and accessions. Transformation of tomato is relatively easy and T-DNA insertion line collections are available. Tomato is widely used as a model crop for fruit development but also for diverse physiological, cellular, biochemical, molecular, and genetic studies. It can be easily grown in greenhouses or growth chambers. Plants grow, flower, and develop fruits well at daily light lengths between 8 and 16 h. The required daily light integral of an experiment depends on growth stage and temperature investigated. Temperature must be 10–35°C, relative humidity 30–90%, and, CO2 concentration 200–1500 μmol mol−1. Temperature determines the speed of the phenological development while daily light integral and CO2 concentration affect photosynthesis and biomass production. Seed to seed cultivation takes 100 days at 20°C and can be shortened or delayed by temperature. Tomato may be cultivated in soil, substrates, or aeroponically without any substrate. Root volume, and water uptake requirements are primarily determined by transpiration demands of the plants. Many nutrient supply recipes and strategies are available to ensure sufficient supply as well as specific nutrient deficits/surplus. Using appropriate cultivation techniques makes tomato a convenient model plant for researchers, even for beginners. PMID:25477888

  8. Guidelines to use tomato in experiments with a controlled environment.

    PubMed

    Schwarz, Dietmar; Thompson, Andrew J; Kläring, Hans-Peter

    2014-01-01

    Domesticated tomato (Solanum lycopersicum) is the most important horticultural crop worldwide. Low polymorphism at the DNA level conflicts with the wealth of morphological variation. Fruits vary widely in size, shape, and color. In contrast, genetic variation between the 16 wild relatives is tremendous. Several large seed banks provide tomato germplasm for both domesticated and wild accessions of tomato. Recently, the genomes of the inbred cultivar "Heinz 1706" (≈900 Mb), and S. pimpinellifolium (739 Mb) were sequenced. Genomic markers and genome re-sequencing data are available for >150 cultivars and accessions. Transformation of tomato is relatively easy and T-DNA insertion line collections are available. Tomato is widely used as a model crop for fruit development but also for diverse physiological, cellular, biochemical, molecular, and genetic studies. It can be easily grown in greenhouses or growth chambers. Plants grow, flower, and develop fruits well at daily light lengths between 8 and 16 h. The required daily light integral of an experiment depends on growth stage and temperature investigated. Temperature must be 10-35°C, relative humidity 30-90%, and, CO2 concentration 200-1500 μmol mol(-1). Temperature determines the speed of the phenological development while daily light integral and CO2 concentration affect photosynthesis and biomass production. Seed to seed cultivation takes 100 days at 20°C and can be shortened or delayed by temperature. Tomato may be cultivated in soil, substrates, or aeroponically without any substrate. Root volume, and water uptake requirements are primarily determined by transpiration demands of the plants. Many nutrient supply recipes and strategies are available to ensure sufficient supply as well as specific nutrient deficits/surplus. Using appropriate cultivation techniques makes tomato a convenient model plant for researchers, even for beginners. PMID:25477888

  9. Tomato (Lycopersicum esculentum).

    PubMed

    Van Eck, Joyce; Kirk, Dwayne D; Walmsley, Amanda M

    2006-01-01

    Tomato (Lycopersicum esculentum) is an important fruit crop in the Americas, southern Europe, the Middle East, and India, with increasing production in China, Japan, and Southeast Asia. It is amenable to producing pharmaceuticals, particularly for oral delivery; for many of the same reasons, it is a popular vegetable. Its fruit does not contain toxic substances and is palatable uncooked; it is easily processed; the plants are able to be propagated by seed or clonally by tip or shoot cuttings; the plants have a high yield of fruit; there is reasonable biomass and protein content; and they are easily grown under containment. This chapter describes Agrobacterium-mediated transformation of the tomato nucleus using cotyledons as explants. We have used this protocol to generate transgenic lines from several tomato cultivars expressing various genes of interest and selectable markers. We also provide protocols for molecular characterization of transgenic lines and batch processing tomato fruit. PMID:16988368

  10. Tomato seeds for LDEF

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Tomato seeds are prepared for their launch aboard the Langley's Long Duration Exposure Facility. Photograph published in Winds of Change, 75th Anniversary NASA publication (page 119), by James Schultz.

  11. Diversity of Thrips Species and Vectors of Tomato Spotted Wilt Virus in Tomato Production Systems in Kenya.

    PubMed

    Macharia, Isaac; Backhouse, David; Skilton, Rob; Ateka, Elijah; Wu, Shu-Biao; Njahira, Moses; Maina, Solomon; Harvey, Jagger

    2015-02-01

    Thrips have been recognized as primary vectors of tomato spotted wilt virus (TSWV) with Frankliniella occidentalis (Pergande) reported as the most important and efficient vector, while other species such as Thrips tabaci Lindeman also include populations that can vector the virus. A study was undertaken to establish the diversity of thrips and presence of vectors for TSWV in four major tomato production areas in Kenya. The cytochrome oxidase 1 (CO1) gene was used to generate sequences from thrips samples collected from tomatoes and weeds, and phylogenetic analysis done to establish the variation within potential vector populations. Ceratothripoides brunneus Bagnall was the predominant species of thrips in all areas. F. occidentalis and T. tabaci were abundant in Nakuru, Kirinyaga, and Loitokitok but not detected at Bungoma. Other vectors of tospoviruses identified in low numbers were Frankliniella schultzei (Trybom) and Scirtothrips dorsalis Hood. Variation was observed in T. tabaci, F. occidentalis, and F. schultzei. Kenyan specimens of T. tabaci from tomato belonged to the arrhenotokous group, while those of F. occidentalis clustered with the Western flower thrips G group. The detection of RNA of TSWV in both of these species of thrips supported the role they play as vectors. The study has demonstrated the high diversity of thrips species in tomato production and the occurrence of important vectors of TSWV and other tospoviruses. PMID:26470099

  12. Efficiency of local Indonesia honey bees (Apis cerana L.) and stingless bee (Trigona iridipennis) on tomato (Lycopersicon esculentum Mill.) pollination.

    PubMe