Science.gov

Sample records for regulator rcac require

  1. Photoelectronic trajectory anatomy of RCA-C-73435 image converter and its performance

    SciTech Connect

    Lai, C.C.; Olk, L.B.; Lear, R.D.

    1985-06-07

    A two-dimensional electron-optics code, which fully incorporates space-charge and self-magnetic effects, was used to compute the photoelectronic trajectories in a RCA-C73435 image-converter streak tube. The code reveals the beam-trace formations in graphic detail as well as provides numerical data on static and dynamic imaging parameters, including focused-field profile, spatial resolution, linear distortion, transit-time dispersion and chromatic aberration. These computational results correlate qualitatively with the experimental ones obtained under corresponding conditions. The study thus establishes a set of computer-simulation estimates on tube performance as a function of the electron-emitting characteristics at the photocathode and as a function of the electrode voltages. 3 refs., 7 figs.

  2. Informational Requirements for Transcriptional Regulation

    PubMed Central

    O'Neill, Patrick K.; Forder, Robert

    2014-01-01

    Abstract Transcription factors (TFs) regulate transcription by binding to specific sites in promoter regions. Information theory provides a useful mathematical framework to analyze the binding motifs associated with TFs but imposes several assumptions that limit their applicability to specific regulatory scenarios. Explicit simulations of the co-evolution of TFs and their binding motifs allow the study of the evolution of regulatory networks with a high degree of realism. In this work we analyze the impact of differential regulatory demands on the information content of TF-binding motifs by means of evolutionary simulations. We generalize a predictive index based on information theory, and we validate its applicability to regulatory scenarios in which the TF binds significantly to the genomic background. Our results show a logarithmic dependence of the evolved information content on the occupancy of target sites and indicate that TFs may actively exploit pseudo-sites to modulate their occupancy of target sites. In regulatory networks with differentially regulated targets, we observe that information content in TF-binding motifs is dictated primarily by the fraction of total probability mass that the TF assigns to its target sites, and we provide a predictive index to estimate the amount of information associated with arbitrarily complex regulatory systems. We observe that complex regulatory patterns can exert additional demands on evolved information content, but, given a total occupancy for target sites, we do not find conclusive evidence that this effect is because of the range of required binding affinities. PMID:24689750

  3. MAPPING GASOLINE REQUIREMENTS, APPLICABLE REGULATIONS AND BANS

    EPA Science Inventory

    Federal and State regulations play an important role in understanding gasoline composition around the United States. Multiple sources of information on these programs were used to develop reliable, up-to-date maps showing gasoline requirements imposed by various regulations. Th...

  4. Requirements and Regulations for Open Burning and Fire Training

    EPA Pesticide Factsheets

    Intentional burning of facilities is considered demolition under federal asbestos regulations, even if no asbestos is present. Learn about regulations and requirements for open burning and fire training.

  5. 78 FR 29247 - Contractor Legal Management Requirements; Acquisition Regulations; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ..., on May 14, 2013. Paul Bosco, Director, Office of Acquisition and Project Management. BILLING CODE... Part 952 RIN 1990-AA37 Contractor Legal Management Requirements; Acquisition Regulations; Correction..., DOE revised existing regulations covering contractor legal management requirements....

  6. 77 FR 12754 - Contractor Legal Management Requirements; Acquisition Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Part 719 48 Parts 931, 952 and 970 RIN 1990-AA37 Contractor Legal Management Requirements; Acquisition... covering contractor legal management requirements and make conforming amendments to the Department of... rulemaking to revise existing regulations covering contractor legal management requirements and...

  7. 40 CFR 63.312 - Existing regulations and requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Coke Oven Batteries § 63.312 Existing regulations and requirements. (a) The... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Existing regulations and...

  8. Melatonin is required for the circadian regulation of sleep.

    PubMed

    Gandhi, Avni V; Mosser, Eric A; Oikonomou, Grigorios; Prober, David A

    2015-03-18

    Sleep is an evolutionarily conserved behavioral state whose regulation is poorly understood. A classical model posits that sleep is regulated by homeostatic and circadian mechanisms. Several factors have been implicated in mediating the homeostatic regulation of sleep, but molecules underlying the circadian mechanism are unknown. Here we use animals lacking melatonin due to mutation of arylalkylamine N-acetyltransferase 2 (aanat2) to show that melatonin is required for circadian regulation of sleep in zebrafish. Sleep is dramatically reduced at night in aanat2 mutants maintained in light/dark conditions, and the circadian regulation of sleep is abolished in free-running conditions. We find that melatonin promotes sleep downstream of the circadian clock as it is not required to initiate or maintain circadian rhythms. Additionally, we provide evidence that melatonin may induce sleep in part by promoting adenosine signaling, thus potentially linking circadian and homeostatic control of sleep.

  9. 76 FR 22070 - Federal Acquisition Regulation; Service Contracts Reporting Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ..., and 52 RIN 9000-AM06 Federal Acquisition Regulation; Service Contracts Reporting Requirements AGENCY..., to submit information annually in support of agency-level inventories for service contracts. DATES...) already requires DoD to develop an annual service contract inventory. House Report 111-366 notes,...

  10. General requirements for RCRA regulated hazardous waste tanks

    SciTech Connect

    1995-11-01

    The Resource Conservation and Recovery Act (RCRA), as amended, requires that tanks used for the storage or treatment of hazardous waste (HazW) be permitted, and comply with the requirements contained within the Code of Federal Regulations (CFR) TItle 40 in Subpart J of Part 264/265, unless those tanks have been exempted. Subpart J specifies requirements for the design, construction, installation, operation, inspection, maintenance, repair, release, response, and closure of HazW tanks. Also, the regulations make a distinction between new and existing tanks. Effective December 6, 1995, standards for controlling volatile organic air emissions will apply to non-exempt HazW tanks. HazW tanks will have to be equipped with a cover or floating roof, or be designed to operate as a closed system, to be in compliance with the air emission control requirements. This information brief describes those tanks that are subject to the Subpart J requirements, and will also discuss secondary containment, inspection, restrictions on waste storage, release response, and closure requirements associated with regulated HazW tanks.

  11. 40 CFR 63.312 - Existing regulations and requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... National Emission Standards for Coke Oven Batteries § 63.312 Existing regulations and requirements. (a) The..., topside port lids, coke oven doors, and charging operations in effect on September 15, 1992, or which have... method of monitoring in effect on September 15, 1992, and that ensures coke oven emission...

  12. 40 CFR 63.312 - Existing regulations and requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... National Emission Standards for Coke Oven Batteries § 63.312 Existing regulations and requirements. (a) The..., topside port lids, coke oven doors, and charging operations in effect on September 15, 1992, or which have... method of monitoring in effect on September 15, 1992, and that ensures coke oven emission...

  13. 40 CFR 63.312 - Existing regulations and requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... National Emission Standards for Coke Oven Batteries § 63.312 Existing regulations and requirements. (a) The..., topside port lids, coke oven doors, and charging operations in effect on September 15, 1992, or which have... method of monitoring in effect on September 15, 1992, and that ensures coke oven emission...

  14. 40 CFR 63.312 - Existing regulations and requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... National Emission Standards for Coke Oven Batteries § 63.312 Existing regulations and requirements. (a) The..., topside port lids, coke oven doors, and charging operations in effect on September 15, 1992, or which have... method of monitoring in effect on September 15, 1992, and that ensures coke oven emission...

  15. 78 FR 17186 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement (DFARS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... Defense Acquisition Regulations System Information Collection Requirement; Defense Federal Acquisition Regulation Supplement (DFARS); Notification Requirements for Critical Safety Items AGENCY: Defense... Acquisition Regulation Supplement (DFARS), Notification Requirements for Critical Safety Items; OMB...

  16. Actin is required for IFT regulation in Chlamydomonas reinhardtii.

    PubMed

    Avasthi, Prachee; Onishi, Masayuki; Karpiak, Joel; Yamamoto, Ryosuke; Mackinder, Luke; Jonikas, Martin C; Sale, Winfield S; Shoichet, Brian; Pringle, John R; Marshall, Wallace F

    2014-09-08

    Assembly of cilia and flagella requires intraflagellar transport (IFT), a highly regulated kinesin-based transport system that moves cargo from the basal body to the tip of flagella [1]. The recruitment of IFT components to basal bodies is a function of flagellar length, with increased recruitment in rapidly growing short flagella [2]. The molecular pathways regulating IFT are largely a mystery. Because actin network disruption leads to changes in ciliary length and number, actin has been proposed to have a role in ciliary assembly. However, the mechanisms involved are unknown. In Chlamydomonas reinhardtii, conventional actin is found in both the cell body and the inner dynein arm complexes within flagella [3, 4]. Previous work showed that treating Chlamydomonas cells with the actin-depolymerizing compound cytochalasin D resulted in reversible flagellar shortening [5], but how actin is related to flagellar length or assembly remains unknown. Here we utilize small-molecule inhibitors and genetic mutants to analyze the role of actin dynamics in flagellar assembly in Chlamydomonas reinhardtii. We demonstrate that actin plays a role in IFT recruitment to basal bodies during flagellar elongation and that when actin is perturbed, the normal dependence of IFT recruitment on flagellar length is lost. We also find that actin is required for sufficient entry of IFT material into flagella during assembly. These same effects are recapitulated with a myosin inhibitor, suggesting that actin may act via myosin in a pathway by which flagellar assembly is regulated by flagellar length.

  17. 75 FR 20825 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Part 211...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... Defense Acquisition Regulations System Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Part 211, Describing Agency Needs AGENCY: Defense Acquisition Regulations System... the message. Fax: 703-602-0350. Mail: Defense Acquisition Regulations System, Attn: Ms....

  18. 75 FR 10790 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... Defense Acquisition Regulations System Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Notification Requirements for Critical Safety Items AGENCY: Defense Acquisition... Supplement (DFARS) Notification Requirements for Critical Safety Items; OMB Control Number 0704-0441....

  19. Pheromone-regulated genes required for yeast mating differentiation.

    PubMed

    Erdman, S; Lin, L; Malczynski, M; Snyder, M

    1998-02-09

    Yeast cells mate by an inducible pathway that involves agglutination, mating projection formation, cell fusion, and nuclear fusion. To obtain insight into the mating differentiation of Saccharomyces cerevisiae, we carried out a large-scale transposon tagging screen to identify genes whose expression is regulated by mating pheromone. 91,200 transformants containing random lacZ insertions were screened for beta-galactosidase (beta-gal) expression in the presence and absence of alpha factor, and 189 strains containing pheromone-regulated lacZ insertions were identified. Transposon insertion alleles corresponding to 20 genes that are novel or had not previously been known to be pheromone regulated were examined for effects on the mating process. Mutations in four novel genes, FIG1, FIG2, KAR5/ FIG3, and FIG4 were found to cause mating defects. Three of the proteins encoded by these genes, Fig1p, Fig2p, and Fig4p, are dispensible for cell polarization in uniform concentrations of mating pheromone, but are required for normal cell polarization in mating mixtures, conditions that involve cell-cell communication. Fig1p and Fig2p are also important for cell fusion and conjugation bridge shape, respectively. The fourth protein, Kar5p/Fig3p, is required for nuclear fusion. Fig1p and Fig2p are likely to act at the cell surface as Fig1:: beta-gal and Fig2::beta-gal fusion proteins localize to the periphery of mating cells. Fig4p is a member of a family of eukaryotic proteins that contain a domain homologous to the yeast Sac1p. Our results indicate that a variety of novel genes are expressed specifically during mating differentiation to mediate proper cell morphogenesis, cell fusion, and other steps of the mating process.

  20. 78 FR 70294 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Defense Acquisition Regulations System Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Administrative Matters AGENCY: Defense Acquisition Regulations System, Department of... technology. The Office of Management and Budget (OMB) has approved this information collection under...

  1. 78 FR 67133 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... Defense Acquisition Regulations System Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Publicizing Contract Actions AGENCY: Defense Acquisition Regulation System, Department... technology. The Office of Management and Budget (OMB) has approved this information collection...

  2. 78 FR 67132 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... Defense Acquisition Regulations System Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Contract Pricing AGENCY: Defense Acquisition Regulations System, Department of Defense... technology. The Office of Management and Budget (OMB) has approved this information collection under...

  3. 78 FR 68829 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF DEFENSE Defense Acquisition Regulations System Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Contract Financing AGENCY: Defense Acquisition Regulations System, Department...

  4. 77 FR 58817 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement (DFARS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-24

    ... Defense Acquisition Regulations System Information Collection Requirement; Defense Federal Acquisition Regulation Supplement (DFARS); Contract Financing AGENCY: Defense Acquisition Regulations System, Department... technology. The Office of Management and Budget (OMB) has approved this information collection for...

  5. translin is required for metabolic regulation of sleep

    PubMed Central

    Stahl, Bethany A.; Masek, Pavel; Mehta, Aradhana; Heidker, Rebecca; Bollinger, Wesley; Gingras, Robert M.; Kim, Young-Joon; Ja, William W.; Suter, Beat; DiAngelo, Justin R.; Keene, Alex C.

    2016-01-01

    Summary Dysregulation of sleep or feeding has enormous health consequences. In humans, acute sleep loss is associated with increased appetite and insulin insensitivity, while chronically sleep-deprived individuals are more likely to develop obesity, metabolic syndrome, type II diabetes, and cardiovascular disease. Conversely, metabolic state potently modulates sleep and circadian behavior; yet, the molecular basis for sleep-metabolism interactions remains poorly understood. Here, we describe the identification of translin (trsn), a highly conserved RNA/DNA binding protein, as essential for starvation-induced sleep suppression. Strikingly, trsn does not appear to regulate energy stores, free glucose levels, or feeding behavior suggesting the sleep phenotype of trsn mutant flies is not a consequence of general metabolic dysfunction or blunted response to starvation. While broadly expressed in all neurons, trsn is transcriptionally upregulated in the heads of flies in response to starvation. Spatially restricted rescue or targeted knockdown localizes trsn function to neurons that produce the tachykinin-family neuropeptide Leucokinin. Manipulation of neural activity in Leucokinin neurons revealed these neurons to be required for starvation-induced sleep suppression. Taken together, these findings establish trsn as an essential integrator of sleep and metabolic state, with implications for understanding the neural mechanism underlying sleep disruption in response to environmental perturbation. PMID:27020744

  6. Army Regulation 71-9, Materiel Requirements, 30 April 1997

    DTIC Science & Technology

    1998-08-01

    provides the policy for streamlining requirements through horizontal technology integration and the Warfighting Rapid Acquisition Program; and (6) updates policies for preparing requirements documents and conducting supporting analyses.

  7. Discovery of a Splicing Regulator Required for Cell Cycle Progression

    SciTech Connect

    Suvorova, Elena S.; Croken, Matthew; Kratzer, Stella; Ting, Li-Min; Conde de Felipe, Magnolia; Balu, Bharath; Markillie, Lye Meng; Weiss, Louis M.; Kim, Kami; White, Michael W.

    2013-02-01

    In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.

  8. 76 FR 72915 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; DoD...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... appropriate frequency allocation has not been made. Ynette R. Shelkin, Editor, Defense Acquisition Regulations... Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; DoD Acquisition Process... following methods: Regulations.gov : http://www.regulations.gov . Submit comments via the Federal...

  9. 76 FR 35424 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... Regulation Supplement; Acquisition of Information Technology AGENCY: Defense Acquisition Regulations System... technology. The Office of Management and Budget (OMB) has approved this information collection requirement... Supplement (DFARS) Part 239, Acquisition of Information Technology, and the associated clauses at DFARS...

  10. 49 CFR 171.26 - Additional requirements for the use of the IAEA Regulations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GENERAL INFORMATION, REGULATIONS, AND DEFINITIONS Authorization and Requirements for the Use of... passing through the United States in the course of being shipped between places outside the United...

  11. 75 FR 60263 - Federal Acquisition Regulation; Offering a Construction Requirement-8(a) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... Federal Acquisition Regulation; Offering a Construction Requirement--8(a) Program AGENCIES: Department of... Regulations Council (Councils) are issuing a final rule amending the Federal Acquisition Regulation (FAR) to revise FAR subpart 19.8, Contracting with the Small Business Administration (The 8(a) Program),...

  12. 49 CFR 171.26 - Additional requirements for the use of the IAEA Regulations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... may be offered for transportation or transported in accordance with the IAEA Regulations (IBR, see... 49 Transportation 2 2013-10-01 2013-10-01 false Additional requirements for the use of the IAEA Regulations. 171.26 Section 171.26 Transportation Other Regulations Relating to Transportation PIPELINE...

  13. 49 CFR 171.26 - Additional requirements for the use of the IAEA Regulations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... may be offered for transportation or transported in accordance with the IAEA Regulations (IBR, see... 49 Transportation 2 2012-10-01 2012-10-01 false Additional requirements for the use of the IAEA Regulations. 171.26 Section 171.26 Transportation Other Regulations Relating to Transportation PIPELINE...

  14. 78 FR 80369 - Federal Acquisition Regulation; Service Contracts Reporting Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... Contracts Reporting Requirements AGENCIES: Department of Defense (DoD), General Services Administration (GSA... contractors for executive agencies, except where DoD has fully funded the contract or order, to submit information annually in support of agency-level inventories for service contracts. DATES: Effective:...

  15. 78 FR 25795 - Contractor Legal Management Requirements; Acquisition Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... commonplace among businesses. The Legal Management Plan assists Department Counsel in understanding the... developing an understanding of the contractor's internal legal resources. Although not determinative on its... budget developed in paragraph (c) of the section, but that the particularized budget requirement for...

  16. Compliance with 504 regulations need not require costly renovation.

    PubMed

    Rees, F W; Gary, J G

    1978-05-16

    By June 3, 1980, all hospitals receiving federal funds must have completed plans to make facilities accessible to the handicapped. In many instances, doing so will require hospitals to renovate existing facilities. However, through careful interpretation of the law and creative planning, hospitals can avoid making expensive, unnecessary building modifications.

  17. Prediction of Regulation Reserve Requirements in California ISO Control Area based on BAAL Standard

    SciTech Connect

    Etingov, Pavel V.; Makarov, Yuri V.; Samaan, Nader A.; Ma, Jian; Loutan, Clyde

    2013-07-21

    This paper presents new methodologies developed at Pacific Northwest National Laboratory (PNNL) to estimate regulation capacity requirements in the California ISO control area. Two approaches have been developed: (1) an approach based on statistical analysis of actual historical area control error (ACE) and regulation data, and (2) an approach based on balancing authority ACE limit control performance standard. The approaches predict regulation reserve requirements on a day-ahead basis including upward and downward requirements, for each operating hour of a day. California ISO data has been used to test the performance of the proposed algorithms. Results show that software tool allows saving up to 30% on the regulation procurements cost .

  18. 75 FR 68330 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... occupational safety. DoD contracting officers use this information to-- Verify compliance with requirements for... Defense Acquisition Regulations System Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Occupational Safety and Drug-Free Work Force (OMB Control Number 0704-0272)...

  19. 76 FR 71707 - Revising Underground Storage Tank Regulations-Revisions to Existing Requirements and New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ...EPA is proposing to make certain revisions to the 1988 underground storage tank (UST) technical, financial responsibility, and state program approval regulations. These changes establish federal requirements that are similar to key portions of the Energy Policy Act of 2005; they also update certain 1988 UST regulations. Proposed changes include: Adding secondary containment requirements for......

  20. [Legal framework of data protection : current requirements in Germany and requirements in planned European Union regulations].

    PubMed

    Schütze, B

    2013-05-01

    The federal system in Germany necessitates that in addition to federal laws, country and church-specific legislations must also be considered during the evaluation of relevant legal stipulations concerning data protection. Furthermore, there are also special legal regulations for hospitals in almost every federal state which are governed by the principle of subsidiarity: special legal regulations are to be preferentially used, so that findings from one federal state are difficult to transfer to another federal state.Patient data may only be used and processed without legal regulations with informed consent of the patient. The use of patient data for purposes of quality assurance, research and further education of students and doctors is possible under the present laws according to a positive weighting of interests. Patient data can also be exchanged via online services for the purposes of patient care; however, informed consent of the patient for medical online services is almost always unavoidable.

  1. GRIP1 is required for homeostatic regulation of AMPAR trafficking

    PubMed Central

    Tan, Han L.; Queenan, Bridget N.; Huganir, Richard L.

    2015-01-01

    Homeostatic plasticity is a negative feedback mechanism that stabilizes neurons during periods of perturbed activity. The best-studied form of homeostatic plasticity in the central nervous system is the scaling of excitatory synapses. Postsynaptic AMPA-type glutamate receptors (AMPARs) can be inserted into synapses to compensate for neuronal inactivity or removed to compensate for hyperactivity. However, the molecular mechanisms underlying the homeostatic regulation of AMPARs remain elusive. Here, we show that the expression of GRIP1, a multi-PDZ (postsynaptic density 95/discs large/zona occludens) domain AMPAR-binding protein, is bidirectionally altered by neuronal activity. Furthermore, we observe a subcellular redistribution of GRIP1 and a change in the binding of GRIP1 to GluA2 during synaptic scaling. Using a combination of biochemical, genetic, and electrophysiological methods, we find that loss of GRIP1 blocks the accumulation of surface AMPARs and the scaling up of synaptic strength that occur in response to chronic activity blockade. Collectively, our data point to an essential role of GRIP1-mediated AMPAR trafficking during inactivity-induced synaptic scaling. PMID:26216979

  2. [On meeting sanitary legal requirements in technical regulation of medical equipment safety].

    PubMed

    Kravchenko, O K; Prokopenko, L V

    2007-01-01

    The article covered observance of sanitary legal requirements in special technical regulations "On requirements to medical equipment and medical products safety". The authors discussed problems of applied terminology, classification of medical products, occupational risk, control over observance of safety requirements on all stages of medical products circulation--design, production, usage.

  3. 42 CFR 417.478 - Requirements of other laws and regulations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Requirements of other laws and regulations. 417.478 Section 417.478 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... HEALTH CARE PREPAYMENT PLANS Medicare Contract Requirements § 417.478 Requirements of other laws...

  4. 78 FR 32547 - Loan Originator Compensation Requirements Under the Truth in Lending Act (Regulation Z...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... PROTECTION 12 CFR Part 1026 RIN 3170-AA37 Loan Originator Compensation Requirements Under the Truth in... Compensation Requirements under the Truth in Lending Act (Regulation Z) Final Rule, issued on January 20, 2013...\\ One of these final rules was the Loan Originator Compensation Requirements Under the Truth in...

  5. 77 FR 66464 - Federal Acquisition Regulation; Submission for OMB Review; Value Engineering Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    ... Regulation; Submission for OMB Review; Value Engineering Requirements AGENCIES: Department of Defense (DOD... the Office of Management and Budget (OMB) a request to review and approve an extension of a previously approved information collection requirement concerning Value Engineering Requirements. A notice...

  6. 75 FR 14448 - Food and Drug Administration Clinical Trial Requirements, Regulations, Compliance, and Good...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... HUMAN SERVICES Food and Drug Administration Food and Drug Administration Clinical Trial Requirements, Regulations, Compliance, and Good Clinical Practices; Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public workshop. SUMMARY: The Food and Drug Administration (FDA) Los...

  7. 76 FR 72914 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Government...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... Defense Acquisition Regulations System Information Collection Requirement; Defense Federal Acquisition... techniques or other forms of information technology. The Office of Management and Budget (OMB) has approved... Foreign Disclosure and Technical Information System,'' and is used when directed by the plant...

  8. 49 CFR 1013.3 - Review and reporting requirements for regulated carriers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... THE PROPER USE OF VOTING TRUSTS § 1013.3 Review and reporting requirements for regulated carriers. (a... applicant shows, by clear and convincing evidence, and the Board finds, that the failure to comply...

  9. 7 CFR 318.13-3 - General requirements for all regulated articles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE STATE OF HAWAII AND TERRITORIES QUARANTINE NOTICES Regulated Articles From Hawaii and the Territories § 318.13-3 General requirements for...

  10. 7 CFR 318.13-3 - General requirements for all regulated articles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE STATE OF HAWAII AND TERRITORIES QUARANTINE NOTICES Regulated Articles From Hawaii and the Territories § 318.13-3 General requirements for...

  11. 7 CFR 318.13-3 - General requirements for all regulated articles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE STATE OF HAWAII AND TERRITORIES QUARANTINE NOTICES Regulated Articles From Hawaii and the Territories § 318.13-3 General requirements for...

  12. 76 FR 14562 - Federal Acquisition Regulation; Additional Requirements for Market Research

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... 52 RIN 9000-AL50 Federal Acquisition Regulation; Additional Requirements for Market Research AGENCY... interim rule amending the Federal Acquisition Regulation (FAR) to implement section 826, Market Research... items engages in market research as necessary before making purchases. DATES: Effective Date: April...

  13. 78 FR 72620 - Federal Acquisition Regulation; Higher-Level Contract Quality Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ...(s). Examples of higher-level quality standards include, but are not limited to, ISO 9001, ASQ E... RIN 9000-AM65 Federal Acquisition Regulation; Higher-Level Contract Quality Requirements AGENCY... Acquisition Regulation (FAR) to clarify when to use higher-level quality standards in solicitations...

  14. 7 CFR 318.13-3 - General requirements for all regulated articles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false General requirements for all regulated articles. 318.13-3 Section 318.13-3 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND... consignment is of such a nature that no danger of infestation or infection is involved. (i) Persons...

  15. 7 CFR 330.200 - Movement of plant pests regulated; permits required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of plant pests regulated; permits required... AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FEDERAL PLANT PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant Pests § 330.200 Movement...

  16. 2 CFR 170.200 - Requirements for program announcements, regulations, and application instructions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2 Grants and Agreements 1 2014-01-01 2014-01-01 false Requirements for program announcements, regulations, and application instructions. 170.200 Section 170.200 Grants and Agreements Office of Management... Transparency Act reporting requirements; and (2) That either: (i) Is issued on or after the effective date...

  17. 2 CFR 170.200 - Requirements for program announcements, regulations, and application instructions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 2 Grants and Agreements 1 2012-01-01 2012-01-01 false Requirements for program announcements, regulations, and application instructions. 170.200 Section 170.200 Grants and Agreements Office of Management... are subject to Transparency Act reporting requirements; and (2) That either: (i) Is issued on or...

  18. 2 CFR 170.200 - Requirements for program announcements, regulations, and application instructions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 2 Grants and Agreements 1 2013-01-01 2013-01-01 false Requirements for program announcements, regulations, and application instructions. 170.200 Section 170.200 Grants and Agreements Office of Management... are subject to Transparency Act reporting requirements; and (2) That either: (i) Is issued on or...

  19. 76 FR 2827 - Regulated Navigation Area; Reporting Requirements for Barges Loaded With Certain Dangerous...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... Regulated Navigation Area (RNA) established by 33 CFR 165.921 for barges loaded with certain dangerous... requirements, or repeal the RNA. This suspension of the CDC reporting requirements in no way relieves towing vessel operators and fleeting area managers responsible for CDC barges in the RNA from their...

  20. 78 FR 25 - Regulated Navigation Area; Reporting Requirements for Barges Loaded With Certain Dangerous...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-02

    ... requirements under the Regulated Navigation Area (RNA) established by 33 CFR 165.830 for barges loaded with... managers responsible for CDC barges in the RNA from their dangerous cargo or vessel arrival and movement... contract and lift the suspension, modify the reporting requirements in the RNA, or repeal the...

  1. 2 CFR 170.200 - Requirements for program announcements, regulations, and application instructions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 2 Grants and Agreements 1 2011-01-01 2011-01-01 false Requirements for program announcements, regulations, and application instructions. 170.200 Section 170.200 Grants and Agreements Office of Management... Act reporting requirements; and (2) That either: (i) Is issued on or after the effective date of...

  2. 12 CFR 350.12 - Disclosure required by applicable banking or securities law or regulations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Disclosure required by applicable banking or securities law or regulations. 350.12 Section 350.12 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION... STATE NONMEMBER BANKS § 350.12 Disclosure required by applicable banking or securities law...

  3. 49 CFR 390.11 - Motor carrier to require observance of driver regulations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Motor carrier to require observance of driver... Motor carrier to require observance of driver regulations. Whenever in part 325 of subchapter A or in this subchapter a duty is prescribed for a driver or a prohibition is imposed upon the driver, it...

  4. 49 CFR 390.11 - Motor carrier to require observance of driver regulations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Motor carrier to require observance of driver... Motor carrier to require observance of driver regulations. Whenever in part 325 of subchapter A or in this subchapter a duty is prescribed for a driver or a prohibition is imposed upon the driver, it...

  5. 49 CFR 390.11 - Motor carrier to require observance of driver regulations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Motor carrier to require observance of driver... Motor carrier to require observance of driver regulations. Whenever in part 325 of subchapter A or in this subchapter a duty is prescribed for a driver or a prohibition is imposed upon the driver, it...

  6. 49 CFR 390.11 - Motor carrier to require observance of driver regulations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Motor carrier to require observance of driver... Motor carrier to require observance of driver regulations. Whenever in part 325 of subchapter A or in this subchapter a duty is prescribed for a driver or a prohibition is imposed upon the driver, it...

  7. 49 CFR 390.11 - Motor carrier to require observance of driver regulations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Motor carrier to require observance of driver... Motor carrier to require observance of driver regulations. Whenever in part 325 of subchapter A or in this subchapter a duty is prescribed for a driver or a prohibition is imposed upon the driver, it...

  8. Technical guidance document for environmental requirements of commercial OTEC licensing regulations (15 CFR Part 981)

    SciTech Connect

    Not Available

    1981-09-01

    This document provides a potential OTEC applicant with the insights believed needed to satisfy the environmental information requirements of the regulations for licensing commercial OTEC facilities and plantships. This information should be used by applicants to define the site-specific details of the needed environmental assessment, and the details should then form a basis for pre-application consultations on the environmental requirements.

  9. 17 CFR 230.508 - Insignificant deviations from a term, condition or requirement of Regulation D.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false Insignificant deviations from a term, condition or requirement of Regulation D. 230.508 Section 230.508 Commodity and Securities... Securities Act of 1933 § 230.508 Insignificant deviations from a term, condition or requirement of...

  10. 31 CFR 103.120 - Anti-money laundering program requirements for financial institutions regulated by a Federal...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for financial institutions regulated by a Federal functional regulator or a self-regulatory... financial institutions regulated by a Federal functional regulator or a self-regulatory organization, and... futures commission merchants. A financial institution regulated by a self-regulatory organization shall...

  11. 12 CFR 925.8 - Subject to inspection and regulation requirement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... required by section 4(a)(1)(B) of the Act (12 U.S.C. 1424(a)(1)(B)) and § 925.6(a)(2) of this part, if, in... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Subject to inspection and regulation requirement. 925.8 Section 925.8 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN...

  12. 50 CFR 25.23 - What are the general regulations and information collection requirements?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... collect information to assist us in administering our programs in accordance with statutory authorities... information collection requirements? 25.23 Section 25.23 Wildlife and Fisheries UNITED STATES FISH AND... PROVISIONS Administrative Provisions § 25.23 What are the general regulations and information...

  13. Hydrogen Monitoring Requirements in the Global Technical Regulation on Hydrogen and Fuel Cell Vehicles: Preprint

    SciTech Connect

    Buttner, William; Rivkin, Carl; Burgess, Robert; Hartmann, Kevin; Bubar, Max; Post, Matthew; Boon-Brett, Lois; Weidner, Eveline; Moretto, Pietro

    2016-07-01

    The United Nations Global Technical Regulation (GTR) Number 13 (Global Technical Regulation on Hydrogen and Fuel Cell Vehicles) is the defining document regulating safety requirements in hydrogen vehicles, and in particular fuel cell electric vehicles (FCEV). GTR Number 13 has been formally implemented and will serve as the basis for the national regulatory standards for FCEV safety in North America (Canada, United States), Japan, Korea, and the European Union. The GTR defines safety requirement for these vehicles, including specifications on the allowable hydrogen levels in vehicle enclosures during in-use and post-crash conditions and on the allowable hydrogen emissions levels in vehicle exhaust during certain modes of normal operation. However, in order to be incorporated into national regulations, that is, in order to be binding, methods to verify compliance to the specific requirements must exist. In a collaborative program, the Sensor Laboratories at the National Renewable Energy Laboratory in the United States and the Joint Research Centre, Institute for Energy and Transport in the Netherlands have been evaluating and developing analytical methods that can be used to verify compliance to the hydrogen release requirement as specified in the GTR.

  14. 77 FR 31026 - Requirements for Importing Food and Drug Administration Regulated Products Into the United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ... respect to importing pharmaceutical products, medical devices, food products, as well as technology which... No: 2012-12592] DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Requirements for Importing Food and Drug Administration Regulated Products Into the...

  15. 50 CFR 14.254 - What are the requirements contained in these regulations?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 1 2010-10-01 2010-10-01 false What are the requirements contained in these regulations? 14.254 Section 14.254 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... IMPORTATION OF WILDLIFE AND PLANTS IMPORTATION, EXPORTATION, AND TRANSPORTATION OF WILDLIFE Captive...

  16. 42 CFR 417.478 - Requirements of other laws and regulations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Requirements of other laws and regulations. 417.478 Section 417.478 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) HEALTH MAINTENANCE ORGANIZATIONS, COMPETITIVE...

  17. 13 CFR 120.1511 - Certification and other reporting and notification requirements for Other Regulated SBLCs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Certification and other reporting and notification requirements for Other Regulated SBLCs. 120.1511 Section 120.1511 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Risk-Based Lender Oversight Enforcement Actions §...

  18. 78 FR 4032 - Prompt Corrective Action, Requirements for Insurance, and Promulgation of NCUA Rules and Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... more than six percent. If a ``complex'' credit union fails its risk-based net worth requirement, the... From the Federal Register Online via the Government Publishing Office NATIONAL CREDIT UNION..., and Promulgation of NCUA Rules and Regulations AGENCY: National Credit Union Administration...

  19. 21 CFR 369.21 - Drugs; warning and caution statements required by regulations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Drugs; warning and caution statements required by regulations. 369.21 Section 369.21 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS FOR HUMAN USE INTERPRETATIVE STATEMENTS RE WARNINGS ON DRUGS AND DEVICES...

  20. 77 FR 51686 - Specialty Crops; Import Regulations; New Pistachio Import Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... Agricultural Marketing Service 7 CFR Part 999 Specialty Crops; Import Regulations; New Pistachio Import Requirements AGENCY: Agricultural Marketing Service, USDA. ACTION: Final rule. SUMMARY: This rule establishes a...: Laurel May or Kathleen Finn, Marketing Order and Agreement Division, Fruit and Vegetable Programs,...

  1. 27 CFR 70.411 - Imposition of taxes, qualification requirements, and regulations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Provisions Relating to Distilled Spirits, Wines, and Beer § 70.411 Imposition of taxes, qualification... distilled spirits (including alcohol), wine and beer. (b) Qualification requirements. Distillers, winemakers... beer which are within the jurisdiction of TTB are published in the regulations described in...

  2. 27 CFR 70.411 - Imposition of taxes, qualification requirements, and regulations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Provisions Relating to Distilled Spirits, Wines, and Beer § 70.411 Imposition of taxes, qualification... distilled spirits (including alcohol), wine and beer. (b) Qualification requirements. Distillers, winemakers... beer which are within the jurisdiction of TTB are published in the regulations described in...

  3. 27 CFR 70.411 - Imposition of taxes, qualification requirements, and regulations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Provisions Relating to Distilled Spirits, Wines, and Beer § 70.411 Imposition of taxes, qualification... distilled spirits (including alcohol), wine and beer. (b) Qualification requirements. Distillers, winemakers... beer which are within the jurisdiction of TTB are published in the regulations described in...

  4. 27 CFR 70.411 - Imposition of taxes, qualification requirements, and regulations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Provisions Relating to Distilled Spirits, Wines, and Beer § 70.411 Imposition of taxes, qualification... distilled spirits (including alcohol), wine and beer. (b) Qualification requirements. Distillers, winemakers... beer which are within the jurisdiction of TTB are published in the regulations described in...

  5. 78 FR 38234 - Defense Federal Acquisition Regulation Supplement: Requirements for Acquisitions Pursuant to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... convention. Delete 216.501-1. Only ``Multiple-award contract'' was defined and it was only used in 216.505-70... Acquisition Regulation Supplement: Requirements for Acquisitions Pursuant to Multiple Award Contracts (DFARS... pursuant to multiple award contracts. Increasing savings in expenditures through competition is...

  6. 40 CFR 152.25 - Exemptions for pesticides of a character not requiring FIFRA regulation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wood against insect or fungus infestation), if the pesticide is registered for such use. (b) Pheromones... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Exemptions for pesticides of a character not requiring FIFRA regulation. 152.25 Section 152.25 Protection of Environment...

  7. 40 CFR 152.25 - Exemptions for pesticides of a character not requiring FIFRA regulation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wood against insect or fungus infestation), if the pesticide is registered for such use. (b) Pheromones... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Exemptions for pesticides of a character not requiring FIFRA regulation. 152.25 Section 152.25 Protection of Environment...

  8. 40 CFR 152.25 - Exemptions for pesticides of a character not requiring FIFRA regulation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wood against insect or fungus infestation), if the pesticide is registered for such use. (b) Pheromones... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Exemptions for pesticides of a character not requiring FIFRA regulation. 152.25 Section 152.25 Protection of Environment...

  9. 40 CFR 152.25 - Exemptions for pesticides of a character not requiring FIFRA regulation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wood against insect or fungus infestation), if the pesticide is registered for such use. (b) Pheromones... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Exemptions for pesticides of a character not requiring FIFRA regulation. 152.25 Section 152.25 Protection of Environment...

  10. 40 CFR 152.25 - Exemptions for pesticides of a character not requiring FIFRA regulation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wood against insect or fungus infestation), if the pesticide is registered for such use. (b) Pheromones... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Exemptions for pesticides of a character not requiring FIFRA regulation. 152.25 Section 152.25 Protection of Environment...

  11. 78 FR 4788 - Regulated Navigation Area; Reporting Requirements for Barges Loaded With Certain Dangerous...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ... SECURITY Coast Guard 33 CFR Part 165 [USCG-2013-0019 RIN 1625-AA11 Regulated Navigation Area; Reporting Requirements for Barges Loaded With Certain Dangerous Cargoes, Inland Rivers, Ninth Coast Guard District; Stay (Suspension) AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Commander, Ninth Coast...

  12. 77 FR 24611 - Removal of Regulations Requiring 3% Withholding by Government Entities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... affects government entities that would have been required to withhold and report tax from payments to... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY... Government Entities AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Final regulations....

  13. 77 FR 34927 - National Pollutant Discharge Elimination System-Proposed Regulations To Establish Requirements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ...--Proposed Regulations To Establish Requirements for Cooling Water Intake Structures at Existing Facilities... standards for cooling water intake structures at all existing power generating, manufacturing, and industrial facilities as part of implementing section 316(b) of the Clean Water Act (CWA). This...

  14. 77 FR 34315 - National Pollutant Discharge Elimination System-Proposed Regulations to Establish Requirements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... operates at a minimum cycles of concentration of 3.0 for freshwater and 1.5 for saltwater or brackish water...--Proposed Regulations to Establish Requirements for Cooling Water Intake Structures at Existing Facilities... proposed standards for cooling water intake structures at all existing power generating facilities...

  15. RCRA corrective action permit requirements and modifications under Subpart F regulations. RCRA Information Brief

    SciTech Connect

    Coalgate, J.

    1993-07-01

    The ground water protection requirements under the Resource Conservation and Recovery Act (RCRA), 40 CFR 264, Subpart F, apply to surface impoundments, waste plies, land treatment units, and landfills that received hazardous waste after July 26,1982 (i.e., regulated units). There are three phases to the Subpart F ground water protection requirements: detection monitoring, compliance monitoring, and corrective action. Subpart F corrective action applies to remediation of ground water contamination resulting from releases from regulated units at a treatment, storage, or disposal facility (TSDF). The TSDF owner or operator is responsible for complying with these requirements. This Information Brief provides information on the permit requirements under Subpart F. This Information Brief is one of a series on RCRA corrective action. The first step in the permitting process is for the facility to determine the need for ground-water monitoring. The regulations found in 40 CFR 264 Sections 264.90 to 264.100 (Subpart F) apply to all regulated units. A ``regulated unit`` is defined as a surface impoundment, waste pile, landfill, or land treatment unit that received hazardous waste after July 26, 1982. Such units require a permit under RCRA. Subpart F entails a three-phased program designed to detect, evaluate, and, if necessary, respond to ground water contamination. The ground-water protection standard, including identification of maximum contaminant levels (MCLs) under the Safe Drinking Water Act (SDWA) and alternate concentration limits (ACLs), is established with the permit application. Where MCLs and ACLs cannot be established, the standard may be established at background levels.

  16. Strabismus requires Flamingo and Prickle function to regulate tissue polarity in the Drosophila eye.

    PubMed

    Rawls, Amy S; Wolff, Tanya

    2003-05-01

    Tissue polarity in Drosophila is regulated by a number of genes that are thought to function in a complex, many of which interact genetically and/or physically, co-localize, and require other tissue polarity proteins for their localization. We report the enhancement of the strabismus tissue polarity phenotype by mutations in two other tissue polarity genes, flamingo and prickle. Flamingo is autonomously required for the establishment of ommatidial polarity. Its localization is dynamic throughout ommatidial development and is dependent on Frizzled and Notch. Flamingo and Strabismus co-localize for several rows posterior to the morphogenetic furrow and subsequently diverge. While neither of these proteins is required for the other's localization, Prickle localization is influenced by Strabismus function. Our data suggest that Strabismus, Flamingo and Prickle function together to regulate the establishment of tissue polarity in the Drosophila eye.

  17. Root growth regulation and gravitropism in maize roots does not require the epidermis

    NASA Technical Reports Server (NTRS)

    Bjorkman, T.; Cleland, R. E.

    1991-01-01

    We have earlier published observations showing that endogenous alterations in growth rate during gravitropism in maize roots (Zea mays L.) are unaffected by the orientation of cuts which remove epidermal and cortical tissue in the growing zone (Bjorkman and Cleland, 1988, Planta 176, 513-518). We concluded that the epidermis and cortex are not essential for transporting a growth-regulating signal in gravitropism or straight growth, nor for regulating the rate of tissue expansion. This conclusion has been challenged by Yang et al. (1990, Planta 180, 530-536), who contend that a shallow girdle around the entire perimeter of the root blocks gravitropic curvature and that this inhibition is the result of a requirement for epidermal cells to transport the growth-regulating signal. In this paper we demonstrate that the entire epidermis can be removed without blocking gravitropic curvature and show that the position of narrow girdles does not affect the location of curvature. We therefore conclude that the epidermis is not required for transport of a growth-regulating substance from the root cap to the growing zone, nor does it regulate the growth rate of the elongating zone of roots.

  18. MetR-Regulated Vibrio cholerae Metabolism Is Required for Virulence

    PubMed Central

    Bogard, Ryan W.; Davies, Bryan W.; Mekalanos, John J.

    2012-01-01

    ABSTRACT LysR-type transcriptional regulators (LTTRs) are the largest, most diverse family of prokaryotic transcription factors, with regulatory roles spanning metabolism, cell growth and division, and pathogenesis. Using a sequence-defined transposon mutant library, we screened a panel of V. cholerae El Tor mutants to identify LTTRs required for host intestinal colonization. Surprisingly, out of 38 LTTRs, only one severely affected intestinal colonization in the suckling mouse model of cholera: the methionine metabolism regulator, MetR. Genetic analysis of genes influenced by MetR revealed that glyA1 and metJ were also required for intestinal colonization. Chromatin immunoprecipitation of MetR and quantitative reverse transcription-PCR (qRT-PCR) confirmed interaction with and regulation of glyA1, indicating that misregulation of glyA1 is likely responsible for the colonization defect observed in the metR mutant. The glyA1 mutant was auxotrophic for glycine but exhibited wild-type trimethoprim sensitivity, making folate deficiency an unlikely cause of its colonization defect. MetJ regulatory mutants are not auxotrophic but are likely altered in the regulation of amino acid-biosynthetic pathways, including those for methionine, glycine, and serine, and this misregulation likely explains its colonization defect. However, mutants defective in methionine, serine, and cysteine biosynthesis exhibited wild-type virulence, suggesting that these amino acids can be scavenged in vivo. Taken together, our results suggest that glycine biosynthesis may be required to alleviate an in vivo nutritional restriction in the mouse intestine; however, additional roles for glycine may exist. Irrespective of the precise nature of this requirement, this study illustrates the importance of pathogen metabolism, and the regulation thereof, as a virulence factor. PMID:23015737

  19. The RNA-binding protein Rbfox1 regulates splicing required for skeletal muscle structure and function

    PubMed Central

    Pedrotti, Simona; Giudice, Jimena; Dagnino-Acosta, Adan; Knoblauch, Mark; Singh, Ravi K.; Hanna, Amy; Mo, Qianxing; Hicks, John; Hamilton, Susan; Cooper, Thomas A.

    2015-01-01

    The Rbfox family of RNA-binding proteins is highly conserved with established roles in alternative splicing (AS) regulation. High-throughput studies aimed at understanding transcriptome remodeling have revealed skeletal muscle as displaying one of the largest number of AS events. This finding is consistent with requirements for tissue-specific protein isoforms needed to sustain muscle-specific functions. Rbfox1 is abundant in vertebrate brain, heart and skeletal muscle. Genome-wide genetic approaches have linked the Rbfox1 gene to autism, and a brain-specific knockout mouse revealed a critical role for this splicing regulator in neuronal function. Moreover, a Caenorhabditis elegans Rbfox1 homolog regulates muscle-specific splicing. To determine the role of Rbfox1 in muscle function, we developed a conditional knockout mouse model to specifically delete Rbfox1 in adult tissue. We show that Rbfox1 is required for muscle function but a >70% loss of Rbfox1 in satellite cells does not disrupt muscle regeneration. Deep sequencing identified aberrant splicing of multiple genes including those encoding myofibrillar and cytoskeletal proteins, and proteins that regulate calcium handling. Ultrastructure analysis of Rbfox1−/− muscle by electron microscopy revealed abundant tubular aggregates. Immunostaining showed mislocalization of the sarcoplasmic reticulum proteins Serca1 and Ryr1 in a pattern indicative of colocalization with the tubular aggregates. Consistent with mislocalization of Serca1 and Ryr1, calcium handling was drastically altered in Rbfox1−/− muscle. Moreover, muscle function was significantly impaired in Rbfox1−/− muscle as indicated by decreased force generation. These results demonstrate that Rbfox1 regulates a network of AS events required to maintain multiple aspects of muscle physiology. PMID:25575511

  20. p73 is Required for Multiciliogenesis and Regulates the Foxj1-Associated Gene Network

    PubMed Central

    Marshall, Clayton B; Mays, Deborah J; Beeler, J Scott; Rosenbluth, Jennifer M; Boyd, Kelli L; Guasch, Gabriela L Santos; Shaver, Timothy M; Tang, Lucy J; Liu, Qi; Shyr, Yu; Venters, Bryan J; Magnuson, Mark A; Pietenpol, Jennifer A

    2016-01-01

    Summary We report that p73 is expressed in multiciliated cells (MCCs), is required for MCC differentiation, and directly regulates transcriptional modulators of multiciliogenesis. Loss of ciliary biogenesis provides a unifying mechanism for many phenotypes observed in p73 knockout mice including hydrocephalus, hippocampal dysgenesis, sterility and chronic inflammation/infection of lung, middle ear and sinus. Through p73 and p63 ChIP-seq using murine tracheal cells, we identified over 100 putative p73 target genes that regulate MCC differentiation and homeostasis. We validated Foxj1, a transcriptional regulator of multiciliogenesis, and many other cilia-associated genes as direct target genes of p73 and p63. We show p73 and p63 are co-expressed in a subset of basal cells, and suggest that p73 ‘marks’ these cells for MCC differentiation. In sum, p73 is essential for MCC differentiation, functions as a critical regulator of a transcriptome required for MCC differentiation and, like p63, has an essential role in development of tissues. PMID:26947080

  1. Cryptococcus neoformans Mediator Protein Ssn8 Negatively Regulates Diverse Physiological Processes and Is Required for Virulence

    PubMed Central

    Wang, Lin-Ing; Lin, Yu-Sheng; Liu, Kung-Hung; Jong, Ambrose Y.; Shen, Wei-Chiang

    2011-01-01

    Cryptococcus neoformans is a ubiquitously distributed human pathogen. It is also a model system for studying fungal virulence, physiology and differentiation. Light is known to inhibit sexual development via the evolutionarily conserved white collar proteins in C. neoformans. To dissect molecular mechanisms regulating this process, we have identified the SSN8 gene whose mutation suppresses the light-dependent CWC1 overexpression phenotype. Characterization of sex-related phenotypes revealed that Ssn8 functions as a negative regulator in both heterothallic a-α mating and same-sex mating processes. In addition, Ssn8 is involved in the suppression of other physiological processes including invasive growth, and production of capsule and melanin. Interestingly, Ssn8 is also required for the maintenance of cell wall integrity and virulence. Our gene expression studies confirmed that deletion of SSN8 results in de-repression of genes involved in sexual development and melanization. Epistatic and yeast two hybrid studies suggest that C. neoformans Ssn8 plays critical roles downstream of the Cpk1 MAPK cascade and Ste12 and possibly resides at one of the major branches downstream of the Cwc complex in the light-mediated sexual development pathway. Taken together, our studies demonstrate that the conserved Mediator protein Ssn8 functions as a global regulator which negatively regulates diverse physiological and developmental processes and is required for virulence in C. neoformans. PMID:21559476

  2. putzig is required for cell proliferation and regulates notch activity in Drosophila.

    PubMed

    Kugler, Sabrina J; Nagel, Anja C

    2007-10-01

    We have identified the gene putzig (pzg) as a key regulator of cell proliferation and of Notch signaling in Drosophila. pzg encodes a Zn-finger protein that was found earlier within a macromolecular complex, including TATA-binding protein-related factor 2 (TRF2)/DNA replication-related element factor (DREF). This complex is involved in core promoter selection, where DREF functions as a transcriptional activator of replication-related genes. Here, we provide the first in vivo evidence that pzg is required for the expression of cell cycle and replication-related genes, and hence for normal developmental growth. Independent of its role in the TRF2/DREF complex, pzg acts as a positive regulator of Notch signaling that may occur by chromatin activation. Down-regulation of pzg activity inhibits Notch target gene activation, whereas Hedgehog (Hh) signal transduction and growth regulation are unaffected. Our findings uncover different modes of operation of pzg during imaginal development of Drosophila, and they provide a novel mechanism of Notch regulation.

  3. Regulated membrane protein entry into flagella is facilitated by cytoplasmic microtubules and does not require IFT.

    PubMed

    Belzile, Olivier; Hernandez-Lara, Carmen I; Wang, Qian; Snell, William J

    2013-08-05

    The membrane protein composition of the primary cilium, a key sensory organelle, is dynamically regulated during cilium-generated signaling [1, 2]. During ciliogenesis, ciliary membrane proteins, along with structural and signaling proteins, are carried through the multicomponent, intensely studied ciliary diffusion barrier at the base of the organelle [3-8] by intraflagellar transport (IFT) [9-18]. A favored model is that signaling-triggered accumulation of previously excluded membrane proteins in fully formed cilia [19-21] also requires IFT, but direct evidence is lacking. Here, in studies of regulated entry of a membrane protein into the flagellum of Chlamydomonas, we show that cells use an IFT-independent mechanism to breach the diffusion barrier at the flagellar base. In resting cells, a flagellar signaling component [22], the integral membrane polypeptide SAG1-C65, is uniformly distributed over the plasma membrane and excluded from the flagellar membrane. Flagellar adhesion-induced signaling triggers rapid, striking redistribution of the protein to the apical ends of the cells concomitantly with entry into the flagella. Protein polarization and flagellar enrichment are facilitated by cytoplasmic microtubules. Using a conditional anterograde IFT mutant, we demonstrate that the IFT machinery is not required for regulated SAG1-C65 entry into flagella. Thus, integral membrane proteins can negotiate passage through the ciliary diffusion barrier without the need for a motor.

  4. Metamorphic T3-response genes have specific co-regulator requirements

    PubMed Central

    Havis, Emmanuelle; Sachs, Laurent M.; Demeneix, Barbara A.

    2003-01-01

    Thyroid hormone receptors (TRs) have several regulatory functions in vertebrates. In the absence of thyroid hormone (T3; triiodothyronine), apo-TRs associate with co-repressors to repress transcription, whereas in the presence of T3, holo-TRs engage transcriptional coactivators. Although many studies have addressed the molecular mechanisms of T3 action, it is not known how specific physiological responses arise. We used T3-dependent amphibian metamorphosis to analyse how TRs interact with particular co-regulators to differentially regulate gene expression during development. Using chromatin immunoprecipitation to study tissue from pre-metamorphic tad-poles, we found that TRs are physically associated with T3-responsive promoters, whether or not T3 is present. Addition of T3 results in histone H4 acetylation specifically on T3-response genes. Most importantly, we show that individual T3-response genes have distinct co-regulator requirements, the T3-dependent co-repressor-to-coactivator switch being gene-specific for both co-regulator categories. PMID:12947412

  5. 50 years of biological research--from oxidative phosphorylation to energy requiring transport regulation.

    PubMed

    Kalckar, H M

    1991-01-01

    In 1930 adenosine triphosphate appeared in the literature from W. A. Engelhardt's work on avian erythrocytes. This was an early example of oxidative phosphorylation in intact cells, and it required methylene blue and oxygen. Both Belitser and I realized that the use of Warburg manometers for aeration was critical in order to generate oxidative phosphorylation of glucose in tissue preparations. Test tube techniques did not work. In 1956 we were able to describe a human type of diabetes called "galactose diabetes," in which consumption of human or cows' milk provokes mental retardation. Replacement of human or cows' milk products with "vegetable milk" formula in early infancy can prevent retardation. We determined that the disease results from a defect of galactose-one-phosphate uridylyl-transferase, a hereditary enzyme. This type of enzyme defect, if discovered and treated in early infancy, is a benign molecular disease. Regulation of transport systems in mammalian cell cultures are frequently complex energized systems. Perhaps my greatest surprise in this regard was the mere fact that an all-cis "odd" hexose-D-allose turned out to be a highly intense down-regulator of the hexose transport system. Additions of inhibitors of oxidative phosphorylation (such as oligomycin or di-nitrophenol) arrested the allose-mediated down-regulation. We have reason to suspect that the strong down-regulator is a phosphorylated form of D-allose. Thus ends my story about oxidative energized biological phosphorylation systems.

  6. Beyond transcription factors: The role of chromatin modifying enzymes in regulating transcription required for memory

    PubMed Central

    Barrett, Ruth M.; Wood, Marcelo A.

    2008-01-01

    One of the alluring aspects of examining chromatin modifications in the role of modulating transcription required for long-term memory processes is that these modifications may provide transient and potentially stable epigenetic marks in the service of activating and/or maintaining transcriptional processes. These, in turn, may ultimately participate in the molecular mechanisms required for neuronal changes subserving long-lasting changes in behavior. As an epigenetic mechanism of transcriptional control, chromatin modification has been shown to participate in maintaining cellular memory (e.g., cell fate) and may underlie the strengthening and maintenance of synaptic connections required for long-term changes in behavior. Epigenetics has become central to several fields of neurobiology, where researchers have found that regulation of chromatin modification has a significant role in epilepsy, drug addiction, depression, neurodegenerative diseases, and memory. In this review, we will discuss the role of chromatin modifying enzymes in memory processes, as well as how recent studies in yeast genetics and cancer biology may impact the way we think about how chromatin modification and chromatin remodeling regulate neuronal function. PMID:18583646

  7. Overestimation of required recovery time during repeated sprint exercise with self-regulated recovery.

    PubMed

    Phillips, Shaun M; Thompson, Richard; Oliver, Jon L

    2014-12-01

    This study investigated the reliability and accuracy of self-regulated recovery time and performance during repeated sprinting. On 4 occasions, 14 men (24.5 ± 5.0 years) completed 10 × 6 seconds cycle sprints against 7.5% body mass, self-regulating (SR) recovery time to maintain performance. Subjects then repeated the test, but with a reduced recovery (RR) of 10% less recovery time. Across the first 4 trials, there were no between-trial differences in peak power output (PPO) or mean power output (MPO), recovery time, or fatigue index (p > 0.05). Random variation in recovery time was reduced across trials 3-4 (coefficient of variation [CV] = 7.5%, 95% confidence limits [CL] = 5.4-12.4%) compared with trials 1-2 (CV = 16.0, 95% CL = 11.4-27.0%) and 2-3 (CV = 10.1%, 95% CL = 7.2-16.7%) but was consistent across trials for PPO and MPO (between-trials CV, ≤3.3%). There were no trial effects for any performance, physiological, or perceptual measures when comparing SR with RR (p > 0.05), although heart rate and perceptual measures increased with subsequent sprint efforts (p ≤ 0.05). After 2 familiarization trials, subjects can reliably self-regulate recovery time to maintain performance during repeated sprints. However, subjects overestimate the amount of recovery time required, as reducing this time by 10% had no effect on performance, perceptual, or physiological parameters. Self-regulated sprinting is potentially a reliable training tool, particularly for sprint training where maintenance of work is desired. However, overestimation of required recovery time means that performance improvements may not be achieved if the goal of training is improvement of repeated sprint performance with incomplete recovery.

  8. Overview of existing regulations for ventilation requirements of enclosed vehicular parking facilities

    SciTech Connect

    Krarti, M.; Ayari, A.M.

    1999-07-01

    This paper provides an overview of the current standards and regulations regarding the ventilation in enclosed parking facilities in the US and other countries. First, the paper discusses the emission rates of motor vehicle pollutants and their health effects. In particular, typical emission rates for different vehicle and fuel types are presented to highlight the effect of various parameters on the ventilation rate requirements for parking garages. In addition, the paper provides a brief description of some of the common ventilation problems reported in the literature for enclosed parking garages.

  9. Agreement that the PSD Regulations Require a Source to Commence Construction

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  10. Interpretation of Section 52.21(i) (3) of the Regulations for the PSD Requirement

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  11. 75 FR 45104 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... Regulation Supplement; Administrative Matters AGENCY: Defense Acquisition Regulations System, Department of... Federal Acquisition Regulation Supplement (DFARS) Part 204, Administrative Matters, and related clauses...

  12. 76 FR 35424 - Information Collection Requirements; Defense Federal Acquisition Regulation Supplement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... Regulation Supplement; Construction and Architect-Engineer Contracts AGENCY: Defense Acquisition Regulations... Acquisition Regulation Supplement (DFARS) Part 236, Construction and Architect-Engineer Contracts, and...

  13. Successful emotion regulation requires both conviction and skill: beliefs about the controllability of emotions, reappraisal, and regulation success.

    PubMed

    Gutentag, Tony; Halperin, Eran; Porat, Roni; Bigman, Yochanan E; Tamir, Maya

    2016-08-05

    To succeed in self-regulation, people need to believe that it is possible to change behaviour and they also need to use effective means to enable such a change. We propose that this also applies to emotion regulation. In two studies, we found that people were most successful in emotion regulation, the more they believed emotions can be controlled and the more they used an effective emotion regulation strategy - namely, cognitive reappraisal. Cognitive reappraisal moderated the link between beliefs about the controllability of emotion and success in emotion regulation, when reappraisal was measured as a trait (Study 1) or manipulated (Study 2). Such moderation was found when examining the regulation of disgust elicited by emotion-inducing films (Study 1), and the regulation of anger elicited by real political events (Study 2). We discuss the implications of our findings for research and practice in emotion regulation.

  14. Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium

    PubMed Central

    Bastide, Pauline; Darido, Charbel; Pannequin, Julie; Kist, Ralf; Robine, Sylvie; Marty-Double, Christiane; Bibeau, Frédéric; Scherer, Gerd; Joubert, Dominique; Hollande, Frédéric; Blache, Philippe; Jay, Philippe

    2007-01-01

    The HMG-box transcription factor Sox9 is expressed in the intestinal epithelium, specifically, in stem/progenitor cells and in Paneth cells. Sox9 expression requires an active β-catenin–Tcf complex, the transcriptional effector of the Wnt pathway. This pathway is critical for numerous aspects of the intestinal epithelium physiopathology, but processes that specify the cell response to such multipotential signals still remain to be identified. We inactivated the Sox9 gene in the intestinal epithelium to analyze its physiological function. Sox9 inactivation affected differentiation throughout the intestinal epithelium, with a disappearance of Paneth cells and a decrease of the goblet cell lineage. Additionally, the morphology of the colon epithelium was severely altered. We detected general hyperplasia and local crypt dysplasia in the intestine, and Wnt pathway target genes were up-regulated. These results highlight the central position of Sox9 as both a transcriptional target and a regulator of the Wnt pathway in the regulation of intestinal epithelium homeostasis. PMID:17698607

  15. IHF is required for the transcriptional regulation of the Desulfovibrio vulgaris Hildenborough orp operons.

    PubMed

    Fiévet, Anouchka; Cascales, Eric; Valette, Odile; Dolla, Alain; Aubert, Corinne

    2014-01-01

    Transcriptional activation of σ(54)-dependent promoters is usually tightly regulated in response to environmental cues. The high abundance of potential σ(54)-dependent promoters in the anaerobe bacteria, Desulfovibrio vulgaris Hildenborough, reflects the high versatility of this bacteria suggesting that σ(54) factor is the nexus of a large regulatory network. Understanding the key players of σ(54)-regulation in this organism is therefore essential to gain insights into the adaptation to anaerobiosis. Recently, the D. vulgaris orp genes, specifically found in anaerobe bacteria, have been shown to be transcribed by the RNA polymerase coupled to the σ(54) alternative sigma factor. In this study, using in vitro binding experiments and in vivo reporter fusion assays in the Escherichia coli heterologous host, we showed that the expression of the divergent orp promoters is strongly dependent on the integration host factor IHF. Bioinformatic and mutational analysis coupled to reporter fusion activities and mobility shift assays identified two functional IHF binding site sequences located between the orp1 and orp2 promoters. We further determined that the D. vulgaris DVU0396 (IHFα) and DVU1864 (IHFβ) subunits are required to control the expression of the orp operons suggesting that they form a functionally active IHF heterodimer. Interestingly results obtained from the in vivo inactivation of DVU0396, which is required for orp operons transcription, suggest that several functionally IHF active homodimer or heterodimer are present in D. vulgaris.

  16. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    SciTech Connect

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  17. Hic-5 is required for myofibroblast differentiation by regulating mechanically dependent MRTF-A nuclear accumulation

    PubMed Central

    Varney, Scott D.; Betts, Courtney B.; Zheng, Rui; Wu, Lei; Hinz, Boris; Zhou, Jiliang; Van De Water, Livingston

    2016-01-01

    ABSTRACT How mechanical cues from the extracellular environment are translated biochemically to modulate the effects of TGF-β on myofibroblast differentiation remains a crucial area of investigation. We report here that the focal adhesion protein, Hic-5 (also known as TGFB1I1), is required for the mechanically dependent generation of stress fibers in response to TGF-β. Successful generation of stress fibers promotes the nuclear localization of the transcriptional co-factor MRTF-A (also known as MKL1), and this correlates with the mechanically dependent induction of α smooth muscle actin (α-SMA) and Hic-5 in response to TGF-β. As a consequence of regulating stress fiber assembly, Hic-5 is required for the nuclear accumulation of MRTF-A and the induction of α-SMA as well as cellular contractility, suggesting a crucial role for Hic-5 in myofibroblast differentiation. Indeed, the expression of Hic-5 was transient in acute wounds and persistent in pathogenic scars, and Hic-5 colocalized with α-SMA expression in vivo. Taken together, these data suggest that a mechanically dependent feed-forward loop, elaborated by the reciprocal regulation of MRTF-A localization by Hic-5 and Hic-5 expression by MRTF-A, plays a crucial role in myofibroblast differentiation in response to TGF-β. PMID:26759173

  18. Fine regulation of RhoA and Rock is required for skeletal muscle differentiation.

    PubMed

    Castellani, Loriana; Salvati, Erica; Alemà, Stefano; Falcone, Germana

    2006-06-02

    The RhoA GTPase controls a variety of cell functions such as cell motility, cell growth, and gene expression. Previous studies suggested that RhoA mediates signaling inputs that promote skeletal myogenic differentiation. We show here that levels and activity of RhoA protein are down-regulated in both primary avian myoblasts and mouse satellite cells undergoing differentiation, suggesting that a fine regulation of this GTPase is required. In addition, ectopic expression of activated RhoA in primary quail myocytes, but not in mouse myocytes, inhibits accumulation of muscle-specific proteins and cell fusion. By disrupting RhoA signaling with specific inhibitors, we have shown that this GTPase, although required for cell identity in proliferating myoblasts, is not essential for commitment to terminal differentiation and muscle gene expression. Ectopic expression of an activated form of its downstream effector, Rock, impairs differentiation of both avian and mouse myoblasts. Conversely, Rock inhibition with specific inhibitors and small interfering RNA-mediated gene silencing leads to accelerated progression in the lineage and enhanced cell fusion, underscoring a negative regulatory function of Rock in myogenesis. Finally, we have reported that Rock acts independently from RhoA in preventing myoblast exit from the cell cycle and commitment to differentiation and may receive signaling inputs from Raf-1 kinase.

  19. Acinetobacter baumannii Response to Host-Mediated Zinc Limitation Requires the Transcriptional Regulator Zur

    PubMed Central

    Mortensen, Brittany L.; Rathi, Subodh; Chazin, Walter J.

    2014-01-01

    Acinetobacter baumannii is a leading cause of ventilator-associated pneumonia in intensive care units, and the increasing rates of antibiotic resistance make treating these infections challenging. Consequently, there is an urgent need to develop new antimicrobials to treat A. baumannii infections. One potential therapeutic option is to target bacterial systems involved in maintaining appropriate metal homeostasis, processes that are critical for the growth of pathogens within the host. The A. baumannii inner membrane zinc transporter ZnuABC is required for growth under low-zinc conditions and for A. baumannii pathogenesis. The expression of znuABC is regulated by the transcriptional repressor Zur. To investigate the role of Zur during the A. baumannii response to zinc limitation, a zur deletion mutant was generated, and transcriptional changes were analyzed using RNA sequencing. A number of Zur-regulated genes were identified that exhibit increased expression both when zur is absent and under low-zinc conditions, and Zur binds to predicted Zur box sequences of several genes affected by zinc levels or the zur mutation. Furthermore, the zur mutant is impaired for growth in the presence of both high and low zinc levels compared to wild-type A. baumannii. Finally, the zur mutant exhibits a defect in dissemination in a mouse model of A. baumannii pneumonia, establishing zinc sensing as a critical process during A. baumannii infection. These results define Zur-regulated genes within A. baumannii and demonstrate a requirement for Zur in the A. baumannii response to the various zinc levels experienced within the vertebrate host. PMID:24816603

  20. Mycobacterium tuberculosis Requires Phosphate-Responsive Gene Regulation To Resist Host Immunity

    PubMed Central

    Leistikow, Rachel L.; Kirksey, Meghan A.; Voskuil, Martin I.; McKinney, John D.

    2013-01-01

    Mycobacterium tuberculosis persists in the tissues of mammalian hosts despite inducing a robust immune response dominated by the macrophage-activating cytokine gamma interferon (IFN-γ). We identified the M. tuberculosis phosphate-specific transport (Pst) system component PstA1 as a factor required to resist IFN-γ-dependent immunity. A ΔpstA1 mutant was fully virulent in IFN-γ−/− mice but attenuated in wild-type (WT) mice and mice lacking specific IFN-γ-inducible immune mechanisms: nitric oxide synthase (NOS2), phagosome-associated p47 GTPase (Irgm1), or phagocyte oxidase (phox). These phenotypes suggest that ΔpstA1 bacteria are sensitized to an IFN-γ-dependent immune mechanism(s) other than NOS2, Irgm1, or phox. In other species, the Pst system has a secondary role as a negative regulator of phosphate starvation-responsive gene expression through an interaction with a two-component signal transduction system. In M. tuberculosis, we found that ΔpstA1 bacteria exhibited dysregulated gene expression during growth in phosphate-rich medium that was mediated by the two-component sensor kinase/response regulator system SenX3-RegX3. Remarkably, deletion of the regX3 gene suppressed the replication and virulence defects of ΔpstA1 bacteria in NOS2−/− mice, suggesting that M. tuberculosis requires the Pst system to negatively regulate activity of RegX3 in response to available phosphate in vivo. We therefore speculate that inorganic phosphate is readily available during replication in the lung and is an important signal controlling M. tuberculosis gene expression via the Pst-SenX3-RegX3 signal transduction system. Inability to sense this environmental signal, due to Pst deficiency, results in dysregulation of gene expression and sensitization of the bacteria to the host immune response. PMID:23132496

  1. Two new Sinorhizobium meliloti LysR-type transcriptional regulators required for nodulation.

    PubMed

    Luo, Li; Yao, Shi-Yi; Becker, Anke; Rüberg, Silvia; Yu, Guan-Qiao; Zhu, Jia-Bi; Cheng, Hai-Ping

    2005-07-01

    The establishment of an effective nitrogen-fixing symbiosis between Sinorhizobium meliloti and its legume host alfalfa (Medicago sativa) depends on the timely expression of nodulation genes that are controlled by LysR-type regulators. Ninety putative genes coding for LysR-type transcriptional regulators were identified in the recently sequenced S. meliloti genome. All 90 putative lysR genes were mutagenized using plasmid insertions as a first step toward determining their roles in symbiosis. Two new LysR-type symbiosis regulator genes, lsrA and lsrB, were identified in the screening. Both the lsrA and lsrB genes are expressed in free-living S. meliloti cells, but they are not required for cell growth. An lsrA1 mutant was defective in symbiosis and elicited only white nodules that exhibited no nitrogenase activity. Cells of the lsrA1 mutant were recovered from the white nodules, suggesting that the lsrA1 mutant was blocked early in nodulation. An lsrB1 mutant was deficient in symbiosis and elicited a mixture of pink and white nodules on alfalfa plants. These plants exhibited lower overall nitrogenase activity than plants inoculated with the wild-type strain, which is consistent with the fact that most of the alfalfa plants inoculated with the lsrB1 mutant were short and yellow. Cells of the lsrB1 mutant were recovered from both pink and white nodules, suggesting that lsrB1 mutants could be blocked at multiple points during nodulation. The identification of two new LysR-type symbiosis transcriptional regulators provides two new avenues for understanding the complex S. meliloti-alfalfa interactions which occur during symbiosis.

  2. Spindle assembly checkpoint robustness requires Tpr-mediated regulation of Mad1/Mad2 proteostasis

    PubMed Central

    Schweizer, Nina; Ferrás, Cristina; Kern, David M.; Logarinho, Elsa; Cheeseman, Iain M.

    2013-01-01

    Tpr is a conserved nuclear pore complex (NPC) protein implicated in the spindle assembly checkpoint (SAC) by an unknown mechanism. Here, we show that Tpr is required for normal SAC response by stabilizing Mad1 and Mad2 before mitosis. Tpr coimmunoprecipitated with Mad1 and Mad2 (hereafter designated as Tpr/Mad1/Mad2 or TM2 complex) during interphase and mitosis, and is required for Mad1–c-Mad2 recruitment to NPCs. Interestingly, Tpr was normally undetectable at kinetochores and dispensable for Mad1, but not for Mad2, kinetochore localization, which suggests that SAC robustness depends on Mad2 levels at kinetochores. Protein half-life measurements demonstrate that Tpr stabilizes Mad1 and Mad2, ensuring normal Mad1–c-Mad2 production in an mRNA- and kinetochore-independent manner. Overexpression of GFP-Mad2 restored normal SAC response and Mad2 kinetochore levels in Tpr-depleted cells. Mechanistically, we provide evidence that Tpr might spatially regulate SAC proteostasis through the SUMO-isopeptidases SENP1 and SENP2 at NPCs. Thus, Tpr is a kinetochore-independent, rate-limiting factor required to mount and sustain a robust SAC response. PMID:24344181

  3. 7 CFR 301.76-4 - Labeling requirements for regulated nursery stock produced within an area quarantined for citrus...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... produced within an area quarantined for citrus greening. 301.76-4 Section 301.76-4 Agriculture Regulations... OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Citrus Greening and Asian Citrus Psyllid § 301.76-4 Labeling requirements for regulated nursery stock produced within an area quarantined for citrus...

  4. 7 CFR 301.76-4 - Labeling requirements for regulated nursery stock produced within an area quarantined for citrus...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... produced within an area quarantined for citrus greening. 301.76-4 Section 301.76-4 Agriculture Regulations... OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Citrus Greening and Asian Citrus Psyllid § 301.76-4 Labeling requirements for regulated nursery stock produced within an area quarantined for citrus...

  5. 7 CFR 301.76-4 - Labeling requirements for regulated nursery stock produced within an area quarantined for citrus...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... produced within an area quarantined for citrus greening. 301.76-4 Section 301.76-4 Agriculture Regulations... OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Citrus Greening and Asian Citrus Psyllid § 301.76-4 Labeling requirements for regulated nursery stock produced within an area quarantined for citrus...

  6. 7 CFR 301.76-4 - Labeling requirements for regulated nursery stock produced within an area quarantined for citrus...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... produced within an area quarantined for citrus greening. 301.76-4 Section 301.76-4 Agriculture Regulations... OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Citrus Greening and Asian Citrus Psyllid § 301.76-4 Labeling requirements for regulated nursery stock produced within an area quarantined for citrus...

  7. Centrosome maturation requires YB-1 to regulate dynamic instability of microtubules for nucleus reassembly

    PubMed Central

    Kawaguchi, Atsushi; Asaka, Masamitsu N.; Matsumoto, Ken; Nagata, Kyosuke

    2015-01-01

    Microtubule formation from the centrosome increases dramatically at the onset of mitosis. This process is termed centrosome maturation. However, regulatory mechanisms of microtubule assembly from the centrosome in response to the centrosome maturation are largely unknown. Here we found that YB-1, a cellular cancer susceptibility protein, is required for the centrosome maturation. Phosphorylated YB-1 accumulated in the centrosome at mitotic phase. By YB-1 knockdown, microtubules were found detached from the centrosome at telophase and an abnormal nuclear shape called nuclear lobulation was found due to defective reassembly of nuclear envelope by mis-localization of non-centrosomal microtubules. In conclusion, we propose that YB-1 is important for the assembly of centrosomal microtubule array for temporal and spatial regulation of microtubules. PMID:25740062

  8. [Regulation requirements for new investments to protect the environment against electromagnetic fields].

    PubMed

    Kawicki, Artur

    2006-01-01

    The date of 28 July 2005, when the amendments to the Environmental Protection Act and related acts entered into force, is crucial for the future installations of the majority of electromagnetic fields emitters. Since the amendments let the environmental protection assessment procedures be more "independent", set the decision on environmental conditions for development consent and transposed the rules of managing and protection of Natura 2000 sites, they are considered as a revolution in the environmental impact assessment system. According to new rules, the decision on environmental conditions for development consent is granted for the project that may have a significant impact on the environment listed in the regulation issued by the Council of Ministers on 9 November 2004 on the types of projects that may have significant impact on the environment and detailed criteria for screening of the projects for which the environmental impact report may be required or for other projects that may have significant impact on Natura 2000 sites.

  9. Regulation of longevity by genes required for the functions of AIY interneuron in nematode Caenorhabditis elegans.

    PubMed

    Shen, Lulu; Hu, Yaou; Cai, Ting; Lin, Xingfeng; Wang, Dayong

    2010-01-01

    In Caenorhabditis elegans, functional ttx-3, sra-11, ceh-10, and ceh-23 genes are required for the functions of AIY interneuron. Compared to wild-type N2, mutations in ttx-3 and ceh-10 significantly decreased lifespan, whereas mutations in sra-11 and ceh-23 did not obviously influence nematode lifespan. Mutations in ttx-3 and ceh-10 were associated closely with lower pumping rates at adult day 8 and caused a more rapid accumulated intestinal autofluorescence than wild-type N2. Mutations in ceh-10 remarkably affected fertility and egg number in the uterus. The regulation of ttx-3 and ceh-10 on longevity was not temperature-dependent, and ttx-3, and ceh-10 mutants all formed very few dauers at 27°C. The shortened lifespan of the ttx-3 or ceh-10 mutants was completely or largely rescued by expression of TTX-3 or CEH-10 in AIY interneurons. Moreover, the long-lived phenotype of the daf-2 mutant could be suppressed by both the ttx-3 and the ceh-10 mutations. Furthermore, ablation of AIY interneurons shortened the longevity of wild-type and the daf-2 mutant. Therefore, ttx-3 and ceh-10 regulate the longevity through influencing the insulin/IGF signaling pathway in C. elegans.

  10. Cytokine-regulated neutrophil recruitment is required for brain but not spinal cord inflammation during EAE

    PubMed Central

    Simmons, Sarah B.; Liggitt, Denny; Goverman, Joan M.

    2014-01-01

    Multiple sclerosis (MS) is an autoimmune disease in which inflammatory lesions lead to tissue injury in the brain and/or spinal cord. The specific sites of tissue injury are strong determinants of clinical outcome in MS, but the pathways that determine whether damage occurs in the brain or spinal cord are not understood. Previous studies in mouse models of MS demonstrated that IFN-γ and IL-17 regulate lesion localization within the brain, however, the mechanisms by which these cytokines mediate their effects have not been identified. Here we show that IL-17 promoted, but IFN-γ inhibited, ELR+ chemokine-mediated neutrophil recruitment to the brain, and that neutrophil infiltration was required for parenchymal tissue damage in the brain. In contrast, IFN-γ promoted ELR+ chemokine expression and neutrophil recruitment to the spinal cord. Surprisingly, tissue injury in the spinal cord did not exhibit the same dependence on neutrophil recruitment that was observed for the brain. Our results demonstrate that the brain and spinal cord exhibit distinct sensitivities to cellular mediators of tissue damage, and that IL-17 and IFN-γ differentially regulate recruitment of these mediators to each microenvironment. These findings suggest an approach toward tailoring therapies for patients with distinct patterns of neuroinflammation. PMID:24913979

  11. Interdomain allosteric regulation of Polo kinase by Aurora B and Map205 is required for cytokinesis.

    PubMed

    Kachaner, David; Pinson, Xavier; El Kadhi, Khaled Ben; Normandin, Karine; Talje, Lama; Lavoie, Hugo; Lépine, Guillaume; Carréno, Sébastien; Kwok, Benjamin H; Hickson, Gilles R; Archambault, Vincent

    2014-10-27

    Drosophila melanogaster Polo and its human orthologue Polo-like kinase 1 fulfill essential roles during cell division. Members of the Polo-like kinase (Plk) family contain an N-terminal kinase domain (KD) and a C-terminal Polo-Box domain (PBD), which mediates protein interactions. How Plks are regulated in cytokinesis is poorly understood. Here we show that phosphorylation of Polo by Aurora B is required for cytokinesis. This phosphorylation in the activation loop of the KD promotes the dissociation of Polo from the PBD-bound microtubule-associated protein Map205, which acts as an allosteric inhibitor of Polo kinase activity. This mechanism allows the release of active Polo from microtubules of the central spindle and its recruitment to the site of cytokinesis. Failure in Polo phosphorylation results in both early and late cytokinesis defects. Importantly, the antagonistic regulation of Polo by Aurora B and Map205 in cytokinesis reveals that interdomain allosteric mechanisms can play important roles in controlling the cellular functions of Plks.

  12. Revocation of General Safety Test Regulations That Are Duplicative of Requirements in Biologics License Applications. Final rule.

    PubMed

    2015-07-02

    The Food and Drug Administration (FDA) is amending the biologics regulations by removing the general safety test (GST) requirements for biological products. FDA is finalizing this action because the existing codified GST regulations are duplicative of requirements that are also specified in biologics license applications (BLAs), or are no longer necessary or appropriate to help ensure the safety, purity, and potency of licensed biological products. FDA is taking this action as part of its retrospective review of its regulations to promote improvement and innovation, in response to the Executive order.

  13. PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis.

    PubMed Central

    Saporito-Irwin, S M; Birse, C E; Sypherd, P S; Fonzi, W A

    1995-01-01

    Candida albicans, like many fungi, exhibits morphological plasticity, a property which may be related to its biological capacity as an opportunistic pathogen of humans. Morphogenesis and alterations in cell shape require integration of many cellular functions and occur in response to environmental signals, most notably pH and temperature in the case of C. albicans. In the course of our studies of differential gene expression associated with dimorphism of C. albicans, we have isolated a gene, designated PHR1, which is regulated in response to the pH of the culture medium. PHR1 expression was repressed at pH values below 5.5 and induced at more alkaline pH. The predicted amino acid sequence of the PHR1 protein was 56% identical to that of the Saccharomyces cerevisiae Ggp1/Gas1 protein, a highly glycosylated cell surface protein attached to the membrane via glycosylphosphatidylinositol. A homozygous null mutant of PHR1 was constructed and found to exhibit a pH-conditional morphological defect. At alkaline pH, the mutant, unlike the parental type, was unable to conduct apical growth of either yeast or hyphal growth forms. This morphological aberration was not associated with defective cytoskeletal polarization or secretion. The results suggest that PHR1 defines a novel function required for apical cell growth and morphogenesis. PMID:7823929

  14. Th9 cell development requires a BATF-regulated transcriptional network

    PubMed Central

    Jabeen, Rukhsana; Goswami, Ritobrata; Awe, Olufolakemi; Kulkarni, Aishwarya; Nguyen, Evelyn T.; Attenasio, Andrea; Walsh, Daniel; Olson, Matthew R.; Kim, Myung H.; Tepper, Robert S.; Sun, Jie; Kim, Chang H.; Taparowsky, Elizabeth J.; Zhou, Baohua; Kaplan, Mark H.

    2013-01-01

    T helper 9 (Th9) cells are specialized for the production of IL-9, promote allergic inflammation in mice, and are associated with allergic disease in humans. It has not been determined whether Th9 cells express a characteristic transcriptional signature. In this study, we performed microarray analysis to identify genes enriched in Th9 cells compared with other Th subsets. This analysis defined a transcriptional regulatory network required for the expression of a subset of Th9-enriched genes. The activator protein 1 (AP1) family transcription factor BATF (B cell, activating transcription factor–like) was among the genes enriched in Th9 cells and was required for the expression of IL-9 and other Th9-associated genes in both human and mouse T cells. The expression of BATF was increased in Th9 cultures derived from atopic infants compared with Th9 cultures from control infants. T cells deficient in BATF expression had a diminished capacity to promote allergic inflammation compared with wild-type controls. Moreover, mouse Th9 cells ectopically expressing BATF were more efficient at promoting allergic inflammation than control transduced cells. These data indicate that BATF is a central regulator of the Th9 phenotype and contributes to the development of allergic inflammation. PMID:24216482

  15. Th9 cell development requires a BATF-regulated transcriptional network.

    PubMed

    Jabeen, Rukhsana; Goswami, Ritobrata; Awe, Olufolakemi; Kulkarni, Aishwarya; Nguyen, Evelyn T; Attenasio, Andrea; Walsh, Daniel; Olson, Matthew R; Kim, Myung H; Tepper, Robert S; Sun, Jie; Kim, Chang H; Taparowsky, Elizabeth J; Zhou, Baohua; Kaplan, Mark H

    2013-11-01

    T helper 9 (Th9) cells are specialized for the production of IL-9, promote allergic inflammation in mice, and are associated with allergic disease in humans. It has not been determined whether Th9 cells express a characteristic transcriptional signature. In this study, we performed microarray analysis to identify genes enriched in Th9 cells compared with other Th subsets. This analysis defined a transcriptional regulatory network required for the expression of a subset of Th9-enriched genes. The activator protein 1 (AP1) family transcription factor BATF (B cell, activating transcription factor–like) was among the genes enriched in Th9 cells and was required for the expression of IL-9 and other Th9-associated genes in both human and mouse T cells. The expression of BATF was increased in Th9 cultures derived from atopic infants compared with Th9 cultures from control infants. T cells deficient in BATF expression had a diminished capacity to promote allergic inflammation compared with wild-type controls. Moreover, mouse Th9 cells ectopically expressing BATF were more efficient at promoting allergic inflammation than control transduced cells. These data indicate that BATF is a central regulator of the Th9 phenotype and contributes to the development of allergic inflammation.

  16. Nutritional Requirements and Nitrogen-Dependent Regulation of Proteinase Activity of Lactobacillus helveticus CRL 1062

    PubMed Central

    Hebert, Elvira M.; Raya, Raul R.; De Giori, Graciela S.

    2000-01-01

    The nutritional requirements of Lactobacillus helveticus CRL 1062 were determined with a simplified chemically defined medium (SCDM) and compared with those of L. helveticus CRL 974 (ATCC 15009). Both strains were found to be prototrophic for alanine, glycine, asparagine, glutamine, and cysteine. In addition, CRL 1062 also showed prototrophy for lysine and serine. The microorganisms also required riboflavin, calcium pantothenate, pyridoxal, nicotinic acid, and uracil for growth in liquid SCDM. The growth rate and the synthesis of their cell membrane-bound serine proteinases, but not of their intracellular leucyl-aminopeptidases, were influenced by the peptide content of the medium. The highest proteinase levels were found during cell growth in basal SCDM, while the synthesis of this enzyme was inhibited in SCDM supplemented with Casitone, Casamino Acids, or β-casein. Low-molecular-mass peptides (<3,000 Da), extracted from Casitone, and the dipeptide leucylproline (final concentration, 5 mM) play important roles in the medium-dependent regulation of proteinase activity. The addition of the dipeptide leucylproline (5 mM) to SCDM reduced proteinase activity by 25%. PMID:11097908

  17. A monomer is the minimum functional unit required for channel and ATPase activity of the cystic fibrosis transmembrane conductance regulator.

    PubMed

    Ramjeesingh, M; Li, C; Kogan, I; Wang, Y; Huan, L J; Bear, C E

    2001-09-04

    The cystic fibrosis transmembrane conductance regulator (CFTR) normally functions as a phosphorylation-regulated chloride channel on the apical surface of epithelial cells, and lack of this function is the primary cause for the fatal disease cystic fibrosis (CF). Previous studies showed that purified, reconstituted CFTR can function as a chloride channel and, further, that its intrinsic ATPase activity is required to regulate opening and closing of the channel gate. However, these previous studies did not identify the quaternary structure required to mediate conduction and catalysis. Our present studies show that CFTR molecules may self-associate in CHO and Sf9 membranes, as complexes close to the predicted size of CFTR dimers can be captured by chemical cross-linking reagents and detected using nondissociative PAGE. However, CFTR function does not require a multimeric complex for function as we determined that purified, reconstituted CFTR monomers are sufficient to mediate regulated chloride conduction and ATPase activity.

  18. 76 FR 14275 - Regulations Issued Under the Export Grape and Plum Act; Revision to the Minimum Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... Service 7 CFR Part 35 Regulations Issued Under the Export Grape and Plum Act; Revision to the Minimum... requirements under the Export Grape and Plum Act. This rule changes the minimum bunch weight requirement for... under authority of the Export Grape and Plum Act, as amended (7 U.S.C. 591-599), hereinafter referred...

  19. Profiles of Motivated Self-Regulation in College Computer Science Courses: Differences in Major versus Required Non-Major Courses

    ERIC Educational Resources Information Center

    Shell, Duane F.; Soh, Leen-Kiat

    2013-01-01

    The goal of the present study was to utilize a profiling approach to understand differences in motivation and strategic self-regulation among post-secondary STEM students in major versus required non-major computer science courses. Participants were 233 students from required introductory computer science courses (194 men; 35 women; 4 unknown) at…

  20. 49 CFR 40.7 - How can you get an exemption from a requirement in this regulation?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false How can you get an exemption from a requirement in... can you get an exemption from a requirement in this regulation? (a) If you want an exemption from any... this part, that make your compliance with a specific provision of this part impracticable. (c) If...

  1. Hygienic and sanitary requirements of gyms in force in Italy: national issues and analysis of regional regulations.

    PubMed

    Capasso, L; Arpesella, M; Gaeta, M; D'Alessandro, D

    2015-01-01

    In recent years, the awareness of the importance of physical activity for human health is growing, as people practicing it; the number of gyms has also substantially increased. Currently, in Italy there is not a consistent regulation regarding hygienic and sanitary requirements of gyms. Several Italian regions issued laws about this topic. The authors analyse the standards required by the Italian Olympic Committee (CONI) and the regional laws, highlighting the numerous issues, among which the possible location of gyms in semi-basements and basements. They eventually call for a national regulation that should clearly transpose the hygienic and sanitary requirements of gyms into a satisfactory rule of law.

  2. Efficient endocytosis of the cystic fibrosis transmembrane conductance regulator requires a tyrosine-based signal.

    PubMed

    Prince, L S; Peter, K; Hatton, S R; Zaliauskiene, L; Cotlin, L F; Clancy, J P; Marchase, R B; Collawn, J F

    1999-02-05

    We previously demonstrated that the cystic fibrosis transmembrane conductance regulator (CFTR) is rapidly endocytosed in epithelial cells (Prince, L. S., Workman, R. B., Jr., and Marchase, R. B. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 5192-5196). To determine the structural features of CFTR required for endocytosis, we prepared chimeric molecules consisting of the amino-terminal (residues 2-78) and carboxyl-terminal tail regions (residues 1391-1476) of CFTR, each fused to the transmembrane and extracellular domains of the transferrin receptor. Functional analysis of the CFTR-(2-78) and CFTR-(1391-1476) indicated that both chimeras were rapidly internalized. Deletion of residues 1440-1476 had no effect on chimera internalization. Mutations of potential internalization signals in both cytoplasmic domains reveal that only one mutation inhibits internalization, Y1424A. Using a surface biotinylation reaction, we also examined internalization rates of wild type and mutant CFTRs expressed in COS-7 cells. We found that both wild type and A1440X CFTR were rapidly internalized, whereas the Y1424A CFTR mutant, like the chimeric protein, had approximately 40% reduced internalization activity. Deletions in the amino-terminal tail region of CFTR resulted in defective trafficking of CFTR out of the endoplasmic reticulum to the cell surface, suggesting that an intact amino terminus is critical for biosynthesis. In summary, our results suggest that both tail regions of CFTR are sufficient to promote rapid internalization of a reporter molecule and that tyrosine 1424 is required for efficient CFTR endocytosis.

  3. Requirement for non-regulated, constitutive calcium influx in macrophage survival signaling

    SciTech Connect

    Tano, Jean-Yves; Vazquez, Guillermo

    2011-04-08

    Highlights: {yields} We examine the role of constitutive Ca{sup 2+} influx in macrophage survival. {yields} Survival signaling exhibits a mandatory requirement for constitutive Ca{sup 2+} influx. {yields} CAM/CAMKII couples constitutive Ca{sup 2+} influx to survival signaling. -- Abstract: The phosphatidylinositol-3-kinase (PI3K)/AKT axis and the Nuclear Factor kappa B (NF{kappa}B) pathway play critical roles in macrophage survival. In cells other than macrophages proper operation of those two pathways requires Ca{sup 2+} influx into the cell, but if that is the case in macrophages remains unexplored. In the present work we used THP-1-derived macrophages and a pharmacological approach to examine for the first time the role of constitutive, non-regulated Ca{sup 2+} influx in PI3K/AKT and NF{kappa}B signaling. Blocking constitutive function of Ca{sup 2+}-permeable channels with the organic channel blocker SKF96365 completely prevented phosphorylation of I{kappa}B{alpha}, AKT and its downstream target BAD in TNF{alpha}-treated macrophages. A similar effect was observed upon treating macrophages with the calmodulin (CAM) inhibitor W-7 or the calmodulin-dependent kinase II (CAMKII) inhibitor KN-62. In addition, pre-treating macrophages with SKF96365 significantly enhanced TNF{alpha}-induced apoptosis. Our findings suggest that in THP-1-derived macrophages survival signaling depends, to a significant extent, on constitutive Ca{sup 2+} influx presumably through a mechanism that involves the CAM/CAMKII axis as a coupling component between constitutive Ca{sup 2+} influx and activation of survival signaling.

  4. 75 FR 41161 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Part 251...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... Regulation Supplement; Part 251, Contractor Use of Government Supply Sources AGENCY: Defense Acquisition... Regulation Supplement (DFARS) Part 251, Contractor Use of Government Supply Sources, and the associated... and Uses: This information collection permits contractors to-- Place orders under Federal...

  5. 76 FR 36905 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Taxes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... Regulation Supplement; Taxes AGENCY: Defense Acquisition Regulations System, Department of Defense (DoD... Supplement (DFARS) Part 229, Taxes, and related clause at DFARS 252.229-7010; OMB Control Number...

  6. Retinophilin is a light-regulated phosphoprotein required to suppress photoreceptor dark noise in Drosophila.

    PubMed

    Mecklenburg, Kirk L; Takemori, Nobuaki; Komori, Naoka; Chu, Brian; Hardie, Roger C; Matsumoto, Hiroyuki; O'Tousa, Joseph E

    2010-01-27

    Photoreceptor cells achieve high sensitivity, reliably detecting single photons, while limiting the spontaneous activation events responsible for dark noise. We used proteomic, genetic, and electrophysiological approaches to characterize Retinophilin (RTP) (CG10233) in Drosophila photoreceptors and establish its involvement in dark-noise suppression. RTP possesses membrane occupation and recognition nexus (MORN) motifs, a structure shared with mammalian junctophilins and other membrane-associated proteins found within excitable cells. We show the MORN repeats, and both the N- and C-terminal domains, are required for RTP localization in the microvillar light-gathering organelle, the rhabdomere. RTP exists in multiple phosphorylated isoforms under dark conditions and is dephosphorylated by light exposure. An RTP deletion mutant exhibits a high rate of spontaneous membrane depolarization events in dark conditions but retains the normal kinetics of the light response. Photoreceptors lacking neither inactivation nor afterpotential C (NINAC) myosin III, a motor protein/kinase, also display a similar dark-noise phenotype as the RTP deletion. We show that NINAC mutants are depleted for RTP. These results suggest the increase in dark noise in NINAC mutants is attributable to lack of RTP and, furthermore, defines a novel role for NINAC in the rhabdomere. We propose that RTP is a light-regulated phosphoprotein that organizes rhabdomeric components to suppress random activation of the phototransduction cascade and thus increases the signaling fidelity of dark-adapted photoreceptors.

  7. Dentate Gyrus Development Requires ERK Activity to Maintain Progenitor Population and MAPK Pathway Feedback Regulation

    PubMed Central

    Vithayathil, Joseph; Pucilowska, Joanna; Goodnough, L. Henry; Atit, Radhika P.

    2015-01-01

    The ERK/MAPK pathway is an important developmental signaling pathway. Mutations in upstream elements of this pathway result in neuro-cardio-facial cutaneous (NCFC) syndromes, which are typified by impaired neurocognitive abilities that are reliant upon hippocampal function. The role of ERK signaling during hippocampal development has not been examined and may provide critical insight into the cause of hippocampal dysfunction in NCFC syndromes. In this study, we have generated ERK1 and conditional ERK2 compound knock-out mice to determine the role of ERK signaling during development of the hippocampal dentate gyrus. We found that loss of both ERK1 and ERK2 resulted in 60% fewer granule cells and near complete absence of neural progenitor pools in the postnatal dentate gyrus. Loss of ERK1/2 impaired maintenance of neural progenitors as they migrate from the dentate ventricular zone to the dentate gyrus proper, resulting in premature depletion of neural progenitor cells beginning at E16.5, which prevented generation of granule cells later in development. Finally, loss of ERK2 alone does not impair development of the dentate gyrus as animals expressing only ERK1 developed a normal hippocampus. These findings establish that ERK signaling regulates maintenance of progenitor cells required for development of the dentate gyrus. PMID:25926459

  8. Germline self-renewal requires cyst stem cells and stat regulates niche adhesion in Drosophila testes.

    PubMed

    Leatherman, Judith L; Dinardo, Stephen

    2010-08-01

    Adults maintain tissue-specific stem cells through niche signals. A model for niche function is the Drosophila melanogaster testis, where a small cluster of cells called the hub produce locally available signals that allow only adjacent cells to self-renew. We show here that the principal signalling pathway implicated in this niche, chemokine activation of STAT, does not primarily regulate self-renewal of germline stem cells (GSCs), but rather governs GSC adhesion to hub cells. In fact, GSC renewal does not require hub cell contact, as GSCs can be renewed solely by contact with the second resident stem cell population, somatic cyst stem cells (CySCs), and this involves BMP signalling. These data suggest a modified paradigm whereby the hub cells function as architects of the stem cell environment, drawing into proximity cellular components necessary for niche function. Self-renewal functions are shared by the hub cells and the CySCs. This work also reconciles key differences in GSC renewal between Drosophila testis and ovary niches, and highlights how a niche can coordinate the production of distinct lineages by having one stem cell type rely on a second.

  9. Fgf19 regulated by Hh signaling is required for zebrafish forebrain development.

    PubMed

    Miyake, Ayumi; Nakayama, Yoshiaki; Konishi, Morichika; Itoh, Nobuyuki

    2005-12-01

    Fibroblast growth factor (Fgf) signaling plays important roles in brain development. Fgf3 and Fgf8 are crucial for the formation of the forebrain and hindbrain. Fgf8 is also required for the midbrain to form. Here, we identified zebrafish Fgf19 and examined its roles in brain development by knocking down Fgf19 function. We found that Fgf19 expressed in the forebrain, midbrain and hindbrain was involved in cell proliferation and cell survival during embryonic brain development. Fgf19 was also essential for development of the ventral telencephalon and diencephalon. Regional specification is linked to cell type specification. Fgf19 was also essential for the specification of gamma-aminobutyric acid (GABA)ergic interneurons and oligodendrocytes generated in the ventral telencephalon and diencephalon. The cross talk between Fgf and Hh signaling is critical for brain development. In the forebrain, Fgf19 expression was down-regulated on inhibition of Hh but not of Fgf3/Fgf8, and overexpression of Fgf19 rescued partially the phenotype on inhibition of Hh. The present findings indicate that Fgf19 signaling is crucial for forebrain development by interacting with Hh and provide new insights into the roles of Fgf signaling in brain development.

  10. Reciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation.

    PubMed

    Fu, Jiang; Jiang, Ming; Mirando, Anthony J; Yu, Hsiao-Man Ivy; Hsu, Wei

    2009-11-03

    Members of the Wnt family are secreted glycoproteins that trigger cellular signals essential for proper development of organisms. Cellular signaling induced by Wnt proteins is involved in diverse developmental processes and human diseases. Previous studies have generated an enormous wealth of knowledge on the events in signal-receiving cells. However, relatively little is known about the making of Wnt in signal-producing cells. Here, we describe that Gpr177, the mouse orthologue of Drosophila Wls, is expressed during formation of embryonic axes. Embryos with deficient Gpr177 exhibit defects in establishment of the body axis, a phenotype highly reminiscent to the loss of Wnt3. Although many different mammalian Wnt proteins are required for a wide range of developmental processes, the Wnt3 ablation exhibits the earliest developmental abnormality. This suggests that the Gpr177-mediated Wnt production cannot be substituted. As a direct target of Wnt, Gpr177 is activated by beta-catenin and LEF/TCF-dependent transcription. This activation alters the cellular distributions of Gpr177 which binds to Wnt proteins and assists their sorting and secretion in a feedback regulatory mechanism. Our findings demonstrate that the loss of Gpr177 affects Wnt production in the signal-producing cells, leading to alterations of Wnt signaling in the signal-receiving cells. A reciprocal regulation of Wnt and Gpr177 is essential for the patterning of the anterior-posterior axis during mammalian development.

  11. CSL protein regulates transcription of genes required to prevent catastrophic mitosis in fission yeast.

    PubMed

    Převorovský, Martin; Oravcová, Martina; Zach, Róbert; Jordáková, Anna; Bähler, Jürg; Půta, František; Folk, Petr

    2016-11-16

    For every eukaryotic cell to grow and divide, intricately coordinated action of numerous proteins is required to ensure proper cell-cycle progression. The fission yeast Schizosaccharomyces pombe has been instrumental in elucidating the fundamental principles of cell-cycle control. Mutations in S. pombe 'cut' (cell untimely torn) genes cause failed coordination between cell and nuclear division, resulting in catastrophic mitosis. Deletion of cbf11, a fission yeast CSL transcription factor gene, triggers a 'cut' phenotype, but the precise role of Cbf11 in promoting mitotic fidelity is not known. We report that Cbf11 directly activates the transcription of the acetyl-coenzyme A carboxylase gene cut6, and the biotin uptake/biosynthesis genes vht1 and bio2, with the former 2 implicated in mitotic fidelity. Cbf11 binds to a canonical, metazoan-like CSL response element (GTGGGAA) in the cut6 promoter. Expression of Cbf11 target genes shows apparent oscillations during the cell cycle using temperature-sensitive cdc25-22 and cdc10-M17 block-release experiments, but not with other synchronization methods. The penetrance of catastrophic mitosis in cbf11 and cut6 mutants is nutrient-dependent. We also show that drastic decrease in biotin availability arrests cell proliferation but does not cause mitotic defects. Taken together, our results raise the possibility that CSL proteins play conserved roles in regulating cell-cycle progression, and they could guide experiments into mitotic CSL functions in mammals.

  12. 78 FR 68831 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement (DFARS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Regulation Supplement (DFARS) Part 211, Describing Agency Needs AGENCY: Defense Acquisition Regulations... Acquisition Regulation Supplement (DFARS, Part 211, Describing Agency Needs, and the associated clauses at... Military or Federal Specifications and Standards; OMB Control Number 0704-0398. Needs and Uses:...

  13. The European Union's REACH regulation: a review of its history and requirements.

    PubMed

    Williams, E Spencer; Panko, Julie; Paustenbach, Dennis J

    2009-01-01

    In 2006, the European Union (EU) promulgated a monumental regulatory initiative for the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH). To date, several thousand pages of text have been needed to describe the expectations of this regulation. There were numerous reasons for the promulgation of REACH, but, by and large, it is an extension of the global desire to produce fewer industrial chemicals, to understand the possible human and ecological hazards of those that are produced, and to insure that any major threat is anticipated, as well as prevented. Most industry-related groups consider it the most wide-ranging and costly regulatory initiatives related to health risk assessment ever to be promulgated. This review presents a description of REACH that should inform scientists, managers, and others about its objectives and the means to satisfy them. Registration is required for all chemicals manufactured or imported into the EU, unless specifically exempted. Registration is expected to be a collaborative process among companies, which will generate a dossier containing data on physicochemical characteristics, as well as toxicological and ecotoxicological properties. Though the magnitude of the gaps in the data required for registration is uncertain at this point, it is clear that basic toxicology testing will have to be conducted for many chemical substances that have not undergone formal review up to this point. For many chemicals, an examination of hazards and risks arising from the use of these substances will also be required in the form of a chemical safety report (CSR). Beginning with the dual processes of dossier and substance evaluation, the European Chemicals Agency (ECHA), the Member States of the EU, and the European Commission will identify chemicals that may pose unacceptable hazards to human health and/or the environment, and will curtail or restrict their usage. The implementation of REACH will expand and deepen the

  14. 25 CFR 518.7 - If a tribe holds a certificate of self-regulation, is it required to report information to the...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false If a tribe holds a certificate of self-regulation, is it... REGULATION OF CLASS II GAMING § 518.7 If a tribe holds a certificate of self-regulation, is it required to... certificate of self-regulation shall be required to submit a self-regulation report annually to the...

  15. 25 CFR 518.7 - If a tribe holds a certificate of self-regulation, is it required to report information to the...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false If a tribe holds a certificate of self-regulation, is it... REGULATION OF CLASS II GAMING § 518.7 If a tribe holds a certificate of self-regulation, is it required to... certificate of self-regulation shall be required to submit a self-regulation report annually to the...

  16. 25 CFR 518.7 - If a tribe holds a certificate of self-regulation, is it required to report information to the...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 2 2012-04-01 2012-04-01 false If a tribe holds a certificate of self-regulation, is it... REGULATION OF CLASS II GAMING § 518.7 If a tribe holds a certificate of self-regulation, is it required to... certificate of self-regulation shall be required to submit a self-regulation report annually to the...

  17. 25 CFR 518.7 - If a tribe holds a certificate of self-regulation, is it required to report information to the...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 2 2011-04-01 2011-04-01 false If a tribe holds a certificate of self-regulation, is it... REGULATION OF CLASS II GAMING § 518.7 If a tribe holds a certificate of self-regulation, is it required to... certificate of self-regulation shall be required to submit a self-regulation report annually to the...

  18. Novel insights into iron regulation and requirement in marine medaka Oryzias melastigma.

    PubMed

    Wang, Jian; Wang, Wen-Xiong

    2016-05-24

    Iron (Fe) is an essential trace element for marine fish. However, our knowledge of Fe requirements at different development stages of marine fish is still limited. Here, we reported the efficient Fe absorption strategies adopted by larval fish under different dietary Fe supplementary levels (i.e., 0-640 mg/kg). Biokinetically, the larval fish controlled their dietary Fe assimilation efficiency (AE, 1.6-18.5%), and enhanced their waterborne Fe uptake (ca. 2.5 fold change of uptake rate constant) once the dietary Fe was deficient (i.e., 27.4 mg Fe/kg feed). Transcriptionally, the expression of hepcidin1 (hep1; Fe regulator; i.e., 2.3-15.7 fold change) in larval fish was positively correlated with the Fe supplementary levels. Comparatively, the female adult fish were poor in assimilating the added Fe source (i.e., ferric form) with similar life-sustainable levels of Fe (i.e., 0.046-0.12 μg/g/d assimilated for Fe supplementary levels of 27.4, 162 and 657 mg Fe/kg feed). The overall feeding experiments suggested that dietary net Fe flux sufficient for the normal growth of larval medaka was 0.71-1.75 μg/g/d (i.e., 83.9 mg Fe/kg feed), consistent with the modeled value (i.e., 1.09-2.16 μg/g/d). In female adults, the estimated essential net Fe flux was 0.88-0.90 μg/g/d.

  19. NFAT5 regulates the canonical Wnt pathway and is required for cardiomyogenic differentiation

    SciTech Connect

    Adachi, Atsuo; Takahashi, Tomosaburo; Ogata, Takehiro; Imoto-Tsubakimoto, Hiroko; Nakanishi, Naohiko; Ueyama, Tomomi; Matsubara, Hiroaki

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer NFAT5 protein expression is downregulated during cardiomyogenesis. Black-Right-Pointing-Pointer Inhibition of NFAT5 function suppresses canonical Wnt signaling. Black-Right-Pointing-Pointer Inhibition of NFAT5 function attenuates mesodermal induction. Black-Right-Pointing-Pointer NFAT5 function is required for cardiomyogenesis. -- Abstract: While nuclear factor of activated T cells 5 (NFAT5), a transcription factor implicated in osmotic stress response, is suggested to be involved in other processes such as migration and proliferation, its role in cardiomyogenesis is largely unknown. Here, we examined the role of NFAT5 in cardiac differentiation of P19CL6 cells, and observed that it was abundantly expressed in undifferentiated P19CL6 cells, and its protein expression was significantly downregulated by enhanced proteasomal degradation during DMSO-induced cardiomyogenesis. Expression of a dominant negative mutant of NFAT5 markedly attenuated cardiomyogenesis, which was associated with the inhibition of mesodermal differentiation. TOPflash reporter assay revealed that the transcriptional activity of canonical Wnt signaling was activated prior to mesodermal differentiation, and this activation was markedly attenuated by NFAT5 inhibition. Pharmacological activation of canonical Wnt signaling by [2 Prime Z, 3 Prime E]-6-bromoindirubin-3 Prime -oxime (BIO) restored Brachyury expression in NFAT5DN-expressing cells. Inhibition of NFAT5 markedly attenuated Wnt3 and Wnt3a induction. Expression of Dkk1 and Cerberus1, which are secreted Wnt antagonists, was also inhibited by NFAT5 inhibition. Thus, endogenous NFAT5 regulates the coordinated expression of Wnt ligands and antagonists, which are essential for cardiomyogenesis through the canonical Wnt pathway. These results demonstrated a novel role of NFAT5 in cardiac differentiation of stem cells.

  20. Novel insights into iron regulation and requirement in marine medaka Oryzias melastigma

    PubMed Central

    Wang, Jian; Wang, Wen-Xiong

    2016-01-01

    Iron (Fe) is an essential trace element for marine fish. However, our knowledge of Fe requirements at different development stages of marine fish is still limited. Here, we reported the efficient Fe absorption strategies adopted by larval fish under different dietary Fe supplementary levels (i.e., 0–640 mg/kg). Biokinetically, the larval fish controlled their dietary Fe assimilation efficiency (AE, 1.6–18.5%), and enhanced their waterborne Fe uptake (ca. 2.5 fold change of uptake rate constant) once the dietary Fe was deficient (i.e., 27.4 mg Fe/kg feed). Transcriptionally, the expression of hepcidin1 (hep1; Fe regulator; i.e., 2.3–15.7 fold change) in larval fish was positively correlated with the Fe supplementary levels. Comparatively, the female adult fish were poor in assimilating the added Fe source (i.e., ferric form) with similar life-sustainable levels of Fe (i.e., 0.046–0.12 μg/g/d assimilated for Fe supplementary levels of 27.4, 162 and 657 mg Fe/kg feed). The overall feeding experiments suggested that dietary net Fe flux sufficient for the normal growth of larval medaka was 0.71–1.75 μg/g/d (i.e., 83.9 mg Fe/kg feed), consistent with the modeled value (i.e., 1.09–2.16 μg/g/d). In female adults, the estimated essential net Fe flux was 0.88–0.90 μg/g/d. PMID:27216705

  1. Zinc Coordination Is Required for and Regulates Transcription Activation by Epstein-Barr Nuclear Antigen 1

    PubMed Central

    Aras, Siddhesh; Singh, Gyanendra; Johnston, Kenneth; Foster, Timothy; Aiyar, Ashok

    2009-01-01

    Epstein-Barr Nuclear Antigen 1 (EBNA1) is essential for Epstein-Barr virus to immortalize naïve B-cells. Upon binding a cluster of 20 cognate binding-sites termed the family of repeats, EBNA1 transactivates promoters for EBV genes that are required for immortalization. A small domain, termed UR1, that is 25 amino-acids in length, has been identified previously as essential for EBNA1 to activate transcription. In this study, we have elucidated how UR1 contributes to EBNA1's ability to transactivate. We show that zinc is necessary for EBNA1 to activate transcription, and that UR1 coordinates zinc through a pair of essential cysteines contained within it. UR1 dimerizes upon coordinating zinc, indicating that EBNA1 contains a second dimerization interface in its amino-terminus. There is a strong correlation between UR1-mediated dimerization and EBNA1's ability to transactivate cooperatively. Point mutants of EBNA1 that disrupt zinc coordination also prevent self-association, and do not activate transcription cooperatively. Further, we demonstrate that UR1 acts as a molecular sensor that regulates the ability of EBNA1 to activate transcription in response to changes in redox and oxygen partial pressure (pO2). Mild oxidative stress mimicking such environmental changes decreases EBNA1-dependent transcription in a lymphoblastoid cell-line. Coincident with a reduction in EBNA1-dependent transcription, reductions are observed in EBNA2 and LMP1 protein levels. Although these changes do not affect LCL survival, treated cells accumulate in G0/G1. These findings are discussed in the context of EBV latency in body compartments that differ strikingly in their pO2 and redox potential. PMID:19521517

  2. Requirements for Teacher Education and Certification. Part One--Certification Regulations.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia.

    This document sets forth certification requirements for prospective teachers in South Carolina. Areas covered include: (1) persons required to hold a teaching credential; (2) requirements for certification; (3) acceptable credit; (4) required examinations; (5) student teaching; (6) accredited teacher education programs; (7) application procedures;…

  3. 78 FR 30898 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Rights in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... Regulation Supplement; Rights in Technical Data and Computer Software AGENCY: Defense Acquisition Regulations... in Technical Data, and Subpart 227.72, Rights in Computer Software and Computer Software... are associated with rights in technical data and computer software. DoD needs this information...

  4. 75 FR 15388 - Amendment to the International Traffic in Arms Regulations: Removing Requirement for Prior...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    .... Government regulations.gov Web site at http://regulations.gov/index.cfm . FOR FURTHER INFORMATION CONTACT... DEFENSE SERVICES 1. The authority citation for part 124 is revised to read as follows: Authority: Secs. 2.... * * * * * PART 126--GENERAL POLICIES AND PROVISIONS 3. The authority citation for part 126 continues to read...

  5. 75 FR 26165 - Regulation of Fuels and Fuel Additives: Alternative Affirmative Defense Requirements for Ultra...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ...EPA is issuing a proposed rule to amend the diesel sulfur regulations to allow refiners, importers, distributors, and retailers of highway diesel fuel the option to use an alternative affirmative defense if the Agency finds highway diesel fuel samples above the specified sulfur standard at retail facilities. This rule also proposes to amend the gasoline benzene regulations to allow......

  6. 75 FR 44163 - Implementation of Regulations Required Under Title XI of the Food, Conservation and Energy Act of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ...-AB07 Implementation of Regulations Required Under Title XI of the Food, Conservation and Energy Act of... clarify conditions for industry compliance with the P&S Act and provide for a fairer market place. DATES... fairer market place. We have received comments asking for an extension of the comment period, and...

  7. 76 FR 76874 - Implementation of Regulations Required Under Title XI of the Food, Conservation and Energy Act of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... packers, swine contractors and live poultry dealers to retain records justifying differential pricing... ``justify'' a price differential in such a case. Agency Response: The final regulations will require no such... suggested the exact date of re-delivery following suspension may be impossible to determine. They said...

  8. 77 FR 33635 - Amendment to the Bank Secrecy Act Regulations-Requirement That Clerks of Court Report Certain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-07

    ... Financial Crimes Enforcement Network 31 CFR Part 1010 RIN 1506-AB17 Amendment to the Bank Secrecy Act Regulations--Requirement That Clerks of Court Report Certain Currency Transactions AGENCY: Financial Crimes... Financial Transactions Reporting Act of 1970, as amended by the USA PATRIOT Act of 2001 and...

  9. 77 FR 12927 - Federal Acquisition Regulation: Requirements for Acquisitions Pursuant to Multiple-Award Contracts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ...; (5) Competition requirements for establishing BPAs and allowing flexibility in establishing BPA ordering procedures; (6) BPA requirements and health-care programs; (7) Competition above the SAT is a... ensure the price of an order requiring a statement of work is being evaluated when placed under a...

  10. 76 FR 1360 - Regulated Navigation Area; Reporting Requirements for Barges Loaded With Certain Dangerous...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... Area (RNA) established by 33 CFR 165.830 for barges loaded with certain dangerous cargoes (CDC barges... analyze future reporting needs and evaluate possible changes in CDC reporting requirements. A final rule... existing reporting requirements, modify those requirements, or repeal the RNA. This suspension of the...

  11. Regulation of G-protein signaling via Gnas is required to regulate proximal tubular growth in the Xenopus pronephros

    PubMed Central

    Zhang, Bo; Romaker, Daniel; Ferrell, Nicholas; Wessely, Oliver

    2013-01-01

    In the kidney, proximal tubules are very important for the reabsorption of water, ions and organic solutes from the primary urine. They are composed of highly specialized epithelial cells that are characterized by an elaborate apical brush border to increase transport efficiency. Using the pronephric kidney of Xenopus laevis we discovered that the G-protein modulator cholera toxin resulted in a dramatic reduction of the proximal tubular size. This phenotype was accompanied by changes in the cytoarchitecture characterized by ectopic expression of the distal tubular marker 4A6 and an impairment of yolk platelet degradation. In addition, cholera toxin caused edema formation. However, this phenotype was not due to kidney defects, but rather due to impaired vasculature development. Based on experiments with antisense morpholino oligomers as well as pharmacological agonists and antagonists, we could show that the complex phenotype of cholera toxin in the pronephric kidney was caused by the hyperactivation of a single G-protein alpha subunit, Gnas. This—in turn—caused elevated cAMP levels, triggered a Rapgef4-dependent signaling cassette and perturbed exo- and endocytosis. This perturbation of the secretory pathway by Ctx was not only observed in Xenopus embryos. Also, in a human proximal tubular cell line, cholera toxin or a Rapgef4-specific agonist increased uptake and decreased secretion of FITC-labeled Albumin. Based on these data we propose that the Gnas/cAMP/Rapgef4 pathway regulates the signals inducing the proliferation of proximal tubules to acquire their final organ size. PMID:23352791

  12. A mechanism regulating G protein-coupled receptor signaling that requires cycles of protein palmitoylation and depalmitoylation.

    PubMed

    Jia, Lixia; Chisari, Mariangela; Maktabi, Mohammad H; Sobieski, Courtney; Zhou, Hao; Konopko, Aaron M; Martin, Brent R; Mennerick, Steven J; Blumer, Kendall J

    2014-02-28

    Reversible attachment and removal of palmitate or other long-chain fatty acids on proteins has been hypothesized, like phosphorylation, to control diverse biological processes. Indeed, palmitate turnover regulates Ras trafficking and signaling. Beyond this example, however, the functions of palmitate turnover on specific proteins remain poorly understood. Here, we show that a mechanism regulating G protein-coupled receptor signaling in neuronal cells requires palmitate turnover. We used hexadecyl fluorophosphonate or palmostatin B to inhibit enzymes in the serine hydrolase family that depalmitoylate proteins, and we studied R7 regulator of G protein signaling (RGS)-binding protein (R7BP), a palmitoylated allosteric modulator of R7 RGS proteins that accelerate deactivation of Gi/o class G proteins. Depalmitoylation inhibition caused R7BP to redistribute from the plasma membrane to endomembrane compartments, dissociated R7BP-bound R7 RGS complexes from Gi/o-gated G protein-regulated inwardly rectifying K(+) (GIRK) channels and delayed GIRK channel closure. In contrast, targeting R7BP to the plasma membrane with a polybasic domain and an irreversibly attached lipid instead of palmitate rendered GIRK channel closure insensitive to depalmitoylation inhibitors. Palmitate turnover therefore is required for localizing R7BP to the plasma membrane and facilitating Gi/o deactivation by R7 RGS proteins on GIRK channels. Our findings broaden the scope of biological processes regulated by palmitate turnover on specific target proteins. Inhibiting R7BP depalmitoylation may provide a means of enhancing GIRK activity in neurological disorders.

  13. Regulation of Gene33 expression by insulin requires MEK-ERK activation.

    PubMed

    Keeton, Adam B; Xu, Jie; Franklin, J Lee; Messina, Joseph L

    2004-09-17

    Gene33 and its human homologue, mitogen inducible gene-6/receptor-associated late transducer (mig-6, RALT), is a 53-kDa soluble protein that was identified as a hepatic gene regulated by glucocorticoids and insulin. Its mRNA is expressed in numerous tissues in addition to the liver. Mitogen inducibility of Gene33 mRNA has been described in several experimental systems. Recent reports have suggested a role for Gene33 in inhibition of proliferation induced by factors that bind to members of the ErbB family of receptors. In the present work, we examine the regulation of Gene33 protein by insulin in hepatoma cells of rat (H4IIE) and human (HepG2/Hep3B) origin. Inhibition of MEK1 significantly inhibited extracellularly regulated kinase (ERK)1/2 activation and insulin-regulated Gene33 transcription and protein levels in H4IIE cells. Inhibition of phosphatidylinositol 3-kinase (PI3-K) activity alone did not significantly alter transcription of Gene33. In Hep3B and HepG2 cells, insulin did not significantly induce either ERK1/2 activation or Gene33 expression. This work suggests that the MEK-ERK, but not the phosphatidylinositol 3-kinase (PI3-K), pathway plays a direct role in insulin regulation of Gene33 transcription and protein expression.

  14. Profiles of Motivated Self-Regulation in College Computer Science Courses: Differences in Major versus Required Non-Major Courses

    NASA Astrophysics Data System (ADS)

    Shell, Duane F.; Soh, Leen-Kiat

    2013-12-01

    The goal of the present study was to utilize a profiling approach to understand differences in motivation and strategic self-regulation among post-secondary STEM students in major versus required non-major computer science courses. Participants were 233 students from required introductory computer science courses (194 men; 35 women; 4 unknown) at a large Midwestern state university. Cluster analysis identified five profiles: (1) a strategic profile of a highly motivated by-any-means good strategy user; (2) a knowledge-building profile of an intrinsically motivated autonomous, mastery-oriented student; (3) a surface learning profile of a utility motivated minimally engaged student; (4) an apathetic profile of an amotivational disengaged student; and (5) a learned helpless profile of a motivated but unable to effectively self-regulate student. Among CS majors and students in courses in their major field, the strategic and knowledge-building profiles were the most prevalent. Among non-CS majors and students in required non-major courses, the learned helpless, surface learning, and apathetic profiles were the most prevalent. Students in the strategic and knowledge-building profiles had significantly higher retention of computational thinking knowledge than students in other profiles. Students in the apathetic and surface learning profiles saw little instrumentality of the course for their future academic and career objectives. Findings show that students in STEM fields taking required computer science courses exhibit the same constellation of motivated strategic self-regulation profiles found in other post-secondary and K-12 settings.

  15. 77 FR 8757 - Revising Underground Storage Tank Regulations-Revisions to Existing Requirements and New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ..., Hazardous materials, Petroleum, Reporting and recordkeeping requirements, Underground storage ] tanks, Water pollution control, Water supply. 40 CFR Part 281 Environmental protection, Administrative practice...

  16. 78 FR 60216 - Regulated Navigation Area; Reporting Requirements for Barges Loaded With Certain Dangerous...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... certain dangerous cargoes (CDC barges) in the inland rivers of the Eighth Coast Guard District. This... possible changes in CDC reporting requirements. This extension of the suspension of the CDC reporting requirements in no way relieves towing vessel operators and fleeting area managers responsible for CDC...

  17. 78 FR 61183 - Regulated Navigation Area; Reporting Requirements for Barges Loaded With Certain Dangerous...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ...) established for barges loaded with certain dangerous cargoes (CDC barges) in the inland rivers of the Ninth... analyze future reporting needs and evaluate possible changes in CDC reporting requirements. This stay (suspension) of the CDC reporting requirements in no way relieves towing vessel operators and fleeting...

  18. 78 FR 5452 - Federal Acquisition Regulation; Submission for OMB Review; Qualification Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... award of a contract. Under the qualification requirements, an end item, or a component thereof, may be...'s name, the item name, service identification, and test number (to the extent known). This... offeror before award of a contract. Under the qualification requirements, an end item, or a...

  19. 76 FR 39236 - Federal Acquisition Regulation; Uniform Suspension and Debarment Requirement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... Year 2010. Section 815 extends the flow down of limitations on subcontracting with entities that have... for Debarment, by flowing down the requirements for the contractor or higher-tier subcontractor to... the requirement down to the first tier, the clause was added to FAR 52.212-5, Contract Terms...

  20. 75 FR 29456 - Acquisition Regulation: Subchapter E-General Contracting Requirements, Subchapter F-Special...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ...--General Contracting Requirements, Subchapter F--Special Categories of Contracting, and Subchapter G--Contract Management AGENCY: Department of Energy. ACTION: Final rule. SUMMARY: The Department of Energy... Contracting Requirements, F--Special Categories of Contracting, and G--Contract Management to make changes...

  1. 78 FR 4725 - Escrow Requirements Under the Truth in Lending Act (Regulation Z)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... requirement for small creditors that operate predominately in rural or underserved areas. Specifically, to be... disclosure would have been required to be given three business days before consummation of a mortgage... business days before consummation or cancellation of the existing escrow account, as applicable....

  2. 49 CFR 195.11 - What is a regulated rural gathering line and what requirements apply?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... section. (a) Definition. As used in this section, a regulated rural gathering line means an onshore... established under § 195.406 corresponding to— (i) A stress level greater than 20-percent of the specified minimum yield strength of the line pipe; or (ii) If the stress level is unknown or the pipeline is...

  3. 78 FR 63462 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... Regulation Supplement; Organizational Conflict of Interest in Major Defense Acquisition Programs AGENCY... Conflicts of Interest, and related provision at DFARS 252.209-7008, Notice of ] Prohibition Relating to Organizational Conflict of Interest-Major Defense Acquisition Program; OMB Control Number 0704-0477. Needs...

  4. 76 FR 28405 - Endangered and Threatened Wildlife and Plants; Revised Implementing Regulations for Requirements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ..., Regulations.gov , and at local field offices that will represent the Service's interpretation of which areas... submitting your comment. U.S. mail or hand delivery: Public Comments Processing, Attn: ; Division of Policy and Directives Management; U.S. Fish and Wildlife Service; 4401 N. Fairfax Drive, Suite 222;...

  5. 77 FR 74177 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... Regulation Supplement; Production Surveillance and Reporting (OMB Control Number 0704-0250) AGENCY: Defense.... ADDRESSES: You may submit comments, identified by OMB Control Number 0704-0250, using any of the following... comments. Email: dfars@osd.mil . Include OMB Control Number 0704-0250 in the subject line of the...

  6. 78 FR 27308 - Loan Originator Compensation Requirements Under the Truth In Lending Act (Regulation Z...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... implementing regulations by that date.\\2\\ To avoid uncertainty and potential disruption in the national... rules, as needed; (4) publication of readiness guides for the new rules; and (5) education of consumers... disruptions in the provision of credit insurance products to consumers while interpretive questions...

  7. 75 FR 6185 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Rights in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... Regulation Supplement; Rights in Technical Data and Computer Software (OMB Control Number 0704-0369) AGENCY... Subpart 227.72, Rights in Computer Software and Computer Software Documentation, and related provisions... technical data and computer software. DoD needs this information to implement 10 U.S.C. 2320, Rights...

  8. NOVA2-mediated RNA regulation is required for axonal pathfinding during development

    PubMed Central

    Saito, Yuhki; Miranda-Rottmann, Soledad; Ruggiu, Matteo; Park, Christopher Y; Fak, John J; Zhong, Ru; Duncan, Jeremy S; Fabella, Brian A; Junge, Harald J; Chen, Zhe; Araya, Roberto; Fritzsch, Bernd; Hudspeth, A J; Darnell, Robert B

    2016-01-01

    The neuron specific RNA-binding proteins NOVA1 and NOVA2 are highly homologous alternative splicing regulators. NOVA proteins regulate at least 700 alternative splicing events in vivo, yet relatively little is known about the biologic consequences of NOVA action and in particular about functional differences between NOVA1 and NOVA2. Transcriptome-wide searches for isoform-specific functions, using NOVA1 and NOVA2 specific HITS-CLIP and RNA-seq data from mouse cortex lacking either NOVA isoform, reveals that NOVA2 uniquely regulates alternative splicing events of a series of axon guidance related genes during cortical development. Corresponding axonal pathfinding defects were specific to NOVA2 deficiency: Nova2-/- but not Nova1-/- mice had agenesis of the corpus callosum, and axonal outgrowth defects specific to ventral motoneuron axons and efferent innervation of the cochlea. Thus we have discovered that NOVA2 uniquely regulates alternative splicing of a coordinate set of transcripts encoding key components in cortical, brainstem and spinal axon guidance/outgrowth pathways during neural differentiation, with severe functional consequences in vivo. DOI: http://dx.doi.org/10.7554/eLife.14371.001 PMID:27223325

  9. 76 FR 65411 - Specialty Crops; Import Regulations; Proposed Pistachio Import Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... regulations for all domestic and imported peanuts marketed in the United States, for which USDA has...--Minimum Quality and Handling Standards for Domestic and Imported Peanuts Marketed in the United States... and submitted to a USDA or USDA-accredited laboratory for analysis. Test samples would be prepared...

  10. 7 CFR 318.13-3 - General requirements for all regulated articles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... infestation and infection, or without such inspection when the inspector determines that the lot for consignment is of such a nature that no danger of infestation or infection is involved. (i) Persons intending... treatment. (i) Regulated articles for which treatments are approved under part 305 of this chapter may...

  11. 76 FR 4555 - Authority To Require Supervision and Regulation of Certain Nonbank Financial Companies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... or failure, or ongoing activities, of large, interconnected bank holding companies or nonbank... to the type of regulation and consolidated supervision applied to bank holding companies, nor were... local governments, and as a source of liquidity for the United States financial system. Given...

  12. 78 FR 27908 - Federal Management Regulation (FMR); Mail Management; Financial Requirements for All Agencies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... annual report, removes the description of facility and program mail manager responsibilities, recommends....regulations.gov , including any personal and/or business confidential information provided. FOR FURTHER... still be accepted and granted on a case by case basis. 2. The Social Security Administration...

  13. 78 FR 63461 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Foreign...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... forms regarding products that are eligible for duty-free entry. DFARS 252.225-7018, Photovoltaic Devices--Certificate, as prescribed at 225.7017-4(b), requires offerors to certify that no photovoltaic devices with...

  14. Feedback regulation of NEUROG2 activity by MTGR1 is required for progression of neurogenesis.

    PubMed

    Aaker, Joshua D; Patineau, Andrea L; Yang, Hyun-Jin; Ewart, David T; Gong, Wuming; Li, Tongbin; Nakagawa, Yasushi; McLoon, Steven C; Koyano-Nakagawa, Naoko

    2009-12-01

    The sequential steps of neurogenesis are characterized by highly choreographed changes in transcription factor activity. In contrast to the well-studied mechanisms of transcription factor activation during neurogenesis, much less is understood regarding how such activity is terminated. We previously showed that MTGR1, a member of the MTG family of transcriptional repressors, is strongly induced by a proneural basic helix-loop-helix transcription factor, NEUROG2 in developing nervous system. In this study, we describe a novel feedback regulation of NEUROG2 activity by MTGR1. We show that MTGR1 physically interacts with NEUROG2 and represses transcriptional activity of NEUROG2. MTGR1 also prevents DNA binding of the NEUROG2/E47 complex. In addition, we provide evidence that proper termination of NEUROG2 activity by MTGR1 is necessary for normal progression of neurogenesis in the developing spinal cord. These results highlight the importance of feedback regulation of proneural gene activity in neurodevelopment.

  15. Feedback regulation of NEUROG2 activity by MTGR1 is required for progression of neurogenesis

    PubMed Central

    Aaker, Joshua D.; Patineau, Andrea L.; Yang, Hyun-jin; Ewart, David T.; Gong, Wuming; Li, Tongbin; Nakagawa, Yasushi; McLoon, Steven C.; Koyano-Nakagawa, Naoko

    2009-01-01

    The sequential steps of neurogenesis are characterized by highly choreographed changes in transcription factor activity. In contrast to the well-studied mechanisms of transcription factor activation during neurogenesis, much less is understood regarding how such activity is terminated. We previously showed that MTGR1, a member of the MTG family of transcriptional repressors, is strongly induced by a proneural basic helix-loop-helix transcription factor, NEUROG2 in developing nervous system. In this study, we describe a novel feedback regulation of NEUROG2 activity by MTGR1. We show that MTGR1 physically interacts with NEUROG2 and represses transcriptional activity of NEUROG2. MTGR1 also prevents DNA binding of the NEUROG2/E47 complex. In addition, we provide evidence that proper termination of NEUROG2 activity by MTGR1 is necessary for normal progression of neurogenesis in the developing spinal cord. These results highlight the importance of feedback regulation of proneural gene activity in neurodevelopment. PMID:19646530

  16. DptR2, a DeoR-type auto-regulator, is required for daptomycin production in Streptomyces roseosporus.

    PubMed

    Wang, Feng; Ren, Ni-Ni; Luo, Shuai; Chen, Xiao-Xia; Mao, Xu-Ming; Li, Yong-Quan

    2014-07-10

    Daptomycin, a novel cyclic lipopeptide antibiotic against Gram-positive bacteria, is produced by Streptomyces roseosporus. Though its biosynthetic mechanism, structural shuffling and fermentation optimization have been extensively studied, little is understood about its production regulation at the transcriptional levels. Here we reported that dptR2, encoding a DeoR-type regulator located close to the daptomycin biosynthesis gene cluster in S. roseosporus SW0702, is required for daptomycin production, but not for the expression of daptomycin gene cluster, suggesting that DptR2 was not a pathway-specific regulator. Furthermore, EMSA and qRT-PCR analysis suggested that DptR2 was positively auto-regulated by binding to its own promoter. Meanwhile, the binding sites on the dptR2 promoter were determined by a DNase I footprinting assay, and the essentiality of the inverted complementary sequences in the protected region for DptR2 binding was assessed. Our results for the first time reported the regulation of daptomycin production at the transcriptional level in S. roseosporus.

  17. Netrin-1 up-regulation in inflammatory bowel diseases is required for colorectal cancer progression

    PubMed Central

    Paradisi, Andrea; Maisse, Carine; Coissieux, Marie-May; Gadot, Nicolas; Lépinasse, Florian; Delloye-Bourgeois, Céline; Delcros, Jean-Guy; Svrcek, Magali; Neufert, Clemens; Fléjou, Jean-François; Scoazec, Jean-Yves; Mehlen, Patrick

    2009-01-01

    Chronic inflammation and cancer are intimately associated. This is particularly true for inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, which show a major increased risk for colorectal cancer. While the understanding of the molecular pathogenesis of IBD has recently improved, the mechanisms that link these chronic inflammatory states to colorectal cancer development are in large part unknown. One of these mechanisms is NF-κB pathway activation which in turn may contribute to tumor formation by providing anti-apoptotic survival signals to the epithelial cells. Based on the observation that netrin-1, the anti-apoptotic ligand for the dependence receptors DCC and UNC5H is up-regulated in colonic crypts in response to NF-κB, we show here that colorectal cancers from inflammatory bowel diseases patients have selected up-regulation of netrin-1. Moreover, we demonstrate that this inflammation-driven netrin-1 up-regulation is causal for colorectal cancer development as interference with netrin-1 autocrine loop in a mouse model for ulcerative colitis-associated colorectal cancer, while showing no effect on inflammation, inhibits colorectal cancer progression. PMID:19721007

  18. Netrin-1 up-regulation in inflammatory bowel diseases is required for colorectal cancer progression.

    PubMed

    Paradisi, Andrea; Maisse, Carine; Coissieux, Marie-May; Gadot, Nicolas; Lépinasse, Florian; Delloye-Bourgeois, Céline; Delcros, Jean-Guy; Svrcek, Magali; Neufert, Clemens; Fléjou, Jean-François; Scoazec, Jean-Yves; Mehlen, Patrick

    2009-10-06

    Chronic inflammation and cancer are intimately associated. This is particularly true for inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, which show a major increased risk for colorectal cancer. While the understanding of the molecular pathogenesis of IBD has recently improved, the mechanisms that link these chronic inflammatory states to colorectal cancer development are in large part unknown. One of these mechanisms is NF-kappaB pathway activation which in turn may contribute to tumor formation by providing anti-apoptotic survival signals to the epithelial cells. Based on the observation that netrin-1, the anti-apoptotic ligand for the dependence receptors DCC and UNC5H is up-regulated in colonic crypts in response to NF-kappaB, we show here that colorectal cancers from inflammatory bowel diseases patients have selected up-regulation of netrin-1. Moreover, we demonstrate that this inflammation-driven netrin-1 up-regulation is causal for colorectal cancer development as interference with netrin-1 autocrine loop in a mouse model for ulcerative colitis-associated colorectal cancer, while showing no effect on inflammation, inhibits colorectal cancer progression.

  19. Up-regulation of glycolytic metabolism is required for HIF1α-driven bone formation.

    PubMed

    Regan, Jenna N; Lim, Joohyun; Shi, Yu; Joeng, Kyu Sang; Arbeit, Jeffrey M; Shohet, Ralph V; Long, Fanxin

    2014-06-10

    The bone marrow environment is among the most hypoxic in the body, but how hypoxia affects bone formation is not known. Because low oxygen tension stabilizes hypoxia-inducible factor alpha (HIFα) proteins, we have investigated the effect of expressing a stabilized form of HIF1α in osteoblast precursors. Brief stabilization of HIF1α in SP7-positive cells in postnatal mice dramatically stimulated cancellous bone formation via marked expansion of the osteoblast population. Remarkably, concomitant deletion of vascular endothelial growth factor A (VEGFA) in the mouse did not diminish bone accrual caused by HIF1α stabilization. Thus, HIF1α-driven bone formation is independent of VEGFA up-regulation and increased angiogenesis. On the other hand, HIF1α stabilization stimulated glycolysis in bone through up-regulation of key glycolytic enzymes including pyruvate dehydrogenase kinase 1 (PDK1). Pharmacological inhibition of PDK1 completely reversed HIF1α-driven bone formation in vivo. Thus, HIF1α stimulates osteoblast formation through direct activation of glycolysis, and alterations in cellular metabolism may be a broadly applicable mechanism for regulating cell differentiation.

  20. Phosphorylation sites required for regulation of cardiac calcium channels in the fight-or-flight response.

    PubMed

    Fu, Ying; Westenbroek, Ruth E; Scheuer, Todd; Catterall, William A

    2013-11-26

    L-type Ca(2+) currents conducted by CaV1.2 channels initiate excitation-contraction coupling in the heart. Their activity is increased by β-adrenergic/cAMP signaling via phosphorylation by PKA in the fight-or-flight response, but the sites of regulation are unknown. We describe the functional role of phosphorylation of Ser1700 and Thr1704-sites of phosphorylation by PKA and casein kinase II at the interface between the proximal and distal C-terminal regulatory domains. Mutation of both residues to Ala in STAA mice reduced basal L-type Ca(2+) currents, due to a small decrease in expression and a substantial decrease in functional activity. The increase in L-type Ca(2+) current caused by isoproterenol was markedly reduced at physiological levels of stimulation (3-10 nM). Maximal increases in calcium current at nearly saturating concentrations of isoproterenol (100 nM) were also significantly reduced, but the mutation effects were smaller, suggesting that alternative regulatory mechanisms are engaged at maximal levels of stimulation. The β-adrenergic increase in cell contraction was also diminished. STAA ventricular myocytes exhibited arrhythmic contractions in response to isoproterenol, and up to 20% of STAA cells failed to sustain contractions when stimulated at 1 Hz. STAA mice have reduced exercise capacity, and cardiac hypertrophy is evident at 3 mo. We conclude that phosphorylation of Ser1700 and Thr1704 is essential for regulation of basal activity of CaV1.2 channels and for up-regulation by β-adrenergic signaling at physiological levels of stimulation. Disruption of phosphorylation at those sites leads to impaired cardiac function in vivo, as indicated by reduced exercise capacity and cardiac hypertrophy.

  1. Requirements for cell rounding and surface protein down-regulation by Ebola virus glycoprotein.

    PubMed

    Francica, Joseph R; Matukonis, Meghan K; Bates, Paul

    2009-01-20

    Ebola virus causes an acute hemorrhagic fever that is associated with high morbidity and mortality. The viral glycoprotein is thought to contribute to pathogenesis, though precise mechanisms are unknown. Cellular pathogenesis can be modeled in vitro by expression of the Ebola viral glycoprotein (GP) in cells, which causes dramatic morphological changes, including cell rounding and surface protein down-regulation. These effects are known to be dependent on the presence of a highly glycosylated region of the glycoprotein, the mucin domain. Here we show that the mucin domain from the highly pathogenic Zaire subtype of Ebola virus is sufficient to cause characteristic cytopathology when expressed in the context of a foreign glycoprotein. Similarly to full length Ebola GP, expression of the mucin domain causes rounding, detachment from the extracellular matrix, and the down-regulation of cell surface levels of beta1 integrin and major histocompatibility complex class 1. These effects were not seen when the mucin domain was expressed in the context of a glycophosphatidylinositol-anchored isoform of the foreign glycoprotein. In contrast to earlier analysis of full length Ebola glycoproteins, chimeras carrying the mucin domains from the Zaire and Reston strains appear to cause similar levels of down-modulation and cell detachment. Cytopathology associated with Ebola glycoprotein expression does not occur when GP expression is restricted to the endoplasmic reticulum. In contrast to a previously published report, our results demonstrate that GP-induced surface protein down-regulation is not mediated through a dynamin-dependent pathway. Overall, these results support a model in which the mucin domain of Ebola GP acts at the cell surface to induce protein down modulation and cytopathic effects.

  2. Cell cycle regulation of a mouse histone H4 gene requires the H4 promoter.

    PubMed Central

    Seiler-Tuyns, A; Paterson, B M

    1987-01-01

    The mouse histone H4 gene, when stably transformed into L cells on the PSV2gpt shuttle vector, is cell cycle regulated in parallel with the endogenous H4 genes. This was determined in exponentially growing pools of transformants fractionated into cell cycle-specific stages by centrifugal elutriation, a method for purifying cells at each stage of the cell cycle without the use of treatments that arrest growth. Linker additions in the 5' noncoding region of the H4 RNA or in the coding region of the gene did not affect the cell cycle-regulated expression of the modified H4 gene even though the overall level of expression was altered. However, replacing the H4 promoter with the human alpha-2 globin promoter, so that the histone transcript produced by the chimeric gene remains essentially unchanged, resulted in the constitutive expression of H4 mRNA during all phases of the cell cycle with no net increase in H4 mRNA levels during the G1-to-S transition. From these results we conclude that all the information necessary for the cell cycle-regulated expression of the H4 gene is contained in the 5.2-kilobase subclone used in these studies with 228 nucleotides of 5'-flanking DNA and that the increase in H4 mRNA during the G1-to-S transition in the cell cycle is mediated by the H4 promoter and not by the increased stability of the H4 RNA. Images PMID:3561406

  3. Quorum Sensing Regulators Are Required for Metabolic Fitness in Vibrio parahaemolyticus.

    PubMed

    Kalburge, Sai Siddarth; Carpenter, Megan R; Rozovsky, Sharon; Boyd, E Fidelma

    2017-03-01

    Quorum sensing (QS) is a process by which bacteria alter gene expression in response to cell density changes. In Vibrio species, at low cell density, the sigma 54-dependent response regulator LuxO is active and regulates the two QS master regulators AphA, which is induced, and OpaR, which is repressed. At high cell density the opposite occurs: LuxO is inactive, and therefore OpaR is induced while AphA is repressed. In Vibrio parahaemolyticus, a significant enteric pathogen of humans, the roles of these regulators in pathogenesis are less known. We examined deletion mutants of luxO, opaR, and aphA for in vivo fitness using an adult mouse model. We found that the luxO and aphA mutants were defective in colonization compared to levels in the wild type. The opaR mutant did not show any defect in vivo Colonization was restored to wild-type levels in a luxO opaR double mutant and was also increased in an opaR aphA double mutant. These data suggest that AphA is important and that overexpression of opaR is detrimental to in vivo fitness. Transcriptome sequencing (RNA-Seq) analysis of the wild type and luxO mutant grown in mouse intestinal mucus showed that 60% of the genes that were downregulated in the luxO mutant were involved in amino acid and sugar transport and metabolism. These data suggest that the luxO mutant has a metabolic disadvantage, which was confirmed by growth pattern analysis using phenotype microarrays. Bioinformatics analysis revealed OpaR binding sites in the regulatory region of 55 carbon transporter and metabolism genes. Biochemical analysis of five representatives of these regulatory regions demonstrated direct binding of OpaR in all five tested. These data demonstrate the role of OpaR in carbon utilization and metabolic fitness, an overlooked role in the QS regulon.

  4. Leptin is required for hypothalamic regulation of miRNAs targeting POMC 3'UTR.

    PubMed

    Derghal, Adel; Djelloul, Mehdi; Airault, Coraline; Pierre, Clément; Dallaporta, Michel; Troadec, Jean-Denis; Tillement, Vanessa; Tardivel, Catherine; Bariohay, Bruno; Trouslard, Jérôme; Mounien, Lourdes

    2015-01-01

    The central nervous system (CNS) monitors modifications in metabolic parameters or hormone levels and elicits adaptive responses such as food intake regulation. Particularly, within the hypothalamus, leptin modulates the activity of pro-opiomelanocortin (POMC) neurons which are critical regulators of energy balance. Consistent with a pivotal role of the melanocortin system in the control of energy homeostasis, disruption of the POMC gene causes hyperphagia and obesity. MicroRNAs (miRNAs) are short noncoding RNA molecules that post-transcriptionally repress the expression of genes by binding to 3'-untranslated regions (3'UTR) of the target mRNAs. However, little is known regarding the role of miRNAs that target POMC 3'UTR in the central control energy homeostasis. Particularly, their interaction with the leptin signaling pathway remain unclear. First, we used common prediction programs to search for potential miRNAs target sites on 3'UTR of POMC mRNA. This screening identified a set of conserved miRNAs seed sequences for mir-383, mir-384-3p, and mir-488. We observed that mir-383, mir-384-3p, and mir-488 are up-regulated in the hypothalamus of leptin deficient ob/ob mice. In accordance with these observations, we also showed that mir-383, mir-384-3p, and mir-488 were increased in db/db mice that exhibit a non-functional leptin receptor. The intraperitoneal injection of leptin down-regulated the expression of these miRNAs of interest in the hypothalamus of ob/ob mice showing the involvement of leptin in the expression of mir-383, mir-384-3p, and mir-488. Finally, the evaluation of responsivity to intracerebroventricular administration of leptin exhibited that a chronic treatment with leptin decreased mir-488 expression in hypothalamus of C57BL/6 mice. In summary, these results suggest that leptin modulates the expression of miRNAs that target POMC mRNA in hypothalamus.

  5. Leptin is required for hypothalamic regulation of miRNAs targeting POMC 3′UTR

    PubMed Central

    Derghal, Adel; Djelloul, Mehdi; Airault, Coraline; Pierre, Clément; Dallaporta, Michel; Troadec, Jean-Denis; Tillement, Vanessa; Tardivel, Catherine; Bariohay, Bruno; Trouslard, Jérôme; Mounien, Lourdes

    2015-01-01

    The central nervous system (CNS) monitors modifications in metabolic parameters or hormone levels and elicits adaptive responses such as food intake regulation. Particularly, within the hypothalamus, leptin modulates the activity of pro-opiomelanocortin (POMC) neurons which are critical regulators of energy balance. Consistent with a pivotal role of the melanocortin system in the control of energy homeostasis, disruption of the POMC gene causes hyperphagia and obesity. MicroRNAs (miRNAs) are short noncoding RNA molecules that post-transcriptionally repress the expression of genes by binding to 3′-untranslated regions (3′UTR) of the target mRNAs. However, little is known regarding the role of miRNAs that target POMC 3′UTR in the central control energy homeostasis. Particularly, their interaction with the leptin signaling pathway remain unclear. First, we used common prediction programs to search for potential miRNAs target sites on 3′UTR of POMC mRNA. This screening identified a set of conserved miRNAs seed sequences for mir-383, mir-384-3p, and mir-488. We observed that mir-383, mir-384-3p, and mir-488 are up-regulated in the hypothalamus of leptin deficient ob/ob mice. In accordance with these observations, we also showed that mir-383, mir-384-3p, and mir-488 were increased in db/db mice that exhibit a non-functional leptin receptor. The intraperitoneal injection of leptin down-regulated the expression of these miRNAs of interest in the hypothalamus of ob/ob mice showing the involvement of leptin in the expression of mir-383, mir-384-3p, and mir-488. Finally, the evaluation of responsivity to intracerebroventricular administration of leptin exhibited that a chronic treatment with leptin decreased mir-488 expression in hypothalamus of C57BL/6 mice. In summary, these results suggest that leptin modulates the expression of miRNAs that target POMC mRNA in hypothalamus. PMID:25999818

  6. Questions and Answers on the Requirements of Operating Permits Program Regulations

    EPA Pesticide Factsheets

    This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Policy and Guidance Database available at www2.epa.gov/title-v-operating-permits/title-v-operating-permit-policy-and-guidance-document-index. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  7. 2 CFR 25.200 - Requirements for program announcements, regulations, and application instructions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 2 Grants and Agreements 1 2013-01-01 2013-01-01 false Requirements for program announcements...) Is issued on or after the effective date of this part; or (2) Has application or plan due dates after... an application or plan; (2) Maintain an active CCR registration with current information at all...

  8. 2 CFR 25.200 - Requirements for program announcements, regulations, and application instructions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 2 Grants and Agreements 1 2012-01-01 2012-01-01 false Requirements for program announcements...) Is issued on or after the effective date of this part; or (2) Has application or plan due dates after... an application or plan; (2) Maintain an active CCR registration with current information at all...

  9. 2 CFR 25.200 - Requirements for program announcements, regulations, and application instructions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2 Grants and Agreements 1 2014-01-01 2014-01-01 false Requirements for program announcements... on or after the effective date of this part; or (2) Has application or plan due dates after October 1... application or plan; (2) Maintain an active CCR registration with current information at all times...

  10. 2 CFR 25.200 - Requirements for program announcements, regulations, and application instructions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 2 Grants and Agreements 1 2011-01-01 2011-01-01 false Requirements for program announcements...) Is issued on or after the effective date of this part; or (2) Has application or plan due dates after... an application or plan; (2) Maintain an active CCR registration with current information at all...

  11. 77 FR 59139 - Prompt Corrective Action, Requirements for Insurance, and Promulgation of NCUA Rules and Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ...'' credit union for determining whether risk-based net worth requirements apply, and 12 CFR 741.3(b)(5)(i... risk to the National Credit Union Share Insurance Fund (NCUSIF). The Board believes the $10 million... the NCUSIF based on recent trends. (iii) Credit Union Complexity and NCUSIF Risk The Board...

  12. 78 FR 20624 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement (DFARS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... of material containing RFID tag data. DoD receiving personnel use the advance shipment notice to associate the unique identification encoded on the RFID tag with the corresponding shipment. Use of the RFID... ensure that the data on each passive RFID tag are unique and conforms to the requirements that they...

  13. 75 FR 52622 - Amendment to the International Traffic in Arms Regulations: Removing Requirement for Prior...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ...: Director Charles Shotwell, Office of Defense Trade Controls Policy, Department of State, Telephone (202... 126.8. SUPPLEMENTARY INFORMATION: In accordance with the President's Export Control Reform effort, on..., Sec. 126.1(e) requires the Directorate of Defense Trade Controls' (DDTC) written approval or a...

  14. Beyond Transcription Factors: The Role of Chromatin Modifying Enzymes in Regulating Transcription Required for Memory

    ERIC Educational Resources Information Center

    Barrett, Ruth M.; Wood, Marcelo A.

    2008-01-01

    One of the alluring aspects of examining chromatin modifications in the role of modulating transcription required for long-term memory processes is that these modifications may provide transient and potentially stable epigenetic marks in the service of activating and/or maintaining transcriptional processes. These, in turn, may ultimately…

  15. 78 FR 15935 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement (DFARS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ... contractor's costs of providing war-hazard benefits to its employees; to determine the need for an... contractor performing a service or construction contract in Spain has adequate insurance coverage. Affected..., Reimbursement for War-Hazard Losses, requires the contractor to provide notice and supporting documentation...

  16. 76 FR 72916 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... (IAEA) Additional Protocol, the United States is required to declare a wide range of public and private nuclear-related activities to the IAEA and potentially provide access to IAEA inspectors for verification purposes. The U.S.-IAEA Additional Protocol permits the United States unilaterally to declare...

  17. 75 FR 33271 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Foreign...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ..., Commercial Derivative Military Article-- Specialty Metals Compliance Certificate, as prescribed at 225.7003... metals if the offeror chooses to use the alternative compliance approach when providing commercial..., Restriction on Acquisition of Forgings, as prescribed in 225.7102-4, requires the contractor to retain...

  18. 49 CFR 192.13 - What general requirements apply to pipelines regulated under this part?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false What general requirements apply to pipelines... (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY...

  19. 49 CFR 192.13 - What general requirements apply to pipelines regulated under this part?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false What general requirements apply to pipelines... (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY...

  20. 49 CFR 192.13 - What general requirements apply to pipelines regulated under this part?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false What general requirements apply to pipelines... (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY...

  1. 49 CFR 192.13 - What general requirements apply to pipelines regulated under this part?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false What general requirements apply to pipelines... (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY...

  2. 49 CFR 192.13 - What general requirements apply to pipelines regulated under this part?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false What general requirements apply to pipelines... (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY...

  3. 75 FR 26739 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Part 244...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... 1995 (44 U.S.C. Chapter 35), DoD announces the proposed extension of a public information collection requirement and seeks public comment on the provisions thereof. DoD invites comments on: (a) Whether the proposed collection of information is necessary for the proper performance of the functions of...

  4. 78 FR 70025 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ..., Department of Defense (DoD). ACTION: Notice and request for comments regarding a proposed extension of an... Paperwork Reduction Act of 1995 (44 U.S.C. chapter 35), DoD announces the proposed extension of a public information collection requirement and seeks public comment on the provisions thereof. DoD invites comments...

  5. 77 FR 16196 - Delaying the Compliance Date for Certain Requirements of the Regulations Implementing Titles II...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... for existing swimming pools and spas. Concurrently with the publication of this Notice of Proposed... existing swimming pools, wading pools, and spas to May 21, 2012 in order to allow additional time to... proposed suspension of the applicability of the requirements in the 2010 Standards to swimming pools...

  6. 78 FR 68830 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Service...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ....237-7011, Preparation History, and DD Form 2063, Record of Preparation and Disposition of Remains...-237.7011 and DD Form 2063 are used (a) to ensure the mortuary contractor has properly prepared the..., 252.237-7011, 252.237-7023, 252.237-7024, and DD Form 2063 are required for DoD contracting...

  7. 76 FR 53886 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Special...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... and quantity data on any Government orders for the replenishment part issued within the most recent 12... review in connection with the contract. Paragraph (d) of 217.7505, Acquisition of Replenishment Parts... replenishment parts, a provision requiring that the offeror supply with its proposal, price and quantity data...

  8. The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation

    PubMed Central

    Li, Qin; Zheng, Sika; Han, Areum; Lin, Chia-Ho; Stoilov, Peter; Fu, Xiang-Dong; Black, Douglas L

    2014-01-01

    We show that the splicing regulator PTBP2 controls a genetic program essential for neuronal maturation. Depletion of PTBP2 in developing mouse cortex leads to degeneration of these tissues over the first three postnatal weeks, a time when the normal cortex expands and develops mature circuits. Cultured Ptbp2−/− neurons exhibit the same initial viability as wild type, with proper neurite outgrowth and marker expression. However, these mutant cells subsequently fail to mature and die after a week in culture. Transcriptome-wide analyses identify many exons that share a pattern of mis-regulation in the mutant brains, where isoforms normally found in adults are precociously expressed in the developing embryo. These transcripts encode proteins affecting neurite growth, pre- and post-synaptic assembly, and synaptic transmission. Our results define a new genetic regulatory program, where PTBP2 acts to temporarily repress expression of adult protein isoforms until the final maturation of the neuron. DOI: http://dx.doi.org/10.7554/eLife.01201.001 PMID:24448406

  9. The Ustilago maydis Nit2 Homolog Regulates Nitrogen Utilization and Is Required for Efficient Induction of Filamentous Growth

    PubMed Central

    Horst, Robin J.; Zeh, Christine; Saur, Alexandra; Sonnewald, Sophia; Sonnewald, Uwe

    2012-01-01

    Nitrogen catabolite repression (NCR) is a regulatory strategy found in microorganisms that restricts the utilization of complex and unfavored nitrogen sources in the presence of favored nitrogen sources. In fungi, this concept has been best studied in yeasts and filamentous ascomycetes, where the GATA transcription factors Gln3p and Gat1p (in yeasts) and Nit2/AreA (in ascomycetes) constitute the main positive regulators of NCR. The reason why functional Nit2 homologs of some phytopathogenic fungi are required for full virulence in their hosts has remained elusive. We have identified the Nit2 homolog in the basidiomycetous phytopathogen Ustilago maydis and show that it is a major, but not the exclusive, positive regulator of nitrogen utilization. By transcriptome analysis of sporidia grown on artificial media devoid of favored nitrogen sources, we show that only a subset of nitrogen-responsive genes are regulated by Nit2, including the Gal4-like transcription factor Ton1 (a target of Nit2). Ustilagic acid biosynthesis is not under the control of Nit2, while nitrogen starvation-induced filamentous growth is largely dependent on functional Nit2. nit2 deletion mutants show the delayed initiation of filamentous growth on maize leaves and exhibit strongly compromised virulence, demonstrating that Nit2 is required to efficiently initiate the pathogenicity program of U. maydis. PMID:22247264

  10. 75 FR 3617 - Outer Continental Shelf Air Regulations Update To Include New Jersey State Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-22

    ..., Reporting and recordkeeping requirements, Sulfur oxides. Dated: December 30, 2009. Judith A. Enck, Regional.... Variances N.J.A.C. 7:27-6.7. Exceptions Chapter 27 Subchapter 7--Sulfur (Effective 3/1/67) N.J.A.C. 7:27-7.1. Definitions N.J.A.C. 7:27-7.2. Control and prohibition of air pollution from sulfur compounds Chapter...

  11. Noncoding 3' sequences of the transferrin receptor gene are required for mRNA regulation by iron.

    PubMed Central

    Owen, D; Kühn, L C

    1987-01-01

    The cell-surface receptor for transferrin mediates cellular uptake of iron from serum. Transferrin receptor protein and mRNA levels are increased in cells treated with iron chelating agents, and are decreased by treatment with iron salts or hemin. Here we report that expression of human transferrin receptor cDNA constructions in stably transfected mouse fibroblasts is regulated both by the iron chelator, desferrioxamine, and by hemin. We found that sequences within the 3' noncoding region are required for the iron-dependent feed-back regulation of receptor expression, whereas the presence of the transferrin receptor promoter region is not necessary. Regulation by iron is observed when transcription is initiated at either the SV-40 early promoter or the transferrin receptor promoter, but deletion of a 2.3 kb fragment within the 2.6 kb 3' noncoding region of the cDNA abolishes regulation and increases the constitutive level of receptor expression. Furthermore, the 3' deletion does not affect the decrease in receptors which is observed in response to growth arrest, indicating that transferrin receptor expression is controlled by at least two distinct mechanisms. Images Fig. 3. Fig. 6. Fig. 8. PMID:3608980

  12. The Endoplasmic Reticulum Resident Protein AGR3. Required for Regulation of Ciliary Beat Frequency in the Airway.

    PubMed

    Bonser, Luke R; Schroeder, Bradley W; Ostrin, Lisa A; Baumlin, Nathalie; Olson, Jean L; Salathe, Matthias; Erle, David J

    2015-10-01

    Protein disulfide isomerase (PDI) family members regulate protein folding and calcium homeostasis in the endoplasmic reticulum (ER). The PDI family member anterior gradient (AGR) 3 is expressed in the airway, but the localization, regulation, and function of AGR3 are poorly understood. Here we report that AGR3, unlike its closest homolog AGR2, is restricted to ciliated cells in the airway epithelium and is not induced by ER stress. Mice lacking AGR3 are viable and develop ciliated cells with normal-appearing cilia. However, ciliary beat frequency was lower in airways from AGR3-deficient mice compared with control mice (20% lower in the absence of stimulation and 35% lower after ATP stimulation). AGR3 deficiency had no detectable effects on ciliary beat frequency (CBF) when airways were perfused with a calcium-free solution, suggesting that AGR3 is required for calcium-mediated regulation of ciliary function. Decreased CBF was associated with impaired mucociliary clearance in AGR3-deficient airways. We conclude that AGR3 is a specialized member of the PDI family that plays an unexpected role in the regulation of CBF and mucociliary clearance in the airway.

  13. RhoE is required for contact inhibition and negatively regulates tumor initiation and progression

    PubMed Central

    Hernández-Sánchez, Marta; Poch, Enric; Guasch, Rosa M.; Ortega, Joaquín; López-Almela, Inmaculada; Palmero, Ignacio; Pérez-Roger, Ignacio

    2015-01-01

    RhoE is a small GTPase involved in the regulation of actin cytoskeleton dynamics, cell cycle and apoptosis. The role of RhoE in cancer is currently controversial, with reports of both oncogenic and tumor-suppressive functions for RhoE. Using RhoE-deficient mice, we show here that the absence of RhoE blunts contact-inhibition of growth by inhibiting p27Kip1 nuclear translocation and cooperates in oncogenic transformation of mouse primary fibroblasts. Heterozygous RhoE+/gt mice are more susceptible to chemically induced skin tumors and RhoE knock-down results in increased metastatic potential of cancer cells. These results indicate that RhoE plays a role in suppressing tumor initiation and progression. PMID:26036260

  14. FDA regulation of dietary supplements and requirements regarding adverse event reporting.

    PubMed

    Frankos, V H; Street, D A; O'Neill, R K

    2010-02-01

    In 1994, the Dietary Supplement Health and Education Act (DSHEA) amended the Federal Food, Drug, and Cosmetic Act (FDC Act) to set up a distinct regulatory framework for what we now call dietary supplements. The DSHEA was passed with the intent of striking a balance between providing consumers access to safe dietary supplements to help maintain or improve their health and giving the US Food and Drug Administration (FDA) authority to regulate and take action against manufacturers of supplements or supplement ingredients that present safety problems, are presented with false or misleading claims, or are adulterated or misbranded. This article will present FDA's recent experience in collecting and evaluating dietary supplement adverse event data for the purpose of assuring the public that the dietary supplements they purchase are safe.

  15. RhoE is required for contact inhibition and negatively regulates tumor initiation and progression.

    PubMed

    Hernández-Sánchez, Marta; Poch, Enric; Guasch, Rosa M; Ortega, Joaquín; López-Almela, Inmaculada; Palmero, Ignacio; Pérez-Roger, Ignacio

    2015-07-10

    RhoE is a small GTPase involved in the regulation of actin cytoskeleton dynamics, cell cycle and apoptosis. The role of RhoE in cancer is currently controversial, with reports of both oncogenic and tumor-suppressive functions for RhoE. Using RhoE-deficient mice, we show here that the absence of RhoE blunts contact-inhibition of growth by inhibiting p27Kip1 nuclear translocation and cooperates in oncogenic transformation of mouse primary fibroblasts. Heterozygous RhoE+/gt mice are more susceptible to chemically induced skin tumors and RhoE knock-down results in increased metastatic potential of cancer cells. These results indicate that RhoE plays a role in suppressing tumor initiation and progression.

  16. Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi.

    PubMed

    Zuber, Johannes; McJunkin, Katherine; Fellmann, Christof; Dow, Lukas E; Taylor, Meredith J; Hannon, Gregory J; Lowe, Scott W

    2011-01-01

    Short hairpin RNAs (shRNAs) are versatile tools for analyzing loss-of-function phenotypes in vitro and in vivo. However, their use for studying genes involved in proliferation and survival, which are potential therapeutic targets in cancer and other diseases, is confounded by the strong selective advantage of cells in which shRNA expression is inefficient. We therefore developed a toolkit that combines Tet-regulated miR30-shRNA technology, robust transactivator expression and two fluorescent reporters to track and isolate cells with potent target knockdown. We demonstrated that this system improves the study of essential genes and was sufficiently robust to eradicate aggressive cancer in mice by suppressing a single gene. Further, we applied this system for in vivo negative-selection screening with pooled shRNAs and propose a streamlined, inexpensive workflow that will facilitate the use of RNA interference (RNAi) for the identification and evaluation of essential therapeutic targets.

  17. Requirement for MLL3 in p53 regulation of hepatic expression of small heterodimer partner and bile acid homeostasis.

    PubMed

    Kim, Dae-Hwan; Kim, Juhee; Lee, Jae W

    2011-12-01

    The histone H3-lysine-4 methyltransferase mixed-lineage leukemia 3 (MLL3) belongs to a large complex that functions as a coactivator of multiple transcription factors, including the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR), a critical player in BA homeostasis. BA-activated FXR induces hepatic expression of small heterodimer partner (SHP), which in turn suppresses expression of BA synthesis genes, Cyp7a1 and Cyp8b1. Thus, MLL3(Δ/Δ) mice that express a catalytically inactive mutant form of MLL3 display increased BA levels. Recently, we have discovered a distinct regulatory pathway for BA homeostasis, in which p53 independently up-regulates SHP expression in the liver. Here, we show that the MLL3 complex is also essential for p53 transactivation of SHP. Although activated p53 signaling in MLL3(+/+) mice results in decreased BA levels through hepatic up-regulation of SHP, these changes are abolished in MLL3(Δ/Δ) mice. For both HepG2 cells and mouse liver, we also demonstrate that p53 directs the recruitment of different components of the MLL3 complex to the p53-response elements of SHP and that p53-dependent H3-lysine-4-trimethylation of SHP requires MLL3. From these results, we conclude that both FXR- and p53-dependent regulatory pathways for SHP expression in BA homeostasis require the MLL3 complex; thus, the MLL3 complex is likely a master regulator of BA homeostasis. Using a common coregulator complex for multiple transcription factors, which independently control expression of the same gene, might be a prevalent theme in gene regulation and may also play critical roles in assigning a specific biological function to a coregulator complex.

  18. Financial Management Regulation. Volume 1. General Financial Management Information, Systems, and Requirements

    DTIC Science & Technology

    1993-05-01

    INFORMATION, SYSTEMS, AND REQUIREMENTS MAY 1993 D117C QUALITy IISPECTED 3 NTIS CRA&I L)IW TAB SU : ,flro•!n c.:d 1) c’ bu To f HA,(dIL,)!l’+Y Codes Avail jrVlh...Payment Policy and Procedures 2. Budget Formulation and Presentation 11. Reimbursable Operations, Policy and Procedures 3 . Budget Execution - Availability...1 0102 AUTi IORITIES AND FUNCTIONS 1 0103 CHIEF FINANCIAL OFFICERS COUNCIL 3 0104 DEPUTY CHIEF FINANCIAL OFFICER OF THE DEPARTMENT OF DEFENSE 3 0105

  19. Impacts & Compliance Implementation Plans & Required Deviations for Toxic Substance Control Act (TSCA) Regulation of Double Shell Tanks (DST)

    SciTech Connect

    MULKEY, C.H.

    2000-08-22

    In May 2000, the U.S. Department of Energy, Office of River Protection (DOE-ORP) and the U.S. Environmental Protection Agency (EPA) held meetings regarding the management of polychlorinated biphenyls (PCBs) in the Hanford tank waste. It was decided that the radioactive waste currently stored in the double-shell tanks (DSTs) contain waste which will become subject to the Toxic Substance Control Act (TSCA) (40 CFR 761). As a result, DOE-ORP directed the River Protection Project tank farm contractor (TFC) to prepare plans for managing the PCB inventory in the DSTs. Two components of the PCB management plans are this assessment of the operational impacts of TSCA regulation and the identifications of deviations from TSCA that are required to accommodate tank farm unique limitations. This plan provides ORP and CH2M HILL Hanford Group, Inc. (CHG) with an outline of TSCA PCB requirements and their applicability to tank farm activities, and recommends a compliance/implementation approach. Where strict compliance is not possible, the need for deviations from TSCA PCB requirements is identified. The purpose of assembling this information is to enhance the understanding of PCB management requirements, identify operational impacts and select impact mitigation strategies. This information should be useful in developing formal agreements with EPA where required.

  20. Vangl2-regulated polarisation of second heart field-derived cells is required for outflow tract lengthening during cardiac development.

    PubMed

    Ramsbottom, Simon A; Sharma, Vipul; Rhee, Hong Jun; Eley, Lorraine; Phillips, Helen M; Rigby, Hannah F; Dean, Charlotte; Chaudhry, Bill; Henderson, Deborah J

    2014-12-01

    Planar cell polarity (PCP) is the mechanism by which cells orient themselves in the plane of an epithelium or during directed cell migration, and is regulated by a highly conserved signalling pathway. Mutations in the PCP gene Vangl2, as well as in other key components of the pathway, cause a spectrum of cardiac outflow tract defects. However, it is unclear why cells within the mesodermal heart tissue require PCP signalling. Using a new conditionally floxed allele we show that Vangl2 is required solely within the second heart field (SHF) to direct normal outflow tract lengthening, a process that is required for septation and normal alignment of the aorta and pulmonary trunk with the ventricular chambers. Analysis of a range of markers of polarised epithelial tissues showed that in the normal heart, undifferentiated SHF cells move from the dorsal pericardial wall into the distal outflow tract where they acquire an epithelial phenotype, before moving proximally where they differentiate into cardiomyocytes. Thus there is a transition zone in the distal outflow tract where SHF cells become more polarised, turn off progenitor markers and start to differentiate to cardiomyocytes. Membrane-bound Vangl2 marks the proximal extent of this transition zone and in the absence of Vangl2, the SHF-derived cells are abnormally polarised and disorganised. The consequent thickening, rather than lengthening, of the outflow wall leads to a shortened outflow tract. Premature down regulation of the SHF-progenitor marker Isl1 in the mutants, and accompanied premature differentiation to cardiomyocytes, suggests that the organisation of the cells within the transition zone is important for maintaining the undifferentiated phenotype. Thus, Vangl2-regulated polarisation and subsequent acquisition of an epithelial phenotype is essential to lengthen the tubular outflow vessel, a process that is essential for on-going cardiac morphogenesis.

  1. Vangl2-Regulated Polarisation of Second Heart Field-Derived Cells Is Required for Outflow Tract Lengthening during Cardiac Development

    PubMed Central

    Rhee, Hong Jun; Eley, Lorraine; Phillips, Helen M.; Rigby, Hannah F.; Dean, Charlotte; Chaudhry, Bill; Henderson, Deborah J.

    2014-01-01

    Planar cell polarity (PCP) is the mechanism by which cells orient themselves in the plane of an epithelium or during directed cell migration, and is regulated by a highly conserved signalling pathway. Mutations in the PCP gene Vangl2, as well as in other key components of the pathway, cause a spectrum of cardiac outflow tract defects. However, it is unclear why cells within the mesodermal heart tissue require PCP signalling. Using a new conditionally floxed allele we show that Vangl2 is required solely within the second heart field (SHF) to direct normal outflow tract lengthening, a process that is required for septation and normal alignment of the aorta and pulmonary trunk with the ventricular chambers. Analysis of a range of markers of polarised epithelial tissues showed that in the normal heart, undifferentiated SHF cells move from the dorsal pericardial wall into the distal outflow tract where they acquire an epithelial phenotype, before moving proximally where they differentiate into cardiomyocytes. Thus there is a transition zone in the distal outflow tract where SHF cells become more polarised, turn off progenitor markers and start to differentiate to cardiomyocytes. Membrane-bound Vangl2 marks the proximal extent of this transition zone and in the absence of Vangl2, the SHF-derived cells are abnormally polarised and disorganised. The consequent thickening, rather than lengthening, of the outflow wall leads to a shortened outflow tract. Premature down regulation of the SHF-progenitor marker Isl1 in the mutants, and accompanied premature differentiation to cardiomyocytes, suggests that the organisation of the cells within the transition zone is important for maintaining the undifferentiated phenotype. Thus, Vangl2-regulated polarisation and subsequent acquisition of an epithelial phenotype is essential to lengthen the tubular outflow vessel, a process that is essential for on-going cardiac morphogenesis. PMID:25521757

  2. APSR1, a novel gene required for meristem maintenance, is negatively regulated by low phosphate availability.

    PubMed

    González-Mendoza, Víctor; Zurita-Silva, Andrés; Sánchez-Calderón, Lenin; Sánchez-Sandoval, María Eugenia; Oropeza-Aburto, Araceli; Gutiérrez-Alanís, Dolores; Alatorre-Cobos, Fulgencio; Herrera-Estrella, Luis

    2013-05-01

    Proper root growth is crucial for anchorage, exploration, and exploitation of the soil substrate. Root growth is highly sensitive to a variety of environmental cues, among them water and nutrient availability have a great impact on root development. Phosphorus (P) availability is one of the most limiting nutrients that affect plant growth and development under natural and agricultural environments. Root growth in the direction of the long axis proceeds from the root tip and requires the coordinated activities of cell proliferation, cell elongation and cell differentiation. Here we report a novel gene, APSR1 (Altered Phosphate Starvation Response1), involved in root meristem maintenance. The loss of function mutant apsr1-1 showed a reduction in primary root length and root apical meristem size, short differentiated epidermal cells and long root hairs. Expression of APSR1 gene decreases in response to phosphate starvation and apsr1-1 did not show the typical progressive decrease of undifferentiated cells at root tip when grown under P limiting conditions. Interestingly, APSR1 expression pattern overlaps with root zones of auxin accumulation. Furthermore, apsr1-1 showed a clear decrease in the level of the auxin transporter PIN7. These data suggest that APSR1 is required for the coordination of cell processes necessary for correct root growth in response to phosphate starvation conceivably by direct or indirect modulation of PIN7. We also propose, based on its nuclear localization and structure, that APSR1 may potentially be a member of a novel group of transcription factors.

  3. Nuclear pore complex integrity requires Lnp1, a regulator of cortical endoplasmic reticulum

    PubMed Central

    Casey, Amanda K.; Chen, Shuliang; Novick, Peter; Ferro-Novick, Susan; Wente, Susan R.

    2015-01-01

    The nuclear envelope (NE) and endoplasmic reticulum (ER) are components of the same contiguous membrane system and yet have distinct cellular functions. Mounting evidence suggests roles for some ER proteins in the NE for proper nuclear pore complex (NPC) structure and function. In this study, we identify a NE role in Saccharomyces cerevisiae for Lnp1 and Sey1, proteins required for proper cortical ER formation. Both lnp1Δ and sey1Δ mutants exhibit synthetic genetic interactions with mutants in genes encoding key NPC structural components. Both Lnp1 and Sey1 physically associate with other ER components that have established NPC roles, including Rtn1, Yop1, Pom33, and Per33. Of interest, lnp1Δ rtn1Δ mutants but not rtn1Δ sey1Δ mutants exhibit defects in NPC distribution. Furthermore, the essential NPC assembly factor Ndc1 has altered interactions in the absence of Sey1. Lnp1 dimerizes in vitro via its C-terminal zinc finger motif, a property that is required for proper ER structure but not NPC integrity. These findings suggest that Lnp1's role in NPC integrity is separable from functions in the ER and is linked to Ndc1 and Rtn1 interactions. PMID:26041935

  4. High Silicon Accumulation in the Shoot is Required for Down-Regulating the Expression of Si Transporter Genes in Rice.

    PubMed

    Mitani-Ueno, Namiki; Yamaji, Naoki; Ma, Jian Feng

    2016-12-01

    Rice requires high silicon (Si) for its high and sustainable yield. The efficient uptake of Si in rice is mediated by two transporters OsLsi1 and OsLsi2, which function as influx and efflux transporters, respectively. Our previous studies showed that the mRNA expression levels of these transporter genes were down-regulated by Si. Herein we investigated the mechanism underlying regulation of OsLsi1 and OsLsi2 expression. There was a negative correlation between the expression level of OsLsi1 and OsLsi2 and shoot Si accumulation when the rice seedlings were exposed to different Si supply conditions. A split root experiment showed that the expression of both OsLsi1 and OsLsi2 was also down-regulated in half the roots without direct Si exposure when the other half of the roots were exposed to Si. Analysis with transgenic rice carrying different lengths of OsLsi1 promoter regions fused with green fluorescent protein (GFP) as a reporter gene revealed that the region responsible for the Si response of OsLsi1 expression is present between -327 to -292 in the promoter. However, this region was not associated with the tissue and cellular localization of OsLsi1. In conclusion, the Si-induced down-regulation of Si transporter genes is controlled by shoot Si, not root Si, and the region between -327 and -292 in the OsLsi1 promoter is involved in this regulation of OsLsi1 expression in rice.

  5. Angiopoietin receptor Tie2 is required for vein specification and maintenance via regulating COUP-TFII

    PubMed Central

    Chu, Man; Li, Taotao; Shen, Bin; Cao, Xudong; Zhong, Haoyu; Zhang, Luqing; Zhou, Fei; Ma, Wenjuan; Jiang, Haijuan; Xie, Pancheng; Liu, Zhengzheng; Dong, Ningzheng; Xu, Ying; Zhao, Yun; Xu, Guoqiang; Lu, Peirong; Luo, Jincai; Wu, Qingyu; Alitalo, Kari; Koh, Gou Young; Adams, Ralf H; He, Yulong

    2016-01-01

    Mechanisms underlying the vein development remain largely unknown. Tie2 signaling mediates endothelial cell (EC) survival and vascular maturation and its activating mutations are linked to venous malformations. Here we show that vein formation are disrupted in mouse skin and mesentery when Tie2 signals are diminished by targeted deletion of Tek either ubiquitously or specifically in embryonic ECs. Postnatal Tie2 attenuation resulted in the degeneration of newly formed veins followed by the formation of haemangioma-like vascular tufts in retina and venous tortuosity. Mechanistically, Tie2 insufficiency compromised venous EC identity, as indicated by a significant decrease of COUP-TFII protein level, a key regulator in venogenesis. Consistently, angiopoietin-1 stimulation increased COUP-TFII in cultured ECs, while Tie2 knockdown or blockade of Tie2 downstream PI3K/Akt pathway reduced COUP-TFII which could be reverted by the proteasome inhibition. Together, our results imply that Tie2 is essential for venous specification and maintenance via Akt mediated stabilization of COUP-TFII. DOI: http://dx.doi.org/10.7554/eLife.21032.001 PMID:28005008

  6. Down-regulation of Stathmin Is Required for the Phenotypic Changes and Classical Activation of Macrophages.

    PubMed

    Xu, Kewei; Harrison, Rene E

    2015-07-31

    Macrophages are important cells of innate immunity with specialized capacity for recognition and elimination of pathogens and presentation of antigens to lymphocytes for adaptive immunity. Macrophages become activated upon exposure to pro-inflammatory cytokines and pathogenic stimuli. Classical activation of macrophages with interferon-γ (IFNγ) and lipopolysaccharide (LPS) triggers a wide range of signaling events and morphological changes to induce the immune response. Our previous microtubule (MT) proteomic work revealed that the stathmin association with MTs is considerably reduced in activated macrophages, which contain significantly more stabilized MTs. Here, we show that there is a global decrease in stathmin levels, an MT catastrophe protein, in activated macrophages using both immunoblotting and immunofluorescent microscopy. This is an LPS-specific response that induces proteasome-mediated degradation of stathmin. We explored the functions of stathmin down-regulation in activated macrophages by generating a stable cell line overexpressing stathmin-GFP. We show that stathmin-GFP overexpression impacts MT stability, impairs cell spreading, and reduces activation-associated phenotypes. Furthermore, overexpressing stathmin reduces complement receptor 3-mediated phagocytosis and cellular activation, implicating a pivotal inhibitory role for stathmin in classically activated macrophages.

  7. Sam68 Is Required for DNA Damage Responses via Regulating Poly(ADP-ribosyl)ation

    PubMed Central

    Hodgson, Andrea; Wier, Eric M.; Wen, Matthew G.; Kamenyeva, Olena; Xia, Xue; Koo, Lily Y.

    2016-01-01

    The rapid and robust synthesis of polymers of adenosine diphosphate (ADP)-ribose (PAR) chains, primarily catalyzed by poly(ADP-ribose) polymerase 1 (PARP1), is crucial for cellular responses to DNA damage. However, the precise mechanisms through which PARP1 is activated and PAR is robustly synthesized are not fully understood. Here, we identified Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel signaling molecule in DNA damage responses (DDRs). In the absence of Sam68, DNA damage-triggered PAR production and PAR-dependent DNA repair signaling were dramatically diminished. With serial cellular and biochemical assays, we demonstrated that Sam68 is recruited to and significantly overlaps with PARP1 at DNA lesions and that the interaction between Sam68 and PARP1 is crucial for DNA damage-initiated and PARP1-conferred PAR production. Utilizing cell lines and knockout mice, we illustrated that Sam68-deleted cells and animals are hypersensitive to genotoxicity caused by DNA-damaging agents. Together, our findings suggest that Sam68 plays a crucial role in DDR via regulating DNA damage-initiated PAR production. PMID:27635653

  8. Cas9-dependent endogenous gene regulation is required for bacterial virulence.

    PubMed

    Sampson, Timothy R; Weiss, David S

    2013-12-01

    CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems are known to mediate bacterial defence against foreign nucleic acids. We recently demonstrated a non-canonical role for a CRISPR-Cas system in controlling endogenous gene expression, which had not previously been appreciated. In the present article, we describe the studies that led to this discovery, beginning with an unbiased genome-wide screen to identify virulence genes in the intracellular pathogen Francisella novicida. A gene annotated as encoding a hypothetical protein, but which we now know encodes the Cas protein Cas9, was identified as one of the most critical to the ability of F. novicida to replicate and survive during murine infection. Subsequent studies revealed a role for this protein in evasion of the host innate immune response. Specifically, Cas9 represses the expression of a BLP (bacterial lipoprotein) that could otherwise be recognized by TLR2 (Toll-like receptor 2), a host protein involved in initiating an antibacterial pro-inflammatory response. By repressing BLP levels, Cas9 mediates evasion of TLR2, promoting bacterial virulence. Finally, we described the molecular mechanism by which Cas9 functions in complex with two small RNAs to target the mRNA encoding the BLP for degradation. This work greatly broadened the paradigm for CRISPR-Cas function, highlighting a role in gene regulation that could be conserved in numerous bacteria, and elucidating its integral contribution to bacterial pathogenesis.

  9. cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission

    PubMed Central

    Thompson, Eloise; Breil, Florence; Lorthiois, Audrey; Dupuy, Florian; Cummings, Ross; Duffier, Yoann; Corbett, Yolanda; Mercereau-Puijalon, Odile; Vernick, Kenneth; Taramelli, Donatella; Baker, David A.; Langsley, Gordon; Lavazec, Catherine

    2015-01-01

    Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE) that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites. PMID:25951195

  10. Emdogain-regulated gene expression in palatal fibroblasts requires TGF-βRI kinase signaling.

    PubMed

    Stähli, Alexandra; Bosshardt, Dieter; Sculean, Anton; Gruber, Reinhard

    2014-01-01

    Genome-wide microarrays have suggested that Emdogain regulates TGF-β target genes in gingival and palatal fibroblasts. However, definitive support for this contention and the extent to which TGF-β signaling contributes to the effects of Emdogain has remained elusive. We therefore studied the role of the TGF-β receptor I (TGF-βRI) kinase to mediate the effect of Emdogain on palatal fibroblasts. Palatal fibroblasts were exposed to Emdogain with and without the inhibitor for TGF-βRI kinase, SB431542. Emdogain caused 39 coding genes to be differentially expressed in palatal fibroblasts by microarray analysis (p<0.05; >10-fold). Importantly, in the presence of the TGF-βRI kinase inhibitor SB431542, Emdogain failed to cause any significant changes in gene expression. Consistent with this mechanism, three independent TGF-βRI kinase inhibitors and a TGF-β neutralizing antibody abrogated the increased expression of IL-11, a selected Emdogain target gene. The MAPK inhibitors SB203580 and U0126 lowered the impact of Emdogain on IL-11 expression. The data support that TGF-βRI kinase activity is necessary to mediate the effects of Emdogain on gene expression in vitro.

  11. HIRA Is Required for Heart Development and Directly Regulates Tnni2 and Tnnt3

    PubMed Central

    Dilg, Daniel; Saleh, Rasha Noureldin M.; Phelps, Sarah Elizabeth Lee; Rose, Yoann; Dupays, Laurent; Murphy, Cian; Mohun, Timothy; Anderson, Robert H.; Scambler, Peter J.; Chapgier, Ariane L. A.

    2016-01-01

    Chromatin remodelling is essential for cardiac development. Interestingly, the role of histone chaperones has not been investigated in this regard. HIRA is a member of the HUCA (HIRA/UBN1/CABIN1/ASF1a) complex that deposits the variant histone H3.3 on chromatin independently of replication. Lack of HIRA has general effects on chromatin and gene expression dynamics in embryonic stem cells and mouse oocytes. Here we describe the conditional ablation of Hira in the cardiogenic mesoderm of mice. We observed surface oedema, ventricular and atrial septal defects and embryonic lethality. We identified dysregulation of a subset of cardiac genes, notably upregulation of troponins Tnni2 and Tnnt3, involved in cardiac contractility and decreased expression of Epha3, a gene necessary for the fusion of the muscular ventricular septum and the atrioventricular cushions. We found that HIRA binds GAGA rich DNA loci in the embryonic heart, and in particular a previously described enhancer of Tnni2/Tnnt3 (TTe) bound by the transcription factor NKX2.5. HIRA-dependent H3.3 enrichment was observed at the TTe in embryonic stem cells (ESC) differentiated toward cardiomyocytes in vitro. Thus, we show here that HIRA has locus-specific effects on gene expression and that histone chaperone activity is vital for normal heart development, impinging on pathways regulated by an established cardiac transcription factor. PMID:27518902

  12. The HIP1 binding site is required for growth regulation of the dihydrofolate reductase gene promoter.

    PubMed Central

    Means, A L; Slansky, J E; McMahon, S L; Knuth, M W; Farnham, P J

    1992-01-01

    The transcription rate of the dihydrofolate reductase (DHFR) gene increases at the G1/S boundary of the proliferative cell cycle. Through analysis of transiently and stably transfected NIH 3T3 cells, we have now demonstrated that DHFR promoter sequences extending from -270 to +20 are sufficient to confer similar regulation on a reporter gene. Mutation of a protein binding site that spans sequences from -16 to +11 in the DHFR promoter resulted in loss of the transcriptional increase at the G1/S boundary. Purification of an activity from HeLa nuclear extract that binds to this region enriched for a 180-kDa polypeptide (HIP1). Using this HIP1 preparation, we have identified specific positions within the binding site that are critical for efficient protein-DNA interactions. An analysis of association and dissociation rates suggests that bound HIP1 protein can exchange rapidly with free protein. This rapid exchange may facilitate the burst of transcriptional activity from the DHFR promoter at the G1/S boundary. Images PMID:1545788

  13. Heterochromatic genome stability requires regulators of histone H3 K9 methylation.

    PubMed

    Peng, Jamy C; Karpen, Gary H

    2009-03-01

    Heterochromatin contains many repetitive DNA elements and few protein-encoding genes, yet it is essential for chromosome organization and inheritance. Here, we show that Drosophila that lack the Su(var)3-9 H3K9 methyltransferase display significantly elevated frequencies of spontaneous DNA damage in heterochromatin, in both somatic and germ-line cells. Accumulated DNA damage in these mutants correlates with chromosomal defects, such as translocations and loss of heterozygosity. DNA repair and mitotic checkpoints are also activated in mutant animals and are required for their viability. Similar effects of lower magnitude were observed in animals that lack the RNA interference pathway component Dcr2. These results suggest that the H3K9 methylation and RNAi pathways ensure heterochromatin stability.

  14. Non-nuclear Pool of Splicing Factor SFPQ Regulates Axonal Transcripts Required for Normal Motor Development.

    PubMed

    Thomas-Jinu, Swapna; Gordon, Patricia M; Fielding, Triona; Taylor, Richard; Smith, Bradley N; Snowden, Victoria; Blanc, Eric; Vance, Caroline; Topp, Simon; Wong, Chun-Hao; Bielen, Holger; Williams, Katherine L; McCann, Emily P; Nicholson, Garth A; Pan-Vazquez, Alejandro; Fox, Archa H; Bond, Charles S; Talbot, William S; Blair, Ian P; Shaw, Christopher E; Houart, Corinne

    2017-04-04

    Recent progress revealed the complexity of RNA processing and its association to human disorders. Here, we unveil a new facet of this complexity. Complete loss of function of the ubiquitous splicing factor SFPQ affects zebrafish motoneuron differentiation cell autonomously. In addition to its nuclear localization, the protein unexpectedly localizes to motor axons. The cytosolic version of SFPQ abolishes motor axonal defects, rescuing key transcripts, and restores motility in the paralyzed sfpq null mutants, indicating a non-nuclear processing role in motor axons. Novel variants affecting the conserved coiled-coil domain, so far exclusively found in fALS exomes, specifically affect the ability of SFPQ to localize in axons. They broadly rescue morphology and motility in the zebrafish mutant, but alter motor axon morphology, demonstrating functional requirement for axonal SFPQ. Altogether, we uncover the axonal function of the splicing factor SFPQ in motor development and highlight the importance of the coiled-coil domain in this process.

  15. A requirement for protein phosphorylation in regulating the meiotic and mitotic cell cycles in echinoderms.

    PubMed

    Néant, I; Charbonneau, M; Guerrier, P

    1989-04-01

    Populations of hormone-stimulated starfish oocytes and fertilized sea urchin eggs undergo synchronous meiotic and mitotic divisions. We have studied the requirement for protein phosphorylation during these events by testing the effects of 6-dimethylaminopurine (6-DMAP) upon the incorporation of [32P]orthophosphate. It was found that 6-DMAP blocked meiosis reinitiation and early cleavage and simultaneously inhibited protein phosphorylation, without changing the rate of [35S]methionine incorporation or pattern of protein synthesis. The protein, cyclin (54 kDa in starfish and 57 kDa in sea urchin), continues to be synthesized in the presence of 6-DMAP. This protein is destroyed at first and second cell cycles when 6-DMAP is added 30 min following fertilization but not when this drug is present before fertilization. Thus, cyclin breakdown does not depend on the completion of the nuclear events of M-phase, and its time of breakdown is set at an early step between fertilization and first cleavage. Using tubulin immunostaining, we found that 6-DMAP did not affect the cortical microtubules and resting female centrioles of prophase-arrested starfish oocytes, whereas it induced a precocious disappearance of spindle fibers when applied to hormone-stimulated oocytes. While an early addition of 6-DMAP precluded nuclear breakdown and spindle formation in both systems, a late treatment always allowed chromosome separation and centriole separation. Under these conditions pericentriolar tubulin persisted and could organize new spindles after the inhibitor was removed. It is suggested that (1) the assembly of cortical and centriolar-associated microtubules is not controlled by the same factors as spindle-associated tubulin; (2) specific proteins which are required for the cell to enter the following M-phase can become operative only via a process depending upon protein phosphorylation; (3) microtubule-associated kinases may play an important role in MPF function and spindle dynamics.

  16. Survival of Listeria monocytogenes in Soil Requires AgrA-Mediated Regulation.

    PubMed

    Vivant, Anne-Laure; Garmyn, Dominique; Gal, Laurent; Hartmann, Alain; Piveteau, Pascal

    2015-08-01

    In a recent paper, we demonstrated that inactivation of the Agr system affects the patterns of survival of Listeria monocytogenes (A.-L. Vivant, D. Garmyn, L. Gal, and P. Piveteau, Front Cell Infect Microbiol 4:160, http://dx.doi.org/10.3389/fcimb.2014.00160). In this study, we investigated whether the Agr-mediated response is triggered during adaptation in soil, and we compared survival patterns in a set of 10 soils. The fate of the parental strain L. monocytogenes L9 (a rifampin-resistant mutant of L. monocytogenes EGD-e) and that of a ΔagrA deletion mutant were compared in a collection of 10 soil microcosms. The ΔagrA mutant displayed significantly reduced survival in these biotic soil microcosms, and differential transcriptome analyses showed large alterations of the transcriptome when AgrA was not functional, while the variations in the transcriptomes between the wild type and the ΔagrA deletion mutant were modest under abiotic conditions. Indeed, in biotic soil environments, 578 protein-coding genes and an extensive repertoire of noncoding RNAs (ncRNAs) were differentially transcribed. The transcription of genes coding for proteins involved in cell envelope and cellular processes, including the phosphotransferase system and ABC transporters, and proteins involved in resistance to antimicrobial peptides was affected. Under sterilized soil conditions, the differences were limited to 86 genes and 29 ncRNAs. These results suggest that the response regulator AgrA of the Agr communication system plays important roles during the saprophytic life of L. monocytogenes in soil.

  17. A Trypanosomatid Iron Transporter that Regulates Mitochondrial Function Is Required for Leishmania amazonensis Virulence

    PubMed Central

    Mittra, Bidyottam; Laranjeira-Silva, Maria Fernanda; Perrone Bezerra de Menezes, Juliana; Jensen, Jennifer; Michailowsky, Vladimir; Andrews, Norma W.

    2016-01-01

    Iron, an essential co-factor of respiratory chain proteins, is critical for mitochondrial function and maintenance of its redox balance. We previously reported a role for iron uptake in differentiation of Leishmania amazonensis into virulent amastigotes, by a mechanism that involves reactive oxygen species (ROS) production and is independent of the classical pH and temperature cues. Iron import into mitochondria was proposed to be essential for this process, but evidence supporting this hypothesis was lacking because the Leishmania mitochondrial iron transporter was unknown. Here we describe MIT1, a homolog of the mitochondrial iron importer genes mrs3 (yeast) and mitoferrin-1 (human) that is highly conserved among trypanosomatids. MIT1 expression was essential for the survival of Trypanosoma brucei procyclic but not bloodstream forms, which lack functional respiratory complexes. L. amazonensis LMIT1 null mutants could not be generated, suggesting that this mitochondrial iron importer is essential for promastigote viability. Promastigotes lacking one LMIT1 allele (LMIT1/Δlmit1) showed growth defects and were more susceptible to ROS toxicity, consistent with the role of iron as the essential co-factor of trypanosomatid mitochondrial superoxide dismutases. LMIT1/Δlmit1 metacyclic promastigotes were unable to replicate as intracellular amastigotes after infecting macrophages or cause cutaneous lesions in mice. When induced to differentiate axenically into amastigotes, LMIT1/Δlmit1 showed strong defects in iron content and function of mitochondria, were unable to upregulate the ROS-regulatory enzyme FeSOD, and showed mitochondrial changes suggestive of redox imbalance. Our results demonstrate the importance of mitochondrial iron uptake in trypanosomatid parasites, and highlight the role of LMIT1 in the iron-regulated process that orchestrates differentiation of L. amazonensis into infective amastigotes. PMID:26741360

  18. Nuclear localization signal sequence is required for VACM-1/CUL5-dependent regulation of cellular growth.

    PubMed

    Willis, Angelica N; Dean, Shirley E Bradley; Habbouche, Joe A; Kempers, Brian T; Ludwig, Megan L; Sayfie, Aaron D; Lewis, Steven P; Harrier, Stephanie; DeBruine, Zachary J; Garrett, Richard; Burnatowska-Hledin, Maria A

    2017-04-01

    VACM-1/CUL5 is a member of the cullin family of proteins involved in the E3 ligase-dependent degradation of diverse proteins that regulate cellular proliferation. The ability of VACM-1/CUL5 to inhibit cellular growth is affected by its posttranslational modifications and its localization to the nucleus. Since the mechanism of VACM-1/CUL5 translocation to the nucleus is not clear, the goal of this project was to determine the role that the putative nuclear localization signal (NLS) we identified in the VACM-1/CUL5 ((640)PKLKRQ(646)) plays in the cellular localization of VACM-1/CUL5 and its effect on cellular growth. We used site-directed mutagenesis to change Lys642 and Lys644 to Gly and the mutated cDNA constructs were transfected into COS-1 cells. Mutation of the NLS in VACM-1/CUL5 significantly reduced its localization to the nucleus and compromised its effect on cellular growth. We have shown previously that the antiproliferative effect of VACM-1/CUL5 could be reversed by mutation of PKA-specific phosphorylation sequence ((S730A)VACM-1/CUL5), which was associated with its increased nuclear localization and modification by NEDD8. Thus, we examined whether these properties can be controlled by the NLS. The mutation of NLS in (S730A)VACM-1/CUL5 cDNA compromised its proliferative effect and reduced its localization to the nucleus. The immunocytochemistry results showed that, in cells transfected with the mutant cDNAs, the nuclear NEDD8 signal was decreased. Western blot analysis of total cell lysates, however, showed that VACM-1/CUL5 neddylation was not affected. Together, these results suggest that the presence of the NLS, both in VACM-1/CUL5 and in (S730A)VACM-1/CUL5 sequences, is critical for their control of cell proliferation.

  19. SGK1 is not required for regulation of colonic ENaC activity.

    PubMed

    Rexhepaj, Rexhep; Artunc, Ferruh; Grahammer, Florian; Nasir, Omaima; Sandu, Ciprian; Friedrich, Björn; Kuhl, Dietmar; Lang, Florian

    2006-10-01

    , transepithelial potential and amiloride-sensitive short circuit current are enhanced in the colonic epithelium of SGK1-deficient mice. Thus, lack of SGK1 does not disrupt colonic ENaC activity and its regulation by salt depletion.

  20. The Extracellular-Regulated Kinase Effector Lk6 is Required for Glutamate Receptor Localization at the Drosophila Neuromuscular Junction

    PubMed Central

    Hussein, Nizar A.; Delaney, Taylor L.; Tounsel, Brittany L.; Liebl, Faith L.W.

    2016-01-01

    The proper localization and synthesis of postsynaptic glutamate receptors are essential for synaptic plasticity. Synaptic translation initiation is thought to occur via the target of rapamycin (TOR) and mitogen-activated protein kinase signal-integrating kinase (Mnk) signaling pathways, which is downstream of extracellular-regulated kinase (ERK). We used the model glutamatergic synapse, the Drosophila neuromuscular junction, to better understand the roles of the Mnk and TOR signaling pathways in synapse development. These synapses contain non-NMDA receptors that are most similar to AMPA receptors. Our data show that Lk6, the Drosophila homolog of Mnk1 and Mnk2, is required in either presynaptic neurons or postsynaptic muscle for the proper localization of the GluRIIA glutamate receptor subunit. Lk6 may signal through eukaryotic initiation factor (eIF) 4E to regulate the synaptic levels of GluRIIA as either interfering with eIF4E binding to eIF4G or expression of a nonphosphorylatable isoform of eIF4E resulted in a significant reduction in GluRIIA at the synapse. We also find that Lk6 and TOR may independently regulate synaptic levels of GluRIIA. PMID:27199570

  1. Surface swarming motility by Pectobacterium atrosepticum is a latent phenotype that requires O antigen and is regulated by quorum sensing.

    PubMed

    Bowden, Steven D; Hale, Nicola; Chung, Jade C S; Hodgkinson, James T; Spring, David R; Welch, Martin

    2013-11-01

    We describe a previously cryptic phenotype associated with the opportunistic phytopathogen Pectobacterium atrosepticum (Pca): surface swarming. We found that when Pca was spotted onto plates containing <0.5% (w/v) agar, the culture produced copious amounts of extracellular matrix material containing highly motile cells. Once produced, this 'slime layer' spread rapidly across the plate either as an advancing front or as tendrils. Transposon mutagenesis was used to identify mutants that were affected in swarming. Hypo-swarmer mutants mostly carried insertions in a horizontally acquired island (HAI5), which encodes a cluster of genes involved in O antigen biosynthesis. Hyper-swarmer mutants mostly carried insertions in hexY, a known antagonist of the class I flagellar master regulator, FlhD4C2. In addition, we found that the nucleoid protein, histone-like nuclear structuring protein 2 (H-NS2), also regulated swarming behaviour. A mutant in which hns2 was overexpressed displayed a hyper-swarming phenotype, whereas a mutant in which the hns2 ORF was inactivated had a hypo-swarming phenotype. Swarming was also regulated by quorum sensing (QS) and by the carbon source being utilized. We show, using a range of epistasis experiments, that optimal swarming requires both motility and O antigen biosynthesis, and that H-NS2 and QS both promote swarming through their effects on motility.

  2. Urban renewal in the nucleus: is protein turnover by proteasomes absolutely required for nuclear receptor-regulated transcription?

    PubMed

    Nawaz, Zafar; O'Malley, Bert W

    2004-03-01

    The importance of the ubiquitin proteasome pathway in higher eukaryotes has been well established in cell cycle regulation, signal transduction, and cell differentiation, but has only recently been linked to nuclear hormone receptor-regulated gene transcription. Characterization of a number of ubiquitin proteasome pathway enzymes as coactivators and observations that several nuclear receptors are ubiquitinated and degraded in the course of their nuclear activities provide evidence that ubiquitin proteasome-mediated protein degradation plays an integral role in eukaryotic transcription. In addition to receptors, studies have revealed that coactivators are ubiquitinated and degraded via the proteasome. The notion that the ubiquitin proteasome pathway is involved in gene transcription is further strengthened by the fact that ubiquitin proteasome pathway enzymes are recruited to the promoters of target genes and that proteasome-dependent degradation of nuclear receptors is required for efficient transcriptional activity. These findings suggest that protein degradation is coupled with nuclear receptor coactivation activity. It is possible that the ubiquitin proteasome pathway modulates transcription by promoting remodeling and turnover of the nuclear receptor-transcription complex. In this review, we discus the possible role of the ubiquitin proteasome pathway in nuclear hormone receptor-regulated gene transcription.

  3. Requirement of Split ends for Epigenetic Regulation of Notch Signal-Dependent Genes during Infection-Induced Hemocyte Differentiation▿ †

    PubMed Central

    Jin, Li Hua; Choi, Jung Kyoon; Kim, Byungil; Cho, Hwan Sung; Kim, Jihyun; Kim-Ha, Jeongsil; Kim, Young-Joon

    2009-01-01

    Drosophila producing a mutant form of the putative transcription coregulator, Split ends (Spen), originally identified in the analysis of neuronal development, display diverse immune defects. In order to understand the role of Spen in the innate immune response, we analyzed the transcriptional defects associated with spen mutant hemocytes and their relationship to the Notch signaling pathways. Spen is regulated by the Notch pathway in the lymph glands and is required for Notch-dependent activation of a large number of genes involved in energy metabolism and differentiation. Analysis of the epigenetic marks associated with Spen-dependent genes indicates that Spen performs its function as a coactivator by regulating chromatin modification. Intriguingly, expression of the Spen-dependent genes was transiently downregulated in a Notch-dependent manner by the Dif activated upon recognition of pathogen-associated molecules, demonstrating the existence of cross talk between hematopoietic regulation and the innate immune response. Our observations reveal a novel connection between the Notch and Toll/IMD signaling pathways and demonstrate a coactivating role for Spen in activating Notch-dependent genes in differentiating cells. PMID:19139277

  4. Requirement of Split ends for epigenetic regulation of Notch signal-dependent genes during infection-induced hemocyte differentiation.

    PubMed

    Jin, Li Hua; Choi, Jung Kyoon; Kim, Byungil; Cho, Hwan Sung; Kim, Jihyun; Kim-Ha, Jeongsil; Kim, Young-Joon

    2009-03-01

    Drosophila producing a mutant form of the putative transcription coregulator, Split ends (Spen), originally identified in the analysis of neuronal development, display diverse immune defects. In order to understand the role of Spen in the innate immune response, we analyzed the transcriptional defects associated with spen mutant hemocytes and their relationship to the Notch signaling pathways. Spen is regulated by the Notch pathway in the lymph glands and is required for Notch-dependent activation of a large number of genes involved in energy metabolism and differentiation. Analysis of the epigenetic marks associated with Spen-dependent genes indicates that Spen performs its function as a coactivator by regulating chromatin modification. Intriguingly, expression of the Spen-dependent genes was transiently downregulated in a Notch-dependent manner by the Dif activated upon recognition of pathogen-associated molecules, demonstrating the existence of cross talk between hematopoietic regulation and the innate immune response. Our observations reveal a novel connection between the Notch and Toll/IMD signaling pathways and demonstrate a coactivating role for Spen in activating Notch-dependent genes in differentiating cells.

  5. Ciliary transcription factors and miRNAs precisely regulate Cp110 levels required for ciliary adhesions and ciliogenesis

    PubMed Central

    Walentek, Peter; Quigley, Ian K; Sun, Dingyuan I; Sajjan, Umeet K; Kintner, Christopher; Harland, Richard M

    2016-01-01

    Upon cell cycle exit, centriole-to-basal body transition facilitates cilia formation. The centriolar protein Cp110 is a regulator of this process and cilia inhibitor, but its positive roles in ciliogenesis remain poorly understood. Using Xenopus we show that Cp110 inhibits cilia formation at high levels, while optimal levels promote ciliogenesis. Cp110 localizes to cilia-forming basal bodies and rootlets, and is required for ciliary adhesion complexes that facilitate Actin interactions. The opposing roles of Cp110 in ciliation are generated in part by coiled-coil domains that mediate preferential binding to centrioles over rootlets. Because of its dual role in ciliogenesis, Cp110 levels must be precisely controlled. In multiciliated cells, this is achieved by both transcriptional and post-transcriptional regulation through ciliary transcription factors and microRNAs, which activate and repress cp110 to produce optimal Cp110 levels during ciliogenesis. Our data provide novel insights into how Cp110 and its regulation contribute to development and cell function. DOI: http://dx.doi.org/10.7554/eLife.17557.001 PMID:27623009

  6. Viral safety of human plasma-derived medicinal products: impact of regulation requirements.

    PubMed

    Velthove, Karin J; Over, Jan; Abbink, Kristiena; Janssen, Mart P

    2013-07-01

    The viral safety of plasma-derived medicinal products is of paramount importance. This article aims to provide insight into the relative impact of different safety measures on achieving viral safety of finished products, derived from human plasma. Virus removal and/or inactivation during the production process is the most important safety measure, and model-based risk estimates show that with current safety measures, the risk of transmission of known blood-borne pathogens to plasma product recipients is extremely low. However, because the residual risk of virus transmissions is also influenced by the incidence rate of infection in the donor population, it makes sense to control these incidence rates, as well. The current measures are aiming in the right direction, but integration of guidelines is required to adequately address their common goal: controlling the risk of infectious disease transmission by plasma-derived medicinal products. By integration of guidelines, the combination of various types of safety measures to prevent virus transmission-donor selection, donation screening, quarantining, and virus removal and/or inactivation during production-may be consistently interpreted and adequately assessed.

  7. Neuronal PINCH is Regulated by TNF-α and is Required for Neurite Extension

    PubMed Central

    Jatiani, Asavari; Pannizzo, Paola; Gualco, Elisa; Del-Valle, Luis

    2011-01-01

    During HIV infection of the CNS, neurons are damaged by viral proteins, such as Tat and gp120, or by inflammatory factors, such as TNF-α, that are released from infected and/or activated glial cells. Host responses to this damage may include the induction of survival or repair mechanisms. In this context, previous studies report robust expression of a protein called particularly interesting new cysteine histidine-rich protein (PINCH), in the neurons of HIV patients’ brains, compared with nearly undetectable levels in HIV-negative individuals (Rearden et al., J Neurosci Res 86:2535–2542, 2008), suggesting PINCH’s involvement in neuronal signaling during HIV infection of the brain. To address potential triggers for PINCH induction in HIV patients’ brains, an in vitro system mimicking some aspects of HIV infection of the CNS was utilized. We investigated neuronal PINCH expression, subcellular distribution, and biological consequences of PINCH sequestration upon challenge with Tat, gp120, and TNF-α. Our results indicate that in neurons, TNF-α stimulation increases PINCH expression and changes its subcellular localization. Furthermore, PINCH mobility is required to maintain neurite extension upon challenge with TNF-α. PINCH may function as a neuron-specific host-mediated response to challenge by HIV-related factors in the CNS. PMID:20689998

  8. Desnutrin/ATGL is Regulated by AMPK and is Required for a Brown Adipose Phenotype

    PubMed Central

    Ahmadian, Maryam; Abbott, Marcia J.; Tang, Tianyi; Hudak, Carolyn S.S.; Kim, Yangha; Bruss, Matthew; Hellerstein, Marc K.; Lee, Hui-Young; Samuel, Varman T.; Shulman, Gerald I.; Wang, Yuhui; Duncan, Robin E.; Kang, Chulho; Sul, Hei Sook

    2011-01-01

    SUMMARY While fatty acids (FAs) released by white adipose tissue (WAT) provide energy for other organs, lipolysis is also critical in brown adipose tissue (BAT), generating FAs for oxidation and UCP-1 activation for thermogenesis. Here, we show that adipose-specific ablation of desnutrin/ATGL in mice converts BAT to a WAT-like tissue. These mice exhibit severely impaired thermogenesis with increased expression of WAT-enriched genes but decreased BAT genes including UCP-1 with lower PPARα binding to its promoter, revealing the requirement of desnutrin-catalyzed lipolysis for maintaining BAT phenotype. We also show that desnutrin is phosphorylated by AMPK at S406, increasing TAG hydrolase activity, and provide evidence for increased lipolysis by AMPK phosphorylation of desnutrin in adipocytes and in vivo. Despite adiposity and impaired BAT function, desnutrin-ASKO mice have improved hepatic insulin sensitivity with lower DAG levels. Overall, desnutrin is phosphorylated/activated by AMPK to increase lipolysis and brings FA oxidation and UCP-1 induction for thermogenesis. PMID:21641555

  9. Mitochondrial inheritance is required for MEN-regulated cytokinesis in budding yeast.

    PubMed

    García-Rodríguez, Luis J; Crider, David G; Gay, Anna Card; Salanueva, Iñigo J; Boldogh, Istvan R; Pon, Liza A

    2009-11-03

    Mitochondrial inheritance, the transfer of mitochondria from mother to daughter cell during cell division, is essential for daughter cell viability. The mitochore, a mitochondrial protein complex containing Mdm10p, Mdm12p, and Mmm1p, is required for mitochondrial motility leading to inheritance in budding yeast. We observe a defect in cytokinesis in mitochore mutants and another mutant (mmr1Delta gem1Delta) with impaired mitochondrial inheritance. This defect is not observed in yeast that have no mitochondrial DNA or defects in mitochondrial protein import or assembly of beta-barrel proteins in the mitochondrial outer membrane. Deletion of MDM10 inhibits contractile-ring closure, but does not inhibit contractile-ring assembly, localization of a chromosomal passenger protein to the spindle during early anaphase, spindle alignment, nucleolar segregation, or nuclear migration during anaphase. Release of the mitotic exit network (MEN) component, Cdc14p, from the nucleolus during anaphase is delayed in mdm10Delta cells. Finally, hyperactivation of the MEN by deletion of BUB2 restores defects in cytokinesis in mdm10Delta and mmr1Delta gem1Delta cells and reduces the fidelity of mitochondrial segregation between mother and daughter cells in wild-type and mdm10Delta cells. Our studies identify a novel MEN-linked regulatory system that inhibits cytokinesis in response to defects in mitochondrial inheritance in budding yeast.

  10. Bidirectional regulation of synaptic transmission by BRAG1/IQSEC2 and its requirement in long-term depression

    PubMed Central

    Brown, Joshua C.; Petersen, Amber; Zhong, Ling; Himelright, Miranda L.; Murphy, Jessica A.; Walikonis, Randall S.; Gerges, Nashaat Z.

    2016-01-01

    Dysfunction of the proteins regulating synaptic function can cause synaptic plasticity imbalance that underlies neurological disorders such as intellectual disability. A study found that four distinct mutations within BRAG1, an Arf-GEF synaptic protein, each led to X-chromosome-linked intellectual disability (XLID). Although the physiological functions of BRAG1 are poorly understood, each of these mutations reduces BRAG1's Arf-GEF activity. Here we show that BRAG1 is required for the activity-dependent removal of AMPA receptors in rat hippocampal pyramidal neurons. Moreover, we show that BRAG1 bidirectionally regulates synaptic transmission. On one hand, BRAG1 is required for the maintenance of synaptic transmission. On the other hand, BRAG1 expression enhances synaptic transmission, independently of BRAG1 Arf-GEF activity or neuronal activity, but dependently on its C-terminus interactions. This study demonstrates a dual role of BRAG1 in synaptic function and highlights the functional relevance of reduced BRAG1 Arf-GEF activity as seen in the XLID-associated human mutations. PMID:27009485

  11. Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG-VPS34 complex.

    PubMed

    McKnight, Nicole C; Zhong, Yun; Wold, Mitchell S; Gong, Shiaoching; Phillips, Greg R; Dou, Zhixun; Zhao, Yanxiang; Heintz, Nathaniel; Zong, Wei-Xing; Yue, Zhenyu

    2014-10-01

    Deficiency of autophagy protein beclin 1 is implicated in tumorigenesis and neurodegenerative diseases, but the molecular mechanism remains elusive. Previous studies showed that Beclin 1 coordinates the assembly of multiple VPS34 complexes whose distinct phosphatidylinositol 3-kinase III (PI3K-III) lipid kinase activities regulate autophagy at different steps. Recent evidence suggests a function of beclin 1 in regulating multiple VPS34-mediated trafficking pathways beyond autophagy; however, the precise role of beclin 1 in autophagy-independent cellular functions remains poorly understood. Herein we report that beclin 1 regulates endocytosis, in addition to autophagy, and is required for neuron viability in vivo. We find that neuronal beclin 1 associates with endosomes and regulates EEA1/early endosome localization and late endosome formation. Beclin 1 maintains proper cellular phosphatidylinositol 3-phosphate (PI(3)P) distribution and total levels, and loss of beclin 1 causes a disruption of active Rab5 GTPase-associated endosome formation and impairment of endosome maturation, likely due to a failure of Rab5 to recruit VPS34. Furthermore, we find that Beclin 1 deficiency causes complete loss of the UVRAG-VPS34 complex and associated lipid kinase activity. Interestingly, beclin 1 deficiency impairs p40phox-linked endosome formation, which is rescued by overexpressed UVRAG or beclin 1, but not by a coiled-coil domain-truncated beclin 1 (a UVRAG-binding mutant), Atg14L or RUBICON. Thus, our study reveals the essential role for beclin 1 in neuron survival involving multiple membrane trafficking pathways including endocytosis and autophagy, and suggests that the UVRAG-beclin 1 interaction underlies beclin 1's function in endocytosis.

  12. Regulation of mitosis in response to damaged or incompletely replicated DNA require different levels of Grapes (Drosophila Chk1)

    PubMed Central

    Purdy, Amanda; Uyetake, Lyle; Cordeiro, Melissa Garner; Su, Tin Tin

    2011-01-01

    Summary Checkpoints monitor the state of DNA and can delay or arrest the cell cycle at multiple points including G1-S transition, progress through S phase and G2-M transition. Regulation of progress through mitosis, specifically at the metaphase-anaphase transition, occurs after exposure to ionizing radiation (IR) in Drosophila and budding yeast, but has not been conclusively demonstrated in mammals. Here we report that regulation of metaphase-anaphase transition in Drosophila depends on the magnitude of radiation dose and time in the cell cycle at which radiation is applied, which may explain the apparent differences among experimental systems and offer an explanation as to why this regulation has not been seen in mammalian cells. We further document that mutants in Drosophila Chk1 (Grapes) that are capable of delaying the progress through mitosis in response to IR are incapable of delaying progress through mitosis when DNA synthesis is blocked by mutations in an essential replication factor encoded by double park (Drosophila Cdt1). We conclude that DNA damage and replication checkpoints operating in the same cell cycle at the same developmental stage in Drosophila can exhibit differential requirements for the Chk1 homolog. The converse situation exists in fission yeast where loss of Chk1 is more detrimental to the DNA damage checkpoint than to the DNA replication checkpoint. It remains to be seen which of these two different uses of Chk1 homologs are conserved in mammals. Finally, our results demonstrate that Drosophila provides a unique opportunity to study the regulation of the entry into, and progress through, mitosis by DNA structure checkpoints in metazoa. PMID:16079276

  13. Beclin 1 Is Required for Neuron Viability and Regulates Endosome Pathways via the UVRAG-VPS34 Complex

    PubMed Central

    Wold, Mitchell S.; Gong, Shiaoching; Phillips, Greg R.; Dou, Zhixun; Zhao, Yanxiang; Heintz, Nathaniel; Zong, Wei-Xing; Yue, Zhenyu

    2014-01-01

    Deficiency of autophagy protein beclin 1 is implicated in tumorigenesis and neurodegenerative diseases, but the molecular mechanism remains elusive. Previous studies showed that Beclin 1 coordinates the assembly of multiple VPS34 complexes whose distinct phosphatidylinositol 3-kinase III (PI3K-III) lipid kinase activities regulate autophagy at different steps. Recent evidence suggests a function of beclin 1 in regulating multiple VPS34-mediated trafficking pathways beyond autophagy; however, the precise role of beclin 1 in autophagy-independent cellular functions remains poorly understood. Herein we report that beclin 1 regulates endocytosis, in addition to autophagy, and is required for neuron viability in vivo. We find that neuronal beclin 1 associates with endosomes and regulates EEA1/early endosome localization and late endosome formation. Beclin 1 maintains proper cellular phosphatidylinositol 3-phosphate (PI(3)P) distribution and total levels, and loss of beclin 1 causes a disruption of active Rab5 GTPase-associated endosome formation and impairment of endosome maturation, likely due to a failure of Rab5 to recruit VPS34. Furthermore, we find that Beclin 1 deficiency causes complete loss of the UVRAG-VPS34 complex and associated lipid kinase activity. Interestingly, beclin 1 deficiency impairs p40phox-linked endosome formation, which is rescued by overexpressed UVRAG or beclin 1, but not by a coiled-coil domain-truncated beclin 1 (a UVRAG-binding mutant), Atg14L or RUBICON. Thus, our study reveals the essential role for beclin 1 in neuron survival involving multiple membrane trafficking pathways including endocytosis and autophagy, and suggests that the UVRAG-beclin 1 interaction underlies beclin 1's function in endocytosis. PMID:25275521

  14. PB1 Domain-Dependent Signaling Complex Is Required for Extracellular Signal-Regulated Kinase 5 Activation

    PubMed Central

    Nakamura, Kazuhiro; Uhlik, Mark T.; Johnson, Nancy L.; Hahn, Klaus M.; Johnson, Gary L.

    2006-01-01

    MEKK2, MEK5, and extracellular signal-regulated kinase 5 (ERK5) are members of a three-kinase cascade for the activation of ERK5. MEK5 is the only MAP2K to express a PB1 domain, and we have shown that it heterodimerizes with the PB1 domain of MEKK2. Here we demonstrate the MEK5 PB1 domain is a scaffold that also binds ERK5, functionally forming a MEKK2-MEK5-ERK5 complex. Reconstitution assays and CFP/YFP imaging (fluorescence resonance energy transfer [FRET]) measuring YFP-MEKK2/CFP-MEK5 and CFP-MEK5/YFP-ERK5 interactions define distinct MEK5 PB1 domain binding sites for MEKK2 and ERK5, with a C-terminal extension of the PB1 domain contributing to ERK5 binding. Stimulus-dependent CFP/YFP FRET in combination with mutational analysis was used to define MEK5 PB1 domain residues critical for the interaction of MEKK2/MEK5 and MEK5/ERK5 required for activation of the ERK5 pathway in living cells. Fusion of the MEK5 PB1 domain to the N terminus of MEK1 confers ERK5 regulation by a MAP2K normally regulating only ERK1/2. The MEK5 PB1 domain confers stringent MAP3K regulation of ERK5 relative to more promiscuous MAP3K control of ERK1/2, JNK, and p38. PMID:16507987

  15. High power valve regulated lead-acid batteries for new vehicle requirements

    NASA Astrophysics Data System (ADS)

    Trinidad, Francisco; Sáez, Francisco; Valenciano, Jesús

    The performance of high power VRLA ORBITAL™ batteries is presented. These batteries have been designed with isolated cylindrical cells, providing high reliability to the recombination process, while maintaining, at the same time, a very high compression (>80 kPa) over the life of the battery. Hence, the resulting VRLA modules combine a high rate capability with a very good cycle performance. Two different electrochemically active material compositions have been developed: high porosity and low porosity for starting and deep cycle applications, respectively (depending on the power demand and depth of discharge). Although, the initial performance of the starting version is higher, after a few cycles the active material of the deep cycle version is fully developed, and this achieves the same high rate capability. Both types are capable of supplying the necessary reliability for cranking at the lowest temperature (-40°C). Specific power of over 500 W/kg is achievable at a much lower cost than for nickel-metal hydride systems. Apart from the initial performance, an impressive behaviour of the cycling version has been found in deep cycle applications, due to the highly compressed and high density active material. When submitted to continuous discharge-charge cycles at 75% (IEC 896-2 specification) and 100% (BCI deep cycle) DoD, it has been found that the batteries are still healthy after more than 1000 and 700 cycles, respectively. However, it has been proven that the application of an IUi algorithm (up to 110% of overcharging) with a small constant current charging period at the end of the charge is absolutely necessary to achieve the above results. Without the final boosting period, the cycle life of the battery could be substantially shortened. The high specific power and reliability observed in the tests carried out, would allow ORBITAL™ batteries to comply with the more demanding requirements that are being introduced in conventional and future hybrid electric

  16. Tight regulation of SpSoxB factors is required for patterning and morphogenesis in sea urchin embryos.

    PubMed

    Kenny, Alan P; Oleksyn, David W; Newman, Laurel A; Angerer, Robert C; Angerer, Lynne M

    2003-09-15

    Previous studies in sea urchin embryos have demonstrated that nuclearization of beta-catenin is essential for initial steps in the specification of endoderm and mesenchyme, which are derived from vegetal blastomeres. This process begins at the 4th and extends through the 9th cleavage stage, an interval in which the SpSoxB1 transcription regulator is downregulated by beta-catenin-dependent gene products that include the transcription repressor SpKrl. These observations raise the possibility that SpSoxB1 removal is required to allow vegetal development to proceed. Here we show that elevated and ectopic expression of this factor suppresses differentiation of all vegetal cell types, a phenotype that is very similar to that caused by the suppression of beta-catenin nuclear function by cadherin overexpression. Suppression of vegetal fates involves interference at the protein-protein level because a mutation of SpSoxB1 that prevents its binding to DNA does not significantly reduce this activity. Reduction in SpSoxB1 level results in elevated TCF/Lef-beta-catenin-dependent expression of a luciferase reporter gene in vivo, indicating that in the normal embryo this protein suppresses the primary vegetal signaling mechanism that is required for specification of mesenchyme and endoderm. Surprisingly, normal expression of SpSoxB1 is required for gastrulation and endoderm differentiation, as shown by both morpholino-mediated translational interference and expression of a dominant negative protein. Similar gain-of-function and loss-of-function assays of a closely related factor, SpSoxB2, demonstrate that it, too, is required for gastrulation and that its overexpression can suppress vegetal development. However, significant phenotypic differences are apparent in the two perturbations, indicating that SpSoxB1 and SpSoxB2 have at least some distinct developmental functions. The results of all these studies support a model in which the concentration of SpSoxB factors must be tightly

  17. Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa.

    PubMed

    Whitney, John C; Whitfield, Gregory B; Marmont, Lindsey S; Yip, Patrick; Neculai, A Mirela; Lobsanov, Yuri D; Robinson, Howard; Ohman, Dennis E; Howell, P Lynne

    2015-05-15

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZ domain fold with a dimerization mode not previously observed for this family of proteins. Calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. These results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa.

  18. Dimeric c-di-GMP Is Required for Post-translational Regulation of Alginate Production in Pseudomonas aeruginosa*

    PubMed Central

    Whitney, John C.; Whitfield, Gregory B.; Marmont, Lindsey S.; Yip, Patrick; Neculai, A. Mirela; Lobsanov, Yuri D.; Robinson, Howard; Ohman, Dennis E.; Howell, P. Lynne

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3′,5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZ domain fold with a dimerization mode not previously observed for this family of proteins. Calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. These results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa. PMID:25817996

  19. Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa

    DOE PAGES

    Whitney, John C.; Robinson, Howard; Whitfield, Gregory B.; ...

    2015-05-15

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZmore » domain fold with a dimerization mode not previously observed for this family of proteins. Moreover, calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. Our results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa.« less

  20. Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa

    SciTech Connect

    Whitney, John C.; Robinson, Howard; Whitfield, Gregory B.; Marmont, Lindsey S.; Yip, Patrick; Neculai, A. Mirela; Lobsanov, Yuri D.; Ohman, Dennis E.; Howell, P. Lynne

    2015-05-15

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZ domain fold with a dimerization mode not previously observed for this family of proteins. Moreover, calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. Our results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa.

  1. Notification: Hotline Complaint – Region 7 Compliance with Bid, Payment, and Performance Bond Requirements Outlined in Federal Acquisition Regulation (FAR) Part 28

    EPA Pesticide Factsheets

    June 1, 2012. In response to an anonymous hotline complaint, the OIG plans to conduct a review of Region 7’s compliance with bid, payment, and performance bond requirements outlined in Federal Acquisition Regulation (FAR) Part 28.

  2. shot regulates the microtubule reorganization required for localization of axis-determining mRNAs during oogenesis.

    PubMed

    Lee, Jiyeon; Lee, Sujung; Chen, Cheng; Shim, Hyeran; Kim-Ha, Jeongsil

    2016-02-01

    The Drosophila mid-oogenesis stages are notable as the time when most maternal mRNAs become localized at discrete regions of the oocyte. Microtubule rearrangement occurs during this period and is critical for the localization of axis-determining maternal mRNAs. We have identified shot as a key player in establishing the cytoskeletal arrangement required for the spatial localization of axis-determining maternal mRNAs. We also found that the spatial distribution of the Shot protein is regulated by its mRNA localization. Our results suggest that the RNA localization mechanism is used not only for restricted accumulation of patterning molecules but also for the microtubule organization that leads to the initial development of oocyte polarity.

  3. Casein kinase II is required for the spindle assembly checkpoint by regulating Mad2p in fission yeast

    SciTech Connect

    Shimada, Midori; Yamamoto, Ayumu; Murakami-Tonami, Yuko; Nakanishi, Makoto; Yoshida, Takashi; Aiba, Hirofumi; Murakami, Hiroshi

    2009-10-23

    The spindle checkpoint is a surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis. Here we show that fission yeast casein kinase II (CK2) is required for this checkpoint function. In the CK2 mutants mitosis occurs in the presence of a spindle defect, and the spindle checkpoint protein Mad2p fails to localize to unattached kinetochores. The CK2 mutants are sensitive to the microtubule depolymerising drug thiabendazole, which is counteracted by ectopic expression of mad2{sup +}. The level of Mad2p is low in the CK2 mutants. These results suggest that CK2 has a role in the spindle checkpoint by regulating Mad2p.

  4. The Ciliogenic Transcription Factor RFX3 Regulates Early Midline Distribution of Guidepost Neurons Required for Corpus Callosum Development

    PubMed Central

    Benadiba, Carine; Magnani, Dario; Niquille, Mathieu; Morlé, Laurette; Valloton, Delphine; Nawabi, Homaira; Ait-Lounis, Aouatef; Otsmane, Belkacem; Reith, Walter; Theil, Thomas; Hornung, Jean-Pierre

    2012-01-01

    The corpus callosum (CC) is the major commissure that bridges the cerebral hemispheres. Agenesis of the CC is associated with human ciliopathies, but the origin of this default is unclear. Regulatory Factor X3 (RFX3) is a transcription factor involved in the control of ciliogenesis, and Rfx3–deficient mice show several hallmarks of ciliopathies including left–right asymmetry defects and hydrocephalus. Here we show that Rfx3–deficient mice suffer from CC agenesis associated with a marked disorganisation of guidepost neurons required for axon pathfinding across the midline. Using transplantation assays, we demonstrate that abnormalities of the mutant midline region are primarily responsible for the CC malformation. Conditional genetic inactivation shows that RFX3 is not required in guidepost cells for proper CC formation, but is required before E12.5 for proper patterning of the cortical septal boundary and hence accurate distribution of guidepost neurons at later stages. We observe focused but consistent ectopic expression of Fibroblast growth factor 8 (Fgf8) at the rostro commissural plate associated with a reduced ratio of GLIoma-associated oncogene family zinc finger 3 (GLI3) repressor to activator forms. We demonstrate on brain explant cultures that ectopic FGF8 reproduces the guidepost neuronal defects observed in Rfx3 mutants. This study unravels a crucial role of RFX3 during early brain development by indirectly regulating GLI3 activity, which leads to FGF8 upregulation and ultimately to disturbed distribution of guidepost neurons required for CC morphogenesis. Hence, the RFX3 mutant mouse model brings novel understandings of the mechanisms that underlie CC agenesis in ciliopathies. PMID:22479201

  5. Lipid Droplet-Associated Proteins (LDAPs) Are Required for the Dynamic Regulation of Neutral Lipid Compartmentation in Plant Cells1

    PubMed Central

    Park, Sunjung; Wu, Peng

    2016-01-01

    Eukaryotic cells compartmentalize neutral lipids into organelles called lipid droplets (LDs), and while much is known about the role of LDs in storing triacylglycerols in seeds, their biogenesis and function in nonseed tissues are poorly understood. Recently, we identified a class of plant-specific, lipid droplet-associated proteins (LDAPs) that are abundant components of LDs in nonseed cell types. Here, we characterized the three LDAPs in Arabidopsis (Arabidopsis thaliana) to gain insight to their targeting, assembly, and influence on LD function and dynamics. While all three LDAPs targeted specifically to the LD surface, truncation analysis of LDAP3 revealed that essentially the entire protein was required for LD localization. The association of LDAP3 with LDs was detergent sensitive, but the protein bound with similar affinity to synthetic liposomes of various phospholipid compositions, suggesting that other factors contributed to targeting specificity. Investigation of LD dynamics in leaves revealed that LD abundance was modulated during the diurnal cycle, and characterization of LDAP misexpression mutants indicated that all three LDAPs were important for this process. LD abundance was increased significantly during abiotic stress, and characterization of mutant lines revealed that LDAP1 and LDAP3 were required for the proper induction of LDs during heat and cold temperature stress, respectively. Furthermore, LDAP1 was required for proper neutral lipid compartmentalization and triacylglycerol degradation during postgerminative growth. Taken together, these studies reveal that LDAPs are required for the maintenance and regulation of LDs in plant cells and perform nonredundant functions in various physiological contexts, including stress response and postgerminative growth. PMID:26896396

  6. The kinesin-2 family member KIF3C regulates microtubule dynamics and is required for axon growth and regeneration.

    PubMed

    Gumy, Laura F; Chew, Daniel J; Tortosa, Elena; Katrukha, Eugene A; Kapitein, Lukas C; Tolkovsky, Aviva M; Hoogenraad, Casper C; Fawcett, James W

    2013-07-10

    Axon regeneration after injury requires the extensive reconstruction, reorganization, and stabilization of the microtubule cytoskeleton in the growth cones. Here, we identify KIF3C as a key regulator of axonal growth and regeneration by controlling microtubule dynamics and organization in the growth cone. KIF3C is developmentally regulated. Rat embryonic sensory axons and growth cones contain undetectable levels of KIF3C protein that is locally translated immediately after injury. In adult neurons, KIF3C is axonally transported from the cell body and is enriched at the growth cone where it preferentially binds to tyrosinated microtubules. Functionally, the interaction of KIF3C with EB3 is necessary for its localization at the microtubule plus-ends in the growth cone. Depletion of KIF3C in adult neurons leads to an increase in stable, overgrown and looped microtubules because of a strong decrease in the microtubule frequency of catastrophes, suggesting that KIF3C functions as a microtubule-destabilizing factor. Adult axons lacking KIF3C, by RNA interference or KIF3C gene knock-out, display an impaired axonal outgrowth in vitro and a delayed regeneration after injury both in vitro and in vivo. Murine KIF3C knock-out embryonic axons grow normally but do not regenerate after injury because they are unable to locally translate KIF3C. These data show that KIF3C is an injury-specific kinesin that contributes to axon growth and regeneration by regulating and organizing the microtubule cytoskeleton in the growth cone.

  7. Iron-induced turnover of the Arabidopsis IRON-REGULATED TRANSPORTER1 metal transporter requires lysine residues.

    PubMed

    Kerkeb, Loubna; Mukherjee, Indrani; Chatterjee, Iera; Lahner, Brett; Salt, David E; Connolly, Erin L

    2008-04-01

    Iron is an essential micronutrient but is toxic if accumulated at high levels. Thus, iron uptake and distribution in plants are controlled by precise regulatory mechanisms. IRON-REGULATED TRANSPORTER1 (IRT1) is the major high affinity iron transporter responsible for iron uptake from the soil in Arabidopsis (Arabidopsis thaliana). Previously, we showed that IRT1 is subject to posttranscriptional regulation; when expressed from the constitutive cauliflower mosaic virus 35S promoter, IRT1 protein accumulates only in iron-deficient roots. IRT1 contains an intracellular loop that may be critical for posttranslational regulation by metals. Of particular interest are a histidine (His) motif (HGHGHGH) that might bind metals and two lysine residues that could serve as attachment sites for ubiquitin. We constructed a set of mutant IRT1 alleles: IRT1H154Q, IRT1H156Q, IRT1H158Q, IRT1H160Q, IRT14HQ (quadruple His mutant), IRT1K146R, IRT1K171R, and a double mutant (IRT1K146R,K171R). Mutation of the His or lysine residues did not eliminate the ability of IRT1 to transport iron or zinc. Expression of each of the IRT1 variants and an IRT1intact construct in plants from the 35S promoter revealed that either K146 or K171 is required for iron-induced protein turnover, and 35S-IRT1K146R,K171R plants contain higher levels of iron as compared to 35S-IRT1 and wild type. Furthermore, accumulation of metals in 35S-IRT1K146R,K171R plants was not associated with an increase in ferric chelate reductase activity; this result indicates that, at least under conditions when iron is abundant, reduction of ferric iron may not be the rate-limiting step in iron uptake by strategy I plants such as Arabidopsis.

  8. Pdlim7 Regulates Arf6-Dependent Actin Dynamics and Is Required for Platelet-Mediated Thrombosis in Mice

    PubMed Central

    Miller, Kaylie P.; Krcmery, Jennifer; Simon, Hans-Georg

    2016-01-01

    Upon vessel injury, platelets become activated and rapidly reorganize their actin cytoskeleton to adhere to the site of endothelial damage, triggering the formation of a fibrin-rich plug to prevent further blood loss. Inactivation of Pdlim7 provides the new perspective that regulation of actin cytoskeletal changes in platelets is dependent on the encoded PDZ-LIM protein. Loss-of-function of Pdlim7 triggers hypercoagulopathy and causes significant perinatal lethality in mice. Our in vivo and in vitro studies reveal that Pdlim7 is dynamically distributed along actin fibers, and lack of Pdlim7 leads to a marked inability to rearrange the actin cytoskeleton. Specifically, the absence of Pdlim7 prevents platelets from bundling actin fibers into a concentric ring that defines the round spread shape of activated platelets. Similarly, in mouse embryonic fibroblasts, loss of Pdlim7 abolishes the formation of stress fibers needed to adopt the typical elongated fibroblast shape. In addition to revealing a fundamental cell biological role in actin cytoskeletal organization, we also demonstrate a function of Pdlim7 in regulating the cycling between the GTP/GDP-bound states of Arf6. The small GTPase Arf6 is an essential factor required for actin dynamics, cytoskeletal rearrangements, and platelet activation. Consistent with our findings of significantly elevated initial F-actin ratios and subsequent morphological aberrations, loss of Pdlim7 causes a shift in balance towards an increased Arf6-GTP level in resting platelets. These findings identify a new Pdlim7-Arf6 axis controlling actin dynamics and implicate Pdlim7 as a primary endogenous regulator of platelet-dependent hemostasis. PMID:27792740

  9. Transcriptome Reprogramming by Plasmid-Encoded Transcriptional Regulators Is Required for Host Niche Adaption of a Macrophage Pathogen

    PubMed Central

    Coulson, Garry B.; Miranda-CasoLuengo, Aleksandra A.; Miranda-CasoLuengo, Raúl; Wang, Xiaoguang; Oliver, Jenna; Willingham-Lane, Jennifer M.

    2015-01-01

    Rhodococcus equi is a facultative intracellular pathogen of macrophages, relying on the presence of a conjugative virulence plasmid harboring a 21-kb pathogenicity island (PAI) for growth in host macrophages. The PAI encodes a family of 6 virulence-associated proteins (Vaps) in addition to 20 other proteins. The contribution of these to virulence has remained unclear. We show that the presence of only 3 virulence plasmid genes (of 73 in total) is required and sufficient for intracellular growth. These include a single vap family member, vapA, and two PAI-located transcriptional regulators, virR and virS. Both transcriptional regulators are essential for wild-type-level expression of vapA, yet vapA expression alone is not sufficient to allow intracellular growth. A whole-genome microarray analysis revealed that VirR and VirS substantially integrate themselves into the chromosomal regulatory network, significantly altering the transcription of 18% of all chromosomal genes. This pathoadaptation involved significant enrichment of select gene ontologies, in particular, enrichment of genes involved in transport processes, energy production, and cellular metabolism, suggesting a major change in cell physiology allowing the bacterium to grow in the hostile environment of the host cell. The results suggest that following the acquisition of the virulence plasmid by an avirulent ancestor of R. equi, coevolution between the plasmid and the chromosome took place, allowing VirR and VirS to regulate the transcription of chromosomal genes in a process that ultimately promoted intracellular growth. Our findings suggest a mechanism for cooption of existing chromosomal traits during the evolution of a pathogenic bacterium from an avirulent saprophyte. PMID:26015480

  10. DICER1 regulated let-7 expression levels in p53-induced cancer repression requires cyclin D1

    PubMed Central

    Sun, Xin; Tang, Shou-Ching; Xu, Chongwen; Wang, Chenguang; Qin, Sida; Du, Ning; Liu, Jian; Zhang, Yiwen; Li, Xiang; Luo, Gang; Zhou, Jie; Xu, Fei; Ren, Hong

    2015-01-01

    Let-7 miRNAs act as tumour suppressors by directly binding to the 3′UTRs of downstream gene products. The regulatory role of let-7 in downstream gene expression has gained much interest in the cancer research community, as it controls multiple biological functions and determines cell fates. For example, one target of the let-7 family is cyclin D1, which promotes G0/S cell cycle progression and oncogenesis, was correlated with endoribonuclease DICER1, another target of let-7. Down-regulated let-7 has been identified in many types of tumours, suggesting a feedback loop may exist between let-7 and cyclin D1. A potential player in the proposed feedback relationship is Dicer, a central regulator of miRNA expression through sequence-specific silencing. We first identified that DICER1 is the key downstream gene for cyclin D1-induced let-7 expression. In addition, we found that let-7 miRNAs expression decreased because of the p53-induced cell death response, with deregulated cyclin D1. Our results also showed that cyclin D1 is required for Nutlin-3 and TAX-induced let-7 expression in cancer repression and the cell death response. For the first time, we provide evidence that let-7 and cyclin D1 form a feedback loop in regulating therapy response of cancer cells and cancer stem cells, and importantly, that alteration of let-7 expression, mainly caused by cyclin D1, is a sensitive indicator for better chemotherapies response. PMID:25702703

  11. Intracellular pH regulation in unstimulated Calliphora salivary glands is Na+ dependent and requires V-ATPase activity.

    PubMed

    Schewe, Bettina; Blenau, Wolfgang; Walz, Bernd

    2012-04-15

    Salivary gland cells of the blowfly Calliphora vicina have a vacuolar-type H(+)-ATPase (V-ATPase) that lies in their apical membrane and energizes the secretion of a KCl-rich primary saliva upon stimulation with serotonin (5-hydroxytryptamine). Whether and to what extent V-ATPase contributes to intracellular pH (pH(i)) regulation in unstimulated gland cells is unknown. We used the fluorescent dye BCECF to study intracellular pH(i) regulation microfluorometrically and show that: (1) under resting conditions, the application of Na(+)-free physiological saline induces an intracellular alkalinization attributable to the inhibition of the activity of a Na(+)-dependent glutamate transporter; (2) the maintenance of resting pH(i) is Na(+), Cl(-), concanamycin A and DIDS sensitive; (3) recovery from an intracellular acid load is Na(+) sensitive and requires V-ATPase activity; (4) the Na(+)/H(+) antiporter is not involved in pH(i) recovery after a NH(4)Cl prepulse; and (5) at least one Na(+)-dependent transporter and the V-ATPase maintain recovery from an intracellular acid load. Thus, under resting conditions, the V-ATPase and at least one Na(+)-dependent transporter maintain normal pH(i) values of pH 7.5. We have also detected the presence of a Na(+)-dependent glutamate transporter, which seems to act as an acid loader. Despite this not being a common pH(i)-regulating transporter, its activity affects steady-state pH(i) in C. vicina salivary gland cells.

  12. Mycobacterium tuberculosis Universal Stress Protein Rv2623 Regulates Bacillary Growth by ATP Binding: Requirement for Establishing Chronic Persistent Infection

    SciTech Connect

    Drumm, J.; Mi, K; Bilder, P; Sun, M; Lim, J; Bielefeldt-Ohmann, H; Basaraba, R; So, M; Zhu, G; et. al.

    2009-01-01

    Tuberculous latency and reactivation play a significant role in the pathogenesis of tuberculosis, yet the mechanisms that regulate these processes remain unclear. The Mycobacterium tuberculosisuniversal stress protein (USP) homolog, rv2623, is among the most highly induced genes when the tubercle bacillus is subjected to hypoxia and nitrosative stress, conditions thought to promote latency. Induction of rv2623 also occurs when M. tuberculosis encounters conditions associated with growth arrest, such as the intracellular milieu of macrophages and in the lungs of mice with chronic tuberculosis. Therefore, we tested the hypothesis that Rv2623 regulates tuberculosis latency. We observed that an Rv2623-deficient mutant fails to establish chronic tuberculous infection in guinea pigs and mice, exhibiting a hypervirulence phenotype associated with increased bacterial burden and mortality. Consistent with this in vivo growth-regulatory role, constitutive overexpression of rv2623 attenuates mycobacterial growth in vitro. Biochemical analysis of purified Rv2623 suggested that this mycobacterial USP binds ATP, and the 2.9-A-resolution crystal structure revealed that Rv2623 engages ATP in a novel nucleotide-binding pocket. Structure-guided mutagenesis yielded Rv2623 mutants with reduced ATP-binding capacity. Analysis of mycobacteria overexpressing these mutants revealed that the in vitro growth-inhibitory property of Rv2623 correlates with its ability to bind ATP. Together, the results indicate that i M. tuberculosis Rv2623 regulates mycobacterial growth in vitro and in vivo, and ii Rv2623 is required for the entry of the tubercle bacillus into the chronic phase of infection in the host; in addition, iii Rv2623 binds ATP; and iv the growth-regulatory attribute of this USP is dependent on its ATP-binding activity. We propose that Rv2623 may function as an ATP-dependent signaling intermediate in a pathway that promotes persistent infection.

  13. Greater-than-Class C low-level radioactive waste transportation regulations and requirements study. National Low-Level Waste Management Program

    SciTech Connect

    Tyacke, M.; Schmitt, R.

    1993-07-01

    The purpose of this report is to identify the regulations and requirements for transporting greater-than-Class C (GTCC) low-level radioactive waste (LLW) and to identify planning activities that need to be accomplished in preparation for transporting GTCC LLW. The regulations and requirements for transporting hazardous materials, of which GTCC LLW is included, are complex and include several Federal agencies, state and local governments, and Indian tribes. This report is divided into five sections and three appendices. Section 1 introduces the report. Section 2 identifies and discusses the transportation regulations and requirements. The regulations and requirements are divided into Federal, state, local government, and Indian tribes subsections. This report does not identify the regulations or requirements of specific state, local government, and Indian tribes, since the storage, treatment, and disposal facility locations and transportation routes have not been specifically identified. Section 3 identifies the planning needed to ensure that all transportation activities are in compliance with the regulations and requirements. It is divided into (a) transportation packaging; (b) transportation operations; (c) system safety and risk analysis, (d) route selection; (e) emergency preparedness and response; and (f) safeguards and security. This section does not provide actual planning since the details of the Department of Energy (DOE) GTCC LLW Program have not been finalized, e.g., waste characterization and quantity, storage, treatment and disposal facility locations, and acceptance criteria. Sections 4 and 5 provide conclusions and referenced documents, respectively.

  14. Regulation of Anticancer Styrylpyrone Biosynthesis in the Medicinal Mushroom Inonotus obliquus Requires Thioredoxin Mediated Transnitrosylation of S-nitrosoglutathione Reductase.

    PubMed

    Zhao, Yanxia; He, Meihong; Ding, Jianing; Xi, Qi; Loake, Gary J; Zheng, Weifa

    2016-11-21

    The medicinal macrofungus Inonotus obliquus widely utilized as folk medicine in Russia and Baltic countries is a source of phenylpropanoid-derived styrylpyrone polyphenols that can inhibit tumor proliferation. Insights into the regulatory machinery that controls I. obliquus styrylpyrone polyphenol biosynthesis will enable strategies to increase the production of these molecules. Here we show that Thioredoxin (Trx) mediated transnitrosylation of S-nitrosoglutathione reductase (GSNOR) underpins the regulation of styrylpyrone production, driven by nitric oxide (NO) synthesis triggered by P. morii coculture. NO accumulation results in the S-nitrosylation of PAL and 4CL required for the synthesis of precursor phenylpropanoids and styrylpyrone synthase (SPS), integral to the production of styrylpyrone, inhibiting their activities. These enzymes are targeted for denitrosylation by Trx proteins, which restore their activity. Further, this Trx S-nitrosothiol (SNO) reductase activity was potentiated following S-nitrosylation of Trx proteins at a non-catalytic cysteine (Cys) residue. Intriguingly, this process was counterbalanced by Trx denitrosylation, mediated by Trx-dependent transnitrosylation of GSNOR. Thus, unprecedented interplay between Trx and GSNOR oxidoreductases regulates the biosynthesis of styrylpyrone polyphenols in I. obliquus.

  15. Regulation of Anticancer Styrylpyrone Biosynthesis in the Medicinal Mushroom Inonotus obliquus Requires Thioredoxin Mediated Transnitrosylation of S-nitrosoglutathione Reductase

    PubMed Central

    Zhao, Yanxia; He, Meihong; Ding, Jianing; Xi, Qi; Loake, Gary J.; Zheng, Weifa

    2016-01-01

    The medicinal macrofungus Inonotus obliquus widely utilized as folk medicine in Russia and Baltic countries is a source of phenylpropanoid-derived styrylpyrone polyphenols that can inhibit tumor proliferation. Insights into the regulatory machinery that controls I. obliquus styrylpyrone polyphenol biosynthesis will enable strategies to increase the production of these molecules. Here we show that Thioredoxin (Trx) mediated transnitrosylation of S-nitrosoglutathione reductase (GSNOR) underpins the regulation of styrylpyrone production, driven by nitric oxide (NO) synthesis triggered by P. morii coculture. NO accumulation results in the S-nitrosylation of PAL and 4CL required for the synthesis of precursor phenylpropanoids and styrylpyrone synthase (SPS), integral to the production of styrylpyrone, inhibiting their activities. These enzymes are targeted for denitrosylation by Trx proteins, which restore their activity. Further, this Trx S-nitrosothiol (SNO) reductase activity was potentiated following S-nitrosylation of Trx proteins at a non-catalytic cysteine (Cys) residue. Intriguingly, this process was counterbalanced by Trx denitrosylation, mediated by Trx-dependent transnitrosylation of GSNOR. Thus, unprecedented interplay between Trx and GSNOR oxidoreductases regulates the biosynthesis of styrylpyrone polyphenols in I. obliquus. PMID:27869186

  16. HDAC1 negatively regulates Bdnf and Pvalb required for parvalbumin interneuron maturation in an experience-dependent manner.

    PubMed

    Koh, Dawn X P; Sng, Judy C G

    2016-11-01

    During early postnatal development, neuronal circuits are sculpted by sensory experience provided by the external environment. This experience-dependent regulation of circuitry development consolidates the balance of excitatory-inhibitory (E/I) neurons in the brain. The cortical barrel-column that innervates a single principal whisker is used to provide a clear reference frame for studying the consolidation of E/I circuitry. Sensory deprivation of S1 at birth disrupts the consolidation of excitatory-inhibitory balance by decreasing inhibitory transmission of parvalbumin interneurons. The molecular mechanisms underlying this decrease in inhibition are not completely understood. Our findings show that epigenetic mechanisms, in particular histone deacetylation by histone deacetylases, negatively regulate the expression of brain-derived neurotrophic factor (Bdnf) and parvalbumin (Pvalb) genes during development, which are required for the maturation of parvalbumin interneurons. After whisker deprivation, increased histone deacetylase 1 expression and activity led to increased histone deacetylase 1 binding and decreased histone acetylation at Bdnf promoters I-IV and Pvalb promoter, resulting in the repression of Bdnf and Pvalb gene transcription. The decrease in Bdnf expression further affected parvalbumin interneuron maturation at layer II/III in S1, demonstrated by decreased parvalbumin expression, a marker for parvalbumin interneuron maturation. Knockdown of HDAC1 recovered Bdnf and Pvalb gene transcription and also prevented the decrease of inhibitory synapses accompanying whisker deprivation.

  17. Ubiquitylation-dependent regulation of NEIL1 by Mule and TRIM26 is required for the cellular DNA damage response

    PubMed Central

    Edmonds, Matthew J.; Carter, Rachel J.; Nickson, Catherine M.; Williams, Sarah C.; Parsons, Jason L.

    2017-01-01

    Endonuclease VIII-like protein 1 (NEIL1) is a DNA glycosylase involved in initiating the base excision repair pathway, the major cellular mechanism for repairing DNA base damage. Here, we have purified the major E3 ubiquitin ligases from human cells responsible for regulation of NEIL1 by ubiquitylation. Interestingly, we have identified two enzymes that catalyse NEIL1 polyubiquitylation, Mcl-1 ubiquitin ligase E3 (Mule) and tripartite motif 26 (TRIM26). We demonstrate that these enzymes are capable of polyubiquitylating NEIL1 in vitro, and that both catalyse ubiquitylation of NEIL1 within the same C-terminal lysine residues. An siRNA-mediated knockdown of Mule or TRIM26 leads to stabilisation of NEIL1, demonstrating that these enzymes are important in regulating cellular NEIL1 steady state protein levels. Similarly, a mutant NEIL1 protein lacking residues for ubiquitylation is more stable than the wild type protein in vivo. We also demonstrate that cellular NEIL1 protein is induced in response to ionising radiation (IR), although this occurs specifically in a Mule-dependent manner. Finally we show that stabilisation of NEIL1, particularly following TRIM26 siRNA, contributes to cellular resistance to IR. This highlights the importance of Mule and TRIM26 in maintaining steady state levels of NEIL1, but also those required for the cellular DNA damage response. PMID:27924031

  18. FgFlbD regulates hyphal differentiation required for sexual and asexual reproduction in the ascomycete fungus Fusarium graminearum.

    PubMed

    Son, Hokyoung; Kim, Myung-Gu; Chae, Suhn-Kee; Lee, Yin-Won

    2014-11-01

    Fusarium graminearum is a filamentous fungal plant pathogen that infects major cereal crops. The fungus produces both sexual and asexual spores in order to endure unfavorable environmental conditions and increase their numbers and distribution across plants. In a model filamentous fungus, Aspergillus nidulans, early induction of conidiogenesis is orchestrated by the fluffy genes. The objectives of this study were to characterize fluffy gene homologs involved in conidiogenesis and their mechanism of action in F. graminearum. We characterized five fluffy gene homologs in F. graminearum and found that FlbD is the only conserved regulator for conidiogenesis in A. nidulans and F. graminearum. Deletion of fgflbD prevented hyphal differentiation and the formation of perithecia. Successful interspecies complementation using A. nidulans flbD demonstrated that the molecular mechanisms responsible for FlbD functions are conserved in F. graminearum. Moreover, abaA-wetA pathway is positively regulated by FgFlbD during conidiogenesis in F. graminearum. Deleting fgflbD abolished morphological effects of abaA overexpression, which suggests that additional factors for FgFlbD or an AbaA-independent pathway for conidiogenesis are required for F. graminearum conidiation. Importantly, this study led to the construction of a genetic pathway of F. graminearum conidiogenesis and provides new insights into the genetics of conidiogenesis in fungi.

  19. Requirements for nucleocapsid-mediated regulation of reverse transcription during the late steps of HIV-1 assembly

    PubMed Central

    Racine, Pierre-Jean; Chamontin, Célia; de Rocquigny, Hugues; Bernacchi, Serena; Paillart, Jean-Christophe; Mougel, Marylène

    2016-01-01

    HIV-1 is a retrovirus replicating within cells by reverse transcribing its genomic RNA (gRNA) into DNA. Within cells, virus assembly requires the structural Gag proteins with few accessory proteins, notably the viral infectivity factor (Vif) and two copies of gRNA as well as cellular factors to converge to the plasma membrane. In this process, the nucleocapsid (NC) domain of Gag binds to the packaging signal of gRNA which consists of a series of stem-loops (SL1-SL3) ensuring gRNA selection and packaging into virions. Interestingly, mutating NC activates a late-occurring reverse transcription (RT) step in producer cells, leading to the release of DNA-containing HIV-1 particles. In order to decipher the molecular mechanism regulating this late RT, we explored the role of several key partners of NC, such as Vif, gRNA and the cellular cytidine deaminase APOBEC3G that restricts HIV-1 infection by targeting the RT. By studying combinations of deletions of these putative players, we revealed that NC, SL1-SL3 and in lesser extent Vif, but not APOBEC3G, interplay regulates the late RT. PMID:27273064

  20. Identification of TSG101 Functional Domains and p21 Loci Required for TSG101-Mediated p21 Gene Regulation

    PubMed Central

    Lin, Yu-Shiuan; Chen, Yin-Ju; Cohen, Stanley N.; Cheng, Tzu-Hao

    2013-01-01

    TSG101 (tumor susceptibility gene 101) is a multi-domain protein known to act in the cell nucleus, cytoplasm, and periplasmic membrane. Remarkably, TSG101, whose location within cells varies with the stage of the cell cycle, affects biological events as diverse as cell growth and proliferation, gene expression, cytokinesis, and endosomal trafficking. The functions of TSG101 additionally are recruited for viral and microvesicle budding and for intracellular survival of invading bacteria. Here we report that the TSG101 protein also interacts with and down-regulates the promoter of the p21CIP1/WAF1tumor suppressor gene, and identify a p21 locus and TSG101 domains that mediate this interaction. TSG101 deficiency in Saos-2 human osteosarcoma cells was accompanied by an increased abundance of p21 mRNA and protein and the retardation of cell proliferation. A cis-acting element in the p21 promoter that interacts with TSG101 and is required for promoter repression was located using chromatin immunoprecipitation (ChIP) analysis and p21-driven luciferase reporter gene expression, respectively. Additional analysis of TSG101 deletion mutants lacking specific domains established the role of the central TSG101 domains in binding to the p21 promoter and demonstrated the additional essentiality of the TSG101 C-terminal steadiness box (SB) in the repression of p21 promoter activity. Neither binding of TSG101 to the p21 promoter nor repression of this promoter required the TSG101 N-terminal UEV domain, which mediates the ubiquitin-recognition functions of TSG101 and its actions as a member of ESCRT endocytic trafficking complexes, indicating that regulation of the p21 promoter by TSG101 is independent of its role in such trafficking. PMID:24244542

  1. Regulation of vitellogenin gene expression in transgenic Caenorhabditis elegans: short sequences required for activation of the vit-2 promoter.

    PubMed Central

    MacMorris, M; Broverman, S; Greenspoon, S; Lea, K; Madej, C; Blumenthal, T; Spieth, J

    1992-01-01

    The Caenorhabditis elegans vitellogenin genes are subject to sex-, stage-, and tissue-specific regulation: they are expressed solely in the adult hermaphrodite intestine. Comparative sequence analysis of the DNA immediately upstream of these genes revealed the presence of two repeated heptameric elements, vit promoter element 1 (VPE1) and VPE2. VPE1 has the consensus sequence TGTCAAT, while VPE2, CTGATAA, shares the recognition sequence of the GATA family of transcription factors. We report here a functional analysis of the VPEs within the 5'-flanking region of the vit-2 gene using stable transgenic lines. The 247 upstream bp containing the VPEs was sufficient for high-level, regulated expression. Furthermore, none of the four deletion mutations or eight point mutations tested resulted in expression of the reporter gene in larvae, males, or inappropriate hermaphrodite tissues. Mutation of the VPE1 closest to the TATA box inactivated the promoter, in spite of the fact that four additional close matches to the VPE1 consensus sequence are present within the 5'-flanking 200 bp. Each of these upstream VPE1-like sequences could be mutated without loss of high-level transgene expression, suggesting that if these VPE1 sequences play a role in regulating vit-2, their effects are more subtle. A site-directed mutation in the overlapping VPE1 and VPE2 at -98 was sufficient to inactivate the promoter, indicating that one or both of these VPEs must be present for activation of vit-2 transcription. Similarly, a small perturbation of the VPE2 at -150 resulted in reduction of fp155 expression, while a more extensive mutation in this element eliminated expression. On the other hand, deletion of this VPE2 and all upstream DNA still permitted correctly regulated expression, although at a very low level, suggesting that this VPE2 performs an important role in activation of vit-2 expression but may not be absolutely required. The results, taken together, demonstrate that both VPE1 and

  2. Regulation of carotenoid and bacteriochlorophyll biosynthesis genes and identification of an evolutionarily conserved gene required for bacteriochlorophyll accumulation.

    PubMed

    Armstrong, G A; Cook, D N; Ma, D; Alberti, M; Burke, D H; Hearst, J E

    1993-05-01

    The temporal expression of ten clustered genes required for carotenoid (crt) and bacteriochlorophyll (bch) biosynthesis was examined during the transition from aerobic respiration to anaerobiosis requisite for the development of the photosynthetic membrane in the bacterium Rhodobacter capsulatus. Accumulation of crtA, crtC, crtD, crtE, crtF, crtK, bchC and bchD mRNAs increased transiently and coordinately, up to 12-fold following removal of oxygen from the growth medium, paralleling increases in mRNAs encoding pigment-binding polypeptides of the photosynthetic apparatus. The crtB and crtI genes, in contrast, were expressed similarly in the presence or absence of oxygen. The regulation patterns of promoters for the crtA and crtI genes and the bchCXYZ operon were characterized using lacZ transcriptional fusion and qualitatively reflected the corresponding mRNA accumulation patterns. We also report that the bchI gene product, encoded by a DNA sequence previously considered to be a portion of crtA, shares 49% sequence identity with the nuclear-encoded Arabidopsis thaliana Cs chloroplast protein required for normal pigmentation in plants.

  3. Regulation of Cellular Diacylglycerol through Lipid Phosphate Phosphatases Is Required for Pathogenesis of the Rice Blast Fungus, Magnaporthe oryzae

    PubMed Central

    Mir, Albely Afifa; Choi, Jaeyoung; Choi, Jaehyuk; Lee, Yong-Hwan

    2014-01-01

    Considering implication of diacylglycerol in both metabolism and signaling pathways, maintaining proper levels of diacylglycerol (DAG) is critical to cellular homeostasis and development. Except the PIP2-PLC mediated pathway, metabolic pathways leading to generation of DAG converge on dephosphorylation of phosphatidic acid catalyzed by lipid phosphate phosphatases. Here we report the role of such enzymes in a model plant pathogenic fungus, Magnaporthe oryzae. We identified five genes encoding putative lipid phosphate phosphatases (MoLPP1 to MoLPP5). Targeted disruption of four genes (except MoLPP4) showed that MoLPP3 and MoLPP5 are required for normal progression of infection-specific development and proliferation within host plants, whereas MoLPP1 and MoLPP2 are indispensable for fungal pathogenicity. Reintroduction of MoLPP3 and MoLPP5 into individual deletion mutants restored all the defects. Furthermore, exogenous addition of saturated DAG not only restored defect in appressorium formation but also complemented reduced virulence in both mutants. Taken together, our data indicate differential roles of lipid phosphate phosphatase genes and requirement of proper regulation of cellular DAGs for fungal development and pathogenesis. PMID:24959955

  4. Half pint/Puf68 is required for negative regulation of splicing by the SR splicing factor Transformer2.

    PubMed

    Wang, Shanzhi; Wagner, Eric J; Mattox, William

    2013-08-01

    The SR family of proteins plays important regulatory roles in the control of alternative splicing in a wide range of organisms. These factors affect splicing through both positive and negative controls of splice site recognition by pre-spliceosomal factors. Recent studies indicate that the Drosophila SR factor Transformer 2 (Tra2) activates and represses splicing through distinct and separable effector regions of the protein. While the interactions of its Arg-Ser-rich activator region have been well studied, cofactors involved in splicing repression have yet to be found. Here we use a luciferase-based splicing reporter assay to screen for novel proteins necessary for Tra2-dependent repression of splicing. This approach identified Half pint, also known as Puf68, as a co-repressor required for Tra2-mediated autoregulation of the M1 intron. In vivo, Half pint is required for Tra2-dependent repression of M1 splicing but is not necessary for Tra2-dependent activation of doublesex splicing. Further experiments indicate that the effect of Hfp is sequence-specific and that it associates with these target transcripts in cells. Importantly, known M1 splicing regulatory elements are sufficient to sensitize a heterologous intron to Hfp regulation. Two alternative proteins deriving from Hfp transcripts, Hfp68, and Hfp58, were found to be expressed in vivo but differed dramatically in their effect on M1 splicing. Comparison of the cellular localization of these forms in S2 cells revealed that Hfp68 is predominantly localized to the nucleus while Hfp58 is distributed across both the nucleus and cytoplasm. This accords with their observed effects on splicing and suggests that differential compartmentalization may contribute to the specificity of these isoforms. Together, these studies reveal a function for Half pint in splicing repression and demonstrate it to be specifically required for Tra2-dependent intron inclusion.

  5. Half Pint/Puf68 is required for negative regulation of splicing by the SR factor Transformer2

    PubMed Central

    Wang, Shanzhi; Wagner, Eric J; Mattox, William

    2013-01-01

    The SR family of proteins plays important regulatory roles in the control of alternative splicing in a wide range of organisms. These factors affect splicing through both positive and negative controls of splice site recognition by pre-spliceosomal factors. Recent studies indicate that the Drosophila SR factor Transformer 2 (Tra2) activates and represses splicing through distinct and separable effector regions of the protein. While the interactions of its Arg-Ser-rich activator region have been well studied, cofactors involved in splicing repression have yet to be found. Here we use a luciferase-based splicing reporter assay to screen for novel proteins necessary for Tra2-dependent repression of splicing. This approach identified Half pint, also known as Puf68, as a co-repressor required for Tra2-mediated autoregulation of the M1 intron. In vivo, Half pint is required for Tra2-dependent repression of M1 splicing but is not necessary for Tra2-dependent activation of doublesex splicing. Further experiments indicate that the effect of Hfp is sequence-specific and that it associates with these target transcripts in cells. Importantly, known M1 splicing regulatory elements are sufficient to sensitize a heterologous intron to Hfp regulation. Two alternative proteins deriving from Hfp transcripts, Hfp68, and Hfp58, were found to be expressed in vivo but differed dramatically in their effect on M1 splicing. Comparison of the cellular localization of these forms in S2 cells revealed that Hfp68 is predominantly localized to the nucleus while Hfp58 is distributed across both the nucleus and cytoplasm. This accords with their observed effects on splicing and suggests that differential compartmentalization may contribute to the specificity of these isoforms. Together, these studies reveal a function for Half pint in splicing repression and demonstrate it to be specifically required for Tra2-dependent intron inclusion. PMID:23880637

  6. Osh proteins regulate membrane sterol organization but are not required for sterol movement between the ER and PM

    PubMed Central

    Georgiev, Alexander; Sullivan, David P.; Kersting, Michael C.; Dittman, Jeremy S.; Beh, Christopher T.; Menon, Anant K.

    2011-01-01

    Sterol transport between the endoplasmic reticulum (ER) and plasma membrane (PM) occurs by an ATP-dependent, non-vesicular mechanism that is presumed to require sterol transport proteins (STPs). In Saccharomyces cerevisiae, homologues of the mammalian oxysterol-binding protein (Osh1–7) have been proposed to function as STPs. To evaluate this proposal we took two approaches. First we used dehydroergosterol (DHE) to visualize sterol movement in living cells by fluorescence microscopy. DHE was introduced into the PM under hypoxic conditions and observed to redistribute to lipid droplets on growing the cells aerobically. Redistribution required ATP and the sterol acyltransferase Are2, but did not require PM-derived transport vesicles. DHE redistribution occurred robustly in a conditional yeast mutant (oshΔ osh4-1ts) that lacks all functional Osh proteins at 37°C. In a second approach we used a pulse-chase protocol to analyze the movement of metabolically radiolabeled ergosterol from the ER to the PM. Arrival of radiolabeled ergosterol at the PM was assessed in isolated PM-enriched fractions as well by extracting sterols from intact cells with methyl-β-cyclodextrin. These experiments revealed that whereas ergosterol is transported effectively from the ER to the PM in Osh-deficient cells, the rate at which it moves within the PM to equilibrate with the methyl-β-cyclodextrin extractable sterol pool is slowed. We conclude (i) that the role of Osh proteins in nonvesicular sterol transport between the PM, ER and lipid droplets is either minimal, or subsumed by other mechanisms and (ii) that Osh proteins regulate the organization of sterols at the PM. PMID:21689253

  7. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function.

    PubMed Central

    Babst, M; Wendland, B; Estepa, E J; Emr, S D

    1998-01-01

    Vps4p is an AAA-type ATPase required for efficient transport of biosynthetic and endocytic cargo from an endosome to the lysosome-like vacuole of Saccharomyces cerevisiae. Vps4p mutants that do not bind ATP or are defective in ATP hydrolysis were characterized both in vivo and in vitro. The nucleotide-free or ADP-bound form of Vps4p existed as a dimer, whereas in the ATP-locked state, Vps4p dimers assembled into a decameric complex. This suggests that ATP hydrolysis drives a cycle of association and dissociation of Vps4p dimers/decamers. Nucleotide binding also regulated the association of Vps4p with an endosomal compartment in vivo. This membrane association required the N-terminal coiled-coil motif of Vps4p, but deletion of the coiled-coil domain did not affect ATPase activity or oligomeric assembly of the protein. Membrane association of two previously uncharacterized class E Vps proteins, Vps24p and Vps32p/Snf7p, was also affected by mutations in VPS4. Upon inactivation of a temperature-conditional vps4 mutant, Vps24p and Vps32p/Snf7p rapidly accumulated in a large membrane-bound complex. Immunofluorescence indicated that both proteins function with Vps4p at a common endosomal compartment. Together, the data suggest that the Vps4 ATPase catalyzes the release (uncoating) of an endosomal membrane-associated class E protein complex(es) required for normal morphology and sorting activity of the endosome. PMID:9606181

  8. Regulation of Fuel and Fuel Additives: Refiner and Importer Quality Assurance Requirements for Downstream Oxygenate Blending and Requirements for Disposition of Pipeline Interfaces Additional Resources

    EPA Pesticide Factsheets

    EPA has published a Direct Final Rule that addresses requirements for parties that handle pipeline interface as well as addresses downstream quality assurance requirements for refiners (EPA publication # EPA-420-F-06-039).

  9. ELT-5 and ELT-6 are required continuously to regulate epidermal seam cell differentiation and cell fusion in C. elegans.

    PubMed

    Koh, K; Rothman, J H

    2001-08-01

    The C. elegans epidermis is a simple epithelium comprised of three major cell types, the seam, syncytial and P cells. While specification of all major epidermal cells is known to require the ELT-1 GATA transcription factor, little is known about how the individual epidermal cell types are specified. We report that elt-5 and -6, adjacent genes encoding GATA factors, are essential for the development of the lateral epidermal cells, the seam cells. Inhibition of elt-5 and -6 function by RNA-mediated interference results in penetrant late embryonic and early larval lethality. Seam cells in affected animals do not differentiate properly: the alae, seam-specific cuticular structures, are generally absent and expression of several seam-specific markers is blocked. In addition, elt-3, which encodes another GATA factor normally expressed in non-seam epidermis, is often ectopically expressed in the seam cells of affected animals, demonstrating that ELT-5 and -6 repress elt-3 expression in wild-type seam cells. Seam cells in affected animals often undergo inappropriate fusion with the epidermal syncytia. Interference of elt-5 and -6 function during larval development can cause fusion of all seam cells with the surrounding syncytia and pronounced defects in molting. elt-5 and -6 are both expressed in seam cells and many other cells, and are apparently functionally interchangeable. Their expression is controlled by separable tissue-specific regulatory elements and the apportionment of monocistronic versus dicistronic transcription of both genes appears to be subject to cell-type-specific regulation. Collectively, these findings indicate that elt-5 and -6 function continuously throughout C. elegans development to regulate seam cell differentiation and cell fusion.

  10. CXCR3 Requirement for the Interleukin-13-Mediated Up-Regulation of Interleukin-13Rα2 in Pulmonary Fibroblasts.

    PubMed

    Barnes, Jennifer C; Lumsden, Robert V; Worrell, Julie; Counihan, Ian P; O'Beirne, Sarah L; Belperio, John A; Fabre, Aurelie; Donnelly, Seamas C; Boylan, Denise; Kane, Rosemary; Keane, Michael P

    2015-08-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by fibrosis and abnormal vascularity. IL-13, a profibrotic cytokine that plays a role in IPF, functions through the Jak/STAT pathway after binding to the IL-13 receptor α1 (IL-13Rα1)/IL-4Rα complex. IL-13 also binds to IL-13Rα2, which has been thought to function as a nonsignaling decoy receptor, although possible signaling roles of this receptor have been proposed. CXCR3 and its IFN-inducible ligands-CXCL9, CXCL10, and CXCL11-have been implicated in vascular remodeling and fibroblast motility during the development of IPF. In this study, CXCR3 expression was demonstrated in cultured pulmonary fibroblasts from wild-type BALB/c mice and was found to be necessary for the IL-13-mediated gene and protein up-regulation of IL-13Rα2. In fibroblasts from CXCR3-deficient mice, STAT6 activation was prolonged. This study is the first to demonstrate the expression of CXCR3 in fibroblasts and its association with the expression of IL-13Rα2. Taken together, the results from this study point strongly to a requirement for CXCR3 for IL-13-mediated IL-13Rα2 gene expression. Understanding the function of CXCR3 in IL-13-mediated lung injury may lead to novel approaches to combat the development of pulmonary fibrosis, whether by limiting the effects of IL-13 or by manipulation of angiostatic pathways. The elucidation of the complex relationship between these antifibrotic receptors and manipulation of the CXCR3-mediated regulation of IL-13Rα2 may represent a novel therapeutic modality in cases of acute lung injury or chronic inflammation that may progress to fibrosis.

  11. VdNUC-2, the Key Regulator of Phosphate Responsive Signaling Pathway, Is Required for Verticillium dahliae Infection

    PubMed Central

    Deng, Sheng; Wang, Cai-yue; Zhang, Xin; Wang, Qing; Lin, Ling

    2015-01-01

    In fungal cells, a phosphate (Pi) responsive signaling and metabolism (PHO) pathway regulates Pi-homeostasis. NUC-2/PHO81 and its homologs are one of the most important components in the regulation pathway. In soil-borne phytopathogenic fungus Verticillium dahliae, we identified a Neurospora crassa nuc-2 homolog gene VdNUC-2. VdNUC-2 is composed of 1,018 amino acids, and is highly conserved in tested filamentous fungi. Under conditions of Pi-starvation, compared with the wild-type strain and ectopic complementation strains, the VdNUC-2 knocked out mutants exhibited reduced radial growth, decreased production of conidia and microsclerotia, and were more sensitive to hydrogen peroxide stress. The virulence of VdNUC-2 defective mutants was significantly compromised, and that was unable to be restored by exogenous application of extra Pi. Additionally, the deletion mutants of VdNUC-1, a key transcription factor gene positively controlled by VdNUC-2 in the PHO pathway, showed the similar cultural phenotypes as VdNUC-2 mutants when both of them grew in Pi-limited conditions. However, the virulence of VdNUC-1 mutants was comparable to the wild-type strain. These evidences indicated that the virulence reduction in VdNUC-2 mutants is not due to the interruptions in the PHO pathway or the disturbance of Pi-homeostasis in V. dahliae cytoplasm. VdNUC-2 is not only a crucial gene in the PHO pathway in V. dahliae, but also is required for the full virulence during host-infection. PMID:26670613

  12. Perlecan is required for the chondrogenic differentiation of synovial mesenchymal cells through regulation of Sox9 gene expression.

    PubMed

    Sadatsuki, Ryo; Kaneko, Haruka; Kinoshita, Mayuko; Futami, Ippei; Nonaka, Risa; Culley, Kirsty L; Otero, Miguel; Hada, Shinnosuke; Goldring, Mary B; Yamada, Yoshihiko; Kaneko, Kazuo; Arikawa-Hirasawa, Eri; Ishijima, Muneaki

    2016-05-30

    We previously reported that perlecan, a heparan-sulfate proteoglycan (Hspg2), expressed in the synovium at the cartilage-synovial junction, is required for osteophyte formation in knee osteoarthritis. To examine the mechanism underlying this process, we examined the role of perlecan in the proliferation and differentiation of synovial mesenchymal cells (SMCs), using a recently established mouse synovial cell culture method. Primary SMCs isolated from Hspg2(-/-) -Tg (Hspg2(-/-) ;Col2a1-Hspg2(Tg/-) ) mice, in which the perlecan-knockout was rescued from perinatal lethality, lack perlecan. The chondrogenic-, osteogenic- and adipogenic-potentials were examined in the Hspg2(-/-) -Tg SMCs compared to the control SMCs prepared from wild-type Hspg2(+/+) -Tg (Hspg2(+/+) ;Col2a1-Hspg2(Tg/-) ) littermates. In a culture condition permitting proliferation, both control and Hspg2(-/-) -Tg SMCs showed similar rates of proliferation and expression of cell surface markers. However, in micromass cultures, the cartilage matrix production and Sox9 and Col2a1 mRNA levels were significantly reduced in Hspg2(-/-) -Tg SMCs, compared with control SMCs. The reduced level of Sox9 mRNA was restored by the supplementation with exogenous perlecan protein. There was no difference in osteogenic differentiation between the control and Hspg2(-/-) -Tg SMCs, as measured by the levels of Runx2 and Col1a1 mRNA. The adipogenic induction and PPARγ mRNA levels were significantly reduced in Hspg2(-/-) -Tg SMCs compared to control SMCs. The reduction of PPARγ mRNA levels in Hspg2(-/-) -Tg SMCs was restored by supplementation of perlecan. Perlecan is required for the chondrogenic and adipogenic differentiation from SMCs via its regulation of the Sox9 and PPARγ gene expression, but not for osteogenic differentiation via Runx2. This article is protected by copyright. All rights reserved.

  13. The heterozygous abp1/ABP1 insertional mutant has defects in functions requiring polar auxin transport and in regulation of early auxin-regulated genes.

    PubMed

    Effendi, Yunus; Rietz, Steffen; Fischer, Urs; Scherer, Günther F E

    2011-01-01

    AUXIN-BINDING PROTEIN 1 (ABP1) is not easily accessible for molecular studies because the homozygous T-DNA insertion mutant is embryo-lethal. We found that the heterozygous abp1/ABP1 insertion mutant has defects in auxin physiology-related responses: higher root slanting angles, longer hypocotyls, agravitropic roots and hypocotyls, aphototropic hypocotyls, and decreased apical dominance. Heterozygous plants flowered earlier than wild-type plants under short-day conditions. The length of the main root, the lateral root density and the hypocotyl length were little altered in the mutant in response to auxin. Compared to wild-type plants, transcription of early auxin-regulated genes (IAA2, IAA11, IAA13, IAA14, IAA19, IAA20, SAUR9, SAUR15, SAUR23, GH3.5 and ABP1) was less strongly up-regulated in the mutant by 0.1, 1 and 10 μm IAA. Surprisingly, ABP1 was itself an early auxin-up-regulated gene. IAA uptake into the mutant seedlings during auxin treatments was indistinguishable from wild-type. Basipetal auxin transport in young roots was slower in the mutant, indicating a PIN2/EIR1 defect, while acropetal transport was indistinguishable from wild-type. In the eir1 background, three of the early auxin-regulated genes tested (IAA2, IAA13 and ABP1) were more strongly induced by 1 μm IAA in comparison to wild-type, but eight of them were less up-regulated in comparison to wild-type. Similar but not identical disturbances in regulation of early auxin-regulated genes indicate tight functional linkage of ABP1 and auxin transport regulation. We hypothesize that ABP1 is involved in the regulation of polar auxin transport, and thus affects local auxin concentration and early auxin gene regulation. In turn, ABP1 itself is under the transcriptional control of auxin.

  14. Trophic factor-induced activity 'signature' regulates the functional expression of postsynaptic excitatory acetylcholine receptors required for synaptogenesis.

    PubMed

    Luk, Collin C; Lee, Arthur J; Wijdenes, Pierre; Zaidi, Wali; Leung, Andrew; Wong, Noelle Y; Andrews, Joseph; Syed, Naweed I

    2015-04-01

    Highly coordinated and coincidental patterns of activity-dependent mechanisms ("fire together wire together") are thought to serve as inductive signals during synaptogenesis, enabling neuronal pairing between specific sub-sets of excitatory partners. However, neither the nature of activity triggers, nor the "activity signature" of long-term neuronal firing in developing/regenerating neurons have yet been fully defined. Using a highly tractable model system comprising of identified cholinergic neurons from Lymnaea, we have discovered that intrinsic trophic factors present in the Lymnaea brain-conditioned medium (CM) act as a natural trigger for activity patterns in post- but not the presynaptic neuron. Using microelectrode array recordings, we demonstrate that trophic factors trigger stereotypical activity patterns that include changes in frequency, activity and variance. These parameters were reliable indicators of whether a neuron expressed functional excitatory or inhibitory nAChRs and synapse formation. Surprisingly, we found that the post- but not the presynaptic cell exhibits these changes in activity patterns, and that the functional expression of excitatory nAChRs required neuronal somata, de novo protein synthesis and voltage gated calcium channels. In summary, our data provides novel insights into trophic factor mediated actions on neuronal activity and its specific regulation of nAChR expression.

  15. International Regulations of Propolis Quality: Required Assays do not Necessarily Reflect their Polyphenolic-Related In Vitro Activities.

    PubMed

    Bridi, Raquel; Montenegro, Gloria; Nuñez-Quijada, Gabriel; Giordano, Ady; Fernanda Morán-Romero, Maria; Jara-Pezoa, Isaac; Speisky, Hernán; Atala, Elias; López-Alarcón, Camilo

    2015-06-01

    Propolis has been proposed as a polyphenolic-rich natural product potentially able to be used for human consumption or even for medicinal proposes. To guarantee a minimum phenolic and flavonoid content and as consequence of their related-biological activities, international requirements of propolis quality are commonly applied. In this work we assessed phenolic and flavonoid contents of propolis; the antioxidant capacity (toward peroxyl radicals and hypochlorous acid); the ability to generate nitric oxide (NO); and, finally the antimicrobial activity of 6 propolis samples from the VI region of Chile. Our results show that the total phenolic and flavonoid content of propolis samples are not always in agreement with their polyphenolic-associated in vitro activities. For example, P03 and P06 samples showed the lowest (25 ± 4 GAE/g propolis) and the highest (105 ± 3 GAE/g propolis) total phenolic content, respectively. This was in agreement with flavonoid content and their Oxygen Radical Absorbance Capacity (ORAC) activity. However, this dependence was not observed toward HOCl, NO release and antimicrobial activity. Based on our results, we consider that, in order to guarantee the antioxidant or antimicrobial in vitro effects, the international regulations of propolis quality should contemplate the convenience of incorporating other simple analytical test such as ORAC or antimicrobial tests.

  16. OsJAR1 is required for JA-regulated floret opening and anther dehiscence in rice.

    PubMed

    Xiao, Yuguo; Chen, Yi; Charnikhova, Tatsiana; Mulder, Patrick P J; Heijmans, Jeroen; Hoogenboom, Angela; Agalou, Adamantia; Michel, Corinne; Morel, Jean-Benoit; Dreni, Ludovico; Kater, Martin M; Bouwmeester, Harro; Wang, Mei; Zhu, Zhen; Ouwerkerk, Pieter B F

    2014-09-01

    Jasmonates are important phytohormones regulating reproductive development. We used two recessive rice Tos17 alleles of OsJAR1, osjar1-2 and osjar1-3, to study the biological function of jasmonates in rice anthesis. The florets of both osjar1 alleles stayed open during anthesis because the lodicules, which control flower opening in rice, were not withering on time. Furthermore, dehiscence of the anthers filled with viable pollen, was impaired, resulting in lower fertility. In situ hybridization and promoter GUS transgenic analysis confirmed OsJAR1 expression in these floral tissues. Flower opening induced by exogenous applied methyl jasmonate was impaired in osjar1 plants and was restored in a complementation experiment with transgenics expressing a wild type copy of OsJAR1 controlled by a rice actin promoter. Biochemical analysis showed that OsJAR1 encoded an enzyme conjugating jasmonic acid (JA) to at least Ile, Leu, Met, Phe, Trp and Val and both osjar1 alleles had substantial reduction in content of JA-Ile, JA-Leu and JA-Val in florets. We conclude that OsJAR1 is a JA-amino acid synthetase that is required for optimal flower opening and closing and anther dehiscence in rice.

  17. Sustained Induction of Collagen Synthesis by TGF-β Requires Regulated Intramembrane Proteolysis of CREB3L1

    PubMed Central

    Chen, Qiuyue; Lee, Ching-En; Denard, Bray; Ye, Jin

    2014-01-01

    CREB3L1 (cAMP response element binding protein 3-like 1), a transcription factor synthesized as a membrane-bound precursor and activated through Regulated Intramembrane Proteolysis (RIP), is essential for collagen production by osteoblasts during bone development. Here, we show that TGF-β (transforming growth factor-β), a cytokine known to stimulate production of collagen during wound healing and fibrotic diseases, induces proteolytic activation of CREB3L1 in human A549 cells. This activation results from inhibition of expression of TM4SF20 (transmembrane 4 L6 family member 20), which normally inhibits RIP of CREB3L1. Cleavage of CREB3L1 releases its NH2-terminal domain from membranes, allowing it to enter the nucleus where it binds to Smad4 to activate transcription of genes encoding proteins required for assembly of collagen-containing extracellular matrix. Our findings raise the possibility that inhibition of RIP of CREB3L1 could prevent excess deposition of collagen in certain fibrotic diseases. PMID:25310401

  18. Dynein-2 affects the regulation of ciliary length but is not required for ciliogenesis in Tetrahymena thermophila.

    PubMed

    Rajagopalan, Vidyalakshmi; Subramanian, Aswati; Wilkes, David E; Pennock, David G; Asai, David J

    2009-01-01

    Eukaryotic cilia and flagella are assembled and maintained by the bidirectional intraflagellar transport (IFT). Studies in alga, nematode, and mouse have shown that the heavy chain (Dyh2) and the light intermediate chain (D2LIC) of the cytoplasmic dynein-2 complex are essential for retrograde intraflagellar transport. In these organisms, disruption of either dynein-2 component results in short cilia/flagella with bulbous tips in which excess IFT particles have accumulated. In Tetrahymena, the expression of the DYH2 and D2LIC genes increases during reciliation, consistent with their roles in IFT. However, the targeted elimination of either DYH2 or D2LIC gene resulted in only a mild phenotype. Both knockout cell lines assembled motile cilia, but the cilia were of more variable lengths and less numerous than wild-type controls. Electron microscopy revealed normally shaped cilia with no swelling and no obvious accumulations of material in the distal ciliary tip. These results demonstrate that dynein-2 contributes to the regulation of ciliary length but is not required for ciliogenesis in Tetrahymena.

  19. The extracellular domain of Smoothened regulates ciliary localization and is required for high-level Hh signaling.

    PubMed

    Aanstad, Pia; Santos, Nicole; Corbit, Kevin C; Scherz, Paul J; Trinh, Le A; Salvenmoser, Willi; Huisken, Jan; Reiter, Jeremy F; Stainier, Didier Y R

    2009-06-23

    Members of the Hedgehog (Hh) family of secreted proteins function as morphogens to pattern developing tissues and control cell proliferation. The seven-transmembrane domain (7TM) protein Smoothened (Smo) is essential for the activation of all levels of Hh signaling. However, the mechanisms by which Smo differentially activates low- or high-level Hh signaling are not known. Here we show that a newly identified mutation in the extracellular domain (ECD) of zebrafish Smo attenuates Smo signaling. The Smo agonist purmorphamine induces the stabilization, ciliary translocation, and high-level signaling of wild-type Smo. In contrast, purmorphamine induces the stabilization but not the ciliary translocation or high-level signaling of the Smo ECD mutant protein. Surprisingly, a truncated form of Smo that lacks the cysteine-rich domain of the ECD localizes to the cilium but is unable to activate high-level Hh signaling. We also present evidence that cilia may be required for Hh signaling in early zebrafish embryos. These data indicate that the ECD, previously thought to be dispensable for vertebrate Smo function, both regulates Smo ciliary localization and is essential for high-level Hh signaling.

  20. HIF- and Non-HIF-Regulated Hypoxic Responses Require the Estrogen-Related Receptor in Drosophila melanogaster

    PubMed Central

    Li, Yan; Padmanabha, Divya; Gentile, Luciana B.; Dumur, Catherine I.; Beckstead, Robert B.; Baker, Keith D.

    2013-01-01

    Low-oxygen tolerance is supported by an adaptive response that includes a coordinate shift in metabolism and the activation of a transcriptional program that is driven by the hypoxia-inducible factor (HIF) pathway. The precise contribution of HIF-1a in the adaptive response, however, has not been determined. Here, we investigate how HIF influences hypoxic adaptation throughout Drosophila melanogaster development. We find that hypoxic-induced transcriptional changes are comprised of HIF-dependent and HIF-independent pathways that are distinct and separable. We show that normoxic set-points of carbohydrate metabolites are significantly altered in sima mutants and that these animals are unable to mobilize glycogen in hypoxia. Furthermore, we find that the estrogen-related receptor (dERR), which is a global regulator of aerobic glycolysis in larvae, is required for a competent hypoxic response. dERR binds to dHIFa and participates in the HIF-dependent transcriptional program in hypoxia. In addition, dERR acts in the absence of dHIFa in hypoxia and a significant portion of HIF-independent transcriptional responses can be attributed to dERR actions, including upregulation of glycolytic transcripts. These results indicate that competent hypoxic responses arise from complex interactions between HIF-dependent and -independent mechanisms, and that dERR plays a central role in both of these programs. PMID:23382692

  1. Distinct p21 requirements for regulating normal and self-reactive T cells through IFN-γ production.

    PubMed

    Daszkiewicz, Lidia; Vázquez-Mateo, Cristina; Rackov, Gorjana; Ballesteros-Tato, André; Weber, Kathrin; Madrigal-Avilés, Adrián; Di Pilato, Mauro; Fotedar, Arun; Fotedar, Rati; Flores, Juana M; Esteban, Mariano; Martínez-A, Carlos; Balomenos, Dimitrios

    2015-01-09

    Self/non-self discrimination characterizes immunity and allows responses against pathogens but not self-antigens. Understanding the principles that govern this process is essential for designing autoimmunity treatments. p21 is thought to attenuate autoreactivity by limiting T cell expansion. Here, we provide direct evidence for a p21 role in controlling autoimmune T cell autoreactivity without affecting normal T cell responses. We studied C57BL/6, C57BL/6/lpr and MRL/lpr mice overexpressing p21 in T cells, and showed reduced autoreactivity and lymphadenopathy in C57BL/6/lpr, and reduced mortality in MRL/lpr mice. p21 inhibited effector/memory CD4(+) CD8(+) and CD4(-)CD8(-) lpr T cell accumulation without altering defective lpr apoptosis. This was mediated by a previously non-described p21 function in limiting T cell overactivation and overproduction of IFN-γ, a key lupus cytokine. p21 did not affect normal T cell responses, revealing differential p21 requirements for autoreactive and normal T cell activity regulation. The underlying concept of these findings suggests potential treatments for lupus and autoimmune lymphoproliferative syndrome, without compromising normal immunity.

  2. Induction of interleukin-8 by Naegleria fowleri lysates requires activation of extracellular signal-regulated kinase in human astroglial cells.

    PubMed

    Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Sang-Hee; Kwon, Daeho; Shin, Ho-Joon

    2012-08-01

    Naegleria fowleri is a pathogenic free-living amoeba which causes primary amoebic meningoencephalitis in humans and experimental animals. To investigate the mechanisms of such inflammatory diseases, potential chemokine gene activation in human astroglial cells was investigated following treatment with N. fowleri lysates. We demonstrated that N. fowleri are potent inducers for the expression of interleukin-8 (IL-8) genes in human astroglial cells which was preceded by activation of extracellular signal-regulated kinase (ERK). In addition, N. fowleri lysates induces the DNA binding activity of activator protein-1 (AP-1), an important transcription factor for IL-8 induction. The specific mitogen-activated protein kinase kinase/ERK inhibitor, U0126, blocks N. fowleri-mediated AP-1 activation and subsequent IL-8 induction. N. fowleri-induced IL-8 expression requires activation of ERK in human astroglial cells. These findings indicate that treatment of N. fowleri on human astroglial cells leads to the activation of AP-1 and subsequent expression of IL-8 which are dependent on ERK activation. These results may help understand the N. fowleri-mediated upregulation of chemokine and cytokine expression in the astroglial cells.

  3. SUMO modification is required for in vivo Hox gene regulation by the Caenorhabditis elegans Polycomb group protein SOP-2.

    PubMed

    Zhang, Hong; Smolen, Gromoslaw A; Palmer, Rachel; Christoforou, Andrea; van den Heuvel, Sander; Haber, Daniel A

    2004-05-01

    Post-translational modification of proteins by the ubiquitin-like molecule SUMO (sumoylation) regulates their subcellular localization and affects their functional properties in vitro, but the physiological function of sumoylation in multicellular organisms is largely unknown. Here, we show that the C. elegans Polycomb group (PcG) protein SOP-2 interacts with the SUMO-conjugating enzyme UBC-9 through its evolutionarily conserved SAM domain. Sumoylation of SOP-2 is required for its localization to nuclear bodies in vivo and for its physiological repression of Hox genes. Global disruption of sumoylation phenocopies a sop-2 mutation by causing ectopic Hox gene expression and homeotic transformations. Chimeric constructs in which the SOP-2 SAM domain is replaced with that derived from fruit fly or mammalian PcG proteins, but not those in which the SOP-2 SAM domain is replaced with the SAM domains of non-PcG proteins, confer appropriate in vivo nuclear localization and Hox gene repression. These observations indicate that sumoylation of PcG proteins, modulated by their evolutionarily conserved SAM domain, is essential to their physiological repression of Hox genes.

  4. The Second Subunit of DNA Polymerase Delta Is Required for Genomic Stability and Epigenetic Regulation1[OPEN

    PubMed Central

    Cheng, Jinkui; Lai, Jinsheng; Gong, Zhizhong

    2016-01-01

    DNA polymerase δ plays crucial roles in DNA repair and replication as well as maintaining genomic stability. However, the function of POLD2, the second small subunit of DNA polymerase δ, has not been characterized yet in Arabidopsis (Arabidopsis thaliana). During a genetic screen for release of transcriptional gene silencing, we identified a mutation in POLD2. Whole-genome bisulfite sequencing indicated that POLD2 is not involved in the regulation of DNA methylation. POLD2 genetically interacts with Ataxia Telangiectasia-mutated and Rad3-related and DNA polymerase α. The pold2-1 mutant exhibits genomic instability with a high frequency of homologous recombination. It also exhibits hypersensitivity to DNA-damaging reagents and short telomere length. Whole-genome chromatin immunoprecipitation sequencing and RNA sequencing analyses suggest that pold2-1 changes H3K27me3 and H3K4me3 modifications, and these changes are correlated with the gene expression levels. Our study suggests that POLD2 is required for maintaining genome integrity and properly establishing the epigenetic markers during DNA replication to modulate gene expression. PMID:27208288

  5. Guide to NRC reporting and recordkeeping requirements. Compiled from requirements in Title 10 of the U.S. Code of Federal Regulations as codified on December 31, 1993; Revision 1

    SciTech Connect

    Collins, M.; Shelton, B.

    1994-07-01

    This compilation includes in the first two sections the reporting and recordkeeping requirements applicable to US Nuclear Regulatory Commission (NRC) licensees and applicants and to members of the public. It includes those requirements codified in Title 10 of the code of Federal Regulations, Chapter 1, on December 31, 1993. It also includes, in a separate section, any of those requirements that were superseded or discontinued between January 1992 and December 1993. Finally, the appendix lists mailing and delivery addresses for NRC Headquarters and Regional Offices mentioned in the compilation. The Office of Information Resources Management staff compiled this listing of reporting and recordkeeping requirements to briefly describe each in a single document primarily to help licensees readily identify the requirements. The compilation is not a substitute for the regulations, and is not intended to impose any new requirements or technical positions. It is part of NRC`s continuing efforts to comply with the Paperwork Reduction Act of 1980 and the Office of Management and Budget regulations that mandate effective and efficient Federal information resources management programs.

  6. RCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling.

    PubMed

    Muday, Gloria K; Brady, Shari R; Argueso, Cristiana; Deruère, Jean; Kieber, Joseph J; DeLong, Alison

    2006-08-01

    The roots curl in naphthylphthalamic acid1 (rcn1) mutant of Arabidopsis (Arabidopsis thaliana) has altered auxin transport, gravitropism, and ethylene response, providing an opportunity to analyze the interplay between ethylene and auxin in control of seedling growth. Roots of rcn1 seedlings were previously shown to have altered auxin transport, growth, and gravitropism, while rcn1 hypocotyl elongation exhibited enhanced ethylene response. We have characterized auxin transport and gravitropism phenotypes of rcn1 hypocotyls and have explored the roles of auxin and ethylene in controlling these phenotypes. As in roots, auxin transport is increased in etiolated rcn1 hypocotyls. Hypocotyl gravity response is accelerated, although overall elongation is reduced, in etiolated rcn1 hypocotyls. Etiolated, but not light grown, rcn1 seedlings also overproduce ethylene, and mutations conferring ethylene insensitivity restore normal hypocotyl elongation to rcn1. Auxin transport is unaffected by treatment with the ethylene precursor 1-aminocyclopropane carboxylic acid in etiolated hypocotyls of wild-type and rcn1 seedlings. Surprisingly, the ethylene insensitive2-1 (ein2-1) and ein2-5 mutations dramatically reduce gravitropic bending in hypocotyls. However, the ethylene resistant1-3 (etr1-3) mutation does not significantly affect hypocotyl gravity response. Furthermore, neither the etr1 nor the ein2 mutation abrogates the accelerated gravitropism observed in rcn1 hypocotyls, indicating that both wild-type gravity response and enhanced gravity response in rcn1 do not require an intact ethylene-signaling pathway. We therefore conclude that the RCN1 protein affects overall hypocotyl elongation via negative regulation of ethylene synthesis in etiolated seedlings, and that RCN1 and EIN2 modulate hypocotyl gravitropism and ethylene responses through independent pathways.

  7. FOXF1 Transcription Factor Is Required for Formation of Embryonic Vasculature by Regulating VEGF Signaling in Endothelial Cells

    PubMed Central

    Ren, Xiaomeng; Ustiyan, Vladimir; Pradhan, Arun; Cai, Yuqi; Havrilak, Jamie A.; Bolte, Craig S.; Shannon, John M.; Kalin, Tanya V.; Kalinichenko, Vladimir V.

    2016-01-01

    Rationale Inactivating mutations in the FOXF1 gene locus are frequently found in patients with Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins (ACD/MPV), a lethal congenital disorder, which is characterized by severe abnormalities in the respiratory, cardio-vascular and gastro-intestinal systems. In mice, haploinsufficiency of the Foxf1 gene causes alveolar capillary dysplasia and developmental defects in lung, intestinal and gall bladder morphogenesis. Objective While FOXF1 is expressed in multiple mesenchyme-derived cell types, cellular origins and molecular mechanisms of developmental abnormalities in FOXF1-deficient mice and ACD/MPV patients remain uncharacterized due to lack of mouse models with cell-restricted inactivation of the Foxf1 gene. In the present study, the role of FOXF1 in endothelial cells was examined using a conditional knockout approach. Methods and Results A novel mouse line harboring Foxf1-floxed alleles was generated by homologous recombination. Tie2-Cre and Pdgfb-CreER transgenes were used to delete Foxf1 from endothelial cells. FOXF1-deficient embryos exhibited embryonic lethality, growth retardation, polyhydramnios, cardiac ventricular hypoplasia and vascular abnormalities in the lung, placenta, yolk sac and retina. Deletion of FOXF1 from endothelial cells reduced endothelial proliferation, increased apoptosis, inhibited VEGF signaling and decreased expression of endothelial genes critical for vascular development, including VEGF receptors Flt1 and Flk1, Pdgfb, Pecam1, CD34, integrin β3, ephrin B2, Tie2 and the non-coding RNA Fendrr. ChIP assay demonstrated that Flt1, Flk1, Pdgfb, Pecam1 and Tie2 genes are direct transcriptional targets of FOXF1. Conclusions FOXF1 is required for formation of embryonic vasculature by regulating endothelial genes critical for vascular development and VEGF signaling. PMID:25091710

  8. Fur negatively regulates hns and is required for the expression of HilA and virulence in Salmonella enterica serovar Typhimurium.

    PubMed

    Troxell, Bryan; Sikes, Michael L; Fink, Ryan C; Vazquez-Torres, Andres; Jones-Carson, Jessica; Hassan, Hosni M

    2011-01-01

    Iron is an essential element for the survival of living cells. However, excess iron is toxic, and its uptake is exquisitely regulated by the ferric uptake regulator, Fur. In Salmonella, the Salmonella pathogenicity island 1 (SPI-1) encodes a type three secretion system, which is required for invasion of host epithelial cells in the small intestine. A major activator of SPI-1 is HilA, which is encoded within SPI-1. One known regulator of hilA is Fur. The mechanism of hilA regulation by Fur is unknown. We report here that Fur is required for virulence in Salmonella enterica serovar Typhimurium and that Fur is required for the activation of hilA, as well as of other HilA-dependent genes, invF and sipC. The Fur-dependent regulation of hilA was independent of PhoP, a known repressor of hilA. Instead, the expression of the gene coding for the histone-like protein, hns, was significantly derepressed in the fur mutant. Indeed, the activation of hilA by Fur was dependent on 28 nucleotides located upstream of hns. Moreover, we used chromatin immunoprecipitation to show that Fur bound, in vivo, to the upstream region of hns in a metal-dependent fashion. Finally, deletion of fur in an hns mutant resulted in Fur-independent activation of hilA. In conclusion, Fur activates hilA by repressing the expression of hns.

  9. The chemotaxis regulator pilG of Xylella fastidiosa is required for virulence in Vitis vinifera grapevines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xylella fastidiosa is a Gram-negative, xylem-limited pathogenic bacterium that causes Pierce’s disease of grapevines. Type IV pili of X. fastidiosa are regulated by pilG, a chemotaxis regulator in Pil-Chp operon involving signal transduction pathways. To elucidate the role of pilG in twitching motil...

  10. Fusarium verticillioides SGE1 is required for full virulence and regulates expression of protein effector and secondary metabolite biosynthetic genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transition from one lifestyle to another in some fungi is initiated by a single orthologous gene, SGE1, that regulates markedly different genes in different fungi. Despite these differences, many of the regulated genes encode effector proteins or proteins involved in the synthesis of secondary m...

  11. Regulation of cell reversal frequency in Myxococcus xanthus requires the balanced activity of CheY-like domains in FrzE and FrzZ.

    PubMed

    Kaimer, Christine; Zusman, David R

    2016-04-01

    The Frz pathway of Myxococcus xanthus controls cell reversal frequency to support directional motility during swarming and fruiting body formation. Previously, we showed that phosphorylation of the response regulator FrzZ correlates with reversal frequencies, suggesting that this activity represents the output of the Frz pathway. Here, we tested the effect of different expression levels of FrzZ and its cognate kinase FrzE on M. xanthus motility. FrzZ overexpression caused a slight increase in phosphorylation and reversals. By contrast, FrzE overexpression abolished phosphorylation of FrzZ; this inhibition required the response regulator domain of FrzE. FrzZ phosphorylation was restored when both FrzE and FrzZ were overexpressed together. Our results show that the response regulator domain of FrzE is a negative regulator of FrzE kinase activity. This inhibition can be modulated by FrzZ, which acts as a positive regulator. Interestingly, fluorescence microscopy revealed that FrzZ and FrzE localize differently: FrzE colocalizes with the FrzCD receptor and the nucleoid, while FrzZ shows dispersed and polar localization. However, FrzZ binds tightly to the truncated variant FrzEΔ(CheY) . This indicates that the response regulator domain of FrzE is required for the interaction between FrzE and FrzZ to be transient, providing an unexpected regulatory output to the Frz pathway.

  12. Conforming STOP Violence Against Women Formula Grant Program Regulations to Statutory Change; Definitions and Confidentiality Requirements Applicable to All OVW Grant Programs. Final rule.

    PubMed

    2016-11-29

    This rule amends the regulations for the STOP (ServicesTrainingOfficersProsecutors) Violence Against Women Formula Grant Program (STOP Program) and the general provisions governing Office on Violence Against Women (OVW) programs to comply with statutory changes and reduce repetition of statutory language. Also, this rule implements statutory requirements for nondisclosure of confidential or private information relating to all OVW grant programs.

  13. The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa.

    PubMed Central

    Whitchurch, C B; Alm, R A; Mattick, J S

    1996-01-01

    Mucoid strains of Pseudomonas aeruginosa isolated from the lungs of cystic fibrosis patients produce large amounts of the exopolysaccharide alginate. AlgR has long been considered a key regulator of alginate production, but its cognate sensor has not been identified. Here we show that AlgR is required for twitching motility, which is a form of bacterial surface translocation mediated by type 4 fimbriae. Adjacent to algR we have identified a sensor gene (fimS), which is also required for twitching motility. However, FimS does not appear to be required for alginate production in mucoid strains. FimS and AlgR are representative of a new subclass of two-component transmitter-receiver regulatory systems. The alternative sigma factor AlgU also affects both alginate production and twitching motility. Therefore, these two virulence determinants appear to be closely associated and coordinately regulated. Images Fig. 1 Fig. 2 Fig. 3 PMID:8790418

  14. Balancing spatially regulated β-actin translation and dynamin-mediated endocytosis is required to assemble functional epithelial monolayers.

    PubMed

    Cruz, Lissette A; Vedula, Pavan; Gutierrez, Natasha; Shah, Neel; Rodriguez, Steven; Ayee, Brian; Davis, Justin; Rodriguez, Alexis J

    2015-12-01

    Regulating adherens junction complex assembly/disassembly is critical to maintaining epithelial homeostasis in healthy epithelial tissues. Consequently, adherens junction structure and function is often perturbed in clinically advanced tumors of epithelial origin. Some of the most studied factors driving adherens junction complex perturbation in epithelial cancers are transcriptional and epigenetic down-regulation of E-cadherin expression. However, numerous reports demonstrate that post-translational regulatory mechanisms such as endocytosis also regulate early phases of epithelial-mesenchymal transition and metastatic progression. In already assembled healthy epithelia, E-cadherin endocytosis recycles cadherin-catenin complexes to regulate the number of mature adherens junctions found at cell-cell contact sites. However, following de novo epithelial cell-cell contact, endocytosis negatively regulates adherens junction assembly by removing E-cadherin from the cell surface. By contrast, following de novo epithelial cell-cell contact, spatially localized β-actin translation drives cytoskeletal remodeling and consequently E-cadherin clustering at cell-cell contact sites and therefore positively regulates adherens junction assembly. In this report we demonstrate that dynamin-mediated endocytosis and β-actin translation-dependent cadherin-catenin complex anchoring oppose each other following epithelial cell-cell contact. Consequently, the final extent of adherens junction assembly depends on which of these processes is dominant following epithelial cell-cell contact. We expressed β-actin transcripts impaired in their ability to properly localize monomer synthesis (Δ3'UTR) in MDCK cells to perturb actin filament remodeling and anchoring, and demonstrate the resulting defect in adherens junction structure and function is rescued by inhibiting dynamin mediated endocytosis. Therefore, we demonstrate balancing spatially regulated β-actin translation and dynamin

  15. Balancing spatially regulated β-actin translation and dynamin mediated endocytosis is required to assemble functional epithelial monolayers

    PubMed Central

    Cruz, Lissette A.; Vedula, Pavan; Gutierrez, Natasha; Shah, Neel; Rodriguez, Steven; Ayee, Brian; Davis, Justin; Rodriguez, Alexis J.

    2015-01-01

    Regulating adherens junction complex assembly/disassembly is critical to maintaining epithelial homeostasis in healthy epithelial tissues. Consequently, adherens junction structure and function is often perturbed in clinically advanced tumors of epithelial origin. Some of the most studied factors driving adherens junction complex perturbation in epithelial cancers are transcriptional and epigenetic down-regulation of E-cadherin expression. However, numerous reports demonstrate that post-translational regulatory mechanisms such as endocytosis also regulate early phases of epithelial-mesenchymal transition and metastatic progression. In already assembled healthy epithelia, E-cadherin endocytosis recycles cadherin-catenin complexes to regulate the number of mature adherens junctions found at cell-cell contact sites. However, following de novo epithelial cell-cell contact, endocytosis negatively regulates adherens junction assembly by removing E-cadherin from the cell surface. By contrast, following de novo epithelial cell-cell contact, spatially localized β-actin translation drives cytoskeletal remodeling and consequently E-cadherin clustering at cell-cell contact sites and therefore positively regulates adherens junction assembly. In this report we demonstrate that dynamin-mediated endocytosis and β-actin translation dependent cadherin-catenin complex anchoring oppose each other following epithelial cell-cell contact. Consequently, the final extent of adherens junction assembly depends on which of these processes is dominant following epithelial cell-cell contact. We expressed β-actin transcripts impaired in their ability to properly localize monomer synthesis (Δ3′UTR) in MDCK cells to perturb actin filament remodeling and anchoring and demonstrate the resulting defect in adherens junction structure and function is rescued by inhibiting dynamin mediated endocytosis. Therefore, we demonstrate balancing spatially regulated β-actin translation and dynamin

  16. Requirements for Defining Utility Drive Cycles: An Exploratory Analysis of Grid Frequency Regulation Data for Establishing Battery Performance Testing Standards

    SciTech Connect

    Hafen, Ryan P.; Vishwanathan, Vilanyur V.; Subbarao, Krishnappa; Kintner-Meyer, Michael CW

    2011-10-19

    Battery testing procedures are important for understanding battery performance, including degradation over the life of the battery. Standards are important to provide clear rules and uniformity to an industry. The work described in this report addresses the need for standard battery testing procedures that reflect real-world applications of energy storage systems to provide regulation services to grid operators. This work was motivated by the need to develop Vehicle-to-Grid (V2G) testing procedures, or V2G drive cycles. Likewise, the stationary energy storage community is equally interested in standardized testing protocols that reflect real-world grid applications for providing regulation services. As the first of several steps toward standardizing battery testing cycles, this work focused on a statistical analysis of frequency regulation signals from the Pennsylvania-New Jersey-Maryland Interconnect with the goal to identify patterns in the regulation signal that would be representative of the entire signal as a typical regulation data set. Results from an extensive time-series analysis are discussed, and the results are explained from both the statistical and the battery-testing perspectives. The results then are interpreted in the context of defining a small set of V2G drive cycles for standardization, offering some recommendations for the next steps toward standardizing testing protocols.

  17. A PmrB-Regulated Deacetylase Required for Lipid A Modification and Polymyxin Resistance in Acinetobacter baumannii.

    PubMed

    Chin, Chui-Yoke; Gregg, Kelsey A; Napier, Brooke A; Ernst, Robert K; Weiss, David S

    2015-12-01

    Emerging resistance to "last-resort" polymyxin antibiotics in Gram-negative bacteria is a significant threat to public health. We identified the Acinetobacter baumannii NaxD deacetylase as a critical mediator of lipid A modification resulting in polymyxin resistance and demonstrated that naxD is regulated by the sensor kinase PmrB. This represents the first description of a specific PmrB-regulated gene contributing to polymyxin resistance in A. baumannii and highlights NaxD as a putative drug target to reverse polymyxin resistance.

  18. A PmrB-Regulated Deacetylase Required for Lipid A Modification and Polymyxin Resistance in Acinetobacter baumannii

    PubMed Central

    Chin, Chui-Yoke; Gregg, Kelsey A.; Napier, Brooke A.; Ernst, Robert K.

    2015-01-01

    Emerging resistance to “last-resort” polymyxin antibiotics in Gram-negative bacteria is a significant threat to public health. We identified the Acinetobacter baumannii NaxD deacetylase as a critical mediator of lipid A modification resulting in polymyxin resistance and demonstrated that naxD is regulated by the sensor kinase PmrB. This represents the first description of a specific PmrB-regulated gene contributing to polymyxin resistance in A. baumannii and highlights NaxD as a putative drug target to reverse polymyxin resistance. PMID:26459891

  19. p73 is required for endothelial cell differentiation, migration and the formation of vascular networks regulating VEGF and TGFβ signaling

    PubMed Central

    Fernandez-Alonso, R; Martin-Lopez, M; Gonzalez-Cano, L; Garcia, S; Castrillo, F; Diez-Prieto, I; Fernandez-Corona, A; Lorenzo-Marcos, M E; Li, X; Claesson-Welsh, L; Marques, M M; Marin, M C

    2015-01-01

    Vasculogenesis, the establishment of the vascular plexus and angiogenesis, branching of new vessels from the preexisting vasculature, involves coordinated endothelial differentiation, proliferation and migration. Disturbances in these coordinated processes may accompany diseases such as cancer. We hypothesized that the p53 family member p73, which regulates cell differentiation in several contexts, may be important in vascular development. We demonstrate that p73 deficiency perturbed vascular development in the mouse retina, decreasing vascular branching, density and stability. Furthermore, p73 deficiency could affect non endothelial cells (ECs) resulting in reduced in vivo proangiogenic milieu. Moreover, p73 functional inhibition, as well as p73 deficiency, hindered vessel sprouting, tubulogenesis and the assembly of vascular structures in mouse embryonic stem cell and induced pluripotent stem cell cultures. Therefore, p73 is necessary for EC biology and vasculogenesis and, in particular, that DNp73 regulates EC migration and tube formation capacity by regulation of expression of pro-angiogenic factors such as transforming growth factor-β and vascular endothelial growth factors. DNp73 expression is upregulated in the tumor environment, resulting in enhanced angiogenic potential of B16-F10 melanoma cells. Our results demonstrate, by the first time, that differential p73-isoform regulation is necessary for physiological vasculogenesis and angiogenesis and DNp73 overexpression becomes a positive advantage for tumor progression due to its pro-angiogenic capacity. PMID:25571973

  20. p73 is required for endothelial cell differentiation, migration and the formation of vascular networks regulating VEGF and TGFβ signaling.

    PubMed

    Fernandez-Alonso, R; Martin-Lopez, M; Gonzalez-Cano, L; Garcia, S; Castrillo, F; Diez-Prieto, I; Fernandez-Corona, A; Lorenzo-Marcos, M E; Li, X; Claesson-Welsh, L; Marques, M M; Marin, M C

    2015-08-01

    Vasculogenesis, the establishment of the vascular plexus and angiogenesis, branching of new vessels from the preexisting vasculature, involves coordinated endothelial differentiation, proliferation and migration. Disturbances in these coordinated processes may accompany diseases such as cancer. We hypothesized that the p53 family member p73, which regulates cell differentiation in several contexts, may be important in vascular development. We demonstrate that p73 deficiency perturbed vascular development in the mouse retina, decreasing vascular branching, density and stability. Furthermore, p73 deficiency could affect non endothelial cells (ECs) resulting in reduced in vivo proangiogenic milieu. Moreover, p73 functional inhibition, as well as p73 deficiency, hindered vessel sprouting, tubulogenesis and the assembly of vascular structures in mouse embryonic stem cell and induced pluripotent stem cell cultures. Therefore, p73 is necessary for EC biology and vasculogenesis and, in particular, that DNp73 regulates EC migration and tube formation capacity by regulation of expression of pro-angiogenic factors such as transforming growth factor-β and vascular endothelial growth factors. DNp73 expression is upregulated in the tumor environment, resulting in enhanced angiogenic potential of B16-F10 melanoma cells. Our results demonstrate, by the first time, that differential p73-isoform regulation is necessary for physiological vasculogenesis and angiogenesis and DNp73 overexpression becomes a positive advantage for tumor progression due to its pro-angiogenic capacity.

  1. 77 FR 33638 - Amendment to the Bank Secrecy Act Regulations-Exemption From the Requirement To Report...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-07

    ... payroll customer, before utilizing that specific exemption.\\23\\ \\22\\ Simplifying the CTR exemption process... amend the regulations that allow depository institutions to exempt transactions of certain payroll... payroll customers. This modification of the exemption procedures is a part of the Department of...

  2. Regulation of the L-type calcium channel by alpha 5beta 1 integrin requires signaling between focal adhesion proteins.

    PubMed

    Wu, X; Davis, G E; Meininger, G A; Wilson, E; Davis, M J

    2001-08-10

    The L-type calcium channel is the major calcium influx pathway in vascular smooth muscle and is regulated by integrin ligands, suggesting an important link between extracellular matrix and vascular tone regulation in tissue injury and remodeling. We examined the role of integrin-linked tyrosine kinases and focal adhesion proteins in regulation of L-type calcium current in single vascular myocytes. Soluble tyrosine kinase inhibitors blocked the increase in current produced by alpha(5) integrin antibody or fibronectin, whereas tyrosine phosphatase inhibition enhanced the effect. Cell dialysis with an antibody to focal adhesion kinase or with FRNK, the C-terminal noncatalytic domain of focal adhesion kinase, produced moderate (24 or 18%, respectively) inhibition of basal current but much greater inhibition (63 or 68%, respectively) of integrin-enhanced current. A c-Src antibody and peptide inhibitors of the Src homology-2 domain or a putative Src tyrosine phosphorylation site on the channel produced similar inhibition. Antibodies to the cytoskeletal proteins paxillin and vinculin, but not alpha-actinin, inhibited integrin-dependent current by 65-80%. Therefore, alpha(5)beta(1) integrin appears to regulate a tyrosine phosphorylation cascade involving Src and various focal adhesion proteins that control the function of the L-type calcium channel. This interaction may represent a novel mechanism for control of calcium influx in vascular smooth muscle and other cell types.

  3. Myosin IIb-dependent Regulation of Actin Dynamics Is Required for N-Methyl-D-aspartate Receptor Trafficking during Synaptic Plasticity.

    PubMed

    Bu, Yunfei; Wang, Ning; Wang, Shaoli; Sheng, Tao; Tian, Tian; Chen, Linlin; Pan, Weiwei; Zhu, Minsheng; Luo, Jianhong; Lu, Wei

    2015-10-16

    N-Methyl-d-aspartate receptor (NMDAR) synaptic incorporation changes the number of NMDARs at synapses and is thus critical to various NMDAR-dependent brain functions. To date, the molecules involved in NMDAR trafficking and the underlying mechanisms are poorly understood. Here, we report that myosin IIb is an essential molecule in NMDAR synaptic incorporation during PKC- or θ burst stimulation-induced synaptic plasticity. Moreover, we demonstrate that myosin light chain kinase (MLCK)-dependent actin reorganization contributes to NMDAR trafficking. The findings from additional mutual occlusion experiments demonstrate that PKC and MLCK share a common signaling pathway in NMDAR-mediated synaptic regulation. Because myosin IIb is the primary substrate of MLCK and can regulate actin dynamics during synaptic plasticity, we propose that the MLCK- and myosin IIb-dependent regulation of actin dynamics is required for NMDAR trafficking during synaptic plasticity. This study provides important insights into a mechanical framework for understanding NMDAR trafficking associated with synaptic plasticity.

  4. Communication between binding sites is required for YqjI regulation of target promoters within the yqjH-yqjI intergenic region.

    PubMed

    Wang, Suning; Blahut, Matthew; Wu, Yun; Philipkosky, Katherine E; Outten, F Wayne

    2014-09-01

    The nickel-responsive transcription factor YqjI represses its own transcription and transcription of the divergent yqjH gene, which encodes a novel ferric siderophore reductase. The intergenic region between the two promoters is complex, with multiple sequence features that may impact YqjI-dependent regulation of its two target promoters. We utilized mutagenesis and DNase I footprinting to characterize YqjI regulation of the yqjH-yqjI intergenic region. The results show that YqjI binding results in an extended footprint at the yqjI promoter (site II) compared to the yqjH promoter (site I). Mutagenesis of in vivo gene reporter constructs revealed that the two YqjI binding sites, while separated by nearly 200 bp, appear to communicate in order to provide full YqjI-dependent regulation at the two target promoters. Thus, YqjI binding at both promoters is required for full repression of either promoter, suggesting that the two YqjI binding sites cooperate to control transcription from the divergent promoters. Furthermore, internal deletions that shorten the total length of the intergenic region disrupt the ability of YqjI to regulate the yqjH promoter. Finally, mutagenesis of the repetitive extragenic palindromic (REP) elements within the yqjH-yqjI intergenic region shows that these sequences are not required for YqjI regulation. These studies provide a complex picture of novel YqjI transcriptional regulation within the yqjH-yqjI intergenic region and suggest a possible model for communication between the YqjI binding sites at each target promoter.

  5. The KLP-7 Residue S546 Is a Putative Aurora Kinase Site Required for Microtubule Regulation at the Centrosome in C. elegans.

    PubMed

    Han, Xue; Adames, Kelly; Sykes, Ellen M E; Srayko, Martin

    2015-01-01

    Regulation of microtubule dynamics is essential for many cellular processes, including proper assembly and function of the mitotic spindle. The kinesin-13 microtubule-depolymerizing enzymes provide one mechanism to regulate microtubule behaviour temporally and spatially. Vertebrate MCAK locates to chromatin, kinetochores, spindle poles, microtubule tips, and the cytoplasm, implying that the regulation of kinesin-13 activity and subcellular targeting is complex. Phosphorylation of kinesin-13 by Aurora kinase inhibits microtubule depolymerization activity and some Aurora phosphorylation sites on kinesin-13 are required for subcellular localization. Herein, we determine that a C. elegans deletion mutant klp-7(tm2143) causes meiotic and mitotic defects that are consistent with an increase in the amount of microtubules in the cytoplasmic and spindle regions of meiotic embryos, and an increase in microtubules emanating from centrosomes. We show that KLP-7 is phosphorylated by Aurora A and Aurora B kinases in vitro, and that the phosphorylation by Aurora A is stimulated by TPXL-1. Using a structure-function approach, we establish that one putative Aurora kinase site, S546, within the C-terminal part of the core domain is required for the function, but not subcellular localization, of KLP-7 in vivo. Furthermore, FRAP analysis reveals microtubule-dependent differences in the turnover of KLP-7(S546A) and KLP-7(S546E) mutant proteins at the centrosome, suggesting a possible mechanism for the regulation of KLP-7 by Aurora kinase.

  6. Distinct requirements of wls, wnt9a, wnt5b and gpc4 in regulating chondrocyte maturation and timing of endochondral ossification

    PubMed Central

    Ling, Irving TC; Rochard, Lucie; Liao, Eric C.

    2017-01-01

    Formation of the mandible requires progressive morphologic change, proliferation, differentiation and organization of chondrocytes preceding osteogenesis. The Wnt signaling pathway is involved in regulating bone development and maintenance. Chondrocytes that are fated to become bone require Wnt to polarize and orientate appropriately to initiate the endochondral ossification program. Although the canonical Wnt signaling has been well studied in the context of bone development, the effects of non-canonical Wnt signaling in regulating the timing of cartilage maturation and subsequent bone formation in shaping ventral craniofacial structure is not fully understood.. Here we examined the role of the non-canonical Wnt signaling pathway (wls, gpc4, wnt5b and wnt9a) in regulating zebrafish Meckel’s cartilage maturation to the onset of osteogenic differentiation. We found that disruption of wls resulted in a significant loss of craniofacial bone, whereas lack of gpc4, wnt5b and wnt9a resulted in severely delayed endochondral ossification. This study demonstrates the importance of the non-canonical Wnt pathway in regulating coordinated ventral cartilage morphogenesis and ossification. PMID:27908786

  7. The Stringent Response Regulator DksA Is Required for Salmonella enterica Serovar Typhimurium Growth in Minimal Medium, Motility, Biofilm Formation, and Intestinal Colonization

    PubMed Central

    Azriel, Shalhevet; Goren, Alina; Rahav, Galia

    2015-01-01

    Salmonella enterica serovar Typhimurium is a facultative intracellular human and animal bacterial pathogen posing a major threat to public health worldwide. Salmonella pathogenicity requires complex coordination of multiple physiological and virulence pathways. DksA is a conserved Gram-negative regulator that belongs to a distinct group of transcription factors that bind directly to the RNA polymerase secondary channel, potentiating the effect of the signaling molecule ppGpp during a stringent response. Here, we established that in S. Typhimurium, dksA is induced during the logarithmic phase and DksA is essential for growth in minimal defined medium and plays an important role in motility and biofilm formation. Furthermore, we determined that DksA positively regulates the Salmonella pathogenicity island 1 and motility-chemotaxis genes and is necessary for S. Typhimurium invasion of human epithelial cells and uptake by macrophages. In contrast, DksA was found to be dispensable for S. Typhimurium host cell adhesion. Finally, using the colitis mouse model, we found that dksA is spatially induced at the midcecum during the early stage of the infection and required for gastrointestinal colonization and systemic infection in vivo. Taken together, these data indicate that the ancestral stringent response regulator DksA coordinates various physiological and virulence S. Typhimurium programs and therefore is a key virulence regulator of Salmonella. PMID:26553464

  8. The KLP-7 Residue S546 Is a Putative Aurora Kinase Site Required for Microtubule Regulation at the Centrosome in C. elegans

    PubMed Central

    Han, Xue; Adames, Kelly; Sykes, Ellen M. E.; Srayko, Martin

    2015-01-01

    Regulation of microtubule dynamics is essential for many cellular processes, including proper assembly and function of the mitotic spindle. The kinesin-13 microtubule-depolymerizing enzymes provide one mechanism to regulate microtubule behaviour temporally and spatially. Vertebrate MCAK locates to chromatin, kinetochores, spindle poles, microtubule tips, and the cytoplasm, implying that the regulation of kinesin-13 activity and subcellular targeting is complex. Phosphorylation of kinesin-13 by Aurora kinase inhibits microtubule depolymerization activity and some Aurora phosphorylation sites on kinesin-13 are required for subcellular localization. Herein, we determine that a C. elegans deletion mutant klp-7(tm2143) causes meiotic and mitotic defects that are consistent with an increase in the amount of microtubules in the cytoplasmic and spindle regions of meiotic embryos, and an increase in microtubules emanating from centrosomes. We show that KLP-7 is phosphorylated by Aurora A and Aurora B kinases in vitro, and that the phosphorylation by Aurora A is stimulated by TPXL-1. Using a structure-function approach, we establish that one putative Aurora kinase site, S546, within the C-terminal part of the core domain is required for the function, but not subcellular localization, of KLP-7 in vivo. Furthermore, FRAP analysis reveals microtubule-dependent differences in the turnover of KLP-7(S546A) and KLP-7(S546E) mutant proteins at the centrosome, suggesting a possible mechanism for the regulation of KLP-7 by Aurora kinase. PMID:26168236

  9. Pak4 Is Required during Epithelial Polarity Remodeling through Regulating AJ Stability and Bazooka Retention at the ZA

    PubMed Central

    Walther, Rhian F.; Nunes de Almeida, Francisca; Vlassaks, Evi; Burden, Jemima J.; Pichaud, Franck

    2016-01-01

    Summary The ability of epithelial cells to assemble into sheets relies on their zonula adherens (ZA), a circumferential belt of adherens junction (AJ) material, which can be remodeled during development to shape organs. Here, we show that during ZA remodeling in a model neuroepithelial cell, the Cdc42 effector P21-activated kinase 4 (Pak4/Mbt) regulates AJ morphogenesis and stability through β-catenin (β-cat/Arm) phosphorylation. We find that β-catenin phosphorylation by Mbt, and associated AJ morphogenesis, is needed for the retention of the apical determinant Par3/Bazooka at the remodeling ZA. Importantly, this retention mechanism functions together with Par1-dependent lateral exclusion of Par3/Bazooka to regulate apical membrane differentiation. Our results reveal an important functional link between Pak4, AJ material morphogenesis, and polarity remodeling during organogenesis downstream of Par3. PMID:27052178

  10. The Kinase Function of MSK1 Regulates BDNF Signaling to CREB and Basal Synaptic Transmission, But Is Not Required for Hippocampal Long-Term Potentiation or Spatial Memory

    PubMed Central

    Daumas, Stephanie; Hunter, Christopher J.; Mistry, Rajen B.; Cooper, Daniel D.; Reyskens, Kathleen M.; Flynn, Harry T.

    2017-01-01

    Abstract The later stages of long-term potentiation (LTP) in vitro and spatial memory in vivo are believed to depend upon gene transcription. Accordingly, considerable attempts have been made to identify both the mechanisms by which transcription is regulated and indeed the gene products themselves. Previous studies have shown that deletion of one regulator of transcription, the mitogen- and stress-activated kinase 1 (MSK1), causes an impairment of spatial memory. Given the ability of MSK1 to regulate gene expression via the phosphorylation of cAMP response element binding protein (CREB) at serine 133 (S133), MSK1 is a plausible candidate as a prime regulator of transcription underpinning synaptic plasticity and learning and memory. Indeed, prior work has revealed the necessity for MSK1 in homeostatic and experience-dependent synaptic plasticity. However, using a knock-in kinase-dead mouse mutant of MSK1, the current study demonstrates that, while the kinase function of MSK1 is important in regulating the phosphorylation of CREB at S133 and basal synaptic transmission in hippocampal area CA1, it is not required for metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD), two forms of LTP or several forms of spatial learning in the watermaze. These data indicate that other functions of MSK1, such as a structural role for the whole enzyme, may explain previous observations of a role for MSK1 in learning and memory. PMID:28275711

  11. Juvenile Hormone Differentially Regulates Two Grp78 Genes Encoding Protein Chaperones Required for Insect Fat Body Cell Homeostasis and Vitellogenesis.

    PubMed

    Luo, Maowu; Li, Dong; Wang, Zhiming; Guo, Wei; Kang, Le; Zhou, Shutang

    2017-03-29

    Juvenile hormone (JH) has a well-known role in stimulating insect vitellogenesis (i.e. yolk deposition) and oocyte maturation, but the molecular mechanisms of JH action in insect reproduction are unclear. Glucose-regulated protein of 78 kDa (Grp78) is a heat shock protein 70 kDa family member and one of the most abundant chaperones in the endoplasmic reticulum (ER) where it helps fold newly synthesized peptides. Because of its prominent role in protein folding and also ER stress, we hypothesized that Grp78 might be involved in fat body cell homeostasis and vitellogenesis and a regulatory target of JH. We report here that the migratory locust Locusta migratoria possesses two Grp78 genes that are differentially regulated by JH. We found that Grp78-1 is regulated by JH through Mcm4/7-dependent DNA replication and polyploidization, whereas Grp78-2 expression is directly activated by the JH-receptor complex comprising Methoprene-tolerant and Taiman proteins. Interestingly, Grp78-2 expression in the fat body is about 10-fold higher than that of Grp78-1 Knockdown of either Grp78-1 or Grp78-2 significantly reduced levels of vitellogenin (Vg) protein, accompanied by retarded maturation of oocytes. Depletion of both Grp78-1 and Grp78-2 resulted in ER stress and apoptosis in the fat body and in severely defective Vg synthesis and oocyte maturation. These results indicate a crucial role of Grp78 in JH-dependent vitellogenesis and egg production. The presence and differential regulation of two Grp78 genes in L. migratoria likely help accelerate the production of this chaperone in the fat body to facilitate folding of massively synthesized Vg and other proteins.

  12. Regulated expression of mammalian histone H4 genes in vivo requires a trans-acting transcription factor.

    PubMed Central

    Capasso, O; Heintz, N

    1985-01-01

    Mouse L cells containing integrated copies of a human histone H4 gene have been obtained by cotransfection with the herpesvirus thymidine kinase gene. Nuclease S1 assays of RNA from several independent cell lines show that the expression of the introduced H4 gene is regulated during the cell cycle. One of these cell lines (line 6-8) contains more than 60 human H4 gene copies per haploid genome and does not express the endogenous mouse histone H4 mRNA. In contrast, the expression of the mouse H2a and H3 mRNAs in this cell line is not perturbed. In cell revertants that have lost the majority of the human H4 gene copies, the expression of the mouse H4 mRNA is restored, demonstrating that the mouse genes remain functional although not expressed. The rate of transcription of the histone H4 genes in clone 6-8 is at least 10-fold greater than that of the parental cell line and it is regulated during traversal of the cell cycle. These results show that the expression of mammalian histone H4 genes involves both a trans-acting transcriptional regulatory factor and an H4-specific activity. We propose that cell cycle regulation of histone gene expression may be effected through subtype-specific transcriptional regulatory proteins. Images PMID:3862085

  13. The yeast prion [SWI+] abolishes multicellular growth by triggering conformational changes of multiple regulators required for flocculin gene expression

    PubMed Central

    Du, Zhiqiang; Zhang, Ying; Li, Liming

    2016-01-01

    Summary While transcription factors are prevalent among yeast prion proteins, the role of prion-mediated transcriptional regulation remains elusive. We show here that the yeast prion [SWI+] abolishes flocculin (FLO) gene expression and results in a complete loss of multicellularity. Further investigation demonstrates that besides Swi1, multiple other proteins essential for FLO expression, including Mss11, Sap30, and Msn1 also undergo conformational changes, and become inactivated in [SWI+] cells. Moreover, the asparagine-rich region of Mss11 can exist as prion-like aggregates specifically in [SWI+] cells, which are SDS-resistant, heritable, and curable, but become metastable after separation from [SWI+]. Our findings thus reveal a prion-mediated mechanism through which multiple regulators in a biological pathway can be inactivated. In combination with the partial loss-of-function phenotypes of [SWI+] cells on non-glucose sugar utilization, our data therefore demonstrate that a prion can influence differently on distinct traits through multi-level regulations, providing insights into the biological roles of prions. PMID:26711350

  14. The INO80 Complex Requires the Arp5-Ies6 Subcomplex for Chromatin Remodeling and Metabolic Regulation

    PubMed Central

    Yao, Wei; King, Devin A.; Beckwith, Sean L.; Gowans, Graeme J.; Yen, Kuangyu; Zhou, Coral

    2016-01-01

    ATP-dependent chromatin remodeling complexes are essential for transcription regulation, and yet it is unclear how these multisubunit complexes coordinate their activities to facilitate diverse transcriptional responses. In this study, we found that the conserved Arp5 and Ies6 subunits of the Saccharomyces cerevisiae INO80 chromatin-remodeler form an abundant and distinct subcomplex in vivo and stimulate INO80-mediated activity in vitro. Moreover, our genomic studies reveal that the relative occupancy of Arp5-Ies6 correlates with nucleosome positioning at transcriptional start sites and expression levels of >1,000 INO80-regulated genes. Notably, these genes are significantly enriched in energy metabolism pathways. Specifically, arp5Δ, ies6Δ, and ino80Δ mutants demonstrate decreased expression of genes involved in glycolysis and increased expression of genes in the oxidative phosphorylation pathway. Deregulation of these metabolic pathways results in constitutively elevated mitochondrial potential and oxygen consumption. Our results illustrate the dynamic nature of the INO80 complex assembly and demonstrate for the first time that a chromatin remodeler regulates glycolytic and respiratory capacity, thereby maintaining metabolic stability. PMID:26755556

  15. Enabled (Xena) regulates neural plate morphogenesis, apical constriction, and cellular adhesion required for neural tube closure in Xenopus

    PubMed Central

    Roffers-Agarwal, Julaine; Xanthos, Jennifer B.; Kragtorp, Katherine A.; Miller, Jeffrey R.

    2008-01-01

    Regulation of cellular adhesion and cytoskeletal dynamics is essential for neurulation, though it remains unclear how these two processes are coordinated. Members of the Ena/VASP family of proteins are localized to sites of cellular adhesion and actin dynamics and lack of two family members, Mena and VASP, in mice results in failure of neural tube closure. The precise mechanism by which Ena/VASP proteins regulate this process, however, is not understood. In this report, we show that Xenopus Ena (Xena) is localized to apical adhesive junctions of neuroepithelial cells during neurulation and that Xena knockdown disrupts cell behaviors integral to neural tube closure. Changes in the shape of the neural plate as well as apical constriction within the neural plate are perturbed in Xena knockdown embryos. Additionally, we demonstrate that Xena is essential for cell-cell adhesion. These results demonstrate that Xena plays an integral role in coordinating the regulation of cytoskeletal dynamics and cellular adhesion during neurulation in Xenopus. PMID:18201691

  16. A Balance of Capping Protein and Profilin Functions Is Required to Regulate Actin Polymerization in Drosophila Bristle

    PubMed Central

    Hopmann, Roberta; Miller, Kathryn G.

    2003-01-01

    Profilin is a well-characterized protein known to be important for regulating actin filament assembly. Relatively few studies have addressed how profilin interacts with other actin-binding proteins in vivo to regulate assembly of complex actin structures. To investigate the function of profilin in the context of a differentiating cell, we have studied an instructive genetic interaction between mutations in profilin (chickadee) and capping protein (cpb). Capping protein is the principal protein in cells that caps actin filament barbed ends. When its function is reduced in the Drosophila bristle, F-actin levels increase and the actin cytoskeleton becomes disorganized, causing abnormal bristle morphology. chickadee mutations suppress the abnormal bristle phenotype and associated abnormalities of the actin cytoskeleton seen in cpb mutants. Furthermore, overexpression of profilin in the bristle mimics many features of the cpb loss-of-function phenotype. The interaction between cpb and chickadee suggests that profilin promotes actin assembly in the bristle and that a balance between capping protein and profilin activities is important for the proper regulation of F-actin levels. Furthermore, this balance of activities affects the association of actin structures with the membrane, suggesting a link between actin filament dynamics and localization of actin structures within the cell. PMID:12529431

  17. Suppressor of fusion, a Fusarium oxysporum homolog of Ndt80, is required for nutrient-dependent regulation of anastomosis.

    PubMed

    Shahi, Shermineh; Fokkens, Like; Houterman, Petra M; Rep, Martijn

    2016-10-01

    Heterokaryon formation is an essential step in asexual recombination in Fusarium oxysporum. Filamentous fungi have an elaborate nonself recognition machinery to prevent formation and proliferation of heterokaryotic cells, called heterokaryon incompatibility (HI). In F. oxysporum the regulation of this machinery is not well understood. In Neurospora crassa, Vib-1, a putative transcription factor of the p53-like Ndt80 family of transcription factors, has been identified as global regulator of HI. In this study we investigated the role of the F. oxysporum homolog of Vib-1, called Suf, in vegetative hyphal and conidial anastomosis tube (CAT) fusion and HI. We identified a novel function for an Ndt80 homolog as a nutrient-dependent regulator of anastomosis. Strains carrying the SUF deletion mutation display a hyper-fusion phenotype during vegetative growth as well as germling development. In addition, conidial paring of incompatible SUF deletion strains led to more heterokaryon formation, which is independent of suppression of HI. Our data provides further proof for the divergence in the functions of different members Ndt80 family. We propose that Ndt80 homologs mediate responses to nutrient quality and quantity, with specific responses varying between species.

  18. Growth Arrest Specific 2 Is Up-Regulated in Chronic Myeloid Leukemia Cells and Required for Their Growth

    PubMed Central

    Ma, Wenjuan; Wu, Jie; Zhang, Xiuyan; Hu, Xiaohui; Eaves, Connie J.; Wu, Depei; Zhao, Yun

    2014-01-01

    Although the generation of BCR-ABL is the molecular hallmark of chronic myeloid leukemia (CML), the comprehensive molecular mechanisms of the disease remain unclear yet. Growth arrest specific 2 (GAS2) regulates multiple cellular functions including cell cycle, apoptosis and calpain activities. In the present study, we found GAS2 was up-regulated in CML cells including CD34+ progenitor cells compared to their normal counterparts. We utilized RNAi and the expression of dominant negative form of GAS2 (GAS2DN) to target GAS2, which resulted in calpain activity enhancement and growth inhibition of both K562 and MEG-01 cells. Targeting GAS2 also sensitized K562 cells to Imatinib mesylate (IM). GAS2DN suppressed the tumorigenic ability of MEG-01 cells and impaired the tumour growth as well. Moreover, the CD34+ cells from CML patients and healthy donors were transduced with control and GAS2DN lentiviral vectors, and the CD34+ transduced (YFP+) progeny cells (CD34+YFP+) were plated for colony-forming cell (CFC) assay. The results showed that GAS2DN inhibited the CFC production of CML cells by 57±3% (n = 3), while affected those of normal hematopoietic cells by 31±1% (n = 2). Next, we found the inhibition of CML cells by GAS2DN was dependent on calpain activity but not the degradation of beta-catenin. Lastly, we generated microarray data to identify the differentially expressed genes upon GAS2DN and validated that the expression of HNRPDL, PTK7 and UCHL5 was suppressed by GAS2DN. These 3 genes were up-regulated in CML cells compared to normal control cells and the growth of K562 cells was inhibited upon HNRPDL silence. Taken together, we have demonstrated that GAS2 is up-regulated in CML cells and the inhibition of GAS2 impairs the growth of CML cells, which indicates GAS2 is a novel regulator of CML cells and a potential therapeutic target of this disease. PMID:24465953

  19. Regulatory Requirements and Technical Analysis for Department of Energy Regulated Performance Assessments of Shallow-Trench Disposal of Low-Level Radioactive Waste at the Nevada Test Site

    NASA Astrophysics Data System (ADS)

    Crowe, B.; Black, P.; Tauxe, J.; Yucel, V.; Rawlinson, S.; Colarusso, A.; DiSanza, F.

    2001-12-01

    The National Nuclear Security Administration, Nevada Operations Office (NNSA/NV) operates and maintains two active facilities on the Nevada Test Site (NTS) that dispose Department of Energy (DOE) defense-generated low-level radioactive (LLW), mixed radioactive, and classified waste in shallow trenches, pits and large-diameter boreholes. The operation and maintenance of the LLW disposal sites are self-regulated under DOE Order 435.1, which requires review of a Performance Assessment for four performance objectives: 1) all pathways 25 mrem/yr limit; 2) atmospheric pathways 10 mrem/yr limit; 3) radon flux density of 20 pCi/m2/s; and 4) groundwater resource protection (Safe Drinking Water Act; 4 mrem/yr limit). The inadvertent human intruder is protected under a dual 500- and 100-mrem limit (acute and chronic exposure). In response to the Defense Nuclear Facilities Safety Board Recommendation 92 2, a composite analysis is required that must examine all interacting sources for compliance against both 30 and 100 mrem/yr limits. A small component of classified transuranic waste is buried at intermediate depths in 3-meter diameter boreholes at the Area 5 LLW disposal facility and is assessed through DOE-agreement against the requirements of the Environmental Protection Agency (EPA)'s 40 CFR 191. The hazardous components of mixed LLW are assessed against RCRA requirements. The NTS LLW sites fall directly under three sets of federal regulations and the regulatory differences result not only in organizational challenges, but also in different decision objectives and technical paths to completion. The DOE regulations require deterministic analysis for a 1,000-year compliance assessment supplemented by probabilistic analysis under a long-term maintenance program. The EPA regulations for TRU waste are probabilistically based for a compliance interval of 10,000 years. Multiple steps in the assessments are strongly dependent on assumptions for long-term land use policies

  20. Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, gacS.

    PubMed

    Kang, Beom Ryong; Han, Song Hee; Zdor, Rob E; Anderson, Anne J; Spencer, Matt; Yang, Kwang Yeol; Kim, Yong Hwan; Lee, Myung Chul; Cho, Baik Ho; Kim, Young Cheol

    2007-04-01

    Seed coating by a phenazine-producing bacterium, Pseudomonas chlororaphis O6, induced dose-dependent inhibition of germination in wheat and barley seeds, but did not inhibit germination of rice or cucumber seeds. In wheat seedlings grown from inoculated seeds, phenazine production levels near the seed were higher than in the roots. Deletion of the gacS gene reduced transcription from the genes required for phenazine synthesis, the regulatory phzI gene and the biosynthetic phzA gene. The inhibition of seed germination and the induction of systemic disease resistance against a bacterial soft-rot pathogen, Erwinia carotovora subsp. carotovora, were impaired in the gacS and phzA mutants of P chlororaphis O6. Culture filtrates of the gacS and phzA mutants of P chlororaphis 06 did not inhibit seed germination of wheat, whereas that of the wild-type was inhibitory. Our results showed that the production of phenazines by P chlororaphis O6 was correlated with reduced germination of barley and wheat seeds, and the level of systemic resistance in tobacco against E. carotovora.

  1. 75 FR 35338 - Implementation of Regulations Required Under Title XI of the Food, Conservation and Energy Act of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ..., USDA. ACTION: Proposed rule. SUMMARY: The Department of Agriculture (USDA), Grain Inspection, Packers..., the P&S Act imposes a variety of more specific limitations and requirements. In particular, it... also sets forth procedures for enforcement actions before the Secretary \\13\\ and private...

  2. A peroxiredoxin, PRDX-2, is required for insulin secretion and insulin/IIS-dependent regulation of stress resistance and longevity

    PubMed Central

    Oláhová, Monika; Veal, Elizabeth A

    2015-01-01

    Peroxiredoxins (Prx) are abundant thiol peroxidases with a conserved anti-ageing role. In contrast to most animals, the nematode worm, Caenorhabditis elegans, encodes a single cytosolic 2-Cys Prx, PRDX-2, rendering it an excellent model for examining how peroxiredoxins affect animal physiology and ageing. Our previous work revealed that, although PRDX-2 protects against the toxicity of peroxides, enigmatically, prdx-2-mutant animals are hyper-resistant to other forms of oxidative stress. Here, we have investigated the basis for this increased resistance. Mammalian FOXO and Nrf2 transcription factors directly promote the expression of a range of detoxification enzymes. We show that the FOXO orthologue, DAF-16, and the Nrf2 orthologue, SKN-1, are required for the increased stress resistance of prdx-2-mutant worms. Our data suggest that PRDX-2 is required for normal levels of insulin secretion and hence the inhibition of DAF-16 and SKN-1 by insulin/IGF-1-like signalling (IIS) under nutrient-rich conditions. Intriguingly, loss of PRDX-2 increases DAF-16 and SKN-1 activities sufficiently to increase arsenite resistance without initiating other IIS-inhibited processes. Together, these data suggest that loss of peroxiredoxin function may increase stress resistance by reducing insulin secretion, but that further changes in insulin signalling are required for the reprogramming of development and fat metabolism. In addition, we reveal that the temperature-dependent prolongevity function of PRDX-2 is required for the extended lifespan associated with several pathways, including further reductions in IIS. PMID:25808059

  3. 75 FR 77561 - Regulations Issued Under the Export Grape and Plum Act; Revision to the Minimum Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-13

    ... Grape and Plum Act; Revision to the Minimum Requirements AGENCY: Agricultural Marketing Service, USDA... under the Export Grape and Plum Act. The proposed action would change the minimum bunch weight...: This proposed rule is issued under authority of the Export Grape and Plum Act, as amended (7 U.S.C....

  4. SORTING NEXIN1 is required for modulating the trafficking and stability of the Arabidopsis IRON-REGULATED TRANSPORTER1.

    PubMed

    Ivanov, Rumen; Brumbarova, Tzvetina; Blum, Ailisa; Jantke, Anna-Maria; Fink-Straube, Claudia; Bauer, Petra

    2014-03-01

    Dicotyledonous plants growing under limited iron availability initiate a response resulting in the solubilization, reduction, and uptake of soil iron. The protein factors responsible for these steps are transmembrane proteins, suggesting that the intracellular trafficking machinery may be involved in iron acquisition. In search for components involved in the regulation of Arabidopsis thaliana iron deficiency responses, we identified the members of the SORTING NEXIN (SNX) protein family. SNX loss-of-function plants display enhanced susceptibility to iron deficiency in comparison to the wild type. The absence of SNX led to reduced iron import efficiency into the root. SNX1 showed partial colocalization with the principal root iron importer IRON-REGULATED TRANSPORTER1 (IRT1). In SNX loss-of-function plants, IRT1 protein levels were decreased compared with the wild type due to enhanced IRT1 degradation. This resulted in diminished amounts of the IRT1 protein at the plasma membrane. snx mutants exhibited enhanced iron deficiency responses compared with the wild type, presumably due to the lower iron uptake through IRT1. Our results reveal a role of SNX1 for the correct trafficking of IRT1 and, thus, for modulating the activity of the iron uptake machinery.

  5. Gibberellin regulates PIN-FORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana.

    PubMed

    Willige, Björn C; Isono, Erika; Richter, René; Zourelidou, Melina; Schwechheimer, Claus

    2011-06-01

    Plants integrate different regulatory signals to control their growth and development. Although a number of physiological observations suggest that there is crosstalk between the phytohormone gibberellin (GA) and auxin, as well as with auxin transport, the molecular basis for this hormonal crosstalk remains largely unexplained. Here, we show that auxin transport is reduced in the inflorescences of Arabidopsis thaliana mutants deficient in GA biosynthesis and signaling. We further show that this reduced auxin transport correlates with a reduction in the abundance of PIN-FORMED (PIN) auxin efflux facilitators in GA-deficient plants and that PIN protein levels recover to wild-type levels following GA treatment. We also demonstrate that the regulation of PIN protein levels cannot be explained by a transcriptional regulation of the PIN genes but that GA deficiency promotes, at least in the case of PIN2, the targeting of PIN proteins for vacuolar degradation. In genetic studies, we reveal that the reduced auxin transport of GA mutants correlates with an impairment in two PIN-dependent growth processes, namely, cotyledon differentiation and root gravitropic responses. Our study thus presents evidence for a role of GA in these growth responses and for a GA-dependent modulation of PIN turnover that may be causative for these differential growth responses.

  6. Opposite-sex attraction in male mice requires testosterone-dependent regulation of adult olfactory bulb neurogenesis

    PubMed Central

    Schellino, Roberta; Trova, Sara; Cimino, Irene; Farinetti, Alice; Jongbloets, Bart C.; Pasterkamp, R. Jeroen; Panzica, Giancarlo; Giacobini, Paolo; De Marchis, Silvia; Peretto, Paolo

    2016-01-01

    Opposite-sex attraction in most mammals depends on the fine-tuned integration of pheromonal stimuli with gonadal hormones in the brain circuits underlying sexual behaviour. Neural activity in these circuits is regulated by sensory processing in the accessory olfactory bulb (AOB), the first central station of the vomeronasal system. Recent evidence indicates adult neurogenesis in the AOB is involved in sex behaviour; however, the mechanisms underlying this function are unknown. By using Semaphorin 7A knockout (Sema7A ko) mice, which show a reduced number of gonadotropin-releasing-hormone neurons, small testicles and subfertility, and wild-type males castrated during adulthood, we demonstrate that the level of circulating testosterone regulates the sex-specific control of AOB neurogenesis and the vomeronasal system activation, which influences opposite-sex cue preference/attraction in mice. Overall, these data highlight adult neurogenesis as a hub for the integration of pheromonal and hormonal cues that control sex-specific responses in brain circuits. PMID:27782186

  7. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize.

    PubMed

    Moon, Jihyun; Skibbe, David; Timofejeva, Ljudmilla; Wang, Chung-Ju Rachel; Kelliher, Timothy; Kremling, Karl; Walbot, Virginia; Cande, William Zacheus

    2013-11-01

    Male fertility in flowering plants relies on proper division and differentiation of cells in the anther, a process that gives rise to four somatic layers surrounding central germinal cells. The maize gene male sterility32 (ms32) encodes a basic helix-loop-helix (bHLH) transcription factor, which functions as an important regulator of both division and differentiation during anther development. After the four somatic cell layers are generated properly through successive periclinal divisions, in the ms32 mutant, tapetal precursor cells fail to differentiate, and, instead, undergo additional periclinal divisions to form extra layers of cells. These cells become vacuolated and expand, and lead to failure in pollen mother cell development. ms32 expression is specific to the pre-meiotic anthers and is distributed initially broadly in the four lobes, but as the anther develops, its expression becomes restricted to the innermost somatic layer, the tapetum. The ms32-ref mac1-1 double mutant is unable to form tapetal precursors and also exhibits excessive somatic proliferation leading to numerous, disorganized cell layers, suggesting a synergistic interaction between ms32 and mac1. Altogether, our results show that MS32 is a major regulator in maize anther development that promotes tapetum differentiation and inhibits periclinal division once a tapetal cell is specified.

  8. SORTING NEXIN1 Is Required for Modulating the Trafficking and Stability of the Arabidopsis IRON-REGULATED TRANSPORTER1[W

    PubMed Central

    Ivanov, Rumen; Brumbarova, Tzvetina; Blum, Ailisa; Jantke, Anna-Maria; Fink-Straube, Claudia; Bauer, Petra

    2014-01-01

    Dicotyledonous plants growing under limited iron availability initiate a response resulting in the solubilization, reduction, and uptake of soil iron. The protein factors responsible for these steps are transmembrane proteins, suggesting that the intracellular trafficking machinery may be involved in iron acquisition. In search for components involved in the regulation of Arabidopsis thaliana iron deficiency responses, we identified the members of the SORTING NEXIN (SNX) protein family. SNX loss-of-function plants display enhanced susceptibility to iron deficiency in comparison to the wild type. The absence of SNX led to reduced iron import efficiency into the root. SNX1 showed partial colocalization with the principal root iron importer IRON-REGULATED TRANSPORTER1 (IRT1). In SNX loss-of-function plants, IRT1 protein levels were decreased compared with the wild type due to enhanced IRT1 degradation. This resulted in diminished amounts of the IRT1 protein at the plasma membrane. snx mutants exhibited enhanced iron deficiency responses compared with the wild type, presumably due to the lower iron uptake through IRT1. Our results reveal a role of SNX1 for the correct trafficking of IRT1 and, thus, for modulating the activity of the iron uptake machinery. PMID:24596241

  9. JMJD-5/KDM8 regulates H3K36me2 and is required for late steps of homologous recombination and genome integrity

    PubMed Central

    Zaghet, Nico; Ramalho, João J.; Vilstrup Johansen, Jens; Salcini, Anna Elisabetta

    2017-01-01

    The eukaryotic genome is organized in a three-dimensional structure called chromatin, constituted by DNA and associated proteins, the majority of which are histones. Post-translational modifications of histone proteins greatly influence chromatin structure and regulate many DNA-based biological processes. Methylation of lysine 36 of histone 3 (H3K36) is a post-translational modification functionally relevant during early steps of DNA damage repair. Here, we show that the JMJD-5 regulates H3K36 di-methylation and it is required at late stages of double strand break repair mediated by homologous recombination. Loss of jmjd-5 results in hypersensitivity to ionizing radiation and in meiotic defects, and it is associated with aberrant retention of RAD-51 at sites of double strand breaks. Analyses of jmjd-5 genetic interactions with genes required for resolving recombination intermediates (rtel-1) or promoting the resolution of RAD-51 double stranded DNA filaments (rfs-1 and helq-1) suggest that jmjd-5 prevents the formation of stalled postsynaptic recombination intermediates and favors RAD-51 removal. As these phenotypes are all recapitulated by a catalytically inactive jmjd-5 mutant, we propose a novel role for H3K36me2 regulation during late steps of homologous recombination critical to preserve genome integrity. PMID:28207814

  10. MILI, a PIWI-interacting RNA-binding protein, is required for germ line stem cell self-renewal and appears to positively regulate translation.

    PubMed

    Unhavaithaya, Yingdee; Hao, Yi; Beyret, Ergin; Yin, Hang; Kuramochi-Miyagawa, Satomi; Nakano, Toru; Lin, Haifan

    2009-03-06

    The Argonaute/PIWI protein family consists of Argonaute and PIWI subfamilies. Argonautes function in RNA interference and micro-RNA pathways; whereas PIWIs bind to PIWI-interacting RNAs and regulate germ line development, stem cell maintenance, epigenetic regulation, and transposition. However, the role of PIWIs in mammalian stem cells has not been demonstrated, and molecular mechanisms mediated by PIWIs remain elusive. Here we show that MILI, a murine PIWI protein, is expressed in the cytoplasm of testicular germ line stem cells, spermatogonia, and early spermatocytes, where it is enriched in chromatoid bodies. MILI is essential for the self-renewing division and differentiation of germ line stem cells but does not affect initial establishment of the germ line stem cell population at 7 days postpartum. Furthermore, MILI forms a stable RNA-independent complex with eIF3a and associates with the eIF4E- and eIF4G-containing m7G cap-binding complex. In isolated 7 days postpartum seminiferous tubules containing mostly germ line stem cells, the mili mutation has no effect on the cellular mRNA level yet significantly reduces the rate of protein synthesis. These observations indicate that MILI may positively regulate translation and that such regulation is required for germ line stem cell self-renewal.

  11. SpKrl: a direct target of beta-catenin regulation required for endoderm differentiation in sea urchin embryos.

    PubMed

    Howard, E W; Newman, L A; Oleksyn, D W; Angerer, R C; Angerer, L M

    2001-02-01

    Localization of nuclear beta-catenin initiates specification of vegetal fates in sea urchin embryos. We have identified SpKrl, a gene that is activated upon nuclear entry of beta-catenin. SpKrl is upregulated when nuclear beta-catenin activity is increased with LiCl and downregulated in embryos injected with molecules that inhibit beta-catenin nuclear function. LiCl-mediated SpKrl activation is independent of protein synthesis, indicating that SpKrl is a direct target of beat-catenin and TCF. Embryos in which SpKrl translation is inhibited with morpholino antisense oligonucleotides lack endoderm. Conversely, SpKrl mRNA injection rescues some vegetal structures in beta-catenin-deficient embryos. SpKrl negatively regulates expression of the animalizing transcription factor, SpSoxB1. We propose that SpKrl functions in patterning the vegetal domain by suppressing animal regulatory activities.

  12. Arabidopsis ACA7, encoding a putative auto-regulated Ca(2+)-ATPase, is required for normal pollen development.

    PubMed

    Lucca, Noel; León, Gabriel

    2012-04-01

    Microgametogenesis is a complex process that involves numerous well-coordinated cell activities, ending with the production of pollen grains. Pollen development has been studied at the cytological level in Arabidopsis and other plant species, where its temporal time course has been defined. However, the molecular mechanism underlying this process is still unclear, since a relative small number of genes and/or processes have been identified as essential for pollen development. We have designed a methodology to select candidate genes for functional analysis, based on transcriptomic data obtained from different stages of pollen development. From our analyses, we selected At2g22950 as a candidate gene; this gene encodes a protein belonging to the auto-regulated Ca(2+)-ATPase family, ACA7. Microarray data indicate that ACA7 is expressed exclusively in developing pollen grains, with the highest level of mRNA at the time of the second pollen mitosis. Our RT-PCR experiments showed that ACA7 mRNA is detected exclusively in developing flowers. Confocal microscopy experiments showed a plasma membrane localization for the recombinant GFP:ACA7 protein. We identified two different insertional mutant lines, aca7-1 and aca7-2; plants from both mutant lines displayed a normal vegetative development but showed large amounts of dead pollen grains in mature flowers assayed by Alexander's staining. Histological analysis indicated that abnormalities are detected after the first pollen mitosis and we found a strong correlation between ACA7 mRNA accumulation and the severity of the phenotype. Our results indicate that ACA7 is a plasma membrane protein that has an important role during pollen development, possibly through regulation of Ca(2+) homeostasis.

  13. Requirement for the eIF4E binding proteins for the synergistic down-regulation of protein synthesis by hypertonic conditions and mTOR inhibition.

    PubMed

    Clemens, Michael J; Elia, Androulla; Morley, Simon J

    2013-01-01

    The protein kinase mammalian target of rapamycin (mTOR) regulates the phosphorylation and activity of several proteins that have the potential to control translation, including p70S6 kinase and the eIF4E binding proteins 4E-BP1 and 4E-BP2. In spite of this, in exponentially growing cells overall protein synthesis is often resistant to mTOR inhibitors. We report here that sensitivity of wild-type mouse embryonic fibroblasts (MEFs) to mTOR inhibitors can be greatly increased when the cells are subjected to the physiological stress imposed by hypertonic conditions. In contrast, protein synthesis in MEFs with a double knockout of 4E-BP1 and 4E-BP2 remains resistant to mTOR inhibitors under these conditions. Phosphorylation of p70S6 kinase and protein kinase B (Akt) is blocked by the mTOR inhibitor Ku0063794 equally well in both wild-type and 4E-BP knockout cells, under both normal and hypertonic conditions. The response of protein synthesis to hypertonic stress itself does not require the 4E-BPs. These data suggest that under certain stress conditions: (i) translation has a greater requirement for mTOR activity and (ii) there is an absolute requirement for the 4E-BPs for regulation by mTOR. Importantly, dephosphorylation of p70S6 kinase and Akt is not sufficient to affect protein synthesis acutely.

  14. A novel mechanism of regulating the ATPase VPS4 by its cofactor LIP5 and the endosomal sorting complex required for transport (ESCRT)-III protein CHMP5.

    PubMed

    Vild, Cody J; Li, Yan; Guo, Emily Z; Liu, Yuan; Xu, Zhaohui

    2015-03-13

    Disassembly of the endosomal sorting complex required for transport (ESCRT) machinery from biological membranes is a critical final step in cellular processes that require the ESCRT function. This reaction is catalyzed by VPS4, an AAA-ATPase whose activity is tightly regulated by a host of proteins, including LIP5 and the ESCRT-III proteins. Here, we present structural and functional analyses of molecular interactions between human VPS4, LIP5, and the ESCRT-III proteins. The N-terminal domain of LIP5 (LIP5NTD) is required for LIP5-mediated stimulation of VPS4, and the ESCRT-III protein CHMP5 strongly inhibits the stimulation. Both of these observations are distinct from what was previously described for homologous yeast proteins. The crystal structure of LIP5NTD in complex with the MIT (microtubule-interacting and transport)-interacting motifs of CHMP5 and a second ESCRT-III protein, CHMP1B, was determined at 1 Å resolution. It reveals an ESCRT-III binding induced moderate conformational change in LIP5NTD, which results from insertion of a conserved CHMP5 tyrosine residue (Tyr(182)) at the core of LIP5NTD structure. Mutation of Tyr(182) partially relieves the inhibition displayed by CHMP5. Together, these results suggest a novel mechanism of VPS4 regulation in metazoans, where CHMP5 functions as a negative allosteric switch to control LIP5-mediated stimulation of VPS4.

  15. Is the risk for soil arthropods covered by new data requirements under the EU PPP Regulation No. 1107/2009?

    PubMed

    Kohlschmid, E; Ruf, D

    2016-12-01

    Testing of effects on earthworms and non-target foliar arthropods is an integral part of the ecotoxicological risk assessment for the authorization of plant protection products. According to the new data requirements, which came into force in 2014 for active substances and in 2016 for plant protection products, the chronic earthworm toxicity test with Eisenia fetida based on reproductive, growth, and behavioral effects instead of the acute earthworm toxicity test based on mortality, has to be conducted routinely. Additional testing of effects on soil arthropods (Folsomia candida, Hyposaspis aculeifer) is required if the risk assessment of foliar applications raises concerns regarding non-target foliar arthropods (Aphidius rhopalosiphi, Typhlodromus pyri) or if the product is applied directly on or into the soil. Thus, it was investigated whether the sublethal earthworm endpoint is more sensitive than the sublethal soil arthropod endpoint for different types of pesticides and whether the risk assessment for non-target arthropods would trigger the testing of effects on soil arthropods in the cases where soil arthropods are more sensitive than earthworms. Toxicity data were obtained from Swiss ecotoxicological database, EFSA Conclusions and scientific literature. For insecticides and herbicides, no general conclusion regarding differences in sensitivity of either earthworms or soil arthropods based on sublethal endpoints were possible. For fungicides, the data indicated that in general, earthworms seemed to be more sensitive than soil arthropods. In total, the sublethal F. candida or H. aculeifer endpoint was lower than the sublethal E. fetida endpoint for 23 (34 %) out of 68 active substances. For 26 % of these 23 active substances, testing of soil arthropods would not have been triggered due to the new data requirement. These results based on sublethal endpoints show that earthworms and soil arthropods differ in sensitivity toward certain active substances and

  16. Autism-Associated Chromatin Regulator Brg1/SmarcA4 Is Required for Synapse Development and Myocyte Enhancer Factor 2-Mediated Synapse Remodeling

    PubMed Central

    Zhang, Zilai; Cao, Mou; Chang, Chia-Wei; Wang, Cindy; Shi, Xuanming; Zhan, Xiaoming; Birnbaum, Shari G.; Bezprozvanny, Ilya; Huber, Kimberly M.

    2015-01-01

    Synapse development requires normal neuronal activities and the precise expression of synapse-related genes. Dysregulation of synaptic genes results in neurological diseases such as autism spectrum disorders (ASD). Mutations in genes encoding chromatin-remodeling factor Brg1/SmarcA4 and its associated proteins are the genetic causes of several developmental diseases with neurological defects and autistic symptoms. Recent large-scale genomic studies predicted Brg1/SmarcA4 as one of the key nodes of the ASD gene network. We report that Brg1 deletion in early postnatal hippocampal neurons led to reduced dendritic spine density and maturation and impaired synapse activities. In developing mice, neuronal Brg1 deletion caused severe neurological defects. Gene expression analyses indicated that Brg1 regulates a significant number of genes known to be involved in synapse function and implicated in ASD. We found that Brg1 is required for dendritic spine/synapse elimination mediated by the ASD-associated transcription factor myocyte enhancer factor 2 (MEF2) and that Brg1 regulates the activity-induced expression of a specific subset of genes that overlap significantly with the targets of MEF2. Our analyses showed that Brg1 interacts with MEF2 and that MEF2 is required for Brg1 recruitment to target genes in response to neuron activation. Thus, Brg1 plays important roles in both synapse development/maturation and MEF2-mediated synapse remodeling. Our study reveals specific functions of the epigenetic regulator Brg1 in synapse development and provides insights into its role in neurological diseases such as ASD. PMID:26459759

  17. The WNT-controlled transcriptional regulator LBH is required for mammary stem cell expansion and maintenance of the basal lineage.

    PubMed

    Lindley, Linsey E; Curtis, Kevin M; Sanchez-Mejias, Avencia; Rieger, Megan E; Robbins, David J; Briegel, Karoline J

    2015-03-01

    The identification of multipotent mammary stem cells (MaSCs) has provided an explanation for the unique regenerative capacity of the mammary gland throughout adult life. However, it remains unclear what genes maintain MaSCs and control their specification into the two epithelial lineages: luminal and basal. LBH is a novel transcription co-factor in the WNT pathway with hitherto unknown physiological function. LBH is expressed during mammary gland development and aberrantly overexpressed in aggressive 'basal' subtype breast cancers. Here, we have explored the in vivo role of LBH in mammopoiesis. We show that in postnatal mammary epithelia, LBH is predominantly expressed in the Lin(-)CD29(high)CD24(+) basal MaSC population. Upon conditional inactivation of LBH, mice exhibit pronounced delays in mammary tissue expansion during puberty and pregnancy, accompanied by increased luminal differentiation at the expense of basal lineage specification. These defects could be traced to a severe reduction in the frequency and self-renewal/differentiation potential of basal MaSCs. Mechanistically, LBH induces expression of key epithelial stem cell transcription factor ΔNp63 to promote a basal MaSC state and repress luminal differentiation genes, mainly that encoding estrogen receptor α (Esr1/ERα). Collectively, these studies identify LBH as an essential regulator of basal MaSC expansion/maintenance, raising important implications for its potential role in breast cancer pathogenesis.

  18. Characterization of Critical Domains within the Tumor Suppressor CASZ1 Required for Transcriptional Regulation and Growth Suppression

    PubMed Central

    Virden, Ryan A.

    2012-01-01

    CASZ1 is a zinc finger (ZF) transcription factor that is critical for controlling the normal differentiation of subtypes of neural and cardiac muscle cells. In neuroblastoma tumors, loss of CASZ1 is associated with poor prognosis and restoration of CASZ1 function suppresses neuroblastoma tumorigenicity. However, the key domains by which CASZ1 transcription controls developmental processes and neuroblastoma tumorigenicity have yet to be elucidated. In this study, we show that loss of any one of ZF1 to ZF4 resulted in a 58 to 79% loss in transcriptional activity, as measured by induction of tyrosine hydroxylase promoter-luciferase activity, compared to that of wild-type (WT) CASZ1b. Mutation of ZF5 or deletion of the C-terminal sequence of amino acids (aa) 728 to 1166 (a truncation of 38% of the protein) does not significantly alter transcriptional function. A series of N-terminal truncations reveals a critical transcriptional activation domain at aa 31 to 185 and a nuclear localization signal at aa 23 to 29. Soft agar colony formation assays and xenograft studies show that WT CASZ1b is more active in suppressing neuroblastoma growth than CASZ1b with a ZF4 mutation or a deletion of aa 31 to 185. This study identifies key domains needed for CASZ1b to regulate gene transcription. Furthermore, we establish a link between loss of CASZ1b transcriptional activity and attenuation of CASZ1b-mediated inhibition of neuroblastoma growth and tumorigenicity. PMID:22331471

  19. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis.

    PubMed

    Wang, Zhen-Yu; Xiong, Liming; Li, Wenbo; Zhu, Jian-Kang; Zhu, Jianhua

    2011-05-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 gene expression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxygenase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol) treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly that CED1 encodes a putative α/β hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cutin biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling.

  20. T cell development requires constraint of the myeloid regulator C/EBPa by the Notch target and transcriptional repressor Hes1

    PubMed Central

    De Obaldia, Maria Elena; Bell, J Jeremiah; Wang, Xinxin; Harly, Christelle; Yashiro-Ohtani, Yumi; DeLong, Jonathan H; Zlotoff, Daniel A; Sultana, Dil Afroz; Pear, Warren S; Bhandoola, Avinash

    2014-01-01

    Notch signaling induces gene expression of the T cell lineage and discourages alternative fate outcomes. Hematopoietic deficiency in the Notch target Hes1 results in severe T cell lineage defects; however, the underlying mechanism is unknown. We found here that Hes1 constrained myeloid gene-expression programs in T cell progenitor cells, as deletion of the myeloid regulator C/EBPa restored the development of T cells from Hes1-deficient progenitor cells. Repression of Cebpa by Hes1 required its DNA-binding and Groucho-recruitment domains. Hes1-deficient multipotent progenitor cells showed a developmental bias toward myeloid and dendritic cells after Notch signaling, whereas Hes1-deficient lymphoid progenitor cells required additional cytokine signaling for diversion into the myeloid lineage. Our findings establish the importance of constraining developmental programs of the myeloid lineage early in T cell development. PMID:24185616

  1. Tropomodulin 1 Regulation of Actin Is Required for the Formation of Large Paddle Protrusions Between Mature Lens Fiber Cells

    PubMed Central

    Cheng, Catherine; Nowak, Roberta B.; Biswas, Sondip K.; Lo, Woo-Kuen; FitzGerald, Paul G.; Fowler, Velia M.

    2016-01-01

    Purpose To elucidate the proteins required for specialized small interlocking protrusions and large paddle domains at lens fiber cell tricellular junctions (vertices), we developed a novel method to immunostain single lens fibers and studied changes in cell morphology due to loss of tropomodulin 1 (Tmod1), an F-actin pointed end–capping protein. Methods We investigated F-actin and F-actin–binding protein localization in interdigitations of Tmod1+/+ and Tmod1−/− single mature lens fibers. Results F-actin–rich small protrusions and large paddles were present along cell vertices of Tmod1+/+ mature fibers. In contrast, Tmod1−/− mature fiber cells lack normal paddle domains, while small protrusions were unaffected. In Tmod1+/+ mature fibers, Tmod1, β2-spectrin, and α-actinin are localized in large puncta in valleys between paddles; but in Tmod1−/− mature fibers, β2-spectrin was dispersed while α-actinin was redistributed at the base of small protrusions and rudimentary paddles. Fimbrin and Arp3 (actin-related protein 3) were located in puncta at the base of small protrusions, while N-cadherin and ezrin outlined the cell membrane in both Tmod1+/+ and Tmod1−/− mature fibers. Conclusions These results suggest that distinct F-actin organizations are present in small protrusions versus large paddles. Formation and/or maintenance of large paddle domains depends on a β2-spectrin–actin network stabilized by Tmod1. α-Actinin–crosslinked F-actin bundles are enhanced in absence of Tmod1, indicating altered cytoskeleton organization. Formation of small protrusions is likely facilitated by Arp3-branched and fimbrin-bundled F-actin networks, which do not depend on Tmod1. This is the first work to reveal the F-actin–associated proteins required for the formation of paddles between lens fibers. PMID:27537257

  2. Proliferating cell nuclear antigen (PCNA) is required for cell cycle-regulated silent chromatin on replicated and nonreplicated genes.

    PubMed

    Miller, Andrew; Chen, Jiji; Takasuka, Taichi E; Jacobi, Jennifer L; Kaufman, Paul D; Irudayaraj, Joseph M K; Kirchmaier, Ann L

    2010-11-05

    In Saccharomyces cerevisiae, silent chromatin is formed at HMR upon the passage through S phase, yet neither the initiation of DNA replication at silencers nor the passage of a replication fork through HMR is required for silencing. Paradoxically, mutations in the DNA replication processivity factor, POL30, disrupt silencing despite this lack of requirement for DNA replication in the establishment of silencing. We tested whether pol30 mutants could establish silencing at either replicated or non-replicated HMR loci during S phase and found that pol30 mutants were defective in establishing silencing at HMR regardless of its replication status. Although previous studies tie the silencing defect of pol30 mutants to the chromatin assembly factors Asf1p and CAF-1, we found pol30 mutants did not exhibit a gross defect in packaging HMR into chromatin. Rather, the pol30 mutants exhibited defects in histone modifications linked to ASF1 and CAF-1-dependent pathways, including SAS-I- and Rtt109p-dependent acetylation events at H4-K16 and H3-K9 (plus H3-K56; Miller, A., Yang, B., Foster, T., and Kirchmaier, A. L. (2008) Genetics 179, 793-809). Additional experiments using FLIM-FRET revealed that Pol30p interacted with SAS-I and Rtt109p in the nuclei of living cells. However, these interactions were disrupted in pol30 mutants with defects linked to ASF1- and CAF-1-dependent pathways. Together, these results imply that Pol30p affects epigenetic processes by influencing the composition of chromosomal histone modifications.

  3. Transcription of the Salmonella Invasion Gene Activator, hilA, Requires HilD Activation in the Absence of Negative Regulators

    PubMed Central

    Boddicker, Jennifer D.; Knosp, Boyd M.; Jones, Bradley D.

    2003-01-01

    Salmonella enterica serovar Typhimurium causes human gastroenteritis and a systemic typhoid-like infection in mice. Infection is initiated by entry of the bacteria into intestinal epithelial cells and is mediated by a type III secretion system that is encoded by genes in Salmonella pathogenicity island 1. The expression of invasion genes is tightly regulated by environmental conditions such as oxygen and osmolarity, as well as by many bacterial factors. The hilA gene encodes an OmpR/ToxR family transcriptional regulator that activates the expression of invasion genes in response to both environmental and genetic regulatory factors. HilD is an AraC/XylS regulator that has been postulated to act as a derepressor of hilA expression that promotes transcription by interfering with repressor binding at the hilA promoter. Our research group has identified four genes (hilE, hha, pag, and ams) that negatively affect hilA transcription. Since the postulated function of HilD at the hilA promoter is to counteract the effects of repressors, we examined this model by measuring hilA::Tn5lacZY expression in strains containing negative regulator mutations in the presence or absence of functional HilD. Single negative regulator mutations caused significant derepression of hilA expression, and two or more negative regulator mutations led to very high level expression of hilA. However, in all strains tested, the absence of hilD resulted in low-level expression of hilA, suggesting that HilD is required for activation of hilA expression, whether or not negative regulators are present. We also observed that deletion of the HilD binding sites in the chromosomal hilA promoter severely decreased hilA expression. In addition, we found that a single point mutation at leucine 289 in the C-terminal domain of the α subunit of RNA polymerase leads to very low levels of hilA::Tn5lacZY expression, suggesting that HilD activates transcription of hilA by contacting and recruiting RNA polymerase to

  4. Resveratrol-mediated autophagy requires WIPI-1-regulated LC3 lipidation in the absence of induced phagophore formation.

    PubMed

    Mauthe, Mario; Jacob, Anke; Freiberger, Sandra; Hentschel, Katharina; Stierhof, York-Dieter; Codogno, Patrice; Proikas-Cezanne, Tassula

    2011-12-01

    Canonical autophagy is positively regulated by the Beclin 1/phosphatidylinositol 3-kinase class III (PtdIns3KC3) complex that generates an essential phospholipid, phosphatidylinositol 3-phosphate (PtdIns(3)P), for the formation of autophagosomes. Previously, we identified the human WIPI protein family and found that WIPI-1 specifically binds PtdIns(3)P, accumulates at the phagophore and becomes a membrane protein of generated autophagosomes. Combining siRNA-mediated protein downregulation with automated high through-put analysis of PtdIns(3)P-dependent autophagosomal membrane localization of WIPI-1, we found that WIPI-1 functions upstream of both Atg7 and Atg5, and stimulates an increase of LC3-II upon nutrient starvation. Resveratrol-mediated autophagy was shown to enter autophagic degradation in a noncanonical manner, independent of Beclin 1 but dependent on Atg7 and Atg5. By using electron microscopy, LC3 lipidation and GFP-LC3 puncta-formation assays we confirmed these results and found that this effect is partially wortmannin-insensitive. In line with this, resveratrol did not promote phagophore localization of WIPI-1, WIPI-2 or the Atg16L complex above basal level. In fact, the presence of resveratrol in nutrient-free conditions inhibited phagophore localization of WIPI-1. Nevertheless, we found that resveratrol-mediated autophagy functionally depends on canonical-driven LC3-II production, as shown by siRNA-mediated downregulation of WIPI-1 or WIPI-2. From this it is tempting to speculate that resveratrol promotes noncanonical autophagic degradation downstream of the PtdIns(3)P-WIPI-Atg7-Atg5 pathway, by engaging a distinct subset of LC3-II that might be generated at membrane origins apart from canonical phagophore structures.

  5. Efficient Overproduction of Membrane Proteins in Lactococcus lactis Requires the Cell Envelope Stress Sensor/Regulator Couple CesSR

    PubMed Central

    Pinto, Joao P. C.; Kuipers, Oscar P.; Marreddy, Ravi K. R.; Poolman, Bert; Kok, Jan

    2011-01-01

    Background Membrane proteins comprise an important class of molecules whose study is largely frustrated by several intrinsic constraints, such as their hydrophobicity and added requirements for correct folding. Additionally, the complexity of the cellular mechanisms that are required to insert membrane proteins functionally in the membrane and to monitor their folding state makes it difficult to foresee the yields at which one can obtain them or to predict which would be the optimal production host for a given protein. Methods and Findings We describe a rational design approach to improve the lactic acid bacterium Lactococcus lactis as a producer of membrane proteins. Our transcriptome data shows that the two-component system CesSR, which senses cell envelope stresses of different origins, is one of the major players when L. lactis is forced to overproduce the endogenous membrane protein BcaP, a branched-chain amino acid permease. Growth of the BcaP-producing L. lactis strain and its capability to produce membrane proteins are severely hampered when the CesSR system itself or particular members of the CesSR regulon are knocked out, notably the genes ftsH, oxaA2, llmg_2163 and rmaB. Overexpressing cesSR reduced the growth defect, thus directly improving the production yield of BcaP. Applying this rationale to eukaryotic proteins, some of which are notoriously more difficult to produce, such as the medically-important presenilin complex, we were able to significantly diminish the growth defect seen in the wild-type strain and improve the production yield of the presenilin variant PS1Δ9-H6 more than 4-fold. Conclusions The results shed light into a key, and perhaps central, membrane protein quality control mechanism in L. lactis. Modulating the expression of CesSR benefited the production yields of membrane proteins from different origins. These findings reinforce L. lactis as a legitimate alternative host for the production of membrane proteins. PMID:21818275

  6. Calcium Regulates Molecular Interactions of Otoferlin with Soluble NSF Attachment Protein Receptor (SNARE) Proteins Required for Hair Cell Exocytosis*

    PubMed Central

    Ramakrishnan, Neeliyath A.; Drescher, Marian J.; Morley, Barbara J.; Kelley, Philip M.; Drescher, Dennis G.

    2014-01-01

    Mutations in otoferlin, a C2 domain-containing ferlin family protein, cause non-syndromic hearing loss in humans (DFNB9 deafness). Furthermore, transmitter secretion of cochlear inner hair cells is compromised in mice lacking otoferlin. In the present study, we show that the C2F domain of otoferlin directly binds calcium (KD = 267 μm) with diminished binding in a pachanga (D1767G) C2F mouse mutation. Calcium was found to differentially regulate binding of otoferlin C2 domains to target SNARE (t-SNARE) proteins and phospholipids. C2D–F domains interact with the syntaxin-1 t-SNARE motif with maximum binding within the range of 20–50 μm Ca2+. At 20 μm Ca2+, the dissociation rate was substantially lower, indicating increased binding (KD = ∼10−9) compared with 0 μm Ca2+ (KD = ∼10−8), suggesting a calcium-mediated stabilization of the C2 domain·t-SNARE complex. C2A and C2B interactions with t-SNAREs were insensitive to calcium. The C2F domain directly binds the t-SNARE SNAP-25 maximally at 100 μm and with reduction at 0 μm Ca2+, a pattern repeated for C2F domain interactions with phosphatidylinositol 4,5-bisphosphate. In contrast, C2F did not bind the vesicle SNARE protein synaptobrevin-1 (VAMP-1). Moreover, an antibody targeting otoferlin immunoprecipitated syntaxin-1 and SNAP-25 but not synaptobrevin-1. As opposed to an increase in binding with increased calcium, interactions between otoferlin C2F domain and intramolecular C2 domains occurred in the absence of calcium, consistent with intra-C2 domain interactions forming a “closed” tertiary structure at low calcium that “opens” as calcium increases. These results suggest a direct role for otoferlin in exocytosis and modulation of calcium-dependent membrane fusion. PMID:24478316

  7. A conserved C-terminal domain of the Aspergillus fumigatus developmental regulator MedA is required for nuclear localization, adhesion and virulence.

    PubMed

    Al Abdallah, Qusai; Choe, Se-In; Campoli, Paolo; Baptista, Stefanie; Gravelat, Fabrice N; Lee, Mark J; Sheppard, Donald C

    2012-01-01

    MedA is a developmental regulator that is conserved in the genome of most filamentous fungi. In the pathogenic fungus Aspergillus fumigatus MedA regulates conidiogenesis, adherence to host cells, and pathogenicity. The mechanism by which MedA governs these phenotypes remains unknown. Although the nuclear import of MedA orthologues has been reported in other fungi, no nuclear localization signal, DNA-binding domain or other conserved motifs have been identified within MedA. In this work, we performed a deletion analysis of MedA and identified a novel domain within the C-terminal region of the protein, designated MedA(346-557), that is necessary and sufficient for nuclear localization of MedA. We further demonstrate that MedA nuclear localization is required for the function of MedA. Surprisingly, expression of the minimal nuclear localization fragment MedA(346-557) alone was sufficient to restore conidogenesis, biofilm formation and virulence to the medA mutant strain. Collectively these results suggest that MedA functions in the regulation of transcription, and that the MedA(346-557) domain is both necessary and sufficient to mediate MedA function.

  8. A Conserved C-Terminal Domain of the Aspergillus fumigatus Developmental Regulator MedA Is Required for Nuclear Localization, Adhesion and Virulence

    PubMed Central

    Al Abdallah, Qusai; Choe, Se-In; Campoli, Paolo; Baptista, Stefanie; Gravelat, Fabrice N.; Lee, Mark J.; Sheppard, Donald C.

    2012-01-01

    MedA is a developmental regulator that is conserved in the genome of most filamentous fungi. In the pathogenic fungus Aspergillus fumigatus MedA regulates conidiogenesis, adherence to host cells, and pathogenicity. The mechanism by which MedA governs these phenotypes remains unknown. Although the nuclear import of MedA orthologues has been reported in other fungi, no nuclear localization signal, DNA-binding domain or other conserved motifs have been identified within MedA. In this work, we performed a deletion analysis of MedA and identified a novel domain within the C-terminal region of the protein, designated MedA346–557, that is necessary and sufficient for nuclear localization of MedA. We further demonstrate that MedA nuclear localization is required for the function of MedA. Surprisingly, expression of the minimal nuclear localization fragment MedA346–557 alone was sufficient to restore conidogenesis, biofilm formation and virulence to the medA mutant strain. Collectively these results suggest that MedA functions in the regulation of transcription, and that the MedA346–557 domain is both necessary and sufficient to mediate MedA function. PMID:23185496

  9. Intracellular pH regulation by Na⁺/H⁺ exchanger-1 (NHE1) is required for growth factor-induced mammary branching morphogenesis.

    PubMed

    Jenkins, Edmund C; Debnath, Shawon; Gundry, Stephen; Gundry, Sajini; Uyar, Umit; Fata, Jimmie E

    2012-05-01

    Regulation of intracellular pH (pHi) and protection against cytosolic acidification is primarily a function of the ubiquitous plasma membrane Na+/H+exchanger-1 (NHE1), which uses a highly conserved process to transfer cytosolic hydrogen ions (H+) across plasma membranes in exchange for extracellular sodium ions (Na+). Growth factors, which are essential regulators of morphogenesis, have also been found to be key activators of NHE1 exchanger activity; however, the crosstalk between both has not been fully evaluated during organ development. Here we report that mammary branching morphogenesis induced by transforming growth factor-alpha (TGFα) requires PI3K-dependent NHE1-activation and subsequent pHi alkalization. Inhibiting NHE1 activity after TGFα stimulation with 10 μM of the NHE1-specific inhibitor N-Methyl-N-isobutyl Amiloride (MIA) dramatically disrupted branching morphogenesis, induced extensive proliferation, ectopic expression of the epithelial hyper-proliferative marker Keratin-6 and sustained activation of MAPK. Together these findings indicate a novel developmental signaling cascade involving TGFα>PI3K>NHE1>pHi alkalization, which leads to a permissible environment for MAPK negative feedback inhibition and thus regulated mammary branching morphogenesis.

  10. Post-developmental microRNA expression is required for normal physiology, and regulates aging in parallel to insulin/IGF-1 signaling in C. elegans.

    PubMed

    Lehrbach, Nicolas J; Castro, Cecilia; Murfitt, Kenneth J; Abreu-Goodger, Cei; Griffin, Julian L; Miska, Eric A

    2012-12-01

    Regulation of gene expression by microRNAs (miRNAs) is essential for normal development, but the roles of miRNAs in the physiology of adult animals are poorly understood. We have isolated a conditional allele of DGCR8/pash-1, which allows reversible and rapid inactivation of miRNA synthesis in vivo in Caenorhabditis elegans. This is a powerful new tool that allows dissection of post-developmental miRNA functions. We demonstrate that continuous synthesis of miRNAs is dispensable for cellular viability but critical for the physiology of adult animals. Loss of miRNA synthesis in the adult reduces lifespan and results in rapid aging. The insulin/IGF-1 signaling pathway is a critical determinant of lifespan, and is modulated by miRNAs. We find that although miRNA expression is required for some mechanisms of lifespan extension, it is not essential for the longevity of animals lacking insulin/IGF-1 signaling. Further, misregulated insulin/IGF-1 signaling cannot account for the reduced lifespan caused by disruption of miRNA synthesis. We show that miRNAs act in parallel with insulin/IGF-1 signaling to regulate a shared set of downstream genes important for physiological processes that determine lifespan. We conclude that coordinated transcriptional and post-transcriptional regulation of gene expression promotes longevity.

  11. ETHYLENE-INSENSITIVE5 encodes a 5'-->3' exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2.

    PubMed

    Olmedo, Gabriela; Guo, Hongwei; Gregory, Brian D; Nourizadeh, Saeid D; Aguilar-Henonin, Laura; Li, Hongjiang; An, Fengying; Guzman, Plinio; Ecker, Joseph R

    2006-09-05

    Ethylene is a gaseous plant growth regulator that controls a multitude of developmental and stress responses. Recently, the levels of Arabidopsis EIN3 protein, a key transcription factor mediating ethylene-regulated gene expression, have been demonstrated to increase in response to the presence of ethylene gas. Furthermore, in the absence of ethylene, EIN3 is quickly degraded through a ubiquitin/proteasome pathway mediated by two F-box proteins, EBF1 and EBF2. Here we report the identification of ETHYLENE-INSENSITIVE5 as the 5'-->3' exoribonuclease XRN4. Specifically, we demonstrate that EIN5 is a component of the ethylene signal transduction cascade acting downstream of CTR1 that is required for ethylene-mediated gene expression changes. Furthermore, we find that the ethylene insensitivity of ein5 mutant plants is a consequence of the over-accumulation of EBF1 and EBF2 mRNAs resulting in the under-accumulation of EIN3 even in the presence of ethylene gas. Together, our results suggest that the role of EIN5 in ethylene perception is to antagonize the negative feedback regulation on EIN3 by promoting EBF1 and EBF2 mRNA decay, which consequently allows the accumulation of EIN3 protein to trigger the ethylene response.

  12. NF1 regulation of RAS/ERK signaling is required for appropriate granule neuron progenitor expansion and migration in cerebellar development.

    PubMed

    Sanchez-Ortiz, Efrain; Cho, Woosung; Nazarenko, Inga; Mo, Wei; Chen, Jian; Parada, Luis F

    2014-11-01

    Cerebellar development is regulated by a coordinated spatiotemporal interplay between granule neuron progenitors (GNPs), Purkinje neurons, and glia. Abnormal development can trigger motor deficits, and more recent data indicate important roles in aspects of memory, behavior, and autism spectrum disorders (ASDs). Germline mutation in the NF1 tumor suppressor gene underlies Neurofibromatosis type 1, a complex disease that enhances susceptibility to certain cancers and neurological disorders, including intellectual deficits and ASD. The NF1 gene encodes for neurofibromin, a RAS GTPase-activating protein, and thus negatively regulates the RAS signaling pathway. Here, using mouse models to direct conditional NF1 ablation in either embryonic cerebellar progenitors or neonatal GNPs, we show that neurofibromin is required for appropriate development of cerebellar folia layering and structure. Remarkably, neonatal administration of inhibitors of the ERK pathway reversed the morphological defects. Thus, our findings establish a critical cell-autonomous role for the NF1-RAS-ERK pathway in the appropriate regulation of cerebellar development and provide a basis for using neonatal ERK inhibitor-based therapies to treat NF1-induced cerebellar disorders.

  13. NK cell development requires Tsc1-dependent negative regulation of IL-15-triggered mTORC1 activation

    PubMed Central

    Yang, Meixiang; Chen, Shasha; Du, Juan; He, Junming; Wang, Yuande; Li, Zehua; Liu, Guangao; Peng, Wanwen; Zeng, Xiaokang; Li, Dan; Xu, Panglian; Guo, Wei; Chang, Zai; Wang, Song; Tian, Zhigang; Dong, Zhongjun

    2016-01-01

    Activation of metabolic signalling by IL-15 is required for natural killer (NK) cell development. Here we show that Tsc1, a repressor of mTOR, is dispensable for the terminal maturation, survival and function of NK cells but is critical to restrict exhaustive proliferation of immature NK cells and activation downstream of IL-15 during NK cell development. Tsc1 is expressed in immature NK cells and is upregulated by IL-15. Haematopoietic-specific deletion of Tsc1 causes a marked decrease in the number of NK cells and compromises rejection of ‘missing-self' haematopoietic tumours and allogeneic bone marrow. The residual Tsc1-null NK cells display activated, pro-apoptotic phenotype and elevated mTORC1 activity. Deletion of Raptor, a component of mTORC1, largely reverses these defects. Tsc1-deficient NK cells express increased levels of T-bet and downregulate Eomes and CD122, a subunit of IL-15 receptor. These results reveal a role for Tsc1-dependent inhibition of mTORC1 activation during immature NK cell development. PMID:27601261

  14. Fxyd2 regulates Aδ- and C-fiber mechanosensitivity and is required for the maintenance of neuropathic pain

    PubMed Central

    Ventéo, Stéphanie; Laffray, Sophie; Wetzel, Christiane; Rivat, Cyril; Scamps, Frédérique; Méchaly, Ilana; Bauchet, Luc; Raoul, Cédric; Bourinet, Emmanuel; Lewin, Gary R.; Carroll, Patrick; Pattyn, Alexandre

    2016-01-01

    Identification of the molecular mechanisms governing sensory neuron subtype excitability is a key requisite for the development of treatments for somatic sensory disorders. Here, we show that the Na,K-ATPase modulator Fxyd2 is specifically required for setting the mechanosensitivity of Aδ-fiber low-threshold mechanoreceptors and sub-populations of C-fiber nociceptors, a role consistent with its restricted expression profile in the spinal somatosensory system. We also establish using the spared nerve injury model of neuropathic pain, that loss of Fxyd2 function, either constitutively in Fxyd2−/− mice or acutely in neuropathic rats, efficiently alleviates mechanical hypersensitivity induced by peripheral nerve lesions. The role of Fxyd2 in modulating Aδ- and C-fibers mechanosensitivity likely accounts for the anti-allodynic effect of Fxyd2 knockdown. Finally, we uncover the evolutionarily conserved restricted expression pattern of FXYD2 in human dorsal root ganglia, thus identifying this molecule as a potentially promising therapeutic target for peripheral neuropathic pain management. PMID:27805035

  15. Requirements for Foreign and Domestic Establishment Registration and Listing for Human Drugs, Including Drugs That Are Regulated Under a Biologics License Application, and Animal Drugs. Final rule.

    PubMed

    2016-08-31

    The Food and Drug Administration (FDA) is amending its regulations governing drug establishment registration and drug listing. These amendments reorganize, modify, and clarify current regulations concerning who must register establishments and list human drugs, human drugs that are also biological products, and animal drugs. The final rule requires electronic submission, unless waived in certain circumstances, of registration and listing information. This rulemaking pertains to finished drug products and to active pharmaceutical ingredients (APIs) alone or together with one or more other ingredients. The final rule describes how and when owners or operators of establishments at which drugs are manufactured or processed must register their establishments with FDA and list the drugs they manufacture or process. In addition, the rule makes certain changes to the National Drug Code (NDC) system. We are taking this action to improve management of drug establishment registration and drug listing requirements and make these processes more efficient and effective for industry and for us. This action also supports implementation of the electronic prescribing provisions of the Medicare Prescription Drug, Improvement, and Modernization Act of 2003 (MMA) and the availability of current drug labeling information through DailyMed, a computerized repository of drug information maintained by the National Library of Medicine.

  16. The Forkhead Transcription Factor FOXP2 Is Required for Regulation of p21WAF1/CIP1 in 143B Osteosarcoma Cell Growth Arrest.

    PubMed

    Gascoyne, Duncan M; Spearman, Hayley; Lyne, Linden; Puliyadi, Rathi; Perez-Alcantara, Marta; Coulton, Les; Fisher, Simon E; Croucher, Peter I; Banham, Alison H

    2015-01-01

    Mutations of the forkhead transcription factor FOXP2 gene have been implicated in inherited speech-and-language disorders, and specific Foxp2 expression patterns in neuronal populations and neuronal phenotypes arising from Foxp2 disruption have been described. However, molecular functions of FOXP2 are not completely understood. Here we report a requirement for FOXP2 in growth arrest of the osteosarcoma cell line 143B. We observed endogenous expression of this transcription factor both transiently in normally developing murine osteoblasts and constitutively in human SAOS-2 osteosarcoma cells blocked in early osteoblast development. Critically, we demonstrate that in 143B osteosarcoma cells with minimal endogenous expression, FOXP2 induced by growth arrest is required for up-regulation of p21WAF1/CIP1. Upon growth factor withdrawal, FOXP2 induction occurs rapidly and precedes p21WAF1/CIP1 activation. Additionally, FOXP2 expression could be induced by MAPK pathway inhibition in growth-arrested 143B cells, but not in traditional cell line models of osteoblast differentiation (MG-63, C2C12, MC3T3-E1). Our data are consistent with a model in which transient upregulation of Foxp2 in pre-osteoblast mesenchymal cells regulates a p21-dependent growth arrest checkpoint, which may have implications for normal mesenchymal and osteosarcoma biology.

  17. Federal environmental and occupational toxicology regulations and reporting requirements: a practical approach to what the medical toxicologist needs to know, part 2.

    PubMed

    Schwartz, Michael D; Dell'Aglio, Damon M; Nickle, Richard; Hornsby-Myers, Jennifer

    2014-12-01

    Toxicologists are often called upon to assist in environmental, industrial, occupational and public health assessments. Accordingly, medical toxicologists may find it prudent to be aware of applicable federal toxicological regulations and reporting requirements and of the roles of relevant federal agencies. These regulations are numerous, complex, and have evolved and expanded over time, making it difficult for toxicologists to sustain a current knowledge base. This article reviews the pertinent federal toxicological reporting requirements with regards to the Toxic Substances Control Act (TSCA), the Atomic Energy Act (AEA), the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), the Resource Conservation and Recovery Act (RCRA), the Clean Air Act, the Clean Water Act, the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the Emergency Planning and Community Right to Know Act (EPCRA), the Occupational Safety and Health Act, the Department of Transportation, and information about the National Response Center. We reference internet-based government resources and offer direct links to applicable websites in an attempt to offer rapid and current sources of practical information. The format of the article is a series of hypothetical scenarios followed by commentary. Discussions of the Safe Drinking Water Act and the Food, Drug, and Cosmetic Act and the Dietary Supplement Health and Education Act are beyond the scope of this paper. For those desiring a more in depth discussion of the relevant federal environmental laws and statutes, and applicable case law, the reader is directed to resources such as the Environmental Law Handbook, the websites of individual laws found at www.epa.gov and the decisions of individual courts of appeal. It is our hope that this article provides not only useful practical information for the practicing toxicologist, but also serves as a key reference for Medical Toxicology core content on environmental

  18. Federal environmental and occupational toxicology regulations and reporting requirements: a practical approach to what the medical toxicologist needs to know, part 1.

    PubMed

    Schwartz, Michael D; Dell'Aglio, Damon M; Nickle, Richard; Hornsby-Myers, Jennifer

    2014-09-01

    Toxicologists are often called upon to assist in environmental, industrial, occupational and public health assessments. Accordingly, medical toxicologists may find it prudent to be aware of applicable federal toxicological regulations and reporting requirements and of the roles of relevant federal agencies. These regulations are numerous, complex, and have evolved and expanded over time, making it difficult for toxicologists to sustain a current knowledge base. This article reviews the pertinent federal toxicological reporting requirements with regard to the Toxic Substances Control Act (TSCA), the Atomic Energy Act (AEA), the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), the Resource Conservation and Recovery Act (RCRA), the Clean Air Act, the Clean Water Act, the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the Emergency Planning and Community Right to Know Act (EPCRA), the Occupational Safety and Health Act, the Department of Transportation, and information about the National Response Center. We reference internet-based government resources and offer direct links to applicable websites in an attempt to offer rapid and current sources of practical information. The format of the article is a series of hypothetical scenarios followed by commentary. Discussions of the Safe Drinking Water Act, the Food, Drug, and Cosmetic Act, and the Dietary Supplement Health and Education Act are beyond the scope of this paper. For those desiring a more in-depth discussion of the relevant federal environmental laws and statutes and applicable case law, the reader is directed to resources such as the Environmental Law Handbook, the websites of individual laws found at www.epa.gov and the decisions of individual courts of appeal. It is our hope that this article provides not only useful practical information for the practicing toxicologist but also serves as a key reference for medical toxicology core content on environmental laws and

  19. A Non-Classical LysR-Type Transcriptional Regulator PA2206 Is Required for an Effective Oxidative Stress Response in Pseudomonas aeruginosa

    PubMed Central

    Mooij, Marlies J.; O'Gara, Fergal

    2013-01-01

    LysR-type transcriptional regulators (LTTRs) are emerging as key circuit components in regulating microbial stress responses and are implicated in modulating oxidative stress in the human opportunistic pathogen Pseudomonas aeruginosa. The oxidative stress response encapsulates several strategies to overcome the deleterious effects of reactive oxygen species. However, many of the regulatory components and associated molecular mechanisms underpinning this key adaptive response remain to be characterised. Comparative analysis of publically available transcriptomic datasets led to the identification of a novel LTTR, PA2206, whose expression was altered in response to a range of host signals in addition to oxidative stress. PA2206 was found to be required for tolerance to H2O2 in vitro and lethality in vivo in the Zebrafish embryo model of infection. Transcriptomic analysis in the presence of H2O2 showed that PA2206 altered the expression of 58 genes, including a large repertoire of oxidative stress and iron responsive genes, independent of the master regulator of oxidative stress, OxyR. Contrary to the classic mechanism of LysR regulation, PA2206 did not autoregulate its own expression and did not influence expression of adjacent or divergently transcribed genes. The PA2214-15 operon was identified as a direct target of PA2206 with truncated promoter fragments revealing binding to the 5′-ATTGCCTGGGGTTAT-3′ LysR box adjacent to the predicted −35 region. PA2206 also interacted with the pvdS promoter suggesting a global dimension to the PA2206 regulon, and suggests PA2206 is an important regulatory component of P. aeruginosa adaptation during oxidative stress. PMID:23382903

  20. Convergence of multiple signaling pathways is required to coordinately up-regulate mtDNA and mitochondrial biogenesis during T cell activation

    PubMed Central

    D’Souza, Anthony D.; Parikh, Neal; Kaech, Susan M.; Shadel, Gerald S.

    2009-01-01

    The quantity and activity of mitochondria vary dramatically in tissues and are modulated in response to changing cellular energy demands and environmental factors. The amount of mitochondrial DNA (mtDNA), which encodes essential subunits of the oxidative phosphorylation complexes required for cellular ATP production, is also tightly regulated, but by largely unknown mechanisms. Using murine T cells as a model system, we have addressed how specific signaling pathways influence mitochondrial biogenesis and mtDNA levels. T cell receptor (TCR) activation results in a large increase in mitochondrial mass and membrane potential and a corresponding increase of mtDNA copy number, indicating the vital role for mitochondrial function for the growth and proliferation of these cells. Independent activation of protein kinase C (via PMA) or calcium-related pathways (via ionomycin) had differential and sub-maximal effects on these mitochondrial parameters, as did activation of naïve T cells with proliferative cytokines. Thus, the robust mitochondrial biogenesis response observed upon TCR activation requires synergy of multiple downstream signaling pathways. One such pathway involves AMP-activated protein kinase (AMPK), which we show has an unprecedented role in negatively regulating mitochondrial biogenesis that is mammalian target of rapamycin (mTOR)-dependent. That is, inhibition of AMPK after TCR signaling commences results in excessive, but uncoordinated mitochondrial proliferation. We propose that mitochondrial biogenesis is not under control of a master regulatory circuit, but rather requires the convergence of multiple signaling pathways with distinct downstream consequences on the organelle’s structure, composition, and function. PMID:17890163

  1. Requirements for distinct steps of phospholipase Cgamma2 regulation, membrane-raft-dependent targeting and subsequent enzyme activation in B-cell signalling.

    PubMed Central

    Rodriguez, Rosie; Matsuda, Miho; Storey, Amy; Katan, Matilda

    2003-01-01

    Studies of PLCgamma (phospholipase Cgamma) have identified a number of regulatory components required for signalling; however, molecular mechanisms and the relationship between events leading to translocation and an increase of substrate hydrolysis have not been well defined. The addition of a membrane-targeting tag to many signal transducers results in constitutive activation, suggesting that these processes could be closely linked and difficult to dissect. The present study of PLCgamma2 regulation by cross-linking of the BCR (B-cell antigen receptor) or H2O2 stress in DT40 B-cells, demonstrated that the membrane targeting is a separate step from further changes that result in enzyme activation and substrate hydrolysis. Furthermore, we have defined the roles of different domains of PLCgamma2 and, using a panel of cell lines deficient in components linked to PLCgamma2 regulation, the involvement of signalling molecules with respect to each of the steps. We have found that only the lipid-raft-targeted Lyn-PLCgamma2 construct, unlike non-specific membrane targeting, overcame the requirement for the adapter protein BLNK (B-cell linker). The stable expression of Lyn-PLCgamma2 was not accompanied by an increase in substrate hydrolysis in resting cells, which followed stimulation and specifically required the presence and/or activation of Syk, Btk, phosphoinositide 3-kinase but not BLNK, as established using deficient cell lines or specific inhibitors. Based on mutational analysis of the specific tyrosine residues [Tyr753-->Phe (Y753F)/Y759F] and SH2 (Src homology 2) domains (R564A/R672A) in the context of Lyn-PLCgamma2, we found that Tyr753/Tyr759 were essential, whereas the PLCgamma2 SH2 domains did not have an important role in the transient activation of Lyn-PLCgamma2 but may serve to stabilize an activated form in sustained activation. PMID:12780340

  2. A dietary polyphenol resveratrol acts to provide neuroprotection in recurrent stroke models by regulating AMPK and SIRT1 signaling, thereby reducing energy requirements during ischemia.

    PubMed

    2016-04-01

    The above article from European Journal of Neuroscience, published online on 5 March 2013 in Wiley Online Library (http://onlinelibrary.wiley.com/doi/10.1111/ejn.12162/full), has been retracted by agreement between the Editors-in-Chief, Paul Bolam and John Foxe, the authors and John Wiley & Sons Ltd. The retraction has been agreed as Dr Phillip Barber has informed the publisher that he had seen neither the original data nor any version of the manuscript, and had not been involved in the work reported. A subsequent Institutional investigation found evidence of misconduct on the part of the submitting author. Reference Wang, L.-M., Wang, Y.-J., Cui, M., Luo, W.-J., Wang, X.-J., Barber, P.A. & Chen, Z.-Y. (2013) A dietary polyphenol resveratrol acts to provide neuroprotection in recurrent stroke models by regulating AMPK and SIRT1 signaling, thereby reducing energy requirements during ischemia.

  3. Proper regulation of Cdc42 activity is required for tight actin concentration at the equator during cytokinesis in adherent mammalian cells.

    PubMed

    Zhu, Xiaodong; Wang, Junxia; Moriguchi, Kazuki; Liow, Lu Ting; Ahmed, Sohail; Kaverina, Irina; Murata-Hori, Maki

    2011-10-01

    Cytokinesis in mammalian cells requires actin assembly at the equatorial region. Although functions of RhoA in this process have been well established, additional mechanisms are likely involved. We have examined if Cdc42 is involved in actin assembly during cytokinesis. Depletion of Cdc42 had no apparent effects on the duration of cytokinesis, while overexpression of constitutively active Cdc42 (CACdc42) caused cytokinesis failure in normal rat kidney epithelial cells. Cells depleted of Cdc42 displayed abnormal cell morphology and caused a failure of tight accumulation of actin and RhoA at the equator. In contrast, in cells overexpressing CACdc42, actin formed abnormal bundles and RhoA was largely eliminated from the equator. Our results suggest that accurate regulation of Cdc42 activity is crucial for proper equatorial actin assembly and RhoA localization during cytokinesis. Notably, our observations also suggest that tight actin concentration is not essential for cytokinesis in adherent mammalian cells.

  4. The J-protein AtDjB1 is required for mitochondrial complex I activity and regulates growth and development through ROS-mediated auxin signalling.

    PubMed

    Jia, Ning; Lv, Ting-Ting; Li, Mi-Xin; Wei, Shan-Shan; Li, Yan-Yi; Zhao, Chun-Lan; Li, Bing

    2016-05-01

    AtDjB1 is a mitochondria-located J-protein in Arabidopsis thaliana It is involved in the regulation of plant growth and development; however, the exact mechanisms remain to be determined. We performed comparison analyses of phenotypes, auxin signalling, redox status, mitochondrial structure and function using wild-type plants, AtDjB1 mutants, rescued AtDjB1 mutants by AtDjB1 or YUCCA2 (an auxin synthesis gene), and AtDjB1 overexpression plants. AtDjB1 mutants (atj1-1 or atj1-4) exhibited inhibition of growth and development and reductions in the level of IAA and the expression of YUCCA genes compared to wild-type plants. The introduction of AtDjB1 or YUCCA2 into atj1-1 largely rescued phenotypic defects and the IAA level, indicating that AtDjB1 probably regulates growth and development via auxin. Furthermore, atj1-1 plants displayed a significant reduction in amount/activity of mitochondrial complex I compared to wild-type plants; this resulted in the accumulation of reactive oxygen species (ROS). Moreover, exogenous H2O2 markedly inhibited the expression of YUCCA genes in wild-type plants. In contrast, the reducing agent ascorbate increased the expression of YUCCA genes and IAA level in atj1-1 plants, indicating that the low auxin level observed in atj1-1 was probably due to the high oxidation status. Overall, the data presented here suggest that AtDjB1 is required for mitochondrial complex I activity and regulates growth and development through ROS-mediated auxin signalling in Arabidopsis.

  5. The activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) is required for memory consolidation of pavlovian fear conditioning in the lateral amygdala.

    PubMed

    Ploski, Jonathan E; Pierre, Vicki J; Smucny, Jason; Park, Kevin; Monsey, Melissa S; Overeem, Kathie A; Schafe, Glenn E

    2008-11-19

    The activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) is an immediate early gene that has been widely implicated in hippocampal-dependent learning and memory and is believed to play an integral role in synapse-specific plasticity. Here, we examined the role of Arc/Arg3.1 in amygdala-dependent Pavlovian fear conditioning. We first examined the regulation of Arc/Arg3.1 mRNA and protein after fear conditioning and LTP-inducing stimulation of thalamic inputs to the lateral amygdala (LA). Quantitative real-time PCR, in situ hybridization, Western blotting and immunohistochemistry revealed a significant upregulation of Arc/Arg3.1 mRNA and protein in the LA relative to controls. In behavioral experiments, intra-LA infusion of an Arc/Arg3.1 antisense oligodeoxynucleotide (ODN) was observed to be anatomically restricted to the LA, taken up by LA cells, and to promote significant knockdown of Arc/Arg3.1 protein. Rats given intra-LA infusions of multiple doses of the Arc/Arg3.1 ODN showed an impairment of LTM (tested approximately 24 later), but no deficit in STM (tested 3 h later) relative to controls infused with scrambled ODN. Finally, to determine whether upregulation of Arc/Arg3.1 occurs downstream of ERK/MAPK activation, we examined Arc/Arg3.1 expression in rats given intra-LA infusion of the MEK inhibitor U0126. Relative to vehicle controls, infusion of U0126 impaired training-induced increases in Arc/Arg3.1 expression. These findings suggest that Arc/Arg3.1 expression in the amygdala is required for fear memory consolidation, and further suggest that Arc/Arg3.1 regulation in the LA is downstream of the ERK/MAPK signaling pathway.

  6. The Amino Acid Arginine 210 of the Response Regulator HrpG of Xanthomonas citri subsp. citri Is Required for HrpG Function in Virulence.

    PubMed

    Ficarra, Florencia A; Garofalo, Cecilia G; Gottig, Natalia; Ottado, Jorgelina

    2015-01-01

    Xanthomonas citri subsp. citri colonizes its hosts through the trafficking of effector proteins to the plant cell by the type III protein secretion system. In X. citri subsp. citri, as in other plant pathogens, the hrp cluster encodes the type III protein secretion system and is regulated by the transcription factors HrpG and HrpX. HrpG belongs to the OmpR family's response regulator of EnvZ/OmpR two-component signal transduction system. Here, we show that the arginine 210 residue is crucial for the transcriptional activity of HrpG revealed by the absence of disease in host plants and hypersensitive response in non-host plants when a strain carrying this point mutation is used in plant infiltration assays. Also, this strain showed decreased expression levels of hrp genes in bacteria grown in culture or when they were recovered from citrus leaves. Moreover, we show for the first time that HrpG binds to both hrpX and its own promoter, and the change of the arginine 210 by a cysteine does not prevent the binding to both promoters. Nevertheless, in vitro hrpX transcription was observed only with HrpG whereas no transcription was detected with the R210C mutant. HrpG was able to interact with itself as well as with the mutant R210C suggesting that it functions as a dimer. The mutant protein R210C showed altered protease sensitivity, suggesting that Arg210 is essential for protein active conformation and thus for transcriptional activity. Our results indicate that arginine 210 in HrpG, as it may occur with this conserved residue in other members of this family of response regulators, is not required for DNA binding whereas is essential for hrp genes transcription and therefore for pathogenicity and HR induction.

  7. The Acinetobacter baumannii Two-Component System AdeRS Regulates Genes Required for Multidrug Efflux, Biofilm Formation, and Virulence in a Strain-Specific Manner

    PubMed Central

    Richmond, Grace E.; Evans, Laura P.; Anderson, Michele J.; Wand, Matthew E.; Bonney, Laura C.; Ivens, Alasdair; Chua, Kim Lee; Webber, Mark A.; Sutton, J. Mark; Peterson, Marnie L.

    2016-01-01

    ABSTRACT The opportunistic pathogen Acinetobacter baumannii is able to persist in the environment and is often multidrug resistant (MDR), causing difficulties in the treatment of infections. Here, we show that the two-component system AdeRS, which regulates the production of the AdeABC multidrug resistance efflux pump, is required for the formation of a protective biofilm in an ex vivo porcine mucosal model, which mimics a natural infection of the human epithelium. Interestingly, deletion of adeB impacted only on the ability of strain AYE to form a biofilm on plastic and only on the virulence of strain Singapore 1 for Galleria mellonella. RNA-Seq revealed that loss of AdeRS or AdeB significantly altered the transcriptional landscape, resulting in the changed expression of many genes, notably those associated with antimicrobial resistance and virulence interactions. For example, A. baumannii lacking AdeRS displayed decreased expression of adeABC, pil genes, com genes, and a pgaC-like gene, whereas loss of AdeB resulted in increased expression of pil and com genes and decreased expression of ferric acinetobactin transport system genes. These data define the scope of AdeRS-mediated regulation, show that changes in the production of AdeABC mediate important phenotypes controlled by AdeRS, and suggest that AdeABC is a viable target for antimicrobial drug and antibiofilm discovery. PMID:27094331

  8. The master regulator for biofilm formation in Bacillus subtilis governs the expression of an operon encoding secreted proteins required for the assembly of complex multicellular communities.

    SciTech Connect

    Branda, Steven S.; Losick, Richard; Kolter, Roberto; Kearns, Daniel B.; Chu, Frances

    2005-08-01

    Wild strains of Bacillus subtilis are capable of forming architecturally complex communities of cells known as biofilms. Critical to biofilm formation is the eps operon, which is believed to be responsible for the biosynthesis of an exopolysaccharide that binds chains of cells together in bundles. We report that transcription of eps is under the negative regulation of SinR, a repressor that was found to bind to multiple sites in the regulatory region of the operon. Mutations in sinR bypassed the requirement in biofilm formation of two genes of unknown function, ylbF and ymcA, and sinI, which is known to encode an antagonist of SinR. We propose that these genes are members of a pathway that is responsible for counteracting SinR-mediated repression. We further propose that SinR is a master regulator that governs the transition between a planktonic state in which the bacteria swim as single cells in liquid or swarm in small groups over surfaces, and a sessile state in which the bacteria adhere to each other to form bundled chains and assemble into multicellular communities.

  9. Casein kinase II is required for proper cell division and acts as a negative regulator of centrosome duplication in Caenorhabditis elegans embryos

    PubMed Central

    Medley, Jeffrey C.; Kabara, Megan M.; Stubenvoll, Michael D.; DeMeyer, Lauren E.

    2017-01-01

    ABSTRACT Centrosomes are the primary microtubule-organizing centers that orchestrate microtubule dynamics during the cell cycle. The correct number of centrosomes is pivotal for establishing bipolar mitotic spindles that ensure accurate segregation of chromosomes. Thus, centrioles must duplicate once per cell cycle, one daughter per mother centriole, the process of which requires highly coordinated actions among core factors and modulators. Protein phosphorylation is shown to regulate the stability, localization and activity of centrosome proteins. Here, we report the function of Casein kinase II (CK2) in early Caenorhabditis elegans embryos. The catalytic subunit (KIN-3/CK2α) of CK2 localizes to nuclei, centrosomes and midbodies. Inactivating CK2 leads to cell division defects, including chromosome missegregation, cytokinesis failure and aberrant centrosome behavior. Furthermore, depletion or inhibiting kinase activity of CK2 results in elevated ZYG-1 levels at centrosomes, restoring centrosome duplication and embryonic viability to zyg-1 mutants. Our data suggest that CK2 functions in cell division and negatively regulates centrosome duplication in a kinase-dependent manner. PMID:27881437

  10. Zebrafish cyclin Dx is required for development of motor neuron progenitors, and its expression is regulated by hypoxia-inducible factor 2α

    PubMed Central

    Lien, Huang-Wei; Yuan, Rey-Yue; Chou, Chih-Ming; Chen, Yi-Chung; Hung, Chin-Chun; Hu, Chin-Hwa; Hwang, Sheng-Ping L.; Hwang, Pung-Pung; Shen, Chia-Ning; Chen, Chih-Lung; Cheng, Chia-Hsiung; Huang, Chang-Jen

    2016-01-01

    Cyclins play a central role in cell-cycle regulation; in mammals, the D family of cyclins consists of cyclin D1, D2, and D3. In Xenopus, only homologs of cyclins D1 and D2 have been reported, while a novel cyclin, cyclin Dx (ccndx), was found to be required for the maintenance of motor neuron progenitors during embryogenesis. It remains unknown whether zebrafish possess cyclin D3 or cyclin Dx. In this study, we identified a zebrafish ccndx gene encoding a protein which can form a complex with Cdk4. Through whole-mount in situ hybridization, we observed that zccndx mRNA is expressed in the motor neurons of hindbrain and spinal cord during development. Analysis of a 4-kb promoter sequence of the zccndx gene revealed the presence of HRE sites, which can be regulated by HIF2α. Morpholino knockdown of zebrafish Hif2α and cyclin Dx resulted in the abolishment of isl1 and oligo2 expression in the precursors of motor neurons, and also disrupted axon growth. Overexpression of cyclin Dx mRNA in Hif2α morphants partially rescued zccndx expression. Taken together, our data indicate that zebrafish cyclin Dx plays a role in maintaining the precursors of motor neurons. PMID:27323909

  11. AKT induces erythroid-cell maturation of JAK2-deficient fetal liver progenitor cells and is required for Epo regulation of erythroid-cell differentiation.

    PubMed

    Ghaffari, Saghi; Kitidis, Claire; Zhao, Wei; Marinkovic, Dragan; Fleming, Mark D; Luo, Biao; Marszalek, Joseph; Lodish, Harvey F

    2006-03-01

    AKT serine threonine kinase of the protein kinase B (PKB) family plays essential roles in cell survival, growth, metabolism, and differentiation. In the erythroid system, AKT is known to be rapidly phosphorylated and activated in response to erythropoietin (Epo) engagement of Epo receptor (EpoR) and to sustain survival signals in cultured erythroid cells. Here we demonstrate that activated AKT complements EpoR signaling and supports erythroid-cell differentiation in wild-type and JAK2-deficient fetal liver cells. We show that erythroid maturation of AKT-transduced cells is not solely dependent on AKT-induced cell survival or proliferation signals, suggesting that AKT transduces also a differentiation-specific signal downstream of EpoR in erythroid cells. Down-regulation of expression of AKT kinase by RNA interference, or AKT activity by expression of dominant negative forms, inhibits significantly fetal liver-derived erythroid-cell colony formation and gene expression, demonstrating that AKT is required for Epo regulation of erythroid-cell maturation.

  12. Tomato LeTHIC is an Fe-requiring HMP-P synthase involved in thiamine synthesis and regulated by multiple factors.

    PubMed

    Zhao, Weina; Cheng, Xudong; Huang, Zongan; Fan, Huajie; Wu, Huilan; Ling, Hong-Qing

    2011-06-01

    Thiamine is a key primary metabolite which is necessary for the viability of all organisms. It is a dietary requirement for mammals because only prokaryotes, fungi and plants are thiamine prototrophs. In contrast to the well documented biosynthetic mechanism in bacteria, much remains to be deciphered in plants. In this work, a tomato thiamine-auxotrophic (thiamineless, tl) mutant was characterized. The tl mutant occurs due to inactivation of LeTHIC transcription as a result of insertion of a large unknown DNA fragment in its 5'-untranslated region. Expression of wild-type LeTHIC in tl plants was able to complement the mutant to wild type. LeTHIC possessed the same function as E.cTHIC [an Escherichia coli 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P) synthase involved in synthesis of the pyrimidine moiety of thiamine] because expression of LeTHIC rescued THIC-deficient strains of E. coli under culture conditions without thiamine supplementation, suggesting that plants employ a bacteria-like route of pyrimidine moiety synthesis. LeTHIC is an Fe-S cluster protein localized in chloroplasts, and Fe is required for maintenance of its enzyme activity because Fe deficiency resulted in a significant reduction of thiamine content in tomato leaves. Further, we also showed that the expression of LeTHIC is tightly regulated at the transcriptional and post-transcriptional level by multiple factors, such as light, Fe status and thiamine pyrophosphate (TPP)-riboswitch. The results clearly demonstrated that a feedback regulation mechanism is involved in synthesis of the pyrimidine moiety for controlling thiamine synthesis in tomato. Our results provide a new insight into understanding the molecular mechanism of thiamine biosynthesis in plants.

  13. Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver.

    PubMed

    Hotta, Yuhei; Nakamura, Hirotoshi; Konishi, Morichika; Murata, Yusuke; Takagi, Hiroyuki; Matsumura, Shigenobu; Inoue, Kazuo; Fushiki, Tohru; Itoh, Nobuyuki

    2009-10-01

    Fibroblast growth factors (Fgfs) are polypeptide growth factors with diverse functions. Fgf21, a unique member of the Fgf family, is expected to function as a metabolic regulator in an endocrine manner. Hepatic Fgf21 expression was increased by fasting. The phenotypes of hepatic Fgf21 transgenic or knockdown mice and high-fat, low-carbohydrate ketogenic diet-fed mice suggests that Fgf21 stimulates lipolysis in the white adipose tissue during normal feeding and is required for ketogenesis and triglyceride clearance in the liver during fasting. However, the physiological roles of Fgf21 remain unclear. To elucidate the physiological roles of Fgf21, we generated Fgf21 knockout (KO) mice by targeted disruption. Fgf21 KO mice were viable, fertile, and seemingly normal. Food intake, oxygen consumption, and energy expenditure were also essentially unchanged in Fgf21 KO mice. However, hypertrophy of adipocytes, decreased lipolysis in adipocytes, and decreased blood nonesterified fatty acid levels were observed when Fgf21 KO mice were fed normally. In contrast, increased lipolysis in adipocytes and increased blood nonesterified fatty acid levels were observed in Fgf21 KO mice by fasting for 24 h, indicating that Fgf21 stimulates lipolysis in the white adipose tissue during feeding but inhibits it during fasting. In contrast, unexpectedly, hepatic triglyceride levels were essentially unchanged in Fgf21 KO mice. In addition, ketogenesis in Fgf21 KO mice was not impaired by fasting for 24 h. The present results indicate that Fgf21 regulates lipolysis in adipocytes in response to the metabolic state but is not required for ketogenesis and triglyceride clearance in the liver.

  14. Calcium-regulation of mitochondrial respiration maintains ATP homeostasis and requires ARALAR/AGC1-malate aspartate shuttle in intact cortical neurons.

    PubMed

    Llorente-Folch, Irene; Rueda, Carlos B; Amigo, Ignacio; del Arco, Araceli; Saheki, Takeyori; Pardo, Beatriz; Satrústegui, Jorgina

    2013-08-28

    Neuronal respiration is controlled by ATP demand and Ca2+ but the roles played by each are unknown, as any Ca2+ signal also impacts on ATP demand. Ca2+ can control mitochondrial function through Ca2+-regulated mitochondrial carriers, the aspartate-glutamate and ATP-Mg/Pi carriers, ARALAR/AGC1 and SCaMC-3, respectively, or in the matrix after Ca2+ transport through the Ca2+ uniporter. We have studied the role of Ca2+ signaling in the regulation of mitochondrial respiration in intact mouse cortical neurons in basal conditions and in response to increased workload caused by increases in [Na+]cyt (veratridine, high-K+ depolarization) and/or [Ca2+]cyt (carbachol). Respiration in nonstimulated neurons on 2.5-5 mm glucose depends on ARALAR-malate aspartate shuttle (MAS), with a 46% drop in aralar KO neurons. All stimulation conditions induced increased OCR (oxygen consumption rate) in the presence of Ca2+, which was prevented by BAPTA-AM loading (to preserve the workload), or in Ca2+-free medium (which also lowers cell workload). SCaMC-3 limits respiration only in response to high workloads and robust Ca2+ signals. In every condition tested Ca2+ activation of ARALAR-MAS was required to fully stimulate coupled respiration by promoting pyruvate entry into mitochondria. In aralar KO neurons, respiration was stimulated by veratridine, but not by KCl or carbachol, indicating that the Ca2+ uniporter pathway played a role in the first, but not in the second condition, even though KCl caused an increase in [Ca2+]mit. The results suggest a requirement for ARALAR-MAS in priming pyruvate entry in mitochondria as a step needed to activate respiration by Ca2+ in response to moderate workloads.

  15. Calcium responses mediated by type 2 IP3-receptors are required for osmotic volume regulation of retinal glial cells in mice.

    PubMed

    Lipp, Stephan; Wurm, Antje; Pannicke, Thomas; Wiedemann, Peter; Reichenbach, Andreas; Chen, Ju; Bringmann, Andreas

    2009-06-26

    Prevention of osmotic swelling of retinal glial (Müller) cells is required to avoid detrimental decreases in the extracellular space volume during intense neuronal activity. Here, we show that glial cells in slices of the wildtype mouse retina maintain the volume of their somata constant up to approximately 4 min of perfusion with a hypoosmolar solution. However, calcium chelation with BAPTA/AM induced a rapid swelling of glial cell bodies. In glial cells of retinas from inositol-1,4,5-trisphosphate-receptor type 2-deficient (IP(3)R2(-/-)) mice, hypotonic conditions caused swelling of the cell bodies without delay. Exogenous ATP (acting at P2Y(1) receptors) prevented the swelling of glial cells in retinal slices from wildtype but not from IP(3)R2(-/-) mice. Müller cells from IP(3)R2(-/-) mice displayed a strongly reduced amplitude of the ATP-evoked calcium responses as compared to cells from wildtype mice. It is concluded that endogenous calcium signaling mediated by IP(3)R2 is required for the osmotic volume regulation of retinal glial cells.

  16. IL-2 production in developing Th1 cells is regulated by heterodimerization of RelA and T-bet and requires T-bet serine residue 508.

    PubMed

    Hwang, Eun Sook; Hong, Jeong-Ho; Glimcher, Laurie H

    2005-11-07

    Interleukin (IL)-2 is the predominant cytokine that is produced by naive Th cells in a primary response. It is required for proliferation and differentiation of Th precursor cells into effector cells. Initial high-level IL-2 production is followed by its decline, and the concomitant induction of cytokines that are typical of the differentiated state. Although the factors that are responsible for the early induction of IL-2 are well defined, the mechanisms that are responsible for its down-regulation in later stages of Th development have not been studied as much. Previous work from our laboratory revealed a repressor function for the T-box transcription factor, T-bet, in IL-2 gene transcription. Here, we report that T-bet(S508) is required for the optimal repression of IL-2 production in developing Th1 cells. Phosphorylation of T-bet(S508) by casein kinase I and glycogen synthase kinase-3 kinases accompanies T-bet's interaction with the RelA nuclear factor-kappaB transcription factor. Heterodimerization of T-bet and RelA interferes with the binding of RelA to the IL-2 promoter, and hence, transcriptional activation of the IL-2 gene by RelA.

  17. Modulation of cell-cycle dynamics is required to regulate the number of cerebellar GABAergic interneurons and their rhythm of maturation.

    PubMed

    Leto, Ketty; Bartolini, Alice; Di Gregorio, Alessandra; Imperiale, Daniele; De Luca, Annarita; Parmigiani, Elena; Filipkowski, Robert K; Kaczmarek, Leszek; Rossi, Ferdinando

    2011-08-01

    The progenitors of cerebellar GABAergic interneurons proliferate up to postnatal development in the prospective white matter, where they give rise to different neuronal subtypes, in defined quantities and according to precise spatiotemporal sequences. To investigate the mechanisms that regulate the specification of distinct interneuron phenotypes, we examined mice lacking the G1 phase-active cyclin D2. It has been reported that these mice show severe reduction of stellate cells, the last generated interneuron subtype. We found that loss of cyclin D2 actually impairs the whole process of interneuron genesis. In the mutant cerebella, progenitors of the prospective white matter show reduced proliferation rates and enhanced tendency to leave the cycle, whereas young postmitotic interneurons undergo severe delay of their maturation and migration. As a consequence, the progenitor pool is precociously exhausted and the number of interneurons is significantly reduced, although molecular layer interneurons are more affected than those of granular layer or deep nuclei. The characteristic inside-out sequence of interneuron placement in the cortical layers is also reversed, so that later born cells occupy deeper positions than earlier generated ones. Transplantation experiments show that the abnormalities of cyclin D2(-/-) interneurons are largely caused by cell-autonomous mechanisms. Therefore, cyclin D2 is not required for the specification of particular interneuron subtypes. Loss of this protein, however, disrupts regulatory mechanisms of cell cycle dynamics that are required to determine the numbers of interneurons of different types and impairs their rhythm of maturation and integration in the cerebellar circuitry.

  18. Neurotrophins elevate cAMP to reach a threshold required to overcome inhibition by MAG through extracellular signal-regulated kinase-dependent inhibition of phosphodiesterase.

    PubMed

    Gao, Ying; Nikulina, Elena; Mellado, Wilfredo; Filbin, Marie T

    2003-12-17

    Inhibitors of regeneration in myelin, such as myelin-associated glycoprotein (MAG), play an important role in preventing regeneration after CNS injury. Elevation of cAMP, either with dibutyryl-cAMP (db-cAMP) or by priming with a variety of neurotrophins, overcomes inhibition by MAG and myelin. However, activation of cAMP is not generally regarded as a signaling pathway for neurotrophins. Here we show that the NGF-like neurotrophins overcome inhibition by MAG by activating tyrosine kinase receptors. We also show that activation of extracellular signal-regulated kinase (Erk) by BDNF is required to overcome inhibition by MAG, and that activated Erk transiently inhibits phosphodiesterase 4 (PDE4), the enzyme that hydrolyzes cAMP. Inhibition of PDE4 then allows cAMP to increase and so initiates the pathway to overcome inhibition. Furthermore, we also show that basal levels of Erk activation and basal cAMP levels contribute to the effects of db-cAMP by pushing the combined levels of cAMP above a threshold required to overcome inhibition. Together, these results not only show how NGF-like neurotrophins can elevate cAMP and overcome inhibition but also point to a novel mechanism of cross talk in neurons from the Erk to the cAMP signaling pathways.

  19. Cell type-specific filamin complex regulation by a novel class of HECT ubiquitin ligase is required for normal cell motility and patterning

    PubMed Central

    Blagg, Simone L.; Battom, Suzanne E.; Annesley, Sarah J.; Keller, Thomas; Parkinson, Katie; Wu, Jasmine M. F.; Fisher, Paul R.; Thompson, Christopher R. L.

    2011-01-01

    Differential cell motility, which plays a key role in many developmental processes, is perhaps most evident in examples of pattern formation in which the different cell types arise intermingled before sorting out into discrete tissues. This is thought to require heterogeneities in responsiveness to differentiation-inducing signals that result in the activation of cell type-specific genes and ‘salt and pepper’ patterning. How differential gene expression results in cell sorting is poorly defined. Here we describe a novel gene (hfnA) that provides the first mechanistic link between cell signalling, differential gene expression and cell type-specific sorting in Dictyostelium. HfnA defines a novel group of evolutionarily conserved HECT ubiquitin ligases with an N-terminal filamin domain (HFNs). HfnA expression is induced by the stalk differentiation-inducing factor DIF-1 and is restricted to a subset of prestalk cells (pstO). hfnA− pstO cells differentiate but their sorting out is delayed. Genetic interactions suggest that this is due to misregulation of filamin complex activity. Overexpression of filamin complex members phenocopies the hfnA− pstO cell sorting defect, whereas disruption of filamin complex function in a wild-type background results in pstO cells sorting more strongly. Filamin disruption in an hfnA− background rescues pstO cell localisation. hfnA− cells exhibit altered slug phototaxis phenotypes consistent with filamin complex hyperactivity. We propose that HfnA regulates filamin complex activity and cell type-specific motility through the breakdown of filamin complexes. These findings provide a novel mechanism for filamin regulation and demonstrate that filamin is a crucial mechanistic link between responses to differentiation signals and cell movement in patterning based on ‘salt and pepper’ differentiation and sorting out. PMID:21389049

  20. The Vaccinia Virus O1 Protein Is Required for Sustained Activation of Extracellular Signal-Regulated Kinase 1/2 and Promotes Viral Virulence

    PubMed Central

    Lukassen, Susanne; Späth, Michaela; Wolferstätter, Michael; Babel, Eveline; Brinkmann, Kay; Wielert, Ursula; Chaplin, Paul; Suter, Mark

    2012-01-01

    Sustained activation of the Raf/MEK/extracellular signal-regulated kinase (ERK) pathway in infected cells has been shown to be crucial for full replication efficiency of orthopoxviruses in cell culture. In infected cells, this pathway is mainly activated by the vaccinia virus growth factor (VGF), an epidermal growth factor (EGF)-like protein. We show here that chorioallantois vaccinia virus Ankara (CVA), but not modified vaccinia virus Ankara (MVA), induced sustained activation of extracellular signal-regulated kinase 1/2 (ERK1/2) in infected human 293 cells, although both viruses direct secretion of functional VGF. A CVA mutant lacking the O1L gene (CVA-ΔO1L) demonstrated that the O1 protein was required for sustained upregulation of the ERK1/2 pathway in 293 cells as well as in other mammalian cell lines. The highly conserved orthopoxvirus O1L gene encodes a predicted 78-kDa protein with a hitherto-unknown function. CVA-ΔO1L showed reduced plaque size and an attenuated cytopathic effect (CPE) in infected cell cultures and reduced virulence and spread from lungs to ovaries in intranasally infected BALB/c mice. Reinsertion of an intact O1L gene into MVA, which in its original form harbors a fragmented O1L open reading frame (ORF), restored ERK1/2 activation in 293 cells but did not increase replication and spread of MVA in human or other mammalian cell lines. Thus, the O1 protein was crucial for sustained ERK1/2 activation in CVA- and MVA-infected human cells, complementing the autocrine function of VGF, and enhanced virulence in vivo. PMID:22171261

  1. Fragile X mental retardation protein is required for rapid experience-dependent regulation of the potassium channel Kv3.1b.

    PubMed

    Strumbos, John G; Brown, Maile R; Kronengold, Jack; Polley, Daniel B; Kaczmarek, Leonard K

    2010-08-04

    Fragile X mental retardation protein (FMRP) is an RNA-binding protein that regulates synaptic plasticity by repressing translation of specific mRNAs. We found that FMRP binds mRNA encoding the voltage-gated potassium channel Kv3.1b in brainstem synaptosomes. To explore the regulation of Kv3.1b by FMRP, we investigated Kv3.1b immunoreactivity and potassium currents in the auditory brainstem sound localization circuit of male mice. The unique features of this circuit allowed us to control neuronal activity in vivo by exposing animals to high-frequency, amplitude-modulated stimuli, which elicit predictable and stereotyped patterns of input to the anterior ventral cochlear nucleus (AVCN) and medial nucleus of the trapezoid body (MNTB). In wild-type (WT) animals, Kv3.1b is expressed along a tonotopic gradient in the MNTB, with highest levels in neurons at the medial, high-frequency end. At baseline, Fmr1(-/-) mice, which lack FMRP, displayed dramatically flattened tonotopicity in Kv3.1b immunoreactivity and K(+) currents relative to WT controls. Moreover, after 30 min of acoustic stimulation, levels of Kv3.1b immunoreactivity were significantly elevated in both the MNTB and AVCN of WT, but not Fmr1(-/-), mice. These results suggest that FMRP is necessary for maintenance of the gradient in Kv3.1b protein levels across the tonotopic axis of the MNTB, and are consistent with a role for FMRP as a repressor of protein translation. Using numerical simulations, we demonstrate that Kv3.1b tonotopicity may be required for accurate encoding of stimulus features such as modulation rate, and that disruption of this gradient, as occurs in Fmr1(-/-) animals, degrades processing of this information.

  2. Fragile X Mental Retardation Protein is Required for Rapid Experience-Dependent Regulation of the Potassium Channel Kv3.1b

    PubMed Central

    Strumbos, John G.; Brown, Maile R.; Kronengold, Jack; Polley, Daniel B.; Kaczmarek, Leonard K.

    2012-01-01

    Fragile X Mental Retardation Protein (FMRP) is an RNA-binding protein that regulates synaptic plasticity by repressing translation of specific mRNAs. We found that FMRP binds mRNA encoding the voltage-gated potassium channel Kv3.1b in brainstem synaptosomes. To explore the regulation of Kv3.1b by FMRP, we investigated Kv3.1b immunoreactivity and potassium currents in the auditory brainstem sound localization circuit of male mice. The unique features of this circuit allowed us to control neuronal activity in vivo by exposing animals to high-frequency amplitude modulated (AM) stimuli, which elicit predictable and stereotyped patterns of input to the anterior ventral cochlear nucleus (AVCN) and medial nucleus of the trapezoid body (MNTB). In wild type (WT) animals, Kv3.1b is expressed along a tonotopic gradient in the MNTB, with highest levels in neurons at the medial, high-frequency end. At baseline, Fmr1−/− mice, which lack FMRP, displayed dramatically flattened tonotopicity in Kv3.1b immunoreactivity and K+ currents relative to WT controls. Moreover, following 30 minutes of acoustic stimulation, levels of Kv3.1b immunoreactivity were significantly elevated in both the MNTB and AVCN of WT, but not Fmr1−/−, mice. These results suggest that FMRP is necessary for maintenance of the gradient in Kv3.1b protein levels across the tonotopic axis of the MNTB, and are consistent with a role for FMRP as a repressor of protein translation. Using numerical simulations, we demonstrate that Kv3.1b tonotopicity may be required for accurate encoding of stimulus features such as modulation rate, and that disruption of this gradient, as occurs in Fmr1−/− animals, degrades processing of this information. PMID:20685971

  3. Regulation of the rabbit ileal brush-border Na+/H+ exchanger by an ATP-requiring Ca++/calmodulin-mediated process.

    PubMed Central

    Rood, R P; Emmer, E; Wesolek, J; McCullen, J; Husain, Z; Cohen, M E; Braithwaite, R S; Murer, H; Sharp, G W; Donowitz, M

    1988-01-01

    Brush-border vesicles purified from rabbit ileal villus cells were used to evaluate how Ca++/calmodulin (CaM) regulates the neutral linked NaCl absorptive process, part of which is a Na+/H+ exchanger. After freezing and thawing to allow incorporation of macromolecules into the vesicles, the effect of Ca++/CaM on brush-border Na+ uptake with an acid inside pH gradient, and on Na+/H+ exchange was determined. Freezing and thawing vesicles with 0.85 microM free Ca++ plus 5 microM exogenous CaM failed to alter Na+/H+ exchange as did the addition of exogenous ATP plus an ATP regenerating system, which was sufficient to elevate intravesicular ATP to 47 microM from a basal level of 0.4 microM. However, the combination of Ca++/CaM plus ATP inhibited Na+ uptake in the presence of an acid inside pH gradient and inhibited Na+/H+ exchange, while Na+ uptake in the absence of a pH gradient was not altered. This effect required a hydrolyzable form of ATP, and did not occur when the nonhydrolyzable ATP analogue, AMP-PNP, replaced ATP. Under the identical intravesicular conditions used for the transport studies, Ca++ (0.85 microM) plus exogenous CaM (5 microM), in the presence of magnesium plus ATP, increased phosphorylation of five brush-border peptides. These data are consistent with Ca++/CaM acting via phosphorylation to regulate the ileal brush-border Na+/H+ exchanger. PMID:2843567

  4. Vimentin, a Novel NF-κB Regulator, Is Required for Meningitic Escherichia coli K1-Induced Pathogen Invasion and PMN Transmigration across the Blood-Brain Barrier

    PubMed Central

    Zhang, Bao; Liu, Li-Qun; Wu, Xuedong; Mor-Vaknin, Nirit; Markovitz, David M.; Cao, Hong; Zhou, Yan-Hong

    2016-01-01

    Background NF-κB activation, pathogen invasion, polymorphonuclear leukocytes (PMN) transmigration (PMNT) across the blood-brain barrier (BBB) are the pathogenic triad hallmark features of bacterial meningitis, but the mechanisms underlying these events remain largely unknown. Vimentin, which is a novel NF-κB regulator, is the primary receptor for the major Escherichia coli K1 virulence factor IbeA that contributes to the pathogenesis of neonatal bacterial sepsis and meningitis (NSM). We have previously shown that IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PTB-associated splicing factor (PSF) is required for pathogen penetration and leukocyte transmigration across the BBB. This is the first in vivo study to demonstrate how vimentin and related factors contributed to the pathogenic triad of bacterial meningitis. Methodology/Principal Findings The role of vimentin in IbeA+ E. coli K1-induced NF-κB activation, pathogen invasion, leukocyte transmigration across the BBB has now been demonstrated by using vimentin knockout (KO) mice. In the in vivo studies presented here, IbeA-induced NF-κB activation, E. coli K1 invasion and polymorphonuclear neutrophil (PMN) transmigration across the BBB were significantly reduced in Vim-/- mice. Decreased neuronal injury in the hippocampal dentate gyrus was observed in Vim-/- mice with meningitis. The major inflammatory regulator α7 nAChR and several signaling molecules contributing to NF-κB activation (p65 and p-CamKII) were significantly reduced in the brain tissues of the Vim-/- mice with E. coli meningitis. Furthermore, Vim KO resulted in significant reduction in neuronal injury and in α7 nAChR-mediated calcium signaling. Conclusion/Significance Vimentin, a novel NF-κB regulator, plays a detrimental role in the host defense against meningitic infection by modulating the NF-κB signaling pathway to increase pathogen invasion, PMN recruitment, BBB permeability and neuronal

  5. The Lectin Receptor Kinase-VI.2 Is Required for Priming and Positively Regulates Arabidopsis Pattern-Triggered Immunity[C][W

    PubMed Central

    Singh, Prashant; Kuo, Yi-Chun; Mishra, Swati; Tsai, Chia-Hong; Chien, Chih-Cheng; Chen, Ching-Wei; Desclos-Theveniau, Marie; Chu, Po-Wei; Schulze, Birgit; Chinchilla, Delphine; Boller, Thomas; Zimmerli, Laurent

    2012-01-01

    Plant cells can be sensitized toward a subsequent pathogen attack by avirulent pathogens or by chemicals such as β-aminobutyric acid (BABA). This process is called priming. Using a reverse genetic approach in Arabidopsis thaliana, we demonstrate that the BABA-responsive L-type lectin receptor kinase-VI.2 (LecRK-VI.2) contributes to disease resistance against the hemibiotrophic Pseudomonas syringae and the necrotrophic Pectobacterium carotovorum bacteria. Accordingly, LecRK-VI.2 mRNA levels increased after bacterial inoculation or treatments with microbe-associated molecular patterns (MAMPs). We also show that LecRK-VI.2 is required for full activation of pattern-triggered immunity (PTI); notably, lecrk-VI.2-1 mutants show reduced upregulation of PTI marker genes, impaired callose deposition, and defective stomatal closure. Overexpression studies combined with genome-wide microarray analyses indicate that LecRK-VI.2 positively regulates the PTI response. LecRK-VI.2 is demonstrated to act upstream of mitogen-activated protein kinase signaling, but independently of reactive oxygen production and BOTRYTIS-INDUCED KINASE1 phosphorylation. In addition, complex formation between the MAMP receptor FLAGELLIN SENSING2 and its signaling partner BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 is observed in flg22-treated lecrk-VI.2-1 mutants. LecRK-VI.2 is also required for full BABA-induced resistance and priming of PTI. Our work identifies LecRK-VI.2 as a novel mediator of the Arabidopsis PTI response and provides insight into molecular mechanisms governing priming. PMID:22427336

  6. Cooperation between SAGA and SWI/SNF complexes is required for efficient transcriptional responses regulated by the yeast MAPK Slt2

    PubMed Central

    Sanz, Ana Belén; García, Raúl; Rodríguez-Peña, José Manuel; Nombela, César; Arroyo, Javier

    2016-01-01

    The transcriptional response of Saccharomyces cerevisiae to cell wall stress is mainly mediated by the cell wall integrity (CWI) pathway through the MAPK Slt2 and the transcription factor Rlm1. Once activated, Rlm1 interacts with the chromatin remodeling SWI/SNF complex which locally alters nucleosome positioning at the target promoters. Here we show that the SAGA complex plays along with the SWI/SNF complex an important role for eliciting both early induction and sustained gene expression upon stress. Gcn5 co-regulates together with Swi3 the majority of the CWI transcriptional program, except for a group of genes which are only dependent on the SWI/SNF complex. SAGA subunits are recruited to the promoter of CWI-responsive genes in a Slt2, Rlm1 and SWI/SNF-dependent manner. However, Gcn5 mediates acetylation and nucleosome eviction only at the promoters of the SAGA-dependent genes. This process is not essential for pre-initiation transcriptional complex assembly but rather increase the extent of the remodeling mediated by SWI/SNF. As a consequence, H3 eviction and Rlm1 recruitment is completely blocked in a swi3Δ gcn5Δ double mutant. Therefore, SAGA complex, through its histone acetylase activity, cooperates with the SWI/SNF complex for the mandatory nucleosome displacement required for full gene expression through the CWI pathway. PMID:27112564

  7. Human regulator of telomere elongation helicase 1 (RTEL1) is required for the nuclear and cytoplasmic trafficking of pre-U2 RNA

    PubMed Central

    Schertzer, Michael; Jouravleva, Karina; Perderiset, Mylene; Dingli, Florent; Loew, Damarys; Le Guen, Tangui; Bardoni, Barbara; de Villartay, Jean-Pierre; Revy, Patrick; Londoño-Vallejo, Arturo

    2015-01-01

    Hoyeraal-Hreidarsson syndrome (HHS) is a severe form of Dyskeratosis congenita characterized by developmental defects, bone marrow failure and immunodeficiency and has been associated with telomere dysfunction. Recently, mutations in Regulator of Telomere ELongation helicase 1 (RTEL1), a helicase first identified in Mus musculus as being responsible for the maintenance of long telomeres, have been identified in several HHS patients. Here we show that RTEL1 is required for the export and the correct cytoplasmic trafficking of the small nuclear (sn) RNA pre-U2, a component of the major spliceosome complex. RTEL1-HHS cells show abnormal subcellular partitioning of pre-U2, defects in the recycling of ribonucleotide proteins (RNP) in the cytoplasm and splicing defects. While most of these phenotypes can be suppressed by re-expressing the wild-type protein in RTEL1-HHS cells, expression of RTEL1 mutated variants in immortalized cells provokes cytoplasmic mislocalizations of pre-U2 and other RNP components, as well as splicing defects, thus phenocopying RTEL1-HHS cellular defects. Strikingly, expression of a cytoplasmic form of RTEL1 is sufficient to correct RNP mislocalizations both in RTEL1–HHS cells and in cells expressing nuclear mutated forms of RTEL1. This work unravels completely unanticipated roles for RTEL1 in RNP trafficking and strongly suggests that defects in RNP biogenesis pathways contribute to the pathology of HHS. PMID:25628358

  8. Conformational Changes in the Endosomal Sorting Complex Required for the Transport III Subunit Ist1 Lead to Distinct Modes of ATPase Vps4 Regulation.

    PubMed

    Tan, Jason; Davies, Brian A; Payne, Johanna A; Benson, Linda M; Katzmann, David J

    2015-12-11

    Intralumenal vesicle formation of the multivesicular body is a critical step in the delivery of endocytic cargoes to the lysosome for degradation. Endosomal sorting complex required for transport III (ESCRT-III) subunits polymerize on endosomal membranes to facilitate membrane budding away from the cytoplasm to generate these intralumenal vesicles. The ATPase Vps4 remodels and disassembles ESCRT-III, but the manner in which Vps4 activity is coordinated with ESCRT-III function remains unclear. Ist1 is structurally homologous to ESCRT-III subunits and has been reported to inhibit Vps4 function despite the presence of a microtubule-interacting and trafficking domain-interacting motif (MIM) capable of stimulating Vps4 in the context of other ESCRT-III subunits. Here we report that Ist1 inhibition of Vps4 ATPase activity involves two elements in Ist1: the MIM itself and a surface containing a conserved ELYC sequence. In contrast, the MIM interaction, in concert with a more open conformation of the Ist1 core, resulted in stimulation of Vps4. Addition of the ESCRT-III subunit binding partner of Ist1, Did2, also converted Ist1 from an inhibitor to a stimulator of Vps4 ATPase activity. Finally, distinct regulation of Vps4 by Ist1 corresponded with altered ESCRT-III disassembly in vitro. Together, these data support a model in which Ist1-Did2 interactions during ESCRT-III polymerization coordinate Vps4 activity with the timing of ESCRT-III disassembly.

  9. Regulation of Tlx3 by Pax6 is required for the restricted expression of Chrnα3 in Cerebellar Granule Neuron progenitors during development

    PubMed Central

    Divya, Thulasi Sheela; Lalitha, Soundararajan; Parvathy, Surendran; Subashini, Chandramohan; Sanalkumar, Rajendran; Dhanesh, Sivadasan Bindu; Rasheed, Vazhanthodi Abdul; Divya, Mundackal Sivaraman; Tole, Shubha; James, Jackson

    2016-01-01

    Homeobox gene Tlx3 is known to promote glutamatergic differentiation and is expressed in post-mitotic neurons of CNS. Contrary to this here, we discovered that Tlx3 is expressed in the proliferating progenitors of the external granule layer in the cerebellum, and examined factors that regulate this expression. Using Pax6−/−Sey mouse model and molecular interaction studies we demonstrate Pax6 is a key activator of Tlx3 specifically in cerebellum, and induces its expression starting at embryonic day (E)15. By Postnatal day (PN)7, Tlx3 is expressed in a highly restricted manner in the cerebellar granule neurons of the posterior cerebellar lobes, where it is required for the restricted expression of nicotinic cholinergic receptor-α3 subunit (Chrnα3) and other genes involved in formation of synaptic connections and neuronal migration. These results demonstrate a novel role for Tlx3 and indicate that Pax6-Tlx3 expression and interaction is part of a region specific regulatory network in cerebellum and its deregulation during development could possibly lead to Autistic spectral disorders (ASD). PMID:27452274

  10. Iron-regulated metabolites produced by Pseudomonas fluorescens WCS374r are not required for eliciting induced systemic resistance against Pseudomonas syringae pv. tomato in Arabidopsis.

    PubMed

    Djavaheri, Mohammad; Mercado-Blanco, Jesús; Versluis, C; Meyer, J-M; Loon, L C; Bakker, Peter A H M

    2012-09-01

    The plant growth-promoting rhizobacterium Pseudomonas fluorescens WCS374r produces several iron-regulated metabolites, including the fluorescent siderophore pseudobactin (Psb374), salicylic acid (SA), and pseudomonine (Psm), a siderophore that contains a SA moiety. After purification of Psb374 from culture supernatant of WCS374r, its structure was determined following isoelectrofocusing and tandem mass spectrometry, and found to be identical to the fluorescent siderophore produced by P. fluorescens ATCC 13525. To study the role of SA and Psm production in colonization of Arabidopsis thaliana roots and in induced systemic resistance (ISR) against Pseudomonas syringae pv. tomato (Pst) by strain WCS374r, mutants disrupted in the production of these metabolites were obtained by homologous recombination. These mutants were further subjected to transposon Tn5 mutagenesis to generate mutants also deficient in Psb374 production. The mutants behaved similar to the wild type in both their Arabidopsis rhizosphere-colonizing capacity and their ability to elicit ISR against Pst. We conclude that Psb374, SA, and Psm production by P. fluorescens WCS374r are not required for eliciting ISR in Arabidopsis.

  11. Enterohemorrhagic Escherichia coli O157:H7 requires quorum sensing transcriptional regulators QseA and SdiA for colonization and persistence in the bovine intestinal tract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    QseA and SdiA are two of several transcriptional regulators that regulate virulence gene expression of enterohemorrhagic Escherichia coli (EHEC) O157:H7 via quorum sensing (QS). QseA regulates the expression of the locus of enterocyte effacement (LEE). LEE encodes for a type III secretion (T3S) sys...

  12. The Epstein-Barr virus (EBV) glycoprotein B cytoplasmic C-terminal tail domain regulates the energy requirement for EBV-induced membrane fusion.

    PubMed

    Chen, Jia; Zhang, Xianming; Jardetzky, Theodore S; Longnecker, Richard

    2014-10-01

    The entry of enveloped viruses into host cells is preceded by membrane fusion, which in Epstein-Barr virus (EBV) is thought to be mediated by the refolding of glycoprotein B (gB) from a prefusion to a postfusion state. In our current studies, we characterized a gB C-terminal tail domain (CTD) mutant truncated at amino acid 843 (gB843). This truncation mutant is hyperfusogenic as monitored by syncytium formation and in a quantitative fusion assay and is dependent on gH/gL for fusion activity. gB843 can rescue the fusion function of other glycoprotein mutants that have null or decreased fusion activity in epithelial and B cells. In addition, gB843 requires less gp42 and gH/gL for fusion, and can function in fusion at a lower temperature than wild-type gB, indicating a lower energy requirement for fusion activation. Since a key step in fusion is the conversion of gB from a prefusion to an active postfusion state by gH/gL, gB843 may access this activated gB state more readily. Our studies indicate that the gB CTD may participate in the fusion function by maintaining gB in an inactive prefusion form prior to activation by receptor binding. Importance: Diseases resulting from Epstein-Barr virus (EBV) infection in humans range from the fairly benign disease infectious mononucleosis to life-threatening cancer. As an enveloped virus, EBV must fuse with a host cell membrane for entry and infection by using glycoproteins gH/gL, gB, and gp42. Among these glycoproteins, gB is thought to be the protein that executes fusion. To further characterize the function of the EBV gB cytoplasmic C-terminal tail domain (CTD) in fusion, we used a previously constructed CTD truncation mutant and studied its fusion activity in the context of other EBV glycoprotein mutants. From these studies, we find that the gB CTD regulates fusion by altering the energy requirements for the triggering of fusion mediated by gH/gL or gp42. Overall, our studies may lead to a better understanding of EBV fusion

  13. CAP1, an Adenylate Cyclase-Associated Protein Gene, Regulates Bud-Hypha Transitions, Filamentous Growth, and Cyclic AMP Levels and Is Required for Virulence of Candida albicans

    PubMed Central

    Bahn, Yong-Sun; Sundstrom, Paula

    2001-01-01

    In response to a wide variety of environmental stimuli, the opportunistic fungal pathogen Candida albicans exits the budding cycle, producing germ tubes and hyphae concomitant with expression of virulence genes, such as that encoding hyphal wall protein 1 (HWP1). Biochemical studies implicate cyclic AMP (cAMP) increases in promoting bud-hypha transitions, but genetic evidence relating genes that control cAMP levels to bud-hypha transitions has not been reported. Adenylate cyclase-associated proteins (CAPs) of nonpathogenic fungi interact with Ras and adenylate cyclase to increase cAMP levels under specific environmental conditions. To initiate studies on the relationship between cAMP signaling and bud-hypha transitions in C. albicans, we identified, cloned, characterized, and disrupted the C. albicans CAP1 gene. C. albicans strains with inactivated CAP1 budded in conditions that led to germ tube formation in isogenic strains with CAP1. The addition of 10 mM cAMP and dibutyryl cAMP promoted bud-hypha transitions and filamentous growth in the cap1/cap1 mutant in liquid and solid media, respectively, showing clearly that cAMP promotes hypha formation in C. albicans. Increases in cytoplasmic cAMP preceding germ tube emergence in strains having CAP1 were markedly diminished in the budding cap1/cap1 mutant. C. albicans strains with deletions of both alleles of CAP1 were avirulent in a mouse model of systemic candidiasis. The avirulence of a germ tube-deficient cap1/cap1 mutant coupled with the role of Cap1 in regulating cAMP levels shows that the Cap1-mediated cAMP signaling pathway is required for bud-hypha transitions, filamentous growth, and the pathogenesis of candidiasis. PMID:11325951

  14. Ribosomal acidic phosphoproteins P1 and P2 are not required for cell viability but regulate the pattern of protein expression in Saccharomyces cerevisiae.

    PubMed Central

    Remacha, M; Jimenez-Diaz, A; Bermejo, B; Rodriguez-Gabriel, M A; Guarinos, E; Ballesta, J P

    1995-01-01

    Saccharomyces cerevisiae strains with either three inactivated genes (triple disruptants) or four inactivated genes (quadruple disruptants) encoding the four acidic ribosomal phosphoproteins, YP1 alpha, YP1 beta, YP2 alpha, and YP2 beta, present in this species have been obtained. Ribosomes from the triple disruptants and, obviously, those from the quadruple strain do not have bound P proteins. All disrupted strains are viable; however, they show a cold-sensitive phenotype, growing very poorly at 23 degrees C. Cell extracts from the quadruple-disruptant strain are about 30% as active as the control in protein synthesis assays and are stimulated by the addition of free acidic P proteins. Strains lacking acidic proteins do not have a higher suppressor activity than the parental strains, and cell extracts derived from the quadruple disruptant do not show a higher degree of misreading, indicating that the absence of acidic proteins does not affect the accuracy of the ribosomes. However, the patterns of protein expressed in the cells as well as in the cell-free protein system are affected by the absence of P proteins from the particles; a wild-type pattern is restored upon addition of exogenous P proteins to the cell extract. In addition, strains carrying P-protein-deficient ribosomes are unable to sporulate but recover this capacity upon transformation with one of the missing genes. These results indicate that acidic proteins are not an absolute requirement for protein synthesis but regulate the activity of the 60S subunit, affecting the translation of certain mRNAs differently. PMID:7651393

  15. CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans.

    PubMed

    Bahn, Y S; Sundstrom, P

    2001-05-01

    In response to a wide variety of environmental stimuli, the opportunistic fungal pathogen Candida albicans exits the budding cycle, producing germ tubes and hyphae concomitant with expression of virulence genes, such as that encoding hyphal wall protein 1 (HWP1). Biochemical studies implicate cyclic AMP (cAMP) increases in promoting bud-hypha transitions, but genetic evidence relating genes that control cAMP levels to bud-hypha transitions has not been reported. Adenylate cyclase-associated proteins (CAPs) of nonpathogenic fungi interact with Ras and adenylate cyclase to increase cAMP levels under specific environmental conditions. To initiate studies on the relationship between cAMP signaling and bud-hypha transitions in C. albicans, we identified, cloned, characterized, and disrupted the C. albicans CAP1 gene. C. albicans strains with inactivated CAP1 budded in conditions that led to germ tube formation in isogenic strains with CAP1. The addition of 10 mM cAMP and dibutyryl cAMP promoted bud-hypha transitions and filamentous growth in the cap1/cap1 mutant in liquid and solid media, respectively, showing clearly that cAMP promotes hypha formation in C. albicans. Increases in cytoplasmic cAMP preceding germ tube emergence in strains having CAP1 were markedly diminished in the budding cap1/cap1 mutant. C. albicans strains with deletions of both alleles of CAP1 were avirulent in a mouse model of systemic candidiasis. The avirulence of a germ tube-deficient cap1/cap1 mutant coupled with the role of Cap1 in regulating cAMP levels shows that the Cap1-mediated cAMP signaling pathway is required for bud-hypha transitions, filamentous growth, and the pathogenesis of candidiasis.

  16. The vitamin D receptor is not required for fetal mineral homeostasis or for the regulation of placental calcium transfer in mice.

    PubMed

    Kovacs, Christopher S; Woodland, Mandy L; Fudge, Neva J; Friel, James K

    2005-07-01

    We utilized a vitamin D receptor (VDR) gene knockout model to study the effects of maternal and fetal absence of VDR on maternal fertility, fetal-placental calcium transfer, and fetal mineral homoeostasis. Vdr null mice were profoundly hypocalcemic, conceived infrequently, and had significantly fewer viable fetuses in utero that were also of lower body weight. Supplementation of a calcium-enriched diet increased the rate of conception in Vdr nulls but did not normalize the number or weight of viable fetuses. Among offspring of heterozygous (Vdr(+/-)) mothers (wild type, Vdr(+/-), and Vdr null fetuses), there was no alteration in serum Ca, P, or Mg, parathyroid hormone, placental (45)Ca transfer, Ca and Mg content of the fetal skeleton, and morphology and gene expression in the fetal growth plates. Vdr null fetuses did have threefold increased 1,25-dihydroxyvitamin D levels accompanied by increased 1alpha-hydroxylase mRNA in kidney but not placenta; a small increase was also noted in placental expression of parathyroid hormone-related protein (PTHrP). Among offspring of Vdr null mothers, Vdr(+/-) and Vdr null fetuses had normal ionized calcium levels and a skeletal ash weight that was appropriate to the lower body weight. Thus our findings indicate that VDR is not required by fetal mice to regulate placental calcium transfer, circulating mineral levels, and skeletal mineralization. Absence of maternal VDR has global effects on fetal growth that were partly dependent on maternal calcium intake, but absence of maternal VDR did not specifically affect fetal mineral homeostasis.

  17. The nuclear actin-related protein ARP6 is a pleiotropic developmental regulator required for the maintenance of FLOWERING LOCUS C expression and repression of flowering in Arabidopsis.

    PubMed

    Deal, Roger B; Kandasamy, Muthugapatti K; McKinney, Elizabeth C; Meagher, Richard B

    2005-10-01

    Actin-related proteins (ARPs) are found in the nuclei of all eukaryotic cells, but their functions are generally understood only in the context of their presence in various yeast and animal chromatin-modifying complexes. Arabidopsis thaliana ARP6 is a clear homolog of other eukaryotic ARP6s, including Saccharomyces cerevisiae ARP6, which was identified as a component of the SWR1 chromatin remodeling complex. We examined the subcellular localization, expression patterns, and loss-of-function phenotypes for this protein and found that Arabidopsis ARP6 is localized to the nucleus during interphase but dispersed away from the chromosomes during cell division. ARP6 expression was observed in all vegetative tissues as well as in a subset of reproductive tissues. Null mutations in ARP6 caused numerous defects, including altered development of the leaf, inflorescence, and flower as well as reduced female fertility and early flowering in both long- and short-day photoperiods. The early flowering of arp6 mutants was associated with reduced expression of the central floral repressor gene FLOWERING LOCUS C (FLC) as well as MADS AFFECTING FLOWERING 4 (MAF4) and MAF5. In addition, arp6 mutations suppress the FLC-mediated late flowering of a FRIGIDA-expressing line, indicating that ARP6 is required for the activation of FLC expression to levels that inhibit flowering. These results indicate that ARP6 acts in the nucleus to regulate plant development, and we propose that it does so through modulation of chromatin structure and the control of gene expression.

  18. Evidence that the Dictyostelium Dd-STATa protein is a repressor that regulates commitment to stalk cell differentiation and is also required for efficient chemotaxis.

    PubMed

    Mohanty, S; Jermyn, K A; Early, A; Kawata, T; Aubry, L; Ceccarelli, A; Schaap, P; Williams, J G; Firtel, R A

    1999-08-01

    Dd-STATa is a structural and functional homologue of the metazoan STAT (Signal Transducer and Activator of Transcription) proteins. We show that Dd-STATa null cells exhibit several distinct developmental phenotypes. The aggregation of Dd-STATa null cells is delayed and they chemotax slowly to a cyclic AMP source, suggesting a role for Dd-STATa in these early processes. In Dd-STATa null strains, slug-like structures are formed but they have an aberrant pattern of gene expression. In such slugs, ecmB/lacZ, a marker that is normally specific for cells on the stalk cell differentiation pathway, is expressed throughout the prestalk region. Stalk cell differentiation in Dictyostelium has been proposed to be under negative control, mediated by repressor elements present in the promoters of stalk cell-specific genes. Dd-STATa binds these repressor elements in vitro and the ectopic expression of ecmB/lacZ in the null strain provides in vivo evidence that Dd-STATa is the repressor protein that regulates commitment to stalk cell differentiation. Dd-STATa null cells display aberrant behavior in a monolayer assay wherein stalk cell differentiation is induced using the stalk cell morphogen DIF. The ecmB gene, a general marker for stalk cell differentiation, is greatly overinduced by DIF in Dd-STATa null cells. Also, Dd-STATa null cells are hypersensitive to DIF for expression of ST/lacZ, a marker for the earliest stages in the differentiation of one of the stalk cell sub-types. We suggest that both these manifestations of DIF hypersensitivity in the null strain result from the balance between activation and repression of the promoter elements being tipped in favor of activation when the repressor is absent. Paradoxically, although Dd-STATa null cells are hypersensitive to the inducing effects of DIF and readily form stalk cells in monolayer assay, the Dd-STATa null cells show little or no terminal stalk cell differentiation within the slug. Dd-STATa null slugs remain

  19. 48 CFR 3030.201 - Contract requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 7 2013-10-01 2012-10-01 true Contract requirements. 3030... SECURITY ACQUISITION REGULATION (HSAR) GENERAL CONTRACTING REQUIREMENTS COST ACCOUNTING STANDARDS ADMINISTRATION CAS Program Requirements 3030.201 Contract requirements....

  20. Regulation of cell growth by Notch signaling and its differential requirement in normal vs. tumor-forming stem cells in Drosophila.

    PubMed

    Song, Yan; Lu, Bingwei

    2011-12-15

    Cancer stem cells (CSCs) are postulated to be a small subset of tumor cells with tumor-initiating ability that shares features with normal tissue-specific stem cells. The origin of CSCs and the mechanisms underlying their genesis are poorly understood, and it is uncertain whether it is possible to obliterate CSCs without inadvertently damaging normal stem cells. Here we show that a functional reduction of eukaryotic translation initiation factor 4E (eIF4E) in Drosophila specifically eliminates CSC-like cells in the brain and ovary without having discernable effects on normal stem cells. Brain CSC-like cells can arise from dedifferentiation of transit-amplifying progenitors upon Notch hyperactivation. eIF4E is up-regulated in these dedifferentiating progenitors, where it forms a feedback regulatory loop with the growth regulator dMyc to promote cell growth, particularly nucleolar growth, and subsequent ectopic neural stem cell (NSC) formation. Cell growth regulation is also a critical component of the mechanism by which Notch signaling regulates the self-renewal of normal NSCs. Our findings highlight the importance of Notch-regulated cell growth in stem cell maintenance and reveal a stronger dependence on eIF4E function and cell growth by CSCs, which might be exploited therapeutically.

  1. Regulation of Wnt signaling by the tumor suppressor adenomatous polyposis coli does not require the ability to enter the nucleus or a particular cytoplasmic localization.

    PubMed

    Roberts, David M; Pronobis, Mira I; Poulton, John S; Kane, Eric G; Peifer, Mark

    2012-06-01

    Wnt signaling plays key roles in development and disease. The tumor suppressor adenomatous polyposis coli (APC) is an essential negative regulator of Wnt signaling. Its best-characterized role is as part of the destruction complex, targeting the Wnt effector β-catenin (βcat) for phosphorylation and ultimate destruction, but several studies suggested APC also may act in the nucleus at promoters of Wnt-responsive genes or to shuttle βcat out for destruction. Even in its role in the destruction complex, APC's mechanism of action remains mysterious. We have suggested APC positions the destruction complex at the appropriate subcellular location, facilitating βcat destruction. In this study, we directly tested APC's proposed roles in the nucleus or in precisely localizing the destruction complex by generating a series of APC2 variants to which we added tags relocalizing otherwise wild-type APC to different cytoplasmic locations. We tested these for function in human colon cancer cells and Drosophila embryos. Strikingly, all rescue Wnt regulation and down-regulate Wnt target genes in colon cancer cells, and most restore Wnt regulation in Drosophila embryos null for both fly APCs. These data suggest that APC2 does not have to shuttle into the nucleus or localize to a particular subcellular location to regulate Wnt signaling.

  2. Common formin-regulating sequences in Smy1 and Bud14 are required for the control of actin cable assembly in vivo.

    PubMed

    Eskin, Julian A; Rankova, Aneliya; Johnston, Adam B; Alioto, Salvatore L; Goode, Bruce L

    2016-03-01

    Formins comprise a large family of proteins with diverse roles in remodeling the actin cytoskeleton. However, the spatiotemporal mechanisms used by cells to control formin activities are only beginning to be understood. Here we dissected Smy1, which has dual roles in regulating formins and myosin. Using mutagenesis, we identified specific sequences in Smy1 critical for its in vitro inhibitory effects on the FH2 domain of the formin Bnr1. By integrating smy1 alleles targeting those sequences, we genetically uncoupled Smy1's functions in regulating formins and myosin. Quantitative imaging analysis further demonstrated that the ability of Smy1 to directly control Bnr1 activity is crucial in vivo for proper actin cable length, shape, and velocity and, in turn, efficient secretory vesicle transport. A Smy1-like sequence motif was also identified in a different Bnr1 regulator, Bud14, and found to be essential for Bud14 functions in regulating actin cable architecture and function in vivo. Together these observations reveal unanticipated mechanistic ties between two distinct formin regulators. Further, they emphasize the importance of tightly controlling formin activities in vivo to generate specialized geometries and dynamics of actin structures tailored to their physiological roles.

  3. Regulation of Wnt signaling by the tumor suppressor adenomatous polyposis coli does not require the ability to enter the nucleus or a particular cytoplasmic localization

    PubMed Central

    Roberts, David M.; Pronobis, Mira I.; Poulton, John S.; Kane, Eric G.; Peifer, Mark

    2012-01-01

    Wnt signaling plays key roles in development and disease. The tumor suppressor adenomatous polyposis coli (APC) is an essential negative regulator of Wnt signaling. Its best-characterized role is as part of the destruction complex, targeting the Wnt effector β-catenin (βcat) for phosphorylation and ultimate destruction, but several studies suggested APC also may act in the nucleus at promoters of Wnt-responsive genes or to shuttle βcat out for destruction. Even in its role in the destruction complex, APC's mechanism of action remains mysterious. We have suggested APC positions the destruction complex at the appropriate subcellular location, facilitating βcat destruction. In this study, we directly tested APC's proposed roles in the nucleus or in precisely localizing the destruction complex by generating a series of APC2 variants to which we added tags relocalizing otherwise wild-type APC to different cytoplasmic locations. We tested these for function in human colon cancer cells and Drosophila embryos. Strikingly, all rescue Wnt regulation and down-regulate Wnt target genes in colon cancer cells, and most restore Wnt regulation in Drosophila embryos null for both fly APCs. These data suggest that APC2 does not have to shuttle into the nucleus or localize to a particular subcellular location to regulate Wnt signaling. PMID:22513088

  4. ETS-1-mediated transcriptional up-regulation of CD44 is required for sphingosine-1-phosphate receptor subtype 3-stimulated chemotaxis.

    PubMed

    Zhang, Wenliang; Zhao, Jiawei; Lee, Jen-Fu; Gartung, Allison; Jawadi, Hiba; Lambiv, Wanyu Louis; Honn, Kenneth V; Lee, Menq-Jer

    2013-11-08

    Sphingosine-1-phosphate (S1P)-regulated chemotaxis plays critical roles in various physiological and pathophysiological conditions. S1P-regulated chemotaxis is mediated by the S1P family of G-protein-coupled receptors. However, molecular details of the S1P-regulated chemotaxis are incompletely understood. Cultured human lung adenocarcinoma cell lines abundantly express S1P receptor subtype 3 (S1P3), thus providing a tractable in vitro system to characterize molecular mechanism(s) underlying the S1P3 receptor-regulated chemotactic response. S1P treatment enhances CD44 expression and induces membrane localization of CD44 polypeptides via the S1P3/Rho kinase (ROCK) signaling pathway. Knockdown of CD44 completely diminishes the S1P-stimulated chemotaxis. Promoter analysis suggests that the CD44 promoter contains binding sites of the ETS-1 (v-ets erythroblastosis virus E26 oncogene homolog 1) transcriptional factor. ChIP assay confirms that S1P treatment stimulates the binding of ETS-1 to the CD44 promoter region. Moreover, S1P induces the expression and nuclear translocation of ETS-1. Knockdown of S1P3 or inhibition of ROCK abrogates the S1P-induced ETS-1 expression. Furthermore, knockdown of ETS-1 inhibits the S1P-induced CD44 expression and cell migration. In addition, we showed that S1P3/ROCK signaling up-regulates ETS-1 via the activity of JNK. Collectively, we characterized a novel signaling axis, i.e., ROCK-JNK-ETS-1-CD44 pathway, which plays an essential role in the S1P3-regulated chemotactic response.

  5. A novel fur- and iron-regulated small RNA, NrrF, is required for indirect fur-mediated regulation of the sdhA and sdhC genes in Neisseria meningitidis.

    PubMed

    Mellin, J R; Goswami, Sulip; Grogan, Susan; Tjaden, Brian; Genco, Caroline A

    2007-05-01

    Iron is both essential for bacterial growth and toxic at higher concentrations; thus, iron homeostasis is tightly regulated. In Neisseria meningitidis the majority of iron-responsive gene regulation is mediated by the ferric uptake regulator protein (Fur), a protein classically defined as a transcriptional repressor. Recently, however, microarray studies have identified a number of genes in N. meningitidis that are iron and Fur activated, demonstrating a new role for Fur as a transcriptional activator. Since Fur has been shown to indirectly activate gene transcription through the repression of small regulatory RNA molecules in other organisms, we hypothesized that a similar mechanism could account for Fur-dependent, iron-activated gene transcription in N. meningitidis. In this study, we used a bioinformatics approach to screen for the presence of Fur-regulated small RNA molecules in N. meningitidis MC58. This screen identified one small RNA, herein named NrrF (for neisserial regulatory RNA responsive to iron [Fe]), which was demonstrated to be both iron responsive and Fur regulated and which has a well-conserved orthologue in N. gonorrhoeae. In addition, this screen identified a number of other likely, novel small RNA transcripts. Lastly, we utilized a new bioinformatics approach to predict regulatory targets of the NrrF small RNA. This analysis led to the identification of the sdhA and sdhC genes, which were subsequently demonstrated to be under NrrF regulation in an nrrF mutant. This study is the first report of small RNAs in N. meningitidis and the first to use a bioinformatics approach to identify, a priori, regulatory targets of a small RNA.

  6. Appetitive Cue-Evoked ERK Signaling in the Nucleus Accumbens Requires NMDA and D1 Dopamine Receptor Activation and Regulates CREB Phosphorylation

    ERIC Educational Resources Information Center

    Kirschmann, Erin K. Z.; Mauna, Jocelyn C.; Willis, Cory M.; Foster, Rebecca L.; Chipman, Amanda M.; Thiels, Edda

    2014-01-01

    Conditioned stimuli (CS) can modulate reward-seeking behavior. This modulatory effect can be maladaptive and has been implicated in excessive reward seeking and relapse to drug addiction. We previously demonstrated that exposure to an appetitive CS causes an increase in the activation of extracellular signal-regulated kinase (ERK) and cyclic-AMP…

  7. 40 CFR Appendix A to Part 282 - State Requirements Incorporated by Reference in Part 282 of the Code of Federal Regulations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 6—Prevention of control of release of hazardous materials; regulations of department; contingency...)—Material and Construction of All Tanks and Containers Section 9.07(B)—Fill and Vent Pipes for All Tanks and....741Pollution control; environmental quality data M. S. 13.7411Pollution control and environmental quality...

  8. Vibrio parahaemolyticus ToxRS regulator is required for stress tolerance and colonization in a novel orogastric streptomycin-induced adult murine model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrio parahaemolyticus, a marine bacterium, is the causative agent of gastroenteritis associated with the consumption of seafood. It contains a homologue of the toxRS operon that in V. cholerae is the key regulator of virulence gene expression. We examined a non-polar mutation in toxRS to determi...

  9. Developmentally regulated HEART STOPPER, a mitochondrially targeted L18 ribosomal protein gene, is required for cell division, differentiation, and seed development in Arabidopsis

    PubMed Central

    Zhang, Hongyu; Luo, Ming; Day, Robert C.; Talbot, Mark J.; Ivanova, Aneta; Ashton, Anthony R.; Chaudhury, Abed M.; Macknight, Richard C.; Hrmova, Maria; Koltunow, Anna M.

    2015-01-01

    Evidence is presented for the role of a mitochondrial ribosomal (mitoribosomal) L18 protein in cell division, differentiation, and seed development after the characterization of a recessive mutant, heart stopper (hes). The hes mutant produced uncellularized endosperm and embryos arrested at the late globular stage. The mutant embryos differentiated partially on rescue medium with some forming callus. HES (At1g08845) encodes a mitochondrially targeted member of a highly diverged L18 ribosomal protein family. The substitution of a conserved amino residue in the hes mutant potentially perturbs mitoribosomal function via altered binding of 5S rRNA and/or influences the stability of the 50S ribosomal subunit, affecting mRNA binding and translation. Consistent with this, marker genes for mitochondrial dysfunction were up-regulated in the mutant. The slow growth of the endosperm and embryo indicates a defect in cell cycle progression, which is evidenced by the down-regulation of cell cycle genes. The down-regulation of other genes such as EMBRYO DEFECTIVE genes links the mitochondria to the regulation of many aspects of seed development. HES expression is developmentally regulated, being preferentially expressed in tissues with active cell division and differentiation, including developing embryos and the root tips. The divergence of the L18 family, the tissue type restricted expression of HES, and the failure of other L18 members to complement the hes phenotype suggest that the L18 proteins are involved in modulating development. This is likely via heterogeneous mitoribosomes containing different L18 members, which may result in differential mitochondrial functions in response to different physiological situations during development. PMID:26105995

  10. Aft2, a Novel Transcription Regulator, Is Required for Iron Metabolism, Oxidative Stress, Surface Adhesion and Hyphal Development in Candida albicans

    PubMed Central

    Xu, Ning; Cheng, Xinxin; Yu, Qilin; Qian, Kefan; Ding, Xiaohui; Liu, Ruming; Zhang, Biao; Xing, Laijun; Li, Mingchun

    2013-01-01

    Morphological transition and iron metabolism are closely relevant to Candida albicans pathogenicity and virulence. In our previous study, we demonstrated that C. albicans Aft2 plays an important role in ferric reductase activity and virulence. Here, we further explored the roles of C. albicans Aft2 in numerous cellular processes. We found that C. albicans Aft2 exhibited an important role in iron metabolism through bi-directional regulation effects on iron-regulon expression. Deletion of AFT2 reduced cellular iron accumulation under iron-deficient conditions. Furthermore, both reactive oxygen species (ROS) generation and superoxide dismutase (SOD) activity were remarkably increased in the aft2Δ/Δ mutant, which were thought to be responsible for the defective responses to oxidative stress. However, we found that over-expression of C. albicans AFT2 under the regulation of the strong PGK1 promoter could not effectively rescue Saccharomyces cerevisiae aft1Δ mutant defects in some cellular processes, such as cell-wall assembly, ion homeostasis and alkaline resistance, suggesting a possibility that C. albicans Aft2 weakened its functional role of regulating some cellular metabolism during the evolutionary process. Interestingly, deletion of AFT2 in C. albicans increased cell surface hydrophobicity, cell flocculation and the ability of adhesion to polystyrene surfaces. In addition, our results also revealed that C. albicans Aft2 played a dual role in regulating hypha-specific genes under solid and liquid hyphal inducing conditions. Deletion of AFT2 caused an impaired invasive growth in solid medium, but an increased filamentous aggregation and growth in liquid conditions. Moreover, iron deficiency and environmental cues induced nuclear import of Aft2, providing additional evidence for the roles of Aft2 in transcriptional regulation. PMID:23626810

  11. Regulation of Lactobacillus casei Sorbitol Utilization Genes Requires DNA-Binding Transcriptional Activator GutR and the Conserved Protein GutM▿

    PubMed Central

    Alcántara, Cristina; Sarmiento-Rubiano, Luz Adriana; Monedero, Vicente; Deutscher, Josef; Pérez-Martínez, Gaspar; Yebra, María J.

    2008-01-01

    Sequence analysis of the five genes (gutRMCBA) downstream from the previously described sorbitol-6-phosphate dehydrogenase-encoding Lactobacillus casei gutF gene revealed that they constitute a sorbitol (glucitol) utilization operon. The gutRM genes encode putative regulators, while the gutCBA genes encode the EIIC, EIIBC, and EIIA proteins of a phosphoenolpyruvate-dependent sorbitol phosphotransferase system (PTSGut). The gut operon is transcribed as a polycistronic gutFRMCBA messenger, the expression of which is induced by sorbitol and repressed by glucose. gutR encodes a transcriptional regulator with two PTS-regulated domains, a galactitol-specific EIIB-like domain (EIIBGat domain) and a mannitol/fructose-specific EIIA-like domain (EIIAMtl domain). Its inactivation abolished gut operon transcription and sorbitol uptake, indicating that it acts as a transcriptional activator. In contrast, cells carrying a gutB mutation expressed the gut operon constitutively, but they failed to transport sorbitol, indicating that EIIBCGut negatively regulates GutR. A footprint analysis showed that GutR binds to a 35-bp sequence upstream from the gut promoter. A sequence comparison with the presumed promoter region of gut operons from various firmicutes revealed a GutR consensus motif that includes an inverted repeat. The regulation mechanism of the L. casei gut operon is therefore likely to be operative in other firmicutes. Finally, gutM codes for a conserved protein of unknown function present in all sequenced gut operons. A gutM mutant, the first constructed in a firmicute, showed drastically reduced gut operon expression and sorbitol uptake, indicating a regulatory role also for GutM. PMID:18676710

  12. Regulation of Lactobacillus casei sorbitol utilization genes requires DNA-binding transcriptional activator GutR and the conserved protein GutM.

    PubMed

    Alcántara, Cristina; Sarmiento-Rubiano, Luz Adriana; Monedero, Vicente; Deutscher, Josef; Pérez-Martínez, Gaspar; Yebra, María J

    2008-09-01

    Sequence analysis of the five genes (gutRMCBA) downstream from the previously described sorbitol-6-phosphate dehydrogenase-encoding Lactobacillus casei gutF gene revealed that they constitute a sorbitol (glucitol) utilization operon. The gutRM genes encode putative regulators, while the gutCBA genes encode the EIIC, EIIBC, and EIIA proteins of a phosphoenolpyruvate-dependent sorbitol phosphotransferase system (PTS(Gut)). The gut operon is transcribed as a polycistronic gutFRMCBA messenger, the expression of which is induced by sorbitol and repressed by glucose. gutR encodes a transcriptional regulator with two PTS-regulated domains, a galactitol-specific EIIB-like domain (EIIB(Gat) domain) and a mannitol/fructose-specific EIIA-like domain (EIIA(Mtl) domain). Its inactivation abolished gut operon transcription and sorbitol uptake, indicating that it acts as a transcriptional activator. In contrast, cells carrying a gutB mutation expressed the gut operon constitutively, but they failed to transport sorbitol, indicating that EIIBC(Gut) negatively regulates GutR. A footprint analysis showed that GutR binds to a 35-bp sequence upstream from the gut promoter. A sequence comparison with the presumed promoter region of gut operons from various firmicutes revealed a GutR consensus motif that includes an inverted repeat. The regulation mechanism of the L. casei gut operon is therefore likely to be operative in other firmicutes. Finally, gutM codes for a conserved protein of unknown function present in all sequenced gut operons. A gutM mutant, the first constructed in a firmicute, showed drastically reduced gut operon expression and sorbitol uptake, indicating a regulatory role also for GutM.

  13. Integration Host Factor Is Required for RpoN-Dependent hrpL Gene Expression and Controls Motility by Positively Regulating rsmB sRNA in Erwinia amylovora.

    PubMed

    Lee, Jae Hoon; Zhao, Youfu

    2016-01-01

    Erwinia amylovora requires an hrp-type III secretion system (T3SS) to cause disease. It has been reported that HrpL, the master regulator of T3SS, is transcriptionally regulated by sigma factor 54 (RpoN), YhbH, and HrpS. In this study, the role of integration host factor (IHF) in regulating hrpL and T3SS gene expression was investigated. IHF is a nucleoid-associated protein that regulates gene expression by influencing nucleoid structure and DNA bending. Our results showed that both ihfA and ihfB mutants of E. amylovora did not induce necrotic lesions on pear fruits. Growth of both mutants was greatly reduced, and expression of the hrpL and T3SS genes was significantly down-regulated as compared with those of the wild type. In addition, expression of the ihfA, but not the ihfB gene, was under auto-suppression by IHF. Furthermore, both ihfA and ihfB mutants were hypermotile, due to significantly reduced expression of small RNA (sRNA) rsmB. Electrophoresis mobility shift assay further confirmed that IHF binds to the promoters of the hrpL and ihfA genes, as well as the rsmB sRNA gene. These results indicate that IHF is required for RpoN-dependent hrpL gene expression and virulence, and controls motility by positively regulating the rsmB sRNA in E. amylovora.

  14. Expression of the nir and nor genes for denitrification of Pseudomonas aeruginosa requires a novel CRP/FNR-related transcriptional regulator, DNR, in addition to ANR.

    PubMed

    Arai, H; Igarashi, Y; Kodama, T

    1995-08-28

    A gene, designated dnr, was identified in the vicinity of the structural genes for nitrite reductase (nirS) and nitric oxide reductase (norCB), and the gene for activation of the reductases (nirQ) from Pseudomonas aeruginosa. It encodes a protein of 227 amino acids homologous with the CRP/FNR-family transcriptional regulators. Promoter activities for nirS, nirQ and norCB were considerably reduced in the dnr mutant as well as in the mutant of anr, the other fnr-like regulatory gene from P. aeruginosa. This is the first finding that two CRP/FNR-related regulators are involved in denitrification in one strain.

  15. The activation domain of a basic helix-loop-helix protein is masked by repressor interaction with domains distinct from that required for transcription regulation.

    PubMed Central

    Jayaraman, P S; Hirst, K; Goding, C R

    1994-01-01

    While there are many examples of protein-protein interactions modulating the DNA-binding activity of transcription factors, little is known of the molecular mechanisms underlying the regulation of the transcription activation function. Using a two-hybrid system we show here that transcription repression of the basic domain/helix-loop-helix factor PHO4 is mediated by complex formation with the PHO80 repressor. In contrast to other systems, such as inhibition of GAL4 by GAL80 or of p53 by MDM2, where repression is mediated by direct interaction at regions overlapping the transcription activation domain, interaction with PHO80 involves two regions of PHO4 distinct from those involved in transcription activation or DNA-binding and dimerization. The possibility that repression of PHO4 by PHO80 may represent a general mechanism of transcription control, including regulation of the cell-type-specific transcription activation domain of c-Jun, is discussed. Images PMID:8187772

  16. RSK-mediated down-regulation of PDCD4 is required for proliferation, survival, and migration in a model of triple-negative breast cancer.

    PubMed

    Cuesta, Rafael; Holz, Marina K

    2016-05-10

    The p90 ribosomal S6 kinase (RSK) is a family of MAPK-activated serine/threonine kinases (RSK1-4) whose expression and/or activity are deregulated in several cancers, including breast cancer. Up-regulation of RSKs promotes cellular processes that drive tumorigenesis in Triple Negative Breast Cancer (TNBC) cells. Although RSKs regulate protein synthesis in certain cell types, the role of RSK-mediated translational control in oncogenic progression has yet to be evaluated. We demonstrate that proliferation and migration of TNBC MDA-MB-231 cells, unlike ER/PR-positive MCF7 cells, rely on RSK activity. We show that RSKs regulate the activities of the translation initiation factor eIF4B and the translational repressor PDCD4 in TNBC cells with up-regulated MAPK pathway, but not in breast cancer cells with hyperactivated PI3K/Akt/mTORC1 pathway. These results identify PDCD4 as a novel RSK substrate. We demonstrate that RSK-mediated phosphorylation of PDCD4 at S76 promotes PDCD4 degradation. Low PDCD4 levels reduce PDCD4 inhibitory effect on the translation initiation factor eIF4A, which increases translation of "eIF4A sensitive" mRNAs encoding factors involved in cell cycle progression, survival, and migration. Consequently, low levels of PDCD4 favor proliferation and migration of MDA-MB-231 cells. These results support the therapeutic use of RSK inhibitors for treatment of TNBC with deregulated MAPK/RSK pathway.

  17. The tae-miR408-Mediated Control of TaTOC1 Genes Transcription Is Required for the Regulation of Heading Time in Wheat1[OPEN

    PubMed Central

    Zhao, Xiang Yu; Hong, Po; Chen, Xiang Bin; Ye, Xing Guo; Pan, Yan You; Wang, Jian

    2016-01-01

    Timing of flowering is not only an interesting topic in developmental biology, but it also plays a significant role in agriculture for its effects on the maturation time of seed. The hexaploid wheat (Triticum aestivum) is one of the most important crop species whose flowering time, i.e. heading time, greatly influences yield. However, it remains unclear whether and how microRNAs regulate heading time in it. In our current study, we identified the tae-miR408 in wheat and its targets in vivo, including Triticum aestivum TIMING OF CAB EXPRESSION-A1 (TaTOC-A1), TaTOC-B1, and TaTOC-D1. The tae-miR408 levels were reciprocal to those of TaTOC1s under long-day and short-day conditions. Wheat plants with a knockdown of TaTOC1s via RNA interference and overexpression of tae-miR408 showed early-heading phenotype. Furthermore, TaTOC1s expression was down-regulated by the tae-miR408 in the hexaploid wheat. In addition, other important agronomic traits in wheat, such as plant height and flag leaf angle, were regulated by both tae-miR408 and TaTOC1s. Thus, our results suggested that the tae-miR408 functions in the wheat heading time by mediating TaTOC1s expression, and the study provides important new information on the mechanism underlying heading time regulation in wheat. PMID:26768600

  18. PAK1 interacts with beta-catenin and is required for the regulation of the beta-catenin signalling pathway by gastrins.

    PubMed

    He, Hong; Shulkes, Arthur; Baldwin, Graham S

    2008-10-01

    Beta-catenin regulates cell-cell adhesion by binding to E-cadherin at the cell membrane and, when translocated into the nucleus, mediates signalling by activation of transcription factors such as TCF4. Mutations of the components of the Wnt/beta-catenin pathway are found in many gastrointestinal cancers. Gastrins, including amidated (Gamide) and glycine-extended (Ggly) gastrin(17), stimulate the proliferation of gastrointestinal cancer cells. Gastrins also regulate beta-catenin signalling through multiple pathways which seem to converge on p21-activated kinase 1 (PAK1). In this study, we have investigated the role of PAK1 in the regulation of beta-catenin signalling by gastrins. Here we report for the first time that PAK1 associated with beta-catenin. Both Gamide and Ggly stimulated the phosphorylation and activation of beta-catenin in a PAK1-dependent manner. A kinase-inactive mutant PAK1(K299A) blocked the gastrin-stimulated dissociation of beta-catenin from E-cadherin, translocation of beta-catenin from the cell membrane to the nucleus, and association of beta-catenin with the transcription factor TCF4. The PAK1(K299A) mutant also inhibited the stimulation of the expression of c-myc and cyclin D1, and of cell proliferation and migration, by gastrins. The results indicate that gastrins regulate beta-catenin signalling through a PAK1-dependent pathway. PAK1 seems to be the point of convergence of multiple signalling pathways activated by gastrins.

  19. The regulation of hepcidin expression by serum treatment: requirements of the BMP response element and STAT- and AP-1-binding sites.

    PubMed

    Kanamori, Yohei; Murakami, Masaru; Matsui, Tohru; Funaba, Masayuki

    2014-11-10

    Expression of hepcidin, a central regulator of systemic iron metabolism, is transcriptionally regulated by the bone morphogenetic protein (BMP) pathway. However, the factors other than the BMP pathway also participate in the regulation of hepcidin expression. In the present study, we show that serum treatment increased hepcidin expression and transcription without inducing the phosphorylation of Smad1/5/8 in primary hepatocytes, HepG2 cells or Hepa1-6 cells. Co-treatment with LDN-193189, an inhibitor of the BMP type I receptor, abrogated this hepcidin induction. Reporter assays using mutated reporters revealed the involvement of the BMP response element-1 (BMP-RE1) and signal transducers and activator of transcription (STAT)- and activator protein (AP)-1-binding sites in serum-induced hepcidin transcription in HepG2 cells. Serum treatment induced the expression of the AP-1 components c-fos and junB in primary hepatocytes and HepG2 cells. Forced expression of c-fos or junB enhanced the response of hepcidin transcription to serum treatment. By contrast, the expression of dominant negative (dn)-c-fos and dn-junB decreased hepcidin transcription. The present study reveals that serum contains factors stimulating hepcidin transcription. Basal BMP activity is essential for the serum-induced hepcidin transcription, although serum treatment does not stimulate the BMP pathway. The induction of c-fos and junB by serum treatment stimulates hepcidin transcription, through possibly cooperation with BMP-mediated signaling. Considering that AP-1 is induced by various stimuli, the present results suggest that hepcidin expression is regulated by more diverse factors than had been previously considered.

  20. Wnt16 Signaling Is Required for IL-1β-Induced Matrix Metalloproteinase-13-Regulated Proliferation of Human Stem Cell-Derived Osteoblastic Cells.

    PubMed

    Ozeki, Nobuaki; Mogi, Makio; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie; Kondo, Ayami; Nakata, Kazuhiko

    2016-02-06

    We established a differentiation method for homogeneous α7 integrin-positive human skeletal muscle stem cell (α7⁺hSMSC)-derived osteoblast-like (α7⁺hSMSC-OB) cells, and found that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-13-regulated proliferation of these cells. These data suggest that MMP-13 plays a potentially unique physiological role in the regeneration of osteoblast-like cells. Here, we examined whether up-regulation of MMP-13 activity by IL-1β was mediated by Wingless/int1 (Wnt) signaling and increased the proliferation of osteoblast-like cells. IL-1β increased the mRNA and protein levels of Wnt16 and the Wnt receptor Lrp5/Fzd2. Exogenous Wnt16 was found to increase MMP-13 mRNA, protein and activity, and interestingly, the proliferation rate of these cells. Treatment with small interfering RNAs against Wnt16 and Lrp5 suppressed the IL-1β-induced increase in cell proliferation. We revealed that a unique signaling cascade IL-1β→Wnt16→Lrp5→MMP-13, was intimately involved in the proliferation of osteoblast-like cells, and suggest that IL-1β-induced MMP-13 expression and changes in cell proliferation are regulated by Wnt16.

  1. Specific combinations of boundary element and Polycomb response element are required for the regulation of the Hox genes in Drosophila melanogaster.

    PubMed

    Singh, Narendra Pratap; Mishra, Rakesh Kumar

    2015-11-01

    In the bithorax complex of Drosophila melanogaster, the chromatin boundary elements (BE) demarcate cis-regulatory domains that regulate Hox genes along the anteroposterior body axis. These elements are closely associated with the Polycomb Response Elements (PREs) and restrict the ectopic activation of cis-regulatory domains during development. The relevance of such specific genomic arrangements of regulatory elements remains unclear. Deletions of individual BE-PRE combination result in distinct homeotic phenotypes. In this study, we show that deletion of two such BE-PRE combinations in cis leads to new genetic interactions, which manifests as dorsal closure defect phenotype in adult abdominal epithelia. We further demonstrate that dorsal closure phenotype results from enhanced and ectopic expression of Hox gene Abd-B in the larval epithelial cells. This suggests a specific role of multiple BE-PRE combinations in the larval epithelial cells for regulation of Abd-B. Using chromosome conformation capture experiments, we show that genetic interactions correlate with direct physical interactions among the BE-PRE combinations. Our results demonstrate the functional relevance of the closely associated BE and PRE combinations in regulation of Hox genes.

  2. Wnt16 Signaling Is Required for IL-1β-Induced Matrix Metalloproteinase-13-Regulated Proliferation of Human Stem Cell-Derived Osteoblastic Cells

    PubMed Central

    Ozeki, Nobuaki; Mogi, Makio; Hase, Naoko; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie; Kondo, Ayami; Nakata, Kazuhiko

    2016-01-01

    We established a differentiation method for homogeneous α7 integrin-positive human skeletal muscle stem cell (α7+hSMSC)-derived osteoblast-like (α7+hSMSC-OB) cells, and found that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-13-regulated proliferation of these cells. These data suggest that MMP-13 plays a potentially unique physiological role in the regeneration of osteoblast-like cells. Here, we examined whether up-regulation of MMP-13 activity by IL-1β was mediated by Wingless/int1 (Wnt) signaling and increased the proliferation of osteoblast-like cells. IL-1β increased the mRNA and protein levels of Wnt16 and the Wnt receptor Lrp5/Fzd2. Exogenous Wnt16 was found to increase MMP-13 mRNA, protein and activity, and interestingly, the proliferation rate of these cells. Treatment with small interfering RNAs against Wnt16 and Lrp5 suppressed the IL-1β-induced increase in cell proliferation. We revealed that a unique signaling cascade IL-1β→Wnt16→Lrp5→MMP-13, was intimately involved in the proliferation of osteoblast-like cells, and suggest that IL-1β-induced MMP-13 expression and changes in cell proliferation are regulated by Wnt16. PMID:26861315

  3. The Regulation of Cytokine Networks in Hippocampal CA1 Differentiates Extinction from Those Required for the Maintenance of Contextual Fear Memory after Recall.

    PubMed

    Scholz, Birger; Doidge, Amie N; Barnes, Philip; Hall, Jeremy; Wilkinson, Lawrence S; Thomas, Kerrie L

    2016-01-01

    We investigated the distinctiveness of gene regulatory networks in CA1 associated with the extinction of contextual fear memory (CFM) after recall using Affymetrix GeneChip Rat Genome 230 2.0 Arrays. These data were compared to previously published retrieval and reconsolidation-attributed, and consolidation datasets. A stringent dual normalization and pareto-scaled orthogonal partial least-square discriminant multivariate analysis together with a jack-knifing-based cross-validation approach was used on all datasets to reduce false positives. Consolidation, retrieval and extinction were correlated with distinct patterns of gene expression 2 hours later. Extinction-related gene expression was most distinct from the profile accompanying consolidation. A highly specific feature was the discrete regulation of neuroimmunological gene expression associated with retrieval and extinction. Immunity-associated genes of the tyrosine kinase receptor TGFβ and PDGF, and TNF families' characterized extinction. Cytokines and proinflammatory interleukins of the IL-1 and IL-6 families were enriched with the no-extinction retrieval condition. We used comparative genomics to predict transcription factor binding sites in proximal promoter regions of the retrieval-regulated genes. Retrieval that does not lead to extinction was associated with NF-κB-mediated gene expression. We confirmed differential NF-κBp65 expression, and activity in all of a representative sample of our candidate genes in the no-extinction condition. The differential regulation of cytokine networks after the acquisition and retrieval of CFM identifies the important contribution that neuroimmune signalling plays in normal hippocampal function. Further, targeting cytokine signalling upon retrieval offers a therapeutic strategy to promote extinction mechanisms in human disorders characterised by dysregulation of associative memory.

  4. Acyl-Coenzyme A Binding Protein Regulates Beta Oxidation Required for Growth and Survival of Non-Small Cell Lung Cancer

    PubMed Central

    Harris, Fredrick T.; Rahman, S.M. Jamshedur; Hassanein, Mohamed; Qian, Jun; Hoeksema, Megan D.; Chen, Heidi; Eisenberg, Rosana; Chaurand, Pierre; Caprioli, Richard M.; Shiota, Masakazu; Massion, Pierre P.

    2014-01-01

    We identified Acyl-Coenzyme A Binding Protein (ACBP) as part of a proteomic signature predicting the risk of having lung cancer. Because ACBP is known to regulate beta oxidation (β-oxidation), which in turn controls cellular proliferation, we hypothesized that ACBP contributes to regulation of cellular proliferation and survival of non-small cell lung cancer (NSCLC) by modulating β-oxidation. We utilized matrix assisted laser desorption ionization- imaging mass spectrometry (MALDI-IMS) and immunohistochemistry (IHC) to confirm ACBP’s tissue localization in pre-invasive and invasive NSCLCs. We correlated ACBP gene expression levels in NSCLC with clinical outcomes. In loss of function studies, we tested the effect of the downregulation of ACBP on cellular proliferation and apoptosis in normal bronchial and NSCLC cell lines. Using tritiated-palmitate (3H-palmitate), we measured β-oxidation levels and tested the effect of etomoxir, a β-oxidation inhibitor, on proliferation and apoptosis. MALDI-IMS and IHC analysis confirmed that ACBP is overexpressed in preinvasive and invasive lung cancers. High ACBP gene expression levels in NSCLCs correlated with worse survival (HR = 1.73). We observed a 40% decrease in β-oxidation and concordant decreases in proliferation and increases in apoptosis in ACBP depleted NSCLC cells as compared to bronchial airway epithelial cells. Inhibition of β-oxidation by etomoxir in ACBP overexpressing cells produced dose-dependent decrease in proliferation, and increase in apoptosis (p=0.01 and p <0.001 respectively). These data suggest a role for ACBP in controlling lung cancer progression by regulating β-oxidation. PMID:24819876

  5. The requirement for the LysR-type regulator PtrA for Pseudomonas chlororaphis PA23 biocontrol revealed through proteomic and phenotypic analysis

    PubMed Central

    2014-01-01

    Background Pseudomonas chlororaphis strain PA23 is a biocontrol agent capable of suppressing the fungal pathogen Sclerotinia sclerotiorum. This bacterium produces the antibiotics phenazine and pyrrolnitrin together with other metabolites believed to contribute to biocontrol. A mutant no longer capable of inhibiting fungal growth was identified harboring a transposon insertion in a gene encoding a LysR-type transcriptional regulator (LTTR), designated ptrA (Pseudomonas transcriptional regulator). Isobaric tag for relative and absolute quantitation (iTRAQ) based protein analysis was used to reveal changes in protein expression patterns in the ptrA mutant compared to the PA23 wild type. Results Relative abundance profiles showed 59 differentially-expressed proteins in the ptrA mutant, which could be classified into 16 clusters of orthologous groups (COGs) based on their predicted functions. The largest COG category was the unknown function group, suggesting that many yet-to-be identified proteins are involved in the loss of fungal activity. In the secondary metabolite biosynthesis, transport and catabolism COG, seven proteins associated with phenazine biosynthesis and chitinase production were downregulated in the mutant. Phenotypic assays confirmed the loss of phenazines and chitinase activity. Upregulated proteins included a lipoprotein involved in iron transport, a flagellin and hook-associated protein and four proteins categorized into the translation, ribosome structure and biogenesis COG. Phenotypic analysis revealed that the mutant exhibited increased siderophore production and flagellar motility and an altered growth profile, supporting the proteomic findings. Conclusion PtrA is a novel LTTR that is essential for PA23 fungal antagonism. Differential protein expression was observed across 16 COG categories suggesting PtrA is functioning as a global transcriptional regulator. Changes in protein expression were confirmed by phenotypic assays that showed reduced

  6. E-cadherin is required for caveolin-1-mediated down-regulation of the inhibitor of apoptosis protein survivin via reduced beta-catenin-Tcf/Lef-dependent transcription.

    PubMed

    Torres, Vicente A; Tapia, Julio C; Rodriguez, Diego A; Lladser, Alvaro; Arredondo, Cristian; Leyton, Lisette; Quest, Andrew F G

    2007-11-01

    Caveolin-1 reportedly acts as a tumor suppressor and promotes events associated with tumor progression, including metastasis. The molecular mechanisms underlying such radical differences in function are not understood. Recently, we showed that caveolin-1 inhibits expression of the inhibitor of apoptosis protein survivin via a transcriptional mechanism involving the beta-catenin-Tcf/Lef pathway. Surprisingly, while caveolin-1 expression decreased survivin mRNA and protein levels in HT29(ATCC) human colon cancer cells, this was not the case in metastatic HT29(US) cells. Survivin down-regulation was paralleled by coimmunoprecipitation and colocalization of caveolin-1 with beta-catenin in HT29(ATCC) but not HT29(US) cells. Unlike HT29(ATCC) cells, HT29(US) cells expressed small amounts of E-cadherin that accumulated in intracellular patches rather than at the cell surface. Re-expression of E-cadherin in HT29(US) cells restored the ability of caveolin-1 to down-regulate beta-catenin-Tcf/Lef-dependent transcription and survivin expression, as seen in HT29(ATCC) cells. In addition, coimmunoprecipitation and colocalization between caveolin-1 and beta-catenin increased upon E-cadherin expression in HT29(US) cells. In human embryonic kidney HEK293T and HT29(US) cells, caveolin-1 and E-cadherin cooperated in suppressing beta-catenin-Tcf/Lef-dependent transcription as well as survivin expression. Finally, mouse melanoma B16-F10 cells, another metastatic cell model with low endogenous caveolin-1 and E-cadherin levels, were characterized. In these cells, caveolin-1-mediated down-regulation of survivin in the presence of E-cadherin coincided with increased apoptosis. Thus, the absence of E-cadherin severely compromises the ability of caveolin-1 to develop activities potentially relevant to its role as a tumor suppressor.

  7. De Novo Guanine Biosynthesis but Not the Riboswitch-Regulated Purine Salvage Pathway Is Required for Staphylococcus aureus Infection In Vivo

    PubMed Central

    Yan, Donghong; Katakam, Anand K.; Reichelt, Mike; Lin, Baiwei; Kim, Janice; Park, Summer; Date, Shailesh V.; Monk, Ian R.; Xu, Min; Austin, Cary D.; Maurer, Till

    2016-01-01

    ABSTRACT De novo guanine biosynthesis is an evolutionarily conserved pathway that creates sufficient nucleotides to support DNA replication, transcription, and translation. Bacteria can also salvage nutrients from the environment to supplement the de novo pathway, but the relative importance of either pathway during Staphylococcus aureus infection is not known. In S. aureus, genes important for both de novo and salvage pathways are regulated by a guanine riboswitch. Bacterial riboswitches have attracted attention as a novel class of antibacterial drug targets because they have high affinity for small molecules, are absent in humans, and regulate the expression of multiple genes, including those essential for cell viability. Genetic and biophysical methods confirm the existence of a bona fide guanine riboswitch upstream of an operon encoding xanthine phosphoribosyltransferase (xpt), xanthine permease (pbuX), inosine-5′-monophosphate dehydrogenase (guaB), and GMP synthetase (guaA) that represses the expression of these genes in response to guanine. We found that S. aureus guaB and guaA are also transcribed independently of riboswitch control by alternative promoter elements. Deletion of xpt-pbuX-guaB-guaA genes resulted in guanine auxotrophy, failure to grow in human serum, profound abnormalities in cell morphology, and avirulence in mouse infection models, whereas deletion of the purine salvage genes xpt-pbuX had none of these effects. Disruption of guaB or guaA recapitulates the xpt-pbuX-guaB-guaA deletion in vivo. In total, the data demonstrate that targeting the guanine riboswitch alone is insufficient to treat S. aureus infections but that inhibition of guaA or guaB could have therapeutic utility. IMPORTANCE De novo guanine biosynthesis and purine salvage genes were reported to be regulated by a guanine riboswitch in Staphylococcus aureus. We demonstrate here that this is not true, because alternative promoter elements that uncouple the de novo pathway from

  8. Regulation of protein biosynthesis by non-lymphoid cells requires the participation of receptors, which recognize the same protein through a center analogous to the antibody active center

    SciTech Connect

    Kul'berg, A.Y.; Ivanovska, N.D.; Tarkhanova, I.A.

    1986-09-01

    This paper studies the mechanism for regulating the biosynthesis of one of the complement components (anti-idiotypic antibodies CI /SUB q/ ) by macrophages. The experiments were conducted on mouse resident peritoneal macrophages cultivated in medium containing C 14-glycine. The synthesis of CI /SUB q/ was evaluated according to the content of protein which was bound by rabbit antibodies against mouse CI /SUB q/ immobilized on bromocyan-Sepharose 4B. The study of the kinetics of the biosynthesis of CI /SUB q/ by propagated macrophages shows that the biosynthesis was initially recorded and in the subsequent period the culture contained no other cells apart from macrophages.

  9. 40 CFR Appendix A to Part 282 - State Requirements Incorporated by Reference in Part 282 of the Code of Federal Regulations

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Confirmation Steps. Section .23Reporting and Clean-up of Spills and Overfills. Section .24Initial Release...)-103General Operating Requirements (a) Spill and overflow control. (b) Operating and maintenance of corrosion... steps. (d) Reporting and cleanup of spills and overfills. Section 22a-449(d)-106Release Response...

  10. 40 CFR Appendix A to Part 282 - State Requirements Incorporated by Reference in Part 282 of the Code of Federal Regulations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Confirmation Steps. Section .23Reporting and Clean-up of Spills and Overfills. Section .24Initial Release...)-103General Operating Requirements (a) Spill and overflow control. (b) Operating and maintenance of corrosion... steps. (d) Reporting and cleanup of spills and overfills. Section 22a-449(d)-106Release Response...

  11. 40 CFR Appendix Xiii to Part 86 - State Requirements Incorporated by Reference in Part 86 of the Code of Federal Regulations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false State Requirements Incorporated by... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW...-Line Test Procedures for 1983 Through 1997 Model-Year Passenger Cars, Light-Duty Trucks and...

  12. 40 CFR Appendix Xiii to Part 86 - State Requirements Incorporated by Reference in Part 86 of the Code of Federal Regulations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false State Requirements Incorporated by... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW...-Line Test Procedures for 1983 Through 1997 Model-Year Passenger Cars, Light-Duty Trucks and...

  13. 40 CFR Appendix Xiii to Part 86 - State Requirements Incorporated by Reference in Part 86 of the Code of Federal Regulations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false State Requirements Incorporated by... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW...-Line Test Procedures for 1983 Through 1997 Model-Year Passenger Cars, Light-Duty Trucks and...

  14. 40 CFR Appendix Xiii to Part 86 - State Requirements Incorporated by Reference in Part 86 of the Code of Federal Regulations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false State Requirements Incorporated by... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW...-Line Test Procedures for 1983 Through 1997 Model-Year Passenger Cars, Light-Duty Trucks and...

  15. A Side-by-Side Comparison of Federal and State Early Education Regulations and Requirements Affecting Early Care and Education in Connecticut, Fall 2001.

    ERIC Educational Resources Information Center

    Morrison, Julie, Ed.; Schlesinger, Ann, Ed.

    In order to advance early childhood education and services across the state of Connecticut, early education leaders at the federal, state, and local levels were convened by the Connecticut Head Start-State Collaboration Project to identify each funder's requirements in key categories and to discuss specific policies and practices of those…

  16. Involvement of ZFR1 of Fusarium verticilliodes in kernel colonization and the regulation of FST1, a putative sugar transporter gene required for fumonisin biosynthesis on maize kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisins comprise a class of carcinogenic mycotoxins produced by Fusarium verticillioides during colonization of maize kernels. In previous work, we identified ZFR1, which is predicted to encode a Zn(II)2Cys6 zinc finger transcription factor required for fumonisin B1 (FB1) production during growt...

  17. Identification of cptA, a PmrA-Regulated Locus Required for Phosphoethanolamine Modification of the Salmonella enterica Serovar Typhimurium Lipopolysaccharide Core

    PubMed Central

    Tamayo, R.; Choudhury, B.; Septer, A.; Merighi, M.; Carlson, R.; Gunn, J. S.

    2005-01-01

    In response to the in vivo environment, the Salmonella enterica serovar Typhimurium lipopolysaccharide (LPS) is modified. These modifications are controlled in part by the two-component regulatory system PmrA-PmrB, with the addition of 4-aminoarabinose (Ara4N) to the lipid A and phosphoethanolamine (pEtN) to the lipid A and core. Here we demonstrate that the PmrA-regulated STM4118 (cptA) gene is necessary for the addition of pEtN to the LPS core. pmrC, a PmrA-regulated gene necessary for the addition of pEtN to lipid A, did not affect core pEtN addition. Although imparting a similar surface charge modification as Ara4N, which greatly affects polymyxin B resistance and murine virulence, neither pmrC nor cptA plays a dramatic role in antimicrobial peptide resistance in vitro or virulence in the mouse model. Therefore, factors other than surface charge/electrostatic interaction contribute to resistance to antimicrobial peptides such as polymyxin B. PMID:15866924

  18. Berardinelli-Seip Congenital Lipodystrophy 2/Seipin Is Not Required for Brown Adipogenesis but Regulates Brown Adipose Tissue Development and Function

    PubMed Central

    Zhou, Hongyi; Black, Stephen M.; Benson, Tyler W.; Weintraub, Neal L.

    2016-01-01

    Brown adipose tissue (BAT) plays a unique role in regulating whole-body energy homeostasis by dissipating energy through thermogenic uncoupling. Berardinelli-Seip congenital lipodystrophy (BSCL) type 2 (BSCL2; also known as seipin) is a lipodystrophy-associated endoplasmic reticulum membrane protein essential for white adipocyte differentiation. Whether BSCL2 directly participates in brown adipocyte differentiation, development, and function, however, is unknown. We show that BSCL2 expression is increased during brown adipocyte differentiation. Its deletion does not impair the classic brown adipogenic program but rather induces premature activation of differentiating brown adipocytes through cyclic AMP (cAMP)/protein kinase A (PKA)-mediated lipolysis and fatty acid and glucose oxidation, as well as uncoupling. cAMP/PKA signaling is physiologically activated during neonatal BAT development in wild-type mice and greatly potentiated in mice with genetic deletion of Bscl2 in brown progenitor cells, leading to reduced BAT mass and lipid content during neonatal brown fat formation. However, prolonged overactivation of cAMP/PKA signaling during BAT development ultimately causes apoptosis of brown adipocytes through inflammation, resulting in BAT atrophy and increased overall adiposity in adult mice. These findings reveal a key cell-autonomous role for BSCL2 in controlling BAT mass/activity and provide novel insights into therapeutic strategies targeting cAMP/PKA signaling to regulate brown adipocyte function, viability, and metabolic homeostasis. PMID:27185876

  19. Differential response of maize catalases to abscisic acid: Vp1 transcriptional activator is not required for abscisic acid-regulated Cat1 expression.

    PubMed Central

    Williamson, J D; Scandalios, J G

    1992-01-01

    In this paper we describe the distinctive responses of the maize catalases to the plant growth regulator abscisic acid (ABA). We analyzed RNA and enzyme accumulation in excised maize embryos and found that each catalase responded differently to exogenously applied ABA. Levels of Cat1 transcript and enzyme activity rapidly increased. In contrast, levels of Cat2 transcript and protein decreased, while Cat3 transcript levels were not affected. In developing kernels of the ABA-deficient/biosynthetic viviparous mutant vp5, lower levels of Cat1 RNA correlated with lower endogenous ABA levels when compared to measured levels in comparably aged wild-type siblings from the same ear. The maize vp1 mutant line is morphologically insensitive to normal endogenous levels of ABA. Analysis of the response of Cat1 to exogenously applied ABA in mutant and wild-type vp1 sibling embryos suggests that, unlike other ABA-responsive genes analyzed to date, the Vp1 gene product is not essential for the ABA-mediated regulation of Cat1. The significance of these responses to ABA in defining the roles of the various CATs in maize is discussed. Images PMID:1388272

  20. BIG1, a brefeldin A-inhibited guanine nucleotide-exchange factor, is required for GABA-gated Cl⁻ influx through regulation of GABAA receptor trafficking.

    PubMed

    Li, Cuixian; Chen, Shaorui; Yu, Yang; Zhou, Chun; Wang, Ying; Le, Kang; Li, Dong; Shao, Weiwei; Lu, Liang; You, Yan; Peng, Jin; Huang, Heqing; Liu, Peiqing; Shen, Xiaoyan

    2014-04-01

    GABAA receptors (GABAARs) mediate the majority of fast synaptic inhibition. Trafficking regulation and protein-protein interactions that maintain the appropriate number of GABAARs at the cell surface are considered to be important mechanisms for controlling the strength of synaptic inhibition. Here, we report that BIG1, a brefeldin A (BFA)-inhibited guanine nucleotide-exchange factor (GEF) which has a known role in vesicle trafficking, is a new binding partner of GABAARs. Treatment of neurons with BFA, an uncompetitive inhibitor of BIG1 GEF activity, or depletion of BIG1 by small RNA interference (siRNA) significantly decreased GABAARs at the neuronal surface and suppressed GABA-gated influx of chloride ions. Over-expression of HA-tagged BIG1-E793K, a dominant-negative mutant, also significantly decreased GABAARs at the neuronal surface, but had no effect on the total amount of GABAARs. Inhibition of GABAAR endocytosis by muscimol increased both GABAARs and BIG1 at the neuronal surface in a time-dependent fashion, and this increase could be abolished by bicuculline. Finally, depletion of BIG1 by siRNA inhibited the muscimol-stimulated increase of GABAARs. Those data suggest an important function of BIG1 in trafficking of GABAARs to the cell surface through its GEF activity. Thus, we identify an important role of BIG1 in modulating GABA-gated Cl(-) influx through the regulation of cell surface expression of GABAARs.

  1. Induction of Dormancy in Arabidopsis Summer Annuals Requires Parallel Regulation of DOG1 and Hormone Metabolism by Low Temperature and CBF Transcription Factors[W][OA

    PubMed Central

    Kendall, Sarah L.; Hellwege, Anja; Marriot, Poppy; Whalley, Celina; Graham, Ian A.; Penfield, Steven

    2011-01-01

    Summer annuals overwinter as seeds in the soil seed bank. This is facilitated by a cold-induced increase in dormancy during seed maturation followed by a switch to a state during seed imbibition in which cold instead promotes germination. Here, we show that the seed maturation transcriptome in Arabidopsis thaliana is highly temperature sensitive and reveal that low temperature during seed maturation induces several genes associated with dormancy, including DELAY OF GERMINATION1 (DOG1), and influences gibberellin and abscisic acid levels in mature seeds. Mutants lacking DOG1, or with altered gibberellin or abscisic acid synthesis or signaling, in turn show reduced ability to enter the deeply dormant states in response to low seed maturation temperatures. In addition, we find that DOG1 promotes gibberellin catabolism during maturation. We show that C-REPEAT BINDING FACTORS (CBFs) are necessary for regulation of dormancy and of GA2OX6 and DOG1 expression caused by low temperatures. However, the temperature sensitivity of CBF transcription is markedly reduced in seeds and is absent in imbibed seeds. Our data demonstrate that inhibition of CBF expression is likely a critical feature allowing cold to promote rather than inhibit germination and support a model in which CBFs act in parallel to a low-temperature signaling pathway in the regulation of dormancy. PMID:21803937

  2. Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors.

    PubMed

    Kendall, Sarah L; Hellwege, Anja; Marriot, Poppy; Whalley, Celina; Graham, Ian A; Penfield, Steven

    2011-07-01

    Summer annuals overwinter as seeds in the soil seed bank. This is facilitated by a cold-induced increase in dormancy during seed maturation followed by a switch to a state during seed imbibition in which cold instead promotes germination. Here, we show that the seed maturation transcriptome in Arabidopsis thaliana is highly temperature sensitive and reveal that low temperature during seed maturation induces several genes associated with dormancy, including DELAY OF GERMINATION1 (DOG1), and influences gibberellin and abscisic acid levels in mature seeds. Mutants lacking DOG1, or with altered gibberellin or abscisic acid synthesis or signaling, in turn show reduced ability to enter the deeply dormant states in response to low seed maturation temperatures. In addition, we find that DOG1 promotes gibberellin catabolism during maturation. We show that C-REPEAT BINDING FACTORS (CBFs) are necessary for regulation of dormancy and of GA2OX6 and DOG1 expression caused by low temperatures. However, the temperature sensitivity of CBF transcription is markedly reduced in seeds and is absent in imbibed seeds. Our data demonstrate that inhibition of CBF expression is likely a critical feature allowing cold to promote rather than inhibit germination and support a model in which CBFs act in parallel to a low-temperature signaling pathway in the regulation of dormancy.

  3. Cell Wall N-Linked Mannoprotein Biosynthesis Requires Goa1p, a Putative Regulator of Mitochondrial Complex I in Candida albicans

    PubMed Central

    She, Xiaodong; Calderone, Richard; Kruppa, Michael; Lowman, Douglas; Williams, David; Zhang, Lili; Gao, Ying; Khamooshi, Kasra; Liu, Weida; Li, Dongmei

    2016-01-01

    The Goa1p of Candida albicans regulates mitochondrial Complex I (CI) activities in its role as a putative CI accessory protein. Transcriptional profiling of goa1∆ revealed a down regulation of genes encoding β-oligomannosyl transferases. Herein, we present data on cell wall phenotypes of goa1∆ (strain GOA31). We used transmission electron microscopy (TEM), GPC/MALLS, and NMR to compare GOA31 to a gene-reconstituted strain (GOA32) and parental cells. We note by TEM a reduction in outer wall fibrils, increased inner wall transparency, and the loss of a defined wall layer close to the plasma membrane. GPC-MALLS revealed a reduction in high and intermediate Mw mannan by 85% in GOA31. A reduction of β-mannosyl but not α-mannosyl linkages was noted in GOA31 cells. β-(1,6)-linked glucan side chains were branched about twice as often but were shorter in length for GOA31. We conclude that mitochondrial CI energy production is highly integrated with cell wall formation. Our data also suggest that not all cell wall biosynthetic processes are dependent upon Goa1p even though it provides high levels of ATP to cells. The availability of both broadly conserved and fungal-specific mutants lacking CI subunit proteins should be useful in assessing functions of fungal-specific functions subunit proteins. PMID:26809064

  4. Aspergillus fumigatus MADS-Box Transcription Factor rlmA Is Required for Regulation of the Cell Wall Integrity and Virulence

    PubMed Central

    Rocha, Marina Campos; Fabri, João Henrique Tadini Marilhano; Franco de Godoy, Krissia; Alves de Castro, Patrícia; Hori, Juliana Issa; Ferreira da Cunha, Anderson; Arentshorst, Mark; Ram, Arthur F. J.; van den Hondel, Cees A. M. J. J.; Goldman, Gustavo Henrique; Malavazi, Iran

    2016-01-01

    The Cell Wall Integrity (CWI) pathway is the primary signaling cascade that controls the de novo synthesis of the fungal cell wall, and in Saccharomyces cerevisiae this event is highly dependent on the RLM1 transcription factor. Here, we investigated the function of RlmA in the fungal pathogen Aspergillus fumigatus. We show that the ΔrlmA strain exhibits an altered cell wall organization in addition to defects related to vegetative growth and tolerance to cell wall-perturbing agents. A genetic analysis indicated that rlmA is positioned downstream of the pkcA and mpkA genes in the CWI pathway. As a consequence, rlmA loss-of-function leads to the altered expression of genes encoding cell wall-related proteins. RlmA positively regulates the phosphorylation of MpkA and is induced at both protein and transcriptional levels during cell wall stress. The rlmA was also involved in tolerance to oxidative damage and transcriptional regulation of genes related to oxidative stress adaptation. Moreover, the ΔrlmA strain had attenuated virulence in a neutropenic murine model of invasive pulmonary aspergillosis. Our results suggest that RlmA functions as a transcription factor in the A. fumigatus CWI pathway, acting downstream of PkcA-MpkA signaling and contributing to the virulence of this fungus. PMID:27473315

  5. The intraflagellar transport protein IFT57 is required for cilia maintenance and regulates IFT-particle-kinesin-II dissociation in vertebrate photoreceptors.

    PubMed

    Krock, Bryan L; Perkins, Brian D

    2008-06-01

    Defects in protein transport within vertebrate photoreceptors can result in photoreceptor degeneration. In developing and mature photoreceptors, proteins targeted to the outer segment are transported through the connecting cilium via the process of intraflagellar transport (IFT). In studies of vertebrate IFT, mutations in any component of the IFT particle typically abolish ciliogenesis, suggesting that IFT proteins are equally required for IFT. To determine whether photoreceptor outer segment formation depends equally on individual IFT proteins, we compared the retinal phenotypes of IFT57 and IFT88 mutant zebrafish. IFT88 mutants failed to form outer segments, whereas IFT57 mutants formed short outer segments with reduced amounts of opsin. Our phenotypic analysis revealed that IFT57 is not essential for IFT, but is required for efficient IFT. In co-immunoprecipitation experiments from whole-animal extracts, we determined that kinesin II remained associated with the IFT particle in the absence of IFT57, but IFT20 did not. Additionally, kinesin II did not exhibit ATP-dependent dissociation from the IFT particle in IFT57 mutants. We conclude that IFT20 requires IFT57 to associate with the IFT particle and that IFT57 and/or IFT20 mediate kinesin II dissociation.

  6. Components of Golgi-to-vacuole trafficking are required for nitrogen- and TORC1-responsive regulation of the yeast GATA factors

    PubMed Central

    Fayyadkazan, Mohammad; Tate, Jennifer J; Vierendeels, Fabienne; Cooper, Terrance G; Dubois, Evelyne; Georis, Isabelle

    2014-01-01

    Nitrogen catabolite repression (NCR) is the regulatory pathway through which Saccharomyces cerevisiae responds to the available nitrogen status and selectively utilizes rich nitrogen sources in preference to poor ones. Expression of NCR-sensitive genes is mediated by two transcription activators, Gln3 and Gat1, in response to provision of a poorly used nitrogen source or following treatment with the TORC1 inhibitor, rapamycin. During nitrogen excess, the transcription activators are sequestered in the cytoplasm in a Ure2-dependent fashion. Here, we show that Vps components are required for Gln3 localization and function in response to rapamycin treatment when cells are grown in defined yeast nitrogen base but not in complex yeast peptone dextrose medium. On the other hand, Gat1 function was altered in vps mutants in all conditions tested. A significant fraction of Gat1, like Gln3, is associated with light intracellular membranes. Further, our results are consistent with the possibility that Ure2 might function downstream of the Vps components during the control of GATA factor-mediated gene expression. These observations demonstrate distinct media-dependent requirements of vesicular trafficking components for wild-type responses of GATA factor localization and function. As a result, the current model describing participation of Vps system components in events associated with translocation of Gln3 into the nucleus following rapamycin treatment or growth in nitrogen-poor medium requires modification. PMID:24644271

  7. Ste12 Transcription Factor Homologue CpST12 Is Down-Regulated by Hypovirus Infection and Required for Virulence and Female Fertility of the Chestnut Blight Fungus Cryphonectria parasitica▿

    PubMed Central

    Deng, Fuyou; Allen, Todd D.; Nuss, Donald L.

    2007-01-01

    A putative homologue of the Saccharomyces cerevisiae Ste12 transcription factor was identified in a series of expressed sequence tag-based microarray analyses as being down-regulated in strains of the chestnut blight fungus, Cryphonectria parasitica, infected by virulence-attenuating hypoviruses. Cloning of the corresponding gene, cpst12, confirmed a high level of similarity to Ste12 homologues of other filamentous fungi. Disruption of cpst12 resulted in no alterations in in vitro growth characteristics or colony morphology and an increase in the production of asexual spores, indicating that CpST12 is dispensable for vegetative growth and conidiation on artificial medium. However, the disruption mutants showed a very substantial reduction in virulence on chestnut tissue and a complete loss of female fertility, two symptoms normally conferred by hypovirus infection. Both virulence and female fertility were restored by complementation with the wild-type cpst12 gene. Analysis of transcriptional changes caused by cpst12 gene disruption with a custom C. parastica cDNA microaray chip identified 152 responsive genes. A significant number of these putative CpST12-regulated genes were also responsive to hypovirus infection. Thus, cpst12 encodes a cellular transcription factor, CpST12, that is down-regulated by hypovirus infection and required for female fertility, virulence and regulated expression of a subset of hypovirus responsive host genes. PMID:17114597

  8. Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis.

    PubMed

    Noshi, Masahiro; Hatanaka, Risa; Tanabe, Noriaki; Terai, Yusuke; Maruta, Takanori; Shigeoka, Shigeru

    2016-05-01

    Chloroplasts are a significant site for reactive oxygen species production under illumination and, thus, possess a well-organized antioxidant system involving ascorbate. Ascorbate recycling occurs in different manners in this system, including a dehydroascorbate reductase (DHAR) reaction. We herein investigated the physiological significance of DHAR3 in photo-oxidative stress tolerance in Arabidopsis. GFP-fused DHAR3 protein was targeted to chloroplasts in Arabidopsis leaves. A DHAR3 knockout mutant exhibited sensitivity to high light (HL). Under HL, the ascorbate redox states were similar in mutant and wild-type plants, while total ascorbate content was significantly lower in the mutant, suggesting that DHAR3 contributes, at least to some extent, to ascorbate recycling. Activation of monodehydroascorbate reductase occurred in dhar3 mutant, which might compensate for the lack of DHAR3. Interestingly, glutathione oxidation was consistently inhibited in dhar3 mutant. These findings indicate that DHAR3 regulates both ascorbate and glutathione redox states to acclimate to HL.

  9. The Saccharomyces cerevisiae 14-3-3 protein Bmh2 is required for regulation of the phosphorylation status of Fin1, a novel intermediate filament protein.

    PubMed Central

    Mayordomo, Isabel; Sanz, Pascual

    2002-01-01

    In order to identify proteins that interact with Bmh2, a yeast member of the 14-3-3 protein family, we performed a two-hybrid screening using LexA-Bmh2 as bait. We identified Fin1, a novel intermediate filament protein, as the protein that showed the highest degree of interaction. We also identified components of the vesicular transport machinery such as Gic2 and Msb3, proteins involved in transcriptional regulation such as Mbf1, Gcr2 and Reg2, and a variety of other different proteins (Ppt1, Lre1, Rps0A and Ylr177w). We studied the interaction between Bmh2 and Fin1 in more detail and found that Bmh2 only interacted with phosphorylated forms of Fin1. In addition, we showed that Glc7, the catalytic subunit of the protein phosphatase 1 complex, was also able to interact with Fin1. PMID:11931638

  10. Neuroprotection of brain-derived neurotrophic factor against hypoxic injury in vitro requires activation of extracellular signal-regulated kinase and phosphatidylinositol 3-kinase.

    PubMed

    Sun, Xiaomei; Zhou, Hui; Luo, Xiaoli; Li, Shengfu; Yu, Dan; Hua, Jiping; Mu, Dezhi; Mao, Meng

    2008-01-01

    Intrauterine asphyxia is one of the major contributors for perinatal death, mental and physical disorders of surviving children. Brain-derived neurotrophic factor (BDNF) provides a promising solution to hypoxic injury due to its survival-promoting effects. In an attempt to identify possible molecular mechanisms underlying the neuroprotective role of BDNF, we studied extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI-3-K) and p38 mitogen-activated protein kinase (MAPK) pathways. We demonstrated that BDNF protected cortical neurons against hypoxic injury in vitro via activation of both the ERK and PI-3-K pathways but not the p38 MAPK pathway. We also showed that both hypoxic stimuli and exogenous BDNF treatment phosphorylated the cyclic AMP response element-binding protein (CREB) and that CREB phosphorylation induced by BDNF was mediated via the ERK pathway in cultured cortical neurons.

  11. IpsA, a novel LacI-type regulator, is required for inositol-derived lipid formation in Corynebacteria and Mycobacteria

    PubMed Central

    2013-01-01

    Background The development of new drugs against tuberculosis and diphtheria is focused on disrupting the biogenesis of the cell wall, the unique architecture of which confers resistance against current therapies. The enzymatic pathways involved in the synthesis of the cell wall by these pathogens are well understood, but the underlying regulatory mechanisms are largely unknown. Results Here, we characterize IpsA, a LacI-type transcriptional regulator conserved among Mycobacteria and Corynebacteria that plays a role in the regulation of cell wall biogenesis. IpsA triggers myo-inositol formation by activating ino1, which encodes inositol phosphate synthase. An ipsA deletion mutant of Corynebacterium glutamicum cultured on glucose displayed significantly impaired growth and presented an elongated cell morphology. Further studies revealed the absence of inositol-derived lipids in the cell wall and a complete loss of mycothiol biosynthesis. The phenotype of the C. glutamicum ipsA deletion mutant was complemented to different extend by homologs from Corynebacterium diphtheriae (dip1969) and Mycobacterium tuberculosis (rv3575), indicating the conserved function of IpsA in the pathogenic species. Additional targets of IpsA with putative functions in cell wall biogenesis were identified and IpsA was shown to bind to a conserved palindromic motif within the corresponding promoter regions. Myo-inositol was identified as an effector of IpsA, causing the dissociation of the IpsA-DNA complex in vitro. Conclusions This characterization of IpsA function and of its regulon sheds light on the complex transcriptional control of cell wall biogenesis in the mycolata taxon and generates novel targets for drug development. PMID:24377418

  12. Modulation of Phagosomal pH by Candida albicans Promotes Hyphal Morphogenesis and Requires Stp2p, a Regulator of Amino Acid Transport

    PubMed Central

    Vylkova, Slavena; Lorenz, Michael C.

    2014-01-01

    Candida albicans, the most important fungal pathogen of humans, has a unique interaction with macrophages in which phagocytosis induces a switch from the yeast to hyphal form, allowing it to escape by rupturing the immune cell. While a variety of factors induce this switch in vitro, including neutral pH, it is not clear what triggers morphogenesis within the macrophage where the acidic environment should inhibit this transition. In vitro, C. albicans grown in similar conditions in which amino acids are the primary carbon source generate large quantities of ammonia to raise the extracellular pH and induce the hyphal switch. We show here that C. albicans cells neutralize the macrophage phagosome and that neutral pH is a key inducer of germination in phagocytosed cells by using a mutant lacking STP2, a transcription factor that regulates the expression of multiple amino acid permeases, that is completely deficient in alkalinization in vitro. Phagocytosed stp2Δ mutant cells showed significant reduction in hypha formation and escaped from macrophages less readily compared to wild type cells; as a result stp2Δ mutant cells were killed at a higher rate and caused less damage to RAW264.7 macrophages. Stp2p-regulated import leads to alkalinization of the phagosome, since the majority of the wild type cells fail to co-localize with acidophilic dyes, whereas the stp2Δ mutant cells were located in acidic phagosomes. Furthermore, stp2Δ mutant cells were able to form hyphae and escape from neutral phagosomes, indicating that the survival defect in these cells was pH dependent. Finally, these defects are reflected in an attenuation of virulence in a mouse model of disseminated candidiasis. Altogether our results suggest that C. albicans utilizes amino acids to promote neutralization of the phagosomal pH, hyphal morphogenesis, and escape from macrophages. PMID:24626429

  13. The regulation of runt-related transcription factor 2 by fibroblast growth factor-2 and connexin43 requires the inositol polyphosphate/protein kinase Cδ cascade.

    PubMed

    Niger, Corinne; Luciotti, Maria A; Buo, Atum M; Hebert, Carla; Ma, Vy; Stains, Joseph P

    2013-06-01

    Connexin43 (Cx43) plays a critical role in osteoblast function and bone mass accrual, yet the identity of the second messengers communicated by Cx43 gap junctions, the targets of these second messengers and how they regulate osteoblast function remain largely unknown. We have shown that alterations of Cx43 expression in osteoblasts can impact the responsiveness to fibroblast growth factor-2 (FGF2), by modulating the transcriptional activity of runt-related transcription factor 2 (Runx2). In this study, we examined the contribution of the phospholipase Cγ1/inositol polyphosphate/protein kinase C delta (PKCδ) cascade to the Cx43-dependent transcriptional response of MC3T3 osteoblasts to FGF2. Knockdown of expression and/or inhibition of function of phospholipase Cγ1, inositol polyphosphate multikinase, which generates inositol 1,3,4,5-tetrakisphosphate (InsP₄) and InsP₅, and inositol hexakisphosphate kinase 1/2, which generates inositol pyrophosphates, prevented the ability of Cx43 to potentiate FGF2-induced signaling through Runx2. Conversely, overexpression of phospholipase Cγ1 and inositol hexakisphosphate kinase 1/2 enhanced FGF2 activation of Runx2 and the effect of Cx43 overexpression on this response. Disruption of these pathways blocked the nuclear accumulation of PKCδ and the FGF2-dependent interaction of PKCδ and Runx2, reducing Runx2 transcriptional activity. These data reveal that FGF2-signaling involves the inositol polyphosphate cascade, including inositol hexakisphosphate kinase (IP6K), and demonstrate that IP6K regulates Runx2 and osteoblast gene expression. Additionally, these data implicate the water-soluble inositol polyphosphates as mediators of the Cx43-dependent amplification of the osteoblast response to FGF2, and suggest that these low molecular weight second messengers may be biologically relevant mediators of osteoblast function that are communicated by Cx43-gap junctions.

  14. The Transcription Factor ABI4 Is Required for the Ascorbic Acid–Dependent Regulation of Growth and Regulation of Jasmonate-Dependent Defense Signaling Pathways in Arabidopsis[C][W

    PubMed Central

    Kerchev, Pavel I.; Pellny, Till K.; Vivancos, Pedro Diaz; Kiddle, Guy; Hedden, Peter; Driscoll, Simon; Vanacker, Hélène; Verrier, Paul; Hancock, Robert D.; Foyer, Christine H.

    2011-01-01

    Cellular redox homeostasis is a hub for signal integration. Interactions between redox metabolism and the ABSCISIC ACID-INSENSITIVE-4 (ABI4) transcription factor were characterized in the Arabidopsis thaliana vitamin c defective1 (vtc1) and vtc2 mutants, which are defective in ascorbic acid synthesis and show a slow growth phenotype together with enhanced abscisic acid (ABA) levels relative to the wild type (Columbia-0). The 75% decrease in the leaf ascorbate pool in the vtc2 mutants was not sufficient to adversely affect GA metabolism. The transcriptome signatures of the abi4, vtc1, and vtc2 mutants showed significant overlap, with a large number of transcription factors or signaling components similarly repressed or induced. Moreover, lincomycin-dependent changes in LIGHT HARVESTING CHLOROPHYLL A/B BINDING PROTEIN 1.1 expression were comparable in these mutants, suggesting overlapping participation in chloroplast to nucleus signaling. The slow growth phenotype of vtc2 was absent in the abi4 vtc2 double mutant, as was the sugar-insensitive phenotype of the abi4 mutant. Octadecanoid derivative-responsive AP2/ERF-domain transcription factor 47 (ORA47) and AP3 (an ABI5 binding factor) transcripts were enhanced in vtc2 but repressed in abi4 vtc2, suggesting that ABI4 and ascorbate modulate growth and defense gene expression through jasmonate signaling. We conclude that low ascorbate triggers ABA- and jasmonate-dependent signaling pathways that together regulate growth through ABI4. Moreover, cellular redox homeostasis exerts a strong influence on sugar-dependent growth regulation. PMID:21926335

  15. 16 CFR 301.2 - General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.2 General requirements. (a) Each and every fur... with the requirements of the act and rules and regulations. (b) Each and every fur shall be invoiced in conformity with the requirements of the act and rules and regulations. (c) Any advertising of fur products...

  16. 16 CFR 301.2 - General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.2 General requirements. (a) Each and every fur... with the requirements of the act and rules and regulations. (b) Each and every fur shall be invoiced in conformity with the requirements of the act and rules and regulations. (c) Any advertising of fur products...

  17. 16 CFR 301.2 - General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.2 General requirements. (a) Each and every fur... with the requirements of the act and rules and regulations. (b) Each and every fur shall be invoiced in conformity with the requirements of the act and rules and regulations. (c) Any advertising of fur products...

  18. 16 CFR 301.2 - General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.2 General requirements. (a) Each and every fur... with the requirements of the act and rules and regulations. (b) Each and every fur shall be invoiced in conformity with the requirements of the act and rules and regulations. (c) Any advertising of fur products...

  19. 16 CFR 301.2 - General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATIONS UNDER FUR PRODUCTS LABELING ACT Regulations § 301.2 General requirements. (a) Each and every fur... with the requirements of the act and rules and regulations. (b) Each and every fur shall be invoiced in conformity with the requirements of the act and rules and regulations. (c) Any advertising of fur products...

  20. Differential requirement of the transcription factor Mcm1 for activation of the Candida albicans multidrug efflux pump MDR1 by its regulators Mrr1 and Cap1.

    PubMed

    Mogavero, Selene; Tavanti, Arianna; Senesi, Sonia; Rogers, P David; Morschhäuser, Joachim

    2011-05-01

    Overexpression of the multidrug efflux pump Mdr1 causes increased fluconazole resistance in the pathogenic yeast Candida albicans. The transcription factors Mrr1 and Cap1 mediate MDR1 upregulation in response to inducing stimuli, and gain-of-function mutations in Mrr1 or Cap1, which render the transcription factors hyperactive, result in constitutive MDR1 overexpression. The essential MADS box transcription factor Mcm1 also binds to the MDR1 promoter, but its role in inducible or constitutive MDR1 upregulation is unknown. Using a conditional mutant in which Mcm1 can be depleted from the cells, we investigated the importance of Mcm1 for MDR1 expression. We found that Mcm1 was dispensable for MDR1 upregulation by H2O2 but was required for full MDR1 induction by benomyl. A C-terminally truncated, hyperactive Cap1 could upregulate MDR1 expression both in the presence and in the absence of Mcm1. In contrast, a hyperactive Mrr1 containing a gain-of-function mutation depended on Mcm1 to cause MDR1 overexpression. These results demonstrate a differential requirement for the coregulator Mcm1 for Cap1- and Mrr1-mediated MDR1 upregulation. When activated by oxidative stress or a gain-of-function mutation, Cap1 can induce MDR1 expression independently of Mcm1, whereas Mrr1 requires either Mcm1 or an active Cap1 to cause overexpression of the MDR1 efflux pump. Our findings provide more detailed insight into the molecular mechanisms of drug resistance in this important human fungal pathogen.